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SLOPE FILTRATION OF F-CRYSTALS 

by 

Nicholas M. Katz 

(Princeton) 

This paper is devoted to the systematic study of the variation of the Hodge 

and Newton polygons of an F-crystal when that F-crystal moves in a family. As 

such, it constitutes a natural sequel to my report [6] on Dwork's pioneering 

investigations of such variation. However, I have tried to make this paper self-

contained and accessible to non-specialists. 

Some of the results are new, and interesting, even in the "classical" case of 

F-crystals over perfect fields. I have in mind particularly the "basic" and 

"sharp" slope estimates ( cf l. 4, l. 5) and the "Newton-Hodge" decomposition 

(cf 1.6). These "pointwise" results are in fact the key to all the "global" 

results given in 2.3- 2.7 . 

Special thanks are due to Arthur Ogus for suggesting the possible existence 

of the Newton-Hodge decomposition. 
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SLOPE FILTRATION OF F-CRYSTALS 

I. F-Crystals over perfect fields 

(1.1) Basic definitions 

For any perfect field k of characteristic p > 0 , we denote by W(k) its 

ring of Witt vectors, and by 

o :W(k) ~ W(k) 

the absolute Frobenius automorphism. For any integer a ¥ 0 , we have the notion 

of a oa-F-crystal over k , namely a pair (M,F) consisting of a free finitely 

generated W(k)-module M together with a oa-linear endomorphism F:M---+ M 

which induces an automorphism of Mgz m A morphism of oa-F-crystals 
p p 

f:(M,F)---+ (M,F') is a W(k)-linear map f:M---+ M' such that fF = F'f 

The category of oa-F-crystalsup to isogeny is obtained from the category of 

oa-F-crystals by keeping the same objects, but tensoring the Hom groups, which are 

~-modules, over ~ with m . An isogeny between oa-F-crystals is a morphism p p p 

of F-crystals which becomes an isomorphism in this new category. 

The exterior powers of a oa-F-crystal (M,F) are the oa-F-crystals 

(AiM,Ai(F)) with underlying module A~(k)(M) , and with oa-linear endomorphism 

Ai(F) defined by 

For i 0 , but (M,F) ¥ 0 , we define (A 0 M,A0 (F)) to be (W(k) ,oa) 

The iterates of a oa-F-crystal (M,F) are the oan_F-crystals 

(M,Fn) , n = 1,2, ••. 

(1.2) Hodge polygons 

The Hodge numbers h0 , h1 , h2 , of a oa-F-crystal (M,F) are the 

integers defined as follows (cf [9]). The image F(M) is a W(k)-submodule of 

M of maximal rank, say r , so by the theory of elementary divisors, there 

exist W(k)-bases {v1 , .•. , vr} and {w1 , ... , wr} of M such that 
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a. 
F(v.) 

J. 

J. 
p w. 

J. 

with integers 

These integers are called the Hodge slopes of (M,F) . The Hodge numbers 

(M,F) are defined by 

Thus we have 

(r = rank(M)) 

. i 
M/F(M) ~ ~ (W(k)/p

1
W(k))h 

i>O 

Notice that we have the elementary interpretation: 

1.2.1 

1.2.2 

0 for i < A <===> 

A 
F-Omodp i.e. F(M) c p~ 

0 for i > B <===> 

acr-a-linear V:M---+ M such that FV VF 
B 

p 

of 

According to a marvelous theorem of Mazur [9], these "abstract" Hodge numbers 

sometimes coincide with more traditional Hodge numbers. Thus let X be a projec-. 
tive smooth W(k)-scheme, all of whose Hodge cohomology groups 

j-' i 
H (X,OX/W(k)) are 

assumed to be free, finitely generated W(k) modules, whose ranks we denote 

hi,j (X) 
Let X

0 

be the projective smooth k-scheme obtained from X by reduc-

Then for each integer j ~ 0 , the crystalline cohomology groups 
tion modulo p 
Hj (X ) are free finitely generated W(k)-modules, given with a a-linear F 

cris o 
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SLOPE FILTRATION OF FCRYSTALS 

which provides a structure of o-F-crystal. Mazur's theorem asserts that the ab-

stract Hodge numbers of these o-F-crystals are given by the formula 

hi,j (X) 

Given a oa-F-crystal (M,F) , whose Hodge slopes are 0 <a < ... <a - 1- - r 

the Hodge slopes of the ith exterior power (AiM,Ai(F)) , 0 < i < r , are the 

(:) integers 

a. j 
Jl' ... ' i 

(as follows immediately from computing the matrix of F in the bases 

{ vj /\, .. .rw. } and 
1 Ji 

{w. f\ .. ,tw. } 
Jl Jj_ 

The Hodge polygon of (M,F) is the graph of the Hodge function on [O,r] 

defined on integers 0 < i < r by 

if i 0 

if 1 < i < r 

and then extended linearly between successive integers. If "'e define 

ord(F) greatest integer A with 
A F =: 0 mod p 

least integer A with hA(M,F) ~ 0 

then we have 

The Hodge polygon thus looks like 
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(h0 ,o)~ 

( ) 
SlOPE 0 

0,0 

~ ~~ length h length h 

The points ( 
0 i 1 2 . i) h + ... h '~ +2h + ... +lh 

at which the Hodge polygon changes slope 

are called its break-points. 

The Hodge polygon is not at all an isogeny invariant, as simple examples show. 

The only general result I know about its isogeny-behavior is the following trivial 

"specialization" property. 

Lemma 1.2.3. 

Suppose we have an exact seguence of aa-F-crystals 

Then the Hodge polygon of the direct sum (M1$M2 , F1$F2 ) lies above the Hodge 

polygon of (M,F) . 

~· E~uivalently, we must show that for 1 ~ i < r 
rank(M), we have 

Now we have 

so that 

$ Aa(Ml)®Ab(M2) 
a+b=i 

min (ord (Aa(F
1

)®Ab(F2 )) . 
a+b=i 
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SLOPE FILTRATION OF F-CRYSTALS 

But the direct sum ~ Aa(M1 )~Ab(M2 ) is exactly the associated graded of the 
a+b=i 

Koszul filtration (by "how many m
1

•s") of AiM . Thus any congruence 

Ai(F) _ 0 mod FA implies the same congruence for each of the Aa(F1 )~Ab(F2 ) 

a+ b i , which is to say that we have 

if a + b i 

In fact, Mazur's theorem strongly suggests the desirability of studying 

F-crystals only up to "Hodge-isogeny", i.e. only regarding as equivalent two 

F-crystals which have the same Hodge polygon and which are isogenous. We will not 

pursue that point of view here, except in so far as the "Newton-Hodge" decomposi-

tion, which we will discuss further on, may be regarded as a step in that direc-

tion. 

(1.3) Newton polygons 

The Newton slopes of a cra-F-crystal (M,F) are the sequence of r 

rational numbers 

defined in any of the following equivalent ways. 

Pick an algebraically closed overfield k' of k , and consider the 

cra-F-crystal over k' 

(M ~ W(k') , F~cra) 
W(k) 

rank(M) 

obtained from (M,F) by "extension of scalars". For each non-negative rational 

number A , written in lowest terms N/M , we denote by E(A) the cra-F-crystal 

over k' defined by 

E(A) 
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According to a fundamental theorem of Dieudonne (cf [8]), the category of 

oa-F-crystals up to isogeny over an algebraically closed field k' is semisimple, 

and the E(A)'s give a set of representatives of the simple objects in this 

category. Thus we can write 

with a unique finite sequence of rational numbers N1 /M1 ~ N2/M2 ~ ... , EMi = r . 

The Newton slopes of (M,F) are defined to be the sequence of r rational numbers 

repeated M1 
repeated times, ... ). 

For each rational number A , we define 

mult(A) 

From the above explicit description of the Newton slopes, it is obvious that 

1.3.1 

L mult(A) = r 
AE(!l, 

(r rank(M)) 

for each A , the product A mult(A) lies in ~ ; in 

particular the Newton slopes admit r! as a common denominator. 

For the next characterization of the Newton slopes, we choose an auxiliary 

integer N > l which is divisible by r! , r = rank(M) , and consider the dis-

crete valuation ring 

R W(k' )[X]/(~-p) W(k')[l/N]. 

We extend a to an automorphism of R by requiring that o(X) 

rational number A with NA £ ~ , we may speak of 

A 
p the image of XNA in R . 

X . For any 

Let K denote the fraction field of R . Again by Dieudonne , we know that 

M ® K admits a K-basis 
vJ(k) 

which transforms under the 
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endomorphism F®cra by the formula 

p 
A. 

l 
e. 

l 

An equivalent, and for us more useful, characterization of the Newton slopes is by 

the existence of an R-basis of M ® R with respect to which the 
W(k) A. 

"matrix" of F®cra 

i.e. 

is upper-triangular, with 

(0 
A. 

entries) in R 

A 
r 

p 

p l along the diagonal: 

. l I 
- p ui mod L RuJ. 

j <i 

Either of these last two descriptions makes it obvious that the Newton slopes 

f th . th t . o e l ex erlor power (AiM,Ai(F)) of (M,F) are the(:) numbers 

A, + ... + 
Jl 

< r 

and that the Newton slopes of the nth iterate (M,Fn) of (M,F) are 

The last description of the Newton slopes makes clear the elementary 

interpretations 

l. 3.2 

l. 3.3 

all Newtons slopes A. of 
l 

(M,F) are 

F is a cra-linear automorphism of M . 

