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§0. The Problem

Let m, n ≥ 1, and suppose we are given N points (x1, t1), . . . , (xN , tN) ∈ Rn × R. Let

Norm{(xν , tν)ν=1,...,N} denote the infimum of ‖ F ‖Cm(Rn) over all functions F ∈ Cm(Rn)

whose graphs pass through the given points. To avoid trivial cases, we assume that x1, . . . , xN

are all distinct. We want to know how many operations are needed to compute the order of

magnitude of Norm{(xν , tν)ν=1,...,N}. By “order of magnitude”, we mean the following: Two

numbers X, Y ≥ 0 determined by (x1, t1), . . . , (xN , tN) and m, n are said to have “the same

order of magnitude”, provided we have cX ≤ Y ≤ CX, with constants c and C depending

only on m and n. To “compute the order of magnitude” of X is to compute some Y such

that X and Y have the same order of magnitude.

Our algorithms work with exact real numbers. We ignore roundoff and overflow errors,

although our discussion could be modified to take account of these issues. By an “operation”,

we mean one of the following:

• An addition, subtraction, multiplication, or division of real numbers.

• A “comparison” of two real numbers x and y, i.e., the decision as to whether

x < y, x = y, or x > y.

• The act of reading a real number from memory.

• The act of writing a real number into memory.

We regard m and n as fixed, but N as very large. The main result of this paper is as

follows.

Theorem 1: The algorithm to be explained below computes the order of magnitude of

Norm{(xν , tν)ν=1,...,N} in at most CN2 operations, where C depends only on m and n.

Bo’az Klartag has greatly sharpened Theorem 1, obtaining N log N in place of N2. Bo’az

and I will write an extended version of this paper, including this sharpened result.

A significant feature of our algorithm is that it works for arbitrary collections of N points

in Rn × R. Under simplifying assumptions on the geometry of the points, it is easy to give

fast algorithms to compute the order of magnitude of Norm{(xν , tν)ν=1,...,N}.



Fitting a Cm-Smooth Function to Data: Preliminary Version 2

A delicate case arises, eg, when the points x1, . . . , xN ∈ R2 all lie close to the curve

V = {Q = 0} ⊂ R2, where Q is a low-degree polynomial. We are looking for a function

F ∈ Cm(R2), taking prescribed values at x1, . . . , xN , and having essentially the least possible

Cm norm. To compute such an F , it would be very helpful to determine the mth order Taylor

polynomial of F at each xi modulo a small error. Call these polynomials Pi(i = 1, . . . , N).

Because x1, . . . , xN lie close to V , it may be hard to determine the Pi, except perhaps

modulo Q. On the other hand, suppose that the line segment joining two nearby points

x10 and x27 meets V at a not-so-small angle. For xi near x10 and x27, we expect that

~ν · ∇Pi(xi) ≈ (F (x10) − F (x27))/|x10 − x27|, where ~ν is the unit vector in the direction of

x10−x27. Consequently, for some of the xi, the data F (x1) = t1, . . . , F (xN) = tN allow us to

distinguish between the two hypotheses Pi = P and Pi = P + Q. More generally, anything

we learn about some Pj may also teach us something about Pi for i 6= j. This remark plays

a key rôle in our algorithm. We invite the reader to trace what our algorithm does when

x1, . . . , xN are as above. From now on, we confine our attention to the general case.

Instead of demanding that the graph of F pass through (x1, t1), . . . , (xN , tN), we could

have asked merely that the graph of F lie close to the (xν , tν). Thus, suppose we are given

points (x1, t1), . . . , (xN , tN) ∈ Rn × R, and “tolerances” σ1, σ2, . . . , σN ∈ [0,∞). We define

Norm{(xν , tν , σν)ν=1,...,N} as the infimum of all M > 0 for which there exists F ∈ Cm(Rn),

such that

‖ F ‖Cm(Rn)≤ M , and |F (xν)− tν | ≤ Mσν for ν = 1, . . . , N .

(This reduces to Norm{(xν , tν)ν=1,...,N} in the special case σ1 = σ2 = · · · = σN = 0.) An ob-

vious variant of our algorithm allows us to compute the order of magnitude of

Norm{(xν , tν , σν)} in at most CN2 operations, as in Theorem 1. The main change needed

to accommodate this generalization occurs in Section 8 below, where we would have to apply

the main results of [11] in full force, rather than the special case called Theorem 2 in this

paper. We omit the details.

This paper is part of a literature on the problem of extending a given function

f : E → R, defined on an arbitrary set E ⊂ Rn, to a function F ∈ Cm(Rn). The question

goes back to Whitney [25,26,27], with significant contributions by Glaeser [17], Brudnyi-

Shvartsman [4,...,9 and 20,21,22], A. and Y. Brudnyi [3], Zobin [28,29], and Bierstone-

Milman-Paw lucki [1,2]; see also my papers [10,...,16]. Here, we take E = {x1, . . . , xN}
finite, and we pose the question from the viewpoint of theoretical computer science.
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We see no reason to believe that our algorithm is best possible, and we look forward to

future improvements. For the case m = 1, an essentially optimal solution is contained in

the work of Har-Peled and Mendel [18]. We thank A. Naor for pointing this out. Section 9

below mentions a few open problems.

I am grateful to Gerree Pecht for LATEXing this paper to ever-impeccable

“Gerree standards.”

§1. The Plan

The idea behind our algorithm starts with the following elementary remarks. Suppose

F ∈ Cm(Rn), with F (xν) = tν for ν = 1, . . . , N . Let M̄ > 0 be an upper bound for

‖ F ‖Cm(Rn), and let C denote a constant depending only on m and n. Let Pν denote the

(m − 1)rst degree Taylor polynomial of F at the point xν . Then, for each ν = 1, . . . , N , we

have

(1) |∂αPν(xν)| ≤ M̄ for |α| ≤ m− 1; and Pν(xν) = tν .

Moreover, for any ν, µ = 1, . . . , N , Taylor’s theorem gives

(2) |∂α(Pν − Pµ)(xν)| ≤ CM̄ |xν − xµ|m−|α| for |α| ≤ m− 1 .

To exploit these remarks, we introduce the vector space P of all (real-valued) m − 1rst

degree polynomials on Rn; and we define a family of (possibly empty) convex subsets

Γ(xν , `,M) ⊂ P by the following induction on `:

For ` = 1, 1 ≤ ν ≤ N , M ∈ (0,∞), we define

(3) Γ(xν , 1, M) = {P ∈ P : |∂αP (xν)| ≤ M for |α| ≤ m− 1, and P (xν) = tν} .

