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I. Thesis

1. Strongly singular integrals

T(f) = fx K on R™.

Typical example: K distribution
K(z) = fm'—‘lit 0<|z|<1
= 0 lz| > 1

Previously known: T bounded on LP, 1 <p < o0

% k %k k X

Q1: is T of weak-type (1,1)7

Q2: (The “super” strongly singular case). Sup-
pose: |
elzl

Is T, bounded on LP when
1/p—1/2] < 3—X/n, for 0 <A< n/2 7?
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Reformulation of Q1: For fixed 8, 0 < 0 < 1:

(K& =0(lg)=?) , as ¢l — oo

| [ K@ - K@z < A

||z 2 |y|1—?

(Above: 6§ = 1/2. Note 8§ = 0O is standard CZ
situation.)

Theorem IfTf = fx* K as above, then T is of
weak-type (1, 1).

* 3k %k %k Xk

Fix o > 0; decompose f =g+ > b; , (CZ).
] |

e Estimate T'(g) via Plancherel

° bj is supported in cube Qj, and @1—| / |bj| ~ o
J
Qj



Need to estimate T'(b) = > T(b;) outside U B;.
| - J

J
(May assume diam Q; <1).

Problem is inside B;, the ball concentric with
B; but diam B; = (diam B;)1-9.

— —
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e Idea: replace b; by b; = b; * ¢,

p;i(x) = djfncp(x/éj) , 0; = (diam(Bj))l/(l_e) :

o /|bj>1<K — b * K|dz < c/lbj|d:c.
CRB Qj

Suffices then to estimate T(5) = Y T'(b;).
J

Now

| T(b) N2 S (1~ A)_n9/45 72 -
But
o |(1—A)"/ 48|25 a bl .
Because

o (- 2) g <



(GHEN? = [ |w(sc—y,t)|2(

2. Square Functions

Some familiar square functions:

o 2N = [ Ivulz -yt " ayat,
r(x)

u(z,t) = f = P, = Poisson integral of f

on o, ().

e Littlewood-Paley type: (Z|Ak(f)|2)1/2

A(HNE) = F(&) n(27Fk¢)-

These are all bounded on LP |, 1 < p < 0.

A more intricate square function: g3,

nA
) t1~ " dy dt .

R’I’L“‘l |y| + t

_|_
Majorizes both of the above.



What was known about f — g3(f) A > 1

e maps LP — P, if 1 <p < o ,and
2/A < p.

e fails when p< 2/

Question: What can be said about g3(f)
when

felP, p=2/A,1<p<2,7

Theorem f — g*(f) is of weak-type (p,p) in
this range.

NOTE: this cannot hold for p = 1.




3. Bochner-Riesz

Let S(f) be defined by
S(HN = F(&) xB(©)

where xp = characteristic function of unit ball
B. Also

SS(HN = F(&) xp(&) (1 —g*)°.

Question (1) Is §: P — LP,

when
2n p < 2n
n—+1 p n—1

?

Question (2) Is §%: LP — LP

if
2n 2n 5

< < !
nt14+25 'S n-1-25

(For radial functions, these were known to hold.)

* %k % %k %k



Restriction Phenomenom:
1/2

@ | [ 1F©Pd©] <Al

holds for a range of p's, 1 < p < po.

k %k %k k k

Theorem Whenever the (LP,L?) restriction ()
holds, then S% is bounded on LP in the opti-
mal range (i.e. Eﬁ—?@g < p < 2, ultimately

(1<p < 2.

X %k %k 3k 3k

After-thought: n = 2.

The restriction theorem:

1/q
L/ |f|ng <A|S ”Lp(RfZ)
1

holds for
1 <p<4/3, q=(1/3)0.
NOTE: as p — 4/3, then ¢ — 4/3.

% %k k %k 3k



Following this:

Carleson-Sjolin show that when n = 2,

S0 P —IP, 4/3<p<4,andd > 0.

8-b



II. Ball Multiplier

Question: Is S bounded on LP

(e.g. for 4/3 < p < 4, when n = 2)7

Theorem No! (forp#2, n > 2).

Background:

Let R; denote rectangles in the plane. Define

R;i(f). by Ri()HNE) = F(&) xr,(&).

