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§0. Introduction and Statement of Results

Let E ⊂ Rn, and m ≥ 1. We write Cm(E) for the Banach space of all real-valued

functions ϕ on E such that ϕ = F on E for some F ∈ Cm(Rn). The natural norm on Cm(E)

is given by

‖ ϕ ‖Cm(E) = inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn) and F = ϕ on E} .

Here, as usual, Cm(Rn) is the space of real-valued functions on Rn with continuous and

bounded derivatives through order m; and

‖ F ‖Cm(Rn) = max
|β|≤m

sup
x∈Rn

|∂βF (x)| .

The first main result of this paper is as follows.

Theorem 1: For E ⊂ Rn and m ≥ 1, there exists a linear map

T : Cm(E) → Cm(Rn), such that

(A) Tϕ = ϕ on E, for each ϕ ∈ Cm(E); and

(B) The norm of T is bounded by a constant depending only on m and n.

This result was announced in [15].

To prove Theorem 1, it is enough to treat the case of compact E. In fact, given an

arbitrary E ⊂ Rn, we may first pass to the closure of E without difficulty, and then reduce

matters to the compact case via a partition of unity.

Theorem 1 is a special case of a theorem involving ideals of m-jets. To state that result,

we fix m,n ≥ 1.

For x ∈ Rn, we write Rx for the ring of m-jets (at x) of smooth, real-valued functions

on Rn. For F ∈ Cm(Rn), we write Jx(F ) for the m-jet of F at x. Our generalization of

Theorem 1 is as follows.

Theorem 2: Let E ⊂ Rn be compact. For each x ∈ E, let I(x) be an ideal in Rx. Set

J = {F ∈ Cm(Rn) : Jx(F ) ∈ I(x) for all x ∈ E}.
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Thus, J is an ideal in Cm(Rn), and Cm(Rn)/J is a Banach space.

Let π : Cm(Rn) → Cm(Rn)/J be the natural projection.

Then there exists a linear map

T : Cm(Rn)/J → Cm(Rn),

such that

(A) πT [ϕ] = [ϕ] for all [ϕ] ∈ Cm(Rn)/J ; and

(B) The norm of T is less than a constant depending only on m and n.

Specializing to the case I(x) = {Jx(F ) : F = 0 at x}, we recover Theorem 1.

The study of Cm extension by linear operators goes back to Whitney [23,24,25]; and

Theorems 1 and 2 are closely connected to the following classical question.

Whitney’s Extension Problem:

Given E ⊂ Rn, f : E → R, and m ≥ 1, how can we tell whether f ∈ Cm(E)?

The relevant literature on this problem and its relation to Theorem 1 includes Whitney

[23,24,25], Glaeser [16], Brudnyi and Shvartsman [6, ..., 9 and 18,19,20], Bierstone-Milman-

Paw lucki [1,2], and my own papers [10,...,15]. (See, e.g., the historical discussions in [1,7,12].

See also Zobin [27] for a related problem.) In particular, Whitney proved Theorem 1 for

Cm(R1), and Theorem 2 for I(x) ≡ {0}; and Glaeser proved Theorem 1 for C1(Rn). Brudnyi

and Shvartsman proved the analogue of Theorem 1 for C1,ω(Rn), the space of functions whose

gradients have modulus of continuity ω. On the other hand, they exhibited a counterexample

to the analogue of Theorem 1 for the space of functions with uniformly continuous gradients

on R2. In [3,8], they explicitly conjectured Theorem 1 and its analogue for Cm,ω(Rn). As far

as I know, no one has previously conjectured Theorem 2.

We turn our attention to the proof of Theorem 2.

Theorem 2 reduces easily to the case in which the family of ideals (I(x))x∈E is “Glaeser

stable”, in the following sense.



Cm Extension by Linear Operators 3

Let E ⊂ Rn be compact. Suppose that, for each x ∈ E, we are given an ideal I(x) in Rx

and an m-jet f(x) ∈ Rx. Then the family of cosets (f(x) + I(x))x∈E will be called “Glaeser

stable” if either of the following two equivalent conditions holds:

(GS1) Given x0 ∈ E and P0 ∈ f(x0) + I(x0), there exists F ∈ Cm(Rn), with Jx0(F ) = P0,

and Jx(F ) ∈ f(x) + I(x) for all x ∈ E.

(GS2) Given x0 ∈ E and P0 ∈ f(x0) + I(x0), there exist a neighborhood U of x0 in Rn,

and a function F ∈ Cm(U), such that Jx0(F ) = P0, and Jx(F ) ∈ f(x) + I(x) for all

x ∈ E ∩ U .

To see the equivalence of (GS1) and (GS2), we use a partition of unity, and exploit

the compactness of E and the fact that each I(x) is an ideal. (See Section 1.) Conditions

(GS1) and (GS2) are also equivalent to the assertion that (f(x)+I(x))x∈E is its own “Glaeser

refinement” in the sense of [12], by virtue of the Corollary to Theorem 2 in [12]. We emphasize

that compactness of E is part of the definition of Glaeser stability.

To reduce our present Theorem 2 to the case of Glaeser stable families of ideals, we set

Ĩ(x) = {Jx(F ) : F ∈ J } for each x ∈ E.

One checks easily that Ĩ(x) is an ideal in Rx, that (Ĩ(x))x∈E is Glaeser stable, and that

J = {F ∈ Cm(Rn) : Jx(F ) ∈ Ĩ(x) for each x ∈ E}.

Thus, Theorem 2 for the general family of ideals (I(x))x∈E is equivalent to Theorem 2

for the Glaeser stable family (Ĩ(x))x∈E. From now on, we restrict attention to the Glaeser

stable case.

To explain our proof of Theorem 2, in the Glaeser stable case, we start with the following

result, which follows immediately from Theorem 3 in [12].

Theorem 3: There exist constants k̄ and C1, depending only on m and n, for which the

following holds.

Let A > 0. Suppose that, for each point x in a compact set E ⊂ Rn, we are given an

m-jet f(x) ∈ Rx and an ideal I(x) in Rx.
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Assume that

(I) (f(x) + I(x))x∈E is Glaeser stable, and

(II) Given x1, . . . , xk̄ ∈ E, there exists F̃ ∈ Cm(Rn), with

‖ F̃ ‖Cm(Rn)≤ A , and Jxi
(F̃ ) ∈ f(xi) + I(xi) for i = 1, . . . , k̄.

Then there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ C1A, and Jx(F ) ∈ f(x) + I(x) for all x ∈ E.

In principle, this result lets us calculate the order of magnitude of the infimum of the

Cm-norms of the functions F satisfying Jx(F ) ∈ f(x) + I(x) for all x ∈ E.

We will prove a variant of Theorem 3, in which the m-jets f(x)(x ∈ E) and the function

F depend linearly on a parameter ξ belonging to a vector space Ξ. That variant (Theorem

4 below) is easily seen to imply Theorem 2, as we spell out in Section 1. (The spirit of the

reduction of Theorem 2 to Theorem 4 is as follows. Suppose we want to prove that a given

map y = Φ(x) is linear. To do so, we may assume that x depends linearly on a parameter

ξ ∈ Ξ, and then prove that y = Φ(x) also depends linearly on ξ.)

The main content of this paper is the proof of Theorem 4.

To state Theorem 4, we first introduce a few definitions.

Let E ⊂ Rn be compact. If I(x) is an ideal in Rx for each x ∈ E, then we will call

(I(x))x∈E a “family of ideals”. Similarly, if, for each x ∈ E, I(x) is an ideal in Rx and

f(x) ∈ Rx, then we will call (f(x) + I(x))x∈E a “family of cosets”.

More generally, let Ξ be a vector space, and let E ⊂ Rn be compact. Suppose that for

each x ∈ E we are given an ideal I(x) in Rx, and a linear map ξ 7→ fξ(x), from Ξ into Rx.

We will call (fξ(x) + I(x))x∈E,ξ∈Ξ a “family of cosets depending linearly on ξ ∈ Ξ”.

We will say that (fξ(x) + I(x))x∈E, ξ∈Ξ is “Glaeser stable” if, for each fixed ξ ∈ Ξ, the

family of cosets (fξ(x) + I(x))x∈E is Glaeser stable.

We can now state our analogue of Theorem 3 with parameters.

Theorem 4: Let Ξ be a vector space, with seminorm | · |.
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Let (fξ(x) + I(x))x∈E,ξ∈Ξ be a Glaeser stable family of cosets depending linearly on ξ ∈ Ξ.

Assume that for each ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ 1, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Then there exists a linear map ξ 7→ Fξ, from Ξ into Cm(Rn), such that

(A) Jx(Fξ) ∈ fξ(x) + I(x) for all x ∈ E, ξ ∈ Ξ; and

(B) ‖ Fξ ‖Cm(Rn)≤ C|ξ| for all ξ ∈ Ξ, with C depending only on m and n.

It is an elementary exercise to show that Theorem 4 implies Theorem 2 in the case of

Glaeser stable (I(x))x∈E.

Since we have just seen that this case of Theorem 2 implies the general case, it follows

that Theorems 1 and 2 are reduced to Theorem 4.

The rest of this paper gives the proof of Theorem 4.

In this introduction, we explain some of the main ideas in that proof. It is natural to

try to adapt the proof of Theorem 3 from [12]. There, we partition E into finitely many

“strata”, including a “lowest stratum” E1.

Theorem 3 is proven in [12] by induction on the number of strata, with the main work

devoted to a study of the lowest stratum. Unfortunately, the analysis on the lowest stratum

in [12] is fundamentally non-linear; hence it cannot be used for Theorem 4. (It is based on

an operation analogous to passing from a continuous function F to its modulus of continuity

ωF .)

To prove Theorem 4, we partition E into finitely many “slices”, including a “first slice”

E0; and we proceed by induction on the number of slices. We analyze the first slice E0 in a

way that maintains linear dependence on the parameter ξ ∈ Ξ. This is the essentially new

part of our proof. Once we have understood the first slice, we can proceed as in [12].

Let us explain the notion of a “slice.” To define this notion, we introduce the ring

Rk
x of k-jets of smooth (real-valued) functions at x. For 0 ≤ k ≤ m, let πk

x : Rx =

Rm
x → Rk

x be the natural projection. To each x ∈ E we associate the (m + 1)-tuple of
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integers type(x) = (dim[π0
xI(x)], dim[π1

xI(x)], . . . , dim[πm
x I(x)]).

For each fixed (m + 1)-tuple of integers (d0, . . . , dm), the set

E(d0, d1, . . . , dm) = {x ∈ E : type(x) = (d0, . . . , dm)}

will be called a “slice”. Thus, E is partitioned into slices.

The “number of slices” in E means simply the number of distinct (d0, . . . , dm) for which

E(d0, . . . , dm) is non-empty.

Note that

0 ≤ d0 ≤ d1 ≤ · · · ≤ dm ≤ D

for a non-empty slice, where

D = dim Rx (any x).

Hence, the number of slices is bounded by a constant depending only on m and n.

Next, we define the “first slice”.

To do so, we order (m + 1)-tuples lexicographically as follows:

(d0, . . . , dm) < (D0, . . . , Dm) means that d` < D` for the largest ` with d` 6= D`.

If E is non-empty, then the (m + 1)-tuples {type(x) : x ∈ E} have a minimal element

(d∗0, d
∗
1, . . . , d

∗
m), with respect to the above order. We call E(d∗0, d

∗
1, . . . , d

∗
m) the “first slice”,

and denote it by E0. It is easy to see that E0 is compact. (See Section 1.)

We partition Rn r E0 into “Whitney cubes” {Qν}, with the following geometrical prop-

erties:

For each ν, let δν be the diameter of Qν , and let Q∗
ν be the (closed) cube obtained by

dilating Qν by a factor of 3 about its center.

Then

(a) δν ≤ 1 for each ν,
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(b) Q∗
ν ⊂ Rn r E0 for each ν, and

(c) If δν < 1, then distance (Q∗
ν , E0) ≤ Cδν , with C depending only on the dimension n.

In particular, (b) shows that E ∩Q∗
ν has fewer slices than E. This will play a crucial rôle in

our proof of Theorem 4.

Corresponding to the Whitney cubes {Qν}, there is a “Whitney partition of unity” {θν},
with

•
∑

ν

θν = 1 on Rn r E0,

• supp θν ⊂ Q∗
ν for each ν, and

• |∂βθν | ≤ C δ
−|β|
ν on Rn for |β| ≤ m + 1 and for all ν.

Here, C depends only on m and n.

See, e.g., [17,21,23] for the construction of such Qν , θν .

Now we can start to explain our proof of Theorem 4. We give a self-contained explanation,

without assuming familiarity with [12].

We use induction on the number of slices in E. If the number of slices is zero, then E is

empty, and the conclusion of Theorem 4 holds trivially, with Fξ = 0. For the induction step,

fix Λ ≥ 1, and assume that Theorem 4 holds whenever the number of slices is less than Λ.

Fix Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ as in the hypotheses of Theorem 4, and assume that the

number of slices in E is equal to Λ. Under these assumptions, we will prove that there exists

a linear map ξ 7→ Fξ from Ξ into Cm(Rn), satisfying conclusions (A) and (B) of Theorem 4.

This will complete our induction, and establish Theorem 4.

To achieve (A) and (B), we begin by working on the first slice E0.

We construct a linear map ξ 7→ F 0
ξ from Ξ into Cm(Rn), satisfying

(A′) Jx(F 0
ξ ) ∈ fξ(x) + I(x) for all x ∈ E0, ξ ∈ Ξ; and

(B′) ‖ F 0
ξ ‖Cm(Rn)≤ C|ξ| for all ξ ∈ Ξ, with C depending only on m and n.
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Comparing (A′) with (A), we see that Jx(F 0
ξ ) does what we want only for x ∈ E0.

We will correct F 0
ξ away from E0. To do so, we work separately on each Whitney cube

Q∗
ν ⊂ Rn r E0. For each fixed ν, we can apply our induction hypothesis (a rescaled version

of Theorem 4 for fewer than Λ slices) to the family of cosets

(fξ(x)− Jx(F 0
ξ ) + I(x))x∈E∩Q∗

ν , ξ∈Ξ, depending linearly on ξ ∈ Ξ.

The crucial point is that our induction hypothesis applies, since as we observed before,

E ∩ Q∗
ν has fewer slices than E. From the induction hypothesis, we obtain, for each ν, a

linear map ξ 7→ Fξ,ν from Ξ into Cm(Rn), with the following properties:

(A)ν : Jx(Fξ,ν) ∈ Jx(θν) � [fξ(x)− Jx(F 0
ξ )] + I(x) for all x ∈ E ∩Q∗

ν , ξ ∈ Ξ; and

(B)ν : |∂βFξ,ν(x)| ≤ C |ξ| δm−|β|
ν for x ∈ Rn, ξ ∈ Ξ, |β| ≤ m, with C depending only on m

and n.

Here {θν} is our Whitney partition of unity, and � denotes multiplication in Rx.

In view of (A)ν , the function Fξ,ν corrects F 0
ξ on E ∩Q∗

ν .

Now, we combine our F 0
ξ and Fξ,ν into

Fξ = F 0
ξ +

∑
ν

θ+
ν Fξ,ν , where θ+

ν is a smooth cutoff function supported in Q∗
ν . Using (A′),

(B′), (A)ν , (B)ν and Glaeser stability, we will show that Fξ ∈ Cm(Rn), and that the linear

map ξ 7→ Fξ satisfies conditions (A) and (B) in the statement of Theorem 4. This will

complete our induction on the number of slices, and establish Theorem 4.

As in [12], the above plan cannot work, unless we can construct the linear map ξ 7→ F 0
ξ

to satisfy something stronger than (A′). More precisely, for a convex set Γξ(x, k̄, C) to be

defined below, we need to make sure that ξ 7→ F 0
ξ satisfies

(A′′): Jx(F 0
ξ ) ∈ Γξ(x, k̄, C) for all x ∈ E0, ξ ∈ Ξ with |ξ| ≤ 1.

Here, Γξ(x, k̄, C) ⊆ fξ(x) + I(x), so (A′′) is stronger than (A′).

To define Γξ(x, k̄, C) and understand why we need (A′′), we introduce some notation and

conventions.



Cm Extension by Linear Operators 9

Unless we say otherwise, C always denotes a constant depending only on m and n. The

value of C may change from one occurrence to the next. For x′, x′′ ∈ Rn, we adopt the

convention that |x′ − x′′|m−|β| = 0 in the degenerate case x′ = x′′, |β| = m.

We identify the m-jet Jx(F ) with the Taylor polynomial y 7→
∑
|α|≤m

1

α!
(∂αF (x)) · (y−x)α.

Thus, as a vector space Rx is identified with the vector space P of all mth degree (real)

polynomials on Rn.

Now suppose H = (f(x) + I(x))x∈E is a family of cosets, and let x0 ∈ E, k ≥ 1, A > 0

be given. Then we define ΓH(x0, k, A) as the set of all P0 ∈ f(x0) + I(x0) with the following

property:

Given x1, . . . , xk ∈ E, there exist P1 ∈ f(x1) + I(x1), . . . , Pk ∈ f(xk) + I(xk), such that

|∂βPi(xi)| ≤ A for |β| ≤ m, 0 ≤ i ≤ k; and

|∂β(Pi − Pj)(xj)| ≤ A |xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k.

Here, we regard P0, . . . , Pk as mth degree polynomials.

Note that ΓH(x0, k, A) is a compact, convex subset of f(x0) + I(x0).

The point of this definition is that, if we are given F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ A, and Jx(F ) ∈ f(x) + I(x) for each x ∈ E,

then, trivially, Jx0(F ) ∈ ΓH(x0, k, CA) for any k ≥ 1.

(To see this, just take Pi = Jxi
(F ) in the definition of ΓH(x0, k, CA). The desired estimates

on Pi − Pj follow from Taylor’s theorem.)

More generally, suppose (fξ(x) + I(x))x∈E,ξ∈Ξ is a family of cosets depending linearly on

ξ ∈ Ξ. For each ξ ∈ Ξ, we set Hξ = (fξ(x) + I(x))x∈E, and we define

Γξ(x0, k, A) = ΓHξ
(x0, k, A) for x0 ∈ E, k ≥ 1, A > 0.

Thus, if ξ 7→ Fξ is a linear map as in the conclusion of Theorem 4, then we must have

Jx(Fξ) ∈ Γξ(x, k, C) for all x ∈ E, ξ ∈ Ξ with |ξ| ≤ 1.
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Recall that our plan for the proof of Theorem 4 was to set

Fξ = F 0
ξ +

∑
ν

θ+
ν Fξ,ν , with supp θ+

ν ⊂ Q∗
ν ⊂ Rn r E0.

Hence, for x ∈ E0, we expect that Jx(Fξ) = Jx(F 0
ξ ).

Therefore, unless ξ 7→ F 0
ξ has been carefully prepared to satisfy (A′′), we will never be

able to prove Theorem 4 by defining Fξ as above.

Conversely, if F 0
ξ satisfies (A′′), then we will gain the quantitative control needed to

establish estimates (B)ν above.

Thus, (A′′) necessarily plays a crucial rôle in our proof of Theorem 4.

