1. AMS 78 (1972),

-imates. Ann. of

rface. Ann. Sc.

sbraic surfaces.

yrevitch theorem.

teudonné modules.
3-135.

5 Notes on crys-—-

dgus, Mathematical

e Géométrie

orphisms of
. 40 (1976),
1976) .

riques en carac-

Topologia

orie des inter-
aire de géométrie
Notes in Math.

e Paris-Sud

‘ay
, bat. 425
(France)

— e —

> —

Société Mathématique de France
Astérisque 63 (1979) p. 113-164

SLOPE FILTRATION OF F~CRYSTALS

by
Nicholas M. Katz

(Princeton)

This paper is devoted to the systematic study of the variation of the Hodge
and Newton polygons of an F-crystal when that F-crystal moves in a family. As

such, it constitutes a natural sequel to my report [6] on Dwork's pioneering

investigations of such variation. However, I have tried to make this paper self-

contained and accessible to non-specialists.

Some of the results are new, and interesting, even in the "eclassical" case of

F-crystals over perfect fields. I have in mind particularly the "basic" and
"sharp" slope estimates (cf 1.4, 1.5) and the "Newton-Hodge" decomposition
(cf 1.6). These "pointwise" results are in fact the key to all the "global"
results given in 2.3 - 2.7 .

Special thanks are due to Arthur Ogus for suggesting the possible existence

of the Newton-Hodge decomposition.
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SLOPE FILTRATION OF F-CRYSTALS

I. F-Crystals over perfect fields

(1.1) Basic definitions

For any perfect field Xk of characteristic p > 0 , we denote by W(k) its

ring of Witt vectors, and by
a:W(k) — W(k)

the absolute Frobenius automorphism. For any integer a # O , we have the notion
of a ca—F—crystal over k , namely a pair (M,F) consisting of a free finitely
generated W(k)-module M together with a o -linear endomorphism F:M ——+ M

z Qp . A morphism of ca—F—crystals

£:(M,F) —> (M,F') is a w(k)—lineag map f:M — M' such that fF = F'f .

which induces an automorphism of M8

The category of ca—F—crystalsup to isogeny 1s obtained from the category of
ca—F—crystals by keeping the same objects, but tensoring the Hom groups, which are
%i-modules, over %b with QP . An isogeny between oa—F—crystals is a morphism
of F-crystals which becomes an isomorphism in this new category.

The exterior powers of a o®-F-crystal (M,F) are the o —F-crystals

(AlM,Al(F)) with underlying module A;( (M) , and with 6®-linear endomorphism

k)
A (F) defined by

Ai(F)(mlA.../\mi) = Flm ). ..nFln)

For i=0, but (M,F) # 0 , we define (A°M,0%(F)) to be (W(k),d®) .
The iterates of a o°-F-crystal (M,F) are the o "-F-crystals

MFY , n=1,2,... .

(1.2) Hodge polygons

The Hodge numbers ho, hl, he, .. of a ca—F—crystal (M,F) are the

integers defined as follows (cf [9]). The image F(M) is a W(k)-submodule of
M of maximal rank, say r , so by the theory of elementary divisors, there

exist W(k)-bases {v .y vr} and {wl,..., wr} of M such that

100
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Thege integers are called the Hodge slopes of (M,F) .

N. KATZ

2.

i
F(vi) =D W, »

with integers

0<a, <8,% 0 28, -
-1 =2 - r

The Hodge numbers h~ of

(M,F) are defined by

i = # of times 1 occurs among {al...ar} .

Thus we have

) o= (r = rank(M))

i>0
i hi
M/F(M) =% @ (W(k)/p W(K))
i>0

Notice that we have the elementary interpretation:
1.2.1 =0 for i<A<—

F = 0 mod pA i.e. F(M)C pAM
1.2.2 =0 for i>B <=

MO FM) 2 pBM >

B

g0 2-linear ViM —> M such thet ¥V =VF=7p -

According to a marvelous theorem of Mazur [9], these "apstract' Hodge numbers

sometimes coincide with more traditional Hodge numbers. Thus let X be a projec—

Ity ot
omology groups H (X’QX/W(k)) are

tive smooth W(k)-scheme, all of whose Hodge coh

(k) modules, whose ranks we denote

assumed to be free, finitely generated W

scheme obtained from X by reduc-—

hl’J(X) . Let X be the projective smooth k-

J >0, the crystalline cohomology groups

tion modulo P - Then for each integer
ib) (x ) are free finitely generated W(k)-modules, given with a o-linear F

cris o
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which provides a structure of o-F-crystal. Mazur's theorem asserts that the ab-

stract Hodge numbers of these o-F-crystals are given by the formula

i,..3 . _ isd
ho(H L (X )5F) = b7 (X)
Given a oa-F—crystal (M,F) , whose Hodge slopes are O <a <...<a ,

1 - - r

the Hodge slopes of the ith exterior power (AlM,Al(F)) , 0<i<r ,are the

bid
i integers

a, = g +a, +...+a, 1 f_jl <..e< J, <r,

(as follows immediately from computing the matrix of F in the bases

{vJ Acooav, }oand {w, nA..oonw, 1 oof At
1 Ji J1 J1

The Hodge polygon of (M,F) 1is the graph of the Hodge function on [0,r]

defined on integers 0 < i <r by

least Hodge slope of (AtM, AT (T))

HodgeF(i) =
0 if i =20
a. +...+ a, if 1 <i<r
1 i - =

and then extended linearly between successive integers. If we define

ord(F) = greatest integer A with F = 0 mod pA

least integer A with hA(M,F) #0

then we have

Hodge_(i) = ord (Ai(F)) .

F

The Hodge polygon thus looks like

117



N. KATZ

2.1

(h0+hl+h ,h +2h2)

length hO length hl length h

The points (ho+...hi, hl+2h2+...+ihi) at which the Hodge polygon changes slope
are called its break-points.

The Hodge polygon is not at all an isogeny invariant, as simple examples show.
The only general result T know about its isogeny-behavior is the following trivial

"specialization" property.

Lemmsa 1.2.3.

a
Suppose We have an exact seguence of o —F-crystals

0 — (M

l,F‘l) — (M,F) — (M2,F2) — 0 .

Then the Hodge polygon of the direct sum (Ml&)M2 s Flng) 1ies above the Hodge

polygon of (M,F) .

Proof. Equivalently, we must show that for 1 <i <r = rank(M), we have

ord (AT(F)) < ord (Al(Fler)) .

Now we have

i . a b
A (MlGMg) = 8 A (Ml)eA (MZ)
a+b=1

so that

ord (Ai(FlﬁFg)) = miE. (ord (Aa(Fl)QAb(FZ)) .
a+b=1
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SLOPE FILTRATION OF F-CRYSTALS

. b . .
But the direct sum ® Aa(Ml)®A (ME) is exactly the associated graded of the
h atb=1i

Koszul filtration (by "how many ml's") of A'M . Thus any congruence
AY(F) = 0 mod PA implies the same congruence for each of the Aa(Fl)eAb(Fz) ,

a +b=1, which is to say that we have

ord (A*(F))8A°(F,)) > ord (nt(m) if a+b=i.

In fact, Magur's theorem strongly suggests the desirability of studying
F-crystals only up to "Hodge-isogeny'", i.e. only regarding as equivalent two
F-crystals which have the same Hodge polygon and which are isogenous. We will not
pursue that point of view here, except in so far as the "Wewton-Hodge" decomposi-
tion, which we will discuss further on, may be regarded as a step in that direc-

tion.

(1.3) Newton polygons

The Newton slopes of a ¢®~F-crystal (M,F) are the sequence of r = rank (M)

rational numbers

0 <A, Seen A

1 —r
defined in any of the following equivalent ways.

Pick an algebraically closed overfield k' of %k , and consider the
ca—F—crystal over k'

(M8 Wk') , Féa)
Wik)

obtained from (M,F) by "extension of scalars". For each non-negative rational
number A , written in lowest terms N/M , we denote by E()A) the ca—F—crystal

over k' defined by

B = (7 [21/(1""))0y W(k') , (widt. by T)8e").
b
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According to a fundamental theorem of Dieudonné {cf [8]), the category of
a N
o -F-crystals up to isogeny over an algebraically closed field k' is semisimple,

and the E(A)'s give a set of representatives of the simple objects in this

category. Thus we can write
M ' ay o~
(MeW(x') , F8a ) Toos ®F (w, /u; )

with a unique finite sequence of rational numbers I\I]_/M:L §_N2/M2 Seee, Mg =T

The Newton slopes of (M,F) are defined to be the sequence of r rational numbers

dfn . R
A) = (Nl/Ml repeated M/ times , N2/M2 repeated M, times,...).

(Al,.. r

Tor each rational number X , we define

mult{)) = # of times X occurs among (Al,...,kr)

From the above explicit description of the Newton slopes, it is obvious that
z mult(A) = r (r = rank(M))
Ael

1.3.1 . . .
for each A , the product A mult()r) lies in Z ; in

particular the Newton slopes admit r! as a common denominator .

