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Abstract CR geometry studies the boundary of pseudo-convex manifolds. By concen-
trating on a choice of a contact form, the local geometry bears strong resemblence to
conformal geometry. This paper deals with the role conformally invariant operators such
as the Paneitz operator plays in the CR geometry in dimension three. While the sign of
this operator is important in the embedding problem, the kernel of this operator is also
closely connected with the stability of CR structures. The positivity of the CR-mass under
the natural sign conditions of the Paneitz operator and the CR Yamabe operator is dis-
cussed. The CR positive mass theorem has a consequence for the existence of minimizer
of the CR Yamabe problem. The pseudo-Einstein condition studied by Lee has a natural
analogue in this dimension, and it is closely connected with the pluriharmonic functions.
The author discusses the introduction of new conformally covariant operator P -prime and
its associated Q-prime curvature and gives another natural way to find a canonical contact
form among the class of pseudo-Einstein contact forms. Finally, an isoperimetric constant
determined by the Q-prime curvature integral is discussed.
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1 Introduction

A CR manifold is a pair (M2n+1, J) of a smooth oriented (real) (2n+1)-dimensional manifold
together with a formally integrable complex structure J : H → H on a maximally nonintegrable
codimension one subbundle H ⊂ TM . In particular, the bundle E = H⊥ ⊂ T ∗M is orientable
and any nonvanishing section θ of E is a contact form, i.e., θ ∧ (dθ)n is nonvanishing. We
assume further that (M2n+1, J) is strictly pseudo-convex, meaning that the symmetric tensor
dθ(·, J ·) on H∗ ⊗H∗ is positive definite; since E is one-dimensional, this is independent of the
choice of contact form θ.

Given a CR manifold (M2n+1, J), we can define the subbundle T 1,0 of the complexified
tangent bundle as the +i-eigenspace of J , and T 0,1 as its conjugate. We likewise denote by Λ1,0

the space of (1, 0)-forms (that is, the subbundle of T ∗
C
M which annihilates T 0,1) and by Λ0,1

its conjugate. The CR structure is said to be integrable if T 0,1 is closed under the Lie bracket,
a condition that is vacuous when n = 1. The canonical bundle K is the complex line-bundle
K = Λn+1(Λ1,0).
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A pseudohermitian manifold is a triple (M2n+1, J, θ) of a CR manifold (M2n+1, J) together
with a choice of contact form θ. The assumption that dθ(·, J ·) is positive definite implies that
the Levi form Lθ(U ∧ V ) = −2idθ(U ∧ V ) defined on T 1,0 is a positive-definite Hermitian
form. Since another choice of contact form θ̂ is equivalent to a choice of (real-valued) function
σ ∈ C∞(M) such that θ̂ = eσθ, and the Levi forms of θ̂ and θ are related by Lθ̂ = eσLθ, we see
that the analogy between CR geometry and conformal geometry begins through the similarity
of choosing a contact form or a metric in a conformal class (see [17]).

Given a pseudohermitian manifold (M2n+1, J, θ), the Reeb vector field T is the unique vector
field such that θ(T ) = 1 and dθ(·, T ) = 0. An admissible coframe is a set of (1, 0)-forms {θα}n

α=1

whose restriction to T 1,0 forms a basis for (T 1,0)∗ and such that θα(T ) = 0 for all α. Denote
by θα = θα the conjugate of θα. Then dθ = ihαβθ

α ∧ θβ for some positive definite Hermitian
matrix hαβ . Denote by {T, Zα, Zα} the frame for TCM dual to {θ, θα, θα}, so that the Levi
form is

Lθ(UαZα, V
αZα) = hαβU

αV β .

Tanaka [35] and Webster [38] defined a canonical connection on a pseudohermitian manifold
(M2n+1, J, θ) as follows: Given an admissible coframe {θα}, define the connection forms ωα

β

and the torsion form τα = Aαβθ
β by the relations

dθβ = θα ∧ ωα
β + θ ∧ τβ ,

ωαβ + ωβα = dhαβ,

Aαβ = Aβα,

where we use the metric hαβ to raise and lower indices, e.g., ωαβ = hγβωα
γ . In particular,

the connection forms are pure imaginary. The connection forms define the pseudohermitian
connection on T 1,0 by ∇Zα = ωα

β ⊗ Zβ, which is the unique connection preserving T 1,0, T ,
and the Levi form.

The curvature form Πα
β := dωα

β − ωα
γ ∧ ωγ

β can be written as

Πα
β = Rα

β
γδθ

γ ∧ θδ mod θ,

defining the curvature of M . The pseudohermitian Ricci tensor is the contraction Rαβ :=
Rγ

γ
αβ and the pseudohermitian scalar curvature is the contraction R := Rα

α. As shown by
Webster [38], the contraction Πγ

γ is given by

Πγ
γ = dωγ

γ = Rαβθ
α ∧ θβ + ∇βAαβθ

α ∧ θ −∇βAαβθ
α ∧ θ. (1.1)

For computational and notational efficiency, it is usually more useful to work with the
pseudohermitian Schouten tensor

Pαβ :=
1

n+ 2

(
Rαβ − 1

2(n+ 1)
Rhαβ

)
and its trace P := Pα

α = R
2(n+1) . The following higher order derivatives:

Tα =
1

n+ 2
(∇αP − i∇βAαβ),

S = − 1
n

(∇αTα + ∇αTα + PαβP
αβ −AαβA

αβ)
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also appear frequently (see [19, 30]).

