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Chapter 1

Divisors and Line Bundles

1.1 The Divisor Sequence

A Riemann surface M is a one-dimensional connected complex manifold1.
The local properties of a meromorphic function at a point p ∈M are described
almost entirely by the order of the function at that point, denoted by ordp(f),
which is a positive integer n if the function has a zero of order n at the point
p, is a negative integer −n if the function has a pole of order n at the point
p, and is zero otherwise. The global properties of a meromorphic function on
a compact Riemann surface are determined almost completely when the order
of the function is given at each point of the surface; and that is done most
conveniently in terms of divisors. In general a divisor on a Riemann surface M
is a mapping d : M → Z such that d(p) 6= 0 only at a discrete set of points
p ∈M ; that set of points is called the support of the divisor, and is denoted by
|d|. The set of all divisors on M clearly form an abelian group under pointwise
addition of functions. The zero element of the group, called the zero divisor or
the trivial divisor, is the divisor that is identically zero on M . The group of
divisors is partially ordered by setting d1 ≥ d2 whenever d1(p) ≥ d2(p) for all
points p ∈ M ; in particular a divisor d is a positive divisor, traditionally also
called an effective divisor, if d(p) ≥ 0 for all points p ∈M . Any divisor d on M
can be written uniquely as the difference d = d+ − d− of two effective divisors
with disjoint supports, the divisors defined by

(1.1) d+(p) = max
(
d(p), 0

)
, d−(p) = max

(
− d(p), 0

)
.

On a compact Riemann surface M a divisor d is nonzero only at finitely many
points of the surface; the degree of the divisor is the integer deg d =

∑
p∈M d(p).

A customary and useful notation is to write a divisor in the form d =
∑
i νi · pi

where {pi} is a discrete set of points of M and d(pi) = νi while d(p) = 0 at
all points other than those in the set {pi}; it is clear that for a divisor written

1For the definitions and basic properties of complex manifolds and of holomorphic and
meromorphic functions on complex manifolds see Appendix A.2.
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4 CHAPTER 1. DIVISORS AND LINE BUNDLES

this way deg d =
∑
i νi and |d| ⊂

⋃
i pi, where this inclusion is an equality of

sets if νi 6= 0 for all indices i. The groups of divisors in the open subsets of
a Riemann surface M , with the obvious restriction homomorphisms, form a
complete presheaf2 of abelian groups over M ; the associated sheaf is the sheaf
of divisors on M , denoted by D, and it is clear that D is a fine sheaf over M .
The group of divisors on any open subset U ⊂ M can be identified with the
group Γ(U,D) of sections of the sheaf D over that subset.

To any meromorphic function f that is not identically zero on a Riemann
surface M there can be associated its divisor d(f), defined by d(f)(p) = ordp(f)
for all points p ∈ M . When this divisor is written as the difference d(f) =
d+(f)−d−(f) of two effective divisors with disjoint supports, d+(f) is the divisor
of zeros of the function f and d−(f) is the divisor of poles of the function; d+(f)
lists all zeros of the function f with their orders, while d−(f) lists the poles of f
with their orders. The mapping that associates to any nontrivial meromorphic
function on M its divisor is a homomorphism

(1.2) d : Γ(M,M∗) −→ Γ(M,D)

from the multiplicative group of nontrivial meromorphic functions on M to the
additive group of divisors on M . The kernel of this homomorphism consists
of those meromorphic functions having order zero at all points of M , so is the
multiplicative group Γ(M,O∗) of nowhere vanishing holomorphic functions on
M ; consequently (1.2) can be extended to the exact sequence

(1.3) 0 −→ Γ(M,O∗) ι−→ Γ(M,M∗) d−→ Γ(M,D)

in which ι is the inclusion mapping. The image of the homomorphism d consists
of those divisors on M that are the divisors of global meromorphic functions
on M , customarily called principal divisors on M . Two divisors d1 and d2 that
differ by a principal divisor are called linearly equivalent divisors, and the linear
equivalence of these two divisors is denoted by d1 ∼ d2. It is clear that this is an
equivalence relation in the usual sense, and that the principal divisors form one
equivalence class. It is actually a nontrivial equivalence relation on compact
Riemann surfaces; an initial necessary condition that divisors on a compact
Riemann surface must satisfy in order to be principal divisors is the following.

Theorem 1.1 If f is a nontrivial meromorphic function on a compact Riemann
surface M then deg d(f) = 0.

Proof: Select a finite triangulation3 of the compact Riemann surface M by
2-dimensional simplices σj such that the support of the divisor d(f) of the mero-
morphic function f is disjoint from the boundaries ∂σj of all of these simplices.
By the residue theorem the degree of the divisor d(f) is given by

deg d(f) =
∑
j

1

2πi

∫
∂σj

d log f(z) =
1

2πi

∫
∑
j ∂σj

d log f(z);

2For the definition and basic properties of sheaves and presheaves see Appendix C.1.
3For the topological properties of surfaces see Appendix D.
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and since
∑
j ∂σj = 0 it follows that deg d(f) = 0, which suffices for the proof.

For any nontrivial meromorphic function f on a compact Riemann surface M
it follows from the preceding theorem that 0 = deg d(f) = deg d+(f)−deg d−(f)
and hence that deg d+(f) = deg d−(f); this common value is called the degree of
the meromorphic function f and is denoted by deg f . Clearly deg f ≥ 0 for any
nontrivial meromorphic function on a compact Riemann surface, and deg f = 0
if and only if f is everywhere holomorphic and nowhere zero on M , hence
is a nonzero complex constant as an immediate consequence of the maximum
modulus theorem. Not all divisors of degree 0 on a compact Riemann surface
M are the divisors of meromorphic functions on M though; but it is obvious
that any divisor is locally the divisor of a nontrivial meromorphic function, or
equivalently that any germ of a divisor is the divisor of a germ of a nontrivial
meromorphic function. Thus there is the exact sequence of sheaves

(1.4) 0 −→ O∗ ι−→M∗ d−→ D −→ 0

on any Riemann surface M , where ι is the natural inclusion homomorphism and
d is the homomorphism that associates to any germ of a nontrivial meromorphic
function the germ of its divisor, the local form of the homomorphism (1.2). The
problem of determining which divisors are the divisors of meromorphic func-
tions on M then can be approached by using the exact cohomology sequence4

associated to the exact sequence of sheaves (1.4), which begins

(1.5) 0 −→ Γ(M,O∗) ι−→ Γ(M,M∗) d−→ Γ(M,D)
δ−→

δ−→ H1(M,O∗) ι−→ H1(M,M∗) d−→ H1(M,D) = 0

where δ is the coboundary homomorphism and H1(M,D) = 0 since D is a
fine sheaf. The first line of this exact sequence is just the exact sequence (1.3);
sheaf cohomology theory yields the coboundary homomorphism δ connecting the
two lines and the homomorphisms between the higher dimensional cohomology
groups. The exactness of the sequence (1.5) at the group Γ(M,D) is just the
assertion that a divisor d ∈ Γ(M,D) is a principal divisor if and only if δ(d) =
0 ∈ H1(M,O∗); and it follows that d1 ∼ d2 if and only if δ(d1) = δ(d2),
so linear equivalence of divisors is just the equivalence relation defined by the
group homomorphism δ.

The preceding can be put into a more concrete form by tracing through the
coboundary homomorphism in the exact cohomology sequence (1.5). For any
divisor d ∈ Γ(M,D) on a Riemann surface M there is a covering U = {Uα} of
M by open subsets Uα ⊂ M such that the restriction of the divisor d to each
set Uα is the divisor of a nontrivial meromorphic function fα in Uα; the set of
these functions can be viewed as a cochain f ∈ C0(U,M), and the coboundary
of this cochain is the 1-cocycle δf = λ ∈ Z1(U,O∗) that represents the image
δ(d) ∈ H1(M,O∗). Explicitly as the multiplicative analogue of (C.7)

(1.6) λαβ =
fβ
fα

;

4For the cohomology of sheaves see Appendix C.2.
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the functions λαβ are holomorphic and nowhere vanishing in the intersections
Uα ∩ Uβ , since fα and fβ have the same divisors there, and they clearly satisfy
the skew-symmetry condition λαβ = λ−1

βα and the cocycle condition

(1.7) λαβλβγλγα = 1 in Uα ∩ Uβ ∩ Uγ .

The cocycle λ depends on the choices of the local meromorphic functions fα; but
any other meromorphic function f̃α in Uα having the same divisor as fα must
be of the form f̃α = fαhα for a nowhere vanishing holomorphic function hα in
the set Uα, and the cocycle associated to the functions f̃α is λ̃αβ = h−1

α λαβhβ
which is a cohomologous cocycle and represents the same cohomology class in
H1(M,O∗). The image of the coboundary homomorphism δ consists of those
cohomology classes in H1(M,O∗) that are trivial in H1(M,M∗), hence that
are represented for a sufficiently fine open covering U = {Uα} of M by cocycles
λαβ ∈ Z1(U,O∗) that have the form (1.6) for some meromorphic functions fα
in the sets Uα.

Elements of the cohomology group H1(M,O∗) of a Riemann surface M can
be viewed as holomorphic line bundles5 over M . To any divisor d ∈ Γ(M,D)
there thus can be associated the holomorphic line bundle δ(d) ∈ H1(M,O∗)
in the exact sequence (1.5); but it is more convenient and more customary to
associate to a divisor d the holomorphic line bundle ζd = δ(−d), called the line
bundle of the divisor d. If d is locally the divisor of meromorphic functions
fα in the open sets Uα of a covering U then −d is locally the divisor of the
meromorphic functions f−1

α , so as in (1.6) the line bundle ζd is described by the
cocycle

(1.8) ζdαβ =
f−1
β

f−1
α

=
fα
fβ
.

Since d(f1f2) = d(f1) + d(f2) it is evident from the preceding equation that

(1.9) ζd1+d2
= ζd1

· ζd2

for any divisors d1, d2, so the mapping that associates to any divisor d the line
bundle ζd of that divisor is a homomorphism from the additive group of divisors
to the multiplicative group H1(M,O∗) of holomorhic line bundles over M . From
the exact sequence (1.5) it follows that d1 ∼ d2 if and only if δ(d1) = δ(d2); and
since d1 ∼ d2 if and only if −d1 ∼ −d2 it follows that

(1.10) d1 ∼ d2 if and only if ζd1 = ζd2 ,

so the linear equivalence of divisors corresponds to the equality of their associ-
ated line bundles.

A cross-section of a holomorphic line bundle ζ ∈ H1(M,O∗) described by
a cocyle ζαβ ∈ Z1(U,O∗) is a collection of complex-valued functions fα defined
in the open subsets Uα and satisying

(1.11) fα = ζαβfβ in the intersections Uα ∩ Uβ .
5For the definition and basic properties of holomorphic line bundles see Appendix B, and

for the description of holomorphic line bundles in terms of sheaf cohomology see Appendix C.2.
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A holomorphic cross-section is one for which the functions fα are holomor-
phic; the set of all holomorphic cross-sections of the line bundle ζ is denoted
by Γ

(
M,O(ζ)

)
, and clearly this is a complex vector space under the addition

and scalar multiplication of the functions fα. The vector spaces Γ
(
M,M(ζ)

)
of meromorphic cross-sections, Γ

(
M, E(ζ)

)
of C∞ complex-valued cross-sections

and Γ
(
M, C(ζ)

)
of continuous complex-valued cross-sections are defined corre-

spondingly. Any cross-section f ∈ Γ(M,M(λ)) is described by meromorphic
functions fα in coordinate neighborhoods Uα; the order of the cross-section f
at a point p ∈ M can be defined by ordp(f) = ordp(fα) whenever p ∈ Uα, for
ordp(fα) = ordp(λαβfβ) = ordp(fβ) if p ∈ Uα∩Uβ since λαβ is holomorphic and
nowhere vanishing there; the divisor d(f) of the cross-section f then is defined
by d(f)(p) = ordp(f) for all points p ∈ M , just as for meromorphic functions
on M .

Since (1.8) and (1.11) are really the same equation it is evident that for any
holomorphic line bundle ζ

(1.12) ζ = ζd(f) for any f ∈ Γ
(
M,M(ζ)

)
.

For many purposes positive or effective divisors play a special role. A complete
linear system |d0| is defined traditionally as the set of all effective divisors that
are linearly equivalent to the divisor d0. By (1.10) this consists of all effective
divisors d such that ζd = ζd0 ; equivalently by (1.12) this consists of all divisiors
d(f) of holomorphic cross-sections f ∈ Γ

(
M,O(ζd0

)
)
. Two holomorphic cross-

sections f1, f2 of a holomorphic line bundle have the same divisor if and only
if their quotient f1/f2 is a holomorphic and nowhere vanishing function on M ;
and since M is compact that quotient must therefore be a nonzero complex
constant. It is traditional for any vector space V to let P(V ) denote the set of
equivalence classes of nonzero vectors v1, v2 ∈ V where v1 and v2 are equivalent
if and only if v1 = cv2 for some complex constant c. For a finite dimensional
complex vector space this set PCn+1 is just the standard projective space Pn of
dimension n. With this notation therefore there is the natural identification

(1.13) |d| = PΓ
(
M,O(ζ0)

)
.

Thus another of the standard concepts of classical algebraic geometry has a
natural interpretation in terms of holomorphic line bundles.

1.2 The Characteristic Class of a Line Bundle

The line bundle of the divisor d = 1 · p for a single point p ∈ M is denoted
by ζp and is called a point bundle over the Riemann surface M ; the bundle ζp
thus is characterized as that holomorphic line bundle over M having a nontrivial
holomorphic cross-section with a simple zero at the point p ∈ M and no other
zeros on M . For any divisor d =

∑
i νi · pi in M it is obvious that ζd =

∏
i ζ
νi
pi ,

so all line bundles of divisors on M can be built up from point bundles over
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M . If f1, f2 ∈ Γ(M,M(λ)) are two nontrivial meromorphic cross-sections of a
holomorphic line bundle λ over a compact Riemann surface M their quotient
f1/f2 is a meromorphic function on M , so from Theorem 1.1 it follows that 0 =
deg d(f1/f2) = deg d(f1)−deg d(f2); consequently the degrees of the divisors of
all nontrivial meromorphic cross-sections of a holomorphic line bundle λ over a
compact Riemann surface are the same. This observation can be used to define
the characteristic class or Chern class of a holomorphic line bundle λ over a
compact Riemann surface M by

(1.14) c(λ) = deg d(f) for any f ∈ Γ(M,M(λ)), f 6= 0;

in particular

(1.15) c(ζd) = deg d for any divisor d.

The characteristic class is defined in this way though only for those holomorphic
line bundles that have nontrivial meromorphic cross-sections. It will be demon-
strated later in this chapter that all holomorphic line bundles over a compact
Riemann surface do have nontrivial meromorphic cross-sections; thus the char-
acteristic class actually is well defined for any holomorphic line bundle over M .
However the characteristic class of a line bundle really is a purely topological
invariant of the line bundle and can be described in various other ways, which
provide definitions of the characteristic class for any holomorphic line bundle
without recourse to the basic existence theorem. One alternative definition is
through a curvature integral expressed in terms of the differential operators6 ∂
and ∂.

Theorem 1.2 Let λ be a holomorphic line bundle over a compact Riemann
surface M described by a coordinate bundle {Uα, λαβ} in terms of a covering
of M by open sets Uα. If rα > 0 are C∞ functions in the sets Uα such that
rα = |λαβ |2rβ in Uα ∩ Uβ then ∂∂ log rα = ∂∂ log rβ in Uα ∩ Uβ, so the local
differential forms ∂∂ log rα describe a global differential form of degree 2 on the
surface M . The integral

(1.16)
1

2πi

∫
M

∂∂ log rα

is independent of the choice of the functions rα; and if λ has a nontrivial mero-
morphic cross-section the value of this integral is the characteristic class c(λ) of
the line bundle λ.

Proof: If rα = |λαβ |2rβ in Uα ∩ Uβ then log rα = log λαβ + log λαβ + log rβ
in that intersection; and since log λαβ is holomorphic ∂ log λαβ = ∂ log λαβ = 0
and ∂ log λαβ = d log λαβ , so

(1.17) ∂ log rα = d log λαβ + ∂ log rβ

6The differential operators ∂ and ∂ are defined in Appendix A.1.
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and ∂∂ log rα = ∂∂ log rβ as asserted. For any other C∞ functions sα > 0 in the
sets Uα satisfying sα = |λαβ |2sβ in Uα ∩ Uβ it is evident that sα = h rα where
h > 0 is a C∞ function defined on the entire surface M ; then ∂ log h is a C∞
differential form on the compact manifold M so

∫
M
∂∂ log h =

∫
M
d(∂ log h) = 0

by Stokes’s Theorem and consequently∫
M

∂∂ log sα =

∫
M

(
∂∂ log h+ ∂∂ log rα

)
=

∫
M

∂∂ log rα,

showing that the value of the integral (1.16) is independent of the choice of the
functions rα. If f ∈ Γ(M,M(λ)) is a nontrivial meromorphic cross-section of the
line bundle λ and d(f) =

∑
j νj · pj then by definition c(λ) = deg d(f) =

∑
j νj .

Choose coordinate neighborhoods Uα covering M such that each point pj is
contained in an open disc Dj ⊂ Uαj for a coordinate neighborhood Uαj and

Dj ⊂ Uαj whileDj∩Uβ = ∅ whenever β 6= αj . Set rα = |fα|2 if α 6= αj for any j;
and let rαj be a modification of the function |fαj |2 within the disc Dj so that rαj
is a C∞ and strictly positive function in Uαj , as is clearly possible. The functions
rα so defined then are C∞ in the coordinate neighborhoods Uα and satisfy rα =
|λαβ |2rβ in any intersection Uα ∩ Uβ ; and ∂∂ log rα = ∂∂(log fα + log fα) = 0
in the complement of the union

⋃
j Dj since the functions fα are holomorphic

there. Then from the residue calculus and Stokes’s theorem it follows that

1

2πi

∫
M

∂∂ log rα =
1

2πi

∑
j

∫
Dj

∂∂ log rαj =
1

2πi

∑
j

∫
Dj

d∂ log rαj

=
1

2πi

∑
j

∫
∂Dj

∂ log rαj =
1

2πi

∑
j

∫
∂Dj

d log fαj

=
∑
j

νj = c(λ)

since ∂ log rαj = d log fαj on ∂Dj , and that suffices to conclude the proof.

It is easy to see that for any holomorphic line bundle λ over a compact
Riemann surface M there exist functions rα satisfying the conditions of the
preceding theorem for any finite open covering {Uα} of M . Indeed choose open
subsets Vα such that Vα ⊂ Uα and that the sets Vα also cover M . For any
open set Uα of the initial covering there exists as usual a C∞ function rαα with
support in Uα such that rαα(p) ≥ 0 in Uα and rαα > 0 in Vα; and in terms
of this function set rαβ (p) = λβα(p)rαα(p) for p ∈ Uα ∩ Uβ and rαβ (p) = 0 for
p ∈ Uβ ∼ Uα, from which it is clear that rαβ (p) = λβγ(p)rαγ (p) for p ∈ Uβ ∩ Uγ .

The sums rα =
∑
δ r

δ
α then satisfy the conditions of the theorem. The integral

(1.16) thus is a well defined invariant associated to any line bundle λ, and by
the preceding theorem this invariant is equal to the characteristic class of λ
if that bundle has a nontrivial meromorphic cross-section; this thus provides a
definition of the characteristic class of an arbitrary holomorphic line bundle over
a compact Riemann surface, which reduces to the preceding definition (1.14) for
those holomorphic line bundles that have nontrivial meromorphic cross-sections.
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Corollary 1.3 If λ is a holomorphic line bundle over a compact Riemann sur-
face M and c(λ) < 0 then the bundle λ has no nontrivial holomorphic cross-
sections.

Proof: If λ has a nontrivial holomorphic cross-section f then c(λ) is defined by
(1.14) so that c(λ) = deg d(f) ≥ 0, and that suffices for the proof.

Corollary 1.4 If λ is a holomorphic line bundle over a compact Riemann sur-
face M and c(λ) = 0 then

dim Γ(M,O(λ)) =

 1 if λ is analytically equivalent to the trivial bundle,

0 otherwise.

Proof: If the line bundle λ has characteristic class c(λ) = 0 and has a nontrivial
holomorphic cross-section f then c(λ) is defined by (1.14) so that 0 = c(λ) =
deg d(f), and consequently the cross-section f is holomorphic and nowhere van-
ishing on M . Thus when the line bundle is defined by coordinate transition
functions λαβ in intersections Uα ∩ Uβ of coordinate neighborhoods on M the
cross-section f is described by holomorphic and nowhere vanishing functions fα
in the sets Uα such that λαβ = fα/fβ in Uα ∩Uβ ; and that is just the condition
that the line bundle λ is analytically equivalent to the trivial line bundle. On the
other hand any holomorphic cross-section of the trivial line bundle λ = M × C
over M is just a holomorphic function on the compact Riemann surface M so
by the maximum modulus theorem is constant; thus dim Γ(M,O(λ)) = 1 for
the trivial line bundle λ, and that suffices for the proof.

An alternative approach to the characteristic class of a holomorphic line
bundle uses a different exact sequence of sheaves. Over an arbitrary Riemann
surface M there is the exact sequence of sheaves

(1.18) 0→ Z ι−→ C e−→ C∗ −→ 0

in which ι is the natural inclusion mapping of the sheaf of locally constant
integer-valued functions, the trivial sheaf with stalk Z, into the sheaf C of germs
of complex-valued continuous functions and e is the homomorphism that asso-
ciates to a germ f ∈ C the germ e(f) = exp 2πi f ∈ C∗ of a nowhere vanishing
complex-valued continuous function. The associated exact cohomology sequence
contains the segment

H1(M, C) e−→ H1(M, C∗) δ−→ H2(M,Z)
ι−→ H2(M, C),

in which H1(M, C∗) can be viewed as the set of topological line bundles over M .
Since C is a fine sheaf H1(M, C) = H2(M, C) = 0, so this segment of an exact
sequence reduces to the isomorphism

(1.19) δ : H1(M, C∗) '−→ H2(M,Z).
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The image δ(λ) ∈ H2(M,Z) of a topological line bundle λ ∈ H1(M, C∗) under
this isomorphism thus characterizes the topological equivalence class of λ com-
pletely, and every cohomology class in H2(M,Z) is the image of some topological
line bundle over M . There is a similar exact sequence of sheaves

(1.20) 0→ Z ι−→ E e−→ E∗ −→ 0

involving C∞ functions rather than merely continuous functions; and since E
also is a fine sheaf the associated exact cohomology sequence leads in the same
way to an isomorphism

(1.21) δ : H1(M, E∗) '−→ H2(M,Z)

analogous to (1.19) but in which H1(M, E∗) can be viewed as the set of C∞
line bundles over M . These isomorphisms can be described more concretely
by tracing through the coboundary homomorphism in the exact sequence of
sheaves, just as was done for the coboundary homomorphism in the exact se-
quence (1.5). If the line bundle λ is described by coordinate transition functions
λαβ ∈ Z1(U, C∗) or Z1(U, E∗) there are single-valued branches of the logarithms

(1.22) fαβ =
1

2πi
log λαβ

in the intersections Uα∩Uβ after passing to a suitable refinement of the covering
if necessary. The image δ(λ) ∈ H2(M,Z) is the cohomology class represented
by the integral cocycle n ∈ Z1(U,Z) for which

(1.23) nαβγ = fβγ − fαγ + fαβ .

Since this is the same construction for either of the homomorphisms (1.19) or
(1.21) it is evident that the image δ(λ) ∈ H2(M,Z) of a C∞ line bundle λ is
the same cohomology class whether calculated through (1.19) or (1.21); con-
sequently a topological line bundle over an arbitrary Riemann surface M is
topologically equivalent to a C∞ line bundle, and two C∞ line bundles are equiv-
alent if and only if they are topologically equivalent. Of course a holomorphic
line bundle λ can be viewed either as a C∞ line bundle or as a topological line
bundle, and either of these structures is described completely by the cohomology
class δ(λ) ∈ H2(M,Z).

Since H2(M,Z) ∼= Z when M is a compact connected two-dimensional ori-
entable manifold the cohomology class δλ ∈ H2(M,Z) associated to a line bun-
dle λ over a compact Riemann surface M can be identified with an integer.
It is useful in the present discussion to view the integral cohomology group
as a subgroup H2(M,Z) ⊂ H2(M,C) ∼= C of the complex cohomology group,
since the latter group can be handled analytically through the deRham isomor-
phism. There is of course a choice in the identification of a cohomology class
in H2(M,C) with a complex number, since the identification H2(M,C) ∼= C is
determined only up to a linear mapping of C; the choice made here is conve-
nient for present purposes. A cohomology class c ∈ H2(M,C) is described by
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a cocycle cαβγ ∈ Z2(U,C) in terms of a covering U = {Uα} of the surface M .
When viewed as a cocycle in Z2(U, E) the cocycle cαβγ is cohomologous to zero
after a suitable refinement of the covering U since E is a fine sheaf; so

(1.24) cαβγ = fβγ − fαγ + fαβ

for some C∞ functions fαβ in the intersections Uα∩Uβ . Since cαβγ are constants

0 = d cαβγ = d fβγ − d fαγ + d fαβ ,

and consequently the differential forms d fαβ form a cocycle in Z1(U, E1). The
sheaf E1 of C∞ differential forms of degree 1 also is a fine sheaf, so after a further
refinement of the covering U if necessary

(1.25) d fαβ = φβ − φα

for some C∞ differential 1-forms φα in the neighborhoods Uα. Then

0 = d d fαβ = dφβ − dφα

so the differential 2-forms dφα and dφβ agree in the intersection Uα ∩ Uβ ;
consequently these local differential forms describe a differential 2-form on the
entire compact Riemann surface M . The deRham isomorphism7

(1.26) I : H2(M,C) −→ C

associates to the cohomology class c ∈ H2(M,C) represented by the cocycle
cαβγ the complex number

(1.27) I(c) =

∫
M

dφα.

In terms of this isomorphism the characteristic class of a holomorphic line bundle
can be described as follows.

Theorem 1.5 If δλ ∈ H2(M,C) is the cohomology class associated to a holo-
morphic line bundle λ over a compact Riemann surface M through the isomor-
phism (1.20) or (1.21) then c(λ) = −I(δλ) is the characteristic class of that line
bundle.

Proof: The cohomology class δλ ∈ H2(M,Z) ⊂ H2(M,C) is represented by
the cocycle nαβγ defined in (1.19) in terms of the functions fαβ of (1.22); so
I(δλ) ∈ C is the complex number defined through equations (1.25) and (1.27)
in terms of the functions fαβ . It follows from (1.17) that

d fαβ =
1

2πi
∂ log rα −

1

2πi
∂ log rβ

7For details see the discussion in Appendix D.2.
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in terms of the functions rα of Theorem 1.2, so in (1.25) it is possible to take
φα = − 1

2πi∂ log rα; then dφα = − 1
2πi∂∂ log rα and consequently in (1.27)

I(δλ) =

∫
M

dφα = − 1

2πi

∫
M

∂∂ log rα = −c(λ)

by Theorem 1.2, which suffices for the proof.

That a negative sign appears in the formula for the characteristic class c(λ)
in the preceding theorem reflects the definition of the line bundle of a divisor d
as the line bundle ζd = δ(−d) in order that c(ζd) = deg d.

1.3 The Dolbeault Calculus

Further properties of holomorphic line bundles follow from a further exam-
ination of the differential operator ∂, beginning with a variant of the Cauchy
Integral Formula that provides a partial inverse to that differential operator.
In the statement of this result the support of a complex valued function in the
plane is the closure of the set of points at which the function is nonzero.

Theorem 1.6 If g is a C∞ function with compact support in the complex plane
C there is a C∞ function f in C such that ∂f/∂z = g.

Proof: When the complex variable ζ is expressed in polar coordinates as ζ =
reiθ then

dζ ∧ dζ
ζ

= 2ie−iθdr ∧ dθ,

so this differential form remains bounded near the origin although not actually
defined at the origin. Since g is C∞ and has compact support the integral

(1.28) f(z) =
i

2π

∫
C
g(z + ζ)

dζ ∧ dζ
ζ

is a C∞ function of the variable z in the entire plane and can be differentiated
by differentiating under the integral sign. For any fixed point z ∈ C let D be a
disc centered at the origin in the plane of the variable ζ and having sufficiently
large radius that g(z + ζ) vanishes for all points ζ 6∈ D; and let Dε be another
disc centered at the origin in the plane of the variable ζ contained in D and
having radius ε. Then

∂f(z)

∂z
=

i

2π

∫
C

∂g(z + ζ)

∂z

dζ ∧ dζ
ζ

=
i

2π

∫
C

∂g(z + ζ)

∂ζ

dζ ∧ dζ
ζ

= lim
ε→0

i

2π

∫
D∼Dε

d

(
g(z + ζ)

ζ
dζ

)
= lim

ε→0

−i
2π

∫
∂Dε

g(z + ζ)

ζ
dζ
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by Stokes’s Theorem, since the differential form g(z+ ζ) ζ−1dζ vanishes on ∂D.
If the circle Dε is parametrized by ζ = εeiθ then

∂f(z)

∂z
= lim
ε→0

1

2π

∫ 2π

θ=0

g(z + εeiθ)dθ = g(z)

as desired, to conclude the proof.

Generally the function f of the preceding theorem does not have compact
support, although of course it must be holomorphic outside the support of g.
For many purposes only the following local version of this theorem is of interest.

Corollary 1.7 If g is the germ of a C∞ function at a point in the complex plane
there is a germ f of a C∞ function at that point such that ∂f/∂z = g.

Proof: Any germ of a C∞ function can be represented by a C∞ function of
compact support in the complex plane, so this assertion is an immediate conse-
quence of the preceding theorem.

A modification of the proof of the preceding Theorem 1.6 is useful at a later
point in the discussion; but it is perhaps natural to include it here as another
form of solution of the ∂ equation.

Theorem 1.8 For any δ > 0 there is a C∞ function s in the complex plane with
support in the disc |z| ≤ δ/2 such that for any bounded open subsets U ⊂ V ⊂ C
for which the distance from U to C ∼ V is greater than δ and for any C∞
function f in the complex plane with support contained in U there is a C∞
function g in the complex plane with support contained in V for which

(1.29) f(z) =
∂g(z)

∂z
+
i

2

∫
U

f(ζ)s(ζ − z)dζ ∧ dζ.

Proof: Choose a C∞ function r(z) in the complex plane such that

r(z) =

 1 if |z| ≤ δ
4

0 if |z| ≥ δ
2

and set

s(z) =



0 if |z| < δ
4

− 1

π

∂

∂z

(
r(z)

z

)
if 0 < |z| < δ

0 if |z| > δ
2 ;

clearly the function s(z) is C∞ in the entire complex plane and its support is
contained in the disc |z| ≤ δ/2. For any C∞ function f in C with support in U
set

(1.30) g(z) =
i

2π

∫
C
f(z + ζ)r(ζ)

dζ ∧ dζ
ζ

,
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reminiscent of the integral (1.28) used in the proof of Theorem 1.6. The function
g thus defined is a C∞ function in the plane of the complex variable ζ and can
be differentiated by differentiating under the integral sign. Furthermore if the
distance from z to U exceeds δ/2 then g(z) = 0 since f(z + ζ) = 0 whenever
|ζ| ≤ δ/2 while r(ζ) = 0 whenever ζ ≥ δ/2; thus the support of the function g
is contained in V . For any fixed point z ∈ U let D be a disc centered at the
origin in the plane of the complex variable ζ with radius sufficiently large that
f(z+ ζ) = 0 whenever ζ 6∈ D, and let Dε be another disc centered at the origin
in the plane of the complex variable ζ with radius ε. Then

∂g(z)

∂z
=

i

2π

∫
C

∂f(z + ζ)

∂z
r(ζ)

dζ ∧ dζ
ζ

=
i

2π

∫
C

∂f(z + ζ)

∂ζ
r(ζ)

dζ ∧ dζ
ζ

= lim
ε→0

i

2π

∫
D∼Dε

∂f(z + ζ)

∂ζ

r(ζ)

ζ
dζ ∧ dζ

= lim
ε→0

i

2π

(∫
D∼Dε

d
(
f(z + ζ)

r(ζ)

ζ
dζ
)
−
∫
D∼Dε

f(z + ζ)
∂

∂ζ

(r(ζ)

ζ

)
dζ ∧ dζ

)

= lim
ε→0

−i
2π

∫
∂Dε

f(z + ζ)

ζ
dζ − i

2

∫
C
f(z + ζ)s(ζ)dζ ∧ dζ,

where Stokes’s Theorem is used to replace the integral over D ∼ Dε with the
integral over the boundary of this region and the integrand vanishes on the
boundary of D while r(ζ) = 1 for ζ ∈ ∂Dε for sufficiently small ε. The integral
over ∂Dε is just f(z), as in the proof of Theorem 1.6, and the desired result
then follows from a change of variable in the second integral.

For any Riemann surface M and any integers 0 ≤ p, q ≤ 1 the vector spaces
Γ(U, E(p,q)) of C∞ differential forms of type (p, q) over open subsets U ⊂ M
clearly form a complete presheaf over M ; the associated sheaf is denoted by
E(p,q), and the spaces Γ(U, E(p,q)) can be identified with the spaces of sections
of this sheaf. The differential operator ∂ is a homomorphism

(1.31) ∂ : Γ(U, E(p,0)) −→ Γ(U, E(p,1))

between these presheaves of complex vector spaces so induces a sheaf homomor-
phism

(1.32) ∂ : E(p,0) −→ E(p,1)

between the associated sheaves. If p = 0 so E(0,0) = E it follows from the
Cauchy-Riemann equations that the kernel of the sheaf homomorphism (1.32)
is the sheaf O of germs of holomorphic functions on M , and it follows from
Corollary 1.7 that for any germ φ = g dz ∈ E(0,1) there is a germ f ∈ E such
that ∂f/∂z = g and hence that ∂f = φ; thus there is the exact sequence of
sheaves

(1.33) 0 −→ O ι−→ E ∂−→ E(0,1) −→ 0
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over M , in which ι is the natural inclusion homomorphism. If p = 1 the kernel
of the sheaf homomorphism (1.32) is the sheaf of germs of differential forms
φ = f dz of type (1, 0) for which ∂f/∂z = 0, so for which the function f is
holomorphic; these are called germs of holomorphic differential forms, often
also called germs of holomorphic abelian differentials or of abelian differentials
of the first kind, and the sheaf of such germs is denoted by O(1,0). It follows
again from Corollary 1.7 that for any germ φ = g dz∧dz ∈ E(1,1) there is a germ
f ∈ E such that −(∂f/∂z) = g and hence ∂(−f dz) = −g dz∧dz = g dz∧dz = φ;
thus there is also the exact sequence of sheaves

(1.34) 0 −→ O(1,0) ι−→ E(1,0) ∂−→ E(1,1) −→ 0

over M , in which ι is the natural inclusion homomorphism.
More generally suppose that λ is a holomorphic line bundle over the Rie-

mann M and that λ is described by a coordinate bundle {Uα, λαβ} in terms
of a covering of M by open coordinate neighborhoods Uα. The vector spaces
Γ(U, E(λ)), Γ(U,O(λ)) and Γ(U,M(λ)) of C∞, holomorphic and meromorphic
cross-sections of λ in the open subsets U ⊂M clearly form complete presheaves
of abelian groups over M ; the associated sheaves are denoted by E(λ), O(λ)
and M(λ) respectively, and the spaces Γ(U, E(λ)), Γ(U,O(λ)) and Γ(U,M(λ))
of cross-sections of λ over U can be identified with the spaces of sections of
the corresponding sheaves over U . The vector spaces Γ(U, E(p,q)(λ)) consist-
ing of C∞ differential forms φα of type (p, q) in the intersections U ∩ Uα such
that φα = λαβ φβ in the U ∩ Uα ∩ Uβ also form a complete presheaf of abelian
groups over M ; the associated sheaf is denoted by E(p,q)(λ), and the vector space
Γ(U, E(p,q)(λ)) can be identified with the space of sections of the sheaf E(p,q)(λ)
over U . Of course E(λ) = E(0,0)(λ) so the sheaf E(λ) also can be considered
as a sheaf of germs of differential forms that are cross-sections of the line bun-
dle λ. If φ = {φα} ∈ Γ(U, E(p,0)(λ)) then ∂φα = λαβ ∂φβ in each intersection
Uα∩Uβ since the coordinate transition functions λαβ are holomorphic; thus the
differential operator ∂ describes homomorphisms

(1.35) ∂ : Γ(U, E(p,0)(λ)) −→ Γ(U, E(p,1)(λ))

of presheaves, which induce homomorphsms

(1.36) ∂ : E(p,0)(λ) −→ E(p,1)(λ)

of the associated sheaves. The kernel of this homomorphism for p = 0 is the
sheaf O(λ) of germs of holomorphic cross-sections of the line bundle λ and for
p = 1 is the sheaf O(1,0)(λ) of germs of holomorphic differential forms that are
cross-sections of the line bundle λ. The homomorphisms (1.35) reduce to the
homomorphisms 1.31) in sufficiently small open neighborhoods of any points of
M , so the exact sequences of sheaves (1.34) naturally induce the exact sequences
of sheaves

(1.37) 0 −→ O(p,0)(λ)
ι−→ E(p,0)(λ)

∂−→ E(p,1)(λ) −→ 0
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for p = 0 or 1, in which ι is the inclusion mapping.

The same result clearly holds for differential forms that are cross-sections of
a holomorphic vector bundle of any rank over a Riemann surface M , since such
cross-sections are described by finite sets of exact sequences (1.33) or (1.34).
From the exact sequence of sheaves (1.37) there follows as usual an associated
exact sequence of cohomology groups, leading to the following result.

Theorem 1.9 (Theorem of Dolbeault) If λ is a holomorphic line bundle
over an arbitrary Riemann surface M then

H1(M,O(λ)) ∼=
Γ(M, E(0,1)(λ))

∂Γ(M, E(0,0)(λ))
,

Hq(M,O(λ)) = 0 for q ≥ 2.

Proof: The long exact cohomology sequence associated to the exact sequence
of sheaves (1.37) for p = 0 includes the segment

Γ(M, E(λ))
∂−→ Γ(M, E(0,1)(λ))

δ−→ H1(M,O(λ))
ι−→ H1(M, E(λ));

and since E(λ) is a fine sheaf H1(M, E(λ)) = 0 so the homomorphism δ yields
the first isomorphism of the theorem. The same exact cohomology sequence
also includes the segments

Hq−1(M, E(0,1)(λ))
δ−→ Hq(M,O(λ))

ι−→ Hq(M, E(λ))

for all q ≥ 1; since E(0,1)(λ) is a fine sheaf Hq−1(M, E(0,1))) = Hq(M, E(λ)) = 0
for all q ≥ 2, from which it follows that Hq(M,O(λ)) = 0 for all q ≥ 2. That
suffices to conclude the proof.

The Theorem of Dolbeault also holds for holomorphic vector bundles as
well as for holomorphic line bundles, with essentially the same proof. Further
information about the first cohomology groups H1(M,O(λ)) can be obtained
by strengthening Theorem 1.6 as follows.

Theorem 1.10 If g is a C∞ function in an open subset U ⊆ C there is a C∞
function f in U such that ∂f/∂z = g.

Proof: It is sufficient to prove the theorem for a connected set U , so that
will be assumed in the proof. Select a sequence of connected open subsets
Un ⊂ U such that (i) Un is compact, (ii) Un ⊂ Un+1, (iii)

⋃∞
n=1 Un = U , (iv)

any function holomorphic in Un−1 can be approximated uniformly in Un−2 by
functions holomorphic in Un. The existence of such a sequence of subsets is a
standard result in complex analysis, rather like the Runge theorem.8 It will then
be demonstrated by induction on n that there is a sequence of functions fn such

8See for instance the discussion in E. Hille, Analytic Function Theory, vol. II, pages 299
ff., (Ginn, 1962), or in W. Rudin, Real and Complex Analysis, pages 255 ff., (McGraw Hill,
1966).
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that (v) fn is a C∞ function in Un, (vi) ∂fn/∂z = g in Un, (vii) fn(z)− fn−1(z)
is holomorphic in Un−1, (viii) |fn(z)−fn−1(z)| < 2−n for all z ∈ Un−2. For this
purpose note from Theorem 1.6 that for any index n there is a C∞ function hn on
the set U such that ∂hn/∂z = g in Un; for it is possible to modify the function
g outside Un so that it has compact support in U . If n = 1 take f1 = h1,
and there is nothing further to show. If n ≥ 2 suppose that the functions
f1, . . . , fn−1 have been determined so that they satisfy (v), (vi), (vii) and (viii).
Both hn and fn−1 are C∞ functions in Un−1 and ∂(hn − fn−1)/∂z = g − g = 0
in Un−1 so hn − fn−1 actually is holomorphic in Un−1. By (iv) there exists a
holomorphic function gn in Un such that |hn − fn−1 − gn| < 2−n in Un−2. The
functions f1, . . . , fn−1, fn = hn − gn then also satisfy (v), (vi), (vii) and (viii),
which completes the induction. The next step is to show that the sequence fn
converges to a C∞ function f in U and that this limit has the desired properties.
If k ≥ n + 2 it follows from (viii) that |fk(z) − fk−1(z)| < 2−k for all z ∈ Un
and from (vii) that the functions fk(z)− fk−1(z) are holomorphic in Un; so the
series

∑∞
k=n+2 (fk(z)− fk−1(z)) is a uniformly convergent series of holomorphic

functions in Un. If m ≥ n+ 2 and z ∈ Un

fm(z) = fn+1(z) +

m∑
k=n+2

(fk(z)− fk−1(z)) ;

but then sequence fm(z) converges uniformly in Un to the function

f(z) = fn+1(z) +

∞∑
k=n+2

(fk(z)− fk−1(z))

that differs from fn+1(z) by a holomorphic function, and consequently f(z) is a
C∞ function in Un and ∂f/∂z = ∂fn+1/∂z = g in Un. That is true for all sets
Un, and that suffices to conclude the proof.

Corollary 1.11 If U ⊂ C is an open subset of the complex plane and λ is a
holomorphic line bundle over U then λ is analytically trivial and Hp(U,O(λ)) =
0 for all p > 0.

Proof: Consider the exact sequence of sheaves

(1.38) 0 −→ Z ι−→ O e−→ O∗ −→ 0

over the subset U ⊂ C in which ι is the natural inclusion mapping of the
sheaf Z of locally constant integer-valued functions to the sheaf O of germs of
holomorphic functions and e is the homomorphism that associates to a germ
f ∈ O the germ e(f) = exp 2πi f ∈ O∗ of a nowhere vanishing holomorphic
function; this is just the holomorphic version of the exact sheaf sequences (1.18)
and (1.20). The associated exact cohomology sequence contains the segment

(1.39) H1(U,O)
e−→ H1(U,O∗) δ−→ H2(U,Z).
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It follows from the preceding theorem that for any differential form φ = g dz ∈
Γ(U, E(0,1)) there is a function f ∈ Γ(U, E) for which ∂f/∂z = g and hence ∂f =
g dz = φ; consequently H1(U,O) = 0 by the Theorem of Dolbault, Theorem
1.9, for the special case of the trivial line bundle. Furthermore H2(U,Z) = 0
for an arbitrary open subset of the complex plane. It therefore follows from the
exact sequence (1.39) that H1(U,O∗) = 0, which is just the condition that any
holomorphic line bundle over U is analytically trivial. Thus if λ is a holomorphic
line bundle over U then λ ∼= 1, so by what has just been proved H1(U,O(λ)) =
H1(U,O) = 0. Of course Hp(U,O(λ)) = 0 for all p > 1 by the Dolbeault
Theorem again, and that suffices to conclude the proof.

An application of the preceding corollary yields a method for calculating the
cohomology groups of Riemann surfaces with coefficients in the sheaf O(λ) of
germs of holomorphic cross-sections of a holomorphic line bundle.

Theorem 1.12 (Theorem of Leray) If U is a covering of the Riemann sur-
face M by open coordinate neighborhoods then for any holomorphic line bundle
λ over M and any integer p ≥ 0 the natural homomorphism

ι∗U : Hp(U,O(λ)) −→ Hp(M,O(λ))

is an isomorphism.

Proof: Since any intersection of coordinate neighborhoods in the covering U is
again a coordinate neighborhood, so can be viewed as an open subset of C, it
follows from Corollary1.11 that Hp(Uα1

∩ · · · ∩ Uαq ,O(λ)) = 0 for all p > 0.
Thus the covering U is a Leray covering of the Riemann surface M for the sheaf
O(λ), so by the general Theorem of Leray as discussed in Appendix C.2 the
natural homomorphisms ι∗U are isomorphisms for all indices p ≥ 0. That suffices
for the proof.

The identification H1(M,O(λ)) ∼= H1(U,O(λ)) is very convenient for ex-
plicit calculations in these cohomology groups; it is worth examining this in
more detail, since such calculations will be used repeatedly in the subsequent
discussion. Suppose that the line bundle λ is described by a coordinate bundle
{Uα, λαβ} in terms of a covering of the Riemann surface M by open coordinate
neighborhoods Uα. The local coordinates in the bundle λ describe any point in
λ over the coordinate neighborhood Uα as a pair (p, fα) where p ∈ Uα is the
projection of the point to the base space M and fα ∈ C is the fibre coordinate of
the point. Thus if s ∈ Γ(M,O(λ)) is a holomorphic cross-section of the bundle λ
then for any point p ∈ Uα the value s(p) of the cross-section s at the point p is de-
scribed by the pair

(
p, fα(p)

)
in terms of the fibre coordinate fα(p) ∈ C; and the

value fα(p) is a holomorphic function of the point p ∈ Uα, so the cross-section
s over the neighborhood Uα can be identified with the holomorphic function fα
in the coordinate neighborhood Uα ⊂ M . A cochain s ∈ Cp(U,O(λ)) consists
of sections sα0 ···αp ∈ Γ(Uα0

∩ · · · ∩Uαp ,O(λ)) for each ordered set of p+ 1 open
subsets Uα

0
, . . . , Uαp of the covering U, where these sections are skew-symmetric
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in the indices α0 , . . . , αp ; and the section sα
0
···αp can be identified with a holo-

morphic function fα
0
···αp in the intersection Uα

0
∩ · · · ∩ Uαp in terms of the

fibre coordinate over Uαp when the intersection is viewed as a subset of the last
coordinate neighborhood Uαp . This identification will be used consistently in
the subsequent discussion; thus cochains in Cp(U,O(λ)) will be identified with-
out further comment as collections of holomorphic functions in the intersections
Uα

0
∩ · · · ∩ Uαp ⊂ M in terms of the fibre coordinates in λ over Uαp . Some

care must be taken when using this identification though. For example the
skew-symmetry of the sections sα

0
···αp in the indices α

0
, . . . , α

p
does not mean

that the holomorphic functions fα0 ···αp that represent these sections are skew
symmetric in these indices. The section sα0 ···αp is identified with a holomorphic
function fα

0
···αp in terms of the fibre coordinates of λ over Uαp , while for any

permutation π ∈ Sp+1 of the integers 0, 1, . . . , p the section sα
π0
···απp is iden-

tified with a holomorphic function fα
π0
···απp in terms of the fibre coordinates

of λ over the subset Uαπp ; when the identity sα
π0
···απp = (signπ) · sα

0
···αp is

expressed in terms of the fibre coordinate over the coordinate neighborhood Uαp
it takes the form

(1.40) fα
0
···αp = (signπ)λαp απp fαπ0

···απp

since the fibre coordinates over a point in Uαp ∩ Uαπp are related by fαp =

λαp απp fαπp . Thus a 1-cochain s ∈ C1(U,O(λ)) consists of sections sαβ ∈
Γ(Uα ∩ Uβ ,O(λ)) that are skew-symmetric in the indices α, β and is identified
with a collection of holomorphic functions fαβ ∈ Γ(Uα ∩ Uβ ,O) satisfying the
skew-symmetry condition

(1.41) fαβ = −λβα fβα in Uα ∩ Uβ .

A 0-cochain s ∈ C0(U,O(λ)) consists just of sections sα ∈ Γ(Uα,O(λ)) and is
identified with a collection of holomorphic functions fα ∈ Γ(Uα,O); but there
is of course no skew-symmetry involved in this case.

The coboundary of a 0-cochain s ∈ C0(U,O(λ)) is the 1-cochain (δs)αβ =
sβ − sα; and if the 0-cochain is identified with a collection of holomorphic
functions fα ∈ Γ(Uα,O) and its coboundary δs is identified with a collection
of holomorphic functions (δf)αβ ∈ Γ(Uα ∩ Uβ ,O) then in terms of the fibre
coordinates over the coordinate neighborhood Uβ

(1.42) (δf)αβ = fβ − λβαfα in Uα ∩ Uβ .

In this case (δf)αβ = −λβα(fα − λαβfβ) = −λβα(δf)βα, so the skew-symmetry
condition (1.41) holds automatically. The 0-cochain s thus is a 0-cocycle if and
only if the functions fα satisfy

(1.43) fα = λαβfβ in Uα ∩ Uβ ;

that is just the condition that the functions fα are a cross-section of the line
bundle λ, yielding the usual identification Z0(U,O(λ)) ∼= Γ(M,O(λ)). Cor-
respondingly the coboundary of a 1-cochain s ∈ C1(U,O(λ)) is the 2-cochain
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(δs)αβγ = sβγ−sαγ+sαβ ; and if the 1-cochain s is identified with a collection of
holomorphic functions fαβ ∈ Γ(Uα ∩ Uβ ,O) and its coboundary δs is identified
with a collection of holomorphic functions (δf)αβγ ∈ Γ(Uα ∩ Uβ ∩ Uγ ,O) then
in terms of the fibre coordinates over the coordinate neighborhood Uγ

(1.44) (δf)αβγ = fβγ − fαγ + λγβfαβ in Uα ∩ Uβ ∩ Uγ .

The 1-cochain s thus is a 1-cocycle if and only if the functions fαβ satisfy

(1.45) fαγ = λγβfαβ + fβγ in Uα ∩ Uβ ∩ Uγ .

1.4 Finite Dimensionality

A fundamental result in the theory of compact Riemann surfaces is that
the cohomology groups Hp

(
M,O(λ)

)
of a compact Riemann surface M are

finite-dimensional complex vector spaces for any holomorphic line bundle λ over
M . For p ≥ 2 these cohomology groups are trivial by Dolbeault’s theorem,
Theorem 1.9; and if c(λ) < 0 these groups are trivial by Corollary 1.3. For
the case p = 0 it is even possible to establish quite simply the following upper
bound for these groups9.

Theorem 1.13 If λ is a holomorphic line bundle over a compact Riemann
surface M and if c(λ) > 0 then

(1.46) dim Γ
(
M,O(λ)

)
≤ c(λ) + 1.

Proof: Suppose to the contrary that λ is a holomorphic line bundle of charac-
terstic class c(λ) = r ≥ 0 for which dim Γ(M,

(
O(λ)

)
> r + 1; and consider the

divisor d = r · a for a point a ∈M . Let

(1.47) φ : Γ(M,
(
O(λ)

)
−→ Cr+1

be the linear mapping that associates to an arbitrary holomorphic cross-section

f ∈ Γ(M,
(
O(λ)

)
the vector φ(f) =

(
f(a), f ′(a), . . . , f (r)(a)

)
∈ Cr+1, where the

derivatives are taken with respect to a local coordinate z at the point a ∈ M .
If φ(f) = 0 for a nontrivial cross-section f ∈ Γ(M,

(
O(λ)

)
then f vanishes at

least to the order r + 1 at the point a, and consequently c(λ) ≥ r + 1 in view
of the definition (1.14) of the characteristic class of the bundle λ. That is a
contradiction, so the kernel of the linear mapping (1.47) is trivial; that means
that the linear mapping f is injective, hence that dim Γ(M,

(
O(λ)

)
≤ r+1, and

that suffices for the proof.

The proof that the vector spaces H1(M,O(λ)) are finite-dimensional when
the Riemann surface M is compact proceeds by introducing an appropriate
topology on the space of cochains for a fixed coordinate covering U. There

9See the book An Introduction to Riemann Surfaces by Terence Napier and Mohan Ra-
machandran.
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are various ways of doing this; perhaps the simplest is to use a Hilbert space
topology, even though it is not intrinsically defined. It is a standard result in
complex analysis10 that the subspace

Γ2(U,O) =
{
f ∈ Γ(U,O)

∣∣∣ ∫
U

|f(z)|2dx ∧ dy <∞
}

of square-integrable holomorphic functions on an open subset U ⊂ C is a Hilbert
space with the inner product

(f, g) =

∫
U

f(z)g(z)dx ∧ dy

and the corresponding norm ‖f‖2 = (f, f). Furthermore if U and V are open
sets and U ⊂ V then the restriction mapping

ρUV : Γ2(V,O) −→ Γ2(U,O)

is a bounded linear mapping between these two Hilbert spaces; if U ⊂ V is
compact this restriction mapping is even a compact mapping by Vitali’s The-
orem, so the image of any bounded subset of Γ2(V,O) has compact closure in
the space Γ2(U,O).

Theorem 1.14 (Finite Dimensionality Theorem) If λ is a holomorphic
line bundle over a compact Riemann surface M then the cohomology groups
H0(M,O(λ)) and H1(M,O(λ)) are finite-dimensional complex vector spaces.

