Fourth order Paneitz operator and Q curvature equation

Fengbo Hang New York University

April 10, 2016

1 What is *Q* curvature?

Given (M^n,g) , $n\geq$ 3,

$$Q = -\frac{1}{2(n-1)}\Delta R - \frac{2}{(n-2)^2} |Rc|^2 + \frac{n^3 - 4n^2 + 16n - 16}{8(n-1)^2(n-2)^2} R^2.$$

To simplify the formulas, in conformal geometry people use

$$J = \frac{R}{2(n-1)}, \quad A = \frac{1}{n-2}(Rc - Jg).$$

Then

$$Q = -\Delta J - 2|A|^2 + \frac{n}{2}J^2.$$

The Paneitz operator [Paneitz 1983]

$$P\varphi = \Delta^2 \varphi + \operatorname{div} \left(4A \left(\nabla \varphi, e_i \right) e_i - (n-2) J \nabla \varphi \right) + \frac{n-4}{2} Q \varphi.$$

Here e_1, \cdots, e_n is a local orthonormal frame.

For $n \neq 4$,

$$P_{\rho^{\frac{4}{n-4}}g}\varphi = \rho^{-\frac{n+4}{n-4}}P_g(\rho\varphi).$$

In particular

$$Q_{\rho^{\frac{4}{n-4}}g} = \frac{2}{n-4}\rho^{-\frac{n+4}{n-4}}P_g\rho.$$

This can be compared to

$$L = -\frac{4(n-1)}{n-2}\Delta + R,$$

which satisfies

$$L_{\rho^{\frac{4}{n-2}g}}\varphi = \rho^{-\frac{n+2}{n-2}}L_g(\rho\varphi)$$

 $\quad \text{and} \quad$

$$R_{\rho^{\frac{4}{n-2}g}} = \rho^{-\frac{n+2}{n-2}} L_g \rho.$$

For n = 4,

$$P_{e^{2w}g}\varphi = e^{-4w}P_g\varphi$$

and

$$Q_{e^{2w}g} = e^{-4w} \left(P_g w + Q_g \right).$$

Moreover

$$\int_{M} Q d\mu + \frac{1}{4} \int_{M} |W|^2 d\mu = 8\pi^2 \chi(M).$$

This can be compared to Laplacian on surface

$$\Delta_{e^{2w}g}\varphi = e^{-2w}\Delta_g\varphi$$

and

$$K_{e^{2w}g} = e^{-2w} \left(K_g - \Delta_g w \right).$$

There are higher order analogue called GJMS operator with $(-\Delta)^m$ as leading term. There are even fractional order GJMS operators by scattering theory (Branson, Fefferman-Graham, Graham-Zworski, Juhl ...).

2 *Q* curvature equation in dimension 4

Problems in spectral geometry motivate the analytical study of Paneitz operator in dimension 4 [Branson-Chang-Yang, 1992], [Chang-Yang 1995]. Paneitz operator appears in the log determinant of conformal covariant operators. One typical breakthrough made along the way is

Theorem 1 (Chang-Gursky-Yang 2002) If (M^4, g) is compact with Y(g) > 0 and $\int_M Qd\mu > 0$, then there exists a $\tilde{g} \in [g]$ such that $\widetilde{Rc} > 0$.

Both Y(g) and $\int_M Qd\mu$ are conformal invariants. The study also reveals the usefulness of $\sigma_2(A)$ equation.

[Djadli-Hebey-Ledoux 2000] started the question of finding constant Q curvature in a fixed conformal class (or

closely related prescribing Q curvature problem) in dimension $n \ge 5$. [Xu-Yang 2002] started similar problem for dimension 3.

Theorem 2 (Ge-Lin-Wang, Catino-Djadli 2010) Assume (M^3, g) is compact with R > 0, Q > 0, then there exists a $\tilde{g} \in [g]$ such that $\widetilde{Rc} > 0$.