For ` ≥ 1, suppose we have already defined the sets Γ(xµ, `,M). Then, for 1 ≤ ν ≤ N and

M ∈ (0,∞), we define

(4) Γ(xν , ` + 1, M) = {P ∈ P : For each µ, there exists P ′ ∈ Γ(xµ, `,M) ,

such that |∂α(P − P ′)(xν)| ≤ M |xν − xµ|m−|α| for |α| ≤ m− 1}
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Then observations (1),(2), and an obvious induction on `, show that Pν ∈ Γ(xν , `, CM̄) for

each ν, `. In particular,

(5) Whenever M ≥ C · Norm{(xν , tν)ν=1,...,N}, we have Γ(xν , `,M) 6= φ

for all `, ν. (As usual, φ denotes the empty set.)

Conversely, for an `∗ ≥ 1, depending only on m and n, the following holds:

(6) Let M > 0, and suppose that Γ(xν , `∗, M) 6= φ for all ν.

Then Norm {(xν , tν)ν=1,...,N} ≤ C ·M .

We will prove (6) in Section 8 below, by reducing it to a result from [11]. (See also Brudnyi-

Shvartsman [7].) From (5) and (6), we see that

(7) Norm {(xν , tν)ν=1,...,N} has the same order of magnitude as

inf {M > 0 : Γ(xν , `∗, M) 6= φ for each ν = 1, . . . , N}.

The idea of our algorithm is to compute the approximate size and shape of the convex sets

Γ(xν , `,M) by following the induction (3), (4); and then to read off the order of magnitude

of Norm{(xν , tν)ν=1,...,N} from (7). In the next few sections, we explain more precisely what

this means, and how to carry it out.

§2. The Data Structures

In this section, we define the basic data structures used to specify the “approximate

size and shape” of the convex sets Γ(xν , `,M) from Section 1. We also define some basic

operations on those data structures. Let V be a finite-dimensional (real) vector space.

A “blob” in V is a family K = (KM)M>0 of (possibly empty) convex subsets KM ⊆ V ,

parametrized by M ∈ (0,∞), such that M < M ′ implies KM ⊆ KM ′ . The “onset” of a blob

K = (KM)M>0 is defined as the infimum of all the M > 0 for which KM 6= φ. (If all KM are

empty, then onset K = +∞.)

Suppose K = (KM)M>0 and K′ = (K ′
M)M>0 are blobs in V , and let C ≥ 1 be a constant.

We say that K and K′ are “C-equivalent” if they satisfy KM ⊆ K ′
CM and K ′

M ⊆ KCM for

all M ∈ (0,∞).
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Note that, if K and K′ are C1-equivalent, and if K′ and K′′ are C2-equivalent, then K and

K′′ are C1 · C2-equivalent. Note also that, if K and K′ are C-equivalent, then

(1/C) · onset K ≤ onset K′ ≤ C· onset K.

For fixed xν , ` ≥ 1, the family of sets (Γ(xν , `,M))M>0 from the previous section forms a

blob in P , which we call Γ(xν , `). In the language of blobs, the fundamental result (7) from

the previous section becomes

(0) Norm{(xν , tν)ν=1,...,N} has the same order of magnitude as

max{onset Γ(xν , `∗) : ν = 1, . . . , N}.

Among all the blobs in V , we focus attention on those given by “Approximate Linear

Algebra Problems”, or “ALPs”. To define these, let λ1, . . . , λL be (real) linear functionals

on V , let b1, . . . , bL be real numbers, let σ1, . . . , σL be non-negative real numbers, and let

M∗ ∈ [0, +∞]. We call

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗]

an “ALP” in V . With A given by (1), we define a blob

(2) K(A) = (KM(A))M>0 in V , by setting

(3) KM(A) = {v ∈ V : |λ`(v)− b`| ≤ M · σ` for ` = 1, . . . , L} for M ≥ M∗, and

(4) KM(A) = φ for M < M∗.

(Our definition (3) motivates the use of the phrase “approximate linear algebra problem”.)

We allow L = 0 in (1), in which case (3) says simply that KM(A) = V for M ≥ M∗.

An “ALP” is intermediate in generality between a linear algebra problem and a linear pro-

gramming problem.

We call K(A) “the blob (in V ) arising from the ALP A”. Unlike a general blob, an ALP

is specified by finitely many (real) parameters, and may therefore be manipulated by algo-

rithms. We call L and M∗ in (1), respectively, the “length” and “threshold” of the ALP

A.



Fitting a Cm-Smooth Function to Data: Preliminary Version 6

To “compute the approximate size and shape” of the Γ(xν , `,M), we will exhibit an ALP

Aν,` in P , such that the blobs K(Aν,`) and Γ(xν , `) are C-equivalent, with C depending only

on `, m, n.

In particular, onset K(Aν,`∗) and onset Γ(xν , `∗) will therefore have the same order of mag-

nitude, so that (0) implies

(5) Norm{(xν , tν)ν=1,...,N} has the same order of magnitude as

max{onset K(Aν,`∗) : ν = 1, . . . , N}.

To exhibit the Aν,`, we will follow the inductive process (3), (4) from Section 1. We will

construct the Aν,` in the next section. Here, we prepare the way by defining a few elementary

operations on blobs and ALPs.

First, suppose V = V1 ⊕ V2 is a direct sum of vector spaces, and let K = (KM)M>0 be a

blob in V2. Then we obtain trivially a blob V1 ⊕ K = (V1 ⊕KM)M>0 in V1 ⊕ V2, by setting

V1 ⊕ KM = {(v1, v2) ∈ V1 ⊕ V2 : v2 ∈ KM}. In particular, if K = K(A) is the blob in V2

arising from an ALP A, then also V1 ⊕ K = K(A+) is the blob in V1 ⊕ V2 arising from an

ALP A+; the ALP A+ is constructed from A in a trivial manner. The ALP’s A+ and A
have the same length.

Next, suppose V = V1 ⊕ V2, let π : V → V1 be the natural projection, and let

K = (KM)M>0 be a blob in V . Then we define the blob πK in V1 by setting

(6) πK = (πKM)M>0.