Proof: Since M is compact there is a finite covering W of M by open coordinate
neighborhoods Wα. Choose open subsets Uα ⊂ Wα and Vα ⊂ Wα that form
coverings U and V of M where Uα ⊂ Vα ⊂ V α ⊂ Wα, so that Uα and V α
are compact. If µ∗1 and µ∗2 are the group homomorphisms (C.15) induced by
the refining mappings corresponding to the inclusions Vα ⊂ Wα and Uα ⊂ Vα
respectively and ι∗U is the natural homomorphism (C.16) from the cohomology
group of the covering U to the cohomology of the space M then by the Theorem
of Leray, Theorem (1.12), the homomorphisms ι∗U, ι∗V = ι∗U ◦ µ∗2 and ι∗W =
ι∗U ◦ µ∗2 ◦ µ∗1 from the sequence

(1.48) Hp(W,O(λ))
µ∗1−→ Hp(V,O(λ))

µ∗2−→ Hp(U,O(λ))
ι∗U−→ Hp(M,O(λ))

are isomorphisms; consequently the homomorphisms µ∗1 and µ∗2 also are isomor-
phisms. In the identification

Cp(V,O(λ)) ∼=
⊕
α

Γ(Vα
0
∩ · · · ∩ Vαp ,O)

of p-cochains for the covering V with collections of holomorphic functions in
the finitely many intersections of p + 1-tuples of sets from the covering V let

10See for instance E. Hille, Analytic Function Theory, vol.II, pages 325 ff, (Ginn, 1962).
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Cp2 (V,O(λ)) ⊂ Cp(V,O(λ)) be the subgroup consisting of cochains that are
identified with square integrable holomorphic functions, so that

Cp2 (V,O(λ)) ∼=
⊕
α

Γ2(Vα0
∩ · · · ∩ Vαp ,O);

this exhibits Cp2 (V,O(λ)) as a finite direct sum of Hilbert spaces and hence as a
Hilbert space itself. The coordinate transition functions λαβ of the line bundle
λ are holomorphic in Wα∩Wβ so are bounded in Vα∩Vβ ; hence the coboundary
mappings (1.42) take square integrable cochains into square integrable cochains
and are bounded linear mappings δ : Cp2 (V,O(λ)) −→ Cp+1

2 (V,O(λ)) between
Hilbert spaces. The kernels Zp2 (V,O(λ)) of these mappings consequently are
closed subspaces of a Hilbert space so also are Hilbert spaces. The same con-
siderations of course also apply to the covering U.

The square integrable first cohomology group is defined by

H1
2 (V,O(λ)) =

Z1
2 (V,O(λ))

δC0
2 (V,O(λ))

;

this is a well defined complex vector space but cannot be viewed as a Hilbert
space since the subspace δC0

2 (V,O(λ)) ⊂ Z1
2 (V,O(λ)) has not been shown to

be a closed linear subspace, although that will follow from the conclusion of
the finite dimensionality theorem. The natural inclusion of square integrable
cochains into all cochains induces a linear mapping

(1.49) ρ∗V : H1
2 (V,O(λ)) −→ H1(V,O(λ))

between these two complex vector spaces, which will be shown to be an iso-
morphism. For this purpose first suppose that fαβ ∈ Z1

2 (V,O(λ)) is a cocycle
that is cohomologous to zero in Z1(V,O(λ)); thus fαβ is the coboundary of a
cochain fα ∈ C0(V,O(λ)) satisfying (1.42). Any point p ∈ ∂Vα is contained in
some set Vβ . The function fαβ is square-integrable in Vα ∩ Vβ by assumption,
the function fβ is continuous in a full open neighborhood of the point p since
p ∈ Vβ , and the function λαβ is holomorphic in Wα ∩Wβ and hence is bounded
in a full open neighborhood of the point p; consequently the function fα is also
square integrable in an open neighborhood of the point p in Vα. The closure V α
is compact, so finitely many of these neighborhoods cover the boundary of that
set, and it follows that fα is square integrable on the full set Vα; consequently
fα ∈ C0

2 (V,O(λ)), which shows that ρ∗V is injective. Since V α ⊂Wα and V α is
compact the isomorphism µ∗1 in (1.48) factors through square-integrable coho-
mology so can be written as the composition µ∗1 = ρ∗V◦ν∗1 of the linear mappings
ν∗1 and ρ∗V in the sequence

H1(W,O(λ))
ν∗1−→ H1

2 (V,O(λ))
ρ∗V−→ H1(V,O(λ));

and since ρ∗V has just been shown to be an injection and the composition ρ∗V ◦
ν∗1 = µ∗1 is an isomorphism it follows that ρ∗V is also an isomorphism as asserted.



24 CHAPTER 1. DIVISORS AND LINE BUNDLES

The arguments just applied to the covering V also can be applied to the covering
U; hence the linear mapping

(1.50) ρ∗U : H1
2 (U,O(λ)) −→ H1(U,O(λ))

analogous to (1.49) is also an isomorphism. To conclude the proof of the theorem
it then suffices to show that H1

2 (U,O(λ)) is a finite dimensional complex vector
space. In view of the isomorphisms (1.49) and (1.50) the isomorphism µ∗2 in
(1.48) induces an isomorphism

(1.51) µ∗2H : H1
2 (V,O(λ)) −→ H1

2 (U,O(λ))

between these two complex vector spaces. Moreover since Uα ⊂ Vα the homo-
morphism

(1.52) µ∗2Z : Z1
2 (V,O(λ)) −→ Z1

2 (U,O(λ))

corresponding to this inclusion is a compact linear mapping between these two
Hilbert spaces. Consider then the Hilbert space

A = C0
2 (U,O(λ))⊕ Z1

2 (V,O(λ))

and the bounded linear mapping

(δ, µ∗2Z) : A −→ Z1
2 (U,O(λ))

defined by (δ, µ∗2Z)(f, g) = δf + µ∗2Z(g). The mapping (δ, µ∗2Z) is surjective; for
since (1.51) is an isomorphism of vector spaces any square-integrable cocycle
of the covering U must be cohomologous to a square-integrable cocycle coming
from the covering V. The difference (δ, µ∗2Z) − (0, µ∗2Z) is just the coboundary
mapping

δ : C0
2 (U,O(λ)) −→ Z1

2 (U,O(λ)),

so the theorem is a consequence of the following general lemma11.

Lemma 1.15 If X and Y are Hilbert spaces and if both φ : X −→ Y and
ψ : X −→ Y are bounded linear mappings where φ is surjective and ψ is compact
then Y/(φ− ψ)(X) is finite dimensional.

Proof: Let φ∗ : Y −→ X and ψ∗ : Y −→ X be the adjoint mappings to
φ and ψ respectively; then φ∗ is an injective mapping with closed range and
ψ∗ is a compact mapping. The first step is to show that the kernel K of the
mapping φ∗−ψ∗ is a finite-dimensional subspace of Y . For this purpose suppose
that {yn} is any bounded sequence of elements of K. Since ψ∗ is compact
then after passing to a subsequence if necessary the sequence ψ∗(yn) converges;
consequently the sequence φ∗(yn) = ψ∗(yn) also converges. Since φ∗ is injective
and has closed range it is a homeomorphism between Y and its range; hence

11For the properties of Hilbert space used in the proof of this lemma see for instance W.
Rudin Functional Analysis, (McGraw-Hill, 1991).
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the sequence {yn} converges, which shows that K is locally compact hence
finite dimensional. The next step is to show that φ∗ − ψ∗ has closed range.
Indeed after factoring out by K it can be assumed that φ∗ − ψ∗ is injective.
Consider a sequence of elements yn ∈ Y such that (φ∗ − ψ∗)(yn) −→ x. If
{yn} has a bounded subsequence then as before it is possible to assume that
ψ∗(yn) converges; but then φ∗(yn) = (φ∗−ψ∗)(yn)+ψ∗(yn) converges, so again
yn converges to an element y and (φ∗ − ψ∗)(y) = x. On the other hand if
‖yn‖ −→ ∞ the elements y′n = yn/‖yn‖ have norm 1 and

(φ∗ − ψ∗)(y′n) =
1

‖yn‖
(φ∗ − ψ∗)(yn) −→ 0;

again it can be assumed that ψ∗(y′n) converges, hence that φ∗(yn) and y′n con-
verge, and if y′ = lim yn then ‖y′‖ = 1 and (φ∗−ψ∗)(y′) = 0, which contradicts
the assumption that φ∗−ψ∗ is one-to one so this case cannot occur. To conclude
the proof of the lemma using the results of the preceding two steps note that
since φ∗ − ψ∗ has closed range the same is true of φ− ψ; so the quotient space
Y ′ = Y/(φ−ψ)(X) is a Hilbert space. The surjective mapping φ induces a sur-
jective mapping φ′ : X −→ Y ′, and the compact mapping ψ induces a compact
mapping ψ′ : X −→ Y ′; and since φ′ = ψ′ the space Y ′ is locally compact hence
finite dimensional as desired, which suffices to conclude the proof.

The finite dimensionality theorem also holds for cohomology groups with
coefficients in the sheaf of germs of holomorphic cross-sections of a complex
vector bundle; for the essential part of the proof really uses only the compactness
of the operation of restriction of holomorphic functions to compact subsets of
their domain of definition, and that is true either for single functions or for
vectors of functions with the supremum norm.

1.5 The Serre Duality Theorem

The traditional approach to the further examination of the cohomology
group H1(M,O(λ)) for a compact Riemann surface is through potential the-
ory12. The discussion here however will follow an alternative approach intro-
duced by J-P. Serre13 which proceeds by considering the space of linear func-
tionals

(1.53) T : H1(M,O(λ)) −→ C

12The use of potential theory in Riemann surfaces goes back to Riemann’s inaugural dis-
sertation in Göttingen in 1851, “Grundlagen für eine allgemeine Theorie der Funktionen einer
veränderlichen complexen Grösse”, Collected Works, pp. 1 - 48, and was a crucial tool in
the great classical work on Riemann surfaces by H. Weyl, Die Idee der Riemannschen Fläche
(Teubner, 1923); [English translation The Concept of a Riemann Surface (Addison-Wesley,
1955)].

13See the paper by J-P. Serre “Un Théorème de dualité”, Comment. Math. Helv., vol. 29
(1955), pp. 9 - 26.
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on the finite dimensional complex vector space H1(M,O(λ)). By the Theorem
of Dolbeault, Theorem 1.9,

(1.54) H1(M,O(λ)) ∼=
Γ(M, E(0,1)(λ))

∂Γ(M, E(0,0)(λ))
,

so the linear functionals on H1(M,O(λ)) can be identified with the linear func-
tionals on Γ(M, E(0,1)(λ)) that vanish on the subspace ∂Γ(M, E((0,0)(λ)). It suf-
fices just to consider continuous linear functionals when the infinite dimensional
complex vector space Γ(M, E((0,0)(λ)) has a suitable structure as a topological
vector space14. To introduce the appropriate topology suppose that λ is a holo-
morphic line bundle over a compact Riemann surface M and is described by a
coordinate bundle{Vα, λαβ} in terms of a finite covering of M by open coordi-
nate neighborhoods Vα; and let zα = xα + i yα be the local coordinates in Vα.
Introduce on Γ(M, E(0,q)(λ)) for q = 0 or 1 the norms

(1.55) ||φ||
N

= sup
α

sup
ν1+ν2≤N

sup
zα∈Vα

∣∣∣∣∂ν1+ν2fα(xα, yα)

∂xν1
α ∂y

ν2
α

∣∣∣∣
for a cross-section φ ∈ Γ(M, E(0,q)(λ)) where φα = fα for q = 0 and φα = fαdzα
for q = 1. It is evident that these are norms in the customary sense that (i)
||φ||

N
≥ 0 and this is an equality if and only if φ = 0, (ii) ||φ1 + φ2||N ≤

||φ1||N + ||φ2||N , (iii) ||c φ||
N

= |c| · ||φ||
N

for any complex constant c; and it
is also evident that ||φ||N ≤ ||φ||N+1. Such a collection of norms determines
on the vector space Γ(M, E(0,q)(λ)) the structure of a locally convex topological
vector space by taking as a basis for the open neighborhoods of the origin
the sets VN,k consisting of those cross-sections φ ∈ Γ(M, E(0,q)(λ)) such that
||φ||N < 1/k for positive integersN, k; the norms (1.55) are continuous functions
in this topology, and the topology can be defined equivalently by the translation
invariant metric

(1.56) ρ(φ, ψ) = sup
N

cN ||φ− ψ||N
1 + ||φ− ψ||

N

where cN are positive numbers such that limN→∞ cN = 0. It is evident from
the definition (1.55) of these norms that any Cauchy sequence in Γ(M, E(0,q)(λ))
converges in this topology, so the topological vector space Γ(M, E(0,q)(λ)) is
complete in this norm, hence is a Fréchet space. A linear functional

(1.57) T : Γ(M, E(0,q)(λ)) −→ C

is continuous in this topology if and only if there are positive integers M, N
such that

(1.58) |T (φ)| ≤M ||φ||
N

for all φ ∈ Γ(M, E(0,q)(λ)).

14For the properties of topological vector spaces used here see for instance the book by
Walter Rudin, Functional Analysis, McGraw-Hill, 1991, or that by Casper Goffman and
George Pedrick, First Course in Functional Analysis, Prentice-Hall, 1965.
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Lemma 1.16 The linear mapping

∂ : Γ(M, E(0,0)(λ)) −→ Γ(M, E(0,1)(λ))

is a continuous linear mapping between these two Fréchet spaces, and its im-
age is a closed linear subspace of Γ(M, E(0,1)(λ)); consequently linear function-
als on the quotient space H1(M,O(λ)) can be identified with continuous linear
functionals on the Fréchet space Γ(M, E(0,1)(λ)) that vanish on the subspace
∂Γ(M, E(0,0)(λ)) ⊂ Γ(M, E(0,1)(λ)).

Proof: To simplify the notation for this proof let A = Γ(M, E(0,0)(λ)) and
B = Γ(M, E(0,1)(λ)). The linear mapping ∂ : A −→ B is continuous as an
immediate consequence of the obvious inequality ||∂φ||N ≤ ||φ||N+1. The kernel
K of this linear mapping is a closed subspace of A, so the quotient A/K also
is a Fréchet space and the induced mapping ∂ : A/K −→ B is a continuous
linear mapping with a trivial kernel. If L ⊂ B is a finite dimensional subspace
of B complementary to ∂(A/K) the product (A/K)×L is a Fréchet space and
the mapping (∂ + ι) : (A/K) × L −→ B defined by (∂ + ι)(a, l) = ∂(a) + l for
a ∈ A, l ∈ L is a surjective continuous linear mapping with a trivial kernel;
hence by the open mapping theorem it is an isomorphism of Fréchet spaces.
Since (A/K)×0 ⊂ (A/K)×L is a closed subspace it follows that its isomorphic
image (∂ + ι)

(
(A/K) × 0

)
= ∂A is a closed subspace of B. In that case the

quotient space B/∂A with the topology it inherits from B also is a Fréchet
space; and any linear functional on the finite dimensional quotient space B/∂A
is necessarily continuous hence amounts to a continuous linear functional on B
that vanishes on ∂A, which suffices to conclude the proof.

For an example of such a continuous linear functional suppose that λ is a
holomorphic line bundle over a compact Riemann surface M and is described by
a coordinate bundle {Vα, λαβ} in terms of a finite covering V of M by coordinate
neighborhoods Vα. A cross-section τ ∈ Γ(M, E(1,0)(λ−1)) is described by C∞
differential forms τα of type (1, 0) in the coordinate neighborhoods Vα such that
τα = λ−1

αβ τβ in intersections Vα ∩ Vβ . If φ ∈ Γ(M, E(0,1)(λ)) is described by C∞
differential forms φα of type (0, 1) in the coordinate neighborhoods Vα such that
φα = λαβφβ in intersections Vα∩Vβ then τα∧φα = λ−1

αβτβ ∧λαβφβ = τβ ∧φβ in

Vα ∩ Vβ ; so the product τ ∧ φ ∈ Γ(M, E(1,1)) is a differential form of type (1, 1)
defined on the entire compact Riemann surface M . The integral

(1.59) Tτ (φ) =

∫
M

τα ∧ φα

is clearly a continuous linear functional (1.57) for q = 1, and is a nontrivial linear
functional so long as τ 6= 0. If g ∈ Γ(M, E(0,0)(λ)) is a cross-section described by
C∞ functions gα in the coordinate neighborhoods Vα such that gα = λαβ gβ in
Vα ∩ Vβ then gατα = λαβgβ · λ−1

αβτβ = gβ τβ in Vα ∩ Vβ , so these local products
describe a global differential form of type (1, 0) on M . By Stokes’s Theorem∫
M
d(gατα) = 0, hence 0 =

∫
M
d(gατα) =

∫
M
∂(gατα) =

∫
M
∂gα∧τα+

∫
M
gα·∂τα



28 CHAPTER 1. DIVISORS AND LINE BUNDLES

and consequently

(1.60) Tτ (∂gα) =

∫
M

gα · ∂τα.

Therefore Tτ (∂g) = 0 for all cross-sections g ∈ Γ(M, E(0,0)(λ)) if and only if∫
M
gα · ∂τα = 0 for all cross-sections g, so that ∂τα = 0 and τα are holomorphic

differential forms; thus the linear functional Tτ vanishes on the linear subspace
∂Γ(M, E(0,0)(λ)) if and only if τ ∈ Γ(M,O(1,0)(λ−1)), and in that case deter-
mines a linear functional (1.53). The deeper result is the converse assertion that
all linear functionals (1.53) are of this form.

Theorem 1.17 (Serre Duality Thorem) If λ is a holomorphic line bundle
over a compact Riemann surface M the continuous linear functionals on the
topological vector space Γ(M, E(0,1)(λ)) that vanish on the closed linear subspace
∂Γ(M, E(0,0)(λ)) are precisely the linear functionals Tτ for cross-sections τ ∈
Γ(M,O(1,0)(λ−1)).

Proof: Suppose that λ is defined by a coordinate bundle {Wα, λαβ} for a finite
covering W of the surface M by bounded coordinate neighborhoods Wα ⊂ M
with local coordinates zα. Choose open subsets Uα and Vα that form coverings
U and V of M with Uα ⊂ Vα ⊂ V α ⊂ Wα, so that Uα and V α are compact;
and choose a positive constant δ > 0 such that when the coordinate neigh-
borhood Wα is viewed as a bounded open subset of the complex plane of the
variable zα both the distance from Uα to the complement of Vα and the dis-
tance from Vα to the complement of Wα are greater than δ for all α. Introduce
on the vector space Γ(M, E(0,1)(λ)) the topology defined by the norms (1.55)
in terms of the covering of M by the coordinate neighborhoods Vα. For any
index α let Γα(M, E(0,1)(λ)) ⊂ Γ(M, E(0,1)(λ)) be the subspace consisting of
those cross-sections φ ∈ Γ(M, E(0,1)(λ)) with support contained in Vα and let
Γ0(Vα, E(0,1)) be the vector space consisting of ordinary C∞ differential forms
of type (0, 1) with support in the coordinate neighborhood Vα. To any differen-
tial form φα = fαdzα ∈ Γ0(Vα, E(0,1)) there can be associated the cross-section
ια(φα) ∈ Γα(M, E(0,1)(λ)) for which φβ = λβαφα in any intersection Vα ∩ Vβ
and φβ = 0 otherwise; all elements of Γα(M, E(0,1)(λ)) arise in this way, so the
mapping

(1.61) ια : Γ0(Vα, E(0,1)) −→ Γα(M, E(0,1)(λ))

thus defined is an isomorphism between these two complex vector spaces. The
vector space Γ0(Vα, E(0,1)) can be made into a topological vector space by the
norms

(1.62) ||φα||N,α = sup
ν1+ν2≤N

sup
zα∈Vα

∣∣∣∣∂ν1+ν2fα(xα, yα)

∂xν1
α ∂y

ν2
α

∣∣∣∣
for any differential form φα = fαdzα ∈ Γ0(Vα, E(0,1)); and with this topology



1.5. SERRE DUALITY 29

Γ0(Vα, E(0,1)) also is a Fréchet space. For any φα ∈ Γ0(Vα, E(0,1)) clearly

‖ια(φα)‖n = sup
β

sup
ν1+ν2≤N

sup
zβ∈Vα∩Vβ

∣∣∣∣∣∂ν1+ν2
(
λβα(zβ)fα(zβ)

)
∂xν1

β ∂y
ν2

β

∣∣∣∣∣
= ‖φα‖N,α + sup

β 6=α
sup

ν1+ν2≤N
sup

zβ∈Vα∩Vβ

∣∣∣∣∣∂ν1+ν2
(
λβα(zβ)fα(zβ)

)
∂xν1

β ∂y
ν2

β

∣∣∣∣∣ .
It follows from this identity first that ‖ια(φα)‖N ≥ ‖φα‖N,α and second that
‖ια(φα)‖N ≤ CN‖φα‖N,α for some constant CN > 0, since the functions λβα(zβ)
and all their partial derivatives are defined in Wα ∩ Wβ ⊃ V α ∩ V β and
hence are uniformly bounded in V α ∩ V β as are all the partial derivatives
∂k1+k2xα/∂

k1xβ∂
k2yβ and ∂k1+k2yα/∂

k1xβ∂
k2yβ ; therefore the linear mapping

(1.61) is an isomorphism of Fréchet spaces. If the support of the differential
form φα = fαdzα ∈ Γ0(Vα, E(0,1)) is contained in the subset Uα ⊂ Vα and the
coordinate neighborhood Wα is viewed as an open subset of the complex plane
of the variable ζα it follows from Theorem 1.8 that fα = ∂gα/∂zα + hα for C∞
functions gα and hα with supports contained in Vα. The function gα can be
extended to a section ια(gα) ∈ Γ(M, E(λ)) by the obvious analogue of the con-
struction of the isomorphism (1.61); and when the differential forms φα = fαdzα
and ψα = hαdzα are extended by the isomorphism (1.61) then φα = ∂gα + ψα
so

ια(φα) = ∂ια(gα) + ια(ψα)

since ια(∂gα) = ∂ια(gα). If T : Γ(M, E(0,1)(λ)) −→ C is a continuous linear
functional that vanishes on the subspace ∂Γ(M, E(λ)) it then follows that

(1.63) T
(
ια(φα)

)
= T

(
ια(ψα)

)
.

As in (1.29) the function hα(zα) is given explicitly by the integral

hα(zα) =
i

2

∫
Uα

fα(ζα)s(ζα − zα)dζα ∧ dζα,

which can be written as a limit of Riemann sums so that

ψα(zα) = hα(zα)dzα = lim
∑
j

fα(ζj)s(ζj − zα)dzα ·∆j

for local elements of area ∆j . For any fixed point ζj ∈ Uα the expression
s(ζj − zα)dzα is a C∞ differential form with support contained in Vα, since
the support of the function s(z) is contained in a disc of radius δ/2 about
the origin; the extensions ια

(
s(ζj − zα)dzα

)
thus are well defined elements of

Γα(M, E(0,1)(λ)). Since s(z) is a C∞ function it follows from the continuity of
the functional T that the images

T
(
ια
(
s(ζj − zα)dzα

))
= tα(ζj)
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are C∞ functions of the variable ζj ∈ Uα. The Riemann sums and their partial
derivatives converge uniformly to the integral over Uα, so it follows further from
the continuity of the functional T that

T
(
ια(ψα)

)
= T

(
lim
∑
j

fα(ζj)s(ζj − zα)dzα ·∆j

)
= lim

∑
j

fα(ζj)T
(
s(ζj − zα)dzα

)
·∆j

= lim
∑
j

fα(ζj)tα(ζi)∆j =
i

2

∫
Uα

fα(ζ)tα(ζ)dζ ∧ dζ;

consequently in view of (1.63)

(1.64) T
(
ια(φα)

)
=
i

2

∫
Uα

τα ∧ φα

where τα = tα(ζ)dζ. If the support of φ ∈ Γ(M, E(0,1)(λ)) is contained in the
intersection Uα ∩ Uβ then φ can be considered as being an element of either
Γα(M, E(0,1)(λ)) or Γβ(M, E(0,1)(λ)), so

T
(
ια(φ)

)
=
i

2

∫
Uα∩Uβ

τα ∧ φα

=
i

2

∫
Uα∩Uβ

τβ ∧ φβ =
i

2

∫
Uα∩Uβ

τβ ∧ λβαφα;

and if that holds for any such form φ then necessarily τα = τβ λβα in Uα∩Uβ so
that the differential forms τα in the coordinate neighborhoods Uα are a cross-
section τ ∈ Γ(M,O(1,0)(λ−1)). If ρα is a C∞ partition of unity subordinate to
the covering {Uα} then any cross-section φ ∈ Γ(M,O(0,1)(λ)) can be written as
the sum φ =

∑
α ραφ of cross-sections ραφ ∈ Γ(M,O(0,1)(λ)); if φ is described by

differential forms φβ in the subsets Uβ then ραφ is described by the differential
forms ραφβ in the subsets Uβ . In particular the product ραφα can be viewed as
a differential form ραφα ∈ Γ0(Uα, E(0,1)), and then ια(ραφα) = ραφ so that by
(1.64)

T (φ) = T

(∑
α

ραφ

)
=
∑
α

T
(
ραφ

)
=
∑
α

T
(
ια(ραφα)

)
=
∑
α

i

2

∫
Uα

τα ∧ ραφα =
i

2

∫
M

∑
α

ρα · (τα ∧ φα).

However in an intersection Uα ∩Uβ of two coordinate neighborhoods τα ∧ φα =
τβ∧φβ as noted before, so these local differential forms describe a global differen-
tial form τ∧φ ∈ Γ(M, E(1,1)) on the entire Riemann surface M and consequently

T (φ) =
i

2

∫
M

∑
α

ρα · (τ ∧ φ) =

∫
M

(
i

2
τ

)
∧ φ = Tiτ/2(φ);
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and since T vanishes on the subspace ∂Γ(M, E(0,0)(λ)) it follows as a consequence
of (1.60) as before that i τ/2 ∈ Γ(M,O(1,0)(λ−1)), which suffices to conclude the
proof.

Corollary 1.18 If λ is a holomorphic line bundle over a compact Riemann
surface M

(1.65) dimH1(M,O(λ)) = dim Γ(M,O(1,0)(λ−1)).

Proof: Since H1(M,O(λ)) is a finite dimensional complex vector space its
dimension is equal to the dimension of its dual space, which in view of (1.54)
and the preceding theorem is isomorphic to the vector space Γ(M,O(1,0)(λ−1)),
and that suffices for the proof.

Theorem 1.17 also holds for holomorphic vector bundles just as for holo-
morphic line bundles, with the proper interpretation. Thus for cross-sections
φ = {φα} ∈ Γ(M, E(0,1)(λ)) and τ = {τα} ∈ Γ(M,O(1,0)(λ∗)) viewed as
column vectors of differential forms, where the dual vector bundle λ∗ is de-
fined by the dual coordinate transition functions λ∗αβ = tλ−1

αβ , it follows that
tτα ∧ φα = tτβ ∧ φβ in Uα ∩ Uβ and consequently that

(1.66) Tτ (φ) =

∫
M

tτα ∧ φα

is a well defined linear functional on the vector space Γ(M,O(1,0)(λ∗)). The rest
of the proof of the Serre Duality Theorem carries through unchanged, although
in the final statement for vector bundles the dual vector bundle λ∗ replaces the
inverse line bundle λ−1.



32 CHAPTER 1. DIVISORS AND LINE BUNDLES



Chapter 2

The Lüroth Semigroup

2.1 An Example: The Riemann Sphere

The basic topological invariant of a holomorphic line bundle λ over a compact
Riemann surface M is its characteristic class c(λ) ∈ Z, which characterizes the
underlying topological line bundle completely. The basic analytic invariant is
the dimension of the finite dimensional vector space Γ(M,O(λ)), denoted by

(2.1) γ(λ) = dim Γ(M,O(λ)).

This section will begin the investigation of the relations between these two invari-
ants. For the simplest Riemann surface, the Riemann sphere or equivalently the
one-dimensional complex projective space P1, this relation is somewhat anoma-
lous but can be described completely quite easily. The Riemann sphere P1 is no
doubt quite familiar, since it arises naturally in a number of contexts in almost
all discussions of basic complex analysis. It is constructed from two copies U0

and U1 of the complex plane, with the complex coordinates z0 and z1 respec-
tively, by identifying nonzero values z0 and z1 whenever z0 = 1/z1; thus the
two sets U0 and U1 form a coordinate covering of the resulting Riemann surface
P1, and the intersection U0 ∩ U1 consists of all points z0 6= 0 in the coordinate
neighborhood U0 and all points z1 6= 0 in the coordinate neighborhood U1. The
surface P1 is topologically a two-sphere, the one-point compactification of the
complex plane U0 that arises by the addition of the point z1 = 0 to the com-
plex plane U0. A customary notation is to denote points in U0 by the complex
variable z = z0 and to denote the point z1 = 0 by z = ∞, viewed as the point
added to compactify the plane U0.

Theorem 2.1 For divisors d on the Riemann sphere P1

(i) d is a principal divisor if and only if deg d = 0;
(ii) d1 ∼ d2 if and only if deg d1 = deg d2; and
(iii) if ζd is the line bundle of a divisor d of degree n = deg d ≥ 0 then

(2.2) γ(ζd) = deg d + 1 = c(ζd) + 1

33
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and the cross-sections in Γ(M,O(ζd)) can be identified with polynomials of de-
gree n in the variable z0.

Proof: (i) By definition the principal divisors on P1 are those divisors that
are the divisors of meromorphic functions on P1. A rational function f(z0)
of the complex variable z0 can be viewed as a meromorphic function on the
Riemann surface P1; f(z0) is of course a meromorphic function of the variable
z0 in the coordinate neighborhood U0, and f(1/z1) is a meromorphic function
of the variable z1 in the coordinate neighborhood U1. If

f(z0) =
∏
i

(z0 − ai)ni =
∏
i

(
1− aiz1

z1

)ni
where ni are positive or negative integers then d(f) =

∑
i ni · pi − (

∑
i ni) · ∞

where pi ∈ U0 are the points with coordinates z0 = ai, z1 = 1/ai, so d(f) is a
divisor of degree zero; any divisor on P1 of degree zero is of this form, so any
divisor of degree zero on P1 is the divisor of a meromorphic function on P1.
Conversely the divisor of an arbitrary meromorphic function on P1 is of degree
zero by Theorem 1.1, and that suffices to demonstrate (i).
(ii) By definition d1 ∼ d2 if and only if d1 − d2 is a principal divisor; so since
deg(d1 − d2) = deg d1 − deg d2 it is evident that (ii) follows from (i).
(iii) It follows from (ii) that if d is a divisor of degree n and p ∈ P1 is any point
in the Riemann sphere then d ∼ n · p. In particular if the point p has local
coordinates z0 = a, z1 = 1/a for a nonzero complex number a ∈ C then the
function h0(z0) = z0 − a is holomorphic in U0 with a simple zero at p and at
no other point of U0 while the function h1(z1) = 1− a z1 is holomorphic in U1

with a simple zero at p and at no other point of U1; then as in (1.8) the point
bundle ζa is described by the coordinate transition functions

(2.3) ζa,01 =
h0(z0)

h1(z1)
=

z0 − a
1− az1

= z0

in U0 ∩ U1, so the line bundle ζd of the divisor d is described by the coordinate
transition functions ζd,01 = zn0 in U0 ∩ U1. A general holomorphic cross-section
f ∈ Γ(P1,O(ζd)) is described by an entire function f0(z0) of the variable z0 and
an entire function f1(z1) of the variable z1 such that f0(z0) = zn0 f1(1/z0) for
z0 6= 0. The function f1(1/z0) is bounded for large values of z0, so the entire
function f0(z0) is bounded by C|z0|n for some constant C > 0 for large values of
z0; if n ≥ 0 the function f0(z0) consequently must be a polynomial of degree n
in the variable z. Conversely if f0(z0) is a polynomial of degree n in the variable
z0 then f1(z1) = zn1 f0(1/z1) is a polynomial of degree n in the variable z1, and
the entire functions f0(z0) and f1(z1) describe a holomorphic cross-section of
the bundle ζd. Since the space of polynomials f0(z0) of degree n has dimension
n+ 1 it follows that γ(ζd) = n+ 1, and that suffices to conclude the proof.

Theorem 2.2 Any holomorphic line bundle over the Riemann sphere P1 is the
line bundle of a divisor on P1 so has nontrivial meromorphic cross-sections.
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Proof: The Riemann sphere is covered by the two coordinate neighborhoods
U0 and U1, so alternatively can be viewed as covered by the two discs

D0 =
{
z0 ∈ U0

∣∣ |z0| < 2
}

and D1 =
{
z1 ∈ U1

∣∣ |z1| < 2
}

for which

D0 ∩D1 =

{
z0 ∈ U0

∣∣∣∣ 1

2
< |z0| < 2

}
.

Since any holomorphic line bundle is analytically trivial over each disc Di by
Corollary 1.11 it follows that any holomorphic line bundle λ over P1 can be
described by a coordinate line bundle (Dα, λαβ) in terms of this covering, where
the coordinate transition function λ01 in the intersection D0 ∩D1 is a holomor-
phic and nowhere vanishing function of the complex variable z0 in the annulus
1/2 < |z0| < 2. A local branch of the holomorphic function log λ01(z0) near
the point z0 = 1 can be continued analytically once around the origin in this
annulus, and upon this continuation its value will increase by 2πi n for some
integer n; hence f(z0) = log

(
z−n0 λ01(z0)

)
is a single-valued holomorphic func-

tion in the annulus, and λ01(z0) = zn0 exp f(z0). By using the Cauchy inte-
gral formula the function f(z0) can be represented as usual as the difference
f(z0) = f0(z0) − f1(z1) of a holomorphic function f0(z0) in the disc D0 and a
holomorphic function in the exterior of the circle |z0| = 1/2, where the latter
function can be viewed equivalently as a holomorphic function f1(z1) in the disc
D1. The exponentials hj(zj) = exp fj(zj) are holomorphic and nowhere vanish-
ing functions in the discs Dj , and λ01(z0) = zn0 h0(z0)/h1(z1) in the intersection
D1∩D2 ⊂ P1; hence the holomorphic line bundle λ is analytically equivalent to
the holomorphic line bundle defined by the coordinate transition function zn0 ,
and it is evident from (2.3) that this is the line bundle of a divisor of degree n.
That suffices to conclude the proof.

The two preceding theorems provide a complete characterization of holo-
morphic line bundles over the Riemann sphere P1 and a description of their
properties.

Corollary 2.3 (i) There is a unique holomorphic line bundle ζ of characteristic
class c(ζ) = 1 on P1, and ζ = ζp for any point p ∈M .
(ii) For any integer n the line bundle ζn is the unique holomorphic line bundle
of characteristic class c(ζn) = n on P1, and γ(ζn) = max(n+ 1, 0).

Proof: (i) A holomorphic line bundle ζ of characterstic class c(ζ) = 1 is the
line bundle of a divisor d by Theorem 2.2, and deg d = 1 by (1.15). Since any
two divisors of the same degree are linearly equivalent by Theorem 2.1 (ii) the
divisor d is linearly equivalent to the divisor 1 · p for any chosen base point
p ∈M so ζ = ζp, which demonstrates (i).
(ii) If ζ is a line bundle for which c(ζ) = n then ζ is the line bundle of a divisor
d for which deg(d) = n; and that divisor is linearly equivalent to the divisor
n · p. for any chosen point p ∈ M so ζ = ζn·p = ζnp . If n < 0 then γ(λ) = 0
by Corollary 1.3 while if n ≥ 0 then γ(λ) = n + 1 by Theorem 2.1 (iii), which
altogether is the desired result. That suffices for the proof.



36 CHAPTER 2. LÜROTH SEMIGROUP

2.2 The Role of Point Bundles

Although there is not an equally simple description of all holomorphic line
bundles over more general Riemann surfaces in terms of point bundles, nonethe-
less point bundles play a significant role in the study of holomorphic line bundles
over arbitrary compact Riemann surfaces.

Theorem 2.4 (i) The point bundles over an arbitrary compact Riemann sur-
face M can be characterized as those holomorphic line bundles λ over M such
that

(2.4) c(λ) = 1 and γ(λ) > 0.

(ii) If ζp is a point bundle over M then

(2.5) γ(ζp) =

 2 if M = P1,

1 if M 6= P1.

Proof: (i) If ζp is a point bundle over M then c(ζp) = 1 by (1.15); and since
there is a nontrivial holomorphic cross-section of ζp necessarily γ(ζp) > 0. Con-
versely if λ is a holomorphic line bundle over M for which γ(λ) > 0 then λ = ζd
is the line bundle of some positive divisor d on M ; and if c(ζd) = 1 then deg d = 1
by (1.15) so d = 1 · p for some point p ∈M .
(ii) If γ(ζp) > 1 for a point bundle ζp over M choose two linearly indepen-
dent holomorphic cross-sections f1, f2 ∈ Γ(M,O(ζp)) and let their divisors be
d(f1) = 1 · p1 and d(f2) = 1 · p2. If p1 = p2 the quotient f = f1/f2 is a function
that is holomorphic everywhere on the compact Riemann surface M , so by the
maximum modulus theorem it must be a constant; but that contradicts the
assumption that the two functions are linearly independent. Thus p1 6= p2, and
the quotient f = f1/f2 is a nonconstant meromorphic function on M with the
divisor d(f) = 1 · p1 − 1 · p2. This function can be viewed as a holomorphic
mapping from the Riemann surface M to the Riemann sphere P1 in the obvi-
ous manner: near any regular point the function f takes finite values in the
coordinate neighborhood U0 ⊂ P1, while near its pole the function 1/f takes
finite values in the coordinate neighborhood U1 ⊂ P1. This mapping takes the
single point p1 to the origin in the coordinate neighborhood U0, and the single
point p2 to the point ∞ in the coordinate neighborhood U0, or equivalently to
the origin in the coordinate neighborhood U1. For any complex number c the
function f(z0)− c also has a single simple pole, so it must have a single simple
zero; thus the function f itself takes a single point of M to the complex value c.
Altogether the function f describes a one-to-one holomorphic mapping from M
to P1, so M is analytically equivalent to P1. Then γ(ζp) = 2 by Corollary 2.3,
and that suffices to conclude the proof of the theorem.

The preceding theorem provides a characterization of the Riemann sphere
among all compact Riemann surfaces and also yields the following properties of
point bundles over compact Riemann surfaces other than the Riemann sphere.
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Corollary 2.5 If M is a compact Riemann surface other than the Riemann
sphere P1 the point bundles ζp for distinct points p ∈ M are analytically in-
equivalent.

Proof: If ζp = ζq for two distinct points p, q ∈ M then this bundle has one
cross-section with a simple zero at p and no other points and another cross-
section with a simple zero at q and no other points; but then γ(ζ) > 1 so by the
preceding theorem M is the Riemann sphere, which suffices for the proof.

Thus if M is a compact Riemann surface other than the Riemann sphere
P1 the mapping that associates to each point p ∈ M the point bundle ζp is a
one-to-one correspondence

(2.6) ζ : M −→
{
ζ ∈ H1(M,O∗)

∣∣∣ c(ζ) = 1, γ(ζ) > 0
}

;

this provides a concrete representation of Riemann surfaces that will be exam-
ined in some detail in the discussion of the Abel-Jacobi mapping (3.4). Point
bundles often are used in the study of other holomorphic line bundles over com-
pact Riemann surfaces through an application of the following observation.

Lemma 2.6 (i) If ζp is a point bundle and λ is any other holomorphic line
bundle on a compact Riemann surface M

(2.7) γ(λ) ≤ γ(λζp) ≤ γ(λ) + 1.

(ii) Further γ(λζp) = γ(λ) if and only if all holomorphic cross-sections of the
bundle λζp vanish at the point p.

Proof: If h ∈ Γ(M,O(ζp)) is a nontrivial holomorphic cross-section of the point
bundle ζp multiplication by h clearly yields an injective homomorphism

×h : Γ(M,O(λ)) −→ Γ(M,O(λζp)),

the image of which consists precisely of all holomorphic cross-sections of the
bundle λζp that vanish at the point p since h(p) = 0; in particular therefore
γ(λ) ≤ γ(λζp). If γ(λζp) = 0 then γ(λ) = 0 and the asserted result holds
trivially. Otherwise choose a basis f1, . . . , fn ∈ Γ(M,O(λζp)) where n = γ(λζp).
If fi(p) = 0 for all of these cross-sections then the mapping ×h is surjective and
γ(λ) = γ(λζp). If for instance f1(p) 6= 0 then the mapping ×h is not surjective,
so γ(λ) ≤ γ(λζp) − 1; the differences gi(z) = fi(z) −

(
fi(p)/f1(p)

)
f1(z) for

2 ≤ i ≤ n are n − 1 linearly independent holomorphic cross-sections of the
bundle λζp that vanish at the point p so are the images under the injective
homomorphism ×h of n− 1 linearly independent holomorphic cross-sections of
λ, and consequently γ(λ) ≥ n − 1 = γ(λζp) − 1. That suffices to conclude the
proof.

An application of this auxiliary result yields a minor refinement of the up-
per bound for the dimension γ(λ) in Theorem 1.46, but stilll generally not an
effective upper bound.
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Theorem 2.7 If λ is a holomorphic line bundle over a compact Riemann sur-
face M and if c(λ) > 0 then γ(λ) ≤ c(λ) + 1. If the equality holds for any
holomorphic line bundle over M then M = P1.

Proof: The result will be demonstrated by induction on the integer n = c(λ).
The case n = 1 follows immediately from Theorem 2.4. Assume therefore that
the result has been demonstrated for all integers strictly less than n, and consider
a holomorphic line bundle λ for which c(λ) = n > 1. If γ(λ) ≥ n+ 1 then from
the preceding lemma it follows that γ(λζ−1

p ) ≥ γ(λ)− 1 ≥ n for a point bundle
ζp; but c(λζ−1

p ) = n−1 so from the induction hypothesis it follows that M = P1,
and in that case γ(λ) = n+ 1 by Corollary 2.3. Thus γ(λ) ≤ n+ 1 and equality
holds only when M = P1, which concludes the induction step and the proof.

2.3 The Base Decomposition of Line Bundles

Over a compact Riemann surface M holomorphic line bundles λ for which
γ(λ) = 1, such as point bundles, are the line bundles of unique divisors on
M ; however if γ(λ) > 1 the bundle λ is the line bundle of the divisors of
some linearly independent cross-sections, hence of a number of distinct divisors.
Nonetheless there are some unique divisors that can be associated to such line
bundles. If λ is a holomorphic line bundle over a compact Riemann surface
M the divisor of common zeros of a finite or infinite collection of nontrivial
holomorphic cross-sections fi ∈ Γ(M,O(λ)) is the positive divisor on M defined
by

(2.8) d(f1, f2, . . .)(a) = inf
i

orda(fi).

The degree of this divisor is the number of common zeros of the collection
of cross-sections; the cross-sections have no common zeros precisely when this
divisor is the trivial divisor. The base divisor of a holomorphic line bundle λ for
which γ(λ) > 0 is the positive divisor b(λ) defined by

(2.9) b(λ)(a) = inf
{

orda(f)
∣∣∣ f ∈ Γ(M,O(λ)), f 6= 0

}
,

or equivalently it is the divisor of common zeros of the set of all nontrivial
holomorphic cross-sections of the line bundle λ; of course if γ(λ) = 0 the only
holomorphic cross-section of λ is that which vanishes identically, so the base
divisor b(λ) is undefined. If b(λ) =

∑
i νi ·ai then all holomorphic cross-sections

of the bundle λ vanish at the point ai to order at least νi, and there are cross-
sections that vanish at the point ai to order exactly νi. The points that appear
in the base divisor b(λ) with strictly positive coefficients are called the base
points of the line bundle λ; thus a point a ∈M is a base point of a line bundle
λ if and only if γ(λ) > 0 and all holomorphic cross-sections of λ vanish at the
point a. If d ≥ 0 is a positive divisor and γ(ζd) > 0 clearly d = b(ζd) + d′ for
another positive divisor d′ ≥ 0, since there is a holomorphic cross-section of the
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line bundle ζd that vanishes at the divisor d; in particular if a is a base point
of the line bundle ζd of a divisor d ≥ 0 for which γ(ζd) > 0 then the point a
must appear in the divisor d. A holomorphic line bundle λ is base-point-free
if γ(λ) > 0 and b(λ) = 0, or equivalently if γ(λ) > 0 and for any point of M
there exists a holomorphic cross-section of λ that is nonzero at that point. In
particular the trivial line bundle λ = 1 is base-point-free, since its holomorphic
cross-sections are complex constants; indeed it is the only line bundle λ with
c(λ) = 0 that is base-point-free, since γ(λ) = 0 for any other line bundle λ 6= 1
with c(λ) = 0. The set of base-point-free holomorphic line bundles on a compact
Riemann surface M is denoted by B(M), or simply by B if it is either clear from
context or irrelevant just which Riemann surface M is being considered.

Theorem 2.8 If λ and σ are base-point-free holomorphic line bundles on a
compact Riemann surface M their product λσ also is base-point-free.

Proof: If λ, σ are base-point-free line bundles then for any point a ∈ M there
are cross-sections f ∈ Γ(M,O(λ)) and g ∈ Γ(M,O(σ)) such that f(a) 6= 0 and
g(a) 6= 0; and then the cross-section fg ∈ Γ(M,O(λσ)) has the property that
f(a)g(a) 6= 0, so the product bundle also is base-point-free. That suffices for
the proof.

The set B(M) of base-point-free holomorphic line bundles on a compact Rie-
mann surface thus is closed under multiplication of line bundles, so sometimes
is called the semigroup of base-point-free holomorphic line bundles on M . As
a consequence the characteristic classes c(λ) of the base-point-free holomorphic
line bundles λ ∈ B(M) form a semigroup of nonnegative integers, called the
Lüroth semigroup of the surface M and denoted by L(M). As an example, on
the Riemann sphere P1 by Corollary 2.3 there is a unique holomorphic line bun-
dle ζ for which c(ζ) = 1 and γ(ζ) = 2; and it is equal to the point bundle ζa
for any point a ∈ M , so if f1, f2 ∈ Γ

(
P1,O(ζ)

)
is a basis for the holomorphic

cross-sections then some linear combination of these cross-sections vanshes at
any point of M so the two sections have no common zeros. It follows that the
line bundle ζ is base-point-free, hence the Lüroth semigroup L(P1) begins with
1 and consequently it consists of all integers n ≥ 1.

For some purposes it is convenient to use one or the other of the following
two alternative characterizations of base-point-free holomorphic line bundles.

Lemma 2.9 On a compact Riemann surface M a holomorphic line bundle λ
is base-point-free if and only if it has two holomorphic cross-sections with no
common zeros on M .

Proof: If λ has two holomorphic cross-sections with no common zeros then of
course it is base-point-free. Conversely suppose that λ is base-point-free and
let fi ∈ Γ(M,O(λ)) be a basis for the space of holomorphic cross-sections for
0 ≤ i ≤ n. If n = 0 the cross-section f0 must have no zeros, so it and the zero
cross-section have no common zeros. If n = 1 the two cross-sections f0 and f1

must have no common zeros. If n ≥ 2 consider the divisor d(f0) =
∑
j νj · aj
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of the first of these cross-sections. A cross-section f =
∑n
i=1 xifi vanishes

at the point a1 if and only if the coefficients xi satisfy the linear equation∑n
i=1 xifi(a1) = 0. Since fi(a1) 6= 0 for at least one index i ≥ 1 and the equation

involves at least two variables the set of solutions is a proper linear subspace of
the space Cn = {(x1, . . . , xn)} of all the coefficients xi; so its complement, the
set of coefficients for which f(a1) 6= 0, is a dense open subset of Cn. The same is
true for each of the points aj , and since the intersection of finitely many dense
open subsets of Cn is again a dense open subset there must exist coefficients
(x1, . . . , xn) describing a holomorphic cross-section f that does not vanish at
any of the points aj ; this cross-section and the cross-section f0 thus have no
common zeros, and that suffices for the proof.

It is evident from the proof of the preceding lemma that if γ(λ) > 2 then in
general any pair of holomorphic cross-sections will have no common zeros. More
precisely, all pairs h1, h2 of holomorphic cross-section of λ can be expressed in
terms of a basis f1, f2, . . . fn of these cross-sections as hi =

∑n
j=1 aijfi for a 2×n

matrix A = {aij}; the set of those matrices describing pairs of cross-sections
with no common zeros is a dense open subset of the space C2n of such matrices.

Lemma 2.10 (i) A holomorphic line bundle λ on a compact Riemann surface
M is base-point-free if and only if γ(λζ−1

a ) = γ(λ)− 1 for all points a ∈M .
(ii) A point a ∈ M on a compact Riemann surface M is a base point of a
holomorphic bundle λ over M for which γ(M) > 0 if and only γ(λζ−1

a ) = γ(λ).

Proof: If γ(λζ−1
a ) = γ(λ)−1 then γ(λ) > 0. Lemma 2.6 asserts that γ(λζ−1

a ) ≤
γ(λ) ≤ γ(λζ−1

a ) + 1 for any line bundle λ and any point a ∈ M , and that
γ(λζ−1

a ) = γ(λ) if and only if all holomorphic cross-sections of the bundle λ
vanish at the point a. Both (i) and (ii) are obvious consequences, and that
suffices for the proof.

Although not all holomorphic line bundles are base-point-free, any line bun-
dle λ for which γ(λ) > 0 can be described by its base divisor and an associated
base-point-free holomorphic line bundle as follows.

Theorem 2.11 (Base Decomposition Theorem) On a compact Riemann
surface M a holomorphic line bundle λ with γ(λ) > 0 is uniquely expressible as
the product λ = λ0ζb(λ) of a base-point-free line bundle λ0 and the line bundle
ζb(λ) of the base divisor b(λ) of λ, and γ(ζb(λ)) = 1. For any nontrivial holo-
morphic cross-section h ∈ Γ(M,O(ζb(λ))) multiplication by h is an isomorphism

(2.10) ×h : Γ(M,O(λ0))
∼=−→ Γ(M,O(λ)),

hence γ(λ0) = γ(λ).

Proof: If λ is a holomorphic line bundle with γ(λ) > 0 set λ0 = λζ−1
b(λ) where

b(λ) is the base divisor of λ; the base divisor b(λ) of course is determined
uniquely by the line bundle λ, hence so are the line bundles ζb(λ) and λ0. Mul-
tiplication by any nontrivial holomorphic cross-section h ∈ Γ(M,O(ζb(λ))) is
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an injective linear homomorphism of the form (2.10). If d(h) = b(λ) then
it is clear from the definition of the base divisor that for any cross-section
f ∈ Γ(M,O(λ)) the quotient f/h is everywhere holomorphic, hence is a cross-
section f0 = f/h ∈ Γ(M,O(λ0)) for which (×h)(f0) = f ; consequently the
homomorphism ×h also is surjective, hence is an isomorphism. Therefore if
fi ∈ Γ(M,O(λ0)) is a basis for the space of holomorphic cross-sections of the
line bundle λ0 then hfi ∈ Γ(M,O(λ)) is a basis for the space of holomorphic
cross-sections of the line bundle λ = λ0ζb(λ); hence b(λ0) is the divisor of com-
mon zeros of the cross-sections fi while b(λ) is the divisor of common zeros of
the cross-sections hfi so b(λ) = b(λ) + b(λ0) and consequently b(λ0) = ∅ so
λ0 is base-point-free. Finally if g ∈ Γ(M,O(ζb(λ))) is an arbitrary nontrivial
holomorphic cross-section, not necessarily vanishing at the base divisor b(λ),
nonetheless the corresponding homomorphism ×g also is an isomorphism, since
it is injective and the two vector spaces of cross-sections have the same dimen-
sion; but then b(λ) = d(g) = d(h) so g is necessarily a constant multiple of h,
hence γ(ζb(λ)) = 1. That suffices to conclude the proof.

This expression of a holomorphic line bundle λ for which γ(λ) > 0 as the
product of a base-point-free line bundle λ0 and the line bundle ζb(λ) associated
to the base divisor b(λ) is called the base decomposition of the line bundle λ. As
an illustrative example of the base decomposition of a line bundle, if γ(λ) = 1
then λ is the line bundle of a unique positive divisor d and λ has the base
decomposition as the product λ = 1 · ζd of the base-point-free identity line
bundle 1 and the line bundle ζd of the base divisor d = b(λ). To each base-
point-free line bundle λ0 there can be associated the set of holomorphic line
bundles with base decomposition λ = λ0ζb, parametrized by the appropriate
positive divisors b; alternatively to each positive divisor b for which γ(ζb) = 1
there can be associated the set of holomorphic line bundles λ with the base
decomposition λ = λ0ζb, parametrized by the appropriate set of base-point-free
line bundles λ0. These are convenient descriptions of the set of holomorphic line
bundles over a given compact Riemann surface; but some care must be taken
since not every product of a base-point-free line bundle and a line bundle ζb for
which γ(ζb) = 1 is the base decomposition of the product.

Corollary 2.12 If λ0 is a base-point-free holomorphic line bundle on a compact
Riemann surface M and b ≥ 0 is a positive divisor on M , the product λ = λ0ζb
is the base decomposition of the line bundle λ if and only if γ(λ) = γ(λ0).

Proof: If λ = λ0ζb is the base decomposition of λ then γ(λ) = γ(λ0) by
the preceding theorem. Conversely if γ(λ0ζb) = γ(λ0) for a base-point-free
line bundle λ0 and a divisor b ≥ 0, and if h ∈ Γ(M,O(ζb)) is a nontrivial
holomorphic cross-section for which d(h) = b, multiplication by h is an injective
homomorphism

×h : Γ(M,O(λ0)) −→ Γ(M,O(λ0ζb))

which also must be surjective since the two spaces of holomorphic cross-sections
have the same dimension; consequently all holomorphic cross-sections of the line
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bundle λ0ζb are multiples of h so must vanish at the divisor b. If all of these
cross-sections vanish at a divisor b+a where a ≥ 0 is a nontrivial positive divisor
then all of the holomorphic cross-sections of the line bundle λ0 also vanish at
a, which is impossible since the line bundle λ0 is base-point-free. Thus b is the
base divisor of the line bundle λ0ζb, and hence this is the base decomposition
of the bundle λ = λ0ζb and γ(ζd) = 1.

Theorem 2.13 If a holomorphic line bundle λ over a Riemann surface M has
the base decomposition λ = λ0ζb then for any point a ∈ M either γ(λζa) =
γ(λ) and the product bundle λζa has the base decomposition λζa = λ0ζb+a or
γ(λζa) > γ(λ) and the product bundle λζa has the base decomposition

(2.11) λζa = λ′0ζb′ for the base-point free bundle λ′0 = λ0λaζb′′

where b = b′ + b′′ for some divisors b′ ≥ 0 and b′′ ≥ 0.