We discuss very briefly how to construct ξ 7→ F 0
ξ satisfying (A′′).

Let η be a small enough positive number determined by (I(x))x∈E. We pick out a large,

finite subset E00 ⊂ E0, such that every point of E0 lies within distance η of some point of

E00. We then construct a linear map ξ 7→ F 00
ξ from Ξ into Cm(Rn), with norm of most C,

satisfying the following condition.

(A′′′) Jx(F 00
ξ ) ∈ Γξ(x, k̄, C) for all x ∈ E00, ξ ∈ Ξ with |ξ| ≤ 1.

Thus, Jx(F 00
ξ ) does what we want only for x ∈ E00. For x ∈ E0 r E00, we don’t even

have Jx(F 00
ξ ) ∈ fξ(x) + I(x).

On the other hand, for |ξ| ≤ 1, x ∈ E0 r E00, we hope that Jx(F 00
ξ ) lies very close to

fξ(x) + I(x), since Jy(F 00
ξ ) ∈ Γξ(y, k̄, C) ⊆ fξ(y) + I(y) for a point y ∈ E00 within distance

η of x. We confirm this intuition by constructing a linear map ξ 7→ F̃ξ from Ξ into Cm(Rn),

with the following two properties:

• F̃ξ is “small” for |ξ| ≤ 1.

• Jx(F 00
ξ + F̃ξ) ∈ fξ(x) + I(x) for x ∈ E0, ξ ∈ Ξ with |ξ| ≤ 1.

The “corrected” operator ξ 7→ F 0
ξ = F 00

ξ + F̃ξ will then satisfy (A′′).

To construct F 00
ξ , we combine our previous results from [12,15].
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The construction of F̃ξ requires new ideas and serious work. (See Sections 6 ... 11 below.)

This concludes our summary of the proof of Theorem 4.

I am grateful to E. Bierstone, Y. Brudnyi, P. Milman, W. Paw lucki, P. Shvartsman, and

N. Zobin, whose ideas have greatly influenced me. I am grateful also to Gerree Pecht for

TEXing this paper to her usual (i.e. the highest) standards.

§1. Elementary Verifications

In this section, we prove some of the elementary assertions made in the introduction. We

retain the notation of the introduction.

First of all, we check that the two conditions (GS1) and (GS2) are equivalent. Obviously,

(GS1) implies (GS2). Suppose (f(x)+I(x))x∈E satisfies (GS2). We recall that E is compact,

and that each I(x) is an ideal in Rx. Suppose x0 ∈ E and P0 ∈ f(x0) + I(x0). For each

y ∈ E, (GS2) produces an open neighborhood Uy of y in Rn, and a Cm function Fy on Uy,

such that

Jx(Fy) ∈ f(x) + I(x) for all x ∈ Uy ∩ E ,

and

Jx0(Fy) = P0 if y = x0 .

If y 6= x0, then by shrinking Uy, we may suppose x0 does not belong to the closure of Uy.

By compactness of E, finitely many Uy’s cover E. Say, E ⊂ Uy0 ∪ · · · ∪ UyN
. Since x0 ∈ E,

one of the yj must be x0. Say, y0 = x0, and yν 6= x0 for ν 6= 0. We introduce a partition of

unity {θν}, such that

• Each θν ∈ Cm
0 (Uyν ),

and

•
N∑

ν=0

θν = 1 in a neighborhood of E.

Since x0 cannot belong to supp θν for ν 6= 0, we have
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Jx0(θ0) = 1, Jx0(θν) = 0 for ν 6= 0.

Now set F =
N∑

ν=0

θν Fyν ∈ Cm(Rn).

For x ∈ E, and for any ν with supp θν 3 x, we have Jx(Fyν )− f(x) ∈ I(x), hence

Jx(θνFyν )− Jx(θν) � f(x) ∈ I(x), since I(x) is an ideal.

Here, � denotes multiplication in Rx. Summing over ν, we obtain Jx(F )− f(x) ∈ I(x).

Also, since Jx0(Fy0) = P0 and Jx0(θν) = δ0ν (Kronecker δ), we have

Jx0(F ) = P0.

This proves (GS1).

Next, we check that Theorem 4 implies Theorem 2 in the case of Glaeser stable (I(x))x∈E.

Let E, I(x), J , π be as in the hypotheses of Theorem 2, with (I(x))x∈E Glaeser stable.

We take Ξ to be the space Cm(E, I), which consists of all families of m-jets ξ = (f(x))x∈E,

with f(x) ∈ Rx for x ∈ E, such that (f(x) + I(x))x∈E is Glaeser stable. (We use Glaeser

stability of (I(x))x∈E to check that Ξ is a vector space.)

As a seminorm on Ξ, we take |ξ| = 2 ‖ (f(x))x∈E ‖Cm(E,I), where

‖ (f(x))x∈E ‖Cm(E,I) = inf{‖ F ‖Cm(Rn): F ∈ Cm(Rn) and Jx(F ) ∈ f(x) + I(x) for x ∈ E} .

Here, the inf is finite, since (f(x) + I(x))x∈E is Glaeser stable.

Next, we define a linear map ξ 7→ fξ(x) from Ξ into Rx, for each x ∈ E.

For ξ = (f(x))x∈E, we simply define fξ(x) = f(x).

One checks easily that the above Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ satisfy the hypotheses of

Theorem 4. Hence, Theorem 4 gives a linear map E : Cm(E, I) → Cm(Rn), with norm

bounded by a constant depending only on m and n, and satisfying

Jx(Eξ) ∈ f(x) + I(x) for all x ∈ E, whenever ξ = (f(x))x∈E ∈ Cm(E, I) .
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Next, we define a linear map

τ : Cm(Rn)/J → Cm(E, I) .

To define τ , we fix for each x a subspace V (x) ⊆ Rx complementary to I(x), and we

write πx : Rx → V (x) for the projection onto V (x) arising from Rx = V (x)⊕ I(x).

For ϕ ∈ Cm(Rn), we define

τ̂ϕ = ((τ̂ϕ)(x))x∈E = (πxJx(ϕ))x∈E .

Since (τ̂ϕ)(x)− Jx(ϕ) ∈ I(x) for x ∈ E, it follows that

((τ̂ϕ)(x) + I(x))x∈E = (Jx(ϕ) + I(x))x∈E .

Since (I(x))x∈E is Glaeser stable and ϕ ∈ Cm(Rn), it follows in turn that ((τ̂ϕ)(x)+I(x))x∈E

is Glaeser stable.

Thus, τ̂ϕ ∈ Cm(E, I). Moreover, since ϕ ∈ Cm(Rn) and Jx(ϕ) ∈ (τ̂ϕ)(x) + I(x) for all

x ∈ E, the definition of the Cm(E, I)-seminorm shows that ‖ τ̂ϕ ‖Cm(E,I)≤‖ ϕ ‖Cm(Rn).

Thus, τ̂ : Cm(Rn) → Cm(E, I) is a linear map of norm ≤ 1.

Next, note that Jx(ϕ) ∈ I(x) implies (τ̂ϕ)(x) = 0 by definition of τ̂ and πx. Hence,

ϕ ∈ J implies τ̂ϕ = 0, and therefore τ̂ collapses to a linear map

τ : Cm(Rn)/J → Cm(E, I).

We now define T = Eτ . Thus, T : Cm(Rn)/J → Cm(Rn) is a linear map with norm

bounded by a constant depending only on m and n. For ϕ ∈ Cm(Rn) and [ϕ] ∈ Cm(Rn)/J
the equivalence class of ϕ, we have (for x ∈ E):

Jx(Eτ [ϕ]) = Jx(E τ̂ϕ) ∈ (τ̂ϕ)(x) + I(x) (by the defining property of E)

= Jx(ϕ) + I(x) (by definition of τ̂) .

Thus,

Jx(Eτ [ϕ]− ϕ) ∈ I(x) for all x ∈ E , i.e., Eτ [ϕ]− ϕ ∈ J .

Therefore, πT [ϕ] = πEτ [ϕ] = [ϕ] for [ϕ] ∈ Cm(Rn)/J .
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Thus, T : Cm(Rn)/J → Cm(Rn) has all the properties asserted in Theorem 2. We have

succeeded in reducing Theorem 2 (for (I(x))x∈E Glaeser stable) to Theorem 4.

We close this section by checking that the first slice E0 is compact.

For x ∈ E, we have type(x) = (d0(x), . . . , dm(x)), with dk(x) = dim πk
xI(x).

Fix x0 ∈ E, k ∈ {0, 1, . . . ,m}. Since πk
x0

I(x0) has dimension dk(x0), we may pick Pµ ∈ I(x0)

(1 ≤ µ ≤ dk(x0)) such that the images πk
x0

Pµ (1 ≤ µ ≤ dk(x0)) are linearly independent.

Since (I(x))x∈E is Glaeser stable, there exist Cm functions Fµ on Rn such that

Jx(Fµ) ∈ I(x) for all x ∈ E, and Jx0(Fµ) = Pµ.

The k-jets πk
xJx(Fµ) (1 ≤ µ ≤ dk(x0)) are linearly independent at x = x0, hence also at

all x close enough to x0. Consequently, dk(x) = dim πk
x I(x) ≥ dk(x0) for all x ∈ E near

enough to x0.

Thus, we have proven the following:

Given x0 ∈ E there exists a neighborhood U of x0 in E, such that dk(x) ≥ dk(x0) for all

x ∈ U , k ∈ {0, 1, . . . ,m}.

In particular, type(x) ≥ type(x0) for all x ∈ U , where the inequality sign refers to our

lexicographic order on (m + 1)-tuples.

It follows at once that the set E0 of all x ∈ E of the minimal type is a closed subset of

the compact set E.

Thus, E0 is compact.

§2. Review of Previous Results

In this section, we collect from previous literature some ideas and results that will play

a rôle in our proof of Theorem 4. We retain the notation of Section 0.

We start with the classical Whitney Extension Theorem.

Let E ⊂ Rn. Then we write Cm
jet(E) for the space of all families of mth degree polynomials

(P x)x∈E, satisfying the following conditions;



Cm Extension by Linear Operators 15

(a) Given ε > 0 there exists δ > 0 such that, for any x, y ∈ E with |x − y| < δ, we have

|∂β(P x − P y)(y)| ≤ ε|x− y|m−|β| for |β| ≤ m.

(b) There exists a finite constant M > 0 such that

|∂βP x(x)| ≤ M for |β| ≤ m, x ∈ E; and

|∂β(P x − P y)(y)| ≤ M |x− y|m−|β| for |β| ≤ m, x, y ∈ E.

(Here and throughout this paper ∂βP x(x) always denotes the value at y = x of
(

∂
∂y

)β

P x(y),

never ∂βφ(x) with φ(x) = P x(x).)

The norm ‖ (P x)x∈E ‖Cm
jet(E) is defined to be the infimum of all possible M in (b). Note

that condition (a) holds vacuously when E is finite.

In terms of these definitions, the classical Whitney Extension Theorem may be stated as

follows.

Theorem 2.1: Given a compact set E ⊂ Rn, there exists a linear map

E : Cm
jet(E) → Cm(Rn) , such that

(A) The norm of E is bounded by a constant C depending only on m and n; and

(B) Jx0(E [(P x)x∈E]) = P x0 for any x0 ∈ E and (P x)x∈E ∈ Cm
jet(E).

(See, e.g., [17,21,23] for a proof of Theorem 2.1.)

Next, we recall some definitions and results from [12].

We introduce a convex set σ(x0, k) that will play a key rôle.

Let (I(x))x∈E be a family of ideals, and let x0 ∈ E, k ≥ 1 be given.

Then we define σ(x0, k) as the set of all P0 ∈ I(x0) with the following property:

Given x1, . . . , xk ∈ E, there exist P1 ∈ I(x1), . . . , Pk ∈ I(xk), such that

|∂βPi(xi)| ≤ 1 for |β| ≤ m, 0 ≤ i ≤ k; and

|∂β(Pi − Pj)(xj)| ≤ |xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k.
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One checks easily that σ(x0, k) is a compact, convex, symmetric subset of I(x0). (By

“symmetric”, we mean that P ∈ σ(x0, k) implies −P ∈ σ(x0, k).) The basic convex set

Γξ(x0, k, A) defined in the Introduction is essentially a translate of σ(x0, k), as the following

proposition shows.

Proposition 2.1: Let H = (f(x) + I(x))x∈E be a family of cosets, and suppose

P ∈ ΓH(x0, k, A). Then, for any A′ > 0, we have

P + A′σ(x0, k) ⊆ ΓH(x0, k, A + A′) ⊆ P + (2A + A′)σ(x0, k).

The above proposition follows trivially from the definitions.

A basic property of σ(x0, k) is “Whitney convexity”, which we now define.

Let σ be a closed, convex, symmetric subset of Rx0 , and let A be a positive constant.

Then we say that σ is “Whitney convex with Whitney constant A” if the following condition

is satisfied:

Let P ∈ σ, Q ∈ P , δ ∈ (0, 1] be given. Suppose P and Q satisfy |∂βP (x0)| ≤ δm−|β| and

|∂βQ(x0)| ≤ δ−|β|, for |β| ≤ m. Then P �Q ∈ Aσ, where � denotes multiplication in Rx0 .

Let k# be a large enough constant, depending only on m and n, to be picked later. Then

we have the following results.

Lemma 2.1: Let (I(x))x∈E be a Glaeser stable family of ideals.

Then, for x0 ∈ E and 1 ≤ k ≤ k#, the set σ(x0, k) is Whitney convex, with a Whitney

constant depending only on m and n.

Lemma 2.2: Let (I(x))x∈E be a Glaeser stable family of ideals, and suppose x0 ∈ E and

1 ≤ k ≤ k#.

Then there exists δ > 0 such that any polynomial P , belonging to I(x0) and satisfying

|∂βP (x0)| ≤ δ for |β| ≤ m,

also belongs to σ(x0, k).

To prove Lemmas 2.1 and 2.2, we set f(x) = 0 for all x ∈ E, and then note that
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(f(x) + I(x))x∈E satisfies hypotheses (I) and (II) of Theorem 3 in [12].

(In fact, (I) is immediate from the Glaeser stability of (I(x))x∈E; and (II) holds trivially,

since we may just set all the Pi in (II) equal to zero.)

Since also k# is a large enough constant, depending only on m and n, to be picked later, we

find ourselves in the setting of Section 5 of [12]. Our present Lemmas 2.1 and 2.2 are simply

Lemmas 5.3 and 5.5, respectively, from [12].

We recall from [12] the notion of the “lowest stratum” E1.

Let (I(x))x∈E be a family of ideals. We set

k̂1 = min{dim I(x) : x ∈ E}, and

k̂2 = max{dim(I(x) ∩ ker πm−1
x ) : x ∈ E , dim I(x) = k̂1}.

The “lowest stratum” E1 is then defined as

E1 = {x ∈ E : dim I(x) = k̂1 and dim(I(x) ∩ ker πm−1
x ) = k̂2}.

We compare the lowest stratum E1 with the first slice E0.

Since dim(I(x) ∩ ker πm−1
x ) + dim(πm−1

x I(x)) = dim I(x), the set E1 may be equivalently

defined as follows:

A given x ∈ E belongs to E1 if and only if

(a) dim(I(x)) is as small as possible; and

(b) dim(πm−1
x I(x)) is as small as possible, subject to (a).

On the other hand, recalling our lexicographic order on (m + 1)-tuples, we see that E0

may be equivalently defined as follows:

A given x ∈ E belongs to E0 if and only if

(a) dim(I(x)) is as small as possible;

(b) dim(πm−1
x I(x)) is as small as possible, subject to (a);
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(c) dim(πm−2
x I(x)) is as small as possible, subject to (a) and (b); and so forth.

Thus, we have proven the following elementary result.

Proposition 2.2: Let (I(x))x∈E be a family of ideals. Let E0 be the first slice, and let E1

be the lowest stratum. Then E0 ⊆ E1.

Our next result is again essentially taken from Section 5 in [12].

Recall that D = dimP .

Lemma 2.3: Suppose 1 + (D + 1) · k3 ≤ k2, 1 + (D + 1) · k2 ≤ k1, k1 ≤ k#.

Let (I(x))x∈E be a Glaeser stable family of ideals, and let E1 be the lowest stratum.

Then there exists η > 0 with the following property:

Suppose x ∈ E1 and P ∈ I(x), with |∂βP (x)| ≤ ηm−|β| for |β| ≤ m.

Then P ∈ Cσ(x, k3), with C depending only on m and n.

To prove Lemma 2.3, we again set f(x) = 0 for all x ∈ E, and note that we are in the

setting of Section 5 of [12], as in our discussion of Lemmas 2.1 and 2.2. Since f(x) = 0

for all x ∈ E, one checks trivially from the definitions that (in the notation of [12]) we

have Γf (x, k, A) = Aσ(x, k). Consequently, Lemma 2.3 is simply the special case f ≡ 0,

A1 = A2 = 1, x′ = x′′ = x, Q′ = 0, Q′′ = P , of Lemma 5.10 in [12].

Thus, Lemma 2.3 holds.

Again, from Section 5 in [12], we have the following result.

Lemma 2.4: Let H = (f(x) + I(x))x∈E be a family of cosets.

Suppose 1 + (D + 1) · k2 ≤ k1, and A > 0.

Let x′, x′′ ∈ E, and let P ′ ∈ ΓH(x′, k1, A).

Then there exists P ′′ ∈ ΓH(x′′, k2, A), with

|∂β(P ′′ − P ′)(x′)| ≤ A|x′ − x′′|m−|β| for |β| ≤ m.
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The proof of Lemma 5.6 in [12] applies here, and establishes our present Lemma 2.4.

Advancing to Section 6 in [12], we have the following.

Lemma 2.5: Suppose k ≥ 1, 1 + (D + 1) · k ≤ k#.

Let (I(x))x∈E be a Glaeser stable family of ideals, and let E1 be the lowest stratum.

Then, given ε > 0 there exists δ > 0 such that the following holds:

Given x0 ∈ E1, P0 ∈ I(x0), and x1, . . . , xk ∈ E ∩ B(x0, δ), there exist P1 ∈ I(x1), . . . ,

Pk ∈ I(xk), with

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)

for |α| ≤ m, 0 ≤ i, j ≤ k.

To prove Lemma 2.5, we again set f(x) = 0 for all x ∈ E, and note once more that

(f(x) + I(x))x∈E satisfies the hypotheses of Theorem 3 in [12]. Since also k# is a large

enough constant, depending only on m and n, to be picked later, we find ourselves in the

setting of Section 6 of [12].

Our present Lemma 2.5 is simply Lemma 6.3 in [12], for the special case f(x) = 0 (all x ∈ E).

Next, we recall Lemma 3.3 from [15].

We write #(S) for the cardinality of a finite set S.

Lemma 2.6: Suppose k# ≥ (D + 1)10 · k1, k1 ≥ 1, A > 0, δ > 0.

Let Ξ be a vector space, with seminorm | · |.

Let E ⊆ Rn, and let x0 ∈ E.

For each x ∈ E, suppose we are given a vector space I(x) ⊆ Rx, and a linear map ξ 7→ fξ(x)

from Ξ into Rx.