If K = K(A) is the blob in V arising from an ALP A, then there exists an ALP Ā in V1,

such that the blob πK is C-equivalent to K(Ā), with C depending only on dim V . In Section

6 below, we will show how to compute Ā from A. Our Ā will have length at most dim V1.

(One can also exhibit an ALP Ā′ in V1, such that K(Ā′) = πK. However, the length of Ā′

will be more than dim V1. We make no use of Ā′.)

Now let V be a vector space, and suppose that Kν = (Kν
M)M>0 is a blob in V , for each

ν = 1, 2, . . . , N . Then we define the intersection K1 ∩ · · · ∩ KN by setting
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K1 ∩ · · · ∩ KN = (K1
M ∩ · · · ∩KN

M)M>0 .

If each Kν = K(Aν) for an ALP Aν , then their intersection has the form

K1 ∩ · · · ∩ KN = K(Â) ,

for an ALP Â determined from A1, · · · ,AN in an obvious way. In particular, the length of

Â is the sum of the lengths of the Aν .

The above operations on blobs behave well with respect to C-equivalence. In fact, if K
and K′ are C-equivalent blobs in V2, then (trivially) V1 ⊕ K and V1 ⊕ K′ are C-equivalent

blobs in V1 ⊕ V2. Also, if π : V1 ⊕ V2 → V1 is the natural projection, and if K and K′ are

C-equivalent blobs in V1 ⊕ V2, then (trivially) πK and πK′ are C-equivalent blobs in V1.

Finally, if Kν is C-equivalent to (K′)ν for ν = 1, . . . , N , then (trivially) K1 ∩ · · · ∩ KN is

C-equivalent to (K′)1 ∩ · · · ∩ (K′)N .

Let A be any ALP in a vector space V . Then K(A) is C-equivalent to K(A#) for

another ALP A#, with length (A#) ≤ dim V , and with C depending only on dim V . In

Section 6 below, we prove this fact and show how to compute A# from A. Moreover, the A#

constructed in Section 6 has the additional property that onset K(A#) = threshold (A#).

This allows us to replace a long ALP A by a short one A#, and also to compute the order

of magnitude of the onset of K(A).

§3. The ALPs

In this section, we use the algorithms sketched and promised in the previous section, to

compute, for each ν = 1, . . . , N and ` ≥ 1 an ALP Aν,` in P , with the following properties:

(1)` length (Aν,`) ≤ dimP + 1; and

(2)` The blobs Γ(xν , `) and K(Aν,`) are C-equivalent, with C depending only on `, m, n.

Once we have found the Aν,`, then, in view of (2)`, we will have “computed the approximate

size and shape” of Γ(xν , `,M).
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To compute the Aν,` and prove (1)` and (2)`, we proceed by induction on `, following the

induction (3), (4) in Section 1.

For ` = 1, we simply recall that Γ(xν , 1, M) is defined as

Γ(xν , 1, M) = {P ∈ P : |∂αP (xν)| ≤ M · 1 for |α| ≤ m− 1, and |P (xν)− tν | ≤ M · 0}

for all M ∈ (0,∞). Thus, Γ(xν , 1) = K(Aν,1) for an obvious ALP Aν,1 of length dimP + 1.

In particular, (1)` and (2)` hold for ` = 1.

For the inductive step, we fix ` ≥ 1, and we suppose we are given ALPs Aν,` in P (for

ν = 1, . . . , N) satisfying (1)` and (2)`. We show how to compute ALPs Aν,`+1 (ν = 1, . . . , N)

satisfying (1)`+1 and (2)`+1. We write C to denote constants depending only on `, m, n.

Let us break up the inductive step (4) in Section 1 into little, easy steps. Given the

Γ(xν , `) (ν = 1, . . . , N), we proceed as follows.

Step 1: For each µ = 1, · · · , N , we form the blob Γ+(xµ, `) = P ⊕ Γ(xµ, `) in P ⊕ P .

Step 2: For each ν, µ = 1, . . . , N , we form the blob Ων,µ in P ⊕ P , given by

Ων,µ = (Ων,µ,M)M>0, with

Ων,µ,M = {(P, P ′) ∈ P ⊕P : |∂α(P − P ′)(xν)| ≤ M |xν − xµ|m−|α| for |α| ≤ m− 1}
for M ∈ (0,∞) .

Step 3: For each ν, µ = 1, . . . , N , we form the blob

Γ#(xν , xµ, `) := Γ+(xµ, `) ∩ Ων,µ in P ⊕ P .

Thus, Γ#(xν , xµ, `) = (K#
ν,µ,`,M)M>0, with

K#
ν,µ,`,M = {(P, P ′) ∈ P ⊕ P : P ′ ∈ Γ(xµ, `,M) , and

|∂α(P − P ′)(xν)| ≤ M |xν − xµ|m−|α| for |α| ≤ m− 1} for M ∈ (0,∞) .

Step 4: For each ν, µ = 1, · · · , N , we form the blob

Γ̄(xν , xµ, `) = πΓ#(xν , xµ, `) in P , where π : P ⊕ P → P

is the projection (P, P ′) 7→ P .
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Thus, Γ̄(xν , xµ, `) = (K̄ν,µ,`,M)M>0, where

K̄ν,µ,`,M = {P ∈ P : There exists P ′ ∈ Γ(xµ, `,M) , with

|∂α(P − P ′)(xν)| ≤ M |xν − xµ|m−|α| for |α| ≤ m− 1} for M ∈ (0,∞) .

Step 5: For each ν = 1, . . . , N , we form the blob

Γ(xν , ` + 1) =
N⋂

µ=1

Γ̄(xν , xµ, `) in P .

Thus, Γ(xν , ` + 1) = (Γ(xν , ` + 1, M))M>0, with

Γ(xν+1, `+1, M) = {P ∈ P : For each µ = 1, . . . , N, there exists P ′ ∈ Γ(xµ, `,M) ,

such that |∂α(P − P ′)(xν)| ≤ M |xν − xµ|m−|α| for |α| ≤ m− 1} for M ∈ (0 , ∞).

The result of Step 5 agrees precisely with (4) in Section 1.

Using the algorithms sketched or promised in the preceding section, we will carry out the

analogue of Steps 1,...,5 for ALPs. We proceed as follows.

Step 1′: For each µ = 1, . . . , N , we form an ALP A+
µ,` in P ⊕ P, such that

P ⊕K(Aµ,`) = K(A+
µ,`).

Step 2′: For each ν, µ = 1, . . . , N , we form an ALP Bν,µ in P⊕P such that K(Bν,µ) = Ων,µ,

with Ων,µ as in Step 2.

