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Abstract. In this paper, we establish some sharp inequalities between
the volume and the integral of the k-th mean curvature for k+1-convex
domains in the Euclidean space. The results generalize the classical
Alexandrov-Fenchel inequalities for convex domains. Our proof utilizes
the method of optimal transportation.

1. introduction

Classical isoperimetric inequality for domains in Euclidean space was rig-
orously established by H. A. Schwartz [Sch84](1884) using the method of
symmetrization. Later De Giorgi [DG58] gave a simpler proof based on an
early argument of Steiner. In [Gro85], Gromov established the inequality
by constructing a map from the domain to the unit ball and applying the
divergence theorem. Inspired by Gromov’s idea, it became well-known that
optimal transport method is effective in establishing various sharp geometric
inequalities. See for example [McC97], [CENV04], [FMP10] etc..

In this paper, we apply optimal transport method to establish some sharp
higher order isoperimetric inequalities of Alexandrov-Flenchel type for a
class of domains which includes the convex domains.

Suppose Ω ⊂ Rm is a bounded convex set. Consider the set

Ω + tB := {x+ ty|x ∈ Ω, y ∈ B}
where B is the unit ball and t > 0. By a theorem of Minkowski [Min11], the
volume of the set is a polynomial of degree m, whose expansion is given by

Vol(Ω + tB) =

m∑
k=0

(
m

k

)
Wk(Ω)t

k.

Here Wk(Ω), k = 0, ...,m are coefficients determined by the set Ω, and(
m
k

)
= m!

k!(m−k)! . The k-th quermassintegral Vk is defined as a multiple of the

coefficient Wm−k(Ω).

Vk(Ω) :=
ωk

ωm
Wm−k(Ω). (1.1)
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Here ωk denotes the volume of the unit k-ball; for an arbitrary domain Ω,
Vm(Ω) = vol(Ω) denotes the volume of Ω.

If the boundary ∂Ω is smooth, the quermassintegrals can also be repre-
sented as the integrals of invariants of the second fundamental form: Let Lαβ

be the second fundamental form on ∂Ω, and let σl(L) with l = 0, ...,m − 1
be the l-th elementary symmetric function of the eigenvalues of L. (Define
σ0(L) = 1.) Then

Vm−k(Ω) :=
(m− k)!(k − 1)!

m!

ωm−k

ωm

∫
∂Ω
σk−1(L)dµ, (1.2)

where dµ is the surface area of ∂Ω. From the above definition, one can see
that V0(Ω) = 1, and Vm−1(Ω) = ωm−1

mωm
Area(∂Ω). As a consequence of the

Alexandrov-Fenchel inequalities [Ale37], one obtains the following family of
inequalities: if Ω is a convex domain in Rm with smooth boundary, then for
0 ≤ l ≤ m− 1, (

Vl+1(Ω)

Vl+1(B)

) 1
l+1

≤
(
Vl(Ω)

Vl(B)

) 1
l

. (1.3)

For 0 ≤ l ≤ m− 2, (1.3) is equivalent to, due to the identity (1.2),(∫
∂Ω
σk−1(L)dµ

) 1
m−k

≤ C̄

(∫
∂Ω
σk(L)dµ

) 1
m−1−k

, (1.4)

where k = m− 1− l. Here C̄ = C(k,m) denotes the (sharp) constant which
is obtained only when Ω is a ball in Rm. When l = m − 1, (1.3) is the
well-known isoperimetric inequality

vol(Ω)
m−1
m ≤ 1

mω
1
m
m

Area(∂Ω). (1.5)

An open question in the field is if (1.4) holds when the domain is only
k-convex in the sense that σl(L)(x) > 0 for all l ≤ k and all x ∈ ∂Ω. (In
the following, we denote the condition of k-convexity by L ∈ Γ+

k .) This is
indeed the case under the additional assumption that Ω is star-shaped, as
established by Guan-Li [GL09]. In the work of Huisken [Hui], he has proved
that (1.4) holds for k = 1 when one assumes in addition that the domain
is outward minimizing. Inequalities of the type (1.4) were also discussed by
Trudinger [Tru94]. In [Cas10], Castillon has applied the method of optimal
transport to give a new proof of the Michael-Simon inequality, which in
particular implies (1.4) for k = 1 with some constant C(m). In [CW11,CW],
we have established inequalities of the type (1.4) for all l ≤ k with some
(non-sharp) constant C(k,m) when Ω is (k + 1)-convex.

In this note, we apply the method of optimal transport to establish the
following “end version” of the sharp inequalities in (1.4).
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Theorem 1.1. Let Ω be a domain in Rm with smooth boundary. Suppose
Ω is 2-convex, i.e. L ∈ Γ+

2 . Then

vol(Ω)
m−2
m ≤ (

1

ωm
)

2
m

1

m(m− 1)

∫
∂Ω
Hdµ, (1.6)

where H = σ1(L) is the mean curvature of ∂Ω and dµ is the surface area of
∂Ω. The constant in the inequality is sharp and equality holds only when Ω
is a ball in Rm.

We also prove the inequality between the volume of Ω and the integral of
σ2(L) with the sharp constant.

Theorem 1.2. Let Ω be a domain in Rm with smooth boundary. Suppose
Ω is 3-convex, i.e. L ∈ Γ+

3 . Then

vol(Ω)
m−3
m ≤ (

1

ωm
)

3
m

1

3
(
m
3

) ∫
∂Ω
σ2(L)dµ. (1.7)

The constant in the inequality is sharp and equality holds only when Ω is a
ball in Rm.

We remark that our proof indicates that the sharp version of these in-
equalities for (k + 1)-convex domains are likely to be derived by optimal
transport method for all k; but the proof would be algebraically challeng-
ing. It also remains an open question if the additional one level of convexity
assumption (that is we assume Ω is (k + 1)-convex instead of k-convex) in
our proof is necessary–but the proof we present here heavily depends on this
assumption.