0 if and only if 

all Newton slopes A. of 
l 

(M,F) are > 0 if and only if 

F is topologically nilpotent on M , i.e. iff and only 

if Fr (M) c pM where r = rank(M) • 
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The Newton polygon of (M,F) is the graph of the Newton function on [O,r], 

defined on integers 0 < i ~ r by 

Newto~(i) =least Newton slope of (AiM,Ai(F)) 

if i 0 

if 

and then extended linearly between successive integers. In terms of the distinct 

Newton slopes ~i of (M,F) together with their multiplicities mult(~i) , 

arranged in strictly increasing order ~l < ~ 2 < ••• , the Newton polygon looks 

like 

length=mult(~1 ) 

Newton polygon changes slope are called its break-points. From the earlier noted 

fact that the products ~. mult(~.) 
l l 

are all integers, it follows that the break-

points of the Newton polygon are always lattice-points in m
2 

, i.e. they have 

integer coordinates. 

By its very construction, the Newton-polygon is an isogeny invariant (indeed 

over an algebraically closed field it is~ isogeny invariant). In contrast to 

the case of Hodge polygons, we have 
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Lemma 1. 3. 4. 

Su:p:pos~we have an exact seguence of oa-F-crystals 

Then the Newton :polygon of the direct sum (M1~M2 ,F1~F2 ) coincides with the 

Newton :polygon of (M,F) . 

Proof. Extending scalars, we may suppose k algebraically closed. By Dieudonne's 

semisim:plicity theorem, our exact sequence splits in the "u:p-to-isogeny" category . 

{!jED 

Example. Over JF , take M = ~ ~:ll: p p p 

The Newton and Hodge :polygons are 

Newton Hodge 

Remarks. In our characterizations of the Newton slopes of a oa-F-crystal, we 

make use of the integer a , (not just of the automorphism cra), in order to ex-

tend cra to an algebraically closed overfield of k However, in the next sec-

tion we will give an "internal" characterization (cf 1.4.4) (i.e., one that in-

volves no extension of scalars) of the Newton :polygon (in terms of Hodge :polygons 

of iterates). Consequently, the Newton :polygon of a given oa-F-crystal over k 

depends only on the automorphism 
a 

a of k , and not on the auxiliary choice of 

a , (Of course a a as automorphism of 

By Manin [8], we know that if 
a 

a 

k determines a unless k is finite.) 

is the identity on k, i.e., if 

kC F a , then the Newton slopes of a oa-F-crystal (M,F) on k are :precisely the 
p 

:p-adic ordinals of the eigenvalues of "F viewed as~ endomorphism of M". 

In terms of a matrix (Fij) for F , this means that the Newton polygon of the 

oa-F-crystal (M,F) coincides with the Newton polygon of the "reversed" character-

istic polynomial det(l- T(F .. )) 
lJ 

of the matrix 

However, if cra # id. on k , then the Newton :polygon of a oa-F-crystal 

(M,F) need not coincide with the Newton :polygon of 
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(Fij) is the matrix expressing the action of F on some basis of M. Here is 

an example, due to B. Gross. Over W 2 with p = 3 mod 4 , consider the 
p 

o-F-crystal of rank two with matrix 

(

1- p 

(p+l)i 

(p+l)i) 

p - 1 

The eigenvalues of this matrix both have ordinal 1/2 (since trace = 0 , det 

But this matrix is a-linearly eQuivalent, via (li li) , to the matrix 

(: :) , 

and hence our o-F-crystal has Newton slopes {0,1} , not {1/2,1/2} . 

(1.4) Newton-Hodge relations; the basic slope estimate 

In this section we will discuss various relations between Hodge and Newton 

polygons. 

Theorem 1.4.1 (Mazur) 

p). 

For any oa-F-crystal (M,F) , the Newton polygon is above the Hodge polygon. 

Both polygons have the same initial point (namely (0,0)) and the same terminal 

point (namely (r, ord(det(F))). 

~· For any oa-F-crystal of rank~· the Hodge slope and the Newton slope 

coincide. Applying this remark to (A0 M,A0 (F)) = (W(k),cra) and to (ArM,Ar(F)) , 

we see that the two polygons begin and end together. To show that 

for 1 ~ i ~ r , 

it suffices to show that for each of the exterior powers of (M,F) , we have 

least Newton slope > least Hodge slope , 

i.e., we must prove 
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But in terms of the matrix A .. 
lJ 

ord(F) min 
i,j 

of Fecra on MeR with respect to 

(ord (A .. )) . 
p lJ 

As we may choose the R-base so that this matrix is 

( 

Al 
p • 

0 
entries) in R 

• A r 
p 

Newton slopes \ .::_ ... .::_ \ 

we get 

min 
i,j 

Al 
(ord (A.j)) .::_ ord(p ) 

p l 

Remarks. If we compare largest rather than smallest slopes, we get 

greatest Newton slope .::_ greatest Hodge slope , 

simply because the two polygons are both convex, and have the same terminal point, 

i.e., they end like 

Newton-~ ,__________ 

/ ' Hodge 

Thus denoting by A and B the least and greatest Hodge slopes and by Al and 

Ar the least and greatest Newton slopes, we have 

1.4.2 A < A < A < B 
- 1- r-

As a by-product of this method of proof, we get the 

(1.4.3) Basic slope estimate 

Let (M,F) be a cra-F-crystal of rank r , and let A > 0 be a rational 
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~· For any real number x , denote by {x} the "next higher integer", i.e., 

{x} = - [-x]. Then (M,F) has all Newton slopes > A if and only if for all in-

tegers n ~ 1 we have 

ord (Fn+r-l) ~ {nA} 

i.e., 

~· We begin with the "if" part. Let A1 be the smallest Newton slope of 

(M,F) . Then the smallest Newton slope of (M,Fn+r-l) is (n+r-l)A1 , while by 

hypothesis its smallest Hodge slope is ~ {nA} 

n+r-1 

By the previous theorem, applied 

to (M,F ) , we have 

(n+r-l)A1 ~ {nA} > nA for all n ~ 1 , 

whence A
1 
~ A as required. 

Conversely, we must show that, still denoting by A1 the smallest Newton 

slope of (M,F), we have 

n+r-1 ord (F ) ~ nA1 . 

Extending scalars to R ( cf 1. 3.1 ff) it suffices to show 

In terms of a suitable R-basis of M®R , we have 

A. 
(F®cra)(u.) = p 1 u. + elt. of 

l l 

Iterating, we find, for all N ~ i , 

L Ruj . 
j <i 

N NA1 (N-l)A1 
(F®cra) (ui) £ p ui + p Rui-1 + • •• 

Since i ~ r , and the u. 
l 

(N-i+l)A1 
e p M@R • 

span M®R , we find 

126 

I 
I 
I 
I 
I 

I 
( 

I 
'l 

\ 
\ 

as required. 

Corollary 1. 4. 4 

The Newton fu 

iterates (M,Fn) 

valid for 

' 
Proof. Since bothi 

0 < i < r , thenj 
to prove the form 1 

i 
and X= i 

' 
is eqji 

( fliM,fli (F)) and I 
Al the smallest 

Nj: 
I 

I 

1: 

By the basic slop~; 
I 

il 

from which the 

Examples. 

the matrix 

The graphs of the 



~r integer", i.e. , 

tly if for all in-

~wton slope of 

·l)A
1 , while by 

: theorem, applied 

1allest Newton 

SLOPE FILTRATION OFF-CRYSTALS 

as required. 

Corollary l. 4. 4 

The Newton function of (M,F) is obtained from the Hodge function of the 

iterates (M,Fn) of F by the (archimedean) limit formula 

lim 
n->-oo 

1 -Hodge (x) 
n Fn 

valid for 0 < x < r rank(M) . 

Proof. Since both the Newton and Hodge functions are defined first on integers 

0 < i < r , then interpolated linearly between successive integers, it suffices 

to prove the formula for x = an integer 0 < i < r . The formula, for (M,F) 

and x = i , is equivalent to (indeed term by term identical with) the formula for 

Thus it suffices to prove universally that, denoting by 

Al the smallest Newton slope of (M,F) , we have 

lim 
n-roo 

By the basic slope estimate, we have 

( ) ' (Fn+r-1) > {n' } , n+r-1 Al ~ ord _ Al ~ nA1 , 

from which the required limit formula is immediate. 

Examples. 

the matrix 

Consider the cr-F-crystal over F with M 
p 

The graphs of the functions and 1 - Hodge 
n Fn 

are 
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as drawn : the highest is NewtonF , the middle is that of 

n ~ 2 , and the lowest is that of HodgeF 

If instead we take M = ~ $ ~ p p 
F given by 

l:. Hodge 
n Fn 

then the graphs of 
1 

and of all ~ Hodge 2 
coincide: 

n F n 

~(2,1) 

(0,0) ~ 

1 
while the graph of 2n+l HodgeF2n+l is 

_/(2,1) 

( 0, 0 ) .-------; 

(1,2nn+l) 

for some 

The point of these examples is that the Newton polygon may or may not be 

attained at some finite n , and that the seQuence of approximating functions need 

not be monotone. The common features of the examples, namely that all approximants 

are convex polygons lying on or below the Newton polygon, but sharing its begin-

ning and terminal points, are indeed common to all examples. This follows from 

Theorem 1. 4.1 applied to (M,Fn) , and the fact that l:. Newton = NewtonF . 
n Fn 
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(1.5) Sharp slope estimate 

In this- section we will give a sharpening of the basic slope estimate, in 

which the "lag" term r- 1 is replaced by a sum of certain Hodge numbers. 

