April 22, 2009

On the work of Charlie Fefferman

Elias M. Stein

١

Five Epic Years: 1969-1974

•

- I. Thesis
- II. Disc Multiplier
- III. H^1 -BMO Duality
- IV. Mapping Theorem in \mathbb{C}^n and Bergman Kernel
- V. A Choice

I. Thesis

1. Strongly singular integrals

$$T(f) = f * K$$
 on \mathbb{R}^n .

Typical example: K distribution

$$egin{array}{rcl} K(x) &=& rac{e^{rac{i}{|x|^n}}}{|x|^n}, & 0 < |x| \leq 1 \ &=& 0 & |x| \geq 1 \end{array}$$

Previously known: T bounded on L^p , 1

* * * * *

Q1: is T of weak-type (1,1)?

Q2: (The "super" strongly singular case). Suppose: $T_{\lambda} = f * K_{\lambda}, \text{ with } K_{\lambda} = \frac{e^{\frac{i}{|x|}}}{|x|^{n+\lambda}}.$ Is T_{λ} bounded on L^{p} when $|1/p - 1/2| \leq \frac{1}{2} - \lambda/n, \text{ for } 0 < \lambda \leq n/2 \quad ?$ Reformulation of Q1: For fixed θ , $0 \le \theta < 1$:

$$\begin{cases} \widehat{K}(\xi) = 0\left(|\xi|^{-\theta n/2}\right), & \text{as } |\xi| \to \infty \\ \\ \int |K(x-y) - K(x)| dx \le A \\ |x| \gtrsim |y|^{1-\theta} \end{cases}$$

(Above: $\theta = 1/2$. Note $\theta = 0$ is standard CZ situation.)

<u>Theorem</u> If Tf = f * K as above, then T is of weak-type (1, 1).

* * * * *

Fix $\alpha > 0$; decompose $f = g + \sum_{j} b_{j}$, (CZ).

- Estimate T(g) via Plancherel
- b_j is supported in cube Q_j , and $\frac{1}{|Q_j|} \int\limits_{Q_j} |b_j| \approx \alpha$.

Need to estimate $T(b) = \sum_{j} T(b_j)$ outside $\bigcup_{j} B_j$. (May assume diam $Q_j \leq 1$).

<u>Problem</u> is inside \tilde{B}_j , the ball concentric with B_j but diam $\tilde{B}_j = (\text{diam } B_j)^{1-\theta}$.

• Idea: replace b_j by $\widetilde{b}_j = b_j \, * \, arphi_j$,

$$\varphi_j(x) = \delta_j^{-n} \varphi\left(x/\delta_j\right), \ \delta_j = \left(diam(B_j)\right)^{1/(1-\theta)}$$

•
$$\int\limits_{c_{B_j}} |b_j * K - \tilde{b}_j * K| dx \leq c \int\limits_{Q_j} |b_j| dx$$
 .

Suffices then to estimate $T(\tilde{b}) = \sum_{j} T(\tilde{b_{j}})$.

Now

$$\parallel T(\tilde{b}) \parallel_{L^2} \lesssim \parallel (1- \bigtriangleup)^{-n\theta/4} \tilde{b} \parallel_{L^2}$$
.

But

•
$$\parallel (1-\bigtriangleup)^{-n heta/4} \, \widetilde{b} \parallel_{L^2} \lesssim \ lpha \ \parallel b \parallel_{L^1} \, .$$

Because

•
$$\| (1-\Delta)^{-n\theta/4} \varphi_j \|_{L^2} \leq \frac{1}{m(Q_j)}.$$

2. Square Functions

Some familiar square functions:

•
$$S^{2}(f)(x) = \int_{\Gamma(x)} |\nabla u(x-y,t)|^{2} t^{1-n} dy dt$$
,

 $u(x,t) = f * P_t = Poisson integral of f$

• Littlewood-Paley type: $\left(\sum |\Delta_k(f)|^2\right)^{1/2}$ $\Delta_k(f)^{\wedge}(\xi) = \widehat{f}(\xi) \eta(2^{-k}\xi) \cdot$

These are all bounded on L^p , 1 .

A more intricate square function: g_{λ}^* ,

$$(g_{\lambda}^*(f)(x))^2 = \int_{\mathbb{R}^{n+1}_+} |\nabla u(x-y,t)|^2 \left(\frac{t}{|y|+t}\right)^{n\lambda} t^{1-n} dy dt.$$

Majorizes both of the above.

What was known about $f \longrightarrow g^*_\lambda(f)$, $\lambda > 1$:

- maps $L^p \longrightarrow L^p$, if $1 , and <math>2/\lambda < p$.
- fails when $p \leq 2/\lambda$.