For the next characterization of the Newton slopes, we choose an auxiliary

integer N > 1 which is divisible by rt , r = rank(M) , and consider the dis—
crete valuation ring

R = W) K]/ () = W) [

We extend ¢ to an automorphism of R Dy requiring that o(x) =X . For any

rotional number A with N) e Z , we may speak of
pA = the image of XNA in R .

Let K denote the fraction field of R . Again by Dieudonné , we know that

M8 K admits a K-basis el,...,er which transforms under the o®~linear
Wik)
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SLOPE FILTRATION OF F-CRYSTALS

endomorphism F8c® by the formula

N N
(F@oa)(ei) =p lei .

An equivalent, and for us more useful, characterization of the Newton slopes is by

the existence of an R-basis ul,...,u of M ® R with respect to which the
w(k) A
"matrix" of F@c® is upper—triangular, with p = along the diagonal:
Al entries
iy in R
. A
T
1Y
i.e.
Xi
F(ui) =P uy mod z. Ru, .
J<i

Either of these last two descriptions makes it obvious that the Newton slopes

. . r
of the ith exterior power (A™M, AT (F)) of (M,F) are the (i) numbers

and that the Newton slopes of the o™ iterate (M,F*) of (M,F) are

(nA ,...,nAr) .

1

The last description of the Newton slopes makes clear the elementary

interpretations
\ 1.3.2 all Newtons slopes Ai of (M,F) are = 0 if and only if
! F is a o°-linear automorphism of M .

1.3.3 all Newton slopes Ai of (M,F) are > 0 if and only if

F is topologically nilpotent on M , i.e. iff and only

if T {M) < pM where r = rank(M) .
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The Newton polygon of (M,F) 1s the graph of the Newton function on [o,r],

defined on integers 0 < i <r by

Newtony (1) = least Newton slope of  (ATM,AT(F))

0 if 1i=0

VST W if 1 <ic<r
1 i - —

and then extended linearly petween successive integers. Tn terms of the distinct

Newton slopes Uy of (M,F) together with their multiplicities mult(ui) ,

arranged in strictly increasing order Uy < Uy < ..., the Newton polygon looks

like

length=mult(ul) length=mult(u2) length=mult(u3).

The points (mult (u Yoo tmultu, ) > o mualt (us ) +. ot mult(u.)) at which the
1 i 1 1 i i

Newton polygon changes slope are called its break-points. From the earlier noted
fact that the products u; mult(ui) are all integers, it follows that the break-
points of the Newton polygon are alweys lattice-points in E? , i.e. they have

integer coordinates.
By its very construction, the Newton-polygon is an isogeny invariant (indeed

over an algebraically closed field it is the isogeny invariant). 1In contrast to

the case of Hodge polygons, We have
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Lemma 1.3.4%.

a
Suppose. we have an exact sequence of o -F-crystals

0 — (Ml,Fl) — (M,F) — (M2,F2) — 0 .

Then the Newton polygon of the direct sum (M 6M_,F.®F,.) coincides with the

172”12

Newton polygon of (M,F) .

Proof. Extending scalars, we may suppose k algebraically closed. By Dieudonné's

semisimplicity theorem, our exact sequence gplits in the "up-to-isogeny" category.

QED
p 1
Example. Over ¥_ , take M=Z®Z , T = .
p b P 0 2
p
The Newton and Hodge polygons are
Newton Hodge

Remarks. 1In our characterizations of the Newton slopes of a Ga—F—crystal, we
meke use of the integer a , (not just of the automorphism Ga), in order to ex-
tend oa to an algebraically closed overfield of k . However, in the next sec-
tion we will give an "internal" characterization (cf 1.h.4) (i.e., one that in-
volves no extension of scalars) of the Newton polygon (in terms of Hodge polygons
of iterates). Consequently, the Newton polygon of a given ca—F—crystal over k
depends only on the automorphism @ of k , and not on the auxiliary choice of

a . (Of course o as automorphism of k determines a unless k 1is finite.)

By Manin [8], we know that if oa is the identity on k , i.e., if

kC F e ® then the Newton slopes of a oa—F—crystal (M,F) on k are precisely the
p—adig ordinals of the eigenvalues of "F viewed as linear endomorphism of M".

In terms of a matrix (Fij)

o®-F-crystal (M,F) coincides with the Newton polygon of the "yeversed" character-

for T , this means that the Newton polygon of the
istic polynomial det(l - T(Fij)) of the matrix (Fij) .
However, if Ga # id. on k , then the Newton polygon of & oa—F—crystal

(M,F) need not coincide with the Newton polygon of det {1l - T(Fij)) , Wwhere

123
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N. KATZ
(Fij) is the matrix expressing the action of F on some basis of M . Here is
an example, due to B. Gross. Over TF 5 with p = 3 mod 4, consider the
iy
g-F-crystal of rank two with matrix
i-p (p+1)i

(pt1}i  p-1

The eigenvalues of this matrix both have ordinal 1/2 (since trace = 0 , det = D).

1 1
But this matrix is o-linearly equivalent, via (i l) , to the matrix

and hence our o-F-crystal has Newton slopes {0,1} , not {1/2,1/2} .

(1.4) Newton-Hodge relations; the basic slope estimate

In this section we will discuss various relations between Hodge and Wewton

polygons.

Theorem 1.4.1 (Mazur)

For any o%-F-crystal (M,F) , the Newton polygon is above the Hodge polygon.

Both polygons have the same initial point (namely (0,0)) end the same terminal

point (namely (r, ord(det(F))).

Proof. For any ca-F—crystal of rank one, the Hodge slope and the Newton slope
R . R 0, 20 a Ty, AT
coincide. Applying this remark to (A M,A (7)) = (W(k),0) and to (A M,A(F)) ,

we see that the two polygons begin and end together. To show that
NewtonF(i) 3_HodgeF(i) for 1<i<r,
it suffices to show that for each of the exterior powers of (M,F) , we have

least Newton slope > least Hodge slope ,

i.e., we must prove

124
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NewtonF(l) 3_HodgeF(1)

universally. But in terms of the matrix Aij of F@oa on MBR with respect to

any R-basis ul,...,ur of MBR , we have

Hodge_ (1) = ord(F) = min (Ordp(Aij))

F( PN
1,J

As we may choose the R-base so that this matrix is

Al entries
P . in R
: . A ) Newton slopes Al 5"'§-Ar
r
P
we get
Al
HodgeF(l) = min (ordp(Aij)) < ord(p 7) = Al = NewtonF(l) .

1,J
WED

Remarks. If we compare largest rather than smallest slopes, we get
greatest Newton slope < greatest Hodge slope ,

simply because the two polygons are both convex, and have the same terminal point,

Newton ——s
*\\\\\"'Hodge

Thus denoting by A and B the least and greatest Hodge slopes and by Al and

i.e., they end like

Ar the least and greatest Newton slopes, we have

1.k.2 A<A <X <B.

1 r

As a by-product of this method of proof, we get the

(1.4.3) Basic slope estimate

Let (M,F) be a o®-F-crystal of rank r , and let A > O be a rational
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{x} the "next higher integer", i.e.,

number. For any real number X , denote by

{x} = -[-x]. Then (M,F) has all Newton slopes > A Aif and only if for all in-

tegers n > 1 we have

ord (Fn+r—l) > {ni}

ie., FT ) c ooy

Proof. We begin with the "if" part. Let Ay be the smallest Newton slope of

(M,F) . Then the smallest Newton slope of (M,Fn+r—l) is (n+r-1)A, , while by
1

hypothesis its smallest Hodge slope is > {nA} . By the previous theorem, applied

n+r-1
)

to (M,F , we have

(ntr=1)2 > {nA} > nA for all n > 1,

whence kl > X as required.

Conversely, we must show that, still denoting by %l the smallest Newton
slope of (M,F), we have

n+r-1
)

ord (F >nhy .

Extending scalars to R (ef 1.3.1ff) it suffices to show

a,n+r-1 n>\l
(F8o ) (MBR) € p ~MGR .

In terms of a suitable R-basis ul,...,ur of MR , we have

A,
(Feo®)(u,) = p ‘uy + elt. of I By, -
3t

Tterating, we find, for all N >i,

N (N=1)A
a,\N 1 1
(F8c ) (ui) ep “u; *tP Ru, , + ..

(N_i+1)>\l
€D M8R .

Since i <r , and the ug span M8R , we find

126
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nAl

-1 (vgR) M8R
P

(F8c®)

as required.

Corollary 1.4,k

The Newton function of (M,F) is obtained from the Hodge function of the

iterates (M,F") of F by the (archimedean) limit formuls

NewtonF(X) = 1lim %—Hodge n(x)

n—w F

valid for 0 <X < r = rank(M)

Proof. Since both the Newton and Hodge functions are defined first on integers
0<iz< r , then interpolated linearly between successive integers, it suffices
to prove the formula for x = an integer 0 < i < r . The formula, for (M,F)

and X =1 , is equivalent to (indeed term by term identical with) the formula for
(AiM,Ai(F)) and X =1 . Thus it suffices to prove universally that, denoting by e

Al the smallest Newton slope of (M,F) , we have

_ . 1 n
A o= Jin F ord(F) .
By the basic slope estimate, we have

+1r—
(ntr-1)A; > ord (F© ° 1y > {od} > mr,

from which the required limit formuls is immediate. JED

1]
B
@
N

Exemples. Consider the o-F-crystal over E§ with M and F given by

the matrix

The graphs of the functions New‘tonF and % Hodge n are
¥
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(2,3)

(0,0) (1,0)

the middle is that of %‘Hodge n for some
F

as drawn : the highest is NewtonF N
n > 2 , and the lowest is that of HodgeF .