In performing computations, we usually use abstract index notation, so for example τα

denotes a (1, 0)-form and ∇α∇βf denotes the (2, 0)-part of the Hessian of a function. Of
course, given an admissible coframe, these expressions give the components of the equivalent
tensor. The following commutator formulas are useful.

Lemma 1.1

∇α∇βf −∇β∇αf = 0, ∇β∇αf −∇α∇βf = ihαβ∇0f,

∇α∇0f −∇0∇αf = Aαγ∇γf, ∇β∇0τα −∇0∇βτα = Aγβ∇γτα + τγ∇αA
γβ ,

where ∇0 denotes the derivative in the direction T .

The following consequences of the Bianchi identities are also useful.

Lemma 1.2

∇αPαβ = ∇βP + (n− 1)Tβ, (1.2)

∇0R = ∇α∇βAαβ + ∇α∇βA
αβ . (1.3)

In particular,

−ΔbR− 2nIm∇α∇βAαβ = −2∇α(∇αR − in∇βAαβ). (1.4)

An important operator in the study of pseudohermitian manifolds is the sublaplacian

Δb := (∇α∇α + ∇α∇α).

Defining the subgradient ∇bu as the projection of du onto H∗⊗C (that is, ∇bf = ∇αf+∇αf),
it is easy to show that

−
∫

M

uΔbv θ ∧ dθn =
∫

M

〈∇bu,∇bv〉θ ∧ dθn

for any u, v ∈ C∞(M), at least one of which is compactly supported, and where 〈·, ·〉 denotes
the Levi form.

One important consequence of the Bianchi identity is that the operator P has the following
two equivalent forms:

Pf := Δ2
bf + n2∇2

0f − 2in∇β(Aαβ∇αf) + 2in∇β(Aαβ∇αf)

= 4∇α(∇α∇β∇βf + inAαβ∇βf). (1.5)

In dimension n = 1, the operator P is the compatibility operator found by Graham and Lee [22].
Hirachi [24] later observed that in this dimension P is a CR covariant operator, in the sense
that it satisfies a particularly simple transformation formula under a change of contact form.
Thus, in this dimension P is the CR Paneitz operator P4.
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1.1 CR pluriharmonic functions

Given a CR manifold (M2n+1, J), a CR pluriharmonic function is a function u ∈ C∞(M)
which is locally the real part of a CR function v ∈ C∞(M ; C), i.e., u = Re(v) for v satisfying
∇αv = 0. We denote by P the space of pluriharmonic functions on M , which is usually an
infinite-dimensional vector space. When additionally a choice of contact form θ is given, Lee [31]
proved the following alternative characterization of CR pluriharmonic functions which does not
require solving for v.

Proposition 1.1 Let (M2n+1, J, θ) be a pseudohermitian manifold. A function u ∈ C∞(M)
is CR pluriharmonic if and only if

Bαβu := ∇β∇αu− 1
n
∇γ∇γu hαβ = 0, if n ≥ 2,

Pαu := ∇α∇β∇βu+ inAαβ∇βu = 0, if n = 1.

It is straightforward to check that (see [22])

∇β(Bαβu) =
n− 1
n

Pαu. (1.6)

In particular, we see that the vanishing of Bαβu implies the vanishing of Pαu when n > 1.
Moreover, the condition Bαβu = 0 is vacuous when n = 1, and by (1.6), we can consider the
condition Pαu = 0 from Proposition 1.1 as the “residue” of the condition Bαβu = 0.

Note also that, using the second expression in (1.5), we have that P = 4∇αPα. In particular,
it follows that P ⊂ kerP4 for three-dimensional CR manifolds (M3, J). It is easy to see that
this is an equality when (M3, J) admits a torsion-free contact form (see [22]), the general case
is a question of interest that will be addressed in Section 3.

The space of CR pluriharmonic functions is stable for the one-parameter family (M3, J t, θ)
of pseudohermitian manifold if for every ϕ ∈ Pt and every ε > 0, there is a δ > 0 such that for
each s satisfying |t− s| < δ, there is a CR pluriharmonic function fs ∈ Ps such that

‖ϕ− fs‖2 < ε.

We also discuss the question of stability in Section 3.

