    “The Agencies Method for Modeling Coalitions and Cooperation in Games”
         [A Study of 3-Person Games in Terms of Evolved Cooperation  

      Using the Agencies Method for Modeling the Coalescence Processes]
            (note that above earlier title should be shortened)
    The idea leading to this study originated some time ago when I talked at 
a gathering of high school graduates at a summer science camp. I spoke about 
the theme of "the evolution of cooperation" (in Nature) and about how that topic was amenable to studies involving Game Theory (which, more frequently, has been used in research in economics).

    After that event I was stimulated to think of the possibility of modeling cooperation in games through actions of acceptance in which one player could simply accept the "agency" of another player or of an existing coalition of players. 
    The action of acceptance would have the form of being entirely cooperative, 

as if “altruistic”, and not at all competitive, but there was also the idea that the game would be studied under circumstances of repetition and that every player would have the possibility of reacting in a non-cooperative fashion to any undesirable pattern of behavior of any another player. Thus the game studied would be analogous to the repeated games of "Prisoner's Dilemma" variety that have been studied in theoretical biology.
    These studies of "PD" (or "Prisoner's Dilemma") games have revealed the paradoxical possibility of the natural evolution of cooperative behavior when 
the interacting organisms or species are presumed only to be endowed with 
self-interested motivations, thus motivations of a non-cooperative type.
              Games in Theory and Games Played by Humans

    I feel, personally, that the study of experimental games is the proper 

route of travel for finding "the ultimate truth" in relation to games as played by human players. But in practical game theory the players, can be corporations or states; so the problem of usefully analyzing a game does not, in a practical sense, reduce to a problem only of the analysis of human behavior.
    It is apparent that actual human behavior is guided by complex human instincts promoting cooperation among individuals and that moreover there 
are also the various cultural influences acting to modify individual human behavior and at least often to influence the behavior of humans toward 
enhanced cooperativeness.)

    If an experiment of the "experimental games" variety were performed with actual human players then all the complex of both instinctive and cultural influences could influence the behavior of the experimental subjects. Thus male subjects might play less competitively in relation to female subjects and more competitively in relation to other male subjects. And subjects being of the same minority category of the total aggregate might play less competitively in relation to themselves. Also, in general, the experimental subjects might be "trainable" so that under conditions of being given a course of instructions on how to play the game in a manner perhaps analogous to a "good businessman" they might then, in terms of their observable behavior, play differently than if simply observed playing without being given any training.
    Our study has the character of an experiment, but it is of the form of an experiment performed by computations that reveals 
    Our study has the character of an experiment, but rather than working directly with human subjects we computationally discover the evolutionarily stable behavior of a triad of bargaining or negotiative players. And these players are, as far as the experimental science is concerned, equivalent to a set of three robots. So whether or not the experiment can be carried out successfully becomes simply a matter of the mathematics. And these computations are found 
to be “heavy” so that our research could not have been done in the earlier days 
of game theory, like in the 50’s, because of the inadequacy of the computing resources then. (And for the future we envision the feasibility of the study of much more complicated models for 4, 5, or more players, with many more distinct strategy parameters being involved.)
                    Modeling Cooperation Via Agencies 

    We now explain explicitly the game modeling that we used for three players

to represent the effective value of coalitions by means of “agencies”.

    The play, in each repetition of the game, proceeds through elections that

enable the players to authorize agents to (hopefully beneficially) represent

their interests.

    At the FIRST STAGE of these elections each player may vote to accept any
other player as his agent (and thus as an agent authorized to act as if with

“power of attorney” as regards the interests of the electing player). The agent

is also empowered to exploit all of the electing player’s possible strategic actions (in the original game (which is being transformed by the modeling process)).

    In the ultimately chosen modeling we had the players voting simultaneously.
If no player voted to accept some other player as his/her authorized agent then

we allowed that (first stage) election to be repeated BUT, with a probability 

of e4 (called “epsilon sub4”) the process of the elections was terminated. (And

in the case of termination, for the class of games that we studied, that resulted

in a payoff vector of (0,0,0) to the players for that specific repetition of the game.) And on the other hand if any player voted for any agency acceptance then
we determined a choice of just one elected agency by making a random choice among

all of the acceptance votes. (We found that this arrangement seemed to be

“asymptotically non-arbitrary” because we were able to find interpretable equilibrium solutions with e4 tending to zero which had also the probabilities for simultaneous votes of acceptance tending toward zero. Thus, asymptotically,

there would be only one accepting player so that the choice of which acceptance

to recognize was, ASYMPTOTICALLY, not a source of arbitrariness.)

    And the second stage of elections of agencies provided for the possibility

of the complete realization of cooperation by means of enabling access by the

players to the resources of the “grand coalition” (1,2,3). Since the second

stage occurs after the first stage has succeeded this involves that one agency

has come into being and that one player has dropped out of play and is now represented by the player he/she elected as agent. So remaining in play are
one “solo” player and one player representing (as far as strategic potentials

are concerned) both himself/herself and an electing player. Then the second

stage of elections proceeds analogously to the first stage but now an elected

player-agent will be able to represent ALL PLAYERS and thus be able to achieve

all possible payoff actions of the grand coalition (1,2,3) and thus the total
of payoffs of v(1,2,3) (since we are considering a “CF game” describable by

a characteristic function). (But there is one variance that we will describe 
soon which has the effect that our model game is REALLY an NTU game (since we simplified by not really allowing a two-player coalition to arbitrarily div1de

their attainable resources v(i,j)).)
    With three players as electors and candidates in the first stage there are

3! = 6 alternative election results from the first stage of elections and now

from the second stage there are two alternatives from each of those so that

there are 12 alternative ways by which the grand coalition can become represented

by a single player who is thus elected “general agent”.

    But quite analogously with the rules for the first stage we specify for 

the repetition of elections in the second stage subject to a probability of termination of the process with probability e5 (or “epsilon sub 5”) after each
failure of an instance of the election. And now IF THE ELECTION PROCESS IS

TERMINATED BEFORE A GENERAL AGENT HAS BEEN ELECTED then there remain two parties

of which one is an agency representing two players and the other is a “solo player”. And then the agency representing players i and j is allowed to access

the characteristic function value v(i,j) associated with that two-player coalition. We simplified our model (while not thinking about it too much when

we did it at the beginning of the mathematics and the calculations) by not

allowing free utility transferring to the agent representing a two-player coalition. Rather, we specified that IF THE FINAL ELECTION FAILED that the

players of the realized coalition (i,j) would each be paid (1/2)*v(i,j) regardless of any possible preferences of the one of players i and j that had
actually been elected as the agent representing them both.

    And the “solo player”, say k, would be paid v(k} or zero (under the standard

simplifying normalization of the characteristic function).

             Reactive Behavior of the Players in the Model               

    The general idea is that effective cooperation can arise as if by evolution

if each player, while only being able to take cooperative actions by acting

to accept another player as an authorized agent, is able to behave reactively 

in response to the favorable or unfavorable consequences (in terms of received payoff results) of accepting another player in this agency sense.

    We find or show that an equilibrium (in the repeated game context) can be

found which exhibits the characteristics that players are not blindly accepting

other players to be their agents but are indeed receiving benefits in payoffs

that are dispensed by the elected (final) agents when those agents, by their

strategic choice, apportion the available resources (always the quantity of +1

of transferable utility) of v(1,2,3) (or of the “grand coalition”).

    In principle, in relation to the basic concept of the evolution of cooper-ation (or of the evolutionary stability of cooperation) there are various possibilities for how the players might react in relation to the actions of

other players that all might be effective for the purpose of stabilizing an

effectively cooperative equilibrium of independently motivated players. So what
we do, actually, is to specify a particular model for how the players would

behave “reactively”. And this is, in principle, quite analogous to how the simple

pattern of “tit for tat” behavior can stabilize a cooperative equilibrium in

an infinitely repeated game of “Prisoners’ Dilemma” type. (This is the sort

of equilibrium that has been studied in Theoretical Biology.)

    We first studied the simpler context of two players and of reactive behavior

patterns for them that would favor the stabilization of a good cooperative equilibrium. Then the same basic concept of players having set “demands” that

would control their behavior (in terms of accepting or non-accepting behavior

in the elections for agencies) was found to be applicable to the context of a game of three players. 

           The Modeling of the Reactive Behavior of Three Players

    In the model of reactive behavior of the players the “acceptance behavior”

of the players becomes dependent on (1) certain “demands” that the players

specify as strategic choices and (2) certain expectation quantities that measure

the benefit to be expected by a player who takes an action of acceptance (which

occurs through that player’s voting to accept the agency of some other player).

(This becomes very simple for two players, where each player has one demand, while with three players our model has 15 demand numbers.)

