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0. INTRODUCTION
In this paper, we solve the following extension problem.

Problem 1. Suppose we are given a function f : F — R, where F is a given subset
of R®. How can we decide whether f extends to a C™ ! function F on R™ ?

Here, m > 1 is given. As usual, C"™ 1! denotes the space of functions whose
(m — 1)"$" derivatives are Lipschitz 1. We make no assumption on the set E or the
function f.

This problem, with C™ in place of C™ %! goes back to Whitney [15,16,17]. To
answer it, we prove the following sharp form of the Whitney extension theorem.

Theorem A. Given m,n > 1, there exists k, depending only on m and n, for which
the following holds.

Let f: E — R be given, with E an arbitrary subset of R™.

Suppose that, for any k distinct points x1,... ,xx € E, there exist (m — 1)"5! degree
polynomials Py, ..., P, on R", satisfying
(a) Pi(x;) = f(x;) fori=1,... k;
(b) |0°P;(z;)| < M fori=1,...,k and |3] < m —1; and
(c) |08(P; — Pj)(x;)| < Mz, — xj|™ 1Pl ford,j =1,... ,k and |B] < m — 1; with
M independent of x1,... ,xk.

Then f extends to a C™ Y1 function on R™

The converse of Theorem A is obvious, and the order of magnitude of the best
possible M in (a), (b), (c) may be computed from f(x1),...,f(zr) by elementary
linear algebra, as we spell out in sections 1 and 2 below. Thus, Theorem A provides
a solution to Problem 1. The point is that, in Theorem A, we need only extend the
function value f(x;) to a jet P; at a fixed, finite number of points 1, ... ,zg. To apply
the standard Whitney extension theorem (see [9,13]) to Problem 1, we would first need
to extend f(z) to a jet P, at every point € E. Note that each P; in (a), (b), (c) is
allowed to depend on x1,... ,x, rather than on x; alone.

To prove Theorem A, it is natural to look for functions F of bounded C™~!'-norm
on R™, that agree with f on arbitrarily large finite subsets E; C E. Thus, we arrive at
a “finite extension problem”.

Problem 2. Given a function f : £ — R, defined on a finite subset £ C R"™, compute
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the order of magnitude of the infimum of the C"™ norms of all the smooth functions
F :R"™ — R that agree with f on E.

To “compute the order of magnitude” here means to give computable upper and
lower bounds Miower; Mupper; With Mypper < A Migwer, for a constant A depending
only on m and n. (In particular, A must be independent of the number and position of
the points of E.) Here, we have passed from C™~ 11 to C™. For finite sets E, Problem
2 is completely equivalent to its analogue for C™~ 11, (See section 18 below for the
easy argument.)

Problem 2 calls to mind an experimentalist trying to determine an unknown function
F : R™ — R by making finitely many measurements, i.e., determining F'(z) for x in a
large finite set E. Of course, the experimentalist can never decide whether F' € C™ by
making finitely many measurements, but he or she can ask whether the data force the
C"™ norm of F' to be large (or perhaps increasingly large as more data are collected).
Real measurements of f(x) will be subject to experimental error o(z) > 0. Thus, we
are led to a more general version of Problem 2, a “finite extension problem with error
bars”.

Problem 3. Let E C R™ be a finite set, and let f : E — R and 0 : E — [0,00) be
given. How can we tell whether there exists a function F' : R™ — R, with |F(z)— f(x)| <
o(x) for all x € E, and ||F||gm@mn) S 17

Here, P < @ means that P < A - @ for a constant A depending only on m and n.
(In particular, A must be independent of the set E.)

This problem is solved by the following analogue of Theorem A for finite sets E.

Theorem B. Given m,n > 1, there exists k¥, depending only on m and n, for which
the following holds.

Let f: E—Rand o : E — [0,00) be functions defined on a finite set E C R™. Let
M be a given, positive number. Suppose that, for any k distinct points x1,... ,x, € E,
with k < k¥, there exist (m — 1)"** degree polynomials Py, ... , P, on R", satisfying

(a) |Pi(z:) — f(zi)| < olx) fori=1,... k;
(b) |0°P;(z;)| < M fori=1,...,k and |3] <m —1; and
(c) |08 (P; — P) ()| < M - |w; — xi|™ 8 fori,j=1,...  k and |B] <m — 1.

Then there exists F' € C™(R™), with || F||cm @y < A-M, and |F(z)—f(z)| < A-o(x)

forallx € E.

Here, the constant A depends only on m and n.



4 CHARLES L. FEFFERMAN

Again, the point of Theorem B is that we need look only at a fixed number k% of
points of F, even though F may contain arbitrarily many points. Theorem B solves
Problem 3; by specialization to ¢ = 0, it also solves Problem 2. Once we know Theorem
B, a compactness argument using Ascoli’s theorem allows us to deduce Theorem A, in
a more general form involving error bars. In turn, Theorem B may be reduced to the
following result, by applying the standard Whitney extension theorem.

Theorem C. Given m,n > 1, there exist k* and A, depending only on m and n, for
which the following holds. Let f: E— R and o : E — [0,00) be functions on a finite
set B C R™. Suppose that, for every subset S C E with at most k¥ elements, there
exists a function F¥ € C™(R™), with |[F| cm®gn) < 1, and |F5(z) — f(z)] < o(z) for
allz € S.

Then there exists a function F' € C™(R"™), with || F||cm@ny < A, and |F(z)— f(z)| <
A-o(x) forallx € E.

Thus, Theorem C is the heart of the matter. In a moment, we sketch some of the
ideas in the proof of Theorem C.

First, however, we make a few remarks on the analogue of Problem 1 with C™
in place of C™ =1, This is the most classical form of Whitney’s extension problem.
Whitney himself solved the one-dimensional case in terms of finite differences (see [16]).
A geometrical solution for the case of C1(R™) was given by Glaeser [8], who introduced
the notion of an “iterated paratangent bundle”. The correct notion of an iterated
paratangent bundle relevant to C™(R"™) was introduced by Bierstone-Milman—Pawl
ucki. (See [1], which proves an extension theorem for subanalytic sets.) It would be
very interesting to generalize the extension theorem of [1] from subanalytic to arbitrary
subsets of R™. I hope that the ideas in this paper will be helpful in carrying this out.
I have been greatly helped by discussions with Bierstone and Milman.

Y. Brudnyi and P. Shvartsman conjectured a result analogous to our Theorem C,
but without the function o, and with C™~1:! replaced by more general function spaces.
They conjectured also that the extension F' may be taken to depend linearly on f. For
function spaces between C° and C''!, they succeeded in proving their conjectures by
the elegant method of “Lipschitz selection,” obtaining in particular an optimal k#.
Their results solve our Problem 1 in the simplest nontrivial case, m = 2. We refer the
reader to [2,3,4,5,6,10,11,12] for the above, and for additional results and conjectures. A
forthcoming paper [7] will settle some of the issues raised by Brudnyi and Shvartsman,
to whom I am grateful for bringing these matters to my attention.

Next, we explain some ideas from the proof of Theorem C, sacrificing accuracy for
ease of understanding.
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One ingredient in our proof is the following standard result on convex sets.

Helly’s Theorem (see, e.g., [14]). Let J be a family of compact, conver subsets of
R?, any (d+1) of which have non-empty intersection. Then the whole family J has
non—empty intersection.

The following observation is typical of our repeated applications of Helly’s theorem in
the proof of Theorem C. Let P denote the vector space of (m —1)"5! degree polynomials
on R™, and let D be its dimension. For F' € C"(R"™) and y € R", let J,(F") denote the
(m —1) jet of F at y. Let E, f,o be as in the hypotheses of Theorem C. Fix y € R™.
Then there exists a polynomial P, € P, with the following property:

(1)  Given S C E with at most k# /(D + 1) elements, there exists F¥ € C™(R"),
with [|[F¥]|gm@gny < 1, [F¥(z) — f(z)| < o(z) on S, and J,(F*) = P,.

Thus, we can pin down the (m — 1) jet of F° at a single point y, at the cost of
passing from k% to k% /(D +1). We may regard P, as a plausible guess for the (m —1)
jet at y of the function F' in the conclusion of Theorem C. Let us call P, a “putative
Taylor polynomial”.

To prove (1), let S denote the family of subsets S C E with at most k% /(D + 1)
elements. To each S C FE (not necessarily in S), we associate a subset K(S) C P,
defined by K(S) = {J,(F) : [|F|lcmmny < 1, [F(x) = f(x)] < o(x) on S}. Each K(S5)
is convex and bounded. In this heuristic introduction, we ignore the question of whether
K(S) is compact. If Sy,...,Spy1 € S are given, then S = S;U---USpy1 C E has at
most k# elements, hence () is non—empty, thanks to the hypothesis of Theorem C.
On the other hand, we have the obvious inclusion K(S) C K(.S;) for each i. Therefore,
K(S1) N---NK(Spy1) is non—empty, for any Si,...,Spi1 € S. Applying Helly’s
theorem, we obtain a polynomial P, € P belonging to IC(S) for every S € S. Property
(1) is now immediate from the definition of /C(S).

Unfortunately, property (1) needn’t uniquely specify the polynomial P,. Therefore,
if we are not careful, we may associate to two nearby points y and 1’ putative Taylor
polynomials P, and P, that have nothing to do with each other. If we are hoping that
P, and P, will be the jets of a single C™ function at the points y and y’, then we will
be in for a surprise.

To express the ambiguity in choosing a putative Taylor polynomial, we introduce
the notion of a polynomial that is “small on F near y”. If y € R" and P € P is a
polynomial, then we say that P is small on E near y, provided the following holds:

(2) Given S C E with at most k# /(D + 1) elements, there exists ¢ € C™(R"), with
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cm@rn) < A, |¢°(x)] < Ao(z) on S, and J,(¢%) = P.

ll¢®]

Here, A is a suitable constant. The connection of this notion to the ambiguity of the
putative Taylor polynomial P, is immediately clear. If two polynomials Py(l) and ngz)
both satisfy (1), then their difference Py(l) — P?EQ) evidently satisfies (2), with A = 2.
Conversely, if P, satisfies (1), and P satisfies (2), then one sees easily that P, + P
satisfies the following condition, which is essentially as good as (1):

(3) Given S C E with at most k#/(D + 1) elements, there exists 5 € C™(R"),
with [|[FS||cm@ny < A+ 1, |[F¥(z) — f(z)] < (A+1)-0(x) on S, and J,(F¥) = P, + P.

Thus, the ambiguity in the putative Taylor polynomial lies precisely in the freedom
to add an arbitrary polynomial P € P that is “small on F near g”.

It is therefore essential to keep track of which polynomials P are small on E near
y. If Ais a set of multi-indices 8 = (51,...,0,) of order |B|=F1 4+ -+ B <m —1,
then let us say that F has “type A” at y (with respect to o) if there exist polynomials
P, € P, indexed by a € A, that satisfy the conditions

(4) Each P, is small on E near y, and
(5)  9°P.(y) = dga (Kronecker delta) for 3, € A.
Note that if E has type A, then automatically E has type A’ for any subset A’ C A.

A crucial idea in our proof is to formulate a “MAIN LEMMA for A”, for each set
A of multi-indices of order < m — 1. The Main Lemma for A says roughly that if £
has “type A” at y, then a local form of Theorem C holds in a fixed neighborhood of
y. Suppose we can prove the Main Lemma for all A. Taking A to be the empty set,
we know that (trivially) E has type A at every point y € R™. Hence, a local form
of Theorem C holds in a ball of fixed radius about any point y. A partition of unity
allows us to patch together these local results, and deduce Theorem C.

Thus, we have reduced matters to the task of proving the Main Lemma for any set
A of multi-indices of order < m — 1. We proceed by induction on A, where the sets A
are given a natural order <. In particular, if A" C A, then A < A’ under our order;
thus, the empty set is maximal, and the set M of all multi-indices of order < m — 1
is minimal under <. The induction on A thus starts with A = M and ends with A =
empty set.

For A = M, the Main Lemma is trivial, essentially because the hypothesis that FE
is of type M forces o(x) to be so big that we may take F' = 0 in the conclusion of
Theorem C, without noticing the error.
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For the induction step, we fix A # M, and assume that the MAIN LEMMA holds
for all A" < A. We have to prove the MAIN LEMMA for A. Thus, suppose E is of
type A at y. We start with a cube Q° of small, fixed sidelength, centered at y. We then
make a Calderén—Zygmund decomposition of Q° into subcubes {@,}. To construct the
Q., we repeatedly “bisect” Q° into ever smaller subcubes, stopping at ), when, after
rescaling (), to the unit cube, we find that E has type A’ for some A’ < A. Using the
induction hypothesis, we can deal with each (), locally. We can patch together the local
solutions using a partition of unity adapted to the Calderén—Zygmund decomposition.
This completes the induction step, establishing the Main Lemma for every A, and
completing the proof of Theorem C.

We again warn the reader that the above summary is oversimplified. For instance,
there are actually two Main Lemmas for each A. The phrases “putative Taylor poly-
nomial”, “small on E near y”, and “type A” do not appear in the rigorous discussion
below; they are meant here to motivate some of the rigorous developments in sections
1 through 19.

It is a pleasure to thank Eileen Olszewski for skillfully TEXing my handwritten
manuscript, and suffering through many revisions.

1. NOTATION

Fix m,n > 1 throughout this paper.

C™(R™) denotes the space of functions F' : R™ — R whose derivatives of order < m
are continuous and bounded on R™. For F' € C™(R"), we define || F||cm @n) = sup,cgn
max|g|<m |0°F ()|, and || 0™ F||corn) = SUp,epn maxgj—p, |0°F(z)|. For F € C™(R")
and y € R", we define J,(F) to be the (m — 1) jet of F' at y, i.e., the polynomial

5P = Y g!@ﬁF(y)) (&),

1B1<m—1

C™~LL(R™) denotes the space of all functions F' : R® — R, whose derivatives of
order < m — 1 are continuous, and for which the norm

|07 F(x) — 07 F (y)|

| Fllcm-11@n)y = max sup |8'8F(:U)| + sup
[B|<m—1 TER" z,yeR™ ’.’L’ - y’
T#Y

is finite.
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Let P denote the vector space of polynomials of degree < m — 1 on R" (with real
coefficients), and let D denote the dimension of P.

Let M denote the set of all multi-indices 8 = (51, ... ,,) with || = f1+- -+ 0, <
m — 1.

Let M™ denote the set of multi-indices 8 = (31, ... ,8,) with |3] < m.

If o and B are multi-indices, then dg, denotes the Kronecker delta, equal to 1 if
0 = a and 0 otherwise.

We will be dealing with functions of x parametrized by y (z,y € R™). We will often
denote these by ¢¥(x), or by PY(x) in case x — PY(x) is a polynomial for fixed y.
When we write 9° PY(y), we always mean the value of (%)BPZ’(@*) at © = y; we never
use 0° PY(y) to denote the derivative of order 3 of the function y — PY(y).

We write B(z,r) to denote the ball with center x and radius r in R™. If ) is a cube
in R", then dgp denotes the diameter of @; and Q* denotes the cube whose center is
that of ), and whose diameter is 3 times that of Q).

If Q is a cube in R™, then to “bisect” @ is to partition it into 2™ congruent subcubes
in the obvious way. Later on, we will fix a cube Q° C R", and define the class
of “dyadic” cubes to consist of °, together with all the cubes arising from Q° by
repeated bisection. Each dyadic cube @) other than Q)° arises from bisecting a dyadic
cube Q1 C Q°, with dg+ = 2. We call QT the dyadic “parent” of Q. Note that

QT cQ

For any finite set X, write #(X) to denote the number of elements of X. If X is
infinite, then we define #(X) = oc.

This paper is divided into sections. The label (p.q) refers to formula (q) in section
p. Within section p, we abbreviate (p. q) to (q).

Let & = (x1,... ,x%) be a finite sequence consisting of &k distinct points of R™. On
the vector space P & --- @ P (k copies), we define quadratic forms Q,(-; ), Q1(+; %),
Q(; %) as follows. Given P = (P,)i<u<k € P @ --- ® P, we define

Qo(ﬁ§f): Z Z (0B(Pu)(xu))2

1<p<k |B|<m—1

QB = S Y (@B P)(@)? [z, — a,| 218D
1<p.v<k |B|<m—1
(n#v)

Q(P; %) = Q. (P; &) + O1(P; T).
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If f: E— R with z1,...,2; € E, then we define ||f|]%,m(f) to be the minimum of

Q(P; &) over all P = (Py)i<u<k € P®---@P subject to the constraints P,(x,) = f(x,)
foral u=1,... k.

Note that elementary linear algebra gives

k
1120 = D @ (@ (2,)f ()

wr=1

for a positive-definite matrix (a, , (Z)) whose entries are rational functions of z1, ... , zj.

2. STATEMENT OF RESULTS

Theorem 1. Given m,n > 1, there exist constants k¥, A, depending only on m and
n, for which the following holds.

Let E C R™ be a finite set, and let f : E — R and o : E — [0,00) be functions on
E.

Assume that, for every subset S C E with #(S) < k¥, there exists a function
FS e C™(R"), with ||F¥||gm®gny <1, and |[F®(z) — f(z)| < o(x) for allz € S.

Then there exists a function F' € C™(R"™), with || F||cm@ny < A, and |F(z)— f(z)| <
Ao (z) for allz € E.

