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§0. Introduction

Let m,n ≥ 1, and suppose we are given N points in Rn+1. Throughout this paper, we

regard m,n as fixed, and N as arbitrarily large. How can we find a function F ∈ Cm(Rn),

whose graph passes through (or close to) the given points, with the Cm-norm of F having

the smallest possible order of magnitude? How small can we take that order of magnitude?

In Fefferman-Klartag [7,8], we studied these questions from the viewpoint of theoretical

computer science. We exhibited algorithms to compute F, and we estimated the resources

required by an (idealized) computer to carry out those algorithms. Here, we prove a theorem

announced in [7], and apply it to study what happens when we are allowed to discard some

of the N given points as “outliers”. We want to know which points to discard, and how

much we can reduce the order of magnitude of the Cm norm of an optimal F, as a function

of the number of points discarded.

To state our results precisely, we introduce some notation and definitions. Let X, Y ≥ 0

be real numbers determined by m,n and other data (e.g., N given points in Rn+1). Then we

say that X and Y have the “same order of magnitude”, and we write “X ∼ Y”, provided we

have cX ≤ Y ≤ CX, with c and C depending only on m and n. (More generally, throughout

this paper, c, C, C′, etc., denote constants depending only on m and n. These constants

may change from one occurrence to the next.) To “compute the order of magnitude” of X is

to compute some Y such that X ∼ Y.

For any finite set S, we write #(S) to denote the number of elements of S. If S is infinite,

then we define #(S) = ∞.

As usual Cm(Rn) denotes the space of all m-times continuously differentiable

F : Rn −→ R, for which the norm ‖ F ‖= max
|α|≤m

sup
x∈Rn

|∂αF(x)| is finite.

Next, suppose we are given a finite set E ⊂ Rn, and functions f : E −→ R, σ : E −→
[0,∞). We want to find F ∈ Cm(Rn) and M ∈ (0,∞) such that

(0.1) ‖ F ‖≤ M, and |F(x) − f(x)| ≤ Mσ(x) for all x ∈ E.

We define ‖ f ‖(E,σ) as the infimum of all M ∈ (0,∞) for which there exists F ∈ Cm(Rn)

that satisfies (0.1).
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The function σ serves as a “tolerance”. It gives a precise meaning to our demand that

the graph of F pass “close to” N given points. Taking σ ≡ 0 amounts to demanding that the

graph pass through the given points.

Let E, f, σ be as above, and let S ⊂ E. For simplicity, we write ‖ f ‖(S,σ) to denote

‖ f ‖(S,σ|S), where (as usual) σ|S is the restriction of σ to S. Clearly, ‖ f ‖(S,σ)≤‖ f ‖(E,σ).

We will exhibit algorithms, to be run on an idealized computer with standard von Neu-

mann architecture [11], able to deal with exact real numbers. The resources required to carry

out an algorithm are the “number of operations” (or “work”), and the “storage”. Here, an

“operation” means, e.g., an addition or multiplication of two given real numbers, or an ap-

plication of the “greatest integer” function. See [8] for a more careful discussion, including

a model of computation with finite-precision numbers. The “storage” is simply the number

of reals that can be held in memory.

The main theorem of this paper is the following result, announced in [7].

Theorem 1: Let E ⊂ Rn, with #(E) = N < ∞, and let σ : E −→ [0,∞).

Then there exists a list of subsets S1, S2, . . . , SL ⊂ E, with the following properties.

(A) Each S` has at most C elements.

(B) The number of subsets S` is L ≤ CN.

(C) For any f : E −→ R, we have

‖ f ‖(E,σ) ∼ max
`=1,...,L

‖ f ‖(S`,σ) .

(D) The list of subsets S1, S2, . . . , SL may be computed from E, σ,m,n using at most CN log N

operations, and using storage at most CN.

In view of (A), the order of magnitude of any given ‖ f ‖(S`,σ) may be easily computed

by standard linear algebra, using at most C′ operations. (We spell out the details in Section

1.)

Hence, Theorem 1 allows us to preprocess E, σ, after which we can compute the order

of magnitude of ‖ f ‖(E,σ) for any given f, using at most CN operations. The preprocessing

takes at most CN log N operations, using storage CN.
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Theorem 1 is a refinement of the following result, proven in [5].

Theorem 1′: Let E ⊂ Rn be finite, and let f : E −→ R, σ : E −→ [0,∞). Then

‖ f ‖(E,σ) ∼ max{‖ f ‖(S,σ): S ⊂ E , #(S) ≤ k} ,

where k depends only on m and n.