    It is simplest to describe the parameters describing acceptance behavior and

their related demand numbers by starting with the agency elections at the second

stage of such elections (when one two person coalition, led by one of its members,

has already formed and there are only two independent players remaining).

If, for example, Player 1 has been accepted by Player 2 (to act as agent for P2

as well as acting in his/her own private interests) then there are only two

independent parties (P1 and P3) remaining and the completion of the coalescence

action (with access to v(1,2,3) (the payoff to (1,2,3), the “grand coalition”)

depends now only on the actions of P1 and P3.

    We conventionally used a12f3 as a notation describing the probability of

the action of P1 (in this situation, where P1 has previously been elected to

have authority (like a “power of attorney”) for P2) to vote to accept P3 as

his agent. (This acceptance (relating to a12f3) will result in the establishing
of P3 as the “general agent” representing ALL of the players.

    And on the other hand we used a3f12 to represent the alternative election

option (where P3, as a “solo player”, would vote to accept P1 to be his agent

as well as the agent for P2). (And as we explained above, the election in this

case, with only P1 as a agent for (1,2) and P3 as solo, would occur under the

rule that if there were two simultaneous votes of acceptance then one of these,

chosen at random, would be designated as effective and that if there were not

any acceptance votes then that, with probability (1-e5), (or “one minus epsilon sub 5”), the election for a final acceptance would be repeated.)

    But in our model the probability a12f3, which must be a number between 0

and +1, is NOT a STRATEGIC CHOICE by Player 1 but rather the modeling makes

this number dependent as a function in such a way that it varies with the “reactive behavior” of Player 1 (for whom it describes his/her probability 

of voting for acceptance Player 3 (as the final agent). Instead, Player 1 has

the strategic option for the choice of a related number that we call d12f3 and

which is the “demand” of Player 1 and which can be viewed as a specific demand
relating to this specific voting opportunity. In effect, d12f3 represents the

amount of a payoff reward that P1 feels that he/she SHOULD expect to receive

as a result of voting acceptance for P3 (and thus renouncing any further control

over the immediate repetition of the game).

    So that we can ultimately use partial derivatives to obtain the equilibrium

conditions for an steady equilibrium in the repeated game, the modeling arranges

that a12f3 depends SMOOTHLY as a function of d12f3 and of “u1b3r12” (which latter

quantity is what P1 can expect to receive if P1 succeeds in electing P3 to serve

as the final agent (and to have access to v(1,2,3), the resources available to 

the “grand coalition” (according to the characteristic function)). The number
u1b3r12, just mentioned, specifically represents a STRATEGIC CHOICE by Player 3

and it is defined to be the amount of utility, from v(1,2,3), that Player 3

(acting as final agent) chooses to allocate to P1. (And since we set v(1,2,3) =
+1 in our modeling, and v(i) = 0, the number u1b3r12 must be between 0 and +1.)
Also P3, in the same situation, controls the allocation u2b3r12 which goes to

Player 2 and then we don’t need to use a strategy variable for u3b3r12 since the

amount of payoff utility that P3 allocates to himself (in this situation) is

simply understood to be u3b3r12 = 1 –u1b3r12 –u2b3r12. But we can see also from

this that P3’s strategic choices of the amounts to be given to P1 and to P2 must

satisfy the constraint of u1b3r12 + u2b3r12 <= +1 (and these must also of course

be non-negative).
    The specific formula that controls the linkage between d12f3 and a12f3 and
P1’s expectation of benefits, u1b3r12, is specified (by our modeling) to be

     a12f3 = A12F3/(1+a12F3)   with   A12f3 = Exp[ (u1b3r12 –d12f3)/e3 ] .

And here we introduce a third “epsilon number” which, in Mathematica, is written

in west-European script as e3. (Formally, it is also possible to write

               a12f3 = 1/(1 + Exp[ -(u1b3r12)/e3 ])

but this version is not really enlightening in form.)

    The effect of the formula, controlling the way in which Player 1 “reacts”
to the (observed) behavior pattern of P3 (in setting the payoff allocation of

u1b3r12 that will be received by P1 when P1 “accepts” P3) is that if e3 is small
and if u1b3r12 is significantly larger than d12f3 (compared with e3) that then

a12f3 will be a large probability, perhaps near +1. And conversely, if P1’s

prospects are comparatively unfavorable if he accepts P3, then a12f3 will tend

to be a very small probability.

    So we have explained above the reactive behavior (in the model) for just
one player (of a context of two voters in a second stage election) in one

possible situation, out of a total of 6 possible results deriving from the 

first stage of elections.

    In the same second stage election situation that we considered above it

can naturally also be that the solo player (here P3) can elect to accept 

agency of the player (here P1) already leading a coalition (here (1,2)).

And associated with this there is P3’s acceptance voting probability, a3f12,

and his strategic demand choice, d3f12, and the utility payoff that he expects,

u3b12r3, provided that his vote to accept P1 (as final agent in this case) is

effective.

    We can incidentally observe that there are other strategic utility allocation decisions that are being made, either by P1 or by P3, that do not directly

interact with the demands of P1 and P3 in this situation. u3b12r3, just mentioned

above, is a choice by P1 and is relevant when P1 first became agent for P2 and

after that became agent for P3. It interacts with P3’s demand d3f12. But notice

that P1 must also choose an allocation of utility for P2 (in this situation where

P1 is initially elected by P2 and secondly elected by P3). That allocation is

analogously described notationally as u2b12r3. Note also that these two decisions

on utility allocations also determine the amount of the resources of the “grand

coalition” that P1 is choosing to retain for himself. 

    (It turns out that u2b12r3 and u2b3r12 are decisions, by P1 and P3 respectively, that come into interaction with the demands that the three players

make in relation to their reactive behavior in relation to their voting probab-ilities in the first stage of agency elections.
    We can note now there the model has 24 “utility allocation quantities” in

all and that these are strategic choices by the players as well as being their

observable patterns of action (in the repeated game). (The “reactive behavior”

occurs entirely through the controlling of the probabilities for votes of acceptance by the “demands” that the players choose strategically.) The 24
utility allocation strategies are u2b12r3, u3b12r3, u2b13r2, u3b13r2, u2b1r23,

u3b1r23, u2b1r32, u3b1r32 (these 8 controlled by P1), and u1b21r3, u3b21r3,

u1b23r1, u3b23r1, u1b2r13, u3b2r13, u1b2r31, u3b2r31 (these 8 controlled by P2),

u1b31r2, u2b31r2, u1b32r1, u2b32r1, u1b3r12, u2b3r12, u1b3r21, u2b3r21 (these 8

controlled by P3).

    The (strategic) demand parameters operating at the second stage of agency

elections and the acceptance probabilities that they control are, for Player 1, {d1f23,a1f23}, {d1f32,a1f32}, {d12f3,a12f3}, and {d13f2,a13f2}; for Player 2,

{d2f13,a2f13}, {d2f31,a2f31}, {d21f3,a21f3}, and {d23f1,a23f1}; and for Player 3,
{d3f12,a3f12}, {d3f21,a3f21}, {d31f2,a31f2}, {d32f1,a32f1}; and this is a total

of 12 demand strategy parameters and 12 acceptance probability numbers describ-ing reactive behavior of the players controlled by the choices of demands and 
the observable expectations for utility gains contingent on specific actions 
of voting. (And actually, as we use all of these parameters in calculations
with Mathematica, we have been using abbreviations where a shorter form clearly

indicates the longer version. So a12 and d12 abbreviate for a12f3 and d12f3 and

af12 and df12 abbreviate for a3f12 and d3f12, etc., etc.

    But for the “uxbxxxx” quantities, which are 24 in number, we did not find

any convenient abbreviation scheme!

     Demands and Acceptance Probabilities at the First Stage of Elections

    We explained above the model structure with regard to the behavior and the

strategies of the players when the first stage of agency elections is completed

and they are at the second stage because the structure is simpler there when

each possible situation has only two voters and two candidates.

    At the beginning of each playing of the (repeated!) game there are three

voters and three candidates. (And we have not necessarily used the ideally best

modeling for this election since we used a simplifying design which we had used

in an earlier attempt at modeling the game (of bargaining and negotiation).)

    Our model design has each player making just one general “demand” choice

(for the first stage of the elections) and then the model structure takes into

account how the computable expectations, for that player, associated with his

either electing one or the other of the two other players to become his agent,
compare as numbers (representing payoffs of utility). As the utility expectations

are calculated for these reactive behavior results all of the 24 uxbxxxx quantities that represent allocation decisions by players in the “final agent”

position come into play.