Proof: Since λ = λ0ζb is a base decomposition then γ(λ) = γ(λ0) by the
preceding Corolllary 2.12; so if γ(λζa) = γ(λ) = γ(λ0) then by the preceding
Corollary 2.12 again λζa = λ0ζb+a is a base decomposition. On the other hand if
γ(λζa) > γ(λ) then γ(λζa) = γ(λ)+1 by Lemma 2.6; so if fi ∈ Γ(M,O(λ0)) is a
basis for the space of holomorphic cross-sections of the line bundle λ0 and hb ∈
Γ(M,O(ζb)) and ha ∈ Γ(M,O(ζa)) are nontrivial holomorphic cross-sections
with the divisors d(hb) = b and d(ha) = a the products fihbha together with
one other cross-section g are a basis for Γ(M,O(λζa)). Not all of these cross-
sections vanish at the point a, since otherwise it would followfrom Corollary 2.12
as in the first part of the proof that γ(λζa) = γ(λ). If all these cross-sections
vanish at a point b 6= a then since the cross-sections fi have no common zeros
and ha(b) 6= 0 it must be the case that hb(b) = 0 hence that b is a point in the
divisor b; therefore if b′ is the base divisor of the line bundle λζa then b′ must
be part of the divisor b, so b = b′+b′′ for another divisor b′′ ≥ 0. Thus the base
decomposition of the line bundle λζa = λ0ζb′ζb′′ζa has the form λζa = λ′0ζb′ for
a base-point-free line bundle λ′0 which must be the bundle λ′0 = λ0ζaζb′′ . That
suffices to conclude the proof.

Corollary 2.14 If r0 ∈ L(M) is an integer in the Lüroth semigroup L(M) of
a Riemann surface M , if a line bundle λ over M has the base decomposition
λ = λ0ζb for a base-point-free line bundle λ0 for which c(λ0) = r0, and if
γ(λζa) > γ(λ) for some point a ∈ M then there is an integer r ∈ L(M) in the
range r0 + 1 ≤ r ≤ r0 + 1 + deg b.

Proof: If γ(λζa) > γ(λ) it follows from the preceding theorem that b = b′ +
b′′ for some divisors b′ ≥ 0, b′′ ≥ 0 for which λ0ζaζb′′ is base-point-free, and
consequently c(λ0ζaζb′′) = r0 + 1 + deg b′′ ∈ L(M); since 0 ≤ deg b′′ ≤ deg b
that suffices for the proof.
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2.4 Mappings to Projective Space

The Riemann sphere P1 discussed in Section 2.1 is the simplest complex
projective space. General complex projective spaces also play an important role
in the study of compact Riemann surfaces, so a brief survey is included here to
establish the notation. Two nonzero vectors v1, v2 in a complex vector space
V of dimension r + 1 are considered as equivalent if v1 = cv2 for some nonzero
complex constant c ∈ C. This is clearly an equivalence relation ∼ on the subset
V × ⊂ V consisting of nonzero vectors, the complement of the origin in V .
The quotient of V × under this equivalence relation is by definition the complex
vector space P(V ) = V ×/∼ of dimension r. For the standard vector space Cr+1

the notation is simplified by setting Pr = P(Cr+1). The equivalence class of
the nonzero vector v = (z0, z1, . . . , zr) in Pr will be denoted by [z0, z1, . . . , zr],
and that will be called the description of the point v/∼ ∈ Pr by homogeneous
coordinates in Pr. If Uj ⊂ Pr denotes the subset of Pr consisting of points

[z0, z1, . . . , zr] ∈ Pr for which zj 6= 0 and zjk = zk/zj ∈ C then points in Uj ⊂ Pr
can be described uniquely by the vectors

zj =
(
zj0, z

j
1, . . . z

j
j−1, z

j
j+1 . . . , z

j
r

)
∈ Cr.

This provides local coordinates in the subset Uj ⊂ Pr, identifying that subset
with the subspace Cr; this is the description of a point by inhomogeneous coor-
dinates. In the intersection U i ∩ U j of two coordinate neighborhoods the local
coordinates are related by zi = ρijz

j where ρij = zj/zi. This describes the
structure of a compact complex manifold of dimension r on the projective space
Pr.

If λ is a base-point-free holomorphic line bundle over M and is defined by
coordinate transition functions λαβ in terms of a coordinate covering {Uα} of
the Riemann surface M , and if fαi ∈ Γ(M,O(λ)) for 0 ≤ i ≤ r are any r + 1
holomorphic cross-sections having no common zeros on M , then for any point
z ∈ Uα the vector

(2.12) Fα(z) =
(
fα0(z), fα1(z), . . . , fαr(z)

)
∈ Cr+1

is nonzero so it can be viewed as describing a point [Fα(z)] in the projective
space Pr in homogeneous coordinates; and since Fα(z) = λα,β(z)Fβ(z) for any
point z ∈ Uα ∩ Uβ it follows that [Fα(z)] = [Fβ(z)] for z ∈ Uα ∩ Uβ so the
local mappings [Fα(z)] can be viewed as describing a holomorphic mapping
F : M −→ Pr by associating to any point z ∈M the point

(2.13) F (z) = [Fα(z)] = [fα0(z), fα1(z), . . . , fαr(z)] ∈ Pr.

If the cross-sections fαi have some common zeros the preceding construction
can be modified so as still to provide a holomorphic mapping into Pr.

Theorem 2.15 (i). Any r + 1 nontrivial cross-sections fαi ∈ Γ(M,O(λ)) of
a holomorphic line bundle λ over a compact Riemann surface M describe a
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holomorphic mapping F : (M ∼ |d0|) −→ Pr from the complement of the suport
|d0| ⊂ M of the divisor d0 = d(fα0, . . . , fαr) of common zeros of these cross-
sections to the complex projective space Pr.
(ii) If h ∈ Γ

(
M,O(ζd0

)
)

is a holomorphic cross-section for which d(h) = d0 the

mapping in (i) extends to a holomorphic mapping F̃ : M −→ Pr described by the
r+1 holomorphic cross-sections f̃αi = fαi/hα of the base-point-free holomorphic
line bundle λζ−1

d0
.

Proof: (i) Since not all the cross-sections fαi vanish identically the image
F (z) = [fα0(z), . . . , fαr(z)] ∈ Pr is well defined for all points z ∈ M except for
the finitely many points z that are the common zeros of the cross-sections fαi,
the finitely many points z ∈ |d|0 of the divisor d0; and that defines a holomorphic
mapping F : (M ∼ |d|) −→ Pr.
(ii) The cross-section h ∈ Γ(M,O(ζd)) has the divisor d(h) = d0 so the quotients
fαi/h ∈ Γ(M,O(λζ−1

d )) are holomorphic cross-sections with no common zeros
on the surface M ; and consequently the line bundle λζ−1

d0
is base-point-free.

These cross-sections describe a holomorphic mapping F̃ : M −→ Pn for which
F̃ |(M − |d|) = F , and that suffices for the proof.

Actually all holomorphic mappings from a compact Riemann surface M into
complex projective spaces can be described in this way.

Theorem 2.16 Any holomorphic mapping F : M −→ Pr from a compact Rie-
mann surface M into an r-dimensional complex projective space for r ≥ 1 can be
described by a collection of r + 1 holomorphic cross-sections fi ∈ Γ(M,O(λF ))
with no common zeros of a uniquely determined base-point-free holomorphic line
bundle λF over M .

Proof: In terms of homogeneous coordinates [w0, . . . , wr] in the projective space
Pr, let Vk ⊂ Pr be the open subset in Pr consisting of points for which wk 6= 0.
The quotients wki = wi/wk are local inhomogeneous coordinates in Vk for indices
0 ≤ i ≤ r, i 6= k, identifying the subset Vk ⊂ Pr with the space Cr of these
coordinates. The inverse image Uk = F−1(Vk) ⊂ M is an open subset of the
Riemann surface M and the image F (z) ∈ Vk of any point z ∈ Uk has uniquely
determined inhomogeneous coordinates wki (z), which are holomorphic functions
in the open subset Uk ⊂ M . The image F (z) of a point z ∈ Uk ∩ Ul then is
described by the two sets of inhomogeneous coordinates wki (z) and wli(z)}. Since
these coordinates describe the same point of Pr necessarily wki (z) = λkl(z)w

l
i(z)

for a nonzero complex number λkl(z) at each point z ∈ Uk ∩ Ul. It is evident
from this definition that the function λkl(z) = wki (z)/wli(z) is a holomorphic
function in Uk∩Ul and that λkl(z)λlm(z)λmk(z) = 1 whenever z ∈ Uk∩Ul∩Um;
thus these functions are the coordinate transition functions for a holomorphic
line bundle λF over the Riemann surface M , and the functions wki (z) for any
fixed index i describe a holomorphic cross-section wi ∈ Γ

(
M,O(λF )

)
of the line

bundle λF . Since not all the coordinates wki of any point in Pr are zero it follows
that not all the holomorphic cross-sections wi(z) vanish at any point z ∈ M ;
consequently the line bundle λF is base-point-free. Any holomorphic line bundle
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is the line bundle ζd(f) of the divisor of any meromorphic cross-section of that
bundle, so the line bundle λF is determined uniquely by the mapping F ; and
the mapping F : M −→ Pr is just the holomorphic mapping described by these
cross-sections, which suffices for the proof.

The base-point-free holomorphic line bundle λF in the description of a holo-
morphic mapping F : M −→ Pr in the preceding theorem is called the line
bundle determined by the mapping F . Conversely to any base-point-free holo-
mophic line bundle λ over M there is associated uniquely the holomorphic map-
ping Fλ : M −→ Pr defined by a basis of the holomorphic cross-sections of λ,
where r = γ(λ) − 1; this is called the projective mapping defined by the line
bundle λ. By Remmert’s Proper Mapping Theorem1 the image F (M) ⊂ Pr of
any holomorphic mapping F : M −→ Pr from the compact Riemann surface
is a one-dimensional irreducible holomorphic subvariety of the projective space
Pr, and as such is an algebraic curve in Pr by Chow’s Theorem. The image
of course may have some singularities, so it is not necessarily a holomorphic
submanifold of Pr.

Theorem 2.17 (Projective Mapping Theorem) Let Fλ : M −→ Pr be the
holomorphic mapping defined by the space of holomorphic cross-sections of a
base-point-free holomorphic line bundle λ over the Riemann surface M .
(i) For any point a ∈ M the inverse image F−1

λ (a) ⊂ M consists of the point
a ∈M and any points in the base divisor d(λζ−1

a ) of the line bundle λζ−1
a .

(ii) The mapping Fλ is a bijective mapping if and only if the line bundle λζ−1
a

is base-point-free for all points a ∈M .
(iii) The mapping Fλ is a nonsingular holomorphic mapping at the point a if
and only if the line bundle λζ−1

a is base-point-free.
(iv) If λζ−1

a is base-point-free for all points a ∈ M then the mapping Fλ is
a biholomorphic mapping from M to a connected one-dimensional submanifold
Fλ(M) ⊂ Pr.

Proof: (i) For any point a ∈ M it is possible to choose a basis {fi} for the
holomorphic cross-sections of the line bundle λ in a coordinate neighborhood of
the point a ∈ M so that F (a) = [1, 0, . . . , 0] ∈ Pr, hence so that f0(a) 6= 0 but
f1(a) = · · · = fr(a) = 0. The cross-sections f1, . . . , fr then are a basis for the
space of those cross-sections of the bundle λ that vanish at the point a ∈ M ;
and if h ∈ Γ(M,O(ζa)) is a nontrivial holomorphic cross-section of the point
bundle ζa that vanishes at the poin a then the quotients f1/h, . . . , fn/h are a
basis for the space of holomorphic cross-sections Γ(M,O(λζ−1

a )), since it follows
from Lemma 2.6 that γ(λζ−1

a ) = γ(λ) − 1 for the base-point-free line bundle
λ. Then F (b) = F (a) for another point b ∈ M if and only if f0(b) 6= 0 but
f1(b) = · · · = fn(b) = 0, hence if and only if f1(b)/h(b) = · · · = fr(b)/h(b) = 0,
which is just the condition that b ∈ b(λζ−1

a ), and that demonstrates part (i).
(ii) It follows from (i) that the mapping Fλ is bijective if and only if n(a) = 0 for
all points a ∈M , which is just the condition that b(λζ−1

a ) = ∅ for all a ∈M or

1That result is discussed on page423 in Appendix A.3.



46 CHAPTER 2. LÜROTH SEMIGROUP

equivalently that λζ−1
a is base-point-free for all a ∈ M , and that demonstrates

part (ii).
(iii) Choose coordinates in Pr such that F (a) = [1, 0, . . . , 0] ∈ Pr. The quo-
tients zi/z0 of the homogeneous coordinates [z0, . . . zr] in Pr are local inhomo-
geneous coordinates in an open neighborhood of the point [1, 0, . . . , 0] ∈ Pr
for 1 ≤ i ≤ r ; and in terms of these coordinates the holomorphic mapping
F : M −→ Pr is described by the quotient functions gi(z) = fi(z)/f0(z) for
1 ≤ i ≤ r. The derivative of the mapping F at the point a is the vector
F ′(a) =

{
g′i(a)

}
=
{
f ′i(a)/f0(a)

}
since fi(a) = 0 for 1 ≤ i ≤ r; hence the

mapping F is nonsingular at the point a if and only if f ′i(a) 6= 0 for some index
i in the range 1 ≤ i ≤ r. Since fi(a) = h(a) = 0, but h′(a) 6= 0, where h has
a simple zero at the point a ∈ M , it follows that the value of the cross-section
fi(z)/h(z) ∈ Γ(M,O(λζ−1

a )) at the point a ∈M actually is given by f ′i(a)/h′(a);
thus the mapping F is nonsingular at the point a ∈ M precisely when not all
the holomorphic cross-sections of the bundle λζ−1

a vanish at the point a ∈ M ,
which is just the condition that the line bundle λζ−1

a is base-point-free, and that
demonstrates (iii).
(iv) If λζ−1

a is base-point-free for all points a ∈M then by (ii) the mapping Fλ
is bijective and by (iii) it is nonsingular at all points of M , so the image Fλ(M)
is a submanifold of Pr and the mapping Fλ is a biholomorhic mapping, which
suffices for the proof.

That there do exist nonsingular imbeddings of a compact Riemann surface
M into various projective spaces will follow from a characterization of the base-
point-free holomorphic line bundles over M . The special case of mappings
F : M −→ P1 also is of considerable interest. For any two holomorphic cross-
sections f0, f1 ∈ Γ

(
M,O(λ)

)
with no common zeros, where λ is a base-point-

free holomorphic line bundle over M , the quotient f = f1/f0 is a meromorphic
function of degree r = c(λ) which describes a mapping F : M −→ P1 of degree
r, meaning that for all but finitely many points of P1 the inverse image f−1(a)
consists of r distinct points of M . These and the more general mappings between
Riemann surfaces will be discussed in more detail later; the point here is that
the degrees of holomorphic mappings F : M −→ P1 are just the integers in the
Lüroth semigroup of M .

2.5 The Analytic Euler Characteristic

To examine further some relations between the dimension γ(λ) of the space
of holomorphic cross-sections of a general holomorphic line bundle λ over a
compact Riemann surface M and the characteristic class c(λ) of that line bundle
it is convenient to introduce the expression

(2.14) χ(λ) = dimH0(M,O(λ))− dimH1(M,O(λ)),

a finite integer as a consequence of the Finite Dimensionality Theorem, Theo-
rem 1.14; this is called the Euler characteristic of the line bundle λ.
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Lemma 2.18 If λ is a holomorphic line bundle over a compact Riemann sur-
face M then

(2.15) χ(λζp)− c(λζp) = χ(λ)− c(λ)

for any point bundle ζp.

Proof: If h ∈ Γ(M,O(ζp)) is a nontrivial holomorphic cross-section multiplica-
tion by h is an injective sheaf homomorphism ×h : O(λ) −→ O(λζp); this leads
to the exact exact sequence of sheaves

(2.16) 0 −→ O(λ)
×h−→ O(λζp) −→ S −→ 0,

in which S is the quotient sheaf. Since the cross-section h has a simple zero at the
point p and is otherwise nonvanishing it follows that at any point a ∈M other
than p the homomorphism ×h is an isomorphism, and consequently Sa = 0. On
the other hand if z is a local coordinate centered at the point p the elements
in the stalk Op(λζp) can be identified with germs of holomorphic functions of
the variable z at the origin, and the functions that are in the image of the
homomorphism ×h are those functions that vanish at the point p. Therefore
associating to the germ f of a holomorphic function representing an element in
the stalk Op(λζp) the value f(p) is a mapping Op(λζp) −→ C with kernel the
image of multiplication by h; and that in turn yields an identification Sp ∼= C.
The precise identification depends of course on the choice of a local coordinate z
in terms of which the bundle λ is trivialized, but is really not needed at all; more
important are first that H0(M,S) = Γ(M,S) ∼= C and second that the sheaf S
is a fine sheaf, since it is nontrivial at just a single point of M , so H1(M,S) = 0.
Therefore the exact cohomology sequence associated to the exact sequence of
sheaves (2.16) begins

0 −→ H0(M,O(λ))
×h−→ H0(M,O(λζp)) −→ C −→

−→ H1(M,O(λ))
×h−→ H1(M,O(λζp)) −→ 0.

The alternating sum of the dimensions of the spaces in an exact sequence of
vector spaces such as this is zero, as can be seen most simply by decomposing
the exact sequence into a collection of short exact sequences; consequently

0 = dimH0(M,O(λ))− dimH0(M,O(λζp)) + 1

− dimH1(M,O(λ)) + dimH1(M,O(λζp))

= χ(λ)− χ(λζp) + 1.

Since c(λζp) = c(λ) + 1 this yields the desired result, thereby concluding the
proof.

An immediate consequence of this lemma is the fundamental existence the-
orem for compact Riemann surfaces.
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Theorem 2.19 (Existence Theorem) A holomorphic line bundle on a com-
pact Riemann surface M has nontrivial meromorphic cross-sections; indeed for
any choice of a base point p ∈ M any holomorphic line bundle λ over M has
nontrivial meromorphic cross-sections with poles at most at the point p ∈M .

Proof: Iterating the preceding lemma yields the result that

(2.17) χ(λζnp )− c(λζnp ) = χ(λ)− c(λ)

for any integer n, or explicitly

dimH0(M,O(λζnp ))− dimH1(M,O(λζnp ))− c(λ)− n
= dimH0(M,O(λ))− dimH1(M,O(λ))− c(λ)

since c(λζnp ) = c(λ) + n; and hence

dimH0(M,O(λζnp )) = n+ dimH0(M,O(λ))− dimH1(M,O(λ))

+ dimH1(M,O(λζnp ))

≥ n+ dimH0(M,O(λ))− dimH1(M,O(λ)).

It is evident from this that dim Γ(M,O(λζnp )) = dimH0(M,O(λζnp )) > 0 for
sufficiently large n > 0, so there is a nontrivial holomorphic cross-section f of the
bundle λζnp for some n > 0; and if h ∈ Γ(M,O(ζp)) is a nontrivial holomorphic
section of the point bundle ζp the quotient f/hn is a nontrivial meromorphic
cross-section of the bundle λ with poles at most at the point p ∈ M , which
concludes the proof.

Corollary 2.20 Any holomorphic line bundle λ over a compact Riemann sur-
face M is the line bundle of a divisor on M , so there is the exact sequence

0 −→ Γ(M,O∗) ι−→ Γ(M,M∗) d−→ Γ(M,D)
δ−→ H1(M,O∗) −→ 0.

Proof: By the Existence Theorem any line bundle λ has a nontrivial mero-
morphic cross-section, and then λ is the line bundle of the divisor of this cross-
section. That means that the coboundary mapping in the exact cohomology
sequence (1.5) is surjective, so that sequence reduces to the exact sequence of
the present corollary, which suffices for the proof.

The exactness of the cohomology sequence of the preceding corollary was
demonstrated by showing that the coboundary homomorphism in the exact
sequence (1.5) is surjective; and since D is a fine sheaf H1(M,D) = 0, so it
follows further from (1.5) that

(2.18) H1(M,M∗) = 0 on any compact Riemann surface M.

By applying the Serre Duality Theorem the preceding result can be extended
as follows.
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Theorem 2.21 If λ is a holomorphic line bundle over a compact Riemann
surface M then H1(M,M(λ)) = 0.

Proof: If fαβ ∈ Z1(U,M(λ)) is a cocycle in a coordinate covering U of the
Riemann surface M choose a divisor d on M such that deg d > 2g − 2 − c(λ)
and d + d(fαβ) ≥ 0 and let h ∈ Γ(M,O(ζd) be a holomorphic cross-section
with d(h) = d. Since fαγ = λγβfαβ + fβγ in Uα ∩ Uβ ∩ Uγ by (1.45) while
hγ = ζd, γβhβ in Uβ ∩ Uγ it follows that fαγhγ = ζd, γβλγβfαβhβ + fβγhγ ,
which is just the condition that the holomorphic functions fαβhβ describe a
cocycle in Z1(U,O(ζdλ)). By Corollary 1.18 to the Serre Duality Theorem
dimH1(M,O(ζdλ)) = dim Γ(M,O(1,0)(ζ−1

d λ−1) and dim Γ(M,O(1,0)(ζdλ
−1)) =

dim Γ(M,O(κζdλ
−1)) = 0 since c(κζ−1

d λ−1) = 2g− 2− deg d− c(λ) < 0; conse-
quently after passing to a refinement of the covering if necessary there will be
holomorphic functions gα in the sets Uα such that fαβhβ = gβ−λβαζd, βα in the
intersections Uα ∩ Uβ . The quotients fα = gα/hα are then meromorphic func-
tions in the sets Uα such that fαβ = fβ − λβαfα in the intersections Uα ∩ Uβ ,
which is the condition that the meromorphic cocycle fαβ is cohomologous to
zero, and that concludes the proof.

Another consequence of the Existence Theorem is an explicit formula for the
Euler characteristic of any holomorphic line bundle over a compact Riemann
surface in terms of the characterisic class of that bundle. In this formula the
arithmetic genus of a compact Riemann surface M is defined to be the integer

(2.19) ga = dimH1(M,O).

Theorem 2.22 (Euler Characteristic Theorem) If λ is a holomorphic line
bundle over a compact Riemann surface M of arithmetic genus ga then

(2.20) χ(λ) = c(λ) + 1− ga.

Proof: Any holomorphic line bundle λ over M is the line bundle of a divisor
on M by the Existence Theorem, so λ can be written as a product λ =

∏
i ζ
ni
pi ;

it then follows by iterating Lemma 2.18 that χ(λ) − c(λ) = χ(1) − c(1) where
1 is the trivial holomorphic line bundle. The characteristic class of the trivial
bundle is c(1) = 0; and since a holomorphic cross-section of the trivial line
bundle is a holomorphic function on the compact Riemann surface M , so is a
constant by the maximum modulus theorem, it follows that dimH0(M,O) =
dim Γ(M,O) = 1. The Euler class of the trivial bundle therefore is χ(1) =
dimH0(M,O)− dimH1(M,O)) = 1− ga, and that suffices for the proof.

2.6 The Riemann-Roch Theorem

Reference to the first cohomology group can be removed by applying the
Serre Duality Theorem, Theorem 1.17; as in Corollary 1.18, the Serre Duality
Theorem implies that

(2.21) dimH1
(
M,O(λ)

)
= dim Γ

(
M,O(1,0)(λ−1)

)
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for any holomophic line bundle λ, where these are finite-dimensional vector
spaces. To reinterpret this result, holomorphic differential forms φ ∈ Γ(M,O(1,0))
on an arbitrary Riemann surface M can be written explicitly in a local coor-
dinate neighborhood Uα with local coordinate zα in the form φ = fαdzα for a
holomorphic function fα in Uα. In the intersection Uα ∩ Uβ of two coordinate
neighborhoods φ = fα dzα = fβdzβ and consequently

(2.22) fα =
dzβ
dzα

fβ =

(
dzα
dzβ

)−1

fβ .

The derivatives

(2.23) καβ =
dzβ
dzα

=

(
dzα
dzβ

)−1

are holomorphic and nowhere vanishing functions in the intersections Uα ∩ Uβ
of pairs of sets, and it follows immediately from the chain rule for differentiation
that καβ ·κβγ ·κγα = 1 in any triple intersection Uα∩Uβ∩Uγ ; thus {Uα, καβ} is a
holomorphic coordinate line bundle over M , describing a holomorphic line bun-
dle. The same construction can be applied to the union of any two coordinate
coverings of the surface, from which it is evident that the line bundle described
by these coordinate line bundles is independent of the choice of a coo/rdinate
covering of the surface; that line bundle is called the canonical bundle of the
Riemann surface M , and is denoted by κ. By (2.22) the coefficients fα of a holo-
morphic differential form on M are a holomorphic cross-section of the canonical
line bundle κ, so there results the natural identification O(1,0) ∼= O(κ) or more
generally

(2.24) O(1,0)(λ) ∼= O(κλ) for any line bundle λ;

Serre duality in the form (2.21) then can be rewritten

(2.25) dimH1
(
M,O(λ)

)
= dim Γ

(
M,O(κλ−1)

)
for any holomorphic line bundle.

Further results arise from a holomorphic form of the deRham exact sequence
of differential forms. The germ of a holomorphic differential form on a Riemann
surface is the germ φ of a differential form of type (1, 0) such that ∂φ = 0,
as on page 15. Clearly the exterior derivative of the germ of a holomorphic
function is the germ of a holomorphic differential form. Conversely a germ φ
of a holomorphic differential form on a Riemann surface is the germ of a closed
differential 1-form since dφ = ∂φ = 0, so by the Poincaré lemma φ is the exterior
derivative of the germ of a function f ; but if φ = df = ∂f + ∂f then ∂f = 0
since φ is of type (1, 0), so f is the germ of a holomorphic function. Thus there
is the exact sequence of sheaves

(2.26) 0 −→ C ι−→ O d−→ O(1,0) −→ 0
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on an arbitrary Riemann surface, the holomorphic version of the deRham exact
sequence of sheaves. From this exact sequence of sheaves there follows the exact
cohomology sequence

0 −→ Γ(M,C)
ι−→ Γ(M,O)

d−→ Γ(M,O(1,0))
δ−→ H1(M,C)

ι−→
ι−→ H1(M,O)

d−→ H1(M,O(1,0))
δ−→ H2(M,C) −→ 0

since H2(M,O) = 0 by the Dolbeault Theorem, Theorem 1.9. If M is compact
every holomorphic function is constant, so Γ(M,C) = Γ(M,O) = C. Further-
more it follows from (2.24) and the Serre Duality Theorem (2.25 that

dimH1(M,O(1,0)) = dimH1(M,O(κ)) = dim Γ(M,O(1,0)(κ−1))

= dim Γ(M,O) = 1

while dimH2(M,C) = 1 as well, a standard topological result. Thus for a
compact Riemann surface this exact cohomology sequence reduces to the short
exact sequence

(2.27) 0 −→ Γ(M,O(1,0))
δ−→ H1(M,C)

ι−→ H1(M,O) −→ 0.

In this sequence dimH1(M,C) = 2g where g is the topological genus2 of the
compact surface M . On the other hand by the Serre Duality Theorem (2.25
again it also follows that ga = dimH1(M,O) = dim Γ(M,O(1,0)), so (2.27)
implies that

(2.28) ga = dimH1(M,O) = dim Γ(M,O(1,0)) =
1

2
dimH1(M,C) = g.

Thus the arithmetic genus ga of a compact Riemann surface is equal to its
topological genus g; this common value subsequently will be called simply the
genus of the surface. In these terms the Euler Characteristic Theorem can be
rewritten in the following form.

Theorem 2.23 (Riemann-Roch Theorem) For any holomorphic line bun-
dle λ over a compact Riemann surface M of genus g

(2.29) γ(λ)− γ(κλ−1) = c(λ) + 1− g.

Proof: From the Serre Duality Theorem (2.25 it follows that

dimH1(M,O(λ)) = dim Γ(M,O(1,0)(λ−1)) = γ(κλ−1);

and with these observations the Euler Characteristic Theorem, Theorem 2.22,
takes the form (2.29), with the genus g in place of the arithmetic genus ga in
view of (2.28). That suffices for the proof.

2See the discussion of the topology of surfaces in Appendix D.
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Corollary 2.24 (Canonical Bundle Theorem) The canonical bundle κ of
a compact Riemann surface M of genus g is characterized by

(2.30) c(κ) = 2g − 2 and γ(κ) = g.

Proof: Since γ(κ) = dim Γ(M,O(1,0)) = g by (2.28) and since γ(κκ−1) =
γ(1) = 1 it follows immediately from (2.23) for the special case in which λ = κ
that c(κ) = 2g − 2. On the other hand if λ is a holomorphic line bundle with
c(λ) = 2g − 2 and γ(λ) = g then it follows from (2.29) that g − γ(κλ−1) =
2g− 2 + 1− g = g− 1, hence that γ(κλ−1) = 1; but since c(κλ−1) = 0 it follows
from Corollary 1.4 that κλ−1 is the identity bundle, hence that λ = κ. That
suffices to conclude the proof.

The Riemann-Roch Theorem in the form given in Theorem 2.24 can be
rephrased in a more symmetric way in terms of an auxiliary expression that is
useful in various other contexts as well. The Clifford index of a holomorphic
line bundle λ on a compact Riemann surface is defined by

(2.31) C(λ) = c(λ)− 2
(
γ(λ)− 1

)
,

so is another integral invariant associated to a holomorphic line bundle.

Corollary 2.25 (Brill-Noether Formula) The Clifford index of a holomor-
phic line bundle λ over a compact Riemann surface satisfies the symmetry con-
dition

(2.32) C(λ) = C(κλ−1),

where κ is the canonical bundle of the surface.

Proof: From the definition of the Clifford index and the Riemann-Roch Theo-
rem (2.29) it follows that

C(λ) = c(λ)− 2
(
γ(λ)− 1

)
= c(λ)− 2

(
γ(κλ−1) + c(λ) + 1− g − 1

)
= c(κλ−1)− 2

(
γ(κλ−1)− 1

)
= C(κλ−1),

which concludes the proof.

There is yet another formulation of the Riemann-Roch Theorem that is quite
commonly used, one that is expressed entirely in terms of meromorphic functions
and differential forms and avoids any mention of line bundles. It is customarily
expressed in terms of the complex vector spaces L(d) associated to divisors d
on the surface M , defined by

(2.33) L(d) =
{
f ∈ Γ(M,M)

∣∣∣ d(f) + d ≥ 0
}
.

Note that vector spaces L(d1) and L(d2) are isomorphic whenever the divisors d1

and d2 are linearly equivalent; indeed if d1 ∼ d2 there is a meromorphic function
g on M with d(g) = d1 − d2 and multiplication by g defines an isomorphism

(2.34) ×g : L(d1)
∼=−→ L(d2).
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Thus the dimension of the vector space L(d) depends only on the linear equiv-
alence class of the divisor d. If d =

∑
i νi · pi for distinct points pi ∈ M then

L(d) consists of those meromorphic functions f on M having a zero at pi of
order at least −νi if νi ≤ 0 and having a pole at pi of order at most νi if νi ≥ 0.
These vector spaces of meromorphic functions have played a major role in the
study of function theory on compact Riemann surfaces from the earliest period.
If ζd is the line bundle associated to the divisor d and h ∈ Γ(M,M(ζd)) is a
meromorphic cross-section with d(h) = d then multiplication by h defines an
isomorphism

(2.35) ×h : L(d)
∼=−→ Γ(M,O(ζd)),

so that

(2.36) dimL(d) = dim Γ(M,O(ζd)).

The divisors of the holomorphic cross-sections f ∈ Γ(M,O(ζd)) are precisely
the effective divisors that are linearly equivalent to the divisor d, a collection of
divisors called a complete linear system and traditionally denoted by |d|. This
system of divisors can be identified with the projective space PL(d), since two
cross-sections f1, f2 ∈ Γ(M,O(ζd)) have the same divisor if and only if f1 = cf2

for some nonzero complex constant c; thus |d| = PL(d) has the natural struc-
ture of a complex projective space of dimension γ(ζd)− 1.

There is a corresponding definition for differential forms, expressed in terms
of meromorphic differential forms. A germ of a meromorphic differential form
is an expression of the form f dz for the germ of a meromorphic function
f ∈ M; the sheaf of germs of meromorphic differential forms is denoted by
M(1,0), and the global sections in Γ(M,M(1,0)) are called meromorphic differ-
ential forms on M . These are not quite a subset of the space of C∞ differential
forms of type (1, 0) on M , since the meromorphic differential forms are not
differentiable at their singularities; but the space of holomorphic differential
forms can be identified in the obvious way with a subspace of the space of
meromorphic differential forms. Of course there is again the natural identifica-
tion Γ(M,M(1,0)) ∼= Γ(M,M(κ)), so that meromorphic differential forms can
be identified with meromorphic cross-sections of the canonical bundle in the
same way that holomorphic differential forms can be identified with holomor-
phic cross-sections of the canonical bundle; and the notion of the divisor of a
meromorphic differential form is consequently well defined. In these terms, let

(2.37) L(1,0)(d) =
{
f dz ∈ Γ(M,M(1,0))

∣∣∣ d(f) + d ≥ 0
}
.

Again if d =
∑
i νi · pi for distinct points pi ∈M then L(1,0)(d) consists of those

meromorphic differential forms f dz on M having a zero at pi of order at least
−νi if νi ≤ 0 and having a pole at pi of order at most νi if νi ≥ 0. If h ∈
Γ(M,M(ζd)) is a meromorphic cross-section with d(h) = d then multiplication
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by h defines an isomorphism

(2.38) ×h : L(1,0)(d)
∼=−→ Γ(M,O(1,0)(ζd)) = Γ(M,O(κζd)),

and since dim Γ(M,O(1,0)(ζd)) = dim Γ(M,O(κζd)) it follows that

(2.39) dimL(1,0)(d) = γ(κζd).

In these terms, the Riemann-Roch Theorem can be rephrased as follows.

Corollary 2.26 (Riemann-Roch Theorem) If d is a divisor on a compact
Riemann surface M of genus g then

(2.40) dimL(d)− dimL(1,0)(−d) = deg d + 1− g.

Proof: This follows immediately from the Riemann-Roch Theorem (2.29) in
Corollary 2.24, applied to the line bundle λ = ζd, in view of the identifications
(2.36) and (2.39), and that suffices for a proof.

A slight variant of this version of the Riemann-Roch Theorem replaces the
meromorphic differential forms by their divisors. The divisors on M that are
associated to the canonical bundle are called canonical divisors on M , and are
customarily denoted by k; it is important to keep in mind that k does not repre-
sent a single divisor, but rather any of a large class of linearly equivalent divisors.
The divisor of any holomorphic differential form on M is a positive canonical
divisor, for instance, and the divisor of any meromorphic differential form on M
is a not necessarily positive canonical divisor. Alternatively, a canonical divisor
is any divisor k with the property that ζk = κ. A divisor d′ is residual to a
divisor d if the sum of these divisors is a canonical divisor, that is, if d′ + d = k;
the divisor d of course is then residual to the divisor d′, so that this is a dual
relationship between divisors. In these terms, the Riemann-Roch Theorem can
be rephrased yet again as follows.

Corollary 2.27 (Riemann-Roch Theorem) If d′ is the residual divisor to
a divisor d on a compact Riemann surface M of genus g then

(2.41) dimL(d)− dimL(d′) = deg d + 1− g.

Proof: This follows immediately from the preceding Corollary 2.26 upon noting
that dimL(d′) = dimL(k − d) = γ(ζk−d) = γ(κζ−d) = dimL(1,0)(−d) as a
consequence of (2.39), and that suffices for the proof.

The Riemann-Roch Theorem has useful applications to the examination of
base-point free holomorphic line bndles.

Theorem 2.28 Let M be a compact Riemann surface of genus g.
(i) Any holomorphic line bundle λ on M with c(λ) ≥ 2g is base-point-free.
(ii) If g > 0 all holomorphic line bundles λ on M for which c(λ) = 2g − 1
are base-point-free except for those bundles of the form λ = κζa for some point
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a ∈M , and none of the latter bundles is base-point-free.
(iii) If g > 0 the canonical bundle κ is base-point-free; all other holomorphic line
bundles λ on M for which c(λ) = 2g−2 also are base-point-free except for those
bundles of the form λ = κζaζ

−1
b for two distinct points a, b ∈ M , and none of

the latter bundles is base-point-free.

Proof: (i) If λ is a holomorphic line bundle over M for which c(λ) ≥ 2g then
c(κλ−1) < c(κλ−1ζa) < 0 for any point a ∈ M , so γ(κλ−1) = γ(κλ−1ζa) = 0
by Corollary 1.3 and it follows from the Riemann-Roch Theorem (2.29) that
γ(λ) = c(λ) + 1− g ≥ g + 1 > 0 and γ(λζ−1

a ) = c(λζ−1
a ) + 1− g = γ(λ)− 1; so

by Lemma 2.10 the bundle λ is base-point-free.
(ii) If c(λ) = 2g − 1 then c(κλ−1) < 0 so γ(κλ−1) = 0 by Corollary 1.3 and it
follows from the Riemann-Roch Theorem that γ(λ) = c(λ) + 1 − g = g > 0.
If λ is not base-point-free then by Lemma 2.10 there is a point a ∈ M such
that γ(λζ−1

a ) = γ(λ) = g; and since c(λζ−1
a ) = 2g − 2 the Canonical Bundle

Theorem, Theorem 2.24, shows that λζ−1
a = κ. On the other hand if λ = κζa

for a point a ∈ M then γ(λζ−1
a ) = γ(κ) = g = γ(λ) so by Lemma 2.10 the

bundle κζa is not base-point-free.
(iii) Since g > 0 it follows from Theorem 2.4 that γ(ζa) = 1 for any point
a ∈M ; then by the Riemann-Roch Theorem γ(κζ−1

a ) = γ(ζa) + g− 2 = g− 1 =
γ(κ) − 1, since γ(κ) = g by the Canonical Bundle Theorem, Theorem 2.24, so
by Lemma 2.10 the bundle κ is base-point-free. If λ is a line bundle for which
c(λ) = 2g− 2 then c(κλ−1) = 0, so if λ 6= κ then κλ−1 6= 1 and γ(κλ−1) = 0 by
Corollary 1.4; it follows from the Riemann-Roch Theorem that γ(λ) = g − 1.
The case g = 1 is slightly special, for γ(λ) = g−1 = 0 as just demonstrated so λ
is not base-point-free; however c(λ) = 0 so c(λ ζb) = 1 for any point b ∈M , and
from the Riemann-Roch Theorem it follows that γ(λζb) = γ(κλ−1ζ−1

b ) + 1 = 1,
since c(κλ−1ζ−1

b ) < 0, so λζb = ζa for some point a ∈ M by Theorem 2.4 and
consequently λ = ζaζ

−1
b . In the more general case if g > 1 and the bundle λ

is not base-point-free then by Lemma 2.10 there is a point a ∈ M for which
γ(λζ−1

a ) = γ(λ) = g− 1. It then follows from the Riemann-Roch Theorem that
γ(κλ−1ζa) = γ(λζ−1

a ) + 2 − g = 1, and since c(κλ−1ζa) = 1 then κλ−1ζa = ζb
is a point bundle by Theorem 2.4; consequently λ = κζaζ

−1
b , where a 6= b since

λ 6= κ. Conversely if λ = κζaζ
−1
b for points a 6= b on the Riemann surface M

then λ 6= κ so γ(λ) = g − 1, and γ(λζ−1
a ) = γ(κζ−1

b ) = γ(ζb) + g − 2 = g − 1 as
well; hence by Lemma 2.10 the bundle λ is not base-point-free, which suffices
to conclude the proof.

Since the canonical bundle of a compact Riemann surface of genus g > 0 is
base-point-free by part (iii) of the preceding theorem, it follows that in part (ii)
the product λ = κζa is the base decomposition of λ for any point a ∈M .

2.7 Dual Base Divisors

The Riemann-Roch theorem closely relates the holomorphic lime bundles
λ and κλ−1, so it is convenient to view them as dual line bundles and to set
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λ∗ = κλ−1. If the dual bundle λ∗ satisfies γ(λ∗) > 0 then its base divisor b(λ∗)
is well defined; it is called the dual base divisor of the line bundle λ and it is
denoted by b∗(λ) = b(λ∗). The points appearing in the dual base divisor are
called the dual base points of the line bundle λ. In terms of the dual line bundle
the Riemann-Roch Theorem can be written

(2.42) γ(λ) = γ(λ∗) + c(λ) + 1− g

and has several immediate implications for properties of the line bundle λ itself.

Theorem 2.29 Let λ be a holomorphic line bundle over a compact Riemann
surface M of genus g > 0 and let λ∗ be its dual bundle.
(i) If γ(λ∗) = 0 then

(2.43) γ(λζd) = γ(λ) + deg d for any positive divisor d

(ii) If λ∗ is base-point-free then

(2.44) γ(λζa) = γ(λ) for any point a ∈M.

(iii) If b∗ is the dual base divisor of λ then

γ(λζb∗) = γ(λ) + deg b∗, and(2.45)

γ(λζb∗ζa) = γ(λ) + deg b∗ for any point a ∈M , while(2.46)

γ(λζa) = γ(λ) for any point a 6∈ b∗.(2.47)

Proof: (i) It follows from the Riemann-Roch Theorem (2.29) that for any
divisor d on M

(2.48) γ(λζd)− γ(λ) = γ(κλ−1ζ−1
d )− γ(κλ−1) + deg d.

If γ(κλ−1) = 0 then γ(κλ−1ζ−1
d ) = 0 for any positive divisor d, since multi-

plication by a nontrivial holomorphic cross-section f ∈ Γ(M, ζd) is an injective
linear mapping ×f : Γ(M,κλ−1ζ−1

d ) −→ Γ(M,κλ−1); and in that case (2.43) is
an immediate consequence of (2.48).
(ii) If κλ−1 is base-point-free then γ(κλ−1ζ−1

a ) = γ(κλ−1) − 1 for any point
a ∈ M , and in that case (2.44) is an immediate consequence of (2.48) for the
divisor d = 1 · a.
(iii) If κλ−1 = λ0ζb∗ is the base decomposition of this line bundle then γ(λ0ζb∗) =
γ(λ0) by Theorem 2.12 (i), or since λ0 = κλ−1ζ−1

b∗ equivalently γ(κλ−1) =
γ(κλ−1ζ−1

b∗ ); and in that case (2.45) is an immediate consequence of (2.48) for
the divisor d = b∗.
Since λ0 is base-point-free γ(λ0ζ

−1
a ) = γ(λ0) − 1 for any point a ∈ M by

Lemma 2.10, or equivalently (κλ−1ζ−1
b∗ ζ

−1
a ) = γ(κλ−1ζ−1

b∗ )− 1, and it then fol-
lows from (2.48) for the line bundle λζb∗ in place of λ and the divisor d = 1 · a
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that γ(λζb∗ζa) = γ(λζb∗); this together with (2.45) yields (2.46).
Finally since b∗ is the common divisor of all the holomorphic cross-sections of
the bundle λ0ζb∗ , not all of these cross-sections vanish at a point a 6∈ b∗, and it
then follows from Lemma 2.6 that γ(λ0ζb∗ζ

−1
a ) = γ(λ0ζb∗) − 1 or equivalently

γ(κλ−1ζ−1
a ) = γ(κλ−1)−1; and in that case (2.47) is an immediate consequence

of (2.48) for the divisor d = 1 · a. That suffices for the proof.

Corollary 2.30 (i) If M is a compact Riemann surface of genus g > 0 and λ
is a holomorphic line bundle over M with the dual base divisor b∗ = b1 + · · ·+bn
then

(2.49) γ(λζa) =

 γ(λ) + 1 if a ∈ b∗,

γ(λ) if a 6∈ b∗.

(ii) If in addition the bundle λ is base-point-free then whenever b∗ = b′+ b′′ for
some positive divisors b′ and b′′ the line bundle λζb′ is also base-point-free, and
γ(λζb′ζa) = γ(λζb′) for any point a 6∈ b∗.

Proof: (i) If b∗ = ∅ the line bundle κλ−1 is base-point-free and (2.49) is just
(2.44) of the preceding theorem. Otherwise the line bundle κλ−1 has the base
decomposition κλ−1 = λ0ζb∗ for a base-point-free holomorphic line bundle λ0

and the positive divisor b∗ = b1 + · · · + bn. It then follows from (2.47) in the
preceding theorem that γ(λζa) = γ(λ) for any point a 6∈ b∗. On the other hand
it follows from (2.45) in the preceding theorem that

γ(λζb1+···bn) = γ(λ) + n,

while by Lemma 2.6

γ(λζb1+···+bi−1) ≤ γ(λζb1+···+bi−1+bi) ≤ γ(λζb1+···+bi−1) + 1

for 1 ≤ i ≤ n; it is then evident from the two preceding equations that

(2.50) γ(λζb1+···+bi) = γ(λζb1+···+bi−1) + 1

for 1 ≤ i ≤ n. In particular γ(λζb1) = γ(λ) + 1, hence γ(λζa) = γ(λ) + 1 for any
point a ∈ b∗.
(ii) If λ is base-point-free then since γ(λζb1) = γ(λ) + 1 by (2.50) it follows from
Theorem 2.12 (ii) that λζb1 is base-point-free; then since γ(λζb1+b2) = γ(λζb1)+1
by (2.50) it also follows from Theorem 2.12 (ii) that λζb1+b2 is base-point-free;
and by repeating this argument it follows that all the line bundles ζb1+···+bi for
1 ≤ i ≤ n are base-point-free. For any point a 6∈ b∗ it follows from (2.46) and
(2.47) of Theorem 2.29 (iii) that γ(λζaζ

∗
b) = γ(λζa) + n; it is then possible to

apply to the line bundle λζa the argument leading to (2.50) in part (i) of the
proof to show that

γ(λζaζb1+···+bi) = γ(λζaζb1+···+bi−1) + 1



58 CHAPTER 2. LÜROTH SEMIGROUP

for 1 ≤ i ≤ n, and consequently that

γ(λζaζb1+···+bi) = γ(λζa) + i

for 1 ≤ i ≤ n. On the other hand it follows from (2.50) that

γ(λζb1+···+bi) = γ(λ) + i,

and since γ(λζa) = γ(λ) by (2.47) it follows that

γ(λζaζb1+···+bi) = γ(λζb1+···+bi),

which suffices to conclude the proof.

For most base-point-free holomorphic line bundles λ on a compact Riemann
surface M of genus g > 0 the bundle κλ−1 is not base-point-free; indeed all bun-
dles λ for which γ(λ) ≥ 2g are base-point-free by Theorem 2.28, but γ(κλ−1) = 0
for all of these bundles. On the other hand there are base-point-free holomorphic
line bundles λ on M such that κλ−1 is base-point-free; for instance the identity
bundle 1 is base-point-free, as observed on page 39, and the canonical bundle
κ = κ · 1−1 is base-point-free by Theorem 2.28 (iii). A pair of base-point-free
holomorphic line bundles (λ1, λ2) is called a dual pair of base-point-free holo-
morphic line bundles over M if λ1λ2 = κ is the canonical bundle of M ; the
pair of holomorphic line bundles (1, κ) thus is an example of a dual pair of
base-point-free holomorphic line bundles. Of course it may be the case that
λ1 = λ2 for a particular dual pair of base-point-free holomorphic line bundles,
as for instance the pair (1, 1) on a surface of genus g = 1 since in that case
κ = 1 by Corollary ??. Although the line bundles appearing in dual pairs of
base-point-free holomorphic line bundles are somewhat special base-point-free
line bundles, nonetheless many base-point-free holomorphic line bundles on M
can be expressed in terms of dual pairs of base-point-free line bundles over M .

Corollary 2.31 To any base-point-free holomorphic line bundle λ for which
γ(κλ−1) > 0 over a compact Riemann surface M of genus g > 0 there corre-
spond a unique dual pair of base-point-free holomorphic line bundles (λ1, λ2) over
M and a unique positive divisor b∗∗ such that λ1 = λζb∗∗ and λ2 = κλ−1ζ−1

b∗∗ .

Proof: If λ is a base-point-free holomorphic line bundle over M for which
γ(κλ−1) > 0 either the line bundle κλ−1 is base-point-free, in which case
(λ, κλ−1) already is a dual pair of base-point-free holomorphic line bundles; or
alternatively the line bundle κλ−1 has a base decomposition κλ−1 = λ2ζb∗∗ for
a base-point-free holomorphic line bundle λ2 and a positive divisor b∗∗, where
the divisor b∗∗ is uniquely determined as the base divisor of the line bundle
κλ−1 and hence the line bundle λ2 also is uniquely determined. In the latter
case it follows from Corollary 2.30 (ii) that the line bundle λ1 = λζb∗∗ is base-
point-free; and since κλ−1 = λ2ζb∗∗ then κ = λζb∗∗ ·λ2 = λ1 ·λ2, so (λ1, λ2) is a
dual pair of base-point-free line bundles over M . That suffices to conclude the
proof.
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Corollary 2.32 If M is a compact Riemann surface of genus g > 0 and r is
an integer in Lüroth semigroup L(M) of M such that 0 ≤ r ≤ g − 2 and that
r+1 is not in the Lüroth semigroup of M , then any base-point-free holomorphic
line bundle λ such that c(λ) = r is part of a dual pair (λ, λ0) of base-point-free
holomorphic line bundles over M .

Proof: If λ is base-point-free and c(λ) = r where 0 ≤ r ≤ g then by the
Riemann-Roch theorem in the form of Theorem 2.24 it follows that γ(κλ−1) =
γ(λ) +g−1− r ≥ g−1− r > 0, and consequently there is a base decomposition
κλ−1 = λ0ζb for a base-point-free holomorphic line bundle λ0 and a positive di-
visor b∗∗. If b∗∗ 6= ∅ then for any point a ∈ b∗∗ it follows from Corollary 2.30 (ii)
that the line bundle λζa also is base-point-free, and therefore that r+1 ∈ L(M).
By assumption that is not the case, and therefore b∗∗ = ∅ so κλ−1 = λ0 is base-
point-free and consequently (λ, λ0) is a dual pair of base-point-free holomorphic
line budles over M , which concludes the proof.
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Chapter 3

Jacobi and Picard Varieties

3.1 Period Matrices

Holomorphic differential forms on a compact Riemann surface often are
called holomorphic abelian differentials or abelian differentials of the first kind.
They are of interest only on surfaces of genus g > 0, since as noted earlier there
are no nontrivial holomorphic differential forms on a compact Riemann surface
of genus g = 0. When a compact Riemann surface M of genus g > 0 is identified
with the quotient M = M̃/Γ of its universal covering space M̃ by the group Γ
of covering translations1 a holomorphic function on M can be viewed alterna-
tively as a Γ-invariant holomorphic function on M̃ . It is convenient to be able
to pass back and forth between these two perspectives quite freely, and often
will be done without explicit comment; in particular no attempt will be made
to use a notation that distinguishes between these perspectives. That should
not cause any confusion, since in most cases the relevant interpretation will be
apparent from the context and generally it does not matter anyway. A holo-
morphic abelian differential on M can be viewed as a Γ-invariant holomorphic
differential form on M̃ in the same way, and will be viewed as such without
further comment whenever it is convenient to do so. On the other hand the
integral

(3.1) w(z, a) =

∫ z

a

ω

of a holomorphic abelian differential ω on the Riemann surface M is a well
defined holomorphic function of the variables (z, a) ∈ M × M locally, since
ω is a closed differential form, but is inevitably a multiple-valued function of
these variables in the large; however the monodromy theorem ensures that this
integral is a single-valued holomorphic function on the simply connected complex
manifold M̃ × M̃ , independent of the choice of the path of integration on M̃ .

1A survey of the topological properties of surfaces prerequisite to the discussion here can
be found in Appendix D.

61
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This function is called a holomorphic abelian integral on the Riemann surface
M , although of course really it is defined as a holomorphic function on the
universal covering space M̃ in both variables. A holomorphic abelian integral
clearly satisfies the symmetry condition w(z, a) = −w(a, z), and w(z, z) = 0

for all points z ∈ M̃ . It is more convenient in many circumstances to view
a holomorphic abelian integral as a function of the first variable only, and to
allow it to be modified by an arbitrary additive constant; in such cases the
function is denoted by w(z) rather than w(z, a), but also is called a holomorphic
abelian integral. It must be kept in mind though that the abelian integral w(z)
is determined by the abelian differential ω only up to an arbitrary additive
constant. For any choice of the abelian integral w(z) the integral (3.1) is given
by w(z, a) = w(z)− w(a).

Lemma 3.1 The holomorphic abelian integrals w(z) on a compact Riemann
surface M of genus g > 0 can be characterized as those holomorphic functions
on the universal covering space M̃ of the surface that satisfy

(3.2) w(Tz) = w(z) + ω(T ) for all T ∈ Γ

for a group homomorphism ω ∈ Hom(Γ,C), where Γ is the covering translation
group of M .

Proof: If w(z) is a holomorphic abelian integral on M then dw(Tz) = dw(z)
for any covering translation T ∈ Γ, since dw = ω is invariant under Γ; therefore
w(Tz) = w(z) + ω(T ) for some complex constant ω(T ). For any two covering
translations S, T ∈ Γ

w(STz) = w(z) + ω(ST ) and

w(STz) = w(S · Tz) = w(Tz) + ω(S) = w(z) + ω(T ) + ω(S);

consequently ω(ST ) = ω(S) + ω(T ) so the mapping T −→ ω(T ) is a group
homomorphism ω ∈ Hom(Γ,C). Conversely if w(z) is a holomorphic function

on M̃ that satisfies (3.2) for some homomorphism ω ∈ Hom(Γ,C) then ω = dw
is invariant under Γ so is a holomorphic abelian differential on M , and the
function w(z) is the integral of ω and hence is a holomorphic abelian integral.
That suffices for the proof.