Theorem 1′ in turn overlaps with the earlier results of Y. Brudnyi and P. Shvartsman

[2]. They conjectured a “finiteness principle” analogous to Theorem 1′, but with σ ≡ 0,

and with Cm(Rn) replaced by more general function spaces. For certain function spaces,

including C2(Rn), they proved their finiteness principle, with an optimal constant k, by the

method of “Lipschitz selection”.

Recent works of Bierstone-Milman [1] and of Shvartsman [12] make significant progress

toward finding the best constant k in Theorem 1′ for general m,n. Their work applies also

to the constant C in Theorem 1 (A).

More broadly, Theorems 1 and 1′ pertain to “Whitney’s extension problem”. We refer

the reader to works of Whitney, Glaeser, Brudnyi-Shvartsman, Zobin, Bierstone-Milman-

Pawlucki, as cited in [2,5,7,8,12].

We apply Theorem 1 to the problem of finding and discarding “outliers”. Our result is

as follows.

Theorem 2: Suppose we are given the following data:

• A finite set E ⊂ Rn, with #(E) = N ≥ 2;

• Functions f : E −→ R, σ : E −→ [0,∞);

• An integer Z ≥ 0.

Then, in C + CZN log N operations, using storage CN, we can compute a subset S∗ ⊂ E,

with the following properties:

(α) #(S∗) ≤ CZ; and
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(β) For any S ⊂ E with #(S) ≤ Z, we have

‖ f ‖(ErS∗,σ)≤ C ‖ f ‖(ErS,σ) .

Thus, if we are allowed to discard ∼ Z points, then, essentially, we can do no better than

to discard S∗.

It is easy to deduce Theorem 2 from Theorem 1. We explain heuristically the algorithm

to produce S∗, and say a few words about why it works. A careful discussion is given in

Section 2.

Let E, f, σ, Z be as in Theorem 2. We have to find a subset S∗ ⊂ E satisfying (α) and

(β). To do so, we first compute the list of subsets S1, S2, . . . , SL from Theorem 1, and then

compute the order of magnitude of each ‖ f ‖(S`,σ), ` = 1, . . . , L. This takes at most CN log N

operations and storage CN.

Next, we discard from E the points of S`∗ , with `∗ picked to maximize the order of

magnitude of ‖ f ‖(S`∗ ,σ).

To see why we do so, suppose S ⊂ E with ‖ f ‖(ErS,σ)�‖ f ‖(E,σ). Then S`∗ must contain

at least one point of S. In fact, otherwise,

‖ f ‖(S`∗ ,σ)≤‖ f ‖(ErS,σ)�‖ f ‖(E,σ)≤ C ·max
`

‖ f ‖(S`,σ)

by Theorem 1 (C), contradicting the fact that ‖ f ‖(S`∗ ,σ) has the maximal order of magnitude

among the ‖ f ‖(S`,σ).

Thus, with work at most CN log N, we have found a set S`∗ ⊂ E with #(S`∗) ≤ C,

guaranteed to contain at least one point of any “bad” set S ⊂ E.

Once we have discarded the points of S`∗ , we find ourselves in the same situation as

before, but with E r S`∗ and Z − 1 in place of E and Z, respectively. Proceeding recursively

until we reach the trivial case Z = 0, we discard at most CZ points from E; and the set S∗

of discarded points will satisfy the conclusions (α), (β) of Theorem 2. Again, we refer the

reader to Section 2 for a rigorous discussion of the ideas sketched above.

We have no reason to think that the work C + CZN log N in Theorem 2 is best possible,

and we look forward to future improvements.
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We turn our attention to the proof of Theorem 1. There are two main ingredients.

The first ingredient is a construction [4,7,8] of an F ∈ Cm(Rn), satisfying (0.1) with the

order of magnitude of M as small as possible. That F has the form F = Tf for a linear

operator T .

For any x ∈ Rn and |α| ≤ m, we therefore have

(0.2) ∂α(Tf) (x) =
∑
y∈E

λα(x, y) f(y), with coefficients λα(x, y) independent of f. Moreover,

for the operator T constructed in [4,7,8], the coefficients λα(x, y) are “sparse.” More

precisely, λα(x, y) = 0 for all y ∈ E outside a subset S(x) ⊂ E, with

(0.3) #(S(x)) ≤ C. Thus, (0,2) may be rewritten in the form

(0.4) ∂α(Tf) (x) =
∑

y∈S(x)

λα(x, y) f(y) for |α| ≤ m, x ∈ Rn, and we have

(0.5) ‖ Tf ‖≤ M, |(Tf) (x) − f(x)| ≤ Mσ(x) for all x ∈ E, with

(0.6) M ≤ C ‖ f ‖(E,σ), since F = Tf satisfies (0.1) with the order of magnitude of M as

small as possible.