    Specifically, Player 1, for the first stage of elections has his demand d1

and this enters into the controlling of his behavior probabilities a1f2 and a1f3,

where a1f2 is the probability (in each instance of a first stage election for

agencies) that P1 will vote for P2. Then he has also a1f3 as the probability 

of his alternative option to vote for P3 and we find it convenient, notationally,
to let n1 stand for the probability, n1 = 1 – a1f2 – a1f3, of the declining of P1

to vote for any of the other players. (So n1, a1f2, and a1f3, as probabilities,

must all be non-negative.)

    The dependence of a1f2 and a1f3 on d1 is arranged through the intermediation
of the quantities A1f2 and A1f3 which are not probabilities but which need to

be non-negative. Then

   a1f2 = A1f2/(1 +A1f2 +A1f3), and  a1f3 = A1f3/(1 +A1f2 +A1f3), and 

   n1 = 1/(1 +A1f2 +A1f3) . (So that 1 = n1 +a1f2 +a1f3 .)

    Then the basic idea is that if the demand, d1, of Player 1, is “well

satisfied” then the quantity A1f2 should be large and positive while, in the

opposite case it should be very small (but non-negative). Our model specifies
that

     A1f2 = Exp[ (q12 –d1)/e3 ]  and  A1f3 = Exp[ (q13 –d1)/e3 ] .

And note that this is quite analogous to how A1f23, for example, is specified
(as was explained above) but instead of u1b23r1 (to compare with d1f23) we have

here the quantity q12 indicated in the formula. And q12 is defined to be, and

calculated as, “the expected payoff to Player 1 contingent on the hypothesis

of the successful election of Player 2 as the agent representing Player 1 as

the outcome of the first stage of elections”. 

    (This definition of q12 enables q12 to be comparatively simple to calculate.

By voting to accept P2 as his agent P1 DOES NOT NECESSARILY ACHIEVE that P2 is

actually elected to that function because P2 or P3 may also be voting for some

sort of acceptance and the election rules then specify that ONLY ONE OF THE

ACCEPTANCE VOTES should become effective.)

    We can present here the actual formulae for q12 and q13 for illustrative

clarity, but note that a complete explanation of them depends on an exact

understanding of the payoff (vector) function, in terms of the observable

behavior-describing parameters (which are a-parameters and u-parameters).

q12 = ((1 - a21)*(1 - af21)*b3*e5 + 2*a21*u1b3r21 +

      af21*((2 - a21)*u1b21r3 - a21*u1b3r21))/

     (2*(1 - (1 - a21)*(1 - af21)*(1 - e5)))

q13 = ((1 - a31)*(1 - af31)*b2*e5 + 2*a31*u1b2r31 + 

      af31*((2 - a31)*u1b31r2 - a31*u1b2r31))/

     (2*(1 - (1 - a31)*(1 - af31)*(1 - e5)))

    (These formulae are given in the format as outputted from Mathematica.)

The “epsilon number” e5 occurs because the expected payoff (to P1 when he

becomes represented either by the agency of P2 or that of P3) depends on
the probabilities associated with the second (and final) election of agencies,

and e5 is the set probability that a “failed election”, at that stage, will NOT

be allowed to be repeated.

    Increasing e5 DOES NOT NECESSARILY decrease the payoff expectations for P1

because there is an alternate source of payoff (besides whatever payoff he would

be given from the resources (v(1,2,3) = +1) of the grand coalition (if one of

P2 and P3 became elected as final agent). The other source of possible payoff

is the separate resources v(1,2) and v(1,3) of the two person coalitions which

would be formed as the result of the first stage of agency elections. (We calculate q12 (or q13) ASSUMING that P1’s vote to accept P2 (or P3) as his agent has been effective.) So the quantities b3 and b2, in the expressions above for
q12 and q13, represent the values of the two relevant two-player coalitions and

the general scheme is that b1=v(2,3), b2=v(1,3), and b3=v(1,2).
    In relation to the six qij expressions and the three bi values (which come

from the presumed characteristic function) a peculiarity of our modeling is that,

from a sort of laziness or expediency the modeling w simplified in such a way

THAT THERE IS NOT TRANSFERABILITY OF UTILITY FOR THE TWO-PLAYER COALITIONS. So

instead we have specified a sort of NTU game where if the final outcome (of
the elections) is that only a two-player coalition has been achieved then that

those two players are each paid 1/2 of the resources of their coalition.

    For Player 1 this would amount to b2/2 if the payoff comes after only

Players P1 and P3 had been combined through a single agency (with either of

them as the controlling agent) or b3/2 in the alternative case of realized coalition with P2.

    (A more elaborate modeling would give the controlling agent of such a final

coalition of two players the power to divide the available resources 

at his/her discretion!)

     (At some time after our calculations for payoff graphs were completed we

have thought more about this and it seems likely that for the two graphs of payoffs for games symmetric between P1 and P2 that the graph where only b3 > 0  

is probably a little more realistic than the graph where only b1 and b2 are
positive (with b2 = b3 = bz for notation). This because if the game is symmetric

between P1 and P2 it should be non-distorting for them to be forced to divide

equally the payoff from v(1,2) = b3 (when the grand coalition is not reached)

while if b1 = b2 = bz > 0 (and b3 = 0) then P3 is favored (like in a “gloves game”) and it may be interpretatively natural that P3 SHOULD be able to demand

“the lion’s share” of the payoff from either v(1,3) or v(2,3) as a part of the

total situation of bargaining/negotiation.)

    (So as we calculated the two payoff graphs the graph for the payoffs when

P3 was favored seemed to be less curved than the graph when P1 and P2 were

together favored. (P1 and P2 are symmetrically situated in both cases, and this

greatly simplified the calculations!!) With a more elaborate modeling then these
graphs might be more similar as regards the curvatures.)

    We can now complete the listing of the behavior describing parameters and

the “demand” parameters that control the reactive variation of the acceptance

probabilities describing the voting behavior of the players.

    Applying to the elections (for agency powers) of the first stage we have the parameters a1f2 and a1f3 (these are mentioned above) and also a2f1, a2f3, a3f1,

and a3f2. And the controlling demand strategy choices connecting with these are

d1, d2, and d3.

    In total we have 39 parameters that are strategic choices of the three players. 24 of these are utility allocation choices of the uxbxxxx form which

relate to the actions taken by a player whenever he/she becomes the “final agent”

(with “power of attorney”, in effect, for the other two players). 12 of these

are demand choices controlling reactive voting behavior at the second stage of 

elections and 3 are the demands that apply to the voting behavior at the first

stage of voting. 

    And relating to the 24 uxbxxxx choices made by the players, only 12 of these

interact directly with the 12 demands and the twelve voting probabilities that

are descriptive of the reactive voting behavior of the players at the second

stage of the agency elections. But if we examine the formulae involving q12 and
q13 above we can observe that a1f2 and a1f3 are influenced by u1b3r21, u1b21r3, u1b2r31, and u1b31r2. These are four of the eight uxbxxxx quantities that describe payoffs to Player 1. And these are all, when carefully examined, under-standable to apply only to situations in which Player 1, when the second stage
of elections was reached, had already become represented by either P2 or P3 as

his empowered agent. The other four of the uxbxxxx payoffs that can go to Player
1 are interactive with d12f3, d13f2, d1f23, and d1f32 and with a12f3, a13f2, a1f23, and a1f32 which are the quantities describing Player 1’s demands and his voting behavior at the second stage of the elections.
                    Some Comments on the Modeling

    The specific design of our modeling for the reactive behavior, in this

context of bargaining and negotiation, of the three players was guided by the

experience obtained by initially studying the same problem for the simpler case 

of only two players. And we found by observation for the simpler case of two
players that we did no\t get good results from the modeling UNLESS we designed

the reactive behaviors of the two players to depend on THE SAME degree of
smoothing. That is, initially, we constructed a model where it was as if the

reactive behavior of Player 1 was smoothed depending on a parameter “e3p1” and

that of Player 2 was smoothed in a fashion depending on e3p2. But then we found,

observing the results of calculated equilibria, that the player who had a less

“smoothed out” pattern of reactive behavior became equivalent, it seemed, to a

“sharper bargainer” and became favored in the calculated equilibrium results!

(Here the two numbers e3p1 and e3p2 should be compared with the single number

e3 (or “epsilon sub 3”) that we have presented above in the details of the

modeling for the reactive behavior of three players.)

    So we thought about this problem (which would threaten to prevent this sort
of modeling from arriving at any definite suggestion in particular for the much
simpler game situation of merely two players). The smoothing was definitely

needed so that we could seek equilibria by making relatively simple calculations

involving partial derivatives of payoff functions taken with respect to strategic

parameters as the independent variables.

    It seemed, ultimately, as the issue was studied, that a type of smoothing

which would be effectively equivalent (to the smoothing linked with e3) could

be introduced by making the Pareto boundary (in the bargaining game) uncertain,

through constitutional ignorance. Then the players, forced to make demands in

relation to such a context of uncertainty as to the actually attainable prospects
for cooperative bargains, would effectively have smoothed behavior. And then

this smoothing would be of an apparently neutral form. 