Theorem 2. Given m,n > 1, there exist constants k¥, A, depending only on m and
n, for which the following holds.

Let E C R™ be an arbitrary subset, and let f : E — R and o0 : E — [0,00) be
functions on E.

Assume that, for every subset S C E with #(S) < k¥, there evists a function
FS e Cm LY (R™), with ||F¥||gm-11mny < 1, and |F(z) — f(z)| < o(x) for allz € S.

Then there exists a function F € C™ VN R™), with | F||cm-1.1@ny < A, and |F(z)—
f(x)] < Ao(z) for allz € E.

Theorem 3. Given m,n > 1, there exists k¥, depending only on m and n, for which
the following holds.

Let E C R™ be an arbitrary subset, and let f : E — R be a function on E. Then f
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extends to a C™ b1 function on R™, if and only if

sup || f||cm(z) < oo,
X

where T varies over all sequences (1, ... ,x},) consisting of at most k¥ distinct elements

of E.

3. ORDER RELATIONS INVOLVING MULTI-INDICES

We introduce an order relation on multi-indices. Let o = (ag,...,ay) and § =
(61,-..,0n) be distinct multi-indices. Since a and [ are distinct, we cannot have
a1+ 4o =01+ -+ forall k =1,...,n. Let k be the largest k for which
a1+ -+ ar # 01+ -+ Bk. Then we say that o < §if and only if a1 + -+ af <
81+ -+ B%. One checks easily that this defines an order relation. We use this order
relation on multi-indices throughout this paper.

Next, we introduce an order relation on subsets of M, the set of multi-indices of
order at most m — 1. Suppose that A and B are distinct subsets of M. Then the
symmetric difference A A B = (A~ B) U (B \ A) is non-empty. Let a be the least
element of A A B (under the above ordering on multi-indices). We say that A < B if
a belongs to A. Again, one checks easily that this defines an order relation; and we
use this order relation on sets of multi-indices throughout this paper.

We need a few simple results on the above order relations.
Lemma 3.1. If a and 8 are multi—indices with |a| < |3|, then a < 3.
Lemma 3.2. If A, AC M, and if AC A, then A< A.

Lemma 3.3. Let A C M, and let ¢ : A — M. Suppose that

(1) ¢(a) <« for all a € A.
(2) For each oo € A, either ¢p(a) = o or ¢(a) ¢ A.

Then ¢(A) < A, with equality if and only if ¢ is the identity map.

Lemmas 3.1 and 3.2 are immediate from the definitions. We give the proof of Lemma
3.3. First we show that ¢(A) < .A. We use induction on #(.A), the number of elements
of A. For #(A) = 0, the lemma holds trivially, since A = ¢(A) = empty set. For
the induction step, fix k& > 1, assume that (1) and (2) imply ¢(A) < A whenever
#(A) =k —1, and fix A C M with #(A) = k. Let « be the least element of A, and
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let 3 be the least element of ¢(.A). From (1) we see that 5 < . If § < «, then (3 is the
least element of ¢(A) A A, hence ¢(A) < A by definition. If instead 8 = «, then we
apply our induction hypothesis to A ~\ {a}. Note that #(A~\ {a}) =k — 1, and that

(3) (A A{a}) & o(ANA{a}) = A b o(A).

Inductive hypothesis gives ¢(A N\ {a}) < AN {a}, and therefore ¢(A) < A, thanks to
(3). This completes the induction step. Hence, (1) and (2) imply ¢(A) < A. Also, (2)
shows at once that ¢(A) # A whenever ¢ is not the identity map. The proof of Lemma
3.3 is complete. |

Note that in view of Lemma 3.2, the empty set is maximal, and the set M is minimal,
under the order <.

4. STATEMENT OF TwO MAIN LEMMAS
Fix A C M. We state two results involving A.

Weak Main Lemma for A. Given m,n > 1, there exist constants k™, ag, depending
only on m and n, for which the following holds.

Suppose we are given a finite set E C R™ and functions f : E — R and 0 : £ —
(0,00). Suppose we are also given a point y° € R™ and a family of polynomials P, € P,
indexed by o € A. Assume that the following conditions are satisfied:

(WL1). 9°P,(y°) = 054 for all B,a € A.
(WL2). [0°Pa(y°) —6pa| < ao for alla € A, B € M.

(WL3). Given S C E with #(S) < k%, and given o € A, there exists ¢35 € C™(R"),
with

(a) [0S lco@n) < ao-

(b) |5(z)| < Co(z) for allx € S.

(c) Jyo(3) = Pa.

(WL4). Given S C E with #(S) < k¥, there exists ' € C™(R"), with
(b) |FS(z) — f(z)| < Co(x) for allx € S.

Then there exists F' € C™(R™), with
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(WL5). ||F|

C'm,(Rn) S C/ and

(WL6). |F(z) — f(z)] < C'o(x) for allxz € EN By, ).

Here, C' and ¢’ in (WL5, 6) depend only on C,m,n in (WL1,... 4).

Strong Main Lemma for A. Given m,n > 1, there exists k¥, depending only on m
and n, for which the following holds.

Suppose we are given a finite set E C R™, and functions f : FE - R and o : £ —

(0,00). Suppose we are also given a point y° € R™, and a family of polynomials P, € P,
indezed by o € A. Assume that the following conditions are satisfied:

(SL1). 9°P,(y°) = 654 for all a, B € A.
(SL2). |0°P,(y°)| < C for alla € A, 3 € M with 3 > «a.
(SL3). Given S C E with #(S) < k¥, and given o € A there exists ¢ € C™(R"),

with

(a) 1™ ¢Sllco@ny < C.
(b) @3 (2)| < Co(x) for allxz € S.
(c) Jyo(9g) = Pa.

(SL4). Given S C E with #(S) < k¥, there exists 'S € C™(R™), with

(&) [F¥lom@ny < C.
(b) |FS(z) — f(z)| < Co(x) forallz € S.

Then there exists F' € C™(R™), with
(SL5). [[Fllom@n) < C’
and

(SL6). |F(z) — f(z)] < C'o(x) for allx € EN By, ).

Here, C' and ¢’ in (SL5, 6) depend only on C,m,n in (SL1,... 4).
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5. PLAN OF THE PROOF

We explain here the plan of our proof of our two MAIN LEMMAS, and we indicate
briefly how these lemmas imply Theorems 1, 2, 3. To prove the MAIN LEMMAS for
A, we proceed by induction on A, where subsets A C M are ordered by < as described
in section 3. More precisely, we will prove the following results.

Lemma 5.1. The WEAK MAIN LEMMA and the STRONG MAIN LEMMA both
hold for A = M. (Recall that M is minimal under <.)

Lemma 5.2. Fiz A C M, with A # M. Assume that the STRONG MAIN LEMMA
holds for each A < A. Then the WEAK MAIN LEMMA holds for A.

Lemma 5.3. Fiz A C M, and assume that the WEAK MAIN LEMMA holds for all
A < A. Then the STRONG MAIN LEMMA holds for A.

Once we have established these three lemmas, the two MAIN LEMMAS must hold
for all A, by induction on A.

Next, we explain how to deduce Theorems 1, 2, 3 from the above MAIN LEM-
MAS. Taking A to be the empty set in, say, the WEAK MAIN LEMMA, we see that
hypotheses (WL 1, 2, 3) hold vacuously; hence we obtain the following result.

Local Theorem 1. Given m,n > 1, there exist k%, A, ¢’ depending only on m and
n, for which the following holds.

Let E C R™ be finite, and let f : E — R and 0 : E — (0,00) be functions. Let
y° € R". Assume that, given S C E with #(S) < k¥, there exists F¥ € C™(R"), with
|F3 )l cm@ny <1, and |F5(z) — f(z)| < o(x) for all z € S.

Then there exists ' € C™(R"™), with ||F|cm®ny < A, and |F(x) — f(z)] < Ao(x)
for allz € EN B(y°, ).

Once we have the above Local Theorem 1, it is easy to relax the hypothesis o : £ —
(0,00) to 0 : E — [0,00) by a limiting argument. We may then deduce a local version
of Theorem 2 by a compactness argument, reducing matters to the Local Theorem 1
by Ascoli’s theorem. Next, a partition of unity allows us to pass from the local versions
of Theorems 1 and 2 to the full results as given in section 2. Finally, Theorem 3 follows
from the special case 0 = 0 of Theorem 2, by applying the standard Whitney extension
theorem for O™~ 1! to each S C E with #(S) < k#. The details of how we pass from
our MAIN LEMMAS to Theorems 1, 2, 3 are given in Section 18 below.
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We end this section with a few remarks on the proofs of Lemmas 5.1, 5.2, 5.3. We
will see that Lemma 5.1 is easy, and Lemma 5.3 may be proven without much trouble,
by making a rescaling of the form (x1,... ,z,) — (Mx1,... , \pz,) on R™, for properly
chosen A1,...,\,. The hard work goes into the proof of Lemma 5.2. A key property
of subsets A C M, relevant to the proof of Lemma 5.2, is as follows.

We say that A C M is monotonic if, for any o € A, we have a + v € A for all
multi-indices v of order |y| <m —1 — |a].

Lemma 5.2 is easy for non—monotonic 4. The main work in our proof lies in estab-
lishing Lemma 5.2 for monotonic A.

This completes our discussion of the Plan of the Proof.

6. STARTING THE MAIN INDUCTION

In this section, we give the proof of Lemma 5.1. We will show here that the STRONG
MAIN LEMMA holds for A = M. The argument for the WEAK MAIN LEMMA is

nearly identical.

Suppose E, f,0,y°, Py(a € A) satisfy hypotheses (SL1,..., 4) with A = M. From
(SL1) with A = M, we see that P,(z) = X (x — y°) for all @ € A. In particular,

ol

Py(xz) = 1. Hence, (SL3) with a = 0, tells us the following:

Given S C E with #(S) < k%, there exists p° € C™(R"), with
(a) 0™9%|lco@ny < C.
(b) |p®(x)| < Co(x) for all z € S.
(c) Jy(¥®) = 1.
We take k* = 1, and apply the above result to S = {y} for an arbitrary y € FE.
From (a) and (c) above, we conclude that

(1) |¢% = 1] < 3 on B(y°,¢), with ¢ determined by C,m,n in (a), (b), (c).
In particular, if y € E N B(y°,¢’), then (b) and (1) give 3 < [¢*(y)| < Co(y). Thus,
(2) o(y) > 55 forally € ENB(y°,c).

Next, we apply (SL4) with k% =1, S = {y}, y € EN B(y°,¢). We conclude that
there exists F¥ € C™(R™), with [|F®||gmgn) < C and [F¥(y) — f(y)| < Co(y).

In particular, |F¥(y)| < C and |F*(y)—f(y)| < Ca(y). Hence, |f(y)| < C+Co(y) <
2C2%0(y) + Co(y), thanks to (2).
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Thus, |f(y)] < (2C% + C) - a(y) for all y € EN B(y°, ).
Consequently, the conclusions (SL5, 6) hold, with F' = 0.

The proof of Lemma 5.1 is complete. |

7. NON—-MONOTONIC SETS

In this section, we will prove Lemma 5.2 in the (easy) case of non-monotonic A.

Lemma 7.1. Fiz a non—-monotonic set A C M, and assume that the STRONG MAIN
LEMMA holds for all A < A. Then the WEAK MAIN LEMMA holds for A.

Proof. Since A is not monotonic, there exist multi-indices &, 7, with

(1) acAa+yeM A
We set
(2) A= Aufa+a),

and we take k% as in the STRONG MAIN LEMMA for A. By Lemma 3.2 we have
A < A; hence, we may assume here that the STRONG MAIN LEMMA holds for A.

Let E, f,0,94°, P.(a € A) be as in the WEAK MAIN LEMMA for A. Thus,
(WL1,... ,4) hold. We must prove that there exists F' € C™(R") satisfying (WL5, 6).

Define

2

3 Pasy(@)= > (glaﬂPa(yO))(w—yo)B*”

[BlI<m—1—|7]|

)
_|_
ﬁ

Thus, P, € P is defined for all o € A. From (3) we obtain easily, for any 8 € M,
that

3!

2 o8 p-(40) .
85P5¢+7y(y0) _ ,B'a Pa(y )

if B = 3+ 7 for a multi-index 3

(a+)!
0 if 3 doesn’t have the form 3 + 7

Consequently, (WL2) gives

(4) 10° Payy (y°) — 8p.a1+5] < Clag for all 3 € M,
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with C’ determined by m and n.
From (4) and another application of (WL2), we see that
(5) 10°P, (") — 0pal < C'ag  foralla € A, 3 € M.
with C” depending only on m and n.

If ap is a small enough constant determined by m and n, then (5) shows that the
matrix

0
(0°Pa(y°))apea
is invertible, and that the inverse matrix (Masa)a/ ae.a satisfies

(6) ‘Ma’a| < c’

with C” depending only on m and n. We fix ap to be a small enough constant,
depending only on m and n, guaranteeing (6). By definition of (M), we have

(7) Spa = 0°Por(y’) - Mura for all 3, € A.
a’eA
We define
(8) Po= Y Por-Muyq for all a« € A.
a’eA

(9) P Po(y°) = 054 for all o, B € A.
From (5), (6), (8) we have

(10) 0P P, (y°)| < C" for all a € A, 3 € M,
with C""" depending only on m and n.

Next, let S C E be given, with #(S) < k. For a € A, let > be as in (WL3). We
define also

|

!

gl

(11) Pary(@) = (z — ") x(z —9°) - p3(x) -

on R"
(@ |

+

where x satisfies

(12) Ix|lcm@ny < C1,x =1 on B(0,1), supp x C B(0,2),
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with C determined by m and n.

From (WL2, 3(a), 3(c)), we see that ||¢5]|cm(p(0,2)) < Cf', with C{’ determined by
m and n. Together with (12), this implies

(13) 0™ 0at5llcomny < C1" with ¢y determined by m and n.

Also, for z € S we have |ps15(z)| < Ch|p3 (z)| with CJ determined by m and n, simply
because |(x — %) x(x — y°)| < C4 on R™ (see (11), (12)). Hence, (WL3 (b)) implies

(14) (Pars(@)] < CLlgS(@)| < Coo(w) forall e S,

with C3 determined by C,m,n in (WL1,...  4).

Also, from (11), (12) and (WL3 (c)), we find that psi5(x) _(a%‘y)' (x — y°)7
Pi(z) = O(Jz — y°|™) as @ — y°. On the other hand, (3) implies Psi~ () ol
(x —y°)Y Pay(z) = O(Jz —9°|™) as o — y°. Hence,

(15) P45 (t) = Pays(z) = Ol —¢°I™) asz — gy’
Since pg45 € C™(R™) and Pz15 € P, (15) implies
(16) JyO (@2_‘_,7) = P@+ry.

From (13), (14), (16) together with (WL3), we have the following result.

(17) Let S C E with #(S) < k%, and let a € A.
Then there exists ¢S € C™(R™), with
(a) Hf?m@i\lcomn) < (y,
(b) |5 (x)] < Cyo(z) forallz € S,
() Jyo(wa) = Pa,

where Cj is determined by C,m,n in (WL1,..., 4).
Next, given S C E with #(S) < k%, and given a € A, define

(18) @g = Z (pg’Moe’a'
a’'cA

From (17)(a),(b) and (6), we see that

(19) 10™@5 || corny < Cs
and

(20) |@5 (x)| < Cso(z) forallz e S,
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with C5 determined by C,m,n in (WLL,..., 4).

Also, (8), (18), (17)(c) together yield

(21) Jyo(92) = Pa.

Now we can check that E, f,0,9°, Py(a € A) satisfy the hypotheses (SL1, ..., 4)
of the STRONG MAIN LEMMA for A, with a constant determined by C,m,n in
(WL1,..., 4). In fact, (SL1) for the P, is just (9); (SL2) for the P, is immediate from
(10); (SL3) for the P, is immediate from (19), (20), (21); and (SL4) for the P, is just
(WL4). (Note that, to prove (SL2) for the P,, we need (10) only for 3 > «.)

Applying the STRONG MAIN LEMMA for A, we conclude that there exists F €
C™(R™), with

(22) |[F|

cmmny < Cs, and |F(x)—f(x)| < Ceo(x) for all 2 € ENB(y°, ¢7),
where Cg and ¢y are determined by C,m,n in (WLL,..., 4) for the P, (a € A).

However, (22) is the conclusion of the WEAK MAIN LEMMA for A. Thus, the
WEAK MAIN LEMMA holds for A. The proof of Lemma 7.1 is complete. |

8. A CONSEQUENCE OF THE MAIN INDUCTIVE ASSUMPTION

In this section, we establish the following result.

Lemma 8.1. Fiz A C M, cmd assume that the STRONG MAIN LEMMA holds, for
all A < A. Then there exists k¥, Da» depending only on m and n, for which the followmg
holds. Let A > 0 be given. Let Q C R" be a cube, E C R™ a finite set, f : E — R
and o+ E — (0,00) functions on E. Suppose that, for each y € Q**, we are given a
set AY < A and a family of polynomials PY € P, indexed by o € AY. Assume that the
following conditions are satisfied:

(G1). 9°PY(y) =50 forall B,a € AY, ye Q™.
(G2). [0°PY(y)| < A0l forallae A, B>a, yeQ.