If instead we take M = Zp ® Zp , F given by

then the graphs of Newton and of all ;L-Hodge coincide:
F 2n F2n

/(2,1)
(0,0)

HodgeF2n+l is

1
2n+l

(0,00 /

(1,==)

*2n+l

while the graph of

The point of these examples is that the Newton polygon may or may not be
attained at some finite n , and that the sequence of approximating functions need
not be monotone. The common features of the examples, namely that all approximants
are convex polygons lying on or below the Newton polygon, but sharing its begin-
ning and terminal points, are indeed common to all examples. This follows from

Theorem 1.4.1 applied to (M,F") , and the fact that ;];-Newton o = Newtony .
F
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(1.5) Sharp slope estimate

In this- section we will give a sharpening of the basic slope estimate, in

which the "lag" term r - 1 is replaced by a sum of certain Hodge numbers.

Sharp Slope Estimate 1.5.1

Let (M,F) be a ca—F—crystal, and A > 0 a rational number. Let

h*,h7,..., be the Hodge numbers of (M,F) . Then all Newton slopes of (M,F)

are > X if and only if for all integers n > 1 we have

n+ z hi

ord (F % ) > (ma} .

Proof. The "if" part is proved exactly as for the basic slope estimate. To prove
the "only if" part, we first reduce it to a reasonable-sounding assertion about
determinants, and then give an unpleasantly computational proof of that assertion.

Suppose then, that A, 1is the least Newton slope of (M,F) and that we are

1

given a rational A ] 2

< < A, .
0<xzx< 1

Because the function "ord" assumes only integral values, it suffices to prove that

n+ z hi
i<x )

ord (F > nh .

AL
i

- A .
Extending scalars to a suitable R containing p as well as the p , it

suffices to prove that
n+ Z h*
i<i

(Fec™) (M8R) < p™* Mer .

At this point, we must observe that for any real X > 0 , we have

n+ Z n'
ord (A <A (F)) > nx for n>1,
i.e., HodgeF(n + .thl) > ni .
i<
129
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To see that this is true, look at the Hodge polygon. It has a break-point at

( Z nt . Z i hl) , and from this point rightwards the slopes are all z_{k} » SO
i<h i<

that we have

Hodge,(n + [ ') > ] ih, +n{A} > mA

¥ i< i<h

for all real n > 0 .
Let us further observe that in terms of a suitable basis ul,...,ur of

M8R , the matrix of F8o~ is of the form

A entries
1 .
he] in R

O ) x
r
D

an upper triangular matrix over R all of whose diagonal entries lie in the ideal

pxR of R .

Lemma 1,5.2

Let R Dbe any commutative ring with 1, IC R an ideal, and ¢:R — R

an endomorphism of R such that

for any x € R , ¢(x) € xR .

Let M be a free R-module of finite rank, and let F:M — M be a ¢-linear

endomorphism of M , whose matrix relative to some R-basis {ui} of M is

upper triangular, and has all of its diagonal entries in the ideal T . Suppose

that for some integer k > 0 , we have the congruences

K*0(p) = 0 mod I for all n > 1 .

Then we also have

oz 0 moa I for all n > 1.

130
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If we apply this to our R =W(x')[p/V], ¢=0*, T =pR, MeR with
F86% , we-get the "sharp" slope estimate.

To prove the lemma, let us denote by (F,,) the matrix of F relative to

iJ
the R-basis {ui} of M :

Flu,) = ) Fipby s Fig=0 if i>3, F el

J

The matrix of F° 1is the product matrix

each of whose entries is a sum of products of the form

-1
. SR L)
3 n’ n+l

By the hypothesis made on ¢ , each of these products is divisible by the corres-

ponding product "without ¢ "

(0f course this product vanishes unless 1, < i, < < in+l , since (Fij) is

upper triangular.) So it suffices to show that each such n-fold product lies in

™%, for n >k .
Let J(n) denote the ideal generated by the n X n minors of (Fi J) . By
2

hypothesis, we have J(n) C In—k for n > k , so it suffices to show that

Fooy e Fyog e J(n) + I « J(n-1) +...+ In_lJ(l) + 10,

1’72 n’ n+l

whenever 1 5_11 < e §4ln+l < r . BSince the diagonal entries Fi,i lie in I ,
it suffices to treat the case when il < i2 < vee < in+l . This case follows

inductively from the following well-known determinant formula, whose verification

is left to the reader.
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Formula 1.5.3

Let (Xi j) be an r X r upper-triangular matrix (Xi J=O if 1> 3) of
> b

indeterminates. For each subset T & {1,...,r} of cardinality v > 2 .

T = {tl <t2 <tv}
we define
X X . .
)5ty b5ty
X X
det(T) = det tptp tz’t3
X
t\)—l’t\)—l

= the (v-1) x (v-1) minor indexed by

and we define

£(T) = X X
tl’tE t2
Then we have the formula

(—1)#S e £(T-8) + T X
ses

,S

det (T) =
SCT-{tl,tv}

(1.6) Newton-Hodge decomposition

In this section we give 2 fundamental decomposition theorem for

cra—F—crystals, in terms of the interrelations petween their Hodge and Newton
polygons. I owe entirely to Ogus the idea that such a decomposition should

exist.
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Theorem 1.6.1 (Newton-Hodge decomposition)

Let  (M,F) be a ca—F-crystal of rank r . Let (A,b) ¢ Z x Z be a break-

point of the Newton polygon of (M,F) , which also lies on the Hodge polygon of

(M,F) . Then there exists a unique decomposition of (M,F) as a direct sum

(M,F) = (Ml(BM2 s Fl(BFQ)

of two go-F-crystals (M.,F.) and (M_,F.) , such that

1°71 2272
rank (Ml) = A
1.6.1 Hodge slopes of (Ml’Fl) = {first A Hodge slopes of (M,F)}
Newton slopes of (Ml’Fl) = {first A Vewton slopes of (M,F)}
rank (M2) =r - A
1.6.2 Hodge slopes of (M2,F2) = {last r - A Hodge slopes of (M,F)} ;;u

Newton slopes of (M2,F2) = {last r - A Uewton slopes of (M,F)}

In terms of polygons, this means that the Hodge (resp., Newton) polygon of (M,F)

is_formed by joining end-to-end the Hodge (resp. Newton) polygon of (Ml’Fl) with

the translate by (A,b) of the Hodge (resp. UVewton) polygon of (M2,F2) .

Pictorially, we have
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We give the proof in a series of lemmas.

Lemma 1.6.3

Hypotheses as in Theorem 1.6.1, there exists a unique F-stable W(k)-submodule

M, € M such that

1
Ml igs free of rank A , and M/Ml is free of rank r - A .
if we put F, = F/Ml , then the Newton slopes of (Ml’Fl)
are the first A Newton slopes of (M,F) .
Lemma 1.6.4
Hypotheses as in Theorem 1.6.1, and notations as in Lemma 1.6.1 above, put
M2 = M/Ml . F2 = F/M2 . Then we have a short exact sequence of Ga—F—crystals

0 — (Ml,F — (M,F) —> (M2,F2) — 0

1)

in which (Ml,F } and (ME’FE) satisfy the properties 1.6.1 and 1.6.2 of

1

the conclusion of Theorem 1.6.1.

TLemma 1.6.5

The exact sequence of aa—F-crystals in Lemms 1.6.5 above admits a unigue

splitting

(M,F) = (M),F)) & (M,,T,)

Proof of Lemmae 1.6.3. We first use "Plilcker coordinates" to reduce to the case

when A = 1 . The hypothesis that the Newton polyegon of (M,F) has a break-polnt
at (4,b) , and that the Hodge polygon of (M,F) goes through (A,b), is equi-
valent to the hypothesis that the Newton polygon of (AAM,AA(F)) has a break-
point at (1,b), and that the Hodge polygon of (AAM,AA(F)) goes through (1,b).
Admitting temporarily the truth of Lemma 1 for (AAM,AA(F)) and the point
(1,b), we obtain a unique 1A (F)-stable line L in AAM , such that (L,AA(F))

has Newton slope = b . Therefore if there exists Ml c M of the sort required in
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Lemms 1 , we must have L = AA(Ml), by unigueness of L . Conversely, if we can

show that L is of the form AA(M for some W(k)-submodule M € M with M/Ml

l) 1

locally free, then M is uniquely determined by L (Pliicker embedding!), M

1 1

is necessarily F-stable (since L is), and its Newton slopes are necessarily the
first a Newton slopes of (M,F) (otherwise the Newton slope of (L,AA(F)) would
be too big).