    So it seemed that in the modeling for three players, with the assumption that

they would have transferable utility to use in executing the final allocations

of utility (in each playing of the repeated game), could justifiably use a standard quantum (our e3) of smoothing applying uniformly to all of the players

(and with this being effectively a NEUTRAL structure of modification of the game). 

    A possible analogy would be if there were a process of bargaining where individual bargainers might vary greatly in elements of skill or experience or

whatever would help a human business competitor but that if all of the human

parties would become represented by attorneys who themselves would be all of

the same standards of competence. So then the outcome of a business-like context

of bargaining and negotiation should not depend on the psychological strengths

or weaknesses (comparable to those of poker players) of the human participants.     

              Alternative Options Possible for Model Design
    By actually studying a specific model for the bargaining (or negotiation)

process in a general variety of 3-person cooperative games we have learned a lot

and part of this learning applies to possible variations in the modeling. There
are models of much simpler form for the same sort of a game that have been studied in recent years. However our modeling approach derives from an evolu-tionary concept that PRESUMES that the interacting parties must be aided in their

interacting demands for relative benefits by the equivalent of an evolved set

of reactions so that there can be an equilibrium involving all of the interactions of competing demands for favors and benefits and reactive behaviors

that can be punitive or rewarding.

    But intrinsically WE DO NOT KNOW, A PRIORI, WHAT ARE THE MOST EFFICIENT

FORMS OF BEHAVIOR TO BE EMPLOYED BY THE PLAYERS. This is what, in Nature, would

indeed simply be evolved (perhaps over a billion years!). Even in the simplest
sort of Prisoners’ Dilemma games that have been studied (in terms of evolved cooperation) it is not so simple to find, for all circumstances, the ideal form

of reactive strategies enabling the participants to maintain a cooperative

equilibrium. (If the organisms can employ longer memories then they can make use
of more refined strategies.)

    In our modeling of the game that is presented here the players are not given

as many distinct opportunities to choose demands as they might well be given and

we wish to continue the research by studying promising variants on the modeling.

An earlier study, of a three person game that was modeled using some “short-cuts”

in the modeling of the second stage of elections, did not work out so well. That

led to our development of the apparently better version of the modeling that we are presenting now.
           The Payoff Function and the Equations for Equilibrium    

    We can present in the text here a part of the (vector) payoff function for

the game model so as to give a clear picture of  mathematical procedures that

are involved in finding equilibria for the model. One component, the payoff
amount for Player 2, is presented here as “PP2”. The formula is in the format

of a printout from Mathematica so that it could be read into a computation

session employing Mathematica as a text file of imported data.

PP2 = (a2f3*(4 - a1f2 - a1f3 - a3f1 + 2*(1 - a1f2 - a1f3)*

         (1 - a3f1 - a3f2) - a3f2)*((1 - a32)*(1 - af32)*b1*e5 + 

        a32*(2 - af32)*u2b1r32 + (2 - a32)*af32*u2b32r1))/

      (6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2)*(1 - e4))*

       (2 - 2*(1 - a32)*(1 - af32)*(1 - e5))) + 

     (a2f1*(4 - a1f2 - a1f3 - a3f1 + 2*(1 - a1f2 - a1f3)*(1 - a3f1 - a3f2) - 

        a3f2)*((1 - a12)*(1 - af12)*b3*e5 + (2 - a12)*af12*u2b12r3 + 

        a12*(2 - af12)*u2b3r12))/(6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*

         (1 - a3f1 - a3f2)*(1 - e4))*(2 - 2*(1 - a12)*(1 - af12)*(1 - e5))) + 

     (a1f2*(4 - a2f1 - a2f3 - a3f1 + 2*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2) - 

        a3f2)*((1 - a21)*(1 - af21)*b3*e5 + a21*(2 - af21)*u2b3r21 + 

        (2 - a21)*af21*(1 - u1b21r3 - u3b21r3)))/

      (6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2)*(1 - e4))*

       (2 - 2*(1 - a21)*(1 - af21)*(1 - e5))) + 

     ((4 - a1f2 - a1f3 - a2f1 + 2*(1 - a1f2 - a1f3)*(1 - a2f1 - a2f3) - a2f3)*

       a3f2*((1 - a23)*(1 - af23)*b1*e5 + a23*(2 - af23)*u2b1r23 + 

        (2 - a23)*af23*(1 - u1b23r1 - u3b23r1)))/

      (6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2)*(1 - e4))*

       (2 - 2*(1 - a23)*(1 - af23)*(1 - e5))) + 

     ((4 - a1f2 - a1f3 - a2f1 + 2*(1 - a1f2 - a1f3)*(1 - a2f1 - a2f3) - a2f3)*

       a3f1*((2 - a13)*af13*u2b13r2 + a13*(2 - af13)*(1 - u1b2r13 - 

          u3b2r13)))/(6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*

         (1 - a3f1 - a3f2)*(1 - e4))*(2 - 2*(1 - a13)*(1 - af13)*(1 - e5))) + 

     (a1f3*(4 - a2f1 - a2f3 - a3f1 + 2*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2) - 

        a3f2)*((2 - a31)*af31*u2b31r2 + a31*(2 - af31)*

         (1 - u1b2r31 - u3b2r31)))/

      (6*(1 - (1 - a1f2 - a1f3)*(1 - a2f1 - a2f3)*(1 - a3f1 - a3f2)*(1 - e4))*

       (2 - 2*(1 - a31)*(1 - af31)*(1 - e5)))

    It is a good point here to remark that a part of our method of study and

computation was to exploit the symmetry of the concept of a general game of three

players such as we have studied. This use of the symmetry could be developed 
in Mathematica. We used Mathematica programming to define useful “symmetry operators” which can be used, for example, to convert the payoff formula PP2 into PP1 (to Player 1) or PP3. Or the vector triad {PP1,PP2,PP3} could be calculated (as a listed set in Mathematica).

    The formulae giving the vector {PP1,PP2,PP3} of payoffs do not involve any

of the demand choices, like d1 or d2f13, that are made by the players. And this

is because the payoffs are dependant only on the observable behavior of the

players and thus not on the demands that are chosen by a player and which then

control his reactive behavior. For the payoffs to be known it suffices for the

probabilities of voting and the choices of utility allocations (the quantities 

of form uxbxxxx) to be known. 

    We derive the equations for the sort of equilibrium that we seek (which is

a steady equilibrium in a repeated game in which every player’s complete pattern

of behavior is observable by and known to every other player) by computing partial derivative of terms of the payoff vector taken with respect to parameters

of strategic type. For example, u2b1r23 is a strategic parameter subject to the

choice of Player 1 (it is the amount of utility P1 will allocate to P2 whenever

P1 becomes the final agent after P2 had earlier become the agent representing P3

(as well as himself)). There is one of the 42 equilibrium equations that is associated with u2b1r23 and this is obtained by calculating the partial deriva-tive of PP1 with respect to u2b1r23. HOWEVER there is a complication to be
noted in that for this calculation to be made properly the payoff PP1 must be

treated as a function of the 39 strategic quantities (the 15 demand parameters

and the 24 uxbxxxx parameters describing utility allocation choices). And the

probabilities of action represented by numbers like a2f3, a3f21, and a12f3 must

be treated as functions of the 39 strategic parameters.

    (For this the calculation can be done after substitutions (in PP1 etc.) replacing all the action probabilities by the formulae connecting them with demands and uxbxxxx parameters. Alternatively it can be done by computing the

intermediate derivatives, with respect, say, to u2b1r23, of all involved

a-parameters representing acceptance action probabilities, and then using these 

intermediate derivatives to compute the final result that is the partial derivative of PP1 with respect to the specific strategy parameter u2b1r23.)

    And it is the same sort of a calculation, for the strategic parameters controlled by Player 1 if we considered d1 or d12f3 or d1f32. There would be

be a-numbers or an a-number that would vary as a function of the demand parameter

being considered and that would need to be properly considered. In the case of 

d1 it happens that a1f2 and a1f3 vary in functional dependence on d1. And for

d12f3 or d1f32 we have a12f3 and a1f23 varying as functions of those. But we
learned from the first studied case of two player games that for PP1 not to

change in response to small changes in d12f3 it is the same if it does not

change consequentially to changes in a12f3, and this is a more direct calculation

that does not involve d12f3. It is the same with d1f32 since through this demand
choice P1 exerts influence on the payoffs only through the induced variations of

a1f23 which is structured as a function of d1f23 (and of u1b23r1, which is controlled by P2 as one of his strategic parameter choices).