 $\underline{\text{Question:}}$ What can be said about $g^*_\lambda(f)$, when

$$f \in L^p, \ \ p = 2/\lambda, \ 1$$

<u>Theorem</u> $f \longrightarrow g^*(f)$ is of weak-type (p,p) in this range.

. *

<u>NOTE:</u> this cannot hold for p = 1.

3. Bochner-Riesz

Let S(f) be defined by

$$S(f)^{\wedge} = \widehat{f}(\xi) \chi_B(\xi)$$

where χ_B = characteristic function of unit ball *B*. Also

$$S^{\delta}(f)^{\wedge} = \widehat{f}(\xi) \chi_B(\xi) (1 - |\xi|^2)^{\delta}.$$

Question (1) Is $S: L^p \longrightarrow L^p$,

when

$$\frac{2n}{n+1}$$

Question (2) Is $S^{\delta} : L^p \longrightarrow L^p$

if

$$\frac{2n}{n+1+2\delta}$$

(For radial functions, these were known to hold.)

* * * * *

Restriction Phenomenom:

$$(*) \quad \left(\int_{S^{n-1}} |\widehat{f}(\xi)|^2 \, d\sigma(\xi) \right)^{1/2} \leq A \parallel f \parallel_{L^p}$$

holds for a range of p's, $1 \leq p < p_0$.

* * * * *

<u>Theorem</u> Whenever the (L^p, L^2) restriction (*) holds, then S^{δ} is bounded on L^p in the optimal range (i.e. $\frac{2n}{n+1+2\delta} , ultimately$ $<math>\left(1 \leq p \leq \frac{2(n+1)}{n+3}\right)$.

* * * * *

After-thought: n = 2.

The restriction theorem:

$$\left(\int_{S^1} |\widehat{f}|^q \, d\sigma\right)^{1/q} \leq A \parallel f \parallel_{L^p(\mathbb{R}^2)}$$

holds for

 $1 \le p < 4/3, \quad q = (1/3)p'.$ NOTE: as $p \longrightarrow 4/3$, then $q \longrightarrow 4/3$.

* * * * *

Following this:

Carleson-Sjölin show that when n = 2,

 $S^{\delta}: L^p \longrightarrow L^p, \quad 4/3 \le p \le 4, \text{ and } \delta > 0.$

II. Ball Multiplier

Question: Is S bounded on L^p (e.g. for 4/3 , when <math>n = 2)? <u>Theorem</u> No! (for $p \neq 2$, $n \ge 2$). Background: Let R_j denote rectangles in the plane. Define

 $R_{j}(f)$, by $R_{j}(f)^{\wedge}(\xi) = \hat{f}(\xi) \chi_{R_{j}}(\xi)$.

Question: Does one have

$$(**) \left\| \left(\sum_{j} |R_{j}(f_{j})|^{2} \right)^{1/2} \right\|_{L^{p}} \lesssim \left\| \left(\sum_{j} |f_{j}|^{2} \right)^{1/2} \right\|_{L^{p}}$$

with R_j having arbitrary orientations?

Y. Meyer: If S is bounded on L^p , then (**) holds for the same p.

Counter-example sets (in \mathbb{R}^2)

- Nikodym Set
- Besicovitch (Kakeya) Set

Fefferman's observation:

Given $\epsilon > 0$, there is $N = N_{\epsilon}$, and rectangles $R_1, R_2, \cdots R_N$ each having side-length (1, 1/N), so that

•
$$m\left(\bigcup_{j=1}^N R_j\right) < \epsilon$$
, but

• $R_1^*, R_2^*, \cdots, R_N^*$ are all disjoint

Now take $f_j = \chi_{R_j}$, then $|R_j(f_j)(x)| \geq 1/10$ for $x \in R_j^*$.

Hence a contradiction to (**) whenever p < 2.

Further results for Bochner-Riesz and related questions: ... Bourgain, Tao, ...

R_i

III. H_1 -BMO duality

John-Nirenberg: (1961): $f \in BMO$

If $\sup_{Q} \frac{1}{m(Q)} \int_{Q} |f - f_Q| dx = ||f||_{BMO} < \infty$.

Inequality:

 $m\{x \in Q : |f(x) - f_Q| > \alpha\} \le c_1 e^{-c_2 \alpha} m(Q),$ all $\alpha > 0$, if $|| f ||_{BMO} \le 1$.

* * * * *

Related to work of John, Moser (the latter for Harnack-type inequality leading to DiGorgi-Nash estimates)

* * * * *

Later observed: *BMO* good substitute for L^{∞} in other settings:

<u>Fact:</u> Tf = f * K, and K is a CZ kernel

then: $T: L^{\infty} \longrightarrow BMO$

(In fact, $T: BMO \longrightarrow BMO$.)

The space H^1 .

