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1 What is Q curvature?

Given (Mn; g), n � 3,

Q = � 1

2 (n� 1)
�R� 2

(n� 2)2
jRcj2

+
n3 � 4n2 + 16n� 16
8 (n� 1)2 (n� 2)2

R2:

To simplify the formulas, in conformal geometry people
use

J =
R

2 (n� 1)
; A =

1

n� 2
(Rc� Jg) :

Then

Q = ��J � 2 jAj2 + n
2
J2:

The Paneitz operator [Paneitz 1983]

P' = �2'+div (4A (r'; ei) ei � (n� 2) Jr')+
n� 4
2

Q':

Here e1; � � � ; en is a local orthonormal frame.



For n 6= 4,

P
�
4
n�4g

' = �
�n+4n�4Pg (�') :

In particular

Q
�
4
n�4g

=
2

n� 4
�
�n+4n�4Pg�:

This can be compared to

L = �4 (n� 1)
n� 2

� +R;

which satis�es

L
�
4
n�2g

' = �
�n+2n�2Lg(�')

and

R
�
4
n�2g

= �
�n+2n�2Lg�:

For n = 4,

Pe2wg' = e
�4wPg'



and

Qe2wg = e
�4w (Pgw +Qg) :

MoreoverZ
M
Qd�+

1

4

Z
M
jW j2 d� = 8�2� (M) :

This can be compared to Laplacian on surface

�e2wg' = e
�2w�g'

and

Ke2wg = e
�2w (Kg ��gw) :

There are higher order analogue called GJMS operator
with (��)m as leading term. There are even fractional
order GJMS operators by scattering theory (Branson, Fe¤erman-
Graham, Graham-Zworski, Juhl ...).



2 Q curvature equation in dimen-

sion 4

Problems in spectral geometry motivate the analytical
study of Paneitz operator in dimension 4 [Branson-Chang-
Yang, 1992], [Chang-Yang 1995]. Paneitz operator ap-
pears in the log determinant of conformal covariant op-
erators. One typical breakthrough made along the way
is

Theorem 1 (Chang-Gursky-Yang 2002) If
�
M4; g

�
is

compact with Y (g) > 0 and
R
M Qd� > 0, then there

exists a eg 2 [g] such thatgRc > 0.
Both Y (g) and

R
M Qd� are conformal invariants. The

study also reveals the usefulness of �2 (A) equation.

[Djadli-Hebey-Ledoux 2000] started the question of �nd-
ing constant Q curvature in a �xed conformal class (or



closely related prescribing Q curvature problem) in di-
mension n � 5. [Xu-Yang 2002] started similar problem
for dimension 3.

Theorem 2 (Ge-Lin-Wang, Catino-Djadli 2010) Assume�
M3; g

�
is compact with R > 0; Q > 0, then there ex-

ists a eg 2 [g] such thatgRc > 0.



3 Q curvature equation in dimen-

sion n � 5

Let (Mn; g) be smooth and compact,K :M�M ! R,
' :M ! R,

(TK') (p) =
Z
M
K (p; q)' (q) d� (q) :

Given another K0 :M �M ! R,�
K �K0

�
(p; q) =

Z
M
K (p; s)K0 (s; q) d� (s) :

This makes

TKTK0 = TK�K0:

Denote

Y (g) = infeg2[g] e� (M)�
n�2
n

Z
M

eRde�:



Assume Y (g) > 0, GL is the Green�s function of L,
GL;p (q) = GL (p; q). Denote

H (p; q) =
2
n�6
n�2 (n� 1)

n�4
n�2

n
2
n�2 (n� 2) (n� 4)!

2
n�2
n

GL (p; q)
n�4
n�2 :

and

�1 (p; q) =
2
n�6
n�2 (n� 1)

n�4
n�2

n
2
n�2 (n� 2)3 !

