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Five Epic Years: 1969-1974

I. Thesis

II. Disc Multiplier

III. H1-BMO Duality

IV. Mapping Theorem inCtm and

Bergman Kernel

V A Choice
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Reformulation of Qi: For fixed 9, 0 < 0 < 1:

=0 Ier°/2 as -÷ oc

f Kx-y-Kxx<A

IxI

Above: 0 = 1/2. Note 0 = 0 is standard CZ

situation

Theorem If Tf = f * K as above, then T is of

weak-type 1, 1.

Fix a> 0; decompose f = g + >bj , CZ.

j

* Estimate Tg via Plancherel

* is supported in cube and 4 I iI
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= >Tbj
3

1.

outside uB.
j

Problem is inside the ball concentric with

but diam

/

/

/

`

Bj = diam B'°

-

Need to estimate Tb

May assume diam

Bj

I

I

I

I

/

F

4-a



* Idea: replace b by 73j =

= = diamaj11°

* J _j*KdxcfIbjdx.

GB.

Suffices then to estimate TQb = ETuj.

j

NQW

-rtO/4
llT IIL2M i-L

But

* L2 a IIbML1

Beca use

1
* I1 -nO/4.

ML2
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2. Square Functions

Some familiar square

* 82fx I
rx

!vux - y,t2 t1 dydt,

=f*Pt = Poisson integral

rx.

Littlewood-Paley

These

Akf
A
C

type: CE
= 1e

are all bounded on

A more intricate

gfx2 f
+

Majorizes both

square

Ivux

kf

L 1<

function: *

21/2

mA

-y,t2

of the above.

00.

functions:

ux,t of f

x
RPZ

dydt.
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3. Bochner-Riesz

Let Sf be defined by

=

where XB = characteristic function of unit ball

B. Also

=

Question 1 Is S: L

when

2n 2n
< < 7

n+1 n-i

Question 2 Is S L > LP

if

2n 2n

n+1+26
<p <

n-i-26

For radial functions, these were known to hold.
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Restriction Phenomenom:

1/2

* CL JI2daO A I ILP

holds for a range of p'S, p

Theorem Whenever the LP, L2 restriction *

holds, then S is bounded on L in the opti

mal range i.e.
ri+1+28

< p < 2, ultimately

It < < 2m+1

n+3

After-thought: it = 2.

The restriction theorem:

1 /q

C1 INda A 1 f

holds for

l<pcC4/3, q1/3p'

NOTE: as p > 4/3, then q 4/3.
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II. Ball Multiplier

Question: Is S bounded on L

e.g. for 4/3 < p < 4, When ii = 2?

Theorem No! for p 2, 2.

Background:

Let R denote rectangles in the plane. Define

Rf, by R1f =

Question: Does one have

/ 1/2 / 1/2

** > lRfl2 IfI2
/ LP / LP

with R having arbitrary orientations?

Y. Meyer: If S is bounded on L, then **

holds for the same p.
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Feflerman's observation:

Given

R1, R2,*

so that

N

*mU
j=1

> 0,thereisN

RN each having

R < but

= N6, and rectangles

side-length 1, 1/N,

. are all disjoint

Now take f =XR

fxl > 1/10 for xER

Hence a contradiction to ** whenever J7<2.

Further results

questions:

and related

J

`3,

then

lRj

for Bochner-Riesz

Bourgain, Tao,
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III. H1-BMO duality

John-Nirenberg: 1961: f E BMO

If SUP mQf _fQ MfUBM0< 00

Inequality:

rn{xEQ: fx-fQI > a} < cie_f2&rnQ,

all n'O, If IIfHBMo< 1

Related to work of John, Moser the latter for

Harnack-type inequality leading to DiGorgi-Nash

estimates

Later observed: BMO good substitute for L°°

in other settings:

Fact: Tf = f * K, and K is a CZ kernel

then: T: L°° BMO

In fact, T: BMO BMO.
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The space H1

Classical H1: Is H1 of one complex variable

F. & M. Riesz, Hardy.

F analytic in z=x+iy, y>O and

sup flFx+iYNdx < cc.
y>o

R

H1 = {FOx = lim Fx+iY} with

F0 = f + iHf, H = Hilbert transform.

"Real" H1 = {f f E L1 and Hf E L'}.

Next: H1 in RTh.

H'={feL', andRfeL', 1<jccn}
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H1 is a good substitute for L1.

Fact: Tf = f * K, K is a CZ kernel

then: T : H1

in fact: T : H1 H1.

Here one used g.
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Zygmund's Question:

* What is the Poisson integral characterization

of feBMO?

ux, t = f * Pt,, Pt the Poisson kernel.

Note: o For L, f e L <__> sup n.,t ILP< °
t>o

1<pcx

cForLP,fELP< >SfELP,1<p<oo.