Clearly the homomorphism ω in (3.2) is unchanged when the abelian integral
w(z) is replaced by w(z)+c for a complex constant c, so it is determined uniquely
by the abelian differential ω = dw; it is called the period class of the holomorphic
abelian differential ω. The mapping that associates to a holomorphic abelian
differential its period class is a homomorphism Γ(M,O(1,0)) −→ Hom(Γ,C)
between these two additive abelian groups.

Lemma 3.2 A holomorphic abelian differential on a compact Riemann surface
of genus g > 0 is determined uniquely by its period class.



3.1. PERIOD MATRICES 63

Proof: If the period class ω ∈ Hom(Γ,C) of a holomorphic abelian differential
ω is identically zero then in view of (3.2) any associated holomorphic abelian

integral is a Γ-invariant holomorphic function w on M̃ , or equivalently is a
holomorphic function on the compact Riemann surface M ; so by the maximum
modulus theorem it must be constant and therefore ω = dw = 0, which suffices
for the proof.

A homomorphism ω ∈ Hom(Γ,C) is necessarily trivial on the commutator
subgroup [Γ,Γ] ⊂ Γ, so induces a homomorphism from the abelianized group
Γ/[Γ,Γ] ∼= H1(M) to the complex numbers and therefore can be viewed as an
element in the dual group Hom(H1(M),C) = H1(M,C); and conversely any
cohomology class ω ∈ H1(M,C) = Hom(H1(M),C) is induced by a unique ho-
momorphism ω ∈ Hom(Γ,C). A homomorphism ω ∈ Hom(Γ,C) consequently
is determined uniquely either by its values ω(τj) on a basis τj ∈ H1(M) for
the homology of M or by its values ω(Tj) on covering transformations Tj ∈ Γ
generating the covering translation group Γ of M . Under the canonical iso-
morphism πz0 : Γ −→ π1(M,π(z0)) between the covering translation group
and the fundamental group of the surface determined by the choice of a base
point z0 ∈ M̃ , as discussed in Appendix D.1, an element T ∈ Γ is associated
to the homotopy class of the image π(τ̃) ⊂ M under the covering projection

π : M̃ −→ M of any path τ̃ ⊂ M̃ from the base point z0 ∈ M̃ to the point
Tz0 ∈ M̃ . If ω is a holomorphic abelian differential on M and w(z) is its integral
then

∫
π(τ̃)

ω =
∫
τ̃
ω = w(Tz0) − w(z0) = ω(T ), so the period class represents

the periods of the holomorphic differential form in the customary sense. The
integral of course depends only on the homology class represented by the path
π(τ̃) ⊂M .

Holomorphic abelian differentials on a compact Riemann surface M of genus
g > 0 can be identified with holomorphic cross-sections of the canonical bundle
κ of M , extending the local identification (2.24); consequently by the Canonical
Bundle Theorem, Corollary 2.24, the set of holomorphic abelian differentials
form a complex vector space of dimension g. If ωi ∈ Γ(M,O(1,0)) for 1 ≤ i ≤ g
is a basis for the holomorphic abelian differentials on M and τj ∈ H1(M) for
1 ≤ j ≤ 2g is a basis for the homology of M the values ωij =

∫
τj
ωi can be

viewed as forming a g × 2g complex matrix Ω; this is called the period matrix
of the Riemann surface in terms of the bases ωi and τj . An arbitrary holomor-
phic abelian differential ω on M can be expressed as the sum ω =

∑g
i=1 ciωi

for some complex constants ci, and an arbitrary homology class τ on M can
be expressed as the sum τ =

∑2g
j=1 njτj for some integers nj ; consequently

ω(τ) =
∑g
i=1

∑2g
j=1 ciωi(njτj) =

∑g
i=1

∑2g
j=1 ciωijnj , or in matrix notation

ω(τ) = tcΩn for the column vectors c = {ci} ∈ Cg and n = {nj} ∈ Z2g.
Thus all the periods of the holomorphic abelian differentials on M can be ex-
pressed in this way in terms of the period matrix Ω for any choice of bases ωi
and τj .

Theorem 3.3 The period matrix Ω of a compact Riemann surface of genus
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g > 0 is a nonsingular period matrix2.

Proof: By definition the period matrix Ω is a nonsingular period matrix if
and only if its columns are linearly independent over the real numbers; and by
Lemma F.1 that is equivalent to the condition that the associated full period

matrix

(
Ω
Ω

)
is a nonsingular 2g × 2g matrix in the usual sense. If Ω = A+ iB

for some g × 2g real matrices A and B then(
Ω
Ω

)
=

(
I i I
I −i I

)(
A
B

)
where I is the g× g identity matrix; hence the full period matrix is nonsingular

if and only if the 2g× 2g real matrix C =

(
A
B

)
is nonsingular. If the matrix C

is singular there is a nontrivial real row vector y ∈ R2g such that y C = 0; and if
y = (y1, y2) for some real row vectors yi ∈ Rg then y1A+ y2B = 0. The vector
c = y1 − iy2 ∈ Cg consequently is a nontrivial complex row vector such that

<(cΩ) = <
(

(y1 − iy2)(A+ iB)
)

= y1 + y2 = 0,

where <(z) denotes the real part of the complex vector z. The periods of
the nontrivial holomorphic abelian differential ω =

∑
i ciωi on a basis for the

homology group H1(M) are the entries of the vector cΩ so are purely imaginary;
consequently the period ω(T ) is purely imaginary for any covering translation
T ∈ Γ. If w(z) is the integral of the nontrivial holomorphic abelian differential
ω then | expw(Tz)| = | exp

(
w(z) + ω(T )

)
| = | expw(z)| for every covering

translation T ∈ Γ since | expω(T )| = 1 ; hence | expw(z)| is a well defined
continuous function on the compact Riemann surface M so by the maximum
modulus theorem the holomorphic function expw(z) must be constant. The
abelian integral w(z) itself then is also constant and ω = dw = 0, a contradiction
since ω 6= 0. That suffices to conclude the proof.

The essence of the proof of the preceding theorem is the observation that a
nontrivial holomorphic abelian differential cannot have purely imaginary periods,
or of course purely real periods either; that is one restriction on the possible
period matrices of Riemann surfaces, but there are deeper restrictions that will
be discussed later. The following simple consequences of the preceding theorem
are useful in various circumstances.

Corollary 3.4 If ωi ∈ Γ(M,O(1,0)) for 1 ≤ i ≤ g is a basis for the holomorphic
abelian differentials on a compact Riemann surface M of genus g > 0 then
the closed differential 1-forms ωi and ωi for 1 ≤ i ≤ g are a basis for the
deRham group H1(M) of closed differential forms of degree 1 on M modulo
exact differential forms.

2The definition and properties of nonsingular period matrices are discussed in Ap-
pendix F.1.
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Proof: The period class of any closed differential form φ of degree 1 on M
is determined by the periods φ(τj) on a basis τj ∈ H1(M); and a collection
of 2g closed differential forms φi form a basis for the deRham group precisely
when the 2g × 2g complex matrix {φi(τj)} is nonsingular. In particular for the
differential forms φi = ωi for 1 ≤ i ≤ g and φi = ωi−g for g + 1 ≤ i ≤ 2g the

period matrix is {φi(τj)} =

(
Ω
Ω

)
; and since this is a nonsingular matrix as a

consequence of the preceding theorem it follows that these differential forms are
a basis for the deRham group, thereby concluding the proof.

Corollary 3.5 An element T ∈ Γ in the covering translation group of a compact
Riemann surface M of genus g > 0 is contained in the commutator subgroup
[Γ,Γ] ⊂ Γ if and only if ω(T ) = 0 for the period classes ω of all holomorphic
abelian differentials on M .

Proof: It was already noted that the period class ω of a holomorphic abelian
differential vanishes on any element T ∈ [Γ,Γ]. Conversely if the period classes
of all holomorphic abelian differentials vanish on an element T ∈ Γ then the pre-
ceding corollary shows that the period classes of all differential one-forms also
vanish on T ; that means that homotopy class represented by the covering trans-
lation T determines the trivial homology class in the natural homomorphism
Γ −→ H1(M) = Γ/[Γ,Γ], which suffices for the proof.

Theorem 3.6 The period matrices of a compact Riemann surface M of genus
g > 0 for all choices of bases for the holomorphic abelian differentials on M and
for the homology of M are a full class of equivalent3 period matrices.

Proof: Two bases ω̃i and ωi for the holomorphic abelian differentials on M are
related by ω̃i =

∑g
k=1 aikωk for an arbitrary nonsingular complex matrix A =

{aik} ∈ Gl(g,C), and two bases τ̃j and τj for the homology of M are related by

τ̃j =
∑2g
l=1 τlqlj for an arbitrary invertible integral matrix Q = {qlj} ∈ Gl(2g,Z).

The associated period matrices Ω̃ = {ω̃i(τ̃j)} and Ω = {ωk(τl)} then are related

by ω̃i(τ̃j) =
∑g
k=1

∑2g
l=1 aikωk(τl)qlj , or in matrix terms Ω̃ = AΩQ. That is

just the condition (F.1) that these two period matrices are equivalent period
matrices, which suffices for the proof.

A period matrix Ω for the Riemann surface M of genus g > 0 describes
a lattice subgroup L(Ω) = ΩZ2g ⊂ Cg, which in turn describes a complex
torus J(Ω) = Cg/L(Ω) = Cg/ΩZ2g. Since the period matrices of the surface
M are equivalent period matrices, by the preceding theorem, it follows from
Corollary F.9 that the complex tori described by these period matrices are
biholomorphic complex manifolds; thus there is really a unique such complex
manifold, called the Jacobi variety of the Riemann surface M and denoted by
J(M). The Jacobi varieties of compact Riemann surfaces play a major role in
almost any discussion of Riemann surfaces.

3The equivalence of period matrices is defined and discussed in appendix F.1.
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If ωi is a basis for the holomorphic abelian differentials on a compact Rie-
mann surface M of genus g > 0 the associated integrals wi(z) can be taken
as the components of a column vector w̃(z) = {wi(z)} ∈ Cg; the mapping

that associates to any point z ∈ M̃ the vector w̃(z) is a holomorphic mapping

w̃ : M̃ −→ Cg. For any covering translation T ∈ Γ the values ωi(T ) of the
period classes of these holomorphic abelian differentials can be viewed corre-
spondingly as the components of a column vector ω(T ) = {ωi(T )} ∈ Cg; and
the mapping that associates to a covering translation T ∈ Γ the vector ω(T ) is a
group homomorphism ω ∈ Hom(Γ, Cg), which of course can be viewed alterna-
tively as a group homomorphism ω ∈ Hom(H1(M), Cg). The image ω(τj) ∈ Cg
of one of the homology classes τj forming a basis for the homology H1(M) of
the surface M is just column j of the period matrix Ω of the surface M for the
bases ωi and τj , or equivalently is one of the generators of the lattice subgroup
L(Ω); consequently the image subgroup ω(Γ) = ω(H1(M)) ⊂ Cg is precisely
the lattice subgroup L(Ω) ⊂ Cg. Each of the integrals wi(z) satisfies (3.2), so
altogether

(3.3) w̃(Tz) = w̃(z) + ω(T ) for all T ∈ Γ.

This shows that points of M̃ that are mapped to one another under the cov-
ering translation group Γ, and hence have the same image under the covering
projection π : M̃ −→M , have as their images under the mapping w̃ : M̃ −→ Cg
points of Cg that are mapped to one another by translation by vectors in the
lattice subgroup L(Ω), and hence have the same image under the covering pro-

jection π : Cg −→ J(Ω); consequently the mapping w̃ : M̃ −→ Cg induces a
holomorphic mapping w : M −→ J(Ω), and these mappings together with the
covering projection mappings π form the commutative diagram of holomorphic
mappings

(3.4)

M̃
w̃−−−−→ Cg

π

y π

y
M = M̃/Γ

w−−−−→ J(Ω) = Cg/L(Ω).

The abelian integrals wi(z) are determined only up to arbitrary complex con-
stants, so the mapping w is determined only up to an arbitrary translation in
the complex torus J(Ω). The choice of another basis for the holomorphic abelian
differentials has the effect of replacing the period matrix Ω by AΩ for a nonsin-
gular matrix A ∈ Gl(g,C) and correspondingly replacing the mapping w by Aw;
this can be viewed as the result of composing the initial holomorphic mapping
w : M −→ J(Ω) with the composition of that mapping and the biholomorphic
mapping A : J(Ω) −→ J(AΩ) between these complex tori, so it really amounts
to the same mapping from M to the Jacobi variety J(M) of the Riemann surface
M . The mapping w : M −→ J(M) so defined is called the Abel-Jacobi mapping
of the Riemann surface into its Jacobi variety. Again though this mapping is
determined only up to arbitrary translations in the complex torus J(M).
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Theorem 3.7 A holomorphic mapping f : M −→ T from a compact Riemann
surface M of genus g > 0 to a complex torus T can be factored uniquely as the
composition f = h ◦ w of the Abel-Jacobi mapping w : M −→ J(M) from M
to its Jacobi variety J(M) and a holomorphic mapping h : J(M) −→ T from
the Jacobi variety to the complex torus T , and this property characterizes the
Abel-Jacobi mapping.

Proof: Suppose that the torus T is represented as the quotient T = Ch/L for
a lattice subgroup L ⊂ Ch. A holomorphic mapping f : M −→ T lifts to a
holomorphic mapping f̃ : M̃ −→ Ch from the universal covering space M̃ of M
to the universal covering space Ch of the torus T ; and a mapping f̃ : M̃ −→ Ch

induces a mapping f : M −→ T between the quotient spaces if and only if for
any covering translation T ∈ Γ and any point z ∈ M̃ there is a lattice vector
λ ∈ L such that

(3.5) f̃(Tz) = f̃(z) + λ.

Since the lattice subgroup L ⊂ Ch is discrete the lattice vector λ in (3.5) must

be independent of the point z ∈ M̃ so can be viewed as a function λ(T ) of the
covering translation T ∈ Γ; and it is evident from (3.5) that λ(ST ) = λ(S)+λ(T )
for any two covering translations S, T ∈ Γ, so the function λ(T ) is a group
homomorphism λ ∈ Hom(Γ,C). By Lemma 3.1 the component functions fi(z)
of the mapping f̃ must be holomorphic integrals on M ; so if wj(z) is a basis
for the holomorphic abelian integrals on M then fi(z) =

∑g
j=1 aijwj(z) +ai for

some uniquely determined complex constants aij , ai, or in matrix notation

(3.6) f̃(z) = Aw̃(z) + a

for the matrix A = {aij} ∈ Ch×g, the vector a = {ai} ∈ Ch and the mapping

w̃ : M̃ −→ Cg described by the component functions wj(z). It follows from

(3.2) and (3.5) that λ(T ) = f̃(Tz) − f̃(z) = A
(
w(Tz) − w(z)

)
= Aω(T ) for

any covering translation T ∈ Γ; the vectors ω(T ) generate the lattice subgroup
L(Ω) described by the period matrix Ω of the surface M in terms of the chosen
basis for the holomorphic abelian integrals while λ(T ) ∈ L, so AL(Ω) ⊂ L and
as in Theorem F.6 the affine mapping h̃(t) = At + a from Cg to Ch induces a
holomorphic mapping h : J(M) −→ T from the Jacobi variety J(M) = Cg/L(Ω)
of M to the complex torus T = Ch/L. The holomorphic mapping w̃ induces the
Abel-Jacobi mapping w : M −→ J(Ω) as in the commutative diagram (3.4), so
since f̃ = h̃ ◦ w̃ by (3.6) it follows that f = h ◦ w. To show that this property
characterizes the Abel-Jacobi mapping suppose that w0 : M −→ J0(M) is a
holomorphic mapping from M to another complex torus J0(M) such that any
holomorphic mapping f : M −→ T from M to a complex torus T can be factored
uniquely as the composition f = h0 ◦ w0 of the mapping w0 : M −→ J0 and
a holomorphic mapping h0 : J0 −→ T . Then in particular for this mapping
w0 and for the Abel-Jacobi mapping w there are unique holomorphic mappings
h0 : J0(M) −→ J(M) and h : J(M) −→ J0(M) such that w = h0 ◦w0 and w0 =
h ◦w. The uniqueness implies that h ◦h0 and h0 ◦h are both identity mappings
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and consequently that h : J(M) −→ J0(M) is a biholomorphic mapping, thus
identifying the complex torus J0(M) with the Jacobi variety J(M). That suffices
for the proof.

3.2 Flat Line Bundles

Paralleling the exact sequence of sheaves (2.26) over M is the exact sequence
of sheaves

(3.7) 0 −→ C∗ ι−→ O∗ dl−→ O(1,0) −→ 0

in which ι is the natural inclusion homomorphism and dl(f) = df/f = d log f
for any germ f of a nowhere vanishing holomorphic function. The exactness of
(3.7) follows immediately from the exactness of (2.26), since df/f = dl(f) = 0
precisely when f is constant and a germ φ ∈ O(1,0) can be written φ = dg for
some germ g ∈ O so φ = dl(f) where f = exp g.

Theorem 3.8 On a compact Riemann surface M of genus g > 0 there is the
exact sequence

(3.8) 0 −→ Γ(M,O(1,0))
δ−→ H1(M,C∗) ι−→ H1(M,O∗) c−→ Z −→ 0,

where δ is the coboundary mapping induced by the exact sequence of sheaves
(3.7), ι is the homomorphism induced by the natural inclusion C∗ ⊂ O∗ and
c(λ) ∈ Z is the characteristic class of a holomorphic line bundle λ ∈ H1(M,O∗).

Proof: The exact cohomology sequence arising from the exact sequence of
sheaves (3.7) begins

(3.9) 0 −→ Γ(M,C∗) ι−→ Γ(M,O∗) dl−→ Γ(M,O(1,0))
δ−→

δ−→ H1(M,C∗) ι−→ H1(M,O∗) dl−→ H1(M,O(1,0)) −→ · · · .

Since M is compact every holomorphic function on M is constant, by the max-
imum modulus theorem, so the homomorphism ι : Γ(M,C∗) −→ Γ(M,O∗)
is an isomorphism and consequently the homomorphism dl : Γ(M,O∗) −→
Γ(M,O(1,0)) is the zero homomorphism; thus (3.9) reduces to the exact se-
quence

(3.10) 0 −→ Γ(M,O(1,0))
δ−→ H1(M,C∗) ι−→ H1(M,O∗) dl−→ H1(M,O(1,0)).

In terms of an open coordinate covering U = {Uα} of M , a cohomology class
λ ∈ H1(M,O∗) can be represented by a cocycle λαβ ∈ Z1(U,O∗) and its
image dl(λ) ∈ H1(M,O(1,0)) then is represented by the cocycle d log λαβ ∈
Z1(U,O(1,0)). By the Theorem of Dolbeault, Theorem 1.9, for the special case
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that the line bundle λ is the canonical bundle λ = κ so that O(1,0) ∼= O(κ),
there is the isomorphism

(3.11) H1(M,O(1,0)) ∼=
Γ(M, E(1,1))

∂Γ(M, E(1,0))
.

Explicitly this isomorphism is induced by the mapping that associates to a cross-
section φ ∈ Γ(M, E(1,1)) the cohomology class of the cocycle φαβ = φβ − φα ∈
Z1(U,O(1,0)) for any differential forms φα ∈ Γ(Uα, E(1,0)) such that ∂φα = φ.
As noted following the proof of Theorem 1.2, there are C∞ functions rα > 0 in
the coordinate neighborhoods Uα such that rα = |λαβ |2rβ in the intersections
Uα ∩ Uβ , hence such that d log λαβ = ∂ log rα − ∂ log rβ ; therefore for the co-
cycle φαβ = d log λαβ it is possible to take φα = −∂ log rα, so the cohomology
class dl(λ) ∈ H1(M,O(1,0)) can be represented in the isomorphism (3.11) by
the differential form φ = ∂φα = −∂∂ log rα. By the Serre Duality Theorem,
Theorem 1.17, again for the special case of the line bundle λ = κ, the dual
space to the vector space (3.11) consists of the linear functionals (1.59) associ-
ated to the holomorphic cross-sections τ ∈ Γ(M,O(1,0)(κ−1)) = Γ(M,O); since
M is compact these cross-sections are merely complex constants, so the vector
space (3.11) can be identified with the complex numbers C by associating to the
global differential form φ ∈ Γ(M, E(1,1)) the integral

∫
M
cφ for any choice of a

normalizing complex constant c ∈ C. For present purposes take c = −1/(2πi),
so the differential form φ = −∂∂ log rα corresponds to the complex constant

1
2πi

∫
M
∂∂ log rα, which by Theorem 1.2 is just the characteristic class c(λ) of

the line bundle λ. Thus the homomorphism dl : H1(M,O∗) −→ H1(M,O(1,0))
in (3.10) can be identified with the mapping that associates to a line bundle
λ ∈ H1(M,O∗) its characteristic class c(λ) ∈ Z, and that suffices to conclude
the proof.

The group H1(M,C∗) is the set of cohomology classes defined by cocycles
λαβ ∈ Z1(U,C∗), where a cocycle is described by complex constants λαβ asso-
ciated to intersections Uα ∩ Uβ and satisfying λαβλβγλγα = 1 in intersections
Uα ∩ Uβ ∩ Uγ and a cocycle λαβ is a coboundary if and only if λαβ = cα/cβ for
some nonzero complex constants cα. Thus the group H1(M,C∗) is the analogue
of the group H1(M,O∗) of holomorphic line bundles in which holomorphic func-
tions are replaced by complex constants; hence the group H1(M,C∗) is called
the group of flat line bundles over the Riemann surface M . Any flat line bundle
can be viewed as a holomorphic line bundle, which is the natural homomorphism
ι : H1(M,C∗) −→ H1(M,O∗) in the exact sequence (3.8).

Corollary 3.9 A holomorphic line bundle λ over a compact Riemann surface
of genus g > 0 is holomorphically equivalent to a flat line bundle if and only if
c(λ) = 0.

Proof: This is an immediate consequence of the exact sequence (3.8) of the
preceding theorem, and is included explicitly here only as a convenience for
later reference.
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It is useful to keep in mind the explicit form of the mappings in the exact
sequence (3.8). For this purpose consider a covering U of M by contractible open
coordinate neighborhoods Uα such that any nonempty intersection Uα ∩ Uβ
is connected. The image of the coboundary mapping δ is the set of all flat
line bundles that are trivial as holomorphic line bundles. Any holomorphic
abelian differential ω(z) ∈ Γ(M,O(1,0)) can be written locally as the exterior
derivative ω(z) = dwα(z) of a holomorphic function wα(z) in each coordinate
neighborhood Uα, and the image δ ω ∈ H1(M,C∗) is the cohomology class of
the cocycle

(3.12) λαβ = exp(wβ(z)− wα(z)) for z ∈ Uα ∩ Uβ ,

where wβ(z)− wα(z) is a complex constant in the connected set Uα ∩ Uβ since
d
(
wβ(z) − wα(z)

)
= ω(z) − ω(z) = 0. The inclusion mapping ι associates to

any flat line bundle the holomorphic line bundle it represents; a cocycle λαβ
consisting of complex constants can be viewed as well as a cocycle consisting
of holomorphic functions. The kernel of the mapping dl consists of those holo-
morphic line bundles that can be represented by flat line bundles. If λ is a
holomorphic line bundle described by a cocycle λαβ ∈ Z1(U,O∗) then dl(λ) is
described by the cocycle ωαβ = d log λαβ ∈ Z1(U,O1,0). If c(λ) = 0 then by
the exactness of the sequence (3.8) the cocycle ωαβ must be a coboundary, so
ωαβ = φβ(z) − φα(z) for some holomorphic differentials φα(z) in the sets Uα;
hence d log λαβ = d(ωβ(z)− ωα(z)) so log λαβ = wβ(z)− wα(z) + cαβ for some
complex constants cαβ , where dwα(z) = ωα(z), and

(3.13) λαβ = exp
(
cαβ + wβ(z)− wα(z)

)
.

That is the condition that the cocycle λαβ is cohomologous to the flat cocycle
exp cαβ in H1(M,O∗).

As in (1.19) the condition that c(λ) = 0 is equivalent to the condition that
the line bundle λ is topologically trivial; thus the holomorphic line bundles that
can be represented by flat line bundles are precisely those that are topologically
trivial. The subgroup of topologically trivial holomorphic line bundles on a
compact Riemann surface M is called the Picard group of M , and is denoted by
P (M); and in these terms the preceding theorem can be rephrased as follows.

Corollary 3.10 On a compact Riemann surface M of genus g > 0 there is the
exact sequence

(3.14) 0 −→ Γ(M,O(1,0))
δ−→ H1(M,C∗) p−→ P (M) −→ 0

where P (M) is the Picard group of the surface M , p is the homomorphism that
associates to a flat line bundle the holomorphic line bundle it represents, and δ
is the coboundary homomorphism defined by (3.12).

Proof: This also follows immediately from the exact sequence (3.8) of the
preceding theorem, since the kernel of the mapping c in the exact sequence
(3.8) is precisely the Picard group P (M) of the surface M ; so no further proof
is necessary.
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3.3 Factors of Automorphy

There is a usefully explicit alternative description of the group of line bundles
on a compact Riemann surface M of genus g > 0. A continuous factor of
automorphy for the action of the covering translation group Γ on the universal
covering space M̃ of M is a mapping λ : Γ × M̃ −→ C∗ that is continuous on
M̃ and satisfies

(3.15) λ(ST, z) = λ(S, Tz)λ(T, z) for all S, T ∈ Γ, z ∈ M̃.

The factor of automorphy is holomorphic if the functions λ(T, z) are holomorphic

functions of the variable z ∈ M̃ , and is flat if the functions λ(T, z) are constant

in the variable z ∈ M̃ ; clearly a flat factor of automorphy is just a group
homomorphism λ ∈ Hom(Γ,C∗), and any flat factor of automorphy is also a
holomorphic factor of automorphy. The set of factors of automorphy form an
abelian group under multiplication λ1(T, z) · λ2(T, z) of the functions λ(T, z);
the holomorphic factors of automorphy are a subgroup of the group of all factors
of automorphy, and the flat factors of automorphy are a subgroup of the group
of holomorphic factors of automorphy. Two factors of automorphy λ1(T, z) and

λ2(T, z) are equivalent if there is a continuous mapping f : M̃ −→ C∗ such that

(3.16) λ1(T, z) = f(Tz)λ2(T, z)f(z)−1 for all T ∈ Γ, z ∈ M̃ ;

in that case λ2(T, z) = f(Tz)−1λ1(T, z)f(z), so this relation is symmetric. Two
holomorphic factors of automorphy are holomorphically equivalent if they are
equivalent and the function f(z) in (3.16) is holomorphic. Analogously two flat
factors of automorphy could be considered flatly equivalent if they are equiva-
lent and the function f(z) in (3.16) is constant; but that is the case only when
λ1(T ) = λ2(T ), so flat equivalence just amounts to coincidence and is not worth
introducing as a separate notion. It is clear that equivalence of factors of auto-
morphy and holomorphic equivalence of holomorphic factors of automorphy are
equivalence relations in the usual sense. A relatively automorphic function for
a factor of automorphy λ(T, z) is a continuous function f(z) on the universal

covering space M̃ such that

(3.17) f(Tz) = λ(T, z)f(z) for all T ∈ Γ, z ∈ M̃.

A holomorphic relatively automorphic function for a holomorphic factor of auto-
morphy is a relatively automorphic function that is holomorphic in the variable
z ∈ M̃ . Analogously a flat relatively automorphic function for a flat factor of
automorphy could be defined as a relatively automorphic function that is con-
stant in the variable z ∈ M̃ ; but clearly there is such a function only when
the flat factor of automorphy is the trivial factor λ(T ) = 1 for all T ∈ Γ, so
this also is not a useful auxiliary notion. A comparison of equations (3.16) and
(3.17) shows that two factors of automorphy λ1(T, z) and λ2(T, z) are equivalent
if and only if there is a nowhere vanishing relatively automorphic function for
the factor of automorphy λ1(T, z) · λ2(T, z)−1, or of course equivalently for the
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factor of automorphy λ2(T, z) · λ1(T, z)−1; and if these factors of automorphy
are holomorphic they are holomorphically equivalent if and only if there is a
holomorphic nowhere vanishing relatively automorphic function for the factor
of automorphy λ1(T, z) · λ2(T, z)−1, or of course equivalently for the factor of
automorphy λ2(T, z) · λ1(T, z)−1.

If λ(T, z) is a factor of automorphy for the action of the covering translation
group Γ of the Riemann surface M then to each covering translation T ∈ Γ
there can be associated the mapping Tλ : M̃ × C −→ M̃ × C defined by

Tλ(z, t) = (Tz, λ(T, z)t) ∈ M̃ × C for (z, t) ∈ M̃ × C.

It follows from the defining condition (3.15) for a factor of automorphy that for
any two covering translations S, T ∈ Γ the associated mappings satisfy

(ST )λ(z, t) =
(
STz, λ(ST, z)t

)
=
(
S · Tz, λ(S, Tz) · λ(T, z)

)
= Sλ(Tz, λ(T, z)t

)
= Sλ

(
Tλ(z, t)

)
;

so this exhibits the covering translation group as a group of continuous mappings
of the space M̃ × C to itself, or of holomorphic mappings if the factor of auto-
morphy is holomorphic. The group action on the product M̃×C commutes with
the action of the covering translation group on the universal covering space M̃
itself under the natural projection π : M̃ ×C −→ M̃ , yielding the commutative
diagram

(3.18)

M̃ × C Tλ−−−−→ M̃ × C

π

y π

y
M̃

T−−−−→ M̃ ;

it follows that the projection π : M̃×C −→ M̃ induces a mapping πλ : λ −→M
between the quotient spaces λ = (M̃ × C)/Γ and M = M̃/Γ.

Theorem 3.11 (i) If λ(T, z) is a factor of automorphy for the action of the
covering translation group Γ of a compact Riemann surface M of genus g > 0
the quotient space λ = (M̃×C)/Γ has the natural structure of a line bundle over
M with the projection mapping πλ : λ −→M . Relatively automorphic functions
for the factor of automorphy λ(T, z) correspond to cross-sections of λ; and the
line bundles corresponding to two factors of automorphy are equivalent if and
only if the factors of automorphy are equivalent.
(ii) A holomorphic factor of automorphy λ(T, z) describes in this way a holomor-
phic line bundle λ, and holomorphic relatively automorphic functions for λ(T, z)
correspond to holomorphic cross-sections of λ; the line bundles described by two
holomorphic factors of automorphy are holomorphically equivalent if and only
if the factors of automorphy are holomorphically equivalent.
(iii) A flat factor of automorphy λ(T, z) describes in this way a flat line bundle
λ over M .
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Proof: The quotient space λ can be described most conveniently by using
a coordinate covering U of the Riemann surface M by connected and simply
connected coordinate neighborhoods Uα such that the intersections Uα ∩ Uβ of
pairs of these coordinate neighborhoods also are connected; there exist such co-
ordinate coverings on any Riemann surface. The inverse image of a coordinate
neighborhood Uα ⊂M under the covering projection π : M̃ −→M is a disjoint
collection of open coordinate neighborhoods Ũα i ⊂ M̃ , each of which is biholo-
morphic to Uα under the covering projection π : Ũα i −→ Uα; the sets Ũα i ⊂ M̃
form a coordinate covering Ũ of the universal covering space M̃ . The images
Uα i = π(Ũα i) ⊂ M can be taken as another coordinate covering π(Ũ) of the
Riemann surface M itself, although it must be kept in mind that the point sets
Uα i for all indices i actually coincide with the point set Uα although they are
considered as being different sets of the covering. If Uα ∩Uβ 6= ∅ then since this
intersection is connected by assumption it follows that for any two components
Ũα i and Ũβ j there is a uniquely determined covering translation Tα i, β j ∈ Γ
such that

Ũα i ∩ π−1(Uα ∩ Uβ) = Tα i,β j

(
Ũβ j ∩ π−1(Uα ∩ Uβ)

)
.

Of course the point sets Uα i∩Uβ j for any indices i, j coincide with the point set

Uα∩Uβ ; but Ũα i∩Ũβ j 6= ∅ in M̃ if and only if Tα i,β j = I. Since T Ũα i∩Ũα i = ∅
for any covering translation T ∈ Γ other than the identity it follows that

Tλ(Ũα i × C) ∩ (Ũα i × C) = ∅ if T 6= I;

therefore the set Ũα i × C can be identified with a subset of the quotient space
(M̃ × C)/Γ = λ, and a local coordinate zα i in Ũα i and the variable tα i ∈ C
can be used as local coordinates (zα i, tα i) in this subset of the quotient space
λ. In terms of these coordinates the mapping πλ : λ −→ M is just the natural
projection Ũα i×C −→ Uα. Points (zα i, tα i) ∈ Ũα i×C and (zβ j , tβ j) ∈ Ũβj×C
represent the same point in the quotient space λ if and only if

(3.19) zα i = Tα i, β j zβ j and tα i = λ(Tα i, β j , zβ j)tβ j ;

this is a linear relation between the fibre coordinates that is continuous in the
local coordinates on M , so determines on λ the structure of a complex line
bundle over M . Of course if the factor of automorphy is holomorphic the line
bundle is holomorphic, and if the factor of automorphy is flat the line bundle is
flat. If f(z) is a relatively automorphic function for the factor of automorphy
λ(T, z) then the restrictions of this function to the coordinate neighborhoods

Ũα i ⊂ M̃ satisfy f(zα i) = λ(Tα i,β j , zβ j)f(zβ j) so they describe a cross-section
of the line bundle λ. Conversely a cross-section of λ is described by functions
fα i(z) in the coordinate neighborhoods Ũα i such that

(3.20) fα i(zα i) = λ(Tα i, β j , zβ j)fβ j(zβ j)

whenever zα i ∈ Ũα i, zβ j ∈ Ũβ j , π(zα i) = π(zβ j). Since λ(Tα i,β j , z) = 1

whenever Ũα i ∩ Ũβ j 6= ∅ it follows that fα i(z) = fβ j(z) for any point z ∈
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Ũα i ∩ Ũβ j , so the local functions fα i(zα i) combine to form a single global

function on the entire covering space M̃ ; and it follows from (3.20) that this
function is a relatively automorphic function for the factor of automorphy λ.
Two factors of automorphy λ1(T, z) and λ2(T, z) are equivalent if and only if
the factor of automorphy λ1(T, z)λ2(T, z)−1 has a nowhere vanishing relatively
automorphic function, and two line bundles λ1 and λ2 are equivalent if and only
if the line bundle λ1λ

−1
2 has a nowhere vanishing cross-section; since relatively

automorphic functions correspond to cross-sections of the line bundle they de-
scribe it follows that two factors of automorphy are equivalent if and only if the
line bundles they describe are equivalent. The same result of course holds for
holomorphic line bundles, and that suffices to conclude the proof.

The preceding theorem shows that a factor of automorphy for the covering
translation group of a compact Riemann surface M describes a line bundle
over M , and that two factors of automorphy are equivalent if and only if they
describe equivalent line bundles over M ; thus the mapping that associates to a
factor of automorphy the line bundle it describes is an injective mapping from
the multiplicative group of equivalence classes of factors of automorphy into the
group H1(M,O∗) of line bundles over M . The corresponding statement holds
for holomorphic factors of automorphy and flat factors of automorphy, so that
the appropriate equivalence classes of these special factors of automorphy are
mapped injectively into the groups H1(M,O∗) and H1(M,C∗) respectively. In
all three cases the mapping will be shown to be surjective as well, so line bundles
overM can be identified with equivalence classes of factors of automorphy for the
covering translation group of M and correspondingly for holomorphic and flat
line bundles. The discussion here though will be limited to the identification of
flat line bundles with flat factors of automorphy; the proof is simplest for that
case, an almost immediate consequence of the observation that any flat line
bundle over a simply connected surface such as the universal covering space M̃
is a trivial flat bundle, and will be given in the next corollary. The corresponding
result for the other cases will be demonstrated in Chapter ?? by constructing
an explicit holomorphic factor of automorphy with any prescribed characteristic
class.

Corollary 3.12 The mapping that associates to a flat factor of automorphy in
Hom(Γ,C∗) the flat line bundle that it describes is an isomorphism

φ : Hom(Γ,C∗)
∼=−→ H1(M,C∗).

Proof: If a flat factor of automorphy describes a trivial flat line bundle that line
bundle has a flat nowhere vanishing cross-section; this cross-section corresponds
to a nowhere vanishing flat relatively automorphic function for the flat factor of
automorphy, which as noted means that the flat factor of automorphy is trivial.
Thus the homomorphism φ : Hom(Γ,C∗) −→ H1(M,C∗) is injective, and to
conclude the proof it is only necessary to show that it is also surjective. For this
purpose let U = {Uα} be a coordinate covering of M with the properties as in
the proof of the preceding theorem. A flat line bundle λ over M is described by
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constant coordinate transition functions in each nonempty intersection Uα∩Uβ ;
it is convenience to denote these coordinate transition functions by λ(Uα, Uβ)
for this proof. The same line bundle λ can be described in terms of the covering
π(Ũ) by the coordinate transition functions λ(Uα i, Uβ j) = λ(Uα, Uβ) in each

nonempty intersection Uα i ∩ Uβ j . The bundle λ induces a flat line bundle λ̃

over the universal covering space M̃ described in terms of the covering Ũ by
the coordinate transition functions λ̃(Ũα i, Ũβ j) = λ(Uα, Uβ) in each nonempty

intersection Ũα i ∩ Ũβ j ; it is evident from its definition that this coordinate
bundle is invariant under the covering translation group Γ. Since the coordinate
transition functions are constants a constant cross-section of the bundle λ̃ over a
coordinate neighborhood Ũα i ⊂ M̃ can be extended to a constant cross-section
over any coordinate neighborhood Ũβ j ⊂ M̃ that meets Ũα i; this cross-section

can be extended further in the same way, and since M̃ is simply connected the
usual monodromy argument shows that there results a well defined cross-section
of the induced line bundle λ̃ over M̃ . This cross-section is described by complex
constants φ(Ũα i) in the coordinate neighborhoods Ũα i ⊂ M̃ such that

(3.21) φ(Ũα i) = λ̃(Ũα i, Ũβ j) φ(Ũβ j) if Ũα i ∩ Ũβ j 6= ∅.

Set φ(Uα i) = φ(Ũα i) and note that the coordinate transition functions

(3.22) σ(Uα i, Uβ j) = φ(Uα i)
−1λ(Uα i, Uβ j)φ(Uβ j) for Uα i ∩ Uβ j 6= ∅

describe a flat coordinate bundle σ over M in terms of the covering π(Ũ) and
that this bundle is flatly equivalent to the initial coordinate bundle λ. For any
covering translation T ∈ Γ and any coordinate neighborhood Ũα i ⊂ M̃ set
λ(Ũα i, T ) = σ(TUα i, Uα i), which is well defined since TUα i ∩ Uα i 6= ∅. If
Ũα i ∩ Ũβ j 6= ∅ then of course TŨβ j ∩ T Ũα i 6= ∅ as well and it is evident upon
comparing (3.21) and (3.22) that σ(Uα i, Uβ j) = σ(TUβ j , TUα i) = 1; so from
the compatibility conditions for the coordinate transition functions σ(Uα i, Uβ j)
it follows that whenever Uα i ∩ Uβ j 6= ∅

λ(Ũα i, T ) = σ(TUα i, Uα i)

= σ(TUβ j , TUα i)σ(TUα i, Uα i)σ(Uα i, Uβ j)

= σ(TUβ j , Uβ j) = λ(Ũβ j , T ).

Thus the constants λ(Ũα i, T ) are independent of the coordinate neighbor-

hood Ũα i ⊂ M̃ so can be labeled just λ(T ). Then λ(ST ) = λ(Ũα i, ST ) =
σ(STUα i, Uα i) = σ(STUα i, TUα i)σ(TUα i, Uα i) = λ(TŨα i, S)λ(Ũα i, T ) =
λ(S)λ(T ) for any two covering translations S, T ∈ Γ, so the constants λ(T )
describe a homomorphism λ ∈ Hom(Γ,C∗). As in the proof of the preceding
theorem this factor of automorphy describes a flat line bundle over M for which
the coordinate transition functions in an intersection Uα i ∩ Uβ j are the con-

stants λ(Tα i,β j) = λ(Ũβ j , Tα i,β j) = σ(Tα i,β j Uβ j , Uβ j) = σ(Uα i, Uβ j) which
are the coordinate transition functions of the flat line bundle σ flatly equivalent
to λ. That suffices to conclude the proof.
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Theorem 3.13 On a compact Riemann surface M of genus g > 0 with uni-
versal covering space M̃ and covering transformation group Γ there is the exact
sequence of abelian groups

(3.23) 0 −→ Γ(M,O(1,0))
δ0−→ Hom(Γ,C∗) p0−→ P (M) −→ 0,

where P (M) is the Picard group of the surface, p0 is the homomorphism that
associates to a flat factor of automorphy in Hom(Γ,C∗) the holomorphic line
bundle it describes, and δ0 is the homomorphism that associates to a holomor-
phic abelian differential ω ∈ Γ(M,O(1,0)) the flat factor of automorphy

(3.24) λω(T ) = exp−2πi ω(T )

where ω(T ) is the period class of the differential ω.

Proof: The isomorphism of Corollary 3.12 can be combined with the exact
sequence (3.14) of Corollary 3.10 to yield the commutative diagram of exact
sequences

(3.25)

0 −−−−→ Γ(M,O(1,0))
δ−−−−→ H1(M,C∗) p−−−−→ P (M) −−−−→ 0∥∥∥ φ

x∼= ∥∥∥
0 −−−−→ Γ(M,O(1,0))

δ0−−−−→ Hom(Γ,C∗) p0−−−−→ P (M) −−−−→ 0

in which δ0 = φ−1 · δ and p0 = p · φ; and it merely remains to describe the
homomorphisms δ0 and p0 more explicitly. Clearly p0 associates to a flat factor
of automorphy the holomorphic line bundle represented by the flat line bundle
described by that factor of automorphy, or more briefly the holomorphic line
bundle described by that factor of automorphy. A holomorphic abelian differ-
ential ω ∈ Γ(M,O(1,0)) is the exterior derivative ω = dw of its integral w(z) on

M̃ ; the period class of ω then is defined by ω(T ) = w(Tz) − w(z), and to this
period class can be associated the flat factor of automorphy δ̃0(ω) ∈ Hom(Γ,C∗)
defined by δ̃0(ω)(T ) = exp−2πi ω(T ). This flat factor of automorphy describes
a flat line bundle φ

(
δ̃0(ω)

)
over M as in Theorem 3.11. Explicitly if U = {Uα}

is a covering of M by contractible coordinate neighborhoods Uα with connected
intersections, the connected components Ũα j of the inverse image π−1(Uα) of a

coordinate neighborhood Uα under the covering projection π : M̃ −→ M form
a coordinate covering of M̃ ; and the images Uα j = π(Ũα j) under the covering
projection π can be viewed as a coordinate covering of the surface M itself. As
in (3.19) the coordinate transition functions of the line bundle φ

(
δ̃0(ω)

)
in an

intersection Uα j ∩ Uβ k are the constants

(3.26) φ
(
δ̃0(ω)

)
αj, βk

= δ̃0(ω)(Tαj, βk) = exp−2πiω(Tαj, βk)

for the covering translation Tαj, βk ∈ Γ that takes a point zβ k ∈ Uβ k to the

point zα j = Tαj, βkzβ k ∈ Uα j . On the other hand in each set Ũα j the abelian
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differential ω is the exterior derivative of the restriction wα j = w
∣∣Ũα j of the

holomorphic abelian integral w; so in each set Uα j the abelian differential ω is
the exterior derivative ω = dwαj of the function wα j when the latter is viewed
as a function in the set Uα j . As in (3.12) the coordinate transition functions of
the flat line bundle δ(ω) at a point z ∈ Uα i ∩ Uβ j , where z = π(zα j) = π(zβ k)

for points zα j ∈ Ũα j and zβ k ∈ Ũβ k, are the constants

δ(ω)α j, β k = exp 2πi
(
wβ k(z)− wα j(z)

)
= exp 2πi

(
w(zβ k)− w(zα j)

)
= exp−2πi

(
w(Tα j,β kzβ k)− w(zβ k)

)
= exp−2πiω(Tα j,β k).

Comparing this with (3.26) shows that φ
(
δ̃0(ω)

)
αj, βk

= δ(ω)α j, β k; conse-

quently the homomorphism δ0 in the exact sequence (3.23) is just this homo-
morphism δ̃0 described by (3.24), and that suffices to conclude the proof.

3.4 The Canonical Parametrization of the
Picard Group

The description of the Picard group in the exact sequence (3.23) can be made
more explicit by using a convenient parametrization of the group of flat factors
of automorphy. In terms of a basis τj ∈ H1(M) for the homology group of the
surface M associate to any complex vector t = {tj} ∈ C2g the homomorphism
ρt ∈ Hom(Γ,C∗) = Hom(H1(M),C∗) for which

(3.27) ρt(τj) = exp 2πi tj .

Any homomorphism in Hom(Γ,C∗) is of this form for some vector t ∈ C2g, two
vectors t1, t2 ∈ C2g determine the same homomorphism if and only if they differ
by an integral vector, and the mapping ρ that associates to a vector t ∈ C2g

the homomorphism ρt ∈ Hom(Γ,C∗) is a homomorphism from the additive
group C2g to the multiplicative group Hom(Γ,C∗) of flat factors of automorphy,
yielding the exact sequence

(3.28) 0 −→ Z2g −→ C2g ρ−→ Hom(Γ,C∗) −→ 0

called the canonical parametrization of flat factors of automorphy for the surface
M associated to the basis τj for the homology group H1(M). For another basis
τ̃j ∈ H1(M) there is a corresponding exact sequence

(3.29) 0 −→ Z2g −→ C2g ρ̃−→ Hom(Γ,C∗) −→ 0.

The two homomorphisms ρ and ρ̃ are surjective, so for any vector t ∈ C2g there
will be at least one vector t̃ ∈ C2g such that ρ̃t̃ = ρt. If τ̃j =

∑2g
k=1 qjkτk for a
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nonsingular matrix Q = {qjk} ∈ Gl(2g,Z) it follows from (3.27) that

exp 2πit̃j = ρ̃t̃(τ̃j) = ρt(τ̃j) = ρt

(
2g∑
k=1

qjkτk

)
(3.30)

=

2g∏
k=1

ρt(τk)qjk = exp 2πi

2g∑
k=1

qjktk,

and consequently t̃j = nj +
∑2g
k=1 qjktk for some integers nj ∈ Z, or in matrix

terms t̃ = n + Qt for the vector n = {nj} ∈ Z2g. Since ρ̃n = 1 for any integral
vector n ∈ Z2g by (3.28), the two canonical parametrizations of flat factors of
automorphy are related by ρ̃

Qt
= ρt; and since linear transformation defined by

the matrix Q ∈ Gl(2g,Z) maps the subgroup Z2g ⊂ C2g to itself, there is the
commutative diagram of exact sequences

(3.31)

0 −−−−→ Z2g ι−−−−→ C2g ρ−−−−→ Hom(Γ,C∗) −−−−→ 0

Q

y∼= Q

y∼= ∥∥∥
0 −−−−→ Z2g ι−−−−→ C2g ρ̃−−−−→ Hom(Γ,C∗) −−−−→ 0,

showing the effect of a change of basis for the homology group H1(M) on the
exact sequence (3.28). It follows that the complex Lie group structure on the
group Hom(Γ,C∗) arising from the identification Hom(Γ,C∗) ∼= C2g/Z2g in the
exact sequence (3.28) is independent of the choice of a basis for the homology
group H1(M); thus the group Hom(Γ,C∗) has a uniquely determined structure
as a noncompact complex manifold.

When the parametrization (3.28) of the group Hom(Γ,C∗) of flat line bundles
is composed with the surjective homomorphism p0 in the exact sequence (3.23)
describing the Picard group P (M) of the Riemann surface M , there results a
surjective homomorphism

(3.32) P = p0 · ρ : C2g −→ P (M)

called the canonical parametrization of the Picard group associated to the basis
for the homology group H1(M); this parametrization can be described more
explicitly as follows.

Theorem 3.14 If M is a compact Riemann surface of genus g > 0 then for
any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) there is the exact sequence

(3.33) 0 −→ Z2g + tΩCg ι−→ C2g P−→ P (M) −→ 0,

where ι is the natural inclusion homomorphism, Ω is the period matrix of M
and P is the canonical parametrization of the Picard group P (M) in terms of
these bases.
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Proof: In addition to the canonical parametrization (3.28) of flat factors of
automorphy introduce the parametrization

(3.34) σ : Cg
∼=−→ Γ(M,O(1,0))

that associates to any vector s = (s1, . . . , sg) ∈ Cg the holomorphic abelian
differential σ(s) =

∑g
k=1 skωk in terms of the basis {ωk}; and introduce as well

the linear mapping tΩ : Cg −→ C2g defined by the negative of the transpose
of the period matrix Ω of the surface M in terms of the bases {ωk} and {τj}.
These homomorphisms can be combined in the following diagram

(3.35)

0x
0 −−−−→ Γ(M,O(1,0)

δ0−−−−→ Hom(Γ,C∗) p0−−−−→ P (M) −−−−→ 0

σ

x∼= ρ

x
0 −−−−→ Cg − tΩ−−−−→ C2g

ι

x
Z2g

The first row is the exact sequence(3.23) of Theorem 3.13 and the long column
is the exact sequence (3.28) in the canonical parametrization of flat factors of
automorphy. That this is a commutative diagram will be demonstrated by
showing that ρ · (− tΩ) = δ0 ·σ. If s ∈ Cg the image ω = σ(s) is the holomorphic
abelian differential ω =

∑g
k=1 skωk, and by (3.24) the image δ0 · σ(s) is the

homomorphism λ1 ∈ Hom(Γ,C∗) = Hom(H1,C∗) for which

λ1(τj) = exp−2πiω(Tj) = exp−2πi

g∑
k=1

skωk(Tj)

= exp−2πi

g∑
k=1

skωkj ;

by (3.27) the image λ2 = ρ ·
(
− tΩ(s)

)
∈ Hom(Γ,C∗) = Hom(H1,C∗) is the

homomorphism for which

λ2(τj) = ρ
− tΩs

(τj) = exp−2πi

g∑
k=1

skωkj .

Comparing these two equations shows that ρ · (− tΩ) = δ0 · σ, hence that the
diagram (3.35) is commutative. By definition the canonical parametrization
P : C2g −→ P (M) of the Picard group is the composition P = p0 · ρ. For
the exactness of the sequence (3.33), it is clear from the diagram (3.35) that
(p0 · ρ)(n− tΩs) = (p0 · ρ · ι)(n) + (p0 · δ0 ·σ)(s) = 0 for any n ∈ Z2g and s ∈ Cg;



80 CHAPTER 3. JACOBI AND PICARD VARIETIES

conversely if t ∈ C2g and (p0 · ρ)(t) = 0 then ρ(t) = (δ0 · σ)(s) =
(
ρ · (− tΩ)

)
(s)

for some s ∈ Cg, hence ρ(t + tΩs) = 0 so t + tΩs = ι(n) for some n ∈ Z2g and
therefore t ∈ Z2g − tΩCg = Z2g + tΩCg. That suffices to conclude the proof.

The exact sequence (3.33) depends on the bases ωi ∈ Γ(M,O(1,0)) for the
holomorphic abelian differentials on M and τj ∈ H1(M) for the homology of
M . There is a corresponding exact sequence

0 −→ Z2g + tΩ̃Cg ι−→ C2g P̃−→ P (M) −→ 0

for the period matrix Ω̃ and the canonical parametrization P̃ of the Picard
group associated to other bases ω̃i ∈ Γ(M,O(1,0)) and τ̃j ∈ H1(M). If ω̃i =∑g
k=1 aikωk and τ̃j =

∑2g
l=1 qjlτl for nonsingular matrices A = {aik} ∈ Gl(g,C)

and Q = {qjl} ∈ Gl(2g,Z) the two period matrices are related by

Ω̃ = {ω̃i(τ̃j)} =
{ g∑
k=1

2g∑
l=1

aikωk(qjlτl)
}

=
{ g∑
k=1

2g∑
l=1

aikωklqjl

}
(3.36)

= AΩ tQ.

The canonical parametrizations ρ and ρ̃ of flat factors of automorphy are related
as in (3.31), so that ρ̃

Qt
= ρt and consequently P̃ (Qt) = p0(ρ̃

Qt
) = p0(ρt) =

P (t) for all t ∈ C2g; and the kernel of the homomorphism P̃ is the subgroup
Z2g + tΩ̃Cg = Z2g + Q tΩ tACg = Q(Z2g + tΩCg) in view of (3.36). Thus there
is the commutative diagram of exact sequences

(3.37)

0 −−−−→ Z2g + tΩCg ι−−−−→ C2g P−−−−→ P (M) −−−−→ 0

Q

y∼= Q

y∼= ∥∥∥
0 −−−−→ Z2g + tΩ̃Cg ι−−−−→ C2g P̃−−−−→ P (M) −−−−→ 0

in which the vertical homomorphisms are isomorphisms; and this shows that the
canonical parametrization P of the Picard group P (M) transforms canonically
under a change in the basis for the homology group H1(M) of the surface M .

Corollary 3.15 The Picard group P (M) of a compact Riemann surface M of
genus g > 0 has a uniquely defined structure as the complex torus J(Π) described
by the inverse4 period matrix Π to a period matrix Ω of M .

Proof: For any bases ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials
on M and τj ∈ H1(M) for the homology of M the exact sequence (3.33) of
Theorem 3.14 yields the isomorphism

(3.38) P (M) ∼=
C2g

Z2g + tΩCg
;

4The inverse period matrix is defined in Appendix F.1, and its basic properties are discussed
there.
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and by Corollary F.15 in Appendix F.1 this quotient group is the complex torus
J(Π) described by the inverse period matrix Π to the period matrix Ω. Since
the period matrices of a compact Riemann surface M for any choices of bases
for the holomorphic abelian differentials and the homology of M are equivalent
period matrices by Theorem 3.6, their inverse period matrices are also equivalent
period matrices as noted on page 531; hence the structure of P (M) as a complex
torus is intrinsically defined, and is independent of the choices of these bases.
That suffices for the proof.