Assume that the following conditions are satisfied.

(a) Given ξ ∈ Ξ and S ⊆ E, with |ξ| ≤ 1 and #(S) ≤ k#, there exists F S
ξ ∈ Cm(Rn), with



Cm Extension by Linear Operators 20

‖ F S
ξ ‖Cm(Rn)≤ A , and Jx(F S

ξ ) ∈ fξ(x) + I(x) for each x ∈ S .

(b) Suppose P0 ∈ I(x0), with |∂βP0(x0)| ≤ δ for |β| ≤ m.

Then, given x1, . . . , xk# ∈ E, there exist P1 ∈ I(x1), . . . , Pk# ∈ I(xk#),

with

|∂βPi(xi)| ≤ 1 for |β| ≤ m, 0 ≤ i ≤ k#; and

|∂β(Pi − Pj)(xj)| ≤ |xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k#.

Then there exists a linear map ξ 7→ f̃ξ(x0), from Ξ into Rx0, with the following property:

(c) Given ξ ∈ Ξ with |ξ| ≤ 1, and given x1, . . . , xk1 ∈ E, there exist polynomials P0, P1, . . . ,

Pk1 ∈ P, with

P0 = f̃ξ(x0);

Pi ∈ fξ(xi) + I(xi) for 0 ≤ i ≤ k1;

|∂βPi(xi)| ≤ CA for |β| ≤ m , 0 ≤ i ≤ k1 ; and

|∂β(Pi − Pj)(xj)| ≤ CA| xi − xj|m−|β| for |β| ≤ m , 0 ≤ i, j ≤ k1.

Here, C depends only on m and n.

The version of Lemma 2.6 stated here differs slightly from Lemma 3.3 in [15], since there

the constant k# is arbitrary, and the constant C is determined by m, n and k#.

Here, we have taken k# to be a (large enough) constant determined by m and n. Con-

sequently, the constant C in our present Lemma 2.6 depends only on m and n, as stated

there.

For a family of cosets depending linearly on ξ ∈ Ξ, conclusion (c) of Lemma 2.6 says that

we can find f̃ξ(x0) ∈ Γξ (x0, k1, CA) depending linearly on ξ.

To state the next result, we recall another definition from [15].

Let E ⊂ Rn be non-empty. For each x ∈ E, suppose we are given a convex, symmetric

subset σ(x) ⊆ Rx. Let f = (f(x))x∈E be a family of m-jets, with f(x) ∈ Rx for each x ∈ E.
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Then we say that f belongs to Cm(E, σ(·)) if there exist a function F ∈ Cm(Rn) and a finite

constant M > 0, such that

(1) ‖ F ‖Cm(Rn)≤ M , and Jx(F ) ∈ f(x) + Mσ(x) for all x ∈ E.

The seminorm ‖ f ‖Cm(E,σ(·)) is defined as the infimum of all possible M in (1).

We now recall Theorem 5 from [15].

Theorem 2.2: Let E00 ⊂ Rn be a finite set. For each x ∈ E00, let σ(x) ⊆ Rx be Whitney

convex, with Whitney constant A.

Then there exists a linear map

T : Cm(E00, σ(·)) → Cm(Rn),

with the following properties.

(A) The norm of T is bounded by a constant determined by m, n and A.

(B) Given f = (f(x))x∈E ∈ Cm(E00, σ(·)) with ‖ f ‖Cm(E00,σ(·))≤ 1,

we have

Jx(Tf) ∈ f(x) + A′σ(x) for all x ∈ E00, with A′ determined by m,n and A.

We close this section by pointing out that several of the above results could have been

given in a more general or natural form than the versions stated here. We were motivated

by the desire to quote from [12,15] rather than prove slight variants of known results.

§3. Consequences of Previous Results

In this section, we prove some simple consequences of the results of Section 2, as well as

a Corollary of Theorem 3 (which, we recall, was proven in [12]).

Lemma 3.1: There exist C, k̄, depending only on m and n, for which the following holds.

Let (f(x) + I(x))x∈E be a Glaeser stable family of cosets.
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Suppose we are given A > 0, x0 ∈ E, and P0 ∈ f(x0) + I(x0).

Assume that, given x1, . . . , xk̄ ∈ E, there exist P1 ∈ f(x1) + I(x1), . . . , Pk̄ ∈ f(xk̄) + I(xk̄),

with

|∂βPi(xi)| ≤ A for |β| ≤ m , 0 ≤ i ≤ k̄ ; and

|∂β(Pi − Pj)(xj)| ≤ A|xi − xj|m−|β| for |β| ≤ m , 0 ≤ i, j ≤ k̄ .

Then there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ CA, Jx(F ) ∈ f(x) + I(x) for all x ∈ E, and Jx0(F ) = P0.

Proof: Define f̂(x0) = P0, Î(x0) = {0}; and, for x ∈ E r {x0}, define f̂(x) = f(x),

Î(x) = I(x). Using the definition (GS2), we see that (f̂(x) + Î(x))x∈E is a Glaeser stable

family of cosets. Applying Theorem 3 to (f̂(x)+Î(x))x∈E, we obtain the conclusion of Lemma

3.1. (To check hypothesis (II) of Theorem 3, we apply Theorem 2.1 to the set {x0, . . . , xk̄}.)

The proof of the lemma is complete. �

As in the previous section, we take k# to be a large enough constant, determined by m

and n, to be picked later.

Lemma 3.2: Suppose 1 + (D + 1) · k3 ≤ k2, 1 + (D + 1) · k2 ≤ k1, k1 ≤ k#; and A1, A2 > 0.

Let (I(x))x∈E be a Glaeser stable family of ideals, and let E1 be the lowest stratum.

Then there exists η > 0, for which the following holds:

For each x ∈ E, suppose we are given an m-jet f(x) ∈ Rx.

Set H = (f(x) + I(x))x∈E.

Suppose we are given x′, x′′ ∈ E1, P ′ ∈ ΓH(x′, k1, A1), and P ′′ ∈ f(x′′) + I(x′′).

If |x′ − x′′| ≤ η and |∂β(P ′ − P ′′)(x′)| ≤ A2η
m−|β| for |β| ≤ m, then

P ′′ ∈ ΓH(x′′, k3, A
′), with A′ depending only on A1, A2, m, n.

Proof: In this proof, we write A3, A4, etc. for constants depending only on A1, A2, m, n.
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Let η be as in Lemma 2.3, and let H, x′, x′′, P ′, P ′′ be as in the hypotheses of Lemma

3.2. In particular, we have P ′ ∈ ΓH(x′, k1, A1). Lemma 2.4 gives us a polynomial P̃ ∈
ΓH(x′′, k3, A1) ⊆ f(x′′) + I(x′′), with

|∂β(P ′ − P̃ )(x′)| ≤ A1|x′ − x′′|m−|β| ≤ A1η
m−|β| for |β| ≤ m.

Since also P ′′ ∈ f(x′′) + I(x′′) and |∂β(P ′ − P ′′)(x′)| ≤ A2η
m−|β| for |β| ≤ m, it follows that

(1) P ′′ − P̃ ∈ I(x′′),

and

|∂β(P ′′ − P̃ )(x′)| ≤ (A1 + A2) · ηm−|β| for |β| ≤ m.

This last estimate implies

(2) |∂β(P ′′ − P̃ )(x′′)| ≤ A3η
m−|β| for |β| ≤ m,

since |x′ − x′′| ≤ η, and P ′′, P̃ are mth degree polynomials.

Since x′′ ∈ E1, we learn from (1) and (2) that Lemma 2.3 applies to (P ′′ − P̃ )/A3. Conse-

quently, we have

P ′′ − P̃ ∈ A4σ(x′′, k3).

Since also P̃ ∈ ΓH(x′′, k3, A1), it now follows from Proposition 2.1 that

P ′′ ∈ ΓH(x′′, k3, A5),

which is the conclusion of Lemma 3.2.

The proof of the Lemma is complete. �

Note that Lemma 3.2 here sharpens Lemma 5.10 in [12], since our η is independent of f .

Lemma 3.3: Suppose k# ≥ (D + 1)10 · k1, k1 ≥ 1, and A > 0.

Let Ξ be a vector space with a seminorm | · |, and let (fξ(x)+ I(x))x∈E,ξ∈Ξ be a Glaeser stable

family of cosets, depending linearly on ξ ∈ Ξ.

Assume that, for any ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with

(∗) ‖ F ‖Cm(Rn)≤ A, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.
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Then, given x0 ∈ E, there exists a linear map ξ 7→ f̃ξ(x0), from Ξ into Rx0, such that

f̃ξ(x0) ∈ Γξ(x0, k1, CA) for all ξ ∈ Ξ with |ξ| ≤ 1.

Here, C depends only on m and n.

Proof: By definition, (fξ(x) + I(x))x∈E is Glaeser stable for each ξ ∈ Ξ.

Setting ξ = 0, we learn that (I(x))x∈E is Glaeser stable, hence Lemma 2.2 applies. Thus,

there exists δ > 0 such that

(∗∗) any P ∈ I(x0) satisfying |∂βP (x0)| ≤ δ for |β| ≤ m belongs to σ(x0, k
#).

We now invoke Lemma 2.6. Hypotheses (a) and (b) of that Lemma follow at once from (∗)
and (∗∗), and from the definition of σ(x0, k

#).

Hence, there exists a linear map ξ 7→ f̃ξ(x0) from Ξ into Rx0 , satisfying condition (c) in the

statement of Lemma 2.6.

Comparing condition (c) with the definition of Γξ(x0, k1, CA), we see that

f̃ξ(x0) ∈ Γξ(x0, k1, CA) for |ξ| ≤ 1, with C depending only on m and n.

The proof of Lemma 3.3 is complete. �

The next result involves the space Cm(E, σ(·)) from Section 2. (See Theorem 2.2 and the

paragraph before it.)

Lemma 3.4: Suppose k# ≥ (D + 1)10 · k1, k1 ≥ 1 and A > 0.

Let Ξ be a vector space with a seminorm | · |.

Let (fξ(x) + I(x))x∈E,ξ∈Ξ be a Glaeser stable family of cosets depending linearly on ξ ∈ Ξ.

Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ A, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

For each x0 ∈ E, let ξ 7→ f̃ξ(x0) be a linear map from Ξ into Rx0, as in the conclusion of

Lemma 3.3.
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Set σ(x) = σ(x, k1) for all x ∈ E,

and set f̃ξ = (f̃ξ(x0))x0∈E for each ξ ∈ Ξ.

Then, for each ξ ∈ Ξ, we have f̃ξ ∈ Cm(E, σ(·)).

Moreover, if |ξ| ≤ 1, then ‖ f̃ ‖Cm(E,σ(·))≤ CA,

with C depending only on m and n.

Proof: Since ξ 7→ f̃ξ is linear, we may restrict attention to the case |ξ| ≤ 1. Fix ξ ∈ Ξ with

|ξ| ≤ 1, and fix F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ A, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

We then have

(∗) Jx0(F ) ∈ Γξ(x0, k, CA) for any x0 ∈ E, k ≥ 1.

To see this, suppose we are given x1, . . . , xk ∈ E.

Setting Pi = Jxi
(F ) for i = 0, 1, . . . , k, we have:

P0 = Jx0(F );

Pi ∈ fξ(xi) + I(xi) for 0 ≤ i ≤ k;

|∂βPi(xi)| ≤ CA for |β| ≤ m, 0 ≤ i ≤ k; and

|∂β(Pi − Pj)(xj)| ≤ CA|xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k.

Hence, (∗) holds, by definition of Γξ(x0, k, CA).

For x0 ∈ E, we have

Jx0(F ), f̃ξ(x0) ∈ Γξ(x0, k1, CA),

since (∗) holds and f̃ξ(x0) is as in the conclusion of Lemma 3.3. Consequently,

Jx0(F )− f̃ξ(x0) ∈ CAσ(x0, k1) = CAσ(x0) for x0 ∈ E, by Proposition 2.1.

Thus, F ∈ Cm(Rn), with
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‖ F ‖Cm(Rn)≤ CA, and Jx(F ) ∈ f̃ξ(x) + CAσ(x) for all x ∈ E.

By definition of Cm(E, σ(·)), this means that

f̃ξ ∈ Cm(E, σ(·)), and that ‖ f̃ξ ‖Cm(E,σ(·))≤ CA.

The proof of Lemma 3.4 is complete. �

Lemma 3.5: Suppose k# ≥ (D + 1)10 · k1, k1 ≥ 1, A > 0.

Let Ξ be a vector space with a seminorm | · |, and let (fξ(x)+ I(x))x∈E,ξ∈Ξ be a Glaeser stable

family of cosets depending linearly on ξ ∈ Ξ.

Assume that, given any ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ A, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Let E00 ⊆ E be a finite set.

Then there exists a linear map ξ 7→ F 00
ξ , from Ξ into Cm(Rn), with norm at most CA, such

that, for |ξ| ≤ 1, we have

Jx(F 00
ξ ) ∈ Γξ(x, k1, CA) ⊆ fξ(x) + I(x) for all x ∈ E00.

Here, C depends only on m and n.

Proof: We recall that C denotes a constant determined by m and n.

For each x ∈ E00, set σ(x) = σ(x, k1). By Lemma 2.1, each σ(x) is Whitney convex, with

Whitney constant C.

Hence, Theorem 2.2 provides a linear map

T : Cm(E00, σ(·)) → Cm(Rn),

with norm at most C, satisfying the following property:

(∗) Suppose f = (f(x))x∈E00 ∈ Cm(E00, σ(·)), with ‖ f ‖Cm(E00,σ(·))≤ 1.

Then Jx(Tf) ∈ f(x) + Cσ(x, k1) for all x ∈ E00.

Next, note that our present hypotheses include those of Lemma 3.3.
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Hence, Lemma 3.3 lets us pick out, for each x ∈ E00, a linear map ξ 7→ f̃ξ(x), from Ξ into

Rx, such that

(∗∗) f̃ξ(x) ∈ Γξ(x, k1, CA) for all x ∈ E00, ξ ∈ Ξ with |ξ| ≤ 1.

For ξ ∈ Ξ, we set f̃ 00
ξ = (f̃ξ(x))x∈E00 . Immediately from Lemma 3.4, we learn that ξ 7→ f̃ 00

ξ

is a linear map from Ξ into Cm(E00, σ(·)), with norm at most CA.

For ξ ∈ Ξ, we now define F 00
ξ = T f̃ 00

ξ . Thus, ξ 7→ F 00
ξ is a linear map from Ξ into Cm(Rn),

of norm at most CA. Moreover, suppose |ξ| ≤ 1. Then we have ‖ f̃ 00
ξ ‖Cm(E00,σ(·))≤ CA.

Applying (∗) to f = f̃ 00
ξ /(CA), we learn that

Jx(F 00
ξ ) ∈ f̃ξ(x) + CAσ(x, k1) for all x ∈ E00.

Together with (**) and Proposition 2.1, this shows that

Jx(F 00
ξ ) ∈ Γξ(x, k1, CA) for all x ∈ E00.

Thus, the map ξ 7→ F 00
ξ has all the properties asserted in the statement of Lemma 3.5.

The proof of the lemma is complete. �

Lemma 3.6: Suppose k ≥ 1, and 1 + (D + 1) · k ≤ k#.

Let (f(x) + I(x))x∈E be a Glaeser stable family of cosets, and let E1 be the lowest stratum

for (I(x))x∈E.

Then, given ε > 0, there exists δ > 0 such that the following holds:

Given x0 ∈ E1, P0 ∈ f(x0) + I(x0), and x1, . . . , xk ∈ E ∩ B(x0, δ), there exist P1 ∈ f(x1) +

I(x1), . . . , Pk ∈ f(xk) + I(xk) such that

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|) for |α| ≤ m, 0 ≤ i, j ≤ k.

Proof: Since (f(x) + I(x))x∈E is Glaeser stable, it follows easily that (I(x))x∈E is Glaeser

stable. Moreover, by definition (GS1) of Glaeser stability, there exists F ∈ Cm(Rn), with

(∗0) Jx(F ) ∈ f(x) + I(x) for all x ∈ E.
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We fix an F as above, and let ε > 0 be given. Set ε′ = ε
2+‖F‖Cm(Rn)

.

Since F ∈ Cm(Rn) and E is compact, there exists δ1 > 0 with the following property:

(∗1) Given x0 ∈ E and x1, . . . , xk ∈ E ∩B(x0, δ1), we have

|∂α(Jxi
(F )− Jxj

(F ))(xj)| ≤ ε′ |xi − xj|m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k.

We apply Lemma 2.5, with ε′ in place of ε. Thus, we obtain δ2 > 0, for which the

following holds.

(∗2) Given x0 ∈ E1, P̂0 ∈ I(x0), and x1, . . . , xk ∈ E ∩B(x0, δ2), there exist

P̂1 ∈ I(x1), . . . , P̂k ∈ I(xk), with

|∂α(P̂i − P̂j)(xj)| ≤ ε′ |xi − xj|m−|α| · (1 + max
|β|≤m

|∂βP̂0(x0)|) for |α| ≤ m, 0 ≤ i, j ≤ k.

We set δ = min(δ1, δ2).

Now suppose we are given x0 ∈ E1, P0 ∈ f(x0) + I(x0), and x1, . . . , xk ∈ E ∩B(x0, δ).

Then

(∗3) P̂0 = P0 − Jx0(F )

belongs to I(x0), thanks to (∗0).

We apply (∗2), to obtain P̂1 ∈ I(x1), . . . , P̂k ∈ I(xk) as indicated there.

Setting

(∗4) Pi = P̂i + Jxi
(F ) for i = 1, . . . , k,

we have Pi ∈ f(xi) + I(xi) for i = 1, . . . , k,

thanks to (∗0).

Note that (∗4) holds also for i = 0.

From (∗1),. . .,(∗4), we learn that

|∂α(Pi − Pj)(xj)| ≤ ε′|xi − xj|m−|α| · (2 + max
|β|≤m

| ∂βP̂0(x0)|)

≤ ε′|xi − xj|m−|α|(2 + ‖ F ‖Cm(Rn) + max
|β|≤m

|∂βP0(x0)|)
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for |α| ≤ m, 0 ≤ i, j ≤ m.

Since we have taken ε′ = ε/(2+ ‖ F ‖Cm(Rn)), it follows that

|∂α(Pi − Pj)(xj)| ≤ ε|xi − xj|m−|α| · (1 + max
|β|≤m

|∂βP0(x0)|)

for |α| ≤ m, 0 ≤ i, j ≤ m.

Thus, the polynomials P1, . . . , Pk have all the properties asserted in the statement of

Lemma 3.6.

The proof of the lemma is complete. �

§4. Picking the Constants

Let k̄ be as in Lemma 3.1. Thus, k̄ depends only on m, n.

We recall that D is the dimension of the vector space of all mth degree polynomials on Rn.

We set

k3 = k̄,

k2 = 1 + (D + 1) · k3,

k1 = 1 + (D + 1) · k2,

and we pick

k# ≥ (D + 1)10 · k1.

§5. The First Main Lemma

In this section, we complete the analysis of F 00
ξ as described in the Introduction. Our

result is as follows. Recall that P is the vector space of mth degree polynomials on Rn.

