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Abstract

Given a function f : E → R with E ⊂ R
n, we explain how to decide whether f extends
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whose Cm norm has the least possible order of magnitude (joint work with B. Klartag).
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Let f : E → R be a function defined on a given (arbitrary) set E ⊂ R
n, and let m ≥ 1 be

a given integer. How can we decide whether f extends to a function F ∈ Cm(Rn)? If such an

F exists, then how small can we take its Cm norm? What can we say about the derivatives

of F up to order m at a given point? Can we take F to depend linearly on f?

These questions go back to work of H. Whitney [33,34,35] in 1934. In the decades since

Whitney’s seminal work, fundamental progress was made by G. Glaeser, [23] Y. Brudnyi and

P. Shvartsman [4...9 and 28...30], and E. Bierstone-P. Milman-W. Paw�lucki [1]. (See also N.

Zobin [36,37] for the solution of a closely related problem.) Building on this work, our recent

papers [11...16] gave a complete solution to the above problems. Along the way, we solved

the analogous problems with Cm(Rn) replaced by Cm,ω(Rn), the space of functions whose

mth derivatives have a given modulus of continuity ω. (See [14,15].) It is natural also to

consider Sobolev spaces Wm,p(Rn), for which work on the above problems is just beginning

(see Shvartsman [31]).

The finite, effective versions of the above problems are basic questions about interpolation

of data: Let E ⊂ R
n be a finite set, and let f : E → R be given. Fix m ≥ 1. We want

to find an interpolant, i.e., a function F ∈ Cm(Rn) such that F = f on E. How small can

we take the Cm norm of an interpolant? How can we compute an interpolant whose Cm

norm is close to least possible? What if we require only that F and f agree approximately

on E? What if we are allowed to discard a few points from E? An efficient solution to these

problems would likely have practical applications. Joint work [19,20] of B. Klartag and the

author shows how to compute efficiently an interpolant F whose Cm norm is within a factor

C of least possible, where C is a constant depending only on m and n. Unfortunately, we

don’t know whether that constant C is absurdly large; we suspect that it is. To remedy this

defect, and hopefully obtain results with practical applications, we pose the following sharper

version of the interpolation problem.

Let m, n ≥ 1, and let f : E → R, where E ⊂ R
n consists of N points. Let ε > 0 be given.

Compute an interpolant F whose Cm norm is within a factor (1 + ε) of least possible.

Work on this difficult problem is just beginning. (See [17,18].)

The goal of this expository paper is to state our main results on the classical Whitney

problems for Cm(Rn), and our joint results with Klartag on the problem of interpolation. We



omit here our results on Cm,ω(Rn), and e.g. the recent work of Shvartsman on Wm,p(Rn).

Also, we make no attempt to explain here the ideas in our proofs and algorithms, and merely

content ourselves with stating theorems. We hope to present those ideas in a more detailed

exposition, to be written someday.

This article is an expanded version of a talk given at a conference celebrating the 25th

anniversary of the founding of MSRI. It was a pleasure and an honor to participate in that

conference. I am grateful to Anna Tsao for bringing to my attention the practical problem

of fitting a smooth surface to data. I am grateful also to Gerree Pecht, for expertly LATEXing

this article.

Let us state our problems in more detail.

Fix integers m, n ≥ 1. We will work in Cm(Rn), the space of Cm functions F : R
n → R

for which the norm

‖ F ‖Cm(Rn) = max
|α|≤m

sup
x∈Rn

|∂αF(x)|

is finite. For F ∈ Cm(Rn) and x ∈ R
n, we write Jx(F) (the “jet” of F at x) to denote the mth

degree Taylor polynomial of F at x, i.e.,

[Jx(F)](y) =
∑

|α|≤m

1

α!
[∂αF(x)] · (y − x)α for y ∈ R

n .

Thus, Jx(F) belongs to P, the vector space of all real-valued mth degree polynomials on R
n.

We answer the following four questions.

Suppose we are given a compact† set E ⊂ R
n and a function f : E → R.

Question 1: How can we decide whether there exists a function F ∈ Cm(Rn) such that

F = f on E?