3). Given S C F wit < , and given y € Q** and o € AY, there exists
G3). Given S C E with #(S) < k7, and Q™ and a € AY, th

o5 € C™(R™), with
(a) [|0™@5|lcomny < A5la|
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(b) |3 (2)| < Aégl_ma(:z:) forallx € S,
(c) Jyled) = Py

(G4). Given S C E with #(8) < kﬁd, there exists F¥ € C™(R™), with
() [10°FS || co@ny < A8 ™" for all B with 8] < m,
(b) |F5(x) — f(z)| < Ao(x) for all z € S.

Then there exists F' € C™(R"™), with

(G5). [|0°Fllcomny < A8~ for all B with |B| < m, and
(G6). |F(x)— f(2)| < Ao(x) for all z € ENQ*.

Here, A’ depends only on A, m,n.
Proof. By a rescaling, we may reduce matters to the case dg = 1.

In fact, we set E) = 5(51(02, P, (x) = dg ol .p, ( z), o3 (z

I
=2
O

2
)
P
—

(o9
Q

8
:_/

S = 6518, FS(z) = 65 - FS(8qu), }’(;p) - f(0qa), a(x) = 55 - o(dqa),
_ e
E=45"-E.

If (G1,..., 4) hold for Q, E, f, o, then (GL,..., 4) hold also for Q, E, f, with the

same c onstant A. Tf Lemma 8.1 holds in the case 5@ =1, then in partlcular it holds for
Q,E, f,o. Hence, there exists F € C™(R™), with ||F||cm@n) < A, and |F(z) — f(z)|
<A )foralleEﬁQ*.

Defining F(z) = 47 - }:7(65133), we conclude that F' satisfies (G5, 6). Thus, as
claimed, it’s enough to prove Lemma 8.1 in the case g = 1.

Let 6g = 1, and assume (G1, ..., 4). For each y € Q**, the hypotheses (SL1,..., 4)
for the STRONG MAIN LEMMA for AY hold, with F, f, o,y, PY(a € fly) Ai in place
of E, f,0,4°, Py(a € A), C in (SL1,... , 4). In fact, (SL1,... , 4) for E, f,0,y, PY(a €
AY), A are immediate from (G1, .. ) Where we define k:old to be the maximum of all
the k# arising in the STRONG MAIN LEMMA for all A(A < A).

Hence, for each y € Q**, the STRONG MAIN LEMMA for AY produces a function
FY € C™(R"™), with

(1) [|FY||gmmny < A', and  |FY(x) — f(@) < A'o(x) forall zeENB(yc),
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where A" and ¢’ are determined by A,m,n in (G1,..., 4).
To exploit (1), we use a partition of unity

Vmax

(2) 1= Z 0,(xr) on Q7 where
=1
(3) 0<6,<1 on R
(4) supp, C B(y,,c) with
(5) Yy € Q™ and ¢ as in (1);
(6) 10 || cm @ny < C and
(7) Vi < C": where C” is determined by ¢’, m, n,

hence by A, m,n.

We then define F = >0, - F¥». From (1), (6), (7) we conclude that

(8) |F||cm@ny < C”  with C" determined by A, m,n.
From (1),..., (5), we conclude that every x € E'N Q* satisfies
Vmax Vmax
ro) - g = 5 oo~ 5 oo <

> 0u(o) 11 (a) - o) <

Vmax

> 0,(x) Ao(x)

= A'o(z).
Thus
(9) IF(z) — f(z)] < Ao(z)  forall ze€ENQ,
with A’ determined by A, m,n.

Estimates (8) and (9) are the conclusions of Lemma 8.1, since we are assuming that
0g = 1. The proof of the Lemma is complete. [ |

9. SETUP FOR THE MAIN INDUCTION

In this section, we give the setup for the proof of Lemma 5.2 in the monotonic case.
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We fix m,n > 1 and A C M. We let k# be a large enough integer, determined by
m and n, to be picked later. We suppose we are given a finite set £ C R", functions
f:E—TRand o:E — (0,00), a point y° € R", a family of polynomials P, € P
indexed by a € A, and a positive number a;. We fix A, k%, E, f,0,9°, (Pa)aca, a1
until the end of section 15. We make the following assumptions.

(SUO0). A is monotonic, and A # M.

(SU1). The STRONG MAIN LEMMA holds for all A < A.

(SU2). 3PP, (y°) = 834 for all B,a € A.

(SU3). |0°Py(1°) —6pa| < ay forall a € A, 3 € M.

(SU4). a is less than a small enough constant determined by m and n.

(SU5). Given S C E with #(S) < k%, and given o € A, there exists ¢35 € C™(R"),
with

(a) [10™¢f lcomny < a

() |S(z)] < o(z) for all z € S.

(C) Jyo (905) = F,.

(SU6). Given S C E with #(S) < k#, there exists ' € C™(R"), with

(@) [1Flom@ny <1,
(b) |F5(z) — f(z)| < o(x) for all z € S.

The main effort of this paper goes into proving the following result.

Lemma 9.1. Assume (SUO,..., 6). Then there exists F € C"™(R"), with

(@) |Fllemmn < A,
(b) |F(x) — f(z)] < Ao(x) for allz € EN B(y°,a); where A and a are determined
by a1, m,n.

Once we establish Lemma 9.1, then Lemma 5.2 will follow easily, as we explain in
a moment. First, however, we point out a few minor differences between Lemmas 9.1
and 5.2. In the WEAK MAIN LEMMA, the constant ag depends only on m and n.
Hence, the same is true in Lemma 5.2. On the other hand, in Lemma 9.1, the analogous
constant a; is said merely to be less than a small enough constant determined by m
and n. We do not assume in Lemma 9.1 that a; is determined by m and n. Also, if we
compare (WL3 (b)) and (WL4) with (SU5 (b)) and (SU6), we see that the constant C
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in the statement of the WEAK MAIN LEMMA has in effect been set equal to 1 in the
statement of Lemma 9.1.

Now we check that Lemma 5.2 follows from Lemma 9.1. Thus, we fix A C M (A #
M) as in Lemma 5.2, and assume that the STRONG MAIN LEMMA holds for all
A < A. We must prove that the WEAK MAIN LEMMA holds for A. This follows
at once from Lemma 7.1 if A4 is non-monotonic. Hence, we may assume that A is
monotonic. We will show that the WEAK MAIN LEMMA for A holds in the special
case C = 1. To see this, we invoke Lemma 9.1, with a; taken to be a constant
determined by m and n, small enough to satisfy (SU4). We take ag = a;, and assume
the hypotheses (WL1,... , 4) of the WEAK MAIN LEMMA, with C' = 1. Let us check
that hypotheses (SUQ, ..., 6) are satisfied.

In fact, we are assuming (SUO), (SU1), (SU4). The remaining hypotheses (SU2,
3, 5, 6) are precisely the hypotheses (WL1, ..., 4) of the WEAK MAIN LEMMA for
A, with C = 1. Thus, (SUO,..., 6) are satisfied. Applying Lemma 9.1, we obtain a
function F' € C™(R™), with

(1) |Fllemmny <A, and |[F(z)— f(z)| < Ao(x) forall =€ ENB(y°, a),

where A and a are determined by a1, m,n. Since we have picked a1 to depend only on
m and n, it follows that also A and a are determined by m and n. Therefore, (1) is
precisely the conclusion (WL5, 6) of the WEAK MAIN LEMMA for A, with C' = 1.

Thus, we have proven the WEAK MAIN LEMMA for A, in the special case C = 1.
On the other hand, it is trivial to reduce the WEAK MAIN LEMMA for A to the
special case C' = 1. In fact, if hypotheses (WL1, ... , 4) are satisfied, with C' # 1, then
we just set &(z) = Co(x) and f(x) = (C + 1)~ f(x) for all € E. One checks that
(WL1, ..., 4) are satisfied, with C = 1, by E, f,5,4°, A, Py(a € A). Applying the
WEAK MAIN LEMMA for A, with C' = 1, to E, f,5,4°, P.(o € A), we obtain the
conclusion of the WEAK MAIN LEMMA for A, for our original E, f,c,9", Py(a € A).

This proves the WEAK MAIN LEMMA for A in the general case, and completes
the proof of the following result.

Lemma 9.2. Lemma 9.1 implies Lemma 5.2.

We begin the work of proving Lemma 9.1. We write ¢, C, C’, etc. to denote constants
determined entirely by m and n. We call such constants “controlled”. We write
a,a’, A, A’, etc. to denote constants determined by aj,m,n in (SUO,..., 6). We call
such constants “weakly controlled”.

We fix a constant k#old, depending only on m and n, as in Lemma 8.1.
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These conventions will remain in effect through the end of section 15.

10. ArPLYING HELLY’S THEOREM ON CONVEX SETS

In this section, we start the proof of Lemma 9.1, by repeatedly applying the following
well-known result (Helly’s Theorem; see [14]).

Lemma 10.0. Let J be a family of compact convex subsets of R?. Suppose that any
(d+ 1) of the sets in J have non—empty intersection. Then the whole family J has
non—empty intersection.

We assume (SUQO, ... , 6) and adopt the conventions of section 9. For M >0, S C FE,
y € R™, define

(1)

1 m n s <
Kt (y; S, M) = {PeP: There exists F' € C™(R"), with |[Fllem@n) < M’}.

|F(z) — f(z)| < Mo(z) for all z € S, and J,(F) = P

For M > 0,k > 1,y € R", we then define

(2) Kelysk, M)y = () Kg(y; S, M).
SCE
#(S)<k

Thus, if P € K¢(y; k, M), then for any subset S C E with #(S5) < k, there exists
FS e C™(R"), with ||F®||cm@ny < M, |F5(z) — f(z)| < Mo(z) for all z € S, and
Jy(F%) = P.

Lemma 10.1. Suppose we are given ki', with k#* > (D + 1)k and k¥ > 1. Then
Ks(y: k#, 2) is non—empty, for all y € R™.

Proof. We start with a small remark. Given a point y € R” and a polynomial P € P,
there exists G € C™(R"™), with

(3) |Gllem@ny < C - max [9°P(y)| and J,(G) = P.

|B|<m—1

This remark shows easily that

(4) Closure (Kf(y; S, M)) C K¢(y; S,M’) whenever M’ > M.
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To check (4), fix y e R*, S C E, M’ > M, and P € Closure (K¢(y; S, M)). Given
e > 0, there exists P. € Kf(y; S, M) with maxgj<;n_1 [0°(P — P.)(y)| < e.

Applying (3) to P = P — P., we obtain G. € C™(R"), with |G, cm ) < Ce, and
J,(G.) =P — P..

Moreover, since P; € Ky (y; S, M), there exists F, € C™(R"), with || F || cm@ny < M,
|Fo(x) — f(z)| < M o(x) on S, Jy(F;) = P-.
Taking F' = F. + G, with ¢ small enough, we find that
| Flcm@mny < M+ Ce, |F(x) — f(x)| < Mo(x) + Ce on S, J,(F) = P.

Recall that M’ > M, S C E, E is finite, and o(z) is strictly positive on E. Hence, for
€ > 0 small enough, we have

M+ Ce < M', and Mo(z) +Ce < M'o(x) on S.

Using such an ¢ to define F', we obtain
(5) |F||cm@ny < M, |F(z) = f(z)]| < M'o(x) on S, and J,(F)=P.

Since we have found an F' € C™(R") satisfying (5), we know that P belongs to
Ks(y; S,M"). The proof of (4) is complete.

Now let Sy,...,Spy1 C E be given, with #(S;) < kfﬁ for each i. Fix y € R™, and
set S =8, U---USpy1. We have S C E and #(S) < (D + 1) - k¥ < k#. Hence, by
(SU6), there exists F° € C™(R"™), with

IFS e <1, and [FS(z)— f(@)| < o(z) on .
Define P = Jy(FS). Then, for each ¢ =1,... ,D + 1, we have obviously
”FSHCWL(RH) < 1,|FS(z) — f(z)| < o(x) on S; and J,(F%)=P.

Hence, P belongs to K¢(y; Si, 1) for each i. Consequently, the sets K(y;S;, 1) for
t=1,...,D 4+ 1 have non—empty intersection.

Thus, the sets K¢(y;5,1) C P (S C E,#(5) < k‘f&) have the property that any
(D + 1) of them have non-empty intersection. Moreover, each Ks(y;S,1) is easily
seen to be a convex, bounded subset of the D—dimensional vector space P. Hence,
by Lemma 10.0, the closures of the Kf(y;S,1) (S C E,#(S) < k") have non-empty
intersection. Applying (4), we see that the intersection of K¢(y;S,2) over all S C E
with #(5) < k# is non—empty.

That is, K¢ (y; kfb, 2) is non—empty. The proof of Lemma 10.1 is complete. |

In the same spirit, we can prove the following result.
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Lemma 10.2. Suppose kfﬁ > (D + 1)/{:#, and suppose P € Ky(y; kfﬁ,C’) is given.
Then, for any y' € R™, there exists P' € K¢(y'; kf, C"), with

0%(P — P")(y)|,|10°(P — P')(/)| < C"|y — /™18l for all B € M.

Proof. The result is trivial for y' = y; just take P’ = P. Suppose 3’ # y. Then, for a
constant I'(y,y’) determined by y,y’, m and n, we have the following small remark.
(6) Given P € P there exists G € C™(R™)with

IGlom @) <T(y,y) - max [0°P(y)], Iy (Q) = P, J,(G) = 0.

Fix P as in the hypotheses of the Lemma. For each S C E and M > 0, define
There exists F' € C™(R"), with [|[F|cm@n) < M,
Kiemp(S, M) =< P e P: [|F(z) — f(x)] < Mo(z) on S,J,(F) = P, and
Jy (F) =P’
Using the small remark (6), we can show that

(7) Closure(Kiemp (S, M)) C Kiemp(S, M') for M’ > M.

To check (7), let P" € Closure (Kiemp (S, M)) be given, and let € > 0. Then there
exists P! € Kiemp (9, M), with maxg<;m—1 [0°(P' — P) ()] <e.

Since P, € Kiemp(S, M), there exists . € C™(R"), with || Fe|[cm@n) < M, |Fe(z) —
f(x)] < Mo(z) on S, J,(F.) = P, Jy (F:) = P

Also, applying (6) to P’ — P!, we obtain a function G. € C™(R"), with
||G€”Cm(Rn) S F(y7y/)€, Jy(GE‘) - 0, J’y,(G&‘) — Pl - Pé.
Putting F' = F. + G with € small enough we obtain the following:
| Fllem@ny < M +T(y,y')-e <M,

IF(x) - ()] < Mo(z) + T(5,y') - < M'o(z) on S
(Recall: S C E, E is finite, o(z) >0 on E.)

Jy(F) =P and J, (F) =P’

Hence, P' € Kiemp(S, M’), completing the proof of (7).
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Next, let Si,---,Spy1 C E be given, with #(S5;) < k# for each i. Set S =
S1U---USpy1. Thus, S C E, and #(S) < (D + 1)k¥ < k. Since P € K;(y; k', C)
it follows that there exists F'¥ € C™(R"), with

IF% | emeny < C,|F%(2) — f(2)] < Co(x) on S, J,(F®) =P,
Define P’ = Jy/(FS). Then obviously, for i =1,... ,D + 1, we have
1E o @ < C,|F% () = f(2)] < Co(x) on Si, Jy(F®) = P, Jy (F%) = P'.
Hence, P’ € Kiemp(Si,C) foreach i =1,... ,D + 1.

We have shown that any D + 1 of the sets Kiemp (S, C) (where S C E, #(S5) < k¥)
have non—empty intersection. Moreover, one checks easily that each Kiemp(S,C) C P

is a bounded, convex subset of a D—dimensional vector space. Applying Lemma 10.0,
we see that the closures of the sets Kiomp(S,C) (all S € E with #(S) < k¥) have
non—empty intersection.

Hence, ﬂ Ktemp (S, C") is non—empty, for any C' > C.

SCE
#(S)<k¥

Let P'€ ()  Kiemp(S.C"). Then, by definition, given S C E with #(5) < kJ,

SCE
#(S)<k¥

there exists ¥ € C™(R"), with
(8) IF% | omeny < C'|F5(x) = f(z)| < C'o(z) on S, Jy (F®) =P,
and J, (F°) = P.
In particular, this implies P’ € Ks(y/; kf,C’). Moreover, if we take S to be the
empty set in (8), then we obtain a function F' € C™(R"), with ||F||gm®ny < C7,

Jy(F) =P, J,(F) = P.

By Taylor’s theorem, the polynomials P, P’ satisfy

IaﬁP’(y’)—aﬁP(y’)\—‘6513’(3/)— > 71!(<9”+5P(y))-(y’—y)7
[v]|<m—1—|B|
SWFW) - Y 0 Ew)
ly|<m—1—8] '

(Y —y) | <"y —y |

for |3] <m — 1, and similarly |95 P(y) — 0°P'(y)| < C"|y — /|18l for |B] < m — 1.
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The proof of Lemma 10.2 is complete. [ |

The next Lemma is again proven using the same ideas as above. It associates to

each point y near y° a family of polynomials PY, analogous to the polynomials P,

)
associated to y°.