First Main Lemma: Let Ξ be a vector space with a seminorm | · |, let (fξ(x) + I(x))x∈E,ξ∈Ξ be

a Glaeser stable family of cosets depending linearly on ξ ∈ Ξ, and let E0 be the first slice for

(I(x))x∈E.
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Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with ‖ F ‖Cm(Rn)≤ 1, and

Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Then, given A > 0, there exists η0 > 0 for which the following holds:

Suppose E00 ⊆ E0 is finite, and suppose that no point of E0 lies farther than distance η0

from E00.

Then there exists a linear map ξ 7→ F 00
ξ , from Ξ into Cm(Rn), such that, for any ξ ∈ Ξ with

|ξ| ≤ 1, we have:

(I) ‖ F 00
ξ ‖Cm(Rn)≤ C, with C depending only on m, n.

(II) Jx(F 00
ξ ) ∈ fξ(x) + I(x) for all x ∈ E00.

(III) Let x ∈ E0, Q ∈ P be given, with |∂βQ(x)| ≤ Aη
m−|β|
0 for |β| ≤ m.

If Jx(F 00
ξ ) + Q ∈ fξ(x) + I(x), then

Jx(F 00
ξ ) + Q ∈ Γξ(x, k̄, A′) ,

where k̄ is as in Lemma 3.1, and A′ is a constant depending only on A, m, n.

Proof: We take k#, k1, k2, k3 as in Section 4.

Let Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ be as in the hypotheses of the First Main Lemma, and let

A > 0 be given.

We know that (I(x))x∈E is Glaeser stable, since (fξ(x)+ I(x))x∈E,ξ∈Ξ is Glaeser stable. Also,

from Section 4, we have 1+(D+1)·k3 ≤ k2, 1+(D+1)·k2 ≤ k1, and k1 ≤ k#. Hence, we may

apply Lemma 3.2, for any constants A1, A2 > 0. We will take A1 = Ĉ and A2 = C∗ + C∗A,

where Ĉ and C∗ are constants, depending only on m and n, to be picked below.

Applying Lemma 3.2 with the above A1, A2; and recalling Proposition 2.2, we obtain

η0 > 0, for which the following holds.

(1) Suppose ξ ∈ Ξ, x0 ∈ E0, x ∈ E0, P0 ∈ Γξ(x0, k1, Ĉ), P ∈ fξ(x) + I(x), |x − x0| ≤ η0,

and |∂β(P − P0)(x0)| ≤ (C∗ + C∗A) η
m−|β|
0 for |β| ≤ m.
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Then P ∈ Γξ(x, k3, A
′), with A′ depending only on m, n,A.

Now suppose E00 ⊆ E0 is a finite set, and suppose that no point of E0 lies farther than

distance η0 from E00.

The hypotheses of Lemma 3.5 (with A = 1 there) are satisfied by Ξ, | · |, (fξ(x) +

I(x))x∈E,ξ∈Ξ, and E00. (In particular, we have k# ≥ (D + 1)10 · k1, as we recall from

Section 4.)

Let ξ 7→ F 00
ξ be the linear map, from Ξ into Cm(Rn), given by Lemma 3.5. Thus, for

ξ ∈ Ξ with |ξ| ≤ 1, we have

(2) ‖ F 00
ξ ‖Cm(Rn)≤ C1,

and

(3) Jx0(F
00
ξ ) ∈ Γξ(x0, k1, C2) ⊆ fξ(x0) + I(x0) for all x0 ∈ E00.

We now take Ĉ to be the constant C2 in (3). As promised, Ĉ depends only on m and

n.

From (2) and (3), we see that the linear map ξ 7→ F 00
ξ satisfies (I) and (II) in the

statement of the First Main Lemma. We check that it also satisfies (III).

Thus, let ξ ∈ Ξ with |ξ| ≤ 1, and let x ∈ E0, Q ∈ P be given, with

(4) |∂βQ(x)| ≤ Aη
m−|β|
0 for |β| ≤ m,

and

(5) Jx(F 00
ξ ) + Q ∈ fξ(x) + I(x).

We must show that Jx(F 00
ξ ) + Q ∈ Γξ(x, k̄, A′), where k̄ is as in Lemma 3.1, and A′ is

a constant depending only on m,n,A.

By our assumption on E00, there exists x0 ∈ E00, with |x−x0| ≤ η0. From (2), we then

have

|∂β(Jx(F 00
ξ )− Jx0(F

00
ξ ))(x)| ≤ C|x− x0|m−|β| ≤ Cη

m−|β|
0 for |β| ≤ m .

Together with (4), this yields

|∂β{[Jx(F 00
ξ ) + Q]− Jx0(F

00
ξ )}(x)| ≤ (C + A) · η

m−|β|
0 for |β| ≤ m .

Since |x− x0| ≤ η0 and the expression in curly brackets is an mth degree polynomial ,

it follows that



Cm Extension by Linear Operators 32

(6) |∂β{[Jx(F 00
ξ ) + Q]− Jx0(F

00
ξ )}(x0)| ≤ (C ′ + C ′A) · η

m−|β|
0 for |β| ≤ m .

We now take C∗ to be the constant C ′ in (6). As promised, C∗ depends only on m and

n.

We set P = Jx(F 00
ξ ) + Q, and P0 = Jx0(F

00
ξ ).

We make the following observations:

• ξ ∈ Ξ and x0, x ∈ E0 (since E00 ⊆ E0).

• P0 ∈ Γξ(x0, k1, Ĉ) ( by (3) and our choice of Ĉ).

• P ∈ fξ(x) + I(x) (by (5)).

• |x− x0| ≤ η0 (by the defining properties of x0).

• |∂β(P − P0)(x0)| ≤ (C∗ + C∗A) · ηm−|β|
0 for |β| ≤ m (by (6) and our choice of C∗).

Consequently, (1) applies, and it tells us that P ∈ Γξ(x, k3, A
′), with A′ determined by

A, m, n. Recalling that P = Jx(F 00
ξ ) + Q, and that k3 = k̄ (as in Lemma 3.1; see Section 4),

we conclude that Jx(F 00
ξ ) + Q ∈ Γξ(x, k̄, A′), with A′ determined by A, m, n.

This completes the proof of (III), hence also that of the First Main Lemma. �

§6. Dominant Monomials

In the next several sections, we will construct the linear map ξ 7→ F̃ ξ described in the

Introduction. We begin with an elementary rescaling lemma that will be used in Section 8

below.

Lemma 6.1: Let P1, . . . , PL ∈ P be given, non-zero polynomials.

Let 0 < a < 1 be given. Then there exists a linear map T : Rn → Rn, of the form

T : (x1, . . . , xn) 7→ (λ1x1, . . . , λnxn), with the following properties:

(1) κ ≤ λi ≤ 1 for i = 1, . . . , n; where κ is a positive constant depending only on a, L,m, n.
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(2) For each `(1 ≤ ` ≤ L), there exists a multi-index β(`), with |β(`)| ≤ m, such that

|∂β(P` ◦ T )(0)| ≤ a|∂β(`)(P` ◦ T )(0)| for |β| ≤ m, β 6= β(`) .

Proof: Let A be a large, positive constant, to be picked later.

For 1 ≤ i ≤ n, let λi = exp(−si) with 0 ≤ si ≤ A.

Thus,

(3) exp(−A) ≤ λi ≤ 1 for i = 1, . . . , n.

Note that (2) holds unless there exist

`(1 ≤ ` ≤ L) , β′ = (β′1, . . . , β
′
n) , β′′ = (β′′1 , . . . , β′′n) , with

(4) |β′|, |β′′| ≤ m, β′ 6= β′′, ∂β′P`(0) 6= 0, ∂β′′P`(0) 6= 0,

for which (s1, . . . , sn) satisfies

(5)

∣∣∣∣∣
n∑

i=1

(β′i − β′′i ) · si − log

∣∣∣∣ ∂β′P`(0)

∂β′′P`(0)

∣∣∣∣
∣∣∣∣∣ ≤ | log a| .

For fixed `, β′, β′′ satisfying (4), the volume of the set of all (s1, . . . , sn) ∈ [0, A]n for which

(5) holds is at most 2| log a| · An−1. To see this, fix i0 with β′i0 6= β′′i0 , and then fix all the

si except for si0 . The set of all si0 ∈ [0, A] for which (5) holds forms an interval of length

≤ 2| log a|
|β′i0−β′′i0

| ≤ 2| log a|.

Integrating over all (s1, . . . , si0−1, si0+1, . . . , sn) ∈ [0, A]n−1, we see that the set where (5)

holds has volume at most 2| log a| · An−1, as claimed.

Note also that the number of distinct (`, β′, β′′) satisfying (4) is bounded by a constant

depending only on m, n, L. Consequently, the set

Ω = {(s1, . . . , sn) ∈ [0, A]n satisfying (5) for some (`, β′, β′′) satisfying (4) } has volume at

most C| log a| · An−1, with C depending only on m, n, L.

Hence, if we take A to be a large enough constant depending only on m, n, L, a, then we will

have vol Ω < 1
2

vol ([0, A]n), and thus [0, A]n r Ω will be non-empty.
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Taking (s1, . . . , sn) ∈ [0, A]nrΩ, we conclude that (5) never holds for any (`, β′, β′′) satisfying

(4), and therefore (2) holds for λi = exp(−si). Also, (3) shows that (1) holds, since A depends

only on m,n, L, a.

The proof of Lemma 6.1 is complete. �

§7. Definitions and Notation

We write M for the set of all multi-indices α = (α1, . . . , αn) of order |α| = α1 + · · ·+
αn ≤ m.

A subset A ⊆ M will be called “monotonic” if, for any α ∈ A, and any multi-index γ

with |γ| ≤ m− |α|, we have α + γ ∈ A.

(We warn the reader that this differs from the standard use of the word “monotonic” in the

literature on resolution of singularities. We thank the referee of [11] for bringing this to our

attention.)

If α, β are multi-indices, then δβα denotes the Kronecker delta, equal to 1 if α = β, and equal

to zero otherwise.

Now suppose we are given a point x0 ∈ Rn, and an ideal I in Rx0 . Then we make the

following definitions.

• A subset A ⊆ M is called “adapted to I” if A is monotonic, and, for each

r (0 ≤ r ≤ m), we have

dim(πr
x0

I) = #{α ∈ A : |α| ≤ r} .

• If A ⊆ M, and if (Pα)α∈A forms a basis for I and satisfies ∂βPα(x0) = δβα for all

β, α ∈ A, then we will say that (Pα)α∈A is an “A-basis” for I.

• If A ⊆M, then we say that “I admits an A-basis” if there exists an A-basis for I.

• Let η, A > 0, suppose A ⊆ M, and let (Pα)α∈A be a family of polynomials, indexed

by A. Then we say that (Pα)α∈A is “(η, A)-controlled” if we have
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(a) |∂βPα(x0)| ≤ Aη|α|−|β| for α ∈ A, β ∈M; and

(b) ∂βPα(x0) = 0 for |β| < |α|, α ∈ A.

• Let η, A > 0, and suppose A ⊆ M. Then we say that I “admits an (η, A)-controlled

A-basis” if there exists an A-basis (Pα)α∈A for I, such that (Pα)α∈A is (η, A)-controlled.

Note that, whenever (Pα)α∈A is (η, A)-controlled, it is also (η′, A′)-controlled for 0 < η′ ≤ η,

A′ ≥ A.

§8. An A-Basis at a Point

Let x0 ∈ Rn, and let I be an ideal in Rx0 . In this section, we show that I admits an

(η, A)-controlled A-basis, for suitable η, A,A. We begin with the elementary properties of

an A-basis.

Proposition 8.1: There exists at most one A-basis for I.

Proof: Suppose (Pα)α∈A, (P̃α)α∈A are two A-bases for I.

Then we have

P̃α′ =
∑
α∈A

Mα′αPα (all α′ ∈ A), for some matrix (Mα′α).

Hence, for any β, α′ ∈ A, we have

δβα′ = ∂βP̃α′(x0) =
∑
α∈A

Mα′α ∂βPα(x0) =
∑
α∈A

Mα′α δβα = Mα′β ,

and therefore P̃α′ = Pα′ for all α′ ∈ A. �

In view of the above proposition, we may speak of “the A-basis for I” whenever I admits

an A-basis.

Proposition 8.2: Suppose A ⊆M is adapted to I, and suppose I admits an A-basis. Then

the A-basis (Pα)α∈A for I satisfies

∂βPα(x0) = 0 for |β| < |α|, α ∈ A.
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Proof: Fix β̄, ᾱ, with |β̄| < |ᾱ| and ᾱ ∈ A. Set r = β̄; thus r < |ᾱ|.

Also, set B = {α ∈ A : |α| ≤ r}. For β ∈ B, we have δβᾱ = 0.

We know that the πr
x0

Pα (α ∈ B) belong to πr
x0

I. We know also that, for β, α ∈ B, we

have ∂β[πr
x0

Pα](x0) = ∂βPα(x0) = δβα. Hence, the πr
x0

Pα(α ∈ B) are linearly independent

in πr
x0

I. On the other hand, since A is adapted to I, the dimension of πr
x0

I is equal to the

number of elements of B. Hence, the πr
x0

Pα(α ∈ B) form a basis for πr
x0

I. In particular, for

some coefficients Aα(α ∈ B), we have

πr
x0

Pᾱ =
∑
α∈B

Aαπr
x0

Pα. Consequently, for any β ∈ B, we have

0 = δβᾱ = ∂βPᾱ(x0) = ∂β[πr
x0

Pᾱ](x0) =
∑
α∈B

Aα ∂β[πr
x0

Pα](x0)

=
∑
α∈B

Aα ∂βPα(x0) =
∑
α∈B

Aαδβα = Aβ .

Thus, the coefficients Aβ all vanish, and therefore πr
x0

Pᾱ = 0.

Since |β̄| = r, it follows that ∂β̄Pᾱ(x0) = 0.

The proof of Proposition 8.2 is complete. �

We begin the work of constructing an (η, A)-controlled A basis.

Recall that c, C, C ′, etc. denote constants depending only on m and n. We call such constants

“controlled”.

Lemma 8.1: There exist a monotonic set A ⊆ M, and a basis (Pα)α∈A for I, with the

following properties.

(1) ∂βPα(x0) = 0 for |β| < |α|, α ∈ A.

(2) |∂βPα(x0)| ≤ C for |β| = |α|, α ∈ A.

(3) ∂βPβ(x0) = 1 for β ∈ A.

(4) For each r(0 ≤ r ≤ m), we can order the set A(r) = {α ∈ A : |α| = r} so that the

matrix (∂βPα(x0))β,α∈A(r) is triangular.
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(If A(r) is empty, then (4) holds vacuously.)

Proof: Without loss of generality, we may suppose x0 = 0. For 0 ≤ r ≤ m, set

Mr = {α ∈M : |α| = r} .

For each r(0 ≤ r ≤ m) and B ⊆Mr, we say that B ∈ Ω(r) if and only if there exists P ∈ I

such that:

(5) ∂βP (0) = 0 for |β| < r;

(6) ∂βP (0) = 0 for all β ∈ B; and

(7) ∂βP (0) 6= 0 for some β ∈Mr.

For each r(0 ≤ r ≤ m), and for each B ∈ Ω(r), fix a polynomial Pr,B ∈ I satisfying (5), (6),

(7); and let P̂r,B be the part of Pr,B that is homogeneous of degree r.

(That is, if Pr,B(x) =
∑
α∈M

Aαxα, then P̂r,B(x) =
∑

α∈Mr

Aαxα.)

Since Pr,B satisfies (7), the polynomials P̂r,B (0 ≤ r ≤ m, B ∈ Ω(r)) are all nonzero.

Let a ∈ (0, 1) be a small constant, to be picked later.

We write c(a), C(a), C ′(a), etc. to denote constants determined by a, m, n.

We apply Lemma 6.1 to the polynomials P̂r,B (0 ≤ r ≤ m,B ∈ Ω(r)).

Thus, for some linear map T : Rn → Rn of the form

(8) T : (x1, . . . , xn) 7→ (λ1x1, . . . , λnxn),

the following hold.

(9) c(a) ≤ λi ≤ 1 for i = 1, . . . , n.

(10) For 0 ≤ r ≤ m and B ∈ Ω(r), there exists a multi-index β(r,B) such that

|∂β(P̂r,B ◦ T )(0)| ≤ a|∂β(r,B) (P̂r,B ◦ T )(0)| whenever β 6= β(r,B).
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Fix β(r,B) as in (10). Since P̂r,B is the part of Pr,B that is homogeneous of degree r, it

follows from (10) that

(11) |β(r,B)| = r for 0 ≤ r ≤ m, B ∈ Ω(r);

and

(12) |∂β(Pr,B ◦ T )(0)| ≤ a|∂β(r,B) (Pr,B ◦ T )(0)| for all β ∈ Mr r {β(r,B)}, 0 ≤ r ≤ m,

B ∈ Ω(r).

Also, by definition of T, Ω(r), Pr,B, we have

(13) ∂β(Pr,B ◦ T )(0) = 0 for |β| < r, 0 ≤ r ≤ m, B ∈ Ω(r);

(14) ∂β(Pr,B ◦ T )(0) = 0 for β ∈ B, B ∈ Ω(r), 0 ≤ r ≤ m;

and

(15) ∂β(r,B)(Pr,B ◦ T )(0) 6= 0 for B ∈ Ω(r), 0 ≤ r ≤ m.

For each r(0 ≤ r ≤ m), we define a (possibly empty) finite sequence of multi-indices

γr
1, γ

r
2, . . . , γ

r
L(r) ∈Mr, and a (possibly empty) finite sequence of polynomials, Qr

1, . . . , Q
r
L(r),

by the following induction.

Fix r(0 ≤ r ≤ m). For a given ` ≥ 1, suppose we have already defined the γr
`′ and Qr

`′

for all `′ with 1 ≤ `′ < `. (For ` = 1, this holds vacuously.) Set

(16) Br
` = {γr

1, . . . , γ
r
`−1}. (Thus, Br

` is empty if ` = 1.)

If Br
` /∈ Ω(r), then we set L(r) = `− 1, and we stop defining additional γr

i and Qr
i .

If instead Br
` ∈ Ω(r), then we set

(17) Qr
` = Pr,Br

`
◦ T ,

and

(18) γr
` = β(r,Br

` ).
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This completes our induction on `, and produces possibly empty, possibly infinite se-

quences γr
1, γ

r
2, . . . and Qr

1, Q
r
2, . . . of multi-indices and polynomials, respectively. We will see

that these sequences terminate. Note that |γr
` | = r, by (11) and (18). Set

I ◦ T = {P ◦ T : P ∈ I}.

Then, since all Pr,B belong to I and satisfy (12), ..., (15), and since γr
` , Qr

` are defined by

(16), (17), (18), we have the following results.

(19) Qr
` ∈ I ◦ T for 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

(20) ∂βQr
`(0) = 0 for |β| < r, 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

(21) ∂βQr
`(0) = 0 for β = γr

`′ , 1 ≤ `′ < ` ≤ L(r), 0 ≤ r ≤ m.