Question: Does one have

1/2 1/2
() (Z le(fj)iz) S (Z |fj|2)
J J

Lp

Lp

with R; having arbitrary orientations?

Y. Meyer: If S is bounded on LP, then (xx)
holds for the same p.



Counter-example sets (in R?)

e Nikodym Set

e Besicovitch (Kakeya) Set
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Fefferman's observation:

Given ¢ > 0, there is N = N, and rectangles
R1, R>,--- Ry each having side-length (1,1/N),
so that

N | R¥
e m URj < €, but J

e R} ,R%,---, R}y are all disjoint , IS

Now take f; = XR; then

IR;(£;)(z)| > 1/10 for z € RY.

Hence a contradiction to (xx) whenever p < 2.

* k Kk Xk X

Further results for Bochner-Riesz and related
questions: ... Bourgain, Tao, ...
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III. H1-BMO duality

John-Nirenberg: (1961): f € BMO
1 _
Ifs%pmglf—-—fcgldw =l f llBato < oo.

Inequality:

m{z € Q : |f(z) — fo| > a} < c1e72*m(Q),
all >0, if || fllemo< 1.

% % %k ¥ X

Related to work of John, Moser (the latter for
Harnack-type inequality leading to DiGorgi-Nash
estimates)

% %k %k k %k

Later observed: BMOQO good substitute for L°°
in other settings:

Fact: Tf = f = K, and K is a CZ kernel
then: T :L*° — BMO

(In fact, T : BMO — BMO.)
12



The space HL.

Classical HY: Is H! of one complex variable
(F. & M. Riesz, Hardy).

F analytic in z =z + iy, y > 0 and

sup |F(x + iy)|dz < co.
y>0 B

H! = {FO(:U) = IimO F(:E-{-iy)} , with
y—)
% ok ok kK

Fo = f + iH(f), H = Hilbert transform.

% %k %k %k %

“Real’” H! = {f:feL1 and H(f) € L}.

* %k %k %k %k

Next: H! in R™.

gt = {feLl, and R;(f) e L', 1 §j§n}

13



H' is a good substitute for L1.
Fact: Tf = f = K, K is a CZ kernel
then: T: H! — 11 |

in fact: T:H! — HL.

(Here one used g3.)

13-a



Zygmund’'s Question:

e \What is the Poisson integral characterization
of fe BMO~?

u(z,t) = f *x P,, P the Poisson kernel.

k) %k k ¥k k

Note: ¢ For LP, f € LP <= sup || u(-,t) ||pp < o0
>0
l < p < 0.

o For LP, fe P <— S(f)e P, 1 < p < oo.

% %k %k %k k

Theorem:

(1) Dual space of H! is BMO.

(2) f€ BMO < el N

1
SUp
B m(B)

/ (Vu(z, t)|? tdt < oo
T(B)

(3) < f - fO+ZRj(fj)r anfla---fn € L.
J

14



Condition (2): du = |v(u(x,t)|?tdxdt

is a “Carleson measure” (on R*T1) j.e.

Fefferman duality:

Let F, G be non-negative functions on Rﬁ_’H.

Then

dx dt ~
| F@H G == < ¢ | S(F) llageml Gzt |
RO

t

where

1/2
dy dt
tl—l—n

SR = | [ (Fb)?

()

% k %k *k %
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Further Consequences

‘e Better understanding of HL, HP, p < 1,
in particular, atomic decomposition.

e ‘sharp function”:

fA(z) = Sup 72-3 /If(fc) foldz.
Then
fHcIP = feLP, p< .

e End-point estimates for 1 < p < 2 for (super)
strong-singular integrals.

15-a



IV. Mapping of Domains in C":

Question: Suppose €27 and $2» are two bounded
smooth domains in C*. Assume there is a holo-
morphic bijection ® : Q1 — €25. Does & ex-
tend to a diffeomorphism of 9€21 to 0257

k 3k k ok Xk

Some reasons n > 1 is different from n = 1.

1. When n = 1, the answer is yes. In fact,
then there always exist “locally” good maps
between any pair of smooth arcs.

2. When n > 1, and €7 unit ball, £, is an
“g' O pertubation of €21, then in general
such ® does not exist (even, locally, near a
boundary point of €21.)