The main difference of Theorem 1.1, and 1.2 from our previous work in
[CW] is that we have applied the optimal transport map from a measure
on Ω to the unit m-ball, instead of applying the optimal transport map
from the projections of the measure on ∂Ω to the unit (m − 1)-balls on
hyperplanes of Rm. Also, in order to obtain the sharp constants, we study
the delicate interplays between terms involving the tangential and normal
directions of the optimal transport map. We apply the Taylor expansion
and derive recursive inequalities in order to estimate each individual term
in the expansion.

Finally we would like to clarify that although an optimal transport map
∇ϕ from Ω to the unit ball in Rm is smooth up to the boundary if Ω is
strictly convex by the results of Caffarelli ([Caf92a,Caf96]), the proof of our
main theorems still work if we only assume Ω is 2 or 3-convex respectively
by an approximation argument. This type of approximation process is quite
standard and has been explained in detail for example in [CW] and in many
other articles in this research field. We will not emphasize this point later
in our argument and will take for granted that we can integrate by parts for
derivatives of ϕ on ∂Ω.
Acknowledgments: The authors wish to thank Alessio Figalli for his valu-
able comments and earlier discussions about the subject in the paper. They
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are also very grateful to the referees who read the manuscript very carefully
and gave many helpful suggestions.

2. Preliminaries

2.1. Optimal Transport. We begin with a similar set-up that Gromov has
used in establishing the classical isoperimetric inequality.

By the result of Brenier [Bre91] on optimal transportation, given a prob-
ability measure f(x)dx on Ω, there exists a convex potential function ϕ :
Rm → R, such that ∇ϕ is the unique optimal transport map from Ω to
B(0, 1) (the unit m-ball centered at the origin) which pushes forward the
probability measure f(x)dx, to the probability measure g(y)dy = 1

ωm
dy on

B(0, 1). We adopt the convention to denote by ∇ϕ, ∇2
ijϕ the gradient and

the Hessian of ϕ with respect to the ambient Euclidean metric, in order to
distinguish them from ∇ϕ, ∇2

αβϕ (or ϕαβ)–the gradient and the Hessian of
ϕ with respect to the metric of ∂Ω. We remark that in our notation, both
the coordinate of the form and the coordinate the vector are denoted using
the lower index ϕα (or ϕβ etc.). For simplicity, we denote the boundary ∂Ω
by M from now on.

Since ∇ϕ preserves the measure, we have the equation

det(∇2
ϕ)(x) =

f(x)

g(∇ϕ(x))
= ωmf(x). (2.1)

The function f(x) will be specified later. Also ∇ϕ is the optimal transport
map from Ω to B(0, 1). Therefore |∇ϕ| ≤ 1. Thus

|∇ϕ|2 + ϕ2n ≤ 1. (2.2)

Here n denotes the outward unit normal toM , and ϕn denotes the directional
derivative of ϕ in this direction. This is a fact that will be frequently used
later in the argument.

Now the convexity of ϕ implies∇2
ϕ is nonnegative definite. Therefore by the

geometric-arithmetic inequality (det(∇2
ϕ))

k+1
m ≤ 1

( m
k+1)

σk+1(∇
2
ϕ). Thus we

obtain, by integrating over Ω, that∫
Ω
(ωmf(x))

k+1
m dx =

∫
Ω
(det(∇2

ϕ))
k+1
m dx

≤
∫
Ω

1(
m
k+1

)σk+1(∇
2
ϕ)dx

=

∫
Ω

1

(k + 1)
(

m
k+1

)∇2
ijϕ[Tk]ij(∇

2
ϕ)dx.

(2.3)
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Here [Tk]ij is the Newton transformation tensor, defined by [Tk]ij(A) :=

[Tk]ij(

k︷ ︸︸ ︷
A, ..., A) and

[Tk]ij(A1, ..., Ak) :=
1

k!
δi,i1,...,ikj,j1,...,jk

(A1)i1j1 · · · (Ak)ikjk . (2.4)

For example

[T1]ij(A) = Tr(A)δij −Aij ,

where Tr(A) is the trace of A. We used in the last line of (2.3) that
σk+1(A) = 1

k+1Aij [Tk]ij(A). For more properties of [Tk]ij , we refer the

readers to [CW11, section 5.1]. Using the fact ∂j(∇
2
ijϕ) = ∂i(∇

2
jjϕ), one can

easily show that ∂j([Tk]ij)(∇
2
ϕ) = 0. Here ∂j is the coordinate derivative

on Rm. Hence we have by the divergence theorem that∫
Ω

1

(k + 1)
(

m
k+1

)∇2
ijϕ[Tk]ij(∇

2
ϕ)dx

=
1

(k + 1)
(

m
k+1

) ∫
Ω
∂j

(
ϕi[Tk]ij(∇

2
ϕ)
)
dx

=
1

(k + 1)
(

m
k+1

) ∫
M
[Tk]ij(∇

2
ϕ)ϕinjdµ,

(2.5)

where nj is the coordinate of the outward unit normal on M . If we combine
(2.3) and (2.5) and specify the probability measure f(x)dx := 1

vol(Ω)dx on

Ω, we then get

vol(Ω)1−
k+1
m ≤ (

1

ωm
)
k+1
m

1

(k + 1)
(

m
k+1

) ∫
M
[Tk]ij(∇

2
ϕ)ϕinjdµ. (2.6)

Comparing the constants in (2.6) (for k = 1 and 2 respectively) with the
constants in (1.6) and (1.7) of Theorem 1.1 and 1.2 respectively, we notice
that to prove these theorems it suffices to establish inequalities (2.7) and
(2.8) below. ∫

M
[T1]ij(∇

2
ϕ)ϕinjdµ ≤

∫
M
Hdµ, (2.7)∫

M
[T2]ij(∇

2
ϕ)ϕinjdµ ≤

∫
M
σ2(L)dµ. (2.8)

In the following, we will in fact prove two inequalities which are slightly
stronger than (2.7) and (2.8).