The existence of T ,S(x), λα(x, y) satisfying (0.3), ..., (0.6) is proven in the discussion of

“operators of finite depth” in [4].

Furthermore, [7,8] show how to compute S(x) and the λα(x, y) (y ∈ S(x), |α| ≤ m) for any

given x. In particular, after preprocessing E, σ, we can compute S(x) for any given x ∈ Rn

using at most C log N operations. The preprocessing takes at most CN log N operations,

with storage CN. (Here, as usual, N = #(E) < ∞.) See Theorem 6 in [8].

We will need to compute S(x) only for x ∈ E, and we will not need to compute the

λα(x, y). According to the above remarks, we can compute all the S(x) (x ∈ E) with at most

CN log N operations and storage CN.

The second main ingredient in the proof of Theorem 1 is the work of Callahan and

Kosaraju [3] from computational geometry. We state here only the subset of their results

needed for our proof.
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Let κ ∈ (0, 1) be a small constant. We write cκ, Cκ, C
′
κ, etc., to denote constants de-

pending only on κ, and on the dimension n. As usual, let E ⊂ Rn, with #(E) = N < ∞.

According to [3], we can partition the set of pairs {(x, y) ∈ E× E : x 6= y} into subsets

(0.7) E′
1 × E′′

1, E
′
2 × E′′

2, . . . , E
′
L × E′′

L, with the following properties.

(0.8) In (0.7), we have L ≤ CκN.

(0.9) For each ` = 1, . . . , L, we have diam (E′
`), diam (E′′

` ) ≤ κ dist (E′
`, E

′′
` ), where, as usual,

diam (A) = max{|x − y| : x, y ∈ A} and

dist (A,B) = min{|x − y| : x ∈ A, y ∈ B} for finite A,B ⊂ Rn.

Moreover, we can pick “representatives”

(0.10) x′` ∈ E′
` and x′′` ∈ E′′

` for each ` = 1, . . . , L, in such a way that

(0.11) The x′`, x
′′
` for ` = 1, . . . , L can all be computed, using at most CκN log N operations

and storage CκN.

See [3], and also Har-Peled and Mendel [9] for further results. We call (0.7) the “Callahan-

Kosaraju decomposition”. (In the computer science literature, it is called the “well-separated

pairs decomposition”.)

We now indicate how our two main ingredients (0.3) ... (0.6) and (0.7) ... (0.11) are used

in the proof of Theorem 1. Let E, σ,N be as in the hypotheses of Theorem 1. We have to

find a list of subsets S1, . . . , SL ⊂ E satisfying conclusions (A) ... (D).

Taking κ to be a small enough constant depending only on m and n, we produce the

Callahan-Kosaraju decomposition (0.7). Let x′`, x
′′
` (` = 1, . . . , L) be the “representatives”,

as in (0.10) and (0.11). Also, let S(x)(x ∈ E) be as in (0.3) ... (0.6). As our list of subsets

S1, . . . , SL, we take

(0.12) S` = S(x′`) ∪ S(x′′` ) ∪ {x′`, x
′′
` } for ` = 1, . . . , L.



Fitting a Cm Smooth Function to Data III 7

In view of (0.3), we have #(S`) ≤ C′ for each `. Also, from (0.8), we have L ≤ CN,

since κ depends only on m,n. Recall that with CN log N operations using storage CN, we

can compute all the x′`, x
′′
` and all the S(x) (x ∈ E). A glance at (0.12) shows that all the

S`(1 ≤ ` ≤ L) can therefore be computed in CN log N operations using storage CN. Thus,

conclusions (A), (B) and (D) are obvious for our S1, . . . , SL. It remain to establish (C). This

comes down to finding an F ∈ Cm(Rn) satisfying (0.1), with M ∼ max
`

‖ f ‖(S`,σ).

The proof of (C) occupies Section 4 below.

This concludes our introductory remarks on the proof of Theorem 1.

Theorem 1 can be generalized, as in [8], by bringing “Whitney t-convex sets” into the

statement of the problem. (See also [6].) Our proofs below are easily adapted to this case,

so we omit further discussion.

It is a pleasure to thank Bo’az Klartag for many valuable discussions, and Gerree Pecht,

for LATEXing this paper to lofty “Gerree standards”.

§1. Small Subsets of Rn

In this section, we show how to compute the order of magnitude of ‖ f ‖(S,σ), under the

assumption

(1.1) #(S) ≤ C.

We start by setting up notation, to be used throughout this paper. For F ∈ Cm(Rn), and for

x ∈ Rn, we write Jx(F) to denote the (m − 1)rst degree Taylor polynomial of F at x. Thus,

Jx(F) belongs to P, the vector space of all (real) (m − 1)rst degree polynomials on Rn.