Sharp Slope Estimate 1.5.1 

Let (M,F) be a oa-F-crystal, and A ~ 0 a rational number. Let 

0 1 
h ,h , ... , be the Hodge numbers of (M,F) Then all Newton slopes of (M,F) 

are > A if and onl;z if for all integers n > 1 we have 

n+ I hi 

ord (F i<A 
> {nA} 

Proof. The "if" part is proved exactly as for the basic slope estimate. To prove 

the "only if" part, we first reduce it to a reasonable-sounding assertion about 

determinants, and then give an unpleasantly computational proof of that assertion. 

Suppose then, that Al is the least Newton slope of (M,F) and that we are 

given a rational A 

Because the function "ord" assumes only integral values, it suffices to prove that 

n+ I hi 

ord (F i<A ) > nA 

Extending scalars to a suitable R containing 
A 

p as well as the 

suffices to prove that 

n+ I hi 

(F®cra) i<A (M®R) c pnA M®R . 

At this point, we must observe that for ~real A > 0 , we have 

i.e.' 

n+ I hi 

ord (A i<A (F)) > nA for n > 1 

HodgeF(n + I hi) > nA 
i<A 
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To see that this is true, look at the Hodge polygon. It has a break-point at 

( I hi , I i hi) , and from this point rightwards the slopes are all ~ {\} , so 
i<\ i<\ 

that we have 

HodgeF(n + I hi) > I ih. + n{\} ~ n\ 
i<\ - i<\ l 

for all real n > 0 

Let us further observe that in terms of a suitable basis of 

an upper triangular matrix over R all of whose diagonal entries lie in the ideal 

iR of R . 

Lemma l. 5. 2 

Let R be any commutative ring with 1, Ic R an ideal, and ~:R---+ R 

an endomorphism of R such that 

for any x E R , ~(x) E xR . 

Let M be a free R-module of finite rank, and let F:M ---+ M be a p-linear 

endomorphism of M , whose matrix relative to some R-basis {ui} of M is 

upper triangular, and has all of its diagonal entries in the ideal I Suppose 

that for some integer k ~ 0 , we have the congruences 

for all n ~ 1 

Then we also have 

for all n ~ 1 
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If we apply this to our R = W(k')[pl/NJ a 
(J I M@R with 

F@cra , we-get the "sharp" slope estimate. 

To prove the lemma, let us denote by (Fij) the matrix of F relative to 

the R-basis {ui} of M 

F(u.) 
J._ 

0 if i > j ' F .. E: I . 
J..,J.. 

The matrix of Fn is the product matrix 

each of whose entries is a sum of products of the form 

n-1 
~ (F. . ) 

1 n '
1
n+l 

By the hypothesis made on ~ , each of these products is divisible by the corres-

ponding product "without ~ " 

Fi i 
n' n+l 

(Of course this product vanishes unless i 1 ~ i 2 ~ ... ~ in+l, since (Fij) is 

upper triangular.) So it suffices to show that each such n-fold product lies in 

In-k , for n > k 

Let J(n) denote the ideal generated by the n x n minors of (F. j) 
J.., 

By 

hypothesis, we have J(n) c In-k for n > k , so it suffices to show that 

F. . E: J(n) + I 
1 n' 1 n+l 

J(n-1) + •.. + In-lJ(l) +In, 

whenever 1 ~ i 1 ~ ... ~ in+l < r . Since the diagonal entries Fi,i lie in I , 

it suffices to treat the case when i 1 < i 2 < ••• < in+l. This case follows 

inductively from the following well-known determinant formula, whose verification 

is left to the reader. 
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Formula l. 5. 3 

(X. j=O 
l, Let (X. j) 

l, 
be an r x r upper-triangular matrix 

indeterminates. For each subset T c {1, ... ,r} of cardinality 

T 

we define 

det(T) det 

0 xt t 
v-1' v-1 

the (v-1) x (v-1) minor indexed by 

and we define 

f(T) 

Then we have the formula 

det(T) 

(1.6) Newton-Hodge decomposition 

(-l)#S • f(T-S) • TI 
sE:S 

X 

if i > j) of 

\) > 2 

s,s 

In this section we give a fundamental decomposition theorem for 

cra-F-crystals, in terms of the interrelations between their Hodge and Newton 

polygons. I owe entirely to Ogus the idea that such a decomposition should 

exist. 
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Theorem 1.6.1 (Newton-Hodge decomposition) 

Let~ (M,F) be a cra-F-crystal of rank r . Let (A,b) E ~ x Z be a break-

point of the Newton polygon of (M,F) , which also lies on the Hodge polygon of 

(M,F) Then there exists a unique decomposition of (M,F) as a direct sum 

1. 6.1 Hodge slopes of (Ml,Fl) = {first A Hodge slopes of (M,F)} 

Newton slopes of (Ml,Fl) {first A Newton slopes of (M,F)} 

~ (M2 ) = r- A 

1.6.2 Hodge slop~s of (M2,F2) {last r -A Hodge slopes of (M,F)} 

Newton slopes of (M2,F2) {last r -A Newton slopes of (M,F)} 

In terms of polygons, this means that the Hodge (resp., Newton) polygon of (M,F) 

is formed by joining end-to-end the Hodge (resp. Newton) polygon of (M
1

,F
1

) with 

the translate by ~,b) of the Hodge (resp. Newton) polygon of (M
2

,F
2

) . 

Pictorially, we have 
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We give the proof in a series of lemmas. 

Lemma 1. 6. 3 

Hypotheses as in Theorem 1.6.1, there exists a unigue F-stable W(k)-submodule 

M
1 

c M such that 

Lemma 1. 6. 4 

M
1 

is free of rank A , and M/M
1 

is free of rank r - A . 

if we put F
1 

= F/M
1 

, then the Newton slopes of (M1 ,F1 ) 

are the first A Newton slopes of (M,F) . 

Hypotheses as in Theorem 1.6.1, and notations as in Lemma 1.6.1 above, put 

F/M
2 

• Then we have a short exact seguence of cra-F-crystals 

in which (M
1

,F
1

) and (M
2

,F
2

) satisfy the properties 1.6.1 and 1.6.2 of 

the conclusion of Theorem 1.6.1. 

Lemma 1. 6. 5 

The exact seguence of cra-F-crystals in Lemma 1.6.5 above admits a unigue 

splitting 

(M,F) 

Proof of Lemma 1. 6. 3. We first use "PlUcker coordinates" to reduce to the case 

when A = 1 The hypothesis that the Newton polygon of (M,F) has a break-point 

at (A,b) and that the Hodge polygon of (M,F) goes through (A,b), is equi

valent to the hypothesis that the Newton polygon of (/M,l\.A(F)) has a break

point at (l,b), and that the Hodge polygon of (A~,AA(F)) goes through (l,b). 

Admitting temporarily the truth of Lemma 1 for (A~,AA(F)) and the point 

(l,b), we obtain a unigue AA(F)-stable line L in A~ , such that (L,AA(F)) 

has Newton slope = b . Therefore if there exists M1 c M of the sort re~uired in 
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A Lemma 1 , we must have 1 =A (M1 ), by unigueness of 1 . Conversely, if we can 

show that 1 is of the form AA(M
1

) for some W(k)-submodule M
1 

c M with M/M
1 

locally free, then M
1 

is uniquely determined by 1 (Plucker embedding!), M
1 

is necessarily F-stable (since 1 is), and its Newton slopes are necessarily the 

first a Newton slopes of (M,F) (otherwise the Newton slope of (1,AA(F)) would 

be too big). 

To verify that 1 is of this form, it suffices to verify that 1 satisfies 

the Plucker equations, and for this we may first make any injective extension of 

scalars, e.g., from 1>/(k) to the fraction field K of a suitable ring 

R = W(k' )[pl/N] of the sort considered in ~ But over such a K M@K 
//. 

admits a K-basis e
1

, ... ,er with respect to which the matrix of F is 

where Al < ,,, ~ AA < AA+l ~ ... ~ Ar are the Newton slopes of (M,F) , Inside 

AA(M)@K , it is now visible that there is a unique F-stable line of Newton slope 

But 1@K is also such a line, 

so by uniqueness, we have 1@K = Kel''···AeA, whence 1@K satisfies the Plucker 

equations. 

It remains to treat the case (A,b) = (l,b) 

polygon goes through (l,b), the endomorphism F 

Dividing F by b p , we are reduced to the case 

In this case, as the Hodge 

of M is divisible by b 
p 

(A,b) = (1,0); i.e., the case in 

which zero occurs as a Newton slope of (M,F) with multiplicity one. We must 

find an F-stable line 1 c M on which F induces an automorphism, and show that 

any such line is unique. For this, it suffices to show that for every integer 

n ~ 1 , there is a unique F-stable line 1 
n 

in M/pnM on which F induces an 

automorphism. Because F has ~ as a Newton slope with multiplicity one, 

all Newton slopes of A2 (F) are strictly positive, and hence we have 
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if 
2 

v ?._ rank(A M) 

i.e., if v ?._ n(~) . 

But all iterates Fv of F also have zero as a Newton slope, and hence all 

iterates Fv of F have zero as a Hodge slope, i.e., 

for v = 1,2,3, .... 

For any v ?._ n(~) , we thus have mod p , but all 2 X 2 minors of 

are = 0 mod pn This means exactly that for each v ?_n(~) , the image of 

is a line 
(in matricial terms, at least one of the columns of the 

matrix of Fv is not divisible by p , and all the other columns are congruent 

mod pn to W(k)-multiples of this column). By the definition of the 

images, we have 

F(L ) n,v 
for all v . 

Since the L for v ?._ n(r
2

) are ~. we must have 
n,v 

F(L ) = L n,v n,v+l 
L n,v 

for v ?._ n(~) . 