Theorem 2.1. Let ϕ be a smooth convex function on Ω, and |∇ϕ| ≤ 1.
Suppose M = ∂Ω is smooth and the second fundamental form L ∈ Γ+

2 .
Then ∫

M
[T1]ij(∇

2
ϕ)ϕinjdµ ≤

∫
M
H − 1

3
[T1]αβ(L)ϕαϕβdµ. (2.9)
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Theorem 2.2. Let ϕ be a smooth convex function on Ω, and |∇ϕ| ≤ 1.
Suppose M = ∂Ω is smooth and the second fundamental form L ∈ Γ+

3 .
Then∫

M
[T2]ij(∇

2
ϕ)ϕinjdµ ≤

∫
M
σ2(L)−

1

4

∫
M
[T2]αβ(L)ϕαϕβdµ. (2.10)

Note for L ∈ Γ+
2 , [T1]αβ(L) ≥ 0; and for L ∈ Γ+

3 , [T2]αβ(L) ≥ 0. In section
3 and 4, we will prove these two theorems.

We remark that although by our optimal transport method with approxi-
mation argument, ϕ is smooth onM , it is enough to assume ϕ is C3, since in
the proof we will only take covariant derivatives of ϕ up to the third order.
Also, the assumption that M is smooth can be much weaker. In fact, one
only needs to assume M is C2 (so that the second fundamental form is well
defined) and apply an approximation argument. In this paper, however, we
do not want to focus on the problem of looking for the weakest regularity
assumption, thus we simply assume ϕ and M are smooth.

Proof of Theorem 1.1 and 1.2: It is clear that inequality (2.9) implies
(2.7), which in turn implies (1.6); similarly, inequality (2.10) implies (2.8),
which in turn implies (1.7). Now we will show that equalities in (1.6) and
(1.7) hold only when Ω is a ball. In fact we first claim (1.6) attains the
equality only if

∇2
ϕ(x) = λ(x)Id. (2.11)

The proof of this claim is given in the next paragraph. The same argument
applies when (1.7) becomes an equality.

We can approximate Ω by a sequence of subsets {Ωl}∞l=1 such that Ωl b Ω
and ∂Ωl → ∂Ω in C∞ norm. Since Ωl is contained in the interior of Ω, and
thus ϕ on Ωl is a smooth function up to the boundary [Caf92b], we can
apply Theorem 2.1 on each Ωl and derive

ω2/m
m vol(Ωl)vol(Ω)

−2/m =

∫
Ωl

det2/m(∇2
ϕ)dx

≤ 2

m(m− 1)

∫
Ωl

σ2(∇
2
ϕ)dx

≤ 1

m(m− 1)

∫
∂Ωl

H∂Ωl
dµl.

(2.12)

Here H∂Ωl
denotes the mean curvature of boundary of Ωl; and µl denotes

the area form of the boundary of Ωl. We then take l → ∞. By dominating
convergence theorem, we derive the same inequalities for Ω. Namely,

ω2/m
m vol(Ω)1−2/m =

∫
Ω
det2/m(∇2

ϕ)dx

≤ 2

m(m− 1)

∫
Ω
σ2(∇

2
ϕ)dx

≤ 1

m(m− 1)

∫
∂Ω
Hdµ.

(2.13)
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Hence equality is attained only if det2/m(∇2
ϕ) = 2

m(m−1)σ2(∇
2
ϕ), and thus

∇2
ϕ(x) = λ(x)Id. This gives the proof of (2.11).
Now, by our choice f(x) = 1

vol(Ω) as well as the equation (2.1), we see

that λ(x) must be a constant λ on each connected component of Ω, possibly
with different values of λ on different components. Thus the unique solution
∇ϕ to the optimal transport problem is a dilation map ∇ϕ(x) = λx on each
connected component of Ω. Hence each connected component of Ω is a ball.
However, if Ω is the union of two or more balls, we can compute directly
that it does not attain the equality in (2.9). Therefore Ω is a ball.

2.2. Elementary facts. By Taylor expansion

(1− s2)1/2 = 1−
∞∑
k=1

Cks
2k, (2.14)

where Ck =
(
2k
k

)
1

22k(2k−1)
= (2k−3)!!

k!2k
≥ 0. In the following, we always take

s = |∇ϕ|, and ψ :=
√

1− |∇ϕ|2. By (2.2), 0 ≤ s ≤ 1. Formally, the
convergence holds uniformly only if |s| < 1. In the proof of Proposition 3.3,
we will assume 0 ≤ s < 1 and apply the Taylor expansion. Later in the
proof of Theorem 2.1 , we will use an approximation argument to derive the
theorem for general 0 ≤ s ≤ 1. For 0 ≤ s < 1, we have the following facts.
Fact (a):

ψ = 1−
∞∑
k=1

Ck|∇ϕ|2k. (2.15)

Fact (b):
∞∑
k=1

2kCk|∇ϕ|2(k−1)ψ ≡ 1. (2.16)

Proof. If we take derivative on both sides of (2.14), then

−s
(1− s2)1/2

= −
∞∑
k=1

2kCks
2k−1. (2.17)

Let s = |∇ϕ|. It then deduces (2.16). �

Define

F (x) :=

∞∑
k=1

k

k + 1
Ck|∇ϕ(x)|2(k−1),

and

G(x) :=
1

2
−

∞∑
k=1

1

2(k + 1)
Ck|∇ϕ(x)|2k.
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F and G will appear in the proof of Theorem 2.2. If we multiply s on both
sides of (2.14) and integrate over [0, s], then we derive

Fact (c): 3G|∇ϕ|2 = 1− ψ3.

By a simple calculation, we also have
Fact (d): 2G = ψ + F |∇ϕ|2.

Fact (e): Fψ ≤ 1
4 .

Proof of Fact (e): Since 1
2(k+1) ≤

1
4 for k ≥ 1,

Fψ =(

∞∑
k=1

k

k + 1
Ck|∇ϕ|2(k−1))ψ

≤1

4

∞∑
k=1

2kCk|∇ϕ|2(k−1)ψ =
1

4
,

(2.18)

where the last equality uses Fact (b).