Next, let S ⊂ Rn, f : S −→ R, σ : S −→ [0,∞), with S finite. Suppose that F ∈ Cm(Rn)

and M > 0 satisfy

(1.2) ‖ F ‖≤ M, and |F(x) − f(x)| ≤ Mσ(x) for all x ∈ S.

Define a collection of polynomials
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(1.3) ~P = (Px)x∈S ∈
∑
x∈S

⊕ P,

by setting Px = Jx(F) for each x ∈ S. From (1.2) and Taylor’s theorem, we have:

(1.4) |Px(x) − f(x)| ≤ Mσ(x) for x ∈ S;

(1.5) |(∂αPx)(x)| ≤ M for x ∈ S, |α| ≤ m − 1; and

(1.6) |∂α(Px − Py)(y)| ≤ CM|x − y|m−|α| for x, y ∈ S, |α| ≤ m − 1.

Conversely, suppose S ⊂ Rn, f : S −→ R, σ : S −→ [0,∞) with S finite, and suppose
~P = (Px)x∈S satisfies (1.3) ... (1.6). Then, by the classical Whitney extension theorem [10],

there exists F ∈ Cm(Rn), such that

(1.7) ‖ F ‖≤ C′M, and Jx(F) = Px for each x ∈ S.

In particular, (1.4) and (1.7) give

(1.8) |F(x) − f(x)| ≤ Mσ(x) for all x ∈ S.

Consequently, ‖ f ‖(S,σ) has the same order of magnitude as the infimum of all M > 0 for

which there exists ~P = (Px)x∈S satisfying (1.3) ... (1.6). Under assumption (1.1), the order

of magnitude of this infimum is easily computed by linear algebra, as follows. Let H be the

affine space of all ~P = (Px)x∈S ∈
∑
x∈S

⊕ P such that Px(x) = f(x) whenever σ(x) = 0. On H,

we define a quadratic function Q(~P) = Q1(~P) + Q2(~P) + Q3(~P), by setting

Q1(~P) =
∑
x∈S

σ(x) 6=0

[
Px(x) − f(x)

σ(x)

]2

,

Q2(~P) =
∑
x∈S

∑
|α|≤m−1

[(∂αPx)(x)]2 , and

Q3(~P) =
∑
x,y∈S
(x 6=y)

∑
|α|≤m−1

[
∂α(Px − Py)(y)

|x − y|m−|α|

]2

.
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Suppose S satisfies (1.1). Then, clearly, the desired infimum (of all M > 0 for which (1.3) ...

(1.6) can be satisfied) has the same order of magnitude as the square root of the minimum

of Q(~P) over all ~P ∈ H.

Since Q is a quadratic function and H is an affine space of dimension at most C′, we can

compute min{Q(~P) : ~P ∈ H} by linear algebra, using at most C′′ operations.

Hence, if f, S, σ are given, with #(S) ≤ C, then we can compute the order of magnitude

of ‖ f ‖(S,σ) with work at most C′′.

§2. Removing Outliers

In this section, we prove Theorem 2, assuming Theorem 1. The algorithm sketched in the

introduction in connection with Theorem 2 is as follows.

Procedure Outliers (E, f, σ, Z)

\∗ Defined for E ⊂ Rn finite, f : E −→ R, σ : E −→ [0,∞), Z ≥ 0 an integer.

Prints out a finite list of points of E. The set S∗, consisting of all the points printed out,

will later be shown to have the properties asserted in Theorem 2.

∗\

Line 1 { while (Z 6= 0 and E 6= ∅)

Line 2 { Compute the list of sets S1, . . . , SL ⊂ E associated to (E, σ), as in Theorem 1.

Line 3 For each ` = 1, . . . , L, compute X` ∼‖ f ‖(S`,σ), as in Section 1.

Line 4 Find `∗ (1 ≤ `∗ ≤ L) such that X`∗ ≥ X` for ` = 1, . . . , L.

Line 5 Print out the elements of S`∗ .

Line 6 Replace (E, f, σ, Z) by (E r S`∗, f|ErS`∗
, σ|ErS`∗

, Z − 1).

Line 7 }

Line 8 }
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The “loop body” here consists of Lines 2 ... 7. Every time we execute the loop body, Z

decreases by one. Once we reach Z = 0, the procedure terminates. (Perhaps the procedure

terminates before we reach Z = 0.) Consequently, execution of Outliers (E, f, σ, Z) always

terminates, and the loop body is executed at most Z times.