To verify that L 1is of this form, it suffices to verify that 1L satisfies
the Pliicker equations, and for this we may first make any injective extension of
scalars, e.g., from W(k) to the fraction field K of a suitable ring

R = (k') [p~/ "]

of the sort considered in /;/27 But over such a K , MBK

admits a K-basis €150+ s€, with respect to which the matrix of F is

Al

p-

O.x

r
Y

where Al < e E-AA < AA+1'i e E-Ar are the Newton slopes of (M,F) . Inside
AA(M)®K , it is now visible that there is a unique F-stable line of Newton slope

b= Al +o..+ AA , namely the K-span of elA...AeA . But LBK 1is also such a line,

so by uniqueness, we have L8K = Ke ARRULT whence LBK satisfies the Pliicker

1
equations.

It remains to treat the case (A,b) = (1,b) . In this case, as the Hodge
polygon goes through (1,b), the endomorphism F of M is divisible by pb .
Dividing F by pb , we are reduced to the case (4,b) = (1,0); i.e., the case in
which zero occurs as a Newton slope of (M,F) with multiplicity one. We must
find an F-stable line L <M on which F induces an automorphism, and show that
any such line is unique. For this, it suffices to show that for every integer
n > 1 , there is a unique F-stable line Ln in M/ﬁlM on which F 1induces an

automorphism. Because F has zero as a Newton slope with multiplicity one,

all Newton slopes of A2(F) are strictly positive, and hence we have
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A2(Fv) =0 mod p if v Z_rank(AeM) = (g)
i.e., AZ(Fv) =0 mod pn if v z_n(;) .

But all iterates 7Y of F also have zero as a Newton slope, and hence all

iterates FY of TF have zero as a Hodge slope, ice.,
ke £ 0 mod p for v = 1,2,35¢4+

For any Vv z_n(;) , we thus have Fv # 0 mod p , but all 2 x 2 minors of Fv

are = 0 mod pn . This means exactly that for each Vv Z_n(g) , the image of
PV M/pM —— M/p'M

is a line Ln v < M/pnM (in matricial terms, at least one of the columns of the
3

matrix of FY is not divisible by p , and 211 the other columns are congruent

mod pn to W(k)-multiples of this column). By the definition of the Ln as

sV

images, we have

= [eng .
F(Ln’v) Ln’\)+l Ln,v for all v

Since the Ln N for v Z_n(;) are lines, we must have
E)

(L )=1L for v z_n(Z) .

=1L
n,V n,vtl n,V

Therefore if we define Ln to be Ln v for any Vv Z_n(;) R Ln is an F-stable
k)

line on M/pnM on which F induces an automorphism. That Ln is the unique such

line results from the fact that

L = QF /)

so that ‘Ln must contain any such line, and hence be equal to any such line.

This concludes the proof of Lemma 1.6.3 QED .

We now turn to the proof of Lemma. 1.6.4%. By construction, (Ml,Fl) has as

Newton slopes the first A Newton slopes of (M,F) , and therefore by (L.3.1)
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(M2,F2) must have as its Newton slopes the last r - A Newton slopes of (M,F) .
In terms of a basis of M adapted to the filtration Ml < M , the matrix of F

looks like

with A the A x A matrix of F. on Ml > and D the (r-A) x (r-A) matrix of

1

F on M

2 2 "

Let us begin by showing that this matrix has the same Hodge polygon as does

0 i)

For this, it suffices to show that "elementary column operations” allow us to pass
from one to the other, i.e., to show that all the columns of IB are W(k)-linear
combinations of the columns of A . By hypothesis, the Hodge polygon of (M,F)

goes through (4,b), and hence

all A x A minors of (% ]IS) are = 0 mod pb s

in particular all A& x A minors of (A,B) are = 0 mod pb

Because the Newton polygon of (M,F) goes through (A,b) and because (Ml,Fl)

has as Newton slopes the first a Newton slopes of (M,F), we have
b .
det(A) = p~ x unit.

It now follows by Cramer's rule that all columns of IB are W(k)-linear com-

binations of the columns of A . Hence the matrices
A B A 0

H
0 D 0 D

have a common Hodge polygon.
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Intrinsically, this means that (M,F) and (MlGMz, FlGFz) have a common

Hodge polygon. Therefore we have a partition

{Hodge slopes of (M,F)} = kj {Hodge slopes of (Mi’Fi)} .
i=1,2

So we need only verify that the Hodge slopes of (Ml,Fl) are the A smallest
among those of (M,F). But the sum of the smallest A Hodge slopes of (M,F) 1is
b (the Hodge polygon of (M,F) goes through (a,b)). So it suffices to see

that the sum of all A of the Hodge slopes of (M Fl) is b . TFor this just

l’
recall that the Newton polygon of (Ml,Fl) ends at (A,b), and hence 1ts Hodge

polygon ends there as well. QED

We now turn to the proof of Lemma 1.6.5 . In a pasis of M adopted to

Ml(: M , the matrix of F is

As we have seen in the proof of Lemma 1.6.4 , the columns of B are all

W(k)-linear combinations of those of A , SO we can write this matrix

A AL

0 o

for some integral matrix T .

Let n denote the largest Hodge slope of A , and let m denote the smallest
Hodge slope of D . Then pﬁﬁ_l and émﬁ) are integral. Since m > n by
Lemma 1.6.h,p_9D is integral. Notice that either p%ﬁ—l is topologically nil-
potent (i.e., that the o 2_F-crystal (Ml,pnFil) nhas all Newton slopes > 0) ,
or that p_nD is topologically nilpotent (i.e., (Mz,p-an) has all Newton slopes

> 0), or possibly voth; this is immediate from the inequalities
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To split the projection of (M,F) onto (M2,F2) is equivalent to finding an

A x (r-A) matrix X , with entries in W(k) , so that (?) , viewed as the matrix

of a W(k)-linear cross-section M2 ——> M of the projection M —> M, , is a

morphism of ca—F—crystals. Matricially, this means

o
X A AT X
T =
1 0 D 1
i.e., a
W = Ax° + AT
i.e.,
n,~1 e . o |
pA T Xp = X +T |
i.e., j
_ .o -1 -4p o o ¥ Hiv e
X¥=(pA “Xp ID) -T . ‘

Because either qu'l or p—pD is topologically nilpotent, the method of f”:

Remarks. If we apply this Newton-Hodge decomposition to the contravariant
Dieudonné module of a p-divisible group, we recover the cannonical decomposition
of such a group over a perfect field into the product of an etale group, a bi-

b
successive iterations leads to a unique solution of this equation. v
connected group, and a toroidal group.

C—J—

etale biconnected toroidal
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II. F-crystals over Fp—algébras

(2.1) Basic definitions

In this section we recall the basic notions concerning crystals on arbitrary l

i
affine schemes in characteristic p > 0 (compare [2]). By an absolute test object, |
we mean a triple (B,I,y) consisting of a p-adically complete and separated

Zp—algebra B, a closed ideal I < B with p € I , and a divided power structure

Y = {Yn} on the ideal I for which Yn(p) = the image, in B , of pn/n! in Zp .
Given an IFp—algebra AO , by an Ao—test object we mean a quadruple (B,I,v3s) ‘
consisting of an absolute test object (B,I,y) together with a structure s of ‘
AO~—algebra in B/I , i.e., together with a homomorphism of ﬁFP—algebras
st A, — B/I . A map of Ao—test objects f : (B,I,y3s) — (B',I',y',s') is
an algebra homomorphism f£ : B — ¢ which maps I to I' , "commuteg" with the
given divided power structures v,y' ., and induces an Ao—homomorphism
B/I — B'/I' (for the given structures s,s').
A crystal M on AO is rule which assigns to every Ao—test object
(B,I,Y;s) a p~adically complete and separated B-module, noted M(B,I,Y;s) , and
which assigns to every map f : (B,I,v3s) — (B',I',y';s') of Ao—test objects

a B'-isomorphism

N M(£)
M(B,T,y;s) 8 B! = M(B',I',y';s")
B

in a way compatible with composition of maps of test objects. A crystal M 1is
said to be locally free of rank r if for all Ao—test objects (B,I,Y;s) , the
B-module M(B,I,y;s) 1is a locally free B-module of rank r . A morphism of

crystals on AO , u:M—>N, is a rule which assigns to each Ao—test object

(B,I,y;s) & B-module map
w(B,I,yss) @ M(B,I,y38) — N(B,T,v38)

in a way compatible with the isomorphisms M(£),N(f) . The category of crystals
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on AO up to isogeny is obtained from the category of crystals on AO by keeping
the same objects, but tensoring the Hom groups, which are Zp—modules, over %p
with Qp . An isogeny between crystals on AO is a morphism of crystals on AO
which becomes an isomorphism in this new category (explicitly, u : N —> M is an
isogeny if and only if for some integer n > O , there exists v : M — N with
uv = p = vu).

