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1 What is () curvature?

Given (M™, g), n > 3,
1 2
Q = — AR — 5 | Rel?
2(n—1) (n —2)
n3 — 4n? 4 16n — 16 2
8(n—1)°(n—-2)2

To simplify the formulas, in conformal geometry people

use

R 1

J= . A=—"(Re—Jg).
2(n—1) n o e J9)

Then
Q=—AJ—2|AP + gﬂ.

The Paneitz operator [Paneitz 1983]

n—4

Py = A%p+div(4A (Ve e;) e; — (n — 2) IV )+ 5

Q.

Here e1,--- , en is a local orthonormal frame.



For n # 4,

_n+ta
P 4 p=p "4P(pyp)
pr—4g
In particular
2 _nt4
Q a4 = p "4Pgp

4(n—1
= 4=V g
n J—
which satisfies
_n+2
L 4 @=p "2Lg(pp)
pr—2g
and
_n+2
R 4 =p n2Lgp
pn—eg
For n = 4,



and

Qe2wy = e~ (Pyw + Qg) -
Moreover

1
d +—/ W12 du = 872y (M).
/MQ pt g ) W du x (M)
This can be compared to Laplacian on surface
Ae2wg¢ — 6_2wA990

and

K62wg — 6_2w (Kg - Agw) .

There are higher order analogue called GJMS operator

with (—A)™ as leading term. There are even fractional

order GJMS operators by scattering theory (Branson, Fefferman-
Graham, Graham-Zworski, Juhl ...).



2 () curvature equation in dimen-

sion 4

Problems in spectral geometry motivate the analytical
study of Paneitz operator in dimension 4 [Branson-Chang-
Yang, 1992], [Chang-Yang 1995]. Paneitz operator ap-
pears in the log determinant of conformal covariant op-
erators. One typical breakthrough made along the way
IS

Theorem 1 (Chang-Gursky-Yang 2002) /f(M4,g) is
compact with Y (g) > 0 and [3; Qdp > 0, then there
exists a g € [g] such that Rc > 0.

Both Y (g) and [, Qdu are conformal invariants. The
study also reveals the usefulness of o5 (A) equation.

[Djadli-Hebey-Ledoux 2000] started the question of find-
ing constant @ curvature in a fixed conformal class (or



closely related prescribing ) curvature problem) in di-
mension n > 5. [Xu-Yang 2002] started similar problem
for dimension 3.

Theorem 2 (Ge-Lin-Wang, Catino-Djadli 2010) Assume
(M3, g) is compact with R > 0, () > 0, then there ex-

ists a g € [g] such that Re > 0.



3 (@ curvature equation in dimen-

sionn > 5

Let (M™, g) be smooth and compact, K : M x M — R,
©: M — R,

(Te) (1) = | K (b, @) ¢ () dps (9)

Given another K/ : M x M — R,

(K *K') (p,q) = /MK(p, s) K'(s,q) dp (s).
This makes

TKTK/ — TK*K"

Denote

Y (9) = In[f;]u(M)_—/ Rdji.



Assume Y (g) > 0, G, is the Green's function of L,
GrLp(q) = GL(p,q). Denote

4
H(p,q) = 21 (n = 1)1 QGL(pQ) =3
nn—2(n —2)(n —4)wp?
and
4 2
M(p,q) = 2: AR 22 G1 (p,q)"—2 |Re 4| (9)-
nn—2 (n — 2)3 wi 2 GZ,;gg
4

wn, is the volume of unit ball in R™. Note G g is the
stereographic projection at p. Then

r(p,q) =0 (pg*").

4
If g = pn—4g, then

—1
Tz (p) = p Tt (pp) -

They have the same spectrum and spectral radius i.e.

o (T7,) = o (11,) and ro (T, ) = 7o (T1,).



2.

3.

4.

Theorem 3 (Hang-Yang 2015) AssumeY (g) > 0, then
the following statements are equivalent

. there exists a § € [g] with Q > 0.

ker P = 0 and the Green’s function Gp (p,q) > 0 for
p#q.

ker P = 0 and there existsp € M such that Gp (p, q) >
0 for q #£ p.

ro (Tr,) < 1.

Moreover if ry (Tr1> < 1, then

@)
Gp=H+ ) TpxH,
k=1
herel;, = 1*---x[1 (k times). In particular, Gp > H,
moreover if Gp (p,q) = H (p,q) for some p # q, then
(M, g) is conformal equivalent to the standard S™.