2 The Embedding Problem

The typical examples of CR structure are the smooth boundaries of strictly pseudo-convex
complex manifolds. Let Ω be a smooth strictly pseudo-convex domain in a Stein manifold given
by a defining function u < 0 which satisfies the nondegeneracy condition at the boundary Σ =
{u = 0}, and u is strictly plurisubharmonic near Σ. Then one easily verifies that θ = Im(∂u)
restricts to a contact form on Σ, and ker θ = ξ inherits the ambient almost complex structure J .
The converse question whether every CR structure arises this way is known as the embedding
problem. In dimensions 2n+ 1 ≥ 5, this was answered affirmatively by the work of Boutet de
Monvel [1]. The special case n = 1 has received a good deal of attention since the work of Rossi
[34] and is the focus of this section.

The example of Rossi is a small perturbation of the standard CR 3-sphere: Let S3 =
{(z1, z2) ∈ C2||z1|2 + |z2|2 = 1} be the boundary of the unit ball in C2. The standard CR
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structure is given by the vector field Z = z2

(
∂

∂z1

) − z1

(
∂

∂z2

)
. Consider for each t the new

CR structure given by Zt = Z + tZ. For 0 < |t| < 1, it is shown by Burns [4] that the CR
holomorphic functions must be even functions, hence this CR structure cannot be realized in
CN for any N . In this same paper it is shown that if for a given CR structure in 3-D, the
CR holomorphic functions separate points and the Szego projection is continuous in the C∞

topology, then the structure may be realized in some CN . In [29], Kohn showed that these
conditions are indeed satisfied if the �b operator on functions has closed range. Subsequently,
Lempert [32] showed that when the torsion vanishes a CR structure in 3-D may be realised in
Cn. We note the vanishing torsion condition means that the Reeb vector field generates a one
parameter family of biholomorphic transformations of the CR structure.

In order to relax the condition of vanishing torsion, one realizes that the Paneitz operator
plays an important role in the embedding question.

Theorem 2.1 (see [12]) If (M3, θ, J) satisfy the condition P4 ≥ 0 and the Webster scalar
curvature R ≥ c > 0, then the nonzero eigenvalues λ of the operator �b satisfy the lower bound
λ ≥ minR. As a consequence, the �b operator has closed range.

It is helpful to remark that the vanishing torsion condition implies the condition P4 ≥ 0:
This follows from the two identities involving the Paneitz operator and the �b operator:

4P4φ = �b�b − 2i(A11φ1),1 = �b�b + 2i(A11φ1),1.

Thus when torsion vanishes, �b commutes with �b, and hence P4 ≥ 0.
As a consequence of this eigenvalue bound, it is possible to verify the stability of embedding

for a family of CR structures {Jt | |t| < ε} on a given (M3, ξ) satisfying the same assumptions
as in Theorem 2.1. If the CR structure J0 is embeddable in CN , then for t sufficiently small,
there is an embedding of Jt which is close to that for J0.

In the next section, we discuss the natural questions of positivity of Paneitz operator which
is closely related to the stability question.

3 When is P4 Non-negative?

To find criteria to verify when P4 is non-negative, one would like to know if CR manifolds
embedded in C2 with some additional nice properties satisfy these nonnegativity conditions as-
sumed in Theorem 2.1. Working in this direction, [13] showed that these nonnegative conditions
hold for small deformations of a strictly pseudo-convex hypersurface with vanishing torsion in
C2.

Another closely related question concerning the CR Paneitz operator is the identification
of its kernel. It follows from its definition that, on a three-dimensional CR manifold, the
space of CR pluriharmonic functions is contained in the kernel of the CR Paneitz operator.
Moreover, Graham and Lee showed [22] that if a three-dimensional CR manifold admits a
torsion-free contact form, then the kernel of the CR Paneitz operator consists solely of the CR
pluriharmonic functions. One would like to characterize CR manifolds for which this equality
holds. Since there are known non-embedded examples for which the equality does not hold,
we restrict our attention to embedded CR manifolds. Motivated by this problem, Hsiao [26]
showed that for embedded CR manifolds, there is a finite-dimensional vector space W , such
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that the kernel of the CR Paneitz operator P4 splits into a direct sum:

kerP4 = P ⊕W. (3.1)

There is an elementary proof of this fact in [8].

Theorem 3.1 (see [8]) Let (M3, J t, θ) be a family of embedded CR manifolds for t ∈ [−1, 1]
with the following properties:

(1) J t is real analytic in the deformation parameter t.
(2) The Szegö projectors St : F 2,0 → (ker ∂

t

b ⊂ F 2,0) vary continuously in the deformation
parameter t (F 2,0 denotes the L2 sections of the canonical bundle).

(3) For the structure J0 we have P 0
4 ≥ 0 and kerP 0

4 = P0, the space of CR pluriharmonic
functions with respect to J0.

(4) There is a uniform constant c > 0 such that

inf
t∈[−1,1]

min
M

Rt ≥ c > 0. (3.2)

(5) The CR pluriharmonic functions are stable for the family (M3, J t, θ). Then P t
4 ≥ 0 and

kerP t
4 = Pt for all t ∈ [−1, 1].

Remark 3.1 The assumption (3.2) can be replaced by the assumption that the CR Yamabe
constants Y [J t] are uniformly positive. Since the assumptions on the CR Paneitz operator are
CR invariant (see [24]), this allows us to recast Theorem 3.1 in a CR invariant way.