Step 3′: For each ν, µ = 1, . . . , N , we form an ALP A#
ν,µ,` in P ⊕ P such that

K(A+
µ,`) ∩ K(Bν,µ) = K(A#

ν,µ,`).

Step 4′: For each ν, µ = 1, . . . , N , we form an ALP Āν,µ,` in P , such that K(Āν,µ,`) is

C-equivalent to πK(A#
ν,µ,`), with π as in Step 4.

Step 5′: For each ν = 1, . . . , N , we form an ALP Ãν,`+1 in P , such that

K(Ãν,`+1) =
N⋂

µ=1

K(Āν,µ,`).
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Finally, we carry out one more step, namely

Step 6′: For each ν = 1, . . . , N , we form an ALP Aν,`+1 in P , such that

length (Aν,`+1) ≤ dimP , and such that the blobs K(Ãν,`+1) and K(Aν,`+1) are

C-equivalent.

The algorithms sketched or promised in the previous section allow us to carry out the

above six steps.

Let us compare the outcome of Steps 1′,...,6′ with that of Steps 1,...,5. Comparing Steps

1 and 1′, and recalling our inductive hypothesis (2)`, we see that the blobs Γ+(xµ, `) and

K(A+
µ,`) are C-equivalent. Since also the blobs Ων,µ from Step 2 and K(Bν,µ) from Step

2′ are equal, it follows that the blobs Γ#(xν , xµ, `) and K(A#
ν,µ,`) from Steps 3 and 3′ are

C-equivalent. Consequently, the blobs Γ̄(xν , xµ, `) and K(Āν,µ,`) from Steps 4 and 4′ are

C-equivalent. This in turn implies that the blobs Γ(xν , ` + 1) and K(Ãν,`+1) from Steps 5

and 5′ are C-equivalent. Since in Step 6′, we have length (Aν,`+1) ≤ dimP , with K(Ãν,`+1)

and K(Aν,`+1) being C-equivalent, it follows that the Aν,`+1 satisfy (1)`+1 and (2)`+1.

This completes our induction on `. We have succeeded in computing the Aν,` modulo the

algorithms sketched or promised in Section 2.

Regarding the ALPs arising in Steps 1′,...,6′ above, we note that:

• A+
µ,` has length at most dimP + 1, since the same is true of Aµ,`.

• Bν,µ has length dimP .

• A#
ν,µ,` has length equal to length (A+

ν,`) + length (Bν,µ), which is at most 2 · dimP + 1.

• Āν,µ,` has length at most dimP . (See the discussion of πK in Section 2).

• Ãν,`+1 has length
N∑

µ=1

length (Āν,µ,`) ≤ (dimP) · N .

• Aν,`+1 has length at most dimP , by definition.

Once we have computed Aν,`∗ for ν = 1, . . . , N , we can then compute the order of

magnitude of the onsets of K(A1,`∗), . . . ,K(AN,`∗), as promised in Section 2.
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From estimate (5) in Section 2, we can then read off the order of magnitude of

Norm{(xν , tν)ν=1,...,N}.

To complete the proof of Theorem 1, it remains to exhibit the algorithms promised in

Section 2, to estimate the number of operations required for our algorithms, and to prove

(6) from Section 1.

§4. Row Operations on ALPs

In this section, we show how to perform elementary row operations on ALPs, analogous

to the elementary processes of linear algebra. This will be used later to exhibit the algorithms

promised in Section 2. Our row operations are of three types.

To describe our first row operation, let

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗]

be an ALP in a vector space V , and let π : {1, . . . , L} → {1, . . . , L} be a permutation.

Then

Aπ = [(λπ1, . . . , λπL), (bπ1, . . . , bπL), (σπ1, . . . , σπL), M∗]

is again an ALP in V , and, evidently, K(A) = K(Aπ). We say that Aπ arises from A
by “permuting rows”. (In the next section, we will regard each λ` as a row vector.) Our

second type of row operation arises for an ALP (1) in case there is some L̄ < L such that

λL̄+1 = λL̄+2 = · · · = λL = 0. In that case, for L̄ < ` ≤ L, the estimate |λ`(v)− b`| ≤ Mσ`,

appearing in the definition of K(A), reduces to |b`| ≤ Mσ`, which is equivalent to M ≥ M∗
`

for an M∗
` ∈ [0,∞] determined trivially by b` and σ`. Consequently, we have K(A) = K(Ā),

where

Ā = [(λ1, . . . , λL̄), (b1, . . . , bL̄), (σ1, . . . , σL̄), max{M∗, M
∗
L̄+1, . . . ,M

∗
L}] .

We say that Ā arises from A by “stripping away zeros”.

Our third row operation on ALP (1) arises by adding a multiple of one of the functionals

λ1, . . . , λL to each of the other λ’s. More precisely, let A be the ALP given by (1), and let

1 ≤ `0 ≤ L. Suppose we are given real coefficients β1, . . . , βL, with β`0 = 0. We define a new

ALP Â in V , by setting
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(2) Â = [(λ̂1, . . . , λ̂L), (b̂1, . . . , b̂L), (σ1, . . . , σL), M∗] , where

(3) λ̂` = λ` + β`λ`0 and b̂` = b` + β`b`0 for ` = 1, . . . , L.

The blobs K(A) and K(Â) are then related by the following simple result.

Proposition: Assume that |β`| · σ`0 ≤ σ` for ` = 1, . . . , L. Then the blobs K(A) and K(Â)

are 2-equivalent.

Proof: Fix M ≥ M∗, and let v ∈ KM(A) (as in (3), (4) from Section 2). Then, for

` = 1, . . . , L, we have |λ`(v)− b`| ≤ Mσ`, and consequently

|λ̂`(v)− b̂`| = |[λ`(v)− b`] + β`[λ`0(v)− b`0)]| ≤ Mσ` + |β`| · Mσ`0

≤ 2Mσ` , since |β`|σ`0 ≤ σ` .

This shows that

(4) KM(A) ⊆ K2M(Â)

for all M ≥ M∗. One the other hand, (4) is obvious for M < M∗, since KM(A) is empty in

that case. Thus, (4) holds for all M > 0.

Moreover, since β`0 = 0, (3) implies

λ` = λ̂` − β`λ̂`0 and b` = b̂` − β` b̂`0 for ` = 1, . . . , L .