Question 2: Let x ∈ R
n be given. Compute

†In the introduction, we took E to be arbitrary. Without loss of generality, we can take E to be compact.
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AT P(x) = {Jx(F) : F ∈ Cm(Rn) , F = f on E} .

(Here “ATP” stands for “Allowed Taylor Polynomials”.)

Note that AT P(x) is a (possibly empty) affine subspace of P.

Question 3: Compute the order of magnitude of

‖ f ‖Cm(E) = inf {‖ F ‖Cm(Rn): F ∈ Cm(Rn) , F = f on E} .

We owe the reader a precise definition of the phrase “order of magnitude”. Suppose

X, Y ≥ 0 are real numbers determined by m, n and other data (e.g. the set E and the function

f). Then we say that X and Y have “the same order of magnitude”, and we write X ∼ Y,

provided cX ≤ Y ≤ CX for constants c and C depending only on m and n. To “compute the

order of magnitude” of X is to compute some Y such that X ∼ Y.

Define a Bauach space

Cm(E) =
{
F
∣∣
E

: F ∈ Cm(Rn)
}

, equipped with the norm ‖ f ‖Cm(E) from Question 3.

Question 4: Is there a bounded linear map

T : Cm(E) → Cm(Rn)

such that

Tf
∣∣
E

= f for all f ∈ Cm(E) ?

There are analogues of the above questions with Cm(Rn) replaced by other function spaces,

e.g. Sobolev spaces Wm,p(Rn), or the space Cm,ω(Rn) of all Cm functions whose mth deriva-

tives have modulus of continuity ω.

For Cm,ω(Rn), these problems are completely solved, although we do not discuss them

here; see [13,14,15]. In the setting of Wm,p(Rn), work is just beginning; see Shvartsman [31].

Next we pose our effective, finite problems.
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Suppose we are given:

• E ⊂ R
n finite;

• f : E → R; and

• σ : E → [0, ∞).

Question 5: Decide whether there exists F ∈ Cm(Rn) such that

‖ F ‖Cm(Rn) � 1

and

|F(x) − f(x)| � σ(x) for all x ∈ E.

Here and below, we write X � Y to indicate that X ≤ CY, for a constant C depending

only on m and n. To appreciate Question 5, think of an experimenter measuring F(x) for

x ∈ E, and obtaining the experimental result f(x) with uncertainty σ(x). See Figure 1 for

two examples.
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Figure 1: Graphs of two different sets of experimental data.
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In the following sharper version of Question 5, we are asked to compute a more-or-less optimal

interpolant F ∈ Cm(Rn).

Question 6: Compute a function F ∈ Cm(Rn) and a real number M ≥ 0, such that

‖ F ‖Cm(Rn)≤ M

and

|F(x) − f(x)| ≤ Mσ(x) for all x ∈ E,

with M having the least possible order of magnitude.

We will explain later what it means to “compute a function F”. We write ‖ f ‖Cm(E,σ) to

denote the infimum of M over all pairs F, M as in Question 6.

Perhaps some of the data gathered by our experimenter are “outliers”, and should be

discarded. Which data points should we discard?

Question 7: Suppose we are given E ⊂ R
n (finite), f : E → R, σ : E → [0, ∞), and an

integer Z, less than the number of points in E. How can we find a subset S ⊂ E with at most

Z points, in such a way that the norm ‖ f ‖Cm(E�S,σ) is as small as possible?

We regard Questions 5,6,7 as computer-science problems. We seek algorithms, and we ask

how many computer operations are needed to carry out those algorithms.

Let us briefly review some of the history of Questions 1 through 4. The subject starts

with the work of H. Whitney [33,34,35] in 1934. Whitney answered Questions 1 through 4 for

Cm(R1) (i.e., for the case n = 1), and he proved the classical Whitney Extension Theorem,

which gives a simple, complete answer to the following question.

Question 0: Let E ⊂ R
n be compact. Suppose that for each x ∈ E we are given an mth

degree polynomial Px ∈ P. How can we decide whether there exists a function F ∈ Cm(Rn)

such that Jx(F) = Px for all x ∈ E?

