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0 Introduction

Fix m,n ≥ 1. We compute the least possible (infimum) Cm-norm of a function F : Rn −→ R
having prescribed mth order Taylor polynomials at N given points. Also, given ε > 0, we

compute such an F, whose Cm-norm is within ε percent of least possible. Our computation

consists of an algorithm, to be implemented on an (idealized) digital computer. Given ε and

N as above, our computation uses at most exp(C/ε)N log N computer operations, where C

is a “controlled constant” (see below).

We also present preliminary results on the more difficult problem of computing the least

possible (infimum) Cm-norm of a function F taking prescribed values at N given points.

Again, given ε > 0, we compute such an F, whose Cm-norm is within ε percent of the least

possible. This time, our computation uses exp(C/ε)N5(log N)2 operations. Surely this result

is not optimal; we look forward to future improvements.

In previous work [FK1,FK2], Fefferman-Klartag computed functions F having prescribed

values, or prescribed Taylor polynomials, at N given points, with the Cm-norm of F having

the least possible “order of magnitude”. Our goal here is to gain precision, by passing from

“orders of magnitude” to errors of at most ε percent, for an arbitrarily small given ε.

To state our results precisely, we must say exactly what we mean by “the Cm-norm”, an

“idealized digital computer”, and “computing a function”. Let us start with the Cm-norm.

If Ω ⊂ Rn is open, then Cm(Ω) denotes the space of functions F : Ω −→ R, whose

derivatives through order m are continuous and bounded on Ω. For F ∈ Cm(Ω) and x ∈ Ω,

we write Jx(F) (the “jet” of F at x) to denote the mth order Taylor polynomial of F at x.

Thus, Jx(F) belongs to P, the vector space of all (real) mth degree polynomials on Rn.

There are many equivalent norms on Cm(Ω), e.g.,

(1) ‖ F ‖= sup
x∈Ω

max
|α|≤m

|∂αF(x)|,

or

(2) ‖ F ‖= sup
x∈Ω

( ∑
|α|≤m

|α|!
α!

|∂αF(x)|2

)1/2

.
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To fix a particular norm on Cm, we assume throughout this paper that, for each x ∈ Rn,

we are given a norm | · |x on the vector space P. These norms are subject to restrictions, to

be spelled out in Section 3 below. We then define

(3) ‖ F ‖Cm(Ω) = sup
x∈Ω

|Jx(F)|x.

For instance, the norms (1) and (2) arise by taking

(4) |P|x = max
|α|≤m

|∂αP(x)|

or

(5) |P|x =

( ∑
|α|≤m

|α|!
α!

|∂αP(x)|2

)1/2

,

respectively, for P ∈ P, x ∈ Rn.

Throughout this paper, we assume that the Cm-norm is given by (3).

In Section 3 below, we introduce the notion of a “controlled constant”. In this introduc-

tion, it is enough to note that a controlled constant may depend only on m,n and the choice

of the family of norms | · |x (x ∈ Rn) in (3). Throughout this paper, we write c, C,C′, etc.

to denote controlled constants. These letters may denote different controlled constants in

different occurrences.

If X, Y ≥ 0 are real numbers computed from input data (such as prescribed Taylor poly-

nomials at N given points), then we say that X and Y have “the same order of magnitude”,

provided we have cX ≤ Y ≤ CX for controlled constants c and C. To “compute the order

of magnitude of X” is to compute some Y ≥ 0 such that X and Y have the same order of

magnitude.

Next, we discuss our “idealized digital computer”. Our computer has standard Von

Neumann architecture (see, e.g., [vN]), but we assume here that the computer can store, and

perform elementary operations, on exact real numbers, without roundoff error.
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The elementary operations include addition, multiplication, comparison (deciding whether

two given numbers x and y satisfy x < y), exponentiation and logarithms, and the “greatest

integer” function. Each of these elementary operations takes one unit of “work”. See Section

2 below, for a more careful discussion of this model of computation and its pitfalls.

Our computer will need to acquire information on the family of norms | · |x on P, which

we used in (3) to define the Cm-norm. We assume that our computer has access to an Oracle.

Given P ∈ P, x ∈ Rn, and ε > 0, the Oracle returns a real number Nε(P, x), guaranteed to

satisfy (1 + ε)−1Nε(P, x) ≤ |P|x ≤ (1 + ε)Nε(P, x).

Each time our computer obtains an answer Nε(P, x) from the Oracle, we are charged

exp(C/ε) units of “work”.

Note that our assumptions regarding the Oracle are quite conservative. For instance, for

the norms given by (4) or (5), we can compute |P|x exactly in at most C operations, for any

given P ∈ P, x ∈ Rn.

This concludes our introductory remarks on the “idealized digital computer”.

We still need to explain what we mean by “computing a function”. We have in mind

the following dialogue with the computer. First, we enter the input data for our problem

(e.g., a number ε > 0, points x1, . . . , xN ∈ Rn, and polynomials P1, . . . , PN ∈ P; we will

be “computing a function” F ∈ Cm(Rn), such that Jxi
(F) = Pi for each i = 1, . . . ,N). The

computer then executes an algorithm, performing L0 elementary operations (the “one-time

work”). When it has finished the one-time work, the machine signals that it is ready to

accept further input. We may then address “queries” to the computer. A “query” consists

of a point x ∈ Rn, and the computer responds to each query x by executing an algorithm (the

“query work”, entailing L1 elementary operations) and returning a polynomial Px ∈ P. We

say that our algorithms “compute the function” F ∈ Cm(Rn), provided we have Px = Jx(F)

for any query point x ∈ Rn. Here, we demand that F be uniquely determined by the input

data. We do not allow “adaptive algorithms” in which query work performed in computing

Px is stored and used subsequently to compute Py for another query point y. We allow the

computer to access the Oracle during the one-time work, but not at query time. The work

charged by the Oracle is part of the one-time work L0.
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The computer resources used in “computing a function” F are the one-time work L0;

the query work L1; and the “space” or “storage”, i.e., the number of memory cells in the

random-access memory (RAM).

We will be working with algorithms that compute a function F as well as other data (e.g.,

a real number). We regard any work done in computing the “other data” to be part of the

one-time work.

This concludes our explanation of “computing a function”.

It will be convenient to introduce the following definitions and notation. A “Whitney

field” is a family ~P = (Px)x∈E of polynomials Px ∈ P, indexed by the points x in a finite set

E ⊂ Rn. We say that ~P = (Px)x∈E is a Whitney field “on E”, and we write Wh(E) for the

vector space of all Whitney fields on E. If ~P is a Whitney field on E, and if S ⊂ E, then we

define the “restriction” ~P|S ∈ Wh(S) in an obvious way.

If ~P = (Px)x∈E is a Whitney field, Ω ⊃ E is an open set, and F ∈ Cm(Ω), then we say

that “F agrees with ~P”, or “F is an extending function for ~P”, provided Jx(F) = Px for each

x ∈ E.

We define a Cm norm on Whitney fields. If ~P ∈ Wh(E), and if Ω ⊃ E is an open set,

then we define

‖ ~P ‖Cm(Ω) = inf{‖ F ‖Cm(Ω): F ∈ Cm(Ω) , F agrees with ~P} .

Elementary examples show that this infimum need not be a minimum. For a constant A > 1,

we say that an extending function F ∈ Cm(Rn) for a Whitney field ~P is “A-optimal”, provided

‖ F ‖Cm(Rn)≤ A ‖ ~P ‖Cm(Rn).

Similarly, if f : E −→ R and F ∈ Cm(Ω), with E ⊂ Rn finite and Ω ⊃ E open, then we

say that “F agrees with f”, or “F is an extending function for f”, provided we have F = f on

E. We define a Cm-norm on functions f : E −→ R, by setting

‖ f ‖Cm(Ω)= inf{‖ F ‖Cm(Ω): F ∈ Cm(Ω) , F agrees with f} .

Again, this infimum needn’t be a minimum. For a constant A > 1, we say that an

extending function F ∈ Cm(Rn) for f : E −→ R is “A-optimal”, provided

‖ F ‖Cm(Rn)≤ A ‖ f ‖Cm(Rn) .
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Note that an A-optimal extending function is always defined on the full Rn.

We are now ready to state the main results of this paper. We write #(E) for the number

of elements of a finite set E.

Theorem 1. Given 0 < ε < 1/2, and given a Whitney field ~P ∈ Wh(E), with

#(E) = N ≥ 1, an algorithm to be specified below computes a (1 + ε)-optimal extending

function for ~P, as well as a number Nε(~P), such that

(1 + ε)−1 Nε(~P) ≤‖ ~P ‖Cm(Rn)≤ (1 + ε)Nε(~P) .

Our algorithm uses one-time work at most exp(C/ε)N log(N + 1), query work at most

C log(N/ε), and storage at most exp(C/ε)N.

Theorem 2. Given 0 < ε < 1/2, and given a function f : E −→ R, with E ⊂ Rn and

#(E) = N ≥ 1, an algorithm to be specified below computes a (1 + ε)-optimal extending

function for f, as well a number Nε(f), such that

(1 + ε)−1 Nε(f) ≤‖ f ‖Cm(Rn)≤ (1 + ε)Nε(f) .

Our algorithm uses one-time work at most exp(C/ε)N5(log(N + 1))2, query work at most

C log(N/ε), and storage at most exp(C/ε)N2.

We would prefer a power of 1/ε in place of exp(C/ε) in Theorem 1, but the N-dependence

seems optimal.

The algorithm promised in Theorem 2 is presumably far from optimal.

To set the stage for discussion of the proofs of Theorems 1 and 2, we first recall the

previous work of Fefferman-Klartag [FK1,FK2]. There, we proved the following results.

Theorem 3. (Easy) Given a Whitney field ~P ∈ Wh(E), with #(E) = N ≥ 1, an algorithm

presented in [FK1, FK2] computes a C-optimal extending function for ~P, and a number N(~P)

such that

cN(~P) ≤‖ ~P ‖Cm(Rn)≤ CN(~P).

Our algorithm uses one-time work at most CN log(N+ 1), query work at most C log(N+ 1),

and storage at most CN.



The Cm Norm of a Function with Prescribed Jets II 9

Theorem 4. (Hard) Given a function f : E −→ R, with E ⊂ Rn and #(E) = N ≥ 1, an

algorithm presented in [FK1, FK2 ] computes a C-optimal extending function for f, and a

number N(f) such that

cN(f) ≤‖ f ‖Cm(Rn)≤ CN(f) .

Our algorithm uses one-time work at most CN log(N+ 1), query work at most C log(N+ 1),

and storage at most CN.

The proofs of Theorems 3 and 4 are based on “finiteness principles”. A “finiteness

principle” for f : E −→ R asserts that

(6) ‖ f ‖Cm(Rn)≤ C · max{‖ (f|S) ‖Cm(Rn): S ⊆ E , #(S) ≤ k#},

with k# depending only on m and n.

For Whitney fields ~P ∈ Wh(E), a finiteness principle asserts that

(7) ‖ ~P ‖Cm(Rn)≤ C · max{‖ (~P|S) ‖Cm(Rn): S ⊆ E , #(S) ≤ k#} .

In fact, (7), with k# = 2, is immediate from the classical Whitney extension theorem, which

we now recall in the case of finite sets.

Theorem 5. (Whitney) Let ~P = (Px)x∈E be a Whitney field, and let M ≥ 0 be the smallest

real number such that:

|∂αPx(x)| ≤ M for |α| ≤ m and x ∈ E; and

|∂α(Px − Py)(x)| ≤ M |x − y|m−|α| for |α| ≤ m − 1 , x, y ∈ E .

Then

cM ≤‖ ~P ‖Cm(Rn)≤ CM.

See, e.g., [Ma,St,Wh1].

Estimate (6) lies deeper. It was conjectured by Y. Brudnyi and P. Shvartsman [BS1...BS5],

and proven by them [BS3] in the case m = 2, with an optimal constant k#. (The case m = 1
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is trivial.) The general case was proven in [F2]. Related results on “Whitney’s extension

problem” and its variants appear in Whitney [Wh1,Wh2,Wh3], Glaeser [G], Y. Brudnyi and

P. Shvartsman [B,BS1...BS5, Sh1...Sh3]; E. Bierstone, P. Milman and W. Paw lucki [BiMP1,

BiMP2]; N. Zobin [Z1,Z2] ; and C. Fefferman and B. Klartag [F1...F8, FK1,FK2]. It would

be interesting to find an easy proof of Theorem 4 or estimate (6).

Estimate (6) allows us to compute the order of magnitude of ‖ f ‖Cm(Rn), as in Theorem

4, because the order of magnitude of ‖ (f|S) ‖Cm(Rn) for #(S) ≤ k# may be easily computed

by linear algebra. (See [F2] for details.) Hence, in effect, we may take N(f) in Theorem 4 to

be the right-hand side of (6).

As for Theorem 3, we can take N(~P) to be the number M in Theorem 5 (which is compa-

rable to the right-hand side of (7), with k# = 2). A glance at Theorem 5 suggests that it takes

work N2 to compute the number M. In fact, the work to compute the order of magnitude of

M can be cut down to N log N, by using the “Well-Separated Pairs Decomposition”, and the

“Balanced Box Decomposition Tree” from computer science. (See Callahan-Kosaraju [CK]

and Arya et al [AMNSW].) These ideas from computer science are clearly related to our

problems, since, e.g., they allow an efficient computation of the Lipschitz norm of a function

f : E −→ R, up to a factor (1 + ε). See Har-Peled and Mendel [H-PM].

These results from computer science play a key rôle in our work, here and in [FK1,FK2].

The proofs of Theorem 5, and of (6), (7), are constructive. Thus, once we know how

to compute the order of magnitude of ‖ f ‖Cm(Rn) or ‖ ~P ‖Cm(Rn), we can also compute

C-optimal extending functions.

This concludes our discussion of Theorems 3 and 4.

To continue our preparation for the proofs of Theorems 1 and 2, we next discuss a result

from our previous paper [F9].

There, we gave a version of Whitney’s theorem (Theorem 5), in which the Cm-norm of

the extending function is controlled up to a factor (1 + ε). To state the result, we introduce

the notion of an “ε-testing set”:

Let ε > 0 be given. A finite set S ⊂ Rn is an “ε-testing set”, provided there exists an

open ball B(x0, r) ⊂ Rn, such that
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(8) S ⊂ B(x0, r), and

(9) |y − y′| > cεe−2/εr for any two distinct points y, y′ ∈ S.

An ε-testing set has simple geometry; roughly speaking, it has only one relevant length-

scale. Note that any ε-testing set S satisfies

(10) #(S) ≤ exp(C/ε),

and that any singleton or pair, S = {x} or S = {x, y}, is an ε-testing set.

The main result of [F9] is as follows.

Theorem 6. Let ~P = (Px)x∈E be a Whitney field. Then, for 0 < ε < c, we have

(11) ‖ ~P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (~P|S) ‖Cm(Rn): S ⊆ E is an ε-testing set}

In view of (10), Theorem 6 is a “(1 + ε)-finiteness principle”, with k# = k#(ε) = exp(C/ε).

We comment on the proof of Theorem 6. Recall that Whitney’s classical proof of Theorem

5 is based on a “Whitney partition of unity”, adapted to a decomposition of Rn into “Whitney

cubes”. Our proof of Theorem 6 patches together (1 + ε)-optimal extending functions for
~P|S (for suitable ε-testing sets S), by means of a “gentle partition of unity”. (See Sections 5

and 6 below.)

The proof of Theorem 6 is constructive. We refine it here, bringing in computer-science

ideas from [CK], to prove the following result, analogous to the main result in [F8].

Theorem 7. Let E ⊂ Rn be given, with #(E) = N ≥ 1. Let 0 < ε < c. Then there exists a

list S1, S2, . . . , SL of ε-testing sets contained in E, with the following properties.

(A) L ≤ C
ε

N.

(B) ‖ ~P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (~P|S`
) ‖Cm(Rn) : ` = 1, . . . , L} for any ~P ∈ Wh(E).

(C) The list S1, . . . , SL can be computed from ε and E, using work at most exp(C/ε)N log N,

and storage at most exp(C/ε)N.
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Moreover, given a (1 + ε)-optimal extending function F` for ~P|S`
, for each ` = 1, . . . , L, the

proof of Theorem 7 constructs a (1 + Cε)-optimal extending function for ~P. (We patch

together the F`, using a gentle partition of unity.)

We are now ready to discuss the proof of Theorem 1.

Once we have established Theorem 7, our task in proving Theorem 1 reduces to the following

extension problem.

Problem 1: Given 0 < ε < c, and given a Whitney field ~P on an ε-testing set, compute a

(1 + Cε)-optimal extending function for ~P, and compute a number Nε(~P), such that

(12) (1 + Cε)−1Nε(~P) ≤‖ ~P ‖Cm(Rn)≤ (1 + Cε)Nε(~P).

This is unfortunately not trivial, even for a Whitney field on a single point. (Recall that

the analogous computation in the setting of Theorems 3 and 4 required nothing more than

trivial linear algebra.)

To explain our solution to Problem 1, we confine our discussion to the computation of a

number Nε(~P) satisfying (12). Once we can do this, we can also compute a (1+Cε)-optimal

extending function, since our methods are constructive.

To simplify further, we replace Problem 1 by the following easier version.

Problem 2: Let 0 < ε < c, and let S ⊂ B(x0, r) be an ε-testing set, as in (8), (9). As-

sume r < ε−1. Given a Whitney field ~P ∈ Wh(S), compute a number Nε(~P) such that

(1 + Cε)−1 ‖ ~P ‖Cm(B(x0,r))≤ Nε(~P) ≤ (1 + Cε) ‖ ~P ‖Cm(B(x0,2r)).

Problem 2 is easier than Problem 1, since it is enough to construct a nearly optimal

extending function on the ball B(x0, r), as opposed to the whole Rn. We will see, in Sections

14...20 below, that the solution of Problem 2 is in fact one step in our solution of Problem 1.

We omit details here, and confine our discussion to Problem 2. Our introductory discussion

of Problem 2 is oversimplified; see Section 14 for correct statements.
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A crucial step in our solution of Problem 2 is the following

Smoothing Lemma: Let S ⊂ B(x0, r) be an ε-testing set, as in (8), (9) where 0 < ε < c.

Then, for any function F ∈ Cm(B(x0, 2r)), there exists a function F̃ ∈ Cm+1(B(x0, r)), with

the following properties:

(A) Jy(F̃) = Jy(F) for all y ∈ S.

(B) ‖ F̃ ‖Cm(B(x0,r))≤ (1 + Cε) ‖ F ‖Cm(B(x0,2r)) .

(C) |∂αF̃(x)| ≤ C exp
(

4m
ε

)
r−1 ‖ F ‖Cm(B(x0,2r)) for |α| = m + 1 , x ∈ B(x0, r) .

Thus, F̃ inherits the good properties of F, and its (m+1)rst derivatives are under control.

Let us first discuss the proof of the Smoothing Lemma, and then see how it applies to

Problem 2.

It is natural to try to prove the Smoothing Lemma by convolving F with an approximate

identity. This produces a function F̃0 that satisfies (B) and (C) but not (A). In fact, for

y ∈ S, we expect that Jy(F̃0) will be nowhere near Jy(F), since we have no control over the

modulus of continuity of the mth derivatives of F. Our problem is to “correct” F̃0, to achieve

(A), without spoiling (B) and (C).

To do so, we let P̃y = Jy(F) ∈ P, for each y ∈ S. The function P̃y satisfies (A), (B),

(C) locally on a tiny ball By about y; but it makes no sense to use P̃y as an extending

function outside By. We patch together our functions F̃0 and P̃y (all y ∈ S), by using a

gentle partition of unity, to produce a function F̃ that satisfies (A), (B) and (C).

This concludes our summary of the proof of the Smoothing Lemma.

We prepare to apply the Smoothing Lemma to Problem 2. To do so, we extend our

testing set S to a “fine net”, i.e., a finite set S+ with the following properties.

(13) S ⊂ S+ ⊂ B(x0, r).

(14) For any x ∈ B(x0, r), there exists y ∈ S+ such that |x − y| ≤ exp
(
−6m

ε

)
r.

(15) #(S+) ≤ exp(C/ε).
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It is trivial to construct such an S+.

To solve Problem 2 using the Smoothing Lemma, we now pose a

Linear Programming Problem:

Find a real number M, and polynomials P+
y ∈ P for all y ∈ S+, satisfying the following

constraints, with M as small as possible.

The Constraints:

(16) |P+
y |y ≤ M for each y ∈ S+.

(17) |∂α(P+
y − P+

y′)(y)| ≤ Cr−1 exp
(

4m
ε

)
|y − y′|m+1−|α|M for |α| ≤ m, y, y′ ∈ S+.

(18) P+
y = Py for each y ∈ S, where ~P = (Py)y∈E is the given Whitney field in Problem 2.

Using the Oracle, we can replace (16) by a family of linear constraints, without signif-

icantly changing the problem. Thus, the above minimization problem is indeed a linear

programming problem. This linear programming problem involves at most exp(C/ε) linear

constraints in a vector space of dimension at most exp(C/ε).

Let (M0, (P
0
y)y∈S+) be a solution of the above linear programming problem. Using the

Smoothing Lemma, we will show that

(19) (1 + Cε)−1 ‖ ~P ‖Cm(B(x0,r))≤ M0 ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

Once we know (19), we can just take Nε(~P) = M0, and we will have solved Problem 2.

To see (19), we argue as follows. By definition of the Cm-norm of a Whitney field, there

exists F ∈ Cm(B(x0, 2r)), such that

(20) Jy(F) = Py for each y ∈ S,

and

(21) ‖ F ‖Cm(B(x0, 2r))≤ (1 + ε) · ‖ ~P ‖Cm(B(x0,2r)).
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Applying the Smoothing Lemma, we obtain a function F̃ ∈ Cm(B(x0, r)), satisfying

(22) Jy(F̃) = Jy(F) for each y ∈ S,

(23) ‖ F̃ ‖Cm(B(x0,r))≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)), and

(24) |∂αF̃(x)| ≤ C exp
(

4m
ε

)
r−1 · ‖ ~P ‖Cm(B(x0,2r)) for |α| = m + 1, x ∈ B(x0, r).

Let us set

(25) M = (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)) and

(26) P+
y = Jy(F̃) for all y ∈ S+.

Then the constraints (16), (17), (18) hold. In fact, (16) follows from (23), (25) and (26),

by definition (3) of the Cm-norm. Moreover, (17) follows from (24), (25), (26) and Taylor’s

theorem; while (18) is immediate from (20), (22), (26).

Thus, the above (M, (P+
y )y∈S+) satisfies the constraints (16), (17), (18), whereas

(M0, (P0
y)y∈S+) is a minimizer. Consequently, M0 ≤ M. That is,

M0 ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)) ,

which is half of the desired estimate (19).

To establish the other half of (19), we recall that (M0, (P
0
y)y∈S+) satisfies the constraints

(16), (17), (18). Thus,

(27) |P0
y|y ≤ M0 for y ∈ S+;

(28) |∂α(P0
y − P0

y′)(y)| ≤ Cr−1 exp
(

4m
ε

)
|y − y′|m+1−|α|M0 for |α| ≤ m, y, y′ ∈ S+;

and

(29) P0
y = Py for each y ∈ S.

From (27) we obtain the estimates
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(30) |∂αP0
y(y)| ≤ CM0 for |α| ≤ m, y ∈ S+.

(This step uses the “Bounded Distortion Property”, which is one of the assumptions made in

Section 3 on the family of norms | · |x in (3).)

In the statement of Problem 2, we assume that r < ε−1 and ε < c. Hence, (30) trivially

implies

(31) |∂αP0
y(y)| ≤ Cr−1 exp

(
4m
ε

)
M0 for |α| ≤ m, y ∈ S+.

Thanks to (28), (31) and the classical Whitney extension theorem (Theorem 5 with m + 1

in place of m), there exists a function F ∈ Cm+1(Rn), such that

(32) Jy(F) = P0
y for all y ∈ S+,

and

(33) |∂αF(x)| ≤ Cr−1 exp
(

4m
ε

)
M0 for |α| = m + 1 and x ∈ Rn.

In view of (29) and (32), we have

(34) Jy(F) = Py for y ∈ S.

We will show that

(35) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε)M0.

Once we establish (35), we obtain from (34), (35) and the definition of the Cm-norm of a

Whitney field that

‖ ~P ‖Cm(B(x0,r))≤ (1 + Cε)M0,

which is the remaining half of our desired estimate (19).

Thus, to prove (19) and thereby solve Problem 2, it remains only to prove (35). By

definition (3), estimate (35) is equivalent to the estimate
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(36) |Jx(F)|x ≤ (1 + Cε)M0 for all x ∈ B(x0, r).

So our task is to prove (36). To do so, we start with the points of the fine net S+. From (27)

and (32), we see at once that

(37) |Jy(F)|y ≤ M0 for all y ∈ S+.

Moreover, whenever |x−y| ≤ exp
(
−6m

ε

)
r and |α| ≤ m, estimate (33) and Taylor’s theorem

give

(38) |∂α[Jx(F) − Jy(F)](x)| ≤

Cr−1 exp
(

4m
ε

)
|x − y|m+1−|α| M0 ≤

Cr−1 exp
(

4m
ε

)
[exp

(
−6m

ε

)
r]m+1−|α| M0 ≤ εM0,

since r < ε−1 in Problem 2. Thus, the jets Jx(F) and Jy(F) are “close”. From (38) and the

properties of the norms | · |x assumed in Section 3, we conclude that

(39) |Jx(F)|x ≤ (1 + Cε)| Jy(F)|y + CεM0, whenever |x − y| ≤ exp
(
−6m

ε

)
r.

The desired estimate (36) now follows at once from (37) and (39), together with property

(14) of the fine net S+.

This completes our summary of the solution of Problem 2, as well as our discussion of

the proof of Theorem 1. We pass to the proof of Theorem 2.

A fundamental difference between Theorems 1 and 2 is that the natural “finiteness prin-

ciple” analogous to Theorem 6 is false in the context of Theorem 2. In fact, the following

negative result is proven in Fefferman-Klartag [FK3], for the case of C2(R2), equipped with

the norm (1) or (2).

Theorem 8. There exists a universal constant ε0 > 0, for which the following holds.

Given any k#, there exists a function f : E −→ R on a finite set E ⊂ R2, such that

max{‖ (f|S) ‖C2(R2): S ⊆ E, #(S) ≤ k#} ≤ 1 , but ‖ f ‖C2(R2)≥ 1 + ε0.
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Thus, an efficient algorithm to compute ‖ f ‖Cm(Rn) up to a factor (1 + ε) will require

new ideas. Our Theorem 2 provides a (presumably) inefficient solution to this problem.

To explain the ideas in the proof of Theorem 2, we again confine ourselves to the com-

putation of the norm, leaving the construction of a nearly optional extending function to

Sections 26...29 below.

Let us say that a Whitney field ~P = (Px)x∈E “agrees” with a function f : E −→ R,

provided (Px)(x) = f(x) for each x ∈ E.

Immediately from the relevant definitions, we then have

‖ f ‖Cm(Rn) = inf{‖ ~P ‖Cm(Rn): ~P ∈ Wh(E) , ~P agrees with f} .

Together with Theorem 1, this yields

(40) (1 + Cε)−1 ‖ f ‖Cm(Rn)≤

inf{Nε(~P) : ~P ∈ Wh(E), ~P agrees with f}

≤ (1 + Cε) ‖ f ‖Cm(Rn) ,

with Nε(~P) as in Theorem 1.

To exploit (40), we review the proof of Theorem 1 to see how Nε(~P) depends on
~P ∈ Wh(E). We find that there exist a finite-dimensional vector space W, and (real-valued)

linear functionals λ1, . . . , λK on Wh(E)⊕W, such that

(41) Nε(~P) = min
w∈W

max
k=1,...,K

|λk(~P,w)| .

Moreover, W and λ1, . . . , λK may be computed efficiently from ε and E.

Combining (40) and (41), we now see that

(42) (1 + Cε)−1 ‖ f ‖Cm(Rn)≤

min{ max
k=1,...,K

|λk(~P,w)| : (~P,w) ∈ Wh(E)⊕W , ~P agrees with f}

≤ (1 + Cε) ‖ f ‖Cm(Rn) .
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Consequently, we may take Nε(f) to be the “minimax” in (42), and we have

(1 + Cε)−1 Nε(f) ≤‖ f ‖Cm(Rn)≤ (1 + Cε)Nε(f) ,

as in Theorem 2. The computation of Nε(f) is a linear programming problem, involving at

most exp(C/ε) · N constraints, in a vector space of dimension at most exp(C/ε) · N.

We solve this linear programming problem using the “ellipsoid method” from computer

science. (See [Kh].) The one-time work and storage given in Theorem 2 arise from the

ellipsoid method. More efficient linear programming algorithms will surely sharpen Theorem

2, but are unlikely to yield an efficient computation of ‖ f ‖Cm(Rn) up to a factor (1 + ε)

without further ideas.

Note that the computation for Theorem 1 entails solving ∼ N/ε “little” linear program-

ming problems, each having “size” ∼ exp(C/ε). On the other hand, our computation for

Theorem 2 involves a single “big” linear programming problem, of “size” ∼ exp(C/ε) ·N. Of

course, the “big problem” requires much more work than all the “little problems” combined.

This completes our introductory remarks on the proof of Theorem 2. Again, we stress

that our discussion of the proofs of Theorems 1 and 2 is oversimplified. (For instance, the

proof of Theorem 7 actually comes after that of Theorem 1.) We refer the reader to Sections

1...29 below, for the real story.

Let us briefly explain what happens in each of the sections to follow.

Section 1 gives notation and elementary definitions.

Section 2 specifies our model of computation in more detail than in this introduction.

Section 3 gives our assumptions on the norms | · |x in (3), defines “controlled constants”,

and shows how to replace (16) by a family of linear constraints, using the Oracle.

Section 4 recalls well-known results from computer science.

Section 5 recalls the basic lemma from [F9] on “gentle partitions of unity”, and gives a

few simple corollaries.

Section 6 states the “Main Patching Lemma”, which is a constructive version of Theo-

rem 6. Given a list of useful inputs, the Main Patching Lemma constructs a
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(1 + Cε)-optimal extending function for a given Whitney field ~P.

The task of computing the “useful inputs” for the Main Patching Lemma oc-

cupies Sections 8...20 below.

Section 7 proves the Main Patching Lemma, along the lines of [F9].

Section 8 uses the Well-Separated-Pairs Decomposition to compute efficiently the order

of magnitude of the number M in Theorem 5.

Section 9 computes the “regularized distance”, a smooth function comparable to the

distance to a given finite set E ⊂ Rn. See [Ma,St,Wh1] for this notion.

Section 10 gives routine algorithms to compute some cutoff functions appearing in the

Main Patching Lemma.

Section 11 computes the list of testing sets used by the Main Patching Lemma.

Section 12 states and proves the Smoothing Lemma, which we have stated (not quite

correctly) in this introduction.

Section 13 implements our discussion of (27)...(39) above, as an algorithm.

Section 14 (roughly speaking) applies the Smoothing Lemma to solve Problem 2 (local

extension from a Whitney field on a testing set), as explained earlier in this

introduction.

Sections 15...20 pass from our solution of Problem 2 (local extension) to a solution of Prob-

lem 1 (global extension). Section 15 treats the case of a Whitney field on a

single point, while Sections 16...20 combine our results from Sections 14 and 15

to treat the general case. More precisely, we subdivide the general case into sev-

eral subcases, depending essentially on the diameter of the given ε-testing set.

Sections 16...19 treat the various subcases, and Section 20 puts them together.

Sections 21...24 present the proof of Theorem 1. The algorithm promised in Theorem 1

uses the results of Sections 8 through 20, in order to apply the Main Patching

Lemma.

Section 25 proves Theorem 7, and also records some observations on the algorithm in

Theorem 1. These observations will be used in the proof of Theorem 2.



The Cm Norm of a Function with Prescribed Jets II 21

Sections 26...29 give the proof of Theorem 2. In Section 26, we introduce “minimax func-

tions”, similar to the minmax in (41) above. We prove in Sections 27 and 28

that the quantity Nε(~P) in Theorem 1 is a minimax function of ~P, thus estab-

lishing (41). Finally, Section 29 exploits (41), as explained in our introduction,

to compute an almost-optimal Whitney field ~P ∈ Wh(E) agreeing with a given

function f : E −→ R. This reduces Theorem 2 to Theorem 1.

In the sections below, we present algorithms in the following format.

Algorithm [Name]: Given [data] satisfying [assumptions], we compute [stuff] such that

[some properties hold].

The algorithm requires work at most [W] and storage at most [S].

Explanation: [Here, we specify the algorithm and prove that it performs as asserted.]

If the above [assumptions] are not satisfied, then we make no claim as to what our

algorithm does, or even whether it terminates. Our algorithm need not check whether the

[assumptions] are satisfied.

Many of our algorithms compute a function F ∈ Cm(Rn), and possibly other data as well

(e.g., a number Nε(~P) or a ball B(x0, r)). In this case, instead of saying that our algorithm

“requires work at most [W] and storage at most [S]”, we say the following:

The algorithm requires one-time work at most [L0], query work at most [L1], and storage

at most [S].

Recall that any work used to compute answers other than the function F is counted as

part of the one-time work.

For a few algorithms, which are either well-known or discussed in [FK2], we provide a

reference to the literature in place of an Explanation.
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We conclude this introduction with a trivial remark about our labeling of equations. Let

k, k′, ` be integers, and suppose we are in Section k′. Then we write (k.`) to denote equation

(`) in Section k. In the case k′ = k, we simply write (`).

Let us get to work.

1 Notation and Preliminaries

Recall that we have fixed m,n ≥ 1, and that P denotes the vector space of all (real)

polynomials of degree at most m on Rn.

For Ω ⊂ Rn open, we write Cm
loc(Ω) for the space of real-valued locally Cm functions

on Ω, and we write Cm(Ω) for the space of all F ∈ Cm
loc(Ω) such that F and its derivatives

through mth order are bounded on Ω. We define Cm+1
loc (Ω) and Cm+1(Ω) similarly. For

F ∈ Cm
loc(Ω) and x ∈ Ω, we write Jx(F) for the mth order Taylor polynomial of F at x. Thus,

Jx(F) belongs to P.

For P1, P2 ∈ P and x ∈ Rn, we write P1 �x P2 to denote the product of P1 and P2 as

m-jets at x; i.e., P1 �x P2 is the unique polynomial in P that satisfies

∂α([P1 �x P2] − P1P2) (x) = 0 for |α| ≤ m .

If F1, F2 ∈ Cm
loc(Ω) and x ∈ Ω, then Jx(F1F2) = Jx(F1)�x Jx(F2).

For F ∈ Cm
loc(Ω), we write suppΩF to denote the set of all points x ∈ Ω such that F is not

identically zero on any neighborhood of x. When Ω = Rn, we write supp F for suppΩF.

Recall that a Whitney field on a finite set S ⊂ Rn is a family of polynomials

(1) ~P = (Py)y∈S
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indexed by S, with each Py ∈ P. If S ⊂ Ω (with Ω open), and if F ∈ Cm
loc(Ω), then we say

that F agrees with ~P as in (1) if we have Jy(F) = Py for all y ∈ S.

If ~P as in (1) is a Whitney field on S, and if S′ ⊂ S is a subset, then we write ~P|S′ for the

Whitney field (Py)y∈S′ , and we call ~P|S′ the “restriction” of ~P to S′.

If F agrees with ~P|S′ , then we say that F “agrees with ~P on S′.” If S′ = {y0} is a singleton,

then we say that F “agrees with ~P at y0”.

We write Wh(S) for the vector space of Whitney fields on a given set S ⊂ Rn.

Let x ∈ Rn and r > 0. Then B(x, r) denotes the open ball in Rn with center x and radius r.

A dyadic cube in Rn is a Cartesian product of the form

Q = [2`m1, 2
`(m1 + 1)) × · · · × [2`mn, 2`(mn + 1))

where `, m1, . . . , mn are integers. More generally, a “cube” in Rn is a Cartesian product of

half-open intervals

Q = [a1, b1) × [a2, b2) × · · · × [an, bn) ⊂ Rn,

with b1 − a1 = b2 − a2 = · · · = bn − an.

We write δQ to denote the sidelength of a cube Q, and we write cent(Q) to denote the center

of Q.

We define Q∗ to be the unique cube satisfying cent(Q∗) = cent(Q) and δQ∗ = 3δQ. Also,

we write Q∗∗ to denote (Q∗)∗, and Q∗∗∗ to denote (Q∗∗)∗ . Note that if Q is a dyadic cube,

then Q∗, Q∗∗ and Q∗∗∗ may be trivially partitioned into dyadic cubes .

For any set E ⊂ Rn, we write Eint and Ecl for the interior and closure of E, respectively.

For any set S, we write #(S) to denote the number of elements of S. If S is infinite, then

we define #(S) = + ∞.

We write φ to denote the empty set.

For E ⊂ Rn, we write diam(E) to denote the diameter of E, i.e., sup{|x − x′| : x, x′ ∈ E}.

Also, for E, E′ ⊂ Rn, we write dist(E, E′) to denote inf{|x − x′| : x ∈ E, x′ ∈ E′}. If E = φ,
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then diam(E) = 0, and if E = φ or E′ = φ, then dist(E, E′) = + ∞. We write dist(x, E′) to

denote inf{|x − x′| : x′ ∈ E′}. If E′ = φ, then dist(x, E′) = + ∞.

2 The Model of Computation

Our model of computation (called “real RAM” in the computer science literature) differs

from a standard Von Neumann computer [vN] in that we assume that the computer can

store, retrieve from memory, and manipulate exact real numbers , without roundoff errors.

Our computer includes several registers, and finitely many memory cells labeled by integers

1,2,..., Memory-Size. Each memory cell and each register is capable of storing either an

integer or a real number. The machine can perform the following operations, each of which

costs one unit of “work”.

• Retrieve the contents of memory cell k, and write it to one of the registers.

(1 ≤ k ≤ Memory-Size).

• Write the contents of a register to memory cell k (1 ≤ k ≤ Memory-Size).

• Write the number 0 or 1 to one of the registers.

• Given two real numbers x and y appearing in the registers, compute x + y, x − y, xy,

and (if y 6= 0) x/y. Also, decide whether x < y, x > y, or x = y.

• Given a real number x appearing in a register, compute exp(x); and, if x > 0, compute

log(x).

• Given a real number x appearing in a register, compute bxc, the greatest integer ≤ x.

• Retrieve a real number entered by the user, and place it in a register.

• Output to the user a real number or integer appearing as the contents of a register.

We assume that the above operations can be carried out perfectly, without roundoff error.

Also, as mentioned in the introduction, we assume that our computer is capable of com-

municating with an Oracle, which will be used to convey to the computer (an approximation
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to)|P|x for a given P ∈ P and x ∈ Rn. Thus, we assume that the computer can do the

following:

• Output the contents of a register to the Oracle.

• Wait for the Oracle to communicate a real number S; once the Oracle speaks, the

number S is placed in one of the registers of our machine.

To output a number to the Oracle costs us one unit of “work”. However, when the Oracle

speaks to our machine, then she decides how many units of “work” to charge us. For more

about the Oracle, see Section 3.

The flow of control in our computer proceeds as for a standard Von Neumann machine

[vN].

This concludes our brief description of the model of computation used in this paper.

It is well-known to computer scientists that the above “real RAM” model of computation

(even without an Oracle) leads to some suspiciously efficient algorithms that make crucial

use of the complete absence of roundoff errors. See, e.g., [Sc]. This issue can be dealt with

in various ways. In Fefferman-Klartag [FK2], we made a rigorous analysis of the effect of

roundoff errors on the algorithms presented there. We believe that the algorithms in this

paper can be analyzed in a somewhat similar spirit, but we have not put in the hard work

required to decide the issue. The best we can say now is that it is natural to guess that our

algorithms will survive in the presence of small enough roundoff errors.

3 Cm Norm

Suppose we are given a norm | · |x on the vector space P, for each x ∈ Rn. We assume that

these norms satisfy the following conditions, for certain given constants c̄0, C̄0, C̄1.

Bounded Distortion Property: We have

c̄0 ·max|α|≤m |∂αP(x)| ≤ |P|x ≤ C̄0 · max|α|≤m |∂αP(x)|

for all x ∈ Rn and P ∈ P.
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Approximate Translation-Invariance Property: Let P ∈ P and x, y ∈ Rn be given. Define a

polynomial Py ∈ P by setting Py(z) = P(z − y) for all z ∈ Rn. Then we have

|Py|x+y ≤ exp(C̄1|y|) · |P|x .