It should be kept in mind that the Picard group P (M) has a natural group
structure, so when viewed as a complex torus it is not just a complex manifold
but is an abelian compact Lie group with a specified identity element, the trivial
complex line bundle represented by the origin 0 ∈ C2g in the exact sequence
(3.33). When only the structure of a complex manifold is relevant, the Picard
group often is called the Picard variety of the Riemann surface M , but still
is denoted by P (M). The Picard variety P (M) like the Jacobi variety J(M)
of a compact Riemann surface is a complex torus of dimension g canonically
associated to the Riemann surface M . The two complex tori J(Ω) and P (M)
clearly are closely related, indeed are defined by period matrices that are inverse
to one another; their relationship will be discussed further in Section 4.6.

3.5 Alternative Descriptions of the
Picard Group

There is a convenient and more explicit description of the holomorphic line
bundles forming the Picard group P (M) of a compact Riemann surface M .

Theorem 3.16 (i) If M is a compact Riemann surface of genus g > 0 then for
any choice of bases ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials
on M and τj ∈ H1(M) for the homology of M there is the exact sequence

(3.39) 0 −→ tΩΠZ2g ι−→ tΩCg P0−→ P (M) −→ 0

where Ω is the period matrix of M in terms of these bases, Π is the inverse
period matrix to Ω, ι is the natural inclusion homomorphism and P0 is the re-
striction of the canonical parametrization P : Cg −→ P (M) of the Picard group
to the linear subspace tΩCg ⊂ C2g.
(ii) Any line bundle in P (M) is holomorphically equivalent to the flat line bundle
ρ tΩt for some vector t ∈ Cg; and flat line bundles ρ tΩt and ρ tΩs are holomor-
phically equivalent if and only if s− t ∈ ΠZ2g.

Proof: Since by Theorem 3.14 the canonical parametrization of the Picard
group is a homomorphism P : C2g −→ P (M) with the subgroup tΩCg ⊂ C2g in
its kernel, it follows from the direct sum decomposition

(3.40) C2g = tΩCg ⊕ tΩCg
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of (F.9) in Appendix F.1 that the restriction of the homomorphism P to the
subgroup tΩCg ⊂ C2g is a surjective group homomorphism

(3.41) P0 : tΩCg −→ P (M);

and it follows further from Theorem 3.14 that the kernel of the restriction P0 is
the intersection (Z2g+ tΩCg)∩ tΩCg. By using the natural projection operators
(F.11) for the direct sum decomposition (3.40) as given in Appendix F.1, any
n ∈ Z2g can be decomposed as n = tΩΠn⊕ tΩΠn, and consequently

(Z2g + tΩCg) ∩ tΩCg = tΩΠZ2g.

That suffices to demonstrate the exactness of the sequence (3.39); the remaining
statement of the corollary as an immediate consequence of this exactness, and
that concludes the proof.

A different explicit description of the Picard group P (M) arises by restricting
the exact sequence (3.33) of Theorem 3.14 to the real linear subspace R2g ⊂ C2g

rather than to the complex linear subspace tΩCg ⊂ C2g. It is apparent from
the definition (3.27) that |ρt(τj)| = 1 for all the vectors τj ∈ H1(M) precisely
when t ∈ R2g; so under the canonical parametrization (3.28) of flat factors
of automorphy, real vectors t ∈ R2g parametrize precisely those flat factors of
automorphy for which |ρt(T )| = 1 for all T ∈ Γ, called unitary flat factors of
automorphy. The flat line bundles represented by these factors of automorphy
under the isomorphism of Corollary 3.12 are those that can be described by
flat coordinate bundles fαβ for some coordinate covering U = {Uα} of M such
that |fαβ | = 1; they are called unitary flat line bundles. Since any holomorphic
function fαβ for which |fαβ | = 1 is necessarily constant, unitary flat line bundles
can be characterized alternatively as those holomorphic line bundles that can be
represented in terms of some coordinate covering U = {Uα} of the surface M by
holomorphic coordinate line bundles ραβ such that |ραβ | = 1 for all intersections
Uα ∩ Uβ .

Corollary 3.17 If M is a compact Riemann surface M of genus g > 0 there
is the exact sequence

(3.42) 0 −→ Z2g ι−→ R2g Pr−→ P (M) −→ 0

where ι is the natural inclusion homomorphism and Pr is the restriction of the
canonical parametrization P : C2g −→ P (M) of the Picard group in terms of
any basis for the homology H1(M) of M to the real subspace R2g ⊂ C2g; thus
any line bundle in P (M) is holomorphically equivalent to a unique unitary line
bundle.

Proof: Let Ω be the period matrix of the surface M in terms of some bases
ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and set Ω = Ω′ + iΩ′′ for real g × 2g
matrices Ω′ and Ω′′. For any complex vectors t ∈ C2g and z = x + i y ∈ Cg
clearly =(t− tΩz) = =(t)− tΩ′y− tΩ′′x, where =(t) denotes the imaginary part of
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the complex number t. Since the full period matrix
(

Ω
Ω

)
is nonsingular so is the

2g× 2g real matrix ( tΩ′ tΩ′′), so for any vector t ∈ C2g there is a vector z ∈ Cg
such that =(t− tΩz) = 0; then from the exact sequence (3.33) of Theorem 3.14 it
follows that P (t) = P (t− tΩz) where t− tΩz ∈ R2g. Therefore the restriction Pr
of the homomorphism P in the exact sequence (3.33) to the subspace R2g ⊂ C2g

has as its image the full Picard group P (M). As for the kernel of the restriction
Pr, if t ∈ R2g and Pr(t) = 0 then t − n ∈ tΩCg for some n ∈ Z2g by the exact
sequence (3.33), and since t−n is real it follows by conjugation that t−n ∈ tΩCg
as well; but in view of the direct sum decomposition (3.40) that can be the case
only if t− n = 0, so t ∈ Z2g. That demonstrates the exactness of the sequence
(3.42). From this it follows that any holomorphic line bundle in P (M) is the
image P0(t) of a real vector t ∈ C2g, so is represented by a unitary line bundle;
and since all the points in R2g that have the same image P0(t) ∈ P (M) are just
the points t + Z2g that represent the same unitary flat factor of automorphy,
that suffices to conclude the proof.

The preceding corollary is very useful in that it selects a unique flat line
bundle representing any holomorphic line bundle in the Picard group P (M).
It has the disadvantage that it does not directly describe the structure of the
group P (M) as a complex manifold; when the complex structure is of principal
interest it is usually more convenient to use the identification of the Picard
group with the complex torus J(Π) as in Corollary 3.16. The groups H1(M,C∗)
and Hom(Γ,C∗) of flat line bundles and flat factors of automorphy also have
natural complex structures provided by the canonical parametrization (3.29)
of flat factors of automorphy and the isomorphism of Corollary 3.12; and the
mappings p of Corollary 3.10 and p0 of Theorem 3.13 when viewed as mappings
between complex manifolds have the following structure.

Theorem 3.18 In terms of the natural complex structures on the groups of flat
line bundles and of flat factors of automorphy over a compact Riemann surface
M of genus g > 0, the mappings

(3.43) p : H1(M,C∗) −→ P (M), p0 : Hom(Γ,C∗) −→ P (M)

are holomorphic mappings exhibiting the complex manifolds H1(M,C∗) and
Hom(Γ,C∗) as holomorphic fibre bundles over the complex torus P (M) with
fibre the complex vector space Cg and group the lattice subgroup ΠZ2g ⊂ C2g

acting on the vector space Cg by translation, where Π is the inverse period matrix
to a period matrix of M .

Proof: Choose bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M), and let Ω be the
period matrix of the surface M in terms of these bases and Π be the inverse
period matrix to Ω. The group Hom(Γ,C∗) has the complex structure arising
from its identification with the quotient of C2g by the action of the subgroup
Z2g ⊂ C2g by translation, as in the canonical parametrization (3.29) of flat
factors of automorphy for the surface M . The group P (M) has the structure
of the complex torus arising as the quotient of the complex manifold tΩCg by
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the action of the lattice subgroup tΩΠZ2g ⊂ tΩCg by translation, as in the
exact sequence (3.39) of Corollary 3.16. The holomorphic mapping P0 in the
latter exact sequence can be viewed alternatively as the result of factoring the
canonical parametrization P = p0 · ρ : C2g −→ P (M) of the Picard group
through the natural projection

(3.44) tΩΠ : C2g −→ tΩCg

in the direct sum decomposition (3.40), yielding the commutative diagram

(3.45)

C2g = tΩCg ⊕tΩCg ρ−−−−→ Hom(Γ,C∗)

tΩΠ

y p0

y
tΩC2g P0−−−−→ P (M).

When n ∈ Z2g is decomposed as n = tΩΠn⊕tΩΠn in the direct sum decompo-
sition (3.40), the action of n on C2g by translation decomposes correspondingly
as the mapping of C2g = tΩCg ⊕tΩC2g to itself given by

(3.46) ( tΩs, tΩt) −→
(
tΩ(s+ Πn), tΩ(t+ Πn)

)
;

hence the action of n on C2g by translation commutes with the action of tΩΠn on
the complex manifold tΩCg by translation, in the commutative diagram (3.45),
so the mapping (3.44) induces the holomorphic mapping

(3.47) p0 : Hom(Γ,C∗) =
tΩCg ⊕ tΩCg

Z2g
−→

tΩCg
tΩΠZ2g

= P (M)

between the quotient spaces. If Uα ⊂ tΩCg is an open subset that is disjoint
from any of its translates under the action of the lattice subgroup tΩΠZ2g then
the subset

(3.48) tΩCg ⊕ Uα ⊂ tΩCg ⊕ tΩCg

is an open subset of C2g that is disjoint from any of its translates under the
action (3.46) of the group Z2g, so this subset can be identified with the inverse
image p−1

0 (Uα) ⊂ Hom(Γ,C∗); thus if the points of the open subset Uα are
parametrized as tΩtα ∈ Uα for local coordinates tα ∈ Cg and if the points in
the linear subspace tΩCg are parametrized as tΩsα ∈ tΩCg for local coordinates
sα ∈ Cg then the pairs (sα, tα) ∈ Cg × Cg can be taken as local coordinates
in p−1

0 (Uα) = tΩCg ⊕ Uα. In terms of these local coordinates the holomorphic
mapping (3.47) is just the restriction of the natural projection Cg ×Cg −→ Cg
to the second factor, so it exhibits the mapping p0 as a local fibration with fibre
Cg. Over an intersection Uα ∩ Uβ ⊂ tΩCg it is possible to take the same fibre
coordinates sα = sβ in the fibres tΩCg; thus when viewed as a fibre bundle
over the entire complex manifold tΩCg rather than over the quotient P (M), the
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fibration (3.47) is a trivial fibre bundle. However for another local coordinate
system in P (M) corresponding to the translate

(3.49) Uβ = Uα + tΩΠnβα for nβα ∈ Z2g

it follows from (3.46) that the fibre coordinates are related by

(3.50) sβ = sα + Πnβα;

of course this also holds over the intersection Uα ∩ Uβ , for which nβα = 0.
Altogether then the holomorphic mapping (3.47) exhibits the complex manifold
Hom(Γ,C∗) as a holomorphic fibre bundle over P (M) with fibres the complex
vector space Cg and coordinate transition functions in the fibres given by (3.50).
The complex manifold H1(M,C∗) is biholomorphic to the complex manifold
Hom(Γ,C∗) through the isomorphism φ of Corollary 3.12, and the two mappings
p and p0 are related as in the commutative diagram (3.25) in the proof of
Theorem 3.13; through that diagram the results just derived for the mapping
p0 extend immediately to the corresponding results for the mapping p, and that
suffices to conclude the proof.

The fibre bundles (3.43) are described quite explicitly by the coordinate
transition functions (3.50) in terms of a covering of the manifold P (M) by
coordinate neighborhoods represented by subsets Uα ⊂ tΩCg. These bundles
also can be be described globally, paralleling the use of factors of automorphy
in describing line bundles over a Riemann surface; and the global description is
useful in examining these fibre bundles a bit more closely.

Corollary 3.19 Let M be a compact Riemann surface of genus g > 0 and Π
be the inverse period matrix to a period matrix of M .
(i) Cross-sections of the fibre bundles (3.43) can be identified with mappings
f̃ : Cg −→ Cg from the universal covering space of the manifold P (M) to the
fibres Cg such that

(3.51) f̃(t+ Πn) = f̃(t) + Πn for all n ∈ Z2g;

and these mappings in turn are in one-to-one correspondence with mappings

f : J(Π) −→ J(Π)

between the complex tori described by the period matrices Π and Π.
(ii) The fibre bundles (3.43) are topologically trivial.
(iii) Holomorphic cross-sections of the fibre bundles (3.43) are in one-to-one
correspondence with with triples (A,Q, a0) where (A,Q) is a Hurwitz relation
from the period matrix Π to the period matrix Π and a0 ∈ J(Π).
(iv) The fibre bundles (3.43) are holomorphically trivial if and only if the complex
tori J(Π) and J(Π) are isogenous.

Proof: (i) With the notation as in the proof of the preceding theorem, cross-
sections of the bundle (3.47) are described by mappings fα : Uα −→ Cg that
agree in intersections Uα ∩ Uβ and that satisfy

(3.52) fα( tΩt+ tΩΠn) = fα( tΩt) + tΠn
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for all points tΩt ∈ Uα and all n ∈ Z2g. Since these local mappings agree in
intersections Uα∩Uβ they can be combined to yield a mapping f̃ : tΩCg −→ Cg;
and as a consequence of (3.52) this global mapping satisfies f̃( tΩt + tΩΠn) =
f̃( tΩt) + tΠn, which is just (3.51) in terms of the parametrization of the linear
subspace tΩCg by parameter values t ∈ Cg. Conversely any mapping f̃ satis-
fying (3.51) when viewed as a mapping defined on the parametrized subspace
tΩCg restricts to coordinate neighborhoods Uα ⊂ tΩCg to yield local mappings
satisfying (3.52), and these local mappings describe a cross-section of the fibre
bundle. The condition that a mapping f̃ : Cg −→ Cg satisfies (3.51) is equiva-
lent to the condition that this mapping commutes with the natural projections
pi to the quotient groups in the commutative diagram

Cg f̃−−−−→ Cg

p1

y p2

y
Cg/ΠZ2g f−−−−→ Cg/ΠZ2g

and consequently that the mapping f̃ induces a mapping f between the quotient
groups.
(ii) There is a real linear topological homeomorphism φ : J(Π) −→ J(Π), since
any two complex tori of the same dimension are homeomorphic. When the
component functions of this homeomorphism φ are identified with real linear
mappings f̃i : Cg −→ Cg satisfying (3.51) the linear functions f̃i are linearly
independent, so any continuous cross-section f̃ can be written uniquely as a
linear combination f̃ =

∑g
i=1 cif̃i for some constants ci; consequently the fibre

bundles (3.43) are topologically trivial.
(iii) As in (i) holomorphic cross-sections of the fibre bundle (3.43) are in one-
to-one correspondence with holomorphic mappings f : J(Π) −→ J(Π); and by
Theorem F.9 in Appendix F.1 these holomorphic mappings are in one-to-one
correspondence with with triples (A,Q, a0) where (A,Q) is a Hurwitz relation
from the period matrix Π to the period matrix Π and a0 ∈ J(Π).
(iv) Since by (iii) holomorphic cross-sections of the fibre bundle (3.43) are con-
stant complex linear functions, the fibre bundle (3.43) is holomorphically trivial
if and only if there are g holomorphic cross-sections fi that are linearly in-
dependent complex linear functions; when viewed as the coordinate functions
of a mapping f : J(Π) −→ J(Π) as in (i), the condition that these coordinate
functions are linearly independent complex linear functions is equivalent to the
condition that the holomorphic mapping f : J(Π) −→ J(Π) is locally biholo-
morphic, hence that this mapping is an isogeny between the two complex tori.
That suffices to conclude the proof.

3.6 The Riemann Matrix Theorem

The Picard and Jacobi varieties of a compact Riemann surface M of genus
g > 0 have additional properties arising from the multiplicative structure in the
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cohomology group H1(M). If τj ∈ H1(M) is a basis for the homology of M
and φj ∈ H1(M) is a dual basis for the first deRham group of the surface, so

that φj are closed differential forms of degree 1 on M such that
∫
τk
φj = δjk

for 1 ≤ k ≤ 2g in terms of the Kronecker delta, the intersection matrix of the
surface M in terms of the basis {τj} is the 2g × 2g skew-symmetric integral
matrix P = {pjk} where pjk =

∫
M
φj ∧ φk. If ωi ∈ Γ(M,O(1,0)) is a basis

for the holomorphic abelian differentials then ωi ∼
∑2g
j=1 ωijφj in terms of the

basis φj , where ∼ denotes cohomologous differential forms and {ωij} = Ω is the
period matrix of the surface in terms of these bases.

Theorem 3.20 (Riemann Matrix Theorem) If M is a compact Riemann
surface of genus g > 0, and if Ω is the period matrix and P is the intersection
matrix of that surface in terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M),
then
(i) ΩP tΩ = 0 and
(ii) i ΩP tΩ is a positive definite Hermitian matrix.

Proof: First ωi ∧ ωj = 0 for any two holomorphic abelian differentials ωi, ωj ,
since the exterior product is a differential form of type (2, 0) so must vanish
identically; consequently

0 =

∫
M

ωi ∧ ωj =
∑
kl

ωikωjl

∫
M

φk ∧ φl =
∑
kl

ωikωjlpkl,

which in matrix terms is (i). Next in a coordinate neighborhood Uα with local
coordinate zα = xα + iyα a holomorphic abelian differential ω can be written
ω = fα dzα for some holomorphic function fα; consequently

i ω ∧ ω = i|fα|2dzα ∧ dzα = 2|fα|2dxα ∧ dyα.

Since dxα ∧ dyα is the local element of area in the canonical orientation of the
Riemann surface M the integral of this differential form is non-negative, indeed
is strictly positive so long as ω 6= 0. Therefore if ω =

∑
i ciωi for some complex

constants ci and if hij = i
∫
M
ωi ∧ ωj then

0 ≤ i
∫
M

ω ∧ ω = i
∑
ij

cicj

∫
M

ωi ∧ ωj =
∑
ij

cicjhij ,

and equality occurs only when ci = 0 for all i; this is just the condition that the
matrix H = {hij}, which is readily seen to be Hermitian, is positive definite.
Furthermore

hij = i

∫
M

∑
kl

ωikφk ∧ ωjlφl = i
∑
kl

ωikωjlpkl,

or in matrix terms H = iΩP tΩ; consequently (ii) follows, and that concludes
the proof.
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Traditionally condition (i) of the preceding theorem is called Riemann’s
equality and condition (ii) is called Riemann’s inequality. These two conditions
taken together amount to the condition that Ω is a Riemann matrix5 with prin-
cipal matrix P . Since detP = 1 by Corollary D.2 in Appendix D.2 the entries
of the matrix P are relatively prime, so P is a primitive principal matrix for the
Riemann matrix Ω; the pair (Ω, P ) thus describes a polarized Riemann matrix
called the polarized period matrix of the surface M in terms of these bases. It
was demonstrated in Theorem 3.6 that the period matrices of a Riemann surface
for various choices of bases are equivalent period matrices; the corresponding
result holds for the polarized period matrices as well.

Corollary 3.21 The polarized period matrices (Ω, P ) of a Riemann surface
M of genus g > 0 for arbitrary choices of bases for the holomorphic abelian
differentials and the homology of M are a full equivalence class of polarized
Riemann matrices.

Proof: Two bases ωi and ω̃i for the holomorphic abelian differentials on the
Riemann surface M are related by ω̃i =

∑g
k=1 aikωk for an arbitrary nonsin-

gular complex matrix A = {aik} ∈ Gl(g,C), and two bases τj and τ̃j for the

homology of the surface M are related by τ̃j =
∑2g
l=1 τlqlj for an arbitrary

invertible integral matrix Q = {qlj} ∈ Gl(2g,Z). The two period matrices

for these two bases then are related by Ω̃ = AΩQ, as in Theorem 3.6. If
φj and φ̃j are bases for the deRham group of M dual to the bases τj and

τ̃j for the homology of M then φ̃m =
∑2g
n=1 φnq̃nm for an invertible integral

matrix Q̃ = {q̃lj} ∈ Gl(2g,Z); and δmj =
∫
τ̃j
φ̃m =

∑2g
l,n=1 qlj

∫
τl
φnq̃nm =∑2g

l,n=1 qljδ
n
l q̃nm =

∑2g
l=1 qlj q̃lm so tQQ̃ = I and consequently Q̃ = tQ−1.

Therefore the intersection matrices P and P̃ for the two homology bases are
related by p̃jk =

∫
M
φ̃j ∧ φ̃k =

∑2g
l,m=1 q̃lj q̃mk

∫
M
φl ∧ φm =

∑2g
l,m=1 q̃lj q̃mkplm,

or in matrix terms P̃ = tQ̃ P Q̃ = Q−1 P tQ−1. Altogether then the two po-
larized Riemann matrices (Ω, P ) and (Ω̃, P̃ ) are related by Ω̃ = AΩQ and
P̃ = Q−1 P tQ−1 for arbitrary matrices A ∈ Gl(g,C) and Q ∈ Gl(2g,Z); and by
(F.33) in Appendix F.3 that is precisely the description of a complete equiva-
lence class of polarized Riemann matrices, so that suffices for the proof.

It follows from Theorem D.1 in Appendix D.2 and its corollary that the
intersection matrices for a compact Riemann surface of genus g > 0 are pre-
cisely the 2g× 2g integral matrices QJQ−1 where Q ∈ Gl(2g,Z) is an arbitrary
invertible integral matrix and J is the basic 2g × 2g integral skew-symmetric
matrix

(3.53) J =

(
0 I
−I 0

)
;

thus the polarized period matrix of a compact Riemann surface of genus g > 0
is always equivalent to a polarized Riemann matrix of the form (Ω, J), a princi-

5The definition of a Riemann matrix and of various related notions, and a survey of some
of the basic properties of Riemann matrices, are given in Appendix F.3.
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pally polarized Riemann matrix. By Lemma F.22 in Appendix F.3 any princi-
pally polarized Riemann matrix is in turn equivalent to a normalized principally
polarized Riemann matrix, one of the form

(
(I Z), J

)
where I is the identity

matrix of rank g and Z ∈ Hg is a matrix in the Siegel upper half-space of rank g,
although not to a unique normalized principally polarized Riemann matrix; but
by Lemma F.23 in Appendix F.3 two normalized principally polarized Riemann
matrices

(
(I Z), J

)
and

(
(I Z̃), J

)
are equivalent if and only if

(3.54) Z̃ = (A+ ZC)−1(B + ZD)

for a symplectic modular matrix

Q =

(
A B
C D

)
∈ Sp(2g,Z).

Thus if Ag = Hg/Sp(2g,Z) is the quotient of the complex manifold Hg by
the action (3.54) of the symplectic modular group on the Siegel upper half-
space, the moduli space of equivalence classes of principally polarized Riemann
matrices, there is associated to any compact Riemann surface M of genus g > 0
a unique point Z(M) ∈ Ag, the point in the quotient space Ag represented
by the matrix Z for any normalized principally polarized period matrix for the
surface M . The image point is called the Riemann modulus of the Riemann
surface M . That of course raises the questions (i) whether the mapping that
associates to a compact Riemann surface M of genus g > 0 its Riemann modulus
Z(M) ∈ Ag is an injective mapping, so that the Riemann moduli describe the
biholomorphic equivalence classes of Riemann surfaces; and (ii) how to describe
or characterize the image in Ag of the set of Riemann moduli for all compact
Riemann surfaces of genus g > 0. These are basic questions in the further study
of compact Riemann surfaces, to be considered in somewhat more detail later.
For the present, though, the normalized principally polarized period matrices of
a Riemann surface will be used just to determine canonical bases for the spaces
of holomorphic abelian differentials.

If M is a marked Riemann surface6 of genus g > 0 the marking determines a
basis for the homology H1(M) consisting of homology classes τj = αj , τg+j =
βj for 1 ≤ j ≤ g. In terms of this basis the intersection matrix of the surface
M is the basic skew-symmetric matrix J, by Theorem D.1 of Appendix D.2, so
the period matrix Ω of the surface is a principally polarized Riemann matrix;
and this matrix can be reduced to a normalized principally polarized Riemann
matrix Ω = (I Z), where Z ∈ Hg represents the Riemann modulus of the
surface M .

Theorem 3.22 If M is a marked Riemann surface of genus g > 0, with the
marking representing homology classes αj , βj ∈ H1(M), there is a uniquely
determined basis ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials on
M such that

(3.55)

∫
αj

ωi = δij for 1 ≤ i ≤ g;

6The notion and properties of marked surfaces are discussed in Appendix D.2.
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the remaining periods are the entries

(3.56)

∫
βj

ωi = zij

in a matrix Z ∈ Hg in the Siegel upper half-space of rank g that represents the
Riemann modulus for the Riemann surface M .

Proof: If ω̃j is a basis for the holomorphic abelian differentials on M and
τj ∈ H1(M) is the basis for the homology of M arising from the marking of
M then the period matrix of the surface in terms of these bases is a princi-
pally polarized Riemann matrix Ω. By Lemma F.22 there is a uniquely deter-
mined nonsingular matrix A = {aij} ∈ Gl(g,C) such that A−1Ω is a normal-
ized principally polarized Riemann matrix, for which A−1Ω = (I Z) where
Z ∈ Hg. Then (I Z) is the period matrix of the surface M in terms of the
basis ωi =

∑g
j=1 aijω̃j for the holomorphic abelian differentials on M in terms

of the given basis τj ∈ H1(M), so these abelian differentials have the periods
(3.55) and (3.56) and that suffices for the proof.

The basis ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials on
a marked Riemann surface satisfying the conditions of the preceding theorem
is called the canonical basis for the holomorphic abelian differentials on that
marked surface. Such bases are particularly simple for many purposes and are
quite commonly used in the study of compact Riemann surfaces; but they do
depend on the choice of a marking, so are not intrinsic to the surface itself.

Another important consequence of the Riemann Matrix Theorem is that the
Jacobi and Picard varieties of a compact Riemann surface are biholomorphic
complex manifolds. Indeed by Theorem F.20 in Appendix F.3, if (Ω, P ) is
a polarized Riemann matrix for which detP = 1 and Π is the inverse period
matrix to Ω then (Π, tP−1) is a polarized Riemann matrix equivalent to (Ω, P ),
where the equivalence is exhibited by the Hurwitz relation (ΩP tΩ, P ) from the
period matrix Π to the period matrix Ω; and it follows from this that the complex
tori J(Ω) and J(Π) are biholomorphic complex manifolds. The explicit form of
this biholomorphic mapping is often quite useful in the examination of Riemann
surfaces.

Theorem 3.23 If M is a compact Riemann surface of genus g > 0 and (Ω, P )
is the polarized period matrix of that surface in terms of bases for the holo-
morphic abelian differentials and the homology of the surface then the linear
mapping ΩP : C2g −→ Cg defined by the g × 2g complex matrix ΩP defines a
biholomorphic mapping

(3.57) (ΩP )∗ :
C2g

Z2g + tΩCg
−→ Cg

ΩZ2g

from the Picard variety

P (M) =
C2g

Z2g + tΩCg
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of the surface M onto its Jacobi variety

J(M) =
Cg

ΩZ2g
.

Proof: Since ΩP tΩ = 0 by Riemann’s equality, the linear subspace tΩCg ⊂ C2g

is in the kernel of the linear mapping described by the matrix ΩP ; and since
rank ΩP = g the subspace tΩCg ⊂ C2g is precisely the kernel of this linear
mapping. Further detP = 1 by Corollary D.2 in Appendix D.2, so P ∈ Gl(2g,Z)
and hence PZ2g = Z2g; consequently ΩPZ2g = ΩZ2g, which suffices to conclude
the proof.
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Chapter 4

Meromorphic Differentials
of the Second Kind

4.1 Principal Parts of Meromorphic Functions
and Differentials

Meromorphic differential forms on a compact Riemann surface M often are
called meromorphic abelian differentials on M . The sheaf M(1,0) of germs of
meromorphic abelian differentials was defined on page 53; and paralleling the
identification (2.24) on page 50 there is the natural identification M(1,0)(λ) ∼=
M(κλ) of the sheaf of germs of meromorphic abelian differentials that are cross-
sections of a holomorphic line bundle λ with the sheaf of germs of meromorphic
cross-sections of the product κλ of the line bundle λ with the canonical bundle
κ of the Riemann surface M . The divisors of meromorphic abelian differentials
are the not necessarily positive canonical divisors k; as noted in the discussion of
divisors of holomorphic abelian differentials, k does not denote a single divisor
but rather a linear equivalence class of divisors on M .

If a ∈ Uα is a pole of the meromorphic abelian differential µ in the coordinate
neighborhood Uα ⊂M and if γ is a simple closed path in Uα that encircles the
point a once in the positive orientation and contains no other singularities of
the differential µ on the path itself or in its interior the integral

(4.1) resa(µ) =
1

2πi

∫
γ

µ

is called the residue of the abelian differential µ at the point a; since the differen-
tial µ is a C∞ closed differential form except at its poles it is clear from Stokes’s
Theorem that the value of this integral is independent of the choice of the path
γ, subject to the stated conditions. If zα is a local coordinate centered at the
point a ∈ M and the differential is written µ = fαdzα then the residue resa(µ)
is the coefficient of z−1

α in the Laurent expansion of the function fα in terms

93
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of this coordinate; that coefficient consequently is independent of the choice of
the local coordinate. The corresponding coefficient in the Laurent expansion of
a meromorphic function, on the other hand, depends on the choice of the local
coordinate; a direct calculation for the case of a simple pole is quite convincing.
Thus the residue of a meromorphic function really is not well defined indepen-
dently of the choice of a local coordinate system, while that of a meromorphic
abelian differential is; that should be kept in mind to avoid possible confusion.

Theorem 4.1 The sum of the residues of a meromorphic abelian differential
at all its poles on a compact Riemann surface is zero.

Proof: Let ai be the finitely many poles of a meromorphic abelian differential
µ on the surface M . For each pole ai let γi be a path encircling that pole once
in the positive orientation and containing no other poles of the differential µ on
the path itself or in its interior, let ∆i be the interior of the path γi, and assume
further that these paths are chosen so that the closed sets ∆i = ∆i ∪ γi are
disjoint. Note that the path ∪iγi can be viewed either as the boundary of the set
∪i∆i or as the negative of the boundary of the complementary set M ∼ ∪i∆i,
that is, as the boundary of the latter set with the reversed orientation. The
differential form µ is a closed differential form except at the points ai, hence in
particular µ is a closed differential form on the set M ∼ ∪i∆i so dµ = 0 there;
consequently

2πi
∑
i

resai(µ) =

∫
∪iγi

µ = −
∫
∂(M∼∪i∆i)

µ = −
∫
M∼∪i∆i

dµ = 0

by Stokes’s Theorem, and that suffices to complete the proof.

A meromorphic function on a compact Riemann surface can be described
uniquely up to an additive constant by specifying its singularities; and a mero-
morphic abelian differential can be described uniquely up to an additive holo-
morphic abelian differential by specifying its singularities. To make this more
precise, the sheaf of germs of holomorphic functions O is a subsheaf of the sheaf
of germs of meromorphic functions M, so there is a well defined quotient sheaf
P =M/O called the sheaf of principal parts on M . Similarly the sheaf of germs
of holomorphic differential forms O(1,0) is a subsheaf of the sheaf of germs of
meromorphic differential forms M(1,0), so there is a well defined quotient sheaf
P(1,0) = M(1,0)/O(1,0) called the sheaf of differential principal parts on M .
There are thus the two exact sequences of sheaves

(4.2) 0 −→ O ι−→M p−→ P −→ 0,

(4.3) 0 −→ O(1,0) ι−→M(1,0) p−→ P(1,0) −→ 0,

in each of which ι is the natural inclusion homomorphism and p is the homo-
morphism that associates to the germ of a meromorphic function fa ∈ Ma or

differential µa ∈ M(1,0)
a at a point a ∈ M its principal part p(fa) = pa ∈ Pa or
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p(µa) = p
(1,0)
a ∈ P(1,0)

a at the point a, the element in the quotient sheaf that it
represents.

The sheaves P and P(1,0) and the sheaf homomorphisms p in these exact
sequences can be described more concretely in quite familiar terms. A germ of
a meromorphic function fa ∈Ma at any point a ∈M has a Laurent expansion
in any local coordinate zα centered at the point a, and the negative terms in
that Laurent expansion determine the given germ uniquely up to the germ of
a holomorphic function. Thus the image pa = p(fa) ∈ Pa, the principal part
of the germ fa at the point a, is described completely by the negative terms in
the Laurent expansion of fa in terms of the local coordinate zα, and of course
any Laurent series with finitely many negative terms describes the germ of some
meromorphic function; hence Pa can be identified with the set of finite negative
Laurent expansions in a local coordinate centered at the point a. The negative
terms in the Laurent expansion in one local coordinate centered at the point a
completely determine the negative terms in the Laurent expansion in any other
local coordinate centered at that point; but the explicit formula for the relation
between these two Laurent expansions depends on the particular local coordi-
nates. The germ of a meromorphic abelian differential µa at a point a ∈ M
can be expressed in terms of any local coordinate zα centered at that point
as µa = fαdzα where fα ∈ Ma, and the principal part of the differential µa
is determined completely by the principal part of the coefficient function fα.

Thus P(1,0)
a can be identified with Pa · dzα in terms of any local coordinate zα

centered at the point a. Again the negative terms in the Laurent expansion in
one local coordinate centered at the point a completely determine the negative
terms in the Laurent expansion in any other local coordinate centered at that
point; but the explicit formula for the relation between these two Laurent ex-
pansions depends on the particular local coordinates. The one exceptional case
is that of a meromorphic abelian differential having a simple pole with residue
r; in that case the single negative term in the Laurent expansion for any local
coordinate zα centered at that point is always (r/zα) dzα. That this is the only
case in which the coefficients of the negative terms in the Laurent expansion
are independent of the choice of local coordinate is quite evident upon consid-
ering just simple changes of the local coordinate of the form z̃ = cz. A section
p ∈ Γ(M,P), called a principal part on M , is described by listing principal
parts paν ∈ Paν of meromorphic functions at a discrete set of points {aν} of
the Riemann surface M ; correspondingly a section p(1,0) ∈ Γ(M,P(1,0)), called
a differential principal part on M , is described by listing the principal parts

p
(1,0)
aν ∈ P(1,0)

aν of meromorphic abelian differentials at a discrete set of points
{aν} of the Riemann surface M . If a principal part or differential principal
part p consists of Laurent expansions with poles of order nν at distinct points
aν ∈ M the divisor of that principal part is the divisor d(p) =

∑
ν nν · aν ; it

is locally just the polar divisor d−(fα) for any local meromorphic function or
differential form fα that has the principal part p.
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Theorem 4.2 On a compact Riemann surface M there are isomorphisms

Γ(M,P)

p
(
Γ(M,M)

) ∼= H1(M,O) and
Γ(M,P(1,0))

p
(
Γ(M,M(1,0))

) ∼= H1(M,O(1,0)),

where p is the linear mapping that associates to a meromorphic function or
differential form on M its principal part.

Proof: The exact cohomology sequence associated to the exact sequence of
sheaves (4.2) contains the segment

Γ(M,M)
p−→ Γ(M,P)

δ1−→ H1(M,O) −→ H1(M,M);

and since H1(M,M) = 0 by Corollary 2.21 that yields the first isomorphism.
Similarly the exact cohomology sequence associated to the exact sequence of
sheaves (4.3) contains the segment

Γ(M,M(1,0))
p−→ Γ(M,P(1,0))

δ2−→ H1(M,O(1,0)) −→ H1(M,M(1,0));

and since H1(M,M(1,0)) = H1(M,M(κ)) = 0 by Corollary 2.21 that yields the
second isomorphism and concludes the proof.

This provides an interesting and useful alternative interpretation of the co-
homology groups H1(M,O) and H1(M,O(1,0)) as measures of the obstruction
to a principal part or differential principal part being the principal part of a
global meromorphic function or differential form. The cohomology groups can
be eliminated from the statement of the preceding theorem by using the Serre
Duality Theorem.

Theorem 4.3 On a compact Riemann surface M there are isomorphisms

δ1 :
Γ(M,P)

p
(
Γ(M,M)

) ∼=−→ Γ(M,O(1,0))∗ and δ2 :
Γ(M,P(1,0))

p
(
Γ(M,M(1,0))

) ∼=−→ C,

where for any principal part p ∈ Γ(M,P) the image δ1(p) is the element in the
dual space to Γ(M,O(1,0)) that takes the value

δ1(p)(ω) =
∑
a∈M

resa(pω)

on a holomorphic abelian differential ω ∈ Γ(M,O(1,0)), and for any differential
principal part p(1,0) ∈ Γ(M,P(1,0))

δ2(p(1,0)) =
∑
a∈M

resa(p(1,0)).

Proof: The first isomorphism in Theorem 4.2 arises from the exact cohomol-
ogy sequence associated to the exact sequence of sheaves (4.2). Explicitly for a



4.1. PRINCIPAL PARTS 97

principal part p on the Riemann surface M choose a covering U of the Riemann
surfaceM by open sets Uα such that each pole of the principal part p is contained
within a single coordinate neighborhood Uα, and such that there are meromor-
phic functions fα in the sets Uα with the principal parts p(fα) = p|Uα; the
differences fαβ = fβ−fα are holomorphic in the intersections Uα∩Uβ and form
a cocycle in Z1(U,O) representing the image of the principal part p in the coho-
mology group H1(M,O). The functions fα can be modified so that they become
C∞ within the sets Uα without changing their values in any intersections Uα∩Uβ ;
indeed merely multiply each function fα by a C∞ function that is identically 0
near the pole in Uα and is identically 1 in all other subsets Uβ of the covering U.

The modified functions f̃α then form a C∞ cochain with coboundary fαβ , and

the global differential form ∂f̃α ∈ Γ(M, E(0,1)) represents the cohomology class
of the cocycle fαβ under the isomorphism H1(M,O) ∼= Γ(M, E(0,1))/∂Γ(M, E)
of the Theorem of Dolbeault, Theorem 1.9. By the Serre Duality Theorem, The-
orem 1.17, the dual space to the quotient vector space Γ(M, E(0,1))/∂Γ(M, E) is
the vector space Γ(M,O(1,0)), where a cross-section τ ∈ Γ(M,O(1,0)) associates
to the cross-section ω ∈ ∂f̃α the value Tω(∂f̃α) =

∫
M
ω∧∂f̃α; of course this can

be intrinsic for convenience by multiplying by an arbitrary complex constant.
The integrand in this formula is identically zero except near the poles of p where
the meromorphic functions fα have been modified, since otherwise f̃α = fα is
holomorphic. Therefore if ∆i are disjoint open neighborhoods of the distinct
poles ai of the principal part p within which the functions fα have been modified
then

Tω(∂f̃α) =
1

2πi

∑
i

∫
∆i

∂f̃α ∧ ω =
1

2πi

∑
i

∫
∆i

d
(
f̃αω

)
=

1

2πi

∑
i

∫
∂∆i

f̃αω =
1

2πi

∑
i

∫
∂∆i

fαω

=
∑
i

resai(fαω)

by Stokes’s Theorem, since the functions f̃α and fα coincide on the boundaries
of the sets ∆i. That yields the first isomorphism. The same argument carries
through for a differential principal part p(1,0), simply replacing the functions
fα by differential forms in applying the Serre Duality Theorem; the integration
does not involve integrating against a holomorphic abelian differential but just
against a constant. That yields the second isomorphism and concludes the proof
of the theorem.

If pa ∈ Pa is a principal part at the point a and f is a meromorphic function
in an open neighborhood of a with that principal part, and if ω is a holomorphic
differential form in an open neighborhood of the point a, then the product f ω
is a meromorphic abelian differential near the point a that is determined by the
principal part pa only up to the product of the holomorphic abelian differen-
tial ω and an arbitrary holomorphic function near that point; but the residue
resa(f ω) appearing in the statement of the preceding theorem is independent
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of the choice of this additive term, so is well defined. The preceding theorem
provides criteria for determining which principal parts or differential principal
parts on a compact Riemann surface are the principal parts of meromorphic
functions or meromorphic abelian differentials on the surface.

Corollary 4.4 On any compact Riemann surface M
(i) there exists a meromorphic function with the principal part p ∈ Γ(M,P) if
and only if ∑

a∈M
resa(pω) = 0

for all holomorphic abelian differentials ω ∈ Γ(M,O(1,0));
(ii) there exists a meromorphic abelian differential with the differential principal
part p(1,0) ∈ Γ(M,P(1,0)) if and only if∑

a∈M
resa(p(1,0)) = 0.

Proof: The first isomorphism of the preceding theorem shows that a principal
part p ∈ Γ(M,P) is the principal part of a meromorphic function, that is, is
contained in the subgroup p(Γ(M,M)), if and only if δ1(p) is the trivial linear
functional on the space of holomorphic abelian differentials, hence if and only
if
∑
a∈M resa(pω) = 0 for all holomorphic abelian differentials ω. Correspond-

ingly the second isomorphism of the preceding theorem shows that a differential
principal part p(1,0) ∈ Γ(M,P(1,0)) is the principal part of a meromorphic dif-
ferential, that is, is contained in the subgroup p(Γ(M,M(1,0))), if and only if
0 = δ2(p(1,0)) =

∑
a∈M resa(p(1,0)). That suffices for the proof.

Part (ii) of the preceding corollary complements Theorem 4.1 by showing
that the necessary condition given in Theorem 4.1 that a differential principal
part on a compact Riemann surface M be the principal part of a meromorphic
abelian differential also is sufficient.

For an example, there are no nontrivial holomorphic abelian differentials on
the Riemann sphere M = P1, since c(κ) = 2g − 2 = −2; so in this case the
first assertion of the preceding corollary is just the familiar result that there
are meromorphic functions on the Riemann sphere P1 with arbitrary principal
parts. Indeed any principal part

(4.4) pa =
cn

(z − a)n
+ · · ·+ c1

(z − a)

at a finite point a ∈ C ⊂ P1 is itself a rational function, a meromorphic function
on all of P1, that is holomorphic everywhere except for the pole at the point a;
and a polynomial

(4.5) p∞ = cnz
n + · · ·+ c1z + c0 =

cn
ζn

+ · · ·+ c1
ζ

+ c0

where ζ = 1
z also is meromorphic on all of P1 except for the pole at the point

z = ∞ or ζ = 1/z = 0. Consequently if pa1
, . . . , pam are principal parts at
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points a1, . . . , am the sum f(z) = pa1 + · · · + pam is a meromorphic function
on P1 with precisely these principal parts, and it is unique up to an additive

constant. On the other hand a differential principal part p
(1,0)
a on P1 is itself a

meromorphic abelian differential on all of P1 that has poles at the points a and
∞; it has residue c1 at the point a, and at the point z =∞ it has the expansion
in terms of the local coordinate ζ = 1/z

p(1,0)
a =

(
cnζ

n

(1− aζ)n
+ · · ·+ c2ζ

2

(1− aζ)2
+

c1ζ

1− aζ

)(
−dζ
ζ2

)
=

(
− cnζ

n−2

(1− aζ)n
− · · · − c2

(1− aζ)2
+

ac1
1− aζ

− c1
ζ

)
dζ,

since
− c1

(1− aζ)ζ
=

ac1
1− aζ

− c1
ζ

;

thus it has a simple pole at∞ with residue−c1, so altogether it is a meromorphic
abelian differential on P1 with total residue 0. The differential principal part

p
(1,0)
∞ of (4.5) has the expansion in terms of the local coordinate ζ = 1/z

p(1,0)
∞ = −

(
cn
ζn+2

+ · · ·+ c1
ζ3

+
c0
ζ2

)
dζ,

so it has zero residue at its pole. Any meromorphic abelian differential on P1 can
be written as f(z)dz = pa1

dz+ · · ·+ pamdz for some differential principal parts
as described, so has total residue 0; incidentally any such abelian differential
has the form f(z)dz where f(z) is a rational function.

4.2 Meromorphic Abelian Integrals of the
Second Kind

The meromorphic abelian differentials that have nontrivial poles but have
residue zero at each pole are called abelian differentials of the second kind; and
the meromorphic abelian differentials having at least one pole with a nonzero
residue are called abelian differentials of the third kind. Correspondingly a dif-
ferential principal part of the second kind is a differential principal part with zero
residues at all its poles, while any other differential principal part is a differential
principal part of the third kind. By the preceding corollary any differential prin-
cipal part of the second kind is the principal part of an abelian differential of the
second kind; and that differential is determined by its principal part uniquely
up to the addition of an arbitrary abelian differential of the first kind. Just as in
the case of holomorphic abelian differentials, meromorphic abelian differentials
on a compact Riemann surface M of genus g > 0 can be viewed as Γ-invariant
meromorphic differential forms on the universal covering space M̃ of the surface
M , where Γ is the group of covering translations acting on M̃. If µ is an abelian
differential of the second kind on M viewed as a meromorphic differential form
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on M̃ then
∫
γ
µ = 0 for any closed path γ ⊂ M̃ that avoids the singularities of

µ. Indeed since M̃ is simply connected the path γ is the boundary γ = ∂∆ of a
domain ∆ ⊂ M̃ ; and if ai are the poles of µ in ∆ and for each pole γi is a closed
path in ∆ that encircles ai once in the positive direction, such that the paths γi
are disjoint and have disjoint interiors, then since µ is a closed differential form
in the complement of the points ai in ∆ it follows from Stokes’s Theorem and
the definition of the residue that

∫
γ
µ =

∑
i

∫
γi
µ =

∑
i res ai(µ) = 0. Therefore

the integral

(4.6) u(z, a) =

∫ z

a

µ

taken along any path in M̃ that avoids the poles of µ is a well defined mero-
morphic function of the variables z, a ∈ M̃ that is independent of the path of
integration; such a function is called a meromorphic abelian integral on the Rie-
mann surface M , although of course really it is a meromorphic function on the
universal covering space M̃ in both variables. A meromorphic abelian integral
clearly satisfies the conditions

(4.7) u(z, a) = −u(a, z) and u(z, z) = 0

for all points z ∈ M̃. It is more convenient in many circumstances to view a
meromorphic abelian integral as a function of the first variable only, and to allow
it to be modified by an arbitrary additive constant; in such cases the function
is denoted by u(z) rather than u(z, a), but also is called a meromorphic abelian
integral, just as in the case of holomorphic abelian integrals. It must be kept
in mind though that a meromorphic abelian integral u(z) is determined by the
meromorphic abelian differential ν only up to an arbitrary additive constant.
For any choice of the meromorphic abelian integral u(z) the integral (4.6) is
given by u(z, a) = u(z)− u(a) at its regular points.

Lemma 4.5 The meromorphic abelian integrals u(z) on a compact Riemann
surface M of genus g > 0 can be characterized as those meromorphic functions
on the universal covering space M̃ of the surface M that satisfy

(4.8) u(Tz) = u(z) + µ(T ) for all T ∈ Γ

for a group homomorphism µ ∈ Hom(Γ,C), where Γ is the covering translation
group of M .

Proof: As in the proof of the corresponding result, Lemma 3.1, for holomorphic
abelian integrals, a meromorphic abelian integral u(z) on a compact Riemann
surface M of genus g > 0 clearly satisfies (4.8) since du(Tz) = du(z). The

differential µ = du of any meromorphic function u(z) on M̃ that satisfies (4.8)
is invariant under Γ and has zero residue at each pole so is a meromorphic
abelian differential of the second kind; and the function u(z) is an integral of µ
so is a meromorphic abelian integral on M . That suffices for the proof.
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Clearly the group homomorphism µ in (4.8) is unchanged when the abelian
integral u(z) is replaced by u(z)+c for a complex constant c, so it is determined
uniquely by the meromorphic abelian differential µ; it is called the period class
of the abelian differential of the second kind µ = du. The period class can be
viewed either as an element of the group H1(Γ,C) ∼= Hom(Γ,C) or as an element
of the group Hom(H1(M),C) = H1(M,C); in the latter case it associates to
the homology class of a path τ ⊂M that avoids the singularities of the abelian
differential µ the period µ(τ) =

∫
τ
µ in the usual sense.

Lemma 4.6 A meromorphic abelian differential of the second kind on a com-
pact Riemann surface M of genus g > 0 is determined by its period class
uniquely up to the derivative of a meromorphic function on M .

Proof: If the period class of a meromorphic abelian differential of the second
kind is identically zero its integral is a meromorphic function on the Riemann
surface M itself and conversely, and that suffices for the proof.

Theorem 4.7 On a compact Riemann surface M of genus g > 0 let Ω = {ωij}
be the period matrix and P = {pjk} be the intersection matrix of M in terms of
bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M).
(i) The periods µ(τj) of an abelian differential µ of the second kind on M with
the differential principal part p(1,0) satisfy

(4.9)

2g∑
j,k=1

ωij pjk µ(τk) = 2πi
∑
a∈M

resa(wi µ) = 2πi
∑
a∈M

resa(wi p
(1,0))

for 1 ≤ i ≤ g, where wi(z) =
∫ z
a
ωi is the integral of the differential form ω.

(ii) The periods µ′(τj) and µ′′(τj) of any two abelian differentials µ′, µ′′ of the
second kind on M satisfy

(4.10)

2g∑
j,k=1

µ′(τj) pjk µ
′′(τk) = 2πi

∑
a∈M

resa(u′ µ′′)

where u′(z) =
∫ z
a
µ′ is the integral of the meromorphic differential form µ′.

Proof: (i) Let u(z) =
∫ z
a
µ be an integral of the differential of the second

kind µ, where a is any point other than a pole of µ; the periods of µ thus are
given by µ(T ) = u(Tz)− u(z) for all T ∈ Γ. Choose disjoint contractible open
neighborhoods ∆j of the poles aj of µ in M , and for each of these neighborhoods

choose a connected component ∆̃j of the inverse image π−1(∆j) ⊂ M̃ where

π : M̃ −→M is the covering projection. The set ∆̃j is thus homeomorphic to ∆j

under the covering projection π; and the complete inverse image π−1(∆j) ⊂ M̃
is the union of the disjoint open sets T ∆̃j for all T ∈ Γ. Choose a C∞ real-valued
function r on M that is identically one on an open neighborhood of M ∼ ∪j∆j

and is identically zero in an open neighborhood of each pole aj ; this function
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also can be viewed as a Γ-invariant function on M̃ . In terms of this auxiliary
function introduce the smoothed integral

ũ(z) =


u(z) for z ∈ M̃ ∼ ∪jΓ∆̃j

r(z)u(z) for z ∈ ∪j∆̃j

ũ(T−1z) + µ(T ) for z ∈ ∪jT ∆̃j , T 6= I.

Thus ũ(z) is a C∞ function on M̃ , ũ(Tz) = ũ(z)+µ(T ) for any covering transla-
tion T ∈ Γ, and ũ(z) = u(z) whenever z 6∈ ∪jΓ∆̃j . The differential form µ̃ = dũ

is a C∞ closed Γ-invariant differential form on M̃ , or equivalently is a C∞ closed
differential form on M , that is holomorphic outside the set ∪j∆j and that has
the same periods as the meromorphic abelian differential µ. Let φj be a basis for
the first deRham group of M dual to the chosen basis τj ∈ H1(M), so that φj
are C∞ closed differential forms of degree 1 on M with the periods φj(τk) = δjk.
The C∞ differential form µ̃ and the holomorphic abelian differentials ωj can be
expressed in terms of this basis by

µ̃ ∼
2g∑
k=1

µ(τk)φk and ωi ∼
2g∑
j=1

ωijφj ,

where ∼ denotes cohomologous differential forms, those that differ by exact
differential forms. Then∫

M

ωi ∧ µ̃ =

2g∑
j,k=1

∫
M

ωijφj ∧ µ(τk)φk =

2g∑
j,k=1

ωij pjk µ(τk)

where pjk =
∫
M
φj∧φk are the entries of the intersection matrix of the surface M

in terms of these bases. On the other hand the differential form µ̃ is holomorphic
outside the set ∪j∆j , so that ωi ∧ µ̃ = 0 there, and consequently by Stokes’s
Theorem∫

M

ωi ∧ µ̃ =

∫
∪j∆j

ωi ∧ µ̃ =

∫
∪j∆̃j

d(wiµ̃)

=
∑
j

∫
∂∆̃j

wi µ̃ =
∑
j

∫
∂∆̃j

wi µ = 2πi
∑
j

resaj (wi µ)

since µ = µ̃ on the boundary of the sets ∆j . Combining these two observa-
tions yields the formula of part (i), since resa(wiµ) = resa(wip

(1,0)) for any
meromorphic abelian differential µ with the differential principal part p(1,0).

(ii) Next for any two abelian differentials µ′, µ′′ of the second kind let {aj}
be the union of the sets of poles of these two differentials, and choose disjoint
contractible open neighborhoods ∆j of these points and a C∞ function r as in
the preceding part of the argument; and in these terms introduce the smoothed
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versions ũ′(z) and ũ′′(z) of the integrals u′(z) =
∫ z
a
µ′ and u′′(z) =

∫ z
a
µ′′, also

as in the preceding part of the argument. Then for the C∞ closed differential
forms µ̃′ = dũ′ and µ̃′′ = dũ′′ it follows that∫

M

µ̃′ ∧ µ̃′′ =

2g∑
j,k=1

∫
M

µ′(τj)φj ∧ µ′′(τk)φk =

2g∑
j,k=1

µ′(τj) pjk µ
′′(τk).