2
n�2
n

GL (p; q)
n�4
n�2

�������RcG 4
n�2
L;p g

�������
2

g

(q) :

!n is the volume of unit ball in Rn. Note G
4
n�2
L;p g is the

stereographic projection at p. Then

�1 (p; q) = O
�
pq4�n

�
:

If eg = � 4
n�4g, then

Te�1 (') = ��1T�1 (�') :
They have the same spectrum and spectral radius i.e.

�

�
Te�1

�
= �

�
T�1

�
and r�

�
Te�1

�
= r�

�
T�1

�
.



Theorem 3 (Hang-Yang 2015) Assume Y (g) > 0, then
the following statements are equivalent

1. there exists a eg 2 [g] with eQ > 0.

2. kerP = 0 and the Green�s function GP (p; q) > 0 for
p 6= q.

3. kerP = 0 and there exists p 2M such thatGP (p; q) >
0 for q 6= p.

4. r�
�
T�1

�
< 1.

Moreover if r�
�
T�1

�
< 1, then

GP = H +
1X
k=1

�k �H;

here �k = �1�� � ���1 (k times). In particular, GP � H,
moreover if GP (p; q) = H (p; q) for some p 6= q, then
(M; g) is conformal equivalent to the standard Sn.



If kerP = 0, eg = � 4
n�4g, then

G eP (p; q) = � (p)�1 � (q)�1GP (p; q) :
The above statement can be compared to

9eg 2 [g] with eR > 0, �1 (Lg) > 0, Y (g) > 0;

an observation of [Kazdan-Warner 1975]; and [Aubin 1974]
about Green�s function of the Laplacian. For relations be-
tween L and P , [Hijazi-Raulot 2007] shows if Y (g) > 0,
then

�1 (Lg)
2 � 16n (n� 1)2

(n+ 2) (n� 2) (n� 4)
�1 (Pg) ;

equality holds i¤ g is Einstein metric.

Theorem 4 ([Gursky-Malchiodi, Hang-Yang 2015])
If Y (g) > 0, r�

�
T�1

�
< 1, then there exists a eg 2 [g]

with eQ = 1. Such eg can be found as extremal metric
of some functionals. If in addition we know R > 0 and
Q > 0, then eR > 0.



To �nd metrics with both positive scalar andQ curvature,

Theorem 5 (Gursky-Hang-Lin 2015) For n � 6,

9eg 2 [g] with eR > 0 and eQ > 0, Lg > 0 and Pg > 0.

For some reason the approach does not work for n = 5.
But it seems the statement should valid for n = 5 too.

Recall

Y (g) = inf
u2C1(M)

u>0

R
M

�
4(n�1)
n�2 jruj2 +Ru2

�
d�

kuk2
L
2n
n�2

= inf
u2H1(M)nf0g

R
M

�
4(n�1)
n�2 jruj2 +Ru2

�
d�

kuk2
L
2n
n�2

;

by the fact u 2 H1 (M) ) juj 2 H1 (M) (this sim-
ple fact is the reason why the �rst eigenfunction of Lg
is strictly positive or negative, it is also a basic block for



DeGiorgi-Nash-Moser theory for second order scalar el-
liptic equations). In particular if the minimizer exists, it
must be strictly positive or negative.

[Aubin 1976] shows Y (g) � Y (Sn); if Y (g) < Y (Sn),
then Y (g) is achieved; for n � 6, g not locally confor-
mally �at, then Y (g) < Y (Sn). [Schoen 1984] solves
all the remain case by applying positive mass theorem on
stereographic projection.

To solve

Pu = const � u
n+4
n�4; u > 0;

let

Y4 (g) = inf
u2H2(M)nf0g

R
M Pu � ud�
kuk2

L
2n
n�4

;

then Y4 (g) � Y4 (Sn); if Y4 (g) < Y4 (Sn), then Y4 (g)
is achieved; for n � 8, g not locally conformally �at,
then Y4 (g) < Y4 (S

n). Unfortunately u 2 H2 (M) ;
juj 2 H2 (M), how can we know the minimizer is strictly



positive or negative? It needs positivity to qualify for
being conformal factors.