L n,v as 

Therefore if we define L to be L for any v ?._ n(r2 ) , Ln is an F-stable 
n n,v 

line on M/p~ on which F induces an automorphism. That Ln is the uni~ue such 

line results from the fact that 

so that .Ln must contain any such line, and hence be e~ual to any such line. 

This concludes the proof of Lemma 1.6.3 QED . 

We now turn to the proof of Lemma 1.6.4. By construction, (M1 ,F1 ) has as 

Newton slopes the first A Newton slopes of (M,F) , and therefore by ~.3.4) 
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(M2 ,F2 ) must have as its Newton slopes the last r - A Newton slopes of (M,F) 

In terms of a basis of M adapted to the filtration M
1 

c M , the matrix of F 

looks like 

(: :) 
with A the A x A matrix of F1 on M1 , and ID the (r-A) x (r-A) matrix of 

F2 on M
2 

. 

Let us begin by showing that this matrix has the same Hodge polygon as does 

For this, it suffices to show that "elementary column operations" allow us to pass 

from one to the other, i.e., to show that all the columns of IB are W(k)-linear 

combinations of the columns of A • By hypothesis, the Hodge polygon of (M,F) 

goes through (A,b), and hence 

all 

in particular all 

(Ao m]3) A x A minors of \ 

A x A minors of {A,JB) 

are - 0 

are - 0 

mod pb 

b mod p 

Because the Newton polygon of (M,F) goes through (A,b) and because (M
1

,F
1

) 

has as Newton slopes the first a Newton slopes of (M,F), we have 

det (/A) b p x unit. 

It now follows by Cramer's rule that all columns of JB are W(k)-linear com-

binations of the columns of A . Hence the matrices 

have a common Hodge polygon. 
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Intrinsically, this means that (M,F) and (M1~M2 , F1~F2 ) have a common 

Hodge polygon. Therefore we have a partition 

{Hodge slopes of (M,F)} lJ {Hodge slopes of 
i=l,2 

So we need only verify that the Hodge slopes of (M1 ,F1 ) are the A smallest 

among those of (M,F). But the~ of the smallest A Hodge slopes of (M,F) is 

b (the Hodge polygon of (M,F) goes through (A,b)). So it suffices to see 

that the sum of all A of the Hodge slopes of (M1 ,F1 ) is b . For this just 

recall that the Newton polygon of ends at (A,b), and hence its Hodge 

polygon ends there as well. ~ 

We now turn to the proof of Lemma 1.6.5 In a basis of M adopted to 

M
1 

c M , the matrix of F is 

As we have seen in the proof of Lemma 1.6.4 , the columns of E 
are all 

W(k)-linear combinations of those of ~ , so we can write this matrix 

for some integral matrix ill • 

Let n denote the largest Hodge slope of A , and let m denote the smallest 

Hodge slope of ID . Then p~A-l 
-m 

and p ID are integral. Since m ~ n by 

Lemma 1.6.4,p-~ is integral. Notice that either 
n -1 pYA is topologically nil-

-a cr -F-crystal 
has all Newton slopes > 0) ' 

potent (i.e., that the 

or that p-nD is topologically nilpotent (i.e., (M2 ,p-nF2) has all Newton slopes 

> 0), or possibly both; this is immediate from the inequalities 
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< A -. r 

To split the projection of (M,F) onto (M
2

,F
2

) is equivalent to finding an 

A x (r-A) matrix X , with entries in W(k) , so that X 
(
1

) , viewed as the matrix 

of a W(k)-linear cross-section M
2 

---+ M of the projection M ---+ M
2 

, is a 

morphism of cra-F-crystals. 

i.e., 

i.e.' 

i.e., 

Because either n -1 pYA or 

Matricially, this means 

a 
XI) ;J'\Xa + JAm 

-a -a 
X (pnA-lXp-9D)cr - ma . 

is topologically nilpotent, the method of 

successive iterations leads to a unique solution of this equation. 

Remarks. If we apply this Newton-Hodge decomposition to the contravariant 

Dieudonne module of a p-divisible group, we recover the cannonical decomposition 

of such a group over a perfect field into the product of an etale group, a bi-

connected group, and a toroidal group. 

etale biconnected toroidal 
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(2.1) Basic definitions 

N. KATZ 

In this section we recall the basic notions concerning crystals on arbitrary 

affine schemes in characteristic p > 0 (compare [2]). By an absolute test object, 

we mean a triple (B,I,y) consisting of a p-adically complete and separated 

~ -algebra B , a closed ideal I c B with p E I , and a divided power structure 
p 

in Z: 
p y = {yn} on the ideal I for which yn(p) =the image, in B , of pn/n! 

Given an JFP-algebra A
0 

, by an A
0
-test object we mean a Quadruple (B,I,y;s) 

consisting of an absolute test object (B,I,y) together with a structure s of 

A
0

- algebra in B/I , i.e., together with a homomorphism of F -algebras p 

A map of A
0
-test objects f : (B,I,y;s)---+ (B' ,I' ,y' ,s') is s : A

0 
---+ B/I 

an algebra homomorphism f : B---+ C which maps I to I' , "commutes" with the 

given divided power structures y,y' , and induces an A0 -homomorphism 

B/I----+ B'/I' (for the given structures s,s'). 

A crystal M on A 
0 

is rule which assigns to every A
0
-test object 

(B,I,y;s) a p-adically complete and separated B-module, noted M(B,I,y;s) , and 

which assigns to every map f: (B,I,y;s)----+ (B' ,I',y' ;s') of A0 -test objects 

a B'-isomorphism 

M(f) 
M(B,I,y;s) g B' ~ M(B' ,I' ,y' ;s') 

B 

in a way compatible with composition of maps of test objects. A crystal M is 

said to be locally free of rank r if for all A
0
-test objects (B,I,y;s) , the 

B-module M(B,I,y;s) is a locally free B-module of rank r . A morphism of 

crystals on A 
0 

u : M---+ N , is a rule which assigns to each A0 -test object 

(B,I,y;s) a B-module map 

u(B,I,y;s) M(B,I,y;s) ---+ N(B,I,y;s) 

in a way compatible with the isomorphisms M(f),N(f) . The category of crystals 

I 

I 
I 
\ 

I 

on A
0 

up to i 

the same 

with 

which becomes 

isogeny if and 

uv = pn = vu). 

Suppose w 

<j>:A---+B 
0 0 

A
0
-test object 

on B 
0 is defji 

Similarly, gi 

u(¢) : M(¢) 

For any 

endomorphism 

on A 
0 

on A 
0 

such that 

the notion 

¢:A ----+ 
0 

a 
¢ = ¢ a 
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category of 
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~d power structure 

in 2: 
p 

1ple (B,I,y;s) 

Jtructure s of 

Llgebras 

(B',I',y',s') is 

~ornmutes" with the 

ephism 

3t object 

11(B,I,y;s) , and 

f A -test objects 
0 

crystal M is 

B,I,y;s) , the 

morphism of 

h A -test object 
0 

gory of crystals 

j 
I 

I 

f 
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on A
0 

up to isogeny is obtained from the category of crystals on A
0 

by keeping 

the sam~objects, but tensoring the Hom groups, which are Z -modules, over 
p 

with a), • 
p 

An isogeny between crystals on A 
0 

is a morphism of crystals on 

~ 
p 

A 
0 

which becomes an isomorphism in this new category (explicitly, u N ----->- M is an 

isogeny if and only if for some integer n > 0 , there exists v M ----->- N vri th 

uv=pn=vu). 

Suppose we are given two JF -algebras, A 
p 0 

and B
0 

, and a homomorphism 

If (B,I,y;s) is a B -test object, then (B,I,y;s·¢) 
0 

is an 

A
0
-test object. Given a crystal M on A , the "inverse image" crystal M(¢) 

0 

on B
0 

is defined by the formula 

M(B,I,y;s¢) . 

Similarly, given a morphism u : M----->- N of crystals on A
0 

, its "inverse image" 

u(B,I,y;s¢) . 

For any JFP-algebra A
0 

, we denote by o : A ---+ A the absolute Frobenius 
0 0 

endomorphism o(x) = xp , and by_ oa a > 1 , its ath iterate. By a 

oa-F-crystal (M,F) on A
0 

, we mean a locally free (of some rank r ) crystal M 

on A together with an isogeny F:M(oa) ----+ M . A morphism of oa-F-crystals 
0 

on A 
0 

f: (M,F) ----+ (M' ,F') , is a morphism f:M ----+ M' of crystals on A 
0 

such that The category of oa-F-crystals up to isogeny, and 

the notion of an isogeny between oa-F-crystals, are defined in the expected way. 

Given a oa-F-crystal (M,F) on A
0 

, and any homomorphism of JFP-algebras 

¢:A
0

----+ B
0 

, the inverse image (M(¢) ,F(¢)) is a oa-F-crystal on B
0 

(because 

a 
0 ¢ = ¢ 

a 
• 0 for any homomorphism of JF -algebras). 

p 

(2.2) Perfect rings. 