Let #(E) ≤ N, with N ≥ 2. From Theorem 1 and Section 1, we see that execution of

Line 2 requires work ≤ CN log N and storage ≤ CN, while execution of Line 3 requires

work and storage ≤ CN. We also need storage CN, simply to hold (E, f, σ, Z). Inspection

of Lines 2 ... 7 now shows that we can execute the loop body with work ≤ CN log N and

storage ≤ CN. Since the loop body is executed at most Z times, we see that

(2.1) Outliers (E, f, σ, Z) requires work ≤ C + CZN log N, and storage ≤ CN.

Here, the extra work C enters because we must execute Line 1, even if Z = 0.

Next, note that each S` computed in Line 2 satisfies #(S`) ≤ C, by Theorem 1 (A).

Consequently, each time we execute the loop body, we print out at most C points. Since the

loop body is executed at most Z times, Outliers (E, f, σ, Z) prints out at most CZ points. Let

us write S∗ = S∗(E, f, σ, Z) for the set of points printed out by Outliers (E, f, σ, Z). Thus,

(2.2) S∗ ⊂ E and #(S∗) ≤ CZ.

To complete the proof of Theorem 2, we have to demonstrate the following.

(2.3) Let S ⊂ E with #(S) ≤ Z. Then ‖ f ‖(ErS∗,σ)≤ C1 ‖ f ‖(ErS,σ) .

We prove (2.3) by induction on Z. For Z = 0, we have S∗ = ∅ (see Line 1), and therefore

(2.3) simply asserts that ‖ f ‖(E,σ)≤ C1 ‖ f ‖(E,σ). Thus, (2.3) holds trivially for Z = 0.

For the induction step, we fix Z ≥ 1, and assume the analogue of (2.3) with Z replaced by

Z − 1. We will prove (2.3) for our given Z.

If E = ∅, then again (2.3) holds trivially. (By definition, ‖ f ‖(E,σ)= 0 when E = ∅.)
Hence, we may suppose E 6= ∅.
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Consequently, we have initially that (Z 6= 0 and E 6= ∅), as in Line 1, and therefore the loop

body is executed at least once. Let S1, . . . , SL, X1, . . . , XL, and `∗ be as they are computed

the first time we execute the loop body.

Also, let S∗∗ = S∗(E r S`∗ , f|ErS`∗
, σ|ErS`∗

, Z − 1).

That is, S∗∗ is the analogue of S∗, when we take as input (E r S`∗ , f|ErS`∗
, σ|ErS`∗

, Z− 1)

in place of (E, f, σ, Z).

Inspection of Lines 5 and 6 shows that

(2.4) S∗ = S`∗ ∪ S∗∗.

On the other hand, our induction hypothesis ( (2.3) for Z − 1) tells us the following.

(2.5) Let Ŝ ⊂ E r S`∗ , with #(Ŝ) ≤ Z − 1. Then ‖ f ‖((ErS`∗ )rS∗∗,σ)≤ C1 ‖ f ‖((ErS`∗ )rŜ,σ) .

Now let S ⊂ E, with #(S) ≤ Z. We show that (2.3) holds for S. We consider separately

two cases.

Case 1: S ∩ S`∗ = ∅.

Then Theorem 1 (C) gives

‖ f ‖(ErS∗,σ)≤‖ f ‖(E,σ)≤ C max
`=1,...,L

‖ f ‖(S`,σ)

≤ C′ max
`=1,...,L

X` = C′X`∗ ≤ C′′ ‖ f ‖(S`∗ ,σ)≤ C′′ ‖ f ‖(ErS,σ) ,

since S`∗ ⊂ E r S and X` ∼‖ f ‖(S`,σ) for each `.

Thus, (2.3) holds in Case 1, for C1 large enough.

Case 2: S ∩ S`∗ 6= ∅.

Set Ŝ = S r S`∗ . Then #(Ŝ) ≤ Z − 1, and therefore (2.5) applies.

Since also (E r S`∗) r Ŝ ⊂ E r S, we learn from (2.4) and (2.5) that

‖ f ‖(ErS∗,σ) = ‖ f ‖((ErS`∗ )rS∗∗,σ)≤ C1 ‖ f ‖((ErS`∗ )rŜ,σ)≤ C1 ‖ f ‖(ErS,σ) .
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Thus, (2.3) holds also in Case 2. This completes our induction on Z, proving (2.3).

The conclusions of Theorem 2 are our results (2.1), (2.2), (2.3). Thus, we have established

Theorem 2, assuming Theorem 1.

To close this section, we compare Outliers (E, f, σ, Z) with Outliers (E, f, σ, Z′) for Z′ < Z.