As an application, consider the family of ellipsoids in C2 as deformations of the standard
CR three-sphere. The formula established in [28, Theorem 1] expressing the Szegö kernel in
terms of the defining function implies that condition (2) holds. Since the standard contact form
on the CR three-sphere is torsion-free, its CR Paneitz operator is nonnegative and has kernel
consisting only of the CR pluriharmonic functions (see [22]). An elementary calculation (see
[13]) shows that the ellipsoids have positive Webster scalar curvature thus verifying condition
(4) of the theorem. The condition (5) then follows from the stability result of [12]. Stability of
CR functions for strictly pseudo-convex domains in C

2 first appeared in the work of Lempert
[33].

Corollary 3.1 The ellipsoids in C2 are such that the Paneitz operator is nonnegative and
has kernel consisting only of the CR pluriharmonic functions.

Theorem 3.1 shows that the stability of the CR pluriharmonic functions plays a role in
preventing the existence of the supplementary space. If one wishes to use deformations to
exhibit examples of CR manifolds for which the supplementary space exists, one should thus
look at unstable families. Indeed there are conditions which guarantee the existence of the
supplementary space.

First, using the Baire Category theorem, one can show that generically the supplementary
space exists.

Theorem 3.2 (see [9]) Let (M3, J t, θ) be a family of embedded CR manifolds with t ∈
[−1, 1]. Assume that the Szegö projector St : F 2,0 → (ker ∂

t

b ⊂ F 2,0) varies real analytically in
the deformation variable t. Then
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(1) n0 := sup
t∈[−1,1]

dimW t <∞.

(2) The set

F := {t ∈ [−1, 1] : dimW t ≤ n0 − 1}

is a closed set with no accumulation points. In particular, F has no interior points and hence
F is of the first category.

(3) The set

E := {t ∈ [−1, 1] : dimW t = n0}

has nonempty interior.

Remark 3.2 The theorem above states that for generic values t of the deformation parame-
ter, dimW t = n0. Since n0 > 0 if there exists a t0 ∈ [−1, 1] with W t0 �= {0}, the supplementary
space exists for a generic value of t if it exists for some t0. Moreover, if n0 > 0, then dimW t = 0
for a thin set F ⊂ [−1, 1] of the first category.

Under an assumption on the rate of vanishing of the first non-zero eigenvalue of the CR
Paneitz operator for a family of CR structures, the loss of stability of the CR pluriharmonic
functions implies the existence of the supplementary space. To make this precise, we list our
assumptions.

Let (M3, J t, θ) =: M t be a family of embedded CR manifolds for which J t is C6 in the
deformation parameter t for some interval |t − t0| < μ with μ > 0. Suppose that there is a
constant c > 0 independent of t, such that the following assertions hold.

(1) For any t �= t0 and any f ⊥ kerP t
4 , it holds that

|t− t0|η(|t− t0|)‖f‖2 ≤ ‖P t
4f‖2, (3.3a)

where η(s) → ∞ as s tends to zero.
(2) For any f ⊥ kerP t0

4 , it holds that

c‖f‖2 ≤ ‖P t0
4 f‖2. (3.3b)

Together, the assumptions (3.3a) and (3.3b) imply that the lowest nonzero absolute value of
the eigenvalues of the CR Paneitz operator P t

4 jumps up as t→ t0.
Next, we assume that there is a family of diffeomorphisms Φt : M t → M0 := M t0 which is

C6 in the deformation parameter t, such that Φ0 is the identity map.
Finally, we assume that the CR pluriharmonic functions are unstable at t0. More precisely,

we assume that there is a CR pluriharmonic function f0 ∈ C5 for the structureM0 and constants
ε > 0 and 0 < δ < μ, such that for any t with |t− t0| < δ and any CR pluriharmonic function
ψ ∈ Pt, it holds that

‖f0 − ψ‖2 ≥ ε. (3.4)

Theorem 3.3 (see [9]) Assume that (M3, J t, θ) is as described above. Then for all t �= t0

with |t− t0| < δ and δ sufficiently small, the supplementary space W t exists.
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4 The Positivity of the CR Mass

An important application of the embedding theorem is the solvability of the �b equation, a
key fact in the CR positive mass theorem. The situation is quite different from the positivity
of mass in Riemannian geometry.

We consider a compact three-dimensional pseudohermitian manifold (M,J, θ) (with no
boundary) of positive Tanaka-Webster class. This means that the first eigenvalue of the con-
formal sublaplacian

Lb := −4Δb +R

is strictly positive. Here Δb stands for the sublaplacian of M and R for the Tanaka-Webster
curvature. The conformal sublaplacian has the following covariance property under a conformal
change of contact form:

L̂b(φ) = u−
Q+2
Q−2Lb(uφ), θ̂ = u2θ,

where Q = 4 is the homogeneous dimension of the manifold. The conformal sublaplacian rules
the change of the Tanaka-Webster curvature under the above conformal deformation, through
the following formula:

−4Δbu+Ru = R̂u
Q+2
Q−2 ,

where R̂ is the Tanaka-Webster curvature corresponding to the pseudohermitian structure (J, θ̂).
The positivity of the Tanaka-Webster class is equivalent to the condition

Y(J) := inf
θ̂

∫
M RJ,θ̂θ̂ ∧ dθ̂( ∫

M
θ̂ ∧ dθ̂

) 1
2
> 0, (4.1)

where θ̂ is any contact form which annihilates ξ. Under the assumption Y(J) > 0, we have that
Lb is invertible, so for any p ∈M , there exists a Green’s function Gp for which

(−4Δb +R)Gp = 16δp.