When A is a perfect JF -algebra, i.e., when o:A ---+A is an automor-
o p 0 0 

phism, the ring W(A ) 
0 

of Witt vectors of A 
0 

provides an initial object in the 

category of all A
0
-test objects, namely (W(A

0
), (p), y ; s) . The divided power 

structure y on pW(A ) 
0 

is uniquely determined by the requirement 
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the homomorphism s:A ---+ W(A )/(p) is the inverse of the isomorphism 
0 0 

W(A )/(p) ~ A obrained by sending a Witt vector to its first component. 
0 0 

Evaluation at this initial object provides an equivalence of categories between 

the category of crystals on A 
0 

and the category of p-adically complete and 

separated W(A
0

)-modules. Given a homomorphism ~:A0 ---+ B0 of perfect 

F -algebras, the construction M ~ M(~) on crystals corresponds to the con
p 

struction on modules 

M 1--r M @ W(B ) dfn the W(B )-module M(~) 
W(A ) o o 

0 

in which W(B) is viewed as a W(A )-algebra by means of W(~):W(A)---+ W(B) 
0 0 0 0 

If we denote by (J the automorphism W(cr) :W(A ) ~ W(A ) , then the 
0 0 

category of cra-F-crystals on our perfect A 
0 

is equivalent to the category of 

pairs (M,F) consisting of a locally free (of some rank r ) W(A0 )-module M 

together with a cra-linear map F:M---+ M which induces an automorphism of 

M®z m . 
p p 

In particular, when A
0 

is a perfect field k , we recover the more mundane 

notion of cra-F-crystal with which we were concerned in Chapter 1. 

(2.3) Grothendieck's specialization theorem. 

We now turn to the consideration of a cra-F-crystal (M,F) over an arbitrary 

JF -algebra 
p 

(M,F) (~) 

A
0 

For any homomorphism 

is a cra-F-crystal over k . 

~:A0 ---+ k with k a perfect field, 

Its Newton and Hodge polygons depend only 

on the underlying point ker(~) E Spec(A
0
), and not on the particular choice of a 

perfect overfield of the residue field at this point. This allows us to speak of 

the Newton and Hodge polygons and slopes of (M,F) at the various points of 

Spec(A ) . The following theorem and corollary are a slight strengthening of 
0 

Grothendieck's specialization theorem. 
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Theorem 2.3.1 (Grothendieck) 

Let (M,F) be a oa-F-crystal of rank r over an arbitrary F -algebra A p 0 

Let A > 0 be a real number. The set of points in Spec(A ) 
0 

at which all Hodge 

(resp. Newton) slopes of (M,F) are > A is Zariski closed, and locally on 

Spec(A ) it is the zero-set of a finitely generated ideal· 
0 

Corollary 2.3.2 

Let P be the graph of any continuous ffi-valued function on [O,r] which is 

linear between successive integers. The set of points in Spec(A ) 
0 

at which the 

Hodge (resp. Newton) polygon of (M,F) lies above P is Zariski closed, and is 

locally on Spec(A ) 
0 

the zero-set of a finitely generated ideal. 

Proof. The Corollary follows by applying the theorem to the various exterior 

powers of (M,F) . The theorem for Newton slopes follows from the theorem for 

Hodge slopes, applied to a suitable iterate (M,Fn) of (M,F) , as follows. 

Because Hodge slopes are always integers, and Newton slopes are always in ~~ r. 

for oa-F-crystals of rank r , we may assume that lies in According 

to the basic slope estimate, we have 

F has all Newton slopes > A has Hodge slopes > nA 

F 
! nA 

has all Newton slopes .::_ n+:t;"-l 

Therefore, if we choose n so large that 

then we have 

A- _L 
r! 

< n • A 
n+r-1 

< A ' 

F has all Newton slopes > A ~ Fn+r-l has all Hodge slopes > nA 

So we are reduced to proving the theorem for Hodge slopes. 

As replacing A by its perfection A perf and (M,F) by its inverse 
0 0 

on A perf alters neither Spec(A ) nor the perfect-field-fibres (M,F)(.p) 
0 0 
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is perfect. As the 
(M,F) at the points of Spec(A ) , we may assume that 

~ 0 

A 
0 

(M,F) is a ~ 
theorem is ~ on 

Spec(A ) , we may further assume that 
0 

W(A )-module of rank r with a cra-linear endomorphism F 
0 

Because Hodge slopes 

are integers, we may also assume that A is an integer. 
(F .. ) 

In terms of a ~ of M , 
F is now given by an r x r matrix l,J 

with entries in W(A
0

) • For any homomorphism ~:A0 ---+ k with k a perfect 

obtained by applying 
field, (M,F)(~) is given by the r x r matrix 

(W(~) (F .. ) ) 
l,J 

~ component-wise to the F i,j ' 
individually thought of as Witt vectors. Now 

(M,F) (~) has all Hodge slopes > A if and only if all the W(~)(F .. ) lie in 
l,J 

2 Witt-

lw(k) and only if the first A components of each of the r 
i.e., if 

' 
vectors W(~)(F; .) all vanish, i.e., if and only if ~ annihilates the ideal in 

l,J 
A

0 

generated by the first A Witt-vector components of each of the r
2 

matrix 

coefficients F. j e: W(A ) 
l' 0 

A guestion. Is there a natural structure of closed subscheme on these Zariski 

subsets of Spec(A ) defined by "slopes .::_A"? Given a cra-F-crystal over 
0 

JF [£]/(e:2 ) , does it make sense to ask if its Newton or Hodge slopes are "every-

p 

where" > A ? 

(2.4) Newton-Hodge filtration. 

In this section we will consider the case in which 

one of the following two kinds: 

A 
0 

is smooth over a perfect subring 

A 
0 

A 
00 

is an JF -algebra of 
p 

of A 
0 

A is a formal power series ring in finitely many variables 
0 

over a perfect subring A 
00 

of A 
0 

Z -algebra A00 p In both cases, there exists a p-adically complete and separated 
A

00

/pA
00 

~ A
0 

, such that 
~ , together with an isomorphism 

p 
A dfn A I n+lA th ""/pn+ 1"' • The al-is formally smoo over ~ ~ 

which is flat over 

for each n > 1 , n oop oo 

W(A )-algebra; it is unigue up to automorphisms which 
00 gebra A 

00 
is naturally a 
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are the identity on W(A ) 
00 

and "~>Thich reduce mod p to the identity. The ab-

solute Frobenius map a:A
0 

-->- A
0 

may be lifted, non-uniquely in general, to a 

ring homomorphism L: : A
00 

-->- A
00 

which is necessarily a-linear over lti(A ) 
00 

The algebra A
00 

provides an A
0 
-test object, namely (A

00
, (p), y ;s) , in "I>Thich 

s is the inverse of the given A /pA ~ A . 
00 00 0 

This A
0
-test object is "pseudo-

initial" in the sense that~ A
0
-test object receives a map from it, 1Jut this map 

need not be unique. Evaluation at this "pseudo-initial" object provides an equi-

valence of categories between the category of crystals on A 
0 

and the category of 

pairs (M, V ) consisting of a p-adically complete and separated A
00

-module M to-

gether with an integrable, nilpotent W(A )-connection. 
00 

If we fix a lifting i: : A
00 

-->- A
00 

of a , we similarly obtain an equiva-

lence of categories between the category of aa-F-crystals on A 
0 

and the category 

of triples consisting of a locally free (of some rank r ) A -module 
00 

M together with an integrable, nilpotent 

morphism Fi: : (M(~) ,V(l:a)) -->- (M, V) 

(l:)a 

W(A )-connection V and a horizontal 
00 

which induces an isomorphism after 

tensoring M and M over ~ with 
p 

Let us denote by the perfection of A 
0 

The method of successive 

iterations allows us to construct for each choice of L: , a unique homomorphism 

which reduces mod p to the inclusion A ~ Aperf 
0 0 ' 

and which sits in a commutative diagram 

A " 
i(i:) , W(Aperf) 

00 0 

ll: ~lw(a) 
A c i(i:) , W(Aperf) 

00 0 

This homomorphism i(l:) should be thought of as the universal "i:-Teichmuller 

point" of A 
00 

In fact, i(i:) provides a construction of as the 

p-adic completion of the "i:-perfection" lim A ---->- 00 
(in which the successive tran-

sition maps A ---+ A are all 
00 00 

L: ) Notice that 
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fJA
00 

= i(L) (A) n W(Aperf) 
p 0 

Given a aa-F-crystal on A 
0 

is the pair (M,FL)(i(L)) 

, thought of as (M,V,FL) , its inverse image on 

obtained from (M,FL) on A
00 

by the extension 

of scalars i(L) : A ----+ W(Aperf) . 
00 0 

Theorem 2.4.2 (Newton-Hodge filtration) 

~ (M,V,F) be a aa-F-crystal over an F -algebra A of the type dis-
p 0 

.::C.::U.::;S.::;S.::;e;;:;d_;a,_b:::;o~v::.:e::....:i=-'n;!....!2::.!.~4:.:•c.......!:S:.eu"'p~p~o~s.o:e_:::t!!h::::at::.. (A, b) € Z x ZL is a break point of the Newton 

polygon of (M,V,FL) at every point of Spec(A
0

) , and that (A,b) lies on the 

Hodge polygon of (M,V,FL) at every point of Spec(A0 ) 
Then there exists a 

unigue FL-stable horizontal A
00

-submodule M1 c M , ~ M1 locally free of 

~ a , and M
2 

dfn M/M
1 

locally free of rank r - A , such that 

at every point of Spec(A ) , the Hodge (resp. Newton) 
0 

slopes of (M
1

, V\M
1

, FL\M1 ) are the A smallest of 

the Hodge (resp. Newton) slopes of (M,V,FL) , 

at every point of Spec(A ) the Hodge (resp. Newton) 
0 

slopes of (M
2

, V\M
2

, FL\M2 ) are the r- A greatest 

Hodge (resp. Newton) slopes of (M,V,FL) 

Furthermore, when A
0 

is itself perfect, the exact sequence of aa-F-crystals 

admits a unique splitting. 