Hence, we may repeat the proof of (4), with the rôles of A and Â interchanged, to conclude

that

(5) KM(Â) ⊆ K2M(A)

for all M > 0. Inclusions (4) and (5) tell us that the blobs K(A) and K(Â) are 2-equivalent.

The proof of the proposition is complete. �
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When A and Â are related as in (1), (2), (3), with β`0 = 0, then we say that Â arises from

A by “row addition.” If also |β`|σ`0 ≤ σ` for all ` = 1, . . . , L so that the above Proposition

applies, then we say that Â arises from A by “stable row addition.”

§5. Echelon Form

In this section, we use the elementary row operations from Section 4 to place a given

ALP A into “echelon form”, somewhat like the standard echelon form in linear algebra. In

the next section, we use our echelon form to exhibit the algorithms promised in Section 2.

We take our vector space V to be RD. Let

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗]

be an ALP in V . Each functional λ` may be identified with a row vector,

λ` = (λ`1, . . . , λ`D) ∈ RD. Thus the ALP A may be rewritten in the form

(2) A = [(λ`j) 1≤`≤L
1≤j≤D

, (b`)1≤`≤L, (σ`)1≤`≤L, M∗] .

For 0 ≤ I ≤ L, we say that an ALP A as in (2) is in “echelon form through row I”, with

“pivots” p1, . . . , pI , if the following conditions are satisfied.

(EF0)I : The pi are integers, and 1 ≤ p1 < p2 < · · · < pI ≤ D .

(EF1)I : λipi
6= 0 for i = 1, . . . , I.

(EF2)I : λij = 0 for 1 ≤ j < pi, i = 1, . . . , I.

(EF3)I : λij = 0 for 1 ≤ j ≤ pI , i > I. (If I = 0, then this holds vacuously.)

If I = 0, then there are no pivots, and (EF0)I , · · · , (EF3)I hold vacuously. Hence, any ALP

is in echelon form through row zero. On the other hand, an ALP can never be in echelon

form through row I with I > D, as one sees at once from (EF0)I . An ALP A which is in

echelon form through row L, with L= length (A) as in (1), (2), will be said to be in “echelon

form”. Note that an ALP in RD in echelon form has length at most D.
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To place a given ALP into echelon form by row operations, we repeatedly apply the

following result.

Lemma 1: Let A be an ALP as in (2). Suppose A is in echelon form through row I. Then

one of the following alternatives holds.

Alternative 1: λ`j = 0 for all ` > I,1 ≤ j ≤ D.

Alternative 2: There exists an ALP Ā in echelon form through row I +1, such that the blobs

K(A) and K(Ā) are 2-equivalent. Moreover, we can compute Ā from A, by an algorithm

that uses at most CDL operations, where C is a universal constant. Finally, Ā and A have

the same length.

Proof: Let p1, . . . , pI be the pivots for A. Suppose Alternative 1 doesn’t hold. We take pI+1

to be the least j for which there exists ` > I with p`j 6= 0. Thus,

(3) λ`,pI+1
6= 0 for some ` > I,

and

(4) λ`,j = 0 for j < pI+1, ` > I.

Also,

(5) pI < pI+1 ≤ D,

as we see by comparing (3) with (EF3)I .

Among all ` > I with λ`,pI+1
6= 0, we pick `0 to minimize σ`

/
|λ`,pI+1

|. By permuting rows

in A, we may assume without loss of generality that `0 = I + 1. Thus,

(6) λI+1,pI+1
6= 0,

and

(7) |λ`,pI+1

/
λI+1,pI+1

| · σI+1 ≤ σ` for all ` > I.

In fact, (7) holds trivially when λ`,pI+1
= 0, and it follows from the minimizing property of

`0 = I + 1 when λ`,pI+1
6= 0.

We now perform “addition of rows” on the ALP A, as in Section 4, using coefficients
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(8) β` = −λ`,pI+1

/
λI+1,pI+1

for all ` > I + 1,

(9) β` = 0 for ` ≤ I + 1.

Note that β`0 = βI+1 = 0, and that |β`| · σ`0 ≤ σ` for all `, thanks to (7), (8), (9). Hence,

the Proposition in Section 4 applies. Thus, from A, we obtain by “stable addition of rows”,

an ALP

(10) Â = [(λ̂`j) 1≤`≤L
1≤j≤D

, (b̂`)1≤`≤L, (σ`)1≤`≤L, M∗],

such that

(11) The blobs K(A) and K(Â) are 2-equivalent,

and

(12) λ̂`j = λ`j + β` λ`0j for all `, j.

From (8), (9), (12), we see that

(13) λ̂`j = λ`j for ` ≤ I + 1,

and

(14) λ̂`j = λ`j − (λ`,pI+1

/
λI+1,pI+1

) · λI+1,j for ` > I + 1.

In particular, (4) and (13), (14) give

(15) λ̂`j = 0 for j < pI+1, ` ≥ I + 1.

Another application of (14) gives λ̂`,pI+1
= 0 for ` > I + 1. Together with (15), this yields

(16) λ̂`j = 0 for j ≤ pI+1, ` > I + 1.
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It is now easy to check that

(17) Â is in echelon form through row I + 1, with pivots p1, . . . , pI+1.

In fact:

(EF0)I+1 for Â follows from (5) and (EF0)I for A.

(EF1)I+1 for Â follows from (6), (13) and (EF1)I for A.

(EF2)I+1 for Â follows from (13), (15) and (EF2)I for A.

(EF3)I+1 for Â is precisely (16).

Thus, (17) holds. In view of (11) and (17), we find ourselves in Alternative 2. Moreover, the

above argument produced Â from A by an algorithm, using at most CDL operations, as the

reader may easily check. Here, C denotes a universal constant. Finally, note that Â and A
above have the same length.

The proof of Lemma 1 is complete. �

Repeatedly applying Lemma 1, we can easily derive the main result of this section.

Lemma 2: Let A be an ALP in RD. Then there exists an ALP A# in echelon form in RD,

such that the blobs K(A) and K(A#) are 2D-equivalent. Moreover, we can compute A# from

A in at most CD2L operations, where C is a universal constant.

Proof: Starting at A0 = A, which is in echelon form through row zero, we repeatedly apply

Lemma 1, until we find ourselves in Alternative 1 in the statement of that lemma. (If we

never reach Alternative 1, then we continue forever.) Thus, we obtain a (finite or infinite)

sequence of ALPs A = A0,A1,A2, · · · , with AI in echelon form through row I, and such

that the blobs K(AI) and K(AI+1) are 2-equivalent. An ALP in RD can never be in echelon

form through row I > D, and therefore, our sequence terminates at some AJ , with J ≤ D.