Again µ̃′ ∧ µ̃′′ = 0 outside the sets ∆j , since both µ̃′ and µ̃′′ are holomorphic
differential forms there, and consequently by Stokes’s theorem∫

M

µ̃′ ∧ µ̃′′ =

∫
∪j∆j

µ̃′ ∧ µ̃′′ =

∫
∪j∆̃j

d(ũ′µ̃′′)

=
∑
j

∫
∂∆̃j

ũ′µ̃′′ =
∑
j

∫
∂∆̃j

u′µ′′ = 2πi
∑
j

resaj (u
′µ′′)

since ũ′ = u′ and µ̃′′ = µ′′ on the boundary of the sets ∆j . Combining these
two observations yields the formula of part (ii) and thereby concludes the proof.

The products wi µ and u′µ′′ in the preceding theorem are meromorphic dif-
ferential forms on M̃ , so their residues are well defined at least on M̃ ; and
since wi(Tz)µ(Tz) = wi(z)µ(z) + ωi(T )µ(z) and u′(Tz)µ′′(Tz) = u′(z)µ′′(z) +
µ′(T )µ′′(z), where the differentials µ and µ′′ have zero residue, the residues are

the same at any two points of M̃ that are transforms of one another by covering
translations, so these residues actually are well defined on the Riemann surface
M itself. The expression (4.10) is not symmetric in the differentials µ′ and
µ′′; indeed since the intersection matrix P is skew-symmetric the left-hand side
changes sign when these two differentials are reversed, so the right-hand side
also must change signs and thus

(4.11) resa(u′µ′′) = −resa(u′′µ′).

Alternatively this is a simple consequence of Stokes’s theorem, since

resa(u′µ′′) + resa(u′′µ′) =
1

2πi

∫
γ

(u′µ′′ + u′′µ′) =
1

2πi

∫
γ

d(u′u′′) = 0

for any simple closed path γ encircling only the singularity a.

4.3 Intrinsic Abelian Differentials of the
Second Kind

An abelian differential of the second kind is determined by its principal part
only up to the addition of an arbitrary abelian differential of the first kind; but
it is possible to normalize the abelian differentials of the second kind in terms of
their period classes so that there corresponds to each differential principal part
of the second kind a uniquely determined abelian differential of the second kind.
To simplify the notation differential principal parts henceforth will be denoted
merely by p rather than p(1,0).
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Theorem 4.8 (i) For any differential principal part of the second kind p on a
compact Riemann surface M of genus g > 0 there are a unique meromorphic
abelian differential of the second kind µp and a unique holomorphic abelian dif-
ferential ωp such that µp has the differential principal part p and has the same
period class as the complex conjugate differential ωp.
(ii) The holomorphic abelian differential ωp is characterized by the conditions
that

(4.12)

∫
M

ω ∧ ωp = 2πi
∑
a∈M

resa(wp)

for all holomorphic abelian differentials ω, where w(z) =
∫ z
a
ω is the integral of

the holomorphic differential form ω.
(iii) If p′ and p′′ are two differential principal parts of the second kind on M
then the associated abelian differentials of the second kind µp′ and µp′′ satisfy

(4.13)
∑
a∈M

resa(up′µp′′) = 0,

where up′(z) =
∫ z
a
µp′ is the integral of the meromorphic differential form µp′ .

Proof: (i) Let ωi ∈ Γ(M,O(1,0)) be a basis for the space of holomorphic abelian
differentials on the surface M and τj ∈ H1(M) be a basis for the homology of
the surface M , and in terms of these bases let Ω = {ωij} be the period matrix
and P = {pij} be the intersection matrix of M . As in (F.9) in Appendix F.1
there is the direct sum decomposition C2g = tΩCg⊕ tΩCg, in which the subspace
tΩCg ⊂ C2g consists of the period vectors {ω(τj)} of the holomorphic abelian
differentials ω on the basis τj and the subspace tΩCg ⊂ C2g consists of the
period vectors {ω(τj)} of the complex conjugates ω of the holomorphic abelian
differentials on the basis τj . If µ is an abelian differential of the second kind with
differential principal part p then for any abelian differential of the first kind ω
the sum µ+ω is an abelian differential of the second kind with the same principal
part p, and all the abelian differentials of the second kind with the differential
principal part p arise in this way. There is a unique abelian differential of the
first kind ω such that the period vector {µp(τj)} = {µ(τj) + ω(τj)} of the sum
µp = µ + ω is contained in the linear subspace tΩCg ⊂ C2g, hence such that
µp(τj) = ωp(τj) for a uniquely determined holomorphic abelian differential ωp,
thus demonstrating (i).

(ii) If φj are closed real differential forms of a basis for the first deRham
group of M dual to the basis τj , then from the homologies ωi ∼

∑g
j=1 ωi(τj)φj =∑g

j=1 ωijφj and ωp ∼
∑g
j=1 ωp(τk)φk it follows that

∫
M

ωi ∧ ωp =

∫
M

g∑
j,k=1

ωijωp(τk)φj ∧ φk =

g∑
j,k=1

ωijpjkωp(τk);
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and since ωp(τk) = µp(τk) as in (i) it follows from (4.9) in Theorem 4.7 that

(4.14)

g∑
j,k=1

ωijpjkωp(τk) =

g∑
j,k=1

ωijpjkµp(τk) = 2πi
∑
a∈M

resa(wip)

where wi(z) =
∫ z
a
ωi is the integral of the holomorphic differential form ωi.

Combining the two preceding equations shows that (ii) holds for the basis ωi,
and consequently it holds for all holomorphic abelian differentials ω.

(iii) Finally if p′ and p′′ are two differential principal parts of the second kind
to which correspond the meromorphic differential forms µp′ and µp′′ as in (i), the
associated holomorphic abelian differentials ωp′ and ωp′′ satisfy ωp′ ∧ ωp′′ = 0,
since the product is a differential form of type (2, 0) on the Riemann surface
M ; so from the homologies ωp′ ∼

∑g
j=1 ωp′(τk)φk and ωp′′ ∼

∑g
j=1 ωp′′(τk)φk

it follows that

0 =

∫
M

ωp′ ∧ ωp′′ =

∫
M

g∑
j,k=1

ωp′(τj)φj ∧ ωp′′(τk)φk =

g∑
j,k=1

ωp′(τj)pjkωp′′(τk).

Since ωp′(τk) = µp′(τk) and ωp′′(τk) = µp′′(τk) it follows from (4.10) in Theo-
rem 4.7 that

g∑
j,k=1

ωp′(τj)pjkωp′′(τk) =

g∑
j,k=1

µp′(τj)pjkµp′′(τk) = 2πi
∑
a∈M

res a(u1µ2).

Combining the two preceding equations shows that (iii) holds and thereby con-
cludes the proof.

The meromorphic abelian differential µp of part (i) of the preceding theorem
is called the intrinsic abelian differential of the second kind with the differential
principal part p, and the holomorphic abelian differential ωp is called its as-
sociated holomorphic abelian differential; both are determined uniquely by the
differential principal part p. Since linear combinations of the intrinsic meromor-
phic abelian differentials of the second kind have period classes and principal
parts that are the corresponding linear combinations it is evident that

(4.15) µc1p1+c2p2 = c1µp1 + c2µp2

for any differential principal parts p1 and p2 of the second kind and any complex
constants c1, c2.

Corollary 4.9 On a compact Riemann surface M of genus g > 0 let Ω = {ωij}
be the period matrix and P = {pij} be the intersection matrix of M in terms of
bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M). For any differential principal part p
of the second kind on M the periods of the intrinsic abelian differential of the
second kind µp are

(4.16) µp(T ) = −2π

g∑
m,n=1

∑
a∈M

gmnresa(wmp)ωn(T )
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for any covering translation T ∈ Γ, where G = {gmn} = tH−1 for the positive
definite Hermitian matrix H = iΩP tΩ.

Proof: The holomorphic abelian differential ωp associated to the intrinsic
abelian differential of the second kind µp can be written as a sum ωp =

∑g
l=1 clωl

for some complex constants cl, so its periods are ωp(τk) =
∑g
l=1 clωl(τk) =∑g

l=1 clωlk. Substituting this into (4.14) yields the identity

(4.17) 2πi
∑
a∈M

resa(wmp) =

g∑
j,k,l=1

ωmjpjkωlkcl = −i
g∑
l=1

hmlcl

where hml are the entries in the g×g complex matrix H = iΩP tΩ. This matrix
is positive definite Hermitian by Riemann’s inequality, Theorem 3.20 (ii), so
G = tH−1 exists; and if G = {gmn} then upon multiplying (4.17) by gmn and
summing over m it follows that

cn = −2π

g∑
m=1

∑
a∈M

gmnresa(wmp),

hence that

µp(τj) = ωp(τj) =

g∑
n=1

cnωnj = −2π

g∑
m,n=1

gmnresa(wmp)ωnj .

If the covering translation T ∈ Γ corresponds to a homology class τ ∈ H1(M)
and τ ∼

∑g
j=1 njτj for some integers nj then µp(T ) = µp(τ) =

∑g
j=1 njµp(τj)

and correspondingly ωn(T ) = ωn(τ) =
∑g
j=1 njωn(τj) =

∑g
j=1 njωnj ; multiply-

ing both sides of the preceding equation by nj and summing over j = 1, . . . , g
yields (4.17) and thereby concludes the proof.

Since ωp(T ) = µp(T ) it follows immediately from (4.16) that the associated
holomorphic abelian differential is given by

(4.18) ωp(z) = −2π

g∑
m,n=1

∑
a∈M

gmnresa(wmp)ωn(z).

It is apparent from this that although the intrinsic abelian differentials of the
second kind are complex linear functions of their differential principal parts as
in (4.15), the associated holomorphic abelian differentials are complex conjugate
functions of their differential principal parts; of course that also is clear from
the definitions of these differentials, since the periods of the intrinsic abelian
differentials and of their associated holomorphic abelian differentials are com-
plex conjugates of one another. The explicit formulas (4.16) and (4.18) depend
on the choice of bases ωi for the holomorphic abelian differentials and τj for
the homology of the surface M , but it is clear that µp(T ) and ωp(z) are in-
dependent of these choices. It may be comforting to verify that directly, and
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for that purpose as well as for later use it is convenient to rephrase (4.16) in

matrix notation. If w̃ : M̃ −→ Cg is the mapping defined by the column vec-
tor {wj(z)} of holomorphic abelian integrals on M̃ and ω ∈ Hom(Γ,Cg) is the
group homomorphism defined by the column vector {ωj(T )} of period classes
of the holomorphic abelian differentials, as in (3.3) and (3.4), then (4.16) can
be written equivalently as

(4.19) µp(T ) = −2π
∑
a∈M

resa( tw̃p) ·G · ω(T ).

Of course (4.18) can be rephrased correspondingly. A change of basis for the
holomorphic abelian differentials on M has the effect of replacing the vector w̃

by Aw̃ and the vector ω(T ) by Aω(T ), and the form matrix G by tA−1GA
−1

as
in equation (F.41) in Appendix F.4; and this change clearly leaves the expression
resa( tw̃p) ·G · ω(T ) unchanged.

Corollary 4.10 On a compact Riemann surface M of genus g > 0 there is
a meromorphic function with the principal part p if and only if the intrinsic
abelian differential of the second kind µdp with the differential principal part dp
has a trivial period class.

Proof: If there is a meromorphic function f with principal part p then df is a
meromorphic abelian differential of the second kind with the principal part dp
and with a trivial period class; since its period class is the same as that of the
trivial holomorphic abelian differential ω = 0 it follows from Theorem 4.8 (i)
that df is an intrinsic abelian differential of the second kind. Conversely if there
is an intrinsic abelian differential of the second kind with principal part dp and
with trivial period class it is the differential of a meromorphic function with the
period class p. That suffices for the proof.

Theorem 4.11 Let aj ∈M be n distinct points of a compact Riemann surface
M of genus g > 0, let d =

∑n
j=1 νj · aj be a positive divisor with deg d =

r ≤ g, and let pjk be principal parts of the form pjk = z−kj in terms of local
coordinates zj centered at the points aj. The period classes of the r intrinsic
abelian differentials of the second kind µjk = µdpjk with the differential principal
parts dpjk for 1 ≤ j ≤ n, 1 ≤ k ≤ νj, are linearly dependent if and only if d is
a special positive divisor.

Proof: The period classes of the intrinsic abelian differentials of the second kind
µjk are linearly dependent if and only if there are constants cjk not all of which
are zero such that

∑n
j=1

∑νj
k=1 cjkµjk(T ) = 0 for all covering translations T ∈ Γ;

and that is just the condition that the nontrivial intrinsic abelian differential
of the second kind µ =

∑n
j=1

∑νj
k=1 cjkµjk with the differential principal part

dp =
∑n
j=1

∑νj
k=1 cjk dpjk has trivial period classes, which by Corollary 4.10

is equivalent to the condition there is a meromorphic function on M with the
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principal part p =
∑n
j=1

∑νj
k=1 cjk pjk. By Corollary 4.4 there is a meromorphic

function on M with principal part p if and only if

(4.20) 0 =
∑
a∈M

resa(pωi) =

n∑
j=1

νj∑
k=1

cjkresaj (pjkωi)

where ωi is a basis for the holomorphic abelian differentials on M . If ωi =
fi(zj)dzj is the expression of the differential ωi in terms of the local coordinate
zj centered at the point aj then

resaj (pjkωi) = reszj=0

(
z−kj fi(zj)

)
=

1

(k − 1)!
f

(k−1)
i (aj);

so for a fixed index i these residues are just the entries in row i of the g × r
Brill-Noether matrix Ω(d) of the divisor d, as defined in (11.9). In these terms
(4.20) takes the form Ω(d) ·c = 0 for the column vector c = {cjk}; so since c 6= 0
and r ≤ g this is equivalent to the condition that rank Ω < r = deg δ. By the
Riemann-Roch Theorem in the form of Theorem 11.3 this in turn is equivalent
to the condition that γ(ζd)− 1 > 0 = max(0,deg d− g); and as in (11.19) that
is just the condition that d is a special positive divisor. That suffices for the
proof.

Corollary 4.12 If z is a local coordinate at a point a ∈ M of a compact Rie-
mann surface M of genus g > 0, the period classes of the r intrinsic abelian
differentials of the second kind µk = µdpk with the differential principal parts
dpk = z−k−1dz for 1 ≤ k ≤ r ≤ g are linearly dependent if and only if r · a is a
special positive divisor.

Proof: This is just the special case of the preceding theorem in which n = 1,
ν1 = r, so nothing further is needed to conclude the proof.

Corollary 4.13 Let ai ∈ M be r ≤ g distinct points of a compact Riemann
surface M of genus g > 0 and pi be the principal parts consisting of a simple
pole of residue 1 at the point ai ∈ M and no other singularities on M . The
period classes of the r intrinsic abelian differentials of the second kind µi = µdpi
with the differential principal parts dpi for 1 ≤ i ≤ r are linearly dependent if
and only if 1 · a1 + · · ·+ 1 · ag is a special positive divisor.

Proof: This is just the special case of the preceding theorem in which νj = 1
for 1 ≤ j ≤ r, so nothing further is needed to conclude the proof.

As noted in the proof of Theorem 4.8 (i), if Ω is the period matrix of a
compact Riemann surface M of genus g > 0 in terms of bases ωi ∈ Γ(M,O(1,0))
and τj ∈ H1(M) the vectors consisting of the period classes of the holomorphic
abelian differentials on the basis τj span the linear subspace tΩCg ⊂ C2g; and
by definition the vectors consisting of the period classes of the intrinsic abelian
differentials of the second kind on the basis τj lie in the complementary linear
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subspace tΩCg ⊂ C2g in the direct sum decomposition C2g = tΩCg ⊕ tΩCg.
Consequently when the period classes of all of these abelian differentials are
viewed as elements of the complex vector space Hom(Γ,C) of dimension 2g, the
period classes of the differentials of the first kind and the period classes of the
intrinsic differentials of the second kind lie in complementary linear subspaces of
dimension g. The two preceding corollaries then can be interpreted alternatively
as follows in terms of the vector spaces L(1,0)(d) of meromorphic differential
forms as defined in (2.37).

Corollary 4.14 If a is is a point of a compact Riemann surface M of genus
g > 0 and r ≥ 0 then dimL(1,0)

(
(r + 1) · a

)
= g + r and the differential forms

in L(1,0)
(
(r + 1) · a

)
are linear combinations of abelian differentials of the first

and second kinds. If 0 ≤ r ≤ g the period classes of these differential forms span
a linear subspace of Hom(Γ,C) of dimension g+ r if and only if the divisor r ·a
is a general positive divisor.

Proof: By definition the vector space L(1,0)
(
(r+ 1) · a

)
consists of those mero-

morphic differential forms on M that have a pole of order at most r + 1 at the
point a; and from the Riemann-Roch Theorem in the form of Theorem 2.26 it
follows that dimL(1,0)

(
(r + 1) · a

)
= g + r, for by (2.39) dimL

(
− (r + 1) · a

)
=

γ(ζ
−(r+1)
a ) = 0 since c(ζ

−(r+1)
a ) < 0. Since the total residue of any differential

form in L(1,0)
(
(r + 1) · a

)
vanishes by Theorem 4.4 (ii), all of these differential

forms must be of the first or second kind. A basis for the intrinsic abelian dif-
ferentials of the second kind in L(1,0)

(
(r+ 1) · a

)
consists of r differential forms

with differential principal parts dz−k for 1 ≤ k ≤ r; by Theorem 4.11 the period
classes of these differentials are linearly independent if and only if the divisor
r · a is a general positive divisor, so since these period classes and those of the
abelian differentials of the first kind lie in complementary linear subspaces of
the space Hom(Γ,C) of all period classes that suffices for the proof.

Corollary 4.15 If a1, . . . ar are r distinct points of a compact Riemann surface
M of genus g > 0 and d = 1 · a1 + · · · + 1 · ar then dimL(1,0)

(
2 · d) = g + 2r

and the subspace of L(1,0)
(
2 · d) spanned by abelian differentials of the first and

second kinds has dimension g + r. If 1 ≤ r ≤ g the period classes of the abelian
differentials of the first and second kinds in L(1,0)

(
2 · d) span a linear subspace

of Hom(Γ,C) of dimension g+ r if and only if the divisor d is a general positive
divisor.

Proof: As in the proof of the preceding corollary, it follows from the Riemann-
Roch Theorem in the form of Theorem 2.26 that dimL(1,0)

(
2 · d) = g + 2r.

A basis for the intrinsic abelian differentials of the second kind in L(1,0)
(
2 · d)

consists of r differential forms with differential principal parts z−2
j dzj for local

coordinates zj centered at the points aj in M , for 1 ≤ j ≤ r. By Theorem 4.11
the period classes of these differentials are linearly independent if and only if the
divisor d is a general positive divisor; so since these period classes and those of
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the abelian differentials of the first kind lie in complementary linear subspaces
of the space Hom(Γ,C) of all period classes that suffices for the proof.

4.4 Canonical and Green’s Abelian Differentials
of the Second Kind

The most general abelian differential of the second kind with the differential
principal part p is of the form µp + ω for an arbitrary holomorphic abelian dif-
ferential ω. Some particular choices of the differential ω yield useful alternative
normalizations of the abelian differentials of the second kind, which also are
determined uniquely by their differential principal parts. If M is a marked1

Riemann surface of genus g > 0, with the marking described by generators
Aj , Bj ∈ Γ of the covering translation group Γ of the surface for 1 ≤ j ≤ g, the
associated canonical basis ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differ-
entials is characterized by the period conditions ωi(Aj) = δij for 1 ≤ i, j ≤ g
as in Theorem 3.22. To any differential principal part of the second kind p
associate the meromorphic abelian differential

(4.21) µ̂p = µp −
g∑
j=1

µp(Aj)ωj ,

called the canonical abelian differential of the second kind on the marked surface
M with the differential principal part p.

Theorem 4.16 Let M be a marked Riemann surface of genus g > 0, with the
marking described by generators Aj , Bj ∈ Γ of the covering translation group
Γ of the surface for 1 ≤ j ≤ g, and let p be a differential principal part of the
second kind on M .
(i) The canonical abelian differential µ̂p is characterized by the conditions that
it has the differential principal part p and the periods

(4.22) µ̂p(Aj) = 0 for 1 ≤ j ≤ g.

(ii) The remaining periods of the differential µ̂p are determined by (i) and

(4.23) µ̂p(Bj) = 2πi
∑
a∈M

resa(wjp) for 1 ≤ j ≤ g,

where wj(z) =
∫ z
a
ωj is the integral of the abelian differential ωj.

Proof: (i) The defining equation (4.21) for the differential µ̂p amounts to the
conditions that µ̂p has the same differential principal part as the intrinsic abelian
differential of the second kind µp and that

µ̂p(Aj) = µp(Aj)−
g∑
k=1

µp(Ak)ωk(Aj) = 0

1The definition and properties of markings of a surface are discussed in Appendix D.1.
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since ωk(Aj) = δkj .
(ii) The intersection matrix of the surface M in terms of the basis for the
homology H1(M) described by the marking is the basic skew-symmetric matrix
J by Theorem D.1 in Appendix D.2; and by Theorem 3.22 the period matrix of
M in terms of this basis for the homology H1(M) and the canonical basis for the
holomorphic abelian differentials on M has the form Ω = (I Z) for a matrix
Z in the Siegel upper half-space Hg, a g × g complex symmetric matrix Z with
a positive definite imaginary part Y = =(Z). It then follows from Corollary 4.9
that

µp(Aj) = −2π

g∑
m=1

∑
a∈M

gmjresa(wmp)

µp(Bj) = −2π

g∑
m,n=1

∑
a∈M

gmnznjresa(wmp)

where

H = i (I Z)

(
0 I
−I 0

)(
I
Z

)
= i(Z − Z) = 2Y

and G = tH−1 = 1
2 Y
−1. Since Z − Z = 2i Y and GY = 1

2 I it follows from
(4.21) that

µ̂p(Bj) = µp(Bj)−
g∑
k=1

µp(Ak)ωk(Bj) = µp(Bj)−
g∑
k=1

µp(Ak)zkj

= −2π

g∑
m,k=1

∑
a∈M

gmkzkjresa(wmp) + 2π

g∑
m,k=1

∑
a∈M

gmkzkjresa(wmp)

= 2π

g∑
m,k=1

∑
a∈M

gmk 2iykjresa(wmp) = 2πi
∑
a∈M

resa(wjp),

which suffices to conclude the proof.

The advantage of this normalization is the simplicity of the periods in (4.22)
and (4.23), a convenience in some calculations; the disadvantage is that this
normalization is not intrinsically determined, but depends on the marking of
the surface. Another normalization, although one that will play almost no
role in the subsequent discussion here, leads to harmonic rather than complex
analytic functions. To any differential principal part of the second kind p on a
compact Riemann surface M of genus g > 0 associate the meromorphic abelian
differential

(4.24) µ̆p = µp − ωp.

This differential has the differential principal part p and the periods µ̆p(T ) =
µp(T )−ωp(T ) = ωp(T )−ωp(T ) = −2i=

(
ωp(T )

)
where =(z) denotes the imagi-

nary part of the complex number z; it is readily seen to be determined uniquely



112 CHAPTER 4. MEROMORPHIC DIFFERENTIALS: SECOND KIND

by the conditions that it has the differential principal part p and purely imag-
inary periods, so it is called the Green’s abelian differential of the second kind
with the differential principal part p. The disadvantage of this normalization
is that the differential µ̆p is not a complex linear function of the differential
principal part, since the associated abelian differential ωp is a conjugate linear
function of the differential principal part p; consequently it cannot be expected
to depend analytically on other parameters such as the location of the poles.
The advantage of this normalization on the other hand is that the period class
of the differential µ̆p is purely imaginary, so the real part gp(z) = <

(
ŭp(z)

)
of

the integral ŭp(z) of the closed differential form µ̆p is a well defined harmonic
function on the Riemann surface M with the singularities of the real part of the
meromorphic function ŭp(z). This function, called the Green’s function of the
differential principal part p, is determined uniquely up to a real additive constant
by the specified principal part and determines the differential µ̆p since it is easy
to see that µ̆p = 2 ∂gp. Indeed if ŭp = gp+i hp where gp = <(ŭp) and hp = =(ŭp)
then by the Cauchy-Riemann equations 0 = ∂ŭp = ∂gp + i ∂hp so ∂hp = i ∂gp or
equivalently ∂hp = −i ∂gp and therefore µ̆p = dŭp = ∂ŭp = ∂gp + i ∂hp = 2∂gp.

4.5 Meromorphic Double Differentials of the
Second Kind

The simplest abelian differentials of the second kind are those having a single
double pole with residue zero; and when viewed also as functions of the pole they
will be shown to be meromorphic double differentials. A meromorphic double
differential µ(z, ζ) on a compact Riemann surface M is an expression that is
a well defined meromorphic differential form in each variable separately. More
explicitly, if {Uα, zα} and {Vβ , ζβ} are two coordinate coverings of M then in
each product Uα × Vβ a meromorphic double differential µ(z, ζ) has the form

(4.25) µ(z, ζ) = fαβ(zα, ζβ)dzαdζβ

where fαβ(zα, ζβ) is a meromorphic function of the variables (zα, ζβ) ∈ Uα×Vβ ,
and in an intersection (Uα × Vβ) ∩ (Uγ × Vδ)

(4.26) fαβ(zα, ζβ) = καγ(z)κβδ(ζ)fγδ(zγ , ζδ)

where καγ(z) = (dzα/dzγ)−1 and κβδ(ζ) = (dζβ/dζδ)
−1 are cocycles describ-

ing the canonical bundle κ over M in the two coordinate coverings; moreover
it is required that (4.25) is a well defined meromorphic differential form in
each variable separately, so that for each fixed point zα ∈ Uα the expression
fαβ(zα, ζβ)dζβ is a well defined meromorphic differential form in the variable
ζβ ∈ Vβ and correspondingly when the two variables are reversed. A conse-
quence is that for a meromorphic double differential (4.25) the polar locus of the
meromorphic function fαβ(zα, ζβ) of two complex variables does not contain a
product aα×Vβ ⊂ Uα×Vβ or Uα×bβ ⊂ Uα×Vβ for any points aα ∈ Uα, bβ ∈ Vβ ;
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this restriction on the polar loci of meromorphic double differentials is signif-
icant and should be kept in mind throughout the subsequent discussion. In
particular if ω(z) = fα(z)dzα is a holomorphic abelian differential on M and
µ(z) = gα(z)dzα is a meromorphic abelian differential on M with nontrivial sin-
gularities then the product ω(z)µ(z) = fα(z)gα(ζ)dzαdζα is not a meromorphic
double differential with the definition adopted here. A double differential can
be viewed alternatively as a meromorphic differential form

(4.27) µ∗(z, ζ) = fαβ(zα, ζβ) dzα ∧ dζβ
on the complex manifold M ×M expressed in terms of local product coordinate
neighborhoods Uα × Uβ , when {Uα, zα} and {Vβ , ζβ} are viewed as coordinate
coverings of the two separate factors and formally fβα(zα, ζβ) = −fαβ(zα, ζβ)
since (4.26) is just the formula for the way a differential form µ∗(z, ζ) on M ×
M transforms under a change of coordinates (zα, ζβ) =

(
f(zγ), g(ζδ)

)
where

f, g are holomorphic functions of a single complex variable; again though the
singularities of the coordinates are restricted by the condition that the polar
locus of the meromorphic function fαβ(zα, ζβ) does not contain a product aα ×
Vβ ⊂ Uα × Vβ or Uα × bβ ⊂ Uα × Vβ for any points aα ∈ Uα, bβ ∈ Vβ . However
the real interest here lies in the double differential µ(z, ζ) as an entity defined on
the Riemann surface M itself, so this alternative viewpoint generally will not be
used. A meromorphic double differential µ(z, ζ) is symmetric if µ(z, ζ) = µ(ζ, z),
so that if the point z ∈ Uα has the local coordinate zα and the point ζ ∈ Vβ has
the local coordinate ζβ then fαβ(zα, ζβ) = fβα(ζβ , zα) when µ(z, ζ) is written
explicitly as in (4.25). In particular if points z′, z′′ ∈ Uα have local coordinates
z′α, z

′′
α then fαα(z′α, z

′′
α) = fαα(z′′α, z

′
α). Similarly the double differential µ(z, ζ)

is skew symmetric if µ(z, ζ) = −µ(ζ, z), with the corresponding interpretation.
Of course any meromorphic double differential µ(z, ζ) can be written uniquely
as the sum µ(z, ζ) = 1

2 (µ(z, ζ) + µ(ζ, z)) + 1
2 (µ(z, ζ)− µ(ζ, z)) of a symmetric

and a skew-symmetric double differential.
The singularities of a meromorphic double differential can be described for-

mally in the same way as the singularities of a meromorphic abelian differen-
tial. The sheaf of germs of holomorphic double differentials on M × M is a
subsheaf of the sheaf of germs of meromorphic double differentials, and the quo-
tient sheaf is the sheaf of double differential principal parts on M × M ; the
image of a meromorphic double differential in the quotient sheaf at a point of
M ×M is its principal part at that point. However the quotient sheaf cannot
be described as simply as in the case of ordinary meromorphic abelian differ-
entials, since the singularities of meromorphic functions of several variables lie
on holomorphic subvarieties of codimension one rather than just on isolated
points. There is at least one important case in which a very simple intrinsic
description of the singularities is possible, though, that in which the singular
locus of the meromorphic double differential µ(z, ζ) is the diagonal subvariety
D = { (z, z) | z ∈ M } ⊂ M ×M and the differential has a double pole with
zero residue along the diagonal. More explicitly, for a coordinate neighborhood
Uα ⊂ M in which the local coordinate is denoted by either zα or ζα, the re-
striction of µ(z, ζ) to the product neighborhood Uα × Uα ⊂ M ×M has the
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form

(4.28) µ(z, ζ) =

(
1

(zα − ζα)2
+ fα(zα, ζα)

)
dzαdζα

where fα(zα, ζα) is holomorphic in Uα × Uα. Under a change of the local coor-
dinate zα = hα(tα), ζα = hα(τα) in the coordinate neighborhood Uα

µ(t, τ) =

(
1(

hα(tα)− hα(τα)
)2 + fα

(
hα(tα), hα(τα)

))
h′α(tα)h′α(τα)dtαdτα

=

(
f1α(tα, τα)(
tα − τα

)2 + f2α(tα, τα)

)
dtαdτα

where

f1α(tα, τα) =

(
tα − τα

hα(tα)− hα(τα)

)2

h′α(tα)h′α(τα) and

f2α(tα, τα) = fα
(
hα(tα), hα(τα)

)
h′α(tα)h′α(τα)

are holomorphic functions in Uα × Uα. Since limτα→tα f1α(tα, τα) = 1 it fol-
lows that f1α(tα, τα) = 1 + (tα − τα)f3α(tα, τα) for some holomorphic func-
tion f3α(tα, τα) in Uα × Uα. From its definition it is clear that the function
f1α(tα, τα) is symmetric in the variables tα, τα; the function f3α(tα, τα) hence
must be skew-symmetric in these two variables, and consequently f3α(tα, τα) =
(tα−τα)f4α(tα, τα) for some holomorphic function f4α(tα, τα) in Uα×Uα. Thus
in terms of the new local coordinates

(4.29) µ(t, τ) =

(
1

(tα − τα)2
+ gα(tα, τα)

)
dtαdτα

for the holomorphic function gα(tα, τα) = f4α(tα, τα) + f2α(tα, τα). A com-
parison of (4.28) and (4.29) shows that the principal part of this meromorphic
double differential has the same form for any local coordinate system on M ,
so its singularities can be specified completely merely by saying that it has the
differential principal part (zα− ζα)−2dzαdζα along the diagonal of the manifold
M ×M .

A meromorphic double differential of the second kind is a meromorphic dou-
ble differential that is a differential of the second kind in each variable separately.
For example, if there is a meromorphic double differential with principal part
(zα − ζα)−2dzαdζα along the diagonal of the manifold M ×M and no other
singularities then it is a meromorphic double differential of the second kind.
When a meromorphic double differential of the second kind is written explic-
itly as in (4.25), the expression fαβ(zα, ζ

◦
β)dzα is a well defined meromorphic

abelian differential of the second kind in the variable zα for each fixed point
ζ◦β ∈ Vβ , and it has well defined periods g′β(τ ; ζ◦β) =

∫
τ
fαβ(zα, ζ

◦
β)dzα on any
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homology class τ ∈ H1(M). If τ is represented by a closed path that avoids
the poles of the differential fαβ(zα, ζ

◦
β)dzα then that path also avoids the poles

of the differential fαβ(zα, ζβ)dzα for all points ζβ sufficiently near ζ◦β ; hence
fαβ(zα, ζβ) is continuous in the variable zα ∈ τ and holomorphic in the vari-
able ζβ for all points in an open neighborhood of the point ζ◦β , so the period

g′β(τ ; ζβ) =
∫
τ
fαβ(zα, ζβ)dzα is a holomorphic function of the variable ζβ . This

is one point at which the restriction on the polar loci of meromorphic double
differentials is crucial. Since fαβ(zα, ζβ) = κβγ(ζ)fαγ(zα, ζγ) for ζ ∈ Vβ ∩ Vγ it
follows that g′β(τ ; ζβ) = κβγ(ζ)g′γ(τ ; ζγ) for ζ ∈ Vβ ∩ Vγ and consequently that

µ′(τ ; ζ) = g′β(τ ; ζβ)dζβ =
(∫

zα∈τ
fαβ(zα, ζβ)dzα

)
dζβ(4.30)

=

∫
z∈τ

µ(z, ζ)

is a holomorphic abelian differential on M ; it is called the first period class
of the double differential µ(z, ζ). The second period class µ′′(τ ; z) is defined
correspondingly by reversing the roles of the two variables, so

(4.31) µ′′(τ ; z) =

∫
ζ∈τ

µ(z, ζ).

If the double differential µ(z, ζ) is symmetric then clearly µ′(τ ; z) = µ′′(τ ; z);
this common value is denoted by µ(τ ; z) and is called merely the period class
of the symmetric double differential µ(z, ζ). The first period class is a linear
function of the homology class τ since clearly

(4.32) µ′(n′τ ′ + n′′τ ′′; z) = n′µ′(τ ′; z) + n′′µ′(τ ′′; z)

for any integers n′, n′′ ∈ Z and any homology classes τ ′, τ ′′ ∈ H1(M); hence the
first period class can be viewed as a homomorphism

(4.33) µ′ ∈ Hom
(
H1(M),Γ(M,O(1,0))

)
= Hom

(
Γ,Γ(M,O(1,0))

)
.

The corresponding result of course holds for the second period class. Each of
these period classes can be integrated again to yield the double period classes
that associate to any homology classes τ ′, τ ′′ ∈ H1(M) the values

(4.34)


µ′(τ ′, τ ′′) =

∫
ζ∈τ ′′ µ

′(τ ′; ζ) =
∫
ζ∈τ ′′

∫
z∈τ ′ µ(z, ζ),

µ′′(τ ′, τ ′′) =
∫
z∈τ ′′ µ

′′(τ ′; z) =
∫
z∈τ ′′

∫
ζ∈τ ′ µ(z, ζ).

If the double differential µ(z, ζ) is symmetric the two double period classes
coincide; the common period class is denoted by µ(τ ′, τ ′′) and is called the double
period class of the symmetric double differential. Since the double differential
is meromorphic the order of the iterated integrals is significant; the difference

(4.35)

∫
ζ∈τ ′′

∫
z∈τ ′

µ(z, ζ)−
∫
z∈τ ′

∫
ζ∈τ ′′

µ(z, ζ) = µ′(τ ′, τ ′′)− µ′′(τ ′′, τ ′)
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does not necessarily vanish, even for a symmetric double differential µ(z, ζ).
In terms of bases ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials

on M and τj ∈ H1(M) for the homology of M , the first period class can be
written

(4.36) µ′(τj ; ζ) =

g∑
k=1

λ′kjωk(ζ) for 1 ≤ j ≤ 2g

for some complex constants λ′kj ; the coefficients in this expansion form a g× 2g
matrix Λ′ = {λ′kj} called the first period matrix of the double differential µ(z, ζ)
in terms of these bases. The indexing convention is chosen so that this is a
g × 2g matrix, hence has the same shape as the other matrices that have been
called period matrices. The second period class can be written correspondingly

(4.37) µ′′(τj ; z) =

g∑
k=1

λ′′kjωk(z) for 1 ≤ j ≤ 2g,

where the coefficients form the second period matrix Λ′′ = {λ′′kj} of the double
differential µ(z, ζ) in terms of these bases. The values of the double period
classes on the basis τi can be viewed as entries in the double period matrices,
the 2g × 2g matrices

(4.38) N ′ =
{
µ′(τi, τj)

}
and N ′′ =

{
µ′′(τi, τj)

}
;

and since

(4.39)


µ′(τi, τj) =

∫
ζ∈τj

∑g
k=1 λ

′
kiωk(ζ) =

∑g
k=1 λ

′
kiωkj

µ′′(τi, τj) =
∫
z∈τj

∑g
k=1 λ

′′
kiωk(z) =

∑g
k=1 λ

′′
kiωkj

the double period matrices can be expressed in terms of the first and second
period period matrices as

(4.40) N ′ = tΛ′Ω, N ′′ = tΛ′′ Ω.

If the double differential is symmetric Λ′ = Λ′′, which common value is denoted
by Λ and is called simply the period matrix of the double differential, and N ′ =
N ′′, which common value is denoted by N and is called the double period matrix
of the symmetric double differential; thus for symmetric double differentials the
double period matrix is

(4.41) N = tΛΩ.

In terms of other bases ω̃i =
∑g
k=1 aikωk and τ̃j =

∑2g
l=1 τlqlj , where A =

{aij} ∈ Gl(g,C) and Q = {qlj} ∈ Gl(2g,Z) are arbitrary invertible matrices,

the first period class is described by a matrix Λ̃′ = {λ̃′ij}; and by the linearity
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property (4.32)

µ′(τ̃j ; ζ) =

g∑
i=1

λ̃′ijω̃i(ζ) =

g∑
i,k=1

λ̃′ijaikωk(ζ)

= µ′
( 2g∑
l=1

τlqlj ; ζ
)

=

2g∑
l=1

qljµ
′(τl; ζ) =

g∑
k=1

2g∑
l=1

qljλ
′
klωk(ζ)

so that tAΛ̃′ = Λ′Q and hence

(4.42) Λ̃′ = tA−1Λ′Q

Thus the first period matrices of the double differential µ(z, ζ) in terms of any
bases for the space of holomorphic abelian differentials and for the homology
of the surface are equivalent2 period matrices. The second period matrix is de-
scribed in the corresponding way, so the analogous formula holds for a change of
bases for the second period matrix and consequently the second period matrices
for any bases also are equivalent period matrices. Since Ω̃ = AΩQ it follows
from (4.40) that the associated double period matrices are related by

(4.43) Ñ ′ = tΛ̃′Ω̃ = tQN ′Q

and similarly for Ñ ′′. Of course for a symmetric double differential correspond-
ingly

(4.44) Λ̃ = tA−1ΛQ and Ñ = tQN Q

under a change of basis for the holomorphic abelian differentials on M described
by the matrix A and a change of basis for the homology of M described by the
matrix Q.

4.6 The Intrinsic Double Differential of the
Second Kind

With these general observations about meromorphic double differentials out
of the way, the discussion can turn to the special meromorphic double differ-
entials arising as the simplest intrinsic meromorphic differentials of the second
kind on a compact Riemann surface.

Theorem 4.17 (i) On a compact Riemann surface M of genus g > 0 there is
a unique symmetric meromorphic double differential of the second kind µM (z, ζ)
with the differential principal part (zα − ζα)−2dzαdζα along the diagonal of the
product manifold M ×M , such that µM (z, ζ) is the intrinsic abelian differential
of the second kind with that principal part in each variable separately.

2The equivalence of period matrices is defined in equation (F.1) in Appendix F.1.
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(ii) If Ω is the period matrix of the Riemann surface M and P is the intersection
matrix of that surface in terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) then
the period matrix Λ of the symmetric double differential µM (z, ζ) in terms of
these bases is

(4.45) Λ = −2πGΩ

where G = tH−1 for the positive definite Hermitian matrix H = iΩP tΩ; thus
the period matrix Λ is equivalent to the complex conjugate Ω of the period matrix
Ω of the Riemann surface.
(iii) The double period matrix of the symmetric double differential µM (z, ζ) in
terms of these bases is

(4.46) N = −2π tΩ tGΩ,

so that

(4.47) N − tN = 2πiP−1.

Proof: (i) Select a coordinate covering of the surface M by simply connected
coordinate neighborhoods Uγ ⊂ M with local coordinates ζγ ; these neighbor-
hoods and their coordinates will be held fixed throughout the proof. Select a
point in one of these coordinate neighborhoods Uα at which the local coordinate
ζα takes the particular value zα and consider the intrinsic abelian differential of
the second kind µp with the differential principal part

p =
dζα

(ζα − zα)2

at that point and with no other singularities on M . This differential principal
part is described fully by specifying the coordinate neighborhood Uα and the
value zα of the local coordinate ζα at the singularity; hence the differential µp

can be denoted unambiguously by µα,zα . In any coordinate neighborhood Uγ
of the covering this differential can be written µα,zα = fαγ(zα, ζγ)dζγ , where
fαγ(zα, ζγ) is a meromorphic function of the variable ζγ ∈ Uγ with a pole at the
point zα if that point also lies in the coordinate neighborhood Uγ but with no
other poles. In particular in the coordinate neighborhood Uα itself the function
fαα(zα, ζα) has a Laurent expansion at the point zα beginning

fαα(zα, ζα) =
1

(ζα − zα)2
+ · · · .

The associated integral uα,zα(ζ) =
∫ ζ
ζ0
µα,zα is a meromorphic function of the

variable ζ ∈ M̃ with simple poles at the points of M̃ having image zα under the
covering projection π : M̃ −→ M ; indeed in any connected component of the
inverse image π−1(Uα) ⊂ M̃ and in terms of the local coordinate induced by ζα
under the covering projection π, the integral uα,zα(ζα) has a Laurent expansion
at the point zα in terms of the local coordinate ζα beginning

uα,zα(ζα) = − 1

ζα − zα
+ · · · .



4.6. INTRINSIC DOUBLE DIFFERENTIAL 119

There is yet another intrinsic abelian differential of the second kind µβ,zβ =
= fβγ(zβ , ζγ)dζγ with a principal part of the corresponding form at a point of
the coordinate neighborhood Uβ at which the local coordinate ζβ takes the value
zβ . It then it follows from equation (4.13) in Theorem 4.8 (iii) that

0 =
∑
a∈M

resa
(
uα,zαµβ,zβ

)
= reszα

(
− 1

ζα − zα
fβα(zβ , ζα)dζα

)
+ reszβ

(
uα,zα(ζβ)

dζβ
(ζβ − zβ)2

)
= −fβα(zβ , zα) +

d

dζβ
uα,zα(ζβ)

∣∣∣
ζβ=zβ

= −fβα(zβ , zα) + fαβ(zα, zβ).

As a consequence of this symmetry the functions fαβ(zα, ζβ) also are mero-
morphic functions of the variable zα ∈ Uα, so by Rothstein’s Theorem3 these
functions are meromorphic functions in the product coordinate neighborhoods
Uα×Vβ ⊂M ×M ; and consequently µ(z, ζ) = fαβ(zα, ζβ) dzαdζβ is a symmet-
ric meromorphic double differential of the second kind with the principal part
(ζα − zα)−2dzαdζα along the diagonal and no other singularities. Furthermore
by construction fαβ(zα, ζβ)dζβ is the intrinsic abelian differential of the second
kind in the variable ζ with this principal part at the point ζα = zα; and by sym-
metry the same is true in the other variable as well. These properties determine
this double differential uniquely.

(ii) For a fixed point zα ∈ Uα it follows from (i) that the differential form
µM (zα, ζ) in the variable ζ is the intrinsic abelian differential of the second
kind with the differential principal part (ζα − zα)−2dζα; therefore by (4.16) in
Corollary 4.9 its period on the homology class τj is

µM (τj ; zα) = −2π

g∑
m,n=1

gmnωnjresζα=zα

(
wm(ζα)

dζα
(ζα − zα)2

)
dzα

= −2π

g∑
m,n=1

gmnωnjw
′
m(zα)dzα = −2π

g∑
m,n=1

gmnωnjωm(zα);

and since µM (τj , zα) =
∑g
m=1 λmjωm(zα) by (4.36), for the special case of a

symmetric double differential for which Λ′ = Λ, it follows that

λmj = −2π

g∑
n=1

gmnωnj ,

which in matrix terms is (4.45).
(iii) The double period matrix is expressed in terms of the period matrix Λ

as in (4.41), so from (4.45) it follows that

N = tΛΩ = −2π tΩ tGΩ
3Rothstein’s Theorem is that a function of n complex variables that is meromorphic in each

variable separately is a meromorphic function of all n variables; the theorem is an extension
of Hartogs’s Theorem from holomorphic function to meromorphic functions, and is discussed
on page 409 in Appendix A.1.
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and consequently

N − tN = −2π
(
tΩ tGΩ− tΩGΩ

)
= −2π

(
tΩH−1 Ω− tΩ tH−1Ω

)
= 2πi P−1

by the inverse of the Riemann equality in the form of equation (F.39) in Ap-
pendix F.4. That concludes the proof.

The double differential µM (z, ζ) of the preceding theorem is the intrinsic
double differential of the second kind on the Riemann surface M ; it is the ana-
logue for Riemann surfaces of genus g > 0 of the familiar meromorphic double
differential (z − ζ)−2dz dζ on the Riemann sphere P1. In view of (4.47) the
double period matrix of the second kind is not symmetric, so the difference in
(4.35) is nonzero.

Corollary 4.18 If τj ∈ H1(M) is a basis for the homology of a compact Rie-
mann surface M of genus g > 0 for 1 ≤ j ≤ 2g then the 2g periods µ(τj ; z) =∫
ζ∈τj µM (z, ζ) of the intrinsic double differential of the second kind µM (z, ζ)

span the g-dimensional space of holomorphic abelian differentials on M .

Proof: For bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M), in terms of which the
period matrix of the surface is the matrix Ω, the period matrix of the symmetric
double differential µM (z, ζ) is Λ = −2πGΩ by (4.45), where G is nonsingular
and rank Ω = g; hence rank Λ = g. The periods of the double differential
are the differential forms µ(τj ; z) =

∑g
k=1 λkjωk(z) as in (4.37) for the case

of a symmetric double differential; and since rank Λ = g then among these 2g
periods there are g linearly independent holomorphic abelian differentials. That
suffices for the proof.

If µM (z, ζ) = fαβ(zα, ζβ)dzαdζβ is the intrinsic double differential of the
second kind on a compact Riemann surface M of genus g > 0 then in terms of
the local coordinate ζβ in a coordinate neighborhood Uβ ⊂M set

(4.48) µ
(ν)
M (z; ζβ) =

(
∂νfαβ(zα, ζβ)

∂νζβ

)
dzα

for any integer ν ≥ 0. It is evident from (4.26) that this is a well defined
meromorphic differential form in the variable z for any fixed value of the local
coordinate ζβ ; in particular for ν = 0 it is just the abelian differential of the
second kind on M that arises as the restriction of the double differential µ(z, ζ).
For ν > 1 though this differential form depends not just on the particular point
represented by the coordinate ζβ but also on the choice of the local coordinate
system.

Corollary 4.19 The differential form µ(ν)(z; ζβ) in the variable z on a compact
Riemann surface M of genus g > 0 is the intrinsic abelian differential of the
second kind with the differential principal part

(4.49)
(ν + 1)!

(zβ − ζβ)ν+2
dzβ .
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If Ω is the period matrix and P is the intersection matrix of M , in terms of
bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M), the periods of the differential form
µ(ν)(z; ζβ) are

(4.50) µ
(ν)
M (T ; ζβ) = −2π

g∑
m,n=1

gmnw
(ν+1)
m (ζβ)ωn(T )

for any covering translation T ∈ Γ, where G = tH−1 for the positive definite
Hermitian matrix H = iΩP tΩ.

Proof: By Theorem 4.17 (i) the differential form µ
(0)
M (z; ζβ) = fαβ(zα, ζβ)dzα

in the variable z for any fixed value ζβ ∈ Uβ is the intrinsic abelian differential
of the second kind with the differential principal part pζβ = (zβ−ζβ)−2dzβ , and
by Corollary 4.9 its periods are

µM (T ; ζβ) = −2π

g∑
m,n=1

gmnresζβ (wmpζβ )ωn(T )(4.51)

= −2π

g∑
m,n=1

gmnw
′
m(ζβ)ωn(T )

for any covering translation T ∈ Γ, where w′(ζβ) = dw(ζβ)/dζβ ; thus µ
(0)
M (z; ζβ)

has the desired properties for the case ν = 0. The derivative µ
(ν)
M (z; ζβ) then

has the differential principal part

∂ν

∂ζνβ

1

(zβ − ζβ)2
=

(ν + 1)!

(zβ − ζβ)ν+2
;

and since the periods for a covering translation T ∈ Γ are just the integrals
from a point a ∈ M̃ to the image Ta along any path in M̃ that avoids the
singularities of the differential form it follows that

µ
(ν)
M (T ; ζβ) =

∫ Ta

a

∂νfαβ(zα, ζβ)

∂ζνβdzα
=

∂ν

∂ζνβ

∫ Ta

a

fα,β(zαζβ)dzα

= −2π
∂ν

∂ζνβ

g∑
m,n=1

gmnw
′
m(ζ)ωn(T )

= −2π

g∑
m,n=1

gmnw
(ν+1)
m (ζβ)ωn(T ).

These periods are the complex conjugates of the periods of the holomorphic

abelian differential −2π
∑g
m,n=1 gmnw

ν+1
m (ζβ)ωn(z), so by Theorem 4.8 (i) the

differential form µ(n)(z; ζβ) is an intrinsic abelian differential of the second kind.
That suffices to conclude the proof.
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4.7 Double Differentials of the Second kind as
Integral Kernels

The intrinsic double differential of the second kind µM (z, ζ) can be be viewed
as an integral kernel on the Riemann surface, somewhat like the Cauchy inte-
gral but for evaluating the derivative of functions rather than the functions
themselves.

Theorem 4.20 If f(z) is a holomorphic function in an open neighborhod of a
closed contractible subset U ⊂ M of a compact Riemann surface M and if the
boundary γ = ∂U is a simple closed path then

(4.52) df(z) =
1

2πi

∫
γ

µM (z, ζ)f(ζ) for all z ∈ U.

Proof: If z ∈ U and ∆ ⊂ U is a closed disc in a local coordinate ζ centered at the
point z and contained in U then in ∆ the intrinsic double differential µM (z, ζ)
can be written as the sum of its differential principal part µz(ζ) = (ζ−z)−2dζdz
and a holomorphic double differential φ(z, ζ), as in (4.28); consequently by the
Cauchy integral formula

1

2πi

∫
ζ∈γ

µM (z, ζ)f(ζ) =
1

2πi

∫
ζ∈γ

f(ζ)

(ζ − z)2
dζdz +

1

2πi

∫
ζ∈γ

φ(z, ζ)f(ζ)(4.53)

= f ′(z)dz,

since
∫
ζ∈γ φ(z, ζ)f(ζ) = 0 as the integral around the boundary γ = ∂∆ of a holo-

morphic differential in ∆. By assumption the path ∂U−∂∆ is the boundary of a
region in U in which the differential µM (z, ζ)f(ζ) in the variable ζ is holomorphic
hence closed; so by Stokes’s Theorem

∫
ζ∈∂U µM (z, ζ)f(ζ) =

∫
ζ∈∂∆

µM (z, ζ)f(ζ)

and the asserted result follows from (4.53) which suffices for the proof.

For a meromorphic function f(z) rather than a holomorphic function an ob-
vious modification of the preceding theorem holds, where the integral (4.52) is
equal to the sum of the differential df(z) and of the residues of the meromor-
phic differential µM (z, ζ)f(ζ) at the singularities of the function f(ζ). A more
interesting variant though is the following.

Theorem 4.21 If f(z) is a meromorphic function on the compact Riemann
surface M with the principal part p(f) =

∑n
ν=1 paν for some distinct points

aν ∈M then for any point z ∈ ∆ other than the points aν

(4.54) df(z) = − 1

2πi

n∑
ν=1

resζ=aνµM (z, ζ)paν (ζ)

where paν (ζ) indicates that the principal part paν is viewed as a principal part
in the coordinate ζ.
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Proof: Choose a fundamental domain ∆ ⊂ M̃ for the action of the covering
translation group Γ of the universal covering space M̃ when the surface M is
represented as the quotient M = M̃/Γ, as in Figure D.2 of Appendix D.1, such

that none of the points ãν ∈ M̃ representing the points aν ∈ M lie on the
boundary ∂∆. Then by the Cauchy integral formua for any point z ∈ ∆ other
than the points aν

1

2πi

∫
ζ∈∂∆

µM (z, ζ)f(ζ) =
1

2πi
resζ=zµM (z, ζ)f(ζ) +

∑
ν

1

2πi
resζ=ãνµM (z, ζ)f(ζ)

(4.55)

= f ′(z)dz +
1

2πi

∑
ν

resζ=ãνµM (z, ζ)paν (ζ)

where f ′(z) arises just as in the proof of the preceding Theorem 4.20. For

any fixed point z ∈ M̃ the product µM (z, ζ)f(ζ) is a Γ-invariant meromorphic

abelian differential on M̃ in the variable ζ, so since the boundary integral in
(4.55) involves integration over pairs of paths in M̃ , where each pair represents a
closed path in M and the same path with a reversed orientation, it follows that
the boundary integral vanishes. The asserted result follows from this observation
and (4.55), which suffices for the proof.

What is interesting in this last result is that the differential df(z) is deter-
mined quite explicitly in terms just of the principal part p(f) =

∑
ν paν and

the intrinsic meromorphic double differential µM (z, ζ). It is a straightforward
calculation to show that (4.54) can be rewritten alternatively as a formula in-
volving the partial derivative of the double differential of the second kind rather
than a residue calculation; the result is a rather simpler and more useful repre-
sentation of df(z) in terms of its principal part, and amounts to a special case

of the representation through the differential forms µ
(ν)
M (z; ζ) defined in (4.48)

in the preceding Section 4.6.