Throughout this paper, we assume that we are given the family of norms | · |x, and the

constants c̄0, C̄0, C̄1, such that the above properties hold. We say that a constant is controlled

if it is determined by m,n, c̄0, C̄0 and C̄1.

We write c, C,C′, etc., to denote controlled constants. Unless otherwise specified, these

constants may change from one occurrence to the next. We recall the following definitions

from the introduction.

For F ∈ Cm(Ω), we define ‖ F ‖Cm(Ω) = supx∈Ω |Jx(F)|x .

Also, for any Whitney field ~P, we define ‖ ~P ‖Cm(Rn) to denote the infimum of ‖ F ‖Cm(Rn)

over all F ∈ Cm(Rn) that agree with ~P.

We need to specify the norms | · |x to our computer. Therefore, we assume we have access

to an Oracle, as follows. We query the Oracle by specifying a point x ∈ Rn, a polynomial

P ∈ P, and a number ε, with 0 < ε < 1. The Oracle responds by producing a number

Nε(P, x), such that

(1 + ε)−1 Nε(P, x) ≤ |P|x ≤ (1 + ε)Nε(P, x) .

We are charged exp(C/ε) units of work for each query (P, x, ε) addressed to the Oracle.

We may suppose that Nε(P, x) = Nε(−P, x), for any P, x, ε. (In fact, we may replace

Nε(P, x) by max{Nε(P, x), Nε(−P, x)} without harm.)

The following algorithm gives us a close approximation to the unit ball for the norm | · |x.

Algorithm 3.1. (“Find-Unit-Ball”).

Given a number ε, with 0 < ε < 1; and given a point x ∈ Rn; we compute a finite set

O(ε, x) of linear functionals on P, with the following properties.

(O0) For any λ ∈ O(ε, x), we have also −λ ∈ O(ε, x).

(O1) (1 + ε)−1|P|x ≤ max{λ(P) : λ ∈ O(ε, x)} ≤ (1 + ε)|P|x for all P ∈ P.
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(O2) #(O(ε, x)) ≤ exp(C/ε).

Moreover,

(O3) The work and storage used for the computation are at most exp(C/ε).

Explanation: We introduce some definitions and prove a few elementary facts, then we give

the algorithm and prove (O0)...(O3). Fix x ∈ Rn. For P ∈ P, let |P| = max|α|≤m |∂αP(x)|.

Thus,

(1) c|P| ≤ |P|x ≤ C|P| for P ∈ P, by the Bounded Distortion Property.

Let P∗ be the dual vector space to P, and let | · |∗ and | · |∗x be the norms dual to | · |, | · |x,

respectively. Thus (1) implies

(2) c|λ|∗ ≤ |λ|∗x ≤ C|λ|∗ for λ ∈ P∗.

Let A , ε > 0 be real numbers. Assume that

(3) A exceeds a large enough controlled constant, and

(4) 0 < ε < A−2.

Later, we will pick A to be a controlled constant, large enough to satisfy (3). For now,

however, we just assume (3) and (4).

We introduce two finite sets Γ ⊂ P and Λ∗ ⊂ P∗, with the following properties.

(5) Every P0 ∈ Γ satisfies |P0| ≤ 2A.

(6) For any P ∈ P with |P| ≤ A, there exists P0 ∈ Γ such that |P − P0| ≤ ε.

(7) Every λ0 ∈ Λ∗ satisfies |λ0|
∗ ≤ 2A.

(8) For any λ ∈ P∗ with |λ|∗ ≤ A, there exists λ0 ∈ Λ∗ such that |λ − λ0|
∗ ≤ ε.
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(We can easily construct such Λ∗ and Γ . For instance, we can take Γ to be the ball of radius

2A about 0 for the norm | · |, intersected with a fine enough cubic lattice in P. We can define

Λ∗ similarly.)

Now, we define sets Γ(ε) ⊆ Γ and O∗(ε, x) ⊆ Λ∗, as follows:

(9) Γ(ε) = {P0 ∈ Γ : Nε(P0, x) ≤ 1 + Aε}, where Nε(P0, x) is the number computed by

the Oracle for the query P0, x, ε; and

(10) O∗(ε, x) = {λ0 ∈ Λ∗ : λ0(P0) ≤ 1 + 2Aε for all P0 ∈ Γ(ε)}.

We will prove two elementary propositions regarding O∗(ε, x).

Proposition 1. Let λ0 ∈ O∗(ε, x), and let P ∈ P. Then λ0(P) ≤ (1 + 10Aε) · |P|x.

Proof. We may assume that |P|x = 1. Then |P| ≤ C by (1). Hence, (3) and (6) show that

there exists P0 ∈ Γ such that |P − P0| ≤ ε. Fix such a P0. By (1), we have |P − P0|x ≤ Cε.

Hence, |P0|x ≤ |P|x + |P0 − P|x ≤ 1 + Cε. The defining property of Nε(P, x) then yields

Nε(P0, x) ≤ (1 + C′ε) ≤ 1 + Aε by (3).

Thus, P0 ∈ Γ and Nε(P0, x) ≤ 1 + Aε. By definition (9), we have P0 ∈ Γ(ε). Since also

λ0 ∈ O∗(ε, x), it follows from (10) that

(11) λ0(P0) ≤ 1 + 2Aε.

Moreover, we have λ0 ∈ O∗(ε, x) ⊆ Λ∗, hence |λ0|
∗ ≤ 2A by (7). Consequently,

(12) |λ0(P − P0)| ≤ |λ0|
∗ · |P − P0| ≤ 2Aε.

From (11) and (12), we obtain λ0(P) ≤ 1 + 4Aε, proving Proposition 1.

Proposition 2. Let P ∈ P. Then there exists λ0 ∈ O∗(ε, x) such that

λ0(P) ≥ (1 − Cε) · |P|x.

Proof. There exists λ ∈ P∗ such that

(13) |λ|∗x = 1 and
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(14) λ(P) = |P|x.

By (13) and (2), we have |λ|∗ ≤ C. Hence, by (3) and (8), there exists λ0 ∈ Λ∗ such that

(15) |λ − λ0|
∗ ≤ ε.

By (2), we therefore have

(16) |λ − λ0|
∗
x ≤ Cε.

From (13) and (16), we obtain

(17) |λ0|
∗
x ≤ 1 + Cε.

Let P0 ∈ Γ(ε). Then Nε (P0, x) ≤ 1 + Aε by (9); hence, |P0|x ≤ (1 + Cε) · (1 + Aε) by

defining property of Nε(P, x). Consequently, we have

λ0(P0) ≤ |λ0|
∗
x · |P0|x ≤ (1 + Cε) · [(1 + Cε) · (1 + Aε)] (see (17)).

Thanks to (3) and (4), it follows that λ(P0) ≤ 1 + 2Aε.

Thus, λ0 ∈ Λ∗, and λ0(P0) ≤ 1 + 2Aε for all P0 ∈ Γ(ε). By definition (10), we have

(18) λ0 ∈ O∗(ε, x).

Moreover, (14) and (16) yield the inequality

(19) λ0(P) = λ(P) − (λ − λ0)(P) ≥ |P|x − |λ − λ0|
∗
x · |P|x ≥ (1 − Cε) · |P|x.

The conclusion of Proposition 2 is immediate from (18) and (19).

Let us now take A to be a controlled constant, large enough that (3) holds. We have also

(4), provided ε > 0 is less than a small enough controlled constant.

Since A is now a controlled constant, the two Propositions above tell us that

(20) (1 − Cε) · |P|x ≤ max{λ(P) : λ ∈ O∗(ε, x)} ≤ (1 + Cε) · |P|x for P ∈ P.

Estimate (20) holds if ε is less than a small enough controlled constant.
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Now we can explain how to carry out Algorithm 3.1. First suppose that ε is less than

a small enough controlled constant. With A as above, we compute sets Λ∗ and Γ satisfying

(5)...(8).

This elementary computation takes work and storage at most Cε−D, where D = dim P.

Moreover, we can take our Λ∗ and Γ to satisfy also

(21) #(Λ∗), #(Γ) ≤ Cε−D.

(Details of the computation of Γ and Λ∗ are left to the reader.) We then compute the set

Γ(ε) from (9). This requires #(Γ) queries to the Oracle, to learn the numbers Nε(P0, x) for

all P0 ∈ Γ . Thus, the work to compute Γ(ε) is at most exp(C/ε), thanks to (21) and our

assumption on the work to query the Oracle.

Having computed Γ(ε), we can then compute O∗(ε, x) from (10). The work needed for

this step is at most C · #(Λ∗) · #(Γ) ≤ C · ε−2D, while the storage needed is at most

C · ε−D.

Thus, we have computed O∗(ε, x) using total work and storage at most exp(C/ε). The

set O∗(ε, x) satisfies (20), and also

(22) #(O∗(ε, x)) ≤ #(Λ∗) ≤ Cε−D < exp(C/ε).

We have achieved (20) and (22), using work and storage at most exp(C/ε), provided ε

is less than a small enough controlled constant.

We now drop our assumption that ε is less than a small enough controlled constant. We

assume merely that 0 < ε < 1.

To compute O(ε, x) satisfying (O1), (O2), (O3) in Algorithm 3.1, it is enough to replace

ε by ε′ = cε for a small enough controlled constant c; we then compute O∗(ε′, x), and we just

set

O(ε, x) = O∗(ε′, x). Properties (O1), (O2), (O3) are immediate from the corresponding prop-

erties of O∗(ε′, x).

By taking the sets Λ∗ and Γ in (5)...(8) to be symmetric about the origin, we obtain from

the above construction that λ ∈ O(ε, x) if and only if −λ ∈ O(ε, x), for any given functional
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λ on P. Thus, property (O0) holds as well.

This concludes our explanation of Algorithm 3.1.

We close this section by noting an elementary consequence of the Bounded Distortion and

Approximate-Translation Invariance properties.

Lemma 1. Let P ∈ P, x ∈ Rn, τ ∈ B(0, 1). If |P|x ≤ 1, then |P|x+τ ≤ 1 + C|τ|.

Proof. Define the translate Pτ ∈ P, by setting Pτ(z) = P(z − τ) for all z ∈ Rn. We have

(23) |Pτ|x+τ ≤ 1 + C|τ|,

by the Approximate-Translation Invariance property. On the other hand, by the Bounded

Distortion Property, we have |∂αP(x)| ≤ C for |α| ≤ m, which implies the estimate

|∂α(P − Pτ)(x + τ)| ≤ C|τ| for |α| ≤ m .

Another application of the Bounded Distortion Property now gives

(24) |P − Pτ|x+τ ≤ C|τ|.

The desired conclusion is immediate from (23) and (24).

4 Background from Computer Science

In this section, we recall some standard results from computer science. We start with the

“Ellipsoid Algorithm” for linear programming.

Let us work in RD. We write v, v′, v0, etc., for vectors in RD, and we write λ, λ′, λ`, etc.,

to denote linear functionals on RD. We denote a positive-definite quadratic form on RD by

q(·). An “ellipsoid” is a subset E ⊂ RD, given by

(1) E = {v ∈ RD : q(v − v0) ≤ 1}
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for a positive-definite quadratic form q and a vector v0.

A “linear constraint” in RD is an inequality of the form λ(v) ≥ b (with λ ∈ (RD)∗ and

b ∈ R given), for an unknown vector v ∈ RD. Given a list of linear constraints λ`(v) ≥ b`

for ` = 1, . . . , L, the “feasible region” is defined as

K = {v ∈ RD : λ`(v) ≥ b` for ` = 1, . . . , L}.

Now suppose we are given a list of linear constraints, and a linear functional λ̂ ∈ (RD)∗.

We would like to find a vector v ∈ K, with λ̂(v) as small as possible, or nearly so. Of course,

this makes sense only if K is non-empty and λ̂ is bounded below on K.

For the “ellipsoid algorithm”, we assume that K is roughly comparable to a given ellipsoid

E, in the sense that

(2) K ⊆ E, and vol K ≥ λD vol E for given real number λ > 0.

(In (2), λ does not denote a linear functional. We trust that no confusion will result.)

The idea of the ellipsoid method is that either the center of E belongs to K, or else one

can trivially produce another ellipsoid E′, such that K ⊂ E′ and vol (E′) ≤ (1 − c/D) vol (E)

for a universal constant c.

This allows us to perform the following algorithm.

Ellipsoid Algorithm: Given positive real numbers ε, λ, with 0 < ε < 1/2 and 0 < λ < 1/2;

and given an ellipsoid E with center v0; and given a list of L linear constraints on RD, whose

feasible region K satisfies

(a) K ⊆ E and

(b) vol K ≥ λD vol E;

and given a linear functional λ̂ ∈ (RD)∗;

we compute a vector v1 ∈ K, such that

λ̂(v1) ≤ min{λ̂(v) : v ∈ K} + ε · max{|̂λ(v − v0)| : v ∈ E}.

The computation requires work at most CD4 L log
(

1
λ

)
log

(
1
ε

)
,

and storage at most C · (D + L)2.
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The following special case will be used below. We write

BD = {(v1, . . . , vD) ∈ RD : |vi| ≤ 1 for i = 1, . . . ,D} .

Special Ellipsoid Algorithm: Given positive real numbers ε,∧, λ, assumed to satisfy

0 < ε < 1/2 and 2λ < ∧;

and given a list of L linear constraints in RD, whose feasible region K is assumed to satisfy

(a) K ⊆ ∧ BD and

(b) K ⊇ λBD + ṽ for an (unknown) vector ṽ ∈ RD;

we compute a vector (v0
1, . . . , v

0
D) ∈ K, such that

v0
1 ≤ min{v1 : (v1, . . . , vD) ∈ K} + ε ∧.

The work required is at most CD4L log
(

∧D
λ

)
log

(
D
ε

)
, and the storage required is at most

C · (D + L)2.

See [Kh]. Also, see [Ka,Me] as a sample of the extensive literature on linear programming.

Next, we give some standard results from computational geometry. We start this discus-

sion with the Well-Separated Pairs Decomposition due to Callahan and Kosaraju [CK]. The

results below are significantly weaker than those of [CK]. We state here only what we will

need below.

Let E ⊂ Rn, with #(E) = N < ∞; and let 0 < κ < 1 be given. (We assume N ≥ 2.)

We write A(κ), A′(κ), etc., to denote constants determined by κ and n. Then there exists

a finite list of Cartesian products, E′
ν × E′′

ν, ν = 1, . . . , vmax, with the following properties:

• Each E′
ν and E′′

ν is a non-empty subset of E.

• {(x′, x′′) ∈ E× E : x′ 6= x′′} is the disjoint union of the E′
ν × E′′

ν, ν = 1, . . . , νmax.

• diam(E′
ν), diam(E′′

ν) ≤ κ · dist(E′
ν, E′′

ν) for each ν.

• The number of E′
ν × E′′

ν is vmax ≤ A(κ)N.
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• There is an algorithm, called Algorithm WSPD, that accepts as input (E, κ), and

produces as output a list of “representatives” (x′ν, x′′ν) ∈ E′
ν × E′′

ν, ν = 1, . . . , νmax.

Algorithm WSPD consumes work at most A′(κ)N log N, and storage at most A′′(κ)N.

Later, we will take κ to be a small enough controlled constant. The quantities A(κ), A′(κ),

A′′(κ) will then also be controlled constants.

We pass to the “Balanced Box Decomposition Tree” or “BBD Tree”, due to Arya, Mount,

Netanyahu, Silverman and Wu [AMNSW]. Again, we state only what we will need below,

which is significantly weaker than the full results in [AMNSW].

BBD Tree Algorithm: There is an algorithm with the following properties.

• The input for the algorithm consists of a non-empty finite set E ⊂ Rn, with #(E) = N.

• The algorithm performs one-time work, and then responds to queries as follows.

• A query consists of a point x ∈ Rn or a dyadic cube Q in Rn.

• The response to a query x ∈ Rn is a point y ∈ E such that |x − y| ≤ 2 dist(x, E).

• The response to a query Q is a “representative” xQ ∈ E ∩ Q, or a message indicating

that E ∩Q is empty.

• The one-time work is at most CN log(N + 1) using storage at most CN.

• The work to answer a query is at most C log(N + 1).

See also Sections 23 and 27 in [FK2], where the query algorithm for Q is spelled out in detail.

As an obvious consequence of the above, we have the following algorithm.

Algorithm Find-Representative: Given a non-empty set E ⊂ Rn, with #(E) = N < ∞,

we can perform one-time work CN log(N + 1) in space CN, after which we can respond to

queries as follows:

• A query consists of a dyadic cube Q ⊂ Rn.



The Cm Norm of a Function with Prescribed Jets II 35

• The response to a query Q is a “representative” xQ ∈ E∩Q∗∗, or a message indicating

that E ∩Q∗∗ is empty.

• The work to answer a query is at most C log(N + 1)

In fact, we have only to partition Q∗∗ into dyadic cubes {Qν}, and apply the BBD Tree

query algorithm to each Qν.

There is an analogue of Algorithm Find-Representative, with Q∗∗ replaced by Q∗. We

again give this algorithm the name “Find-Representative”. Similarly, we may take Q∗∗∗ in

place of Q∗∗.

5 Gentle Partitions of Unity

We recall a result from our previous paper [F9], and give two corollaries and a simple variant.

Lemma GPU: Let {Uν} be an open cover of an open set Ω ⊂ Rn, and let δ(x) > 0 be

defined for all x ∈ Ω. Suppose that, for each ν, we are given functions Fν ∈ Cm(Uν) and

χν ∈ Cm(Ω). Let ε,A0, A1, A2 > 0 and M ≥ 0 be real numbers. Assume that the following

conditions are satisfied.

(GPU1) Any given x ∈ Ω belongs to suppΩχν for at most A0 distinct ν.

(GPU2)
∑
ν

χν = 1 on Ω.

(GPU3) χν ≥ 0 on Ω for each ν.

(GPU4) suppΩ χν ⊂ Uν for each ν.

(GPU5) |∂α χν(x)| ≤ A1ε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω, and for each ν.

(GPU6) |Jx(Fν)|x ≤ M for x ∈ suppΩ χν (any ν).

(GPU7) |∂α(Fν − Fµ)(x)| ≤ A2M · (δ(x))m−|α| for |α| ≤ m − 1, x ∈ suppΩ χν ∩ suppΩ χµ

(any µ, ν).
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Then the function F =
∑
ν

χν Fν belongs to Cm(Ω), and

‖ F ‖Cm(Ω)≤ (1 + A′ε)M ,

where A′ depends only on A0, A1, A2,m, n, and on c̄0, C̄0 in the Bounded Distortion Property.

(See Section 3.)

The above differs from “Lemma GPU” in [F9] only in the most trivial details.

Corollary 1. Let y0 ∈ Rn; let Ã > 0, M ≥ 0, δ > 0, 0 < ε < 1 be real numbers; and

let θ0 ∈ Cm(Rn). Assume that 0 ≤ θ0 ≤ 1 on Rn; θ0(x) = 1 for |x − y0| ≤ e1/(16ε) δ;

suppθ0 ⊂ B(y0, e
1/(8ε) δ); and

|∂αθ0(x)| ≤ Ãε |x − y0|
−|α| for 0 < |α| ≤ m , x ∈ Rn r {y0} .

Also, let F0 ∈ Cm(B(y0, e
1/(8ε) δ)), F1 ∈ Cm(Rn). Assume that

‖ F0 ‖Cm(B(y0,e1/(8ε) δ))≤ M,

‖ F1 ‖Cm(Rn)≤ M, and

Jy0
(F0) = Jy0

(F1).

Then the function F = θ0F0 + (1 − θ0)F1 belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + A′ε)M,

with A′ depending only on Ã,m,n and the constants c̄0, C̄0 in the Bounded Distortion

Property.

Proof. We write A′, A′′, etc., to denote constants determined by Ã,m,n, c̄0, C̄0 as in the

conclusion of our Corollary.

We apply Lemma GPU with

Ω = Rn, U0 = B(y0, e
1/(8ε) δ), U1 = Rn, χ0 = θ0, χ1 = 1 − θ0, δ(x) = δ + |x − y0|, F0 and F1

as in the hypotheses of Corollary 1, A0 = 2, A1 = 2mÃ, and A2= large enough constant of

the form A′.
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All the hypotheses of Lemma GPU are immediate here, except for (GPU5) and (GPU7).

To check these, we argue as follows.

For 0 < |α| ≤ m and |x − y0| ≥ δ, we have

|∂αχ0(x)| = |∂αχ1(x)| = |∂αθ0(x)| ≤ Ãε|x − y0|
−|α| ≤ (2mÃ)ε · (δ + |x − y0|)

−|α|.

On the other hand, for 0 < |α| ≤ m and |x − y0| < δ, we have

|∂αχ0(x)| = |∂αχ1(x)| = 0, since θ0 = 1 on B(y0, δ).

(GPU5) is immediate from the above observations. To check (GPU7), we first note that

|∂α(F0 − Jy0
(F0))(x)| ≤ A′M |x − y0|

m−|α| for |α| ≤ m − 1, x ∈ B(y0, e
1/(8ε)δ); and

|∂α(F1 − Jy0
(F1))(x)| ≤ A′M |x − y0|

m−|α| for |α| ≤ m − 1, x ∈ B(y0, e
1/(8ε) δ),

thanks to our hypotheses on the Cm norms of F0 and F1 together with Taylor’s theorem

and the Bounded Distortion Property. Combining these last two estimates, and recalling that

Jy0
(F0) = Jy0

(F1), we find that

|∂α(F0 − F1)(x)| ≤ A′′M|x − y0|
m−|α| for |α| ≤ m − 1, x ∈ B(y0, e

1/8εδ),

from which (GPU7) follows at once. Thus Lemma GPU applies, and it yields the conclusion

of Corollary 1.

Corollary 2. Let 0 < ε0 < 1 and M ≥ 0 be real numbers, let Q0 ⊂ Rn be a cube, let

θ0 ∈ Cm(Rn), and let F0 ∈ Cm(Qint
0 ). Assume that

0 ≤ θ0 ≤ 1 on Rn; supp θ0 ⊂ Qint
0 ; |∂αθ0(x)| ≤ ε0 for 0 < |α| ≤ m, x ∈ Rn; and

‖ F0 ‖Cm(Qint
0 )≤ M. Then

F = θ0 · F0 belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + Cε0)M.
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Proof. Immediate from Lemma GPU, with Ω = Rn, U0 = Qint
0 , U1 = Rn, χ0 = θ0,

χ1 = 1 − θ0, δ(x) = 1 for all x ∈ Rn, F0 as given, F1 = 0, ε = ε0, A0 = 2, A1 = 1,

A2 = 1/c̄0, with c̄0 from the Bounded Distortion Property.

The next result is an easier variant of Lemma GPU.

Lemma LGPU: Let 0 < ε < 1, A ≥ 1, M ≥ 0 be real numbers. Let Q̂ν be pairwise

disjoint dyadic cubes of sidelength δ̂, where A−1 ε−1 ≤ δ̂ ≤ ε−1. Let θν ∈ Cm(Rn), and

assume that

θν ≥ 0 on Rn (each ν),
∑
ν

θν ≤ 1 on Rn, supp θν ⊂ (Q̂∗
ν)int (each ν), and

|∂αθν(x)| ≤ Aε for 0 < |α| ≤ m, x ∈ Rn (each ν).

Let Fν ∈ Cm((Q̂∗
ν)int), with ‖ Fν ‖Cm((Q̂∗

ν)int)≤ M (each ν).

Then F =
∑
ν

θνFν belongs to Cm(Rn), and

‖ F ‖Cm(Rn)≤ (1 + A′ε)M,

where A′ depends only on A,m,n and c̄0, C̄0 in the Bounded Distortion Property.

Proof. Obviously, F ∈ Cm(Rn). Our task is to estimate ‖ F ‖Cm(Rn). We write A′, A′′, etc.,

to denote constants determined by A,m,n, c̄0, C̄0.

Fix x ∈ Rn, and note that

(1) Jx(F) =
∑
ν

θν(x)Jx(Fν) +
∑
ν

Eν, where

(2) Eν = Jx(θνFν) − θν(x)Jx(Fν) ∈ P.

By hypothesis, we have |Jx(Fν)|x ≤ M for each ν; and
∑
ν

θν(x) ≤ 1 with each θν(x) ≥ 0.

Since | · |x is a norm, it follows that

(3) |
∑
ν

θν(x)Jx(Fν)|x ≤ M.
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We turn to the Eν. From (2) we have

(4) ∂αEν(x) =
∑

β+γ=α
|β|6=0

α!
β!γ!

∂βθν(x) · ∂γFν(x).

For 0 < |β| ≤ m, we have |∂βθν(x)| ≤ Aε; and, for |γ| ≤ m, we have |∂γFν(x)| ≤ A′M,

thanks to our hypothesis on ‖ Fν ‖Cm and the Bounded Distortion Property. Putting these

remarks into (4), we find that

(5) |∂αEν(x)| ≤ A′′εM for |α| ≤ m (each ν).

Since x belongs to at most A′′′ distinct Q̂∗
ν, and since supp θν ⊂ Q̂∗

ν, we see from (2) that Eν

is nonzero for at most A′′′ distinct ν. Hence, (5) implies

|∂α

[∑
ν

Eν

]
(x)| ≤ A′εM for |α| ≤ m.

Another application of the Bounded Distortion Property now yields

(6) |
∑
ν

Eν|x ≤ A′′ εM.

From (1), (3), (6), we see that |Jx(F)|x ≤ (1 + A′′ε)M. Since x ∈ Rn was arbitrary, it follows

that ‖ F ‖Cm(Rn)≤ (1 + A′′ε)M, proving Lemma LGPU.

6 The Main Patching Lemma

In this section and the next, we adapt to our purposes the arguments from Section 5 in [F9].

Here, we give the set-up and state a result. The next section proves that result.

Our set-up is as follows. We are given real numbers ε > 0 and M ≥ 0, and positive

constants A0 · · ·A7. In addition, we suppose we are given the following objects.

Whitney Field: We suppose we are given a Whitney field ~P = (Py)y∈E on a finite set E ⊂ Rn.
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We assume that

(1) |∂α(Px − Py)(x)| ≤ A0M · |x − y|m−|α| for |α| ≤ m, x, y ∈ E, x 6= y.

Regularized Distance: We suppose we are given a function δ(·) in Cm
loc(Rn r E).

We assume that

(2) A−1
1 dist (x, E) ≤ δ(x) ≤ A1 dist (x, E) for all x ∈ Rn r E, and

(3) |∂αδ(x)| ≤ A2 · (δ(x))1−|α| for |α| ≤ m, x ∈ Rn r E.

Partitions of Unity: We suppose we are given a Cm partition of unity

(4) 1 =
∑

−∞ < ` < ∞ χ`(t) on R.

We assume for each ` that

(5) χ`(t) ≥ 0 for t ∈ R; supp χ` ⊂ (` − 1, ` + 1); |
(

d
dt

)k
χ`(t)| ≤ A3 for k ≤ m, t ∈ R.

For each ` ∈ Z, we suppose we are given a Cm partition of unity

(6) 1 =
∑
ν

θ`
ν on Rn.

We assume, for each `, ν, that

(7) θ`
ν ≥ 0 on Rn, and θ`

ν is supported in the interior of a cube Q`
ν of sidelength δ`, where

(8) A−1
4 ε−1 exp((` + 1)/ε) ≤ δ` ≤ A4ε

−1 exp((` + 1)/ε).

Also, for each `, ν, we assume that

(9) |∂αθ`
ν(x)| ≤ A5 · [ε−1 exp((` + 1)/ε)]−|α| for |α| ≤ m, x ∈ Rn.
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Regarding the cubes Q`
ν, we assume that

(10) For fixed ` ∈ Z and x ∈ Rn, there are at most A6 distinct ν for which x ∈ Q`
ν.

Testing Sets: For each `, ν, we suppose we are given a set

(11) S`
ν ⊂ E ∩ (Q`

ν)∗.

We assume that

(12) dist (y, S`
ν) ≤ A7 · exp((` − 1)/ε) for all y ∈ E ∩ (Q`

ν)∗.

Local Extending Functions: For each `, ν, we suppose we are given a function F`
ν ∈ Cm(Rn).

We assume that

(13) F`
ν agrees with ~P on S`

ν, and

(14) ‖ F`
ν ‖Cm(Rn)≤ M.

For each x ∈ E, we suppose we are given a function Fx ∈ Cm(Rn). We assume that

(15) Jx(F
x) = Px for x ∈ E, and

(16) For each ` and ν, if S`
ν = {x}, then F`

ν = Fx.

We call a constant “weakly controlled” if it is determined by A0, . . . , A7 above, together with

m,n and c̄0, C̄0, C̄1 from Section 3. We write A1, A
′, A′′, etc., to denote weakly controlled

constants.

We patch together the F`
ν into a single function F̃ on Rn, by setting

(17) F̃(x) = Px(x) for x ∈ E, and

(18) F̃(x) =
∑̀
,ν

χ`(ε log δ(x)) · θ`
ν(x) · F`

ν(x) for x ∈ Rn r E.
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Under the above assumptions, we have the following result.

Main Patching Lemma: Suppose ε is less than a small enough weakly controlled constant.

Then F̃ belongs to Cm(Rn), agrees with ~P, and satisfies ‖ F̃ ‖Cm(Rn)≤ (1+Aε)M for a weakly

controlled constant A.

The proof of this lemma will be given in the next section.

7 Proof of the Main Patching Lemma

In this section, we prove the Main Patching Lemma, using ideas from Section 5 of [F9]. We

adopt the convention that, for k ≥ 1, the label 〈k〉 refers to equation (k) in Section 6 of our

present paper. Also, we retain the assumptions and conventions of Section 6. In particular,

A,A′, A′′, etc., denote “weakly controlled constants”.

We adapt the arguments in Section 5 of [F9], using the hypotheses of the Main Patching

Lemma in place of equations (6), (8)...(13), (18)...(22), and (34), (35) in Section 5 of [F9].

Let

(1) Ω = Rn r E.

For each `, ν, define

(2) χ`
ν(x) = θ`

ν(x) · χ`(ε log δ(x)) for x ∈ Ω.

From 〈4〉 · · · 〈7〉 and 〈10〉, we see that

(3) Any given x ∈ Ω belongs to suppΩ χ`
ν for at most A distinct (`, ν);

(4)
∑̀
,ν

χ`
ν = 1 on Ω; and

(5) χ`
ν ≥ 0 on Ω.
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Setting

(6) U`
ν = Ω for each `, ν, we have

(7) suppΩ χ`
ν ⊂ U`

ν,

by definition of suppΩ.

We prepare to estimate the derivatives of χ`
ν.

As in Section 5 of [ ], we first note that ∂α[χ`(ε log δ(·))](x) is a sum of terms of the form

r∏
ν=1

∂βν [ε log δ(·)](x) · χ
(r)
` (ε log δ(x)),

where χ
(r)
` denotes the rth derivative of χ`, and where β1 + · · · + βr = α and each βν is

non-zero. Moreover, each ∂βν[ε log δ(x)] is a sum of terms of the form

ε
∂γ1 δ(x) ···∂γsν δ(x)

(δ(x))sν ,

with γ1 + · · ·+ γsν = βν. Consequently, for 0 < |α| ≤ m, the quantity ∂α[χ`(ε log δ(·))](x)

is a sum of terms

εr ∂γ1 δ(x) ···∂γs δ(x)
(δ(x))s · χ

(r)
` (ε log δ(x)),

with 1 ≤ r ≤ m and γ1 + · · ·+ γs = α. Thanks to 〈3〉 and 〈5〉, it follows that

(8) |∂α[χ`(ε log δ(·))](x)| ≤ Aε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω.

We note also that

(9) exp((` − 1)/ε) < δ(x) < exp((` + 1)/ε) for x ∈ suppΩ χ`(ε log δ(·)),

as we see at once from 〈5〉. Hence, for x ∈ suppΩχ`
ν = suppΩ(θ`

ν · χ`(ε log δ(·))), we have

(10) |∂αθ`
ν(x)| ≤ Aε|α| (δ(x))−|α| for |α| ≤ m (see 〈9〉).

Since 0 ≤ χ`(ε log δ(x)) ≤ 1 (see 〈4〉, 〈5〉), it follows from (8), (10) and our definition (2) of

χ`
ν that
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(11) |∂αχ`
ν(x)| ≤ Aε · (δ(x))−|α| for 0 < |α| ≤ m, x ∈ Ω, each `, ν.

Thus, we have succeeded in estimating the derivatives of χ`
ν.

We next turn to the extending functions F`
ν in 〈13〉, 〈14〉. Since F`

ν ∈ Cm(Rn), we have

in particular that

(12) F`
ν ∈ Cm(U`

ν).

From 〈14〉, we have

(13) |Jx(F
`
ν)|x ≤ M for all x ∈ suppΩχ`

ν (any `, ν).

We prepare to estimate the derivatives of F`
ν − F`′

ν′ at a point

(14) x ∈ suppΩχ`
ν ∩ suppΩχ`′

ν′ .

For x as in (14), we have x ∈ suppΩθ`
ν ⊂ Q`

ν; and also x ∈ suppχ`(ε log δ(·)), hence δ(x)

is estimated by (9). Comparing (9) with 〈7〉, 〈8〉, we see that δ(x) ≤ Aε sidelength (Q`
ν);

hence 〈2〉 yields a point

(15) ȳ ∈ E

such that

(16) |x − ȳ| ≤ Aδ(x) ≤ A′ε sidelength (Q`
ν).

Since x ∈ Q`
ν and ε is less than a small enough weakly controlled constant, we learn from

(15), (16) that ȳ ∈ E ∩ (Q`
ν)∗. Consequently, 〈12〉 applies and we obtain a point

(17) y ∈ S`
ν,

such that
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(18) |y − ȳ| ≤ A · exp((` − 1)/ε) ≤ Aδ(x), thanks to (9).

From (16), (17), (18), we conclude that

(19) There exists y ∈ S`
ν, such that |x − y| ≤ Aδ(x).

Similarly,

(20) There exists y′ ∈ S`′

ν′ , such that |x − y′| ≤ Aδ(x).

Fix y, y′ as in (19), (20), and note that

(21) |y − y′| ≤ Aδ(x).

From 〈13〉 and (19), we have

(22) Jy(F
`
ν) = Py,

and from 〈13〉 and (20), we have

(23) Jy′(F
`′

ν′) = Py′ .

From 〈14〉, the Bounded Distortion Property, and Taylor’s theorem, we obtain the estimate

|∂α(F`
ν − Jy(F

`
ν))(x)| ≤ AM|x − y|m−|α| for |α| ≤ m.

In view of (19) and (22), this implies that

(24) |∂α(F`
ν − Py)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m.

Similarly,

(25) |∂α(F`′

ν′ − Py′)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m.
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Next, invoking 〈1〉, we see that

|∂α(Py − Py′)(y)| ≤ AM|y − y′|m−|α| for |α| ≤ m, if y 6= y′.

Since |y − y′|, |x − y| ≤ Aδ(x) (see (19) and (21)), it follows that

|∂α(Py − Py′)(y)| ≤ AM(δ(x))m−|α| for |α| ≤ m,

and hence

(26) |∂α(Py − Py′)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m, since Py − Py′ ∈ P.

From (24), (25), (26), we obtain our desired estimate,

(27) |∂α(F`
ν − F`′

ν′)(x)| ≤ AM(δ(x))m−|α| for |α| ≤ m, x ∈ suppΩχ`
ν ∩ suppΩχ`′

ν′

(any (`, ν), (`′, ν′)).

We can now apply Lemma GPU to the open set Ω, the open cover {U`
ν}, the function δ(x),

the partition of unity {χ`
ν}, and the functions F`

ν ∈ Cm(U`
ν).

The hypotheses of Lemma GPU are immediate from our present results (3), (4), (5), (7),

(11), (13), (27).

Thus, we learn from Lemma GPU that the function F̃, defined in 〈17〉 , 〈18〉, satisfies

(28) F̃ ∈ Cm(Rn r E), and ‖ F̃ ‖Cm(RnrE)≤ (1 + Aε)M.

Next, we investigate how F̃ behaves on Rn r E near a point of E. Fix

(29) x0 ∈ E,

let 4 be a small enough positive number to be fixed later, and suppose

(30) x ∈ Rn r E, with

(31) |x − x0| < 4.
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Recall that E is finite; hence, we may suppose that

(32) 24 < dist(x0, E r {x0}).

For y ∈ E r {x0}, we then have

|x − y| ≥ |x0 − y| − |x0 − x| > 24−4 = 4 > |x − x0|. Consequently,

(33) |x − x0| = dist(x, E).

Let (`, ν) be such that

(34) suppΩχ`
ν 3 x.

Then x ∈ suppΩχ`(ε log δ(·)); hence (9) applies. From (9) and 〈2〉, we obtain

(35) A−1 exp((` − 1)/ε) < |x − x0| < A exp((` + 1)/ε).

Also, (34) yields

(36) x ∈ suppΩθ`
ν ⊂ Q`

ν.

Recall from 〈7〉 , 〈8〉 that sidelength (Q`
ν) = δ` < Aε−1 exp((` + 1)/ε); together with (35)

and (31), this yields

(37) sidelength (Q`
ν) < Aε−1 exp(2/ε) · |x − x0| ≤ Aε−1 exp(2/ε) · 4.

On the other hand, 〈7〉 and 〈8〉 yield also

(38) sidelength (Q`
ν) = δ` > A−1ε−1 exp((` + 1)/ε) > A−1ε−1|x − x0|,

thanks to (35). Since ε is less than a small enough weakly controlled constant, it follows

from (29), (36) and (38) that
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(39) x0 ∈ (Q`
ν)∗ ∩ E.

We next show that E ∩ (Q`
ν)∗ consists of the single point x0. In fact, if y ∈ E ∩ (Q`

ν)∗ with

y 6= x0, then from (37) and (39) we would have

(40) |y − x0| ≤ A· sidelength (Q`
ν) ≤ Aε−1 exp(2/ε) · 4.

If 4 is small enough, then (40) cannot hold for two distinct points y, x0 in the finite set E.

We assume that 4 is small enough that (32) holds and (40) is impossible. We then obtain

E ∩ (Q`
ν)∗ = {x0}.

Together with 〈11〉 and 〈12〉, this shows that S`
ν = {x0}. Therefore, from 〈16〉, we obtain

the equality

(41) F`
ν = Fx0 .

We have proven (41) for every (`, ν) satisfying (34).

Consequently, for x0, x as in (29), (30), (31), the definition 〈18〉 and (2) yield

F̃(x) =
∑̀
,ν

χ`
ν(x) · F`

ν(x) =
∑̀
,ν

χ`
ν(x) · Fx0(x).

Recalling (4), we conclude that

(42) F̃(x) = Fx0(x) for all x ∈ Rn r E such that |x − x0| < 4.

Here, x0 is an arbitrary point of E, and 4 is a small enough positive number.

We note that

(43) Fx0 ∈ Cm(Rn), and ‖ Fx0 ‖Cm(Rn)≤ M, for x0 ∈ E,

thanks to (41) and 〈14〉.

Also, we recall from 〈15〉 that
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(44) Jx0
(Fx0) = Px0 for any x0 ∈ E.

We now define a function F on Rn, by setting

(45) F = F̃ on Rn r E, and F = Fx0 on B(x0,4) for each x0 ∈ E.

Note that (45) provides a consistent definition of a function F, since the balls B(x0,4)

(x0 ∈ E) are pairwise disjoint for 4 small enough, and thanks to (42). Since F̃ ∈ Cm(Rn rE)

and Fx0 ∈ Cm(B(x0,4)) for each x0 ∈ E, it follows from (45) that

(46) F ∈ Cm(Rn).

(We can now pick 4 to be any positive number small enough that the above arguments

work.) Moreover, (44) and (45) show that

(47) Jx0
(F) = Px0 for all x0 ∈ E.

We estimate the Cm norm of F, by checking that

(48) |Jx(F)|x ≤ (1 + Aε)M for all x ∈ Rn.

Indeed, for x ∈ Rn r E0, (48) follows from (28) and (45); while, for x ∈ E0, (48) follows from

(43) and (45). Thus, (48) holds in all cases, and consequently,

(49) ‖ F ‖Cm(Rn)≤ (1 + Aε)M.

We note that, in fact,

(50) F = F̃ on Rn.

In fact, (50) holds on Rn r E, thanks to (45). For x0 ∈ E, we have

F(x0) = Px0(x0) = F̃(x0)
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by (47) and 〈17〉. Thus (50) holds also on E.

In view of (50), our results (46), (47), (49) show that F̃ ∈ Cm(Rn), F̃ agrees with ~P, and

‖ F̃ ‖Cm(Rn)≤ (1 + Aε)M. These are the conclusions of the Main Patching Lemma.