Thus, K(A) and K(AJ) are 2D-equivalent, AJ is in echelon form through row J , and AJ

satisfies Alternative 1, i.e.,

AJ = [(λ̄`j) 1≤`≤L
1≤j≤D

, (b̄`)1≤`≤L, (σ̄`)1≤`≤L, M̄∗ ],
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with λ̄`j = 0 for J < ` ≤ L, 1 ≤ j ≤ D.

Stripping away zeros from AJ , we obtain an ALP A# in echelon form, with K(AJ) = K(A#).

Thus, K(A) and K(A#) are 2D-equivalent. Moreover, the above argument produces A# from

A using at most CD2L operations, since we apply Lemma 1 at most D times. Here, C denotes

a universal constant. The proof of Lemma 2 is complete. �

Corollary: In Lemma 2, the ALP A# has length ≤ min(D, length A).

Proof: We have length A# ≤ D, since A# is in echelon form. Also, Lemma 1 shows

that the ALPs A0,A1, · · · ,AJ in the proof of Lemma 2 all have the same length. Since

length A# ≤ length AJ , it follows that length A# ≤ length A. �

§6. Applications of Echelon Form

In this section, we apply our work on echelon form, to exhibit the following two algorithms

for ALPs. These algorithms were promised in Section 2.

Algorithm 1: Given an ALP A in RD, we exhibit an ALP A# of length ≤ D in RD, such

that the blobs K(A) and K(A#) are 2D-equivalent, and onset K(A#)= threshold (A#).

Algorithm 2: Let π : RD → RD̄ be the projection (x1, . . . , xD) 7→ (xD−D̄+1, . . . , xD). Given

an ALP A in RD, we exhibit an ALP Ā of length ≤ D̄ in RD̄, such that the blobs πK(A)

and K(Ā) are 2D-equivalent.

To carry out Algorithm 1, we simply take A# as in Lemma 2 in the previous section. We

know that A# has length ≤ D, and that K(A) is 2D-equivalent to K(A#). It remains to

check that onset K(A#) = threshold (A#). To see this, we recall the definitions.

With

(1) A# = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL), M∗] ,

we have

(2) threshold A# = M∗,

and

(3) onset K(A#) = inf{M > 0 : KM(A#) 6= φ}, where
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(4) KM(A#) = {v ∈ RD : |λ`(v)− b`| ≤ Mσ` for ` = 1, . . . , L} for M ≥ M∗,

and

(5) KM(A#) = φ for M < M∗.

Consequently, if we can show that

(6) KM(A#) 6= φ for M ≥ M∗,

then it follows that onset K(A#)= threshold A#. Thus, if we can prove (6), then we have

carried out Algorithm 1.

We recall that A# is in echelon form. Let 1 ≤ p1 < p2 < · · · < pL ≤ D be the pivots for

A#. Thus, the functionals λ` in (1) are given by

(7) λ` : (x1, . . . , xD) 7→ λ`1x1 + λ`2x2 + · · ·+ λ`DxD,

with

(8) λ`,p`
6= 0 and λ`,j = 0 for j < p`.

In view of the form (7), (8) of the λ`, we can successively choose the coordinates xD, xD−1, . . . , x1

in such a way that the vector v̄ = (x1, x2, . . . , xD) ∈ RD satisfies λ`(v̄) = b` for all

` = 1, . . . , L. The vector v̄ belongs to KM(A) for all M ≥ M∗, thanks to (4). This proves

(6), and completes our discussion of Algorithm 1.

We turn our attention to Algorithm 2. Again, we produce an ALP A# in RD, as in

Lemma 2 of the preceding section. Thus, (1),. . .,(8) hold, as before. Since K(A) and K(A#)

are 2D-equivalent, it follows that πK(A) and πK(A#) are 2D-equivalent. Hence, to carry out

Algorithm 2, it is enough to produce an ALP Ā of length ≤ D̄ in RD̄, such that πK(A#) =

K(Ā).

We recall from the definitions in Section 2 that

(9) πK(A#) = (πKM(A#))M>0.
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To understand the πKM(A#), we set

(10) Λ`o = {` : p` ≤ D − D̄} and Λhi = {` : p` ≥ D − D̄ + 1}.

For ` ∈ Λhi, (7) and (8) show that λ`(x1, . . . , xD) may be written in the form

λ̄`(xD−D̄+1, . . . , xD) for a functional λ̄` acting on RD̄.

We set

(11) K̄M = {(xD−D̄+1, . . . , xD) ∈ RD̄ : |λ̄`(xD−D̄+1, . . . , xD)− b`| ≤ Mσ` for ` ∈ Λhi}.

Comparing (4) with (10), we see at once that

(12) πKM(A#) ⊆ K̄M for M ≥ M∗.

On the other hand, suppose M ≥ M∗ and v̄ = (xD−D̄+1, . . . , xD) ∈ K̄M . In view of (7),

(8), (10), we may successively choose xD−D̄, xD−D̄−1, . . . , x1 so that v = (x1, . . . , xn) satisfies

λ`(v) = b` for all ` ∈ Λ`o. Thus, v ∈ KM(A#) by (4), and πv = v̄ by definition of v. This

proves that

(13) πKM(A#) ⊇ K̄M for M ≥ M∗.

From (5), (12), (13), we see that

(14) πKM(A#) = K̄M for M ≥ M∗,

and

(15) πKM(A#) = φ for M < M∗.

In view of (11), (14), (15), it is trivial to produce an ALP Ā in RD̄, such that

πK(A#) = K(Ā). Moreover, the length of Ā is equal to the number of elements in Λhi.

Since 1 < p1 < p2 < · · · < pL ≤ D, we see from (10) that Λhi contains at most D̄ elements.

Thus, we have produced an ALP Ā of length ≤ D̄ in RD̄, such that πK(A#) = K(Ā).

This is the task to which we had reduced Algorithm 2.
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Note that the number of operations needed to carry out Algorithms 1 and 2 is at most

CD2·length (A), where C is a universal constant.