See also [25] and [32] for the classical Whitney theorem.

In 1958, G. Glaeser [23] answered Questions 1 and 2 for C1(Rn), i.e., for the case m = 1.
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He gave a geometrical solution based on his notion of the “interated paratangent space”.

This notion is defined in terms of iterated limits. Examples given by Glaeser [23] and

Klartag-Zobin [24] suggest strongly that any complete answer to Question 1 must bring in

such iterated limits.

In a series of papers [4...9 and 28...30] from the 1970’s to the present decade, Y. Brudnyi

and P. Shvartsman studied the analogues of Questions 1 through 4 for the space Cm,ω(Rn)

(the space of functions whose mth derivatives have modulus of continuity ω).

They conjectured the following crucial

Finiteness Principle:

To decide whether a given f : E → R extends to a function F ∈ Cm,ω(Rn), it is enough

to look at all restrictions f
∣∣
S
, where S ⊂ E is an arbitrary k-element subset. Here, k is an

integer constant depending only on m and n.

More precisely, if f
∣∣
S

extends to a function FS ∈ Cm,ω(Rn) of norm at most 1 (for each

S ⊂ E with at most k elements), then f extends to a function F ∈ Cm,ω(Rn), whose norm is

bounded by a constant depending only on m and n.

Brudnyi and Shvartsman proved the above Finiteness Principle in the first non-trivial

case, m = 1. Their proof introduces the elegant idea of “Lipschitz selection”, and produces

for m = 1 the optimal k, namely k = 3 ·2n−1. See [7]. The papers of Brudnyi and Shvartsman

contain additional results and conjectures relevant to Questions 1 through 4.

The next significant progress on Questions 1 and 2 was the paper [1] of E. Bierstone, P.

Milman and W. Paw�lucki. They found an analogue of Glaeser’s iterated paratangent space

for Cm(Rn). Using this notion, they answered a variant of Questions 1 and 2 in the case

where E is a subanalytic set. Their version of the iterated paratangent space is very close to

the dual of the “Glaeser-stable bundle” defined later in this exposition. See [1,2,12].

Question 4 was answered affirmatively in the case m = 1 by Bromberg [3], and in the case

n = 1 by Merrien [26]. See also [8].

Let us now prepare to answer Questions 1 through 4.

6



It is convenient to view these questions from the broader context of “bundles”. With apologies

to geometers, we start by defining “bundles” as follows.

Let E ⊂ R
n be a compact set. For each x ∈ E, suppose we specify a (possibly empty)

affine subspace Hx ⊂ P.

Then we call the family H = (Hx)x∈E a “bundle” over E.

We refer to Hx as the “fiber” of H at x. If H = (Hx)x∈E and H′
x = (H′

x)x∈E are bundles

over the same compact set E, then we say that H′ is a “sub-bundle” of H provided we have

H′
x ⊆ Hx for all x ∈ E. Note that Hx need not vary continuously with x; in fact, dim Hx may

vary wildly.

The crucial question regarding “bundles” is as follows.

Question 1′: Let H = (Hx)x∈E be a bundle over a compact set. How can we decide whether

there exists a function F ∈ Cm(Rn) such that Jx(F) ∈ Hx for all x ∈ E?

We call such a function F a “section” of the bundle H, and we write F ∈ Γ(H).

Note that if any of the fibers Hx is empty, then obviously the bundle H has no sections.

It is easy to see that Question 1′ generalizes Question 1. In fact, given f : E → R, we

define a bundle H = (Hx)x∈E by setting

Hx = {P ∈ P : P(x) = f(x)} for all x ∈ E.

A section of the bundle H is precisely a Cm function F such that F = f on E. Consequently,

Question 1 is a particular case of Question 1′. The corresponding generalizations of Questions

2 and 3 are as follows.

Question 2′: Let H = (Hx)x∈E be a bundle over a compact set E. For x ∈ R
n, compute the

affine space ATP(x, H) = {Jx(F) : F ∈ Γ(H)} ⊆ P .