The proof of that Lemma is complete. �

8 Comparing Polynomials at Representative Points

Let E ⊂ Rn be a finite set, and let 0 < κ < 1 be a real number. Recall the representatives

(x′ν, x′′ν) (1 ≤ ν ≤ νmax) arising from the Well-Separated Pairs Decomposition from Section 4,

for the parameter κ. As an application of the Well-Separated Pairs Decomposition, we recall

the following lemma from [F8]. (See also Har-Peled and Mendel [H-PM].)

Lemma 8.1. Suppose we are given an (m − 1)r st degree polynomial P̄x on Rn, for each

x ∈ E. Let M ≥ 0, and assume that

|∂α(P̄x′ν − P̄x′′ν)(x′ν)| ≤ M · |x′ν − x′′ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

Assume also that κ is less than a small enough constant determined by m,n. Then, for any

x, y ∈ E, we have

|∂α(P̄x − P̄y)(x)| ≤ CM · |x − y|m−|α| for |α| ≤ m − 1, with C depending only on m and n.

In order to check efficiently that estimate (1) in Section 6 is satisfied, we will use the

following variant of Lemma 8.1.

Lemma 8.2. Let ~P = (Px)x∈E be a Whitney field on E, and let M ≥ 0. Assume that κ is

less than a small enough constant determined by m,n. Assume also that

(1) |∂αPy(y)| ≤ M for |α| = m, y ∈ E; and that

(2) |∂α(Px′ν − Px′′ν)(x′ν)| ≤ M · |x′ν − x′′ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax .

Then

(3) |∂α(Px − Py)(x)| ≤ CM · |x − y|m−|α| for |α| ≤ m, x, y ∈ E, x 6= y,
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with C depending only on m,n.

Proof. We reduce matters to Lemma 8.1. We write c, C,C′, etc. (in this proof) to denote

constants depending only on m,n.

Let

Px(z) =
∑

|α|≤m

λx
α · (z − x)α for x ∈ E, z ∈ Rn. Then (1) yields

(4) |λx
α| ≤ CM for |α| = m.

Define

P̄x(z) =
∑

|α|≤m−1

λx
α · (z − x)α for x ∈ E, z ∈ Rn.

Thus, each P̄x is an (m−1)r st degree polynomial on Rn. Also, for x, y ∈ E and |α| ≤ m−1,

we have

∂αP̄y(x) = ∂αPy(x) −
∑

|γ| = m−|α|

c(α, γ) λ
y
α+γ · (x − y)γ, which implies that

(5) |∂αP̄y(x) − ∂αPy(x)| ≤ CM|x − y|m−|α| thanks to (4).

In view of (5), our hypothesis (2) implies the estimate

|∂α(P̄x′ν − P̄x′′ν)(x′ν)| ≤ CM|x′ν − x′′ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

Therefore, Lemma 8.1 tells us that

(6) |∂α(P̄x − P̄y)(x)| ≤ C′M|x − y|m−|α| for |α| ≤ m − 1, x, y ∈ E, x 6= y.

The conclusion (3) of Lemma 9.2 follows from (5) and (6), for |α| ≤ m − 1.

For |α| = m, conclusion (3) follows from (1), since ∂αPx and ∂αPy are constant polynomials.

The proof of the lemma is complete.
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9 Computing a Regularized Distance

Suppose E ⊂ Rn and #(E) = N < ∞, with N ≥ 2. In this section we show how to compute

a function δ(x) > 0, defined on Rn r E, and satisfying estimates (2) and (3) in Section 6.

The idea goes back to Whitney [Wh1]. To give an efficient algorithm, we bring in the BBD

Tree from Section 4.

We define Q to be the set of all dyadic cubes Q ⊂ Rn, such that

(1) E ∩ Q∗∗∗ = φ,

but (1) fails for any dyadic cube strictly containing Q. For fixed x ∈ Rn r E, one checks

easily that any sufficiently small dyadic cube containing x satisfies (1), while any sufficiently

large dyadic cube containing x fails to satisfy (1). Consequently, x ∈ Q for some Q ∈ Q.

Thus Q is a covering of Rn r E. Also, the cubes in Q are pairwise disjoint, since any two

distinct dyadic cubes Q,Q′ satisfy one of the three conditions Q∩Q′ = φ, Q⊂Q′, Q′ ⊂Q.

Moreover, each Q ∈ Q is obviously contained in Rn r E. The above remarks show that

(2) The cubes of Q form a partition of Rn r E.

Next, suppose Q,Q′ ∈ Q, and Q∗ ∩ (Q′)∗ 6= φ.

Then

(3) 1
2
δQ ≤ δQ′ ≤ 2δQ.

In fact, suppose (3) fails. Since Q,Q′ are dyadic cubes, their sidelengths are powers of two.

Therefore, δQ and δQ′ must differ by at least a factor of 4. Without loss of generality, we

may assume that δQ ≤ 1
4
δQ′ . Let Q+ be the dyadic “parent” of Q, i.e., the dyadic cube

for which Q+ ⊃ Q, δQ+ = 2δQ. Then we have δQ+ ≤ 1
2
δQ′ and (Q+)∗ ∩ (Q′)∗ 6= φ.

Consequently, (Q+)∗∗∗ ⊂ (Q′)∗∗∗. Therefore, (1) holds for the cube Q+, since it holds for

Q′ ∈ Q.

This contradicts our assumption that Q ∈ Q, completing the proof of (3).

For any dyadic cube Q, we introduce a function ϕQ ∈ Cm(Rn), with the properties:
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(4) ϕQ ≥ 0 on Rn; ϕQ = 1 on Q; supp ϕQ ⊂ Q∗; and

(5) |∂αϕQ| ≤ Cδ
−|α|
Q on Rn, for |α| ≤ m.

By taking ϕQ to be an appropriate spline, we can satisfy (4), (5), and give a query algorithm

as follows.

Algorithm 9.1. (“Find-jet-of ϕQ”): Given a dyadic cube Q and a point x ∈ Rn, we compute

the jet Jx(ϕQ) with work at most C.

We now define the “regularized distance” by Whitney’s formula

(6) δ(x) =
∑

Q∈Q

δQ · ϕQ(x) for x ∈ Rn r E.

Using the definition of Q and properties (2), (3), one checks easily that

(7) c dist (x, E) ≤ δQ ≤ C dist(x, E) for x ∈ Q∗, Q ∈ Q,

and therefore the function δ(x) in (6) satisfies

(8) c dist (x, E) ≤ δ(x) ≤ C dist (x, E) for x ∈ Rn r E and

(9) |∂α δ(x)| ≤ C · (δ(x))1−|α| for |α| ≤ m, x ∈ Rn r E.

Thus, the properties (2), (3) in Section 6 hold for our function δ(x).

We prepare to compute the function δ(x).

Given x ∈ Rn r E, we define

(10) Q(x) = {Q ∈ Q : x ∈ Q∗}.

Since supp ϕQ ⊂ Q∗ for any Q, a glance at (6) gives

(11) Jx(δ(·)) =
∑

Q∈Q(x)

δQ · Jx(ϕQ), for x ∈ Rn r E.
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Moreover, (7) shows that

(12) c dist (x, E) ≤ δQ ≤ C dist (x, E) for x ∈ Rn r E, Q ∈ Q(x).

Our computation of δ(x) proceeds as follows

Algorithm 9.2. (“Compute-Regularized-Distance”): After one-time work at most CN log N

in space CN, we can answer queries as follows. Given x ∈ Rn r E, we compute Jx(δ(·)) with

work at most C log N.

Explanation: We perform the one-time work of the BBD Tree, and of Algorithm “Find-

Repepresentative”, as in Section 4. Recall that this one-time work is at most CN log N, and

requires space at most CN.

Suppose we have done the above one-time work, and suppose we are given a query point

x ∈ Rn r E. Then, using the BBD Tree Query algorithm, we can compute a number d > 0

such that

(13) 1
2
dist (x, E) ≤ d ≤ 2dist (x, E).

The computation of d requires work at most C log N. From (10), (12) and (13), we have

(14) cd ≤ δQ ≤ Cd and Q∗ 3 x for each Q ∈ Q(x).

There are at most C dyadic cubes Q satisfying (14) for given x, d; and it takes work at

most C to list them. Let Q1, . . . , QL be a list of all the dyadic cubes satisfying (14).

Next, we test each Q`(1 ≤ ` ≤ L), to decide whether Q` ∈ Q. To do so, we let Q+
` be the

dyadic “parent” of Q`, i.e., the dyadic cube containing Q`, with sidelength twice that of Q`.

Then, by definition of Q, we have Q` ∈ Q if and only if

(15) E ∩Q∗∗∗
` = φ but E ∩ (Q+

` )∗∗∗ 6= φ.

We can test whether (15) holds, thanks to Algorithm “Find-Representative” from Section

4, applied to the two dyadic cubes Q` and Q+
` . For each Q`, this requires work at most
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C log N, and there are at most C distinct Q`. Thus, it takes work at most C log N to decide

which of the cubes Q1, . . . , QL belong to Q.

However, one checks easily that Q(x) is precisely the set of all the cubes Q`(1 ≤ ` ≤ L)

that belong to Q.

Thus, we have produced a list of all the cubes in Q(x). There are at most C such cubes.

We can now trivially compute Jx(δ(·)), using equation (11) and Algorithm 9.1. The work of

this last step is at most C. This completes our explanation of Algorithm 9.2.

10 Computing Partitions of Unity

In this section, we compute cutoff functions χ`(t), θ`
ν(x), as well as cubes Q`

ν, satisfying

conditions (4)...(10) in Section 6. We also compute additional cutoff functions that will be

used later.

By taking χ0(t) to be an appropriate spline on R, and then defining χ`(t) = χ0(t − `) for

` ∈ Z, we can arrange that

(1) χ` ∈ Cm(R) for each ` ∈ Z,

and that for each ` ∈ Z, we have

(2) χ` ≥ 0 on R; supp χ` ⊂ (` − 1, ` + 1) ; |
(

d
dt

)k
χ`(t)| ≤ C for |k| ≤ m, t ∈ R;

and that

(3)
∑̀
∈Z

χ`(t) = 1 for all t ∈ R;

moreover, we can answer queries as follows.

Algorithm 10.1. (“Compute-χ`”): Given ` ∈ Z, t ∈ R, 0 ≤ k ≤ m, we compute
(

d
dt

)k
χ`(t)

with work at most C.
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In view of (1),(2),(3), the χ` form a Cm partition of unity satisfying (4) and (5) in

Section 6.

Next, we prepare to define and compute cubes Q`
ν and cutoff functions θ`

ν as in (6)...(10)

in Section 6.

For s ∈ Z, and for any lattice point ν = (ν1, . . . , νn) ∈ Zn, we let Q
〈s〉
ν denote the dyadic

cube Q
〈s〉
ν = [2s · ν1, 2

s · (ν1 + 1))× · · · × [2s · νn, 2s · (νn + 1)) ⊂ Rn.

Thus, for fixed s ∈ Z, the Q
〈s〉
ν (ν ∈ Zn) partition Rn into dyadic cubes of sidelength 2s.

By taking θ̂
〈0〉
0 ∈ Cm(Rn) to be an appropriate spline, and then defining

θ̂
〈s〉
ν (x) = θ̂

〈0〉
0 (2−sx − ν) for s ∈ Z and ν ∈ Zn, we can arrange that, for each s, ν, we have:

θ̂
〈s〉
ν ∈ Cm(Rn); θ̂

〈s〉
ν ≥ 0 on Rn; θ̂

〈s〉
ν ≥ 1 on Q

〈s〉
ν ; supp θ̂

〈s〉
ν ⊂

[(
Q

〈s〉
ν

)∗]int

(recall, “int” denotes the interior); |∂αθ̂
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ Rn; and

we can answer queries as follows.

Algorithm 10.2. Given s ∈ Z, ν ∈ Zn, x ∈ Rn, we compute the jet Jx(θ̂
〈s〉
ν ) with work at

most C.

We now define

θ
〈s〉
ν (x) = θ̂

〈s〉
ν (x)

/ ∑
ν′∈Zn

θ̂
〈s〉
ν′ (x) for x ∈ Rn, s ∈ Z, ν ∈ Zn. Here, we may restrict the sum

to run over only those ν′ ∈ Zn such that x ∈ (Q
〈s〉
ν′ )

∗.

From the properties of the θ̂
〈s〉
ν , we see that the θ

〈s〉
ν satisfy the following.

θ
〈s〉
ν ∈ Cm(Rn); θ

〈s〉
ν ≥ 0 on Rn; supp θ

〈s〉
ν ⊂ [(Q

〈s〉
ν )∗]int;∑

ν∈Zn

θ
〈s〉
ν = 1 on Rn;

|∂αθ
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ Rn;

and we can answer queries as follows.

Algorithm 10.3. Given s ∈ Z, ν ∈ Zm, x ∈ Rn, we compute Jx(θ
〈s〉
ν ) with work at most C.

Now suppose we are given 0 < ε < 1 and ` ∈ Z. With work at most C, we can compute
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an s ∈ Z, such that

(4) 1
32

ε−1 exp((` + 1)/ε) ≤ 2s ≤ 1
8
ε−1 exp((` + 1)/ε).

Fix s as in (4).

For any ν ∈ Zn, we then define

Q`
ν = (Q

〈s〉
ν )∗, θ`

ν = θ
〈s〉
ν , Q̂`

ν = Q
〈s〉
ν

Also, we define δ` = 3 · 2s.

The properties of the θ
〈s〉
ν and Q

〈s〉
ν then yield the following.

(5) Each θ`
ν belongs to Cm(Rn).

(6)
∑

ν∈Zn

θ`
ν = 1 on Rn, for each ` ∈ Z.

For each `, ν,

(7) θ`
ν ≥ 0 on Rn, and θ`

ν is supported in the interior of the cube Q`
ν;

(8) the sidelength of Q`
ν is δ`; and

(9) 1
32

ε−1 exp((` + 1)/ε) ≤ δ` ≤ ε−1 exp((` + 1)/ε).

Also, for each `, ν, we have

(10) |∂αθ`
ν(x)| ≤ C · [ε−1 exp((` + 1)/ε)]−|α| for |α| ≤ m, x ∈ Rn.

Moreover,

(11) For fixed ` ∈ Z and x ∈ Rn, we have x ∈ Q`
ν for at most C distinct ν.

Furthermore, we can answer queries as follows.
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Algorithm 10.4. (“Compute θ`
ν”): Given 0 < ε < 1, ` ∈ Z, ν ∈ Zn, x ∈ Rn, we compute

the jet Jx(θ
`
ν), as well as the cubes Q̂`

ν, Q`
ν. The work of this algorithm is at most C.

Note that, by definition,

(12) Each Q̂`
ν is a dyadic cube, and Q`

ν = (Q̂`
ν)∗.

In view of (5)...(12), the θ`
ν form a Cm partition of unity, satisfying conditions (6)...(10) in

Section 6.

This concludes our discussion of the θ`
ν. Regarding the Q`

ν, we note that it is trivial to

answer queries as follows.

Algorithm 10.5. (“Find-Relevant-Cubes”): Given ` ∈ Z and x ∈ Rn, we produce a list of

all the ν ∈ Zn such that x ∈ (Q`
ν)∗. There are at most C such ν ∈ Zn, and the work of the

algorithm is at most C.

Next, we compute a cutoff function that will be used later in computing local extending

functions as in (13)...(16) in Section 6.

Algorithm 10.6. Given a point y0 ∈ Rn and numbers δ > 0 and 0 < ε < 1, we compute a

function θ0 ∈ Cm+1(Rn), with the following properties:

(a) 0 ≤ θ0 ≤ 1 on Rn;

(b) θ0(x) = 1 for |x − y0| ≤ e1/(16ε)δ;

(c) supp θ0 ⊂ B(y0 , e1/(8ε)δ); and

(d) |∂αθ0(x)| ≤ Cε · |x − y0|
−|α| for 0 < |α| ≤ m + 1, x ∈ Rn r {y0}.

The one-time work to compute θ0 is zero, the storage used is at most C, and the work to

answer a query (by computing Jx(θ0) at a query point x) is at most C.

Explanation: By taking χ ∈ Cm+1(R) to be an appropriate spline, we can arrange the follow-

ing.
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(13) 0 ≤ χ ≤ 1; χ(t) = 1 for t ≤ 1/16; supp χ ⊂ (−∞ , 1/8); |χ(r)(t)| ≤ C for 0 ≤ r ≤ m+1,

t ∈ R (where χ(r) denotes the rth derivative of χ); and,

(14) given 0 ≤ r ≤ m, t ∈ R, we can compute χ(r)(t) with work at most C.

We then define

θ0(x) = χ(ε log |x−y0|
δ

) for x 6= y0, θ0(y0) = 1.

Evidently, θ0 ∈ Cm(Rn), and (a), (b), (c) hold for θ0. Also, evidently, Jx(θ0) can be

computed with work at most C. It remains to check properly (d) for the function θ0.

Suppose x ∈ Rn r {y0}. Then, for 0 < |α| ≤ m + 1, the quantity ∂αθ0(x) is a sum of terms

of the form

(15)
r∏

ν=1

(∂βν[ε log
|x − y0|

δ
]) · χ(r)(ε log

|x − y0|

δ
).

with β1 + · · · + βr = α, and with each βν non-zero. Since |χ(r)(t)| ≤ C for all t ∈ R, and

since

|∂βν [ε log |x−y0|
δ

]| ≤ Cε|x − y0|
−|βν| for 0 < |βν| ≤ m + 1,

it follows that each term (15) is less than or equal in absolute value to Cεr|x − y0|
−|α|, with

0 < r ≤ m + 1. This immediately implies (d), since 0 < ε < 1. Thus, our function θ0 has

all the required properties.

11 Computing Testing Sets

The goal of this section is to compute suitable “testing sets” S`
ν satisfying conditions (11)

and (12) in Section 6.

Algorithm 11.1. (“Find-Testing-Set”): Given 0 < ε < 1; given E ⊂ Rn with

#(E) = N < ∞; and given a dyadic cube Q ⊂ Rn; we compute a finite set

S(Q) ⊂ E ∩ Q∗∗, such that

(a) |y − y′| > cεe−2/ε δQ for any two distinct points y, y′ ∈ S(Q); and such that
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(b) dist(y, S(Q)) < Cεe−2/ε δQ for any y ∈ E ∩ Q∗∗.

After the one-time work of the BBD Tree Algorithm (See Section 4), the work to compute

S(Q) is at most exp(C/ε) · log(N + 1).

The storage needed is at most CN + exp(C/ε).

Explanation: Recall that δQ denotes the sidelength of Q. With work at most exp(C/ε), we

partition Q∗∗ into dyadic cubes Qν (1 ≤ ν ≤ νmax) of common sidelength δQν , such that

(1) cεe−2/ε δQ ≤ δQν ≤ Cεe−2/ε δQ, and νmax ≤ exp(C/ε).

For each Qν, we check whether E ∩ Qν is empty; and, if E ∩ Qν 6= φ, then we compute a

point yν ∈ E ∩Qν.

To do so, we use the BBD Tree Algorithm. After the one-time work of the BBD Tree

Algorithm, the work to examine a single Qν is at most C log(N + 1). Hence, the work to

produce the set

(2) S̃(Q) = {yν : E ∩Qν 6= φ}

is at most C log(N + 1) · νmax ≤ exp (C′/ε) log(N + 1). Obviously, the set S̃(Q) in (2)

satisfies

(3) S̃(Q) ⊂ E ∩ Q∗∗,

and also

(4) dist (y, S̃(Q)) ≤ Cεe−2/ε δQ for any y ∈ E ∩ Q∗∗.

Unfortunately, S̃(Q) may fail to satisfy condition (a) above. Therefore, we proceed as follows.

By induction on ν, we decide whether or not to discard yν, according to the “Vitali rule”:

(5) We discard yν if and only if there exists ν′ < ν, such that yν′ was not discarded, and

|yν − yν′ | ≤ εe−2/ε δQ.
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Let S(Q) be the set of all the points yν ∈ S̃(Q) that were not discarded. We can compute

S(Q) from S̃(Q) with work at most C(νmax)
2 ≤ exp (C/ε). Note that

S(Q) ⊆ S̃(Q) ⊂ E ∩Q∗∗. Moreover, we cannot have

(6) |yν − yν′ | ≤ εe−2/εδQ for two distinct points yν, yν′ ∈ S(Q).

In fact, suppose (6) holds. Without loss of generality, we may assume ν′ < ν. Since

yν′ ∈ S(Q), the point yν′ ∈ S̃(Q) was not discarded. Consequently, (5) and (6) tell us that

yν is discarded, contradicting the assumption from (6) that yν ∈ S(Q).

Thus, as claimed, (6) cannot hold. The set S(Q) therefore satisfies condition (a). Let us

check that S(Q) also satisfies condition (b).

Thus, let y ∈ E ∩Q∗∗. From (4), we have

(7) |y − y′| ≤ Cεe−2/ε δQ for some y′ ∈ S̃(Q).

Fix y′ as in (7). If y′ belongs to S(Q), then (7) shows at once that

(8) dist(y, S(Q)) ≤ Cεe−2/ε δQ.

On the other hand, if y′ does not belong to S(Q), then, according to our rule (5), there exists

y′′ ∈ S(Q) such that |y′ − y′′| ≤ εe−2/ε δQ.

Together with (7), this shows that

dist(y, S(Q)) ≤ |y − y′′| ≤ |y − y′| + |y′ − y′′| ≤ Cεe−2/ε δQ,

and hence again (8) holds. Thus, (8) holds in all cases, completing the proof of (b).

We have computed a set S(Q) ⊂ E∩ Q∗∗, satisfying (a) and (b). After the one-time work

of the BBD Tree Algorithm, the total work to compute S(Q) is at most exp (C/ε) · log N.

Regarding the storage needed for Algorithm 11.1, we first recall that we need space CN

to allow us to use the BBD Tree. We then generate the cubes Qν and the points yν one

at a time. We need to store S̃(Q) from (2), which requires at most space exp(C/ε). In

a crude implementation, we can mark each of the yν to indicate whether it is discarded
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according to (5); and then we generate and store the set S(Q). The space needed for these

last steps is at most exp(C/ε). Thus, the total storage required for Algorithm 11.1 is at

most CN + exp(C/ε).

The explanation of Algorithm 11.1 is complete.

For most dyadic cubes Q, the set S(Q) produced by Algorithm 11.1 will be empty or a

singleton. This fact will be clear from the following algorithm.

Algorithm 11.2. (“Find-Interesting-Cubes”): Given 0 < ε < 1, and given E ⊂ Rn with

#(E) = N, 2 ≤ N < ∞, we produce a list of dyadic cubes, Q(1), . . . , Q(L), with the following

properties.

(a) For 1 ≤ λ ≤ L, the set S(Q(λ)) computed from ε, E, Q(λ) by Algorithm 11.1 has cardi-

nality at least two.

(b) For any dyadic cube Q other than Q(1), . . . , Q(L), the set S(Q) computed from ε, E,Q

by Algorithm 11.1 has cardinality at most one.

(c) No cube appears more than once in the list Q(1), . . . , Q(L).

(d) L ≤ (C/ε) · N.

(e) The work to compute Q(1), . . . , Q(L) is at most exp(C/ε) · N log N and the storage

needed is at most C
ε
N + exp(C/ε).

Explanation: First we discuss the properties of dyadic cubes Q such that #(S(Q)) ≥ 2.

Then we give the algorithm to compute the list Q(1) . . .Q(L).

Let Q be a dyadic cube such that the set S(Q) computed from ε, E, Q by Algorithm

11.1 has cardinality at least 2. Let y′, y′′ be two distinct points in S(Q). By the defining

properties of S(Q), we have

(9) y′, y′′ ∈ E ∩Q∗∗,

and

(10) |y′ − y′′| > cεe−2/ε δQ.
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Let x′ν, x′′ν, E′
ν, E′′

ν (1 ≤ ν ≤ νmax) be as in our discussion of the Well-Separated Pairs

Decomposition in Section 4, with κ less than a small enough controlled constant. Since

y′, y′′ are two distinct points of E, we have

(11) y′ ∈ E′
ν and y′′ ∈ E′′

ν for some ν.

Fix ν as in (11). We recall from Section 4 that also

(12) x′ν ∈ E′
ν, x′′ν ∈ E′′

ν, and

(13) diam(E′
ν), diam(E′′

ν) ≤ κ dist(E′
ν, E′′

ν).

From (9), (11), (12), (13), we learn that

(14) |x′ν − y′|, |x′′ν − y′′| ≤ κ |y′ − y′′| ≤ Cκ δQ,

and consequently,

(15) x′ν, x′′ν ∈ Q∗∗∗,

by another application of (9). Returning to (14), and applying (10), we see also that

(16) |x′ν − x′′ν| ≥ 1
2
|y′ − y′′| ≥ c′εe−2/ε δQ.

From (15), (16), we have learned the following:

For any dyadic cube Q such that #(S(Q)) ≥ 2, there exists ν (1 ≤ ν ≤ νmax), such that

(17) x′ν, x′′ν ∈ Q∗∗∗, and δQ ≤ Cε−1e2/ε|x′ν − x′′ν|.

Now we can describe how to carry out Algorithm 11.2.

Step 1: First, we do the one-time work of the BBD Tree and the WSPD (for a small

enough controlled constant κ).
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In particular, we produce the “representatives” x′ν, x′′ν (1 ≤ ν ≤ νmax) from the

WSPD. Recall that νmax ≤ CN, and that the above one-time work is at most

CN log N, using storage CN.

Step 2: Next, for each ν (1 ≤ ν ≤ νmax), we list all the dyadic cubes Q such that (17)

holds. For a given ν there are at most C/ε such cubes, and we can compute them

with work at most C/ε.

Step 3: For each dyadic cube Q produced in Step 2, we use Algorithm 11.1 to compute

S(Q), and we check whether #(S(Q)) ≥ 2. If #(S(Q)) ≥ 2, then we add Q to a

list L of “interesting cubes”.

Because νmax ≤ CN, the number of cubes in our list L at the end of Step 3 is at most

(C/ε) · N. Since νmax ≤ CN and Algorithm 11.1 computes a single S(Q) with work at

most exp(C/ε) log N, in space CN + exp(C/ε), we see that the total work needed for Steps

2 and 3 is at most exp(C/ε)N log N, and the storage required for these steps is at most
C
ε
N + exp(C/ε).

Thanks to our result (17), we know that any dyadic cube Q for which Algorithm 11.1

produces a set S(Q) with #(S(Q)) ≥ 2 must appear on the list L. On the other hand,

every cube Q appearing on our list L is such that Algorithm 11.1 produces a set S(Q) with

#(S(Q)) ≥ 2. (That’s immediate from inspection of Step 3.)

Step 4: Finally, we sort our list L, and remove duplicates, to guarantee that no cube Q

appears more than once in our final list L0. Since the length of L is at most C
ε
·N,

the work of Step 4 is at most C
ε
N · log

(
C
ε
N
)
, which is less than exp(C/ε)N log N.

The space required for Step 4 is at most C
ε
N.

The list L0 consists precisely of all the dyadic cubes Q such that the set S(Q) produced from

Q by Algorithm 11.1 satisfies #(S(Q)) ≥ 2. Moreover, no cube Q appears more than once

in the list L0. Also, the length of the list L0 is at most that of L, which is at most C
ε
N.

Thus, our list L0 satisfies (a), (b), (c), (d).

Remark 11.1. Note also that the cubes in L0 appear sorted.
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Let us estimate the work and storage used by the above algorithm. We have seen that

Step 1 requires work at most CN log N in space CN. We have seen also that Steps 2 and 3

require work at most exp(C/ε)N log N in space C
ε
N + exp (C/ε).

Finally, we have seen that Step 4 requires work (much) less than exp(C/ε)N log N, in

space C
ε
N.

Altogether, then, Algorithm 11.2 consumes work at most exp(C/ε)N log N in space
C
ε
N + exp(C/ε), as claimed in (e) above.

Thus, we have verified (a)...(e), completing our explanation of Algorithm 11.2.

The next algorithm will be used to construct local extending functions as in (13)...(16)

in Section 6.

Algorithm 11.3. (“Produce-Fine-Net”): Given a number 0 < η < 1, a ball B(x0, r) ⊂ Rn,

and a set S ⊂ B(x0, r) such that

(WS) |y − y′| ≥ ηr
100n

for any two distinct points y, y′ ∈ S,

we produce a set S+ ⊂ Rn, with the following properties:

(a) S ⊆ S+ ⊂ B(x0, r);

(b) dist(x, S+) < ηr for any x ∈ B(x0, r); and

(c) |y − y′| ≥ ηr
100n

for any two distinct y, y′ ∈ S+.

Moreover,

(d) The work of the algorithm is at most Cη−2n, and the storage needed is at most

Cη−n.

Explanation: First, we define the set S+; next, we show that S+ satisfies (a), (b), (c); and

finally, we check (d).

To define S+, we set

(18) S̃ =
[(

ηr
100n

)
Zn
]
∩ B(x0, r),

and then put
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(19) S+ = S ∪ {y ∈ S̃ : dist(y, S) ≥ ηr
100n

}.

To prove (a), (b), (c), we first check the following property of S̃.

(20) dist(x, S̃) < ηr
10

for any x ∈ B(x0, r).

In fact, let x ∈ B(x0, r). We pick x′ ∈ B(x0, (1 − η
50

)r) such that |x − x′| ≤ ηr
50

; and then we

pick y ∈ ηr
100n

Zn such that |x′ − y| ≤ ηr
100

. Since x′ ∈ B(x0, (1 − η
50

)r) and |x′ − y| ≤ ηr
100

,

we have y ∈ B(x0, (1 − η
100

)r) ⊂ B(x0, r), and thus y ∈ S̃ by definition (18). Since also

|x − y| ≤ |x − x′| + |x′ − y| ≤ ηr
50

+ ηr
100

< ηr
10

, the proof of (20) is complete.

Now we can check (a), (b), (c) for our set S+. In fact, (a) is obvious from (18), (19), since

S ⊂ B(x0, r). To check (b), let x ∈ B(x0, r). If dist(x, S) < ηr, then (b) is obvious. Suppose

dist(x, S) ≥ ηr. Thanks to (20), there exists y ∈ S̃ with |x − y| ≤ ηr
10

. For this y, we have

dist(y, S) ≥ dist(x, S) − |x − y| ≥ ηr − ηr
10

, and therefore y ∈ S+ according to (19). Thus,

dist(x, S+) ≤ |x − y| ≤ ηr
10

< ηr, completing the proof of (b).

To check (c), let y, y′ ∈ S+ be two distinct points.

If y, y′ ∈ S, then |y − y′| ≥ ηr
100n

, by our assumption (WS).

If y /∈ S, y′ /∈ S, then by (18), (19), we have y, y′ ∈ ηr
100n

Zn, y 6= y′, and therefore

|y − y′| ≥ ηr
100n

.

If y /∈ S, y′ ∈ S, then since y ∈ S+, we learn from (19) that |y − y′| ≥ dist(y, S) ≥ ηr
100n

.

If y ∈ S, y′ /∈ S, then since y′ ∈ S+, we learn from (19) that |y − y′| ≥ dist(y′, S) ≥ ηr
100n

.

Thus, (c) holds in all cases.

Let us estimate the work and storage needed to compute S+ from (18), (19). Since

S ⊂ B(x0, r), it follows from our assumption (WS) that

#(S) ≤ Cη−n.

Also, a glance at (18) shows that

#(S̃) ≤ Cη−n,

and that the work and storage required to compute and store S̃ are at most Cη−n.
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To compute S+ from (19), we compute the distance from each point of S̃ to each point

of S. This requires work at most Cη−2n. Also, we want to store the set S+, which requires

space C · #(S+) ≤ C · [#(S) + #(S̃)] (see (19)) ≤ Cη−n.

Thus, the work and storage for Algorithm 11.3 are as given in (d). This completes our

explanation of Algorithm 11.3.

Remark 11.2. In a model of computation that includes round-off errors, there may be points

y ∈ ηr
100n

Zn such that we cannot determine whether y ∈ B(x0, r). In such delicate cases, we

decide not to place y in the set S̃. Similarly, there may exist points y ∈ S̃ for which we

cannot determine whether or not dist(y, S) ≥ ηr
100n

. We decide to omit such points from the

set S.

With the above modifications, our discussion of Algorithm 11.3 carries over to a model

of computation with small enough roundoff errors.

Let ε, E, Q be as in Algorithm 11.1, and let Q(1), . . . , Q(L) be the list of cubes produced by

applying Algorithm 11.2 with inputs ε, E. If Q does not appear in the list Q(1), . . . , Q(L),

then we know that the set S(Q) computed by Algorithm 11.1 satisfies #(S(Q)) ≤ 1. This

will allow us to compute S(Q) with less work than that of Algorithm 11.1, thanks to the

following observation:

(21) If #(S(Q)) ≤ 1, then E ∩Q∗∗ has diameter at most Ĉεe−2/ε δQ.

This follows at once from the defining property (b) of the set S(Q) in Algorithm 11.1.

Exploiting (21), we present the following algorithm.

Algorithm 11.4. Given 0 < ε < 1; given E ⊂ Rn with #(E) = N < ∞; and given a dyadic

cube Q ⊂ Rn; we compute a set Scheap(Q) ⊂ Rn with the following property:

Let S(Q) be the set computed from ε, E, Q by Algorithm 11.1.

If #(S(Q)) ≤ 1, then S(Q) = Scheap(Q).

After the one-time work of the BBD Tree Algorithm (see Section 4), the work to compute

Scheap(Q) is at most C log N, and the storage required is at most CN.
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Explanation: First, we perform the algorithm Find-Representative from Section 4. With work

at most C log N, either we learn that E ∩ Q∗∗ = φ (in which case S(Q) = φ, and we may

return the set Scheap(Q) = φ), or else we obtain a point xQ ∈ E∩Q∗∗. If #(S(Q)) ≤ 1, then

(22) E ∩Q∗∗ ⊂ B(xQ, 2Ĉεe−2/ε δQ), by (21).

Let Qν(1 ≤ ν ≤ νmax) be as in the explanation of Algorithm 11.1.

If dist(xQ,Qν) > 2Ĉεe2/ε δQ, then E ∩ Qν = φ by (22). Consequently, if #(S(Q)) ≤ 1,

then the only cubes Qν that may contribute to S̃(Q) in (2) are those that satisfy

(23) dist(xQ,Qν) ≤ 2 Ĉεe−2/ε δQ.

Thanks to (1), there are at most C such cubes, and we can list them with work at most C.

Whether or not #(S(Q)) ≤ 1, we now proceed as in the explanation of Algorithm 11.1,

except that instead of examining all the cubes Qν, we now examine only those satisfying (23).

In place of S̃(Q), S(Q), we thus compute “cheap versions”, which we call S̃cheap(Q), Scheap(Q),

respectively. If #(S(Q)) ≤ 1, then we have S̃cheap(Q) = S̃(Q) and Scheap(Q) = S(Q).

Whether or not #(S(Q)) ≤ 1, the work to examine a single Qν as in our explanation of

Algorithm 11.1 is at most C log N, and we are now examining at most C cubes Qν.

Thus, the work to compute S̃cheap(Q) is at most C log N. Moreover, since

#(S̃cheap(Q)) ≤ C, the work to compute Scheap(Q) from S̃cheap(Q) is at most C.

Thus, the total work to compute Scheap(Q) is at most C log N. If #(S(Q)) ≤ 1, then we

know that Scheap(Q) = S(Q). This completes our explanation of Algorithm 11.4.

12 Smoothing Lemmas

In this section, we show that any given F ∈ Cm(B(x0, r)) can be closely approximated on a

slightly smaller ball B(x0, r
′) by a function F̃ ∈ Cm+1(B(x0, r

′)) with controlled Cm+1-norm.

Our main result here is Lemma 12.2 below.

Lemma 12.1. Assume that ε > 0 is less than a small enough controlled constant, and let

0 < r ≤ 1/ε.
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Let F ∈ Cm(B(x0, r)), with ‖ F ‖Cm(B(x0,r))≤ 1.

Let 0 < η̄ < min(r, εm+1).

Then there exists F̃ ∈ Cm+1(B(x0, r − η̄)), with the following properties:

(a) ‖ F̃ ‖Cm(B(x0,r−η̄))≤ 1 + Cε;

(b) |∂α(F̃ − F)(x)| ≤ C · (η̄/r) · rm−|α| for |α| ≤ m − 1, x ∈ B(x0, r − η̄);

(c) |∂αF̃(x)| ≤ C · η̄−1 for |α| = m + 1, x ∈ B(x0, r − η̄).

Proof. Let

(1) P0 = Jx0
(F) ∈ P,

and let

(2) F1 = F − P0.

Since ‖ F ‖Cm(B(x0,r))≤ 1, the Bounded Distortion Property and Taylor’s theorem yield

(3) |∂αP0(x0)| ≤ C for |α| ≤ m,

and

(4) |∂αF1(x)| ≤ Crm−|α| for |α| ≤ m, x ∈ B(x0, r).

Let ϕ ∈ Cm+1(Rn) be a function with the following properties.

(5) ϕ ≥ 0 on Rn; supp ϕ ⊂ B(0, η̄);

∫
Rn

ϕ(τ)dτ = 1; ϕ(τ) ≤ Cη̄−n for τ ∈ Rn; and

|Oϕ(τ)| ≤ C · (η̄)−(n+1) for τ ∈ Rn.

We define

(6) F̃ = P0 + ϕ ∗ F1 on B(x0, r − η̄), where ∗ denotes convolution.

Note that the right-hand side of (6) is well-defined on B(x0, r − η̄), since

supp ϕ ⊂ B(0, η̄) and F1 ∈ Cm(B(x0, r)). Since ϕ ∈ Cm+1(Rn), one sees at once from

(6) that F̃ ∈ Cm+1(B(x0, r − η̄)).
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Let us check (a), (b), (c) for F̃. We begin with (b). From (2) and (6), we have

F̃ − F = ϕ ∗ F1 − F1. Hence, for |α| ≤ m − 1 and x ∈ B(x0, r − η̄), we have

|∂α(F̃ − F)(x)| = |(ϕ ∗ ∂αF1 − ∂αF1)(x)| =∣∣∣∣ ∫
τ∈B(0,η̄)

ϕ(τ) [∂αF1(x − τ) − ∂αF1(x)] dτ

∣∣∣∣ ≤
∫

τ∈B(0,η̄)

ϕ(τ) ·
[
|τ| · supy∈B(x0,r) | O ∂αF1(y)|

]
dτ ≤

Crm−|α|−1

∫
τ∈B(0,η̄)

ϕ(τ)|τ|dτ ≤ C ·
(

η̄

r

)
· rm−|α| ,

thanks to (4), (5). Thus, (b) holds for F̃.

Next, we establish (c). For |β| = m, |γ| = 1, x ∈ B(x0, r − η̄), we have ∂β+γP0 = 0 since

P0 ∈ P. Hence, (6) yields ∂β+γF̃(x) = ∂γ ϕ ∗ ∂βF1(x), and therefore

|∂β+γ F̃(x)| ≤ supy∈B(x0,r) | ∂βF1(y)| ·
∫

τ∈Rn

|∂γ ϕ(τ)| dτ ≤ Cη̄−1,

thanks to (4) and (5). Thus, (c) holds for F̃.

It remains to establish (a). To do so, we first note that

(7) F̃ = ϕ ∗ F + (P0 − ϕ ∗ P0) on B(x0, r − η̄),

thanks to (2) and (6). Regarding the term ϕ ∗ F in (7), we note that

(8) ϕ ∗ F =

∫
τ∈B(0,η̄)

ϕ(τ)Fτ dτ on B(x0, r − η̄),

where Fτ ∈ Cm(B(x0, r − η̄)) is the translate,

(9) Fτ(x) = F(x − τ) for x ∈ B(x0, r − η̄).
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Since ‖ F ‖Cm(B(x0,r))≤ 1, the Approximate Translation-Invariance property and (9) yield

‖ Fτ ‖Cm(B(x0,r−η̄))≤ exp(C |τ| ) ≤ 1 + C′η̄ for τ ∈ B(0, η̄),

and therefore (8) gives

(10) ‖ ϕ ∗ F ‖Cm(B(x0,r−η̄))≤ 1 + C′η̄,

thanks to (5). Regarding the term P0 − ϕ ∗ P0 in (7), we note that

P0 − ϕ ∗ P0 ∈ P,

and that

|∂α(P0 − ϕ ∗ P0)(x0)| ≤ Cη̄ for |α| ≤ m,

thanks to (3) and (5). Consequently, for x ∈ B(x0, r) ⊆ B(x0, ε
−1), we have

|∂α(P0 − ϕ ∗ P0)(x)| ≤ Cη̄ε−m, for |α| ≤ m.