One can show that in CR normal coordinates (z, t), the Green’s function Gp admits the following
expansion:

Gp =
1
2π
ρ−2 +A+O(ρ),

where A is some real constant and we have set ρ4(z, t) = |z|4 + t2, z ∈ C, t ∈ R. Analogous
to the Riemannian construction for the blow-up of a compact manifold, we consider the new
pseudohermitian manifold with a blow-up of contact form

N = (M \ {p}, J, θ = G2
pθ̂). (4.2)

With an inversion of coordinates, we then obtain a pseudohermitian manifold which has asymp-
totically the geometry of the Heisenberg group. Starting from this model, we give a definition
of asymptotically flat pseudohermitian manifold and we introduce its pseudohermitian mass
(p-mass) by the formula

m(J, θ) := lim
Λ→+∞

i
∮

SΛ

ω1
1 ∧ θ,
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where we set SΛ = {ρ = Λ}, ρ4 = |z|4 + t2, and ω1
1 stands for the connection form of the

structure. The above quantity is indeed a natural candidate, since it satisfies the same property
as the ADM mass in Riemannian geometry, and moreover it coincides with the zero-th order
term in the expansion of the Green’s function for Lb. In the case that N arise as the blowup of
M3, m is a positive multiple of the constant A.

[14] gave some general conditions which ensure the nonnegativity of the p-mass, character-
izing also the zero case as (CR equivalent to) the standard three-dimensional CR sphere.

Theorem 4.1 Let M be a smooth, strictly pseudo-convex three dimensional compact CR
manifold. Suppose Y(J) > 0, and that the CR Paneitz operator is nonnegative. Let p ∈M and
let θ be a blow-up of contact form as in (4.2). Then

(a) m(J, θ) ≥ 0;
(b) if m(J, θ) = 0, M is CR equivalent (or isomorphic as pseudohermitian manifold) to S3,

endowed with its standard CR structure.

The assumptions here are conformally invariant, and are needed to ensure the positivity of
the right-hand side in (4.3). The proof is patterned after the spinorial argument of Witten. By
the embeddability result, the conditions on Y(J) and P imply the embeddability of M : We use
this property to find a solution of �bβ = 0 with the correct asymptotics (to make the first term
in the right-hand side of (4.3) vanish).

2
3
m(J, θ) =

∫
N

{
− |�bβ|2 + 2|β,11|2 + 2R|β,1|2 +

1
2
βPβ

}
θ ∧ dθ. (4.3)

Here β : N → C is a function satisfying

β = z + β−1 +O(ρ−2+ε) near ∞, �bβ = O(ρ−4),

with β−1 a suitable function with homogeneity −1 in ρ.
The full solvability of �bβ = 0 then reduces to a mapping theorem in weighted spaces

worked out by Hsiao and Yung [27].
It is important to point out that the assumption P4 ≥ 0 is necessary, since there are small

perturbations of the CR structure on the standard 3-sphere for which the CR mass is actually
negative. Indeed it appears likely that this holds for generic perturbations of the standard
3-sphere.

5 Pseudo-Einstein Contact Forms

For strictly pseudo-convex domains in Cn+1, Fefferman [16] introduced the following complex
Monge-Ampere equation:

J [u] = (−1)n+1det
(
u uj

ui uij

)
= 1. (5.1)

An iterative computational procedure is given to find approximate solutions of the equation
(1.1) that is accurate to order n+1 near the boundary: Let ψ be any smooth defining function
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of the boundary:

u1 =
ψ

J(ψ)
1
3
,

us = us−1

(
1 +

1 − J [us−1]
(n+ 1 − s)s

)
for 2 ≤ s ≤ n+ 1.

The resulting contact form θ = Im(∂u) satisfies the following pseudo-Einstein condition:

Rαβ −
( 1
n

)
Rhαβ = 0, if n ≥ 2,

∇αR− i∇βAαβ = 0, if n = 1.

Jack Lee [30] showed that the pseudo-Einstein condition is equivalent to the statement that at
each point p ∈ M there exists a neighborhood of p in which there is a closed section ω of the
canonical bundle with respect to which θ is volume normalized, i.e.,

θ ∧ (dθ)n = in
2
n!θ ∧ (T �ω) ∧ (T �ω).

The special condition when n = 1 is motivated by the observation that the Bianchi identity
gives

∇β
(
Rαβ −

( 1
n

)
Rhαβ

)
=
n− 1
n

(∇αR− in∇βAαβ).