3. Proof of Theorem 2.1

Consider the isometric embedding i : M → Rm, where M := ∂Ω. For
x ∈M , one can write the Hessian of ϕ in coordinates of tangential derivatives
and normal derivatives of TxM . Let indices α, β with α, β = 1, ...,m − 1
be the tangential directions, n be the outward unit normal direction on M ,
and let i, j with i, j = 1, ...,m be the coordinates of Rm. It is well known
that

∇2
αβϕ = ϕαβ + Lαβϕn,

and
∇2

αnϕ = ∇α(ϕn)− Lαβϕβ.

Thus we can decompose ∇2
ϕ = A+B, where

A =


· · · · · · · · ·

...
· · · ϕαβ · · · ∇α(ϕn)

· · · · · · · · ·
...

· · · ∇α(ϕn) · · · ∇2
nnϕ

 , (3.1)

and

B =


· · · · · · · · ·

...
· · · Lαβϕn · · · −Lαβϕβ

· · · · · · · · ·
...

· · · −Lαβϕβ · · · 0

 . (3.2)

Define

Lk :=

∫
M
[Tk−1]ij(A+B)ϕinjdµ. (3.3)
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The inequality in Theorem 2.1 is equivalent to

L2 ≤
∫
M
H − 1

3
[T1]αβ(L)ϕαϕβdµ. (3.4)

To prove this, we write L2 = L2,1 + L2,2, where

L2,1 :=

∫
M
[T1]ij(A)ϕinjdµ,

and

L2,2 :=

∫
M
[T1]ij(B)ϕinjdµ.

Proposition 3.1.

L2,1 = 2

∫
M

∆ϕϕndµ. (3.5)

L2,2 =

∫
M
Hϕ2n + Lαβϕαϕβdµ. (3.6)

Proof. Recall

[T1]ij(A) = Tr(A)δij −Aij ,

where Tr(A) denotes the trace of A.

L2,1 =

∫
M
(∆ϕ+ ϕnn)ϕn − (∇α(ϕn)ϕα + ϕnnϕn)dµ

=

∫
M

∆ϕϕn −∇α(ϕn)ϕαdµ

=

∫
M

2∆ϕϕndµ.

(3.7)

L2,2 =

∫
M
(Tr(B)δin −Bin)ϕidµ

=

∫
M
(Tr(B)δαn −Bαn)ϕαdµ+

∫
M
(Tr(B)δnn −Bnn)ϕndµ

=

∫
M
Hϕ2n + Lαβϕαϕβdµ.

(3.8)

�

We now define M2,1, and M2,2 the analogous expressions of L2,1, L2,2 in
(3.5) and (3.6), with ϕn replaced by ψ:

Definition 3.2. Define

M2,1 := 2

∫
M

∆ϕψdµ, (3.9)

and

M2,2 :=

∫
M
Hψ2 + Lαβϕαϕβdµ. (3.10)
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Proposition 3.3. Suppose ϕ in addition satisfies |∇ϕ| < 1. Then

M2,1 ≤
2

3

∫
M
(Hδαβ − Lαβ)ϕαϕβdµ

=
2

3

∫
M
[T1]αβ(L)ϕαϕβdµ.

(3.11)

M2,2 =

∫
M
H − [T1]αβ(L)ϕαϕβdµ. (3.12)

We now assert the inequality (2.9) in Theorem 2.1 follows the inequalities
in the above proposition. To see this, we have

L2 =L2,1 + L2,2

=M2,1 +M2,2 +

∫
M

2∆ϕ(ϕn − ψ) +H(ϕ2n − ψ2)dµ
(3.13)

We claim that ∫
M

2∆ϕ(ϕn − ψ) +H(ϕ2n − ψ2)dµ ≤ 0. (3.14)

To see (3.14), we re-write ∆ϕ as ∆ϕ = ∆|TxMϕ − Hϕn, where ∆|TxMϕ

denotes the trace of ∇2
ϕ restricted on TxM . Since ∇2

ϕ is nonnegative,
∆|TxMϕ ≥ 0. Therefore, we obtain∫

M
2∆ϕ(ϕn − ψ) +H(ϕ2n − ψ2)dµ

=

∫
M

2∆|TxMϕ(ϕn − ψ)− 2Hϕn(ϕn − ψ) +H(ϕ2n − ψ2)dµ

=

∫
M

2∆|TxMϕ(ϕn − ψ)−H(ϕn − ψ)2dµ.

(3.15)

Using (2.2), ϕn ≤ ψ =
√

1− |∇ϕ|2; we also have ∆|TxMϕ ≥ 0 and H ≥ 0.
Thus (3.14) holds.

We now deduce from (3.13), (3.14) and Proposition 3.3 that for ϕ satis-
fying |∇ϕ| < 1,

L2 ≤M2,1 +M2,2

≤
∫
M
H − 1

3
[T1]αβ(L)ϕαϕβdµ.

(3.16)

This finishes the proof of Theorem 2.1 for ϕ satisfying |∇ϕ| < 1.
If |∇ϕ| ≤ 1, then we can apply the above argument to the function ϕδ :=

(1 − δ) · ϕ. It is obvious that ϕδ is a smooth convex function on Ω, and
|∇ϕδ| < 1. Therefore, Theorem 2.1 holds for each individual ϕδ. Namely∫

M
[T1]ij(∇

2
ϕδ)(ϕδ)injdµ ≤

∫
M
H − 1

3
[T1]αβ(L)(ϕδ)α(ϕδ)βdµ.

When δ → 0, ϕδ converges to ϕ in C∞ on M . Thus the above inequality is
also valid for ϕ. This finishes the proof of Theorem 2.1 for general |∇ϕ| ≤ 1.
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We now begin the proof of Proposition 3.3. The strategy we will apply
is to expand ψ by the Taylor series and to derive a recursive inequality for
each individual term

∫
M ∆ϕ|∇ϕ|2kdµ in the Taylor series. Let us begin with

the following lemma.