Lemma 10.3. Suppose k# > (D +1)-k¥, and let y € B(y°,a1) be given. Then there
exist polynomials PY € P, indexed by o € A, with the following properties:

(WL1)Y. 9°PY(y) = 8pa for all B,a € A.
(WL2)Y. |0°PY(y) — 80| < Cay for alla € A, B € M.

(WL3)Y. Given a € A and S C E with #(S) < k¥, there exists 5 € C™(R™), with

(a) 10™ @S lcomny < Cay.
(b) |g0§(:13)| < Co(z) forallz € S.
(c) Jy(e) = PY.

Proof. For y = y°, the Lemma is trivial; we just set P¥ = P,(a € A) and invoke (SU2,
3, 5). Suppose y # y°. For a constant I'(y,3°) determined by v, 4", m and n we have
the small remark:

(9) Given P € P, there exists G € C™(R™) with
|G lcm ey < T(y,4°) - S 0°P(y)], Jy(G) = P, Jyo(G) = 0.

Now, given a € A, S C E and M > 0, we define

Ka(S, M) = {P/ eP: There exists ¢35 € C™(R") with |03 [|comn) < Mal,}

oo (z)| < Mo(x) on S, Jyo(p3) = Pa, and Jy(¢3) = P’
By a now—familiar argument using (9), we know that
(10) Closure(K (S, M)) C Ko(S,M") for any M’ > M.

Each K, (S, M) is a bounded convex subset of the D-dimensional vector space P.
Moreover, it follows from (SU5) by a now—familiar argument that ﬂi—gl Ka(Si,1) is
non—empty, whenever Si,...,Spy1 C E with #(S5;) < k‘f& for each i. Lemma 10.0
therefore shows that, for each o € A, the closures of all the K, (S,1) (S C E with
#(S) < k¥) have non-empty intersection.
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Therefore by (10), there exist polynomials PY (« € A), belonging to K, (S, 2) for all
S C E with #(S) < k¥. Thus, given S C E with #(S) < k7', and given o € A, there
exists g5 € C™(R™), with

(11) 1™ @5 oo ny < 2a1,
(12) @5 (x)| < 20(z) for all z €S,
(13) Jyo(@3) = Po and Jy(@3) = PY.

We apply (11), (12), (13) with S = empty set. Thus, there exists @, with
(14) 10™ Ballco@ny < 2a1, Jyo(Pa) = Pa, Jy(Ba) = PY.
Since also y € B(y°,a1), (14) and (SU3, 4) imply

0P PY(y) — 9°Py(y°)| < Cay forall a€ A,3e M,
and therefore

(15) 10°PY(y) — 0pa| < C'a;  forall a € A, BEM,

thanks to (SU3). In particular, the matrix (0° PY(y))s.ac.4 has an inverse (My/ o) o/ .acA,
with

(16) IMyro — 0ara] < C"ay for all o, a € A.

(Here and in the next few paragraphs we use (SU4).) By definition, we have

(17) > 0°PY(y) Moo = 0o forall B,a € A.
a’eA
Now define
(18) PY= > PYMu, foralacA
a’'eA

From (15), (16), (17), we see that
(19) OPPY(y) = 85, forall B,a € A,
and that

(20) 0P PY(y) — 6pa| < C"ay  foralla € A, € M.
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Moreover, let S C E be given, with #(5) < k. With @5 as in (11),...,(13), define
(21) oS = Z @5 My forall a € A.

a’eA

From (11), (16), (21) we obtain
(22) 0™ 5| corny < Car  for all a € A.
From (12), (16), (21) we have
(23) |5 (x)] < Co(x) foralla€ Az e S.
From (13), (18), (21), we see that

(24) J,(p3)=PY forallac A

«

The conclusions of the Lemma are (19), (20), (22), (23), (24). The proof of Lemma
10.3 is complete. n

Lemma 10.4. Suppose k#* > (D + 1)k¥* and k¥ > (D + Dk¥. Let y € B(y°, a1),
and let (PY)aca satisfy conditions (WL1)Y--- (WL3)Y, as in the conclusion of Lemma
10.3. Lety' € R™ be given. Then there exist polynomials (PY¥)qe 4, with the following
property:

Given o € A and S C E with #(S) < k¥ , there exists ¢35 € C™(R™), with
(a) 0™ comny < Cay.

() @3 (x)| < C'o(x)  forallz € S.

(©) Jy(eS) = PL.

(d) Jy(e3) =Py .

Proof. The Lemma is trivial for ¢y = y; we just set I:’O?{/’y = PY and invoke (WL3)Y.
Suppose y' # y. Then, for a constant I'(y,y’) determined by y — y',m and n, the
following small remark holds.

(25) Given P € P, there exists G € C™(R"), with
[Gllom ey < Ploy') - max [0°P(o/)]. 1,(G) = 0.,(G) = P,

Now, given « € A, M > 0,5 C E, we define

colis an = [prep. The e o € CTE), wil [00elo, <1

May, |p(z)| < Mo(z) on S, Jy(p) = PY, Jy (p) =P’
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As usual, (25) shows that

(26) Closure(Klel(8, M) c Klel(S, M")  for all M’ > M.

Each Kl*l(S, M) is easily seen to be a bounded convex subset of the D-dimensional

vector space P. Moreover, a familiar argument using (WL3)¥ shows that D(ﬁIIC[O‘] (S;,C)
i=1

is non—empty, for any Sy,...,Spy1 C E with #(5;) < kf for each 1.

Consequently, Lemma 10.0 shows that the intersection of all the sets Closure(K[®1 (S, C))
(S C E with #(S5) < k#) is non—empty. Applying (26), we find that for each o € A,
there exists PY ¥ € P, with PY"¥ belonging to Kl*(S, ") for each § ¢ E with
#(8) < kf.

The conclusions of Lemma 10.4 are now immediate from the definition of K[®I(S, C").
|

Next, for y € R", k> 1, M > 0, we define
KT (ysk, M) ={P € K¢(y;k,M) : 9°P(y) =0 for all B € A}.

Lemma 10.5. Suppose k* > (D + 1)k# and k‘# > 1. Then, for a large enough
controlled constant C, the set K?(y; kf&, C) is non—empty for each y € B(y°, a1).

Proof. By Lemma 10.1, there exists P € K¢(y; kf&, 2). By definition, we have

(27) Given S C E with #(5) < k¥, there exists F¥ € C™(R"™), with
[P |om@ny < 2,[F5(z) — f(z)| < 20(x) on S, and J,(F) = P.

Taking S to be the empty set in (27), we learn that

(28) 0°P(y)| < C  forall B e M.
By Lemma 10.3, there exist polynomials PY(a € A) satisfying (WL1)Y,..., (WL3)Y.
We define
(29) P=pP-3 (0°Py) P,
acA

From (WL1)Y and (29), we have

(30) 9°P(y) = 0°P(y) = > (0°P(y)) - 6pa =0 forall B € A.

acA
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Let S C E with #(S) < k¥, and let ¢S, F® be as in (WL3)¥ and (27). Also, fix
0 € C™(R™), with

(31) 0<60<1onR" suppd C B(y,1), 0 =1 on B(y,1/2),[|0|lcmwr~) < C.
Then define

(32) BS = F5 = 37 (0" P(y))¢50.

acA

From (WL2)Y, (WL3(a))¥, (WL3(c))¥, we conclude that [0°¢3| < C on B(y,1), for
|| < m. Hence, (31) gives

(33) l050|lcm@ny < C" for each a € A.
Putting (27), (28) and (33) into (32), we find that

(34) 1]

cm(R™) < C”.
Also, for & & 8, we have |[FS(z) — J(@)| < [FS(r) = @)} ¥ 10" P)]- o))
(by (32)) < C"o(x), by (27), (28), (WL3(b))¥, and (31). Thus,

(35) |FS(x) — f(z)| < C"o(z) onS.

From (WL3(c))¥, (27), (29), (31), (32), we find that

(36) Jy(F®) = Jy(F%) = Y (0°P(y))J,(38) = P — Y (0*P(y))PY = P.
acA acA

Thus, given S C E with #(5) < kf, there exists F° C™(R™), satisfying (34),
(35), (36). In other words,
Pe Ky k¥, 0").

From (30), we then have P € IC? (y; kft, C"), completing the proof of lemma 10.5. W

11. A CALDERON-ZYCMUND DECOMPOSITION

In this section, we are again in the setting of section 9, and we assume (SUO, ...
6). We fix a cube Q° C R™, with the following properties:

(1) Q° is centered at 3°.
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(2) Q%)™ C B(y", an).

(3) ca; < 0ge < ay.

A subcube @Q C @Q° is called “dyadic” if either Q = Q° or else @) arises from Q° by
successive “bisection”. A dyadic cube @ ; Q° arises by “bisecting” its dyadic “parent”

@™, which is again a dyadic cube, with dg+ = 20g. A cube @ not contained in Q° is
not dyadic, according to our definition.

Two distinct dyadic cubes @), Q' are said to “abut” if their closures have non—empty
intersection.

We say that a dyadic cube @ C @Q° is “OK” if it satisfies the following condition.

(OK). For every y € Q**, there exist AY < A and polynomials PY € P, indexed by
a € AY, with the following properties:

(OK1). 9°PY(y) = 6, for all B,a € AY.
(OK2). 5‘62’6‘7|a||8ﬁ PY(y)| < (a1)~+ for all a, 8 € M with a € AY and 3 > a.

(OK3). Given a € AY and S C E with #(9) < kﬁd, there exists ¢5¥ € C™(R"),
with

(a) dg 1 005 |ogeny < (ar) (D).

(b) 05~ NS¥(2)] < (ar)~ "D - o(x) for all « € S.

(c) Jy(pa¥) = PY.

Here, kfﬁd is as in Lemma 8.1 and section 9.

We say that a dyadic cube @ C Q° is a “CZ” or “Calderén—Zygmund” cube, if it is
OK, but no dyadic cube properly containing @ is OK.

Given any two dyadic cubes Q, Q’, either QNQ’ = ¢, or Q C Q’, or Q' C Q. Hence,
any two distinct CZ cubes are disjoint.

Lemma 11.1. Any dyadic cube Q with dg < mi}rﬂl o(x) is OK.
TE

Proof. Let y € Q**, with @ a dyadic cube of diameter less than migEl o(x).
fAS]
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We set AY = M. Note that AY < A, thanks to (SU0) and Lemma 3.2. For a € AY,
we set PY(z) = L (z — y)® We have 9° PY(y) = 65, for o, 3 € M.

— al

Hence, (OK1) holds, and (OK2) follows from (SU4). It remains to check (OK3).
We fix a function § € C™(R"), with

(4) 0<60<1lonR" 6=1o0n B(0,1/2), supp 6 C B(0,1), ||0]cmmn) < C.

Given a € AY and S C E with #(5) < kfﬁd, we define

1

() Pt (@) = — (@ =y)*0(z —y).
From (4), (5) we have [|0™@5¥||co@n) < C”.

Also, we have dg < a; by (3), since @ C Q°. Hence,

5 0™ oo < C'(a)™ 1 < (a) "D by (SUA),

Thus, (OK3(a)) holds. Also for x € S, we have 5g_|a|\<p§’y($)’ < 5g_|a| < C'og
(since dg < a1 < 1 and |of < m — 1) < C’o(x) (by hypothesis of Lemma 11.1)
< (a)~" o (x) (by (SU4)).

Thus, (OK3(b)) holds

Also, (OK3(c)) holds, as we see at once by comparing the definitions of PY and ¢35¥,
and recalling (4).

Thus, (OK1,..., 3) are satisfied. The proof of Lemma 11.1 is complete. |
Corollary. The CZ cubes form a partition of Q° into finitely many dyadic cubes.
Lemma 11.2. If two CZ cubes Q,Q’ abut, then

1
(6) 500 < g < 260

Proof. Assume (6) false. Without loss of generality, we may assume that dg < d¢.
Then we have

1
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Note that Q # Q°, since () is assumed to abut another CZ cube @Q’. Hence, Q has a
dyadic parent QT, which also abuts @Q’, and satisfies

1

Consequently, we have

(9) (@)™ c (@)™

We know that Q' is OK, since it is a CZ cube. We will show that Q% is also OK.
For any y € (Q')**, let AY < A and PY(a € AY) satisfy (OK1, 2, 3) for Q'. Then,
for any y € (Q1)**, we may use the same AY and PY(a € AY) for QT, thanks to (9).
Conditions (OK1, 2, 3) hold for @, because they hold for @', and thanks to (8). Here
we use (8) to show that (6g+)™~2l < (3 )™l for a € M, and that

(10) (Bg+)1PI=lel < (sgn)lPI=lel for g > a. (See Lemma 3.1)
This proves that QT is OK, as claimed. On the other hand, QT is a dyadic cube
that properly contains the CZ cube Q. Hence, QT cannot be OK, by the definition of

CZ cubes. This contradiction shows that (6) cannot be false, completing the proof of
Lemma 2. |

Remark. In proving Lemma 2, we made essential use of the restriction to the case
B > ain (OK2). (See (10)).

12. CONTROLLING AUXILIARY POLYNOMIALS I

We again place ourselves in the setting of Section 9, and we assume (SUO, ... , 6). In
this section only, we fix an integer k‘f&, a dyadic cube @, a point y € R™, and a family
of polynomials PY € P, indexed by «a € A; and we make the following assumptions.

(CAP1). k# > (D+ 1)k} and k" > (D +1) - k7.
(CAP2). y € Q™.
(CAP3). @ is properly contained in Q°.

(CAP4). The PY(a € A) satisty conditions (WL1)Y, (WL2)¥, (WL3)¥. (See Lemma 10.3.)
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(CAPS5). (a1) ™" < max 3511 [0 PY(y)] <27 - (a2) .
acA

Note that 4 is non—empty, since the max in (CAP5) cannot be zero. Our goal in
this section is to show that the dyadic cube Q% is OK.

Let

(1) y €@

be given. Then y,3 € Q*** C (Q°)*** C B(y°,a1), by (11.2). Applying Lemma 10.4,
with k¥ = k¥, we obtain a family of polynomials P¥" € P, indexed by o € A, with
the following property.

Given S C E with #(5) < kﬁd, and given a € A, there exists ¢ € C™(R"),
with
(a) Hﬁmsﬁiﬂcomn) < Cay,
(b) |¢5(z)] < Co(z) for all z € S,
(c) Jylya) =P,
(d) Jy(pd)=PY.

We fix polynomials PO?{’ satisfying (2). The basic properties of ]55' are as follows.

Lemma 12.1. We have

-m [B]—|e| Py’ (] -m,
(3) ¢ (a1)™™ < max 55 0°PY (y)| < C - (ar)™™;
acA
(4) 0y MNPy () < Crar foraed, B> a, feM;
(5) 0°PY () =1 < C-a1 for a € A;
(6) 3y NP Py (v < © for a,B € A.

Proof. We apply (2), with S = empty set. Thus, for each a € A we obtain ¢, €
C™(R"™), with [|0™¢q|lcomny < Car, Jy(pa) = PY,Jy (¢a) = PY'. Taylor’s theorem
gives

1
!

(7) OPY) - Y

[yI<m—1—8]

(P PYy) - (v —y)?

= 0%aly) = > i,(5”“390(1@))'(y’—y)7

yl<m—1-1]

< Cay - |y —y ™18l for B € M.
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Similarly,

(8) PPy - Y ;<8W+ﬁﬁg’<y'>> (y—y)
[v|[<m—1—|B|

=10%aly) — > l,(é?'”%a(y’))'(y—y’)”’

yl<m—1-16] 7"
Scal.‘y_y’yn—lﬁ\ for e M.
In view of (CAP2) and (1), we have
(9) ly —y'| < Cog < Cdge < Cay < 1.

(Here we have used also that @ C Q° since @ is dyadic, as well as (11.3) and (SU4).)
From (CAP5) we have

(10)

7P PY ()] < 2-(a1) ™05 TP forall a€ A, BeM, Y| <m—1-5|.

Putting (9), (10) into (7), we find that
(11) 0°PY (y)| < C - (a1)™™ - 851717 forall ae A, feM.
On the other hand, if we put

_ 18l~1al | 28 Py’ (, /

12 _

(12) 2= max 5 10°PY (y')],
acA

then we have

(13) 7P PY ()] < Qa5 TP for ae A peM, | <m—1-]8].
Putting (9) and (13) into (8), we find that

(14) [9°PY(y)| < 005" 1 Caroyy ™ < (C+ 1) for all a € A, B e M.

Comparing (14) with (CAP5), we see that CQ + 1 > (a1)™™, hence Q > c(a;)™"™.
Together with (11) and (12) this proves conclusion (3).

Next, suppose @« € A and > « (f € M). From (WL2)¥ and Lemma 3.1, we see
that |97 TPPY(y)| < Ca; for |y| < m —1—|3|. Putting this and (9) into (7), we
obtain the estimate

(15) 0°PY ()] < Cay for ac A, BeM, B> a.
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For 8 > «, we have also 5|Qﬁ|_|a‘ < 1; hence, (15) implies conclusion (4).

Next, suppose @ € A and 8 = a. Then we have v+ 8 > « for v # 0, and
hence |07°PY(y)| < Ca; by (WL2)Y. On the other hand, 0°PY(y) = 1 in this
case, by (WL1)Y. These remarks and (9) may be substituted into (7), to show that
0°PY (y') — 1| < Cay for all @ € A, which is conclusion (5).