Spec(A ) , we may suppose that 
0 

M is a free A -module of 

!2:22!.· Localizing on 00 

rank r 
Consider first the case (A,b) = (l,b) . Then the least Hodge slope is 

b at every point. This means that each matrix coefficient F .. l,J 

i(L)(F. j) e W(Aperf) with its first b Witt-vector components nilpotent, and 
l, 0 
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Aperf . Therefore 
0 

b ( perf) p W A , and so 
0 

1 . . - bA 
~es ~n p oo So dividing F by 

i(E)(Fij) lies in 

b p , we may assume b = 0 . This means that 

the matrix coefficients Fij generate the unit ideal in A
00 

(because after ex

tending scalars to W(Aperf) , their first Witt-vector components generate the unit 
0 

ideal in A perf ; as these first components are just the Fij mod p 
' in A ' the 0 0 

Fij mod p generate the unit ideal in A and hence the Fij 0 
generate the unit 

ideal in A ) For every iterate 
00 

Fv of F 
' 

its matrix coefficients still 

generate the unit ideal. But for v ~ n(~) , all Hodge slopes of > n 

at each point of Spec(A
0

) , so that all 2 x 2 minors of Fv lie in pnA
00 

(by 

the same Witt-vector argument in W(Aperf)) So we can construct the required 
0 

line 1 c M as the "limit" of the images mod n 
p of v ~ n(~) , just 

as we did in the case of a perfect field. This construction via images of iterates 

of F makes obvious that 1 is F-stable and horizontal (since F itself is 

horizontal). The slope assertions about F on 1 and on M/1 are pointwise, so 

are already proven. 

We do the general case (A,b) by constructing the required line 1 in 

AA(M) . It remains only to see that this line is of the form AA(M
1

) for some 

locally free M1 c M of rank A with M/M
1 

locally free. [The F-stability and 

horizontality of M
1 

then are consequences of the F-stability and horizontality 

cf the line; the slope assertions about M
1 

and M/M
1 

are pointwise, so are 

already proven.] To see that 1 satisfies the PlUcker equations, it suffices 

to do so after an arbitrary injective extension of scalars. For this purpose we 

first embed A 
00 

in W(Aperf) . 
0 

Then, because 

W(Aperf) 
0 

in the product, indexed by all homomorphisms 

is reduced we can embed 

$ : Aperf ---+ k with k 
0 

a perfect field, of the W(k)'s. This reduces us to the case A
0 

=a perfect 

field, in which case we have already proven it. 

As for the splitting in the case of a perfect A
0 

, the proof is word-for

word the same as in the case of a perfect field . 
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Remarks 
of the type dis-

Let (M,'V,F) be a cra -F-;rystal over an JF -algebra A p 0 

cussed above in 2.4. Suppose that at every point of Spec(A ) , the Newton and 
0 

Hodge polygons coincide with each other, and that they are constant, i.e.,~ 

Let us denote by 
0 l h ,h , ... ,the Hodge numbers. Then the 

pendent of the point. 

associated graded pieces of the Newton-Hodge filtration are cra-F-crystals 

with a "unit-root" 
of rank hi , such that F. 

l 

(all Newton slopes = 0) cra-F-crystal. But a unit-root cra-F-crystal of rank hi 

is equivalent (cf [7]) to a continuous representation of the fundamental group of 

It would be interesting to understand the "meaning" 
in GL(hi ,W(F ) ) 

a 
p 

of these p-adic representations, especially when the 
cra-F-crystals in question 

arise as crystalline cohomology groups of families of varieties. 

(2.5) Splitting Theorems. 

In this section, we give a splitting theorem up to isogeny for slope filtra

tion of cra-F-crystals over perfect rings. 

Theorem 2.5.1 

Let A 
0 

be a perfect ring, and let 

be an exact sequence of cra-F-crystals over A 
0 

Suppose that for some rational 

the Newton slopes of 
at every point of Spec(A ) 

0 
are all 

at every point of Spec(A ) are all > A. 
0 ~A , while the Newton slopes of (M2 ,F2 ) 

Then in the category of cra-F-crystals up to isogeny, this exact seguence splits 

uniquely. 

are free W(A )-modules 
0 

~· 
Localizing on A

0 
, we may assume that M, M1 , M2 

of ranks r, r
1

, r
2 

respectively. Because the Newton slopes of (M,F) at any 

lie in the discrete set 
1 ;! Z , we may in fact choose rational 

point of Spec(A ) 
0 

numbers Al < A
2 

such that at all points of Spec(A0 ) , (M1 ,F1 ) has all Newton 
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:oguence splits 

e W(A )-modules 
0 

(M,F) at any 

t choose rational 

has all Newton 
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slopes ~ Al , while (M
2

,F
2

) has all Newton slopes ~ A2 . In terms of a basis of 

M adopted to the filtration, the matrix of F has the shape 

(: ~) 
A splitting of the exact se~uence is a morphism (M2 ,F2 ) ---+ (M,F) which is a 

cross-section of the projection. In terms of the given bases, the matrix of a 

splitting is an matrix of the form 

where X is 1 denotes the identity matrix, and where 

satisfies the matrix e~uation 

i.e., 

i.e., 

a 
(J 

AX + II: XID 

We must show that this matrix e~uation has a uni~ue solution matrix X with 

entries in W(A ) e ~ 
0 p 

Let us denote by Mat the space of all r 1 x r 2 

X 

matrices with entries in W(A ) e ~ , with the linear topology defined by the 
0 p 

entry-by-entry congruence modulo p~(A ) . Consider the a-a-linear endomorphism 
0 

V of Mat defined by 

Suppose we can prove that 

e~uation 

-a 
X t--->- V(X) dfn (,11.-lXID)cr 

v is topologically nilpotent. 

X - V(X) 
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obviously has the uni~ue solution 

-a 
X L Vn(-(/A-lrl:)cr ) ' 

n>O 

and we are done. 

We will deduce the topological nilpotence of V from the basic slope estimate, 

' -1 applied to fA and to ID • Because (M2 ,F 2 ) has all slopes _:::_ ;\ 2 , we have 

Because JM
1

,F
1

) has all Newton slopes ~ ;\l , its determinant has its single 

Newton=Hodge 

endomorphism 

defines a o-a-F-crystal over A
0 

, all of whose slopes are > N - ;\l . So by the 

basic slope estimate, we have 

and hence we have 

{ (n+l-r
1

) (N-;\1 )} 
_ 0 mod p 

{(n+l-r)(;\
2
-;\1 )-N(r-1)} 

0 mod p 

-1 In terms of the matrices lA , ID , these estimates may be rewritten 

{(n+l-r
2

);\2} 
0 mod p 

{(n+l-r)(;\
2
-;\1 )-N(r-1)} 

0 mod p 

which together give the estimate for the endomorphism V 

{(n+l-r)(;\
2

-;\
1

)-N(r-1)} 
Vn - 0 mod p 

As ;\
2 

> ;\l , this estimate establishes the re~uired topological nilpotence of V . 

1 
' l 
! 

(2.6) 

In 

curves. Thus 1 ' 

Theorem 2.6.1 
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(2.6) IsogenY theorems 

In this section, we will give an isogeny theorem for oa-F-crystals over 

~· 
Thus let A be an F -algebra which is either 

0 p 

Theorem 2.6.1 

(M,V,F) 

an integral domain, smooth of dimension 

< l over a perfect field k 

a formal power series ring in one vari

able k[[T]] over a perfect field k . 

oa-F-crystal over an F -algebra A p 0 
of the above (2.6) 

sort. Suppose that A is a positive real number, such that at every point of 

Spec(A
0

) , all Newton slopes of (M,V,F) ~ > A Then (M,V,F) is isogenous 

to a oa-F-crystal (M' ,V' ,F') which is divisible by A in the sense that 

for all n ~ l , (F1 )n _ 0 mod p[nA] 

(where [x] denotes the integral part of the real number x ). 

Proof. In the case when A
0 

is itself a perfect field, the basic slope estimate 

gives (r denoting the rank of M ) 

Fn+r-l - 0 mod p{nA} for all n > l 

which in turn implies that if we put v = { (r-l)A}, we have 

for all n > 0 

Therefore we can define a W(k)-module M' with 

M c M' c p-VM 

by 

M' L 
n>O 

image -v ) M--+p M . 
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The basic inequality [x+y] .::_ [x] + [y] allows one to check that for all n .::_ 0 , 

the operator Fn/p[nA] maps M' to itself. The fact that M' is "caught" be-

tween M and 
-\) 

p M guarentees that M' is a free W(k)-module of the correct 

rank. The inclusion of (M,F) into (M' ,F) is the reg_uired isogeny. 

In the general case, the basic slope estimate applied pointwise together with 

the "Witt-vector-component"-argument already used shows that over A00 we still 

have 

for all n > 0 

So it is natural to define an A
00

-module M' with 

M c M' c p-v M 

by 

M' I 
n>O 

Clearly M' is horizontal(it's defined in terms of the horizontal maps FL:n), and 

is stable by all the operators F n/p[nA] now viewed as 
L: ' 

t:an_linear endomorphisms 

of M' . The only problem is that I cannot prove (or disprove!) that M' is a 

locally free A
00

-module. (Even the fact that M' is finitely generated depends on 

the fact that, in the case envisioned, A 
0 

is noetherian. Can one give an 

effective bound on the number of terms needed in the apparently infinite sum of 

images which defines M' ?) 