3 *Q* curvature equation in dimension $n \ge 5$

Let (M^n, g) be smooth and compact, $K : M \times M \to \mathbb{R}$, $\varphi : M \to \mathbb{R}$,

$$\left(T_{K}\varphi
ight)\left(p
ight)=\int_{M}K\left(p,q
ight)arphi\left(q
ight)d\mu\left(q
ight).$$

Given another $K': M \times M \to \mathbb{R}$,

$$\left(K \ast K'\right)(p,q) = \int_{M} K(p,s) K'(s,q) d\mu(s).$$

This makes

$$T_K T_{K'} = T_{K*K'}.$$

Denote

$$Y(g) = \inf_{\widetilde{g} \in [g]} \widetilde{\mu} (M)^{-\frac{n-2}{n}} \int_M \widetilde{R} d\widetilde{\mu}.$$

Assume Y(g) > 0, G_L is the Green's function of L, $G_{L,p}(q) = G_L(p,q)$. Denote

$$H(p,q) = \frac{2^{\frac{n-6}{n-2}}(n-1)^{\frac{n-4}{n-2}}}{n^{\frac{2}{n-2}}(n-2)(n-4)\omega_n^{\frac{2}{n-2}}}G_L(p,q)^{\frac{n-4}{n-2}}.$$

and

$$\Gamma_{1}(p,q) = \frac{2^{\frac{n-6}{n-2}}(n-1)^{\frac{n-4}{n-2}}}{n^{\frac{2}{n-2}}(n-2)^{3}\omega_{n}^{\frac{2}{n-2}}}G_{L}(p,q)^{\frac{n-4}{n-2}} \left| Rc_{G_{L,p}^{\frac{4}{n-2}}g} \right|_{g}^{2}(q).$$

 ω_n is the volume of unit ball in \mathbb{R}^n . Note $G_{L,p}^{\frac{4}{n-2}}g$ is the stereographic projection at p. Then

$$\Gamma_1(p,q) = O\left(\overline{pq}^{4-n}\right).$$

radius i.e.

If
$$\tilde{g} = \rho^{\frac{4}{n-4}}g$$
, then
 $T_{\widetilde{\Gamma}_1}(\varphi) = \rho^{-1}T_{\Gamma_1}(\rho\varphi)$.
They have the same spectrum and spectral ratio $\sigma\left(T_{\widetilde{\Gamma}_1}\right) = \sigma\left(T_{\Gamma_1}\right)$ and $r_{\sigma}\left(T_{\widetilde{\Gamma}_1}\right) = r_{\sigma}\left(T_{\Gamma_1}\right)$.

Theorem 3 (Hang-Yang 2015) Assume Y(g) > 0, then the following statements are equivalent

- 1. there exists a $\tilde{g} \in [g]$ with $\tilde{Q} > 0$.
- 2. ker P = 0 and the Green's function $G_P(p,q) > 0$ for $p \neq q$.
- 3. ker P = 0 and there exists $p \in M$ such that $G_P(p,q) > 0$ for $q \neq p$.

$$4. \ r_{\sigma}\left(T_{\Gamma_1}\right) < 1.$$

Moreover if
$$r_{\sigma}(T_{\Gamma_1}) < 1$$
, then
 $G_P = H + \sum_{k=1}^{\infty} \Gamma_k * H$

here $\Gamma_k = \Gamma_1 * \cdots * \Gamma_1$ (k times). In particular, $G_P \ge H$, moreover if $G_P(p,q) = H(p,q)$ for some $p \ne q$, then (M,g) is conformal equivalent to the standard S^n .

,

If ker
$$P = 0$$
, $\tilde{g} = \rho^{\frac{4}{n-4}}g$, then
 $G_{\tilde{P}}(p,q) = \rho(p)^{-1}\rho(q)^{-1}G_P(p,q)$.

The above statement can be compared to

$$\exists \widetilde{g} \in [g] \text{ with } \widetilde{R} > \mathbf{0} \Leftrightarrow \lambda_1(L_g) > \mathbf{0} \Leftrightarrow Y(g) > \mathbf{0},$$

an observation of [Kazdan-Warner 1975]; and [Aubin 1974] about Green's function of the Laplacian. For relations between L and P, [Hijazi-Raulot 2007] shows if Y(g) > 0, then

$$\lambda_1 (L_g)^2 \ge rac{16n (n-1)^2}{(n+2) (n-2) (n-4)} \lambda_1 (P_g),$$

equality holds iff g is Einstein metric.