Question 3′: Let H = (Hx)x∈E be a bundle over a compact set E. Compute the order of

magnitude of the infimum of ‖ F ‖Cm(Rn) over all sections F ∈ Γ(H).

We put off the generalization of Question 4 until later. Note that AT P(x, H) may be empty.
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Our initial plan is to answer Questions 1,2,3 by answering the more general Questions 1′, 2′, 3′.

Unfortunately, Questions 1′, 2′, 3′ as stated are absurdly general. For instance, any variable-

coefficient partial differential equation with boundary conditions on a bounded domain Ω

may be written as

(∗) LF = g on Ω , L̃ F = h on ∂Ω .

Here, F is the unknown function; g and h are given; and L, L̃ are variable-coefficient linear

partial differential operators.

Taking E= closure (Ω), we note that the condition LF(x) = g(x) for a particular x ∈ Ω,

or L̃F(x) = h(x) for a particular x ∈ ∂Ω, asserts simply that the jet Jx(F) belongs to a

particular affine subspace Hx ⊆ P. Thus, the boundary-value problem (∗) has a Cm solution

F if and only if the bundle (Hx)x∈E has a section.

Consequently, Question 1′ contains as a special case every linear boundary-value problem

(in which the unknown is a single real-valued function). Particular cases of (∗) are already

highly non-trivial open problems. We are unlikely to get a complete answer to Question 1′

anytime soon.

The cure is to change our definition of a “bundle”. To prepare the way, let x ∈ R
n

be given. Then the vector space P becomes a ring under a natural multiplication 	x (“jet

multiplication”), uniquely specified by demanding that Jx(FG) = Jx(F) 	x Jx(G) for any

smooth functions F, G. More explicitly, if

P(y) =
∑

|α|≤m

Aα · (y − x)α and Q(y) =
∑

|β|≤m

Bβ · (y − x)β ,

then P 	x Q is the polynomial

(P 	x Q)(y) =
∑

|α|+|β|≤m

Aα · Bβ · (y − x)α+β .

That is, we simply multiply P by Q in the usual way, and then discard powers of (y − x) of
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order greater than m. Now we can give our revised definition of a “bundle”.

Let E ⊂ R
n be a compact set. For each x ∈ E, let Hx be either the empty set, or else a

coset of an ideal in the ring (P,	x). Then we call H = (Hx)x∈E a “bundle”. Thus, rather

than a translate of a vector subspace of P, we demand that a non-empty fiber must be a

translate of an ideal.

From now on, we adopt the above revised definition of “bundles”. It is now reasonable to

pose Questions 1′, 2′, 3′. As before, these questions generalize Questions 1,2,3. In the next

few pages, we answer our (appropriately general) Questions 1′, 2′, 3′.

A key idea regarding Questions 1′, 2′, 3′ is that of “Glaeser refinement”. Given a bundle

H = (Hx)x∈E, we will produce another bundle H̃ = (H̃x)x∈E, called the “Glaeser refinement”

of H, with three crucial properties:

(A) H̃ is a sub-bundle of H.

(B) Any section of H is already a section of H̃.

(C) H̃ can be computed from H by doing linear algebra and taking a limit.

Before giving the definition of the Glaeser refinement, we explain how to exploit properties

(A), (B), (C). The idea is to iterate the Glaeser refinement: Suppose we want to understand

the sections of a given bundle H0. According to properties (A) and (B), we may without loss

of generality replace H0 by its Glaeser refinement H1. Again applying properties (A) and (B),

we may similarly replace H1 by its own Glaeser refinement H2. Continuing by induction, we

define each Hk to be the Glaeser refinement of Hk−1; and we know from repeated applications

of (A) and (B) that

(†1) H0 ⊇ H1 ⊇ H2 ⊇ . . .

while

(†2) Γ(H0) = Γ(H1) = Γ(H2) = . . . .

9



Without loss of generality, we may replace our original bundle H0 by its kth iterated Glaeser

refinement Hk. Each Hk arises from Hk−1 as in property (C) above. Thus, we pass from our

given bundle H0 to the sub-bundle Hk by taking a k-fold iterated limit.