4
If ker P =0, g = pn—4g, then

Gﬁ@%®=:p@ﬁ4¢%®_10phxm-

The above statement can be compared to

35 € [g] with R>0< A (Lg) >0< Y (g9) >0,

an observation of [Kazdan-Warner 1975]; and [Aubin 1974]
about Green's function of the Laplacian. For relations be-

tween L and P, [Hijazi-Raulot 2007] shows if Y (g) > O,
then

16n (n — 1)°
)\1 (Lg)2 > n (n )
(n+2)(n—2)(n—4)
equality holds iff g is Einstein metric.

A1 (Fy)

Theorem 4 ([Gursky-Malchiodi, Hang-Yang 2015])
IfY (g9) >0, ro <T|-1> < 1, then there exists a g € [g]
with Q = 1. Such g can be found as extremal metric

of some functionals. If in addition we know R > 0 and
Q > 0, then R > 0.



To find metrics with both positive scalar and ) curvature,

Theorem 5 (Gursky-Hang-Lin 2015) Forn > 6,

3g € [g] with R>0and Q >0< Ly >0 and Py > 0.

For some reason the approach does not work for n = 5.

But it seems the statement should valid for n = 5 too.

Recall
s (A2 1Vl + Re?) dys
ueC=(M) [l 2,
u>0 Ln—2
s (*52 1Vl + R ) dys
we HL(M)\{0} |l 25
Ln—2

by the fact w € HY (M) = |u| € H (M) (this sim-
ple fact is the reason why the first eigenfunction of Lg
s strictly positive or negative, it is also a basic block for



DeGiorgi-Nash-Moser theory for second order scalar el-
liptic equations). In particular if the minimizer exists, it

must be strictly positive or negative.

[Aubin 1976] shows Y (g) < Y (S™);if Y (g9) < Y (S™),
then Y (g) is achieved; for n > 6, g not locally confor-
mally flat, then Y (g) < Y (S™). [Schoen 1984] solves
all the remain case by applying positive mass theorem on
stereographic projection.

To solve
n+4
Pu = const - un—4, u > 0;
let
s Pu - udu
Y4 (g) — 2|n M 2 )
ue H2(M)\{0} ||u||L2_n4

then Y3 (g) < Y3 (S"); if Yz (g) < Y3 (S™), then Yy (g)
is achieved; for n > 8, g not locally conformally flat,
then Yz (g) < Y2 (S™). Unfortunately u € H? (M) #
lu| € H? (M), how can we know the minimizer is strictly



positive or negative? It needs positivity to qualify for
being conformal factors.

[Robert 2009] made an observation in an unpublished
lecture notes: if P > 0, Gp > 0 and Y4 (g) is achieved,
then the minimizer must be strictly positive or negative.

In fact w is a minimizer with ||u|| 2, = 1and u™ # 0,
[,n—4

then
_8
Pu =Yy (g) [u|"=*u.
Let Pv = |Pul, then v > 0 and |u| < wv.

Jp P - vdp s lu|=4 vdp
Ya(g) < 5 = Y4 (9) 5
[ll” 25 [0]l* 2n
LLn—4 L, n—
—1
< Ya(9) vl 20 < Ya(g).
[,n—4
Hence ||v]| 2n =1 =||u|| 2n and u = wv.
LLn—4 [Ln—4

[Humbert-Raulot 2009] If (M, g) is locally conformally
flat or n = 5,6,7, ker P = 0, then under the conformal



normal coordinate at p,
2n(n —2) (n— 4)wnGp, =r*""+ A+ 0¥ (r).
If Y (g) >0, Gp, > 0, then

n—4
— n—2
A =c(n) /M GppGT RCGni2 du > 0.
Lp 9

g
A = 0iff (M, g) is conformal equivalent to the standard
S™. Originally Humbert-Raulot only considered locally
conformally flat manifolds, Gursky-Malchiodi pointed out
their argument works in dimension 5,6, 7.

Indeed on M\ {p},
Use conformal covariant property,
_n—4
P 4 (GLHGp,p) = 0.
Gz;fg
Integrate the equation on M\ By (p) with respect to

dit 4 and let e — 0T we get the needed identity.
G?’L—2g
L,p



How can we know G p > 07 Green's function for fourth
order elliptic operator is not as simple as second order

ones.