The Bounded Distortion Property therefore gives |Jx(P0 − ϕ ∗ P0)|x ≤ C′η̄ε−m for x ∈
B(x0, r), which in turn gives the estimate

(11) ‖ P0 − ϕ ∗ P0 ‖Cm(B(x0,r−η̄))≤ C′′η̄ε−m

From (7), (10), (11), we see that

‖ F̃ ‖Cm(B(x0,r−η̄))≤ 1 + C′η̄ + C′′η̄ε−m ≤ 1 + C′′′ε,

since η̄ ≤ εm+1 and ε ≤ 1. Thus, (a) holds for F̃.

The proof of Lemma 12.1 is complete.

Lemma 12.2. Let ε > 0 be less than a small enough controlled constant, and let B(x0, r) be

an open ball with radius

(†1) r ≤ ε−1.

Suppose that
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(†2) 0 < η < ε2 e−1/ε.

Let

(†3) S ⊂ B(x0, (1 − η)r),

and assume that

(†4) |y − y′| > 2ηe1/εr for any two distinct points, y, y′ ∈ S.

Let M ≥ 0, and let

(†5) F ∈ Cm(B(x0, r)), with ‖ F ‖Cm(B(x0,r))≤ M.

Then there exists F# ∈ Cm+1(B(x0, (1 − η)r)), with the following properties.

(A) ‖ F# ‖Cm(B(x0,(1−η)r))≤ (1 + Cε)M.

(B) Jy(F
#) = Jy(F) for all y ∈ S.

(C) |∂αF#(x)| ≤ Cη−m r−1M for |α| = m + 1, x ∈ B(x0, (1 − η)r).

Proof. Without loss of generality, we may suppose M = 1. We apply Lemma 12.1, with

(12) η̄ = ηmr.

Let us check the hypotheses of Lemma 12.1. From our present hypotheses (with M = 1),

we know that:

ε > 0 is less than a small enough controlled constant; 0 < r ≤ ε−1; F ∈ Cm(B(x0, r)); and

‖ F ‖Cm(B(x0,r))≤ 1.

Also, since η < 1, we have η̄ = ηm r < r; moreover, since r ≤ ε−1, we have

η̄ = ηm r < ηmε−1 ≤ ε2m−1 e−m/ε ≤ εm+1, because ε is less than a small enough controlled

constant, and thanks to (†2). Thus 0 < η̄ < min(r, εm+1), completing our verification of the

hypotheses of Lemma 12.1. Applying that result, we obtain a function
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(13) F̃ ∈ Cm+1(B(x0, (1 − ηm)r)),

with the following properties.

(14) ‖ F̃ ‖Cm(B(x0,(1−ηm)r))≤ 1 + Cε.

(15) |∂α(F̃ − F)(x)| ≤ Cηm rm−|α| for |α| ≤ m − 1, x ∈ B(x0, (1 − ηm)r).

(16) |∂αF̃(x)| ≤ Cη−m r−1 for |α| = m + 1, x ∈ B(x0, (1 − ηm)r).

The function F̃ needn’t satisfy (B). We prepare to correct it, using Lemma GPU.

We set

(17) Ω = Ũ = B(x0, (1 − ηm)r).

For each y ∈ S, we define

(18) Py = Jy(F) ∈ P,

and

(19) Uy = B(y, ηe1/ε r).

(20) The Uy(y ∈ S) are pairwise disjoint, thanks to (†4).

We estimate the Cm norm of Py on Uy, and we compare F̃ with Py on Ũ∩Uy. To do so,

we first note that

(21) |Py|y ≤ 1 for y ∈ S,

thanks to (18) and (†5) (with M = 1).

We have also

(22) ηe1/εr < (ε2e−1/ε) · e1/ε · (ε−1) = ε < 1, by (†1) and (†2).

From (19), (21), (22), and Lemma 1 in Section 3, we obtain the estimate

(23) |Py|x ≤ 1 + Cε for x ∈ Uy, y ∈ S.
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Next, fix y ∈ S and x ∈ Uy ∩ Ũ (see (17), (19)). From (14), the Bounded Distortion

Property, and Taylor’s theorem, we have

(24) |∂α(F̃ − Jy(F̃))(x)| ≤ C|x − y|m−|α| for |α| ≤ m.

(In the degenerate case x = y, |α| = m, we define the right-hand side of (24) to be zero.)

We will check that

(25) |∂α(F̃ − F)(y)| ≤ C · (ηr)m−|α| for |α| ≤ m.

In fact, for |α| ≤ m − 1, estimate (25) is immediate from (15), since η < 1. For |α| = m,

estimate (25) follows from (†5) (with M = 1) and (14), thanks to the Bounded Distortion

Property (and the fact that y ∈ B(x0, (1 − ηm)r) by (†3)). Thus, (25) holds in all cases.

From (25), we deduce the weaker estimate

|∂α(Jy(F̃) − Jy(F))(y)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m, which in turn yields

(26) |∂α(Jy(F̃) − Jy(F))(x)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m, since Jy(F̃) − Jy(F) ∈ P.

Combining (24) and (26), and recalling (18), we find that

(27) |∂α(F̃ − Py)(x)| ≤ C · [ηr + |x − y|]m−|α| for |α| ≤ m, x ∈ Uy ∩ Ũ, y ∈ S.

Estimates (23) and (27) are our main results on the Py and F̃ − Py.

Next, given y ∈ S, we define χy to be the function θ0, computed by applying Algorithm

10.6, with y0 = y, and with δ = ηr. We are not concerned here with computing the function

χy, but we recall the properties (a)...(d) in Algorithm 10.6. Thus,

(28) χy ∈ Cm+1(Rn),

(29) 0 ≤ χy ≤ 1 on Rn,

(30) χy(x) = 1 for |x − y| ≤ e1/(16ε) ηr,
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(31) supp χy ⊂ B(y, e1/(8ε) ηr) ⊂ Uy (see (19)), and

(32) |∂αχy(x)| ≤ Cε|x − y|−|α| for 0 < |α| ≤ m + 1, x ∈ Rn r {y}.

Properties (28)...(32) hold for each y ∈ S.

From (30) and (32), we obtain the estimate

(33) |∂αχy(x)| ≤ Cε · [ηr + |x − y|]−|α| for 0 < |α| ≤ m + 1, x ∈ Rn, y ∈ S.

In addition to the functions χy(y ∈ S), we define a function χ̃, by setting

(34) χ̃ = 1 −
∑
y∈S

χy on Rn.

(Recall that S is finite; see (†3) and (†4).)

Thanks to (20) and (28)...(33), the function χ̃ has the following properties.

(35) χ̃ ∈ Cm+1(Rn).

(36) 0 ≤ χ̃ ≤ 1 on Rn.

(37) χ̃(x) = 0 for |x − y| ≤ e1/(16ε) ηr, y ∈ S.

(38) χ̃ = 1 in a neighborhood of x, for x /∈ ∪
y∈S

Uy.

(39) |∂αχ̃(x)| ≤ Cε · [ηr + |x − y|]−|α| for 0 < |α| ≤ m + 1, x ∈ Uy, y ∈ S.

We now define

(40) δ(x) = ηr + dist(x, S) > 0 for x ∈ Rn.

We now check the hypotheses of Lemma GPU from Section 5, for the following data:

• The open cover {Uy (all y ∈ S), Ũ} of the open set Ω, as in (17), (19);
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• The function δ(x) > 0, as in (40);

• The functions Py (all y ∈ S) and F̃, as in (18), (13)...(16);

• The functions χy (all y ∈ S) and χ̃, as in (28)...(34);

• The constants A0 = A1 = A2 = C for a large enough controlled constant C.

• The constant called M in Lemma GPU will be taken here to be 1 + Cε for a large

enough controlled constant C.

The verification of the hypotheses of Lemma GPU for the above data proceeds as follows.

First of all, {Uy(all y ∈ S), Ũ} is an open cover of an open set Ω ⊂ Rn. Also, δ(x) > 0 for

all x ∈ Ω, thanks to (40). For each y ∈ S, we have Py ∈ Cm(Uy), since Py ∈ P. Moreover,

F̃ ∈ Cm(Ũ), as we see from (13) and (17). We have χy ∈ Cm(Ω) for y ∈ S, and χ̃ ∈ Cm(Ω);

see (28) and (35). We have ε,A0, A1, A2 > 0 and M ≥ 0.

We now check hypotheses (GPU1...7).

(GPU1) asserts here that any given point of Ω can belong to at most C of the sets suppΩχy

(y ∈ S), and suppΩχ̃. That assertion holds, thanks to (20) and (31); note that

suppΩϕ ⊆ suppϕ for any function ϕ on Rn.

(GPU2) asserts here that
∑
y∈S

χy + χ̃ = 1 on Ω, which is immediate from (34).

(GPU3) asserts here that χy ≥ 0 on Ω for each y ∈ S, and that χ̃ ≥ 0 on Ω. These assertions

are immediate from (29), (36).

(GPU4) asserts here that suppΩχy ⊂ Uy for y ∈ S, and that

(41) suppΩχ̃ ⊂ Ũ.

The assertion regarding the χy is immediate from (31), since suppΩχy ⊆ suppχy. Assertion

(41) holds trivially, since Ũ = Ω (see (17)), and suppΩχ̃ is defined to be a subset of Ω.

(GPU5) asserts here that
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(42) |∂αχy(x)| ≤ Cε · [ηr + dist(x, S)]−|α| for 0 < |α| ≤ m, x ∈ Ω, y ∈ S, and that

(43) |∂αχ̃(x)| ≤ Cε · [ηr + dist(x, S)]−|α| for 0 < |α| ≤ m, x ∈ Ω.

We establish (42) and (43) by cases. If x /∈ ∪
y∈S

Uy, then the left-hand sides of (42), (43)

are both zero, thanks to (31) and (38). Thus, we may assume that x ∈ Uȳ for some ȳ ∈ S.

In this case, we have dist(x, S) = |x − ȳ|, by (19), (20). Consequently, (43) now follows

from (39), and (42) for y = ȳ follows from (33). For y ∈ S r {ȳ}, (42) holds thanks to (20)

and (31), since here x ∈ Uȳ. Thus, (42), (43) hold in all cases, proving (GPU5).

(GPU6) asserts here that

(44) |Jx(P
y)|x ≤ 1 + Cε for x ∈ suppΩχy, y ∈ S,

and that

(45) |Jx(F̃)|x ≤ 1 + Cε for x ∈ suppΩχ̃.

Estimate (45) is immediate from (14) and (17). To check (44), we recall that Py ∈ P,

hence Jx(P
y) = Py for y ∈ S, x ∈ Uy. Consequently, (44) follows from (23) and (31), since

suppΩχy ⊆ suppχy. Thus, (GPU6) holds.

(GPU7) here asserts that

(46) |∂α(F̃−Py)(x)| ≤ C[ηr + dist(x, S)]m−|α| for |α| ≤ m−1, x ∈ suppΩχy∩ suppΩχ̃, y ∈ S.

(See (20), (31), (40).)

To check (46), we recall that x ∈ suppΩχy ∩ suppΩχ̃, y ∈ S imply x ∈ Uy ∩ Ũ by (17),

(31); hence dist(x, S) = |x−y| thanks to (20). Thus, (46) follows from (27), proving (GPU7).

This completes the verification of the hypotheses of Lemma GPU for the above data.

Applying that lemma, we learn the following.

Define a function F# on B(x0, (1 − ηm)r), by setting
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(47) F#(x) =
∑
y∈S

χy(x) · Py(x) + χ̃(x) · F̃(x) for x ∈ B(x0, (1 − ηm)r).

Then

(48) F# ∈ Cm(B(x0, (1 − ηm)r)), and ‖ F# ‖Cm(B(x0,(1−ηm)r))≤ 1 + Cε.

We investigate Jy(F
#) for y ∈ S. From (18), (20), (30), (31), we learn that, for each

y ∈ S, we have

(49) Jy(P
y) = Py = Jy(F), Jy(χ

y) = 1, and Jy(χ
ȳ) = 0 for ȳ ∈ S r {y}.

Also, (37) yields

(50) Jy(χ̃) = 0 for y ∈ S.

Substituting (49), (50) into (47), we learn that

(51) Jy(F
#) = Jy(F) for y ∈ S.

Next, we study the (m+1)rst derivatives of F#. We recall that each Py belongs to P, and

that χy(y ∈ S), χ̃, and F̃ all belong to Cm+1(B(x0, (1 − ηm)r)). (See (13), (18), (28), (35).)

Since S is finite (see (†3), (†4)), it follows that

(52) F# ∈ Cm+1(B(x0, (1 − ηm)r)) (see (47)).

Let |α| = m + 1, and let x ∈ Ω = B(x0, (1 − ηm)r).

We estimate |∂αF#(x)|. We proceed by cases.

Case 1: Suppose x ∈ Ω r ∪
y∈S

Uy. Then (31), (38), (47) show that F# = F̃ in a neighborhood

of x. Therefore, (16) gives

(53) |∂αF#(x)| ≤ Cη−m r−1 in Case 1.
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Case 2: Suppose x ∈ Uȳ for some ȳ ∈ S. From (20), (31), (34), we see that χy = 0 on Uȳ for

y ∈ S r {ȳ}, and χ̃ = 1 − χȳ on Uȳ. Hence, (47) gives

(54) F# = χȳ · Pȳ + (1 − χȳ) · F̃ on Uȳ.

Since |α| = m + 1 and Pȳ ∈ P, we have ∂αPȳ = 0. Hence, from (54), we obtain

(55) ∂αF#(x) = (1 − χȳ(x)) · ∂αF̃(x) −
∑

β+γ=α
|β|6=0

α!

β!γ!
∂β χȳ(x) · ∂γ(F̃ − Pȳ)(x).

We estimate the terms on the right in (55).

Recalling (16) and (29), we see that

(56) |(1 − χȳ(x)) · ∂αF̃(x)| ≤ Cη−m r−1.

Also, for β + γ = α, |β| 6= 0, estimates (27) and (33) yield

(57) |∂βχȳ(x)| · |∂γ(F̃ − Py)(x)| ≤ Cε · [ηr + |x − y|]−|β| · C · [ηr + |x − y|]m−|γ|

= C′ε · [ηr + |x − y|]−1 ≤ Cη−mr−1,

since |β| + |γ| = |α| = m + 1, and ε, η < 1.

Putting (56) and (57) into (55), we learn that

(58) |∂αF#(x)| ≤ Cη−m r−1 in Case 2.

In view of (53) and (58), we now have

(59) |∂αF#(x)| ≤ Cη−m r−1 for |α| = m + 1, x ∈ B(x0, (1 − ηm)r).

The conclusions of Lemma 12.2 are immediate from (52), (48), (51), and (59), since here

M = 1. The proof of Lemma 12.2 is complete.
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13 Extending a Whitney Field from a Fine Net

The next several sections give algorithms that will allow us to compute functions F`
ν as in

(13)...(16) in Section 6. The algorithm of this section is as follows.

Algorithm 13.1. Suppose we are given the following data.

• A real number ε > 0, assumed to be less than a small enough controlled constant.

• A real number 0 < η < ε2.

• A real number A, assumed to be greater than a large enough controlled constant.

• An open ball B(x0, r), with r ≤ ε−1.

• A Whitney field ~P = (Py)y∈S+, where S+ is assumed to satisfy:

(†0) S+ ⊂ B(x0, r);

(†1) |y − y′| ≥ A−1ηr for any two distinct points y, y′ ∈ S+; and

(†2) dist(x, S+) ≤ ηr for all x ∈ B(x0, r).

Given the above data, we compute a function F ∈ Cm(Rn), with the following properties.

(A) F agrees with ~P.

(B) Suppose M ≥ 0 is a real number, and suppose that

(†3) |Py|y ≤ M for all y ∈ S+, and

(†4) |∂α(Py − Py′)(y)| ≤ εM · (ηr)−1 · |y − y′|m+1−|α| for |α| ≤ m, y, y′ ∈ S+.

Then ‖ F ‖Cm(B(x0,r))≤ (1 + CAmε) · M .

The computation of F uses one-time work at most C · (Aη−1)2n, storage at most

C · (Aη−1)n, and query work at most C.
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Explanation: Our plan is as follows. We start by discussing the geometry of the ball B(x0, r)

and the set S+. Next, we recall a relevant partition of unity from Section 10. We then define

a function F on Rn, and prove that it satisfies (A) and (B). Finally, we show how to compute

F, and we estimate the work and storage of the computation.

We begin with some trivial geometry. It is convenient to regard B(x0, r) as a subset of a

cube Q̄, which we will partition into dyadic cubes. To do so, we proceed as follows. First,

we fix an integer s, satisfying

(1) 1
100

A−1ηr ≤
√

n · 2s ≤ 1
10

A−1ηr,

and then fix an integer L > 0, satisfying

(2) 100r ≤ 2s · L ≤ 1000r.

Note that

(3) cAη−1 ≤ L ≤ CAη−1.

Next, let (x0
1, . . . , x

0
n) be the coordinates of x0. For each j(1 ≤ j ≤ n), we produce an

integer mj, such that

(4) [x0
j − 2r, x0

j + 2r) ⊂ [2s · mj, 2s · (mj + L)) for each j.

We can find such mj, thanks to (2). From (4), we have

B(x0, r) ⊂
n∏

j=1

[x0
j − r, x0

j + r) ⊂
n∏

j=1

[2s · mj, 2
s · (mj + L)).

Thus, setting

(5) Q̄ =

n∏
j=1

[2s · mj, 2s · (mj + L)),

we note that Q̄ is a cube, and that
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(6) B(x0, r) ⊂ Q̄, and

(7) δQ̄ = 2s · L ≤ 1000r,

thanks to (2).

From Section 10, we recall the dyadic cubes

(8) Q
〈s〉
ν =

n∏
j=1

[2s · νj, 2s · (νj + 1)) for ν = (ν1, . . . , νn) ∈ Zn.

Comparing (5) with (8), we see that

(9) Q̄ is partitioned into dyadic cubes Q
〈s〉
ν (ν ∈ G), where

(10) G = {ν = (ν1, . . . , νn) ∈ Zn : mj ≤ νj < mj + L for j = 1, . . . , n}.

We check the following property of the cubes Q
〈s〉
ν .

(11) Let ν ∈ Zn. If (Q
〈s〉
ν )∗ ∩ B(x0, r) 6= φ, then ν ∈ G.

In fact, let ν = (ν1, . . . , νn) ∈ Zn, and suppose (x1, . . . , xn) ∈ (Q
〈s〉
ν )∗ ∩ B(x0, r).

From (8), we have (Q
〈s〉
ν )∗ =

n∏
j=1

[2s · (νj − 1), 2s · (νj + 2)), and therefore

xj ∈ [2s · (νj − 1), 2s · (νj + 2)) ∩ [x0
j − r, x0

j + r) for each j.

In particular, 2s · νj lies within distance 2 · 2s of the interval [x0
j − r, x0

j + r). Since

2 · 2s < r by (1), it follows that 2s · νj ∈ [x0
j − 2r , x0

j + 2r) for each j, and consequently

2s · νj ∈ [2s · mj , 2s(mj + L)), thanks to (4). Thus, mj ≤ νj < mj + L for each j, i.e.,

ν = (ν1, . . . , νn) ∈ G, completing the proof of (11).

Let us now bring in the set S+. For each ν ∈ G, let

(12) xν = center of Q
〈s〉
ν ,
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and let

(13) yν = a point of S+ as close as possible to xν.

Note that (13) makes sense, since S+ is finite. In fact, our assumptions (†0), (†1) show

that

(14) #(S+) ≤ C · (Aη−1)n.

We next establish the following properties of the points yν.

(15) Let x ∈ B(x0, r) ∩ (Q
〈s〉
ν )∗. Then ν ∈ G and |x − yν| ≤ Cηr.

(16) Let ν ∈ G. If (Q
〈s〉
ν )∗ ∩ S+ 6= φ, then (Q

〈s〉
ν )∗ ∩ S+ = {yν}.

To see (15), let x ∈ B(x0, r) ∩ (Q
〈s〉
ν )∗. Then ν ∈ G, by (11). Since x, xν ∈ (Q

〈s〉
ν )∗, and

since (Q
〈s〉
ν )∗ has diameter 3

√
n · 2s ≤ 1

3
A−1 ηr (see (1)), we have |x−xν| ≤ 1

3
A−1 ηr ≤ ηr.

Also, by assumption (†2), there exists y ∈ S+ with |x − y| ≤ ηr. Moreover, by definition

(13), we have |xν − yν| ≤ |xν − y|. In view of the above remarks, we have

|x−yν| ≤ |x−xν| + |xν −yν| ≤ |x−xν| + |xν −y| ≤ |x−xν| + |x−xν| + |x−y| ≤ 3ηr ,

proving (15).

To see (16), let y ∈ (Q
〈s〉
ν )∗ ∩ S+. Since xν and y belong to (Q

〈s〉
ν )∗, a cube with di-

ameter ≤ 1
3
A−1ηr, we have |xν − y| ≤ 1

3
A−1ηr. Hence, by definition (13), we have also

|xν − yν| ≤ 1
3
A−1ηr. Consequently, |y − yν| ≤ 2

3
A−1ηr. Since also y, yν ∈ S+, it now

follows from assumption (†1) that y = yν.

This proves that yν is the one and only point belonging to (Q
〈s〉
ν )∗ ∩ S+, which is our

desired conclusion (16).

Next, from Section 10, we recall the partition of unity

(17) 1 =
∑

ν∈Zn

θ
〈s〉
ν on Rn,
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where

(18) θ
〈s〉
ν ∈ Cm(Rn) for ν ∈ Zn,

(19) supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν )∗ for each ν ∈ Zn,

and

(20) |∂αθ
〈s〉
ν (x)| ≤ C · 2−s|α| for |α| ≤ m, x ∈ Rn, ν ∈ Zn.

Thanks to (1), our estimate (20) is equivalent to

(21) |∂αθ
〈s〉
ν (x)| ≤ C · (A−1ηr)−|α| ≤ CAm · (ηr)−|α| for |α| ≤ m, x ∈ Rn, ν ∈ Zn.

We want to restrict the sum in (17) to ν ∈ G. In view of (11) and (19), we have ν ∈ G for

every ν ∈ Zn such that suppθ
〈s〉
ν ∩ B(x0, r) 6= φ. Hence, (17) yields

(22)
∑
ν∈G

θ
〈s〉
ν = 1 on B(x0, r).

We are now ready to define our function F. We set

(23) F =
∑
ν∈G

θ
〈s〉
ν · Pyν on Rn.

Note that

(24) F ∈ Cm(Rn),

and F is of compact support. (See (18), (19), and recall that G is finite and each Pyν is a

polynomial.)

Next, we show that F satisfies (A) and (B). We first establish (A):

Fix y ∈ S+. If ν ∈ G and y ∈ supp θ
〈s〉
ν , then y ∈ S+ ∩ (Q

〈s〉
ν )∗ by (19), and therefore

yν = y, by (16). Consequently, (23) gives Jy(F) =
∑
ν∈G

Jy(θ
〈s〉
ν · Py) = Py, thanks to (22)

and (†0).
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Thus, F agrees with ~P, proving (A).

We pass to (B). Suppose M ≥ 0 is a real number, and suppose the Py(y ∈ S+) satisfy

(†3) and (†4). Fix x ∈ B(x0, r), and then fix ν̄ ∈ G such that x ∈ (Q
〈s〉
ν̄ )∗. (Such a ν̄ exists,

by (19), (22).) From (22) and (23), we have

(25) F = Pyν̄ +
∑
ν∈G

θ
〈s〉
ν · (Pyν − Pyν̄) on B(x0, r).

We estimate the terms on the right in (25).

To do so, we note first that any ν ∈ G such that x ∈ (Q
〈s〉
ν )∗ satisfies |x − yν| ≤ Cηr,

thanks to (15). In particular,

(26) |x − yν̄| ≤ Cηr,

and

(27) |x − yν| ≤ Cηr for any ν ∈ G such that x ∈ supp θ
〈s〉
ν . (See (19).)

From (26), (27), we obtain at once |yν − yν̄| ≤ Cηr for any ν ∈ G such that x ∈ supp θ
〈s〉
ν .

Therefore, (†4) yields

|∂α(Pyν − Pyν̄)(yν̄)| ≤ CεM · (ηr)m−|α| for |α| ≤ m, ν ∈ G such that x ∈ supp θ
〈s〉
ν .

Together with (26), this gives

|∂α(Pyν − Pyν̄)(x)| ≤ C′εM · (ηr)m−|α| for |α| ≤ m, ν ∈ G such that x ∈ supp θ
〈s〉
ν .

Recalling (21), we deduce that

(28) |∂α{θ
〈s〉
ν · (Pyν −Pyν̄)}(x)| ≤ AmCεM · (ηr)m−|α| for |α| ≤ m,ν ∈ G s.t. x ∈ supp θ

〈s〉
ν .

Moreover, there are at most C distinct ν ∈ G such that x ∈ supp θ
〈s〉
ν , as we see from (19).

Consequently, (28) yields

(29) |∂α

{∑
ν∈G

θ
〈s〉
ν · (Pyν − Pyν̄)

}
(x)| ≤ CAmεM · (ηr)m−|α| for |α| ≤ m.
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We are assuming here that η ≤ ε2, r ≤ ε−1, and therefore

(30) ηr < ε.

From (29), (30), and the Bounded Distortion Property, we conclude that

(31) |Jx

(∑
ν∈G

θ
〈s〉
ν · (Pyν − Pyν̄)

)
|x ≤ CAmεM.

Thus, we have estimated the sum in (25). Regarding the term Pyν̄ in (25), we recall from

(†3) that

(32) |Pyν̄ |yν̄ ≤ M.

Also, from (26), (30), we have |x − yν̄| ≤ Cηr < Cε < 1. Hence, (32) and Lemma 1 in

Section 3 yield the estimate |Pyν̄ |x ≤ (1 + Cε)M.

Substituting this estimate and (31) into (25), and recalling that A > 1, we obtain the

estimate |Jx(F)|x ≤ (1 + CAmε)M.

Since x is an arbitrary point in B(x0, r), it follows that ‖ F ‖Cm(B(x0,r))≤ (1 + CAmε)M.

This completes the proof of (B).

It remains to compute the function F in (23), and to estimate the work and storage

needed for the computation. We begin with the one-time work. We compute the integers

s, L, m1, . . . , mn in (1)...(4), with work at most C. Note that the set G in (10) is then an

n-dimensional box in an integer lattice; hence, any quantity indexed by G may be stored as

an n-dimensional array, consisting of Ln entries. Recall from (3) that Ln ≤ C · (Aη−1)n.

Next, for each ν ∈ G, we compute crudely the point yν in (13), by examining each y ∈ S+.

We then store the polynomial Pyν in an n-dimensional array indexed by ν ∈ G. The work

to compute a single Pyν is at most C · #(S+) ≤ C′ · (Aη−1)n; see (14).

The memory consumed in storing the Pyν (all ν ∈ G) is at most C · (Aη−1)n. This com-

pletes the one-time work. Note that the total one-time work is at most

C′ · (Aη−1)n · #(G) ≤ C′′ · (Aη−1)2n.
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We pass to the query algorithm, which computes Jx(F) for a given query point x ∈ Rn.

We assume we have done the above one-time work.

Let x ∈ Rn be given, and let G(x) = {ν ∈ G : x ∈ (Q
〈s〉
ν )∗}. Note that #(G(x)) ≤ C,

and that G(x) can be computed with work at most C. From (19) and (23), we have

(33) Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν ) �x Pyν .

For each ν ∈ G(x), we compute Jx(θ
〈s〉
ν ) by Algorithm 10.3, look up Pyν from the array

created by our one-time work, and then compute the product Jx(θ
〈s〉
ν ) �x Pyν .

Summing on ν ∈ G(x), we obtain Jx(F) from formula (33). Since Algorithm 10.3 takes work

at most C, and since #(G(x)) ≤ C, it follows that Jx(F) is computed using work at most C.

Thus, F is computed using one-time work at most C · (Aη−1)2n and storage at most

C · (Aη−1)n; and the query work is at most C.

This completes our explanation of Algorithm 13.1.

14 Local Extension of a Whitney Field from a Testing Set

In this section, we continue preparing to compute functions F`
ν as in (13)...(16) of

Section 6. We will use Algorithm 3.1 (“Find-Unit-Ball”), and the Special Ellipsoid Algorithm

for linear programming.

Algorithm 14.1. Given a real number ε > 0, assumed to be less than a small enough

controlled constant; and given a dyadic cube Q, whose sidelength δQ is assumed to satisfy

(1) δQ ≤ c̃ε−1 for a small enough controlled constant c̃;

and given a Whitney field ~P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗,

and

(3) |y − y′| > e−3/ε δQ for any two distinct points y, y′ ∈ S;
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we compute a ball B(x0, r), a real number Nε(~P,Q) ≥ 0, and a function F ∈ Cm(Rn),

with the following properties.

(A) Q∗∗ ⊂ B(x0, r), and r ≤ CδQ.

(B) F agrees with ~P.

(C) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(~P,Q).

(D) Nε(~P,Q) ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

The storage and the one-time work needed for the computation are at most exp(C/ε), and

the work to answer a query is at most C.

Explanation: Our algorithm consists of seven steps.

First, we present Steps 1...4. Then we introduce a family of linear constraints in a

finite-dimensional vector space, and prove several lemmas on the feasible region. Next, we

present Steps 5,6,7, in which we solve a linear programming problem and use the result to

compute Nε(~P,Q) and F. Finally, we prove (A)...(D), and analyze the work and storage of

our algorithm.

The first four steps of our algorithm are as follows.

Step 1: We compute a ball B(x0, r) such that

(4) Q∗∗ ⊂ B(x0, r) and r ≤ CδQ.

From (1) and (4), we obtain

(5) 2r < ε−1.

Note that

(6) S ⊂ B(x0, r), and
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(7) |y − y′| ≥ c · e−3/εr for any two distinct points y, y′ ∈ S,

thanks to (2), (3), (4).

Step 2: We apply Algorithm 11.3 (“Produce-Fine-Net”) to the set S, the ball B(x0, r),

and the number

(8) η = e−6m/ε.

Thanks to (6), (7), (8), the data S, B(x0, r), η satisfy the assumptions of Algorithm 11.3.

Thus, that algorithm computes a set S+, with the following properties.

(9) S ⊆ S+ ⊂ B(x0, r)

(10) dist(x, S+) < ηr for any x ∈ B(x0, r).

(11) |y − y′| ≥ ηr
100n

for any two distinct points y, y′ ∈ S+.

Note that (9) and (11) yield

(12) #(S) ≤ #(S+) ≤ C · η−n.

Step 3: For each y ∈ S+, we apply Algorithm 3.1 (“Find-Unit-Ball”), to compute a family

O(ε, y) of linear functionals on P, such that

(13) (1 + ε)−1 · |P|y ≤ max{λ(P) : λ ∈ O(ε, y)} ≤ (1 + ε) · |P|y for all P ∈ P and y ∈ S+;

and

(14) #(O(ε, y)) ≤ exp(C/ε) for each y ∈ S+.

Step 4: We compute the smallest real number M̂ ≥ 0 such that

(15) |∂αPy(y)| ≤ M̂ for |α| ≤ m, y ∈ S; and
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(16) |∂α(Py − Py′)(y)| ≤ M̂ · |y − y′|m−|α| for |α| ≤ m, y, y′ ∈ S, y 6= y′.

Before passing to Steps 5, 6, 7, we study the feasible region for a family of linear constraints,

which we now introduce.

Let Â be a constant, to be picked later. Assume that

(17) Â exceeds a large enough controlled constant, and

(18) ε < Â−100.

Later, we will take Â to be a controlled constant large enough to satisfy (17). Our assumption

(18) will then hold, since we assume that ε is less than a small enough controlled constant.

For the moment, however, we do not fix Â; we simply assume (17) and (18).

Now let X denote the vector space of all

(19) ξ = [M, (Py)y∈S+], with M ∈ R and each Py ∈ P.

Note that Py in (19) is indexed by a subscript y ∈ S+, while our given Whitney field ~P

is equal to (Py)y∈S, with Py indexed by a superscript y ∈ S.

We will study the following family of constraints on a vector ξ ∈ X as in (19).

The Basic Constraints

(20) 0 ≤ M ≤ Â · M̂.

(21) λ(Py) ≤ (1 + Âε) · M for each λ ∈ O(ε, y) and each y ∈ S+.

(22) |∂α(Py − Py′)(y)| ≤ Â · e4m/ε r−1|y − y′|m+1−|α| · M for |α| ≤ m and y, y′ ∈ S+.

(23) Py = Py for each y ∈ S.

We write X(ε,Q,~P) to denote the set of all ξ ∈ X that satisfy the above constraints. We

will prove the following results about this feasible region.
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Lemma 14.1. For any [M, (Py)y∈S+] ∈ X(ε,Q,~P), we have

(24) cM̂ ≤ M ≤ Â · M̂,

with M̂ as in Step 4.

Lemma 14.2. Fix y0 ∈ S. Then every [M, (Py)y∈S+] ∈ X(ε,Q,~P) satisfies

(25) |∂α(Py − Py0)(y)| ≤ CÂe4m/εrm−|α|M, for |α| ≤ m, y ∈ S+.

Lemma 14.3. There exists ξ# = [M#, (P#
y )y∈S+] ∈ X, with the following properties.

(26) M# ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

(27) Let ξ′ = [M′, (P′
y)y∈S+] ∈ X, with

(a) |M′| ≤ exp(−Â/ε)M#;

(b) |∂αP′
y(y)| ≤ exp(−Â/ε)rm−|α|M# for |α| ≤ m, y ∈ S+; and

(c) P′
y = 0 for all y ∈ S.

Then

(d) ξ# + ξ′ ∈ X(ε,Q,~P).

Proof of Lemma 14.1: Let [M, (Py)y∈S+] satisfy (20) ...(23). Immediately from (20), we have

M ≤ ÂM̂. Our desired result (24) thus amounts to saying that

(28) M̂ ≤ CM.

Let us prove (28).

From (21) and the defining property (13) of O(ε, y), we obtain the estimate

|Py|y ≤ (1 + Cε) · (1 + Âε)M for each y ∈ S+. Hence, by (17), (18), and the Bounded

Distortion Property, we have

(29) |∂αPy(y)| ≤ CM for |α| ≤ m, y ∈ S+.

Since r ≤ c̃ε−1, we know that Â · e4m/ε r−1 > 1. Hence, (22), (29) and the classical Whitney

extension theorem for finite sets tell us that there exists
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(30) F ∈ Cm+1(Rn),

such that

(31) Jy(F) = Py for each y ∈ S+,

and

(32) |∂αF(x)| ≤ CÂ · e4m/ε r−1M for |α| ≤ m + 1, x ∈ Rn.

Here, Jy(F) denotes an mth order Taylor polynomial as usual, even though F ∈ Cm+1(Rn).

Let x ∈ B(x0, r) be given. By (8) and (10), there exists y ∈ S+, such that

(33) |x − y| < e−6m/ε r.

Note that y ∈ B(x0, r) as well; see (9). For |α| ≤ m, we have

|∂αF(x)−∂αF(y)| ≤ |x−y| · max
B(x0,r)

|O ∂αF| ≤ (e−6m/ε r) · (CÂe4m/ε r−1M) by (32) and (33).

Thus,

(34) |∂αF(x) − ∂αF(y)| ≤ CÂe−2m/εM ≤ M for |α| ≤ m,

thanks to (17) and (18).

On the other hand, (29) and (31) give

(35) |∂αF(y)| ≤ CM for |α| ≤ m,

since y ∈ S+.

From (34) and (35), we see that |∂αF(x)| ≤ CM for |α| ≤ m, x ∈ B(x0, r).

Hence, Taylor’s theorem gives
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(36) |∂α(Jy(F) − Jy′(F))(y)| ≤ CM|y − y′|m−|α| for |α| ≤ m, y, y′ ∈ B(x0, r), y 6= y′.

From (31), (36) and (9), we conclude that

(37) |∂α(Py − Py′)(y)| ≤ CM · |y − y′|m−|α| for |α| ≤ m, y, y′ ∈ S+, y 6= y′.

Now, recalling (23), and comparing (29) and (37) with the definition of M̂ in Step 4, we

see that

M̂ ≤ CM.

This is precisely our desired inequality (28).

The proof of Lemma 14.1 is complete. �

Proof of Lemma 14.2: Note that Py0
= Py0 by (23), and that |y − y0| ≤ 2r, by (9). Hence,

for |α| ≤ m, (22) gives

|∂α(Py − Py0)(y)| ≤ Â e4m/ε r−1|y − y0|
m+1−|α| M

≤ 2Â e4m/ε|y − y0|
m−|α| M ,

which immediately implies the desired conclusion (25). �

Proof of Lemma 14.3: We start by relating ‖ ~P ‖Cm(B(x0,2r)) to M̂ (as in Step 4). By definition

of M̂, and by the classical Whitney extension theorem, there exists a function

(38) F̌ ∈ Cm(Rn),

such that

(39) Jy(F̌) = Py for all y ∈ S,

and

(40) |∂αF̌(x)| ≤ CM̂ for |α| ≤ m, x ∈ Rn.
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By (40) and the Bounded Distortion Property, we have ‖ F̌ ‖Cm(Rn)≤ C′M̂.

Together with (39) and the definition of the Cm-norm of a Whitney field, this yields

(41) ‖ ~P ‖Cm(B(x0,2r))≤‖ ~P ‖Cm(Rn)≤ C′M̂.

Next, again using the definition of the Cm-norm of the Whitney field ~P = (Py)y∈S, we

see that there exists

(42) F̂ ∈ Cm(B(x0, 2r))

with

(43) Jy(F̂) = Py for y ∈ S,

and

(44) ‖ F̂ ‖Cm(B(x0,2r))≤ (1 + ε) · ‖ ~P ‖Cm(B(x0,2r)).

We now apply Lemma 12.2 to the following data.

(45) • Our ε > 0.

• The ball B(x0, 2r).

• The number η̂ = ĉ e−4/ε for a small enough controlled constant ĉ.

• The set S.

• The number M = (1 + ε) · ‖ ~P ‖Cm(B(x0,2r)).

• The function F̂.

Here, η̂ in (45) plays the rôle of η in Lemma 12.2.

Let us check the hypotheses of that Lemma for the data (45).

We are assuming that ε > 0 is less than a small enough controlled constant. We must

check (†1)...(†5) from Lemma 12.2, for the data (45).
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(†1) here asserts that 2r ≤ ε−1, which we know from (5).

(†2) here asserts that 0 < ĉ e−4/ε < ε2e−1/ε, which holds since ĉ < 1 and ε < 1.

(†3) here asserts that S ⊂ B(x0, (1 − ĉ e−4/ε) · 2r), which follows from (6), since ĉ < 1 and

ε < 1.

(†4) here asserts that |y−y′| > 2 · (ĉ e−4/ε) · e1/ε · (2r) for any two distinct points y, y′ ∈ S;

this holds (for ĉ a small enough controlled constant), thanks to (7).

(†5) here asserts that F̂ ∈ Cm(B(x0, 2r)), and that ‖ F̂ ‖Cm(B(x0,2r))≤ (1+ε) · ‖ ~P ‖Cm(B(x0,2r)).

These assertions are precisely our results (42) and (44).

Thus, the hypotheses of Lemma 12.2 hold for the data (45). Applying that result, we

learn that there exists

(46) F# ∈ Cm+1(B(x0, r)),

with the following properties.

(47) ‖ F# ‖Cm(B(x0,r))≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

(48) Jy(F
#) = Jy(F̂) for all y ∈ S.

(49) |∂αF#(x)| ≤ Ce4m/ε r−1 ‖ ~P ‖Cm(B(x0,2r)) for |α| = m + 1, x ∈ B(x0, r).

Let us now define

(50) M# = ‖ ~P ‖Cm(B(x0,2r))

and also

(51) P#
y = Jy(F

#) for each y ∈ S+.

Thus,
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(52) ξ# = [M#, (P#
y )y∈S+] belongs to X.

We derive some basic properties of ξ#.

First of all, (47), (51) and (13) yield the inequalities

(53) λ(P#
y ) = λ(Jy(F

#)) ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)) for λ ∈ O(ε, y) and y ∈ S+.

Secondly, (49) and (51) yield the estimate

(54) |∂α(P#
y −P

#
y′)(y)| ≤ Ce4m/ε r−1|y−y′|m+1−|α| ‖ ~P ‖Cm(B(x0,2r)) for |α| ≤ m, y, y′ ∈ S+,

by Taylor’s theorem.

Thirdly, (43), (48) and (51) show that

(55) P#
y = Py for y ∈ S.

Finally, (41) and (50) give

(56) 0 ≤ M# ≤ CM̂.

The basic properties of ξ# are (53)...(56).