    But we must derive the equilibrium equation associated with d1 by a direct
calculation considering d1 as the independent variable and PP1 as the dependent

quantity. In the notation of Mathematica it is Eq{d1} = D[PP1,a1f2]*D[a1f2,d1] +

D[PP1,a1f3]*D[a1f3,d1] since d1, chosen by P1, affects his expected payoff PP1
through the intermediaries of the effects of d1 on the values of a1f2 and a1f3.

(And we have listed above the formulae for the reactively varying acceptance

voting probabilities a1f2 and a1f3. These depend together on a large ensemble 
of the parameters describing the game but in this ensemble it is ONLY d1 that is

a parameter that P1 chooses strategically. The quantities q12 and q13 depend ONLY
on parameters controlled either by P2 or by P3.)
    We learned through the preliminary study of a model for games of only 
two players that the equilibrium equations became simpler if d-quantities

(representing demands) were eliminated and only the a-quantities and the u-quantities were used in the equations. So we also employed this route of 

simplification for the case of three players. But it happens that there are 
42 in all of the a-parameters and the u-parameters but only 39 in all of the

d-parameters and the u-parameters which is because that if a1f2, a1f3, a2f1, 
a2f3, a3f1, and a3f2 were all replaced by their formulae of functional dependence

then these 6 parameters would be replaced by the 3 parameters d1, d2, and d3.

But what happens is that 3 equations that are not derived as derivatives of
player payoff functions can be appropriately added to the ensemble. 
    The equation that can be added to link d1 and a1f2 and a1f3 is (effectively)
      0 = Log[ a1f3/a1f2 ] - (q13 - q12)/e3  ,

because in our work with Mathematica we use a convention that when a set of

equations are to hold and we want to find a solution then that the equations are
described as a set of expressions that are all to be vanishing for the solution.

As actually used in the calculations this equation is “explicated” by the insertion of the proper formulae for q12 and q13 (which were given above). This

equation is naturally associated with Player 1 and there are two other analogous equations linked with P2 and P3.

    With these three extra equations, and with the strategy-equilibrium equations
for d1, d2 and d3 then, after eliminating d1, d2 and d3 and retaining the six

aifj variables we have six equations associated with the six variables that we
retain. And of the total of 42 variables used for the equations (of which we

find highly precise numerical solutions) there are 42 -6 = 36 = 24 +12 other

variables. 24 of these are the numbers of form uxbxxxx which describe the (strategic) choices made concerning utility allocations which are effective whenever the choosing player becomes the final agent and can act for the “grand coalition”. The twelve other parameters are the voting probabilities observable

at the second stage of the agency elections. These are the numbers of form aifjk

or aijfk (like a1f23 or a31f2). It is more convenient to solve for these numbers

than for the associated controlling strategy choice numbers (like d1f23 or d31f2). 
               Supplementary Materials for this Paper

    The journal of this publication, the PNAS journal, has a special provision

for additional materials that can be made available via the “Internet” on a 
“web site”. And in the case of the equations solved and the programs used for computing their solutions it becomes very practical to avoid unnecessary length

of a paper and yet to provide the resources that could be of value to anyone who

wished to carry out parallel research studies.

    So the complete set of equations for the equilibrium, 42 equations in 42

variables, can be recorded thusly and also some basic programming, functioning
within Mathematica, can be presented as a usable guide. And since most of our

actual calculations were done for partially symmetric games (with Players One

and Two symmetrically situated) the system of 21 equations for 21 variables usable for those games can also be recorded. (And further information can be kept

available through my personal “web page”.)

  XXXXXXXXXXXXXXXXXX(working to 16 Nov. 2005 above)XXXXXXXXXXXXXXXXXXXXXXXXXXX

     XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

                            Pareto Efficiency

   We worked first with models of repeated game interaction leading to cooper-ation of two players in games essentially like "bargaining problem" games. 
And a quantity analogous to the "epsilon" called e3 in this current work was 
the parameter controlling the smoothing of the interaction between a player's "demand" and his expectation of payoff according to the utility allocations being chosen by the other player. Quite like in the current modeling, a player's demand and his expectation (if the other player would be giving the allocations) would interact to determine the player's probability of "accepting" the other player 
as the general agent (and thus as the allocator of utility amounts).

   The "Pareto boundary" describes the limits of what possible distributions 
of utility (to the two players) are possible from the intrinsic resources 
of the game.

   The very basic finding, first illustrated in cases of two players, was that 
as the smoothing introduced by e3 would be decreased toward an asymptotic limit of zero that the Pareto efficiency of the computed bargaining process outcome would move toward perfection. That is, the point describing the computed outcome 
of the game would move asymptotically toward a limit on the Pareto boundary. 
(This boundary could be curved if the repeated game example were of an "NTU" variety (with "non-transferable utility").)

   But a complication was also discovered when the two-person examples were studied. At first it seemed most natural to let each player have his own independent parameter of smoothing, as if the players would have parameters "e3P1" and "e3P2". However we found, and it was initially a surprise, that the comparative sizes (modulo a natural comparison of utility between the players) 
of e3P1 and e3P2 would effectively control the "bargaining sharpness" of the players and that the player whose actions (or reactions!) would be less smoothed would get the better deal and that then the possible profits would not be divided

equally when other theoretical considerations would call for an equal division.

   It became clear that another basis for "smoothing", based upon a supposition of some uncertainty regarding the exact position of the Pareto boundary, could have the effect of indirectly introducing conditions equivalent (if there were transferable utility, like money) to having e3P1 = e3P2 and then the otherwise difficult arbitrariness could be avoided.

   We have two graphics that show how equilibrium solutions derived from the model exhibit Pareto efficiency that tends toward perfection as e3 tends toward zero. One of these shows a game with all two-player coalitions worth 1/5 and with e4 and e5 rather large. The other shows a game with one two-player coalition worth 2/3 and the others worthless and with e4 and e5 both 1/100. In both graphs as e3 varies and becomes smaller the Pareto efficiency improves.

                    Existence and Uniqueness of Solutions

   In general when there is a mathematical model and there is a search for solutions corresponding to the model it is considered desirable to find that 
a solution exists and is unique, after the model parameters are set. Here, in this research, we do not necessarily have that. A "solution" of the sort desired must not be just a game equilibrium of the most generic sort but rather it must be described by PURE STRATEGIES representing the stable behavior of the players in a repeated game context. So the existence of equilibria of this sort is 
not so easily proved. And as for uniqueness, technical examples can be given 
of non-uniqueness of equilibria and this makes it appropriate to look for "reasonable" or "non-singular" equilibria as the solutions that should be interpreted.

   If a model is well designed to represent the process of the evolution or the stability of a form of cooperation then it must lead to solutions that can be interpreted in relation to the cooperative game theme. A too simple modeling might lead to solutions that are easily seen to exist and be unique but they might or might not have a strong correspondence with the essentials of cooper-ation.

   We study our model of this paper in comparison with the Shapley Value and the nucleolus. These two existing concepts, which are of much interest in relation 
to cooperation, are both examples where a mathematically defined vector always exists and is uniquely defined but where the vector of one idea differs from 
that of the other! So there remains for any vector of payoffs derived from 
a cooperative game the questions of whether or not it corresponds to "natural" cooperation and of whether or not parties could be given a convincing argument 
as to why they should accept it as an "arbitration scheme".

   What we exhibit, in charts, corresponds to families of solutions derived from

continuation, through small perturbations of the structure parameters, from an initially found solution of an entirely symmetric game. (One of our games is completely symmetric simply if b1, b2, and b3 are all equal, so that any coalition of two players is just as strong as any other. Then we can naturally look for equilibria where all of the players are behaving in exactly the same way.)

   A fully symmetric game is describable by 7 numerical parameters in seven equations rather than by 42 parameters in 42 equations (as we have for a game without player symmetries). If the game is only symmetric between a pair of the players then the number of parameters reduces from 42 to 21. We did most of the computational work solving for repeated game equilibria for games with symmetry between players 1 and 2.

   For games without symmetry we translated the various parameters into the list x1, x2, ... x42 of symbols and for games with two players in the same position 
we used y1, y2, ... y21. And of course the functions of the payoff vector were translated into dependence on these symbols and the equations representing 
the equilibrium conditions were also translated so as to be expressed in terms 
of these variables. Then the computational work of finding the solutions, using Mathematica, was done in terms of these more compact symbols for the relevant parameters that appear in the model.

                 Deriving the Actual Equilibrium Equations

   What we seek in this sort of a model is actually a solution IN PURE STRATEGIES

and this is described by specific numbers for all of the 15 demand quantities

and for all of the 24 utility allocation quantities. Each player is regarded as

having a view of all the history of the repeated playing of the game and thus each player is considered to have the knowledge of, first, all of the utility allocations being chosen by the other players, and second, by deduction from

the observed acceptance probabilities describing the acceptance behavior of

the other players, the player learns the demands being used by other players.