To circumvent this difficulty, we will define a larger A00-module M" 

M c M' c M" c p -vM c M~ ®Ql 
p p 

which will have all the reg_uired properties. Let us denote by K 
0 

the fraction 

field of A
0 

, and by C(K
0

) the completion of the local ring of A00 at the 

prime ideal (The notation C(K ) 
0 

is to remind us that this is a Cohen 

ring for the field K
0 

, i.e., a mixed characteristic, complete, discrete, abso-

lutely unramified valuation ring with residue field K • ) 
0 

By its construction we 

152 

T 
see that an 

C(K ) . 
0 

between M 

We define 

I 

This descripl: 

the operator!. 

To eee li 

ji 
i, 

(this becausl; 

Because A 
0 

remains 

Let us 

From it, we 

that M" i 

A at all 
00 



r-all n.::_O, 

"caught" be-

the correct 

y. 

together with 

,
00 

we still 

ar endomorphisms 

,at M' is a 

·ated depends on 

give an 

:inite sum of 

iule M" 

the fraction 

A
00 

at the 

s is a Cohen 

lis crete, abso-

1 construction we 

I 
I 
I 
I 
I 
I 
I 
I 
• 
I 
' 
I 
I 
I 
I 
I 
I 

SLOPE FILTRATION OF F CRYSTALS 

see that any derivation of the A
00 

into itself, as well as any endomorphism 

E=Aoo-----+ A: lifting the absolute Frobenius, extends by continuity to this 

C(K
0

) • Because C(K
0

) is flat over A
00 

, we can tensor the chain of inclusions 

between M and M' to obtain 

M c M' c 

n n 

-\) 
p M 

n 

c M0~ Cll 
p p 

n 

We define M" as the intersection (inside (M0C(K ))0~ (\\ 
0 p p 

M" dfn (M' 0 C(K )) n (M0,., Cll ) 
Aoo 0 ""p p 

This description of M" shows that it is both horizontal, and stable under all 

the operators (FE)n/P[nA] 

To see that M" c p -vM , simply notice that 

-\) 
p M 

(this because M is locally free, and C(K ) n (A @CQ, ) 
0 00 p 

MC M" c p-\IM , 

A ) . Thus we have 
00 

Because A
0 

is noetherian, this shows that M" is finitely generated. So it 

remains only to show that M" is flat over A 
00 

Let us admit for the moment the following assertion about M" 

for any f E A
00 

with f i pA
00 

M" 

has no f-torsion, and M"/fM" has no 

p-torsion. 

From it, we easily deduce the flatness of M" , as follows. It suffices to show 

that M" is flat after we extend scalars from A
00 

to the complete local rings of 

A
00 

at all closed points of A
0 

But such a complete local ring A
00 

is of the 
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form W(k')[[T]] , where k' is the residue field at the closed point, and T may 

be chosen as any element in A whose reduction mod 
00 

p in A 
0 

is a uniformizing 

we deduce from the 
parameter at the closed point. Because A is flat over A 

00 00 

admitted assertion that 

M"@W(k')[[T]] has noT-torsion and 

M"0W(k' )[ [TJ]/(T) has no p-torsion. 

Since M"0W(k')[[T]] is finitely generated, its flatness over W(k')[[T]] follows 

from the local criterion of flatness (SGA l Expose IV, Thm 5.6). 

To prove the assertion, notice first that A
00 

is a domain (being Zi. -flat, 
p 

p-adically separated, and having A00/pA00 a domain) , and f # 0 
Since 

M" c p-vM , and 
-\) 

p M is locally free and hence flat over 

f-torsion in M" Because f i pA
00 

, it becomes a unit in 

definition of M" we have 

has no f-torsion 

Therefore the inclusion M" c p-\IM gives an inclusion 

there is no 

C(K ) , and so by the 
0 

So to have M"/fM" without p-torsion, it suffices if M/fM has no p-torsion. As 

M is flat over A
00 

, being locally free, it suffices if A00/fA00 has no p-torsion. 

This follows from the fact that f f_ pA
00 

, while A 
00 

is flat over 

p-adically separated, and A
00

/pA00 is a domain. 

~· 
If we allow A to be a domain which is smooth of arbitrary dimension 

0 

n over a perfect field k , exactly the same argument shows that M" will be flat 

over the complete local rings A
00 

of A
00 

at all points of codimension one in 

Spec(A ) (there A will be of the form C(k' )[[T]] with k' the no-longer-
o 00 

perfect residue field and C(k') a Cohen ring of k' ) . In other words, the 
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isogeny theorem is true outside a closed set of codimension ~ 2 on ~ smooth-

over-a-perfect field A 
0 

It would be interesting to know if the isogeny theorem 

is in fact true, without exceptional sets, in this more general case. 

Corollary 2.6.2 (Newton filtration) 

Let A 
0 

be an F -algebra which is either a smooth domain of dimension one -- p -

over a perfect field k , or is k[[T]] Suppose we are given a oa-F-crystal 

(M,V,F) over A 
0 

of rank r which at every point of Spec(A
0

) has the same 

first Newton slope A , with the same multiplicity A . Then (M,V,F) is 

isogenous to a (M 1 ,V' ,F') which is divisible by A p , and which 

sits in a short exact sequence of oa-F-crystals over A 
0 

in which 

0->- (M~,V' ,F') ->- (M' ,V' ,F') ->- (M' V' F') ->- 0 
2' ' 

( I I I) M
1

,V ,F has rank A ' is divisible by 

pA and at each point of Spec(A ) all its 
0 

Newton slopes are A 

(M 1 V' F') has rank r- A, is divisible 
2' / 
~ p and at each point of Spec(A ) all 

0 

its Newton slopes are > A . 

Proof. By the isogeny theorem, we may suppose (M,V,F) itself to be divisible by 

A 
p For any integer n > 1 such that nA 8 ZL, the nth iterate (M,V,Fn) is 

divisible by nA p , i.e., all Hodge slopes of are > nA , at each point 

of Spec(A ) 
0 

Since the first Newton slope of (M,V,Fn) is nA , with multi-

plicity A , at each point of Spec(A ) , we can apply the Newton-Hodge theorem 
0 

(cf 2.4) to (M,V,Fn) and the point (A,AnA) . This produces a short exact 

sequence of oan_F-crystals 

which for n = 1 (i.e., the case A E ZL) completes the proof. In general, we 
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need only observe that in terms of a lifting R of a:A
0 

---+ A
0 

, the submodule . 

M
1 

c M is simply the intersection 

n 
N>l 

image 
( 

F nN 

of p~NA 

and M
1 

is therefore F-stable. Then we can take (M1 ,V,F) c (M,V,F) as the 

solution to our problem. 

It remains to see why the short exact seQuence we have constructed splits 

uniQuely over the perfection of A 
0 

We have proven that, over 

it splits uniQuely in the "up-to-isogeny" category i.e., by an F-compatible map 

M
2 

---+ M with coefficients in We must show this map has coef-

ficients in W(Aperf) . But this same map also provides an "up-to-isogeny" 
0 

splitting of the exact seQuence of nth iterates 

But for any n with nA £ ~ , this is just the Newton-Hodge filtration of (M,Fn) 

attached to the point 

has coefficients in 

(A,AnA) , which over Aperf has a uniQue splitting 
0 

The underlying map M
2 

---+ M of this splitting, which 

\f(Aperf) , must, by uniqueness, coincide with the underlying 
0 

map of our "up-to-isogeny" splitting. 

Corollary 2.6.3 

Hypotheses as in the previous Corollary 2.6.2, suppose in addition that the 

entire Newton polygon of (M,V,F) is constant, i.e., independent of the point in 

their multiplicities. Then 

which is divisible by 

be the distinct Newton slopes, and let A1 , ... ,As be 

(M,V,F) is isogenous to a aa-F-crystal (M' ,V' ,F') 

and which admits a filtration 

0 c (M~,V' ,F') c (M2,V' ,F') c ... c (M:,v• ,F') (M
1 

,V' ,F') 

in which 

156 

By the induction 

whose source 

back" by this 

an extension 

exact seQuence, 

provides 

The 

perfection of 



1.e submodule . 

as the 

ed splits 

A perf 
0 ' 

1patible map 

, has coef-

:ogeny" 

Ltting 

Ging, which 

he underlying 

ion that the 

the point in 

A
1

, ... ,As be 

,1 (M 1 ,'1 1 ,F 1
) 

c I ) 
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(M~,V 1 ,F 1
) has rank A

1 
+ ... + Ai , and has 

Newton slopes (A
1 

repeated A
1 

times, ... , 

Ai repeated Ai times) at each point of Spec(A
0

). 

the quotient (M 1 /M: , V 1 ,F 1 
) has rank 

l Ai+l 
Ai+l + ... +As , and it is divisible by p 

the associated graded 

Ai , is divisible by 

(M:/M: 
1

,'1 1 ,F 1
) has rank 

A.l l-
P 1 

, and has all Newton slopes 

This filtration splits unigue~y when we pass to the perfection of A 
0 

A. 
l 

Proof. We proceed by induction on the number s of distinct Newton slopes. For 

s = 1 , the previous Corollary applies. In general, -,re construct 

(M 1 '1 1 F 1 ) c (M 1 '1 1 F 1 ) as in the previous Corollary. Then we have 
1' ' ' ' 

0----+ (M~,V 1 ,F 1 )----+ (M 1 ,V 1 ,F 1 )----+ (M 1 /M~,V 1 ,F 1 )----+ 0. 

By the induction hypothesis applied to (M 1 /M~,V 1 ,F 1
) , we get an isogeny 

I II II II 1 
((M 1 /M

1
) ,V ,F)·--->- (M 1 /M

1
,V 1 ,F 1

) 

whose source satisfies all the conclusions of the Corollary. Taking the "pull-

back" by this map of the above extension of (M 1 /M~,V 1 ,F 1 ) by (M~,V 1 ,F 1 ) , we get 

an extension 

0----+ (M~,V 1 ,F 1 )----+?----+ ((M 1 /M~)",v",F")-----+ 0. 