Classical H^1 : Is H^1 of one complex variable (F. & M. Riesz, Hardy).

F analytic in z = x + iy, y > 0 and $\sup_{y>0} \int_{\mathbb{R}} |F(x+iy)| \, dx < \infty.$ $H^1 = \left\{ F_0(x) = \lim_{y \to 0} F(x+iy) \right\}, \text{ with}$ * * * *

 $F_0 = f + iH(f), H = \text{Hilbert transform}.$

* * * * *

"Real" $H^1 = \{f : f \in L^1 \text{ and } H(f) \in L^1\}.$

* * * * *

Next: H^1 in \mathbb{R}^n .

$$H^{\mathbf{1}} = \left\{ f \in L^{\mathbf{1}}, \text{ and } R_j(f) \in L^{\mathbf{1}}, \quad 1 \leq j \leq n \right\}$$

 H^1 is a good substitute for L^1 .

<u>Fact:</u> Tf = f * K, K is a CZ kernel

then: $T: H^1 \longrightarrow L^1$,

in fact: $T: H^1 \longrightarrow H^1$.

(Here one used g_{λ}^* .)

. .

Zygmund's Question:

• What is the Poisson integral characterization of $f \in BMO$?

 $u(x,t) = f * P_t$, P_t the Poisson kernel.

* * * * *

Note: \diamond For L^p , $f \in L^p \iff \sup_{t>0} || u(\cdot, t) ||_{L^p} < \infty$

1 .

 \diamond For L^p , $f \in L^p \iff S(f) \in L^p$, 1 .

* * * * *

<u>Theorem:</u>

14

Condition (2): $d\mu = |\nabla(u(x,t))|^2 t \, dx \, dt$

is a "Carleson measure" (on \mathbb{R}^{n+1}) i.e.

$$\sup_{B} \frac{1}{m(B)} \int_{T(B)} d\mu = \parallel d\mu \parallel_{\mathcal{C}} < \infty.$$

Fefferman duality:

Let F, G be non-negative functions on \mathbb{R}^{n+1}_+ .

Then

 $\int_{\mathbb{R}^{n+1}_+} F(x,t) G(x,t) \frac{dx \, dt}{t} \le c \parallel \widetilde{S}(F) \parallel_{L^1(\mathbb{R}^n)} \parallel G dx \, dt \parallel_{\mathcal{C}}$

where

$$\widetilde{S}(F)(x) = \left(\int_{\Gamma(x)} (F(y,t))^2 \frac{dy \, dt}{t^{1+n}} \right)^{1/2}$$

* * * * *

Further Consequences

• Better understanding of H^1 , H^p , $p \leq 1$, in particular, atomic decomposition.

• "sharp function":

$$f^{\#}(x) = \sup_{x \in Q} \frac{1}{m(Q)} \int_{Q} |f(x) - f_Q| \, dx.$$

Then

$$f^{\#} \in L^p \implies f \in L^p, \quad p < \infty.$$

• End-point estimates for 1 for (super) strong-singular integrals.

,

IV. Mapping of Domains in \mathbb{C}^n :

Question: Suppose Ω_1 and Ω_2 are two bounded smooth domains in \mathbb{C}^n . Assume there is a holomorphic bijection $\Phi : \Omega_1 \longrightarrow \Omega_2$. Does Φ extend to a diffeomorphism of $\partial \Omega_1$ to $\partial \Omega_2$?

* * * * *

Some reasons n > 1 is different from n = 1.

- 1. When n = 1, the answer is yes. In fact, then there always exist "locally" good maps between any pair of smooth arcs.
- 2. When n > 1, and Ω_1 unit ball, Ω_2 is an " ϵ " C^{∞} pertubation of Ω_1 , then in general such Φ does not exist (even, locally, near a boundary point of Ω_1 .)
- 3. Pseudo-convexity (for n > 1).

<u>Theorem:</u> If Ω_1 and Ω_2 are bounded smooth domains $\Phi : \Omega_1 \longrightarrow \Omega_2$ holomorphic bijection. Then Φ extends smoothly to boundaries if both Ω_1 and Ω_2 are strongly pseudo-convex.

* * * * *

(Later work: Boutet de Monvel-Sjöstrand, Webster, Bell-Ligocka, Nirenberg, P. Yang, ...)

Fefferman's Approach:

(B) Bergman kernel, K_{Ω} , of domain Ω .

 P_{Ω} orthogonal projection: $L^{2}(\Omega) :\longrightarrow L^{2}(\Omega) \cap (Hol)$

$$P_{\Omega}(f)(z) = \int_{\Omega} K_{\Omega}(z, w) f(w) dV(w)$$

Bergman metric, $g_{ij}^{\Omega} = \frac{\partial}{\partial z_i \partial \overline{z}_j} \log K_{\Omega}(z,z).$

<u>Fact</u>: Φ : $(\Omega_1, g^{\Omega_1}) \longrightarrow (\Omega_2, g^{\Omega_2})$ is an isometry.