Example 6 On S consider the operator u — u(®) +\u,
A > 0, we have

G (z,y)
1 | cosh a (7 — 77g)
= ——Im
2/ )\ a sinh Ta

= K [cosh uzy sin pu (2 — TY)
2\ (cosh 2um — cos2u)

+ cosh p (2 — TY) sin uTy + sinh uxy cos u (27 — TY)

+ sinh u (2w — TY) cos puzy] .
Here . = \Y\/4, a = pu + pi. Note

G(1,-1) =  (cosh prr sin pm + sinh pm cos ,uw).

A (cosh 2um — cos 2pu)
Ifu =2k+ 1, k € Z, then G(1,—1) < 0. Indeed
careful study shows if X\ > 4, G is negative somewhere.



Example 7 If Rc = (n — 1) g, then

~ n(n—-2)(n+2)
Q - 8 Y

P (_A+n(n—2)> (_A+(n—|—2)(n—4)>.

4 4

Hence P > 0 and

GP — G_A+(n+2£(n—4) * G_A+n(n4—2) > 0.

This is basically applying maximum principle twice. On
S™, let N be the north pole, x = mwp as the coordinate,

then
n—4

_ (Pt ®
n(n—2)(n—4)2" 3w,

GpnNn

Example 8 /f

n+4

A%y = un—4, u >0,

then by [Lin 1998] using method of moving plane and



applying maximum principle twice, we have

n—4

A )
U = cp, 5 3 for some \ > 0.
[z — x|+ A

[Chen-Li-Ou 2006] achieve this without using maximum

principle, namely if for 0 < o < n,

n+o

u(:v):/R uly)me dy, u >0,

np — oyt

then

n—«o

\ 2
U = Cp,« ( 5 2) for some \ > 0.
[ —xo|” + A

They develop the integral form of the method of mov-

ing planes based on the property of the kernel. This
approach, together with [Schoen-Yau 1988] 's result on
locally conformally flat manifolds and Kleinian groups,
enable [Qing-Raske 2006] to solve the (Q curvature equa-
tion for locally conformally flat manifolds with Y (g) >
0,Q > 0. These are all based on explicit formulas of the
Green's function.



[Gursky-Malchiodi 2014] makes a breakthrough: If R >
0,Q > 0, then P > 0,Gp > 0; moreover if g € [g]
satisfies CNQ > 0, then R > 0.

Method: try to show

Pu>0=u>0.
_4
For A > 0, let uy = u + A, gA:uK_“g.

2 _nta
Uy ”_4Pu>\ > 0;

QA:n_4
n .o
—A\T + S5 Z Qx> 0.

By method of continuity Jy > 0. Hence u) is super-
harmonic. By strong maximum principle, uy > 0 for all
A > 0. Hence u > 0.

[Hang-Yang 2014] Recall how we deal with second order
operators. Given Su = —Au + cu, ¢ > 0. We need

Su>0=u>0.



If not, let miny;u = —A, A > 0, then

S(u+ A) >0, u+A > 0 and touches zero somewhere.

Hence by strong maximum principle © + A = 0, a con-
tradiction. It follows that Gg > 0. By strong maximum
principle we have Gg > 0.

Assume Y (g) > 0,Q > 0, we need
Pu>0—u>0.
If not let w (p) = minj;u = —X, A > 0, then
P(u+XA) >0, u+A>0and u(p)+A=0.

How to rule this out? The crucial equality

PgH (p,q) = dp(q) —T1(p;q) -

This equality is closely related to [Humbert-Raulot 2009].

Recall

n—>6 n—4
2n—2 (n — 1)n—2

n—4
—Gr, (p,q)"2.

nn—2(n —2)(n —4)wp?

H(p,q) =



and

n—>6 n—4
2n=2 (p, — 1)n—2 n—4
Mi(p,q) = —; = Gr(p,a)"?|Re o
nn—2 (n — 2)3 wi 2 GLp 9
Hence

/M H (p,q) P (u+ ) (q) du (q)

— /M 1 (p,q) (u+ ) (q)du(q).

A contradiction.

How to get formulas for Gp? For any ¢ € C°° (M),

Ty (Py) =¢ —1Ir, ¢
If ro (Tr1> < 1, then

o= (I-1Tr,) Ty (Py).

Then use geometric series expansion.

