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Abstract. In this paper we study the Fourier transform of the 3D-Navier-

Stokes-System without external forcing on the whole space R3. The properties
of solutions depend very much on the space in which the system is considered.

In this paper we deal with the space Φ(α, α) of functions v(k) = c(k)/|k|α
where α = 2 + ε, ε > 0 and c(k) is bounded, supk∈R3\0 |c(k)| < ∞. We

construct the power series which converges for small t and gives solutions of

the system for bounded intervals of time. These solutions can be estimated at
infinity (in k-space) by exp{−const

√
t |k|}.

1. The spaces Φ(α, α) and the ruling parameter for
the Navier-Stokes system in Φ(α, α)

Consider 3D-Navier-Stokes System (NSS) on R3 for incompressible free fluids.
After Fourier transform and an elementary transformation it becomes a non-linear
non-local equation for an unknown function v(k, t) with values in R3 having the
form

(1) v(k, t) = e−t|k|2v(k, 0) + i

∫ t

0

e−|k|
2(t−s) ds ·

∫
R3
〈k, v(k − k′, s)〉Pk v(k′, s) dk′.

The function v(k, t) must satisfy the condition v(k, t) ⊥ k for any k ∈ R3,
k 6= 0 and t ≥ 0; Pk is the orthogonal projection to the subspace orthogonal to k;
the viscosity is taken to be one, i.e., ν = 1. Classical solutions of (1) on [0, t0] are
functions v(k, t), 0 ≤ t ≤ t0, for which all integrals in (1) converge absolutely and
(1) becomes the identity.

There are several reasons by which it is natural to consider (1) in the spaces
of functions having singularities near k = 0 or k = ∞. In this paper, we restrict
ourselves to the spaces of functions v(k) = c(k)/|k|α where α = 2 + ε, ε > 0
and sufficiently small, c(k) is continuous everywhere outside k = 0 and uniformly
bounded, i.e., supk∈R3\0 |c(k)| = ‖ c ‖< ∞ (see [7], [1]). If the solution of (1)
belongs to Φ(α, α) then v(k, t) = c(k, t)/|k|α, 0 ≤ t ≤ t0, c(k, t) ⊥ k for any
k ∈ R3 \ 0, t ≥ 0, and c(k, t) satisfies the equation which is equivalent to (1):

(2) c(k, t) = e−|k|
2tc(k, 0)+ i|k|α

∫ t

0

e−|k|
2(t−s) ds ·

∫
R3

〈k, c(k − k′, s)〉Pk c(k′, s) dk′

|k − k′|α · |k′|α
.

It is easy to check that for typical c ∈ Φ(α, α) the initial condition has infinite
energy and enstrophy.
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Assume that ‖c(k, 0)‖ = 1 and take a one-parameter family of initial conditions
cA(k, 0) = A c(k, 0), where A is a parameter taking positive values. In [1] the local
existence theorem for solution of (2) was proven. Below we outline this proof and
show that if λ = A · tε/2 ≤ λ0, where λ0 is an absolute constant which may depend
on α, then there exists the unique solution of (2) in the corresponding time interval.

Usual arguments are based on the classical iteration scheme. Put c
(0)
A (k, t) =

Ae−|k|
2tc(k, 0) and

(3) c
(n)
A (k, t) =

c
(0)
A (k, t) + i|k|α

∫ t

0

e−|k|
2(t−s) ds ·

∫
R3

〈
k, c

(n−1)
A (k − k′, s)

〉
Pk c

(n−1)
A (k′, s) dk′

|k − k′|α · |k′|α
.

The first step in the proof of the convergence of the iterations c
(n)
A (k, t) as

n → ∞ is to show that all c
(n)
A (k, t) remain close to c

(0)
A (k, t) in the sense of the

norm in Φ(α, α). If c
(n)
A = sup0≤s≤t, k∈R3\0 |c

(n)
A (k, s)| then we would like to show

that c
(n)
A ≤ 2c

(0)
A = 2A for all n. By induction and with the use of (3) we can write

(4) c
(n)
A ≤ c

(0)
A + sup

k∈R3\0
0≤s≤t

|k|α−1 · (1− e−|k|
2t) · (c(n−1)

A )2 ·
∫

dk′

|k − k′|α · |k′|α
.

The last integral satisfies the inequality

(5)
∫

R3

dk′

|k − k′|α · |k′|α
≤ B1

|k|2α−3
.

Here and below the letter B with indices is used for various absolute constants
which appear during the proofs. These constants may depend on α.

Now, we have to show that

sup
k
|k|2−α(1− e−|k|

2t) · (c(n−1)
A )2 ·B1 ≤ c

(0)
A .