The above construction, taken from [12], is a slight variant of a construction given in

Bierstone-Milman-Paw�lucki [1]. A simple ingenious Lemma of Glaeser [23], adapted by

Bierstone-Milman-Paw�lucki [1], shows that the above process stabilizes. In fact, let

k∗ = 2 · dim P + 1. Then

Hk∗ = Hk∗+1 = Hk∗+2 = . . . .

That is, the bundle Hk∗ is “Glaeser stable”, i.e., it is its own Glaeser refinement. Since H0

and Hk∗ have the same sections, and since Hk∗ is in principle computable from H0 thanks to

(C), we arrive at the following conclusion.

In order to answer Questions 1′, 2′, 3′, we may assume without loss of generality that the

bundle H is Glaeser stable.

Before proceeding further, we give the definition of the Glaeser refinement, and check its

essential properties (A), (B), (C). This is the most technical part of our (otherwise painless)

exposition.

We begin by preparing the way with a few simple remarks.

(#1) Let us fix a large enough integer constant k depending only on m and n.

(#2) Given points x0, x1, . . . , xk ∈ R
n, and given polynomials P0, P1, . . . , Pk ∈ P, we define

Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) =

k∑
i,j = 0

(xi �= xj)

∑
|α|≤m

[
∂α (Pi − Pj) (xj)

|xi − xj|m−|α|

]2

.

(#3) Suppose F ∈ Cm(Rn).

Given x0, x1, . . . , xk ∈ R
n, define Pi = Jxi

(F) for i = 0, 1, . . . , k.

Then

lim
x1,...,xk→x0

Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) = 0 (by Taylor’s theorem).
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Armed with the above useful remark, we can (finally) give the definition of the Glaeser

refinement. Let H = (Hx)x∈E be a bundle over a compact set. The Glaeser refinement

H̃ = (H̃x)x∈E is defined as follows.

Fix x0 ∈ E and P0 ∈ Hx0
. Then P0 ∈ H̃x0

if and only if

(∗) min {Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) : P1 ∈ Hx1
, P2 ∈ Hx2

, . . . , Pk ∈ Hxk
} → 0

as x1, x2, . . . , xk ∈ E tend to x0.

Note that H̃x may be empty, even if all the Hx are non-empty. That is why it is convenient

to allow the case of empty fibers in the definition of “bundle”.

Again, our definition of the Glaeser refinement, taken from [12], is a slight variant of

a definition given in [1]. Let us check that properties (A), (B), (C) hold for the Glaeser

refinement as we have just defined it.

First of all, (A) holds trivially, since we have defined H̃ as a sub-bundle of H. Next, (B)

follows easily from observation (#3). In fact, let F be section of H, and let P0 = Jx0
(F). Then

by taking Pi = Jxi
(F) for i = 1, 2, . . . , k, we see from (#3) that (∗) holds, and thus P0 ∈ H̃x0

.

Consequently, F is also a section of H̃, proving (B). Finally, to prove (C), fix x0 ∈ E and

P0 ∈ Hx0
. For fixed x1, . . . , xk ∈ E, we compute

∧(x0, P0 ; x1 . . . xk) = min {Q(P0, . . . , Pk ; x0, . . . , xk) : P1 ∈ Hx1
, . . . , Pk ∈ Hxk

}

by minimizing a quadratic form over a finite-dimensional affine space; this is routine linear

algebra. By definition, P0 ∈ H̃x0
if and only if ∧(x0, P0 ; x1, . . . , xk) → 0 as x1, . . . , xk ∈ E tend

to x0. Thus, to decide whether P0 ∈ H̃x0
, we carry out routine linear algebra and then take a

limit. This proves (C), concluding our discussion of the definition of the Glaeser refinement.

We are now at the heart of the matter, namely Questions 1′, 2′, 3′ for a Glaeser-stable

bundle. The answers are given by the following result.

Theorem 1. Let H = (Hx)x∈E be a Glaeser-stable bundle over a compact set E. Then

(A) H has a section if and only if all the fibers Hx (x ∈ E) are non-empty.