[Robert 2009] made an observation in an unpublished
lecture notes: if P > 0, GP > 0 and Y4 (g) is achieved,
then the minimizer must be strictly positive or negative.

In fact u is a minimizer with kuk
L
2n
n�4

= 1 and u+ 6= 0,
then

Pu = Y4 (g) juj
8
n�4 u:

Let Pv = jPuj, then v > 0 and juj � v.

Y4 (g) �
R
M Pv � vd�
kvk2

L
2n
n�4

= Y4 (g)

R
M juj

n+4
n�4 vd�

kvk2
L
2n
n�4

� Y4 (g) kvk�1
L
2n
n�4

� Y4 (g) :

Hence kvk
L
2n
n�4

= 1 = kuk
L
2n
n�4

and u = v.

[Humbert-Raulot 2009] If (M; g) is locally conformally
�at or n = 5; 6; 7, kerP = 0, then under the conformal



normal coordinate at p,

2n (n� 2) (n� 4)!nGP;p = r4�n +A+O(4) (r) :
If Y (g) > 0, GP;p > 0, then

A = c (n)
Z
M
GP;pG

n�4
n�2
L;p

�������RcG 4
n�2
L;p g

�������
2

g

d� � 0.

A = 0 i¤ (M; g) is conformal equivalent to the standard
Sn. Originally Humbert-Raulot only considered locally
conformally �at manifolds, Gursky-Malchiodi pointed out
their argument works in dimension 5; 6; 7.

Indeed on Mn fpg,

PgGP;p = 0:

Use conformal covariant property,

P
G

4
n�2
L;p g

 
G
�n�4n�2
L;p GP;p

!
= 0:

Integrate the equation on MnBg;" (p) with respect to
d�
G

4
n�2
L;p g

and let "! 0+ we get the needed identity.



How can we know GP > 0? Green�s function for fourth
order elliptic operator is not as simple as second order
ones.

Example 6 On S1 consider the operator u 7! u(4)+�u,
� > 0, we have

G (x; y)

= � 1

2
p
�
Im

 
cosh� (� � xy)
� sinh��

!
=

�

2� (cosh 2�� � cos 2��)
[cosh�xy sin� (2� � xy)

+ cosh� (2� � xy) sin�xy + sinh�xy cos� (2� � xy)
+ sinh� (2� � xy) cos�xy] :

Here � = 4
q
�=4, � = �+ �i. Note

G (1;�1) = � (cosh�� sin�� + sinh�� cos��)

� (cosh 2�� � cos 2��)
:

If � = 2k + 1; k 2 Z+, then G (1;�1) < 0. Indeed
careful study shows if � � 4, G is negative somewhere.



Example 7 If Rc = (n� 1) g, then

Q =
n (n� 2) (n+ 2)

8
;

P =

 
��+ n (n� 2)

4

! 
��+ (n+ 2) (n� 4)

4

!
:

Hence P > 0 and

GP = G��+(n+2)(n�4)4

�G
��+n(n�2)4

> 0:

This is basically applying maximum principle twice. On
Sn, let N be the north pole, x = �N as the coordinate,
then

GP;N =

�
jxj2 + 1

�n�4
2

n (n� 2) (n� 4) 2n�3!n
:

Example 8 If

�2u = u
n+4
n�4; u > 0;

then by [Lin 1998] using method of moving plane and



applying maximum principle twice, we have

u = cn

 
�

jx� x0j2 + �2

!n�4
2

for some � > 0:

[Chen-Li-Ou 2006] achieve this without using maximum
principle, namely if for 0 < � < n,

u (x) =
Z
Rn

u (y)
n+�
n��

jx� yjn��
dy; u > 0;

then

u = cn;�

 
�

jx� x0j2 + �2

!n��
2

for some � > 0:

They develop the integral form of the method of mov-
ing planes based on the property of the kernel. This
approach, together with [Schoen-Yau 1988] �s result on
locally conformally �at manifolds and Kleinian groups,
enable [Qing-Raske 2006] to solve the Q curvature equa-
tion for locally conformally �at manifolds with Y (g) >
0; Q > 0. These are all based on explicit formulas of the
Green�s function.