By induction c
(n−1)
A ≤ 2c

(0)
A . Therefore we have to show that

sup
k
|k|2−α(1− e−|k|

2t) · 4 · c(0)
A ≤ 1 .

Consider two cases.
(1) |k|2 ≤ 1/t. Then

|k|2−α(1− e−|k|
2t) ≤ |k|4−α · t ≤ t−

4−α
2 +1 = tε/2 .

(2) |k|2 ≥ 1/t. Then

|k|2−α · (1− e−|k|
2t) ≤ |k|2−α ≤ t

α−2
2 = tε/2 .

Thus we can write

c
(n)
A ≤ A ·+4A2 · (c(0))2 · tε/2B1 = A(1 + 4A · tε/2B1) = A(1 + 4B1λ) .

We used the fact that c(0) = c
(0)
1 ≤ 1. If λ < 1/(4B1) then c

(n)
A ≤ 2c

(0)
A . This

argument shows how the parameter λ arises.
The next step in the proof of the existence of solutions is to show that the

iterations c
(n)
A converge to a limit. We have from (3)

c
(n)
A (k, t)− c

(n−1)
A (k, t) = i |k|α ·

∫ t

0

e−|k|
2(t−s) ds

·
[∫

R3

〈
k, c

(n−1)
A (k − k′, s)− c

(n−2)
A (k − k′, s)

〉
Pk c

(n−1)
A (k′, s) dk′

|k − k′|α · |k′|α
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+
∫

R3

〈
k, c

(n−2)
A (k − k′, s)

〉
Pk

(
c
(n−1)
A (k′, s)− c

(n−2)
A (k′, s)

)
dk′

|k − k′|α · |k′|α

]
and

(6)
∣∣c(n)

A (k, t)− c
(n−1)
A (k, t)

∣∣
≤ 2A ·

∥∥c
(n−1)
A − c

(n−2)
A

∥∥ · |k|α−1
(
1− e−|k|

2t
) ∫

R3

dk′

|k − k′|α · |k′|α
.

¿From (5) and (6),∥∥c
(n)
A − c

(n−1)
A

∥∥ ≤ 2A B1 ·
∥∥c

(n−1)
A − c

(n−2)
A

∥∥ · sup
k∈R3\0

|k|α−1 (1− e−|k|
2t) · 1

|k|2α−3
.

The same arguments as before give that

sup
k∈R3\0

|k|α−1 (1− e−|k|
2t) · 1

|k|2α−3
≤ B2 · tε/2 .

Therefore, for some constant B3,∥∥c
(n)
A − c

(n−1)
A

∥∥ ≤ B3 · λ ·
∥∥c

(n−1)
A − c

(n−2)
A

∥∥ .

¿From the last inequality it follows that if λ is less than some absolute constant
then the iteration scheme converges and gives the desired solution. Thus λ is really
a ruling parameter in the current situation. The main purpose of this paper is to
construct a general power series in λ which provides the solution of (2) with the
given initial condition.

Write down the solution of (2) with the initial condition A·c(k, 0), ‖c(k, 0)‖ ≤ 1,
in the form

cA(k, t) = A

(
c(k, 0) e−t|k|2 +

∫ t

0

e−(t−s)|k|2
∑
p≥1

λphp(k, s) ds

)

= A

(
c(k, 0) e−t|k|2 +

∑
p≥1

Ap

∫ t

0

e−(t−s)|k|2spε/2 hp(k, s) ds

)(7)

where now λ = A · sε/2. Substituting this expression into (2) we get the system of
recurrent relations for hp. Below we give the explicit formulas for h1, h2 and then
the general formula for hp, p ≥ 3. We have

