MATH 201 Spring '01 Final Exam

1. (20 points)

Consider the points

$$A = (2,3,2)$$
 $B = (4,1,0)$ $C = (-1,2,0)$ $D = (5,4,-2)$

- (a) Find an equation for the plane P that contains points A and B and is parallel to the line L through C and D.
- (b) Find the distance from the line L to the plane P.

2. (16 points)

Find and classify the critical points (local max, local min, saddle points) of $f(x,y) = x^3y - 3xy + y^2$.

3. (16 points)

Find the point of the surface z = xy + 1 that is closest to the origin.

4. (16 points)

- (a) Find an equation for the plane through (1,1,1) that is normal to the twisted cubic $(x,y,z) = (t,t^2,t^3)$ at that point.
- (b) Find an equation for the plane tangent to the paraboloid $z = 2x^2 + 3y^2$ and simultaneously parallel to the plane 4x 3y z = 10.

5. (20 points)

Compute the volume of the part of the paraboloid $z = x^2 + y^2$ contained inside the sphere $x^2 + y^2 + z^2 = 2$.

i. (20 points)

Let R be the region in the first quadrant of the xy-plane bounded by the hyperbolas xy = 1 and xy = 9 as well as by the lines y = x and y = 4x.

- (a) Find a mapping T from the uv-plane to the xy-plane such that R is the image of the rectangle with vertices (1,1), (9,1), (9,4) and (1,4).
- (b) Compute

$$\int_{R} \left(\sqrt{\frac{y}{x}} + \sqrt{xy} \right) dA$$

7. (28 points)

Compute the circulation $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the following vector fields and curves C.

- (a) $\mathbf{F} = \langle 2xy + x, xy y \rangle$, and the unit square C with vertices (0,0), (0,1), (1,1) and (1,0), oriented counterclockwise.
- (b) $\mathbf{F} = f \frac{\partial f}{\partial x} \mathbf{i} + f \frac{\partial f}{\partial y} \mathbf{j}$ where f is a smooth function defined everywhere on the xy-plane, and C is closed curve in the xy-plane.

3. (20 points)

Compute the flux $\int_C \mathbf{F} \cdot \mathbf{n} ds$ for the vector field $\mathbf{F} = (5x\mathbf{i} + 5y\mathbf{j})/(x^2 + y^2)$ and the ellipse C wit equation $x^2/9 + y^2/4 = 1$. Justify your answer.

9. (24 points)

Verify Stokes' theorem if $\mathbf{F} = \langle y, -x, 0 \rangle$ and C is the circle in the xy-plane that bounds the part c surface $x^2 + y^2 + z = 9$ with $z \ge 0$ (notice that the surface is not a hemisphere).

). (20 points)

Compute the flux integral $\int_S \mathbf{F} \cdot \mathbf{n} dS$ of the vector field $\mathbf{F}(x, y, z) = (x^3, y^3, z^3)$ across the spher $x^2 + y^2 + z^2 = 9$.