[Gursky-Malchiodi 2014] makes a breakthrough: If R >

0; Q > 0, then P > 0; GP > 0; moreover if eg 2 [g]

satis�es eQ > 0, then eR > 0.
Method: try to show

Pu � 0) u � 0:

For � > 0, let u� = u+ �, g� = u
4
n�4
� g.

Q� =
2

n� 4
u
�n+4n�4
� Pu� > 0;

i.e.

���J +
n

2
J2� � Q� > 0:

By method of continuity J� > 0. Hence u� is super-
harmonic. By strong maximum principle, u� > 0 for all
� > 0. Hence u � 0.

[Hang-Yang 2014] Recall how we deal with second order
operators. Given Su = ��u+ cu, c > 0. We need

Su � 0) u � 0:



If not, let minM u = ��, � > 0, then

S (u+ �) > 0; u+� � 0 and touches zero somewhere.

Hence by strong maximum principle u + � � 0, a con-
tradiction. It follows that GS � 0. By strong maximum
principle we have GS > 0.

Assume Y (g) > 0; Q > 0, we need

Pu � 0 =) u � 0:

If not let u (p) = minM u = ��, � > 0, then

P (u+ �) > 0; u+ � � 0 and u (p) + � = 0.

How to rule this out? The crucial equality

PqH (p; q) = �p (q)� �1 (p; q) :

This equality is closely related to [Humbert-Raulot 2009].
Recall

H (p; q) =
2
n�6
n�2 (n� 1)

n�4
n�2

n
2
n�2 (n� 2) (n� 4)!

2
n�2
n

GL (p; q)
n�4
n�2 :



and

�1 (p; q) =
2
n�6
n�2 (n� 1)

n�4
n�2

n
2
n�2 (n� 2)3 !

2
n�2
n

GL (p; q)
n�4
n�2

�������RcG 4
n�2
L;p g

�������
2

g

(q) :

Hence Z
M
H (p; q)P (u+ �) (q) d� (q)

= �
Z
M
�1 (p; q) (u+ �) (q) d� (q) :

A contradiction.

How to get formulas for GP ? For any ' 2 C1 (M),

TH (P') = '� T�1':

If r�
�
T�1

�
< 1, then

' =
�
I � T�1

��1
TH (P') :

Then use geometric series expansion.

How to get positive mass forGP ? For locally conformally
�at manifold or n = 5; 6; 7,

GP;p �Hp = A+ o (1) :



Since

P
�
GP;p �Hp

�
= �1;p;

we see

A =
Z
M
GP (p; q) �1 (p; q) d� (q) :

This is exactly the formula in [Humbert-Raulot 2009].

Remark 9 There is a di¤erence between R > 0; Q > 0

and Y (g) > 0; Q > 0.

Assume Y (g) > 0; Q > 0, then kerP = 0 and G =

GP > 0. To solve

Pu = u
n+4
n�4; u > 0:

We write it as

u = TGu
n+4
n�4:

Let f = u
n+4
n�4 , it becomes

TGf = f
n�4
n+4; f > 0:



This can be solved by

�4 (g) = sup

f2L
2n
n+4(M)nf0g

R
M TGf � fd�
kfk2

L
2n
n+4

:

It has similar structure as the solution to Yamabe prob-
lem. �4 (g) � �4 (S

n), with equality i¤ (M; g) is
conformal equivalent to Sn. Hence �4 (g) is always
achieved.