(8) A2sε/2h1(k, s) = iA2|k|α
∫

R3

〈k, c(k − k′, 0)〉Pk c(k′, 0) e−s|k−k′|2−s|k′|2 dk′

|k − k′|α · |k′|α
,

(9) A3sεh2(k, s) =

iA3 · |k|α
[∫ s

0

s
ε/2
1 ds1

∫
R3

〈k, h1(k − k′, s1)〉Pk c(k′, 0) · e−(s−s1)|k−k′|2−s|k′|2 dk′

|k − k′|α · |k′|α

+
∫ s

0

s
ε/2
2 ds2

∫
R3

〈k, c(k − k′, 0)〉Pk h1(k′, s2) e−s|k−k′|2−(s−s2)|k′|2 dk′

|k − k′|α · |k′|α

]
and

(10) Ap+1spε/2hp(k, s) = iAp+1 · |k|α·

·

[∫ s

0

s
(p−1)/2
1 ds1

∫
R3

〈k, hp−1(k − k′, s1)〉Pk c(k′, 0)e−(s−s1)|k−k′|2−s|k′|2 dk′

|k − k′|α · |k′|α

+
∫ s

0

s
(p−1)ε/2
2 ds2

∫
R3

〈k, c(k − k′, 0)〉Pk hp−1(k′, 0)e−s|k−k′|2−(s−s2)|k′|2 dk′

|k − k′|α · |k′|α
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+
∑

p1,p2≥1
p1+p2=p−1

∫ s

0

s
p1ε/2
1 ds1

∫ s

0

s
p2ε/2
2 ds2

∫
R3

〈k, hp1(k − k′, s1)〉Pk hp2(k
′, s2) e−(s−s1)|k−k′|2−(s−s2)|k′|2dk′

|k − k′|α · |k′|α

]
.

Use the following Ansatz: hp(k, s) = sε/2|k|αgp(k
√

s, s) and in all integrals above
make the change of variables: s1 = s · s̃1, s2 = s · s̃2, k

√
s = k̃, k′

√
s = k̃′. Thus

hp(k, s) = sε/2|k|α gp(k̃, s). Instead of (8), (9), (10) we shall get the system of
recurrent relations for the functions gp(k̃, s):

A2sε|k|α · g1(k̃, s) = iA2 · |k|α · sε

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
Pk̃c

(
k̃′√

s
, 0

)
e−|k̃−k̃′|2−|k′|2dk̃′

|k̃ − k̃′|α · |k̃′|α

or

(11) g1(k̃, s) = i

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
Pk̃c

(
k̃′√

s
, 0

)
e−|k̃−k̃′|2−|k̃′|2dk̃′

|k̃ − k̃′|α · |k̃′|α
,

A3s3ε/2 · |k|αg2(k̃, s) = iA3 · |k|αs3ε/2[∫ 1

0

s̃ε
1 ds̃1

∫
R3

〈
k̃, g1

(
(k̃ − k̃′)

√
s̃1, ss̃1

)〉
Pk̃c

(
k̃√
s
, 0

)
e−(1−s̃1)|k̃−k̃′|2−|k̃′|2dk̃′

|k̃′|α

+
∫ 1

0

s̃ε
2 ds̃2

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
g1

(
k̃′
√

s̃2, ss̃2

)
e−|k̃−k̃′|2−(1−s̃2)|k̃′|2d k̃′

|k̃ − k̃′|α

]
or

(12) g2(k̃, s) =∫ 1

0

s̃ε
1 ds̃1

∫
R3

〈
k̃, g1

(
(k̃ − k̃′)

√
s̃1, s · s̃1

)〉
Pk̃c

(
k̃′√

s
, 0

)
e−(1−s̃1)|k̃−k̃′|2−|k̃′|2 dk̃′

|k̃′|α

+
∫ 1

0

s̃ε
2 ds̃2

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
g1

(
k̃′
√

s̃2, ss̃2

)
e−|k̃−k̃′|2−(|−s̃2)|k̃′|2dk̃′

|k̃ − k̃′|α
.

For general gp(k̃, s), p ≥ 3,

Ap+1 · s
p+1
2 ·ε |k|α · gp(k̃, s) = iAp+1 · s

p+1
2 ·ε |k|α[∫ 1

0

s̃
pε/2
1 ds̃1

∫
R3

〈
k̃, gp−1

(
(k̃ − k̃′)

√
s̃1, s · s̃1

)〉
Pk̃c

(
k̃′√

s
, 0

)
e−(1−s̃1)|k̃−k̃′|2−|k̃′|2 dk̃′

|k̃′|α

+
∫ 1

0

s̃
pε/2
2 ds̃2

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
Pk̃gp−1

(
k̃′
√

s̃2, ss̃2

)
e−|k̃−k̃′|2−(1−s̃2)|k̃′|2 dk̃′

|k̃ − k̃′|α

+
∑

p1≥1, p2≥1
p1+p2=p−1

∫ 1

0

s̃
(p1+1)ε/2
1 ds̃1

∫ 1

0

s̃
(p2+1)ε/2
2 ds̃2

∫
R3

〈
k̃, gp1

(
(k̃ − k̃′)

√
s̃1, ss̃1

)〉
Pk̃gp2

(
k̃′

√
s̃2, ss̃2

)
· e−(1−s̃1)|k̃−k̃′|2−(1−s̃2)|k̃′|2 dk̃′

]
or
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(13) gp(k̃, s) =

i

[∫ 1

0

s̃
pε/2
1 ds̃1

∫
R3

〈
k̃, gp−1

(
(k̃ − k̃′)