These two procedures print out the same points, in the same order, until Outliers (E, f, σ, Z′)

terminates, after which Outliers (E, f, σ, Z) may print out additional points. Consequently,

the list of points x1, x2, . . . , xkmax printed out by Outliers (E, f, σ, Z) has the following property,

strengthening Theorem 2:

(2.6) Suppose S ⊂ E, with #(S) = Z′ ≤ Z.

Let S∗ = {xk : 1 ≤ k ≤ min(CZ′, kmax)}. Then

‖ f ‖(ErS∗,σ)≤ C ‖ f ‖(ErS,σ) .

Detailed verifications are left to the reader.

§3. Comparing Polynomials at Representative Points

In this section, we suppose we are given the following data:

• A finite set E ⊂ Rn, with #(E) = N ≥ 2;

• A constant κ ∈ (0, 1);

• A Callahan-Kosaraju decomposition E′
1 × E′′

1, . . . , E
′
L × E′′

L; and representatives

(x′`, x
′′
` ) ∈ E′

` × E′′
` (` = 1, . . . , L), as in (0.7) ... (0.11);

• A polynomial Px ∈ P, for each x ∈ E; and

• A number M ∈ (0,∞).

(Recall that P is the vector space of (m − 1)rst degree polynomials on Rn.) Motivated by

the classical Whitney extension theorem as in Section 1, we want to know whether

|∂α(Px − Py)(y)| ≤ M|x − y|m−|α| for x, y ∈ E, |α| ≤ m − 1 .
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The next result shows that it is enough to look at the case x = x′`, y = x′′` for ` = 1, . . . , L.

Lemma 3.1: Suppose κ is less than a small enough constant c1, and assume we have

(3.1) |∂α(Px′`
− Px′′`

) (x′′` ) | ≤ M |x′` − x′′` |
m−|α| for |α| ≤ m − 1, ` = 1, . . . , L .

Then we have

|∂α(Px − Py)(y)| ≤ CM |x − y|m−|α| for all x, y ∈ E, |α| ≤ m − 1 .

Proof: Let A be a large enough constant, to be picked in (3.15) below. We will prove by

contradiction that

(3.2) |∂α(Px − Py)(y)| ≤ AM |x − y|m−|α| for |α| ≤ m − 1, x, y ∈ E .

In fact, suppose (3.2) fails. Since E is finite, we can pick x̄, ȳ ∈ E and ᾱ (|ᾱ| ≤ m − 1)

violating (3.2), with |x̄ − ȳ| as small as possible. Thus,

(3.3) |∂ᾱ(Px̄ − Pȳ)(ȳ)| > AM |x̄ − ȳ|m−|ᾱ|, and

(3.4) x̄, ȳ ∈ E and |ᾱ| ≤ m − 1, but

(3.5) |∂α(Px − Py)(y)| ≤ AM|x − y|m−|α| for |α| ≤ m − 1 , x, y ∈ E, |x − y| < |x̄ − ȳ| .

Note that x̄ 6= ȳ, as we see at once from (3.3). Since the E′
` × E′′

` (` = 1, . . . , L) form a

Callahan-Kosaraju decomposition, there exists `(1 ≤ ` ≤ L) such that

(3.6) x̄ ∈ E′
` and ȳ ∈ E′′

` .

We fix such an ` for the rest of the proof of Lemma 3.1.

By (0.10), the representatives x′`, x′′` satisfy

(3.7) x′` ∈ E′
` and x′′` ∈ E′′

` .

From (3.6), (3.7) and (0.9), we conclude that
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(3.8) |x̄ − x′`|, |ȳ − x′′` | ≤ κ|x̄ − ȳ|, and therefore (3.5) applies to the pairs

(x, y) = (x′`, x̄) and (x, y) = (x′′` , ȳ) .

Thus,

(3.9) |∂α(Px′`
− Px̄)(x̄)| ≤ AM |x′` − x̄|m−|α| ≤ κAM|x̄ − ȳ|m−|α| for |α| ≤ m − 1,

and

(3.10) |∂α(Px′′`
− Pȳ)(ȳ)| ≤ AM |x′′` − ȳ|m−|α| ≤ κ AM|x̄ − ȳ|m−|α| for |α| ≤ m − 1 .

We will combine (3.1), (3.9) and (3.10) to estimate Px̄ −Pȳ. To do so, we must first move

the base point in (3.9) from x̄ to ȳ, and similarly for (3.1).

For |α| ≤ m − 1, (3.9) gives

(3.11) |∂α(Px′`
− Px̄)(ȳ)| =∣∣∣∣ ∑

|β|≤m−1−|α|

1

β!