Next suppose «, 5 € A. By (SU0), we have §+ v € A for |y| < m —1—|3|. Hence,
(WL1)Y implies 7P PY(y) = 641~ .q. In particular

7P () < 85PN for gl <m 18],

Putting this and (9) into (7), we find that [9°PY (/)] < C&glflﬁl for a, 8 € A, which
is conclusion (6).

The proof of the Lemma is complete. |

Define a matrix M = (Mga)g.aca by setting
(16) Mpa =0 0P BY () for  B,ac A
From (4), (5), (6), we see that
(16a) |Mgo| < Cay  for B> a,

|Mpo — 1| < Cay  for f = a, and
|Mso| < C for all 3, a.
That is, M lies within distance Ca; of a triangular matrix with bounded entries and

1’s on the main diagonal. It follows that the inverse matrix M = (My/q)a’,ac4 has the
same property, i.e.,

(17) Moo < Cay for o >a (a,0 € A),
(18) Moo — 1| < Ca; for a€ A,
(19) Moo <C forall o ,ae€ A

By definition, we have

(20) Z MBQIMQ/Q = 5,804 forall (,a € A.
a’'e A
That is,
(21) Sga =Y 05T EY (y) - Mary forall o€ Al

a’eA
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We define new polynomials

(22) PY =651 611 PY My forall ac A.
a’eA

The basic properties of the Pg/ are as follows.

Lemma 12.2. We have

(23) O°PY () =030 forall B,a€ A
(24) ¢ (a) ™ < B 0Py ()] 65T < € (ar)
ac

(25) 5g|7|a|\8ﬁpé/(y')| <C-(a1)" ™Y forall acA BeM with §>a.

Given a € A and S C E with #(S) < k‘zﬁd, there exists p5 € C™(R™), with
(a) 357" N0 @2 leomr < Can,
(b) o NS (@) < Co() for all x €S,
(c) Jy’(@g) =Py

(26)

Proof. Conclusion (23) is immediate from (21) and (22). From (22) we have

(27) [55"'“‘3@3@/)} -y [55'—'“/'36155,’(;/)] Mo for a€Ad, BeM.
a’e A

Since M and M are inverse matrices, (27) implies

(28) 35 RY )] = X (a0 PL )| - v
a’eA
From (16a), (19), (27), (28), we see that
181~1ol | 58 Py’ 181~ 1ol 58 py’ 181~ 1ol | 56 By’
cglea&c% 10" Py ()] <g1€a&<% 0" P ()] <Cg1€a%<5Q 0" P (y)].
aE ac ag

Together with (3), this proves conclusion (24).
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Next, suppose 8 € M, a € A are given, with 8 > «. Then, for each o/ € A, we
have either 8 > o or o > a. If > o/, then (4) and (19) yield

H%’B‘_‘a,‘aﬂﬁi’:(y')} +Mara| < Car < Clar)” "D by (SU4).

If instead o > «, then (3) and (17) yield

657110922 /)] - Mo < O (ax) ™ - Car = Ca) (0

Consequently, (27) implies conclusion (25).
Finally, let S C E, with #(5) < kﬁd, and let 3 (a € A) be as in (2). Define

(29) Sbg = 554 Z 66_2‘(1 |90§,Ma/a.
a’'eA

From (2)(a) and (19), we see that, for all a € A, we have

103 oy < 851 S 85 Car < Car -3 (see (9)),
a’'eA

which proves conclusion (26)(a).
Also, from (2)(b), (19), (29), we have for all & € A, x € S, that

gS(@) <ol S 6,1 Colz) < 65T o (x),
a’eA

which proves conclusion (26)(b).
For each a € A, we recall (2)(d), (22), and (29). These imply conclusion (26)(c).

The proof of the Lemma 12.2 is complete. |

Next, we pick 3 € M and @ € A to maximize 5'625'*'&“63 Pg (y/)|. By definition of
3, @, and by (24), we have

(30) c-(a)™™ < 651N BY () < C - (ar) ™™

(31) s INaP BY ()| < 65710 PY ()] forall  a €A, feM;
and of course

(32) acA, feM.
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If 3 € A, then (5g|_|5‘| lﬁﬁpg(y’)\ = 055 < 1 (see (23)), which contradicts (30),
thanks to (SU4). Hence,

(33) B¢A

In particular, 3 # a.

Moreover, if 3 > @, then (25) contradicts (30), again thanks to (SU4). Hence,

(34) B < a.
Now define
(35) A = (A~ {a})u{B},
(36) lgg, =pY for all @ € AN {a},

+ . <,/ 3 o~
(37) P% =Py /(0°PY (y)). (The denominator is non-zero, by (30)).
Thus, ﬁg’ is defined for all o € AY'.

In view of (33), (34), (35), the least element of the symmetric difference AAAY is
(. Hence, by definition of our ordering < on sets of multi-indices, we have

(38) AV < A

+
The basic properties of the PY are as follows.

Lemma 12.3. We have

(39) 85;’%/ (¥') =933 for all Be AV
(40) 9°PY (y/) = 0pa for all B,a € AY ~ {B}.
(41) SP1N 98 P () < €'+ (ar)™  forall a€ AV, BeM.
(41a) 5510 Py ()] <1 for all B € M.

Given o € AY and S C E with #(S) < k%, there exists p5 € C™(R™), with
m—|al|| gm S
(a) o~ "o ‘PQHCO(Rn) < Cax,
(b) 5g_|a‘ ‘L}Bi(x)‘ < Co(z) for all z €S,

+
() Jy(p3)=PY.
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Proof. To check (39), we note that for 3 € AY ~ {3}, we have 8ﬁ;’%, (y) = 861{’5%’/ )/
(85150%, (y')) = 0, thanks to (37) and (23). (Note that (23) applies; see (32) and (35).)

_ + .7 = o = v/
On the other hand, for 3 = 3, we have ('“)ﬁP% (y') = 0PPY (v)/ (0°PY (y')) =1, by
(37). This proves conclusion (39).

Conclusion (40) is immediate from (23) and (36), since AY ~ {3} = A~ {a}.

Similarly, for o € AY ~ {3}, conclusion (41) is immediate from (24) and (36). On
the other hand, for a = 3, (31) and (37) give

18 T —|a 5y’ B|—|al| 58 py’
5 00 P )| = [~ 0” BY (1] / [0 107 PY ()] <1

for all 5 € M. This proves conclusion (41a), and completes the proof of conclusion
(41).

It remains to check conclusion (42). For v € AY ~ {3} = A~ {a}, conclusion (42)

is immediate from (26). Suppose a = 3, and let S C E, with #(S) < koq. Let ¢2 be
as in (26), and define

(43) b5 =08/ O FL(Y)).
From (26a) and (30), we have

55 Mom Gl ooy = [ 71 10™ 68 vy /15571107 P ()]
< [Car]/fea;™) < Can.

This proves conclusion (42(a)) for a = 3.

Also, (26b), (30), (43) show that, for z € S, we have
o5 NG5 = [0 e /[  PE ()]
< [Co(x)]/[ca;™] < Co(x).
This proves conclusion (42(b)) for a = 3.

Finally, comparing (37) with (43), and applying (26(c)), we obtain conclusion (42(c))
for o = .

Thus, conclusion (42) holds also for & = 3. The proof of Lemma 12.3 is complete.
|
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Next, we define polynomials Pg/(a € Ay'), by setting

[ +y
(44) v = pY
and
(45) pv' — PY 9PV ()] - PY forall ac A~ {a).

The basic properties of these polynomials are as follows.

Lemma 12.4. We have

(46) O°PY () = 6pa for alla, B e AV
(47) 3 NP PY (y)] < Clar)™  forallfe M, a € AV

Given o € AV and S C E with #(S) < kﬁd, there exists @5 € C™(R™), with
(a) 3~ 0™ B3 lcogen) < €+ (ar) Y,
(b) 55_‘a|!@§(1’)! <C-(a1) "o(z) for all x € S.
(¢) Iy (p2) = Y.

Proof. For o = 3, conclusion (46) is immediate from (39) and (44). For a € AY < {3}
= A~ {a}, (45) gives

=+

(19)  OPY () =0"PY ) — [PPL ()] -0 PY(y)  forall fe M.

If 5 € A~ {a}, then 85159, (y') = 0pa (see (40)), and 85131/( ") =0 (see (39)). Hence,
(49) implies conclusion (46) for the case, o« € AY' ~ {3}, € AV ~{B}. Ifa € AY ~ {5}
and 3 = 3, then, since GﬁPy (') = 1 by (39), we sce that (49) implies 9°PY (/) = 97

+
PY (y') —[OﬁPg (v')] -1 = 0= d3,. Hence, conclusion (46) holds also for a € AV {3},

f=p.
Thus, we have verified conclusion (46) in all cases.

Next, conclusion (47) holds for a = 3, thanks to (41) and (44). Suppose a €
AY' < {B} and 3 € M. Then (45), together with (41) and (41a), yields

o — 7 — | ’ 3| —|a 3 _13 +.
8111198 By ()| < 81811188 Y ()] 4 |81~ |‘8ﬁpg(y,)@ . [(%ﬂ 51107 P ()]

<C-(a) " +[C (@)™ 1] =C (ar)™™
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Hence, conclusion (47) holds in all cases.
It remains to check conclusion (48). For a = 3, conclusion (48) is immediate from

(42) and (44), thanks to (SU4). Suppose a € AY ~ {3}, and let S C E with #(S) <
kﬁd. We apply (42), (for the given «a, and for 3), and we define

/

(50) 75 = 55— [07PL ()] - &5
From (42(a)) and (41), we find that
m—|af m =S m—|a| m+S m—|B| m+Ss
350 owgaey < 8371107 e oneny + [ 557710 S e |
—
[55 1|97 py (y,)}]
< (Cap) + [Cay]-[C - (a1)™™] < C" - (a1)~ ™1, thanks to (SU4).

This proves conclusion (48(a)) for the given a.

Also, for all x € S, we obtain from (41), (42(b)), (50) that
m—|al| = m—|a Bl — | 35y m—|A3
5 oSl < g + |5 - (a5 s o
< Co(z)+ [C-(a1)™™] -[Co(z)] <C"(a1)™™ - o(z), thanks to (SU4).
This proves conclusion (48(b)) for the given a.

Finally, comparing (45) with (50), and applying (42(c)), we obtain conclusion (48(c))
for the given a.

Thus, conclusion (48) holds also for & € AY ~ {5}. The proof of Lemma 12.4 is com-
plete. [ |

We are ready to give the main result of this section.

Lemma 12.5. The cube Q* is OK.

Proof. For every 3/ € (Q1)**, (see (1)), we have constructed AY < A (see (38)), and
PY (a € AY) satisfying (46), (47), (48).

We will check that AY" and the PY (o € AY') satisfy (OK1, 2, 3) for the cube Q.
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In fact, (OK1) for Q7 is just (46).
Condition (OK2) for Q% says that
(200) 217121107 PY' (y/)| < (a1)~"+Y  for @ € AY and B € M with § > a.
This estimate, without the restriction to 8 > «, is immediate from (47) and (SU4).

Condition (OK3) for Q" says that, given a € AY and S C E with #(9) < kﬁd,
there exists @5 € C™(R™), with

(a) (20Q)™1[10™ @Zllcogmny < (ar)~ ™+,
(b) (20g)™1el|@S ()| < (ar)~" D) . o(z) for all z € S,
(c) Jy(@5)=PY.
This follows immediately from (48), thanks to (SU4).
We have shown that (OK1, 2, 3) hold for the cube Q1 and arbitrary 3y’ € (Q)**.
Thus, QT is OK. The proof of Lemma 12.5 is complete. |

13. CONTROLLING AUXILIARY POLYNOMIALS II

In this section, we are again in the setting of section 9, and we assume (SUO, ...,
6). The result of this section is as follows.

Lemma 13.1. Fix an integer kfﬁ, satisfying

B WD) kL K2 (D) RE,
Let Q be a CZ cube, and let

(2) yeQ™

be given. Let PY € P be a family of polynomials, indexed by o € A.

Suppose that

(3) The PY(a € A) satisfy conditions (WL1)Y, (WL2)Y, (WLS3)Y.
(See Lemma 10.3.)

Then we have the estimate

(4) 00 NP PY(y) < (@)™  for all a€ A, Be M.
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Proof. Suppose (4) to be false. There are finitely many dyadic cubes Q containing Q.
(Recall that, by our definition, every dyadic cube is contained in @°.) For each such
Q, define

(5) O(Q) = max 6.)171*N10° PY (y)].

BeEM
acA

Then ®(Q) > (a;)™™, since (4) is assumed false. Let Q be the maximal dyadic cube

containing @, with ®(Q) > (a)~™.

Thus,
(6) o(Q) > (ar)™™,
(7) Q C @, and
(8) Either Q =Q° orelse ®(Q") < (ay)™ ™

We can check easily that Q # Q°. In fact, (11.3), (WL2)¥ and (SU4) show that
5gl—\a||aﬁpay(y)‘ < C(sgl—\ﬂ < Cdégm_l) < C/(al)—(m—l) < a;m

for all o € A, B € M. (Recall, AC M, and |y| <m —1 for all y € M.)

Thus, ®(Q°) < (a1)~™, and hence Q° # Q, by (6). From (8) we now obtain
(9) Q") < (ar)™™.
A glance at the definition (5) shows that ®(QT) and ®(Q) can differ at most by a

factor of 20™~1). Hence, (9) implies ®(Q) < 2™~ - (a;)~™. Together with (5) and (6),
this shows that

(10) (a1) ™™ < max 85O P < 2" (@)™
acA
Note also that

(11) y c Q***’
thanks to (2) and (7).

We prepare to apply the results of section 12 to the cube Q. Let us check that
assumptions (CAP1,..., 5) of that section are satisfied. In fact, (CAP1) is merely
our present hypothesis (1); (CAP2) is (11); (CAP3) holds since @ is a dyadic cube
not equal to Q°; (CAP4) is our present hypothesis (3); and (CAP5) is immediate from
(10). Hence, the results of section 12 apply to the cube Q. In particular, Lemma 12.5
tells us that the cube Q* is OK. On the other hand, (7) shows that Q% is a dyadic
cube properly containing the CZ cube Q. By the definition of a CZ cube, it follows that
QT cannot be OK. This contradiction proves that (4) must hold. The proof of Lemma
13.1 is complete. n
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14. CONTROLLING THE MAIN POLYNOMIALS

In this section, we again place ourselves in the setting of section 9, and assume
(SUO,..., 6). Our goal is to control the polynomials in IC}?-é (y; kf&, M) in terms of the

CZ cubes @, for suitable kfb and M.

Lemma 14.1. Let Q,Q’ be CZ cubes that abut or coincide. Suppose we are given

(1) y c Q***; y/ c (Ql)***

and

(2) PeK¥(y:kf,0),

with

(3) K> (D+1)-kf, kK >(D+1)-kF, and kf > k7.
Then there exists

(4) P eKY(y:kY,C"),

with

(5) 0°(P' = P)(y)| < C" ()™ - 35" forall fEM.

Proof. By Lemma 10.2, there exists

(6)  PeKyshy.O"),
with
(1 PE-P)Y) < Cly—y T <0557 forall §eM.

(Here we use Lemma 11.2 on the good geometry of the CZ cubes.) In view of (6) and
the definition of Ky, we know the following.

(8) Given S C E with #(S) < k¥, there exists FS e C™(R™), with
|F5||gm@ny < C', |F3(z) — f(z)| < C'o(x) on S, and J, (FF) = P.
In particular, taking S = empty set in (8), we learn that

9) 0°P(y")| < C' for all 3 € M.

Also, (2) and the definition of lef’E give 0° P(y) = 0 for all 8 € A. Applying (SU0), we
conclude that 7P P(y) =0 for all B € A, |y| <m —1— 3|

On the other hand, we have

PPY) = Y @ PE)- ()
ly|<m—1-|8]
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since P is a polynomial of degree at most (m — 1). Hence, 3° P(y') = 0 for all 8 € A.
Consequently, (7) implies

(10) 9°P(y)| < Cyag 1 forall §e A

Next, note that ¢’ € (Q')*** C (Q°)*** C B(y°,a1), thanks to (1), the fact that Q’
is a CZ cube, and (11.2). Hence, Lemma 10.3 applies, with y" in place of y. Thus,
we obtain polynomials PY (a € A), satisfying (WL1)¥', (WL2)¥', (WL3)¥". The hy-
potheses of Lemma 13.1 hold here, with @Q’,y’ and Pg{/ in place of @,y and PY. In
fact, hypothesis (1) in section 13 is immediate from our present assumption (3). Also,
hypothesis (2) in section 13 is contained in our present assumption (1). Hypothesis (3)
in Section 13 merely asserts that the PY (a € A) satisfy (WL1)¥', (WL2)¥', (WL3)¥',
which we have just noted above. Since also Q' is a CZ cube, we have shown that
the hypotheses of Lemma 13.1 hold for Q’, v/, Pg{, (o € A). Applying that Lemma, we
conclude that

(11) S0P PY (i) < (@)™ forall a€ A, feM.
Now define
(12) P'=P-Y [0°P()]-PY €P.
acA
For all g € A, we have
(13) 0°P'(y) = 0"P(y) = > [0°P()] - 0°PY (/) = 0
acA

since P PY (i) = 034 for all B,a € A (see (WL1)Y').
Note also that, for any o € A and 8 € M, we have
0710 P(] - P2 Y| = 0P| - |07 P ()] < oG (an)~magl
by (10) and (11). Hence, (12) implies that
0°(P' — P)(y')| < Cyop 7 (@)™ for all § € M.