√
s̃1, ss̃1

)〉
Pk̃c

(
k̃′√

s
, 0

)
e−(1−s̃1)|k̃−k̃′|2−|k̃′|2 dk̃′

|k̃′|α

+
∫ 1

0

s̃
pε/2
2 ds̃2

∫
R3

〈
k̃, c

(
k̃−k̃′√

s
, 0

)〉
Pk̃ gp−1

(
k̃′
√

s̃2, ss̃2

)
e−|k̃−k̃′|2−(1−s̃2)|k̃′|2 dk̃′

|k̃ − k̃′|α

+
∑

p1,p2≥1
p1+p2=p−1

∫ 1

0

s̃
(p1+1)ε/2
1 ds̃1

∫ 1

0

s̃
(p2+1)ε/2
2 ds̃2

∫
R3

〈
k̃, gp1

(
(k̃ − k̃′)

√
s̃1, s · s̃1

)〉
Pk̃gp2

(
k̃′

√
s̃2, ss̃2

)
e−(1−s̃1)|k̃−k̃′|2−(1−s̃2)|k̃′|2 dk̃′

]
.

These recurrent relations allow to express each gp(k
√

s, s) through the initial con-
ditions c(k, 0). It is easy to see that this expression will be the sum of not more
than bp 4p-dimensional integrals containing products of c(·, 0) with different values
of the arguments where b is some constant. We shall discuss the related questions
in another paper.

Write down the inequality

|gp(k̃, s)| ≤ Cp f
(
|k̃|

)
e−|k|

2s/(p+1) = Cp f
(
|k̃|

)
e−|k̃|

2/(p+1)

where

f(x) =

{
x 0 ≤ x ≤ 1,

x−1 x ≥ 1.

The main result of this paper is the following theorem.

Main Theorem: The numbers Cp can be chosen in such a way that

(14) Cp = B
∑

Cp1 · Cp2 ·
(p1 + 1)(p2 + 1)

(p + 1)
.

We prove the main theorem in the next section. First we analyze p = 1, 2, 3
and then the general case p > 3. We use the identity

(15) a1|k − k′|2 + a2|k′|2 =
a1a2

a1 + a2
|k|2 + (a1 + a2)

∣∣∣∣k′ − a1

a1 + a2
k

∣∣∣∣2
valid for arbitrary k, k′.

It follows easily from (14) that the Cp grow no faster than exponentially (see
§2), Cp ≤ b1b

p
2 for some constants b1, b2 < ∞ depending on α.

Corollary: If Atε/2 < b−1
2 then the series (7) converges for every k ∈ R3 \ 0.

It is interesting to remark that all but one of the terms of the series (7) have
finite energy and enstrophy.

Other expansions for the Navier-Stokes system which are formal can be found
in the monographs [4], [5]. General approach to the existence problem for the
Navier-Stokes System is discussed in [3].

2. The discussion of the results

First we show that the constants Cp grow not faster than exponentially. Denote
C ′

p = Cp(p + 1). The numbers C ′
p satisfy the relation

C ′
p = B

∑
p1,p2≥0

p1+p2=p−1

C ′
p1

C ′
p2

.
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Using the induction, let us prove that C ′
p ≤ (B̃)p · (p+1)−3/2 for any p ≥ 0 and

some constant B̃. For p = 0 we can choose B̃. Assuming that the last inequality is
valid for all q < p we can write

C ′
p ≤ B · (B̃)p−1

∑
p1,p2≥0

p1+p2=p−1

1
(p1 + 1)3/2 (p2 + 1)3/2

≤ B ·B1 · (B̃)p−1 · 1
(p + 1)3/2

.

Take B̃ = B ·B1. This gives the result.
Now we see that the series (7) converges if λ = A · tε/2 < (B̃)−1.
In many estimates done for the NSS system, people assumed that solutions

v(k, t) at infinity in k satisfy the inequality |v(k, t)| ≤ e−f(t)|k| which is different
from the diffusion-like asymptotics. If this asymptotics represents the true decay
of solutions, it is an interesting question how does it appear. The series (7) sheds
some light on this question. We can write

|v(k, t)| ≤ Const
∑
p≥0

B̃p · λp · 1
(p + 1)3/2

e−t|k|2/(p+1) .

The usual asymptotical method shows that the largest term in this last sum is
when t|k|2/(pmax + 1)2 = − ln(b2λ), i.e., pmax =

√
t · |k|/

√
− ln(b2λ) and the whole

sum behaves as e2pmax ln(b2λ) = e−2
√

t
√
− ln(b2λ)·|k|. This is the asymptotics which

was mentioned above. It also shows that in the domain of convergence of the series
the enstrophy of the solution is finite for t > 0.

This type of decay of solutions in various situations was obtained earlier in the
works [2], [6].
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