(22) ∂βQr
`(0) 6= 0 for β = γr

` , 1 ≤ ` ≤ L(r), 0 ≤ r ≤ m.

(23) |∂βQr
`(0)| ≤ a|∂γr

` Qr
`(0)| for β ∈Mr r {γr

`}, 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

Here, we define L(r) = 0 if our sequences γr
1, γ

r
2, . . . and Qr

1, Q
r
2, . . . are empty; and we define

L(r) = ∞ if those sequences never terminate.

Comparing (21) with (22), we see that, for fixed r, the γr
` are all distinct. Since also

|γr
` | = r for each `, the sequence γr

1, γ
r
2, . . . must terminate. Thus,

(24) L(r) < ∞ for 0 ≤ r ≤ m,

as promised. This tells us that

Br
L(r)+1 = {γr

1, . . . , γ
r
L(r)} /∈ Ω(r) .

By definition of Ω(r), this in turn tells us the following.

(25) Let 0 ≤ r ≤ m and P ∈ I be given. If ∂βP (0) = 0 for |β| < r, and for

β = γr
1, γ

r
2, . . . , γ

r
L(r), then ∂βP (0) = 0 for |β| ≤ r.

Since T : Rn → Rn is a linear map given by a diagonal matrix, (25) is equivalent to the

following result.
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(26) Let 0 ≤ r ≤ m and P ∈ I ◦T be given. Suppose ∂βP (0) = 0 for |β| < r, and for β = γr
`

(` = 1, . . . , L(r)). Then ∂βP (0) = 0 for |β| ≤ r.

Next, suppose we are given r(0 ≤ r ≤ m) and P ∈ I ◦ T , with

(27) ∂βP (0) = 0 for |β| < r.

Then, since the matrix (∂γr
`′Qr

`(0))1≤`,`′≤L(r)

is invertible (thanks to (21), (22)), there exist coefficients A`(1 ≤ ` ≤ L(r)) such that

(28) P̃ = P −
∑

1≤`≤L(r)

A`Q
r
`

satisfies

(29) ∂γr
` P̃ (0) = 0 for 1 ≤ ` ≤ L(r).

From (19), (20), (27), (28), we have also

(30) ∂βP̃ (0) = 0 for |β| < r,

and

(31) P̃ ∈ I ◦ T .

From (26) and (29), (30), (31), we find that ∂βP̃ (0) = 0 for |β| ≤ r.

Thus, we have established the following.

(32) Let P ∈ (I ◦ T ) ∩ ker πr−1
0 . (For r = 0, this means simply that P ∈ I ◦ T .)

Then there exist coefficients A`(1 ≤ ` ≤ L(r)), such that P −
∑

1≤`≤L(r)

A` Qr
` ∈ (I ◦T )∩ker πr

0.

Here, πr
0 denotes πr

x0
with x0 = 0. Since πm

x0
is the identity map on Rx0 , an obvious induction

on r using (32) shows that

(33) I ◦ T is contained in the linear span of the Qr
`(1 ≤ ` ≤ L(r), 0 ≤ r ≤ m).
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Now we define

(34) A = {γr
` : 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r)},

and for α ∈ A we define Pα, by setting

(35) Pγr
`

=
Qr

`◦T
−1

∂
γr
` (Qr

`◦T−1)(0)
for 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

Note that the denominator in (35) is non-zero, thanks to (22) and the diagonal form of the

linear map T .

Note also that the set A(r) = {α ∈ A : |α| = r} from (4) is given by

(36) A(r) = {γr
` : 1 ≤ ` ≤ L(r)} for 0 ≤ r ≤ m,

since |γr
` | = r for 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

We prepare to show that A is monotonic, provided we take the constant a to be small

enough. To see this, we introduce the vector space of polynomials

(37) Vr = πr
0[ker πr−1

0 ∩ (I ◦ T )] for 0 ≤ r ≤ m.

(If r = 0, this means simply V0 = π0
0[I ◦ T ].)

We set

(38) Q̃r
` =

πr
0Qr

`

∂
γr
` Qr

` (0)
for 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r).

The denominator in (38) is non-zero, by (22).

In view of (19), (20), (37), we have

(39) Q̃r
` ∈ Vr for 0 ≤ r ≤ m, 1 ≤ ` ≤ L.

From (22), (23), (38) (and the fact that |γr
` | = r), we have
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(40) |∂βQ̃r
`(0)| ≤ a for 0 ≤ r ≤ m, 1 ≤ ` ≤ L, β 6= γr

` .

(Note that ∂βQ̃r
`(0) = 0 for |β| 6= r, by (37) and (39).)

Also, since |γr
` | = r, we have ∂γr

` [πr
0Q

r
` ](0) = ∂γr

` Qr
`(0), and therefore (38) yields

(41) ∂γr
` Q̃r

`(0) = 1 for 0 ≤ r ≤ m, 1 ≤ ` ≤ L.

Next, we check that

(42) Vr = span{Q̃r
` : 1 ≤ ` ≤ L(r)} for 0 ≤ r ≤ m.

In fact, an obvious induction using (32) shows that any polynomial P ∈ ker πr−1
0 ∩ (I ◦ T )

may be written as a linear combination of the Qr′

` for 1 ≤ ` ≤ L(r′), r′ ≥ r. We have also

πr
0Q

r′

` = 0 for r′ > r, by (20); and πr
0Q

r
` is a constant multiple of Q̃r

` , by (38). Consequently,

πr
0P ∈ span {Q̃r

` : 1 ≤ ` ≤ L(r)} for every P ∈ ker πr−1
0 ∩ (I ◦ T ). Together with (37) and

(39), this completes the proof of (42).

Now, from (36), (40), (41) , (42), we see that

(43) max
β /∈A(r)

|∂βP (0)| ≤ Ca · max
β∈A(r)

|∂βP (0)| for all P ∈ Vr, 0 ≤ r ≤ m, provided

(44) 0 < a < c

for a small enough controlled constant c.

We recall here that c, C, C ′, etc. denote “controlled constants”, i.e., constants depending

only on m and n.

We are now ready to show that

(45) A is monotonic.

To see this, suppose 0 ≤ r < s ≤ m, and 1 ≤ ` ≤ L(r); and let γ be a multi-index with

(48) |γ| = s− r.
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We must show that

(49) γr
` + γ ∈ A(s).

This will establish (45), in view of (34), (36).

Let P (x) = xγ � Qr
`(x), the symbol � denoting multiplication in R0(= Rx0 with x0 = 0).

Since I ◦ T is an ideal , (19) shows that P ∈ I ◦ T .

(This is the only place in the proof of Lemma 8.1 where we use the hypothesis that I is an

ideal.)

Also, (20) and (48) show that P ∈ ker πs−1
0 . Hence, by (37), we have

(50) πs
0P ∈ Vs.

From (22), (23), (48), and the definition of P , we see that

|∂βP (0)| ≤ Ca|∂γr
` +γP (0)| 6= 0 for β ∈Ms r {γr

` + γ} ,

and therefore

(51) |∂β(πs
0P )(0)| ≤ Ca|∂γr

` +γ(πs
0P )(0)| 6= 0 for β ∈Ms r {γr

` + γ}.

Also, from (50) and the definition of Vs, we see that πs
0P is homogeneous of degree s.

Consequently, (51) implies

(52) |∂β(πs
0P )(0)| ≤ Ca|∂γr

` +γ(πs
0P )(0)| 6= 0 for β ∈Mr {γr

` + γ}.

In particular, πs
0P 6= 0.

Now suppose we take our constant a to be a small enough controlled constant. Then (44)

holds, and therefore (43) and (50) show that
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(53) max
β /∈A(s)

|∂β(πs
0P )(0)| ≤ max

β∈A(s)
|∂β(πs

0P )(0)|,

while (52) shows that

(54) max
β∈Mr{γr

` +γ}
|∂β(πs

0P )(0)| < |∂γr
` +γ(πs

0P )(0)|.

If γr
` + γ /∈ A(s), then (53) and (54) would show that

|∂γr
` +γ(πs

0P )(0)| ≤ max
β∈A(s)

|∂β(πs
0P )(0)| ≤ max

β∈Mr{γr
` +γ}

|∂β(πs
0P )(0)| < |∂γr

` +γ(πs
0P )(0)| ,

which is absurd.

This completes the proof of (49), hence also that of (45).

From now on, we fix a to be a controlled constant, picked small enough to make the above

arguments work. In particular, since a is a controlled constant, (9) yields

(55) c ≤ λi ≤ 1, for i = 1, . . . , n.

From (8) and (55), we obtain

c|∂βQr
`(0)| ≤ |∂β(Qr

` ◦ T−1)(0)| ≤ C|∂βQr
`(0)| for β ∈M, 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r) .

Together with (22), (23), (35), this shows that

|∂βPγr
`
(0)| ≤ C for |β| = r , 0 ≤ r ≤ m , 1 ≤ ` ≤ L(r) .

Since |γr
` | = r, it therefore follows from (34) that

(56) |∂βPα(0)| ≤ C for |β| = |α|, α ∈ A.

It is now easy to check the conclusions of Lemma 8.1 for A, (Pα)α∈A as in (34) , (35).

In fact, we have already checked that A is monotonic (see (45)). Conclusion (1) follows easily

from (8), (20), (34), (35) and the fact that |γr
` | = r.

Conclusion(2) is simply our result (56).
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Conclusion(3) is immediate from (34), (35).

Conclusion(4) follows easily from (8), (21), (35), and (36).

Thus, it remains only to check that the Pα(α ∈ A) form a basis for I. From (19), (33),

we see that I ◦ T = span {Qr
` : 0 ≤ r ≤ m, 1 ≤ ` ≤ L(r)}. Hence (34), (35) show that

I = span {Pα : α ∈ A}. Moreover, by (1), (3), (4) (which we already know), we may order A
in such a way that the matrix (∂βPα(0))β,α∈A is triangular, with 1’s on the main diagonal.

Hence the Pα(α ∈ A) are linearly independent.

Since we have now shown that the (Pα)α∈A form a basis for I, the proof of Lemma 8.1 is

complete. �

Proposition 8.3: Let A, (Pα)α∈A be as in Lemma 8.1.

Then A is adapted to I.

Proof: Already from Lemma 8.1, we know that A is monotonic.

We must show that dim(πr
x0

I) = #{α ∈ A : |α| ≤ r} for 0 ≤ r ≤ m.

Fix r, and note that

πr
x0

Pα = 0 for α ∈ A, |α| > r, by conclusion (1) of Lemma 8.1.

On the other hand, conclusions (1), (3), (4) of Lemma 8.1 show that we may order

B = {α ∈ A : |α| ≤ r} in such a way that the matrix

(∂β[πr
x0

Pα](x0))β,α∈B = (∂βPα(x0))β,α∈B

is triangular, with 1’s on the main diagonal. Consequently, the polynomials πr
x0

Pα(α ∈ B)

are linearly independent.

Recalling from Lemma 8.1 that the Pα(α ∈ A) form a basis for I, we conclude that

dim(πr
x0

I) = dim span {πr
x0

Pα : α ∈ A} = dim span {πr
x0

Pα : α ∈ A, |α| ≤ r}

= #{α ∈ A : |α| ≤ r} .

The proof of Proposition 8.3 is complete. �
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The main result of this section is as follows.

Lemma 8.2: There exist a controlled constant C, a positive number η, and a subset A ⊆M,

such that A is adapted to I and I admits an (η, C)-controlled A-basis.

Proof: Let A, (Pα)α∈A be as in Lemma 8.1. By Proposition 8.3, A is adapted to I.

Moreover, by conclusions (1) and (2) of Lemma 8.1, there exists a positive real number η,

such that

(57) η|β|−|α| |∂βPα(x0)| ≤ C for α ∈ A, |β| ≤ m.

We fix η > 0 as in (57).

Next, as we noted before, conclusions (1), (3), (4) of Lemma 8.1 show that we can order

A in such a way that the matrix (∂βPα(x0))β,α∈A is triangular, with 1’s on the main diagonal.

Hence, the same is true of the matrix

M̃ = (η|β|−|α| ∂βPα(x0))β,α∈A .

Moreover (57) shows that the entries of M̃ are bounded in absolute value by a controlled

constant.

It follows that M̃ is invertible, and that its inverse matrix

M = (Mα′α)α′,α∈A

satisfies

(58) |Mα′α| ≤ C for α′, α ∈ A.

By definition, we have

(59) δβα =
∑
α′∈A

η|β|−|α
′| ∂βPα′(x0) · Mα′α for β, α ∈ A.

We now set
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(60) P̃α = η|α|
∑
α′∈A

η−|α
′| Pα′Mα′α for α ∈ A.

Since (Mα′α)α′,α∈A is invertible, so is (η|α|−|α
′| Mα′α)α′,α∈A.

Since the Pα′(α
′ ∈ A) form a basis for I (by Lemma 8.1), it therefore follows from (60) that

the P̃α(α ∈ A) also form a basis for I. Moreover, (59) and (60) show that, for β, α ∈ A, we

have

∂βP̃α(x0) = η|α|−|β| ·
∑
α′∈A

η|β|−|α
′| ∂βPα′(x0) · Ma′α = η|α|−|β| · δβα = δβα .

Thus, (P̃α)α∈A is an A-basis for I.

We show that the A-basis (P̃α)α∈A is (η, C)-controlled.

In fact, since (P̃α)α∈A is an A-basis for I, and since A is adapted to I, Proposition 8.2 shows

that

(61) ∂βP̃α(x0) = 0 for |β| < |α|, α ∈ A.

Moreover, (57), (58), (60) show that, for α ∈ A, |β| ≤ m, we have

η|β|−|α|| ∂βP̃α(x0)| ≤
∑
α′∈A

η|β|−|α
′|| ∂βPα′(x0)| · |Mα′α| ≤ C .

Thus,

(62) |∂βP̃α(x0)| ≤ Cη|α|−|β| for α ∈ A, |β| ≤ m.

Our results (61), (62) tell us that (P̃α)α∈A is (η, C)-controlled.

Thus, we know that A is adapted to I, that (P̃ )α∈A is an A-basis, and that (P̃α)α∈A is

(η, C)-controlled.

The proof of Lemma 8.2 is complete. �
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§9. An A-basis on a Small Ball

In this section, we suppose we are given a Glaeser stable family of ideals, (I(x))x∈E. We

write E0 for the first slice of E.

We say that an open ball B(y0, η) ⊂ Rn with radius η < 1 is an “excellent ball” if there

exists A ⊆M for which the following hold:

(I) For each x ∈ E0∩B(y0, η), A is adapted to I(x), and I(x) admits an (η, C1)-controlled

A-basis.

(II) Let x, x′ ∈ E0 ∩ B(y0, η), and let (Pα)α∈A be the A-basis for I(x). Then, for each

α ∈ A, there exists P ′
α ∈ I(x′), with

|∂β(P ′
α − Pα)(x)| ≤ |x− x′|m−|β| for |β| ≤ m .

(III) Given ε > 0, there exists δ > 0 for which the following holds:

Let x, x′ ∈ E0 ∩B(y0, η), with |x−x′| ≤ δ. Let (Pα)α∈A be the A-basis for I(x). Then,

for each α ∈ A, there exists P ′
α ∈ I(x′), with

|∂β(P ′
α − Pα)(x)| ≤ ε|x− x′|m−|β| for |β| ≤ m .

Here, C1 is a large enough controlled constant, to be picked later.

We recall that, in view of (I) and Proposition 8.1, there exists a unique A-basis for I(x), at

each x ∈ E0 ∩B(y0, η).

Note that any open ball of radius < 1 that does not meet E0 satisfies (I), (II), (III) vacuously,

and is therefore excellent.

The goal of this section is to prove that every sufficiently small open ball is excellent.

Lemma 9.1: Let x0 ∈ E0 be given. Then there exists ρ > 0 such that any open ball

contained in B(x0, ρ) is excellent.

Proof: We recall from the start of Section 2 a small remark about notation. In our proof

of Lemma 9.1, we will introduce polynomials P x
α , P x,x′

α depending on parameters x, x′ ∈ Rn.
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When we write ∂βP x
α (x) or ∂βP x,x′

α (x), we mean
(

∂
∂y

)α

P x
α (y) or

(
∂
∂y

)α

P x,x′(y) evaluated at

y = x, rather than the derivative of order α of x 7→ P x
α (x) or x 7→ P x,x′

α (x).

Let us apply Lemma 8.2 to the ideal I(x0) and the point x0 ∈ Rn. We obtain a set

A ⊆M adapted to I(x0), a positive number η0, and an (η0, C0)-controlled A-basis (P 0
α)α∈A

for I(x0).

By definition of a slice, we know that the function x 7→ dim πr
xI(x) is constant on E0, for

each r(0 ≤ r ≤ m). Therefore, since A is adapted to I(x0) with x0 ∈ E0, it follows that

(1) A is adapted to I(x) for all x ∈ E0.

Also, since (P 0
α)α∈A is an (η0, C0)-controlled A-basis for I(x0), we have

(2) P 0
α ∈ I(x0) for α ∈ A;

(3) ∂βP 0
α(x0) = δβα for β, α ∈ A; and

(4) |∂βP 0
α(x0)| ≤ C0η

|α|−|β|
0 for α ∈ A, |β| ≤ m.

Next, since (I(x))x∈E is Glaeser stable, (2) shows that there exist Fα ∈ Cm(Rn) (α ∈ A),

with

(5) Jx(Fα) ∈ I(x) for α ∈ A, x ∈ E; and

(6) Jx0(Fα) = P 0
α for α ∈ A.

We fix Fα as above. From (3), (4), (6), we have

(7) |∂βFα(x0)| ≤ C0η
|α|−|β|
0 for α ∈ A, |β| ≤ m; and

(8) ∂βFα(x0) = δβα for β, α ∈ A.

The matrix-valued function x 7→ (∂βFα(x))β,α∈A is continuous on Rn, and equal to the

identity matrix at x = x0 (see (8)).

Hence, for ρ1 > 0 small enough, (∂βFα(x))β,α∈A is invertible for x ∈ B(x0, ρ1), and its inverse

matrix (Mα′α(x))α′,α∈A satisfies
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(9) x 7→ (Mα′α(x))α′,α∈A is continuous on B(x0, ρ1) and equal to the identity matrix at

x = x0.

By definition of (Mα′α), we have

(10)
∑
α′∈A

∂βFα′(x) · Mα′α(x) = δβα for β, α ∈ A and x ∈ B(x0, ρ1).

Now define

(11) P x
α =

∑
α′∈A

Jx(Fα′) · Mα′α(x) for α ∈ A, x ∈ E0 ∩B(x0, ρ1); and

(12) P x,x′
α =

∑
α′∈A

Jx′(Fα′) · Mα′α(x) for α ∈ A, x, x′ ∈ E0 ∩B(x0, ρ1).

From (5), (11), (12), we have

(13) P x
α ∈ I(x) for α ∈ A, x ∈ E0 ∩B(x0, ρ1); and

(14) P x,x′
α ∈ I(x′) for α ∈ A, x, x′ ∈ E0 ∩B(x0, ρ1).

Also, from (10), (11), we have

(15) ∂βP x
α (x) = δβα for β, α ∈ A, x ∈ E0 ∩B(x0, ρ1).