   The basic equilibrium conditions derive simply from partial derivatives of

component functions of the payoff vector. But the calculation of these is not 

so straightforward because of the (most essential!) complication of the reactive

behavior of the other players as seen by one of them.

   Thus, for example, to derive the proper equilibrium condition for u2b1r23

we note that this is a behavior parameter controlled by Player 1. Therefore we

wish to consider how PP1 (of the payoff vector (PP1,PP2,PP3)) varies as a result of changes in u2b1r23. Part of the change in PP1 derives from the fact that if Player 1 becomes the final agent (in this case after that Player 2 was earlier elected as the agent for Player 3) then what he pays to himself is 

1 – u2b1r23 – u3b1r23. So, from this part of the total picture the effect 

of increasing u2b1r23 would necessarily influence PP1 negatively.

   But the other side of the picture is that as u2b1r23 changes there are

behavior probabilities relevant to players 2 and 3 that will change because 

of their demand positions. If they were entirely "undemanding" then Player 1

would find no incentive to do other than to minimize u2b1r23 and u3b1r23

(and thus maximize u1b1r23). But the actual situation is that a23 (or a23f1)

is controlled by d23 and by this means Player 2 will be "demanding" that

u2b1r23 should not be made too small (!). So the demand of Player 2 becomes

effective enough to dis-motivate Player 1 from too much reducing u2b1r23.

Furthermore, through the formulae relating to the demands d1, d2, and d3 that

regulate the reactive behavior of the players at the first stage of elections,

there will be additional reactions of Player 2 and Player 3 to changes (by 

Player 1) of u2b1r23. 

   When the payoff function PP2 is properly expressed in terms of the relevant

demands then the partial derivative of PP2 with respect to u2b1r23 becomes the

source for the equilibrium equation associated with this strategic quantity. 

It may be possible to divide out a factor from the expression found; and then

the equation, like all of the equations that we use for the equilibrium has 

the form of a quantity that is to equal zero.

   For demand strategies like d12 or df12 the derivation of associated equations

is similar except that we find that instead of differentiating PP1 with respect

to d12, in which process we would need to make use of a12 as a function of d12,

we can more simply proceed by differentiating PP1 with respect to a12 which depends only on d12 and on u1b3r12 and this utility allocation quantity is 

a strategy controlled by Player 3 that can be considered as fixed (thus non-reactive) while we are studying the equilibrium conditions for Player 1. Also,

when we finally develop the complete set of equations to be used, we eliminate

the appearance of d12 and have only a12. (Otherwise we could have many more

equations, but some would be like the simple equation linking d12 and a12.)

   When we consider the appropriate equilibrium conditions relating to the

strategic variables d1, d2, and d3 (the demands applicable in relation to the

first stage of elections) things are less simple. Thus d1 is controlling both

a1f2 and a1f3 which are the acceptance probabilities describing the behavior 

of Player 1 at the first stage of the elections of agencies.

   We derive the equilibrium condition for d1 through the calculation of the

partial derivative of PP1 with respect to variation of d1, with all other

STRATEGIC parameters being constant and in this calculation it well to note

that a1f2 and a1f3 are varying as functions of d1 and that through the results 

of the changing of a1f2 and a1f3 there are reactions of players 2 and 3 which derive from the demand relations that control their behavior as acceptors (in

voting to accept agency relations). So the actual computation of the proper

equilibrium relation, for d1, is mot so simple in detail, but it is not really

difficult.

   (The first project assistant actually helped us significantly by deriving

these equations by a different computing route and in C programming computing

rather than using Mathematica. And then the author’s results and the assistant’s

could be compared and required to be concordant. (The timing of the elimination,

for example, of d12, was different in the different routes of calculation.))

   After the three equilibrium equations associated with d1, d2, and d3 were

derived we managed to simplify and eliminate d1, d2, and d3. But this, which

involved the six aifj acceptance probabilities, required the introduction of

three new equations linking these together in pairs. (Thus a1f2 is linked with

a1f3, but the relation involves a logarithm, while all of the other equations,

of the complete system of 42, are of polynomial form.) And these three additional

equations are the reason for why we worked with 42 equations while there are

only 39 variables that are chosen by three players as strategies.

                        Charting Payoff Outcomes

   We present charts describing how the model gives varying distributions of 
the payoff to the players as the strengths of the two-person coalitions varies. It is a great unresolved issue in game theory in the area of "cooperative games" whether or not there can really be any meaningful "solution" concept (that is, 
a concept that could justifiably be called a theoretical "solution" of the game).

   But if there can be such a concept, at least for some such games if not necessarily for all of them, then it certainly seems reasonable that the theoretical concept should give rise to some useful information relating to 
the game. And one way that information could be useful would be if it were useful 
to give a formula for arbitration. Thus, for example, if two political parties were both persuaded that their strengths in a parliament were in proportion to 
a Banzhaf index measure then they might be aided by this to proceed efficiently to a practical working alliance.

   The payoff outcomes according to the model studied here are compared in graphic display charts with the evaluations derived according to either the Shapley value or the "nucleolus". These calculations involve only the study 
of games which are symmetric between players 1 and 2. (Mathematically, this symmetry of Player 1 and Player 2 is equivalent simply to b1 = b2 or that v(2,3) = v(1,3) in terms of coalition strengths.)

   Our tentative finding seems to be that, for games where the two player coalitions are relatively quite weak, that the Shapley value seems to over-estimate their importance. But it is apparent that we have not found the ultimate level of good modeling of the actual potentialities for the players in a cooper-ative game (either human players or "generalized" players). It is clear, for example, that the players could have more alternatives regarding how they 
can make "demands". And if the modeling of the structure of the context where

patterns of cooperation can evolve and become stable becomes more perfected then it may prove to be the case that the strengths of the two-player coalitions will become more influential, even when these strengths are relatively small.

                 The Analogy with Experimentation in Games

   The scheme of modeling, of the processes of negotiation and bargaining, that we have used in this project introduces so much complexity into the derived mathematical equations for the equilibrium that while it is practical to search for solutions in terms of numerical approximation it seems quite impractical to seek to understand the model's results EXCEPT by finding the solutions by these numerical approximate calculations.

   And this is what is analogous to conducting actual experiments with human subjects motivated to play games under the observation of an experimenter. Another way of describing it is that we have reduced the three players to a set of three robots who become engaged in the game context with quite restricted options of action. Then the observation of the equilibrium behavior of the robots is a computable result.

   Comparatively, the interesting model developed by Prof. Gomes [..] arrived 
at results that had nice and very suggestive appearances. But because of the relatively greater simplicity of his modeling of the interactions he was able 
to actually find the resulting equilibria by theoretical inference rather than 
by needing to go to methods of approximate calculation. (The results turned out 
to have interesting connections with the Shapley value and the nucleolus.)

   But we do feel that, as Von Neumann and Morgenstern seemed to find, that the processes of interaction in a "cooperative game" context are intrinsically and naturally somewhat complex and we perhaps should not hope to find TOO MUCH of a simplification by means of a good theoretical approach.

   The method of studying cooperation by models in which coalitions or alliances arise through the formation of "agencies" seems, of its nature, likely to lead 
to extremely rapidly increasing complexity when the number of players in a game would increase. (Analogously in pure mathematics, for algebraic equations of the third or the fourth degree, it was difficult to find any solution formula and that was achieved only in late Renaissance times in work that also promoted the discovery of the field of complex numbers. And for equations beyond the few lower degree levels the method of approximate calculation of numerical solutions is what there is (as it were).)

             Secret Coalitions and Other Ideas for Modifications

   It was only after most of the computational work had been completed for the calculations involved for this project when we got the idea that it would really be very natural and appropriate, for example when Player 1 has initially elected Player 2 to be his agent, that Player 3 should be given ONLY the information 
that a coalition including Players 1 and 2 has been formed (and thus NOT the information as to which of the two coalition members is its leader). Since the coalition of Players 1 and 2 properly exists for their separate interests it seems naturally appropriate (apart from possible considerations of advertising) that Player 3 should not be given any additional information at that stage 
of the game.

   The effect of that specific concept of concealment would be that of reducing the number of strategy and behavior parameters needed to describe the game. We had that as a voter at the 2nd stage of elections that Player 3 would have the possible acceptance options described by af12 or af21. But if the information 
of who is leading the coalition (1,2) is concealed from Player 3 then we simply need to allow him the option to accept the coalition (1,2) or to wait for it to accept him. So 6 probabilities, like af12 (or a3f12) become reduced to three and also when utilities would be allocated, if Player 3 did not know the full history of how he happened to be accepted by (1,2) in a final vote then two cases of that would reduce to one and four allocations of utility would become reduced to two. This would apply to all three players and result in twelve allocation strategies reducing to 6. So it seems that in all 9 strategy dimensions would be lost. Of course players who would arrive at the position of final agent after being chosen by an election at the first stage of elections would retain the information about how the initial coalition of two players happened to form.