There is a close connection of pseudo-Einstein contact forms with the pluriharmonic functions.
Let (M3, J, θ) be a pseudohermitian manifold and define the (1, 0)-form Wα by

Wα := ∇αR− i∇βAαβ .

Observe that Wα vanishes if and only if θ is pseudo-Einstein. As first, observed by Hirachi [24],
Wα satisfies a simple transformation formula; given another contact form θ̂ = eσθ, a straight-
forward computation shows that

Ŵα = Wα − 3Pασ. (5.2)

An immediate consequence of (5.2) is the following correspondence between pseudo-Einstein
contact forms and CR pluriharmonic functions.

Proposition 5.1 Let (M3, J, θ) be a pseudo-Einstein three-manifold. Then the set of
pseudo-Einstein contact forms on (M3, J) is given by

{euθ : u is a CR pluriharmonic function}.

Since there is a large supply of pseudo-Einstein contact form once there exists one, it is of
interest to find a canonical one. Although the positive mass theorem provide a contact form
that minimizes the CR Yamabe quotient, there is no assurance that it is pseudo-Einstein. In
the next section, we introduce a new operator that is relevant to this question.
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6 The P -Prime Operator

Using spectral methods, Branson, Fontana and Morpurgo [2] have recently identified a new
operator P ′

4 on the standard CR three-sphere (S3, J, θ0), such that P ′
4 is of the form Δ2

b plus
lower-order terms, P ′

4 is invariant under the action of the CR automorphism group of S3, and
P ′

4 appears in an analogue of Q-curvature equation in which the exponential term is present.
However, the operator P ′

4 acts only on the space P of CR pluriharmonic functions on S3,
namely those functions which are the boundary values of pluriharmonic functions in the ball
{(z, w) : |z|2+|w|2 < 1} ⊂ C2. The space of CR pluriharmonic functions on S3 is itself invariant
under the action of the CR automorphism group, so it makes sense to discuss the invariance of
P ′

4. Using this operator, Branson, Fontana and Morpurgo [2] showed that∫
S3
uP ′

4u+ 2
∫

S3
Q′

4u−
(∫

S3
Q′

4

)
log

(∫
S3

e2u
)
≥ 0 (6.1)

for all u ∈ P , where Q′
4 = 1 and equality holds in (6.1) if and only if euθ0 is a standard contact

form. In [7], we extended the definition of P ′ to more general CR structures in dimension n = 1.
To describe our results, let us begin by discussing in more detail the ideas which give rise to

the definitions of P ′
4 and Q′

4. To define P ′
4, we follow the same strategy of Branson, Fontana,

and Morpurgo [2]. First, Gover and Graham [19] showed that on a general CR manifold
(M2n+1, J), one can associate to each choice of contact form θ a formally-self adjoint real
fourth-order operator P4,n which has leading order term Δ2

b +T 2, and that this operator is CR
covariant. On three-dimensional CR manifolds, this reduces to the well-known operator

P4 := P4,1 = Δ2
b + T 2 − 4Im∇α(Aαβ∇β)

which, through the work of Graham and Lee [22] and Hirachi [24], is known to serve as a good
analogue of the Paneitz operator of a four-dimensional conformal manifold. As pointed out by
Graham and Lee [22], the kernel of P4 (as an operator on a three-dimensional CR manifold)
contains the space P of CR pluriharmonic functions, and thus one can ask whether the operator

P ′
4 := lim

n→1

2
n− 1

P4,n|P

is well-defined. This is the case. It then follows from standard arguments (see [3]) that if
θ̂ = eσθ is any other choice of contact form, then the corresponding operator P̂ ′

4 is related to
P ′

4 by

e2σP̂ ′
4(f) = P ′

4(f) + P4(σf) (6.2)

for any f ∈ P . Thus the relation between P ′
4 and P4 is analogous to the relation between the

Q-curvature and the Paneitz operator. More precisely, the P ′-operator can be regarded as a Q-
curvature operator in the sense of Branson and Gover [3]. Moreover, since the Paneitz operator
is self-adjoint and kills pluriharmonic functions, the transformation formula (6.2) implies that

e2σP̂ ′
4(f) = P ′

4(f) mod P⊥

for any f ∈ P , returning P ′
4 to the status of a Paneitz-type operator. This is the sense in which

the P ′-operator is CR invariant, and is the way that it is studied in (6.1).
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From its construction, one easily sees that P ′
4(1) is exactly Hirachi’s Q-curvature. Thus,

unlike the Paneitz operator, the P ′-operator does not necessarily kill constants. However, there
is a large and natural class of contact forms for which the P ′-operator does kill constants,
namely the pseudo-Einstein contact forms. In this setting, it is natural to ask whether there
is a scalar invariant Q′