In particular, the P x
α (α ∈ A) are linearly independent for x ∈ E0 ∩B(x0, ρ1). Moreover, the

number of P x
α (α ∈ A) is equal to dim I(x) for x ∈ E0 ∩ B(x0, ρ1), thanks to (1). Together

with (13), these remarks imply

(16) (P x
α )α∈A is the A-basis for I(x), for each x ∈ E0 ∩B(x0, ρ1).

Also, since Fα ∈ Cm(Rn), we learn from (7), (9), (11) that:

For α ∈ A, |β| ≤ m, the function x 7→ ∂βP x
α (x) is continuous on E0 ∩ B(x0, ρ1), and has

absolute value at most C0η
|α|−|β| at x = x0. Consequently, for a positive number ρ2 < ρ1, we

have
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(17) |∂βP x
α (x)| ≤ C ′η

|α|−|β|
0 for |β| ≤ m, α ∈ A, x ∈ E0 ∩B(x0, ρ2).

Also, from (1), (16), and Proposition 8.2, we have

(18) ∂βP x
α (x) = 0 for |β| < |α|, α ∈ A, x ∈ E0 ∩B(x, ρ2).

We now take the constant C1 in the definition of an “excellent ball” to be equal to C ′

from (17). Thus, (16), (17), (18) show that

(19) I(x) admits an (η0, C1)-controlled A-basis, for each x ∈ E0 ∩B(x0, ρ2).

Next, let ε > 0 be given. Since each Fα belongs to Cm(Rn) and E0 is compact, there

exists δ > 0 such that, for x, x′ ∈ E0 with |x− x′| ≤ δ, we have

(20) |∂β(Jx(Fα)− Jx′(Fα))(x)| ≤ 1
2
ε|x− x′|m−|β| for |β| ≤ m, α ∈ A.

From (9), (11), (12) we obtain a positive number ρ3 < ρ2, independent of ε, such that, for

x, x′ ∈ E0 ∩B(x0, ρ3), (20) implies

|∂β(P x
α − P x,x′

α )(x)| ≤ ε|x− x′|m−|β| for |β| ≤ m, α ∈ A .

Consequently, we obtain:

(21) Given ε > 0, there exists δ > 0 such that, for any x, x′ ∈ E0∩B(x0, ρ3) with |x−x′| ≤ δ,

we have

|∂β(P x
α − P x,x′

α )(x)| ≤ ε|x− x′|m−|β| for |β| ≤ m, α ∈ A .

In particular, (21) gives us a positive number δ1, such that

(22) For any x, x′ ∈ E0 ∩B(x0, ρ3) with |x− x′| ≤ δ1, we have

|∂β(P x
α − P x,x′

α )(x)| ≤ |x− x′|m−|β| for |β| ≤ m, α ∈ A.

If we take ρ to be a positive number less than the minimum of ρ3,
1
2
δ1, 1, η0, then (22) yields
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(23) For any x, x′ ∈ E0 ∩B(x0, ρ), and for |β| ≤ m, α ∈ A, we have

|∂β(P x
α − P x,x′

α )(x)| ≤ |x− x′|m−|β| .

Now let B(y0, η) be any open ball contained in B(x0, ρ). We will show that B(y0, η) is

an excellent ball, thus proving Lemma 9.1.

In fact, we have η ≤ ρ < 1 by our choice of ρ. We must show that (I), (II), (III) hold for

B(y0, η).

To check (I), we first note that A is adapted to I(x) for all x ∈ E0 ∩ B(y0, η) (see (1)).

Moreover, since η ≤ ρ ≤ η0 and

(24) B(y0, η) ⊂ B(x0, ρ) ⊂ B(x0, ρ3) ⊂ B(x0, ρ2) ⊂ B(x0, ρ1)

we know from (16), (17), (18) that

|∂βP x
α (x)| ≤ C1η

|α|−|β| for α ∈ A , |α| ≤ |β| ≤ m, x ∈ E0 ∩B(y0, η)

and

∂βP x
α (x) = 0 for |β| < |α|, α ∈ A, x ∈ E0 ∩B(y0, η) ,

where

(P x
α )α∈A is the A-basis for I(x), x ∈ E0 ∩B(y0, η).

Thus, I(x) admits an (η, C1)-controlled A-basis for each x ∈ E0 ∩B(y0, η).

This completes the proof of (I) for the ball B(y0, η).

To check (II), we just recall (16) , (14), (23), and the inclusions (24).

Thus, for any x, x′ ∈ E0 ∩B(y0, η) and any α ∈ A, we obtain

|∂β(P x
α − P x,x′

α )(x)| ≤ |x− x′|m−|β| for |β| ≤ m ,

where P x,x′
α ∈ I(x′) and (P x

β )β∈A is the A-basis for I(x).

This completes the proof of (II) for the ball B(y0, η).

Finally, to check (III), we just recall (16), (14), (21), and the inclusions (24).
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Thus, given ε > 0 there exists δ > 0 such that, for x, x′ ∈ E0 ∩B(y0, η) with |x− x′| ≤ δ,

we have

|∂β(P x
α − P x,x′

α )(x)| ≤ ε|x− x′|m−|β| for |β| ≤ m, α ∈ A ,

where P x,x′
α ∈ I(x′) for α ∈ A, and (P x

α )α∈A is the A-basis for I(x).

This completes the proof of (III) for the ball B(y0, η).

We have now shown that any open ball B(y0, η) ⊂ B(x0, ρ) has radius less than 1 and

satisfies (I), (II), (III).

Thus, any open ball contained in B(x0, ρ) is excellent.

The proof of Lemma 9.1 is complete. �

Lemma 9.2: Let (I(x))x∈E be a Glaeser stable family of ideals.

Then there exists η̄ > 0 such that any open ball of radius less than η̄ is excellent.

Proof: Let B(x0, ρ) be an open ball in Rn. We will call B(x0, ρ) a “useful” ball if every

open ball B(y0, η) ⊂ B(x0, 10ρ) with radius η < ρ is excellent. By Lemma 9.1, every point

of E0 is the center of a useful ball. Since E0 if compact, it follows that E0 is covered by

finitely many useful balls B(x1, ρ1), . . . , B(xN , ρN). We take η̄ = min(1, ρ1, . . . , ρN) > 0; we

show that every open ball B(y0, η) of radius η < η̄ is excellent. In fact, if B(y0, η) is disjoint

from E0, then (as we observed earlier) B(y0, η) is an excellent ball, for trivial reasons. If

B(y0, η) is not disjoint from E0, then let x̃ ∈ B(y0, η) ∩ E0. We have x̃ ∈ B(xν , ρν) for

some ν(1 ≤ ν ≤ N). For that ν, we have also x̃ ∈ B(y0, η) and η < η̄ ≤ ρν . Consequently,

B(y0, η) ⊂ B(xν , 10ρν). Since B(xν , ρν) is useful, it follows that B(y0, η) is excellent.

The proof of Lemma 9.2 is complete. �

§10. Analysis on an Excellent Ball

In this section, we suppose we are given the following data:

• A vector space Ξ with a seminorm | · |.

• A Glaeser stable family of cosets (gξ(x) + I(x))x∈E,ξ∈Ξ depending linearly on ξ ∈ Ξ.
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• An open ball B(y0, η) ⊂ Rn.

• A positive constant A.

Note that the family of ideals (I(x))x∈E is Glaeser stable.

Let E0 be the first slice for the family of ideals (I(x))x∈E.

We make the following

Assumptions

(1) y0 ∈ E0.

(2) B(y0, η) is an excellent ball for the family of ideals (I(x))x∈E. (See Section 9.)

(3) We have gξ(y0) ∈ I(y0) for all ξ ∈ Ξ.

(4) For any ξ ∈ Ξ with |ξ| ≤ 1, there exists G ∈ Cm(Rn), with

‖ G ‖Cm(Rn)≤ A , and Jx(G) ∈ gξ(x) + I(x) for all x ∈ E .

Let A ⊆M be as in the definition of an “excellent ball” in Section 9.

For x ∈ E0 ∩B(y0, η), let (P x
α )α∈A be the A-basis for I(x).

Then, for x ∈ E0 ∩B(y0, η), we define a linear map projx : P → P ,

by setting

(5) projx P = P −
∑
α∈A

[∂αP (x)] · P x
α .

Recall that P is the vector space of mth degree polynomials on Rn.

We note a few elementary properties of projx.

Proposition 10.1: Let x ∈ E0 ∩B(y0, η), and let P ∈ P. Then:

(6) P − projx P ∈ I(x);
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(7) If P ∈ I(x), then projx P = 0; and

(8) ∂β(projxP )(x) = 0 for β ∈ A.

Here, ∂β(projxP )(x) denotes
(

∂
∂y

)β

(projxP )(y) evaluated at y = x.

Proof: We have (6), simply because each P x
α belongs to I(x).

To prove (8), we note that, for β ∈ A, we have

∂β(projxP )(x) = ∂βP (x)−
∑
α∈A

[∂αP (x)] · ∂βP x
α (x) = 0 ,

since ∂βP x
α (x) = δβα for β, α ∈ A (because (P x

α )α∈A is the A-basis for I(x)).

To prove (7), suppose P ∈ I(x). Then (6) gives projx P ∈ I(x). Since (P x
α )α∈A is a basis

for I(x), we therefore have

(9) projxP =
∑
α∈A

AαP x
α for some coefficients Aα.

Since ∂βP x
α (x) = δβα for β, α ∈ A, we learn from (8) and (9) that

0 = ∂β(projxP )(x) =
∑
α∈A

Aα∂βP x
α (x) = Aβ for any β ∈ A .

Therefore, (9) gives projxP = 0, completing the proof of (7). �

Lemma 10.1: Let ξ ∈ Ξ, with |ξ| ≤ 1. Then, for x, x′ ∈ E0 ∩B(y0, η), we have

|∂β(projxgξ(x)− projx′gξ(x
′))(x)| ≤ CA|x− x′|m−|β| for |β| ≤ m .

Proof: Recall that C denotes a constant depending only on m and n.

Let (P ′
α)α∈A satisfy the following conditions.

(10) P ′
α ∈ I(x′) for α ∈ A;

(11) |∂β(P x
α − P ′

α)(x)| ≤ |x− x′|m−|β| for |β| ≤ m, α ∈ A.
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Such P ′
α exist, by part (II) of the definition of an excellent ball.

Also, we fix G ∈ Cm(Rn), with

(12) ‖ G ‖Cm(Rn)≤ A

and

(13) Jx(G) ∈ gξ(x) + I(x) for all x ∈ E.

We set P = Jx(G) and P ′ = Jx′(G). From (12) we have

(14) |∂βP (x)| ≤ CA for |β| ≤ m, and

(15) |∂β(P − P ′)(x)| ≤ CA|x− x′|m−|β| for |β| ≤ m.

Note that

(16) projxgξ(x) = projxJx(G) = projxP , and

(17) projx′gξ(x
′) = projx′Jx′(G) = projx′P

′,

thanks to (13) and (7).

We define

(18) P̃ = P −
∑
α∈A

[∂αP (x)] · P x
α

and

(19) P̃ ′ = P ′ −
∑
α∈A

[∂αP (x)] · P ′
α.

Then P̃ = projxP by definition, and projx′P
′ = projx′P̃

′ by (7) and (10).

Hence, (16), (17) yield

(20) projxgξ(x) = P̃ , and
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(21) projx′gξ(x
′) = projx′P̃

′.

For |β| ≤ m, we have

(22) |∂β(P̃ − P̃ ′)(x)| ≤ |∂β(P − P ′)(x)| +
∑
α∈A

|∂αP (x)| · |∂β(P x
α − P ′

α)(x)|

≤ CA|x− x′|m−|β| +
∑
α∈A

[CA] · |x− x′|m−|β|

≤ C ′A|x− x′|m−|β| , by (18), (19), (15), (14), (11) .

In particular, for β ∈ A, we have

∂βP̃ (x) = ∂β(projxP )(x) = 0 by (8). Hence (22) yields

|∂βP̃ ′(x)| ≤ C ′A|x− x′|m−|β| for β ∈ A.

Since A is monotonic (by definition of an “excellent ball”), it follows that

(23) |∂γ+βP̃ ′(x)| ≤ C ′A|x− x′|m−|β|−|γ| for β ∈ A, |γ| ≤ m− |β|.

Since ∂βP̃ ′ is a polynomial of degree at most m− |β|, (23) implies

(24) |∂βP̃ ′(x′)| ≤ CA|x− x′|m−|β| for β ∈ A.

Now, for |β| ≤ m, we have

(25) |∂β[P̃ ′ − projx′P̃
′](x′)| = |

∑
α∈A

[∂αP̃ ′(x′)] · ∂βP x′

α (x′)|

(by definition of projx′)

≤
∑
α∈A
|α|≤|β|

|∂αP̃ ′(x′)| · |∂βP x′

α (x′)|

(since ∂βP x′
α (x′) = 0 for α ∈ A, |β| < |α|; see Proposition 8.2)
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≤
∑
α∈A
|α|≤|β|

[CA|x− x′|m−|α|] · [Cη|α|−|β|]

(by (24) and the fact that (P x′
α )α∈A is (η, C1)-controlled; see the definition of an “excellent

ball”, and also the definition of “(η, C1)-controlled”)

≤
∑
α∈A
|α|≤|β|

[CA|x− x′|m−|α|] · [C|x− x′||α|−|β|]

(since |x− x′| ≤ 2η because x, x′ ∈ B(y0, η))

≤ CA |x− x′|m−|β|.

Since P̃ ′ − projx′P̃
′ is an mth degree polynomial on Rn, (25) implies

(26) |∂β[P̃ ′ − projx′P̃
′] (x)| ≤ CA|x− x′|m−|β| for |β| ≤ m.

From (22) and (26), we have

|∂β(P̃ − projx′P̃
′)(x)| ≤ CA|x− x′|m−|β| for |β| ≤ m .

In view of (20), (21), this means that

|∂β(projxgξ(x)− projx′gξ(x
′))(x)| ≤ CA|x− x′|m−|β| for |β| ≤ m ,

which is the conclusion of Lemma 10.1.

The proof of the Lemma is complete. �

Similarly, we have the following result.

Lemma 10.2: Let ξ ∈ Ξ and ε > 0 be given. Then there exists δ > 0 such that, for any

x, x′ ∈ E0 ∩B(y0, η) with |x− x′| ≤ δ, we have

|∂β(projxgξ(x)− projx′gξ(x
′))(x)| ≤ ε|x− x′|m−|β| for |β| ≤ m .

Proof: Since ξ 7→ gξ(x) is linear for each x ∈ E, we may assume without loss of generality

that |ξ| ≤ 1.

Let ε′ > 0 be a small, positive number, to be picked later.
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By part (III) of the definition of an excellent ball, there exists δ1 > 0, for which the following

holds.

(27) Given x, x′ ∈ E0 ∩ B(y0, η) with |x − x′| ≤ δ1, there exists a family of polynomials

(P ′
α)α∈A, such that

(a) P ′
α ∈ I(x′) for α ∈ A;

and

(b) |∂β(P x
α − P ′

α)(x)| ≤ ε′|x− x′|m−|β| for |β| ≤ m, α ∈ A.

Also, we fix G ∈ Cm(Rn), with

(28) ‖ G ‖Cm(Rn)≤ A, and

(29) Jx(G) ∈ gξ(x) + I(x) for all x ∈ E.

Since G ∈ Cm(Rn) and E0 is compact, there exists δ2 > 0 for which the following holds.

(30) Given x, x′ ∈ E0 with |x− x′| ≤ δ2, we have

|∂β(Jx(G)− Jx′(G))(x)| ≤ ε′|x− x′|m−|β| for |β| ≤ m .

Now suppose x, x′ ∈ E0 ∩B(y0, η) with |x− x′| ≤ min(δ1, δ2).

Then (27) and (30) apply. We fix (P ′
α)α∈A as in (27); and we set

P = Jx(G), P ′ = Jx′(G),

P̃ = P −
∑
α∈A

[∂αP (x)] · P x
α ,

P̃ ′ = P ′ −
∑
α∈A

[∂αP (x)] · P ′
α,

as in the proof of Lemma 10.1. As in that proof, we have

(31) projxgξ(x) = P̃ and projx′gξ(x
′) = projx′P̃

′.
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By (28) and (30), we have

(32) |∂βP (x)| ≤ CA for |β| ≤ m, and

(33) |∂β(P − P ′)(x)| ≤ ε′|x− x′|m−|β| for |β| ≤ m.

For |β| ≤ m, we have

(34) |∂β(P̃ − P̃ ′)(x)| ≤ |∂β(P − P ′)(x)|+
∑
α∈A

|∂αP (x)| · |∂β(P x
α − P ′

α)(x)|

≤ ε′|x− x′|m−|β| +
∑
α∈A

[CA] · [ε′|x− x′|m−|β|] (by (27)(b), (32), (33))

≤ [C + CA] · ε′|x− x′|m−|β|.

From (34) it follows, as in the proof of Lemma 10.1, that

(35) |∂βP̃ ′(x′)| ≤ [C + CA] · ε′|x− x′|m−|β| for β ∈ A.

Proceeding as in our derivation of (25), we obtain for |β| ≤ m the estimates

(36) |∂β(P̃ ′ − projx′P̃
′)(x′)| =

∣∣∣∣∣∑
α∈A

[∂αP̃ ′(x′)] · ∂βP x′

α (x′)

∣∣∣∣∣
≤

∑
α∈A
|α|≤|β|

|∂αP̃ ′(x′)| · |∂βP x′

α (x′)|

≤
∑
α∈A
|α|≤|β|

[(CA + C) · ε′ · |x− x′|m−|α|] · [Cη|α|−|β|]

≤
∑
α∈A
|α|≤|β|

[(CA + C) · ε′ · |x− x′|m−|α|] · [C|x− x′||α|−|β|]

≤ (CA + C) · ε′ · |x− x′|m−|β|,

thanks to (35). Since P̃ ′ − projx′P̃
′ is an mth degree polynomial, (36) implies

(37) |∂β(P̃ ′ − projx′P̃
′)(x)| ≤ (CA + C) · ε′ · |x− x′|m−|β| for |β| ≤ m.
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From (31), (34), (37), we see that

(38) |∂β[projxgξ(x)− projx′gξ(x
′)](x)| ≤ [CA + C] ε′|x− x′|m−|β| for |β| ≤ m.

Taking ε′ = ε/[CA + C] with C as in (38), we obtain the conclusion of Lemma 10.2.

The proof of the Lemma is complete. �

We prepare to apply the classical Whitney extension theorem, i.e., Theorem 2.1.

Recall that this result produces a linear extension operator E : Cm
jet(E) → Cm(Rn), for any

compact E ⊂ Rn.

The main result of this section is as follows.

Lemma 10.3: There exists a linear map ξ 7→ Gξ, from Ξ into Cm(Rn), with norm at most

CA, such that the following properties hold.

(a) Jx(Gξ) ∈ gξ(x) + I(x) for all x ∈ E0 ∩B(y0,
1
2
η) , ξ ∈ Ξ .