4.8 Basic and Canonical Double Abelian
Differentials of the Second Kind

For any choice of local coordinates ζβ at its poles, any differential princi-
pal part of the second kind can be written as a unique linear combination of
the differential principal parts (4.49); and since an intrinsic differential form
of the second kind is determined uniquely by its principal part it follows from
the preceding corollary that any intrinsic abelian differential of the second kind
can be written uniquely as a linear combination of the intrinsic abelian differ-
entials µ(n)(z; ζβ). Thus the intrinsic abelian differentials of the second kind
on a compact Riemann surface of genus g > 0 are holomorphic functions of
their differential principal parts, in the sense that they are holomorphic func-
tions of the local coordinates ζβ describing the locations of the poles and of
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the coefficients in the Laurent expansion of the differential principal parts at
these poles. Double differentials with the same principal part as the intrinsic
double differential µM (z, ζ) differ from µM (z, ζ) by a double differential that
is everywhere holomorphic. If µ(z, ζ) = fαβ(zα, ζβ)dzα dζβ is a holomorphic
double differential and ωi ∈ Γ(M,O(1,0)) is a basis for the space of holomorphic
abelian differentials on M then since fαβ(zα, ζβ)dzα is a holomorphic abelian
differential in the variable z for any fixed point ζβ it can be written as the sum
fαβ(zα, ζβ)dzα =

∑g
i=1 eiβ(ζβ)ωi(z) for some coefficients eiβ(ζβ) depending on

the point ζβ . If τj ∈ H1(M) is a basis for the homology of the surface M and
ωij =

∫
τj
ωi is the period matrix of the surface in terms of these bases then

∫
τj

µ(z, ζ) =
(∫

τj

fαβ(zα, ζβ)dzα

)
dζβ =

2g∑
j=1

ωijeiβ(ζβ)dζβ ;

the periods of the double differential µ(z, ζ) are holomorphic abelian differen-
tials, and since the period matrix Ω = {ωij} has rank g it follows that the ex-
pressions eiβ(ζβ)dζβ are holomorphic abelian differentials hence can be written
eiβ(ζβ)dζβ =

∑g
i,j=1 eijωi(z)ωj(ζ) for some complex constants eij , and conse-

quently a holomorphic double differential must be of the form

fαβ(zα, ζβ)dzα dζβ =

g∑
i,j=1

eijωi(z)ωj(ζ)

for some complex constants eij . Thus any meromorphic double differential on
M with the same differential principal part as µM (z, ζ) must be of the form

(4.56) µM,E(z, ζ) = µM (z, ζ) +

g∑
k,l=1

eklωk(z)ωl(ζ)

for g × g complex matrix E = {eij}. Such a double differential is called the
basic double differential of the second kind on the compact Riemann surface M
described by the matrix E; the symmetric basic double differentials are those
described by symmetric matrices E.

Corollary 4.22 If Ω = {ωij} is the period matrix of a compact Riemann sur-
face M of genus g > 0 in terms of bases ωi for the holomorphic abelian differen-
tials on M and τj for the first homology of M , the period matrices of the basic
double differential µM,E(z, ζ) are

(4.57) Λ′E = Λ + tEΩ, Λ′′E = Λ + EΩ

where Λ is the period matrix of the intrinsic double differential of the second
kind µM (z, ζ); correspondingly the double period matrices of the basic double
differential µM,E(z, ζ) are

(4.58) N ′E = N + tΩEΩ, N ′′E = N + tΩ tEΩ
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where N is the double period matrix of the intrinsic double differential of the
second kind µM (z, ζ), so

(4.59) N ′E − tN ′′E = N − tN = 2πiP−1,

which is independent of the matrix E.

Proof: From (4.56) it follows that the first period class of the basic double
differential µE(z, ζ) is

µ′M,E(τj ; ζ) =

∫
z∈τj

µM,E(z, ζ)

= µ′M (τj ; ζ) +

∫
z∈τj

g∑
k,l=1

eklωk(z)ωl(ζ)

=

g∑
l=1

λ′ljωl(ζ) +

g∑
k,l=1

eklωkjωl(ζ),

so its first period matrix is Λ′E = Λ′ + tE Ω; and the second period class corre-
spondingly is

µ′′M,E(τj ; z) =

g∑
k=1

λ′′kjωk(z) +

g∑
k,l=1

eklωk(z)ωlj

so its second period matrix is Λ′′E = Λ′′ + EΩ. Since the double differential
µM (z, ζ) is symmetric Λ′ = Λ′′ = Λ. Then by (4.40) the double period matrices
are N ′E = tΛ′EΩ = t(Λ+ tEΩ)Ω = N + tΩEΩ and N ′′E = tΛ′′EΩ = t(Λ+EΩ)Ω =
N + tΩ tEΩ; and (4.59) then follows from (4.47), which suffices to conclude the
proof.

That N ′E − tN ′′E = N − tN = 2πiP−1 reflects the fact that this difference is
really determined by the topology of the singular locus of the double differential,
rather than by the particular choice of the matrix E, although that point will
not be pursued in the discussion here. On a marked Riemann surface one of
the basic double differentials represents the canonical abelian differentials of the
second type with a single double pole.

Theorem 4.23 (i) On a marked Riemann surface M of genus g > 0, with the
marking described by generators Aj , Bj ∈ Γ of the covering translation group of
M , there is a unique symmetric meromorphic double differential of the second
kind µ̂M (z, ζ) that has the principal part (zα − ζα)−2dzαdζα along the diagonal
of the product manifold M ×M and that is the canonical abelian differential of
the second kind with that principal part in each variable separately.
(ii) The double differential µ̂M (z, ζ) is the basic symmetric double differential
of the second kind µ̂M (z, ζ) = µM,E(z, ζ) described by the matrix E = πY −1,
where the period matrix of M in terms of the generators Aj , Bj ∈ Γ describing
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the marking and of the associated canonical holomorphic abelian differentials ωi
is Ω = (I Z) for a matrix Z = X + iY ∈ Hg.

(iii) The period matrix of the double differential µ̂M (z, ζ) is Λ̂ = (0 2πi I) and
its period class is determined by

(4.60) µ̂M (Aj ; z) = 0, µ̂M (Bj ; z) = 2πi ωj(z),

where ωj ∈ Γ(M,O(1,0)) are the canonical holomorphic abelian differentials on
the marked Riemann surface M .
(iv) The double period matrix of the double differential µ̂M (z, ζ) is

(4.61) N̂ = 2πi

(
0 0
I Z

)
,

so that N̂ − tN̂ = −2πiJ where J is the basic skew-symmetric matrix.

Proof: The period matrix of the marked Riemann surface M in terms of the
generators Aj , Bj ∈ Γ describing the marking and of the associated canonical
holomorphic abelian differentials ωi has the form Ω = ( I Z) as in Theo-
rem 3.22, where Z = X + iY ∈ Hg, the Siegel upper half-space of rank g; and

the intersection matrix is the basic skew-symmetric matrix J =

(
0 I
−I 0

)
.

Consequently the matrices G and H in Theorem 4.17 (ii) are H = iΩJ tΩ =
i(Z − Z) = 2Y and G = tH−1 = 1

2Y
−1, so the period matrix Λ of the intrinsic

double differential of the second kind µM (z, ζ) is Λ = −2πGΩ = −πY −1Ω. By
(4.57) the symmetric basic double differential µM,E(z, ζ) described by a sym-
metric matrix E has the period matrix

ΛE = Λ + EΩ = −πY −1Ω + EΩ = (Λ′E Λ′′E)

for the g × g matrix blocks

Λ′E = E − πY −1 and Λ′′E = (E − πY −1)X + i(E + πY −1)Y ).

There is a unique symmetric matrix E for which Λ′E vanishes, the matrix E =
πY −1; and for this choice of the matrix E clearly Λ′′E = 2πi I, so the period
matrix is ΛE = (0 2πi I) for the g × g identity matrix I and by (4.36) the
periods of the double differential µM,E(z, ζ) are as in (4.60). It follows that
µM,E(z, ζ) is the canonical abelian differential of the second kind with the given
principal part in each variable separately. Finally by (4.41) the double period
matrix of this double differential is N̂ = tΛ̂Ω = t(0 2πiI)(I Z), which is
(4.61). That suffices to conclude the proof.

The double differential µ̂M (z, ζ) is called the canonical double differential of
the second kind on the marked Riemann surface M . The canonical double dif-
ferentials of the second kind for all the markings of a Riemann surface thus are
just basic double differentials for various matrices E so are expressible directly
in terms of the intrinsic double differential and the holomorphic abelian differ-
entials as in (4.56). The basic double differentials in general can be described
somewhat more intrinsically as follows.
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Theorem 4.24 If M is a compact Riemann surface of genus g > 1 then the
only meromorphic double differentials of the second kind with singularities along
the diagonal subvariety of M ×M and nowhere else are constant multiples of
the basic double differentials of M .

Proof: If µ(z, ζ) is a meromorphic double differential of the second kind with
singularities only along the diagonal subvariety of M×M then it can be written
µ(z, ζ) = fαβ(zα, ζβ)dzαdζβ in terms of a covering of the surface M by coordi-
nate neighborhoods Uα, in which the local coordinate is denoted by either zα
or ζα; the coefficients fαβ(zα, ζβ) are meromorphic functions in the coordinate
neighborhood Uα×Uβ with singularities only along the diagonal, and in a prod-
uct neighborhood Uα × Uα containing the diagonal these coefficients have the
form

fαα(zα, ζα) =
hα(zα, ζα)

(zα − ζα)n
dzαdζα

for some integer n ≥ 2 where hα(zα, ζα) is holomorphic in Uα×Uα and hα(zα, zα)
is not identically zero. In an intersection (Uα × Uα) ∩ (Uβ × Uβ)

hα(zα, ζα) =

(
zα − ζα
zβ − ζβ

)n(
dzα
dzβ

)−1(
dζα
dζβ

)−1

hβ(zβ , ζβ);

and upon taking the limit in this identity as ζβ approaches zβ and hence ζα
approaches zα it follows that

hα(zα, zα) =

(
dzα
dzβ

)n−2

hβ(zβ , zβ).

Thus the functions hα(zα, zα) describe a nontrivial holomorphic cross-section of
the line bundle κ2−n, where κ is the canonical bundle of M , and the characteris-
tic class of this bundle is c(κ2−n) = (2−n)c(κ) = −(n−2)(2g−2). If n > 2 then
c(κ2−n) < 0 since g > 1 and consequently hα(zα, zα) = 0, which implies that
the meromorphic functions fαβ(zα, ζβ) have poles of order strictly less than n
along the diagonal, in contradiction to the assumption that the singularities are
of order n. If n = 2 then κ2−n = 1 is the identity line bundle so the functions
hα(zα, zα) must be constants, and consequently the differential is a multiple of
a basic double differential on M . That suffices to conclude the proof.

There are meromorphic double differentials of the second kind on Riemann
surfaces of genus g > 1 other than the basic double differentials of the second
kind; but their singularities lie along holomorphic subvarieties V ⊂M×M other
than the diagonal subvariety, and the discussion of such double differentials will
not be pursued here.



128 CHAPTER 4. MEROMORPHIC DIFFERENTIALS: SECOND KIND



Chapter 5

Meromorphic Differentials
of the Third Kind

5.1 Meromorphic Abelian Integrals of the
Third Kind

Any differential principal part p on a compact Riemann surface M can be
written as the sum p = p1 + p2 of a differential principal part p1 consisting of
simple poles at a finite number of points of M and a differential principal part
p2 of the second kind on M . By Corollary 4.4 (ii) the differential principal part
p is the principal part of a meromorphic differential form on M if and only if the
sum of the residues at the poles of p1 is zero; and in that case p1 can be written
as a sum of differential principal parts, each of which consists of simple poles
at two distinct points of M with residues that are negatives of one another.
That suggests that the examination of abelian differentials of the third kind on
a compact Riemann surface M can begin by examining a differential principal
part p(a+, a−) consisting of a simple pole with residue +1 at the point a+, a
simple pole with residue −1 at the point a−, and no other singularities on M .

It follows from Corollary 4.4 (ii) that there is a meromorphic abelian dif-
ferential ν on M with the differential principal part p(a+, a−); and of course
the other meromorphic abelian differentials on M with this differential principal
part differ from ν by holomorphic abelian differentials. To define the period class
of the differential ν, choose an oriented simple path δ ⊂M from the point a− to

the point a+ and a point z− ∈ M̃ such that π(z−) = a−, where π : M̃ −→M is

the covering projection from the universal covering space M̃ to M with covering
translation group Γ. There is a unique path δ̃ ∈ M̃ beginning at the point z−
such that π(δ̃) = δ, and this path ends at a point z+ ∈ M̃ for which π(z+) = a+.
The inverse image of the path δ under the covering projection π is the collection
of paths π−1(δ) = Γδ̃ =

⋃
T∈Γ T δ̃, where the paths T δ̃ ⊂ M̃ for distinct covering

translations T ∈ Γ are disjoint. The complement M ∼ δ ⊂ M is a connected

129
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set, since the path δ does not intersect itself; and M̃ ∼ Γδ̃ ⊂ M̃ is a connected
covering space over M ∼ δ. When ν is viewed as a Γ-invariant differential form
on M̃ its integral around any closed path γ ⊂ M̃ ∼ Γδ̃ is zero. Indeed since
M̃ is simply connected γ is the boundary γ = ∂∆ of a domain ∆ ⊂ M̃ , and
for any component T δ̃ ⊂ ∆ it is possible to choose a closed path γ

T
⊂ ∆ that

encircles T δ̃ once in such a manner that the paths γ
T

are disjoint and have
disjoint interiors; since ν is a closed differential form in the complement of the
paths T δ̃ it follows from Stokes’s Theorem that

∫
γ
ν =

∑
T

∫
γ
T
ν = 0, for the

integral over γ
T

is the sum of the residues of the differential form ν at the two
poles Tz+ and Tz− enclosed by that path hence is zero. Therefore the integral

(5.1) vδ(z, a) =

∫ z

a

ν

along any path that avoids the sets T δ̃ is a well defined holomorphic function
of the variables z, a ∈ M̃ ∼ Γδ̃ independent of the path of integration; this
function is called the integral of the abelian differential of the third kind ν with
respect to the path δ, although of course it is really a holomorphic function on
the open subset M̃ ∼ Γδ̃ ⊂ M̃ in both variables. This integral clearly satisfies
the symmetry condition vδ(z, a) = −vδ(a, z), and vδ(z, z) = 0. It is more
convenient in many circumstances to view this integral as a function of the first
variable only, and to allow it to be modified by an arbitrary additive constant;
in that case the simpler notation vδ(z) will be used, with the same cautions as
in the cases of abelian integrals of the first and second kinds. For any covering
translation T ∈ Γ the difference

(5.2) vδ(Tz)− vδ(z) = νδ(T )

is a constant since dvδ(z) = ν(z) is invariant under T and M̃ ∼ Γδ̃ is connected;
the mapping νδ : T −→ νδ(T ) is a group homomorphism νδ ∈ Hom(Γ,C) =
Hom(H1(M),C) = H1(Γ,C) called the period class of the abelian differential
ν with respect to the path δ. The period class clearly is unchanged by adding
an arbitrary constant to the function vδ(z), so it depends only on the abelian
differential ν.

Theorem 5.1 On a compact Riemann surface M of genus g > 0 let Ω = {ωij}
be the period matrix and P = {pjk} be the intersection matrix of the surface in
terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M).
(i) If δ ⊂ M is a simple path from a− to a+ the periods νδ(τj) with respect
to the path δ of an abelian differential of the third kind ν with the differential
principal part p(a+, a−) satisfy

(5.3)

2g∑
j,k=1

ωij pjk ν
δ(τk) = 2πi

∫
δ

ωi

for 1 ≤ i ≤ g.
(ii) If δ′, δ′′ ⊂ M are two disjoint paths from a− to a+ the periods ν′δ

′
(τj)
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with respect to the path δ′ of an abelian differential of the third kind ν′ with
the differential principal part p(a′+, a

′
−) and the periods ν′′δ

′′
(τk) with respect to

the path δ′′ of an abelian differential of the third kind ν′′ with the differential
principal part p(a′′+, a

′′
−) satisfy

(5.4)

2g∑
j,k=1

ν′δ
′
(τj) pjk ν

′′δ′′(τk) = 2πi
(∫

δ′′
ν′ −

∫
δ′
ν′′
)
.

(iii) If δ ⊂M is a simple path from a− to a+ the periods νδ(τk) with respect to the
path δ of an abelian differential ν of the third kind with the differential principal
part p(a+, a−) and the periods µ(τj) of a meromorphic abelian differential µ of
the second kind with poles at points ai /∈ δ satisfy

(5.5)

2g∑
j,k=1

µ(τj)pjkν
δ(τk) = 2πi

∫
δ

µ− 2πi
∑
ai

resai(v
δµ)

where vδ(z) =
∫ z
a
ν is an integral of the differential form ν on M̃ ∼ Γδ̃.

Proof: (i) Let vδ(z) =
∫ z
a
ν be the integral of the abelian differential of the third

kind ν on M̃ ∼ Γδ̃; the periods of ν thus are given by νδ(T ) = vδ(Tz)− vδ(z).
Choose a contractible open neighborhood ∆ ⊂ M of the path δ ⊂ M and let
∆̃ be that component of the inverse image π−1(∆) ∈ M̃ for which δ̃ ⊂ ∆̃,

where π : M̃ −→ M is the covering projection. The complete inverse image
π−1(∆) ⊂ M̃ consists of disjoint open sets T ∆̃ for all T ∈ Γ, and the set
T ∆̃ contains the component T δ̃ of the path π−1(δ̃). Choose a C∞ real-valued
function r on M that is identically one on an open neighborhood of M ∼ ∆ and
is identically zero in an open neighborhood of the path δ in ∆; this function
also will be viewed as a Γ-invariant function on M̃ . In terms of this auxiliary
function introduce the smoothed integral

ṽδ(z) =


vδ(z) for z ∈ M̃ ∼ Γ∆̃

r(z)vδ(z) for z ∈ ∆̃

ṽδ(T−1z) + νδ(T ) for z ∈ T ∆̃, T 6= I.

Thus ṽδ(z) is a C∞ function on M̃ , ṽδ(Tz) = ṽδ(z) + ṽδ(T ) for any covering
translation T ∈ Γ, and ṽδ(z) = vδ(z) whenever z 6∈ Γ∆̃. The differential form

ν̃δ = d ṽδ then is a C∞ closed Γ-invariant differential form on M̃ , or equivalently
is a C∞ closed differential form on M , that is holomorphic outside the set ∆
and that has the periods ν̃δ(T ) = νδ(T ) for all covering transformations T ∈ Γ.
If φk is a basis for the first deRham group of M that is dual to the chosen
basis for the homology of M then ν̃δ ∼

∑2g
k=1 ν

δ(τk)φk(z), where ∼ denotes
cohomologous differential forms; and the abelian differentials of the first kind
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can be written correspondingly as ωi ∼
∑2g
j=1 ωijφj . Then

∫
M

ωi ∧ ν̃δ =

2g∑
j,k=1

∫
M

ωijφj ∧ νδ(τk)φk =

2g∑
j,k=1

ωijpjkν
δ(τk)

where pjk =
∫
M
φj ∧ φk are the entries of the intersection matrix P of the

surface M in terms of these bases. On the other hand the differential form
ν̃δ(z) is holomorphic outside ∆, so that ωi ∧ ν̃δ = 0 there, and consequently by
Stokes’s Theorem and the residue theorem∫

M

ωi ∧ ν̃δ =

∫
∆

ωi ∧ ν̃δ =

∫
∆̃

d(wiν̃
δ)

=

∫
∂∆̃

wiν̃
δ =

∫
∂∆̃

wiν
δ

= 2πi
(
wi(a+)− wi(a−)

)
= 2πi

∫
δ

ωi

since νδ = ν̃δ on the boundary of the disc ∆. Combining these two equations
yields (5.3).

(ii) For meromorphic abelian differentials of the third kind ν′ with the dif-
ferential principal part p(a′+, a

′
−) and ν′′ with the differential principal part

p(a′′+, a
′′
−), and for disjoint paths δ′ from a′− to a′+ and δ′′ from a′′− to a′′+, in-

troduce the smoothed functions ṽ′δ
′

and ṽ′′δ
′′

in disjoint open neighborhoods
∆′ and ∆′′ of the paths δ′ and δ′′ as in the proof of part (i). Then for the C∞

differential forms ν̃′δ
′

= d ṽ′δ
′

and ν̃′′δ
′′

= d ṽ′′δ
′′

on M̃ it follows that∫
M

ν̃′δ
′
∧ ν̃′′δ

′′
=

2g∑
i,j=1

∫
M

ν′δ
′
(τi)φi ∧ ν′′δ

′′
(τj)φj =

2g∑
i,j=1

ν′δ
′
(τi)pijν

′′δ′′(τj).

Again since both ν̃′δ
′

and ν̃′′δ
′′

are holomorphic outside ∆′ ∪∆′′ it follows that
ν̃′δ
′ ∧ ν̃′′δ′′ = 0 outside ∆′ ∪∆′′, and consequently from Stokes’s Theorem and

the residue theorem it follows that∫
M

ν̃′δ
′
∧ ν̃′′δ

′′
=

∫
∆′∪∆′′

ν̃′δ
′
∧ ν̃′′δ

′′

=

∫
∆̃′′

d
(
ṽ′δ
′
ν̃′′δ

′′)
−
∫

∆̃′
d
(
ṽ′′δ

′′
ν̃′δ
′)

=

∫
∂∆̃′′

v′δ
′
ν′′ −

∫
∂∆̃′

v′′δ
′′
ν′

= 2πi
(
v′δ
′
(a′′+)− v′δ

′
(a′′−)

)
− 2πi

(
v′′δ

′′
(a′+)− v′′δ

′′
(a′−)

)
= 2πi

(∫
δ′′
ν′ −

∫
δ′
ν′′
)
.

Combining these two equations yields (5.4).
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(iii) Finally for an abelian differential ν of the third kind with the differential
principal part p(a+, a−), for any simple path δ from a− to a+, and for an abelian
differential µ of the second kind with poles at points ai /∈ δ, let ∆i be open
neighborhoods of the poles ai and ∆ be an open neighborhood of the path δ
such that all of these open sets have disjoint closures. Introduce the smoothed
integrals ṽδ(z) as in the preceding part of the proof of the present theorem and
ũ(z) as in the proof of Theorem 4.7, where ũ(z) is modified within the open sets
T ∆̃i covering ∆i and ṽδ is modified within the open sets T ∆̃ covering ∆. Since
µ̃ ∼

∑2g
j=1 µ(τj)φj and ν̃δ ∼

∑2g
k=1 ν

δ(τk)φk it follows that

∫
M

µ̃ ∧ ν̃δ =

2g∑
j,k=1

∫
M

µ(τj)φj ∧ νδ(τk)φk =

2g∑
i,j=1

µ(τj)pjkν
δ(τk).

Since µ̃ ∧ ν̃δ = 0 outside the set (∪i∆i) ∪ ∆ it further follows from Stokes’s
Theorem and the residue theorem that∫

M

µ̃ ∧ ν̃δ =

∫
∆∪(∪i∆i)

µ̃ ∧ ν̃δ

=

∫
∆̃

d
(
ũν̃δ
)
−
∑
i

∫
∆̃i

d
(
µ̃ṽδ
)

=

∫
∂∆̃

uν −
∑
i

∫
∂∆̃i

µvδ

= 2πi

∫
δ

µ− 2πi
∑
i

resai
(
vδµ
)
.

Combining these two equations yields (5.5) and thereby concludes the proof.

Although the integral and the periods of an abelian differential of the third
kind ν with the differential principal part p(a+, a−) depend on the choice of
a simple path δ from the point a− to the point a+, this dependence is rather
limited.

Lemma 5.2 If ν is a meromorphic abelian differential of the third kind on a
compact Riemann surface M of genus g > 0 and has the differential principal
part p(a+, a−), and if δ′ and δ′′ are any two simple paths on M from the point

a− to the point a+, then for any points z, a ∈ M̃ ∼ π−1(δ′ ∪ δ′′) the integrals
vδ
′
(z, a) and vδ

′′
(z, a) of ν with respect to these two paths satisfy

(5.6) vδ
′
(z, a)− vδ

′′
(z, a) = 2πi nδ′,δ′′(z, a) where nδ′,δ′′(z, a) ∈ Z;

and the period classes of the differential ν for these two paths satisfy

(5.7) νδ
′
(T )− νδ

′′
(T ) = 2πi nδ′,δ′′(T ) where nδ′,δ′′(T ) ∈ Z.

Proof: For any points z, a ∈ M̃ ∼ π−1(δ′ ∪ δ′′) ⊂ M̃ the complex number
vδ
′
(z, a) − vδ′′(z, a) is the difference between the integrals of the meromorphic
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abelian differential ν along two paths from the point a to the point z in the
complement M̃ ∼ π−1(a+ ∪ a−); thus it is the integral of ν along a closed path

in M̃ ∼ π−1(a+ ∪ a−) and consequently it is equal to the sum of the residues of
ν at the poles enclosed by that path. Since the residue of ν at each pole is ±1
the integral is 2πi times an integer. Furthermore for any covering translation
T ∈ Γ

νδ
′
(T )− νδ

′′
(T ) =

(
vδ
′
(Tz, a)− vδ

′
(z, a)

)
−
(
vδ
′′
(Tz, a)− vδ

′′
(z, a)

)
= 2πi

(
nδ′,δ′′(Tz, a)− nδ′,δ′′(z, a)

)
so this too is an integer, and that suffices for the proof.

Theorem 5.3 Let ν be a meromorphic abelian differential of the third kind on
a compact Riemann surface M of genus g > 0, with the differential principal
part p(a+, a−).
(i) For any choice of a simple path δ on M from a− to a+ the holomorphic
function

(5.8) qν(z, a) = exp vδ(z, a)

in the variables z, a ∈ M̃ ∼ δ̃ extends to a meromorphic function qν(z, a) of

the variables z, a ∈ M̃ that is independent of the choice of the path δ. The
extended function is multiplicatively skew-symmetric, in the sense that qν(z, a) =

qν(a, z)−1; and as a function of the variable z ∈ M̃ for a fixed point a ∈ M̃ it
has simple zeros at the points π−1(a+), simple poles at the points π−1(a−) and

no other zeros or poles on M̃ .
(ii) For any choice of a simple path δ on M from a− to a+ and for any covering
translation T ∈ Γ the exponential

(5.9) eν(T ) = exp νδ(T )

is independent of the choice of the path δ; and the mapping T −→ eν(T ) is a
group homomorphism eν ∈ Hom(Γ,C∗).

(iii) The function qν(z, a) as a function of the variable z ∈ M̃ for a fixed point

a ∈ M̃ is a meromorphic relatively automorphic function for the flat factor of
automorphy defined by the homomorphism eν .

Proof: (i) It is evident from the definition (5.1) that the function qν(z, a) =
exp vδ(z, a) can be extended holomorphically across the interior points of the
paths Γδ̃ in both variables; and as a consequence of the preceding lemma the
extension is a single valued nowhere vanishing holomorphic function of the vari-
ables z, a ∈ M̃ in the complement of the points of M̃ covering a+ and a−. It
follows immediately from (5.1) that νδ(z, a) = −νδ(a, z) and hence that qν(z, a)
is multiplicatively skew-symmetric. Since the differential ν has a simple pole
at a+ with residue +1 its integral vδ(z, a) as a function of the variable z has a
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logarithmic singularity at any point z+ ∈ M̃ for which π(z+) = a+; in an open
neighborhood of such a point z+ the integral can be written

vδ(z, a) = log(z − z+) + h(z)

for a holomorphic function h(z), and consequently qν(z, a) = (z − z+) exph(z)
so this function has a simple zero at z+ but is holomorphic and nonvanishing
in this neighborhood otherwise. Correspondingly the differential ν has a simple
pole at a− with residue −1, so its integral vδ(z, a) has a logarithmic singularity

at any point z− ∈ M̃ for which π(z−) = a−; in an open neighborhood of such a
point z− the integral an be written

vδ(z, a) = − log(z − z−) + h(z)

for a holomorphic function h(z), and consequently qν(z, a) = (z−z−)−1 exph(z)
so this function has a simple pole at z−. Altogether then qν(z, a) is a well de-

fined meromorphic function of the variable z ∈ M̃ ; and from the multiplicative
skew-symmetry property already demonstrated it follows that qν(z, a) also is

meromorphic in the variable a ∈ M̃ , so by Rothstein’s Theorem1 it is a mero-
morphic function of the two variables (z, a) ∈ M̃ × M̃ .

(ii) The exponential eν(T ) = exp νδ(T ) of the additive group homomorphism
νδ ∈ Hom(Γ,C) is a multiplicative group homomorphism eν ∈ Hom(Γ,C∗); and
it follows from the preceding lemma that this homomorphism is independent of
the choice of the path δ from a− to a+.

(iii) Finally qν(Tz, a)/qν(z, a) = exp
(
vδ(Tz, a) − vδ(z, a)

)
= exp νδ(T ) =

eν(T ) for any covering translation T ∈ Γ; that is just the condition that qν(z, a)

as a function of the variable z ∈ M̃ is a relatively automorphic function for the
factor of automorphy eν ∈ Hom(Γ,C∗), and that suffices to conclude the proof.

5.2 Intrinsic Abelian Differentials of the
Third Kind

An abelian differential of the third kind with the differential principal part
p(a+, a−) is determined only up to the addition of arbitrary holomorphic abelian
differentials. It is possible to normalize the abelian differentials of the third kind
in terms of their period classes so that there is a unique abelian differential with
that differential principal part; but the normalization depends on the choice of
the path δ from a− to a+ since it involves the periods νδ(T ) and not just their
exponentials eν(T ) = exp νδ(T ).

Theorem 5.4 (i) For any simple path δ from a point a− to a point a+ on a
compact Riemann surface M of genus g > 0 there are a unique meromorphic
abelian differential νδ and a unique holomorphic abelian differential ωδ such

1For Rothstein’s Theorem see Appendix A.1.
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that νδ has the differential principal part p(a+, a−) and that its period class νδδ
with respect to the path δ is equal to the period class of the complex conjugate
differential ωδ.
(ii) The holomorphic abelian differential ωδ is characterized by the condition
that

(5.10)

∫
M

ω ∧ ωδ = 2πi

∫
δ

ω

for all holomorphic abelian differentials ω.
(iii) If δ′ is a simple path from a point a′− to a point a′+ on M and δ′′ is a
simple path from a point a′′− to a point a′′+ on M , where the paths δ′ and δ′′ are
disjoint, then the meromorphic abelian differentials νδ′ and νδ′′ satisfy

(5.11)

∫
δ′′
νδ′ =

∫
δ′
νδ′′ .

(iv) The abelian differential νδ and the intrinsic abelian differential of the second
kind µp with poles at points ai /∈ δ satisfy

(5.12)

∫
δ

µp =
∑
ai

resai(v
δ
δp),

where vδδ(z) =
∫ z
a
νδ is the integral of the meromorphic abelian differential νδ on

M̃ ∼ Γδ̃.

Proof: (i) Let ωi ∈ Γ(M,O(1,0)) be a basis for the space of holomorphic abelian
differentials on the surface M and τj ∈ H1(M) be a basis for the homology of
the surface M , and in terms of these bases let Ω = {ωij} be the period matrix
and P = {pij} be the intersection matrix of M . As in (F.9) in Appendix F.1
there is the direct sum decomposition C2g = tΩCg⊕ tΩCg, in which the subspace
tΩCg ⊂ C2g consists of the period vectors {ω(τj)} of the holomorphic abelian
differentials ω on the basis τj and the subspace tΩCg ⊂ C2g consists of the

period vectors {ω(τj)} of the complex conjugates ω of the holomorphic abelian
differentials on the basis τj . If {νδ(τj)} ∈ C2g is the period vector of an abelian
differential ν with the differential principal part p(a+, a−) there is a unique
holomorphic abelian differential ω such that the period vector of the sum νδ =
ν + ω is contained in the linear subspace ΩCg ⊂ C2g, hence such that period
class νδδ ∈ Hom(Γ,C) of the differential νδ is the same as the period class of the
complex conjugate of some holomorphic abelian differential ωδ.

(ii) If φj are closed real differential forms of a basis for the first deRham
group of M dual to the basis τj , then from the homologies ωi ∼

∑g
j=1 ωijφj and

ωδ ∼
∑g
j=1 ωδ(τk)φk it follows that

∫
M

ωi ∧ ωδ =

∫
M

g∑
j,k=1

ωijφj ∧ ωδ(τk)φk =

g∑
j,k=1

ωijpjkωδ(τk);
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and since ω(τk) = νδδ (τk) as in (i) it follows from (5.3) in Theorem 5.1 that

(5.13)

g∑
j,k=1

ωijpjkωδ(τk) =

g∑
j,k=1

ωijpjkν
δ
δ (τk) = 2π i

∫
δ

ωi.

Combining the two preceding equations shows that (5.10) holds for the basis ωi,
and consequently it holds for all holomorphic abelian differentials ω.

(iii) If νδ′ is the meromorphic abelian differential of the third kind with
the differential principal part p(a′+, a

′
−) and νδ′′ is the meromorphic abelian

differential of the third kind with the differential principal part p(a′+, a
′
−) as in

(i), then for disjoint paths δ′ from a′− to a′+ and δ′′ from a′′− to a′′+, the associated
holomorphic differentials ωδ′ and ωδ′′ satisfy ωδ′∧ωδ′′ = 0, since the product is a
differential form of type (2, 0) on the Riemann surface M . From the homologies
ωδ′ ∼

∑g
j=1 ωδ′(τj)φj and ωδ′′ ∼

∑g
k=1 ωδ′′(τk)φk it follows that

0 =

∫
M

ωδ′ ∧ ωδ′′ =

∫
M

g∑
j,k=1

ωδ′(τj)φj ∧ ωδ′′(τk)φk =

g∑
j,k=1

ωδ′(τj)pjkωδ′′(τk).

Since ωδi(τj) = νδδ (τj) by (i) it follows from (5.4) in Theorem 5.1 that

g∑
j,k=1

ωδ′(τj)pjkωδ′′(τk) =

g∑
j,k=1

νδ
′

δ′ (τj)pjkν
δ′′

δ′′ (τk) = 2π i
(∫

δ′′
νδ′ −

∫
δ′
νδ′′
)
.

Combining these two equations shows that (5.11) holds.
(iv) The holomorphic abelian differentials ωp and ωδ with period classes

conjugate to the period classes of the meromorphic abelian differentials µp and
νδ satisfy ωp ∧ ωδ = 0, since the product is a differential form of type (2, 0)
on the Riemann surface M ; so from the homologies ωp ∼

∑g
j=1 µp(τj)φj and

ωδ ∼
∑g
k=1 ν

δ
δ (τk)φk it follows that

0 =

∫
M

ωδ ∧ ωp =

∫
M

g∑
j,k=1

µp(τj)φj ∧ νδδ (τk)φk =

g∑
j,k=1

µp(τj)pjkν
δ
δ (τk).

Since ωp(τj) = νp(τj) and ωδ(τk) = νδδ (τk) it follows from (5.5) in Theorem 5.1
that

g∑
j,k=1

µp(τj)pjkν
δ
δ (τk) = 2πi

∫
δ

µ− 2πi
∑
ai

resai(v
δµ).

Combining these two equations yields (5.12), and that suffices to conclude the
proof.

The meromorphic abelian differential νδ of part (i) of the preceding theo-
rem with the differential principal part p(a+, a−) is called the intrinsic abelian
differential of the third kind with respect to the path δ, and the holomorphic
abelian differential ωδ is called the associated holomorphic abelian differential;
both are determined uniquely by the path δ from the pole a− to the pole a+,
and their period classes can be written explicitly in terms of that path.
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Corollary 5.5 On a compact Riemann surface M of genus g > 0 let Ω =
{ωij} be the period matrix and P = {pij} be the intersection matrix in terms
of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M). For a differential principal part
p(a+, a−) and any simple path δ from a− to a+ the periods of the intrinsic
abelian differential of the third kind νδ with respect to the path δ are

(5.14) νδδ (T ) = −2π

g∑
m,n=1

gmnωn(T )

(∫
δ

ωm

)
for any covering translation T ∈ Γ, where G = {gij} = tH−1 for the positive
definite Hermitian matrix H = iΩP tΩ.

Proof: The associated holomorphic abelian differential ωδ can be written as the
sum ωδ =

∑g
l=1 clωl for some complex constants cl, so its periods are ωδ(τk) =∑g

l=1 clωl(τk) =
∑g
l=1 clωlk. Substituting this into (5.13) yields the identity

2π i

∫
δ

ωm =

g∑
j,k=1

ωmjpjkωδ(τk) =

g∑
j,k,l=1

ωmjpjkωlkcl = −i
g∑
l=1

hmlcl

where hml are the entries in the g × g matrix H = iΩP tΩ. The matrix H
is positive definite Hermitian by Riemann’s inequality, Theorem 3.20 (ii), so
G = tH−1 exists; and if G = {gmn} then upon multiplying the preceding
equation by gmn and summing over m it follows that

cn = −2π

g∑
m=1

gmn

∫
δ

ωm

hence that

(5.15) νδδ (τj) = ωδ(τj) =

g∑
n=1

cnωnj = −2π

g∑
m,n=1

gmnωnj

∫
δ

ωm.

If the covering translation T ∈ Γ corresponds to a homology class τ ∈ H1(M)
and τ ∼

∑g
j=1 njτj for some integers nj then νδδ (T ) = νδδ (τ) =

∑g
j=1 njν

δ
δ (τj)

and ωn(T ) = ωn(τ) =
∑g
j=1 njωn(τj) =

∑g
j=1 njωnj ; multiplying both sides of

(5.15) by nj and summing over j = 1, . . . , g yields (5.14) and thereby concludes
the proof.

Although the explicit formula (5.14) depends on the choice of bases ωi for the
holomorphic abelian differentials on M and τj for the homology of M , it is clear
that the value νδδ (T ) is independent of these choices. It may be comforting, just
as in the case of the corresponding result for meromorphic abelian differentials
of the second kind discussed on page 107, to prove that directly; and for that
purpose it is convenient to rewrite (5.14). Choose a point z− ∈ M̃ such that

π(z−) = a−, where π : M̃ −→ M is the covering projection. A path δ from

a− to a+ in M has a unique lifting to a path in δ̃ ⊂ M̃ beginning at the point
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z−, and the lifting is a simple path that ends at a point z+ ∈ M̃ for which
π(z+) = a+. If wm(z, a) =

∫ z
a
ωm are the integrals of the differential forms ωm

then ∫
δ

ωm =

∫
δ̃

dwm = wm(z+, z−);

hence (5.14) can be written

(5.16) νδδ (T ) = −2π

g∑
m,n=1

wm(z+, z−) gmn ωn(T )

for any covering translation T ∈ Γ. To rewrite this formula in matrix terms,
introduce the column vector w̃(z, a) = {wj(z, a)} consisting of the integrals
wj(z, a) =

∫ z
a
ωj of the holomorphic abelian differentials ωj and the homomor-

phism ω ∈ Hom(Γ,Cg) where ω(T ) = {ωj(T )} ∈ Cg is the column vector of
period classes of the holomorphic abelian differentials. In these terms (5.16)
takes the form

(5.17) νδδ (T ) = −2π tw̃(z+, z−)Gω(T )

for all T ∈ Γ. A change of basis for the holomorphic abelian differentials on
M has the effect of replacing the vector w̃(z, a) by Aw̃(z, a), the vector ω(T )
by Aω(T ), and the form matrix G by tA−1GA−1 as in equation (F.41) in Ap-
pendix F.4; this change clearly leaves (5.17) unchanged.

5.3 The Intrinsic Cross-Ratio Function

Since the holomorphic abelian differential ωδ associated to the intrinsic
abelian integral of the third kind νδ has periods that are the complex con-
jugate of the periods νδδ (T ) of the intrinsic abelian differential of the third kind
it follows from (5.16) that

(5.18) ωδ(z) = −2π

g∑
m,n=1

wm(z+, z−) gmn ωn(z);

thus ωδ is determined just by the points z+ and z−. Equivalently the differential
ωδ depends only on the homotopy type of the path δ; for any two homotopic
paths in M from a− to a+ when lifted to paths in M̃ beginning at the point z−
have the same end point, and since M̃ is simply connected conversely any two
paths in M̃ from z− to z+ are homotopic so their projections under the covering

projection π : M̃ −→ M are homotopic paths from a− to a+ in M . To make
the dependence on the points z+ and z− quite explicit, set

(5.19) ωδ(z) = ωz+,z−(z).

As for the dependence on the choice of the initial point z− for which π(z−) = a−,
it is evident from (5.18) that

(5.20) ωTz+,Tz−(z) = ωz+,z−(z) for any T ∈ Γ.
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Since the intrinsic abelian differential of the third kind νδ(z) is determined
uniquely by its principal part p(a+, a−) and its associated holomorphic abelian
differential ωδ(z), by Theorem 5.4 (i), it too is determined uniquely by the points
z+ and z− and consequently can be denoted unambiguously by

(5.21) νδ(z) = νz+,z−(z);

and of course (5.20) holds for this abelian differential as well. The integral

(5.22) vδz+,z−(z, a) =

∫ z

a

νz+,z−

is defined as a holomorphic function on the complement M̃ ∼ Γδ̃. so in that
sense still depends on the choice of the path δ; but by Theorem 5.3 its expo-
nential is a meromorphic function

(5.23) q(z, a; z+, z−) = qz+,z−(z, a) = exp vδz+,z−(z, a) = exp

∫ z

a

νz+,z−

of the variables z, a ∈ M̃ , which is called the cross-ratio function of the Riemann
surface M or sometimes the intrinsic cross-ratio function of the Riemann surface
M to be more specific. The group homomorphism or flat factor of automorphy
associated to the abelian differential νδ(z) = νz+,z−(z) as in Theorem 5.3 (ii) is
denoted correspondingly by ez+,z−(T ). If Ω is the period matrix and P is the

intersection matrix of M in terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M)
then by (5.16)

ez+,z−(T ) = exp−2π

g∑
m,n=1

wm(z+, z−) gmn ωn(T )(5.24)

= exp−2π tw̃(z+, z−)Gω(T )

for any covering translation T ∈ Γ. This flat factor of automorphy can be
described alternatively as

(5.25) ez+,z−(T ) = ρt(z+,z−)(T )

in terms of the canonical parametrization of flat factors of automorphy (3.27)
associated to the basis τj ∈ H1(M), where t(z+, z−) = {tj(z+, z−)} ∈ C2g is the
complex vector for which ez+,z−(τj) = exp 2πitj(z+, z−); in view of (5.24) this
is is the vector with components

(5.26) tj(z+, z−) = i

g∑
m,n=1

wm(z+, z−)gmnωnj

for 1 ≤ j ≤ 2g, or in matrix terms, when all vectors are viewed as column
vectors, is the vector

(5.27) t(z+, z−) = i tΩ tGw̃(z+, z−).
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Again although the preceding explicit formulas involve the choice of bases for
the holomorphic abelian differentials on M and the homology of M , the factor
of automorphy ez+,z−(T ) = ρt(z+,z−)(T ) is independent of these choices. The
basic properties of the cross-ratio function can be summarized as follows.

Theorem 5.6 If M is a compact Riemann surface M of genus g > 0 with the
universal covering space M̃ and the covering translation group Γ, the cross-ratio
function of M is a meromorphic function q(z1, z2; z3, z4) on the complex mani-

fold M̃ × M̃ × M̃ × M̃ that is characterized uniquely by the following properties:
(i) The function q(z1, z2; z3, z4) has simple zeros along the subvarieties z1 =
Tz3 and z2 = Tz4, simple poles along the subvarieties z1 = Tz4 and z2 =
Tz3 for all T ∈ Γ, but is otherwise holomorphic and nowhere vanishing; and
q(z1, z2; z3, z4) = 1 if z1 = z2 or z3 = z4.
(ii) The function q(z1, z2; z3, z4) has the symmetries

q(z1, z2; z3, z4) = q(z3, z4; z1, z2) = q(z2, z1; z4, z3) =(5.28)

= q(z2, z1; z3, z4)−1 = q(z1, z2; z4, z3)−1.

(iii) The function q(z1, z2; z3, z4) as a function of the variable z1 ∈ M̃ for any

fixed points z2, z3, z4 ∈ M̃ is a meromorphic relatively automorphic function for
the canonically parametrized factor of automorphy ρt(z3,z4)(T ) described by the

vector t(z3, z4) ∈ C2g that for any bases ωi(z) ∈ Γ(M,O(1,0)) and τj ∈ H1(M)
has the explicit form

(5.29) t(z3, z4) = i tΩ tGw̃(z3, z4)

in which Ω is the period matrix, P is the intersection matrix, and G = tH−1

for the positive definite symmetric matrix H = iΩP tΩ in terms of these bases.

Proof: Whenever z3, z4 are points of M̃ that are not equivalent under Γ
it follows from Theorem 5.3 that the cross-ratio function q(z1, z2; z3, z4) =

qz3,z4(z1, z2) is a well defined meromorphic function of the variable z1 ∈ M̃
that is relatively automorphic for the factor of automorphy ez3,z4 = ρt(z3,z4)

and that has simple zeros at the points Γz3, simple poles at the points Γz4,
and no other zeros or poles on M̃ . It is clear from the definition (5.23) that
q(z1, z2; z3, z4) = q(z2, z1; z3, z4)−1, from which the corresponding analyticity

properties as a function of the variable z2 ∈ M̃ follow immediately; and it is
also clear from the definition that q(z1, z1; z3, z4) = 1. For two intrinsic abelian
differentials νz1,z2 and νz3,z4 of the third kind, and for disjoint paths δ1 from
π(z2) to π(z1) and δ3 from π(z4) to π(z3), it follows from Theorem 5.4 (iii) that∫
δ1
νz3,z4 =

∫
δ3
νz1,z2 ; consequently

q(z1, z2; z3, z4) = exp

∫ z1

z2

νz3,z4 = exp

∫
δ1

νz3,z4

= exp

∫
δ3

νz1,z2 = exp

∫ z3

z4

νz1,z2 = q(z3, z4; z1, z2).
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This symmetry, together with that already demonstrated, implies all the sym-
metries of (ii). From these symmetries and the already established analyticity
properties of q(z1, z2; z3, z4) as a function of the variables z1 and z2 it follows
that q(z1, z2; z3, z4) also is a meromorphic function of the variable z3 and the
variable z4, hence by Rothstein’s Theorem2 it is a meromorphic function on
M̃ × M̃ × M̃ × M̃ ; and altogether it has the zeros and poles as in (i). Finally
the quotient of any two functions satisfying the conditions of the theorem is
necessarily a holomorphic and nowhere vanishing function on M̃ × M̃ × M̃ × M̃
that is invariant under the group of covering translations in each factor, hence
is a constant; and from the normalization condition of (i) it is evident that this
constant is 1. That suffices to conclude the proof.

The preceding theorem also holds for surfaces of genus g = 0 to the extent
possible. On the Riemann sphere P1 the classical cross-ratio function is

(5.30) q(z1, z2; z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

This clearly is a meromorphic function on P1 in all four variables, with the
singularities as in Theorem 5.6 (i); and equally clearly it satisfies the symmetry
conditions of Theorem 5.6 (ii). Theorem 5.6 (iii) is not applicable, since the
covering translation group is trivial in this case; but the remaining properties
obviously characterize the cross-ratio function uniquely. The terminology of
course is suggested by this special case; but the role that the cross-ratio function
plays for general Riemann surfaces differs in many ways from its role in classical
projective geometry. However some of the simple relations among the classical
cross-ratio functions hold as well for the cross-ratio functions for surfaces of
genus g > 0.

Corollary 5.7 The cross-ratio for any compact Riemann surface satisfies the
product formula

(5.31) q(z1, z2; z3, z4) q(z1, z2; z4, z5) = q(z1, z2; z3, z5)

Proof: Introduce the meromorphic function

(5.32) f(z1, z2, z3, z4, z5) = q(z1, z2; z3, z4) q(z1, z2; z4, z5) q(z1, z2; z5, z3)

of the variables (z1, z2, z3, z4, z5) ∈ M̃5. This is a relatively automorphic func-
tion in each variable for the appropriate factor of automorphy, since by part
(iii) of the preceding theorem q(Tz1, z2; z3, z4) = ρt(z3,z4)(T )q(z1, z2; z3, z4) for
all T ∈ Γ. In particular then

f(Tz1, z2, z3, z4, z5) = ρt(z3,z4)(T )ρt(z4,z5)(T )ρt(z5,z4)(T )f(z1, z2, z3, z4, z5)
(5.33)

= f(z1, z2, z3, z4, z5)

2For Rothstein’s Theorem see Appendix A.1.
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for all T ∈ Γ since it is evident from (5.29) that t(z3, z4)+t(z4, z5)+t(z5, z30 = 0,
and similarly for the other variables inview of the symmetries (5.28); thus the
function f(z1, z2, z3, z4, z5) is invariant under the action of the group Γ in each
variable. On the other hand by (i) of the preceding theorem the divisor of

f(z1, z2, z3, z4, z5) as a Γ-invariant function just of the variable z1 ∈ M̃ , hence
as a meromorphic function of the variable z1 ∈ M on the compact Riemann
surface M , is

(5.34) df(z1) = (z3 − z4) + (z4 − z5) + (z5 − z3) = 0.

Therefore f(z1, z2, z3, z4, z5) as a function of the variable z1 ∈M is holomorphic
and nowhere vannishing on the compact Riemann surface M so is constant; and
that means that the function f(z1, z2, z3, z4, z5) is actuallly independent of the
variable z1. By the symmetry (5.28) in the variables z1 and z2 the function
f(z1, z2, z3, z4, z5) also is independent of the variable z2. Similarly as a function
of the variable z3

(5.35) df(z3) = (z1 − z2) + (z2 − z1) = 0;

so f(z1, z2, z3, z4, z5) is independent of the variable z3, and from the symmetries
(5.28) it is independent of the variables z4 amd z5, hence f(z1, z2, z3, z4, z5) is
a constant. From the normalization (i) it follows that f(z1, z1, z3, z4, z5) = 1 so
actually f(z1, z2, z3, z4, z5) = 1 for all points zj ∈ M , and that suffices for the
proof.

Further relations similar to that of the preceding corollary will be discussed
in connections with generalizations of the cross-ratio function in Chapter 13.
In another direction, all meromorphic abelian differentials can be expressed in
terms of the cross-ratio function and its derivatives. It follows immediately
from the definition (5.23) of the cross-ratio function that the intrinsic abelian
differential of the third kind with the principal part p(z+, z−) can be written
explicitly in terms of the cross-ratio function as

(5.36) νz+,z− = d log q(z, a; z+, z−)

for any point a ∈ M̃ ; and consequently its integral can be written

(5.37) vδz+,z−(z, a) =

∫ z

a

νz+,z− = log q(z, a; z+, z−)

for that branch of the logarithm for which vδz+,z−(a, a) = log q(a, a; z+, z−) =
log 1 = 0. The intrinsic double differential of the second kind on a compact
Riemann surface of genus g > 0 also can be written explicitly in terms of the
cross-ratio function of the surface as follows.

Corollary 5.8 The intrinsic double differential of the second kind µM (z, ζ) on
compact Riemann surface M of genus g > 0 can be expressed in terms of the
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cross-ratio function q(z1, z2; z3, z4) of that surface as

µM (z, ζ) =
∂2

∂zα∂ζβ
log q(zα, a; ζβ , b) dzαdζβ(5.38)

= dzdζ log q(z, a; ζ, b)

for any points a, b ∈ M̃ .

Proof: When the intrinsic double differential of the second kind is written
µM (z, ζ) = fαβ(zα, ζβ)dzαdζβ in terms of a covering of the surface M by coor-
dinate neighborhoods Uα, in which the local coordinates are denoted by either
zα or ζα, then µp(z) = fαβ(zα, ζβ)dzα is the intrinsic meromorphic abelian dif-
ferential of the second kind with the principal part p = (zβ − ζβ)−2dzβ at the
fixed point ζα ∈ Uβ . From Theorem 5.4 (iv) it then follows that for any simple

path δ from z− to z+ on M̃ and for the integral (5.37)∫ z+

z−

fαβ(zα, ζβ)dzα =

∫
δ

µp = resζβ

(
vδz+,ap

)
= reszβ=ζβ

(
log q(zβ , a; z+, z−)

dzβ
(zβ − ζβ)2

)
=

∂

∂ζβ
log q(ζβ , a; z+, z−).

Differentiating the preceding equation with respect to the variable z+ at the
point z+ = zα ∈ Uα shows that

fαβ(zα, ζβ) =
∂2

∂zα∂ζβ
log q(ζβ , a; zα, z−);

this is equivalent to the desired result and that suffices to conclude the proof.

5.4 Abel’s Theorem

The cross-ratio function encodes the basic relation between flat line bundles
and holomorphic line bundles, or equivalently, the divisors describing holomor-
phic line bundles.

Theorem 5.9 If M is a compact Riemann surface of genus g > 0 with the
universal covering projection π : M̃ −→ M , if Ω is the period matrix and P
is the intersection matrix of M in terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈
H1(M), and if G = tH−1 for the positive definite Hermitian matrix H = iΩP tΩ,

then for any points z+, z− ∈ M̃ the canonically parametrized flat line bundle
ρt(z+,z−) described by the vector t(z+, z−) = i tΩ tGw̃(z+, z−), where w̃(z, a) ∈ Cg
is the vector with entries wi(z, a) =

∫ z
a
ωi, is holomorphically equivalent to the

holomorphic line bundle ζπ(z+)ζ
−1
π(z−) over M .
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Proof: For any fixed points a, z+, z− ∈ M̃ it follows from Theorem 5.6 that

the cross-ratio function q(z, a; z+, z−) as a function of the variable z ∈ M̃ is a
meromorphic relatively automorphic function for the canonically parametrized
flat factor of automorphy ρt(z+,z−) and has the divisor d = 1 · a+ − 1 · a− on
M where a+ = π(z+), a− = π(z−); consequesntly the flat line bundle ρt(z+,z−)

represents the holomorphic line bundle ζa+
ζ−1
a− , and that suffices for the proof.