4 such that P ′
4(1) = n−1

2 Q′
4. Indeed, if (M3, J, θ) is a pseudo-Einstein

manifold, then the scalar invariant

Q′
4 := lim

n→1

4
(n− 1)2

P4,n(1)

is well-defined. As a consequence, if θ̂ = eσθ is another pseudo-Einstein contact form (in
particular, σ ∈ P), then

e2σQ̂′
4 = Q′

4 + P ′
4(σ) +

1
2
P4(σ2). (6.3)

Taking the point of view that P ′
4 is a Paneitz-type operator, we may also write

e2σQ̂′
4 = Q′

4 + P ′
4(σ) mod P⊥. (6.4)

The upshot is that, on the standard CR three-sphere, Q′
4 = 1, so that this indeed recovers

the interpretation of the Beckner-Onofri-type inequality (6.1) of Branson-Fontana-Morpurgo [2]
as an estimate involving a Paneitz-type operator and Q-type curvature. Additionally, we also
see from (6.3) that the integral of Q′

4 is a CR invariant. More precisely, if (M3, J) is a compact
CR three-manifold and θ, θ̂ are two pseudo-Einstein contact forms, then∫

M

Q̂′
4 θ̂ ∧ dθ̂ =

∫
M

Q′
4 θ ∧ dθ.

In conformal geometry, the total Q-curvature plays an important role in controlling the
topology of the underlying manifold. For instance, the total Q-curvature can be used to prove
sphere theorems (see, e.g., [23, Theorem B] and [11, Theorem A]). We have the following CR
analogue of Gursky’s theorem [23, Theorem B].

Theorem 6.1 Let (M3, J, θ) be a compact three-dimensional pseudo-Einstein manifold with
nonnegative Paneitz operator and nonnegative CR Yamabe constant. Then∫

M

Q′
4 θ ∧ dθ ≤

∫
S3
Q′

0 θ0 ∧ dθ0,

with equality if and only if (M3, J) is CR equivalent to the standard CR three sphere.

The proof of Theorem 6.1 relies upon the existence of a CR Yamabe contact form, that
is, the existence of a smooth unit-volume contact form with constant Webster scalar curvature
equal to the CR Yamabe constant (see [14]). In particular, it relies on the CR Positive Mass
theorem (see [14]). One complication which does not arise in the conformal case (see [23]) is
the possibility that the CR Yamabe contact form may not be pseudo-Einstein. We overcome
this difficulty by computing how the local formula for Q′

4 transforms with a general change of
contact form, i.e., without imposing the pseudo-Einstein assumption.

In conformal geometry, the total Q-curvature also arises when considering the Euler charac-
teristic of the underlying manifold. Burns and Epstein [5] showed that there is a biholomorphic
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invariant, now known as the Burns-Epstein invariant, of the boundary of a strictly pseudo-
convex domain which is related to the Euler characteristic of the domain in a similar way. It
turns out that the Burns-Epstein invariant is a constant multiple of the total Q′-curvature, and
thus there is a nice relationship between the total Q′-curvature and the Euler characteristic.

Theorem 6.2 Let (M3, J) be a compact CR manifold which admits a pseudo-Einstein
contact form θ, and denote by μ(M) the Burns-Epstein invariant of (M3, J). Then

μ(M) = −16π2

∫
M

Q′ θ ∧ dθ.

In particular, if (M3, J) is the boundary of a strictly pseudo-convex domain X, then∫
X

(
c2 − 1

3
c21

)
= χ(X) − 1

16π2

∫
M

Q′ θ ∧ dθ,

where c1 and c2 are the first and second Chern forms of the Kähler-Einstein metric in X

obtained by solving Fefferman’s equation, and χ(X) is the Euler characteristic of X.

In general dimensions, the existence of P ′ operators is given by Hirachi [25] and described
in terms of tractor calculus by Case-Gover in a forthcoming publication.

7 An Extremal Pseudo-Einstein Contact Form

In pursuing the analogy with the pair (P4, Q4) in conformal geometry, it is more natural to
focus on the operator P ′

4 which is given by τ ◦P ′ where τ is the projection to the pluriharmonics.
Similarly, it is more natural to consider the scalar invariantQ′

4 := τQ′
4 ∈ P . The transformation

property of Q′
4 implies that if θ̂ = ewθ are both pseudo-Einstein, then equation (6.4) showed

that (P ′
4, Q

′
4) have the same formal properties as (P4, Q4). Note that if θ is pseudo-Einstein,

then θ̂ is pseudo-Einstein if and only if w ∈ P [24], so that (6.2) makes sense.
We will construct contact forms for which the Q′-curvature Q′

4 is constant by constructing
minimizers of the II-functional given by

II(w) =
∫

M

wP ′
4w + 2

∫
M

Q′
4w −

(∫
M

Q′
4

)
log

(∫
M

e2w
)

(7.1)

on a pseudo-Einstein three-manifold (M3, T 1,0M, θ). Note that, since II is only defined on
w, the projections in (7.1) can be removed, i.e., we can equivalently define the II-functional
in terms of P ′

4 and Q′
4. In general, the II-functional is not bounded below. However, under

natural positivity conditions, it is bounded below and coercive, in which case we can construct
the desired minimizers.