Theorem 4 ([Gursky-Malchiodi, Hang-Yang 2015]) If Y(g) > 0, $r_{\sigma}(T_{\Gamma_1}) < 1$, then there exists a $\tilde{g} \in [g]$ with $\tilde{Q} = 1$. Such \tilde{g} can be found as extremal metric of some functionals. If in addition we know R > 0 and Q > 0, then $\tilde{R} > 0$. To find metrics with both positive scalar and Q curvature,

Theorem 5 (Gursky-Hang-Lin 2015) For $n \ge 6$, $\exists \tilde{g} \in [g]$ with $\tilde{R} > 0$ and $\tilde{Q} > 0 \Leftrightarrow L_g > 0$ and $P_g > 0$.

For some reason the approach does not work for n = 5. But it seems the statement should valid for n = 5 too.

Recall

$$Y(g) = \inf_{\substack{u \in C^{\infty}(M) \\ u > 0}} \frac{\int_{M} \left(\frac{4(n-1)}{n-2} |\nabla u|^{2} + Ru^{2}\right) d\mu}{\|u\|_{L^{\frac{2n}{n-2}}}^{2}}$$
$$= \inf_{u \in H^{1}(M) \setminus \{0\}} \frac{\int_{M} \left(\frac{4(n-1)}{n-2} |\nabla u|^{2} + Ru^{2}\right) d\mu}{\|u\|_{L^{\frac{2n}{n-2}}}^{2}},$$

by the fact $u \in H^1(M) \Rightarrow |u| \in H^1(M)$ (this simple fact is the reason why the first eigenfunction of L_g is strictly positive or negative, it is also a basic block for

DeGiorgi-Nash-Moser theory for second order scalar elliptic equations). In particular if the minimizer exists, it must be strictly positive or negative.

[Aubin 1976] shows $Y(g) \leq Y(S^n)$; if $Y(g) < Y(S^n)$, then Y(g) is achieved; for $n \geq 6$, g not locally conformally flat, then $Y(g) < Y(S^n)$. [Schoen 1984] solves all the remain case by applying positive mass theorem on stereographic projection.

To solve

$$Pu=const\cdot u^{rac{n+4}{n-4}},\quad u>$$
0;

let

$$Y_{4}(g) = \inf_{u \in H^{2}(M) \setminus \{0\}} \frac{\int_{M} Pu \cdot ud\mu}{\|u\|_{L^{\frac{2n}{n-4}}}^{2}},$$

then $Y_4(g) \leq Y_4(S^n)$; if $Y_4(g) < Y_4(S^n)$, then $Y_4(g)$ is achieved; for $n \geq 8$, g not locally conformally flat, then $Y_4(g) < Y_4(S^n)$. Unfortunately $u \in H^2(M) \Rightarrow$ $|u| \in H^2(M)$, how can we know the minimizer is strictly positive or negative? It needs positivity to qualify for being conformal factors.

[Robert 2009] made an observation in an unpublished lecture notes: if P > 0, $G_P > 0$ and $Y_4(g)$ is achieved, then the minimizer must be strictly positive or negative.

In fact u is a minimizer with $\|u\|_{L^{\frac{2n}{n-4}}}=1$ and $u^+\neq 0$, then

$$Pu = Y_4(g) |u|^{\frac{8}{n-4}} u.$$

Let Pv = |Pu|, then v > 0 and $|u| \le v$.

$$Y_{4}(g) \leq \frac{\int_{M} Pv \cdot v d\mu}{\|v\|_{L^{\frac{2n}{n-4}}}^{2}} = Y_{4}(g) \frac{\int_{M} |u|^{\frac{n+4}{n-4}} v d\mu}{\|v\|_{L^{\frac{2n}{n-4}}}^{2}}$$
$$\leq Y_{4}(g) \|v\|_{L^{\frac{2n}{n-4}}}^{-1} \leq Y_{4}(g).$$
Hence $\|v\|_{L^{\frac{2n}{n-4}}} = 1 = \|u\|_{L^{\frac{2n}{n-4}}}$ and $u = v.$

[Humbert-Raulot 2009] If (M, g) is locally conformally flat or n = 5, 6, 7, ker P = 0, then under the conformal

normal coordinate at p,

 $2n(n-2)(n-4)\omega_n G_{P,p} = r^{4-n} + A + O^{(4)}(r)$. If Y(g) > 0, $G_{P,p} > 0$, then

$$A = c(n) \int_{M} G_{P,p} G_{L,p}^{\frac{n-4}{n-2}} \left| Rc_{G_{L,p}^{\frac{4}{n-2}}g} \right|_{g}^{2} d\mu \ge 0.$$

A = 0 iff (M, g) is conformal equivalent to the standard S^n . Originally Humbert-Raulot only considered locally conformally flat manifolds, Gursky-Malchiodi pointed out their argument works in dimension 5, 6, 7.