Suppose we are given two IFp—algebras, AO and Bo , and a homomorphism
¢ : A, — Bo . If (B,I,y;s) is a B -test object, then (B,I,y;s°¢) is an

ule)

Ao—test object. Given a crystal M on AO , the "inverse image" crystal

on Bo is defined by the formula
(¢) L) = .
M (B3IaYsS) - M(BsI’Y9S¢) °

Similarly, given a morphism u : M —— N of crystals on A, » its "inverse image"

%) : M(¢) — N(¢) is defined by u(¢)(B,I,Y;s) = u(B,I,y;s¢) .

ol
For any ]Fp-algebra AO , we denote by o : AO — AO the absolute Frobenius
endomorphism o(x) = x* , and by &, a > 1, its at® iterate. By a
o®-F-crystal (M,F) on AO , we mean a locally free (of some rank r ) crystal M
on Ao together with an isogeny F:M(Oa) —> M . A morphism of oa—F—crystals
on Ao , T:(M,F) —— (M',F') , is a morphism f:M —— M' of crystals on Ao
such that F'-f(oa) =f « F . The category of oa—F—crystéls up to isogeny, and
the notion of an isogeny between oa—F—crystals, are defined in the expected way.
Given a oa—F—crystal (M,F) on AO , and any homomorphism of IFp—algebras
) plody

¢:AO — B , the inverse image (M(¢ is a o®-F-crystal on B (because

g b= - o® for any homomorphism ¢ of ]F‘p-algebras).

(2.2) Perfect rings.

When Ao is a perfect ]Fp—algebra, i.e., when o:AO — AO is an automor-
phism, the ring W(AO) of Witt vectors of Ao provides an initial object in the
category of all A -test objects, namely (W(AO), (p)s Y 3 8) + The divided power

structure y on pW(AO) is uniquely determined by the requirement Yn(p) = p%/nt;
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the homomorphism S:AO ———*—W(Ao)/(p) is the inverse of the isomorphism

W(AO)/(p) e A obtained by sending a Witt vector to its first component.

Fvaluation at this initial object provides an equivalence of categories between
the category of crystals on AO and the category of p-adically complete and
separated W(Ao)—modules. Given a homomorphism ¢:Ao — BO of perfect
Eb—algebras, the construction M F— M(¢) on crystals corresponds to the con-

struction on modules

Mi——M 8 WB) 4 e W(Bo)—module

w(a) e

(8)

in which W(BO) igs viewed as a W(Ao)—algebra by means of W(¢):W(AO) ———*—W(BO)

If we denote by o the automorphism w(o):w(Ao) — W(Ao) , then the
category of oa—F—crystals on our perfect AO is equivalent to the category of
pairs (M,F) consisting of a locally free (of some rank T ) W(Ao)—module M
together with a ¢®~linear map F:M — M which induces an automorphism of
M@ZPQP .

In particular, when AO is a perfect field k , we recover the more mundane

notion of oa—F—crystal with which we were concerned in Chapter 1.

(2.3) Grothendieck's specialization theorem.

We now turn to the consideration of a oa—F—crystal (M,F)} over an arbitrary
E‘—algebfa AO . TFor any homomorphism ¢:AO — k with k a perfect field,
(M,F)(¢) is a oa—F—crystal over k . Its Newton and Hodge polygons depend only
on the underlying point ker(¢) e SPEC(AO), and not on the particular choice of a
perfect overfield of the residue field at this point. This allows us to speak of
the Newton and Hodge polygons and slopes of (M,F) at the various points of

Spec(Ao) . The following theorem and corollary are a slight strengthening of

Grothendieck's specialization theorem.
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Theorem 2.3.1 (Grothendieck)

Let (M,F) be a ca—F—crystal of rank r over an arbitrary IFp-algebra Ao .

Let X > 0 Dbe a real number, The set of points in Spec(Ao) at which all Hodge

(resp. Newton) slopes of (M,F) are > A is Zariski closed, and locally on

Spec(AO) it is the zero-set of a finitely generated ideal.

Corollary 2.3.2

Let P be the graph of any continuous R-valued function on [0,r] which is

linear between successive integers. The set of points in Spec(Ao) at which the

Hodge {(resp. Newton) polygon of (M,F)} lies above P is Zariski closed, and ig

locally on Spec(AO) the zero-set of a finitely generated ideal.

Proof. The Corollary follows by applying the theorem to the various exterior
powers of (M,F) . The theorem for Newton slopes follows from the theorem for
Hodge slopes, applied to a suitable iterate (M,F") of (M,F) , as follows.
Because Hodge slopes are always integers, and Newton slopes are always in i%—%

for Ua—F—crystals of rank r , we may assume that A lies in ;%—Z. According

to the basic slope estimate, we have

+1-
F has all Newton slopes > A = P 1 has Hodge slopes > ni

ni
F has all Newton slopes Z-n+r—l

Therefore, if we choose n so large that

then we have

+1—-
F has all Newton slopes > A 4> T L has all Hodge slopes > ni .

So we are reduced to proving the theorem for Hodge slopes.
As replacing A by its perfection Agerf and (M,F) by its inverse image

on Agerf alters neither Spec(Ao) nor the perfect-field-fibres (M,F)(¢) of
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(M,F) at the points of SpeqﬁAO) , we may assume that A/ ig perfect. As the
theorem is local on Spec(Ab) , we may further assume that (M,F) isra free
W(Ao)—module of rank r with a oa—linear endomorphism F . Because Hodge slopes
are integers, we may also assume that A is an integer.

)

In terms of a basis of M, F is now given by an r X T matrix (Fi,j
with entries in W(Ao) . Tor any homomorphism ¢:A ——+ k with k a perfect
field, (M,F)(¢) is given by the r X T matrix (W(¢)(Fi,j)) obtained by applying
¢ component-wise to the Fi,j , individually thought of as Witt vectors. Now
(M,F)(¢) has all Hodge slopes > x if and only if all the W(¢)(Fi j) lie in
s

pXW(k) , i.e., if and only if the first A components of each of the r2 Witt-
vectors W(¢)(Fi,j) all venish, i.e., if and only if ¢ annihilates the ideal in

Ao generated by the first A Witt-vector components of each of the r2 matrix

coefficients F, e W(A ) .
i, o}

A guestion. Is there a natural structure of closed subscheme on these Zariski
subsets of Spec(Ao) defined by "slopes > A"? Given a o ~F-crystal over

Ei[e]/(ez) , does it make sense to ask if its Newton or Hodge slopes are "every-

where" > A ?

(2.4) Newton-Hodge filtration.

In this section we will consider the case in which Ao is an iFP—algebra of

one of the following two kinds:
A is smooth over a perfect subring A of A_ .
o 00 o

Ao is a formal power series ring in finitely many variables

over a perfect subring A of A_ .
00 o]

In both cases, there exists a p-adically complete and geparated Zp—algebra A

which is flat over %i , together with an isomorphism A_/PA_ == Al s such that

n+l

din n+:LAW is formally smooth over z/p" % . The al-

for each n > 1, A.n =£ A /p

gebra A is naturally & W(AOO)—algebra; it is unique up to automorphisms which
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are the identity on W(AOO) and which reduce mod p to the identity. The ab-
solute Frobenius map cr:AO —_— AO may be lifted, non-uniquely in general, to a
ring homomorphism I : A, — A_ which is necessarily o-linear over W(AOO) .

The algebra A provides an Ao—test object, namely (A_,(p),y;s) , in which
s 1s the inverse of the given A_/pA_ s AO . This A -test object is "pseudo-
initial" in the sense that any A -test object receives a map from it, but this map
need not be unigue. Evaluation at this "pseudo-initial" object provides an equi-
valence of categories between the category of crystals on AO and the category of
pairs (M,V ) consisting of a p-adically complete and separated A -module M to-
gether with an integrable, nilpotent W(AOO)—connection.

If we fix a 1lifting I : A — A, of o, we similarly obtain an equiva—
lence of categories between the category of Ga—F—crystals on AO and the category
of triples (M, V ’FZ) consisting of a locally free (of some rank r ) A -module
M together with an integrable, nilpotent W(AOO)—connection V and a horizontal

a
(M(Za) ,V(E )) — (M,V) which induces an isomorphism after

(z)*

morphism F):

tensoring M and M over Zp with Qp .
Let us denote by Agerf the perfection of Ao . The method of successive
iterations allows us to construct for each choice of I , a unique homomorphism

i) A, — W(Agerf) which reduces mod p to the inclusion Ao e Agerf ,

and which sits in a commutative diagram

A< i(g) w(Agerf)

lz Slw(o)

A< i(z2) W(Agerf)

This homomorphism i(z) should be thought of as the universal "EI-Teichmuller

. bl
point" of A_ . In fact, i(Z) provides a construction of W(Ager ) as the
p-adic completion of the "I-perfection" 1im A~ (in which the successive tran-

sition maps Am ———-+Aw are all I ) of Aoo . Notice that
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(2.4.1) pa_ = i(2) (&) N pW(aBST)
simply because A _/pA_ = A C Aperf = w(Aperf) / w(Aperf)
0! e o o o PSS '

Given a oa—F—crystal on Ao , thought of as (M,V,FZ) , its inverse image on
rf . i .
Age is the pair (M,FE)(I(Z)) obtained from (M’FZ) on A by the extension

of scalars i(Z) : A ____Q_W(Agerf)

Theorem 2.4.2 (Newton-Hodge filtration)

Let (M,V,F ) be a oa-F—crystal over an 'Fp—algebra Ao of the type dis-

cussed above in 2.4, Suppose that (A,b) € Zx & 1s a break point of the Newton

polygon of (M,V,FZ) at every point of Spec(Ao) , and that (A,p) lies on the

Hodge polygon of (M,V,FZ) at every point of Spec(Ao) . Then there exists a

unigue Fz-stable horizontal Aw—submodule Ml <M, with Ml locally free of

rank a , and M2 ggg M/Ml Jlocally free of rank r - A , such that

at every point of Spec(Ao) , the Hodge (resp. Newton)

slopes of (Ml’ VlMl, FZ|M1) are the A smallest of
the Hodge (resp. Newton) slopes of (M,V,FZ) R

at every point of Spec(AO) , the Hodge (resp. Newton)

slopes of (ME’ VIME, FEIME) are the r - A greatest
Hodge (resp. Newton) slopes of (M,V,FZ).

a
Furthermore, when AO is itself perfect, the exact sequence of o ~F-crystals

0 — (M, V|Mg, M) — (M,V,F,) — (M, v|M,, P |M,) — 0

1

admits a unigue splitting.