Now let us show that the conclusions (26), (27) hold for ξ#. First of all, (26) is immediate

from (50). To prove (27), let

ξ′ = [M′, (P′
y)y∈S+] ∈ X

satisfy (27)(a), (b), (c). We must show that

ξ# + ξ′ = [M# + M′, (P#
y + P′

y)y∈S+]

satisfies (27)(d), i.e., ξ# + ξ′ satisfies the Basic Constraints (20)...(23).

From (27)(a) and (17), we have

(57) (1 − ε)M# ≤ M# + M′ ≤ (1 + ε)M#,
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since exp(−Â/ε) ≤ exp(−1/ε) < ε. Immediately from (56) and (57), we have

0 ≤ M# + M′ ≤ C′M̂ ≤ ÂM̂,

since Â exceeds a large enough controlled constant.

Thus, constraint (20) is satisfied by the point ξ# + ξ′.

Next, note that (27)(b) and the Bounded Distortion Property show that

|P′
y|y ≤ C exp(−Â/ε) · ε−m M#, for y ∈ S+,

since r ≤ ε−1 (see (5)). By property (13) of the O(ε, y), it follows that

λ(P′
y) ≤ C′ exp(−Â/ε) ε−mM# for λ ∈ O(ε, y), y ∈ S+.

Together with (53) and (50), this implies that

(58) λ(P#
y + P′

y) ≤ (1 + C′′ε)M# for λ ∈ O(ε, y), y ∈ S+,

since exp(−Â/ε) ε−m ≤ exp(−1/ε) · ε−m < ε.

From (57) and (58), we obtain the estimate

(59) λ(P#
y + P′

y) ≤ (1 + C′′′ε) · [M# + M′] ≤ (1 + Âε) · [M# + M′] for

λ ∈ O(ε, y), y ∈ S+,

since Â exceeds a large enough controlled constant.

In view of (59), the constraint (21) is satisfied by the vector ξ# + ξ′.

We pass to constraint (22). Let y, y′ ∈ S+ be distinct points. Then by (9), we have

(60) |y − y′| ≤ 2r.

From (27)(b), we have

(61) |∂αP′
y(y)| ≤ exp(−Â/ε)rm−|α|M# for |α| ≤ m,
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and

(62) |∂αP′
y′(y

′)| ≤ exp(−Â/ε) rm−|α|M# for |α| ≤ m.

From (60) and (62), we obtain |∂αP′
y′(y)| ≤ C exp(−Â/ε) rm−|α|M# for |α| ≤ m.

Together with (61), this yields

(63) |∂α(P′
y − P′

y′)(y)| ≤ C exp(−Â/ε) rm−|α|M# for |α| ≤ m.

We have also

|y − y′| ≥ c e−6m/εr,

thanks to (8) and (11); consequently,

(64) rm−|α| = r−1 · rm+1−|α| ≤ Cr−1 · e
6m(m+1)

ε |y − y′|m+1−|α| for |α| ≤ m.

We substitute (64) into (63), and recall that Â > 6m(m + 1) by (17). This tells us that

(65) |∂α(P′
y − P′

y′)(y)| ≤ Cr−1|y − y′|m+1−|α|M# for |α| ≤ m.

From (50), (54) and (65) we now learn that

|∂α([P#
y + P′

y] − [P#
y′ + P′

y′])(y)| ≤ Ce4m/ε r−1|y − y′|m+1−|α|M# for |α| ≤ m.

Together with (57), this yields

(66) |∂α([P#
y + P′

y] − [P#
y′ + P′

y′])(y)| ≤ Ce4m/ε r−1|y − y′|m+1−|α| · [M# + M′] ≤

≤ Â · e4m/ε r−1|y − y′|m+1−|α| · [M# + M′] for |α| ≤ m,

by (17).

In view of (66), the constraints (22) hold for the vector ξ# + ξ′.

Finally, from (55) and (27)(c), we have
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[P#
y + P′

y] = P#
y = Py for y ∈ S.

Thus, the constraints (23) are satisfied by ξ# + ξ′.

We have shown that all the constraints (20)...(23) are satisfied by the vector ξ# + ξ′.

Thus, by definition, ξ# + ξ′ ∈ X(ε,Q,~P).

This is precisely conclusion (27)(d). Thus, (27)(a), (b), (c) imply (27)(d).

This proves (27), and completes the proof of Lemma 14.3. �

We now pick Â to be a controlled constant, large enough to satisfy (17). As mentioned

before, it follows that ε satisfies (18), since we are assuming that ε is less than a small

enough controlled constant.

We note a simple consequence of Lemmas 14.1 and 14.3. Let ξ# be as in Lemma 15.3.

Then the point ξ′ = 0 satisfies (27)(a), (b), (c), and therefore we learn from (27)(d) that ξ#

belongs to X(ε, Q,~P). Consequently, Lemma 14.1 tells us that

(67) cM̂ ≤ M# ≤ CM̂,

with M# as in Lemma 14.1. Here, we have used the fact that we have picked Â to be a

controlled constant.

We prepare to use the Special Ellipsoid Algorithm from Section 4, to compute a point

[M0, (P0
y)y∈S+] ∈ X(ε, Q,~P), with M0 nearly as small as possible. We have to check that

the assumptions of that algorithm are satisfied. For this verification, we introduce rescaled

(affine) coordinates as follows. We suppose for the moment that M̂ 6= 0. (See Step 5 below.)

Fix y0 ∈ S. Given ξ = [M, (Py)y∈S+] ∈ X, we define

(68) γ(ξ) = [v0, (vy,α)y∈S+rS
|α|≤m

] ∈ RD, where

(69) v0 = M/M̂,

(70) vy,α = (∂α(Py − Py0)(y))
/
(M̂ rm−|α|) for y ∈ S+ r S, |α| ≤ m,
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and

(71) D = 1 + #{α : |α| ≤ m} · #(S+ r S).

Note that the restriction of γ to the affine space of all [M, (Py)y∈S+] ∈ X satisfying (23) is

an isomorphism; moreover, the inverse of this isomorphism is trivial to compute. We denote

this inverse γ−1.

The image γ(X(ε,Q,~P)) ⊂ RD is the feasible region for a list of constraints that may be

read off trivially from (20)...(23).

The number of constraints is

(72) L = 1 +
∑

y∈S+

#O(ε, y) + 2[#(S+)]2 · #{α : |α| ≤ m},

as we see from (20)...(22); the constraints (23) do not contribute to L.

Recall that Â is a controlled constant, and recall the estimate (67), with M# as in Lemma

14.3. By comparing Lemmas 14.1, 14.2 and 14.3 with definitions (68), (69), (70), we see that

the set γ(X(ε,Q,~P)) has the following properties.

(73) For any [v0, (vy,α)y∈S+rS
|α|≤m

] ∈ γ(X(ε, Q,~P)), we have c < v0 < C and |vy,α| ≤ Ce4m/ε

for y ∈ S+ r S, |α| ≤ m.

(74) Some translate of the set

{[v0, (vy,α)y∈S+rS
|α|≤m

] ∈ RD : |v0|, |vy,α| ≤ exp(−C/ε) (all y ∈ S+ r S, |α| ≤ m)} is

contained in γ(X(ε,Q,~P)).

Consequently, the feasible region γ(X(ε, Q,~P)) ⊂ RD satisfies the assumptions (a) and (b)

of the Special Ellipsoid Algorithm, with

(75) ∧ = Ce4m/ε and λ = e−C/ε.

(See Section 4.) Thus, the Special Ellipsoid Algorithm applies here.

We are now ready to describe the remaining steps in Algorithm 14.1.
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Step 5: Using the Special Ellipsoid Algorithm, we compute a point

[v0
0, (v0

y,α)y∈S+rS
|α|≤m

] ∈ γ(X(ε,Q,~P)), with

v0
0 ≤ inf{v0 : [v0, (vy,α)y∈S+rS

|α|≤m

] ∈ γ(X(ε,Q,~P))} + ε .

Applying γ−1 to [v0
0, (v

0
y,α)y∈S+rS

|α|≤m

], we obtain a point

(76) ξ0 = [M0, (P0
y)y∈S+] ∈ X(ε,Q,~P),

such that

(77) M0 ≤ inf{M : [M, (Py)y∈S+] ∈ X(ε,Q,~P)} + εM̂.

(See (69).)

In the degenerate case M̂ = 0, we can check easily that (76), (77) hold for ξ0 = 0. Thus,

(76) and (77) hold in all cases.

Step 6: With ξ0 and M0 as in (76), we set

(78) Nε(~P,Q) = M0.

Step 7: We apply Algorithm 13.1 (extending a Whitney field from a fine net) to the follow-

ing data.

(79) • Our given ε > 0.

• The number η from (8).

• A = a large enough controlled constant.

• The open ball B(x0, r) from (4).

• The Whitney field ~P0 = (P0
y)y∈S+ from (76).

Let us check that the data (79) satisfy the assumptions of Algorithm 13.1. We know that

ε > 0 is less than a small enough controlled constant, and that 0 < η < ε2 (see (8)). Also,
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A exceeds a large enough controlled constant, as assumed in Algorithm 13.1, since in (79)

we make take A to be an even larger controlled constant. Recall from (5) that r ≤ ε−1.

We now verify conditions (†0), (†1), (†2) of Algorithm 13.1, for the data (79). In fact,

(†0) is immediate from (9); (†1) follows from (11), since we may take A > 100n in (79); and

(†2) is immediate from (10).

Thus, as claimed, all the assumptions of Algorithm 13.1 hold for the data (79). Applying

that algorithm, we compute a function

(80) F ∈ Cm(Rn),

with the following properties.

(81) F agrees with ~P0.

(82) Let M ≥ 0 be a real number, such that

(a) |P0
y|y ≤ M for all y ∈ S+, and

(b) |∂α(P0
y − P0

y′)(y)| ≤ εM · (ηr)−1 · |y − y′|m+1−|α| for |α| ≤ m, y, y′ ∈ S+.

Then

(c) ‖ F ‖Cm(B(x0,r))≤ (1 + Cε) · M.

Thus, we have computed a ball B(x0, r) (see Step 1), a number Nε(~P,Q) (see Step 6),

and a function F ∈ Cm(Rn) (see Step 7).

This completes our description of Algorithm 14.1.

Next, we prove (A)...(D) for the ball B(x0, r), the number Nε(~P,Q), and the function F

computed above. First of all, (A) is simply (4). To check (B), note first that [M0, (P0
y)y∈S+]

satisfies constraints (20)...(23), thanks to (76). In particular, we have P0
y = Py for y ∈ S.

Therefore, (B) follows from (81).

To establish (C), we again note that constraints (20)...(23) are satisfied by ξ0 = [M0, (P0
y)y∈S+],

thanks to (76). Applying (21) and (13), and recalling that Â is a controlled constant, we

learn that
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(83) |P0
y|y ≤ (1 + ε) · (1 + Âε)M0 ≤ (1 + Cε)M0 for y ∈ S+.

Also, applying (22) for ξ0 and recalling (8), we find that

|∂α(P0
y − P0

y′)(y)| ≤ Â e4m/ε r−1|y − y′|m+1−|α| · M0

= Â · e−2m/ε · (ηr)−1 · |y − y′|m+1−|α| · M0 for |α| ≤ m, y, y′ ∈ S+.

Since Â is a controlled constant, and since ε is less than a small enough controlled constant,

we have Â e−2m/ε < ε, and thus

(84) |∂(P0
y − P0

y′)(y)| ≤ εM0 · (ηr)−1 · |y − y′|m+1−|α| for |α| ≤ m and y, y′ ∈ S+.

Estimates (83) and (84) show that conditions (82)(a) and (b) hold for M = (1 + Cε)M0.

Consequently, (82) tells us that

(85) ‖ F ‖Cm(B(x0,r))≤ (1 + C′ε)M0.

Since we set Nε(~P,Q) = M0 in Step 6, the estimate (85) is precisely our desired conclusion

(C).

To prove (D), let ξ# = [M#, (P#
y )y∈S+] be as in Lemma 14.3. Thus, (26) and (27) hold.

Taking ξ′ = 0 in (27), we conclude (as before) that ξ# ∈ X(ε,Q,~P). Consequently, (26)

implies that

inf{M : [M, (Py)y∈S+] ∈ X(ε,Q,~P)} ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r))

and therefore (77) yields

(86) M0 ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)) + εM̂.

Also, (76) and Lemma 14.1 show that

(87) M̂ ≤ CM0.

Substituting (87) into (86), we find that
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M0 ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)) + CεM0 ,

and therefore

(88) M0 ≤ (1 + C′ε) · ‖ ~P ‖Cm(B(x0,2r)).

Again recalling that Nε(~P,Q) = M0 by Step 6, we see that (88) is precisely our desired

conclusion (D).

Thus, (A)...(D) hold for the ball B(x0, r), the number Nε(~P,Q), and the function F

computed by Algorithm 14.1.

It remains to estimate the work and storage needed for Algorithm 14.1. Let us go over

each of our seven steps.

Obviously, Step 1 requires work and storage at most C.

Step 2 requires work at most Cη−2n and storage at most Cη−n. (See our description of

Algorithm 11.3.) Since η is given by (8), the work and storage for Step 2 are at most

exp(C/ε).

Step 3 requires work and storage at most exp(C/ε) for each y ∈ S+. (See our description of

Algorithm 3.1.) Thanks to (8) and (12), it follows that the work and storage for Step 3 are

at most exp(C′/ε).

Step 4 requires storage at most C (aside from the space used to hold our input ~P). The work

required for Step 4 is at most C · (#(S))2, which is at most exp(C/ε), thanks to (8) and

(12).

Step 5 entails setting up and solving a linear programming problem. To set up and store the

constraints (20)...(23) requires work and storage at most exp(C/ε), as we see from (8), (12),

(14) and from (20)...(23). To pass from (20)...(23) to the constraints defining γ(X(ε,Q,~P))

as in (68)...(70) also requires work at most exp(C/ε).

From (71), (72) and (8), (12), (14), we see that the dimension D, and the number of

constraints L for our linear programming problem are both at most exp(C/ε). Also, the

numbers ∧ and λ appearing in the assumptions (a), (b) of the Special Ellipsoid Algorithm

are given by (75). Thus, ∧ ≤ exp(C/ε) and λ ≥ exp(−C/ε).
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Moreover, the quantity that plays the rôle of the “ε” in the Special Ellipsoid Algorithm

is equal to ε′ = ε∧−1 ≥ exp(−C′/ε).

Consequently, the work and storage needed to apply the Ellipsoid Algorithm here are

at most CD4 L log
(

D∧
λ

)
log

(
D
ε′

)
(see Section 4), which is at most exp(C/ε), thanks to the

above estimates for D, L,∧, λ, ε′.

Finally, it takes work at most exp(C/ε) to apply γ−1 to the vector [v0
0, (v

0
y,α)y∈S+rS

|α|≤m

] to

obtain ξ0 = [M0, (P0
y)y∈S+].

Thus, the work and storage needed for Step 5 are at most exp(C/ε).

Obviously, Step 6 requires work and storage at most C.

Finally, Step 7 entails one-time work at most C · η−2n, storage at most C · η−n, and

query work at most C; this follows from our description of Algorithm 13.1, since we took

A to be a controlled constant in (79). Since η is given by (8), we see that Step 7 requires

storage and one-time work at most exp(C/ε), and query work at most C.

Note that all the work of Steps 1...6 is one-time work. The only query work performed

by Algorithm 14.1 occurs in Step 7. Consequently, the above estimates for the work and

storage requirements of Steps 1...7 tell us the following:

Algorithm 14.1 requires storage and one-time work at most exp(C/ε), and its query work

is at most C.

Thus, Algorithm 14.1 performs as claimed. This completes our explanation of that algo-

rithm.

For future reference, we record the following simple observations on the internal workings

of Algorithm 14.1.

Proposition 14.1. Let ε,Q,~P = (Py)y∈S be as assumed in Algorithm 14.1. Then Algorithm

14.1 performs the following actions.

(a) Using only Q (not ε or ~P), it computes x0, r such that Q∗∗ ⊂ B(x0, r), and r ≤ CδQ.

(b) Using only ε, Q, S (not the Py), it computes a set S+, such that S ⊆ S+ ⊂ B(x0, r) and

#(S) ≤ exp(C/ε).
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(c) Using only ε and S+, it computes for each y ∈ S+ a finite family O(ε, y) of (real)

linear functionals on P, symmetric about the origin, with #(O(ε, y)) ≤ exp(C/ε).

(d) It computes ξ0 = [M0, (P0
y)y∈S+] ∈ R ⊕

∑
y∈S+

⊕P, with the following properties.

• The vector ξ0 satisfies the constraints

(†)



P0
y = Py for y ∈ S ;

λ(P0
y) ≤ (1 + Âε) · M0 for each λ ∈ O(ε, y), y ∈ S+ ;

|∂α(P0
y − P0

y′)(y)| ≤ Â · e4m/ε r−1| y − y′|m+1−|α| · M0

for |α| ≤ m and y, y′ ∈ S+ .


Here Â denotes a particular controlled constant.

• Suppose ξ+ = [M+, (P+
y )y∈S+] is another vector satisfying the constraints (†).

Then M0 ≤ (1 + Cε)M+.

(e) It returns the number Nε(~P,Q) = M0, with M0 as in (d).

(f) The work and storage used to compute x0, r, S
+ and all the O(ε, y) are at most exp(C/ε).

Proof. Assertions (a), (b), (c) are obvious from inspection of Steps 1,2,3 in Algorithm 14.1,

together with property (O0) of the sets O(ε, y) (see Section 3).

To check (d), we first note that the constraints (†) in (d) differ from the Basic Constraints

(20)...(23), only in that (20) is missing from (†). However, omitting (20) has no effect on the

infimum of all M+ such that some [M+, (P+
y )y∈S+] satisfies (20)...(23).

(To see this, note that the ξ0 = [M0, (P0
y)y∈S+] in (76) satisfies (20)...(23), with M0 ≤ ÂM̂.

If ξ+ = [M+, (P+
y )y∈S+] satisfies (21)...(23) but not (20), then we have M+ > ÂM̂ ≥ M0.

Consequently, omitting such ξ+ leaves the infimum in question unchanged.)

Thus, (d) follows, once we show that the ξ0 computed in (Step 5) belongs to X(ε,Q,~P)

and satisfies

(††) M0 ≤ (1 + Cε) · inf {M+ : [M+, (P+
y )y∈S+] ∈ X(ε,Q,~P)}.
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Let Ω = inf {M+ : [M+, (P+
y )y∈S+] ∈ X(ε,Q,~P)}.

From (76), (77), we learn that ξ0 ∈ X(ε,Q,~P),

and that Ω ≤ M0 ≤ Ω + εM̂.

Moreover, (76) and Lemma 14.1 yield M̂ ≤ CM0.

Consequently,

Ω ≤ M0 and M0 ≤ Ω + CεM0,

from which (††) follows trivially. This completes the proof of (d).

Next, note that (e) holds, by inspection of Step 6. Finally, (f) holds, since all the

computations referred to in (f) are part of the one-time work of Algorithm 14.1, which is at

most exp(C/ε).

The proof of Proposition 14.1 is complete.

15 Singletons

In this section, we give the algorithm that will be used later to compute the functions Fx in

(15), (16) of Section 6.

Algorithm 15.1. (“Singleton”)

Given ε > 0, assumed to be less than a small enough controlled constant; and given a

Whitney field ~P = (Py)y∈S on a singleton S = {y0}, we compute a number Nε(~P) ≥ 0, and

a function F ∈ Cm(Rn), such that:

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most exp(C/ε);

and the work to answer a query is at most C.
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Explanation: First we define F and Nε(~P) and check (A), (B), (C). Then we explain how to

compute our F and Nε(~P). We compute a dyadic cube Q containing y0, such that

(1) 1
8
c̃ε−1 ≤ δQ ≤ c̃ε−1, with c̃ as in Algorithm 14.1.

(The work and storage needed to compute Q are at most C.)

Then ε, Q,~P satisfy conditions (1), (2), (3) in Section 14, and therefore Algorithm 14.1

applies. That algorithm computes a ball B(x0, r), a number Nε(~P,Q) ≥ 0, and a function

F0 ∈ Cm(Rn), with the following properties.

(2) Q∗∗ ⊂ B(x0, r) and r ≤ CδQ.

(3) F0 agrees with ~P.

(4) ‖ F0 ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(~P,Q).

(5) Nε(~P,Q) ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

Moreover, the storage and one-time work used by Algorithm 14.1 are at most exp(C/ε), and

the work at query time is at most C.

We now take θ0 ∈ Cm(Rn) to be a cutoff function, such that

(6) 0 ≤ θ0 ≤ 1 on Rn; θ0 = 1 on Q; supp θ0 ⊂ (Q∗∗)int; |∂αθ0(x)| ≤ Cε|α| for

0 < |α| ≤ m, x ∈ Rn.

This is possible thanks to (1). Moreover, we may take θ0 to be an appropriate spline, so

that we can answer queries as follows.

(7) Given a query point x ∈ Rn, we can compute Jx(θ0) with work and storage at most C.

There is no one-time work involved in computing θ0.

We also take ε0 = Cε, so that (6) yields

(8) |∂αθ0(x)| ≤ ε0 for 0 < |α| ≤ m, x ∈ Rn.
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Since ε is assumed to be less than a small enough controlled constant, we have

(9) 0 < ε0 < 1.

We take Q0 = Q∗∗ and M = (1 + Cε) · Nε(~P,Q), with C as in (4). Thus (2), (4), (6) yield

(10) supp θ0 ⊂ (Q0)
int, and

(11) F0 ∈ Cm(Qint
0 ), ‖ F0 ‖Cm(Qint

0 )≤ M.

Thanks to (6), (8), (9), (10), (11), the hypotheses of Corollary 2 in Section 5 hold for

ε0, θ0, F0,Q0. Applying that corollary, we see that the function

(12) F = θ0 · F0 on Rn

satisfies

(13) F ∈ Cm(Rn), and

(14) ‖ F ‖Cm(Rn)≤ (1 + Cε)Nε(~P,Q).

We define

(15) Nε(~P) = Nε(~P,Q) ≥ 0,

and we check that Nε(~P), F satisfy (A), (B), (C). In fact, since θ0 = 1 on Q and S = {y0}

with y0 ∈ Q, we have Jy0
(F) = Jy0

(θ0 · F0) = Jy0
(F0) = Py0 , thanks to (3). Thus, (A) holds.

Also, (B) is immediate from (14), (15); and (C) follows from (5), since

‖ ~P ‖Cm(B(x0,2r))≤‖ ~P ‖Cm(Rn) .

It remains to show how to compute the above Nε(~P) and F, and to estimate the work

and storage of the computation.

This is easy. The one-time work is as follows.
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• Compute Q.

• Perform the one-time work of Algorithm 14.1.

• Set Nε(~P) = Nε(~P,Q). (The right-hand side has been computed as part of the one-time

work of Algorithm 14.1)

After we have done the one-time work, we can answer queries as follows. Given a query

point x ∈ Rn,

• We compute Jx(F0) by the query algorithm in Algorithm 14.1.

• We compute Jx(θ0) as in (7).

• We return the polynomial Jx(F) = Jx(θ0)�x Jx(F0).

One checks easily that the storage and one-time work here are at most exp(C/ε), and

the query work is at most C.

This completes our explanation of Algorithm 15.1.

For future reference, we record a few remarks on the inner workings of Algorithm 15.1.

Proposition 15.1. Let ε,~P = (Py)y∈S, S = {y0} be as assumed in Algorithm 15.1. Then

Algorithm 15.1 performs as follows.

(a) It computes a dyadic cube Q containing y0. The cube Q is computed from ε and y0,

without using the polynomial Py0. The work and storage used to compute Q are at

most C.

(b) The number Nε(~P) returned by Algorithm 15.1 is equal to the number Nε(~P,Q) returned

by Algorithm 14.1 for the input data ε,Q,~P. (In particular, ε,Q,~P are as assumed in

Algorithm 14.1).

Proof. Assertion (a) is immediate from the first paragraph of our explanation of Algorithm

15.1.
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Regarding (b), we recall from the second paragraph of our explanation of Algorithm 15.1

that ε,Q,~P are as assumed in Algorithm 14.1. The assertion in (b) regarding Nε(~P) is simply

equation (15).

16 Extending a Whitney Field from a Testing Set I

The next few sections provide the algorithms that compute the functions F`
ν in (13)...(16)

of Section 6. We treat Whitney fields ~P = (Py)y∈S, with S ⊂ Q∗∗ for a dyadic cube Q. We

distinguish several cases, depending on the size of Q. This section deals with the case in

which Q is quite small.

Algorithm 16.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q whose sidelength satisfies

(1) δQ ≤ e−1/(4ε);

and given a Whitney field ~P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(~P) and a function F ∈ Cm(Rn), such that

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most exp(C/ε),

and the work to answer a query is at most C.

Explanation: We first define Nε(~P), F and prove (A), (B), (C); then, we explain how to

compute our Nε(~P), F. Fix a point
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(4) y0 ∈ S.

Applying Algorithm 10.6, we obtain a function

(5) θ0 ∈ Cm+1(Rn),

with the following properties.

(6) 0 ≤ θ0 ≤ 1 on Rn.

(7) supp θ0 ⊂ B(y0, e
1/(8ε)δQ), and θ0 = 1 on B(y0, e

1/(16ε)δQ).

(8) |∂αθ0(x)| ≤ Cε · |x − y0|
−|α| for 0 < |α| ≤ m + 1, x ∈ Rn r {y0}.

Moreover, we can answer queries as follows.

(9) Given x ∈ Rn, we can compute Jx(θ0) with work and storage at most C.

We fix a dyadic cube Q00, such that

(10) B(y0, 2 · e1/(8ε)δQ) ⊂ Q∗
00,

and

(11) e1/(8ε)δQ ≤ δQ00
≤ C · e1/(8ε)δQ.

Note that (1) and (11) yield

(12) δQ00
≤ Ce−1/(8ε) < 1.

Note also that, since y0 ∈ Q∗∗ by (2) and (4), we have

(13) S ⊂ Q∗∗ ⊂ B(y0, CδQ) ⊂ B(y0, e
1/(16ε)δQ) ⊂ B(y0, 2 · e1/(8ε)δQ) ⊂ Q∗

00,
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thanks to (2) and (10).

Moreover, if y and y′ are distinct points of S, then (3) and (11) yield

(14) |y − y′| > ε2 e−2/εδQ ≥ ε2 · e−2/ε · c e−1/(8ε)δQ00
> e−3/ε δQ00

.

We apply Algorithm 14.1 to the data ε,Q00, ~P. (Note that the assumptions (1), (2), (3) of

Algorithm 14.1 follow at once from our present results (12), (13), (14).) Thus, we obtain

a ball B(x0, r), a number Nε(~P,Q00) ≥ 0, and a function F0 ∈ Cm(Rn), with the following

properties.

(15) Q∗∗
00 ⊂ B(x0, r) and r ≤ CδQ00

.

(16) F0 agrees with ~P.

(17) ‖ F0 ‖Cm(B(x0,r))≤ (1 + C′ε) · Nε(~P,Q00).

(18) Nε(~P,Q00) ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0,2r)).

(19) Moreover, we can compute Nε(~P,Q00) and F0, with storage and one-time work at most

exp(C/ε) and with query work at most C.

Also, by applying Algorithm 15.1 (“Singleton”), we compute a number Nε(~P, y0) ≥ 0, and

a function F1 ∈ Cm(Rn), with the following properties.

(20) F1 agrees with ~P at y0.

(21) ‖ F1 ‖Cm(Rn)≤ (1 + C′′ε) · Nε(~P, y0).

(22) Nε(~P, y0) ≤ (1 + Cε) · ‖ (~P|{y0}) ‖Cm(Rn).

(23) Moreover, we can compute Nε(~P, y0) and F1, with storage and one-time work at most

exp(C/ε), and with query work at most C.

We prepare to apply Corollary 1 in Section 5 to the above y0, F0, F1, θ0, δQ, taking Ã to

be a large enough controlled constant, and taking

(24) M = (1 + Cε) max(Nε(~P,Q00), Nε(~P, y0)), with C = max(C′, C′′);
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here, C′ and C′′ are as in (17) and (21).

The hypotheses of that corollary regarding θ0 hold here, thanks to our present results

(5)...(8). Also, (10) and (15) yield B(y0, 2 · e1/(8ε)δQ) ⊂ B(x0, r), and therefore (17) and

(24) give

‖ F0 ‖Cm(B(y0,e1/(8ε)δQ))≤ M .

Since furthermore

‖ F1 ‖Cm(Rn)≤ M

by (21) and (24), the hypotheses of Corollary 1 in Section 5 concerning the Cm-norms of F0

and F1 are satisfied here.

Finally, (16) and (20) show that

Jy0
(F0) = Jy0

(F1) ,

completing our verification of the hypotheses of Corollary 1 in Section 5. Applying that

Corollary, we now learn that the function

(25) F = θ0 · F0 + (1 − θ0) · F1 on Rn

satisfies

(26) F ∈ Cm(Rn),

and

‖ F ‖Cm(Rn)≤ (1 + Cε) · M ; hence

(27) ‖ F ‖Cm(Rn)≤ (1 + Cε) · max[Nε(~P,Q00), Nε(~P, y0)].

We take F as in (25), and set

(28) Nε(~P) = max[Nε(~P,Q00), Nε(~P, y0)].
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We check that (A), (B), (C) hold for the above F and Nε(~P). From (7) and (13), we have

Jy(θ0) = 1 for y ∈ S, and therefore (25), (16) yield

Jy(F) = Jy(F0) = Py for y ∈ S ,

proving (A). Also, (B) is immediate from (27) and (28). Finally, (C) follows from (18), (22)

and (28), since ‖ ~P ‖Cm(B(x0,2r))≤‖ ~P ‖Cm(Rn), and ‖ (~P|{y0}) ‖Cm(Rn)≤‖ ~P ‖Cm(Rn) .

Thus, (A), (B), (C) hold for our F and Nε(~P).

It remains to compute F and Nε(~P), and to estimate the work and storage needed for the

computation. This is straightforward. The one-time work is as follows.

• Find a point y0 in S.

• Compute a dyadic cube Q00 satisfying (10) and (11).

• Perform the one-time work associated with Algorithm 14.1 for the input data (ε, Q00,~P).

• Perform the one-time work associated with Algorithm 15.1 for the input data (ε,~P|{y0}).

• Compute Nε(~P) from (28).

Thanks to (19) and (23), one-time work and storage consumed in carrying out the above

steps are at most exp(C/ε)

The query algorithm proceeds as follows.

Given a query point x ∈ Rn, we compute Jx(θ0), Jx(F0), Jx(F1) from (9), (19), (23), respec-

tively. We then return the polynomial

Jx(F) = Jx(θ0) �x Jx(F0) + (1 − Jx(θ0)) �x Jx(F1)

(See (25)). The work involved here is at most C, as we see from (9), (19), (23).

Thus, the storage and one-time work to compute Nε(~P) and F are at most exp(C/ε), and

the work to answer a query is at most C.

This concludes our explanation of Algorithm 16.1.

For future reference, we record a few remarks on the inner workings of Algorithm 16.1.
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Proposition 16.1. Let ε,Q,~P = (Py)y∈S be as assumed in Algorithm 16.1.

Then Algorithm 16.1 performs as follows.

(a) It computes a point y0 ∈ S and a dyadic cube Q00. The point y0 and the cube Q00

are computed from ε,Q, S, without using the polynomials Py(y ∈ S). The work and

storage used to compute y0 and Q00 are at most C.

(b) It applies Algorithm 14.1 to the input data ε, Q00,~P, to compute a number Nε(~P,Q00).

(In particular, the input data ε,Q00,~P are as assumed for Algorithm 14.1.)

(c) It applies Algorithm 15.1 to the input data ε,~P|{y0}, to compute a number Nε(~P, y0).

(In particular, the input data ε,~P|{y0} are as assumed for Algorithm 15.1.)

(d) It returns the number Nε(~P) = max[Nε(~P,Q00), Nε(~P, y0)].

Proof. Immediate from our explanation of Algorithm 16.1.

17 Extending a Whitney Field from a Testing Set II

In this section, we present the analogue of Algorithm 16.1 in the case of a cube Q that is

neither very big nor very small.

Algorithm 17.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q whose sidelength satisfies

(1) e−1/(2ε) ≤ δQ ≤ c#ε−1 for a small enough controlled constant c#;

and given a Whitney field ~P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(~P) and a function F ∈ Cm(Rn), such that

(A) F agrees with ~P;
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(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most exp(C/ε),

and the work to answer a query is at most C.

Explanation: First, we define Nε(~P) and F, and prove that they satisfy (A), (B), (C); then we

discuss the computation of our Nε(~P) and F.

We fix a dyadic cube Q00, such that

(4) Q∗∗ ⊂ Q∗
00, and

(5) 1
80

c̃ ε−1 ≤ δQ00
≤ 1

20
c̃ ε−1,

with c̃ as in equation (1) in Section 14.

Such a cube Q00 exists, thanks to our assumption (1).

Next, we fix a cutoff function θ0 ∈ Cm(Rn), with the following properties:

(6) 0 ≤ θ0 ≤ 1 on Rn; θ0 = 1 on Q∗
00; supp θ0 ⊂ (Q∗∗

00)
int; and

(7) |∂αθ0(x)| ≤ Cδ
−|α|
Q00

for |α| ≤ m, x ∈ Rn.

By taking θ0 to be an appropriate spline, we can answer queries as follows.

(8) Given a point x ∈ Rn, we compute Jx(θ0) with work and storage at most C.

In view of (5) and (7), we have

(9) |∂αθ0(x)| ≤ Cε for 0 < |α| ≤ m, x ∈ Rn, since ε < 1.

We prepare to apply Algorithm 14.1 to the data ε,Q00,~P. Let us check that these data

satisfy the assumptions of that algorithm. We are assuming here that ε is less than a small

enough controlled constant. Also, Q00 is a dyadic cube, whose sidelength δQ00
satisfies

equation (1) in Section 14, thanks to our present equation (5). Also, our Whitney field
~P = (Py)y∈S satisfies
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(10) S ⊂ Q∗∗ ⊂ Q∗
00 ⊂ Q∗∗

00

thanks to (2) and (4). Consequently, inclusion (2) in Section 14 holds for the data ε,Q00,~P.

Next, note that δQ ≥ e−1/(2ε) ≥ c ε e−1/(2ε) δQ00
, by (1) and (5). Therefore, (3) yields

|y − y′| ≥ ε2 e−2/ε δQ ≥ c ε3 e−2.5/ε δQ00
> e−3/ε δQ00

for any two distinct points y, y′ ∈ S, since ε is less than a small enough controlled constant.

Thus, equation (3) in Section 14 holds for the data ε,Q00,~P. This completes the verification

of the assumptions of Algorithm 14.1 for the data ε,Q00,~P.

Applying Algorithm 14.1 to ε, Q00,~P, we compute a ball B(x0, r), a number Nε(~P,Q00),

and a function F0 ∈ Cm(Rn), with the following properties.

(11) (Q00)
∗∗ ⊂ B(x0, r).

(12) F0 agrees with ~P.

(13) ‖ F0 ‖Cm(B(x0,r))≤ (1 + Cε) · Nε(~P,Q00).

(14) Nε(~P,Q00) ≤ (1 + Cε) · ‖ ~P ‖Cm(B(x0, 2r)).

Moreover,

(15) The storage and one-time work to compute B(x0, r),Nε(~P,Q00), F0 are

at most exp(C/ε); and the work to answer a query is at most C.

We now define

(16) Nε(~P) = Nε(~P,Q00),

and

(17) F = θ0 · F0 ∈ Cm(Rn).
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Let us check that (A), (B), (C) hold for Nε(~P) and F as in (16), (17). First of all, let

y ∈ S. Then y ∈ Q∗
00 by (10), hence Jy(θ0) = 1 by (6). Consequently, Jy(F) = Jy(F0) by

(17), and therefore Jy(F) = Py by (12). Thus, our F satisfies (A).

Next, we estimate the norm of F in Cm(Rn), in order to check (B).

We will apply Corollary 2 in Section 5 to the following data:

(18) • The number ε0 = Cε for a large enough controlled constant C.

• The number M = ‖ F0 ‖Cm(B(x0,r)).

• The cube Q0 = Q∗∗
00.

• The cutoff function θ0 from (6)...(9).

• The function F0 from (11)...(15).

Let us check that the hypotheses of that corollary are satisfied by the data (18). In fact,

we have 0 < ε0 < 1, since ε is less than a small enough controlled constant. Also, M ≥ 0,

Q0 is a cube, θ0 ∈ Cm(Rn), and F0 ∈ Cm(Qint
0 ). We have

0 ≤ θ0 ≤ 1 on Rn; suppθ0 ⊂ Qint
0 ; and |∂αθ0(x)| ≤ ε0 for 0 < |α| ≤ m, x ∈ Rn; all thanks

to (6), (9) and (18). Also,

‖ F0 ‖Cm(Qint
0 ) = ‖ F0 ‖Cm((Q∗∗

00)int)≤‖ F0 ‖Cm(B(x0,r)) = M ,

thanks to (11) and (18). This completes the verification of the hypotheses of Corollary 2 in

Section 5 for the data (18).

Applying that corollary, and recalling (17), we learn that

‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ F0 ‖Cm(B(x0,r)) .

Together with (13), this yields

‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P,Q00),

which is our desired conclusion (B), in view of definition (16).

Next, note that conclusion (C) follows at once from (14) and (16). Thus, conclusions

(A), (B), (C) hold for Nε(~P), F as in (16), (17).
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We turn to the computation of Nε(~P) and ~F. The one-time work is as follows.

Step 1: We compute a dyadic cube Q00 satisfying (4) and (5).

Step 2: We perform the one-time work of Algorithm 14.1 for the data ε, Q00,~P.

Step 3: We set Nε(~P) = Nε(~P,Q00), where the right-hand side has been computed in

Step 2.

Given a query point x ∈ Rn, the query algorithm proceeds as follows.

Step Q1: We compute Jx(F0) by the query algorithm of Algorithm 14.1, applied to the data

ε,Q00,~P.

Step Q2: We compute Jx(θ0) as in (8).

Step Q3: We return the polynomial Jx(F) = Jx(θ0) �x Jx(F0). (See (17).)

From (8) and (15), one sees trivially that the storage and one-time work of the above

algorithm are at most exp(C/ε), and the work to answer a query is at most C.

This completes our explanation of Algorithm 17.1.

For future reference, we record a few observations on the inner workings of Algorithm

17.1.

Proposition 17.1. Let ε,Q,~P be as assumed in Algorithm 17.1.

Then the Algorithm 17.1 performs as follows.

(a) It computes a dyadic cube Q00, using only ε and Q (but not using ~P). The work and

storage used to compute Q00 are at most C.

(b) It applies Algorithm 14.1 to the input data ε,Q00,~P, to compute a number Nε(~P,Q00).

(In particular, the input data ε,Q00,~P are as assumed in Algorithm 14.1.)

(c) It returns the number

Nε(~P) = Nε(~P,Q00) .

Proof. Immediate from our explanation of Algorithm 17.1.
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18 Extending a Whitney Field from a Testing Set III

In this section, we provide the analogue of Algorithms 16.1 and 17.1 in the case of a rather

large cube Q.

Algorithm 18.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q whose sidelength satisfies

(1) 1
2
c#ε−1 ≤ δQ ≤ e10/ε with c# as in Algorithm 17.1;

and given a Whitney field ~P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(~P) and a function F ∈ Cm(Rn), such that

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most exp(C/ε), and

the work to answer a query is at most C.

Explanation: We will reduce matters to Algorithm 17.1 by a partition of unity. We begin by

introducing that partition of unity. Next, we define Nε(~P) and F, and check (A), (B), (C).

Then we show how to compute our Nε(~P) and F, and estimate the work and storage needed.

Recall the cubes Q
〈s〉
ν and cutoff functions θ

〈s〉
ν , ν = (ν1, . . . , νn) ∈ Zn, defined in

Section 10. We fix s ∈ Z, such that

(4) 1
1000

c# ε−1 ≤ 2s ≤ 1
100

c# ε−1.
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Thanks to (1) and (4), the cube Q∗∗∗ is partitioned into dyadic subcubes Q
〈s〉
ν , for

ν = (ν1, . . . , νn) ∈ Zn varying over the set

(5) G = {(ν1, . . . , νn) ∈ Zn: νmin
i ≤ νi ≤ νmax

i for each i}, for suitable

νmax
i , νmin

i (i = 1, . . . , n).

Also from (1) and (4), we see that

(6) #(G) ≤ eC/ε.

Note that, for any ν ∈ Zn, we have θ
〈s〉
ν = 0 on a neighborhood of Q∗∗, unless ν ∈ G.