Main Issues:

(B) What does the Bergman kernel (and Bergman metric) look like near the boundary?

(G) Where do the geodesics lead to? and how?

Assume Ω is bounded, smooth, and strongly pseudo-convex. Let r(z) defining function, and Q(z, w) holomorphic part of Taylor expansion of r(z) (up to second-order) at w.

 $\frac{\underline{\text{Theorem}^*:}}{K_{\Omega}(z,w)} = \frac{A(z,w)}{Q(z,w)^{n+1}} + B(z,w) \log Q(z,w) \text{ with } A, B \in C^{\infty}.$

<u>Note:</u> For unit ball in \mathbb{C}^n , $r(z) = 1 - |z|^2$, $K(z,w) = c/(1 - z \cdot \overline{w})^{n+1}$. Want $I = P_{\Omega} + Q_{\Omega}$, $Q_{\Omega} = P_{\Omega}^{\perp}$.

• Find "ball" \widetilde{B} highly tangent (order 4) to Ω at p, but $\widetilde{B} \subset \Omega$

• From explicit identity

$$I = P_{\widetilde{B}} + Q_{\widetilde{B}} \text{ on } \widetilde{B}$$

pass to approximate identity

$$I + E = P_{\Omega}^{0} + Q_{\Omega}^{0} \qquad \text{(explicit)}$$

 $(K_{\widetilde{B}} \text{ extends to } \Omega \times \Omega \text{ near } p$. Also one can correct by Kohn's $\overline{\partial}$ -Neumann.)

Here
$$E \approx P^0 \cdot \chi_{\Omega - \tilde{B}}$$

• $P_{\Omega} = P_{\Omega}^0 (1+E)^{-1} = P_{\Omega}^0 - P_{\Omega}^0 E + P_{\Omega}^0 E^2 \cdots$

(G) Main Lemma

Suppose $X(t) = X(t, z_0, \xi_0)$ is geodesic starting at z_0 in direction ξ_0 . Assume $X(t), 0 \le t < \infty$, does not lie in a compact set. Then

(1) $\lim_{t\to\infty} X(t, z_0, \xi_0)$ converges to a boundary point.

(2) The same is true for the geodesic $X(t, z_0, \xi)$ for ξ near ξ_0 , and the resulting mapping: $\xi \rightarrow$ boundary, is a (local) diffeomorphism.

(3) All boundary points can be reached this way.

* * * * *

Requires several changes of variable:

- New "time" τ , $\frac{d\tau}{dt} = r(X(t))$.
- Further desingularization because of "log term".

V. Several Choices

1. Local solvability of linear p.d.e.

Consider the m^{th} order linear partial differential equation, where p is assumed to be of "principal type."

 $(*) \quad p(x,D)u = f$

<u>Theorem:</u> (R. Beals and C. Fefferman) Suppose p satisfies the condition \mathcal{P} of Nirenberg-Treves. Then (*) is locally solvable.

<u>Note:</u> (\mathcal{P}) means: $\Im p_m$ does not change sign on the null bicharacteristic curves of $\mathcal{R} p_m$.

Theorem was proved by N-T in the real-analytic case.

<u>Proof:</u> requires a refined phase-space decomposition of a transformed problem.

This involves a "stopping-time" argument, in terms of violation of any of three key properties.

2. Convergence of Fourier series

$$f \longrightarrow \sup_{\lambda} \left| \int_{-\pi}^{\pi} \frac{e^{i\lambda y}}{y} f(x-y) \, dy \right| = C(f) \, .$$

<u>Theorem:</u> A new proof that the Carleson operator C is a (weak-type) mapping $L^2 \longrightarrow L^2$.

• Consider pairs: (ω, I) , where ω and I are dyadic intervals in \mathbb{R} and $[-\pi, \pi]$ respectively, with $|\omega| |I| = 1$ (These are later called "tiles".) Endow with ordering $(\omega, I) < (\omega', I')$, if $I \subset I', \omega' \subset \omega$, and study collections of resulting "trees".

• Linearize C(f) as $\int_{-\pi}^{\pi} \frac{e^{iN(x)y}}{y} f(x-y) dy$ and decompose according to $\{x \in I, N(x) \in \omega\}$, with $\frac{1}{y} = \sum_{k} \psi_k(y)$, and $|I| = 2^{-k}$, where $\psi_k(y) = 2^k \psi(2^k y)$.

Similar ideas then play important role in "timefrequency" analysis of Lacey and Thiele, for bilinear Hilbert transform, etc.