Indeed on $M \setminus \{p\}$,

$$P_g G_{P,p} = \mathbf{0}.$$

Use conformal covariant property,

$$P_{G_{L,p}^{\frac{4}{n-2}}g}\left(G_{L,p}^{-\frac{n-4}{n-2}}G_{P,p}\right) = \mathbf{0}.$$

Integrate the equation on $M \setminus B_{g,\varepsilon}(p)$ with respect to $d\mu_{G_{L,p}^{\frac{4}{n-2}}g}$ and let $\varepsilon \to 0^+$ we get the needed identity.

How can we know $G_P > 0$? Green's function for fourth order elliptic operator is not as simple as second order ones.

Example 6 On S^1 consider the operator $u \mapsto u^{(4)} + \lambda u$, $\lambda > 0$, we have

$$G(x,y) = -\frac{1}{2\sqrt{\lambda}} \operatorname{Im} \left(\frac{\cosh \alpha \left(\pi - \overline{xy} \right)}{\alpha \sinh \pi \alpha} \right)$$

$$= \frac{\mu}{2\lambda \left(\cosh 2\mu\pi - \cos 2\mu\pi \right)} \left[\cosh \mu \overline{xy} \sin \mu \left(2\pi - \overline{xy} \right) + \cosh \mu \left(2\pi - \overline{xy} \right) \sin \mu \overline{xy} + \sinh \mu \overline{xy} \cos \mu \left(2\pi - \overline{xy} \right) + \sinh \mu \left(2\pi - \overline{xy} \right) \cos \mu \overline{xy} \right].$$

Here $\mu = \sqrt[4]{\lambda/4}, \ \alpha = \mu + \mu i.$ Note

$$G(1,-1) = \frac{\mu \left(\cosh \mu\pi \sin \mu\pi + \sinh \mu\pi \cos \mu\pi \right)}{\lambda \left(\cosh 2\mu\pi - \cos 2\mu\pi \right)}.$$

If $\mu = 2k + 1, \ k \in \mathbb{Z}_+, \ then \ G(1,-1) < 0.$ Indeed
careful study shows if $\lambda \ge 4, \ G$ is negative somewhere.

Example 7 If Rc = (n - 1) g, then $Q = \frac{n(n-2)(n+2)}{8}$, $P = \left(-\Delta + \frac{n(n-2)}{4}\right) \left(-\Delta + \frac{(n+2)(n-4)}{4}\right)$.

Hence P > 0 and

$$G_P = G_{-\Delta + \frac{(n+2)(n-4)}{4}} * G_{-\Delta + \frac{n(n-2)}{4}} > 0.$$

This is basically applying maximum principle twice. On S^n , let N be the north pole, $x = \pi_N$ as the coordinate, then

$$G_{P,N} = rac{\left(|x|^2+1
ight)^{rac{n-4}{2}}}{n\left(n-2
ight)\left(n-4
ight)2^{n-3}\omega_n}.$$

Example 8 If

$$\Delta^2 u = u^{\frac{n+4}{n-4}}, \quad u > 0,$$

then by [Lin 1998] using method of moving plane and

applying maximum principle twice, we have

$$u = c_n \left(\frac{\lambda}{|x - x_0|^2 + \lambda^2} \right)^{\frac{n-4}{2}}$$
 for some $\lambda > 0$.

[Chen-Li-Ou 2006] achieve this without using maximum principle, namely if for $0 < \alpha < n$,

$$u(x) = \int_{\mathbb{R}^n} \frac{u(y)^{rac{n+lpha}{n-lpha}}}{|x-y|^{n-lpha}} dy, \quad u > 0,$$

then

$$u = c_{n,\alpha} \left(\frac{\lambda}{|x - x_0|^2 + \lambda^2} \right)^{\frac{n - \alpha}{2}}$$
 for some $\lambda > 0$.