(To see this, we recall that supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν )∗; see Section 10.) Consequently, the θ

〈s〉
ν , ν ∈ G,

have the following properties.

(7) θ
〈s〉
ν ∈ Cm(Rn), θ

〈s〉
ν ≥ 0 on Rn, supp θ

〈s〉
ν ⊂ [(Q

〈s〉
ν )∗]int, |∂αθ

〈s〉
ν | ≤ Cε|α| on Rn for

|α| ≤ m; and also

(8)
∑
ν∈G

θ
〈s〉
ν ≤ 1 on Rn, and

∑
ν∈G

θ
〈s〉
ν = 1 on Q∗∗.

Moreover, we can answer queries as follows.

(9) Given x ∈ Rn and ν ∈ G, we can compute Jx(θ
〈s〉
ν ) with work and storage at most C.

Note also that

(10) Given x ∈ Rn, we can compute the set of ν ∈ G such that x ∈ (Q
〈s〉
ν )∗. This computa-

tion takes work and storage at most C. There are at most C such ν.

For each ν ∈ G, we define

(11) Sν = S ∩ (Q
〈s〉
ν )∗∗.

We will show that the data
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(12) (ε,Q
〈s〉
ν , ~P|Sν)

satisfy the assumptions of Algorithm 17.1, for each ν ∈ G.

To see this, fix ν ∈ G. We know that ε is less than a small enough controlled constant.

Also, thanks to (4), the sidelength of Q
〈s〉
ν satisfies

e−1/(2ε) ≤ δ
Q
〈s〉
ν

≤ c#ε−1. (Recall that δ
Q
〈s〉
ν

= 2s.)

Next, note that Sν ⊂ (Q
〈s〉
ν )∗∗, thanks to (11).

Finally, for any two distinct points y, y′ ∈ Sν, we learn from (1), (3), (4) that

|y − y′| ≥ ε2 e−2/ε δQ > ε2 e−2/ε δ
Q
〈s〉
ν

.

This completes our verification of the assumptions of Algorithm 17.1 for the data (12).

For each ν ∈ G, let Nε(~P|Sν) and Fν ∈ Cm(Rn) be the number and function computed by

applying Algorithm 17.1 to the data (12). Then the following hold.

(13) Fν agrees with ~P|Sν for each ν ∈ G.

(14) ‖ Fν ‖Cm(Rn)≤ (1 + Cε) · Nε(~P|Sν) for each ν ∈ G.

(15) Nε(~P|Sν) ≤ (1 + Cε) · ‖ (~P|Sν) ‖Cm(Rn) for each ν ∈ G.

(16) For each ν ∈ G, the storage and the one-time work to compute Nε(~P|Sν) and Fν (given

the data (12)) are at most exp(C/ε), and the work to answer a query is at most C.

We now define Nε(~P) and F. We set

(17) Nε(~P) = max{Nε(~P|Sν) : ν ∈ G}

and we define

(18) F =
∑
ν∈G

θ
〈s〉
ν · Fν ∈ Cm(Rn).

Let us check that (A), (B), (C) hold for our Nε(~P) and F. We begin with (A). Fix y ∈ S.

We have y ∈ Q∗∗ by (2), hence



The Cm Norm of a Function with Prescribed Jets II 124

(19)
∑
ν∈G

Jy(θ
〈s〉
ν ) = 1,

by (8). For each ν ∈ G such that y ∈ supp θ
〈s〉
ν , we have y ∈ (Q

〈s〉
ν )∗ by (7), hence y ∈ Sν by

(11), and therefore Jy(Fν) = Py by (13). Thus,

(20) Jy(Fν) = Py for each ν ∈ G such that y ∈ supp (θ
〈s〉
ν ).

From (18), (19), (20), we see that

Jy(F) =
∑
ν∈G

Jy(θ
〈s〉
ν ) �y Jy(Fν) =

∑
ν∈G

Jy(θ
〈s〉
ν ) �y Py = Py ,

proving (A).

We pass to (B). We apply Lemma LGPU from Section 5, taking

(21) A = Large enough controlled constant,

Q̂ν = Q
〈s〉
ν for each ν ∈ G,

δ̂ = 2s,

M = (1 + Cε) · max{Nε(~P|Sν) : ν ∈ G}.

(The hypotheses of that lemma hold for the data (21), thanks to (4), (7), (8), (14).) From

Lemma LGPU, we learn that the function F in (18) satisfies

‖ F ‖Cm(Rn)≤ (1 + C′ε) · max{Nε(~P|Sν) : ν ∈ G} .

Together with (17), this proves conclusion (B).

Next, we establish (C). From (15), we have Nε(~P|Sν) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn) for each

ν ∈ G.

Consequently, (C) follows trivially from (17). Thus, (A), (B), (C) hold for our Nε(~P) and F.

We turn to the computation of Nε(~P) and F. The one-time work is as follows.
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Step 1: Compute s ∈ Z satisfying (4), and then compute the νmin
i and νmax

i (i = 1, . . . , n)

as in (5).

Step 2: For each ν ∈ G, we compute Q
〈s〉
ν , Sν = S ∩ (Q

〈s〉
ν )∗∗, and ~P|Sν .

Step 3: For each ν ∈ G, we perform the one-time work of Algorithm 17.1 for the data

(ε, Q
〈s〉
ν ,~P|Sν). This produces the number Nε(~P|Sν) for each ν ∈ G, and prepares us

to answer queries on Jx(Fν) for any given x ∈ Rn and ν ∈ G.

Step 4: We set Nε(~P) = max{Nε(~P|Sν) : ν ∈ G}.

Given x ∈ Rn, the query algorithm proceeds as follows

Step Q1: Find G(x) = {ν ∈ G : x ∈ (Q
〈s〉
ν )∗}.

Step Q2: For each ν ∈ G(x), compute Jx(θ
〈s〉
ν ) and Jx(Fν).

Step Q3: Return the polynomial Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν ) �x Jx(Fν).

Since Jx(θ
〈s〉
ν ) = 0 for ν ∈ G r G(x), our query algorithm correctly calculates Jx(F), with F

as in (18).

Also, we note that #(S) ≤ eC/ε, thanks to (2) and (3). Consequently, (6) and (16) show

that the one-time work and storage required for our algorithm are at most exp(C/ε). From

(9), (10), (16), we see that our query algorithm requires work at most C.

This completes our explanation of Algorithm 18.1.

For future reference, we record a few remarks on the inner working of Algorithm 18.1.

Proposition 18.1. Let ε,Q,~P = (Py)y∈S be as assumed in Algorithm 18.1.

Then the Algorithm 18.1 performs as follows

(a) It computes an integer s and a finite subset G ⊂ Zn, using only ε,Q (and not using
~P). The set G satisfies #(G) ≤ exp(C/ε). The work and storage used to compute s,G

are at most exp(C/ε).
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(b) For each ν ∈ G, it computes the set Sν = S∩ (Q
〈s〉
ν )∗∗, with Q

〈s〉
ν as in Section 10. The

work and storage to compute and store all the sets Sν(ν ∈ G) are at most exp(C/ε).

(c) For each ν ∈ G, it applies Algorithm 17.1 to the input data ε,Q
〈s〉
ν ,~P|Sν, to compute a

number Nε(~P|Sν).

(In particular, these input data are as assumed in Algorithm 17.1.)

(d) It returns the number

Nε(~P) = max {Nε(~P|Sν) : ν ∈ G} .

Proof. Obvious from our explanation of Algorithm 18.1.

19 Extending a Whitney Field from a Testing Set IV.

In this section, we give an analogue of Algorithms 16.1, 17.1 and 18.1 for the case of a huge

cube Q.

Algorithm 19.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q whose sidelength satisfies

(1) δQ ≥ e5/ε;

and given a Whitney field ~P = (Py)y∈S, where the set S is assumed to satisfy

(2) S ⊂ Q∗∗, and

(3) |y − y′| ≥ ε2 e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(~P) and a function F ∈ Cm(Rn), such that

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).
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The storage and the one-time work needed for the computation are at most exp(C/ε),

and the work to answer a query is at most C.

Explanation: By a partition of unity, we reduce matters to Algorithm 15.1. Our discussion

is close to that of Section 18. Fix an integer s, such that

(4) 1
10

e−3/ε δQ ≤ 2s ≤ e−3/ε δQ.

Recall from Section 10 the dyadic cubes Q
〈s〉
ν and cutoff functions θ

〈s〉
ν , for

ν = (ν1, . . . , νn) ∈ Zn.

Thanks to (4), the cube Q∗∗∗ is partitioned into dyadic subcubes Q
〈s〉
ν , for

ν = (ν1, . . . , νn) ∈ Zn varying over the set

(5) G = {(ν1, . . . , νn) ∈ Zn : νmin
i ≤ νi ≤ νmax

i for each i}, for suitable

νmin
i , νmax

i (i = 1, . . . , n).

Also thanks to (4), we have

(6) #(G) ≤ eC/ε.

Note that, for any ν ∈ Zn, we have θ
〈s〉
ν = 0 on a neighborhood of Q∗∗, unless ν ∈ G. (To see

this, recall that supp θ
〈s〉
ν ⊂ (Q

〈s〉
ν )∗; see Section 10.) Consequently, the θ

〈s〉
ν (ν ∈ Zn) have

the following properties.

(7) θ
〈s〉
ν ∈ Cm(Rn), θ

〈s〉
ν ≥ 0 on Rn, supp θ

〈s〉
ν ⊂ [(Q

〈s〉
ν )∗]int;

(8) |∂αθ
〈s〉
ν | ≤ C · (e−3/εδQ)−|α| on Rn, for |α| ≤ m;

(9)
∑

ν∈Zn

θ
〈s〉
ν = 1 on Rn; and

(10)
∑
ν∈G

θ
〈s〉
ν = 1 on Q∗∗.

Moreover, we can answer queries as follows.
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(11) Given x ∈ Rn and ν ∈ Zn, we can compute Jx(θ
〈s〉
ν ) with work and storage at most C.

(12) Given x ∈ Rn, we can compute {ν ∈ G : x ∈ (Q
〈s〉
ν )∗} with work and storage at most C.

In particular, there are at most C such ν ∈ G.

For each ν ∈ G, we define

(13) Sν = S ∩ (Q
〈s〉
ν )∗∗.

We will check that

(14) #(Sν) ≤ 1 for each ν ∈ G.

To see this, we fix ν ∈ G, and suppose that y, y′ are two distinct points of Sν. We will derive

a contradiction. In fact, since y, y′ both belong to (Q
〈s〉
ν )∗∗, we have

(15) |y − y′| ≤ Cδ
Q
〈s〉
ν

= C · 2s.

On the other hand, (3) and (4) yield

(16) |y − y′| ≥ ε2 e−2/ε · δQ = (ε2 · e1/ε) · (e−3/ε δQ) ≥ (ε2e1/ε) · (c · 2s).

Since (15) contradicts (16), there cannot be two distinct points in Sν, completing the proof

of (14).

For each ν ∈ G, we now define Nε,ν(~P) ≥ 0 and Fν ∈ Cm(Rn), as follows.

Let ν ∈ G. Then Sν is empty or a singleton, by (14). If Sν is empty, then we set

Nε,ν(~P) = 0 and Fν = 0.

If #(Sν) = 1, then we define Nε,ν(~P) and Fν ∈ Cm(Rn) to be the number and the function

computed by Algorithm 15.1 applied to the data (ε,~P|Sν). (Note that the assumptions of

Algorithm 15.1 hold here, since ε is less than a small enough controlled constant, and ~P|Sν

is a Whitney field on a singleton.)

In either case (#(Sν) = 0 or #(Sν) = 1), the following properties hold.
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(17) Fν agrees with ~P on Sν, for each ν ∈ G.

(18) ‖ Fν ‖Cm(Rn)≤ (1 + Cε) · Nε,ν(~P), for each ν ∈ G.

(19) Nε,ν(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn) for each ν ∈ G.

(20) Given ν ∈ G, and given the data (ε,~P|Sν), the storage and one-time work to compute

Nε,ν(~P) and Fν are at most exp(C/ε), and the work to answer a query is at most C.

In fact, if Sν is non-empty, then (17)...(20) are immediate from the basic assertions of

Algorithm 15.1. If Sν is empty, then (17)...(20) hold trivially.

We now define Nε(~P) and F. We set

(21) Nε(~P) = max{Nε,ν(~P) : ν ∈ G},

and we define

(22) F =
∑
ν∈G

θ
〈s〉
ν · Fν ∈ Cm(Rn).

Let us check that (A), (B), (C) hold for the above Nε(~P) and F. We begin with (A). Fix

y ∈ S. We have y ∈ Q∗∗ by (2), hence

(23)
∑
ν∈G

Jy(θ
〈s〉
ν ) = 1,

by (10).

For each ν ∈ G such that y ∈ supp θ
〈s〉
ν , we have y ∈ (Q

〈s〉
ν )∗ by (7), hence y ∈ Sν by (13),

and therefore Jy(Fν) = Py by (17). Thus,

(24) Jy(Fν) = Py for each ν ∈ G such that y ∈ supp θ
〈s〉
ν .

From (22), (23), (24), we see that

Jy(F) =
∑
ν∈G

Jy(θ
〈s〉
ν )�y Jy(Fν) =

∑
ν∈G

Jy(θ
〈s〉
ν )�y Py = Py ,
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proving (A).

We pass to (B). Our plan is to apply Lemma LGPU to the following data.

(25)



δ̂ = 2s

ε̂ = 2−s in place of ε in Lemma LGPU.

A = Large enough controlled constant.

M = (1 + Cε) · max{Nε,ν(~P) : ν ∈ G} .

The functions θ
〈s〉
ν and Fν, ν ∈ G .

The cubes Q
〈s〉
ν , ν ∈ G .


Let us check the hypotheses of Lemma LGPU for the data (25). We have 0 < ε̂ < 1, by (1)

and (4). Also, A ≥ 1 and M ≥ 0. Moreover, A−1ε̂−1 ≤ δ̂ ≤ ε̂−1; in fact, δ̂ = ε̂−1.

The desired properties of the θ
〈s〉
ν are immediate from (7), (8), (9). Finally, the desired

properties of the Fν are immediate from (18), and from our definition of M in (25).

Thus, the hypotheses of Lemma LGPU all hold for the data (25).

Applying that lemma, we see that the function F in (22) satisfies

‖ F ‖Cm(Rn)≤ (1 + C′ε) · max{Nε,ν(~P) : ν ∈ G} .

Together with (21), this yields conclusion (B).

Note also that conclusion (C) follows trivially from (19) and (21). Thus, (A) , (B) and

(C) hold for our Nε(~P) and F.

We turn to the computation of our Nε(~P) and F. The one-time work is as follows.

Step 1: We compute s ∈ Z satisfying (4), and then we compute νmin
i , νmax

i (i = 1, . . . , n) as

in (5).

Step 2: For each ν ∈ G, we compute Sν = S ∩ (Q
〈s〉
ν )∗∗ and ~P|Sν .

Step 3: For each ν ∈ G, we set ∧(ν) = 1 if Sν is non-empty, ∧(ν) = 0 otherwise.
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Step 4: For each ν ∈ G such that ∧(ν) = 1, we perform the one-time work of Algorithm

15.1 for the data (ε,~P|sν). This produces a number Nε,ν(~P), and allows us to

answer queries regarding a function Fν.

Step 5: We set Nε(~P) = max{Nε,ν(~P): all ν ∈ G such that ∧(ν) = 1}.

Given x ∈ Rn, our query algorithm proceeds as follows.

Step Q1: Find G(x) = {ν ∈ G : x ∈ (Q
〈s〉
ν )∗ and ∧(ν) = 1}.

Step Q2: For each ν ∈ G(x), compute Jx(θ
〈s〉
ν ) and Jx(Fν).

Step Q3: Return Jx(F) =
∑

ν∈G(x)

Jx(θ
〈s〉
ν )�x Jx(Fν).

Since Jx(θ
〈s〉
ν ) = 0 for ν ∈ G, x /∈ (Q

〈s〉
ν )∗, and since Fν = 0 for ν ∈ G, ∧(ν) = 0, it follows

that our query algorithm correctly computes Jx(F), with F as in (22).

Also, we note that #(S) ≤ eC/ε, thanks to (2) and (3). Consequently, (6) and (20) show

that the storage and one-time work of our algorithm are at most exp(C/ε). From (11), (12)

and (20), we see that the work to answer a query is at most C.

This completes our explanation of Algorithm 19.1.

For future reference, we give a simple proposition concerning the output of Algorithm

19.1.

Proposition 19.1. Let ε,Q,~P = (Py)y∈S be as assumed in Algorithm 19.1. Then the

following hold.

(a) #(S) ≤ exp(C/ε).

(b) For each y0 ∈ S, the input data ε,~P|{y0} are as assumed in Algorithm 15.1

(c) For each y0 ∈ S, let Nε(~P|{y0}) be the number computed by applying Algorithm 15.1 to

the input data ε,~P|{y0}.

Then the number Nε(~P) returned by Algorithm 15.1 is equal to

max{Nε(~P|{y0}) : y0 ∈ S} .
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Proof. Assertion (a) follows trivially from (2) and (3). Assertion (b) holds, since the only

assumptions for Algorithm 15.1. are that ε is less than a small enough controlled constant,

and that the input Whitney field is defined on a singleton.

We turn to assertion (c). We refer to our explanation of Algorithm 19.1.

For any ν ∈ G such that ∧(ν) = 1, the set Sν is a singleton, and thus Nε,ν(~P) is among

the numbers Nε(~P|{y0}), y0 ∈ S. Consequently,

(26) max{Nε,ν(~P) : ν ∈ G, ∧(ν) = 1} ≤ max{Nε(~P|{y0}) : y0 ∈ S}.

On the other hand, let y0 ∈ S. Then y0 ∈ Q∗∗ ⊂ Q∗∗∗, hence y0 ∈ Q
〈s〉
ν̄ for some ν̄ ∈ G. Fix

such a ν̄. Then since y0 ∈ S∩ (Q
〈s〉
ν̄ )∗∗ = Sν̄, we have ∧(ν̄) = 1. Recalling (14), we conclude

that Sν̄ = {y0}. Consequently, in Step 4, we set Nε,ν̄(~P) = Nε(~P|{y0}). Hence,

Nε(~P|{y0}) ≤ max{Nε,ν(~P) : ν ∈ G , ∧(ν) = 1} .

Since y0 ∈ S was arbitrary, it follows that

max{Nε(~P|{y0}) : y0 ∈ S} ≤ max{Nε,ν(~P) : ν ∈ G ,∧(ν) = 1} .

Together with (26), this yields the equality

(27) max{Nε(~P|{y0}) : y0 ∈ S} = max {Nε,ν(~P) : ν ∈ G,∧(ν) = 1}.

The desired conclusion (c) now follows from (27) and Step 5 above.

20 Extending a Whitney Field from a Testing Set V

In this section, we combine the results of the last several sections.

Algorithm 20.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q; and given a Whitney field ~P = (Py)y∈S, where the set S is assumed

to satisfy
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(1) S ⊂ Q∗∗, and

(2) |y − y′| > ε2e−2/εδQ for any two distinct points y, y′ ∈ S;

we compute a number Nε(~P) ≥ 0 and a function F ∈ Cm(Rn), such that

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and the one-time work needed for the computation are at most exp(C/ε),

and the work to answer a query is at most C.

Explanation: The sidelength δQ must satisfy at least one of the following.

Case 1: δQ ≤ e−1/(4ε).

Case 2: e−1/(2ε) ≤ δQ ≤ c#ε−1, with c# as in Algorithm 17.1.

Case 3: 1
2
c#ε−1 ≤ δQ ≤ e10/ε, with c# as in Algorithm 17.1.

Case 4: δQ ≥ e5/ε.

With work and storage at most C, we can identify one of the above cases that holds for

our given Q. In cases 1,2,3,4, we can find Nε(~P) and F satisfying (A), (B), (C) by applying

Algorithm 16.1, 17.1, 18.1 or 19.1, respectively. The work and storage of our computation

are as asserted above.

This completes our explanation of Algorithm 20.1.

21 The Main Extension Algorithm

In the next several sections, we present the following algorithm.
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Algorithm 21.1. (“Main Extension Algorithm”): Given ε > 0, assumed to be less than a

small enough controlled constant; and given a Whitney field ~P = (Px)x∈E, with #(E) = N,

2 ≤ N < ∞; we compute a real number Nε(~P) ≥ 0 and a function F ∈ Cm(Rn), such that:

(A) F agrees with ~P;

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P); and

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

The storage and one-time work of the algorithm are at most exp(C/ε)N and

exp(C/ε) N log N, respectively.

The work to answer a query is at most C · log(N/ε).

Theorem 1 (from the Introduction) is an obvious consequence of Algorithms 21.1 and

15.1.

The explanation of the above algorithm occurs in the next three sections.

In Section 22, we present the one-time work of Algorithm 21.1. This one-time work

computes the number Nε(~P) and allows us to answer queries. In Section 23, we define a

function F ∈ Cm(Rn), and we prove that our Nε(~P) and F satisfy conditions (A), (B), (C)

above. Finally, in Section 24, we present the query algorithm that computes Jx(F) for any

given x ∈ Rn.

22 The One-Time Work

In this section, we carry out the one-time work of Algorithm 21.1. We let κ > 0 be a small

enough controlled constant. Let ε,~P, E, N be as in Section 21. We proceed as follows.

Step 1: We perform the one-time work of the BBD Tree, and we carry out Algorithm WSPD

with input (E, κ). (See Section 4.) Let (x′ν, x′′ν) ∈ E × E (ν = 1, . . . , νmax) be the

“representatives” produced by Algorithm WSPD, as explained in Section 4.

This step takes work at most CN log N in space CN, since κ is a controlled constant.

Also, we have νmax ≤ CN.
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Step 2: We compute the smallest real number M̂ ≥ 0 such that

(1) |∂αPx| ≤ M̂ for |α| ≤ m, x ∈ E; and

(2) |∂α(Px′ν − Px′′ν)(x′ν)| ≤ M̂ · |x′ν − x′′ν|m−|α| for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

Note that Lemma 8.2 assures us that

(3) |∂α(Px − Py)(x)| ≤ CM̂ · |x − y|m−|α| for |α| ≤ m , x, y ∈ E , x 6= y.

The work involved in Step 2 is at most CN, and the storage needed (once we have already

stored the input ~P and the representatives x′ν, x′′ν (ν = 1, . . . , νmax)) is at most C.

Thanks to (3), we will be able to prove assumption (1) in Section 6 for a suitable M to

be picked later.

In addition to (3), we will use the following estimate.

(4) M̂ ≤ C∗ ‖ ~P ‖Cm(Rn), for a large enough controlled constant C∗.

To prove (4), let M+ be any real number greater than ‖ ~P ‖Cm(Rn). Then, by definition of

the Cm-norm of a Whitney field, there exists F+ ∈ Cm(Rn) such that F+ agrees with ~P, and

‖ F+ ‖Cm(Rn)≤ M+.

The Bounded Distortion Property gives

(5) |∂αF+(x)| ≤ CM+ for |α| ≤ m, x ∈ Rn,

which in turn yields

(6) |∂α(Jx(F
+) − Jy(F

+))(x)| ≤ C′M+|x − y|m−|α| for |α| ≤ m, x, y ∈ Rn, x 6= y,

by Taylor’s theorem.

Since F+ agrees with ~P, (5) and (6) imply

|∂αPx(x)| ≤ CM+ for |α| ≤ m, x ∈ E,
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and

|∂α(Px − Py)(x)| ≤ C′M+|x − y|m−|α| for |α| ≤ m, x, y ∈ E, x 6= y.

Comparing these estimates with the definition of M̂, we learn that M̂ ≤ C∗M+. Since M+

is any real number greater than ‖ ~P ‖Cm(Rn), the proof of (4) is complete.

For this section and the next, we fix C∗ as in (4).

Step 3: We perform the one-time work of Algorithm 9.2 (“Compute-Regularized-Distance”).

This requires work at most CN log N in space CN. After this step, we can answer

queries regarding a certain function δ(·) ∈ Cm
loc(Rn r E).

The function δ(·) satisfies

(7) c dist (x, E) ≤ δ(x) ≤ C dist(x, E) for x ∈ Rn r E, and

(8) |∂αδ(x)| ≤ C · (δ(x))1−|α| for |α| ≤ m, x ∈ Rn r E.

The query algorithm regarding δ(·) performs as follows.

(9) Given x ∈ Rn r E, we can compute Jx(δ(·)) with work at most C log N, in space CN.

For (7), (8), (9), see estimates (8), (9) in Section 9, as well as Algorithm 9.2.

Note that our present estimates (7) and (8) give us assumptions (2) and (3) in Section 6.

Step 4: We carry out Algorithm 11.2 (“Find-Interesting-Cubes”), to compute a list Q(1), . . . , Q(L)

of dyadic cubes, with the following properties.

(10) The cubes Q(1), . . . , Q(L) are all distinct.

(11) L ≤ (C/ε) · N.

(12) For any given dyadic cube Q, the set S(Q) computed from ε, E, Q by Algorithm 11.1

has cardinality ≥ 2 if and only if Q is one of the Q(λ), λ = 1, . . . , L.
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The work of Step 4 is at most exp(C/ε) · N log N, and the storage needed is at most
C
ε
N + exp(C/ε).

Step 5: We introduce any convenient ordering on the set of dyadic cubes. (Say, we use

lexicographic order in terms of the sidelength and coordinates of the center point

of a given cube.) We then sort our list Q(1), . . . , Q(L) with respect to that order.

This takes work at most CL log L ≤ C′

ε
N · log(C′

ε
N) in space CL ≤ C′

ε
N; see (11).

Thus, (10), (11), (12) hold, and we can perform binary searches as follows.

(13) Given a dyadic cube Q, we can decide whether Q = Q(λ) for some λ, with work at

most C log(N/ε).

If Q = Q(λ) for some λ, then we can compute that λ, again with work at most

C log(N/ε).

Step 6: For each λ = 1, . . . , L, we apply Algorithm 11.1 to ε, E, Q(λ), to compute a finite

set S(λ), with the following properties.

(14) S(λ) ⊂ E ∩ (Q(λ))∗∗.

(15) |y − y′| > cεe−2/ε δQ(λ) for any two distinct points y, y′ ∈ S(λ).

(16) dist (y, S(λ)) ≤ Cεe−2/ε δQ(λ) for any y ∈ E ∩ (Q(λ))∗∗.

(17) #(S(λ)) ≥ 2, as we see from (12).

The work to compute a single S(λ) is at most exp(C/ε) · log N, and the storage needed

is at most CN + exp(C/ε).

As we loop over λ, we can re-use the above storage, but we want to store all the sets

S(1), . . . , S(L).

From (14), (15) we see that #(S(λ)) ≤ exp(C/ε) for each λ.

Along with (11), the above remarks show that Step 6 consumes altogether at most

exp(C′/ε)N log N work, and at most exp(C′/ε)N storage.
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The sets S(λ) computed in this step will be used as the sets S`
ν in Section 6, for certain `

and ν. In particular, assumptions (11) and (12) in Section 6 will be proven using (14) and

(16) here.

Step 7: For each λ = 1, . . . , L, we perform the one-time work of Algorithm 20.1 for the

inputs ε,Q(λ), ~P|S(λ) .

Note that these inputs satisfy the assumptions of Algorithm 20.1 since ε > 0 is less than a

small enough controlled constant, and thanks to (14) and (15).

From this step, we obtain for each λ a number N
(λ)
ε (~P) ≥ 0, and we are able to answer

queries as follows, regarding a function F(λ) ∈ Cm(Rn).

(18) Given λ(1 ≤ λ ≤ L), and given x ∈ Rn, we can compute Jx(F
(λ)) with work at most C.

The number N
(λ)
ε (~P) and the function F(λ) satisfy the following conditions.

(19) F(λ) agrees with ~P on S(λ).

(20) ‖ F(λ) ‖Cm(Rn)≤ (1 + Cε) · N
(λ)
ε (~P).

(21) N
(λ)
ε (~P) ≤ (1 + Cε) · ‖ (~P|S(λ)) ‖Cm(Rn).

For each λ, Step 7 requires work and storage at most exp(C/ε). Hence, by (11), the total

work and storage of Step 7 are at most exp(C′/ε) · N.

The functions F(λ) computed in this step will be used as the functions F`
ν in Section 6, for

certain ` and ν. Compare our present (19), (20) with assumptions (13), (14) in Section 6.

Step 8: For each y0 ∈ E, we carry out the one-time work of Algorithm 15.1 for the inputs

ε,~P|{y0}.

After this step, we have computed numbers N
(y0)
ε (~P) ≥ 0, and we can answer queries regard-

ing functions F(y0) ∈ Cm(Rn). These numbers and functions have the following properties,

for each y0 ∈ E.



The Cm Norm of a Function with Prescribed Jets II 139

(22) F(y0) agrees with ~P at y0.

(23) ‖ F(y0) ‖Cm(Rn)≤ (1 + Cε) · N
(y0)
ε (~P).

(24) N
(y0)
ε (~P) ≤ (1 + Cε) · ‖ (~P|{y0}) ‖Cm(Rn).

The relevant query algorithm is as follows.

(25) Given y0 ∈ E and x ∈ Rn, we can compute Jx(F
(y0)) with work at most C.

Step 8 requires work and storage at most exp(C/ε) for each y0 ∈ E. Hence, the total work

and storage required for Step 8 are at most exp(C/ε)N.

The functions F(y0)(y0 ∈ E) will be used as the functions Fx(x ∈ E) in Section 6.

Compare our present (22) with assumption (15) in Section 6.

Step 9: We compute

(26) Nε(~P) = max{N
(λ)
ε (~P) (all λ = 1, . . . , L), N

(y0)
ε (~P) (all y0 ∈ E), M̂

2C∗ },

where C∗ is the controlled constant in estimate (4).

Here, we are simply computing the maximum of a list of numbers that were already

computed in Steps 1...8 above. The work of this step is thus at most

C · (N + L + 1) ≤ C′

ε
N (see (11)),

and we need storage at most C (aside from the storage already used to hold the numbers

N
(λ)
ε (~P), N

(y0)
ε (~P), M̂).

This completes our description of the one-time work of Algorithm 21.1. Thanks to our

estimates for the work and storage of each particular step, we now see that the one-time

work of Algorithm 21.1 is at most exp(C/ε)N log N, and the storage required is at most

exp(C/ε)N. These are as asserted in Section 21.

We have computed the number Nε(~P) in Step 9. In the next section, we will define a

function F ∈ Cm(Rn), and show that Nε(~P), F satisfy conditions (A), (B), (C) from Section

21. In Section 24, we give the query algorithm to compute Jx(F) for any given x ∈ Rn.
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23 The Main Extending Function

In this section, we retain the notation and conventions of Sections 21 and 22. We recall the

convention that (k.`) refers to equation ` in Section k. Our goal here is to define a function

F ∈ Cm(Rn), which, together with Nε(~P) from (22.26), satisfies (A), (B), (C) of Section 21.

We apply the Main Patching Lemma from Section 6, along with the results of our one-time

work from Section 22. We proceed as follows. We define

(1) M = (1 + Čε) · Nε(~P) for a large enough controlled constant Č, with Nε(~P) as in

(22.26).

From (1) and (22.26), we have M̂ ≤ 2C∗M, with M̂ as in (22.1) and (22.2). Therefore,

estimate (22.3) shows that assumption (6.1) holds here, where we may take A0 to be a

controlled constant.

Let δ(·) ∈ Cm
loc(Rn r E) be as in Step 3 in Section 22. Then (22.7) and (22.8) tell us

that assumptions (6.2) and (6.3) hold here, where we may take A1 and A2 to be controlled

constants.

For ` ∈ Z, let χ` ∈ Cm(R) be as in (10.1), (10.2), (10.3). From those equations and

estmates, we learn that assumptions (6.4) and (6.5) hold here, where we may take A3 to be

a controlled constant.

For each ` ∈ Z and ν ∈ Zn, let θ`
ν and Q`

ν be as in (10.5)...(10.11). Those results show

that assumptions (6.6)...(6.10) hold here, where we may take A4, A5, A6 to be controlled

constants.

We recall from (10.4) and the remarks just after it, that

(2) Q`
ν = (Q

〈s〉
ν )∗ for a suitable dyadic cube Q

〈s〉
ν , where

(3) sidelength (Q
〈s〉
ν ) = 2s, and 1

32
ε−1 · exp((`+1)/ε) ≤ 2s ≤ ε−1

8
exp((`+1)/ε). Thus,

(4) c exp((` − 1)/ε) ≤ ε e−2/ε δ
Q
〈s〉
ν

≤ C exp((` − 1)/ε).

Let ` ∈ Z, ν ∈ Zn be given; and let Q
〈s〉
ν be as in (2), (3).
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We define

S`
ν = S(Q

〈s〉
ν )

to be the set obtained by applying Algorithm 11.1 to the input ε, E, Q
〈s〉
ν . The following are

among the defining properties of Algorithm 11.1.

(5) S`
ν ⊂ E ∩ (Q

〈s〉
ν )∗∗ = E ∩ (Q`

ν)∗ (see (2)).

(6) |y − y′| ≥ cεe−2/ε δ
Q
〈s〉
ν

≥ c′ exp((` − 1)/ε) for any two distinct y, y′ ∈ S`
ν (see (4)).

(7) dist (y, S`
ν) ≤ Cεe−2/ε δ

Q
〈s〉
ν

≤ C′ exp((` − 1)/ε) for any y ∈ E ∩ (Q`
ν)∗ (see (2) and

(4)).

Thus, assumptions (6.11) and (6.12) hold here, where we may take A7 to be a controlled

constant.

Comparing our present definition of S`
ν with that of S(λ) in Step 6 of Section 22, we learn

the following.

(8) Let ` ∈ Z, ν ∈ Zn, 1 ≤ λ ≤ L.

If the cube Q
〈s〉
ν in (2) satisfies

Q
〈s〉
ν = Q(λ),

then S`
ν = S(λ).

Also, comparing our present definition of S`
ν with (22.12), we learn the following.

(9) Let ` ∈ Z, ν ∈ Zn, and let Q
〈s〉
ν be as in (2).

If the cube Q
〈s〉
ν does not appear in the list Q(1), . . . , Q(L), then #(S`

ν) ≤ 1.

Next, let ` ∈ Z, ν ∈ Zn, and let Q
〈s〉
ν be as in (2). We will define a function F`

ν ∈ Cm(Rn),

proceeding by cases as follows.

Case 1: Suppose Q
〈s〉
ν appears in the list Q(1), . . . , Q(L). Say, Q

〈s〉
ν = Q(λ). Then we define

F`
ν = F(λ), with F(λ) as in (22.19)...(22.21). From (22.19) and (8), we learn that
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(10) F`
ν agrees with ~P on S`

ν;

moreover, (22.20), (22.26) and (1) show that

(11) ‖ F`
ν ‖Cm(Rn)≤ (1 + Cε)N

(λ)
ε (~P) ≤ (1 + Cε)Nε(~P) ≤ M,

provided we take Č in (1) to be larger than C in (11).

Case 2: Suppose Q
〈s〉
ν does not appear in the list Q(1), . . . , Q(L).

Then #(S`
ν) ≤ 1, by (9). Thus, either S`

ν = φ, or else S`
ν = {y0} for some y0 ∈ E.

(See (5).)

Subcase 2a: If S`
ν = φ, then we set F`

ν = 0. Trivially,

(12) F`
ν agrees with ~P on S`

ν, and

(13) ‖ F`
ν ‖Cm(Rn)≤ M.

Subcase 2b: If S`
ν = {y0} with y0 ∈ E, then we set F`

ν = F(y0), with F(y0) as in (22.22)...(22.24).

From (22.22), we see that

(14) F`
ν agrees with ~P on S`

ν.

Moreover, (22.23), (22.26) and (1) show that

(15) ‖ F`
ν ‖Cm(Rn)≤ (1 + Cε) · N

(y0)
ε (~P) ≤ (1 + Cε) · Nε(~P) ≤ M,

provided we take Č in (1) to be larger than C in (15).

We now pick Č to be a controlled constant, large enough to guarantee (11) and (15). Thus,

F`
ν ∈ Cm(Rn) is defined for all ` ∈ Z, ν ∈ Zn. From (10)...(15), we see that assumptions

(6.13) and (6.14) hold here in all cases.

Next, for each y0 ∈ E, let F(y0) ∈ Cm(Rn) be as in (22.22)...(22.24). From (22.22),

we see that assumption (6.15) holds here. Moreover, let ` ∈ Z, ν ∈ Zn, and assume that
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S`
ν = {y0} for some y0 ∈ E. Then we cannot be in Case 1 above, since we would then have

#(S`
ν) = #(S(λ)) ≥ 2 for some λ, by (8) and (22.17). Evidently, we cannot be in Subcase 2a

either. Thus, we are in Subcase 2b, and consequently F`
ν = F(y0) by definition. This shows

that assumption (6.16) holds here.

We have now shown that (6.1)...(6.16) hold for the ε, M,~P, δ(·), χ`(·), θ`
ν, Q`

ν, S`
ν, F`

ν and

F(y0) given above, where we may take A0, . . . , A7 to be controlled constants. Consequently,

the Main Patching Lemma from Section 6 applies, and it tells us the following.

We define a function F on Rn, by setting

(16) F(x) = (Px)(x) for x ∈ E, and

(17) F(x) =
∑̀
,ν

χ`(ε log δ(x)) · θ`
ν(x) · F`

ν(x) for x ∈ Rn r E.

Then

(18) F ∈ Cm(Rn),

(19) F agrees with ~P, and

(20) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(~P). (See (1).)

Thus, the number Nε(~P) in (22.26) and the function F in (16), (17), together satisfy (A)

and (B) in Section 21. We now show that (C) holds as well.

Estimates (22.21) and (22.24) show at once that

(21) N
(λ)
ε (~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn) for all λ,

and that

(22) N
(y0)
ε (~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn) for all y0 ∈ E.

Also, from estimate (22.4), we have
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(23) M̂
C∗ ≤‖ ~P ‖Cm(Rn).

(Recall that the constant C∗ has been fixed as in (22.4); it does not vary from one occurrence

to the next.)

From estimates (21), (22), (23) and the definition (22.26) of Nε(~P), we see that

Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn) ,

which is the desired conclusion (C).

Thus, we have shown that our Nε(~P) and F satisfy conditions (A), (B), (C) from Section

21.

In the next section, we give the query algorithm to compute Jx(F) for a given query point

x ∈ Rn.

24 The Query Algorithm

In this section, we adopt the notation and assumptions of Sections 21, 22, and 23. Our goal

is to give the query algorithm within Algorithm 21.1. We assume here that we have already

carried out the one-time work in Section 22. We begin with the following query algorithm.

Algorithm 24.1. (“Compute F`
ν”): Given ` ∈ Z, ν ∈ Zn and x ∈ Rn, we compute Jx(F

`
ν),

using work at most C log(N/ε).

Explanation: We first compute Q
〈s〉
ν from (23.2). Recall that Q

〈s〉
ν is a dyadic cube, and

Q`
ν = (Q

〈s〉
ν )∗. We then perform a binary search as in (22.13), to determine whether Q

〈s〉
ν

appears in the list Q(1), . . . , Q(L).

If Q
〈s〉
ν does appear in the list Q(1), . . . , Q(L), then the binary search (22.13) returns a λ such

that Q
〈s〉
ν = Q(λ). We find ourselves in Case 1 from Section 23, and therefore, we have

F`
ν = F(λ). We compute Jx(F

(λ)) by applying (22.18), and we return Jx(F
`
ν) = Jx(F

(λ)).

If Q
〈s〉
ν does not appear in the list Q(1), . . . , Q(L), then we find ourselves in Case 2 from Sec-

tion 23. We defined S`
ν by applying Algorithm 11.1 to the inputs ε, E, Q

〈s〉
ν (as explained
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in Section 23, just after (23.4)). We are guaranteed that S`
ν is empty or a singleton. (See

(23.9)). Consequently, we may compute the set S`
ν by applying Algorithm 11.4.

• If S`
ν = φ, then we are in Subcase 2a from Section 23.

In that subcase, we defined F`
ν = 0. We return Jx(F

`
ν) = 0.

• If S`
ν = {y0}, then we are in Subcase 2b from Section 23.

In that subcase, we defined F`
ν = F(y0). We compute Jx(F

(y0)) by applying (22.25), and

we return Jx(F) = Jx(F
(y0)).

Thus, in all cases, we have succeeded in computing Jx(F
`
ν).

Let us estimate the work of the above computation.

The computation of Q
〈s〉
ν takes work at most C.

The binary search using (22.13) takes work at most C log(N/ε).

The computation of Jx(F
(λ)) using (22.18) takes work at most C.