Lemma 3.4. Define

Jk :=

∫
M

∆ϕ|∇ϕ|2kdµ.

Then

Jk =
2k

2k + 1

∫
M
[T1]αβ(∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ. (3.17)

Proof. By integration by parts

Jk :=

∫
M

∆ϕ|∇ϕ|2kdµ

=

∫
M

−2kϕαϕβϕαβ |∇ϕ|2(k−1)dµ.

(3.18)

By the definition of [T1], ϕαβ = ∆ϕδαβ − [T1]αβ(∇2ϕ). Then

Jk =

∫
M

−2k∆ϕ|∇ϕ|2kdµ

+

∫
M

2k[T1]αβ(∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ

=− 2kJk +

∫
M

2k[T1]αβ(∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ.

(3.19)

Thus

Jk =
2k

2k + 1

∫
M
[T1]αβ(∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ. (3.20)

This finishes the proof of Lemma 3.4. �
Proof of Proposition 3.3: First, by Taylor expansion

M2,1 :=

∫
M

2∆ϕψdµ

=2

∫
M

∆ϕ(1−
∞∑
k=1

Ck|∇ϕ|2k)dµ.
(3.21)

Notice that
∫
M ∆ϕdµ = 0 and for |∇ϕ| < 1 the convergence in the Taylor

expansion is uniform. Thus

M2,1 = −2
∞∑
k=1

CkJk,

where Jk :=
∫
M ∆ϕ|∇ϕ|2kdµ. Using Lemma 3.4, we get

M2,1 = −2

∞∑
k=1

2k

2k + 1
Ck

∫
M
[T1]αβ(∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ.
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Since ∇2
αβϕ = ∇2

αβϕ− Lαβϕn,

M2,1 =−
∞∑
k=1

4k

2k + 1
Ck

∫
M
[T1]αβ(∇

2
ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ

+

∞∑
k=1

4k

2k + 1
Ck

∫
M
[T1]αβ(L)ϕnϕαϕβ|∇ϕ|2(k−1)dµ.

(3.22)

Since [T1]αβ(∇
2
ϕ) ≥ 0, the first sum in (3.22) is non-positive. Also, in the

second sum, we notice 2
2k+1 ≤ 2

3 for any k ≥ 1. Therefore

M2,1 ≤
2

3

∫
M
[T1]αβ(L)ϕαϕβ(

∞∑
k=1

2kCk|∇ϕ|2(k−1))ϕndµ. (3.23)

Now by Fact (b),

(
∞∑
k=1

2kCk|∇ϕ|2(k−1))ϕn ≤ (
∞∑
k=1

2kCk|∇ϕ|2(k−1))ψ = 1.

Also we have [T1]αβ(L)ϕαϕβ ≥ 0. Therefore

2

3

∫
M
[T1]αβ(L)ϕαϕβ(

∞∑
k=1

2kCk|∇ϕ|2(k−1))ϕndµ ≤ 2

3

∫
M
[T1]αβ(L)ϕαϕβdµ.

This completes the proof for M2,1.
For the term M2,2, it is straightforward to see that

M2,2 :=

∫
M
Hψ2 + Lαβϕαϕβdµ

=

∫
M
H −H|∇ϕ|2 + Lαβϕαϕβdµ

=

∫
M
H − [T1]αβ(L)ϕαϕβdµ.

(3.24)

This finishes the proof of Proposition 3.3.

4. Proof of Theorem 2.2

In this section, we will prove

L3 :=

∫
M
[T2]ij(∇

2
ϕ)ϕinjdµ ≤

∫
∂Ω
σ2(L)−

1

4

∫
M
[T2]αβ(L)ϕαϕβdµ.

To prove this, we first decompose L3, using the multi-linearity of [T2]ij(·),
into L3 = L3,1 + L3,2 + L3,3, where

L3,1 :=

∫
M
[T2]ij(A,A)ϕinjdµ,

L3,2 := 2

∫
M
[T2]ij(A,B)ϕinjdµ,
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and

L3,3 :=

∫
M
[T2]ij(B,B)ϕinjdµ.

A and B are as defined in (3.1) and (3.2).

Proposition 4.1.

L3,1 = 3

∫
M
σ2(∇2ϕ)ϕndµ−

∫
M
Ricαβϕαϕβϕndµ. (4.1)

L3,2 =
3

2

∫
M

Σ2(∇2ϕ,L)ϕ2ndµ+

∫
M
[T1]αβ(∇2ϕ)Lβγϕαϕγdµ. (4.2)

And

L3,3 =

∫
M
σ2(L)ϕ

3
ndµ+

∫
M
[T1]αβ(L)Lβγϕαϕγϕndµ. (4.3)

Here Σ2(A,B) := Tr(A)Tr(B) − Tr(AB) for any two tensors A and B.
It is the linear polarization of σ2(·) (up to a multiplicative constant) in the
sense that Σ2(A,A) = 2σ2(A), and it is symmetric and linear with respect
to A and B. For polarization of σk, we refer to [CW11,CW]. The proof of
Proposition 4.1 is by direct computation. Thus we omit it here. Now as
what we did in the previous section, we define M3,1, M3,2, M3,3, simply by
substituting ϕn by ψ in the formulas of Proposition 4.1.

Definition 4.2.

M3,1 = 3

∫
M
σ2(∇2ϕ)ψdµ−

∫
M
Ricαβϕαϕβψdµ. (4.4)

M3,2 =
3

2

∫
M

Σ2(∇2ϕ,L)ψ2dµ+

∫
M
[T1]αβ(∇2ϕ)Lβγϕαϕγdµ. (4.5)

And

M3,3 =

∫
M
σ2(L)ψ

3dµ+

∫
M
[T1]αβ(L)Lβγϕαϕγψdµ. (4.6)

We first simplify the formula of M3,2.

Proposition 4.3.