Proof. Localizing on Spec(Ao) , We may suppose that M is a free Aw—module of

rapnk r . Consider first the case (a,b) = (1,b) . Then the least Hodge slope 1is

b at every point. This means that each matrix coefficient Fi 3 in A_ has
L)

i(Z)(Fi J) e W(Agerf) with its first b Witt-vector components nilpotent, and
E]
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hence zero, in apert Therefore 1(I)(F,

. . b, perf
. . 1j) lies in p W(AO )

, and so F,.
13

. . b s
lies in p A°° . Bo dividing F by pb » We may assume b = 0 . This means that

the matrix coefficients Fij generate the unit ideal in Aw (because after ex-
Aperf)
o)

tending scalars to W( » their first Witt-vector components generate the unit

ideal in Agerf ; as these first components are just the F,, mod p , in AO , the

ij
Fij mod p generate the unit ideal in AO and hence the Fij generate the unit
ideal in A ) . TFor every iterate F’ of F , its matrix coefficients still

generate the unit ideal. But for v Z_n(r , all Hodge slopes of Az(Fv) are > n ,

5)
at each point of Spec(Ao) , 8o that all 2 x 2 minors of F° lie in pnAw (by

erf))

the same Witt-vector argument in W(Ag So we can construct the required

v

line LS M as the "limit" of the images mod p° of T’ , for v Z_n(g) , Jjust

as we did in the case of a perfect field. This construction via images of iterates
of F makes obvious that I is F-stable and horizontal (since F itself is
horizontal). The slope assertions about F on L and on M/L are pointwise, so
are already proven.

We do the general case (A,b) by constructing the required line L in

A

M) . It remains only to see that this line is of the form AA(Ml) for some

locally free Ml C M of rank A with M/Ml locally free. [The F-stability and

horizontality of Ml then are consequences of the F-stability and horizontality

cf the line; the slope assertions about M and M/Ml are pointwise, so are

1

already proven. ] To see that L satisfies the Pllicker equations, it suffices

to do so after an arbitrary injective extension of scalars. For this purpose we

erf) erf

first embed A in W(AE . Then, because Ag is reduced we can embed

. f
W(Agerf) in the product, indexed by all homomorphisms ¢ : Ager

— k with k
a perfect field, of the W(k)'s. This reduces us to the case A = a perfect
field, in which case we have already proven it.

As for the splitting in the case of a perfect AO , the proof is word-for-

word the same as in the case of a perfect field.
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Remarks

Let (M,V,F) be a oa—F-grystal over an ]Fp—algebra Ao of the type dis-
cussed above in 2.4. Suppose that at every point of Spec(Ao) , the Wewton and
Hodge polygons coincide with each other, and that they are constant, i.e., inde-
pendent of the point. TLet us denote by ho,hl,..., the Hodge numbers. Then the
associated graded pieces of the Newton-Hodge filtration are ¢%-TF-crystals
(,,7;,F;) of renk nl, such that F, = pi%i with (Mi,vi,%i) & "unit-root"
(all Newton slopes = 0) oa—F—crystal. But a unit-root oa—F—crystal of rank hi
is equivalent (ef [T]) to a continuous representation of the fundamental group of
Spec(Ao) in GL(hi,WCF a)) . Tt would be interesting to understand the "meaning"
of these p-adic~represe§tations, especially when the o%~F-crystals in question

arise as crystalline cohomology groups of families of varieties.

(2.5) Splitting Theorems.

Tn this section, we give a splitting theorem up to isogeny for slope filtra-

tion of oa—F—crystals over perfect rings.

Theorem 2.5.1

e e

Let Ao e a perfect ring, and let

o0 — (Ml’Fl) — (M,F) — (M2,F2) — 0

be an exact sequence of oa—F—crystals over AO . BSuppose that for some rational

mumber A , the Newton slopes of (Ml,Fl) at every point of Spec(Ao) are all

< A , while the Newton slopes of (M2,F2) at_every point of Spec(Ao) are all > A.

Then in the category of ca—F-crystals up to isogeny., this exact seguence splits

unigquely.

Proof. Localizing on A , W& W&y assume that M, M;, M, are free W(AO)—modules

of ranks T, Tys Tp respectively. Because the Newton slopes of (M,F) at any

1 . .
point of Spec(Ao) iie in the discrete set ;T'Z , we may 1n fact choose rational

numbers Ay < Ao such that at all points of Spec(Ao) . (Ml,Fl) has all Newton
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slopes f_kl , while (ME’FE)

M adopted to the filtration, the matrix of F has the shape

has all Newton slopes Z-AE . In terms of a basis of

A T

Q D

A splitting of the exact sequence is a morphism (ME’F2) —— (M,F) which is a
cross-section of the projection. In terms of the given bases, the matrix of a

splitting is an r X r matrix of the form

2
X
1
where X 1is Ty X Ty 1 denotes the r, X T, identity matrix, and where X

satisfies the matrix equation

o2
AX + T = XD

a
(0}

X =at

XD - A7'C

i.e.,
. -a -a

- @ = - i)’
We must show that this matrix equation has a unique solution matrix X with
entries in W(AO) ] Qp . Let us denote by Mat the space of all rl X r2
matrices with entries in W(Ao) B Qp , with the linear topology defined by the

entry-by-entry congruence modulo an(Ao) . Consider the o *~linear endomorphism

V of Mat defined by
dfn -1, 0 &
X — V(X) == (A XD)

Suppose we can prove that V is topologically nilpotent. Then our matrix

equation

- v =~
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obviously has the unlique solution

x= 7 Ve ),
nzp

and we are done.
~We will deduce the topological nilpotence of V from the basic slope estimate,

applied to mﬁl and to D . Because (M2,F2) has all slopes 2> A, , we have

{(n+l—r2)A2}

)n Z 0med p .

(F,

Because (Ml,Fl) has all Newton slopes §.A1 , its determinant has its single

. . _ -a ..
Newton=Hodge slope f_rlkl 5_{rlkl} . So putting N = {rlxl} , the o ~=linear

. N -1 N -1
endomorphism p (Fl) of M18Qp actually maps M, to M . Hence (Ml,p (Fl) )

defines a c_a—F—crystal over AO , all of whose slopes are > N - Al . 8o by the

basic slope estimate, we have

{(n+1-r ) (N-2,)1
= 0 mod p 1 1 .

and hence we have

{{n+1l-r A} {(n+l-7) (A=A, )-N(r-1)}
D 2°72 (Fl)-n = 0 mod p 21

In terms of the matrices [A_l,]) , these estimates may be rewritten

a 2a (n-1)a {(n+1l-r)A,}
po® ©° ....D° = 0 mod p 22

A3 (n-1)a a {(n+l—r)(k2—kl)—N(r—l)}

{{n+l-r
D 272 A° oA Y AT = O0modp s

which together give the estimate for the endomorphism V

{(n+1-1) (A -A, )-N(r-1)}
v* = 0 mod P 21

As A, > A this estimate establishes the required topological nilpotence of V .

2 1°
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(2.6) Isogeny theorems

In this section, we will give an isogeny theorem for ca—F—crystals over

curves. Thus let Ao be an Imb—algebra which is either

an integral domain, smooth of dimension

<1 over a perfect field k

a formal power series ring in one vari-

able k[[T]] over a perfect field k .

Theorem 2.6.1

Let (M,V,F) be a o*~F-crystal over an in—algebra AO of the above (2.6)

sort. Suppose that A 1s a positive real number, such that at every point of

Spec(Ao) , all Newton slopes of (M,v,F) are > X . Then (M,v,F) is isogenous

to a ca—F—crzstal (M',V',F') which is divisible by A 1in the sense that

for all n > 1, (F')n_E 0 mod p[nx]

(vhere [x] denotes the integral part of the real number X ).

Proof. In the case when AO ig itself a perfect field, the basic slope estimate

gives (r denoting the rank of M )
F = 0 mod p for all n > 1
which in turn implies that if we put v = {{r-1)r}, we have

[nA]

van = 0 mod p for all n > 0 .