The computation of S`
ν using Algorithm 11.4 ( not Algorithm 11.1) takes work at most

C log N.

The computation of Jx(F
(y0)) using (22.25) requires work at most C.

Consequently, the total work to compute Jx(F
`
ν) is at most C log(N/ε). This completes

our explanation of Algorithm 24.1.

We are almost ready to present the query algorithm within Algorithm 21.1. We prepare

the way by making a few remarks.

We recall that F is given by (23.16), (23.17), and that the cutoff functions appearing

there satisfy

supp χ` ⊂ (` − 1, ` + 1), and supp θ`
ν ⊂ Q`

ν ; see (10.2) and (10.7) .

Consequently, for x ∈ Rn r E it is natural to define

(1) Λ(x) = {` ∈ Z : ε log δ(x) ∈ (` − 1, ` + 1)}.

Also, for x ∈ Rn r E and for ` ∈ Λ(x), we define
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(2) V(x, `) = {ν ∈ Zn : Q`
ν 3 x}.

We then have

(3) Jx(F) =
∑

`∈Λ(x)

∑
ν∈V(x,`)

Jx(χ`(ε log δ(·)))�x Jx(θ
`
ν)�x Jx(F

`
ν), for x ∈ Rn r E.

On the other hand, for x ∈ E, we have

(4) Jx(F) = Px,

since F agrees with ~P (as shown in Section 23).

Our query algorithm for Jx(F) makes straightforward use of formulas (3) and (4).

Algorithm 24.2 (Query Algorithm within Algorithm 21.1): Given x ∈ Rn, we compute

Jx(F), using work at most C log(N/ε).

Explanation: First, we perform a binary search to decide whether x ∈ E.

If x ∈ E, then we return the polynomial Px, which is the correct answer, thanks to (4).

If x /∈ E, then we proceed as follows.

We compute Jx(δ(·)), using (22.9). In particular, this gives us the value δ(x), from which

we can compute the set Λ(x) in (1). Note that #(Λ(x)) = 1 or 2. For each ` ∈ Λ(x), we

compute
(

d
dt

)k
χ`(t) at t = ε log δ(x), for k = 0, . . . ,m, by Algorithm 10.1. From the data

already computed, we can now compute Jx(χ`(ε log δ(·))) for each ` ∈ Λ(x).

Next, for each ` ∈ Λ(x), we compute the set V(x, `) in (2), using Algorithm 10.5 (“Find-

Relevant-Cubes”). Note that #(V(x, `)) ≤ C, as mentioned in our statement of Algorithm

10.5.

For each ` ∈ Λ(x), and for each ν ∈ V(x, `), we now compute Jx(θ
`
ν) by Algorithm 10.4,

and Jx(F
`
ν) by Algorithm 24.1.

We then return the polynomial Jx(F), which we compute from (3).

Thus, we have succeeded in computing Jx(F).
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Let us estimate the work required for the above computation.

The binary search requires work at most C log N.

The application of (22.9) to compute Jx(δ(·)) also takes work at most C log N.

The computation of Λ(x) from δ(x) takes work at most C.

The computation of
(

d
dt

)k
χ`(t) at t = ε log δ(x) for k = 0, . . . ,m and all ` ∈ Λ(x) takes

work at most C.

The computation of Jx(χ`(ε log δ(·))) for all ` ∈ Λ(x) then takes work at most C.

The applications of Algorithm 10.5 take total work at most C.

For each ` ∈ Λ(x) and ν ∈ V(x, `), the application of Algorithm 10.4 takes work at most

C, and the application of Algorithm 24.1 takes work at most C log(N/ε).

Since there are at most C such (`, ν), the total work of all the applications of Algorithms

10.4 and 24.1 is at most C log(N/ε).

The evaluation of the right-hand side of (3) then requires work at most C.

Altogether, the work of Algorithm 24.2 is at most C log(N/ε).

This agrees with what we claimed for the work at query time in Section 21.

Our explanations of Algorithms 24.2 and 21.1 are complete.

25 Remarks on the One-Time Work

In this section, we return to the setting of Section 22. For future reference, we set down

several remarks on the one-time work of that section, and we show that the one-time work

can be simplified a bit. We then prove Theorem 7 (from the Introduction), one of our main

results.

Proposition 25.1. Let ε,~P = (Px)x∈E, N = #(E) be as in Section 22. Then the algorithm

given in Section 22 performs as follows.
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(a) It computes the representatives x′ν, x′′ν (ν = 1, . . . , νmax) from the WSPD for E, with κ

a small enough controlled constant.

The x′ν, x′′ν depend only on E, and not on ε or on the polynomials Px(x ∈ E). We have

νmax ≤ CN.

(b) It computes the least M̂ ≥ 0 such that

|∂αPx(x)| ≤ M̂ for |α| ≤ m, x ∈ E

and

|∂α(Px′ν − Px′′ν)(x′ν)| ≤ |x′ν − x′′ν|m−|α| · M̂ for |α| ≤ m − 1, 1 ≤ ν ≤ νmax.

(c) It computes a list of cubes Q(λ) and sets S(λ) ⊆ E (λ = 1, . . . , L), with L ≤ C
ε
· N. This

list is computed from ε and E, without using the polynomials Px(x ∈ E). For each λ,

the set S(λ) arises by applying Algorithm 11.1 to the input data ε,Q(λ), E.

(d) For each λ(1 ≤ λ ≤ L), it applies Algorithm 20.1 to the input data ε,Q(λ), ~P|S(λ),

to compute a number N
(λ)
ε (~P). (In particular, these input data are as assumed in

Algorithm 20.1.) We have

N
(λ)
ε (~P) ≤ (1 + Cε) · ‖ (~P|S(λ)) ‖Cm(Rn) for each λ.

(e) For each y0 ∈ E, it applies Algorithm 15.1 to the input data ε,~P|{y0}, to compute a num-

ber Nε(~P, y0). (In particular, these input data are as assumed in Algorithm 15.1.) We

have

Nε(~P, y0) ≤ (1 + Cε) · ‖ (~P|{y0}) ‖Cm(Rn), for each y0 ∈ E.

(f) It returns the number

Nε(~P) = max
{

M̂
2C∗ , N

(λ)
ε (~P) (1 ≤ λ ≤ L) , Nε(~P, y0) (y0 ∈ E)

}
,

where C∗ is the controlled constant fixed in Section 22.

(g) The work and storage to compute all the Q(λ), S(λ) for λ = 1, . . . , L, are at most

exp(C/ε)N log N, and exp(C/ε)N, respectively.

Proof. Everything asserted in the above Proposition was shown in Section 22.
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Let Nε(~P) be as above. In Section 23, we exhibited a function F ∈ Cm(Rn), and proved the

following properties of Nε(~P) and F.

(A) F agrees with ~P.

(B) ‖ F ‖Cm(Rn)≤ (1 + Cε)Nε(~P).

(C) Nε(~P) ≤ (1 + Cε) · ‖ ~P ‖Cm(Rn).

From (A) and (B), we conclude that

(1) ‖ ~P ‖Cm(Rn)≤ (1 + Cε)Nε(~P),

by definition of the Cm-norm of a Whitney field. On the other hand, from (22.4), we recall

that

(2) M̂
2C∗ ≤ 1

2
‖ ~P ‖Cm(Rn).

Combining (1) and (2), we see that

(3) M̂
2C∗ ≤ 1+Cε

2
· Nε(~P).

Since ε is less than a small enough controlled constant, we have 1+Cε
2

< 1.

Hence, comparing (3) with conclusion (f) of Proposition 25.1, we find that

(f′) Nε(~P) = max{N
(λ)
ε (~P) (1 ≤ λ ≤ L), Nε(~P, y0) (y0 ∈ E)}.

In other words, we can delete the term M̂
2C∗ from the maximum in (f). Consequently, we

needn’t bother to compute M̂ at all; we may simply omit Step 2 from the algorithm described

in Section 22.

From Proposition 25.1 (d) and (e), we recall that

N
(λ)
ε (~P) ≤ (1 + Cε) ‖ (~P|S(λ)) ‖Cm(Rn) for each λ, and



The Cm Norm of a Function with Prescribed Jets II 150

Nε(~P, y0) ≤ (1 + Cε) · ‖ (~P|{y0}) ‖Cm(Rn) , for each y0 ∈ E.

Consequently, (f′) implies the estimate

Nε(~P) ≤ (1 + Cε) · max{‖ (~P|S(λ)) ‖Cm(Rn) (1 ≤ λ ≤ L) , ‖ (~P|{y0}) ‖Cm(Rn) (y0 ∈ E)} .

Together with (1), this yields

(4) ‖ ~P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (~P|S(λ)) ‖Cm(Rn) (1 ≤ λ ≤ L),

‖ (~P|{y0}) ‖Cm(Rn) (y0 ∈ E)} .

We recall that each S(λ) arises from the input ε, E, Q(λ) by Algorithm 11.1. By the defining

properties of that algorithm, we have, for 1 ≤ λ ≤ L, that

(5) S(λ) ⊂ (Q(λ))∗∗ ∩ E, and

(6) |y − y′| > cεe−2/ε δQ(λ) for any two distinct points y, y′ ∈ S(λ).

Recall that the Q(λ) and S(λ) are defined for 1 ≤ λ ≤ L, with

(7) L ≤ CN
ε

, N = #(E).

It is convenient to define Q(λ) and S(λ) for L+1 ≤ λ ≤ L+N, as follows. Let {y1, . . . , yN}

be an enumeration of E. For i = 1, 2, . . . ,N, we define S(L+i) = {yi}, and we take Q(L+i) to

be a dyadic cube of side 1 (say), containing yi.

Then (5), (6) hold also for L + 1 ≤ λ ≤ L + N. Our estimate (4) may be restated as follows.

(8) ‖ ~P ‖Cm(Rn)≤ (1 + Cε) · max{‖ (~P|S(λ)) ‖Cm(Rn): 1 ≤ λ ≤ L + N}.

Let us estimate the work and storage needed to compute (and store) all the Q(λ) and

S(λ), λ = 1, . . . , L + N.

Trivially, we can compute and store all the Q(λ) and S(λ) for L + 1 ≤ λ ≤ L + N with

work and storage at most CN. Hence, Proposition 25.1(g) implies the following.
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(9) The cubes Q(λ) and the sets S(λ), for all λ = 1, . . . , L+N, can be computed and stored,

with at most exp(C/ε)N log N operations, in space at most exp(C/ε)N.

Theorem 7 from the introduction now follows at once from (5)...(9).

26 Minimax Functions

Let V,W be (real) finite-dimensional vector spaces, and let λi : V ⊕ W → R (i = 1, . . . , I)

be linear functionals.

Then we can define a function Λ : V → R, by setting

(1) Λ(v) = min
w∈W

max
i=1,...,I

|λi(v,w)| for v ∈ V .

(It is an elementary exercise to check that the minimum over all w ∈ W is attained.)

We call

(2) η = (V,W, λ1, . . . , λI)

a “V-descriptor”, with V as in (1), (2). Also, we call Λ(v) the “minimax function arising from

η”, and we write this function as Λ(v, η). For brevity, we may say that η is a “descriptor”

(omitting the V), or that Λ is a “minimax function” (omitting the η).

Here, we allow degenerate cases. If I = 0, then (1) simply means that Λ(v) = 0 for all

v ∈ V . If W is a single point {0}, then (1) reduces to

Λ(v) = max
i=1,...,I

|λi(v)| , for linear functionals λ1, . . . , λI : V → R .

We define the “dimension” of the descriptor η in (2) to be the dimension of the vector space

W. Also, we define the “length” of the descriptor (2) to be the number of linear functionals

appearing in (2), i.e., the integer I.

Given a vector v ∈ V , we would like to compute a vector w ∈ W that nearly achieves

the minimum in (1). Therefore, we make the following definition.
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Let v ∈ V , w0 ∈ W, let Γ ≥ 1 be a real number, and let Λ, η be given by (1) and (2).

We say that w0 is a “Γ -optimal” vector for v, η, provided

max
i=1,...,I

|λi(v,w
0)| ≤ Γ · min

w∈W
max

i=1,...,I
|λi(v,w)| .

(Compare with Algorithm 26.3 below.)

Suppose that V and W in (1), (2) are identified with Euclidean spaces RD and Rd,

respectively. Then, for i = 1, . . . , I, the functional λi is specified by (D + d) coordinates

(λ1
i , . . . , λ

D+d
i ).

Thus, the descriptor η can be stored in memory, and it occupies storage at most

(3) C · (dim V + dim η) · length(η) + C.

In this section, we perform a few elementary operations involving descriptors and minimax

functions. For our algorithms involving descriptors, we suppose that V and W are identified

with RD and Rd (respectively), and that any given descriptor η is specified by its coordinates

as above.

Proposition 26.1. Let T : V1 → V2 be a linear map, and let

(4) η = (V2,W, λ1, . . . , λI) be a V2-descriptor.

Define the V1-descriptor

η ◦ T = (V1,W, λ1 ◦ (T ⊕ Id), . . . , λI ◦ (T ⊕ Id)) ,

where Id denotes the identity map on W.

Then we have

(5) Λ(v1, η ◦ T) = Λ(Tv1, η) for all v1 ∈ V1.

Moreover,

(6) dim(η ◦ T) = dim(η) and length(η ◦ T) = length (η).
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Finally, if w is a Γ -optimal vector for T v, η, then w is also a Γ -optimal vector for v, η ◦ T .

Proof. Trivial.

Thus, if T : V1 → V2 is linear, and if Λ is a minimax function on V2, then Λ ◦ T is a

minmax function on V1.

Proposition 26.2. For a = 1, . . . , A, let

(7) ηa = (V,Wa, λa
1 , . . . , λa

I(a)) be a V-descriptor.

Let

(8) W = W1 ⊕ · · · ⊕ WA,

and, for a = 1, . . . , A, let

(9) πa : V ⊕W → V ⊕Wa

be the natural projection.

Let λ̃1, . . . , λ̃I be an enumeration of the family of linear functionals

(10) λa
i ◦ πa : V ⊕ W → R (1 ≤ a ≤ A, 1 ≤ i ≤ I(a)).

Define a V-descriptor η1 v · · · v ηA, by setting

(11) η1 v · · · v ηA = (V,W, λ̃1, . . . , λ̃I),

with W and λ̃i as in (8) and (10).

Then, for all v ∈ V, we have

(12) Λ(v, η1 v · · · v ηA) = max
a=1,...,A

Λ(v, ηa).
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Moreover,

(13) length (η1 v · · · v ηA) = length (η1) + · · ·+ length (ηA),

and

(14) dim(η1 v · · · v ηA) = dim(η1) + · · ·+ dim(ηA).

Finally, let v ∈ V, and suppose that wa ∈ W is Γ -optimal for v, ηa (a = 1, . . . , A).

Then (w1, . . . , wA) ∈ W1 ⊕ · · · ⊕ WA is Γ -optimal for v, η1 v · · · v ηA.

Thus, if Λ1, . . . , ΛA are minimax functions on V , then the function

Λ(v) = max{Λ1(v), . . . , ΛA(v)} (v ∈ V)

is again a minimax function.

If {ηα, α ∈ A} is a finite collection of V-descriptors indexed by α ∈ A, then we sometimes

write∨
α∈A

ηα to denote ηα1
v · · · v ηαA

, where (α1, . . . , αA) is an enumeration of A.

Proof of Proposition 26.2. Fix v ∈ V . For each a = 1, . . . , A, let w̃a be a minimizer for the

function

w 7→ max
i=1,...,I(a)

|λa
i (v,w)| (w ∈ Wa) .

Then, for any w = (w1, . . . , wA) ∈ W = W1 ⊕ · · · ⊕ WA, and for any a (1 ≤ a ≤ A),

we have

max
1≤i≤I(a)

|λa
i ◦ πa(v,w)| = max

1≤i≤I(a)
|λa

i (v,wa)| ≥ Λ(v, ηa) ,

with equality in case wa = w̃a.

Consequently, for any w = (w1, . . . , wA) ∈ W, we have

max
1≤a≤A

max
1≤i≤I(a)

|λa
i ◦ πa(v,w)| ≥ max

1≤a≤A
Λ(v, ηa)

with equality in case w = (w̃1, . . . , w̃A). Thus,
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(15) min
w∈W

max{|λa
i ◦ πa(v,w)| : 1 ≤ a ≤ A , 1 ≤ i ≤ I(a)}

= max{Λ(v, ηa) : 1 ≤ a ≤ A} .

In view of the definition (11) of η1 v · · · v ηA, the equality (15) tells us that

Λ(v, η1 v · · · v ηA) = max{Λ(v, η1), . . . , Λ(v, ηA)} ,

completing the proof of (12). Conclusions (13) and (14) are obvious.

Finally, suppose wa is Γ -optimal for v, ηa for each a = 1, . . . , A. Then

max
i,a

|λa
i ◦ πa(v, (w1, . . . , wA))| = max

a
max

i
| λa

i (v,wa)|

≤ max
a

Γ · Λ(v, ηa) = Γ · Λ(v, η1 v · · · v ηA) by (12) .

Thus, (w1, . . . , wA) is Γ -optimal for v, η1 v · · · v ηA. �

To implement the above propositions, we set down the following algorithms.

Algorithm 26.1. Given T : RD1 → RD2 (specified as a matrix), and given an RD2-descriptor

η, we compute the RD1-descriptor η ◦ T .

We recall that dim(η ◦ T) = dim(η) and length (η ◦ T) = length (η).

The work required for the computation is at most C+C · length (η) · [dim V1 · dim V2 + dim(η)].

The storage required for the computation (aside from that required to hold the inputs η, T)

is at most

C + C · (dim V1 + dim(η)) · length(η) .

Algorithm 26.2. Given a list η1, . . . , ηA of RD-descriptors, we compute the RD-descriptor

η1 v · · · v ηA.

Recall that

dim(η1 v · · · v ηA) = dim(η1) + · · ·+ dim(ηA), and

length (η1 v · · · v ηA) = length (η1) + · · ·+ length (ηA) .

The work and storage required for the computation are at most

C + C · [D +
A∑

a=1

dim(ηa)] · [
A∑

a=1

length (ηa)] .
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We omit the straightforward explanation of Algorithms 26.1 and 26.2.

Given a minimax function Λ(·) in the form (1), and given a vector v ∈ V , we would like

to find a vector w that nearly achieves the minimum in (1). Under favorable circumstances,

we can find such a w, thanks to the following application of the Ellipsoid Algorithm.

Algorithm 26.3. Given a list λi(·) − bi (i = 1, . . . , I) of affine functions on RD (with

λi ∈ (RD)∗ and bi ∈ R); given a real number Γ ≥ 1 and a vector w0 ∈ RD such that

(†) max
i=1,...,I

|λi(w0) − bi| ≤ Γ · min
w∈RD

max
i=1,...,I

| λi(w) − bi|;

and given ε > 0;

we compute a vector w1 ∈ RD, such that

(††) max
i=1,...,I

| λi(w1) − bi| ≤ (1 + ε) · min
w∈RD

max
i=1,...,I

| λi(w) − bi|.

The work of the computation is at most C(D+ I)5 (log I) (log IDΓ
ε

) and the storage is at most

C · (D + I)2.

Explanation: Let W be a vector subspace of RD, complementary to W0 :=

nullspace (λ1) ∩ · · · ∩ nullspace (λI), and let π : RD → W be the natural projection aris-

ing from the direct sum decomposition RD = W ⊕W0.

Note that λi(πw) = λi(w) for any w ∈ RD and i = 1, . . . , I. Hence, in (†), we may replace

w0 by πw0; and then, in the statement of our problem, we may pass from RD to the subspace

W. Consequently, we may assume without loss of generality that

nullspace (λ1) ∩ · · · ∩ nullspace (λI) = {0}.

Thus, the quadratic form
I∑

i=1

(λi(w))2 on RD may be assumed to be strictly positive-

definite.

Now let

(16) M̂ = max
i=1,...,I

|λi(w0) − bi|,

and let

(17) K = {(M,w) ∈ R⊕ RD : |λi(w) − bi| ≤ M for i = 1, . . . , I , Γ−1 M̂ ≤ M ≤ 10M̂}.
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Note that

{(M,w) ∈ R⊕ RD : |λi(w) − bi| ≤ M for i = 1, . . . , I , M < Γ−1M̂}

is empty, by hypothesis (†). Note also that on

{(M,w) ∈ R⊕ RD : |λi(w) − bi| ≤ M for i = 1, . . . , I, M > 10M̂}

we evidently have M > 10M̂, whereas the point (M̂,w0) belongs to K. The above remarks

show that

(18) min
w∈RD

max
i=1,...,I

|λi(w) − bi| = min{M : (M,w) ∈ K}.

For any (M,w) ∈ K, we have 0 ≤ M ≤ 10M̂, and

|λi(w − w0)| ≤ |λi(w) − bi| + |λi(w0) − bi| ≤ M + M̂ ≤ 11M̂ for i = 1, . . . , I ;

and therefore

(19) K ⊂ {(M,w) ∈ R⊕ RD : M2 +
I∑

i=1

(λi(w − w0))
2 ≤ (100 + 121 I) M̂2} ≡ E.

On the other hand, suppose (M,w) ∈ R⊕RD, with (M−3M̂)2 +
I∑

i=1

(λi(w−w0))
2 ≤ M̂2.

Then |M − 3M̂| ≤ M̂; and for i = 1, . . . , I, we have |λi(w − w0)| ≤ M̂, hence

|λi(w) − bi| ≤ |λi(w0) − bi| + M̂ ≤ 2M̂ ≤ M (since |M − 3M̂| ≤ M̂) .

Consequently,

(20) {(M,w) ∈ R⊕ RD : (M − 3M̂)2 +
I∑

i=1

(λi(w − w0))
2 ≤ M̂2} ⊂ K.

Trivially, we have

(21) Γ−1M̂ ≤ M ≤ 10 M̂ for (M,w) ∈ K, and

(22) |M| ≤ (100 + 121I)1/2 M̂ for (M,w) ∈ E (see (19)).
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Thanks to (19), (20), (22), the Ellipsoid Algorithm produces a point

(23) (M1, w1) ∈ K,

such that

(24) M1 ≤ min
(M,w)∈K

M + εΓ−1 M̂.

From (17) we obtain trivially

(25) M̂ ≤ Γ min
(M,w)∈K

M.

Combining (24) and (25), we find that

M1 ≤ (1 + ε) · min{M : (M,w) ∈ K} .

We have also |λi(w1) − bi| ≤ M1 for i = 1, . . . , I, thanks to (23). Therefore,

max
i=1,...,I

|λi(w1) − bi| ≤ (1 + ε) min{M : (M,w) ∈ K}

= (1 + ε) min
w∈RD

max
i=1,...,I

|λi(w) − bi| ,

thanks to (18). Thus, w1 satisfies (††).

Let us review how we computed w1.

• By linear algebra, we reduced matters to the case
I⋂

i=1

nullspace (λi) = {0}.

• We computed M̂ from formula (16).

• We defined the convex set K in (17).

• Using the ellipsoid method, starting with (17), (19), (20), (22), we computed the point

(M1, w1) ∈ K.
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This gives w1.

We can easily estimate the work and storage used in the above computation. We may

assume that D, I ≥ 1, since our problem is trivial otherwise.

• The linear algebra in our computation takes space at most CDI and work at most

CDI · (D + I).

• The computation of M̂ from (16) requires work at most CDI and space at most C

(aside from the space used to hold the input data).

• Exhibiting the constraints defining K in (17) requires work and space at most CDI.

• Exhibiting the ellipsoids in (19), (20) requires work at most CD2I in space at most

CD2.

• The quantities playing the rôles of ε, λ, D, L in the Ellipsoid Algorithm here are

ε′ = cεΓ−1(100 + 121 I)−1/2, λ′ = (100 + 121 I)−1/2, D + 1, and 2I + 1, respectively.

Consequently, our application of the ellipsoid method uses work at most

CD4I log(100 + 121 I) log ( Γ
ε
· D · (100 + 121 I)) in space at most CDI.

Altogether, the work and storage used by Algorithm 26.3 are at most

C · (D + I)5 (log I) (log Γ D I
ε

) and C · (D + I)2, respectively.

The explanation of Algorithm 26.3 is complete.

27 Minimax Functions of Whitney Fields

In this section, we study the quantities Nε(~P), Nε(~P,Q), computed by Algorithms 14.1...20.1,

as functions of the Whitney field ~P. We shall see that these functions are all well-approximated

by minimax functions, and we will provide algorithms to compute the descriptors η of those

minimax functions. Moreover, given a Whitney field ~P, we compute a (1 + Cε)-optimal

vector for ~P, η, with η as above.

We begin with some notation, definitions and remarks.
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Recall that, for E ⊂ Rn, Wh(E) denotes the vector space of Whitney fields on E. If E is the

disjoint union of two sets E1 and E2, then we identify Wh(E) with Wh(E1)⊕Wh(E2) in the

obvious way, and we write

(1) πE
E1

: Wh(E) → Wh(E1)

to denote the obvious projection.

We identify Wh(E) with RD, D = dim[Wh(E)], by identifying ~P = (Px)x∈E with the

coordinates ∂αPx(x) (|α| ≤ m,x ∈ E). In all our algorithms involving Wh(E)-descriptors,

we assume that this identification has been made.

We recall from the preceding section that ~P 7→ Λ(~P, η) (~P ∈ Wh(S)) is the minimax

function arising from a given Wh(S)-descriptor η.

As usual, given two real numbers X, Y ≥ 0 and a real number Γ ≥ 1, we say that X and

Y “differ by at most a factor of Γ” provided Γ−1X ≤ Y ≤ ΓX.

The following algorithms accomplish the goals of this section.

Algorithm 27.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q, assumed to satisfy

(2) δQ ≤ c̃ε−1, with c̃ as in Algorithm 14.1;

and given a set

(3) S ⊂ Q∗∗,

assumed to satisfy

(4) |y − y′| > e−3/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(5) For any ~P ∈ Wh(S), the number Nε(~P,Q) computed from ε,Q,~P by Algorithm 14.1

differs by at most a factor (1 + Cε) from Λ(~P, η).
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(6) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: We recall Proposition 14.1. Let B(x0, r), S+, O(ε, y) (y ∈ S+) be as in that

proposition. We can compute these objects with work and storage at most exp(C/ε), by

Proposition 14.1 (f). We set

(7) η = (Wh(S),Wh(S+ r S), λ1, . . . , λI),

where (λ1, . . . , λI) is an enumeration of the following family of linear functionals on

Wh(S)⊕Wh(S+ r S) = Wh(S+).

(8) The functionals ~P = (Px)x∈S+ 7→ (1 + Âε)−1 · λ(Py) for y ∈ S+, λ ∈ O(ε, y);

together with

(9) The functionals ~P = (Px)x∈S+ 7→ [Â e4m/ε r−1|y − y′|m+1−|α|]−1 · ∂α(Py − Py′)(y) for

|α| ≤ m, y, y′ ∈ S+, y 6= y′.

Here, Â is as in Proposition 14.1; recall that Â is a controlled constant.

We will check that the descriptor η satisfies (5) and (6), and that it is computed from

ε,Q, S using work and storage at most exp(C/ε). In fact, both (6) and the desired estimate

for work and storage are obvious by inspection of (7), (8), (9), since #(S+) ≤ exp(C/ε) and

#(O(ε, y)) ≤ exp(C/ε) for each y ∈ S+. (See Proposition 14.1 (b), (c).)

It remains only to check (5). Let ~P = (Py)y∈S ∈ Wh(S) be given. We recall that

each O(ε, y) (y ∈ S+) is symmetric about the origin. (See Proposition 14.1 (c).) Let

ξ0 = [M0, (P0
y)y∈S+] be in Proposition 14.1 (d), (e); and let ~P′ = (P0

y)y∈S+rS ∈ Wh(S+ rS).

Comparing (7), (8), (9) with Proposition 14.1 (d), we learn that

(10) max
i=1,...,I

|λi(~P,~P′)| ≤ M0,
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and that

(11) M0 ≤ (1 + Cε) · max
i=1,...,I

|λi(~P,~P′′)| for any ~P′′ ∈ Wh(S+ r S).

Comparing (10), (11) with the definition of Λ(~P, η), we see that

(12) M0 differs from Λ(~P, η) by at most a factor of (1 + Cε),

and also

(13) ~P′ is a (1 + Cε)-optimal vector for ~P, η.

Conclusion (5) is now immediate from (12), together with Proposition 14.1(e). This com-

pletes our explanation of Algorithm 27.1.

Algorithm 27.2. Given ε,Q, S as in Algorithm 27.1; and given ~P ∈ Wh(S); we compute a

(1 + Cε)-optimal vector w0 for ~P, η, where η is the Wh(S)-descriptor computed from ε,Q, S

by Algorithm 27.1.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We compute ξ0 = [M0, (P0
y)y∈S+] as in Proposition 14.1 (d), and we set

w0 = ~P′′ = (P0
y)y∈S+rS ∈ Wh(S+ r S) .

According to (13), the vector w0 is (1 + Cε)-optimal for ~P, η.

Thanks to Proposition 14.1 (f), the work and storage used to compute w0 are at most

exp(C/ε).

This completes our explanation of Algorithm 27.2.

Algorithm 27.3. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a point y0 ∈ Rn; we compute a Wh({y0})-descriptor η, such that:

(a) For any ~P ∈ Wh({y0}), the number Nε(~P) computed from ε,~P by Algorithm 15.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η);



The Cm Norm of a Function with Prescribed Jets II 163

and

(b) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation Let Q be the cube computed as in Proposition 15.1, and let η be the descriptor

computed from ε,Q, {y0} by Algorithm 27.1. For any ~P ∈ Wh({y0}), Proposition 15.1

shows that the number Nε(~P) computed by Algorithm 15.1 is equal to the number Nε(~P,Q)

computed from ε,Q,~P byAlgorithm 14.1. Hence (a) follows from (5). Evidently, (b) follows

from (6).

The work and storage used to compute Q are at most C, by Proposition 15.1; and the

work and storage used to compute η from ε,Q, {y0} are at most exp(C/ε), as we see from

Algorithm 27.1.

This completes our explanation of Algorithm 27.3.

Algorithm 27.4. Given ε, y0 as in Algorithm 27.3, and given ~P ∈ Wh({y0}), we compute

a (1 + Cε)-optimal vector w0 for ~P, η, where η is the descriptor computed from ε, y0 by

Algorithm 27.3.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: Let Q be the cube computed from ε, y0 as in Proposition 15.1, let η be the

Wh({y0})-descriptor computed from ε, Q, {y0} by Algorithm 27.1, and let w0 be the vector

computed from ε, Q, {y0}, ~P by Algorithm 27.2. Thus, w0 is a (1+Cε)-optimal vector for ~P, η,

by the defining property of w0 in Algorithm 27.2. Recall from our explanation of Algorithm

27.3 that our present η is precisely the descriptor computed from ε, y0 by Algorithm 27.3.

Thus, w0 has the required property. Moreover, the estimates for work and storage given in

Proposition 15.1 and Algorithm 27.2 show that our present computation of w0 from ε, y0,~P

uses work and storage at most exp(C/ε).

This completes our explanation of Algorithm 27.4.

Algorithm 27.5. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube, assumed to satisfy
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(14) δQ ≤ e−1/(4ε);

and given a set

(15) S ⊂ Q∗∗,

assumed to satisfy

(16) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(17) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 16.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η).

(18) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: We recall Proposition 16.1. Let y0, Q00 be as in that proposition. In particular,

we can compute y0,Q00 with work and storage at most C. For any ~P ∈ Wh(S), the number

Nε(~P) computed from ε,Q, ~P by Algorithm 16.1 is given by

(19) Nε(~P) = max(Nε(~P,Q00), Nε(~P|{y0}, y0)),

where Nε(~P,Q00) is the number computed from ε,Q00,~P by Algorithm 14.1, and Nε(~P
′, y0)

is the number computed from ε, ~P′ by Algorithm 15.1 (with ~P′ = ~P|{y0} here).

By applying Algorithm 27.1 to ε, Q00, S, we obtain a Wh(S)-descriptor η1, such that:

(20) Nε(~P,Q00) differs from Λ(~P, η1) by at most a factor (1 + Cε), for any ~P ∈ Wh(S);
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and

(21) length (η1), dim(η1) ≤ exp(C/ε).

The work and storage used to compute η1 are at most exp(C/ε).

Also, by applying Algorithm 27.3 to ε, y0, we obtain a Wh({y0})-descriptor η̄2, such that:

(22) Nε(~P
′, y0) differs from Λ(~P′, η̄2) by at most a factor (1 + Cε), for any ~P′ ∈ Wh({y0});

and

(23) length (η̄2), dim(η̄2) ≤ exp(C/ε).

The work and storage used to compute η2 are at most exp(C/ε). In (22), Nε(~P
′, y0)

denotes the number computed from ε, ~P′ by Algorithm 15.1.

Note that

(24) #(S) ≤ exp(C/ε),

thanks to (15), (16).

By applying Algorithm 26.1 to the Wh({y0})-descriptor η̄2 and the linear map

πS
{y0} : Wh(S) → Wh({y0}), we compute a Wh(S)-descriptor η2, given by

(25) η2 = η̄2 ◦ πS
{y0}.

The work and storage used to apply Algorithm 26.1 are at most exp(C/ε), thanks to

(23), (24). Moreover, we have

(26) length (η2) = length (η̄2) ≤ exp(C/ε) and dim(η2) = dim(η̄2) ≤ exp(C/ε),

as we see from Algorithm 26.1 and (23).

Proposition 26.1 and (22) yield
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(27) Nε(~P|{y0}, y0) differs from Λ(~P, η2) by at most a factor (1 + Cε), for any ~P ∈ Wh(S).

From (19), (20), (27), we obtain the following result.

(28) Nε(~P) differs from max(Λ(~P, η1), Λ(~P, η2)) by at most a factor (1 + Cε), for any
~P ∈ Wh(S).

In (28), Nε(~P) denotes the number computed from ε, Q,~P by Algorithm 16.1.

We now compute the Wh(S)-descriptor

(29) η = η1 ∨ η2,

by applying Algorithm 26.2. We have

(30) length (η) = length (η1) + length (η2) ≤ exp(C/ε)

and

(31) dim(η) = dim(η1) + dim(η2) ≤ exp(C/ε),

thanks to (21), (26) and Algorithm 26.2.

Moreover, Proposition 26.2 gives

(32) Λ(~P, η1 ∨ η2) = max(Λ(~P, η1), Λ(~P, η2)), for any ~P ∈ Wh(S).

The work and storage used by Algorithm 26.2 are at most exp(C/ε), thanks to (21), (26)

and (24).

Comparing (28) with (32), we see that (17) holds for the descriptor η in (29). Moreover,

(18) holds for that descriptor, as we see in (30), (31). Thus, η has the desired properties.

Finally, the total work and storage used in all the above steps are at most exp(C/ε).

This completes our explanation of Algorithm 27.5.
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Algorithm 27.6. Given ε,Q, S as in Algorithm 27.5, and given ~P ∈ Wh(S), we compute

a (1 + Cε)-optimal vector w0 for ~P, η, where η is the descriptor computed from ε,Q, S by

Algorithm 27.5.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.5, and then continue as follows.

Applying Algorithm 27.2 to ε, Q, S,~P, we compute a (1+Cε)-optimal vector w1 for ~P, η1.

The work and storage used to compute w1 are at most exp(C/ε).

Next, applying Algorithm 27.4 to ε, y0,~P|{y0}, we compute a (1 + Cε)-optimal vector w2

for ~P|{y0}, η̄2.

The work and storage used to compute w2 are at most exp(C/ε).

By Proposition 26.1, w2 is also a (1 + Cε)-optimal vector for ~P, η2, thanks to (25). Now

Proposition 26.2 shows that w0 = (w1, w2) is a (1 + Cε)-optimal vector for ~P, η1 ∨ η2. In

view of (29), our vector w0 is a (1 + Cε)-optimal vector for ~P, η, where η is the descriptor

computed from ε,Q, S by Algorithm 27.5. We have seen that the work and storage used to

compute w0 are at most exp(C/ε).

This concludes our explanation of Algorithm 27.6.

Algorithm 27.7. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a cube Q, assumed to satisfy

(33) e−1/(2ε) ≤ δQ ≤ c#ε−1 with c# as in Algorithm 17.1;

and given a set

(34) S ⊂ Q∗∗,

assumed to satisfy

(35) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;
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we compute a Wh(S)-descriptor η, such that:

(36) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 17.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η);

and

(37) length (η), dim(η) ≤ exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: Obvious from Proposition 17.1 and Algorithm 27.1.

Algorithm 27.8. Given ε,Q, S as in Algorithm 27.7, and given a Whitney field ~P ∈ Wh(S),

we compute a (1 + Cε)-optimal vector w0 for ~P, η, where η is the descriptor computed from

ε,Q, S by Algorithm 27.7.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: Obvious from Proposition 17.1 and Algorithm 27.2.

Algorithm 27.9. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q, assumed to satisfy

(38) 1
2
c# ε−1 ≤ δQ ≤ e10/ε with c# as in Algorithm 17.1;

and given a set

(39) S ⊂ Q∗∗,

assumed to satisfy

(40) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.
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(41) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 18.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η).

(42) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: From (39), (40), we have

(43) #(S) ≤ exp(C/ε).

We recall Proposition 18.1. Let s,G,Q
〈s〉
ν (all ν ∈ G) and Sν (all ν ∈ G) be as in that

proposition. In particular, we can compute these objects using work and storage at most

exp(C/ε), using only ε,Q, S (not ~P).

According to Proposition 18.1, for any ~P ∈ Wh(S), the number Nε(~P) computed from

ε,Q,~P by Algorithm 18.1 is given by

(44) Nε(~P) = max
ν∈G

Nε(~P|Sν),

where Nε(~P|Sν) denotes the number computed from ε, Q
〈s〉
ν ,~P|Sν by Algorithm 17.1.

For each ν ∈ G, we apply Algorithm 27.7 to ε, Q
〈s〉
ν , Sν, to compute a Wh(Sν)-descriptor

η̄ν, with the following properties.

(45) For any ~P′ ∈ Wh(Sν), the number Nε(~P
′) computed from ε,Q

〈s〉
ν , ~P′ by Algorithm 17.1

differs by at most a factor (1 + Cε) from Λ(~P′, η̄ν).

(46) The length and dimension of η̄ν are at most exp(C/ε).

The work and storage used to compute a single η̄ν are at most exp(C/ε).

Since #(G) ≤ exp(C/ε) by Proposition 18.1, we conclude that the total work and storage

used to compute all the η̄ν(ν ∈ G) are at most exp(C/ε).

Next, for each ν ∈ G, we apply Algorithm 26.1 to the Wh(Sν)-descriptor η̄ν and the

linear map πS
Sν

: Wh(S) → Wh(Sν), to compute a Wh(S)-descriptor ην, with the following

properties.
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(47) Λ(~P, ην) = Λ(~P|Sν, η̄ν) for any ~P ∈ Wh(S).

(48) The length and dimension of ην are at most exp(C/ε).

(To derive (48), we use (46) and refer to Algorithm 26.1.)

For each ν ∈ G, the application of Algorithm 26.1 uses work and storage at most exp(C/ε),

thanks to (43) and (46). Since #(G) ≤ exp(C/ε), it follows that the total work and storage

used to compute all the ην (ν ∈ G) from the corresponding η̄ν are at most exp(C/ε).

From (44), (45), (47), we conclude that

(49) Nε(~P) differs by at most a factor (1 + Cε) from max
ν∈G

Λ(~P, ην), for any ~P ∈ Wh(S);

where again Nε(~P) denotes the number computed from ε,Q,~P by Algorithm 18.1.

We now apply Algorithm 26.2 to the family of Wh(S)-descriptors ην(ν ∈ G). Thus, we

compute the Wh(S) descriptor

(50) η =
∨

ν∈G

ην,

using work and storage at most exp(C/ε), as we see from (43), (48) and the fact that

#(G) ≤ exp(C/ε).

By Proposition 26.2, the descriptor η in (50) has the following properties.

(51) Λ(~P, η) = max
ν∈G

Λ(~P, ην) for any ~P ∈ Wh(S).

(52) length (η) =
∑
ν∈G

length (ην) ≤ exp(C/ε).

(53) dim(η) =
∑
ν∈G

dim(ην) ≤ exp(C/ε).

(Here again, we use (48) and the fact that #(G) ≤ exp(C/ε).)

Comparing (49) with (51), we learn that
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(54) Nε(~P) differs by at most a factor (1 + Cε) from Λ(~P, η), for any ~P ∈ Wh(S).

Again in (54), Nε(~P) denotes the number computed from ε, Q,~P by Algorithm 18.1.