M3,2 = −2

∫
M
[T2]αβ(∇2ϕ,L)ϕαϕβdµ. (4.7)

Proof. Since ψ2 = 1− |∇ϕ|2, applying integration by parts we have∫
M

Σ2(∇2ϕ,L)ψ2dµ

=

∫
M
(∆ϕH − ϕαβLαβ)(1− |∇ϕ|2)dµ

=−
∫
M
ϕαHα(1− |∇ϕ|2) + ϕαH(−2ϕγϕγα)dµ

+

∫
M
ϕαLαβ,β(1− |∇ϕ|2) + ϕαLαβ(−2ϕγϕγβ)dµ

(4.8)
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By Codazzi equation Hα = Lαβ,β . Hence the first term and the third term
in the last equality above are canceled. So we have∫

M
Σ2(∇2ϕ,L)ψ2dµ

=2

∫
M
(ϕαHϕγϕγα − ϕαLαβϕγϕγβ)dµ

=2

∫
M
ϕαϕγ [T1]αβ(L)ϕβγdµ.

(4.9)

Substituting 1
2

∫
M Σ2(∇2ϕ,L)ψ2dµ by formula (4.9) in M3,2, we have

M3,2 =(1 +
1

2
)

∫
M

Σ2(∇2ϕ,L)ψ2dµ+

∫
M
[T1]αβ(∇2ϕ)Lβγϕαϕγdµ

=

∫
M

Σ2(∇2ϕ,L)ψ2 + ϕαϕγ [T1]αβ(L)ϕβγ + [T1]αβ(∇2ϕ)Lβγϕαϕγdµ

=

∫
M

Σ2(∇2ϕ,L)(1− |∇ϕ|2) + ϕαϕγ [T1]αβ(L)ϕβγ

+ [T1]αβ(∇2ϕ)Lβγϕαϕγdµ.
(4.10)

By the Codazzi equation again,∫
M

Σ2(∇2ϕ,L)dµ =

∫
M
ϕαHα − ϕαLαβ,βdµ

= 0,
(4.11)

Therefore (4.10) implies

M3,2 =

∫
M

Σ2(∇2ϕ,L)(−|∇ϕ|2) + ϕαϕγ [T1]αβ(L)ϕβγ

+ [T1]αβ(∇2ϕ)Lβγϕαϕγdµ.

(4.12)

Using the fact that for tensors Aαβ , Bαβ

2[T2]αγ(A,B) = Σ2(A,B)δαγ − [T1]αβ(A)Bβγ − [T1]αβ(B)Aβγ , (4.13)

we have

M3,2 = −2

∫
M
[T2]αβ(∇2ϕ,L)ϕαϕβdµ. (4.14)

�

Proposition 4.4. Define

Ak :=

∫
M
σ2(∇2ϕ)|∇ϕ|2kdµ.
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Then

Ak =
k

k + 1

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ

+
1

2(k + 1)

∫
M
Ricαβϕαϕβ|∇ϕ|2kdµ.

(4.15)

Proof. Applying properties of T1 and the integration by parts, we have

Ak :=

∫
M
σ2(∇2ϕ)|∇ϕ|2kdµ

=

∫
M

1

2
ϕαβ [T1]αβ(∇2ϕ)|∇ϕ|2kdµ

=

∫
M

−1

2
ϕα([T1]αβ(∇2ϕ))β|∇ϕ|2k −

1

2
ϕα[T1]αβ(∇2ϕ)(|∇ϕ|2k)βdµ.

(4.16)

([T1]αβ(∇2ϕ))β = (∆ϕδαβ − ϕαβ)β = −Ricαβϕβ, (4.17)

where Ricαβ denotes the Ricci curvature of M . Therefore (4.16) becomes

Ak =

∫
M

1

2
ϕαϕβRicαβ |∇ϕ|2k − kϕα[T1]αβ(∇2ϕ)ϕγϕγβ |∇ϕ|2(k−1)dµ. (4.18)

We now notice that [T1]αβ(∇2ϕ)ϕγβ = σ2(∇2ϕ)δαγ−[T2]αγ(∇2ϕ,∇2ϕ). Thus

Ak =

∫
M
[
1

2
ϕαϕβRicαβ|∇ϕ|2k

− kϕα
(
σ2(∇2ϕ)δαγ − [T2]αγ(∇2ϕ,∇2ϕ)

)
ϕγ |∇ϕ|2(k−1)]dµ

=

∫
M

1

2
ϕαϕβRicαβ |∇ϕ|2k − kAk + kϕα[T2]αγ(∇2ϕ,∇2ϕ)ϕγ |∇ϕ|2(k−1)dµ.

(4.19)

Therefore

Ak =
k

k + 1

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβ|∇ϕ|2(k−1)dµ

+
1

2(k + 1)

∫
M
Ricαβϕαϕβ|∇ϕ|2kdµ.

(4.20)

�
We will now assume |∇ϕ| < 1 as in the previous section.

Corollary 4.5. Suppose ϕ in addition satisfies |∇ϕ| < 1. Then

M3,1 =3

∫
M
σ2(∇2ϕ)ψdµ−

∫
M
Ricαβϕαϕβψdµ

=− 3

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβFdµ

+ 3

∫
M
RicαβϕαϕβGdµ−

∫
M
Ricαβϕαϕβψdµ,

(4.21)
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where

F (x) :=
∞∑
k=1

k

k + 1
Ck|∇ϕ|2(k−1).

G(x) :=
1

2
−

∞∑
k=1

1

2(k + 1)
Ck|∇ϕ|2k.

Proof. By Fact (a),

M3,1 =3

∫
M
σ2(∇2ϕ)ψdµ−

∫
M
Ricαβϕαϕβψdµ

=3

∫
M
σ2(∇2ϕ)(1−

∞∑
k=1

Ck|∇ϕ|2k)dµ−
∫
M
Ricαβϕαϕβψdµ

=3

∫
M
σ2(∇2ϕ)dµ− 3

∞∑
k=1

CkAk −
∫
M
Ricαβϕαϕβψdµ.