[
∂β+α(Px′`

− Px̄)(x̄)
]
· (ȳ − x̄)β

∣∣∣∣
≤ C

∑
|β|≤m−1−|α|

[
κ AM |x̄ − ȳ|m−(|α|+|β|)

]
· |x̄ − ȳ||β|

≤ C′ κ AM |x̄ − ȳ|m−|α| .

Regarding (3.1), we first note that (3.8) yields

|x′` − x′′` | ≤ |x′` − x̄| + |x̄ − ȳ| + |ȳ − x′′` | ≤ 3|x̄ − ȳ| and |x′′` − ȳ| ≤ |x̄ − ȳ| .

Therefore, for |α| ≤ m − 1, (3.1) gives

(3.12) |∂α(Px′`
− Px′′`

) (ȳ)| =∣∣∣∣ ∑
|β|≤m−1−|α|

1

β!

[
∂β+α(Px′`

− Px′′`
)(x′′` )

]
· (ȳ − x′′` )

β

∣∣∣∣
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≤ C
∑

|β|≤m−1−|α|

M |x′` − x′′` |
m−(|α|+|β|) · |ȳ − x′′` |

|β|

≤ C′ M|x̄ − ȳ|m−|α| .

Now, combining (3.10), (3.11) and (3.12), we obtain

(3.13) |∂α(Px̄ − Pȳ)(ȳ)| ≤ C′′(1 + κ A)M|x̄ − ȳ|m−|α| for |α| ≤ m − 1.

We now take

(3.14) κ < 1
/
(2C′′)

and

(3.15) A = 2C′′,

with C′′ as in (3.13). Thus,

C′′(1 + κA) = C′′ + (C′′κ)A < C′′ +
1

2
A = A ,

and (3.13) implies

(3.16) |∂α(Px̄ − Pȳ)(ȳ)| ≤ AM |x̄ − ȳ|m−|α| for |α| ≤ m − 1.

Taking α = ᾱ in (3.16), we obtain a contradiction to (3.3) and (3.4).

Consequently, our initial assumption (that (3.2) fails) is absurd, and we have (3.2), with

A given by (3.15), provided κ satisfies (3.14).

The proof of Lemma 3.1 is complete �

We invite the reader to compare Lemma 3.1, and its use below, with the computation

of Lipschitz norms using the Callahan-Kosaraju decomposition (see, e.g., Har-Peled and

Mendel [9]).
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We close this section with an obvious remark on the Callahan-Kosaraju decomposition.

Lemma 3.2: Every x ∈ E arises as an x′` for some `(1 ≤ ` ≤ L).

Proof: Let x ∈ E. We pick y ∈ E r {x} to minimize |x − y|. Since the E′
` × E′′

` (1 ≤ ` ≤ L)

form a Callahan-Kosaraju decomposition, we have (x, y) ∈ E′
` × E′′

` for some `. Fix such an

`.

Then we have x, x′` ∈ E′
`, and y, x′′` ∈ E′′

` , thanks to (0.10). Consequently, (0.9) gives

|x − x′`| ≤ κ|x − y| < |x − y|. Since y was picked to satisfy |x − z| ≥ |x − y| for all z ∈ E r {x},

it follows that x′` does not belong to E r {x}. On the other hand, x′` ∈ E′
` ⊂ E, by (0.10).

Thus, x = x′`, proving Lemma 3.2. �

§4. Proof of Theorem 1

Let E, σ be as in the hypotheses of Theorem 1, with N = #(E). We take κ ∈ (0, 1)

to be a constant, depending only on m and n, and small enough that Lemma 3.1 applies.

We then introduce the Callahan-Kosaraju decomposition for κ, as in (0.7) ... (0.11). Also,

we introduce the linear operator T , the sets S(x) (x ∈ E), and the coefficients λα(x, y)

(|α| ≤ m,x, y ∈ E), as in (0.3) ... (0.6).

As promised in Section 0, we take

(4.1) S` = S(x′`) ∪ S(x′′` ) ∪ {x′`, x
′′
` } for ` = 1, . . . , L.

(See (0.12).) We have already seen that conclusions (A), (B), (D) of Theorem 1 hold for our

S1, . . . , SL. Our task here is to prove conclusion (C), i.e., ‖ f ‖(E,σ) ∼ max
`=1,...,L

‖ f ‖(S`,σ), for

any f : E −→ R. Since obviously ‖ f ‖(E,σ)≥‖ f ‖(S`,σ) for each `, our task is really to show

that

(4.2) ‖ f ‖(E,σ)≤ CM, where

(4.3) M = max
`=1,...,L

‖ f ‖(S`,σ).

That is, we must show that there exists F ∈ Cm(Rn) satisfying
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(4.4) ‖ F ‖≤ CM, and |F(x) − f(x)| ≤ CMσ(x) for all x ∈ E, with M as in (4.3).