(b) Jy0(Gξ) = 0 for all ξ ∈ Ξ.

Proof: We start with a corollary of Lemma 10.1, namely

(39) |∂β[projxgξ(x)](x)| ≤ CA for |β| ≤ m, x ∈ E0 ∩B(y0, η), |ξ| ≤ 1.

To prove (39), we note that assumptions (1), (3), and property (7) show that

(40) projy0
gξ(y0) = 0 for all ξ ∈ Ξ.

Hence, putting x′ = y0 in Lemma 10.1, we learn that

(41) |∂β[projxgξ(x)]| ≤ CA|x− y0|m−|β| for |β| ≤ m, x ∈ E0 ∩B(y0, η).

For x ∈ E0 ∩B(y0, η), we have |x− y0|m−|β| ≤ ηm−|β| ≤ 1, since an excellent ball B(y0, η)

has radius η ≤ 1 by definition. Hence, (41) implies (39).
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Let B̄(y0,
1
2
η) denote the closed ball about y0 with radius 1

2
η.

In view of (39) and Lemmas 10.1 and 10.2, the linear map ξ 7→ (projxgξ(x))x∈E0∩B̄(y0, 1
2
η)

carries Ξ into Cm
jet (E0 ∩ B̄(y0,

1
2
η)), and has norm at most CA.

Now let E : Cm
jet(E0 ∩ B̄(y0,

1
2
η)) → Cm(Rn) be as in Theorem 2.1.

Thus, E has norm at most C, and Jx(E ~f ) = f(x) for ~f = (f(x))x∈E ∈ Cm
jet(E0∩B̄(y0,

1
2
η))

and x ∈ E0 ∩ B̄(y0,
1
2
η). We define

Gξ = E([projxgξ(x)]x∈E0∩B̄(y0, 1
2
η)) for ξ ∈ Ξ .

Thus, ξ 7→ Gξ is a linear map from Ξ into Cm(Rn), with norm at most CA. Moreover,

for ξ ∈ Ξ, x ∈ E0 ∩ B̄(y0,
1
2
η), we have

(42) Jx(Gξ) = Jx(E([projxgξ(x)]x∈E0∩B̄(y0, 1
2
η))) = projxgξ(x), by the defining property of E .

From (6) and (42), we obtain

Jx(Gξ) ∈ gξ(x) + I(x) for x ∈ E0 ∩ B̄(y0,
1
2
η) , ξ ∈ Ξ ;

which is conclusion (a) of Lemma 10.3.

Also, from (40) and (42), we obtain

Jy0(Gξ) = 0 for all ξ ∈ Ξ ,

which is conclusion (b).

The proof of Lemma 10.3 is complete. �

§11. The Second Main Lemma

In this section, we pass from F 00
ξ to the “corrected” linear map ξ 7→ F 0

ξ = F 00
ξ + F̃ξ, as

described in the Introduction.

Second Main Lemma: Let Ξ be a vector space with a seminorm | · |, and suppose

(fξ(x) + I(x))x∈E,ξ∈Ξ is a Glaeser stable family of cosets, depending linearly on ξ ∈ Ξ.

Let E0 be the first slice.
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Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with ‖ F ‖Cm(Rn)≤ 1, and

Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Then there exists a linear map ξ 7→ F 0
ξ , from Ξ into Cm(Rn), with norm at most C, and

satisfying the following properties.

(A) If ξ ∈ Ξ with |ξ| ≤ 1, then Jx(F 0
ξ ) ∈ Γξ(x, k̄, C) for all x ∈ E0, with k̄ as in

Lemma 3.1.

(B) For any ξ ∈ Ξ, we have Jx(F 0
ξ ) ∈ fξ(x) + I(x) for all x ∈ E0.

Here, C depends only on m and n.

Proof: Since (fξ(x) + I(x))x∈E,ξ∈Ξ is Glaeser stable, it follows that

(1) (I(x))x∈E is Glaeser stable.

Let A > 0 be a large number, and let η > 0 be a small number, to be picked later. We

introduce a partition of unity

(2)
∑

ν

θν = 1 on Rn,

with

(3) supp θν ⊂ B(xν ,
1
2
η)

and

(4) |∂βθν | ≤ Cη−|β| on Rn, for |β| ≤ m + 1.

Here, the points xν in (3) may be taken to satisfy

(5) Any given ball of radius η intersects at most C of the balls B(xν , η).

Let Ω be the set of ν for which B(xν ,
1
2
η) ∩ E0 is non-empty.

Note that Ω is finite, thanks to (5) and the compactness of E0.

For x ∈ E0, we have x ∈ supp θν only for ν ∈ Ω. Hence, (2) implies
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(6)
∑
ν∈Ω

Jx(θν) = 1 for all x ∈ E0.

For each ν ∈ Ω, we pick yν ∈ E0 ∩B(xν ,
1
2
η). From (3), we have

(7) supp θν ⊂ B(yν , η) for ν ∈ Ω.

Let

(8) E00 = {yν : ν ∈ Ω}.

Thus, E00 is a finite subset of E0; and (6), (7) show that

(9) No point of E0 lies farther than distance η from E00.

In view of (9) and the hypotheses of the Second Main Lemma, we are in position to apply

the First Main Lemma. We write η0(A) for the small constant called η0 in the statement of

the First Main Lemma. Recall that η0(A) is determined by A and by the family of cosets

(fξ(x) + I(x))x∈E,ξ∈Ξ.

From the First Main Lemma, we learn the following.

Suppose η satisfies

(10) η < η0(A).

Then there exists a linear map ξ 7→ F 00
ξ , from Ξ into Cm(Rn), with norm at most C, such

that the following hold.

(11) Jx(F 00
ξ ) ∈ fξ(x) + I(x) for all x ∈ E00, ξ ∈ Ξ.

(12) Let ξ ∈ Ξ with |ξ| ≤ 1. Let x ∈ E0 and Q ∈ P . Suppose Jx(F 00
ξ ) + Q ∈ fξ(x) + I(x),

and suppose also that |∂βQ(x)| ≤ Aηm−|β| for |β| ≤ m.

Then Jx(F 00
ξ ) + Q ∈ Γξ(x, k̄, A′), where k̄ is as in Lemma 3.1, and A′ is determined by

A, m, n.
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We fix ξ 7→ F 00
ξ as above.

Next, we apply Lemma 9.2. (The hypothesis of Lemma 9.2 holds here, thanks to (1).)

Thus, we obtain η̄ > 0, determined by (I(x))x∈E, such that

(13) B(yν , 2η) is an excellent ball, for each ν ∈ Ω, provided η satisfies

(14) η < η̄.

We define a new family of cosets (gξ(x) + I(x))x∈E,ξ∈Ξ depending linearly on ξ ∈ Ξ, by

taking

(15) gξ(x) = fξ(x)− Jx(F 00
ξ ) for ξ ∈ Ξ, x ∈ E.

Since F 00
ξ ∈ Cm(Rn) and (fξ(x) + I(x))x∈E,ξ∈Ξ is Glaeser stable, it follows that

(16) (gξ(x) + I(x))x∈E,ξ∈Ξ is Glaeser stable.

Also, from (11) and (8), we see that

(17) Jyν (gξ) ∈ I(yν) for ν ∈ Ω, ξ ∈ Ξ.

Moreover, suppose ξ ∈ Ξ with |ξ| ≤ 1. Then we have ‖ F 00
ξ ‖Cm(Rn)≤ C, since ξ 7→ F 00

ξ has

norm at most C.

Also, by hypothesis of the Second Main Lemma, there exists F ∈ Cm(Rn), with

‖ F ‖Cm(Rn)≤ 1, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E .

Setting G = F −F 00
ξ , we therefore have G ∈ Cm(Rn), ‖ G ‖Cm(Rn)≤ C, Jx(G) ∈ gξ(x) + I(x)

for all x ∈ E.

We have proven the following:

(18) Given ξ ∈ Ξ with |ξ| ≤ 1, there exists G ∈ Cm(Rn), with ‖ G ‖Cm(Rn)≤ C, and

Jx(G) ∈ gξ(x) + I(x) for all x ∈ E.
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Thanks to (13), (17), (18) and the defining properties of yν , we see that the standing

assumptions (10.1),..., (10.4) of Section 10 hold here, with our present yν in place of y0 in

Section 10, with 2η in place of η, and with a controlled constant C in place of A in Section

10. Hence, we may apply Lemma 10.3.

For each ν ∈ Ω, Lemma 10.3 gives us a linear map ξ 7→ Gν,ξ, from Ξ into Cm(Rn), with

norm at most C, such that the following properties hold.

(19) Jx(Gν,ξ) ∈ gξ(x) + I(x) for all x ∈ E0 ∩B(yν , η), ξ ∈ Ξ.

(20) Jyν (Gν,ξ) = 0 for all ξ ∈ Ξ.

In particular, for ξ ∈ Ξ with |ξ| ≤ 1, we have

‖ Gν,ξ ‖Cm(Rn)≤ C and Jyν (Gν,ξ) = 0. Consequently, we have

(21) |∂βGν,ξ(x)| ≤ Cηm−|β| for |β| ≤ m, x ∈ B(yν , η), |ξ| ≤ 1.

Our results (19), (20), (21) hold for all ν ∈ Ω.

We now define

(22) F̃ξ =
∑
ν∈Ω

θν · Gν,ξ for ξ ∈ Ξ.

Thus, ξ 7→ F̃ξ is a linear map from Ξ into Cm(Rn).

Suppose ξ ∈ Ξ, with |ξ| ≤ 1. From (4), (7), (21), we see that

|∂β{θν · Gν,ξ}| ≤ Cηm−|β| on Rn, for |β| ≤ m, ν ∈ Ω.

Also, from (3) and (5), we see that any given ball of radius η intersects at most C of the

supports of the functions {θν · Gν,ξ}, ν ∈ Ω. Consequently, we have

(23) |∂βF̃ξ| = |
∑
ν∈Ω

∂β{θν · Gν,ξ}| ≤ Cηm−|β| on Rn, for |β| ≤ m, |ξ| ≤ 1.
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It follows that the linear map ξ 7→ F̃ξ from Ξ to Cm(Rn) has norm at most C, provided we

take η to satisfy

(24) η ≤ 1.

Suppose once more that ξ ∈ Ξ with |ξ| ≤ 1, and let x ∈ E0. From (19) and (7), we learn

that

Jx(Gν,ξ) ∈ gξ(x) + I(x) = fξ(x)− Jx(F 00
ξ ) + I(x) ,

whenever supp θν 3 x and ν ∈ Ω. Consequently,

(25) Jx(θν · Gν,ξ) ∈ Jx(θν) � [fξ(x) − Jx(F 00
ξ )] + I(x) for all ν ∈ Ω, where � denotes

multiplication in Rx, and we have used the fact that I(x) is an ideal.

Summing (25) over all ν ∈ Ω, and recalling (6), we find that

Jx(F̃ξ) =
∑
ν∈Ω

Jx(θν · Gν,ξ) ∈ fξ(x)− Jx(F 00
ξ ) + I(x) .

Thus, we have shown that

(26) Jx(F 00
ξ ) + Jx(F̃ξ) ∈ fξ(x) + I(x) for x ∈ E0, |ξ| ≤ 1.

Also, from (23), we have

(27) |∂β[Jx(F̃ξ)](x)| ≤ C1η
m−|β| for |β| ≤ m, |ξ| ≤ 1.

If we take

(28) A > C1,

with C1 as in (27), then from (26), (27) and (12), we learn that

(29) Jx(F 00
ξ ) + Jx(F̃ξ) ∈ Γξ(x, k̄, A′) for x ∈ E0, |ξ| ≤ 1.
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Here, k̄ is as in Lemma 3.1, and A′ is determined by A, m, n.

We now pick the constants A and η. First, we take A to be a controlled constant, large

enough to satisfy (28).

We then pick η > 0 small enough to satisfy the smallness assumptions (10), (14) and (24).

With A, η picked in this manner, the above arguments go through, and the constant A′ in

(29) is controlled (i.e., it depends only on m and n).

Thus, from (29), we have

(30) Jx(F 00
ξ + F̃ξ) ∈ Γξ(x, k̄, C) for x ∈ E0, |ξ| ≤ 1,

with k̄ as in Lemma 3.1.

Finally, as promised in the Introduction, we define

F 0
ξ = F 00

ξ + F̃ξ for ξ ∈ Ξ .

Since ξ 7→ F 00
ξ and ξ 7→ F̃ξ are linear maps from Ξ into Cm(Rn) with norm at most C, the

same is true for ξ 7→ F 0
ξ .

Moreover, conclusion (A) of the Second Main Lemma is precisely our result (30). Since

Γξ(x, k̄, C) ⊆ fξ(x) + I(x), it follows that

(31) Jx(F 0
ξ ) ∈ fξ(x) + I(x) for x ∈ E0, |ξ| ≤ 1.

Since the maps ξ 7→ F 0
ξ and ξ 7→ fξ(x) (x ∈ E) are both linear, we may drop the assumption

|ξ| ≤ 1 from (31).

This proves conclusion (B) of the Second Main Lemma.

The proof of the Second Main Lemma is complete. �

§12. The Error Outside the First Slice

In this section, we study fξ(x)− Jx(F 0
ξ ) for x outside the first slice E0, where fξ and F 0

ξ

are as in the Second Main Lemma.
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Lemma 12.1: Let Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ, E0, and ξ 7→ F 0
ξ be as in the Second Main

Lemma.

Then, given ξ ∈ Ξ with |ξ| ≤ 1, and given x0 ∈ E0, there exists G ∈ Cm(Rn), with

‖ G ‖Cm(Rn)≤ C, Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for all x ∈ E, and Jx0(G) = 0 .

Proof: Set P0 = Jx0(F
0
ξ ). By the Second Main Lemma, we have P0 ∈ Γξ(x0, k̄, C) with k̄ as

in Lemma 3.1. That is, given x1, . . . , xk̄ ∈ E, there exist

P1 ∈ fξ(x1) + I(x1), . . . , Pk̄ ∈ fξ(xk̄) + I(xk̄), with

|∂βPi(xi)| ≤ C for |β| ≤ m, 0 ≤ i ≤ k̄; and

|∂β(Pi − Pj)(xj)| ≤ C|xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k̄.

Hence, Lemma 3.1 shows that there exists F ∈ Cm(Rn), with

(1) ‖ F ‖Cm(Rn)≤ C, Jx(F ) ∈ fξ(x) + I(x) for x ∈ E, and Jx0(F ) = P0.

Setting G = F − F 0
ξ ∈ Cm(Rn), and recalling that

(2) ‖ F 0
ξ ‖Cm(Rn)≤ C

by the Second Main Lemma, we conclude from (1) and (2) that G satisfies the conditions

asserted in Lemma 12.1.

The proof of the lemma is complete. �

Lemma 12.2: Let Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ, E0 and ξ 7→ F 0
ξ be as in the Second Main

Lemma.

Then, given ξ ∈ Ξ and ε > 0, there exists δ > 0 for which the following holds:

Given x0 ∈ E0, there exists G ∈ Cm(Rn), with

‖ G ‖Cm(Rn)< ε, Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for all x ∈ E ∩B(x0, δ) , and Jx0(G) = 0 .
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Proof: Fix ξ ∈ Ξ. Then (fξ(x) + I(x))x∈E is Glaeser stable, and F 0
ξ ∈ Cm(Rn). Hence,

(fξ(x)− Jx(F 0
ξ ) + I(x))x∈E is Glaeser stable.

We take k = k̄ from Lemma 3.1, and we take k# as in Section 4. Thus, k ≥ 1 and

1 + (D + 1) · k ≤ k#, as in the hypotheses of Lemma 3.6. We apply Lemma 3.6 to the family

of cosets H = (fξ(x)− Jx(F 0
ξ ) + I(x))x∈E, for x0 ∈ E0 and P0 = 0.

We recall from Proposition 2.2 that the first slice E0 is contained in the lowest stratum E1.

From the Second Main Lemma, we recall also that 0 ∈ fξ(x0)−Jx0(F
0
ξ )+I(x0). Consequently,

given ε > 0, Lemma 3.6 applied to H provides a positive number δ, for which the following

holds:

(3) Given x0 ∈ E0 and x1, . . . , xk̄ ∈ E ∩B(x0, δ), there exist

P1 ∈ fξ(x1)− Jx1(F
0
ξ ) + I(x1), . . . , Pk̄ ∈ fξ(xk̄)− Jxk̄

(F 0
ξ ) + I(xk̄) ,

with

(4) |∂β(Pi − Pj)(xj)| ≤ ε|xi − xj|m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k̄; where P0 = 0.

By taking δ smaller in (3), we may assume that B(x0, δ) is a closed ball, and that δ < 1.

Taking i = 0 in (4), we learn that

(5) |∂βPj(xj)| ≤ ε|x0 − xj|m−|β| ≤ εδm−|β| ≤ ε for |β| ≤ m, 0 ≤ j ≤ m.

In view of (3), (4) and (5), Lemma 3.1 applies to the Glaeser stable family of cosets

(fξ(x) − Jx(F 0
ξ ) + I(x))x∈E∩B(x0,δ), with A = ε and P0 = 0. Therefore, there exists

G ∈ Cm(Rn), with

(6) ‖ G ‖Cm(Rn)≤ Cε, Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for x ∈ E ∩B(x0, δ), and Jx0(G) = 0.

We can achieve (6) for any x0 ∈ E0. Lemma 12.2 follows trivially. �



Cm Extension by Linear Operators 71

§13. The Rescaled Induction Hypothesis

For δ > 0 and F ∈ Cm(Rn), we introduce the norm

‖ F ‖Cm
δ (Rn)= max

|β|≤m
sup
x∈Rn

|∂βF (x)| · δ|β|−m .

We write Cm
δ (Rn) for the vector space Cm(Rn) equipped with the norm ‖ · ‖Cm

δ (Rn).

Next, suppose we are given a Glaeser stable family of ideals J = (I(x))x∈E, and a positive

number δ. Let f = (f(x))x∈E be a family of m-jets, with f(x) ∈ Rx for all x ∈ E. We say

that f ∈ Cm
δ (E,J ) if there exists F ∈ Cm

δ (Rn) with Jx(F ) ∈ f(x) + I(x) for all x ∈ E; and

we write ‖ f ‖Cm
δ (E,J ) for all infimum of ‖ F ‖Cm

δ (Rn) over all such F .

Thus, Cm
δ (E,J ) is a vector space equipped with a seminorm.

Note that (f(x) + I(x))x∈E is Glaeser stable for f = (f(x))x∈E ∈ Cm
δ (E,J ).

The purpose of this section is to establish the following simple result.

Lemma 13.1 (Rescaled Induction Hypothesis): Fix ∧ ≥ 1, and assume that Theorem 4

holds whenever the number of slices is less than ∧.

Let δ > 0, and let J = (I(x))x∈E be a Glaeser stable family of ideals, with fewer than ∧
slices.

Then there exists a bounded linear map T : Cm
δ (E,J ) → Cm

δ (Rn), with the following

properties.

(A) The norm of T is less than a constant C depending only on m and n.

(B) Let f = (f(x))x∈E belong to Cm
δ (E,J ). Then

Jx(Tf) ∈ f(x) + I(x) for all x ∈ E.