How to get positive mass for G p? For locally conformally
flat manifold orn = 5,6, 7,

(q)-



Since

P (Gp,p _ Hp) =1,

we See

A= /M Gp(,a)T1(p,q)dur(q) -

This is exactly the formula in [Humbert-Raulot 2009].

Remark 9 There is a difference between R > 0, > 0
andY (g) >0,Q > 0.

Assume Y (g) > 0,Q > 0, then ker P = 0 and G =
Gp > 0. To solve

We write it as
u = Tgun—4.

nt4
Let f = un—4, it becomes

n—4
Taf = f4, f>0.



This can be solved by

T~f - fd
O4(9)=  sup fMIIfCITéf Jan
FeLn+4(M)\{0} [t

It has similar structure as the solution to Yamabe prob-
lem. ©4(g) > ©4(S™), with equality iff (M, g) is
conformal equivalent to S™. Hence ©4(g) is always
achieved.

Note




[Gursky-Hang-Lin 2015]

n>6,Ly>0,P;>0= 33§ € [g] with R>0,Q > 0.
To begin, note

1
2(4) = (/2 -1AP);
—4
Q = AT+ =T +403(4),

Hence
n—4
dp = /J2d 4/ A) du.
/MQ“ 5 [, 0t Maz()u

For A > 1 consider the functional

n—4 2
5 A /M Jgdpg + 4/M 02 (Ag) dpsg-

A critical metric of this functional restricted to the space
of conformal metrics of unit volume satisfies

4
A (—AJ -+ nTJ2> + 409 (A) = const.

4

Fix Ag > 1 such that there exists gg = u8_4 satisfying
n—4

A0 (—AoJO + Joz) + 405 (Ag) >0



and Jg > 0. Define f as

n+4

A0 (_AOJO + Jg) + 405 (Ag) = fu(;n_4.

Then for 1 < A < Ag try to solve

n—4

~ —4 _ _nt4
A (—AJ + ”Tﬂ) +40; (A) = fu n4, g =un-ig

by method of continuity. This approach has similar spirit
as [Chang-Gursky-Yang 2002].



4 () curvature equation in dimen-

sion 3

On (M3,g),

1 23

Q=—,AR-2 |Re|? + - —~R?

and
2 : 5 .. 1
Py = A“p+4div(Rc(Vp,e;) ei)—z div (RVQO)—EQQO.
The transformation law is
7
P s =p'Py(pp).
Hence seeking g € [g] with Q = const is the same as

Pyu = const - u_7, u > 0.

Example 10 On S3,

15
Q_Ea

1 15 3 5
P = A2+ A" = (—A —) (—A——).
+2 16 +4 4



A (P) = =12, 2a(P) = 22 > 0. Let N be north
pole, t = m N then

1 1

Recall on R3 the fundamental solution of A? is —é.

Gy = —

Example 11 On S? x S1, Q = -3, P > 0.

Example 12 /f ker P = 0, then under the conformal
normal coordinate at p,

Gp—A—g—I—ZZ:laZxZ—I—O( )

Note PGy = 6p € H™2, hence G € H? (M).

Assume Y (g) > O,

Gr,(p,q)?
H(p7q) — 2567'('2 ’
Gr,(p,q)*
M(pa) = —5— ‘RCGi,pgg




Then
ri(p.q) =0 (pq )
and

PgH (p,q) = 0p(q) —T1(p,q)-

[Hang-Yang 2015] Assume Y (g) > 0, then the following
statements are equivalent

1. there exists a § € [g] with Q > 0.

2. ker P = 0 and the Green's function Gp (p,q) < 0
for p #£ q.

3. ker P = 0 and there exists p € M such that Gp (p, q) <
0 for g # p.

4 o (Tr,) < 1.



Moreover if rs (T|-1> < 1, then

©.
Gp=H+ ) TpxH,
k=1

Gt .
256L7r2; if equality holds some-

where, then (M, g) is conformal equivalent to the stan-
dard S3.

In particular, Gp < —

Example 13 /fY (g) > 0, 7o (Tl'l) < 1and(M,g) is

not conformal equivalent to S3, then the set {§ clg]: Q= 1}
IS nonempty and compact.

Indeed, G = Gp < 0. Let § = u*g, then

1 7
Pu=—u ", u>0.

In another way,




hence 0 < ¢1 < u < ¢cp. This gives compactness. De-
gree theory gives existence.

Problem 14 Find a conformal invariant condition which
is equivalent to the existence of a g € [g] with R>0
and Q > 0.