3. Pseudo-convexity (for n > 1).

16



Theorem: If 21 and Qo are bounded smooth
domains ® : Q1 — 2o holomorphic bijection.
Then & extends smoothly to boundaries if both
Q7 and 2o are strongly pseudo-convex.

k% %k %k %k %k

(Later work: Boutet de Monvel-Sjostrand, Web-
ster, Bell-Ligocka, Nirenberg, P. Yang, ...)

Fefferman's Approach:

(B) Bergman kernel, Kq, of domain 2.

Pq, orthogonal projection: L2(€2) :— L2($2) N (Hol)

Po(N(=) = [ Kalzw) f(w)dV (w)
2

log Ko(z, z).

Bergman metric, g;;7 = az
t J

Fact: @ (9q,9%1) — (£25,¢%%2) is an
isometry.

17



(G) Follow the geodesics!

Q4 Q5

Main Issues:

(B) What does the Bergman kernel (and Bergman
metric) look like near the boundary?

(G) Where do the geodesics lead to? and how?

Assume € is bounded, smooth, and strongly
pseudo-convex. Let r(z) defining function, and
Q(z,w) holomorphic part of Taylor expansion of
r(z) (up to second-order) at w.

Theorem™:

A .
Ko(z,w) = Q(szu’;i)‘ﬂ + B(z,w) log Q(z,w) with
A B e C,
Note: For unit ball in C*, =(z) = 1 —|z|%

K(z,w) = ¢/(1 —z- @)t
18



WantI = Po + Qa, Qo = Ps.

e Find “ball” B highly tangent (order 4) to Q
at p, but BC Q

Q

e From explicit identity p
I = PB“ -+ QB' on B

pass to approximate identity

I+ E = P8 + Q% (explicit)

(Kg extends to Q2 x 2 near p. AIsO one can
correct by Kohn's 8-Neumann.)

~ P9 . ~
Here £ = P~ - X 5

e Po = PS(1+E)1 = P§—PSE+P3E? ------ .

19



(G) Main Lemma

Suppose X (t) = X(t,zp,&0) IS geodesic starting
at zg in direction &y. Assume X (t),0 < t < oo,
does not lie in a compact set. Then

(1) tlim X (t,zp,&0) converges to a boundary
— 00
point.

(2) The same is true for the geodesic X (t,zg,§)
for € near &y, and the resulting mapping:

¢ — boundary, is a (local) diffeomorphism.

(3) All boundary points can be reached this
way.

X %k k ok Xk

Requires several changes of variable:
e New “time” 7, & = r(X(¥)).

e Further desingularization because of “log term” .

20



V. Several Choices

1. Local solvability of linear p.d.e.

Consider the mth order linear partial differential
equation, where p is assumed to be of “principal

type.”

(x) p(z,D)u = f

Theorem: (R. Beals and C. Fefferman) Sup-
pose p satisfies the condition P of Nirenberg-
Treves. Then (x) is locally solvable.

Note: (P) means: Spm, does not change sign
on the null bicharacteristic curves of R pm.

Theorem was proved by N-T in the real-analytic
case.

Proof: requires a refined phase-space decom-
position of a transformed problem.

This involves a “stopping-time” argument, in
terms of violation of any of three key properties.
21



2. Convergence of Fourier series

T

IAY
f — sup /e flz—y)dy| = CU).
A Yy

— T

Theorem: A new proof that the Carleson op-
erator C is a (weak-type) mapping L? — L?.

e Consider pairs: (w,I), where w and [ are
dyadic intervals in R and [—m, 7] respectively,
with |w||I| = 1 (These are later called ‘“tiles”.)
Endow with ordering (w,I) < (', 1), if
IcI, o Cw, and study collections of resulting
“trees’ .

T eiN(2)y
e Linearize C(f) as f ¢

—T

decompose according to {z € I, N(z) € w}, with
% = zk:z,bk(y), and |I| = 2%, where

Yi(y) = 2Fp(2Fy).

f(x — y)dy and

Similar ideas then play important role in “time-
frequency” analysis of Lacey and T hiele, for bi-
linear Hilbert transform, etc.
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