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As colleague and collaborator, we feel privileged to have had the opportunity to work
with Charlie. His contributions to conformal geometry are centered around the ambient
metric construction. We begin with a discussion of some background leading up to its
discovery.

The conformal ambient metric grew out of Charlie’s work in several complex variables;
in particular in his efforts to understand the asymptotic expansion of the Bergman kernel.
As Charlie had previously shown, the restriction to the diagonal of the Bergman kernel
K of a smooth, bounded strictly pseudoconvex domain Ω ⊂ Cn can be written in the
form K(z, z) = ϕ(z)ρ(z)−n−1 + ψ(z) log ρ(z), where ρ is a smooth defining function for
∂Ω and ϕ, ψ ∈ C∞(Ω). This expansion can be viewed by analogy to the asymptotic
expansion of the heat kernel of a Riemannian manifold restricted to the diagonal. The
heat kernel can be expanded in powers of the time variable t and the coefficients in the
expansion are local scalar invariants of Riemannian metrics which can be constructed
as contractions of tensor products of covariant derivatives of the curvature tensor. The
Bergman kernel on the diagonal is determined locally by the boundary up to a smooth
function, so it was natural to try to find an analogous expansion for ϕ to order n + 1
and for ψ to infinite order. But several problems immediately arose in contemplating
carrying this out. One was that Ω is not canonically a product near ∂Ω, so there was
no obvious analogue of t, nor was there an obvious way to formulate an expansion in
such a way that the coefficients would be geometric invariants of the boundary. But
even if one could surmount these difficulties, the most glaring problem was the fact
that it was not known how to construct general scalar invariants of CR structures, the
geometric structures induced on nondegenerate hypersurfaces by the complex structure
on the background Cn.

Charlie resolved these difficulties in his groundbreaking paper [F2]. His solution was to
construct a Lorentz signature, asymptotically Kähler-Einstein metric g̃ on C∗×Ω, where
C∗ = C \ {0}, via a formal solution of a degenerate complex Monge-Ampère equation.
This metric g̃ is invariant under rotations and homogeneous under dilations in C∗ and
is invariantly associated to the CR geometry on ∂Ω. The formal solution to the Monge-
Ampère equation plays the role of the time variable t, and scalar CR invariants can
be constructed using the curvature tensor and Levi-Civita connection of g̃ in a manner
roughly analogous to the case of Riemannian geometry.

The conformal ambient metric, introduced in [FG1] and also denoted g̃, is an analogue
in a different setting: it is determined by the datum of a conformal class (M, [g]) of
Riemannian metrics on a manifold M of dimension n ≥ 3. Metrics in the conformal
class are sections of a ray subbundle G of the bundle of symmetric 2-tensors on M , and g̃

is a Lorentz signature metric on the ambient space G̃ = G×R determined asymptotically
along G ∼= G×{0}. The model is the sphere Sn, whose group of conformal motions is the
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Lorentz group O(n+ 1, 1) of linear transformations of Rn+2 preserving a quadratic form
of signature (n + 1, 1). The ray bundle G can be identified with the forward pointing
half of the null cone of the quadratic form. The ambient metric for the sphere is just
the Minkowski metric on Rn+2, which is clearly preserved by the conformal motions in
O(n+1, 1) in their linear action on Rn+2. For a general conformal class of metrics (M, [g]),

the ambient metric is a Lorentz signature metric on G̃ determined asymptotically along
G × {0} by the following three conditions:

(1) g̃ is homogeneous of degree two with respect to natural dilations on G̃
(2) ι∗g̃ = g0
(3) Ric(g̃) vanishes asymptotically at G × {0}.

Here g0 is a tautological symmetric 2-tensor on G determined by the conformal class,
and ι : G → G × {0} ⊂ G × R is the inclusion. In (3), the asymptotic order of vanishing
is infinite if n is odd, and is n/2 − 1 if n is even. The ambient metric g̃ is uniquely
determined up to diffeomorphism by these conditions, to infinite order if n is odd, and
to order n/2 if n is even.

The conformal ambient metric was inspired by Charlie’s construction in several com-
plex variables, but the relationship is closer than mere analogy: the Kähler-Lorentz
metric in the several complex variables construction can be viewed as a special case of a
conformal ambient metric. One takes the conformal class to be the so-called “Fefferman
metric” (there are too many of these!) on ∂Ω×S1, which Charlie had constructed earlier
in [F1]. Although one usually thinks of conformal geometry as simpler than CR geometry,
by this construction the class of CR structures induced on non-degenerate boundaries
of domains in Cn can be viewed as a subclass of the class of conformal structures on
even-dimensional manifolds.

There is a second, equivalent formulation of ambient metrics; namely, as Poincaré
metrics. The model here is hyperbolic space. Recall that Sn can be viewed as the
boundary at infinity of hyperbolic space, which arises as the restriction of the Minkowski
metric on Rn+2 to one sheet of the hyperboloid arising as the −1-level set of the Lorentz
signature quadratic form. This construction generalizes to the case of a general conformal
manifold as the “conformal infinity”; the ambient metric can be restricted to a natural

hypersurface in G̃ and the resulting Poincaré metric has asymptotically constant negative
Ricci curvature.

These constructions have been enormously influential; the ambient and Poincaré met-
rics are now viewed as fundamental in conformal geometry and beyond. As described
above, one of Charlie’s original motivations for the construction in CR geometry was to
construct and characterize scalar invariants of CR structures to describe the asymptotic
expansion of the Bergman kernel. The ambient metric enables construction of scalar
conformal invariants as “Weyl invariants”, constructed as linear combinations of com-
plete contractions of covariant derivatives of the curvature tensor of the ambient metric.
Determining the extent to which all invariants arise by this construction involved de-
veloping a new “parabolic invariant theory”; this was carried out in [F2], [BEG], and
[FG3].

The ambient metric opened up new arenas for study in geometric analysis. Confor-
mally invariant powers of the Laplacian were constructed in terms of the ambient metric
in [GJMS], leading to Branson’s construction of Q-curvature in [B]. Q-curvature is a



WORK OF CHARLES FEFFERMAN IN CONFORMAL GEOMETRY 3

higher-dimensional version of scalar curvature in dimension 2. Branson’s original defini-
tion proceeded by analytic continuation in the dimension and Q curvature was originally
regarded as rather mysterious. Charlie’s work in in [FG2], [FH] helped illuminate its na-
ture. Q curvature enters into the Gauss-Bonnet integrand in higher dimensions (albeit in
a more complicated way than the scalar curvature in dimension 2). In dimension 4 and
modulo the part which is pointwise conformally invarant, the Gauss-Bonnet integrand
has fully non-linear structure under conformal change of metric. The analytic study of
such partial differential equations has become a central topic in conformal geometry; see
for example [CGY].

The fundamental idea underlying the ambient/Poincaré metric is to study geometry in
dimension n by passing to a different but essentially equivalent description in dimension
n + 1 or n + 2. The AdS/CFT correspondence in physics, a major development since
its introduction by Maldacena in 1997, is based on the same idea. In fact, the Poincaré
metric construction amounts to the geometry underlying the AdS/CFT duality between
conformal field theories on a boundary at infinity and supergravity in the bulk. This
synergy between geometry and physics has stimulated both fields, and continues to be a
source of exciting developments today.
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