They develop the integral form of the method of moving planes based on the property of the kernel. This approach, together with [Schoen-Yau 1988] 's result on locally conformally flat manifolds and Kleinian groups, enable [Qing-Raske 2006] to solve the Q curvature equation for locally conformally flat manifolds with Y(g) >0, Q > 0. These are all based on explicit formulas of the Green's function. [Gursky-Malchiodi 2014] makes a breakthrough: If R > 0, Q > 0, then $P > 0, G_P > 0$; moreover if $\tilde{g} \in [g]$ satisfies $\tilde{Q} > 0$, then $\tilde{R} > 0$.

Method: try to show

$$Pu \ge \mathbf{0} \Rightarrow u \ge \mathbf{0}.$$

For $\lambda > \mathbf{0}$, let $u_{\lambda} = u + \lambda$, $g_{\lambda} = u_{\lambda}^{\frac{4}{n-4}}g$. $Q_{\lambda} = \frac{2}{n-4}u_{\lambda}^{-\frac{n+4}{n-4}}Pu_{\lambda} > \mathbf{0};$

i.e.

$$-\Delta_{\lambda}J + \frac{n}{2}J_{\lambda}^2 \ge Q_{\lambda} > 0.$$

By method of continuity $J_{\lambda} > 0$. Hence u_{λ} is superharmonic. By strong maximum principle, $u_{\lambda} > 0$ for all $\lambda > 0$. Hence $u \ge 0$.

[Hang-Yang 2014] Recall how we deal with second order operators. Given $Su = -\Delta u + cu$, c > 0. We need

$$Su \ge \mathbf{0} \Rightarrow u \ge \mathbf{0}.$$

If not, let $\min_M u = -\lambda$, $\lambda >$ 0, then

 $S(u + \lambda) > 0$, $u + \lambda \ge 0$ and touches zero somewhere. Hence by strong maximum principle $u + \lambda \equiv 0$, a contradiction. It follows that $G_S \ge 0$. By strong maximum principle we have $G_S > 0$.

Assume Y(g) > 0, Q > 0, we need

$$Pu \ge \mathbf{0} \Longrightarrow u \ge \mathbf{0}.$$

If not let $u(p) = \min_M u = -\lambda$, $\lambda > 0$, then

$$P\left(u+\lambda
ight)>\mathsf{0},\,\,u+\lambda\geq\mathsf{0}$$
 and $u\left(p
ight)+\lambda=\mathsf{0}.$

How to rule this out? The crucial equality

$$P_{q}H(p,q) = \delta_{p}(q) - \Gamma_{1}(p,q).$$

This equality is closely related to [Humbert-Raulot 2009]. Recall

$$H(p,q) = \frac{2^{\frac{n-6}{n-2}}(n-1)^{\frac{n-4}{n-2}}}{n^{\frac{2}{n-2}}(n-2)(n-4)\omega_n^{\frac{2}{n-2}}}G_L(p,q)^{\frac{n-4}{n-2}}.$$

and

$$\Gamma_{1}(p,q) = \frac{2^{\frac{n-6}{n-2}}(n-1)^{\frac{n-4}{n-2}}}{n^{\frac{2}{n-2}}(n-2)^{3}\omega_{n}^{\frac{2}{n-2}}}G_{L}(p,q)^{\frac{n-4}{n-2}} \left| Rc_{G_{L,p}^{\frac{4}{n-2}}g} \right|_{g}^{2}(q).$$

Hence

$$\int_{M} H(p,q) P(u+\lambda)(q) d\mu(q)$$

= $-\int_{M} \Gamma_{1}(p,q) (u+\lambda)(q) d\mu(q)$.

A contradiction.

How to get formulas for G_P ? For any $\varphi \in C^{\infty}(M)$,

$$T_H(P\varphi) = \varphi - T_{\Gamma_1}\varphi.$$

If $r_{\sigma}\left(T_{\mathsf{\Gamma}_{1}}
ight)<$ 1, then

$$\varphi = \left(I - T_{\Gamma_1}\right)^{-1} T_H \left(P\varphi\right).$$

Then use geometric series expansion.