Theorem 7.1 (see [6]) Let (M3, T 1,0M, θ) be a compact pseudo-Einstein three-manifold,
such that the P ′-operator P ′

4 is nonnegative and kerP ′
4 = R. Suppose additionally that∫

M

Q′
4θ ∧ dθ < 16π2. (7.2)

Then there exists a function w ∈ P which minimizes the II-functional (7.1). Moreover, the

contact form θ̂ := ewθ is such that Q̂′
4 is constant.
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Some comments on the statement of Theorem 7.1 are in order. First, [7] provided some
sufficient condition for the operator P ′

4 to be non-negative. Second, the assumptions of the
theorem are all CR invariant: The assumptions on P ′

4 are independent of the choice of contact
form and the assumption (7.2) is independent of the choice of pseudo-Einstein contact form.
In particular, if one is interested only in boundaries of domains in C2, the assumptions are
biholomorphic invariants. Third, the assumption that P ′ is nonnegative with trivial kernel (i.e.,
kerP ′

4 = R) automatically holds if there exists a pseudo-Einstein contact form with nonnegative
scalar curvature (see [7]). Fourth, the assumption (7.2) holds if one assumes instead that
(M3, T 1,0M, θ) has nonnegative CR Paneitz operator and nonnegative CR Yamabe constant
(see [7]). Note here that 16π2 is the total Q′-curvature of the standard CR three-sphere. Fifth,

the conclusion that Q̂′
4 is constant is the best that one can hope for: Though it is tempting to

speculate that minimizers of the II-functional actually give rise to contact forms for which Q̂′
4

is constant, as happens on the standard CR three-sphere, the natural structure on S1 × S2 is
an example where there is a unique, up to homothety, contact form for which Q̂′

4 is constant
but Q′

4 is nonconstant.
The proof of Theorem 7.1 is analogous to the corresponding result for the Q-curvature in

four-dimensional conformal geometry (see [10]), though there are many new difficulties, we
must overcome. Since we are minimizing within P , there is a Lagrange multiplier in the Euler
equation for the II-functional which lives in the orthogonal complement P⊥ to P . Rather than
obtain estimates on the Lagrange multiplier, we establish regularity of minimizers by studying
the Green’s function of P

′
4. The greater difficulty lies in showing that minimizers in W 2,2 ∩ P

for the II-functional exist under the hypotheses of Theorem 7.1. The basic idea here is to use
the positivity of P ′

4 and (7.2) to show that the II-functional is coercive. However, doing so
requires showing that P ′

4 satisfies a Moser-Trudinger inequality with the same constant as on
the CR three-sphere. We do this by appealing to the general results of Fontana and Morpurgo
[18], which depends upon having a fairly detailed understanding of the properties of (P ′

4)
1
2 .

This is technically the most involved part of the argument.

8 An Isoperimetric Inequality

The Q′ curvature integral has in addition to its topological meaning, an analytic consequence
as an invariant that controls the isoperimetric constant for a class of pseudo-Einstein contact
forms.

Consider the Heisenberg groupH1 which may be realized as {(x, y, t) ∈ R
3} with the contact

form θ0 = dt+ xdy − ydx and the CR structure given by X = ∂x + y∂t, JX = Y = ∂y − x∂t.
Both curvature and torsion vanish hence it is pseudo-Einstein. Consider θ̂ = e2uθ where σ ∈ P .
The P ′ operator is simply given by P ′ = (Δb)2, and one checks easily that P ′ maps P to itself,
so that there is no need to project back to P .

Given a contact form (M, θ), there is a natural distance function d(p, q) defined as the
infimum over the length of contact curves joining p to q, where the length of a contact curve
γ : [a, b] → M is defined by

∫ b

a

√
dθ(γ′, Jγ′)dt. Associated to the contact form, there is

also a natural notion of area of a surface in M (see, e.g., [15]). It is of interest to study the
isoperimetric inequality for such geometry: Give V > 0 to bound the area of all domains Ω ⊂M

with vol(Ω) = V .
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Theorem 8.1 (see [37]) Let θ = e2uθ0 be a pseudo-Einstein complete contact form on
H1. Suppose that the Webster curvature is non-negative near infinity, suppose also Q′ ≥ 0 and∫
Q′θ ∧ dθ < c1. Then there is an isoperimetric constant I = I(

∫
Q′θ ∧ dθ) so that Area(∂Ω) ≥

IV
3
4 .

We make three remarks concerning this bound. First, this result is a weak analogue of
the stronger result in conformal geometry (see [36]). Second, the isoperimetric constant only
depends on the size of theQ′-curvature integral. Third, the constant c1 is the constant appearing
in the following integral representation formula to be established for such u:

u(x) =
1
cn

∫
H1

log
ρ(y)

ρ(y−1x)
Q(y)e4u(y)dy + C. (8.1)

Naturally it is expected that the condition Q′ ≥ 0 should be replaced by
∫
Q′

+θdθ < c1, and
the constant I = I(

∫
Q′

,

∫
Q′

−).
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