(4.22)

Substituting the formula of Ak in Proposition 4.4 and the equality that∫
M
σ2(∇2ϕ)dµ =

1

2

∫
M
ϕαβ(∆ϕδαβ − ϕαβ)dµ

=
1

2

∫
M

−ϕα ((∆ϕ)α − ϕαβ,β) dµ

=
1

2

∫
M
Ricαβϕαϕβdµ,

(4.23)

in (4.22), we derive (4.21). �

Applying Proposition 4.3 and Corollary 4.5, we get

M3,1 +M3,2 +M3,3

=− 3

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβFdµ+ 3

∫
M
RicαβϕαϕβGdµ

− 2

∫
M
[T2]αβ(∇2ϕ,L)ϕαϕβdµ+

∫
M
σ2(L)ψ

3dµ

+

∫
M
Ricαβϕαϕβψdµ−

∫
M
[T1]αβ(L)Lβγϕαϕγψdµ.

(4.24)

By the Gauss equation,

Ricαβ = [T1]αγ(L)Lγβ . (4.25)

Thus the last two terms in (4.24) are canceled. Therefore

M3,1 +M3,2 +M3,3

=− 3

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβFdµ+ 3

∫
M
RicαβϕαϕβGdµ

− 2

∫
M
[T2]αβ(∇2ϕ,L)ϕαϕβdµ+

∫
M
σ2(L)ψ

3dµ.

(4.26)
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We now apply Fact (c): 3G|∇ϕ|2 = 1 − ψ3 to combine the second and the
last term in (4.26)

3

∫
M
RicαβϕαϕβGdµ+

∫
M
σ2(L)ψ

3dµ

=3

∫
M
RicαβϕαϕβGdµ+

∫
M
σ2(L)(1− 3G|∇ϕ|2)dµ

(4.27)

By (4.25) and the fact that

[T1]αγ(L)Lγβ − σ2(L)δαβ = [T2]αβ(L,L), (4.28)

(4.27) is equal to

3

∫
M
[T1]αγ(L)LγβϕαϕβGdµ+

∫
M
σ2(L)(1− 3G|∇ϕ|2)dµ

=

∫
M
σ2(L)dµ− 3

∫
M
[T2]αβ(L,L)ϕαϕβGdµ.

(4.29)

In conclusion (4.26) is deduced to

M3,1 +M3,2 +M3,3 =

∫
M
σ2(L)dµ+ E1 + E2 + E3, (4.30)

where

E1 =− 3

∫
M
[T2]αβ(∇2ϕ,∇2ϕ)ϕαϕβFdµ

E2 =− 2

∫
M
[T2]αβ(∇2ϕ,L)ϕαϕβdµ

E3 =− 3

∫
M
[T2]αβ(L,L)ϕαϕβGdµ.

(4.31)

In the following we will prove

Proposition 4.6. If ϕ in addition satisfies |∇ϕ| < 1, then

E1 + E2 + E3 ≤ −1

4

∫
M
[T2]αβ(L)ϕαϕβdµ. (4.32)

From this, it is obvious that for ϕ satisfying |∇ϕ| < 1,

M3,1 +M3,2 +M3,3 ≤
∫
M
σ2(L)dµ− 1

4

∫
M
[T2]αβ(L)ϕαϕβdµ. (4.33)
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Proof. By ∇2
αβϕ = ∇2

αβϕ− Lαβϕn, we obtain

E1 =− 3

∫
M
[T2]αβ(∇

2
ϕ− Lϕn,∇

2
ϕ− Lϕn)ϕαϕβFdµ

=− 3

∫
M
[T2]αβ(∇

2
ϕ,∇2

ϕ)ϕαϕβFdµ

+ 6

∫
M
[T2]αβ(∇

2
ϕ,L)ϕnϕαϕβFdµ

− 3

∫
M
[T2]αβ(L,L)ϕ

2
nϕαϕβFdµ

=:E1,1 + E1,2 + E1,3

(4.34)

Since ϕ is a convex function, ∇2
ϕ is nonnegative. Therefore

[T2]αβ(∇
2
ϕ,∇2

ϕ) ≥ 0. (4.35)

This together with F ≥ 0 implies that E1,1 ≤ 0. So E1 ≤ E1,2 + E1,3.

For E2, using ∇2
αβϕ = ∇2

αβϕ− Lαβϕn, we get

E2 =− 2

∫
M
[T2]αβ(∇

2
ϕ,L)ϕαϕβdµ

+ 2

∫
M
[T2]αβ(L,L)ϕnϕαϕβdµ

:=E2,1 +E2,2.

(4.36)

We next observe that

Lemma 4.7.

E1,2 + E2,1 ≤ −1

2

∫
M
[T2]αβ(∇

2
ϕ,L)ϕαϕβdµ ≤ 0. (4.37)

Proof.

E1,2 +E2,1 =

∫
M
[T2]αβ(∇

2
ϕ,L)ϕαϕβ(6Fϕn − 2)dµ. (4.38)

On the one hand, 6Fϕn − 2 ≤ −1
2 because Fϕn ≤ Fψ, and Fψ ≤ 1

4 (Fact

(e)); on the other hand, since Lαβ ∈ Γ+
3 and ∇2

ϕ ≥ 0, we have

[T2]αβ(∇
2
ϕ,L) ≥ 0. (4.39)

Therefore

E1,2 + E2,1 ≤ −1

2

∫
M
[T2]αβ(∇

2
ϕ,L)ϕαϕβdµ ≤ 0. (4.40)

�
We continue the proof of Proposition 4.6. Applying Lemma 4.7, we have

E1 +E2 + E3 ≤E1,3 + E2,2 + E3

=

∫
M
[T2]αβ(L)ϕαϕβP (x)dµ,

(4.41)
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where P (x) := −3Fϕ2n + 2ϕn − 3G. By Fact (d), 2G = ψ + F |∇ϕ|2. Thus

P = −3Fϕ2n + 2ϕn − 3

2
ψ − 3

2
|∇ϕ|2.