How to get positive mass for G_P ? For locally conformally flat manifold or $n={\bf 5},{\bf 6},{\bf 7},$

$$G_{P,p} - H_p = A + o(1).$$

Since

$$P\left(G_{P,p}-H_p\right)=\mathsf{\Gamma}_{\mathbf{1},p},$$

we see

$$A = \int_{M} G_{P}(p,q) \, \mathsf{\Gamma}_{1}(p,q) \, d\mu(q) \, .$$

This is exactly the formula in [Humbert-Raulot 2009].

Remark 9 There is a difference between R > 0, Q > 0and Y(g) > 0, Q > 0.

Assume Y(g) > 0, Q > 0, then ker P = 0 and $G = G_P > 0$. To solve

$$Pu = u^{\frac{n+4}{n-4}}, \quad u > \mathbf{0}.$$

We write it as

$$u = T_G u^{\frac{n+4}{n-4}}.$$

Let $f = u^{\frac{n+4}{n-4}}$, it becomes

$$T_G f = f^{\frac{n-4}{n+4}}, \quad f > \mathbf{0}.$$

This can be solved by

$$\Theta_{4}(g) = \sup_{f \in L^{\frac{2n}{n+4}}(M) \setminus \{0\}} \frac{\int_{M} T_{G} f \cdot f d\mu}{\|f\|_{L^{\frac{2n}{n+4}}}^{2}}.$$

It has similar structure as the solution to Yamabe problem. $\Theta_4(g) \ge \Theta_4(S^n)$, with equality iff (M,g) is conformal equivalent to S^n . Hence $\Theta_4(g)$ is always achieved.

Note

$$\Theta_{4}\left(g
ight)=rac{2}{n-4}\sup_{\widetilde{g}\in\left[g
ight]}rac{\int_{M}\widetilde{Q}d\widetilde{\mu}}{\left\|\widetilde{Q}
ight\|_{L^{rac{2n}{n+4}}(\widetilde{\mu})}^{2}}.$$

[Gursky-Hang-Lin 2015]

 $n \ge 6, L_g > 0, P_g > 0 \Rightarrow \exists \tilde{g} \in [g]$ with $\tilde{R} > 0, \tilde{Q} > 0$. To begin, note

$$\sigma_{2}(A) = \frac{1}{2} \left(J^{2} - |A|^{2} \right);$$

$$Q = -\Delta J + \frac{n-4}{2} J^{2} + 4\sigma_{2}(A),$$

Hence

$$\int_{M} Q d\mu = \frac{n-4}{2} \int_{M} J^2 d\mu + 4 \int_{M} \sigma_2(A) d\mu.$$

For $\lambda \geq 1$ consider the functional

$$\frac{n-4}{2}\lambda\int_M J_g^2 d\mu_g + 4\int_M \sigma_2(A_g)\,d\mu_g.$$

A critical metric of this functional restricted to the space of conformal metrics of unit volume satisfies

$$\lambda \left(-\Delta J + \frac{n-4}{2} J^2 \right) + 4\sigma_2 \left(A \right) = const.$$

Fix $\lambda_0 \gg 1$ such that there exists $g_0 = u_0^{\frac{4}{n-4}}$ satisfying

$$\lambda_0 \left(-\Delta_0 J_0 + \frac{n-4}{2} J_0^2 \right) + 4\sigma_2 (A_0) > 0$$

and $J_0 > 0$. Define f as

$$\lambda_0 \left(-\Delta_0 J_0 + \frac{n-4}{2} J_0^2 \right) + 4\sigma_2 \left(A_0 \right) = f u_0^{-\frac{n+4}{n-4}}.$$

Then for $1 \leq \lambda \leq \lambda_0$ try to solve

$$\lambda \left(-\widetilde{\Delta}J + \frac{n-4}{2}\widetilde{J}^2 \right) + 4\sigma_2 \left(\widetilde{A} \right) = fu^{-\frac{n+4}{n-4}}, \ \widetilde{g} = u^{\frac{4}{n-4}}g$$

by method of continuity. This approach has similar spirit as [Chang-Gursky-Yang 2002].