Moreover, suppose H has a section. Then the following hold.
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(B) For each x ∈ E, we have AT P(x, H) = Hx. (Trivially, for each x ∈ R
n

� E, we have

AT P(x, H) = P.)

(C) Let k be the integer constant from (#1). Then there exists M ∈ (0, ∞) such that, for

any x1, . . . , xk ∈ E there exist polynomials P1 ∈ Hx1
, . . . , Pk ∈ Hxk

such that

|∂αPi(x0)| ≤ M for |α| ≤ m and i = 1, . . . , k ; and

|∂α(Pi − Pj)(xj)| ≤ M |xi − xj|
m−|α| for |α| ≤ m − 1 and i, j = 1, . . . , k .

(D) The infimum of ‖ F ‖Cm(Rn) over all sections F ∈ Γ(H) has the same order of magnitude

as the least possible M in (C).

The proof of this theorem is given in [12]; it builds on the earlier papers [11,14].

We note in passing that every bundle over a finite set E is Glaeser stable; in this case,

conclusions (A), (B), (C) above are obvious, but (D) has non-trivial content.

This concludes our discussion of Questions 1,2,3 and 1′, 2′, 3′.

Regarding Question 4, we have the following result.

Theorem 2. Let E ⊂ R
n be any subset. Then there exists a linear map T : Cm(E) → Cm(Rn),

such that

• Tf
∣∣
E

= f for all f ∈ Cm(E); and

• The norm of T is bounded by a constant depending only on m and n.

Our generalization of Question 4 in the context of bundles is as follows.

Let E ⊂ R
n, and for each x ∈ E, let I(x) ⊂ P be an ideal in the ring (P,	x). We write J

to denote the ideal in Cm(Rn), given by

J = {F ∈ Cm(Rn) : Jx(F) ∈ I(x) for all x ∈ E} .

Thus, Cm(Rn)
/
J is a Banach space. We write π : Cm(Rn) → Cm(Rn)

/
J to denote the natural

projection.
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Theorem 3. Given any E and (I(x))x∈E as above, there exists a linear map T : Cm(Rn)
/
J →

Cm(Rn), such that

• πT = identity on Cm(Rn)
/
J; and

• ‖ T ‖≤ C, with C depending only on m and n.

The last two results are proven in [16].

We recover Theorem 2 from Theorem 3 by taking I(x) = {P ∈ P : P(x) = 0} for each

x ∈ E.

Thus, we have answered the original Questions 1,...,4 arising from Whitney’s work.

We turn now to the effective finite version of the problem, and prepare to address Questions

5,6 and 7.

To do so, we must first explain what it means to “compute a function” F ∈ Cm(Rn) from

data m, n, E, f, σ. We have in mind the following dialogue with a computer.

We first enter the data m, n, E, f, σ. The computer performs “one-time work”, and then

signals to us that it is ready to accept “queries”. We may then repeatedly “query” our

computer. A “query” consists of a point x ∈ R
n. Once we enter the query x, the computer

responds by performing a calculation (the “work at query time”), and then printing out

∂αF(x) for each |α| ≤ m.

In the above definition, we demand that the function F be determined uniquely by the

input data m, n, E, f, σ. We disallow “adaptive algorithms” in which the function F depends

on our queries.

The resources used to “compute a function” F ∈ Cm(Rn) are:

• The number of computer operations needed for the one-time work;

• The number of computer operations needed to answer a query; and

• The number of memory cells needed for the whole computation.

13



We call these simply the “one-time work”, the “query work”, and the “storage”, respec-

tively.

The “computer” we have in mind uses standard von Neumann architecture (see [27]), but

it works with exact real numbers. We assume that an arbitrary real number can be stored

in a single memory cell, and that elementary arithmetic operations on real numbers may be

performed without round-off errors. This model of computation is called “real RAM”. (In

[20], we also give a rigorous discussion of the effects of round-off errors, but we now omit all

further mention of this issue.)

We are looking for algorithms that work well for arbitrary inputs m, n, E, f, σ. If we were

willing to make favorable assumptions on the geometry of the set E (e.g. if E looks something

like a lattice), then our problems would be much easier. An example of a delicate case arises

e.g. if every point of the set E lies near the zero set of a polynomial Q of degree less than m.