The desired properties (41), (42) of our descriptor η are equivalent to our results (52),

(53), (54). Moreover, we have seen that the total work and storage used to compute η from

ε,Q, S are at most exp(C/ε).

This concludes our explanation of Algorithm 27.9.

Algorithm 27.10. Given ε,Q, S as in Algorithm 27.9, and given a Whitney field
~P ∈ Wh(S), we compute a (1 + Cε)-optimal vector w0 for ~P, η, where η is the descrip-

tor computed from ε,Q, S by Algorithm 27.9.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.9, and then continue as follows.

Applying Algorithm 27.8 to ε,Q
〈s〉
ν , Sν, ~P|Sν , we obtain, for each ν ∈ G, a (1+Cε)-optimal

vector wν for ~P|Sν , η̄ν, with η̄ν as in the explanation of Algorithm 27.9.

The work and storage used to compute a single wν are at most exp(C/ε) (see Algorithm

27.8), and we know that #(G) ≤ exp(C/ε). Hence, the total work and storage used to

compute all the wν(ν ∈ G) are at most exp(C/ε).

For each ν ∈ G, Proposition 26.1 and the definition of ην together show that wν is a

(1 + Cε)-optimal vector for ~P, ην. Consequently, Proposition 26.2 shows that the vector

w0 = (wν)ν∈G

is a (1 + Cε)-optimal vector for η =
∨

ν∈G

ην. (See (50).)

The work and storage used to compute w0 are at most exp(C/ε).

This completes our explanation of Algorithm 27.10.

Algorithm 27.11. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q, assumed to satisfy

(55) δQ ≥ e5/ε;
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and given a set

(56) S ⊂ Q∗∗,

assumed to satisfy

(57) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ S;

we compute a Wh(S)-descriptor η, with the following properties.

(58) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 19.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η).

(59) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: By (56) and (57), we have

(60) #(S) ≤ exp(C/ε).

Recall Proposition 19.1. Thus,

(61) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε, Q,~P by Algorithm 19.1 is

equal to

max{Nε(~P|{y0}) : y0 ∈ S} ,

where

(62) Nε(~P|{y0}) is the number computed from ε,~P|{y0} by Algorithm 15.1.

For each y0 ∈ S, we apply Algorithm 27.3 to ε, y0, to compute a Wh({y0})-descriptor

η̄y0
, with the following properties.
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(63) For any ~P′ ∈ Wh({y0}), the number Nε(~P
′) computed from ε,~P′ by Algorithm 15.1

differs by at most a factor of (1 + Cε) from Λ(~P′, η̄y0
).

(64) The length and dimension of η̄y0
are at most exp(C/ε).

The work and storage used to compute a single η̄y0
are at most exp(C/ε). Hence, by (60),

the total work and storage used to compute all the η̄y0
(y0 ∈ S) are at most exp(C/ε).

Next, for each y0 ∈ S, we apply Algorithm 26.1 to the Wh({y0})-descriptor η̄y0
and the

linear map πS
{y0} : Wh(S) → Wh({y0}).

Thus, for each y0 ∈ S, we obtain a Wh(S)-descriptor ηy0
, with the following properties.

(65) For any ~P ∈ Wh(S), we have Λ(~P|{y0}, η̄y0
) = Λ(~P, ηy0

).

(66) The length and dimension of ηy0
are at most exp(C/ε).

The work and storage used to compute a single ηy0
are at most exp(C/ε), thanks to (60),

(64), and our estimate for the work and storage used by Algorithm 26.1. Hence, by (60), the

total work and storage used to compute all the ηy0
(y0 ∈ S) are at most exp(C/ε).

From (61), (62), (63), (65) we obtain the following result.

(67) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 19.1

differs by at most a factor of (1 + Cε) from max{Λ(~P, ηy0
) : y0 ∈ S}.

We now apply Algorithm 26.2 to the family of Wh(S)-descriptors {ηy0
: y0 ∈ S}. Thus,

we compute the descriptor

(68) η =
∨

y0∈S

ηy0
,

and we know from Proposition 26.2 that

(69) max{Λ(~P, ηy0
) : y0 ∈ S} = Λ(~P, η) for any ~P ∈ Wh(S).
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Moreover,

(70) η has length and dimension at most exp(C/ε),

thanks to (60), (66) and our formulas for the length and dimension of η1 v · · · v ηA in Algo-

rithm 26.2. From (60), (66) and Algorithm 26.2, we learn also that the work and storage

used to compute η are at most exp(C/ε).

The desired properties (58), (59) of η are immediate from (67), (69) and (70). We have

seen that the above computation uses work and storage at most exp(C/ε).

This completes our explanation of Algorithm 27.11.

Algorithm 27.12. Given ε,Q, S as in Algorithm 27.11, and given a Whiney field
~P ∈ Wh(S), we compute a (1 + Cε)- optimal vector w0 for ~P, η, where η is the Wh(S)-

descriptor computed from ε,Q, S by Algorithm 27.11.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We repeat the explanation of Algorithm 27.11, and then add the following.

For each y0 ∈ S, we apply Algorithm 27.4 to ε, y0, ~P|{y0}, to compute a (1 + Cε)-optimal

vector wy0 for ~P|{y0}, η̄y0
(with η̄y0

as in the explanation of Algorithm 27.11).

According to our estimate for the work and storage of Algorithm 27.4, we can compute

a single wy0 using work and storage at most exp(C/ε). Hence, by (60), the total work and

storage used to compute all the wy0 (y0 ∈ S) are at most exp(C/ε).

Recall from our explanation of Algorithm 27.11 that ηy0
= η̄y0

◦ πS
{y0} for each y0 ∈ S.

Hence, Proposition 26.1 shows that wy0 is a (1 + Cε)-optimal vector for ~P, ηy0
, for any

y0 ∈ S.

Also, recall from our explanation of Algorithm 27.11 that η =
∨

y0∈S

ηy0
, where η is the

descriptor computed from ε,Q, S by that algorithm. Proposition 26.2 therefore shows that

w0 = (wy0)y0∈S

is a (1+Cε)-optimal vector for ~P, η. We have computed w0 using work and storage at most

exp(C/ε).
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This completes our explanation of Algorithm 27.12.

Algorithm 27.13. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a dyadic cube Q; and given a set

(71) S ⊂ Q∗∗,

assumed to satisfy

(72) |y − y′| > ε2 e−2/ε δQ for any two distinct points y, y′ ∈ Q;

we compute a Wh(S)-descriptor η, with the following properties.

(73) For any ~P ∈ Wh(S), the number Nε(~P) computed from ε,Q,~P by Algorithm 20.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η).

(74) The length and dimension of η are at most exp(C/ε).

The work and storage used to compute η are at most exp(C/ε).

Explanation: We proceed by cases, depending on the size of δQ, as in our explanation of

Algorithm 20.1.

This reduces matters to Algorithms 27.5, 27.7, 27.9, and 27.11.

Algorithm 27.14. Given ε,Q, S as in Algorithm 27.13, and given a Whitney field
~P ∈ Wh(S), we compute a (1 + Cε)-optimal vector w0 for ~P, η, where η is the Wh(S)-

descriptor computed from ε,Q, S by Algorithm 27.13.

The work and storage used to compute w0 are at most exp(C/ε).

Explanation: We proceed by cases, depending on the size of δQ, as in our explanations of

Algorithms 20.1. and 27.13.

This reduces matters to Algorithms 27.6, 27.8, 27.10, and 27.12.
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28 Minmax Functions and the Main Algorithm

In this section, we will see that the number Nε(~P) computed by the Main Algorithm (Al-

gorithm 21.1) is well-approximated by a minimax function. In addition, we compute a

(1 + Cε)-optimal vector for ~P, η, where η is the descriptor of that minimax function.

Algorithm 28.1. Given ε > 0, assumed to be less than a small enough controlled constant,

and given a set E ⊂ Rn, with #(E) = N, 2 ≤ N < ∞; we compute a Wh(E)-descriptor η,

with the following properties.

(1) For any ~P ∈ Wh(E), the number Nε(~P) computed from ε,~P by Algorithm 21.1 differs

by at most a factor of (1 + Cε) from Λ(~P, η).

(2) The length and dimension of η are at most exp(C/ε) · N.

Moreover, the computation of η uses work and storage at most exp(C/ε)N2.

Explanation: We make some preliminary remarks. Recall from Section 26 that a V-descriptor

η with length L and dimension D is stored as a matrix, requiring storage C+C · [dim V + D] ·
L. In view of (2), it will take storage exp(C/ε)N2 simply to hold the matrix representing η.

Hence, it is natural to expect that the work and storage of our algorithm will be comparable

to exp(C/ε)N2. In fact, the matrix representing η is sparse, and almost all the work of

Algorithm 28.1 consists of repeatedly writing the number zero. Unfortunately, it is not clear

how to take advantage of this fact, once we apply Algorithm 28.1 below.

Let us begin our explanation of Algorithm 28.1. We recall Proposition 25.1, with con-

clusion (f) there replaced by the sharper conclusion (f′), as explained in Section 25.

We compute the list of cubes and sets Q(λ), S(λ), λ = 1, . . . , L, as in that proposition.

Thus, the following hold.

(3) L ≤ C
ε
N.

(4) The total work and storage to compute all the Q(λ) and S(λ) (λ = 1, . . . , L) are at most

exp(C/ε)N log N and exp(C/ε)N, respectively.
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(5) For each λ = 1, . . . , L, the set S(λ) ⊆ E arises by applying Algorithm 11.1 to the input

data ε, Q(λ), E.

(6) For any ~P ∈ Wh(E), the number Nε(~P) computed from ε,~P by Algorithm 21.1 is given

by

(7) Nε(~P) = max{Nε(~P|S(λ)) (1 ≤ λ ≤ L), Nε(~P|{y0}) (y0 ∈ E)}, where

(8) Nε(~P|S(λ)) is the number computed from ε,Q(λ),~P|S(λ) by Algorithm 20.1, and

(9) Nε(~P|{y0}) is the number computed from ε,~P|{y0} by Algorithm 15.1.

By (5) and the defining properties of Algorithm 11.1, we know that, for each λ = 1, . . . , L.

(10) S(λ) ⊆ E ∩ (Q(λ))∗∗, and

(11) |y − y′| ≥ cε e−2/ε δQ(λ) for any distinct points y, y′ ∈ S(λ).

Hence, S(λ) and Q(λ) satisfy conditions (71) and (72) in Section 27. Consequently, we may

apply Algorithm 27.13 to ε,Q(λ), S(λ), to compute a Wh(S(λ))-descriptor η̄(λ), with the

following properties.

(12) For any ~P′ ∈ Wh(S(λ)), the number Nε(~P
′) computed from ε, Q(λ), ~P′ by Algorithm

20.1 differs by at most a factor of (1 + Cε) from Λ(~P′, η̄(λ)).

(13) The length and dimension of η̄(λ) are at most exp(C/ε).

We compute descriptors η̄(λ) satisfying (12) and (13), for each λ = 1, . . . , L.

The work and storage used to compute a single η̄(λ) are at most exp(C/ε), as we see

from Algorithm 27.13. Hence, the total work and storage used to compute all the η̄(λ)

(λ = 1, . . . , L) (given the S(λ) and Q(λ)) are at most exp(C/ε)N; see (3).

Next, for each λ = 1, . . . , L, we apply Algorithm 26.1 to Wh(S(λ))-descriptor η̄(λ) and the

linear map πE
S(λ) : Wh(E) → Wh(S(λ)). Thus, for each λ, we obtain a Wh(E)-descriptor η(λ),

with the following properties.

(14) For any ~P ∈ Wh(E), Λ(~P|S(λ), η̄(λ)) = Λ(~P, η(λ)).
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(15) The length and dimension of η(λ) are at most exp(C/ε).

Moreover, the work and storage used to compute a single η(λ) from the corresponding η̄(λ)

are at most exp(C/ε) · N. Hence, by (3), the total work and storage used to compute

η(1), . . . , η(L) from η̄(1), . . . , η̄(L) are at most exp(C/ε) · N2.

Comparing (7), (8) with (12), (14), we learn that

(16) For any ~P ∈ Wh(E), the number Nε(~P|S(λ)) in (7) differs by at most a factor of (1+Cε)

from Λ(~P, η(λ)).

Property (16) holds for each λ = 1, . . . , L.

Next, for each y0 ∈ E, we apply Algorithm 27.3 (to ε and y0), to compute a Wh({y0})-

descriptor η̄(y0), with the following properties.

(17) For any ~P′ ∈ Wh({y0}), the number Nε(~P
′) computed from ε,~P′ by Algorithm 15.1

differs by at most a factor (1 + Cε) from Λ(~P′, η̄(y0)).

(18) The length and dimension of η̄(y0) are at most exp(C/ε).

For each y0 ∈ E, the work and storage used to compute η̄(y0) are at most exp(C/ε). Hence,

the total work and storage used to compute all the η̄(y0) (y0 ∈ E) are at most exp(C/ε)N.

For each y0 ∈ E, we now apply Algorithm 26.1 to the Wh({y0})-descriptor η̄(y0) and the

linear map πE
{y0} : Wh(E) → Wh({y0}).

Thus, for each y0 ∈ E, we compute a Wh(E)-descriptor η(y0), with the following proper-

ties.

(19) For any ~P ∈ Wh(E), Λ(~P|{y0}, η̄(y0)) = Λ(~P, η(y0)).

(20) The length and dimension of η(y0) are at most exp(C/ε).

Moreover, for each fixed y0 ∈ E, the work and storage used to compute η(y0) from η̄(y0) are

at most exp(C/ε)N. Consequently, the total work and storage used to compute all the η(y0)

(y0 ∈ E) from the η̄(y0) (y0 ∈ E) are at most exp(C/ε) · N2.
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Comparing (7), (9) with (17), (19), we see that the following holds, for each y0 ∈ E.

(21) For any ~P ∈ Wh(E), the number Nε(~P|{y0}) in (7) differs by at most a factor of (1+Cε)

from Λ(~P, η(y0)).

From (6), (7), (16) and (21), we learn that

(22) For any ~P ∈ Wh(E), the number Nε(~P) computed from ε,~P by Algorithm 21.1 differs by

at most a factor of (1 + Cε) from max{Λ(~P, η(λ)) (λ = 1, . . . , L), Λ(~P, η(y0)) (y0 ∈ E)}.

We now apply Algorithm 26.2 to compute the Wh(E)-descriptor

(23) η = (η(1) v · · · v η(L)) v
∨

y0∈E

η(y0).

According to Proposition 26.2, we have

(24) Λ(~P, η) = max{Λ(~P, η(λ)) (λ = 1, . . . , L), Λ(~P, η(y0)) (y0 ∈ E)} for any ~P ∈ Wh(E).

Moreover, that same proposition gives

length (η) =
L∑

λ=1

length (η(λ)) +
∑

y0∈E

length (η(y0)) and

dim(η) =
L∑

λ=1

dim(η(λ)) +
∑

y0∈E

dim(η(y0)) .

Thanks to (15), (20) and (3), it follows that

(25) The length and dimension of η are at most exp(C/ε)N.

Also, the estimate for work and storage given in Algorithm 26.2 shows that it takes work

and storage at most exp(C/ε)N2 to compute η from (23).

The desired properties (1) and (2) of the descriptor η are now immediate from (22), (24),

(25). We have computed η using total work and storage at most exp(C/ε)N2.

This completes our explanation of Algorithm 28.1.
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Algorithm 28.2. Given ε, E, N as in Algorithm 28.1, and given a Whitney field ~P ∈ Wh(E),

we compute a (1 + Cε)-optimal vector w0 for ~P, η, where η is the Wh(E)-descriptor computed

from ε, E by Algorithm 28.1.

The work and storage used to compute w0 are at most exp(C/ε)N2.

Explanation: We repeat our explanation of Algorithm 28.1, and then continue as follows.

For each λ = 1, . . . , L, we apply Algorithm 27.14 to ε,Q(λ), S(λ), ~P|S(λ) . This produces

a (1 + Cε)-optimal vector w(λ) for ~P|S(λ) , η̄(λ), with η̄(λ) as in the explanation of Algorithm

28.1.

The work and storage used to compute a single w(λ) are at most exp(C/ε), as we see

from Algorithm 27.14. Hence, by (3), the total work and storage used to compute all the

w(λ) (λ = 1, . . . , L) are at most exp(C/ε)N.

For each λ = 1, . . . , L, we recall that η(λ) = η̄(λ) ◦ πE
S(λ) . Consequently, Proposition 26.1

shows that

(26) For each λ = 1, . . . , L, w(λ) is a (1 + Cε)-optimal vector for ~P, η(λ).

Next, for each y0 ∈ E, we apply Algorithm 27.4 to ε, y0,~P|{y0}. This produces a (1+Cε)-

optimal vector w(y0) for ~P|{y0}, η̄(y0), with η̄(y0) as in the explanation of Algorithm 28.1.

The work and storage used to compute a single w(y0) are at most exp(C/ε), as we see

from Algorithm 27.4. Hence, the total work and storage used to compute all the w(y0)

(y0 ∈ E) are at most exp(C/ε) ·N.

For each y0 ∈ E, we recall that η(y0) = η̄(y0) ◦ πE
{y0}. Consequently, Proposition 26.1

shows that

(27) For each y0 ∈ E, w(y0) is a (1 + Cε)-optimal vector for ~P, η(y0).

Now (23), (26), (27) and Proposition 26.2 together show that

w0 = (w(1) , . . . , w(L) , (w(y0))y0∈E)

is a (1 + Cε)-optimal vector for ~P, η, with η as in Algorithm 28.1.
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We have seen that the work and storage used to compute w0 are most exp(C/ε)N, plus

the work and storage needed to repeat Algorithm 28.1. Thus, our algorithm uses total work

and storage at most exp(C/ε)N2.

This completes our explanation of Algorithm 28.2.

Remark: To carry out Algorithm 28.2, we needn’t repeat all the steps in Algorithm 28.1.

This allows us easily to reduce the work and storage of Algorithm 28.2 to exp(C/ε)N log N

and exp(C/ε)N, respectively. Unfortunately, these improvements will not help us when we

apply Algorithm 28.2 in the next section.

29 From Whitney Fields to Functions

In this section, we pass from Whitney fields to functions, and give the proof of Theorem 2.

We begin by introducing some definitions and notation.

Given a finite set E ⊂ Rn, we write Fns(E) to denote the vector space of all functions

f : E → R. We identify f ∈ Fns(E) with the Whitney field [f] = (P̃x)x∈E, where for each

x ∈ E, P̃x denotes the constant polynomial P̃x(y) = f(x) (all y ∈ Rn). Thus, Fns(E) is

identified with a subspace of Wh(E). Also, we write Wh0(E) to denote the space of all

Whitney fields ~P = (Px)x∈E ∈ Wh(E) such that Px(x) = 0 for all x ∈ E.

Thus,

(1) Wh(E) = Fns(E) ⊕ Wh0(E).

In this section we write ~P to denote an element of Wh0(E), f to denote an element of Fns(E),

and (f, P) to denote an element of Wh(E), as in (1).

Let us record some of our earlier definitions and results using the above notation.

Let (f,~P) ∈ Wh(E), with ~P = (Px)x∈E ∈ Wh0(E). Then the Cm-norm of (f, P) is given

by

(2) ‖ (f,~P) ‖Cm(Rn) = inf {‖ F ‖Cm(Rn):

F ∈ Cm(Rn), F = f on E, ∂αF(x) = ∂αPx(x) for 0 < |α| ≤ m, x ∈ E}.
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For f ∈ Fns(E), the Cm-norm is given by

(3) ‖ f ‖Cm(Rn) = inf {‖ F ‖Cm(Rn): F ∈ Cm(Rn), F = f on E}.

Comparing (2) and (3), we see that

(4) ‖ f ‖Cm(Rn) = inf {‖ (f,~P) ‖Cm(Rn): ~P ∈ Wh0(E)},

for any f ∈ Fns(E).

In terms of our new notation, Algorithm 21.1 takes the following form.

Algorithm 29.1. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a Whitney field (f,~P) ∈ Wh(E), with ~P = (Px)x∈E ∈ Wh0(E), and with #(E) = N,

2 ≤ N < ∞; we compute a number Nε(f,~P) ≥ 0, and a function F ∈ Cm(Rn), with the

following properties.

(5) F = f on E.

(6) ∂αF(x) = ∂αPx(x) for 0 < |α| ≤ m, x ∈ E.

(7) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(f,~P).

(8) Nε(f,~P) ≤ (1 + Cε) ‖ (f,~P) ‖Cm(Rn).

Moreover,

(9) The one-time work of the algorithm is at most exp(C/ε)N log N, the query work is at

most C log(N/ε), and the storage used is at most exp(C/ε)N.

Note that (5)...(8) and (2) imply

(10) (1 − Cε) ‖ (f,~P) ‖Cm(Rn)≤ Nε(f,~P) ≤ (1 + Cε) ‖ (f,~P) ‖Cm(Rn),
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and

(11) ‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ (f,~P) ‖Cm(Rn).

Next, we prepare to express Algorithms 28.1 and 28.2 in our new notation. A Wh(E)-

descriptor η takes the form

(12) η = (Fns(E) ⊕ Wh0(E), W, λ1, . . . , λI),

where W is a finite-dimensional vector space, and λ1, . . . , λI : Fns(E) ⊕ Wh0(E) ⊕ W → R
are linear functionals. We write (f,~P,w) to denote an element of Fns(E) ⊕ Wh0(E) ⊕ W,

and we write λi(f,~P,w) to denote the value of the linear functional λi applied to the vector

(f,~P,w).

Let η be a Wh(E)-descriptor in the form (12).

Then, for (f,~P) ∈ Fns(E) ⊕ Wh0(E), we have

(13) Λ((f,~P), η) = min
w∈W

max
i=1,...,I

|λi(f,~P,w)|.

Some of our computations will involve Fns(E)-descriptors η̌. We identify Fns(E) with RN

(N = #(E)), by taking the co-ordinates of f ∈ Fns(E) to be the function values f(x)

(all x ∈ E). Thus, a Fns(E)-descriptor η̌ can be stored in the computer as a matrix, as

described in Section 26.

The reformulations of Algorithms 28.1 and 28.2 in our new notation are as follows.

Algorithm 29.2. Given ε > 0, assumed to be less than a small enough controlled constant;

and given a set E ⊂ Rn, with #(E) = N, 2 ≤ N < ∞; we compute a Wh(E)-descriptor η in

the form (12), with the following properties.

(14) Let (f,~P) ∈ Wh(E). Then the number Nε(f,~P) computed from ε, (f,~P) by Algorithm

29.1 differs by at most a factor of (1 + Cε) from Λ((f,~P), η); see (13).

(15) In (12), we have I ≤ exp(C/ε)N and dim W ≤ exp(C/ε)N.
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Moreover,

(16) The work and storage used to compute η are at most exp(C/ε) · N2.

Algorithm 29.3. Given ε, E, N as in Algorithm 29.2, and given a Whitney field

(f,~P) ∈ Wh(E), we compute a (1 + Cε)-optimal vector w0 ∈ W for (f,~P) and η, where

η is the Wh(E)-descriptor computed from ε, E by Algorithm 29.2.

The work and storage used to compute w0 are at most exp(C/ε) · N2.

As a simple consequence of Theorem 4 from the introduction (see Fefferman-Klartag

[FK1,FK2]), we have the following algorithm.

Algorithm 29.4. Given f ∈ Fns(E), with E ⊂ Rn, #(E) = N, 2 ≤ N < ∞, we compute
~P# ∈ Wh0(E) such that

(17) ‖ (f,~P#) ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn).

The computation of ~P# uses work at most CN log N, and storage at most CN.

Explanation: By Theorem 4, we can compute a function F ∈ Cm(Rn), such that F = f on

E, and ‖ F ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn). The computation of F involves one-time work at most

CN log N, storage at most CN, and query work at most C log N.

We take

~P# = (P#
x )x∈E , where P#

x = Jx(F) − f(x) for x ∈ E .

Thus, ~P# ∈ Wh0(E), and the Whitney field (f,~P#) agrees with F, in the sense that

F(x) = f(x) for x ∈ E, and

∂αF(x) = ∂αP#
x (x) for 0 < |α| ≤ m , x ∈ E .

Hence, (2) yields ‖ (f,~P#) ‖Cm(Rn)≤‖ F ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn). This proves (17). The

work and storage of our algorithm are as asserted.

This completes our explanation of Algorithm 29.4.



The Cm Norm of a Function with Prescribed Jets II 185

Algorithm 29.5. Given ε > 0, assumed to be less than a small enough controlled constant;

and given f ∈ Fns(E), with E ⊂ Rn, #(E) = N, 2 ≤ N < ∞; we compute a number

Nε(f) ≥ 0 and a function F ∈ Cm(Rn), with the following properties.

(18) F = f on E.

(19) ‖ F ‖Cm(Rn)≤ (1 + Cε) · Nε(f).

(20) Nε(f) ≤ (1 + Cε) · ‖ f ‖Cm(Rn).

The algorithm uses one-time work at most exp(C/ε)N5(log N)2, query work at most

C log(N/ε), and storage at most exp(C/ε)N2.

Explanation: The algorithm proceeds in several steps.

Step 1: Applying Algorithm 29.2 to ε, E, we compute a Wh(E)-descriptor

(21) η = (Fns(E) ⊕ Wh0(E),W, λ1, . . . , λI),

satisfying (14) and (15).

The work and storage of Step 1 are at most exp(C/ε)N2, by (16).

In (21), each λi is a linear functional on [Fns(E) ⊕ Wh0(E)] ⊕ W. We may instead

regard λi as a linear functional on Fns(E)⊕ [Wh0(E)⊕W].

This allows us to carry out the next step below.

Step 2: We compute the Fns(E)-descriptor η̌, defined by

(22) η̌ = (Fns(E), Wh0(E) ⊕W, λ1, . . . , λI).

Thanks to (15), we see easily that

(23) The length and dimension of η̌ are at most exp(C/ε)N.
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Moreover, the task of computing η̌ from η is trivial; it requires work and storage at most

exp(C/ε)N2.

Let us discuss the relationship of η and η̌ to Cm-norms.

For any ~P ∈ Wh0(E), (10) and (14) together show that

(24) (1 − Cε) ‖ (f,~P) ‖Cm(Rn)≤ min
w∈W

max
i=1,...,I

|λi(f,~P,w)| ≤ (1 + Cε) ‖ (f,~P) ‖Cm(Rn) .

(Here we have also used (13).)

Taking the infimum over ~P in (24), and recalling (4), we see that

(25) (1 − Cε) ‖ f ‖Cm(Rn)≤ inf
(~P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f,~P,w)| ≤ (1 + Cε) ‖ f ‖Cm(Rn) .

That is,

(26) (1 − Cε) ‖ f ‖Cm(Rn)≤ Λ(f, η̌) ≤ (1 + Cε) ‖ f ‖Cm(Rn),

thanks to (22) and the definition of Λ(f, η̌).

In view of (26), we would like to compute Λ(f, η̌) up to a factor (1 + Cε), using Algorithm

26.3.

One of the inputs to that algorithm is a vector, assumed to satisfy condition (†) in Section

26. To produce such a vector, we proceed as follows.

Step 3: Applying Algorithm 29.4 to f, we compute ~P# ∈ Wh0(E) such that

(27) ‖ (f,~P#) ‖Cm(Rn)≤ C ‖ f ‖Cm(Rn).

The work and storage used for Step 3 are at most CN log N and CN, respectively.

Step 4: Applying Algorithm 29.3 to ε, E, N and (f,~P#), we compute a (1 + Cε)-optimal

vector w# ∈ W for (f,~P#), η. Thus,
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(28) max
i=1,...,I

|λi(f,~P
#, w#)| ≤ (1 + Cε) · min

w∈W
max
i=1,...I

|λi(f,~P
#, w)|.

The work and storage used for Step 4 are at most exp(C/ε)N2.

Observe that

(29) max
i=1,...,I

|λi(f,~P
#, w#)| ≤ (1 + Cε) · min

w∈W
max

i=1,...,I
|λi(f, P

#, w)| (by (28))

≤ (1 + C′ε) ‖ (f,~P#) ‖Cm(Rn) (by (24))

≤ C ‖ f ‖Cm(Rn) (by (27)).

On the other hand, for any ~P ∈ Wh0(E), we have

‖ f ‖Cm(Rn)≤‖ (f,~P) ‖Cm(Rn) (by (4))

≤ (1 + Cε) · min
w∈W

max
i=1,...,I

|λi(f,~P,w)| (by (24)).

Consequently,

(30) ‖ f ‖Cm(Rn)≤ (1 + Cε) · min
(~P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f,~P,w)|.

(The minimum is achieved, thanks to an elementary remark from Section 26.)

Combining (29) and (30), we learn that

(31) max
i=1,...,I

|λi(f,~P
#, w#)| ≤ C min

(~P,w)∈Wh0(E)⊕W
max

i=1,...,I
|λi(f,~P,w)|.

Let us compare (22) and (31) with condition (†) in the statement of Algorithm 26.3. We

find that the vector (~P#, w#) satisfies (†) for the list of affine functions

Wh0(E)⊕W 3 (~P,w) 7→ λi(f,~P,w) (i = 1, . . . , I), with Γ in (†) equal to C in (31).

Thus, we are in position to apply Algorithm 26.3.
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Step 5: We apply Algorithm 26.3 to the list of affine functions (~P,w) 7→ λi(f,~P,w)

(i = 1, . . . , I), with (~P#, w#) here playing the rôle of the vector w0 in Algorithm

26.3. We recall that we can take Γ = C in Algorithm 26.3.

Thus, we compute a vector

(32) (~P0, w0) ∈ Wh0(E)⊕W,

such that

(33) max
i=1,...,I

|λi(f,~P
0, w0)| ≤ (1 + Cε) · min

(~P,w)∈Wh0(E)⊕W
max

i=1,...,I
|λi(f,~P,w)|.

Thanks to (23), we have I, D ≤ exp(C/ε)N in Algorithm 26.3. Therefore, the work

consumed by Step 4 is at most exp(C/ε)N5(log N)2, while the storage used is at most

exp(C/ε)N2. (These quantities dominate the work and storage used in Algorithm 29.5.

Thus, virtually all the work goes into solving one big linear programming problem.)

We now observe that

‖ f ‖Cm(Rn)≤‖ (f,~P0) ‖Cm(Rn) (by (4))

≤ (1 + Cε) · min
w∈W

max
i=1,...,I

|λi(f,~P
0, w)| (by (24))

≤ (1 + Cε) · max
i=1,...,I

|λi(f,~P
0, w0)|

≤ (1 + C′ε) · min
(~P,w)∈Wh0(E)⊕W

max
i=1,...,I

|λi(f,~P,w)| (by (33))

≤ (1 + C′′ε) · ‖ f ‖Cm(Rn) (by (25)).

In particular,

(34) ‖ f ‖Cm(Rn)≤‖ (f,~P0) ‖Cm(Rn)≤ (1 + C′′ε) · ‖ f ‖Cm(Rn).

This reduces matters to Algorithm 29.1. We proceed as follows.

Step 6: We apply Algorithm 29.1 to ε and (f,~P0).
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Thus, we compute a number Nε(f,~P
0) ≥ 0, and a function F ∈ Cm(Rn), with the

following properties.

(35) F = f on E.

(36) ∂αF(x) = ∂αP0,x(x) for 0 < |α| ≤ m, x ∈ E; where ~P0 = (P0,x)x∈E.

(37) ‖ F ‖Cm(Rn)≤ (1 + Cε)Nε(f,~P
0).

(38) Nε(f,~P
0) ≤ (1 + Cε) ‖ (f,~P0) ‖Cm(Rn).

The one-time work of Step 6 is at most exp(C/ε)N log N, while the query work is at most

C log(N/ε), and the storage used is at most exp(C/ε) · N. Finally, we mop up as follows.

Step 7: We set Nε(f) = Nε(f,~P
0), and take F as in Step 6. Let us check that Nε(f) and F

have the desired properties (18), (19), (20). In fact, we have already proven (18); see

(35). Also, (19) is immediate from (37), since we have just set Nε(f) = Nε(f,~P
0).

To check (20), we note that

Nε(f) = Nε(f,~P
0) ≤ (1 + Cε) ‖ (f,~P0) ‖Cm(Rn)≤ (1 + C′′′ε) ‖ f ‖Cm(Rn) ,

by (38) and (34). Thus, (18), (19), (20) hold.

We have seen that the one-time work of Steps 1...7 above is at most exp(C/ε)N5(log N)2,

while the query work (which occurs only in Step 6) is at most C log(N/ε), and the storage

used is at most exp(C/ε)N2.

This completes our explanation of Algorithm 29.5.

Note that (18), (19), (20) and the definition of ‖ f ‖Cm(Rn) show that

(39) (1 − Cε) ‖ f ‖Cm(Rn)≤ Nε(f) ≤ (1 + Cε) ‖ f ‖Cm(Rn),

and

(40) ‖ F ‖Cm(Rn)≤ (1 + Cε) · ‖ f ‖Cm(Rn), F = f on E.
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Thus, (39) and (40) hold for the number Nε(f) and the function F ∈ Cm(Rn) computed

by Algorithm 29.5.

Theorem 2 from the introduction is now obvious; in the case #(E) ≥ 2, we just apply

Algorithm 29.5 to ε′, f, with ε′ = c · min(ε, 1) for a small enough c.

The case #(E) = 1 follows; details are left to the reader.

References

[AMNSW] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An optimal algorithm
for approximate nearest neighbor searching in fixed dimensions, Journal of the
Association for Computing Machinery, Vol. 45, No. 6, (1998), 891-923.

[BiMP1] E. Bierstone, P. Milman, W. Paw lucki, Differentiable functions defined on
closed sets. A problem of Whitney, Inventiones Math. 151, No. 2 (2003),
329-352.

[BiMP2] E. Bierstone, P. Milman, W. Paw lucki, Higher-order tangents and Fefferman’s
paper on Whitney’s extension problem, Annals of Math., 164, no. 1 (2006),
361-370.

[BraBry] A. Brudnyi and Y. Brudnyi, Metric spaces with linear extensions preserving
Lipschitz condition, (to appear).

[B] Y. Brudnyi, On an extension theorem, Funk. Anal. i Prilzhen. 4 (1970), 97-98;
English transl. in Func. Anal. Appl. 4 (1970), 252-253.

[BS1] Y. Brudnyi and P. Shvartsman, The traces of differentiable functions to subsets
of Rn, in Linear and Complex Analysis, Lect. Notes in Math., Springer-Verlag
(1994), pp. 279-281.

[BS2] Y. Brudnyi and P. Shvartsman, A linear extension operator for a space of
smooth functions defined on closed subsets of Rn, Dokl. Akad. Nauk SSSR 280
(1985), 268-270.

[BS3] Y. Brudnyi and P. Shvartsman, Generalizations of Whitney’s extension theo-
rem, IMRN 3 (1994), 129-139.

[BS4] Y. Brudnyi and P. Shvartsman, The Whitney problem of existence of a linear
extension operator, J. Geometric Analysis 7, No. 4 (1997), 515-574.

[BS5] Y. Brudnyi and P. Shvartsman, Whitney’s extension problem for multivariate
C1,w functions, Trans. Amer. Math. Soc. 353, No. 6 (2001), 2487-2512.



The Cm Norm of a Function with Prescribed Jets II 191

[CK] P.B. Callahan and S. R. Kosaraju, A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields, Jour-
nal of the Association for Computing Machinery, 42, No. 1 (1995), 67-90.

[D] M. Dyer, A class of convex programs with applications to computational geom-
etry, Proceedings of the Eighth Annual Symposium on Computational Geom-
etry, (1992), 9-15.

[F1] C. Fefferman, Interpolation and extrapolation of smooth functions by linear
operators, Revista Matematica Iberoamericana, 21 No. 1 (2005), 313-348.

[F2] C. Fefferman, A sharp form of Whitney’s extension theorem, Annals of Math.,
161 (2005), 509-577.

[F3] C. Fefferman, Whitney’s extension problem for Cm, Annals of Math., 164, no.
1 (2006), 313-359.

[F4] C. Fefferman, Whitney’s extension problem in certain function spaces,
(preprint).

[F5] C. Fefferman, A generalized sharp Whitney theorem for jets, Revista Matem-
atica Iberoamericana, 21, no. 2 (2005), 577-688.

[F6] C. Fefferman, Extension of Cm,ω smooth functions by linear operators, Revista
Matematica Iberoamericana, (to appear).

[F7] C. Fefferman, Cm extension by linear operators, Annals of Math., (to appear).

[F8] C. Fefferman, Fitting a Cm-smooth function to data III, (to appear).

[F9] C. Fefferman, The Cm Norm of a Function with Prescribed Jets I, (to appear).

[FK1] C. Fefferman and B. Klartag, Fitting a Cm-smooth function to data I, Annals
of Math., (to appear).

[FK2] C. Fefferman and B. Klartag, Fitting a Cm-smooth function to data II, Revista
Matematica Iberoamericana, (to appear).

[FK3] C. Fefferman and B. Klartag, An example related to Whitney extension with
almost minimal Cm norm, (to appear).

[G] G. Glaeser, Etudes de quelques algebres tayloriennes, J d’Analyse 6 (1958),
1-124.

[H-PM] S. Har-Peled and M. Mendel, Fast construction of nets in low-dimensional
metrics, and their applications, SIAM J. Comput., 35, 5 (2006), 1148-1184.

[J] F. John, Extremum problems with inequalities as subsidiary conditions, Stud-
ies and Essays Presented to R. Courant on his 60th Birthday, Interscience
Publishers, Inc., New York, (1948), 187–204.



The Cm Norm of a Function with Prescribed Jets II 192

[Ka] N. Karmarkar, A new polynomial-time algorithm for linear programming, Com-
binatorica, 4 (1984), 302-311.

[Kh] L. G. Khachiyan, A polynomial-time algorithm in linear programming, Doklady
Akademiia Nauk SSSR, 244: S (1979), pp. 1093-1096, translated in Soviet
Mathematics Doklady 20:1 (1979), pp. 191-194.

[Kn] D. Knuth, The Art of Computer Programming, Volume 1: Fundamental Al-
gorithms. 3rd edition, Addison-Wesley, 1997.

[Ma] B. Malgrange, Ideals of Differentiable Functions, Oxford U. Press, 1966.

[Me] N. Megiddo, Linear programming in linear time when the dimension is fixed ,
Journal of the Association for Computing Machinery 31, No. 1, (1984), 114-
127.

[PS] F.P. Preparata and M. I. Shamos, Computational Geometry: An introduction,
2nd edition, Texts and Monographs in Computer Science. Springer-Verlag, New
York, 1985.

[Sc] A. Schönhage, On the power of random access machines, Proc. 6th

Internat. Colloq. Automata Lang. Program. Lecture Notes Comput. Sci., Vol.
71, Springer Verlag (1979), 520-529.

[Sh1] P. Shvartsman, Lipschitz selections of multivalued mappings and traces of the
Zygmund class of functions to an arbitrary compact, Dokl. Acad. Nauk SSSR
276 (1984), 559-562; English transl. in Soviet Math. Dokl. 29 (1984), 565-568.

[Sh2] P. Shvartsman, On traces of functions of Zygmund classes, Sibirskyi Mathem.
J. 28 N5 (1987), 203-215; English transl. in Siberian Math. J. 28 (1987),
853-863.

[Sh3] P. Shvartsman, Lipschitz selections of set-valued functions and Helly’s theorem,
J. Geometric Analysis 12, No. 2 (2002), 289-324.

[St] E.M. Stein, Singular Integrals and Differentiability Properties of Functions,
Princeton U. Press, 1970.

[vN] J. von Neumann, First draft of a report on the EDVAC, Contract No. W-670-
ORD-492, Moore School of Electrical Engineering, Univ. of Penn., Philadel-
phia, 1945. Reprinted in IEEE Annals of the History of Computing, Vol. 15,
Issue 4, (1993), 27-75.

[We] R. Webster, Convexity, Oxford Science Publications, 1994.

[Wh1] H. Whitney, Analytic extensions of differentiable functions defined in closed
sets, Transactions A.M.S. 36 (1934), 63-89.



The Cm Norm of a Function with Prescribed Jets II 193

[Wh2] H. Whitney, Differentiable functions defined in closed sets I, Transactions
A.M.S. 36 (1934), 369-389.

[Wh3] H. Whitney, Functions differentiable on the boundaries of regions, Annals of
Math. 35 (1934), 482-485.

[Z1] N. Zobin, Whitney’s problem on extendability of functions and an intrinsic
metric, Advances in Math., vol. 133, 1, (1998), 96-132.

[Z2] N. Zobin, Extension of smooth functions from finitely connected planar do-
mains, Journal of Geom. Analysis, vol. 9, 3, (1999), 489-509.

June 13, 2007:gpp