   Another interesting possibility for use in modeling the potentially complex processes leading to cooperation would be to introduce added players that would function as "attorney agents" representing the interests of groups from among the original players. This has been found to be workable for games like two player bargaining situations (although that is too simple for a real test). And the attorney agents can be simply of a robotic from, operating without costs, with these agents considered as motivated simply to maximize their frequency of being used! One might think, at first, that the introduction of additional players

would unfavorably increase complexity of a model but it seems possible that there can be some reduction in strategic dimensions when an attorney agent does not care how it was that he/it came to be elected to serve.

   Without any change in the idea of the actions of the players (their election actions and their choices of allocations of utility) we could modify the game model in terms of the options for "demands" that the players would be making.

   Our actually studied model followed the example of a previously studied simpler model and it has that each player chooses ONLY one demand number applying to his voting choices at the first stage of the elections. This gives three such strategic parameters, but later there are 12 more such demand parameters (dij and dfij, for i,j = 1,2,3) that arise for the players from the varied opportunities for voting at the second stage of elections.

   But a player COULD, reasonably, be given the opportunity to choose, as a free strategic choice, two "demands" specifically attuned to the two other players confronting him/her at the first stage of elections. Thus the number of demands" entering into the game structure could be increased. Conceivably this would help to enhance the effective importance of the two-player coalitions (where we have been finding that they seem to be evaluated, through our modeling, as of much less influence than would be suggested according to Shapley value).

         An Observation of Defensive Behavior in Calculated Solutions

   We can comment on the behavior observed when we study games that are symmetric between player 1 and 2 and which are such that these two players are favored by having some payoff available to them separately via the coalition (1,2) while the other two-player coalitions are worthless. (This amounts to b3>0 with b1=b2=0.) We exhibit a chart of how the "imbalance" in the payoffs to the players varies 
as b3 increases. (And this is compared with parallel calculations based on the Shapley value or on the nucleolus.)

   So long as all action probabilities remain positive we can use the same set 
of 21 equilibrium condition equations as the system to be solved (numerically) for the game equilibria.

   But we find, continuing along this curve of evolving solution data as b3 increases and passes beyond (roughly, depending on e3, e4, and e5) the value 
of 0.75, that the behavioral quantity described by y7 would become negative. 
But y7 actually corresponds to a probability so that it cannot become negative. Indeed, for a game symmetric between Players 1 and 2 the meaning of y7 is af12=af21=a3f12=a3f21. Thus it is the probability, presuming that the coalition (1,2) (led by either of the two included players) has been formed at the first

stage of the elections, that Player 3 will vote to accept the leader of that coalition to be his agent also.

   Simply described, that is that when b3 becomes large enough then Player 3 reactively appears to find it expedient (in equilibrium!) to decrease his probability of accepting the leadership of the other players (in that coalition) toward zero.

   So at the point when y7 becomes negative as the equations are numerically solved then the equilibrium equation linked to y7 becomes invalid. Then that equation (which derives from the original equilibrium equations for the demands df12 and df21) must be withdrawn from the set of equations of the system and replaced by the equation "y7=0".

   We found, computationally, that we could not continue very far after when y7 
would need to be set to zero. As b3 would increase further soon other parameters 
seemed to move to extreme values. This is an area that has not been fully explored, as far as study by actual numerical solutions is concerned.
   And the difficulties of the computations are why our graphic charts where

b3 or bz (b1=b2=bz) are varying and "imbalance" is plotted against one of these,
as the dependent quantity, break off when b3 or bz gets around 0.7 in size. We

simply ran into too much computational difficulty in trying to continue the

computation further, with the sets of equations and variables changing as limit

conditions, on the variables, would be encountered. If b3 and bz were both large

for a symmetric game then the "core" of the game would cease to exist and any

proposed payoff distribution (or "imputation") would necessarily be dominated

game theoretically by some other such imputation.
   It is interesting to consider the EFFECT, in the game, of Player 3 refusing 
to ever "accept" in the mode of a3f12 or a3f21 (the actions corresponding to y7). He seems to be struggling to dis-motivate the (undesirable) action by Players 1 and 2 of forming their separate coalition at the first stage of elections. While declining to accept their separate coalition at the second stage of elections (which is an expensive action for him/her) Player 3 becomes QUITE ACCEPTING, comparatively, at the first stage of elections. And we can see how this opposes 

the influence of the (1,2) coalition since whenever 3 has accepted 1 or 2, or also if 1 or 2 has accepted 3 at the first stage, then the value (which is b3) 
of the (1,2) coalition has become irrelevant in relation to the rest of the coalescence process for this instance of the repeated game.

   And the numerical outcomes for our solutions are that the players favored by b3>0 are much less favored by that than would be guessed according to the Shapley value. (We do think that refinements of the modeling might result in closer resemblance to the payoff allocation indications of the Shapley value. If 
the array of "demand strategies" allowed for the players were enlarged this change in the model possibly would increase comparatively the dependence 
of the predicted payoffs on the specific valuations of the 2-player coalition 
strengths, b1,b2,b3.)

                    Observed Market Clearing Phenomena

   Relatively late in the period of the work on the calculation of numerical solutions we found, empirically by observation, that some of the parameter values in calculated solutions were coming out the same. This was first noticed, but not understood, when we initially solved for solutions of entirely symmetric games (where b1=b2=b3). We found that of 4 distinct quantities describing a player's choice for the allocation of utility (if the player would become the "final agent") that two of these quantities were very nearly the same (according 
to the numerical calculations done with many decimal places of accuracy using Mathematica).

   It turns out that IF the game is generally non-symmetric (like with b1=1/7, b2=1/6, b3=1/5 (for a case of which we computed the solution very precisely)) then that there are no coincident values of any of the 42 unknown quantities 
that are solved for to find the equilibrium. But on the other hand, if there 
is a symmetry of Player 1 and Player 2 then it always works out (for cases where 
we can find solutions with all parameters having non-extreme values) that there are at least two coincident parameter values. Specifically, y10=y14 always. 
These symbols were defined to represent, for y10, either u1b2r13 or u2b1r23, 
and for y14 either u1b23r1 or u2b13r2 (where these alternative meanings involve simply the permutation of the symmetrically situated players 1 and 2 (who are symmetrically situated if b1=b2)).

   Then an inferable consequence of y10=y14 is that u2b1r23=u2b13r2 so that the BEHAVIOR of Player 1 is such that the amount of utility that he will allocate to Player 2 becomes INDEPENDENT of whether 1 was elected by 2 after 2 was elected by 3 or whether 1 was elected by 3 first and then by 2. (So if 1 is final agent and if it was Player 2 that supplied the final vote electing him to this position then he gives the same payoff amount to Player 2 in each of these cases.)

   This suggests the economic concept of a "market price" which is associated with the "market clearing" concept.

   Further discovered coincidences are found if there is symmetry of players 1 and 2 and if b3=0 but b1=b2>=0. Then we find that y5, corresponding to both a13 and a23, comes out to be numerically the same as y8, corresponding to both af13 and af23. (This is an equality of acceptance probabilities rather than of amounts of utility allocated.) And also in these cases we find y17=y19 which has the effect, in particular, that u3b13r2=u3b2r13, which can be said in words as “If the 2-coalition ‘13’ led by Player 1 has formed at the first step of elections then the amount finally allocated to Player 3 will be independent of which agency

is elected at the second stage of elections”. 
   But it should be noted that the equalities of y5 and y8 and of y17 and y19 are found when b3=0 but not when b3>0 (and b1=b2).

            A Possible Technical Weakness in the Model Construction

   We found that the asymptotic behavior of the calculated solutions, as the "epsilon" parameters all tend toward zero, seemed not to be as simple as we had hoped that it would be. Specifically, it seemed to matter how e4 and e5 went 
to zero in a comparative sense. It seemed to be found that the resulting BALANCE 
OF PAYOFFS would depend to some extent on the ratio of e4 and e5, if all of the "epsilons" were tending to zero.

   Once this phenomenon was noted it was understood as similar to the comparable phenomenon encountered when the "agencies method" was initially studied in application to 2-person games of bargaining type.

   Initially games without transferable utility were considered and each player was given an independent "epsilon" for the smoothing of the function describing his reactive behavior as dependent on his (strategically chosen) "demand". And 
we found that it was advantageous, in the induced bargaining game, for a player 
to have a smaller smoothing epsilon (and thus a more sharply focused reactive behavior determined by his demand).