Therefore we can define a W(k)—module M' with
McM cp 'M

by

t = ] __F___ —V.
M z image of p[nk] T M——p M| .
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The basic inequality [x+y] > [x] + [y] allows one to check that for all n > 0,

[n2] maps M' to itself. The fact that M' is "caught" TDe-

the operator /p
tween M and p_vM guarentees that M' is a free W(k)-module of the correct
rank. The inclusion of (M,F) into (M',F) 1is the required isogeny.

In the general case, the basic slope estimate applied pointwise together with
the "Witt-vector-component'-argument already used shows that over A~ we still
have

vaZn = 0 mod p[nk] for all n > 0 .

So it is natural to define an Am—module M' with

McM p_vM

by

Clearly M' 1is horizontal (it's defined in terms of the horizontal maps F n), and

z
(n2] , now viewed as 72 _linear endomorphisms

is stable by all the operators an/p
of M' . The only problem is that I cannot prove (or disprove!) that M' is a
locally free Am—module. (Even the fact that M' is finitely generated depends on
the fact that, in the case envisioned, Ao is noetherian. Can one give an
effective bound on the number of terms needed in the apparently infinite sum of
images which defines M' ?)
To circumvent this difficulty, we will define a larger A_-module "
Mc M c M e p Mc My, OB
b
which will have all the required properties. Let us denote by Ko the fraction
field of A_ , and by C(KO) the completion of the local ring of A  at the
prime ideal pAm . (The notation C(KO) is to remind us that this is a Cohen
ring for the field Ko , i.e., a mixed characteristic, complete, discrete, abso-

lutely unramified valuation ring with residue field Ko .) By its construction we
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see that any derivation of the A into itself, as well as any endomorphism
I:A “'_——*'A; 1ifting the absolute Frobenius, extends by continuity to this
C(Ko) . Because C(Ko) is flat over Ao° , we can tensor the chain of inclusions

between M and M' to obtain

M c M c pM < Me_G
n n n n

1 -V 18
M@C(KO) c M ®C(Ko) cp M@C(Ko) c (M@C(no)mZpr .

We define M" as the intersection (inside (M@C(Ko))®% Qp )
p

M" din (M'A® C(Ko)) n (M®% Qp)

o

This description of M" shows that it is both horizontal, and stable under all
the operators(FE)n/b[nX].

To see that M'C p—vM , simply notice that

(p""MBC(Ky)) N (M8 @) = p M

(this because M is locally free, and C(KO) n (Aw®Qp) = Aw) . Thus we have
MC M"C p M .

Because AO is noetherian, this shows that M" is finitely generated. 5o it
remains only to show that M" is flat over A_ .

Let us admit for the moment the following assertion about M"

for any f ¢ A with T gpa ., M
has no f-torsion, and M"/fM" has no

p-torsion.

From it, we easily deduce the flatness of M" , as follows. It suffices to show
that M" is flat after we extend scalars from A to the complete local rings of

A, at all closed points of Ao . But such a complete local ring A is of the
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form W(k')[[T]] , where k' is the residue field at the closed point, and T may
be chosen as any element in A whose reduction mod p in A is a uniformizing
o

parameter at the closed point. Because A 1is flat over A_ , we deduce from the

admitted assertion that

M'ew(x')[[T]] has ne T-torsion and
w'ew(x')[[T11/(T) has no p-torsion.

Since M'@w(k')[[T]] is finitely generated, its flatness over W(k")[[T]] follows
from the local criterion of flatness (SGA 1 , Exposé IV, Thm 5.6).

To prove the agsertion, notice first that A is a domain (being Zb—flat,
p-adically separated, and having Aw/pAw a domain) , and T # 0 . Since
M" < p_vM , and p_vM igs locally free and hence flat over A , there is no

f_torsion in M" . Because T é pA_ , it becomes a unit in C(KO) , and so by the

definition of M" we have

p "M/M"  has no f-torsion

Therefore the inclusion M" < p—vM gives an inclusion
M /EM" © p M/fp M T M/EM .

So to have M"/fM" without p-torsion, it suffices if M/fM has no p-torsion. As
M is flat over A_ , being locally free, it suffices if Am/fA°° has no p-torsion.
This follows from the fact that f é PA, > while A ig flat over %b N

p-adically separated, and A_/pA_ is a domain.

Remark. If we allow Ao to be a domain which is smooth of arbitrary dimension

n over a perfect field k , exactly the same argument shows that M" will be flat

~

over the complete local rings A of A at all points of codimension one in

~

Spec(Ao) (there A will be of the form c(x'Y[[T]] with k' the no-longer—

perfect residue field and C(k') a Cohen ring of k' ) . In other words, the
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isogeny theorem is true outside a closed set of codimension > 2 on any smooth-
over—-a~-perfect field Ao . It would be interesting to know if the isogeny theorem

is in fact true, without exceptional sets, in this more general case.

Corollary 2.6.2 (Newton filtration)

Let Ao be an Eﬁ—algebra which is either a smooth domain of dimension one

over a perfect field k , or is k[[T]] . Suppose we are given a ca—F—crxstal

(M,v,F) over A, of rank r which at every point of Spec(Ao) has the same

first Newton slope A , with the same multiplicity A . Then (M,V,F) is

isogenous to a ca—F—crxstal (M',v',F') which is divisible by pA , and which

N s a
sits in a short exact sequence of o -F-crystals over Ao

0 —— (M

LV, FY) — (M, V!, F') —> (M],V',F') — O
1

23
in which

(Mi,V‘,F') has rank A , is divisible by
pA and at_each point of Spec(Ao) all its

Newton slopes are A

(Mé,v',F') has rank r - A , is divisible

by pA and at each point of Spec(AO) all

its Newton slopes are > A .

Proof. By the isogeny theorem, we may suppose (M,v,F) itself to be divisible by
pA . For any integer n > 1 such that n) ¢ Z , the nth iterate (M,V,Fn) is
divisible by pnA , 1.e., all Hodge slopes of (M,V,Fn) are > niA , at each point
of Spec(AO) . Since the first Newton slope of (M,V,Fn) is nA , with multi-
plicity A , at each point of Spec(AO) , We can apply the Newton-Hodge theorem
(ef 2.4) to (M,V,Fn) and the point (A,An)) . This produces a short exact

sequence of Oan—F—crystals

0 —— (M v,F) — 0,

LT, F) > (M,9,F7) —— (4

2’

which for n =1 (i.e., the case A € % ) completes the proof. In general, we
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need only observe that in termg of a lifting I of U:Ao —> Ao , the submodule .

Ml.c M is simply the intersection

nN
) FE (EaN)
image of G M —> M|,
N>1 P

and Ml is therefore F-stable. Then we can take (Ml,V,F) c (M,V,F) as the

solution to our problem.
Tt remains to see why the short exact sequence we have constructed splits
Aperf
o

uniquely over the perfection Agerf of AO . We have proven that, over s

it splits uniquely in the "up-to-isogeny' category i.e., by an F-compatible map
M2 ——> M with coefficients in W(Agerf)®mp . We must show this map has coef-~

ficients in W(Agerf) . But this same map also provides an "up-to-isogeny"

splitting of the exact sequence of nth iterates

n
0 — (Ml,Fln) s (M,F?) —— (M,,F,") —> 0 .

But for sny n with nA € % , this is Jjust the Newton-Hodge filtration of (M,F%)

attached to the point (A,AnA) , which over Agerf

has a unique splitting
(M2,F2n) — (M,F®) . The underlying map M, — M of this splitting, which
has coefficients in W(Agerf) , must, by unigueness, coincide with the underlying

map of our "up-to-isogeny" splitting.

Corollary 2.6.3
Hypotheses as in the previous Corollary 2.6.2, suppose in addition that the

entire Newton polygon of (M,V,F) 1is constant, i.e., independent of the point in

Spec(AO) . Let Al,...,xs e the distinct Newton slopes, and let Al,...,AS be

their multiplicities. Then (M,V,F) is isogenous to a oa—F-chstal (M',9',F')

A
which is divisible by p 1 , and which admits a filtration

0 = (M,7',F') © (M, 7' LF) < ..e S (M0t ,F) = (M ,9',F")

in which
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(M;,V',F') hes rank A, +...+ A, , and has

- Newton slopes (Al repeated A, times,...,
Ai repeated Ai times) at each point of Spec(AO).

the quotient (M'/Mi,V',F') has rank

ot cp s SR
Ai+l AS , and it is divisible by p

i+l

the associated graded (M;/Mi 1>7'>F')  has rank
( - has rank

Ai , 1s divisible by p 1 , and has all Newton slopes = Ai .

This filtration splits uniquely when we pass to the perfection of AO .

Proof. We proceed by induction on the number s of distinct Newton slopes. For
s = 1 , the previous Corollary applies. In general, we comnstruct

(Mi,V',F') c (M',v',F') as in the previous Corollary. Then we have

0 — (M,7',F") — (M',7',F") — (M'/Mi,V',F') — 0.

By the induction hypothesis applied to (M'/Mi,V',F') , we get an isogeny
v '
((M'/Ml) L,V ,F ) — (M'/Ml,V',F')

whose source satisfies all the conclusions of the Corollary. Taking the "pull-
back" by this map of the above extension of (M'/Mi,V',F') by (Mi,V',F') , we get

an extension
1" "
0 — (M!,V',F) — 2 — ((0'/ig)", V", F) — 0.