(Recall that g and ¢ are comparable by Lemma 11.2.) Together with (7) and (SU4),
this yields

|0°(P" — P)(y)| < Cg (ap)™™- (587%' for all § € M, which is conclusion (5).

Moreover, let S C E be given, with #(S) < k:f Let FS be as in (8), and, for each
o € A, let 5 be as in (WL3)¥". (Note that (WL3)¥" applies, since k¥ > k¥.) Introduce
a cutoff function 6 on R", with

(14) 0<#<1lonR" 6=1onB(y,1/2), supp 6 C B(y',1), [|0]|cmmn) < C".
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Then define

(15) P =F5 -3 "[0"P(y)] - 5 - 0.
acA

From (WL2)¥', (WL3)¥ (a), (WL3)¥ (c), we conclude that |8°p3| < €} on B(y/,1),
18] < m.

Hence, (9) and (14) imply [|[0°P(y")]- ¢5 - 0] om@ny < Cs . Together with (8) and
(15), this yields

(16) IF® | gm@ny < Cp -

Next, suppose = € S. Then (8), (9), (WL3)¥ (b), (14) and (15) yield
(17) |FS () — f(2)| < Clo(z) + > €' Colx) < CF - o(x).

acA

Also, comparing (12) with (15), recalling (14), and applying (8) and (WL3)¥'(c), we
find that

(18) Jy(FS) =P -3 [0°P(y)]- PY = P

acA

For every S C E with #(S) < k¥, we have exhibited a function F5 € C’m (R™) that
satisfies (16), (17), (18). Thus, by definition, P’ belongs to K¢ (y'; k¥, Cq). Recalling
(13), we conclude that P’ € /C#(y k¥, Cy ), which is conclusion (4).

Thus, conclusions (4) and (5) hold for P’.
The proof of Lemma 14.1 is complete. |
Lemma 14.2. Fiz k', with

(19) K> (D+1)-kF, kK >(D+1) k%,

Suppose Q) is a CZ cube, y € Q**, and Py, Py € /C?E(y; k:f&,C'). Then

(20) 0% (P — Py)(y)| < (ar)~ "D 55710 for all B e M.
Proof. Suppose (20) fails. We will show that
(21) (Q is a proper subcube of (°, and that

(22) Q" is OK.
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This will lead to a contradiction, since Q* is a dyadic cube that properly contains
the CZ cube @Q; thus Q@+ cannot be OK, by the definition of a CZ cube. Consequently,
the proof of Lemma 14.2 reduces to the proof of (21) and (22) under the assumption
that (20) fails.

Since P, P, € Iijé (y; kf&, (), we know that

Given S C E with #(S) < k¥, there exist FS € C™(R")(i = 1,2),
with ||| om@ny < C, |F (2) = f(2)] < Co(x) on S, J,(F) =

7

(23)

In particular, taking S = empty set in (23), we learn that
(24) |0°Pi(y)| < C for [f|<m—1landi=1,2.

It is now easy to prove (21). Since @ is dyadic, it is enough to show that @ # Q°.
Since we are assuming that (20) fails for @, it is enough to show that (20) holds for
Q°. However, (24) and (11.3) show that

10°(Py — Py)(y)| < C" < (a1)~ ™+ (6g0)™ 18l thanks to (SU4).

Thus, (20) holds for Q°, completing the proof of (21).

We start the proof of (22). Let

(25) y (@)

be given. Then y,y € Q***, and Py, P, € IC?E(y; k:#,C’). Also, k% > (D + 1) - k:iéﬁ and
kfﬁ > (D +1)- k‘zﬁd. Hence, Lemma 14.1 applies, with k# = kﬁd. Consequently, there
exist

(26) Py, Py e KT (y'; k54, C')

with

27) (B - P <C (@)™ 6p TN forall e M, i=1,2.

From (27), we see that

(28) a3y~ "10° (P~ P)(6)] <207 - (@)™ o+ max 3507 (P~ Po) (o)

Also, for € M, we have

1

Pr-rw-| Y
[v|<m—1-18]
<O NtB(p, — P ’ 5|7|;
SO max_ 17 P = P)W)log

[P (PL = P)(y)] - (y— )"
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therefore,

(20)  maxdy! 07 (P = Po)(y)| < Cmax 65107 (P = Po)(y/)].

Moreover, since (20) fails, we have

(30) ar " < max 600 (P = Po)(w)].

Combining (28), (29), (30), we find that
—(m+1) — i —m 5|5|—m B(P, — P /
ay < C7ay +Cgé%< Q 107 (P 2) ()1,
which implies
—m 5 5 —(m+1
(31) max 51|00 (B~ ()| 2 o0y ™Y,

thanks to (SU4).

From (26) and the definition of IC]#, we know that

(32) PP (y) =0°Py(y) =0 for all g€ A,
and that
Given S C E with #(95) < k(ﬁd, there exist £, Fy € C"™(R™), with
(33) [ lom@ny < C P (2)— f()| < C'o(x) on S, and Jy(Ff) = P;
fori=1,2.

Immediately from (33), we see that

Given S € E with #(S5) < k‘ﬁd, there exists F'S € C™(R"), with
|F5 ) om@ny < CF, |[FS ()| < Clo(z) on S, and Jy (F¥) = Py —Ps.

(34)
Now, pick 3 € M to maximize 5g|_m]85(151 — P»)(y/)], and define
(35) Q= 0°(P - Py)(y).

By (31) and the definitions of 3, (2, we have

(36) 9P = Py)(y)| <1087 forall §e M

and

(37) Q] > ¢ (ar) ™D o7
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In particular, 2 # 0. We define
(38) P=(P - P)/QeP.
From (32), we have
(39) O°Py') =0 for all g€ A.
From (35) and (36), we have

(40) 8°P(y) =1, and
(41) 0P <8P forall ge M.

Also, from (34), (37), (38) and (SU4), we learn the following:
(42)
Given S C E with #(S) < k¥, there exists F$ € C™(R"), with

(@) [FS[lem@ny < C" - (a)™ 8517 <o,

@\Wmmcﬁ@sw«WMP$HHWMW?dem&
(¢) Jy(F5)=P.
Note that
(43) B¢ A,

as we see at once from (39), (40).

Next, recall that y' € (QT)** C Q*** C (Q°)*** C B(y",a1) (see (11.2)). Hence,
Lemma 10.3 shows that there exist polynomials Pg/(a € A), with properties (WLl)@/,
(WL2)¥', (WL3)¥". We now define

(44) AV = AU{BY,
(45) P; =P
(46) P,=PY —[9°PY(y)] - P  forac A

Thus, we have defined Pj for all 8 € AY". Note that A is a proper subset of AV by
(43). Hence, Lemma 3.2 shows that

(47) AV < A
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We will check that
(48) P Po(y) = 6pa for all 3,0 € AY.
In fact, (48) holds for a = 3, thanks to (39), (40), (45).
For o, f € A, we have
O Faly') = 0°PY () = [0°PY ()] - 0" P(y/) = B

by (WL1)¥" and (39), hence again (48) holds. For a € A, 3 = 3, we have

O Puly') = 0P () ~ [0°PY (v')] - 0" P(y/) = 0
by (40), hence again (48) holds. Thus, (48) holds in all cases.

Next, we apply Lemma 13.1, with ¢’ in place of y. Note that the hypotheses of
Lemma 13.1 are satisfied, since: ¢/ € (QT)** € Q***, with Q a CZ cube; the PY (o € A)
satisfy (WL1)Y' , (WL2)Y', (WL3)¥; k# > (D + 1)k{" and k¥ > (D +1) -k7,;. From
Lemma 13.1, we learn that

(49) 05\ NP PY ()| < (@)™ forall a€ A B e M.
Using (49), we can check that
(50) 107 Pa(y')| < C - (ar)™™- 655" 1 foralla € AY and 5 e M.

In fact, for a = 3, (50) is immediate from (41), (45) and (SU4). For a € A, 3 € M,
we have

0% Paly')| < 10°PY (/)| +10° PY ()] - [0 P(y')| < (ar) ™™ - [55" 17+
+[5|Qﬁ|*|5|] . [(al)—m(slg\*\ﬁ\] <C- (al)—m(sléé\*lm,
thanks to (41) and (49). Thus, (50) holds in all cases.

Let S C E be given, with #(S5) < kﬁd. Let 9 be as in (42), and let 5 (o € A) be
as in (WL3)¥'. (Note that (WL3)¥" applies, since k" > kﬁd.) We define

(51) g5 =F°
and
(52) @5 =S —[0°PY (y)]-FS  forall ac A

Thus, ¢S € C™(R") for all a € AY. We will check that

(53) Ham@gHCO(Rn) <C-(a;)™™- 5‘5|_m for all o€ AY
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In fact, for a = 3, (53) is immediate from (42(a)), (51), and (SUA4).

For a € A, we have

10" @5 | co@ny < N10™ @5 llco@ny + 107 PY ()] - 107 FF || co@ny
< Cay + [(a)™™ - 65117 55 < € - (ag) - sl5

thanks to (WL3)¥ (a), (49), (42(a)), (SU4). (Recall that || < m—1 and dg < dge < ay
by (11.3).) Thus, (53) holds in all cases.

Next, we check that
54 @Sa: <C-(aq —m_glal=m oy for all xeS,aEAy,.
a Q

In fact, for a = 3, (54) is immediate from (42(b)), (51), and (SU4). For a € A and
x € S, we have

85 ()| < el (@) +10°PY (/)] - IiFS(:v)Ii (see (52))
< Co(z) + [(a) ™35 7171 [ "o (x)] (thanks to (WL3)¥' (b), (49), (42(b))
< C-(a1) ™35 o () (thanks to (SU4)).

(Again, recall that o] <m —1 and g < dge < ay.) Thus, (54) holds in all cases.
We check also that

(55) Jy(@S)y=P, forall aeAY.

In fact, for a = /3, (55) is immediate from (51), (45), (42(c)). For a € A, (55) follows
from (46), (52), (WL3) (c), and (42(c)). Thus, (55) holds in all cases.

Given /' € (QT)** (see (25)), we have constructed AY < A (see (47)) and P, (a €
AY') satisfying (48) and (50). Moreover, given S C E with #(S5) < k:ﬁd, we have
constructed @5 (o € AY'), satisfying (53), (54), (55). We will check that AY and the
Py (o € AY) satisfy conditions (OK1), (OK2), (OK3) for the cube Q* and the point

/

Y.

In fact, (OK1) for QT,y’ says that 9°P,(y') = 6p, for all B,a € AY". That’s just
(48).

Condition (OK2) for Q*,y’ says that

200)181=1l a8 P (y/)] < (a1)~ ("D for all a € AY and 8 € M with 3 > a.
Q
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This follows at once from (50) and (SU4), without the restriction to 8 > a.

Condition (OK3) for Q.1 says that, given o € AY" and S C E with #(S) < kﬁd,
there exists @5 € C™(R™), with

(20Q)"™ 0™ gl oo rny < (ar) =Y,
(200)™ @5 (2)] < (a1)" "D o(2) on S,

and

Jy/ (@g) = F,.
These assertions follow at once from (53), (54), (55) and (SU4).
Thus, conditions (OK1), (OK2), (OK3) hold (with AY" < A) for Q*,y/, for arbitrary

y’ € (QT)**. By definition, this means that @ is OK. This completes the proof of (22),
and hence also that of Lemma 14.2. |

The main result of this section is as follows.

Lemma 14.3. Let y € Q™ and y' € (Q')**, where Q and Q' are CZ cubes. Let
Pe ’C?(?J; k%,C) and P' € /C?E(y’;kf,C) be given, where

(56) * > (D+1)-k%  and ki > (D+1)2 -k,
If the cubes Q and Q' abut, then we have

(57) 9°(P' — P)(y)| < C" - (a1)" ™+ 557 for all e M.

Proof. Let k% = (D +1) - k¥ .. Then, by Lemma 14.1, there exists

(58) Pe Kk, C),
with
(59) 0°(P — P)(y)| < C" - (ar)™™- 645717l forall geM.

By hypothesis, and by (58), both P’ and P belong to lC;?E (v/'; kﬁ, 6) Hence, Lemma
14.2 applies to Q’,3’, and shows that

(60) 9°(P' = P)(y)] < (a1)" ™+ 5571 forall e M.

Conclusion (57) is immediate from (59), (60), (SU4), and Lemma 11.2. [
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15. PROOF OF LEMMAS 9.1 AND 5.2

In this section, we complete the proof of Lemma 9.1. Thanks to Lemma 9.2, this will
also establish Lemma 5.2. We place ourselves in the setting of section 9, and assume
(SUO,..., 6). In particular,

(1) E is a given finite subset of R",
(2) o0:F — (0,00) and f: E — R are given, and
(3) A C M is given.

We use the Calderén-Zygmund decomposition from section 11. Let Q,(1 < v <
Vmax) be the CZ cubes, and let §, = ég, = diameter of @Q),, y, = center of Q,,. Recall
that

(4) 0, <a; <1 for each v,
thanks to (11.3).

We take
(5) B = (D+1)%- kE,.

Lemma 10.5 shows that IC}éﬁ (yu; (D +1)2- kﬁd, (') is non—-empty for each v, where C is
a large enough controlled constant.

For each v, fix
(6) P, € KF (yu3 (D +1)° - k34, ©).
Applying Lemma 14.3, we see that, whenever @), and @), abut, we have
(7) 10°(P, — P,)(y,)| < C'(ay)~(m+) . gm=IAl for all 3 € M.

Since 8% (P, —P,)(x) = X j<m1-15 310077 (Pu—P,)(yw))- (x—y,)" with [z—y,| <
C46, for any x € @}, estimate (7) implies

(8) 10°(P, — P,)(x)| < Cy - (ay)~(mFD . gm—IFl for all z € @}, and all € M.
Let 6’:,(1 < v < Unmax) be a cutoff function, with the following properties.

(9) 0<6,<1onR"6,=1on Qy, suppb, C QL.

(10) 18°0,| < C56;1°! for B € M.
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Fix v(1 < v < Vpax), and define

(11) fu(x) =0,(z)- [f(x) — P,(2)] forall ze€kF.
Note that
(12) f(z) = fu(x)+ P,(x) for all re ENQ;.

Our plan is to apply Lemma 8.1 to the function f,, and the cube @,. Recall that, since
Q. is a CZ cube, it is OK. Thus,

For each y € Q**, we are given AY < A, and polynomials

v

(13) PY(a € AY), satisfying (OK1), (OK2), (OK3).

We will check the following straightforward result.

Lemma 15.1. The hypotheses of Lemma 8.1 hold, with A = (ay)~ ("D, for the set
E, the functions f, and o on E, the cube Q,, the sets of multi-indices A, AY(y € Q%%),
and the polynomials PY(y € Q%*, o € AY).

Proof. The hypotheses of Lemma 8.1 are as follows:
e The STRONG MAIN LEMMA holds for all A < A. (That’s just (SU1), which

we are assuming here.)
E C R™ is finite, f, : E— R and 0 : E — (0,00).
For each y € Q}*, we are given AY < A and PY(a € AY). (That’s immediate
from (13).)
Conditions (G1), (G2), (G3) hold, with A = a;(mﬂ). (That’s immediate from
(OK1), (OK2), (OK3) for @,; these conditions hold, thanks to (13).)
Condition (G4) holds, with A = a; ™.

To check this last hypothesis, we use (6). From (6) and the definitions of lC;fE and
K¢, we learn the following.

Given S C E with #(5) < (D+1)? -kﬁd, there exists F¥
(14) C™(R™), with | F||em@n) < C, |F) () — f(z)| < Co(z)
on S, and Jy, (FY) = P,.

With F¥ as in (14), and with 6, as in (9), (10), (11), we define

(16) F5=4,-[F—-P,).
Note that

(17) |ES(2) — fu(x)] = 0,(x) - |FS(x) — f(x)| < Co(x) on S, thanks to
(9), (11), (14), (16).
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From (14) and Taylor’s theorem, we have

0%(F5 —p,)| < C'6m 18l on Qx*,  for |B] < m.

Together with (9), (10) and (16), this implies
|05 F% < c"om1Pl on R", for |G| < m.
Thus,
(18) Given S C E with #(S5) < (D—i—l)z‘kfﬁd, there exists F¥ € C™(R™),

with
(a) |0°FS(x)| < "6 1Pl for all z € R™, |B| < m; and

(b) |ES(x) — f,(z)| < Co(z) for all € S.

Condition (G4) for Q,, fl,, etc., with A = (a;)~(™*Y follows at once from (18), thanks
to (SU4).

The proof of Lemma 15.1 is complete. |

Applying Lemmas 15.1 and 8.1, we obtain a function F,, € C"™(R"), for each v(1 <
v < Umax), satisfying

(19) 10°F, (z)| < A6 181 for all z e R, |6] <m
and
(20) |F,(z) — f(z)| < Alo(z) forall =€ ENQL.