It is not hard to show P ≤ −1
4 . In fact,

P =− 3Fϕ2n + 2ϕn − 3

2
ψ − 3

2
F |∇ϕ|2

=− 3
∞∑
k=1

k

k + 1
Ck|∇ϕ|2(k−1)ϕ2n + 2ϕn − 3

2
ψ − 3

2

∞∑
k=1

k

k + 1
Ck|∇ϕ|2k.

(4.42)

To estimate −3
∑∞

k=1
k

k+1Ck|∇ϕ|2(k−1)ϕ2n in (4.42), we observe Ck ≥ 0, and

C1 =
1
2 . So we drop the sum over k ≥ 2 and get

− 3

∞∑
k=1

k

k + 1
Ck|∇ϕ|2(k−1)ϕ2n ≤ −3

4
ϕ2n. (4.43)

And to estimate −3
2

∑∞
k=1

k
k+1Ck|∇ϕ|2k in (4.42), we use the fact that k

k+1 ≥
1
2 for all k ≥ 1, and Fact (a): ψ = 1−

∑∞
k=1Ck|∇ϕ|2k to get

− 3

2

∞∑
k=1

k

k + 1
Ck|∇ϕ|2k ≤ −3

4

∞∑
k=1

Ck|∇ϕ|2k = −3

4
(1− ψ). (4.44)

Applying (4.43) and (4.44) to (4.42), we have

P ≤− 3

4
ϕ2n + 2ϕn − 3

2
ψ − 3

4
(1− ψ)

≤− 3

4
ϕ2n + 2ϕn − 3

4
ϕn − 3

4
,

(4.45)

due to the fact that ϕn ≤ ψ. Now

−3

4
ϕ2n + 2ϕn − 3

4
ϕn − 3

4
= −1

4
(3ϕn − 2)(ϕn − 1)− 1

4
≤ −1

4
, (4.46)

for ϕn ≤ 1. Thus we obtain P ≤ −1
4 . By (4.41), it concludes that

E1 + E2 + E3 ≤ −1

4

∫
M
[T2]αβ(L)ϕαϕβdµ ≤ 0. (4.47)

This completes the proof of Proposition 4.6 �
Finally, we are ready to give the proof of Theorem 2.2 using Proposition

4.6.

Proof. By Proposition 4.1 and Definition 4.2

L3 =L3,1 + L3,2 + L3,3

=M3,1 +M3,2 +M3,3 +

∫
M

3σ2(∇2ϕ)(ϕn − ψ)

+
3

2
Σ2(∇2ϕ,L)(ϕ2n − ψ2) + σ2(L)(ϕ

3
n − ψ3)dµ.

(4.48)
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We will prove∫
M

3σ2(∇2ϕ)(ϕn − ψ) +
3

2
Σ2(∇2ϕ,L)(ϕ2n − ψ2) + σ2(L)(ϕ

3
n − ψ3)dµ ≤ 0.

(4.49)
Recall that Σ2(A,B) := Tr(A)Tr(B)− Tr(AB). This immediately implies
that

σ2(A) =
1

2
Σ2(A,A).

Using ∇2
αβϕ = ∇2

αβϕ− Lαβϕn and the linearity of Σ2(·, ·), first of all

3

∫
M
σ2(∇2ϕ)(ϕn − ψ)dµ

=
3

2

∫
M

Σ2(∇
2
αβϕ− Lαβϕn,∇

2
αβϕ− Lαβϕn)(ϕn − ψ)dµ

=

∫
M

3σ2(∇
2
ϕ)(ϕn − ψ)− 3Σ2(∇

2
ϕ,L)ϕn(ϕn − ψ) + 3σ2(L)ϕ

2
n(ϕn − ψ)dµ.

(4.50)

Since σ2(∇
2
ϕ) ≥ 0 and ϕn ≤ ψ, the first term in the above line is non-

positive. Thus

3

∫
M
σ2(∇2ϕ)(ϕn − ψ)dµ

≤
∫
M

−3Σ2(∇
2
ϕ,L)ϕn(ϕn − ψ) + 3σ2(L)ϕ

2
n(ϕn − ψ)dµ,

(4.51)

Secondly,

3

2
Σ2(∇2ϕ,L)(ϕ2n − ψ2)

=
3

2
Σ2(∇

2
ϕ,L)(ϕ2n − ψ2)− 3σ2(L)ϕn(ϕ

2
n − ψ2).

(4.52)

Using (4.51) and (4.52), we have∫
M

3σ2(∇2ϕ)(ϕn − ψ) +
3

2
Σ2(∇2ϕ,L)(ϕ2n − ψ2) + σ2(L)(ϕ

3
n − ψ3)dµ

≤− 3

∫
M

Σ2(∇
2
ϕ,L)

(
ϕn(ϕn − ψ)− 1

2
(ϕ2n − ψ2)

)
dµ

+

∫
M
σ2(L)

(
3ϕ2n(ϕn − ψ)− 3ϕn(ϕ

2
n − ψ2) + (ϕ3n − ψ3)

)
dµ

=− 3

2

∫
M

Σ2(∇
2
ϕ,L)(ϕn − ψ)2dµ

+

∫
M
σ2(L)(ϕn − ψ)3dµ.

(4.53)
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This is less or equal than 0, due to the fact that Σ2(∇
2
ϕ,L) ≥ 0, σ2(L) ≥ 0

and ϕn ≤ ψ. Thus (4.49) is proved.
Plugging (4.49) into (4.48) and applying Proposition 4.6, we conclude

that for ϕ satisfying |∇ϕ| < 1,

L3 ≤M3,1 +M3,2 +M3,3

≤
∫
M
σ2(L)dµ− 1

4

∫
M
[T2]αβ(L)ϕαϕβdµ.

(4.54)

As in the previous section, if |∇ϕ| ≤ 1, then we can apply the above ar-
gument to ϕδ := (1 − δ) · ϕ and take δ → 0. This completes the proof of
Theorem 2.2. �
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