Theorem:

1 Dual space of H1 is BMO.

2 f e BMO /
B

1 2
sup / vux,tI tdt oc
BrnBJ

TB

3 < > f = fo+Rf, fo,fi,...fn E L°°

j
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Condition 2: d,ii = vux,tI2tdxdt

is a "Carleson measure" on Rn+'- i.e.

sup
1

f di=dji<oo.
B mB

TB

Feflerman duality:

Let F,G be non-negative functions on IR±'.

Then

f Fx,tGx,tt <c F ML Gdxdt

+

where

1/2

Fx
= f FY,t2t2

rx
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Further Consequences

* Better understanding of H1, H, p

in particular, atomic decomposition.

* "sharp function"

f#x = sup
1

fIfx-fqHx.
xEQ mQ

Then

f#eLP>feLP, p<oo.

* End-point estimates for 1 <p < 2 for super

strong-singular integrals.

15-a



IV. Mapping of Domains in Ctm:

Question: Suppose c1 and Q2 are two bounded

smooth domains in C. Assume there is a holo

morphic buection ci c2. Does ci ex

tend to a difleomorphism of 821 to ac?2?

Some reasons m > 1 is diflerent from n = 1.

1. When n = 1, the answer is yes. In fact,

then there always exist "locally" good maps

between any pair of smooth arcs.

2. When it > 1, and c1 unit ball, is an

"c" C°° pertubation of c1, then in general

such ci does not exist even, locally, near a

boundary point of 1.

3. Pseudo-convexity for it> 1.
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Theorem: If Q1 and Q2 are bounded smooth

domains 22 holomorphic bijection.

Then cP extends smoothly to boundaries if both

21 and c22 are strongly pseudo-convex.

Later work: Boutet de Monvel-Sjöstrand, Web

ster, Bell-Ligocka, Nirenberg, P. Yang,

Feflerman's Approach:

B Bergman kernel, of domain Q.

PQ orthogonal projection: L2c2 : L2Q fl Hol

PQfz f KQZ,w fw dVw

Bergman metric, gj =
tog KQz,z.

Fact: ct : c21,9h Q2,9Q2 is an

isometry.
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Follow the geodesics!

Min Issues:

B What does the Bergman kernel and Bergman

metric look like near the boundary?

Where do the geodesics lead to? and how?

Assume is bounded, smooth, and strongly

pseudo-convex. Let rz

Qz,w

defining function, and

holomorphic part of Taylor expansion of

rz up to second-order at w.

Theorem*:

KQz, w
- Az,w

- Qz,wTh+l
+Bz,w

A,13 e

Note:

Kz,w

For unit ball in

=

Ctm, rz = i-lzP,

G

c1:

G

log Qz,w with

18



B

Wantl=PQ+

. From explicit identity

. Find "ball"

at pp but BciQ

Qc21 QQ=

highly tangent order 4 to

identity

onE

explicit

Kn

correct

extends to Q x Q near p. Also.

by Kohn's 0-Neumann.

one can

Here E RiP0

* PQ = P1+E' = P8-P8E+PFE2

DL
IQ.

pass to approximate

I=Pn+

_no In0
-I+E
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G Main Lemma

Suppose xt = Xt, z0, eo is geodesic starting

at z0 in direction E. Assume xt t < oc,

does not lie in a compact set. Then

1 lim Xt,zo,eo converges to a boundary
t-*oc

point.

2 The same is true for the geodesic Xt, z0,

for e near eo and the resulting mapping:

boundary, is a local diffeomorphism.

3 All boundary points can be reached this

way.

Requires several changes of variable:

* New "time" `7, = rXt.

* Further desingularization because of "log term".
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V. Several Choices

1. Local solvability of linear p.d.e.

Consider the mth order linear partial differential

equation, where p is assumed to be of "principal

type."

* px, Du = f

Theorem: R. Beals and C. Feflerman Sup

pose p satisfies the condition 7' of Nirenberg

Treves. Then * is locally solvable.

Note: 7' means: Pm does not change sign

on the null bicharacteristic curves of Rpm.

Theorem was proved by N-T in the real-analytic

case.

Proof: requires a refined phase-space decom

position of a transformed problem.

This involves a "stopping-time" argument, in

terms of violation of any of three key properties.
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2. Convergence of Fourier series

7VeiAy

f >suHf fx-ydy =Cf.
xl y

r-lr

Theorem: A new proof that the Carleson op

erator C is a weak-type mapping L2 L.

* Consider pairs: w,I, where w and I are

dyadic intervals in R and [-ir,it-] respectively,

with lw = 1 These are later called "tiles".

Endow with ordering w,I < co',I', if

I C I', w' C WI and study collections of resulting

"trees".

1

* Linearize Cf as f fx-ydy and
y

decompose according to {x E I , Nx E w} with

= Ety1 and Ij , where

tY
=

Similar ideas then play important role in "time

frequency" analysis of Lacey and Thiele, for bi

linear HUbert transform, etc.
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