Here, A’ is determined by a1, m,n. For the rest of this section, we write A, A", A”, Ay,
etc., to denote constants determined by a1, m,n.

From (12) and (20), we see that
(21) If(z) — (P,(z) + F,(2))| < A'o(x) forall z€ ENQ}.

Our plan is to patch together the “local solutions” P,(x) + F,(x)(v = 1,... , Vmax),
using a partition of unity.

For each v(1 < v < vyax), we introduce a cutoff function 6, satisfying

(22) 0<6,<1on R™, 6, =1 on Q., éy(x) =0 for dist (z,Q,) > &d,,
and

(23) 1856, < C5;17 for |3] < m.
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Taking ¢ small enough in (22), and recalling Lemma 11.2, we obtain the following.

(24) If @, contains a point of suppél,, then @), and @, coincide or abut.

Define 6, = éu/(z éﬂ) on Q°. From (22),..., (24), the Cor. to Lemma 11.1, and
o

Lemma 11.2, we obtain:

(25) Y 6,=1onQ".

lgugymax

(26) 0<6,<1onQ"
(27) 0%, < 05 1% for |8 < m.

(28) 6, = 0 outside Q7.

(29) If v € @, then 6, = 0 in a neighborhood of x, unless @, and @,

2

) coincide or abut.

We define

(30) Fz)= Y 6,(x) (Pu(z)+ F(2)) for z€Q°.

1<v<wvmax
Note that 6, and F are defined only on Q°.

Given z € ENQ°, we see from (21), (26), (28) that |0, (x) - (P, (z)+ F,(z)) — 0, (z)
f(x)| < A'o(z) - 0,(z). Summing over v, and using (25) and (30), we obtain

(31) |F(z) — f(z)] < A'o(z) forall z€ ENQ°.

We prepare to estimate the derivatives of F. Fix z € Q°, and let @, be a CZ cube
containing x. Differentiating (30), we obtain

(32) O F@) = Y oB.8) Y. (070,(x) [0 P(x)+ 0" F, ().

B'+p"=08 1<v<vmax

We look separately at the cases 3’ = 0, ' # 0. We will need an estimate for 9° P, (x).
Recalling (14), and taking S = empty set, we find that |8ﬂP,,(yl,)‘ < Cfor |f] <m—1,
I < v < Vmax-

For z € @}, we have |Z — y,| < (9, < C (see(4)), hence

~ 1 ~
|0°P, (2)| = > ] (07PP, () - (& — )| < C" for [B] <m—1.
[v|<m—1-|8]
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For |3| = m, we have 9°P, = 0, since P, is a polynomial of degree at most m — 1.
Thus,

(33) 0°P, ()] < C' forall Z€Q, |8 <m.
Now, combining (19), (33) with (26), (28), we see that

|0V($) : [85P (z) 4+ 0°F,(z (2)]| < A6, (z) for 1 < v < vmax, |B] < m.
(Here we again use (4).)

Summing over v, and recalling (25), we obtain the estimate
(34) Z 0,(z) - [0°P,(z) + 0°F,(2)]| < A",

which controls the term 5’ = 0 in (32).

For ' # 0, we have 529" 0, (z) = 0 by (25), hence

(35)
> (070,(x)) - [07 Po(w) + 07 Fy(2)] = > (07 0,()) - (07" P, (2) — 0% Pu(x))

+3 (070, (x)) - 07" F, ().

Suppose ' # 0, |B'| + (8" < m.
We will check that
(36) 1(070,(x)) - (0% Py(x) — 07" Py(a))| < A- g 11-1"1,

In the fact, the left-hand side of (36) is equal to zero in the following cases: = ¢ Qj
(see (28)); Q, and @, neither coincide nor abut (see (29)); @, = Q. (see (36)). Hence,
in checking (36), we may suppose that z € Q}, and that @, and @, abut. In this case
(36) follows from (8), (27) and Lemma 11.2. Thus, (36) holds in all cases.

We sum (36) over all v. We obtain a non-zero term on the left only when @, and
Q. abut, which occurs for at most C distinct v, thanks to Lemma 11.2. Consequently,

(37) > (070, (x)) - (07 Py(x) — 07 Bu(x))| < Ao~ 1P 171771 < Ay

v

thanks to (4).
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This controls the first term on the right in (35). We turn to the second term.
Estimates (19) and (27) show that

(38) |(0%°6,(2)) - (0°"F,(2))| < Ao 1P =181 for |5/ +18"| < m.

Moreover, the left-hand side of (38) is non—zero only when @, and @, coincide or
abut. There are at most C' distinct v for which this occurs, since we have fixed @,,.
Together with Lemma 11.2, these remarks imply the estimate

(39) < Aﬁ;%lﬁ’\*\ﬁ"l < As,

> (070.() - (07 F(2))

v

thanks to (4).

Now, from (35), (37), (39), we obtain

> (070,(x)) - [0° Py(x) + 07 Fy(x)]

v

< Ay for |8]+18") <m.8 £0.

Together with (34) and (32), this shows that
(40) ‘0515(:1:)| < Aj forall z € Q|6 <m.
Our function F satisfies the good properties (31) and (40), but it is defined only on
Q°. Recall that Q° is centered at y°, and has diameter ca; < dgo < aj. (See (11.1)
and (11.3).) Hence, we may find a cutoff function §° on R”, with §° = 1 on B(y°,c'ay),
suppf® C Q°,0< 6 <1 onR" and

076°| < Ca;"! for |B] < m.

Setting F' = F-6°, we obtain a function on all of R”. From (31), (40) and the properties
of 6°, we have at once

(41) [ F|lommny < As
and
(42) |F(x) — f(x)| < Ago(z) forall z € ENB(y°,cay).

Since Ag and ’a; are both determined by aq, m and n, estimates (41) and (42) imme-
diately imply the conclusions of Lemma 9.1.

This completes the proofs of Lemma 9.1 and Lemma 5.2. |
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16. A RESCALING LEMMA

Recall that M™ denotes the set of multi-indices 8 with |3] < m. The following
result will be used in the next section, to prove Lemma 5.3.

Lemma 16.1. Let A C M be given, and let C1,a be positive numbers. Suppose we
are given real numbers Fy, 5, indezed by a € A, 3 € MT. Assume that the following
conditions are satisfied.

(0) Fo.o #0 for all ae A
(1) |Fogl < Ci|Fua| forall ae A,Be M with B> a.
(2) F,3 =0 for all a, €A witha# .
Then there exist positive numbers \i,... , n, and a map ¢ : A — M, with the

following properties:

c < X <1 foralli=1,...,n, where c is a positive
constant determined by Ci,a,m,n.
4 d(a) < a forall o€ A

(3)
(4)
(5) For each o € A, either ¢(a) = a or ¢(a) ¢ A.
(6) Suppose we define Faﬁ for a € A, B M™", by
(2) Fap =X NFag (8= (01, 00)-
Then we have

(b) |Fa,5| <a- |Fa,¢(a)| forall a € A, € MT with 8 # ¢(a).

3

Proof. By possibly making C larger, we may assume that

(7) Cl > 1.

By possibly making a smaller, we may assume that

(8) Clc_l, < 1.

The main point of our proof is to show that we can pick Aq,..., A\, satisfying (3),
and satisfying also the following conditions, where F,, 3 is defined by (6(a)):

(9) \Fog/Faal <|Fap/Faal foral a€ A e M with 3> a.
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(10) \Fayg/ﬁa,g/] ¢ [a,a '] whenever a € A, 3,8 € M, 3# 3, and F, 5 #0.

We first show that if A1,... , A, can be picked to satisfy (3), (9) and (10), then we can
find ¢ so that all the conclusions (3),..., (6) of Lemma 16.1 are satisfied. Then we
return to the task of finding Ay, ..., A, satisfying (3), (9), (10).

Suppose A1,...,\, satisfy (3), (9), (10). Define a map ¢ : A — M™, by taking
¢() to be a value of § that maximizes |F, g| for the given . Thus,

(11) 1P ()] > |Fap| forall ge Mt ac A
In particular, taking 8 = a in (11), and recalling (0) and (6(a)), we see that
(12) Fa,q;(a) #0, forall o€ A
Together with (2), this implies conclusion (5).
Also, (11), (12), and (10) with 8’ = ¢(«), together imply conclusion (6).

Next, suppose o € A and ¢(a) > a. From (9) and (1), we then have ‘Fa,¢(a)/ﬁa,a‘
<Cp<al, by (8).

Hence, (0) and (10) show that ‘Fa@(a)‘ < d‘ Fa,a{, which in turn implies
(13) |Fo ()| < |Faa|l,  thanks to (0), (7), (8).

However, (13) contradicts (11). Therefore, we cannot have ¢(«) > «, which proves
conclusion (4). Moreover, since ¢(a) < a, we have ¢(a) € M for all « € A. (Recall
that we knew at first merely that ¢(a) € M™.) Thus, ¢ : A — M, and conclusions
(3),...,(6) are satisfied by ¢, A1,..., An.

This completes the reduction of Lemma 16.1 to the task of finding Aq,... , A, that
satisfy (3), (9), (10).

We take
(14) A =exp(—[ms+---+7]), k=1,...,n

for 7, 72,... ,7, > 0 to be picked below. Evidently, (3) holds, provided 7y, ... ,7, are
bounded above by a constant determined by C1,a, m,n. Regarding (9) and (10), we
note first that, for « € A, 8 = (B1,...,8,) € MT, 5/ = (B1,...,0,) € MT, with
F, 3 # 0, we have

(15) |Fop/Fop

= ’Fa,ﬁ/Fa,ﬁ’} : eXp(_[plTl + e +pn7—n])a
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with
(16) pe=Br4-+6)— (B +---+ )

Formulas (15), (16) are immediate from definitions (6(a)) and (14). Since 3,3 € M,
each pg is an integer, and

(17) —-m < pr < +m, k=1,...,n.

If 3 # (3, then the py are not all zero, thanks to (16). Suppose 3 > (’. Then, by
definition of the order relation >, there exists k, for which we have p; > 1, and py = 0
for k > k. Hence, in this case (15) and (17) show that

(17&) ‘Fa”@/}%a’ﬁ/

= ‘Fa,ﬁ/Fa,B/ . exp(—[plﬁ + - —i—p;;r,;])

S ‘Fa’g/Faﬁ/ ~exp(—7;;+m Z Tk).
1<k<k

Estimates (17a) hold whenever F, g # 0 and 8 > (. In particular, taking 3’ = «,
and recalling (0), we see that (9) holds, provided we have

(18) T, >m Z Th forall k=1,...,n.
1<k<k
To ensure that (18) holds, we introduce new variables t1, ... , t,, and define 7q,... , 7,

inductively by setting
(19) Tp =M - Z Tk + 1 for k=1,...,n.

1<k<k

If t1,--+ ,t, > 0, then (18) holds, hence Aq,... , A, satisfy (9). Note that (19) shows
that

(20) (T1yeeo yTn) = (t1,. - ytn)M,

where M is a triangular n X n matrix, with integer entries, and with 1’s on the main
diagonal. The matrix M is determined by m and n. Hence, if ¢1,... ,t, are bounded
above by a constant determined by Ci,a, m,n, then so are 711,...,7,, and therefore

(3) will hold.

Thus, to complete the proof of Lemma 16.1, it is enough to find t¢1,...,%, > 0,
bounded above by a constant determined by C1,a,m,n, for which A{,...,\, satisfy
(10). We return to (15), which we write in the form

(21) |Fop/Fap| = |Fap/Fap| - exp(—7p7) for B # B Fog #0.
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Here, 7= (71,... ,7,) , and p'= (p1,... ,pn) is a non—zero lattice point determined
by 8 and 3.

From (20) and (21), we obtain

(22) ‘Faﬁ/fs’aﬁ/ = |Fa,g/Fa’5/| -exp(—fq’T) for B#03, Fop #0,

with £ = (t1,... ,t,), and with ¢ = (q1,... ,qn) = (p1,... ,Pn)MT a non-zero lattice
point determined by 3, 3',m,n. In particular, (22) shows that |F, 5/F, 5| ¢ [a,a"],
unless we have F, 3 # 0, and

(23) a1t + -+ + Gutn — 0| Fo g/ Fo

<|Inal.

Hence, to prove Lemma 16.1, it is enough to show that there exist positive t1,... ,t,,
bounded by a constant determined by C1, a, m, n, for which (23) fails whenever a € A,

ﬁandﬁ,EM+7/8#/6/7 Fa,ﬁ’#oﬂ Fa,ﬁ#o

Let T be a large positive number to be fixed later, and let Q7 = {(t1,... ,t,) € R™
Each t¢; belongs to (0,7")}

Thus, Q7 is a cube of volume T". On the other hand, suppose we fix o € A,
B,0" € M with 8 # " and F, 3, Fop #0. Let (g1, .. ,¢,) be the non—zero lattice
point in (23). Say, g¢ # 0. Then, for each fixed (t1,... ,ts—1, tet1,. .. ,tn), the set of all
te for which (23) holds is an interval of length 2|Inal/|ge| < 2|Ina|. Consequently, the
volume of the set of all (t1,... ,t,) € Qr for which (23) holds is at most 2|Ina|- 7"~ 1.

It follows that the set Qp = {(t1,... ,t,) € Qr: (23) holds for some o € A, 3,5 €
MT with 8 # 3, F,p3 # 0, F, 3 # 0} has volume at most N - 2|Ina| - T"~1, where
N is the number of triples («, 3,3") € M x M*T x M™ with 3 # 3. Note that N is
determined by m and n.

We now take T to be a constant, determined by a,m,n, large enough to satisfy
T" > N -2|Ina|- T 1.

Then the set Q7 \ Q7 has positive volume. Picking (¢1,... ,t,) € Q1 \ Qr, we see
that the ¢; are positive and bounded above by a constant determined by a, m and n; and
that (23) fails, whenever o € A, 3,6 € M*, 3 # 3, Fo 3 # 0, F, g # 0. The proof of
Lemma 16.1 is complete. |

17. PROOF OF LEMMA 5.3

In this section, we give the proof of Lemma 5.3. We fix A C M, and assume that
the WEAK MAIN LEMMA holds for all A < A. We must show that the STRONG
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MAIN LEMMA holds for [A. We may assume that the WEAK MAIN LEMMA holds
for all A < A, with k% and ao independent of A. (Although each A < A gives rise to
its own k# and ag , we may simply use the maximum of all the k%, and the minimum
of all the ag, arising in the WEAK MAIN LEMMA for all A < A.) Fix k# and aq as
in the WEAK MAIN LEMMA for A < A.

Let E, f,0,y°, P,(a € A) satisfy the hypotheses of the STRONG MAIN LEMMA
for A. Without loss of generality, we may suppose

(1) y° = 0.

We want to show that there exists an F' € C™(R™), satisfying the conclusions (SL5,
6) of the STRONG MAIN LEMMA for A.

In this section, we say that a constant is controlled if it is determined by C,m, n in the
hypotheses (SL1,... , 4) of the STRONG MAIN LEMMA for A We write ¢,C’",C", C1,
etc., to denote controlled constants. Also, we introduce a small constant a to be picked
later. Initially, we do not assume that a is a controlled constant. We say that a
constant is weakly controlled if it is determined by a together with C,m,n in (SL1,...,
4). We write ¢(a),C(a), C'(a), etc., to denote weakly controlled constants. Note that
the constants k# and ag are controlled. We assume that

(2) a is less than a small enough controlled constant.
Our plan is simply to rescale E, f, o, P, using the linear map 7" : R® — R", defined
by
(3) T: (&1, &) — (MZ1,.. oy Andn),
for A1,..., A, > 0 to be picked below. We define
(4) E=T"YE),f=foTl,6 =coT,P,=P,oT.

Thus, E C R™ is a finite set, f E >R 6:E— (0,00), and P, € P for each a € A.
Evidently,

(4a) PP, (0) = A NREOPL(0)  for ac A B=(Bi,...,0)
To pick A1,...,\,, we appeal to Lemma 16.1, with

(5) F, 3 =0°P,(0) for aecA, || <m-1,

(6) F,p=1 for a € A, || =m.
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Note that the hypotheses (16.0), (16.1), (16.2) of Lemma 16.1 hold, with C; a controlled
constant, thanks to (SL1), (SL2), and (1). Hence, Lemma 16.1 produces numbers
A, 5 An, and a map ¢ : A — M, with the following properties:

(7) cla)< A <lforalli=1,... ,n.
(8) ¢(a) < a for each « € A.
9) For each a € A, either ¢(a) = a or ¢(a) ¢ A.
(10) For any o € A, 3 € M with § # ¢(«), we have |0°P,(0)]
< alo?@ P, (0)].
(11) For any a € A, we have A" -.. \0» < g |9%(@) P, (0)| for By +-- - +

ﬂn:m-

Here, conclusions (10) and (11) follow from (16.6) and (4a), (5), (6). We fix A1,... , A\,
and ¢, satisfying (7),..., (11).

Let S C F be given, with #(S) < k:A#. Set S = T(S) C E, and apply (SL3). Let
¢©3(a € A) be as in (SL3), and define ¢35 = ¢35 oT. For 8 = (B4,... ,B,) with |3| = m,
we learn from (SL3)(a) and from (11) that

10735 lco@ny = AL - - Ad 075 [l cony < Calo* ™ P (0))].
Also, (SL3)(b) and (c), together with (1) and (4), show that

165 (2)] < C6(2) on 8, and Jo(¢5) = Pa.