§7. The Main Algorithm

The preceding section provides the algorithms promised in Section 2. Hence, we can

compute the ALPs Aν,`∗(ν = 1, . . . , N), as described in Section 3. As promised in Section 2

and explained in Section 6, we can compute a number Yν having the same order of magnitude

as onset (Aν,`∗), for each ν. Finally, we return the answer

(1) ANS = max{Yν : ν = 1, . . . , N}.

This completes the description of our main algorithm.

Once we prove the key estimate (6) in Section 1, we will know that the answer returned by

our algorithm is of the same order of magnitude as the desired quantity Norm{(xν , tν)ν=1,...,N}.
We will prove this estimate in the next section.

Let us see how many operations are needed to carry out our main algorithm. We

start with a few preliminary remarks. We write C to denote constants depending only

on m and n. Since dimP depends only on m and n, the reduction of an ALP A in P or

P ⊕ P to echelon form (as in Section 5) requires at most C·length (A) operations. If also

length (A) ≤ 2 dimP + 1, then at most C operations are required.

In view of the above remarks, we can easily estimate the number of operations used by

the algorithms in Section 3. First of all,

(2) Computing the Aν,1 (ν = 1, . . . , N) takes at most C operations for each ν, for a total

of CN operations.

Moreover, for each ` = 1, 2, . . . , `∗ − 1, we have the following.

(3) Step 1′ takes at most C operations for each µ, for a total of at most CN operations.

(4) Steps 2′, 3′, 4′ take at most C operations for each ν, µ, for a total of at most CN2

operations.
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(5) Steps 5′ and 6′ take at most CN operations for each ν, for a total of at most CN2

operations.

(To see (3), (4), (5), we use the remarks on the lengths of the ALPs A+
µ,`, Bν,µ, . . . ,Aν,`+1

given at the end of Section 3.)

Combining (3), (4), (5), we see that it takes at most CN2 operations to pass from the

ALPs (Aν,`)ν=1,...,N to the ALPs (Aν,`+1)ν=1,...,N for a given `. Recalling that `∗ depends only

on m and n, we conclude that it takes at most CN2 operations to compute all the ALPs

Aν,`∗ (ν = 1, . . . , N).

Once we know these, we can compute a single Yν in (1) using at most C operations. Hence,

we may pass from the Aν,`∗(ν = 1, . . . , N) to the answer (1) in at most CN operations.

Altogether, then, our main algorithm requires at most CN2 operations, as asserted in

Theorem 1. The bulk of the work goes into producing the ALPs Aν,`∗ .

We leave it to the reader to check that the storage required by our main algorithm is at

most CN , which is optimal, since the statement of the problem already requires storage CN .

(“Storage” means here the maximum number of real numbers that can be held in memory.)

§8. The Proof

In this section, we complete the proof of Theorem 1 by establishing the key estimate (6)

from Section 1. We will reduce matters to the following theorem, which is a special case of

the main results in [11]. (It had been conjectured earlier by Brudnyi-Shvartsman and proven

by them for m = 2 [7].) We write #(S) to denote the number of elements in a set S. (If S

is infinite, then #(S) = +∞.) Recall that P denotes the vector space of (m − 1)rst degree

polynomials on Rn.

Theorem 2: Given m,n ≥ 1, there exists k#, depending only on m and n, for which the

following holds.

Let E ⊂ Rn be finite, let f : E → R, and let M ∈ (0,∞). Assume that, given any S ⊆ E

with #(S) ≤ k#, there exists a map y 7→ P y, from S into P, such that:

(a) |∂αP y(y)| ≤ M for |α| ≤ m− 1, y ∈ S;
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(b) |∂α(P y − P y′)(y)| ≤ M |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(c) P y(y) = f(y) for all y ∈ S.

Then there exists a Cm function F on Rn, such that ‖ F ‖Cm(Rn)≤ CM , and F = f on

E. Here, C depends only on m and n.

We will also use an elementary “clustering lemma” from [12].

Lemma 1: Let ` ≥ 1, and let S ⊂ Rn, with #(S) = ` + 1. Then we can partition S into

subsets S0, S1, . . . , Sνmax, such that

(a) #(Sν) ≤ ` for each ν, and

(b) distance (Sµ, Sν) > c · diameter (S) for µ 6= ν, with c depending only on `.

Returning to the setting of Section 1, we set E = {x1, . . . , xN} ⊂ Rn, and we define

f : E → R by f(xν) = tν (ν = 1, . . . , N). By induction on ` ≥ 1, we will establish the

following result.

Lemma 2: Suppose y0 ∈ E, ` ≥ 1, M > 0, and P ∈ Γ(y0, `,M). Then, for any S ⊆ E,

with y0 ∈ S and #(S) ≤ `, there exists a map y 7→ P y from S into P, such that:

(A) P y0 = P ;

(B) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

(C) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(D) P y(y) = f(y) for all y ∈ S.

Here, C depends only on m,n, `.

Proof: For ` = 1, we have S = {y0}. We take P y0 = P . Thus, (A) holds by definition,

(B) and (D) hold since P ∈ Γ(y0, 1, M), and (C) holds since y = y′ = y0 for y, y′ ∈ S. This

proves Lemma 2 for ` = 1.
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For the inductive step, suppose Lemma 2 holds for a given `. We will prove Lemma 2

with (` + 1) in place of `.

Thus, suppose P ∈ Γ(y0, ` + 1, M), and let S ⊆ E, with y0 ∈ S and #(S) ≤ ` + 1. We

must produce a map y 7→ P y satisfying (A),. . ., (D). If #(S) ≤ `, then the desired map

exists, thanks to our induction hypothesis. Hence, we may suppose that #(S) = ` + 1. Let

δ= diameter (S) > 0. We write c, C, C ′, etc., to denote constants depending only on m,n,

and `.

By Lemma 1, we may partition S into non-empty subsets Sν (0 ≤ ν ≤ νmax), with the

following properties.

(1) #(Sν) ≤ ` for each ν.

(2) y0 ∈ S0.

(3) distance (Sν , Sν′) ≥ cδ if ν 6= ν ′.

For each ν (1 ≤ ν ≤ νmax), pick yν ∈ Sν . Thus, yν ∈ Sν for 0 ≤ ν ≤ νmax.

Since P ∈ Γ(y0, ` + 1, M), we know that, for each ν, there exists

(4) Pν ∈ Γ(yν , `,M),

with

(5) |∂α(Pν − P )(y0)| ≤ M |yν − y0|m−|α| for |α| ≤ m− 1.

In particular,

(6) P0 = P .