Proof: By an obvious rescaling, we may assume that δ = 1.

We now follow the reduction of Theorem 2 to Theorem 4 in Section 1.

We take Ξ = Cm
1 (E,J ), with the seminorm |ξ| = 2 ‖ ξ ‖Cm

1 (E,J ). For x ∈ E, there is a natural

tautological map ξ 7→ fξ(x) from Ξ to Rx, defined by fξ(x) = g(x) for ξ = (g(x))x∈E ∈ Ξ.
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Thus, Ξ is a vector space with a seminorm | · |, and (fξ(x) + I(x))x∈E,ξ∈Ξ is a Glaeser stable

family of cosets, depending linearly on ξ ∈ Ξ.

Moreover, given ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with ‖ F ‖Cm(Rn)≤ 1, and

Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

Thus, Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ satisfy the hypotheses of Theorem 4. Also, by hypothesis,

the number of slices is less than ∧, and Theorem 4 holds whenever the number of slices is

less than ∧. Consequently, we obtain a linear map T : ξ 7→ Fξ, from Ξ into Cm(Rn), with

norm at most C, such that

Jx(Fξ) ∈ fξ(x) + I(x) for all x ∈ E, ξ ∈ Ξ .

Recalling the definitions of Ξ, | · |, fξ(x), we conclude that the linear map T behaves as

asserted in the statement of Lemma 13.1.

The proof of the lemma is complete. �

§14. Whitney Cubes

Let E0 be a compact subset of Rn. We define a partition of Rn r E0 into “Whitney

cubes” Qν , and we introduce cutoff functions θν , θ
+
ν adapted to the Qν .

We begin with some notation. Let Q be a cube in Rn. To “bisect” Q means to partition

it into 2n congruent subcubes in the obvious way. Also, we write Q∗ for the closed cube

having the same center as Q, but with three times the diameter of Q. Similarly, we write

Q+ for the cube having the same center as Q, but with (1 + c1) times the diameter of Q.

Here, c1 is a small enough constant depending only on the dimension n.

To construct the Whitney cubes, we first partition Rn into a grid of cubes Q0
i , i = 1, 2, . . . ,

with diameter 1. We than successively “bisect” each Q0
i in Caldeŕon-Zygmund fashion,

stopping at a cube Q whenever we have

dist(Q∗, E0) > diam(Q∗) .

Let {Qν} be the collection of all the cubes obtained in this manner from all the Q0
i ; and let

δν be the diameter of Qν .
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Then the Whitney cubes Qν have the following geometrical properties. (See, e.g., the

proof of the classical Whitney extension theorem in [17,21,23].)

(1) The Qν form a partition of Rn r E0.

(2) Each Q∗
ν is a closed cube disjoint from E0.

(3) δν ≤ 1.

(4) If δν < 1, then there exists xν ∈ E0, with distance (xν , Qν) ≤ Cδν , hence

Q∗
ν ⊂ B(xν , C

′δν).

(5) If Q+
µ and Q+

ν intersect, then c < δµ/δν < C.

(6) For each ν, there are at most C distinct µ for which Q+
µ meets Q+

ν .

(7) Each point of Rn r E0 has a neighborhood that meets at most C of the Q+
ν .

(8) Given x ∈ E0 and δ > 0, there exists a neighborhood of x that intersects none of the

Q+
ν with δν ≥ δ.

(9) Given x ∈ Rn r E0, there exist a neighborhood U of x and a positive number δ(x),

such that δν > δ(x) for any ν such that Q+
ν intersects U .

Next, we introduce a “Whitney partition of unity”. We can find functions

θν , θ
+
ν ∈ Cm(Rn), with the following properties.

(10)
∑

ν

θν = 1 on Rn r E0.

(11) θ+
ν = 1 on supp (θν), and supp θ+

ν ⊂ Q+
ν .

(12) |∂βθν(x)|, |∂βθ+
ν (x)| ≤ Cδ

−|β|
ν for |β| ≤ m, x ∈ Rn, all ν.

Again, see the proof of Whitney’s classical theorem in [17,21,23].

We will use the above cubes and cutoff functions in the next section, taking E0 to be the

first slice.
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§15. Proof of the Main Result

In this section, we give the proof of Theorem 4. As explained in the Introduction, we

use induction on the number of slices. If the number of slices is zero, then Theorem 4 holds

trivially (as also noted in the Introduction).

Fix ∧ ≥ 1, and assume that

(1) Theorem 4 holds for the case of fewer than ∧ slices.

Let Ξ, | · |, (fξ(x)+I(x))x∈E,ξ∈Ξ be as in the hypotheses of Theorem 4, and assume that

(2) The number of slices for (I(x))x∈E is equal to ∧.

Under these assumptions, we will prove the conclusion of Theorem 4.

This will complete our induction and establish Theorem 4.

Let E0 be the first slice. We recall that E0 is compact.

We use the Whitney cubes {Qν} and cutoff functions θν , θ
+
ν from the preceding section.

These satisfy (14.1) , . . . , ( 14.12), with δν = diameter (Qν).

We apply the Second Main Lemma, and Lemmas 12.1 and 12.2.

Thus, we obtain a linear map ξ 7→ F 0
ξ , from Ξ into Cm(Rn), with the following properties.

(3) If ξ ∈ Ξ with |ξ| ≤ 1, then ‖ F 0
ξ ‖Cm(Rn)≤ C.

(4) Jx(F 0
ξ ) ∈ fξ(x) + I(x) for all x ∈ E0, ξ ∈ Ξ.

(5) Suppose ξ ∈ Ξ with |ξ| ≤ 1, and suppose y0 ∈ E0. Then there exists G ∈ Cm(Rn),

with ‖ G ‖Cm(Rn)≤ C, Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for x ∈ E, Jy0(G) = 0.

(6) Given ξ ∈ Ξ and ε > 0, there exists δ > 0 with the following property:

Suppose y0 ∈ E0. Then there exists G ∈ Cm(Rn), with

‖ G ‖Cm(Rn)< ε , Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for x ∈ E ∩B(y0, δ) , and Jy0(G) = 0 .

For each ν, we define
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(7) gν,ξ(x) = Jx(θν)� [fξ(x)− Jx(F 0
ξ )] for x ∈ E ∩Q∗

ν , ξ ∈ Ξ.

Here, � denotes multiplication in Rx. Note that

(8) ξ 7→ gν,ξ(x) is a linear map from Ξ into Rx, for each x ∈ E ∩Q∗
ν .

Note also that

(9) Jν = (I(x))x∈E∩Q∗
ν

is Glaeser stable, with fewer than ∧ slices, thanks to (2) and (14.2).

Hence, Lemma 13.1 and (1) yield a linear map

(10) Tν : Cm
δν

(E ∩Q∗
ν ,Jν) → Cm

δν
(Rn), for each ν, with the following properties.

(11) The norm of Tν is at most C.

(12) Let g = (g(x))x∈E∩Q∗
ν
∈ Cm

δν
(E ∩Q∗

ν ,Jν). Then

Jx(Tνg) ∈ g(x) + I(x) for all x ∈ E ∩Q∗
ν .

We remark that the functions called Fξ,ν in the Introduction are given here by

Fξ,ν = Tν(gν,ξ) with gν,ξ as in (7) .

The next two lemmas estimate the Cm
δν

(E ∩Q∗
ν , Jν)-seminorms of the gν,ξ.

Lemma 15.1: Let ξ ∈ Ξ, with |ξ| ≤ 1. Then gν,ξ ∈ Cm
δν

(E ∩Q∗
ν ,Jν) and

‖ gν,ξ ‖Cm
δν

(E∩Q∗
ν ,Jν)≤ C for each ν.

Proof: We look separately at the cases δν < 1 and δν = 1. (See (14.3).)

Suppose first that δν < 1. We let xν and C ′ be as in (14.4), and then apply (5), with y0 = xν .

Let G be as in (5). Since ‖ G ‖Cm(Rn)≤ C and Jxν (G) = 0, we have |∂βG(x)| ≤ Cδ
m−|β|
ν for

|β| ≤ m, x ∈ B(xν , C
′δν), and therefore for |β| ≤ m, x ∈ Q∗

ν . Together with (14.11) and

(14.12), this shows that

(13) θνG ∈ Cm(Rn), with |∂β(θνG)(x)| ≤ Cδ
m−|β|
ν for |β| ≤ m, x ∈ Rn.
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Also, for x ∈ E ∩Q∗
ν , we have (with � denoting multiplication in Rx):

(14) Jx(θνG) ∈ Jx(θν)� [fξ(x)− Jx(F 0
ξ ) + I(x)] (by (5))

⊆ Jx(θν)� [fξ(x)− Jx(F 0
ξ )] + I(x) (since I(x) is an ideal)

= gν,ξ(x) + I(x) (by (7)).

The conclusion of Lemma 15.1 is immediate from (13), (14), and the definition of the

Cm
δν

(E ∩Q∗
ν ,Jν)-seminorm.

This proves Lemma 15.1 in the case δν < 1.

On the other hand, suppose that δν = 1. Since Ξ, | · |, (fξ(x) + I(x))x∈E,ξ∈Ξ satisfy the

hypotheses of Theorem 4, there exists F ∈ Cm(Rn), with

(15) ‖ F ‖Cm(Rn)≤ 1, and Jx(F ) ∈ fξ(x) + I(x) for all x ∈ E.

From (15), (3), and (14.12) with δν = 1, we learn that

(16) G = θν · (F − F 0
ξ ) ∈ Cm(Rn), with ‖ G ‖Cm(Rn)≤ C.

Moreover, for x ∈ E ∩Q∗
ν , we have (with � denoting multiplication in Rx):

(17) Jx(G) ∈ Jx(θν)� [fξ(x)− Jx(F 0
ξ ) + I(x)] (by (15))

⊆ Jx(θν)� [fξ(x)− Jx(F 0
ξ )] + I(x) (since I(x) is an ideal)

= gν,ξ(x) + I(x) (by (7)).

Comparing (16) and (17) with the definition of the Cm
δ (E,J )-seminorm (with δ = 1), we

conclude that

gν,ξ ∈ Cm
δν

(E ∩Q∗
ν ,Jν), with ‖ gν,ξ ‖Cm

δν
(E∩Q∗

ν ,Jν)≤ C, in the case δν = 1.

The proof of Lemma 15.1 is complete �

Lemma 15.2: Given ξ ∈ Ξ and ε > 0, there exists δ > 0 such that

‖ gν,ξ ‖Cm
δν

(E∩Q∗
ν ,Jν) < ε for δν < δ.
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Proof: Let δ > 0 be as in (6), and suppose δν < 1.

Let xν and C ′ be as in (14.4). If C ′δν < δ, then from (6) with y0 = xν , we obtain G ∈ Cm(Rn),

with

(18) ‖ G ‖Cm(Rn)< ε and Jxν (G) = 0,

and

(19) Jx(G) ∈ fξ(x)− Jx(F 0
ξ ) + I(x) for x ∈ E ∩B(xν , C

′δν), hence for x ∈ E ∩Q∗
ν .

From (18), we obtain

|∂βG(x)| ≤ Cεδ
m−|β|
ν for x ∈ B(xν , C

′δν), |β| ≤ m; hence for x ∈ Q∗
ν , |β| ≤ m.

Together with (14.11) and (14.12), this shows that

(20) |∂β[θνG]| ≤ Cεδ
m−|β|
ν on Rn, for |β| ≤ m.

Also, for x ∈ E ∩Q∗
ν , we have (with � denoting multiplication in Rx):

(21) Jx(θνG) ∈ Jx(θν)� [fξ(x)− Jx(F 0
ξ ) + I(x)] (by (19))

⊆ Jx(θν)� [fξ(x)− Jx(F 0
ξ )] + I(x) (since I(x) is an ideal)

= gν,ξ(x) + I(x) (see (7)).

Comparing (20), (21) with the definition of the Cm
δν

(E ∩Q∗
ν ,Jν)-seminorm, we see that

(22) ‖ gν,ξ ‖Cm
δν

(E∩Q∗
ν ,Jν)≤ Cε.

We have proven (22) under the assumptions δν < 1, C ′δν < δ.

This trivially implies Lemma 15.2. �

Now, for δ > 0, we define

(23) F
[δ]
ξ = F 0

ξ +
∑
δν>δ

θ+
ν · Tν(gν,ξ) for ξ ∈ Ξ.
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Note that

(24) For fixed δ > 0, each x ∈ Rn has a neighborhood on which the sum in (23) includes at

most C non-zero terms.

(This follows from (14.7), (14.8), (14.11).)

Also, we recall that F 0
ξ , θ+

ν , and Tν(gν,ξ) are Cm functions on Rn.

It follows that F
[δ]
ξ is well-defined by (23), belongs to Cm

`oc(Rn), and satisfies the estimates:

(25) ‖ F
[δ]
ξ ‖Cm(Rn)≤‖ F 0

ξ ‖Cm(Rn) + C sup
ν
‖ θ+

ν · Tν(gν,ξ) ‖Cm(Rn) for ξ ∈ Ξ,

and

(26) ‖ F
[δ̄1]
ξ − F

[δ̄2]
ξ ‖Cm(Rn)≤ C sup

δ̄1≤δν≤δ̄2

‖ θ+
ν · Tν(gν,ξ) ‖Cm(Rn) for 0 < δ̄1 < δ̄2 and ξ ∈ Ξ.

In particular, if the right-hand side of (25) is finite, then F
[δ]
ξ belongs to Cm(Rn).

Since ξ 7→ F 0
ξ is linear, and since each Tν is linear, (23) gives

(27) ξ 7→ F
[δ]
ξ is a linear map from Ξ into Cm

`oc(Rn), for each δ > 0.

Next, we examine Jx(F
[δ]
ξ ) for x ∈ Rn.

From (23) and (14.8), we obtain

(28) Jx(F
[δ]
ξ ) = Jx(F 0

ξ ) for x ∈ E0, ξ ∈ Ξ, δ > 0.

On the other hand, suppose x ∈ Rn r E0. We define

(29) Ω(x) = {ν : x ∈ suppθ+
ν } for x ∈ Rn r E0.

From (14.7) and (14.11), we see that

(30) Ω(x) contains at most C elements.
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From (14.10), (14.11), and (29), we have

(31)
∑

ν∈Ω(x)

Jx(θν) = 1 for x ∈ Rn r E0.

Also, from (14.9), (14.11), and (23), (29), we see that

(32) Jx(F
[δ]
ξ ) = Jx(F 0

ξ ) +
∑

ν∈Ω(x)

Jx(θ+
ν · Tν gν,ξ) for x ∈ Rn r E0, 0 < δ < δ(x), ξ ∈ Ξ.

Here, δ(x) is the small positive number from (14.9).

We estimate the right-hand sides of (25) and (26). To do this, note that

‖ F ‖Cm(Rn)≤‖ F ‖Cm
δ (Rn) for δ ≤ 1, and that δν ≤ 1. (See (14.3).)

Now, suppose |ξ| ≤ 1. From (3), (10), (11), and Lemma 15.1, we learn that

‖ F 0
ξ ‖Cm(Rn)≤ C and

‖ θ+
ν · Tν(gν,ξ) ‖Cm(Rn)≤‖ θ+

ν · Tν(gν,ξ) ‖Cm
δν

(Rn)

≤ C ‖ Tν(gν,ξ) ‖Cm
δν

(Rn) (see (14.12)) ≤

C ‖ gν,ξ ‖Cm
δν(E∩Q∗

ν ,Jν)≤ C.

Therefore, (25) shows that F
[δ]
ξ ∈ Cm(Rn), with ‖ F

[δ]
ξ ‖Cm(Rn)≤ C.

Thus, we may sharpen (27) as follows.

(33) ξ 7→ F
[δ]
ξ is a bounded linear map from Ξ into Cm(Rn), with norm at most C, for each

δ > 0.

Turning to the right-hand side of (26), we apply (14.12), (10), (11), and Lemma 15.2.

Thus, let ξ ∈ Ξ and ε > 0 be given. If 0 < δ̄1 < δ̄2 and δ̄2 is small enough, then for

δ̄1 ≤ δν ≤ δ̄2 we have

‖ θ+
ν · Tν(gν,ξ) ‖Cm(Rn)≤‖ θ+

ν · Tν(gν,ξ) ‖Cm
δν

(Rn)



Cm Extension by Linear Operators 80

≤ C ‖ Tν(gν,ξ) ‖Cm
δν

(Rn)≤ C ‖ gν,ξ ‖Cm
δν

(E∩Q∗
ν ,Jν)< ε .

Consequently, for fixed ξ ∈ Ξ and ε > 0, the right-hand side of (26) will be less than ε if δ̄2

is small enough.

Hence, (26) shows that, for each fixed ξ ∈ Ξ, the function δ 7→ F
[δ]
ξ , from (0, 1] into

Cm(Rn), is Cauchy as δ → 0+. Consequently, there exists Fξ ∈ Cm(Rn), such that

(34) lim
δ→0+

F
[δ]
ξ = Fξ in Cm(Rn), for each ξ ∈ Ξ.

From (33) and (34), we see that

(35) ξ 7→ Fξ is a bounded linear map from Ξ into Cm(Rn), with norm at most C.

We examine the jet Jx(Fξ) for x ∈ E.

From (4), (28), and (34), we obtain

(36) Jx(Fξ) ∈ fξ(x) + I(x) for x ∈ E0, ξ ∈ Ξ.

On the other hand, suppose x ∈ E r E0, ξ ∈ Ξ. Then (7) and (12) yield

(37) Jx(Tνgν,ξ) ∈ gν,ξ(x) + I(x) = Jx(θν)� [fξ(x)− Jx(F 0
ξ )] + I(x) for all ν with Q+

ν 3 x,

with � denoting multiplication in Rx.

We have Q+
ν 3 x for all ν ∈ Ω(x). (See (29) and (14.11).) Hence, for ν ∈ Ω(x), (37) holds,

and consequently

(38) Jx(θ+
ν · Tνgν,ξ) ∈ Jx(θ+

ν )� [Jx(θν) � (fξ(x)− Jx(F 0
ξ )) + I(x)]

⊆ Jx(θ+
ν )� Jx(θν)� [fξ(x)− Jx(F 0

ξ )] + I(x) (since I(x) is an ideal)

= Jx(θν) � [fξ(x)− Jx(F 0
ξ )] + I(x). (See (14.11).)

Summing (38) over all ν ∈ Ω(x), and applying (31), we learn that
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∑
ν∈Ω(x)

Jx(θ+
ν · Tνgν,ξ) ∈ fξ(x)− Jx(F 0

ξ ) + I(x).

Hence, from (32) and (34), we obtain

Jx(Fξ) ∈ fξ(x) + I(x) for x ∈ E r E0, ξ ∈ Ξ.

Together with (36), this yields

(39) Jx(Fξ) ∈ fξ(x) + I(x) for x ∈ E, ξ ∈ Ξ.

Our results (35) and (39) are the conclusions of Theorem 4.

This completes our induction on ∧, and thus proves Theorem 4.

Since we have already shown that Theorem 4 implies Theorem 2, which in turn implies

Theorem 1, we have proven those results as well. �
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