For such E, the restriction of F ∈ Cm(Rn) to E changes little when we change F by adding a

multiple of Q. Consequently, a näıve algorithm will carry out an ill-conditioned calculation

and produce an awful result.

Now we are ready to answer Questions 5 and 6, by stating the following results, due to B.

Klartag and the author [19,20]. We write #(E) to denote the number of elements of a finite

set E.

Theorem 4. Given m, n, E, f, σ (with #(E) = N), we can compute the order of magnitude

of ‖ f ‖Cm(E,σ) using at most CN log N operations, and at most CN storage. Here, C depends

only on m and n.

Theorem 5. Given m, n, E, f, σ (with #(E) = N), we can compute a function F ∈ Cm(Rn),

such that

• ‖ F ‖Cm(Rn)≤ M

• |F(x) − f(x)| ≤ Mσ(x) for all x ∈ E

• M ≤ C ‖ f ‖Cm(E,σ).

The computation uses one-time work at most CN log N, query work at most C log N, and

storage at most CN. Here, C depends only on m and n.

14



Very likely these results are best possible. Already it takes CN computer operations

merely to read the data.

Regarding Question 7, we have the following result. See [22].

Theorem 6. Given m, n, E, f, σ, with #(E) = N, there is an enumeration x1, x2, . . . , xN of

the set E, with the following properties:

(A) Let 1 ≤ Z ≤ N, and let S ⊂ E be any subset with at most cZ elements. (Here, c is a

small constant depending only on m and n.) Let S∗
Z := {x1, . . . , xZ}, the first Z points

of our enumeration. Then ‖ f ‖Cm(E�S∗
Z,σ)≤ C ‖ f ‖Cm(E�S,σ), with C depending only on

m and n.

(B) For any Z ≤ N we can compute x1, . . . , xZ using at most CZN log N work and CN

storage, where C depends only on m and n.

Theorem 6(A) tells us that the set S∗
Z of putative “outliers” is “more-or-less-optimal”, in

the sense that we cannot make ‖ f ‖Cm(E�S,σ) much smaller than ‖ f ‖Cm(E�S∗
Z,σ) by using far

fewer points than the Z points of S∗
Z.

We have no reason to believe that the work CZN log N in Theorem 6(B) is best possible.

The proof of Theorem 6 rests on the following refined version [22] of the Brudnyi-Shvartsman

finiteness principle in the setting of Cm(Rn).

Theorem 7. Given m, n, E and σ (with #(E) = N), there exist S1, S2, . . . , SL ⊂ E with the

following properties.

• #(S�) ≤ C for each 
, with C depending only on m and n.

• L ≤ CN, with C depending only on m and n.

• For any f : E → R, we have

‖ f ‖Cm(E,σ) ∼ max
�=1,...,L

‖ f ‖Cm(S�,σ) .
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Moreover, we can compute S1, S2, . . . , SL from m, n, E, σ using at most CN log N work and at

most CN storage, where C depends only on m and n.

In principle, Theorems 4...7 give excellent answers to our effective, finite problems. Unfor-

tunately, some of the constants C in the statements of these results are likely to be absurdly

large. This would rule out practical applications.

Therefore, we pose the following sharpened form of our interpolation problem:

Question 8: Fix m, n ≥ 1. Let f : E → R, with E ⊂ R
n finite. Let ε > 0 be given.

Compute an interpolant F ∈ Cm(Rn), such that ‖ F ‖Cm(Rn)≤ (1 + ε)· ‖ F̃ ‖Cm(Rn) for any

other interpolant F̃.

Recall that an interpolant is simply a function F ∈ Cm(Rn) such that F = f on E.

In order to pose Question 8, we have to return to our definition of the norm on Cm(Rn).

Recall that we have defined

(∗1) ‖ F ‖Cm(Rn)= sup
x∈Rn

max
|α|≤m

|∂αF(x)|.