The middle term, ? , together with the filtration of it defined first by this 

exact se~uence, then by the inductively given filtration on 
l 11 11 II 

( (M 1 /M
1

) , V ,F ) , 

provides a solution to the problem. 

The existence of a uni~ue splitting of the filtration when we pass to the 

perfection of A 
0 

follows, by induction, from the previous Corollary. 
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Corollary 2.6.4 

Hypotheses as in the previous Corollary, any (M,V,F) with constant Newton 

polygon is isogenous to an (M
1 ,V' ,F') with the property that for any integer 

n > 1 which is a common denominator for the Newton slopes, the Hodge and Newton 

polygons of the cran_F-crystal at each point of Spec(A ) 
0 

coincide. 

Proof. Indeed, the (M',V',F') given by the previous Corollary has the required 

property. 

(2.7) Constancy theorems 

Let k be an algebraically closed field of characteristic p , and let A 
0 

be a k-algebra. We say that a cra-F-crystal on A 
0 

is constant if it is (iso-

morphic to) the inverse image of a cra-F-crystal on k , by the given algebra map 

k ---r A 
0 

Theorem 2.7.1 

Let (M,V,F) be a cra-F-crystal of rank r on k[[T]] , with k algebra

ically closed. Suppose that at the two points of Spec(k[[T]]) , the Newton poly-

gons coincide, and that this common Newton polygon has only a single slope, say 

A , repeated r times. Then (M,V,F) is isogenous to a constant cra-F-crystal. 

Proof. By the isogeny theorem, we may assume that (M,V,F) is divisible by 
A 

p 

in the sense of 2.5. We will prove it constant. Let N be the denominator of 

A . Then is divisible by 
NA p , and all of its Newton slopes, at each point 

of Spec(k[(T]]) are NA . Therefore (M,V,FN/pNA) is a "unit-root" 

craN_F-crystal,so equivalent to a representation of n1 (Spec(k[[T]]) in 

GL(r,WOF aN)) But 
p 

algebraically closed. 

n
1

(Spec(k[[T]]) ~ n
1

(Spec(k)) is trivial, because 

Therefore (M,V,FN/pNA) is trivial as a unit-root 

k is 

craN_F-crystal. In particular, (M,V) is trivial as a crystal, i.e., the W(k)

module MV of all horizontal sections of (M,V) over A
00 

= W(k)[[T]J is free of 

rank r , and Because F is horizontal, it induces a 
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oa-linear endomorphism of MV , such that FN/pNA induces a oaN_linear auto-

morphism of MV . Then (M,V,F) on k[[T]] is the inverse image of 

k. 

Remarks. 1) 

WOF aN)-module 
p 

The (trivial) representation of ~1 (Spec(k[[T]]) on a free 

of rank r is provided by the set 
v 

(M )fix of fixed points of 

on 

FN/pNA acting In fact, 
v 

((M )fix'F) provides a descent aNl. 1 Mv a - lnear y on . 

of (M,V,F) to lF 
a 

p 

2) If we omit the words "isogenous to" from the statement of the 

theorem, it can become false. -The simplest geometric counterexample is due to 

Oort ( cf [10]). He begins with a supersingular elliptic curve E 
0 

over k , and 

E (p"') x E (p"') 
0 0 

of its p-divisible group with itself. In considers the product 

this product, the kernel of F is a x a 
p p 

Over the projective line F
1 over 

a 's 
p 

sitting in k , we get a family of a x a 
p p 

•t• "TDl over a poln ln -"' with 

homogeneous coordinates ()J,V) sits the image of the closed immersion 

[ 

a '------+ a x a 
p p p 

x--r()Jx,vx) 

If we divide the constant group by this variable a 
p 

we get a non-constant p-divisible group over IP
1 Restricting to the complete 

local ring at any closed point of IP1 , we get a non-constant p-divisible group 

over k[[T]] , whose Dieudonne module provides the required counterexample. 

Concretely, this means we begin with the constant o-F-crystal (M,V,F) on 

k[ [T]] given by 

M: 

V: 

F: 

free W(k)[[T]]-module with basis e1 ,e2 ,e3,e4 

d 
the trivial connection with V(dT)(ei) = 0 for i = 1,2,3,4 

in terms of the endomorphism L of W(k)[[T]] which is 

a-linear and maps T---+ Tp , the L-linear map FL: M--+ M 

is given by 
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The W(k)[[T]]-submodule M' c M spanned by 

el + TPe
3 

e pe e 
' 2 ' 3 ' 4 

is stable under 17 and F 1: , and we have pM c M' c M But (M' )
17 

the free W(k)-module spanned by and so that 

(M 1 )
17@W(k)[[TJ] ?j M' Therefore (M' ,V,F) is not constant. Alternately, one 

could observe that the Hodge polygon of (M' ,v,F
2

) is not constant (its least 

Hodge slope is 1 at the closed point 0 at the generic point) , and hence 

(M' ,V,F) cannot be constant. 

Another very recent counterexample is due to Lubin. He constructs a 

cr-F-crystal (M,V,F) over k[[T]] of rank 5 , whose Newton slopes are all 2/5 , 

and whose Hodge numbers are h
0 = 3 at both points of Spec(k[[T]]). 

In Lubin's example, the Hodge polygon of (M,V,F5 ) is not constant; at the closed 

point, the least Hodge slope of F5 is 2 , but at the generic point it is 1 . 

Therefore (M,V,F5) , and a fortiori (M,V,F) , cannot be constant. 

Here is the actual example. The module M is free on over 

W(k)[[T]]. For the endomorphism 1: of W(k)[[T]] which is a-linear and sends 

F is the linear map 

0 

0 

0 

0 

p 

M(E) ---+ M with matrix 

1 0 

0 1 

0 0 

0 

0 

0 

0 

0 

0 

1 

0 

T 

0 

0 

0 

p 

0 

The connection 17 on M is the unique one for which F is horizontal. 

In the positive direction, we do have the following two constancy theorems 
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Theorem 2.7.2 

Let (M,9,F) be a oa-F-crystal of rank r > 1 on k[[T]], with k alge-

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes 

are all (r-1)/r and the Hodge numbers hi vanish for i > 1 . Then (M,9,F) 

is constant. 

Proof. The Newton and Hodge polygons must be 

-d
(r,r-1) 

Newton ~ ~ 
Hodge 

(l,O) 

at both points of Spec(k[[T]]) (because they start and end together, and the 

Hodge slopes are 0 and 1 ). Therefore h0 = 1 . Applying the sharp slope 

estimate (with A r-l/r ) , we get 

In particular, is divisible by 

{r-l·n} 
- 0 mod p r 

r-1 p , and hence is a unit-

root F-crystal. Just as in the proof of 2.7.1, this implies that (M,9,F) is 

the inverse image of on k • 

Theorem 2.7.3 

Let (M,9,F) be a oa-F-crystal of rank r > 1 on k[[T]], with k alge

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes 

are all 1/r . Then (M,V,F) is constant. 

Proof. This time the basic slope estimate shows that (M,9,Fr/p) is a unit-root 

F-crystal, and we conclude as in 2.7.2. 

The theorem 2.7.1 of constancy up to isogeny becomes false as soon as we allow 

the common Newton polygon to have more than one distinct slope, for there can be 

highly non-trivial extensions of constant F-crystals over k[[T]] The simplest 
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and most important example of such an extension is given by first taking an or-

dinary elliptic curve E
0 
~over k , then constructing its equicharacteristic 

universal formal deformation E over k[[T]] , and finally taking the p-divisible 

group E(p
00

) of E . This p-divisible group over k[[T]] sits an exact sequence 

The Dieudonne crystal (M,V,F) of E(p
00

) , or equivalently the first crystalline 

cohomology of E/k[[T]] , is a a-F-crystal of rank two, which is an extension of 

two constant a-F-crystals of rank one. Even the underlying crystal (M,V) is 

highly non-trivial; indeed, MV is free of rank one over W(k) . (For a suitable 

choice of parameter T of W(k)[[T]] , the Serre-Tate or the Dwork theory tells us 

that (M,V) , viewed as a module with connection on W(k)[[T]] , admits a basis 

e
0

,e
1 

in terms of which the connection is given by 

[ 
Because the series log(l+T) has unbounded coefficients, the module MV of 

horizontal sections consists only of the W(k) multiples of e
0 

.) 

Theorem 2.7.4 

Let (M,V,F) be a aa-F-crystal on k[[T]] , with k algebraically closed. 

Suppose that at the two points of Spec(k[[T]]), the Newton polygons coincide. 

Then (M,V,F) is isogenous to a aa-F-crystal (M' ,V' ,F') whose inverse image on 

(k[[T]])perf is constant. 

Proof. This follows by combining Corollary 2.6.2 and Theorem 2.7.1. 

Remarks. 1) This gives an alternate proof of Berthelot's Theorem 4.7.1 in [1]. 

( [4]) a k( (T) )perf 2) B. Gross cf attaches to any a -F-crystal over a 

representation of Gal(k((T))alg.cl./k((T))perf.) which is trivial if and only if 

the aa-F-crys 

a a -F-crystal ) 

attached to it! 
i 
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the oa-F-crystal is isogenous to a constant one. Therefore if we begin with a 

oa-F-crystal over k[[T]] with constant Newton polygon, Gross's representation, 

attached to its inverse image on k((T))perf. , is trivial. Is the converse true? 

1. 

2. 

3. 
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