Note

�4 (g) =
2

n� 4
supeg2[g]

R
M

eQde�


 eQ


2
L
2n
n+4(e�)

:



[Gursky-Hang-Lin 2015]

n � 6; Lg > 0; Pg > 0) 9eg 2 [g] with eR > 0; eQ > 0:

To begin, note

�2 (A) =
1

2

�
J2 � jAj2

�
;

Q = ��J + n� 4
2

J2 + 4�2 (A) ;

HenceZ
M
Qd� =

n� 4
2

Z
M
J2d�+ 4

Z
M
�2 (A) d�:

For � � 1 consider the functional
n� 4
2

�
Z
M
J2gd�g + 4

Z
M
�2 (Ag) d�g:

A critical metric of this functional restricted to the space
of conformal metrics of unit volume satis�es

�

�
��J + n� 4

2
J2
�
+ 4�2 (A) = const:

Fix �0 � 1 such that there exists g0 = u
4
n�4
0 satisfying

�0

�
��0J0 +

n� 4
2

J20

�
+ 4�2 (A0) > 0



and J0 > 0. De�ne f as

�0

�
��0J0 +

n� 4
2

J20

�
+ 4�2 (A0) = fu

�n+4n�4
0 :

Then for 1 � � � �0 try to solve

�

�
�f�J + n� 4

2
eJ2�+4�2 � eA� = fu�n+4n�4; eg = u 4

n�4g

by method of continuity. This approach has similar spirit
as [Chang-Gursky-Yang 2002].



4 Q curvature equation in dimen-
sion 3

On
�
M3; g

�
,

Q = �1
4
�R� 2 jRcj2 + 23

32
R2;

and

P' = �2'+4div (Rc (r'; ei) ei)�
5

4
div (Rr')�1

2
Q':

The transformation law is

P��4g' = �
7Pg (�') :

Hence seeking eg 2 [g] with eQ = const is the same as

Pgu = const � u�7; u > 0:

Example 10 On S3,

Q =
15

8
;

P = �2 +
1

2
�� 15

16
=
�
��+ 3

4

��
��� 5

4

�
:



�1 (P ) = �1516, �2 (P ) =
105
16 > 0. Let N be north

pole, x = �N , then

GN = � 1

4�

1q
1 + jxj2

:

Recall on R3, the fundamental solution of �2 is � r
8� .

Example 11 On S2 � S1, Q = �98, P > 0.

Example 12 If kerP = 0, then under the conformal
normal coordinate at p,

Gp = A�
r

8�
+

3X
i=1

aixi +O
�
r2
�
:

Note PGp = �p 2 H�2, hence Gp 2 H2 (M).

Assume Y (g) > 0,

H (p; q) = �GL (p; q)
�1

256�2
;

�1 (p; q) =
GL (p; q)

�1

256�2

����RcG4L;pg
����2
g
(q) :



Then

�1 (p; q) = O
�
pq�1

�
and

PqH (p; q) = �p (q)� �1 (p; q) :

[Hang-Yang 2015] Assume Y (g) > 0, then the following
statements are equivalent

1. there exists a eg 2 [g] with eQ > 0.

2. kerP = 0 and the Green�s function GP (p; q) < 0

for p 6= q.

3. kerP = 0 and there exists p 2M such thatGP (p; q) <
0 for q 6= p.

4. r�
�
T�1

�
< 1.



Moreover if r�
�
T�1

�
< 1, then

GP = H +
1X
k=1

�k �H;

In particular, GP � � G�1L
256�2

; if equality holds some-
where, then (M; g) is conformal equivalent to the stan-
dard S3.

Example 13 If Y (g) > 0, r�
�
T�1

�
< 1 and (M; g) is

not conformal equivalent to S3, then the set
neg 2 [g] : eQ = 1

o
is nonempty and compact.

Indeed, G = GP < 0. Let eg = u�4g, then
Pu = �1

2
u�7; u > 0:

In another way,

u (p) =
Z
M

 
�G (p; q)

2

!
u (q)�7 d� (q)

�
Z
M
u�7d�;



hence 0 < c1 � u � c2. This gives compactness. De-
gree theory gives existence.

Problem 14 Find a conformal invariant condition which
is equivalent to the existence of a eg 2 [g] with eR > 0

and eQ > 0.