   In the case of two-person games we found an effective rationale for a neutral or unbiased convention of smoothing. It could be based on a supposed (actually fictitious) uncertainty about the precise contours of the Pareto-accessible possibilities for joint allocations of gains.

   So we can hope to find an appropriate refinement of the modeling that we are using for three players, realizing that the "epsilons" exist only "for mathe-matical purposes", either to make reaction functions smooth or to avoid the arbitrary effects of an arbitrary election rule for cases of multiple votes. 
For example, it may be possible to find a procedure with elections somehow occurring in one "session" of election proceedings.
   It seems reasonable, actually, that the convention that e4 should go toward

zero more rapidly than e5 would be appropriate. The comparative payoffs that we calculated for the graphic illustrations would be very little changed, it seems,

if e4 were made much smaller than e5. The future problem here is that this sort

of a convention does not seem suitable for applications to games of more than

three players!
   The calculations for our presented charts were done for "reasonable" values 
of e4 and e5, where neither is greatly larger or smaller than the other.

                  Methods of Calculation with Mathematica

   We used Mathematica both to prepare the system of equations to be studied 
and also for the processes of searching for and finding solutions of the system. Presumably another major similar software resource, like Maple for example, could have been used similarly. We were not concerned with using the very large array of special functions that are available in Mathematica but we did make use of 
the most recently refined version of the FindRoot procedure for the numerical solution of a system of equations (when a presumptive approximate solution 
can be used as a starting point). We also developed some "amateur" programming applicable to the task of searching for solutions. We were successful in devel-oping programs that could be used to refine a coarse approximation into an approximate solution of the system that would be close enough so that FindRoot would work successfully on it to refine it ultimately into a very good numerical solution. Ultimately we found a variation of our method of refinement where 
the steps would be regulated so that the variables in the system of equations would only be allowed to change in directions concordant with game theoretic considerations analogous to the evolutionary refinement scheme of the classical "fictitious play" concept originally introduced in the study of zero-sum 2-person games.

   We are providing a "supplement" to this paper that is "on the web" and accessible through the PNAS web-Internet resources. This will provide more 
detail about the programming and the equations, etc.

                          Pro-Cooperative Games

   This research project which seeks to find understanding of games of a coop-erative type through a modeling of the actual processes of the coming together 
of the participants into coalitions has led us to a concept of a differentiation between cooperative games which depends on the comparative strengths of the coalitions which favor the possibilities for separate arrangements favorable 
to subsets of the total ensemble of all players of the game.

   Our motivating ideology was that cooperation could evolve as a natural equilibrium mode of behavior in a game situation, where the game is viewed as repeatedly played and where such a cooperative pattern of repeated behavior 
would be generally favorable to the players.

   But what about instability or non-uniqueness of an equilibrium that might evolve? At first we were thinking that we could expect to find some sort 
of (natural, hopefully) method of "equilibrium selection" that would select 
some appropriate equilibrium that could be viewed as being appropriate 
for interpretation in relation to the game (like for predicting "reasonable" arbitration values for payoffs). We knew that it is possible, generally, to have a method of selecting an equilibrium although stability or some other favorable qualities might not be guaranteed. So we hoped to find a natural selection if we encountered non-uniqueness.

   However when we got into the actual calculations we found that the solutions seemed to threaten to become unstable and badly non-unique when (in particular) 
b3 would become more than 0.8 in value. (Here b3 is the amount that Players 1 
and 2 can take away by themselves without needing to deal at all with Player 3.)

   And if, for example, b1=v(2,3), b2=v(1,3), and b3=v(1,2) were all above 0.8 and below 0.85 then a Shapley value arbitration for the game or an arbitration based on the nucleolus could be computed, but there is really an instability 
of the game from the viewpoint that would allow for "externalities" that could affect the actual rational choices to be made by players, either in a single game or in a repeated game equilibrium.

   IF it were established, as an externality, that any pair of the players were in a state of "pre-alliance" then it would be absolutely quite irrational for them to give up that alliance and submit to the chances of the game when they could then expect to get approximately 1/3 each in payoff while as pre-allied they could be expecting to get at least roughly 0.4 each.

   Of course a properly dominating arrangement for dividing gains in connection with a pre-alliance would need to balance the payments between the two parties 
to the pre-alliance sufficiently so that neither would be especially vulnerable to temptations to drop out.

   And in connection with the concept of an equilibrium associated with stability in a repeated game context this idea is a bit different than it would be in terms of once-played games.

   (It is an old topic in game theory, actually, how coalitions may seem very advantageous to their members and yet not be entirely stable when confronted 
by extreme offers that could be possible for outsiders.)

   When I heard Prof. Maskin present his ideas about how to vary the calculation of a value concept for a game depending on what variety of these externalities might be affecting the actual possibilities for coalition formation I was, 
after a while, inspired to think of the differentiation of a category of "pro-cooperative" games. This is understood as a category of games (of more than 
two players) where the externality of a pre-alliance between two of the players 
would tend to be unstable in a repeated game context. And the dual category would be where such an alliance, as an externality, would be naturally quite stable, 
just from the essential structure of the payoff options of the game.

   Since we are, in this research project, basically seeking somehow to arrive 
at a good understanding of a game including an "evaluation" of it through 
the process of reducing the actions of cooperation to actions (of separately motivated players) that can be studied using the classical equilibrium concepts appropriate for independently motivated participants acting independently, we are naturally wishing to understand when this method of study should be most well-favored and when, on the other hand, it may be most natural that there are, naturally, quite different alternatives of behavior that might all be potentially stable. So we see that there are types of games, of three or more players, where it seems most rational to understand that it could be some "externality" that would REALLY determine the effective appropriate evaluation of the game. And for these cases of games that ARE NOT well described as pro-cooperative then we can reasonably be content without seeking to find an appropriate "arbitration scheme" that should be of value for these games.

   In our specific description of a type of 3-player games, if all of the strength measures, b1, b2, and b3, for the two-player coalitions are compara-tively small (we are not quantitatively precise here), then we see the game as naturally of pro-cooperative type (and the values realizable by the coalescence of all three of the players into the "grand coalition" seem quite dominating 
over the alternative values that are separately obtainable via the 2-player coalitions).

  It is an old paradox of bargaining games of three persons, where a deal requires the unanimous agreement of all parties (and where utility may be non-transferable), that players seem stronger acting separately than if they would try to combine in a pair. The rules of the U. S. Senate may give an analogy, since often a senator is privileged, as an honorable member of the club, to exercise a veto (at least for a time). And this sort of a game is illustrated approximately, in our class of studied games, when all of b1, b2, and b3 are

quite small so that the game approximates to a game that is simply of unanimous agreement.

                  Supplementary Materials for this Paper

   The publication conventions and resources of the PNAS allow for the possib-ility that additional material which would be too bulky and long for direct inclusion in the printed paper but which is important to support the scientific arguments in the paper can be included in an "on-line" sense so that they are accessible with the paper via the Internet. So we are including longer files of equations and formulae in that manner. Thus for the complete list of equilibrium conditions a reader can go to the added materials.

                The Motivation for this Project of Research

   The basic thought was that a means has been found for reducing the study of game-context cooperation to a concept of cooperation as an evolved equilibrium stable in a repeated game setting. This basic idea of using "agencies" as the means for the concrete realization of cooperative behavior was immediately understood as applicable to games with any number of distinct players (although of course, unsurprisingly, the study of such multi-player games would threaten 
to become very very complex, in any concrete modeling effort). And we came to

the opinion that to provide the first work studying the evolved cooperation 
of three players in a model of this sort which brings into play a considerable amount of the actual natural complexity of the possibilities of interaction that arise in cases of three person games of the cooperative class would be valuable as an attempt to open up this area of research possibilities.

   One would like to think imaginatively of an analogy with weather prediction. For weather prediction we now know that the area of work is quite intrinsically suited to the use of large computers. In weather prediction it has been difficult to arrive at the stage of even knowing roughly what to expect for the amount 
of "precipitation" in a locality tomorrow; but we are, more or less, arrived 
at that level by now.

   What to expect in the case of a big "mergers and acquisitions" event in 
the area of business activities is the game theoretic analogue of a problem 
in weather prediction. But we cannot justifiably SIMPLY ASSERT that this type 
of a problem for predictions (or maybe also recommendations) will naturally become well handled by mathematical means or by computers!

   Our work illustrates a means for studying three person games (with the options for cooperation) where the methods lead naturally to complex calculations, very suitable for being actually achieved using modern computer resources (and indeed, apparently impossible without such aid). So we believe that in that sense that the work is on the right track, the nature of the intrinsic problems of games 
is of an essentially complex character, like, indeed, the nature of the inter-actions that create the rules and the behavior in human social existence. Complex patterns can emerge from atomic ingredients that are themselves simply described.
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