We fix P0, P1, . . . , Pνmax as in (4), (5), (6).

For each ν, we may apply our induction hypothesis to the point yν , the set Sν , and the

polynomial Pν , thanks to (1) and (4). Hence, there is a map y 7→ P y from Sν into P ,

satisfying:

(7) P yν = Pν ;
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(8) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ Sν ;

(9) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ Sν ; and

(10) P y(y) = f(y) for all y ∈ Sν .

Combining the above maps on the Sν into a single map y 7→ P y from S into P , we obtain

the following results from (6),. . .,(10).

• P y0 = P

• |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

• P y(y) = f(y) for all y ∈ S.

Thus, our map y 7→ P y, from S into P , satisfies properties (A), (B), (D) from the statement

of Lemma 2. Also, (9) shows that property (C) holds, provided y and y′ belong to the same

Sν .

Hence, to complete the proof of Lemma 2, it is enough to prove (C) in the case y ∈ Sν ,

y′ ∈ Sν′ , ν 6= ν ′. In view of (3) (with δ = diam S), this means that

(11) |∂α(P y − P y′)(y)| ≤ CMδm−|α| for |α| ≤ m− 1, y ∈ Sν , y′ ∈ Sν′ , ν 6= ν ′.

Thus, the proof of Lemma 2 is reduced to (11).

Let y ∈ Sν , y′ ∈ Sν′ , with ν 6= ν ′. From (7) and (9), we have

(12) |∂α(P y − Pν)(y)| ≤ CM |y − yν |m−|α| ≤ CM δm−|α| for |α| ≤ m− 1, and

(13) |∂α(P y′ − Pν′)(y
′)| ≤ CM |y′ − yν′|m−|α| ≤ CM δm−|α| for |α| ≤ m− 1.

Also, (5) shows that

(14) |∂α(Pν −Pν′)(y0)| ≤ M |yν − y0|m−|α| + M |yν′ − y0|m−|α| ≤ CM δm−|α| for |α| ≤ m− 1.

Since y0, y
′, y ∈ S, we have |y′− y|, |y0− y| ≤ diam (S) = δ. Consequently, (13) and (14)

imply
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(15) |∂α(P y′ − Pν′)(y)| ≤ CM δm−|α| for |α| ≤ m− 1,

and

(16) |∂α(Pν − Pν′)(y)| ≤ CM δm−|α| for |α| ≤ m− 1.

From (12), (15), (16), we obtain the desired estimate (11).

The proof of Lemma 2 is complete. �

We now prove estimate (6) from Section 1. We take `∗ = k# as in Theorem 2. Thus, `∗

depends only on m and n. As in Lemma 2, we define E = {x1, . . . , xN} ⊂ Rn, and define

f : E → R by setting f(xν) = tν for ν = 1, . . . , N . Let M > 0 satisfy the hypothesis of (6),

namely

(17) Γ(xν , `∗, M) 6= φ for each ν.

We will show that the hypotheses of Theorem 2 hold, for the set E, the function f , and

the constant CM , for a large enough C depending only on m and n. To see this, let S ⊂ E,

with #(S) ≤ k#. If S is empty, there is nothing to prove. If S is non-empty, then we pick

y0 ∈ S and then pick P ∈ Γ(y0, `∗, M). (We can find such a P , thanks to (17).) Applying

Lemma 2, with ` = `∗ = k#, we obtain a map y 7→ P y from S into P , satisfying

(18) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

(19) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(20) P y(y) = f(y) for all y ∈ S.

In (18), (19), the constant C depends only on m, n and `∗. Since `∗ depends only on m and

n, it follows that C depends only on m and n. The existence of a map y 7→ P y satisfying

(18), (19), (20) is precisely the hypothesis of Theorem 2.

Applying Theorem 2, we obtain a function F ∈ Cm(Rn), such that:

(21) ‖ F ‖Cm(Rn)≤ CM , with C depending only on m and n; and
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(22) F = f on E, i.e., F (xν) = tν for ν = 1, . . . , N .

From (21), (22) and the definition of Norm{(xν , tν)ν=1,...,N}, we conclude that

Norm{(xν , tν)ν=1,...,N} ≤ CM , with C depending only on m and n.

This is precisely the conclusion of (6) from Section 1.

The proof of (6) from Section 1 is complete, and with it, the proof of Theorem 1. �

§9. Open Problems

We close the paper by posing a few open problems connected with Theorem 1. First

of all, we would like to compute a particular function F ∈ Cm(Rn), whose graph passes

through N given points (x1, t1), . . . , (xN , tN), and whose Cm-norm has the least possible

order of magnitude. Say, we enter the data {(xν , tν)ν=1,...,N} into an (idealized) computer.

The computer works for a while, performing L0 operations. It then signals that it is ready

to accept further input. Whenever we enter a point x ∈ Rn, the computer responds by

producing an output F (x), using L1 operations to make the computation. It is guaranteed

that F (xν) = tν for ν = 1, . . . , N , and that ‖ F ‖Cm(Rn) has the same order of magnitude as

Norm{(xν , tν)ν=1,...,N}.

We would like to give an algorithm to carry this out, with control over L0 and L1.

It is known [8,10] that F as above can be chosen to depend linearly on t1, . . . , tN , for

fixed x1, . . . , xN ,m,n. How small can we take L0 and L1 above, and maintain this linear

dependence?

There are obvious analogues of these questions, with Norm{(xν , tν)} replaced by the

more general Norm{(xν , tν , σν)ν=1,...,N}, mentioned in the introduction. For that matter, we

could bring in “Whitney convex sets” in place of the σν . (See [12,14] .)

By combining the ideas in this paper with those of [10,...,16], one can probably give

algorithms to compute F as above. However, we have no reason to believe that our methods

lead to optimal L0,L1.

It is natural to view the computation of Norm{(xν , tν , σν)ν=1,...,N} as “fitting a Cm-

smooth function to data”. From this viewpoint, it is also natural to allow outliers. We have
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analyzed the `∞-norm of the error vector [(F (xν) − tν)/σν ]ν=1,...,N , for F ∈ Cm(Rn), when

σ1, . . . , σN > 0. Standard least squares analyzes the `2-norm of the error vector, for F in

a Hilbert space of functions. It would be very interesting, and probably very hard, to say

something intelligent about the `p-norm of the error vector for other p, or for other function

spaces (eg, Sobolev spaces Wm,p). We have no idea how to start on this problem.
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