The middle term, ? together with the filtration of it defined first by this

)
n

" "
exact sequence, then by the inductively given filtration on ((M'/Mi) 7 L,F ),

provides a solution to the problem.

The existence of a unique splitting of the filtration when we pass to the

perfection of AO follows, by induction, from the previous Corollary.
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Corollary 2.6.4

Hypotheses as in the previous Corollary, any (M,V,F) with constant Newton

polygon is isogenous to an (M',V',F') with the property that for any integer

n > 1 which is a common denominator for the Newton slopes, the Hodge and Newton

polygons of the can—F—crxstal (M',v',(F')™) at each point of Spec(Ao) coincide.

Proof. Indeed, the (M',V',FP') given by the previous Corollary has the required

property.

(2.7) Constancy theorems

Let k be an algebraically closed field of characteristic p , and let AO
be a k-algebra. We say that a ca—F-crystal on Ao is constant if it is (iso-
morphic to) the inverse image of a ca—F—crystal on k , by the given algebra map

k—A .
o

Theorem 2,7.1

Let (M,V,F) Dbe a ca—F—crystal of rank r on k[[T]] , with k algebra-

ically closed. Suppose that at the two points of Spec(k[[T]]) , the Newton poly-

gons coincide, and that this common Newbton polygon has only a single slope., say

XA , repeated r times. Then (M,V,F) is isogepous to & constant ca—F—crxstal.

Proof. By the isogeny theorem, we may assume that (M,V,F) is divisible by pA ,
in the sense of 2.5. We will prove it constant. Let N be the denominator of

A . Then FN is divisible by pNA , and all of its Newton slopes, at each point
of Spec(k[[T]]) are NA . Therefore (M,V,FN/pNA) is a "unit-root"
daN—F—crystal,so equivalent to a representation of ﬂl(Spec(k[[T]]) in

GL(r,W(F aN)) . But nl(Spec(k[[T]]) == Wl(Spec(k)) is trivial, because k is
algebraigally closed. Therefore (M,V,FN/pNA) is trivial as a unit-root
caN~F—crystal. In particular, (M,V) is trivial as a crystal, i.e., the W(k)-
module M" of all horizontal sections of (M,V) over A = W(k)[[T]] is free of

rank r , and Mv® A <> M. Because F 1is horizontal, it induces a

wik)
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o®¥-linear endomorphism of Mv ,» such that FN/pNA induces a caN—linear auto-
. \ . . .
morphism of M . Then (M,V,F) on k[[T]] is the inverse image of (MV,F) on

k.

Remarks. 1) The (trivial) representation of w,(Spec(k[[T]]) on a free

1
fug aN)—module of rank r is provided by the set (Mv)fix of fixed points of
p

N . . .
T /pNA acting caN—llnearly on M . TIn fact, ((Mv) F) provides a descent

of (M,V,F) to T g
D

2) If we omit the words "isogenous to" from the statement of the
theorem, it can become false. The simplest geometric counterexample is due to
Oort (ef [10]). He begins with a supersingular elliptic curve Eo over k , and
considers the product Eo(pw) X Eo(pm) of its p-divisible group with itself. 1In
this product, the kernel of F is a_ X ap . Over the projective line IPl over

P

k , we get a family of ap's sitting in ap X ap ; over a point in iPl with

homogeneous coordinates (u,v) sits the image of the closed immersion

If we divide the constant group Eo(pw) X Eo(pm) over Pt by this variable o
we get a non-constant p-divisible group over IPl . Restricting to the complete
local ring at any closed point of ]Pl , we get a non-constant p-divisible group
over k[[T]] , whose Dieudonné module provides the required counterexample.
Concretely, this means we begin with the constant o-F-crystal (M,V,F) on
k[[T]] given by
M: free W(k)[[T]]-module with basis §l,e2,e3,eh

¥V: the trivial connection with V(é%)(ei) =0 for i =1,2,3,k4
F: in terms of the endomorphism I of W(k)[[T]] which is

o-linear and maps T — TP , the Z-linear map F_ : M — M
D

o
is given by
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Fz(ez) = pe;» File,) = peq
The W(k)[[T]]-submodule M'c M spanned by

e, + Tpe . e2 » pe3 . eu

1 3
is stable under V and FZ , and we have pM<& M'< M . But _(M')V = Mvn M' is
the free W(k)-module spanned by eg,eh > P8y and pe3 , so that
(M')VQW(k)[[T]] % M' . Therefore (M',V,F) is not constant. Alternately, one

could observe that the Hodge polygon of (M',V,Fg) is not constant (its least
Hodge slope is 1 at the closed point , O at the generic point) , and hence
(M',V,F) cannot be constant.

Another very recent counterexample is due to Lubin. He constructs a

o-F-crystal (M,V,F) over k[[T]] of rank 5 , whose Newton slopes are all 2/5 ,

and whose Hodge numbers are nl =3 s nt =2 , at both points of spec(k[[T]1]).

In Lubin's example, the Hodge polygon of (M,V,F5) is not constant; at the closed

point, the least Hodge slope of F5 is 2 , but at the generic point it is 1 .
Therefore (M,V,FS) , and & fortiori (M,V,F) , cannot be constant.

Here is the actual example. The module M is free on el,...,e5 over
w(x)[[T]]. For the endomorphism I of w(x)[[T]] which is o-linear and sends
z)

T F— TP , F is the linear map M( — M with matrix

" o O O O
o ©o o o
o o o H O
H o K O O
o 8B o O O

The connection V on M is the unigue one for which F is horizontal.

In the positive direction, we do have the following two constancy theorems
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Theorem 2.7.2

Let (M,V,F) be a ca—F—crzstal of rank r > 1 on k[[T]], with k alge-

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes

are all (r-1)/r , and the Hodge numbers h' vanish for i > 1 . Then (M,V,F)

is constant.

Proof. The Newton and Hodge polygons must be

(r,r-1)

Newton -—— > f’\\\\

(1,0)

Hodge

at both points of Spec(k[[T]]) (because they start and end together, and the
Hodge slopes are O and 1 ). Therefore hO =1 . Applying the sharp slope

estimate (with A = r-1/r ), we get

{EtiL.n}
F = 0 mod p
In particular, F' is divisible by p' ~ , and hence (M,7,F'/p° 1) is a unit-
root F-crystal. Just as in the proof of 2.7.1, this implies that (M,V,F) is

the inverse image of (MV,F) on k. QED

Theorem 2.7.3
Let (M,V,F} Ye a ca—F—crxstal of rank r >1 on k[[T]], with k alge-

braically closed. Suppose that at both points of Spec(k[[T]]), the Newton slopes

are all 1/r . Then (M,V,F) is constant.

Proof. This time the basic slope estimate shows that (M,V,F'/p) is a unit-root

F-crystal, and we conclude as in 2.7.2.

The theorem 2.7.1 of constancy up to isogeny becomes false as soon as we allow

the commoﬂ Newton polygon to have more than one distinct slope, for there can be

highly non-trivial extensions of constant F-crystals over k[[T]] . The simplest
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and most important example of such an extension is given by first taking an or-
dinary elliptic curve E_ “~over k , then constructing its equicharacteristic
universal formal deformetion E over k[[T]] , and finally taking the p-divisible
group E(p ) of E . This p-divisible group over k[[T]] sits an exact sequence
O b e E(p) —> @ /% — 0
The Dieudonné crystal (M,V,F) of E(pm) , or equivalently the first crystalline
cohomology of E/k[[T]] , is a o-F-crystal of rank two, which is an extension of
two constant o-F-crystals of rank one. Even the underlying crystal (M,V) is
highly non-trivial; indeed, M’ is free of rank one over W(k) . (For a suitable
choice of parameter T of W(k)[[T]] , the Serre-Tate or the Dwork theory tells us
that (M,V) , viewed as a module with connection on W(k)[[T]] , admits a basis

e, in terms of which the connection is given by

V(5 (e,) = 0
d 1
e le) = Ty %

.. \
Because the series log(l+T) has unbounded coefficients, the module M of

horizontal sections consists only of the W(k) multiples of e, J)

Theorem 2.7.4

Let (M,V,F) be a oo-F-crystal on k[[T]] , with k algebraically closed.

Suppose that at the two points of Spec(k[[T]])}, the Newton polygons coincide.

Then (M,V,F) 1is isogenous to a ca—F—crystal (M',V',F') whose inverse image on

(k[[T]])Perf is constant.

Proof. This follows by combining Corollary 2.6.2 and Theorem 2.7.1.

Remarks. 1) This gives an alternate proof of Berthelot's Theorem ¥.7.1 in [1].
f
2) B. Gross (cf [4]) attaches to any 6®-P-crystal over k((T))Per a

representation of Gal(k((T))alg'Cl'/k((T))Perf') which is trivial if and only if
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the ca—F—crystal is isogenous to a constant one. Therefore if we begin with a
ca-F—crystal over k[[T]] with constant Newton polygon, Gross's representation,

perf.

attached to its inverse image on k((T)) , is trivial. TIs the converse true?
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