To find F, we will define polynomials Px ∈ P for all x ∈ E, and check that they satisfy

(4.5) |(∂αPx)(x)| ≤ CM for |α| ≤ m − 1, x ∈ E;

(4.6) |∂α(Px − Py)(y)| ≤ CM|x − y|m−|α| for |α| ≤ m − 1, x, y ∈ E; and

(4.7) |Px(x) − f(x)| ≤ CMσ(x) for all x ∈ E.

As in our discussion of (1.3) ... (1.8), the classical Whitney extension theorem then produces

an F ∈ Cm(Rn), satisfying

‖ F ‖≤ C′M , and Jx(F) = Px for x ∈ E ,

and consequently satisfying (4.4).

To summarize: We will define Px ∈ P for each x ∈ E, and prove (4.5), (4.6), (4.7), with

M as in (4.3). This will complete the proof of Theorem 1.

For x ∈ E, we specify Px ∈ P by stipulating that

(4.8) (∂αPx)(x) =
∑

y∈S(x)

λα(x, y)f(y) for |α| ≤ m − 1.

(Clearly, given x ∈ E, there is one and only one Px ∈ P satisfying (4.8).)

We begin proving (4.5) ... (4.7) for the above Px. By definition (4.3), we have

‖ f ‖(S`,σ)≤ M for ` = 1, . . . , L.

Thus, for each ` = 1, . . . , L, there exists F` ∈ Cm(Rn), with

(4.9) ‖ F` ‖≤ 2M, and |F`(x) − f(x)| ≤ 2Mσ(x) for all x ∈ S`.

Fix such F`. For ` = 1, . . . , L, we define f` : E −→ R, by setting

(4.10) f`(x) = f(x) for x ∈ S`, f`(x) = F`(x) for x ∈ E r S`.
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In particular, (4.1) and (4.10) give

(4.11) f` = f on S(x′`) ∪ S(x′′` ) ∪ {x′`, x
′′
` }, for each ` = 1, . . . , L.

From (4.9) and (4.10), we obtain the estimates

‖ F` ‖≤ 2M , and |F`(x) − f`(x)| ≤ 2Mσ(x) for all x ∈ E .

This shows that

‖ f` ‖(E,σ)≤ 2M for ` = 1, . . . , L .

Therefore, applying (0.5) and (0.6), we learn that the function

(4.12) F̃` = Tf` ∈ Cm(Rn)

satisfies the estimates

(4.13) ‖ F̃` ‖≤ CM, and |F̃`(x) − f`(x)| ≤ CMσ(x) for all x ∈ E.

Also, (4.12) and (0.4) yield

(4.14) ∂αF̃`(x
′
`) =

∑
y∈S(x′`)

λα(x′`, y)f`(y)

and

(4.15) ∂αF̃`(x
′′
` ) =

∑
y∈S(x′′` )

λα(x′′` , y)f`(y),

for |α| ≤ m − 1 and ` = 1, . . . , L.

Thanks to (4.11), equations (4.14), (4.15) may be rewritten in the form

(4.16) ∂αF̃`(x
′
`) =

∑
y∈S(x′`)

λα(x′`, y)f(y)
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and

(4.17) ∂αF̃`(x
′′
` ) =

∑
y∈S(x′′` )

λα(x′′` , y)f(y)

for |α| ≤ m − 1 and ` = 1, . . . , L.

Comparing (4.16) and (4.17) with (4.8), we conclude that

(4.18) Jx′`
(F̃`) = Px′`

, and Jx′′`
(F̃`) = Px′′`

.

Since ‖ F̃` ‖≤ CM by (4.13), it follows from (4.18) and Taylor’s theorem that

(4.19) |∂α(Px′`
− Px′′`

)(x′′` )| ≤ C′M|x′` − x′′` |
m−|α| for |α| ≤ m − 1, ` = 1, . . . , L;

and that

(4.20) |(∂αPx′`
)(x′`)| ≤ CM for |α| ≤ m − 1, ` = 1, . . . , L.

Also, from (4.11), (4.13), and (4.18), we see that

(4.21) |Px′`
(x′`) − f(x′`)| = |F̃`(x

′
`) − f`(x

′
`)| ≤ CMσ(x′`) for each ` = 1, . . . , L.

It is now easy to complete the proof of (4.5), (4.6) and (4.7).

In fact, by virtue of Lemma 3.2, our results (4.20) and (4.21) imply the estimates (4.5)

and (4.7), respectively. Also, (4.19) implies (4.6), thanks to Lemma 3.1.

Thus, (4.5), (4.6), (4.7) hold for our Px, with M given by (4.3). The proof of Theorem 1

is complete. �
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