We could equally well have defined, say,

(∗2) ‖ F ‖Cm(Rn) = sup
x∈Rn

(
∑

|α|≤m

1
α!

|∂αF(x)|2

)1/2

or

(∗3) ‖ F ‖Cm(Rn) =
∑

|α|≤m

sup
x∈Rn

|∂αF(x)|.

Each of these definitions of the Cm-norm leads to a different version of Question 8, whereas

Questions 0...7 are unaffected by our choice of the Cm norm.

Motivated by (∗1) and (∗2), we assume that, for each x ∈ R
n, we are given a norm | · |x

on the vector space P of mth degree polynomials on R
n. We then define

(∗) ‖ F ‖Cm(Rn) = sup
x∈Rn

|Jx(F)|x.
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This includes the formulas (∗1) and (∗2), as we see by taking

|P|x = max
|α|≤m

|∂αP(x)|

and

|P|x =

⎛
⎝ ∑

|α|≤m

1

α!
|∂αP(x)|2

⎞
⎠

1/2

,

respectively.

(Note that the norm (∗3) is not of the form (∗); we will not study Question 8 for the norm

(∗3).) We require that the norms |P|x satisfy two technical assumptions called the “bounded

distortion property” and “approximate translation-invariance”; see [17,18].

Once we have specified the norms | · |x (x ∈ R
n), our Question 8 makes sense; it refers to

the Cm-norm (∗).

From now on, we assume we are given a family of norms | · |x as above; and our Cm norm

is always defined by (∗).

Any algorithm to answer Question 8 must make use of the norms | · |x. We assume that

our computer has access to an Oracle. Given a polynomial P ∈ P and a point x ∈ R
n, the

Oracle returns the value of |P|x, and charges us one unit of “work” to do so. (This assumption

can be weakened; see [18].)

The following problem is related to Question 8, just as Whitney’s Extension Theorem is

related to the classical Whitney extension problem. (See Questions 0 and 1.)

Question 9: Fix m, n ≥ 1. Let E ⊂ R
n be finite. For each x ∈ E, let Px ∈ P be given. Let

ε > 0. Compute a function F ∈ Cm(Rn) with the following properties.

• Jx(F) = Px for each x ∈ E.

• Let F̃ ∈ Cm(Rn) be any other function satisfying Jx(F̃) = Px for each x ∈ E. Then

‖ F ‖Cm(Rn)≤ (1 + ε) · ‖ F̃ ‖Cm(Rn) .

We have a sharp answer to Question 9.
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Theorem 8. Given m, n, ε and (Px)x∈E as in Question 9, with #(E) = N, we can compute

F ∈ Cm(Rn) satisfying the conditions in Question 9, with one-time work C(ε)N log N, query

work C(ε) log N, and storage C(ε)N. Here, C(ε) depends only on m, n, ε and on our choice

of the Cm-norm. See [18].

Here, we are not primarily concerned with the dependence of C(ε) on ε, since in hoped-for

practical applications we can take, say, ε = 3.

The proof of Theorem 8 is based on a finiteness principle analogous to the Brudnyi-

Shvartsman finiteness principle. Unfortunately, the corresponding finiteness principle in the

context of Question 8 is false. (See Fefferman-Klartag [21].)

Regarding Question 8, we at least have the following result, as a consequence of the proof

of Theorem 8. (See [18].)

Theorem 9. Given m, n, E, f, ε, with #(E) = N, we can compute an interpolant F as in Ques-

tion 8, using one-time work C(ε)N5(log N)2, query work C(ε) log N, and storage C(ε)N2.

We can probably do a bit better by tweaking the argument. However, to arrive at an

efficient algorithm for Question 8, we will probably need to find new mathematics to fill the

gap left by the failure of the relevant finiteness principle.

I’ve just begun to make progress on this difficult problem.

I think I see how to give an optimal algorithm for Question 8 in the case of C2(R2). As in

Theorem 8, the one-time work is C(ε)N log N, the query work is C(ε) log N, and the storage

needed is C(ε)N. I hope this result survives when I try to write it up carefully.

The general case (i.e., Question 8 for Cm(Rn)) will require substantial additional ideas.

Let us see what progress can be made in the years ahead.
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