4 *Q* curvature equation in dimension 3

On
$$\left(M^3,g
ight)$$
, $Q=-rac{1}{4}\Delta R-2\,|Rc|^2+rac{23}{32}R^2$;

and

$$P\varphi = \Delta^2 \varphi + 4 \operatorname{div} \left(\operatorname{Rc} \left(\nabla \varphi, e_i \right) e_i \right) - \frac{5}{4} \operatorname{div} \left(\operatorname{R} \nabla \varphi \right) - \frac{1}{2} Q \varphi.$$

The transformation law is

$$P_{\rho^{-4}g}\varphi = \rho^7 P_g(\rho\varphi).$$

Hence seeking $\widetilde{g} \in [g]$ with $\widetilde{Q} = const$ is the same as

$$P_g u = const \cdot u^{-7}, \quad u > 0.$$

Example 10 On S^3 ,

$$Q = \frac{15}{8},$$

$$P = \Delta^{2} + \frac{1}{2}\Delta - \frac{15}{16} = \left(-\Delta + \frac{3}{4}\right)\left(-\Delta - \frac{5}{4}\right).$$

$$\lambda_1(P) = -\frac{15}{16}, \ \lambda_2(P) = \frac{105}{16} > 0.$$
 Let N be north pole, $x = \pi_N$, then

$$G_N = -\frac{1}{4\pi} \frac{1}{\sqrt{1+|x|^2}}.$$

Recall on \mathbb{R}^3 , the fundamental solution of Δ^2 is $-\frac{r}{8\pi}$.

Example 11 On $S^2 \times S^1$, $Q = -\frac{9}{8}$, P > 0.

Example 12 If ker P = 0, then under the conformal normal coordinate at p,

$$G_p = A - \frac{r}{8\pi} + \sum_{i=1}^{3} a_i x_i + O(r^2).$$

Note $PG_p = \delta_p \in H^{-2}$, hence $G_p \in H^2(M)$.

Assume Y(g) > 0,

$$H(p,q) = -\frac{G_L(p,q)^{-1}}{256\pi^2},$$

$$\Gamma_1(p,q) = \frac{G_L(p,q)^{-1}}{256\pi^2} \left| Rc_{G_{L,p}^4 g} \right|_g^2 (q).$$

Then

$$\Gamma_1(p,q) = O\left(\overline{pq}^{-1}\right)$$

and

$$P_{q}H(p,q) = \delta_{p}(q) - \Gamma_{1}(p,q).$$

[Hang-Yang 2015] Assume Y(g) > 0, then the following statements are equivalent

- 1. there exists a $\tilde{g} \in [g]$ with $\tilde{Q} > 0$.
- 2. ker P = 0 and the Green's function $G_P(p,q) < 0$ for $p \neq q$.
- 3. ker P = 0 and there exists $p \in M$ such that $G_P(p,q) < 0$ for $q \neq p$.

$$4. \ r_{\sigma}\left(T_{\Gamma_1}\right) < 1.$$

Moreover if $r_{\sigma}\left(T_{\Gamma_{1}}\right) < 1$, then

$$G_P = H + \sum_{k=1}^{\infty} \Gamma_k * H,$$

In particular, $G_P \leq -\frac{G_L^{-1}}{256\pi^2}$; if equality holds somewhere, then (M, g) is conformal equivalent to the standard S^3 .

Example 13 If Y(g) > 0, $r_{\sigma}(T_{\Gamma_1}) < 1$ and (M, g) is not conformal equivalent to S^3 , then the set $\{\tilde{g} \in [g] : \tilde{Q} = 1\}$ is nonempty and compact.

Indeed, $G = G_P < 0$. Let $\tilde{g} = u^{-4}g$, then

$$Pu = -\frac{1}{2}u^{-7}, \quad u > 0.$$

In another way,

$$\begin{split} u\left(p\right) &= \int_{M} \left(-\frac{G\left(p,q\right)}{2}\right) u\left(q\right)^{-7} d\mu\left(q\right) \\ &\sim \int_{M} u^{-7} d\mu, \end{split}$$

hence $0 < c_1 \leq u \leq c_2$. This gives compactness. Degree theory gives existence.

Problem 14 Find a conformal invariant condition which is equivalent to the existence of a $\tilde{g} \in [g]$ with $\tilde{R} > 0$ and $\tilde{Q} > 0$.