Thus,
(12) Given S c F with #(S) < k#, and given o € A, there exists
¢S € C™(R™), with
(a) (0™ @5l co@ny < Calo®™ Py(0)),
(b) |§5(2)] < Co(&) for all &€ S,
and © Jo(@3) = P

Similarly, let S C E be given, with #(S) < k#. Set S = T(S) C E, and let FS be as
in (SL4). Then define [’ = F% o T. For § = (34, ... ,3n) with |8] < m, we have

107 F¥||goggry = AL -+ A2+ |07 FS [l coggny < CA - X2 (by (SLA)(a)
< C (since each A\; <1, by (7)).
Also, for & € S, we have |[F'S(&) — f()| < C6(#), thanks to (SL4)(b) and (4). Thus,
Given S C E with #(39) < k#, there exists £'5 € C™(R"), with

13 PN - ~ A
O3 B8] gy < O, and [FS(2) - F(#)] < Co(2) on 3.
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Now define
(14) A=o(A),

and let ¥ : A — A satisfy

(15) d(p(a)) =a for ac A
Note that
(16) A< A,

by (8), (9), (14), and Lemma 3.3. For a € A, define
(17) Pa = Pyay /(9 Py(a)(0))-

We check that the denominator in (17) is non-zero. In fact, (10) shows that |§° P, (0)| <
|0%(@) P, (0)| for any o € A, 3 € M. Taking § = a = (&), and recalling that
0*P,(0) =1 by (SL1), we see that

07 Py 0)] = 07 o 0)] 2 10° Pa(0)] = AT+ AT 0P Pal0)] = XE* -+ X2
Hence,
(18) 0°P(0)| > ¢(@) forall ac A
thanks to (7). In particular, (95‘]5w(@)(0) # 0.

We derive the basic properties of the Py. From (10), with a = (&), we see that
0P Pya)(0)] < @ [0%Py(a)(0)] for @ € A, 8 # @, 8 € M. Hence, (17) gives

(19) |0° P4 (0) — dpa|l <@ forall ac A, g€ M.
Also, from (12), (17), (18), we see that

Given S C E with #(S) < k#, and given @ € A, there exists

20 5
(20) @2 € C™(R™), with
(a) [0™@3cown) < Ca,
(b) |§3(2)| < C(a)d(z) on S,
and (¢) Jo(@S) = Pa.

(In fact, we just apply (12), with a = ¢(@) € A, and put gbg = gbg /(8% P,(0)).)
Thanks to (19), the matrix (8/3]5(1(0))@@6; has an inverse M5, with

(21) |Mara — 6ara|l <C'a forall o,ac A
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By definition, we have

(22) > 0°Pu(0) Maa=0dpa  forall g,acA
a’€A
Now define
(23) Py = Z PoM,s foral acA.
a’€A

Given S C F with #(S) < k%, we let ¢>§ be as in (20) (all @ € A), and define
(24) 75=Y ¢S Mus forall aeA
a’eA
From (22) and (23), we have
(25) 9P P+(0) = 034 for all 8,a € A.
Also, (19), (21), (23) and (2) imply
(26) 10°P5(0) — d3a| < C"a forall ac A 3 e M.

Given S C E with #(S) < k#, and given a € A, we conclude from (20(a)), (21), (24),
and (2), that

”am¢g”CO(R”) < Cc"a.

From (20(b)), (21), (24), and (2), we obtain

p5(#)| < C'(@) - 6(#) on S.
Comparing (23) with (24), and recalling (20(c)), we obtain

Jo(¢3) = Pa.

Thus,
(27) Given @ € A and S C E with #(5’) < k#, there exists @ﬁ €
C™(R™), with
(a) 0™@5]comn) < C"a,
(b) |¢3(#)| < C'(@) - 5() on S,

and . _
(¢) Jo(#5) = Pa.
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We prepare to apply the WEAK MAIN LEMMA for A to the set F, the functions
f , &, the set A of multi-indices, the base point y° = 0, and the family of polynomials
(Pa)sca- We will check that the hypotheses of the WEAK MAIN LEMMA hold,
and that the constant called C' in hypotheses (WL3), (WL4) is weakly controlled.
In fact, (WL1) is just (25); (WL2) is immediate from (2) and (26), since ag is a
controlled constant; (WL3) (with a weakly controlled constant) is immediate from (2)
and (27) since ag is controlled; and (WL4) (with a controlled constant) is immediate
from (13). Thus, the hypotheses of the WEAK MAIN LEMMA are satisfied. Since we
are assuming the WEAK MAIN LEMMA for A < A, and since we know that A < A
(see (16)), we conclude that there exists F' € C™(R"), with

(28) |7l gm @y < Ci(@), and
(29) |F(2) — f(&)| < Ci(a) - 6(2) for all & € EN B(0,c1(a)).

Now define F = F o T~! on R™. Since

0P Fllcomny = AL - A P |0P Fll oy for 8= (B, ..., Ba),
estimates (28) and (7) imply
(30) | Fllcm@mny < Ca(a).

Also from (7), we learn that z € B(0,cz(a)) for small enough cy(a) implies Tz €
B(0,c1(a)), with ¢1(a) as in (29). Hence, (4) and (29) imply

(31) |F(x) — f(z)] < Cq(a)-o(x) for all x € EN B(0,ca(a)).

Finally, let us fix @ to be a controlled constant, small enough to satisfy (2). Then the
constants co(a) and Cs(a) are determined entirely by C,m,n in (SL1,..., 4). Hence,
(30) and (31) are the conclusions of the STRONG MAIN LEMMA for A.

Thus, the STRONG MAIN LEMMA holds for A. The proof of Lemma 5.3 is com-
plete. |

18. PROOFS OF THE THEOREMS

We have now proven Lemmas 5.1, 5.2, and 5.3. As explained in section 5, these
lemmas imply the WEAK and STRONG MAIN LEMMA for all A C M, as well as
the Local Theorem 1. In this section, we show that the Local Theorem 1 implies
Theorems 1, 2, 3, which in turn trivially imply Theorems A, B, C. The first step is as
follows.
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Lemma 18.1. Let m,n > 1 be given. Then there exist constants k¥, C1, co, depending
only on m and n, for which the following holds: Suppose we are given a finite set
E C R", and functions f : E —- R and 0 : E — [0, 00).

Assume that, for any S C E with #(S) < k%, there exists F° € C™(R"™), with

||FSHCm(Rn) <1 and |F%() - f(z)| < o(z) on S.

Then, for each y° € R™, there exists F € C™(R™), with

| Fllcm@ny < C1 and |[F(x) — f(x)| < Cio(z) on EﬂB(yO,co).

(This result differs from the Local Theorem 1 of section 5 in that we assume merely
that o : B — [0,00), not o : E — (0,00).)

Proof. Let k%, A, ¢ be as in the Local Theorem 1, and let E, f, o satisfy the hypotheses
of Lemma 18.1. Let y° € R™ be given. For each ¢ > 0, set o.(x) = o(z) + ¢ for all
x € E. Then o. : E — (0,00), and one checks trivially that E, f,o. satisfy the
hypotheses of the Local Theorem 1. Hence, for each £ > 0, there exists F. € C™(R"),
with ||F.||cm®n) < A, and |F.(z) — f(z)| < Ao(x) + Ae for all 2 € EN B(y°, ).

For x € EN B(y°, '), define

(Fe(z)
F;

x) — f(x) — Ao(z)) if F.(x) > f(z)+ Ao(x)
ge(x) = ( (‘T)

(
f(z)+ Ao(x)) if F.(z) < f(z) — Ao(x)

0 otherwise

For z € E ~ B(y°,¢) set g.(x) = 0. Then we have |g-(z)| < Ae for all z € E, and
|Fe(z) — f(z) — ge(x)| < Ao(z) for all z € EN B(y°,¢). On the other hand, since E
is finite, there exists a constant I'(E) with the following property.

Given a function g : £ — R", there exists G € C™(R"), with ||G||cm@®n) < T'(E) -
max lg(x)|, and G =g on E.
re

Hence, there exists G. € C™(R"), with [|G¢[[cm®@n) < ['(E) - Ae, and G. = g
on E. Taking ¢ < 1/I'(E), and setting F' = F. — G, we find that ||[F|cm@n) <
A+T(E)-Ae <2A, and

|F(z) - f(2)| = |Fx(2) — f(2) — g=(2)| < Ao(z) on ENB(y°, ).
Thus, Lemma 18.1 holds, with C; = 2A and ¢q = ¢'. |

Next, we pass from finite E to arbitrary F, and from C™ to C™~ 1.1,
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Lemma 18.2. Let m,n > 1 be given. Then there exist constants k¥, Cy, ¢z, depending
only on m and n, for which the following holds.

Suppose we are given an arbitrary set E C R™ and functions f : E — R and
o:E — [0,00). Let y° € R*. Assume that, for any S C E with #(S) < k¥, there
exists F¥ € C™~LYH(R™), with
(1) [P | om-1a@ny <1, and |F%(z)— f(z)| < o(z) on S.

Then there exists F € C™~L1(R™), with

|Fllcm-11@ny < Cay  and |F(z)— f(z)| < Coo(x) on EN B(yO,CQ).

Proof. Let k* be as in Lemma 18.1, and let S C E be given, with #(S) < k#. Then
there exists a constant I'(S), for which the following holds:

Given g : S — R, there exists G € C™(R"), with ||G||cm@n) <
(2) I'(S) - max lg(x)|, and G =g on S.
ze

Let F¥ € C™ LY(R") be as in (1), and let ¢ = 1/T'(S). By convolving F® with an
approximate identity, we obtain a function F¥ € C™(R"), with

(3) IFS lom@ny < CIF|gm-1a@ny and ||[FS = F5|co@n <.
(Here, C depends only on m and n.) From (1) and (3), we obtain

(1) |FS | mny < G and [FS(2) — f(@)] < o(@) +¢ on S.
Now define g2 on S by setting

F2(x) = f(z) = o(2) if FZ(x)~ f(z) > o(x)
92(x) = { F2(2) = f(a) + o(x) if FZ(z) - f(z) < —o(x)

0 otherwise

Thus,

max|gZ(z)| <e, and |F2(x) - f(z) - g2 (x)| < o(x) on S,

thanks to (4). Applying (2) to g2, we obtain a function G2, with

|GE|cm@ny <T(S)-e=1, and |F?—-GZ—f|<o on S.
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Setting F'S = FS — G, we learn the following:

(5) Given S C E with #(5) < k#, there exists F'S € C™(R™), with
HFSHCm(Rn) < (', and |FS(x) — f(z)| < o(x)on S.

Here, C’ depends only on m and n. In view of (5), we may apply Lemma 18.1 to any
finite subset F; C E. Thus, we obtain the following result.

6 Let E; be any finite subset of E. Then there exists Fg, € C"™(R"), with
O, llom@n < €, and |Fg, (2) — f(2)] < C"o(2) on B 0 B, co).

Here, C"" and ¢y depend only on m and n. Let B = B(3°,¢cg), and let

B ={F e C"b(B): ||F|lgm-11p < C"}, equipped with the

(M) C™~1(B)-topology.

In (7), we take C" to be a large enough constant determined by m and n. Hence, if
we define

(8) B(z)={F e B:|F(zx)— f(x)] < C"c(z)} for each x € EN B,

then (6) shows that () B(z) is non—empty, for any finite subset £; C EN B.
reFE,

On the other hand, each B(z) is a closed subset of B, and B is compact, by Ascoli’s
theorem. Therefore, the intersection of B(z) over all x € E N B is non—empty. Thus,
there exists F' € C™~11(B), with

9)  [|Fllgm-1ay < C”, and |F(z) — f(z)| < C"o(z) forall z€ ENB.

The function F' is defined only on B = B(y, ¢y). Therefore, we introduce a cutoff
function 6 on R"”, satisfying

(10) 10]lcm (mny < C*,0<6#<1on R", #=1 on B(yo,%c()), supp 6 C B,

with C# determined by m and n. Defining F = F € C™ 11(R"), we learn from (9)
and (10) that

(11) HF||Cm71,1(Rn) < C9, and |F(z)— f(z)| < Cyo(x) on EN B(yo, % o),

with Cy and ¢y depending only on m and n. However, (11) is the conclusion of Lemma
18.2. |
Proof of Theorem 1. Let E, f,o be as in the hypotheses of Theorem 1, and let C4, co

be as in Lemma 18.1. We introduce a partition of unity.

(12) 1=) 6, on R", with
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(13) 0<46,<1, suppb, C B(yv,c0), |0u]lcm@n) < C,
and with
(14) any given z € R"™ belonging to at most C of the balls B(y,, co).

In (13) and (14), C denotes a constant depending only on m and n. Applying Lemma
18.1, we obtain, for each v, a function F, € C™(R"), with

(15) |Fullem@ny < C1, and |Fy(x) — f(x)| < Cio(z) on ENB(y,,co).
Define F' = )6, F,. From (12),,..., (15), we obtain

(16) HFHCm(]Rn) <C', and

17 |F(x) - fl2)] = !Z9 —f@)]| < ZHV(fC)\Fu(l‘) — f(=)|

< 29 -Cio(z) = Cio(x) on E

(The constant C’ in (16) depends only on m and n.)

The proof of Theorem 1 is complete. |

Proof of Theorem 2. Let E, f,o be as in the hypotheses of Theorem 2, and let Cs, ¢y
be as in Lemma 18.2. We introduce a partition of unity

(18) 1=) 6, on R", with
(19) 0<6, <1, suppb, C By, c2),||0v]|cm@ry < C, and with
(20) any given x € R™ belonging to at most C of the balls B(y,, c2).

n (19) and (20), C denotes a constant depending only on m and n. Applying Lemma
18.2, we obtain, for each v, a function F,, € C™~L1(R"?) with

(21) HFV”C'm,fl,l(Rn) < Oy, and |F,(z) — f(x)| < Cy0(x) on ENB(y,,c2).

Define F =360, F,. From (18),..., (21), we obtain
(22) ||FHCm71,1(Rn) < C,, and
(23)  [F(2) = f@)] = D0 (@)[F(x) - f(2)]] < ZQV(CE)\FV(%) — f(z)]

<Z€ - Cyo(x) = Ceo(xz) on E.
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(The constant C” in (22) depends only on m and n.)

The proof of Theorem 2 is complete. |

Proof of Theorem 3. Suppose we are given £ C R" and f: E — R"™.

Assume that supz || f||cm(z) < 0o. Then, for any subset S = {z1,... ,2x} C E, with
k < k%, we can assign polynomials Py, ..., P? of degree at most (m — 1), satisfying
PP (x) = f(x),

07PS ()] < C and [0°(PF = Pf)(@;)| < Cla; — ;)
for [3] <m —1,4,5=1,... ,k, with C independent of the z1, ... , zy.

Applying the Whitney extension theorem for C™~ 11 (see [8, 9]) to S, P, ..., P?,
we conclude that there exists a function F*¥ € C™~L1(R™), with

Jo(F9) =P7 (i=1,....,k), and [|[F®|cm-11@n) < C',
with C” independent of the z1, ..., ;. In particular,
(24) F¥=f on S, and ||[F¥|gm-11(mn) < C.

We have achieved (24) for all S C E with #(S) < k#. Hence, Theorem 2, with o = 0,
implies that there exists F € C™ H1(R"), with F = f on E.

On the other hand, suppose we are given £ C R™ and and f : E — R, and assume
that f extends to a function F' € C™~1L1(R™). Then, for any subset S = {x1,... , 2} C
E, with k < k%, we may simply set P; = J, (F) fori=1,...,k, and we have

(25) Py(w;) = f(x:),[0°Pi(:)| < C, [07(Ps = Py) ()| < Clay — |V
for || <m —1,i,7=1,...,k, with C independent of z1,... ,x.

Comparing (25) with the definition of || f||cm (z), we conclude that | f|lcm @z < C7,
with ¢’ independent of Z.

Thus, f extends to a C™~!! function on R™ if and only if supg || f||cm(z) < co.

The proof of Theorem 3 is complete. |

There is an analogue of Theorem 3 without taking ¢ = 0. Also, Theorems 1, 2, 3
and the standard Whitney extension theorem trivially imply Theorems A, B, C in the
introduction. Details may be left to the reader.
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19. A BOUND FOR k#

Our proof of Theorems 1, 2, 3 gives an explicit (wasteful) bound for k#. In fact,
when we start the main induction by proving Lemma 5.1, we take k% = 1. Every time
we apply Lemma 5.2 for monotone A, the constant k% grows by a factor of (D + 1)3.
(See equation (15.5)). When we apply Lemma 5.2 for non—-monotone A, and when
we apply Lemma 5.3 for arbitrary A, the constant k# does not grow. Consequently,
Theorems 1, 2, 3 hold, with

K" < [(D+1)°]Y,

where N is the number of monotone subsets A C M. A trivial bound for N is N < 27,
since D is the number of elements of M. Thus,

K* < (D+1)32".
Recall that D is the number of multi-indices (51, ...,8,), with 51 +---+ 3, < m — 1.

It would be interesting to determine the best possible values of k# in Theorems 1,
2, 3.
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