This observation can be extended quite naturally in terms of the Abel-Jacobi
mapping (3.4), the holomorphic mapping wa : M −→ J(M) from the Riemann
surface M to its Jacobi variety J(M) = Cg/ΩZ2g induced by the holomorphic

mapping w̃a : M̃ −→ Cg that associates to a point z in the universal covering
surface M̃ of M the point w̃a(z) = {wi(z, a)} ∈ Cg, where wi(z, a) =

∫ z
a
ωi for

the base point a ∈ M̃ . The Jacobi variety can be viewed not just as a complex
manifold but also as a complex Lie group, with the identity element 0 ∈ J(M)
represented by the origin 0 ∈ Cg when the Jacobi variety is viewed as the quo-
tient J(M) = Cg/ΩZ2g. With this structure as a complex Lie group the Jacobi
variety J(M) will be called the Jacobi group. The Abel-Jacobi mapping thus
takes the base point a ∈M to the identity 0 ∈ J(M) in the Jacobi group. The
Abel-Jacobi mapping then extends naturally to the Abel-Jacobi homomorphism,
the group homomorphism

(5.39) wa : Γ(M,D) −→ J(M)

from the additive group Γ(M,D) of divisors on M to the Jacobi group J(M)
that associates to any divisor d =

∑r
j=1 νj · aj ∈ Γ(M,D) the point

(5.40) wa(d) =

r∑
j=1

νjwa(aj) ∈ J(M);

thus the image wa(d) is the point in the quotient space J(M) = Cg/ΩZ2g

represented by the vector
∑r
j=1 νjw̃(zj , a) ∈ Cg for any points zj ∈ M̃ such

that π(zj) = aj under the universal covering projection π : M̃ −→M . In these
terms the result of the preceding Theorem5.9 can be restated as follows.

Theorem 5.10 (Abel’s Theorem) Two divisors d′ and d′′ of the same degree
on a compact Riemann surface M of genus g > 0 are linearly equivalent if and
only if they have the same image wa(d′) = wa(d′′) ∈ J(M) under the Abel-Jacobi
homomorphism wa : Γ(M,D) −→ J(M).

Proof: If Ω is the period matrix and P is the intersection matrix of M in terms
of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M), and if G = tH−1 for the positive
definite Hermitian matrix H = iΩP tΩ, then by Theorem 5.9 for any points
z+, z− ∈ M̃ the canonically parametrized flat line bundle ρt(z+,z−) described

by the vector t(z+, z−) = i tΩ tGw̃(z+, z−), where w̃(z, a) ∈ Cg is the vector
with entries wi(z, a) =

∫ z
a
ωi, is holomorphically equivalent to the holomorphic
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line bundle ζπ(z+)ζ
−1
π(z−) over M , where π : M̃ −→ M is the coveering projec-

tion mapping. Therefore if d′ =
∑r
j=1 a

′
j and d′′ =

∑r
j=1 a

′′
j the canonically

parametrized flat line bundle ρt(d′,d′′) described by the vector

(5.41) t(d′, d′′) =

n∑
j=1

t(a′j , a
′′
j ) = i tΩ tGw̃(d′, d′′),

where w̃(d′, d‘′′) =
∑r
j=1(w̃(a′j , a

′′
j ), is holomorphically equivalent to the line

bundle ζd′ζ
−1
d′′ . The point in the Picard variety represented by the flat line

bundle ρt(d′,d′′) is described by the image of the vector t(d′, d′′) in the quotient
P (M) = C2g/(Z2g + tΩCg). The isomorphism between the Picard and Jacobi
varieties of Theorem 3.23 takes the element of the Picard variety represented
by the vector t(d′, d′′) to the element of the Jacobi variety J(M) = C2g/ΩZ2g

represented by the point ΩPt(d′, d′′). Since iΩP tΩ tG = H tG = I it follows that
ΩPt(d′, d′′) = w̃(d′, d′′); therefore the divisors d′ and d′′ are linearly equivalent
if and only if wz0(d′ − d“) = 0 which suffices for the proof.

It is quite common to rephrase Abel’s Theorem to avoid the necessity of
choosing a base point in the complex torus J(M) by using the alternative

mapping w̃ : M̃ × M̃ −→ Cg from the universal covering space M̃ of a Rie-
mann surface M that associates to any points z′, z′′ ∈ M̃ the point w̃(z′, z′′) =

{wi(z′, z′′)} ∈ Cg for the integrals wi(z
′, z′′) =

∫ z′
z′′
ωi of a basis for the holo-

morphic abelian differentials ωi on M , and viewing the Jacobi variety as the
quotient J(M) = Cg/L(Ω) for the lattice subgroup L(Ω) defined by the period
matrix Ω of the abelian differentials ωi.

Corollary 5.11 Two divisors d′ and d′′ of degree r on a compact Riemann
surface M , represented by divisors d̃′ =

∑r
j=1 z

′
i and d̃′′ =

∑r
j=1 z

′′
i for points

z′i, z
′′
i ∈ M̃ , are linearly equivalent if and only if

(5.42) w̃(z′J , z
′′
j ) ∈ L(Ω).

Proof: This is merely a rephrasing of the results of the preceding Theorem 5.10,
so no further proof is necessary.

One important application of Abel’s Theorem is to provide an imbedding of
a Riemann surface of genus g > 0 as a nonsingular holomorphic subvariety of
its Jacobi variety; that complements the imbeddings of a Riemann surface in
complex projective spaces given by Theorem 2.17.

Theorem 5.12 The Abel-Jacobi mapping of a compact Riemann surface M of
genus g > 0 is a nonsingular holomorphic mapping wa : M −→ J(M) that
defines a biholomorphic mapping wa : M −→ wa(M) from the Riemann surface
M to a connected one-dimensional holomorphic submanifold wa(M) ⊂ J(M).

Proof: It follows from Abel’s Theorem, Theorem 5.10, that wa(p) = wa(q) for
two points p, q ∈M if and only if the divisors 1·p and 1·q are linearly equivalent,
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or what is the same thing, if and only if ζp = ζq; but by Corollary 2.5 for a
Riemann surface of genus g > 0 that is the case if and only if p = q. That shows
that the Abel-Jacobi mapping wa : M −→ J(M is an injective holomorphic
mapping. If ωi = fα,i(zα)dzα is a basis for the holomorphic abelian differentials
in terms of a local coordinate zα at a point p ∈ M then the derivative of
the Abel-Jacobi mapping at the point p is the matrix {f ′α,i(p)}. This is a
nonsingular matrix; for if all the g holomorphic abelian differentials vanish at
the point p then γ(κζ−1

p ) = g, but by the Riemann-Roch Theorem γ(κζ−1
p ) =

γ(ζp)+2g−3+1−g = g−1 since γ(ζp) = 1 for any point p of a Riemann surface
of genus g > 0. Therefore the Abel-Jacobi mapping is a nonsingular injective
holomorphic mapping wa : M −→ J(M); and since the image is a holomorphic
subvariety of J(M) by Remmert’s Proper Mapping Theorem3, that suffices for
the proof.

Corollary 5.13 If M is a compact Riemann surface of genus g = 1 then the
Abel-Jacobi mapping is a biholomorphic mapping wa : M −→ J(M).

Proof: Since dim J(M) = 1 for a Riemann surface of genus g = 1 this is an
immediate consequence of the preceding theorem, so no further proof is required.

5.5 Basic and Canonical Cross-Ratio Functions

In addition to the intrinsic cross-ratio function it is convenient to introduce,
in parallel to the discussion of double differentials in the preceding chapter, the
basic cross-ratio function associated to an arbitrary symmetric matrix E = {ekl}
defined in terms of a basis ωi for the holomorphic abelian differentials on M by

(5.43) qE(z1, z2; z3, z4) = q(z1, z2; z3, z4) exp

g∑
k,l=1

eklwk(z1, z2)wl(z3, z4)

where wi(z1, z2) =
∫ z1
z2
ωi are the integrals of the holomorphic abelian differen-

tials ωi. These functions can be characterized as follows.

Theorem 5.14 If M is a compact Riemann surface M of genus g > 0 with the
universal covering space M̃ and the covering translation group Γ, the basic cross-
ratio functions of M are meromorphic functions q̃(z1, z2; z3, z4) on the complex

manifold M̃ × M̃ × M̃ × M̃ that are characterized uniquely by the following
properties:
(i) The function q̃(z1, z2; z3, z4) has simple zeros along the subvarieties
z1 = Tz3 and z2 = Tz4 and simple poles along the subvarieties z1 = Tz4 and
z2 = Tz3 for all T ∈ Γ, but is otherwise holomorphic and nowhere vanishing on
M̃4; and q̃(z1, z2; z3, z4) = 1 if z1 = z2 or z3 = z4.

3Remmert’s Proper Mapping Theorem is discussed on page 423 of Appendix A.3
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(ii) The function q̃(z1, z2; z3, z4) has the symmetries

q̃(z1, z2; z3, z4) = q̃(z3, z4; z1, z2) = q̃(z2, z1; z4, z3) =

(5.44)

= q̃(z2, z1; z3, z4)−1 = q̃(z1, z2; z4, z3)−1.

(iii) The function q̃(z1, z2; z3, z4) as a function of the variable z1 ∈ M̃ for any

fixed points z2, z3, z4 ∈ M̃ is a relatively automorphic function for a factor
of automorphy described under the canonical parametrization of flat factors of
automorphy in terms of any basis τj ∈ H1(M) by ρs(z3,z4) for some vector
s(z3, z4) depending only on the parameters z3, z4.

Proof: It is clear from the definition (5.43) of the basic cross-ratio function
qE(z1, z2; z3, z4), in which E is required to be a symmetric matrix, and from the
characterization of the intrinsic cross-ratio function in Theorem 5.6, that a basic
cross-ratio function satisfies (i) and (ii), and that for any covering translation
T ∈ Γ

qE(Tz1, z2; z3, z4) = q(Tz1, z2; z3, z4) · exp

g∑
k,l=1

eklwk(Tz1, z2)wl(z3, z4)

= ρt(z3,z4)(T ) q(z1, z2; z3, z4)·

· exp

g∑
k,l=1

ekl
(
wk(z1, z2) + ωk(T )

)
wl(z3, z4)

= ρt(z3,z4)(T )
(

exp

g∑
k,l=1

eklωk(T )wl(z3, z4)
)
qE(z1, z2; z3, z4);

in particular for T = Tj

qE(Tjz1, z2; z3, z4) = exp
(

2πitj(z3, z4) +

g∑
k,l=1

eklωkjwl(z3, z4)
)
qE(z1, z2; z3, z4)

= ρs(z3,z4)(Tj)qE(z1, z2; z3, z4)

where

(5.45) sj(z3, z4) = tj(z3, z4) +
1

2πi

g∑
k,l=1

eklωkjwl(z3, z4),

so a basic cross-ratio function also satisfies (iii).
Conversely suppose that q̃(z1, z2; z3, z4) is an arbitrary meromorphic function

on M̃ × M̃ × M̃ × M̃ that satisfies (i), (ii), and (iii). It follows from (i) and
Theorem 5.6 (i) that

q̃(z1, z2; z3, z4) = q(z1, z2; z3, z4) exph(z1, z2; z3, z4)
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for a holomorphic function h(z1, z2; z3, z4) on the simply connected complex

manifold M̃ × M̃ × M̃ × M̃ , since the two cross-ratio functions have the same
zeros and poles. In addition it follows that exph(z1, z1; z3, z4) = 1, and conse-
quently h(z1, z1; z3, z4) = 2πin for some integer n; so after replacing the function
h(z1, z2; z3, z4) by h(z1, z2; z3, z4)−2πin it can be assumed that h(z1, z1; z3, z4) =
0. The functions q̃(z1, z2; z3, z4) and q(z1, z2; z3, z4) both satisfy the symmetries
of part (ii), so exph(z1, z2; z3, z4) does as well. Therefore h(z1, z2; z3, z4) −
h(z3, z4; z1, z2) = 2πin1 for some integer n1; and setting z1 = z2 and z3 = z4

shows that actually n1 = 0. Furthermore h(z1, z2; z3, z4) + h(z2, z1; z3, z4) =
2πin2 for another integer n2; and setting z1 = z2 shows that n2 = 0 as well. It
follows from these observations that the function h(z1, z1; z3, z4) satisfies

h(z1, z2; z3, z4) = h(z3, z4; z1, z2) = h(z2, z1; z4, z3)

= −h(z2, z1; z3, z4) = −h(z1, z2; z4, z3).

For any covering translation T ∈ Γ it follows from (iii) that

h(Tz1, z2; z3, z4) = h(z1, z2; z3, z4) + g(T ; z3, z4)

for some holomorphic function g(T ; z3, z4) of the variables z3, z4 ∈ M̃ ; thus
h(z1, z2; z3, z4) as a function of the variable z1 alone is a holomorphic abelian
integral, and since it vanishes when z1 = z2 it can be written in terms of a basis
wk(z, z2) for the holomorphic abelian integrals as

h(z1, z2; z3, z4) =

g∑
k=1

ek(z2, z3, z4)wk(z1, z2)

for some uniquely determined functions ek(z2, z3, z4), which consequently must
be holomorphic functions of the variables z2, z3, z4. In that case

g(T ; z3, z4) = h(Tz1, z2; z3, z4)− h(z1, z2; z3, z4)

=

g∑
k=1

ek(z2, z3, z4)ωk(T ),

and since this is the case for all T ∈ Γ it follows that the coefficients ek(z2, z3, z4)
must be independent of the variable z2. Upon interchanging the two pairs of
variables it follows from the symmetry of the function h(z1, z2; z3, z4) that

g∑
k=1

ek(z3, z4)wk(z1, z2) =

g∑
k=1

ek(z1, z2)wk(z3, z4)

and consequently that ek(z3, z4) is a holomorphic abelian integral in each vari-
able as well; and since this integral vanishes when z3 = z4 it follows that
ek(z3, z4) =

∑g
l=1 eklwl(z3, z4), which shows that the function q̃(z1, z2; z4, z3)

is a basic cross-ratio function as defined in (5.43) and thereby concludes the
proof.
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Corollary 5.15 Let Ω be the period matrix and P be the intersection matrix of
a compact Riemann surface M of genus g > 0 in terms of any arbitrary bases
ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M); and let w̃(z, a) = {wi(z, a)} be the column
vector with entries the integrals wi(z, a) =

∫ z
a
ωi. The basic cross-ratio function

qE(z1, z2; z3, z4) for a symmetric matrix E is a relatively automorphic function
for the flat factor of automorphy described under the canonical parametrization
of flat factors of automorphy in terms of these bases by ρs(z3,z4) for the vector

(5.46) s(z3, z4) = i t
(
tΩ tG− 1

2π
tΩ tE

)
w̃(z3, z4)

where G = tH−1 for the positive definite symmetric matrix H = iΩP tΩ.

Proof: The intrinsic cross-ratio function is a relatively automorphic function for
the flat factor of automorphy ρt(z3, z4) for the vector t(z3, z4) given by (5.27),
and the basic cross-ratio function associated to a symmetric matrix E = tE is a
relatively automorphic function for the flat factor of automorphy ρs(z3, z4) for
the vector s(z3, z4) given by (5.45); so

s(z3, z4) = t(z3, z4) +
1

2πi
tΩEw̃(z3, z4)

= i tΩ tGw̃(z3, z4) +
1

2πi
tΩEw̃(z3, z4),

which reduces to (5.46), and that suffices to conclude the proof.

The characterization of basic cross-ratio functions in Theorem 5.14 is more
appealing than the characterization of intrinsic cross-ratio functions in Theo-
rem 5.6 in that the factor of automorphy is stated in a rather more general
form; the explicit description of the factor of automorphy in Corollary 5.15
shows that the intrinsic cross-ratio function is characterized among the basic
cross-ratio functions by having a factor of automorphy described by the com-
plex conjugate period matrix alone. The basic double differential of the second
kind on the Riemann surface M described by a symmetric matrix E can be
expressed in terms of the basic cross-ratio function associated to that matrix,
in an extension of Theorem 5.8; indeed it is evident from the definitions (4.56)
and (5.43) that

∂2

∂z∂ζ
log qE(z, a; ζ, b)dzdζ =

∂2

∂z∂ζ
log
(
q(z, a; ζ, b) · exp

g∑
k,l=1

eklwk(z, a)wl(ζ, b)
)

= µM (z, ζ) +

g∑
k,l=1

eklωk(z)ωl(ζ)(5.47)

= µM,E(z, ζ)

for any symmetric matrix E. In particular the canonical double differential of
the second kind µ̂(z, ζ) on a marked Riemann surface of genus g > 0, the basic
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double differential with the properties given in Theorem 4.23, can be expressed
in terms of the corresponding basic cross-ratio function, called the canonical
cross-ratio function on the marked Riemann surface; this function is denoted
by q̂(z1, z2; z3, z4), so

(5.48)
∂2

∂z∂ζ
log q̂(z, a; ζ, b)dzdζ = µ̂M (z, ζ).

The canonical cross-ratio function can be characterized as follows.

Theorem 5.16 On a marked compact Riemann surface M of genus g > 0,
with the marking described by generators Aj , Bj ∈ Γ, the canonical cross-ratio
function q̂(z1, z2; z3, z4) is characterized by the following properties.
(i) The function q̂(z1, z2; z3, z4) has simple zeros along the subvarieties z1 = Tz3

and z2 = Tz4 and simple poles along the subvarieties z1 = Tz4 and z2 = Tz3

for all T ∈ Γ, but is otherwise holomorphic and nowhere vanishing on M̃4; and
q̂(z1, z2; z3, z4) = 1 if z1 = z2 or z3 = z4.
(ii) The function q̂(z1, z2; z3, z4) has the symmetries

q̂(z1, z2; z3, z4) = q̂(z3, z4; z1, z2) = q̂(z2, z1; z4, z3) =

(5.49)

= q̂(z2, z1; z3, z4)−1 = q̂(z1, z2; z4, z3)−1.

(iii) For any fixed points z2, z3, z4

q̂(Ajz1, z2; z3, z4) = q̂(z1, z2; z3, z4),

(5.50)

q̂(Bjz1, z2; z3, z4) = q̂(z1, z2; z3, z4) exp 2πiwj(z3, z4)

where wj(z3, z4) =
∫ z3
z4
ωj are the integrals of the canonical abelian differentials

ωj on the marked surface.

Proof: The intersection matrix of the surface M in terms of the basis for
H1(M) described by the generators Aj , Bj ∈ Γ of the marking of M is the basic
skew-symmetric matrix J, and by Theorem 4.23 the period matrix Ω of M in
terms of this basis and of the canonical holomorphic abelian differentials ωi on
the marked surface M is the matrix Ω = ( I Z) where Z = X + iY ∈ Hg,
the Siegel upper half-space of rank g. By Theorem 4.23 the canonical double
differential of the second kind on M is the basic double differential described by
the matrix E = πY −1. The basic cross-ratio function associated to this matrix
E is a relatively automorphic function for the canonically parametrized factor
of automorphy described by the vector s(z3, z4) given explicitly by (5.46). Since
G = 1

2Y
−1 = 1

2πE, as in the proof of Theorem 4.23, it follows that

i
(
tΩ tG− 1

2π
tΩE

)
=

i

2π

(
I

X − i Y

)
E − i

2π

(
I

X + i Y

)
E

=

(
0
I

)
;
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consequently s(z3, z4) = t
(

0 I
)
w̃(z3, z4) so that

ρs(z3,z4)(Aj) = 1, ρs(z3,z4)(Bj) = exp 2πiwj(z3, z4)

and therefore the basic cross-ratio function associated to this matrix E satisfies
(iii). Since this cross-ratio function is characterized uniquely by (i), (ii) and
(iii), that suffices to conclude the proof.

The Green’s cross-ratio function is quite useful for some purposes, even
though it is not a holomorphic function in all variables; it is defined by

(5.51) q̆(z1, z2; a, b) = q(z1, z2; a, b) exp 2π

g∑
k,l=1

gklwk(z1, z2)wl(a, b)

in terms of bases ωi(z) ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials
and τj ∈ H1(M) for the homology of a compact Riemann surface M of genus
g > 0, where Ω is the period matrix and P is the intersection matrix of M , and
G = tH−1 for the positive definite symmetric matrix H = iΩP tΩ. Although
the definition (5.51) is expressed in terms of these bases it follows just as in the
demonstration of the invariance of (5.17) that the function q̆(z1, z2; a, b) itself is
intrinsically defined on M , independent of the choice of bases.

Theorem 5.17 On a compact Riemann surface M of genus g > 0 the Green’s
cross-ratio function q̆(z1, z2; a, b) is a meromorphic function of the variables

(z1, z2) ∈ M̃×M̃ and a conjugate meromorphic function of the variables (a, b) ∈
M̃ × M̃ with the following properties:
(i) The function q̆(z1, z2; a, b) has simple zeros along the subvarieties z1 = Ta
and z2 = Tb and simple poles along the subvarieties z1 = Tb and z2 = Ta for all
T ∈ Γ, but no other zeros or poles in the variables (z1, z2), for any fixed point
(a, b); and it takes the value 1 if z1 = z2 or a = b.
(ii) The function q̆(z1, z2; a, b) has the symmetries

q̆(z1, z2; a, b) = q̆(z2, z1; a, b)−1 = q̆(z1, z2; b, a)−1.

(iii) The function q̆(z1, z2; a, b) as a function of the variable z1 ∈ M̃ for any

fixed points z2, a, b ∈ M̃ is a meromorphic relatively automorphic function for
the canonically parametrized factor of automorphy ρr(a,b)(T ) described by the

real vector r(a, b) ∈ R2g that for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M)
is given by

(5.52) r(a, b) = 2=
(
tΩGw̃(a, b)

)
=

1

2 i

(
tΩGw̃(a, b)− tΩGw̃(a, b)

)
in which Ω is the period matrix, P is the intersection matrix, G = tH−1 for
the positive definite symmetric matrix H = iΩP tΩ in terms of these bases, and
=(z) = y is the imaginary part of the complex number z = x+ i y; hence

(5.53) |ρr(a,b)(T )| = 1 for all T ∈ Γ.
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Proof: Properties (i) and (ii) are immediate consequences of the corresponding
properties of the intrinsic cross-ratio function in Theorem 5.6 and of the defini-
tion (5.51) of the Green’s cross-ratio function, since the exponential is a nowhere

vanishing function that is holomorphic in the variables z1, z2 ∈ M̃ and conju-
gate meromorphic in the variables a, b ∈ M̃ , and wk(z1, z2) = −wk(z2, z1). For
the generator Tj ∈ Γ corresponding to the basis element τj ∈ H1(M) it follows
from the definition (5.51) and Theorem 5.6 (iii) that

q̆(Tjz1, z2; a, b) = q(Tjz1, z2; a, b) · exp 2π

g∑
k,l=1

gklwk(Tjz1, z2)wl(a, b)

= ρt(a,b)(Tj)q(z1, z2; a, b)·

· exp 2π

g∑
k,l=1

gkl
(
wk(z1, z2) + ωkj

)
wl(a, b)

= q̆(z1, z2; a, b) · exp 2π

g∑
k,l=1

(
− glkωkjwl(a, b) + gklωkjωl(a, b

)
= q̆(z1, z2; a, b) exp 2π

g∑
k,l=1

(
− gklωkjwl(a, b) + gklωkjwl(a, b)

)
= q̆(z1, z2; a, b) exp 2πi rj(a, b) = ρr(a,b)(Tj)q̆(z1, z2; a, b),

and therefore q(Tz1, z2; a, b) = ρr(a,b)(T )q̆(z1, z2; a, b) for all T ∈ Γ. Since
r(a, b) is a real vector |ρr(a,b)(Tj)| = 1 for each generator Tj ∈ Γ and there-
fore |ρr(a,b)(T )| = 1 for all T ∈ Γ; and that suffices for the proof.
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Chapter 6

Abelian Factors of
Automorphy

6.1 Definitions

A holomorphic factor of automorphy for the action of the covering translation
group Γ on the universal covering space M̃ of a compact Riemann surface M of
genus g > 0 represents a holomorphic line bundle over the surface M , as in The-
orem 3.11; and topologically trivial holomorphic line bundles can be represented
by flat factors of automorphy, as in Theorem 3.13. It will be demonstrated in
this chapter that all holomorphic line bundles can be represented by intrinsically
and explicitly defined factors of automorphy. These factors of automorphy are
modeled on those that appear in the classical theory of elliptic functions1. The
sigma function of Weierstrass for a one-dimensional complex torus M = C/L
is a holomorphic function σ(z) on the complex plane C that transforms under
translations T ∈ L by functional equations of the form σ(Tz) = σ(z) · expσT (z)
for some linear functions σT (z); hence σ(z) is a holomorphic relatively auto-
morphic function for the factor of automorphy expσT (z). The Jacobian theta
function ϑ(z) for the complex torus M is another example of a holomorphic rel-
atively automorphic function for a factor of automorphy given by exponentials
of linear functions. Linear functions on a complex torus M are holomorphic
abelian integrals on M ; so the analogues of these classical factors of automor-
phy for a general compact Riemann surface M of genus g > 1 are factors of
automorphy of the form

(6.1) ζ(T, z) = exp 2πi σ(T, z),

where for each covering translation T ∈ Γ the function σ(T, z) is a holomorphic

abelian integral on the universal covering space M̃ of the surface M . This

1For the properties of the classical elliptic functions see for instance Whittaker and Watson,
Modern Analysis, (Cambridge, 1902).
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integral can be written

(6.2) σ(T, z) = σ0(T ) +

g∑
i=1

σi(T )wi(z, a)

for some mappings σi : Γ −→ C for 0 ≤ i ≤ g, where wi(z, a) =
∫ z
a
ωi in terms

of a basis ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials on M and

of a base point a ∈ M̃ .

Theorem 6.1 The functions ζ(T, z) form a factor of automorphy for the action

of the covering translation group Γ on the universal covering space M̃ of a
compact Riemann surface M of genus g > 0 if and only if
(i) the mappings σi are group homomorphisms for 1 ≤ i ≤ g and
(ii) the mapping σ0 satisfies the condition that

(6.3) σ0(S) + σ0(T )− σ0(ST ) +

g∑
i=1

σi(S)ωi(T ) ∈ Z

for all S, T ∈ Γ, where ωi ∈ Hom(Γ,C) are the period classes of the holomorphic
abelian differentials ωi(z) = dwi(z, a).

Proof: The functions ζ(T, z) form a factor of automorphy if and only if

ζ(S, Tz)ζ(T, z)ζ(ST, z)−1 = 1

for all S, T ∈ Γ; and when ζ(T, z) has the form (6.1) that is equivalent to the
condition that

(6.4) σ(S, Tz) + σ(T, z)− σ(ST, z) ∈ Z

for all S, T ∈ Γ. Hence to prove the theorem it suffices to show that condition
(6.4) is equivalent to conditions (i) and (ii) of the theorem. For this purpose
note that in terms of the more explicit form (6.2) for the functions σ(T, z)

σ(S,Tz) + σ(T, z)− σ(ST, z)(6.5)

= σ0(S) + σ0(T )− σ0(ST )

+

g∑
i=1

(
σi(S)wi(Tz, a) + σi(T )wi(z, a)− σi(ST )wi(z, a)

)
= σ0(S) + σ0(T )− σ0(ST ) +

g∑
i=1

σi(S)ωi(T )

+

g∑
i=1

(
σi(S) + σi(T )− σi(ST )

)
wi(z, a).
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If (6.4) holds then (6.5) is an integer for all S, T ∈ Γ; and since the functions
wi(z, a) are linearly independent for all S, T ∈ Z it must be the case that

(6.6)

g∑
i=1

(
σi(S) + σi(T )− σi(ST )

)
= 0 for all S, T ∈ Z,

so the mappings σi for 1 ≤ i ≤ g are homomorphisms as in condition (i).
Substituting (6.6) into (6.5) reduces it to (6.3) which is thus an integer yielding
condition (ii) of the theorem. Conversely if (i) and (ii) are satisfied the mappings
σi are group homomorphisms for 1 ≤ i ≤ g so (6.6) holds and hence (6.5) reduces
to (6.4). That suffices for the proof.

The factors of automorphy ζ(T, z) of the preceding theorem are called abelian
factors of automorphy. It is evident that the product of any two abelian fac-
tors of automorphy again has the form of an abelian factor of automorphy, as
does the inverse ζ(T, z)−1 of an abelian factor of automorphy; the collection of
abelian factors of automorphy thus form a multiplicative group, which is called
the group of abelian factors of automorphy on the Riemann surface M and is
denoted by A(M). The product of an abelian factor of automorphy ζ(T, z) and
a representation ρ ∈ Hom(Γ,C∗) of the fundamental group Γ of the Riemann
surface M clearly also is an abelian factor of automorphy; consequently, in view
of Corollary 3.9, if an abelian factor of automorphy ζ(T, z) describes a holo-
morphic line bundle ζ over the Riemann surface M then all holomorphic line
bundles over M of characteristic class c(ζ) can be described by abelian factors
of automorphy of the form ρ(T )ζ(T, z) for suitable representations ρ(T ) of the
group Γ.

Condition (6.3) really has the form of a condition in the cohomology group2

H2(Γ,C) of the covering translation group Γ with coefficients in the field C on
which Γ is viewed as acting trivially. The function f(S, T ) =

∑g
i=1 σi(S)ωi(T )

of pairs (S, T ) of elements of the group Γ actually is a two-cocycle in Z2(Γ,C)
and the function δλ0(S, T ) = λ0(S) + λ0(T ) − λ0(ST ) is a two-cocycle that
is the coboundary of the one-cochain λ0(T ) ∈ C1(Γ,C). In these terms (6.3)
is just the condition that the cocycle f(S, T ) is cohomologous to an integral
cocycle, a cocycle in the subgroup Z2(Γ,Z). That is one approach to the more
detailed study of abelian factors of automorphy. However the approach that
will be followed here is rather more concrete and explicit, and does not require
any use of the cohomological machinery.

The homomorphisms σi ∈ Hom(Γ,C) can be represented as the period map-
pings of the holomorphic abelian differentials ωj(z) on M and their complex
conjugates, as discussed in Section 3.1; consequently it can be supposed that

(6.7) σi(T ) =

g∑
j=1

(
uijωj(T ) + vijωj(T )

)
for 1 ≤ i ≤ g

2Some general properties of the cohomology of groups, and some specific properties for the
special case of groups that are the fundamental groups of orientable surfaces, can be found in
Appendix E.
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for some g× g complex matrices U = {uij} and V = {vij} and all T ∈ Γ, where
ωj ∈ Hom(Γ,C) are the period classes of the holomorphic abelian differentials
ωj(z). Then (6.2) takes the form

(6.8) σ(T, z) = σ0(T ) +

g∑
i,j=1

(
uijωj(T ) + vijωj(T )

)
wi(z, a),

or in matrix notation

(6.9) σ(T, z) = σ0(T ) + tw̃(z, a)
(
Uω(T ) + V ω(T )

)
where w̃(z, a) = {wi(z, a)} is the vector of abelian integrals and ω(T ) = {ωj(T )}
is the vector of the periods of these integrals, both viewed as column vectors in
Cg as on page 66. In these terms the abelian factor of automorphy (6.1) has
the form

(6.10) ζ(T, z) = exp 2πi
(
σ0(T ) + tw̃(z, a)

(
Uω(T ) + V ω(T )

))
,

which can be viewed as the product

(6.11) ζ(T, z) = λ0(T )ξU,V,a(T, z)

of an auxiliary mapping for that factor of automorphy, the mapping

(6.12) λ0 : Γ −→ C∗ given by λ0(T ) = exp 2πiσ0(T ),

and a root factor for that factor of automorphy, given by

(6.13) ξU,V,a(T, z) = exp 2πi tw̃(z, a)
(
Uω(T ) + V ω(T )

)
.

The condition in Theorem 6.1 that (6.10) is an abelian factor of automorphy
then can be expressed alternatively as follows.

Corollary 6.2 There is an abelian factor of automorphy with the root factor
ξU,V,a(T, z) if and only if there is a mapping λ0 : Γ −→ C∗ such that

(6.14) λ0(ST ) = λ0(S)λ0(T )φU,V (S, T )

for all S, T ∈ Γ, where φU,V : Γ× Γ −→ C∗ is the mapping defined by

(6.15) φU,V (S, T ) = exp 2πi tω(T )
(
Uω(S) + V ω(S)

)
;

the mapping λ0 then is an auxiliary mapping for this abelian factor of automor-
phy.

Proof: Condition (i) of Theorem 6.1 is automatically satisfied by the explicit
form of the root factor. Condition (ii) can be rewritten in terms of the mapping
λ0(T ) = exp 2πiσ0(T ) as

(6.16) λ0(S)λ0(T )λ0(ST )−1 exp 2πi

g∑
i=1

σi(S)ωi(T ) = 1,
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which is just (6.14) since σi(S) has the form (6.7); and that suffices for the
proof.

The auxiliary mapping (6.15) plays a significant role in the subsequent dis-
cussion. It is useful to note here that

φU,V (S1S2, T ) = φU,V (S1, T ) φU,V (S2, T ),(6.17)

φU,V (S, T1T2) = φU,V (S, T1) φU,V (S, T2), and

φU,V (S−1, T ) = φU,V (S, T−1) = φU,V (S, T )−1

for all S, T ∈ Γ, since ω(ST ) = ω(S) + ω(T ) and ω(T−1) = −ω(T ).

6.2 Root Factors

If Ti are generators of the covering translation group Γ of a Riemann surface
M of genus g > 0 then any mapping λ0 : Γ −→ C∗ that satisfies (6.14) is
determined fully by the values λ0(Ti) and λ0(T−1

i ), since any element in Γ is a
product of the generators Ti and their inverses and the value of the mapping
λ0 on a product of two elements of Γ is determined by its values on those two
elements through the product formula (6.14). Actually since φU,V (I, I) = 1 for
the identity I ∈ Γ it follows from the product formula (6.14) that λ0(I)λ0(I) =
λ0(I) hence λ0(I) = 1; and then by the product formula again 1 = λ0(TT−1) =
λ0(T )λ0(T−1)φU,V (T, T−1) for any T ∈ Γ while φU,V (T, T−1) = φU,V (T, T )−1

by (6.17) so that

(6.18) λ0(T−1) = λ0(T )−1φU,V (T, T ) for any T ∈ Γ.

Thus the values λ0(Ti) already fully determine the mapping λ0.

Now consider the free semigroup F∗ generated by the symbols Ti and T−1
i ,

the set of all words T ∗ = T±1
i1
T±1
i2
· · ·T±1

in
where the product of two words

T ∗1 and T ∗2 is the word T ∗1 T
∗
2 . The natural mapping that associates to any

word T ∗ = T±1
i1
T±1
i2
· · ·T±1

in
∈ F∗ the element T = T±1

i1
T±1
i2
· · ·T±1

in
∈ Γ is a

surjective semigroup homomorphism π : F∗ −→ Γ. The period classes ω of the
holomorphic abelian integrals on M are group homomorphisms ω : Γ −→ C,
which can be lifted to semigroup homomorphisms ω̃∗ : F∗ −→ C by setting
ω̃∗(T ∗) = ω(πT ∗); the mappings φU,V (S, T ) defined by (6.15) can be lifted

correspondingly to mappings φ̃∗U,V : F∗ × F∗ −→ C defined as in (6.15) but
in terms of the mappings ω̃∗, and the liftings satisfy the analogues of (6.17).
Since F∗ is the free semigroup generated by Ti and T−1

i there is a mapping

λ̃∗0 : F∗ −→ C∗ satisfying the analogue of the product formula (6.14) beginning

with any chosen values λ̃∗0(Ti) ∈ C∗ and λ̃∗0(T−1
i ) and extending this to any word

in F∗ by applying successively the product formula (6.14) in the semigroup F∗;
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for instance if T = Ti1T
−1
i2
Ti3Ti4 · · · then

λ̃∗0(T ) = λ̃∗0(Ti1)λ̃∗0(T−1
i2
Ti3Ti4 · · · ) · φ̃∗U,V (Ti1 , T

−1
i2
Ti3Ti4 · · · )(6.19)

= λ̃∗0(Ti1)λ̃∗0(T−1
i2

)λ̃∗0(Ti3Ti4 · · · )

· φ̃∗U,V (Ti1 , T
−1
i2
Ti3Ti4 · · · )φ̃∗U,V (T−1

i2
, Ti3Ti4 · · · )

= · · · .

This is one way of applying the product formula (6.14) to calculate the value of

λ̃∗0(T ); of course there are many different ways in which the terms of a product
can be grouped to apply the product formula, but the result of the calculation
actually is independent of the particular grouping chosen, as a consequence of
the following.

Lemma 6.3 If a mapping λ̃∗0 : F∗ −→ C∗ satisfies the product formula (6.14)

for the products R∗S∗ and S∗T ∗ of the words R∗, S∗, T ∗ ∈ F∗ then λ̃∗0(R∗S∗T ∗)
can be defined equivalently by

(6.20) λ̃∗0
(
R∗S∗T ∗

)
= λ̃∗0

(
R∗ · (S∗T ∗)

)
= λ̃∗0

(
(R∗S∗) · T ∗

)
.

Proof: Applying the product formula (6.14) directly would yield the values

λ̃∗0
(
R∗ · (S∗T ∗)

)
= λ̃∗0(R∗)λ̃∗0(S∗T ∗)φ̃∗U,V (R∗, S∗T ∗)

= λ̃∗0(R∗) · λ̃∗0(S∗)λ̃∗0(T ∗)φ̃∗U,V (S∗, T ∗) · φ̃∗U,V (R∗, S∗T ∗)

and

λ̃∗0
(
(R∗S∗) · T ∗

)
= λ̃∗0(R∗S∗)λ̃∗0(T ∗)φ̃∗U,V (R∗S∗, T ∗)

= λ̃∗0(R∗)λ̃∗0(S∗)φ̃∗U,V (R∗, S∗) · λ̃∗0(T ∗)φ̃∗U,V (R∗S∗, T ∗);

so (6.20) is equivalent to

(6.21) φ̃∗U,V (S∗, T ∗)φ̃∗U,V (R∗, S∗T ∗) = φ̃∗U,V (R∗, S∗)φ̃∗U,V (R∗S∗, T ∗),

which follows immediately from (6.17), and that suffices for the proof.

What is particularly relevant is the following consequence of the preceding
Lemma 6.3.

Lemma 6.4 The mapping λ̃∗0 : F∗ −→ C∗ satisfies the product formula (6.14).

Proof: If T ∗ = T ∗1 T
∗
2 ∈ F∗ it follows from the preceding lemma that the value

λ̃∗0(T ∗) can be calculated by grouping the successive application of the product
formula (6.14) in any way, the analogue of the corresponding argument for the
consequence of the associative law for multiplicatioin. In particular the values of
λ̃∗0(T ∗1 ) and λ̃∗0(T ∗2 ) can be calculated separately and then the value λ̃∗0(T ∗) can
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be calculated by applying the product formula to the product T ∗1 T
∗
2 , yielding

λ̃∗0(T ∗1 T
∗
2 ) = λ̃∗0(T ∗1 ) · λ̃∗0(T ∗2 ) · φ̃U,V (T ∗1 , T

∗
2 ). That suffices for the proof.

An alternative proof of the preceding Lemma 6.4 follows by direct calculation
from the obvious general form of the product formula (6.19) when the mappings

φ̃∗U,V (S∗, T ∗) are decomposed by an application of (6.17) into products of terms

φ̃U,V (T ∗i , T
∗
j ) in which T ∗i , T

∗
j are generators of the free semigroup F∗ .

The free group F on the symbols Ti is the quotient of the free semigroup
F∗ upon identifying the words T ∗i (T ∗i )−1 and (T ∗i )−1T ∗i with the identity; the

natural mapping F∗ −→ F̃ is a semigroup homomorphism which associates
to each word T ∗ ∈ F∗ a word T̃ ∈ F . The period homomorphisms ω̃∗ and
the mappings φ̃∗U,V respect this identification so induce group homomorphisms

ω̃ : F −→ C and mappings φ̃U,V : F −→ C which satisfy the product formula

(6.14) and the formula (6.17) for mappings from F . When the values λ̃∗0(Ti)

and λ̃∗0(T−1
i ) in terms of which the mapping λ̃∗0 is defined are chosen so that

they satisfy (6.18) then the product formula (6.14) shows that

λ̃∗0(T̃ · T̃−1) = λ̃∗0(T̃ )λ̃∗0(T̃−1)φ̃∗U,V (T̃ , T̃−1)

= λ̃∗0(T̃ ) · λ̃∗0(T̃ )−1φ̃∗U,V (T̃ , T̃ ) · φ̃∗U,V (T̃ , T̃−1)

= 1

since φ̃∗U,V (T̃ , T̃−1) = φ̃∗U,V (T̃ , T̃ )−1 by (6.17), and similarly for the product

λ̃∗0(T̃−1 ·T̃ ). Thus with these choices for the values λ̃∗0(T−1
i ) the mapping λ̃∗0 also

respects the identification leading to the free group and consequently induces
a mapping λ̃0 : F −→ C∗ which satisfies the product formula (6.14) in terms of

the mapping φ̃U,V : F × F −→ C∗.
On a marked3 Riemann surface M of genus g > 0 the group Γ is generated

by the 2g covering translations Aj , Bj associated to the marking; the group Γ

is the quotient Γ = F/K of the free group F generated by Ãj and B̃j modulo
the subgroup K ⊂ F generated by the single element

(6.22) C̃ = C̃1C̃2 · · · C̃g ∈ F where C̃j = [Ãj , B̃j ] = ÃjB̃jÃ
−1
j B̃−1

j .

In that case Lemma 6.2 can be applied quite easily to yield the following result.

Lemma 6.5 On a marked Riemann surface M of genus g > 0 there is an
abelian factor of automorphy with the root factor ξU,V,a(T, z) and the auxiliary

mapping with specified values λ0(Aj) and λ0(Bj) if and only if λ̃0(C̃) = 1.

Proof: The mappings ω̃ : F −→ C, φ̃U,V : F × F −→ C∗ and λ̃0 : F −→ C∗

are all well defined as in the preceding discussion, and λ̃0 satisfies the product
formula (6.14). The mappings ω̃ and φ̃U,V are invariant under C̃ and induce

3The definition and properties of markings of a surface are discussed in Appendix D.1.
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the corresponding mappings ω and φU,V of the group Γ. If λ̃0(C̃) = 1 then by
the product formula (6.14)

λ̃0(T̃ C̃) = λ̃0(T̃ )λ̃0(C̃)φ̃U,V (T̃ , C̃) = λ̃0(T̃ )φ̃U,V (T̃ , C̃)

and correspondingly for the product C̃T̃ ; and φ̃U,V (T̃ , C̃) = 1 since C̃ ∈ [Γ,Γ]

so actually λ̃0(C̃T̃ ) = λ̃0(T̃ C̃) = λ̃0(T̃ ). Thus the mapping λ̃0 is invariant

under C̃ and consequently induces a mapping λ0 : Γ −→ C∗ that satisfies the
product formula (6.14). It then follows from Corollary 6.2 that there is an
abelian factor of automorphy with the root factor ξU,V,a(T, z) and the auxiliary
mapping λ0. Conversely if there is such an abelian factor of automorphy the
mapping λ0 : Γ −→ C∗ induces a mapping λ̃0 : F −→ C∗ for which λ̃0(C̃) = 1.
That suffices for the proof,

Perhaps surprisingly the value λ̃0(C̃) is independent of the choice of the

values λ̃0(Aj) and λ̃0(Bj) that define the mapping λ̃0.

Lemma 6.6 If a mapping λ̃0 : F −→ C∗ satisfies (6.14) then the restriction

of λ̃0 to the commutator subgroup [F ,F ] ⊂ F is the group homomorphism

λ̃0

∣∣∣[F ,F ] ∈ Hom([F ,F ],C∗) given explicitly by

(6.23) λ̃0([S̃, T̃ ]) =
φ̃U,V (S̃, T̃ )

φ̃U,V (T̃ , S̃)

for any S̃, T̃ ∈ F .

Proof: It is clear from the definition (6.15) of the auxiliary mapping φ̃U,V (S̃, T̃ )
that

(6.24) φ̃U,V (C̃, T̃ ) = φ̃U,V (T̃ , C̃) = 1 for all T̃ ∈ F , C̃ ∈ [F ,F ],

since ω(C̃) = 0 for any commutator C̃ ∈ [F ,F ]; and it then follows from the

product formula (6.14) that λ̃0(S̃T̃ ) = λ̃0(S̃)λ̃0(T̃ ) whenever either S̃ ∈ [F ,F ] or

T̃ ∈ [F ,F ], so in particular the restriction of the mapping λ̃0 to the commutator
subgroup [F ,F ] is a group homomorphism. Then by (6.14) and (6.18)

λ̃0([S̃, T̃ ]) = λ̃0

(
S̃T̃ (T̃ S̃)−1

)
(6.25)

= λ̃0(S̃T̃ )λ̃0

(
(T̃ S̃)−1

)
φ̃U,V (S̃T̃ , (T̃ S̃)−1)

= λ̃0(S̃T̃ ) · λ̃0(T̃ S̃)−1φ̃U,V (T̃ S̃, T̃ S̃) · φ̃U,V (S̃T, TS)−1.

Note that by (6.14)

λ̃0(S̃T̃ )λ̃0(T̃ S̃)−1 =
λ̃0(S̃)λ̃0(T̃ )φ̃U,V (S̃, T̃ )

λ̃0(T̃ )λ̃0(S̃)φ̃U,V (T̃ , S̃)
=
φ̃U,V (S̃, T̃ )

φ̃U,V (T̃ , S̃)
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while it is clear from (6.18 ) that φ̃U,V (S̃T̃ , T̃ S̃) = φ̃U,V (T̃ S̃, T̃ S̃) hence that

φ̃U,V (T̃ S̃, T̃ S̃) · φ̃U,V (S̃T̃ , T̃ S̃)−1 = 1;

and substituting the preceding two observations into (6.25) yields (6.23), thereby
concluding the proof.

The preceding Lemma 6.6 shows that the condition λ̃0(C̃) in Lemma6.5
depends only on the matrices U, V and not on the particular choices of the values
λ̃0(Ãj) and λ̃0(B̃j) defining the mapping λ̃O; so if this condition is satisfied
then ξU,V,a(T, z) is the root factor of an abelian factor of automorphy and the
associated auxiliary mappings can be specified to take any chosen values on the
generators Aj , Bj of the group Γ.

To investigate this condition further it is convenient to decompose the period
matrix of a marked Riemann surface M into blocks

(6.26) Ω =
(
ΩA ΩB

)
where (ΩA)ij = {ωi(Aj)}, (ΩB)ij = {ωi(Bj)}

associated to the choice of generators Aj , Bj of the group Γ, where the period
vectors of a basis ωi(z) of the abelian differentials are the column vectors

(6.27) ω(Aj) = {ωi(Aj)} and ω(Bj) = {ωi(Bj)}.

In these terms the condition of Lemma 6.5 can be rephrased as follows.

Theorem 6.7 On a marked Riemann surface M = M̃/Γ of genus g there is
an abelian factor of automorphy ζ(T, z) with the root factor ξU,V,a(T, z) if and
only if the matrices U, V satisfy

(6.28) tr
(
tΩB(V − tV )ΩA + tΩBUΩA − tΩB

tUΩA

)
∈ Z

where tr(X) denotes the trace of the matrix X. The auxiliary mappings λ0

for this abelian factor of automorphy can be required to have any desired initial
values λ0(Aj) and λ0(Bj).

Proof: From Lemma 6.6 and the definition (6.15) of the mapping φ̃U,V (S̃, T̃ )
it follows that

λ̃0(C̃) = λ̃(C̃1C̃2 · · · C̃g) =

g∏
j=1

λ̃0(C̃j) =

g∏
j=1

λ̃0([Ãj , B̃j ]) =

g∏
j=1

φ̃U,V (Ãj , B̃j)

φ̃U,V (B̃j , Ãj)

= exp 2πi

g∑
j=1

(
tω(Bj)

(
Uω(Aj) + V ω(Aj)

)
− tω(Aj)

(
Uω(Bj) + V ω(Bj)

)
;

therefore λ̃0(C̃) = 1 if and only if

(6.29)

g∑
j=1

(
tω(Bj)

(
Uω(Aj) + V ω(Aj)

)
− tω(Aj)

(
Uω(Bj) + V ω(Bj)

)
∈ Z.
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Since
∑g
j=1

tω(Bj)Uω(Aj) =
∑g
jkl=1(ΩB)kjUkl(ΩA)lj = tr( tΩBUΩA) and sim-

ilarly for the other terms, it is easy to see that equation (6.29) can be rewritten
as

(6.30) tr
(
tΩBUΩA + tΩBV ΩA − tΩAUΩB − tΩAV ΩB

)
∈ Z

or equivalently in the form given in equation (6.28). That suffices for the proof.

The characteristic class of the holomorphic line bundle described by an
abelian factor of automnorphy λ0(T )ξU,V,a(T, z) also is determined fully just
by the matrices U and V , as follows.

Theorem 6.8 The characteristic class of the holomorphic line bundle ζ over a
marked Riemann surface M of genus g > 0 described by the abelian factor of
automorphy ζ(T, z) = λ0(T )ξU,V,a(T, z) is

(6.31) c(ζ) = tr
(
tΩB(V − tV )ΩA + tΩBUΩA − tΩB

tUΩA

)

in terms of the decomposition 6.26 of the period matrix Ω of the surface M .

Proof: By the basic Existence Theorem, Theorem 2.19, the holomorphic line
bundle described by an abelian factor of automorphy ζ(T, z) = λ0ξU,V,a(T, z) has
a nontrivial meromorphic cross-section, hence this abelian factor of automorphy
has a nontrivial meromorphic relatively automorphic function, a meromorphic
function f(z) on M̃ such that f(Tz) = ζ(T, z)f(z) for all T ∈ Γ. For this
function

d log f(Tz) = d log f(z) + d log ζ(T, z) = d log f(z) + d log ξU,V,a(T, z)(6.32)

= d log f(z) + 2πi tω̃(z)
(
Uω(T ) + V ω(T )

)

for all T ∈ Γ, since the auxiliary mapping λ0(T ) is a constant. When the Rie-

mann surface M = M̃/Γ is identified as the quotient of the fundamental domain

∆ ⊂ M̃ when the edges of ∆ are identified as in figure (D.2) in Appendix D,
the characteristic class of the line bundle ζ is the degree of the divisor of the
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meromorphic function f(z) in ∆ as in (1.14) so

c(ζ) =
1

2πi

∫
∂∆

d log f(z)

=
1

2πi

g∑
j=1

∫
C1···Cj−1α̃j−C1···CjBj α̃j+C1···Cj−1Aj β̃j−C1···Cj β̃j

d log f(z)

=
1

2πi

g∑
j=1

∫
α̃j

d log f(C1 · · ·Cj−1z)− d log f(C1 · · ·CjBjz)

+
1

2πi

∑
g

∫
βj

d log f(C1 · · ·Cj−1Ajz)− d log f(C1 · · ·Cjz)

= −
g∑
j=1

∫
α̃j

tω̃(z)
(
Uω(Bj) + V ω(Bj)

)
+

g∑
j=1

∫
β̃j

tω̃(z)
(
Uω(Aj) + V ω(Aj)

)
= −

g∑
j=1

tω(Aj)
(
Uω(Bj) + V ω(Bj)

)
+

g∑
j=1

tω(Bj)
(
Uω(Aj) + V ω(Aj)

)
= −tr tΩA

(
UΩB + V ΩB

)
+ tr tΩB

(
UΩA + V ΩA

)
which can be rewritten as (6.31), thereby concluding the proof.

On a marked Riemann surface there is a canonical basis for the holomorphic
abelian differentials for which the component ΩA of the period matrix Ω is the
identity matrix, as in Theorem 3.22; and the Riemann matrix conditions in the
form in Theorem F.22 in Appendix F.3 assert that the component ΩB of the
period matrix is a matrix ΩB = Z in the Siegel upper half-space Hg, so that
Z is a 2g × 2g symmetric matrix Z = X + iY where the imaginary part Y
is a positive definite matrix; roughly speaking, the symmetry of Z expresses
Riemann’s equality while the positive definiteness of Y expresses Riemann’s
inequality. In these terms the preceding two theorems can be rephrased as
follows.

Corollary 6.9 In terms of the canonical basis for the holomorphic abelian dif-
ferentials on a marked Riemann surface M of genus g > 0, for which the period
matrix has the form Ω =

(
I Z

)
where Z = X + iY ∈ Hg, there is an abelian

factor of automorphy with the root factor ξU,V,a(T, z) if and only if

(6.33) tr
(
iY (U + tU)

)
= n ∈ Z;

and n is the characteristic class of the holomorphic line bundle described by this
abelian factor of automorphy.

Proof: When ΩA = I and ΩB = Z for a symmetric g × g complex matrix
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Z = X + iY , condition (6.28) reduces to the condition that n ∈ Z where

n = tr
(
Z(V − tV ) + ZU − Z tU

)
(6.34)

= tr
(
Z(V − tV ) +X(U − tU) + iY (U + tU

)
.

Since Z and X are symmetric matrices

tr Z(V − tV ) = tr X(U − tU) = 0,

so (6.34) reduces to (6.33). By Theorem 6.8 the characteristic class of the line
bundle describe by this abelian factor of automorphy is n, and that suffices for
the proof.

Since the matrix Y is positive definite it is invertible, and its inverse Y −1

is a symmetic real matrix; the matrix U = tU = 1
2giY

−1 then is a symmetric

matrix for which tr
(
iY (U + tU)

)
= tr

(
iY · 1

giY
−1
)

= tr
(

1
g I
)

= 1. The factor

of automorphy with the root factor ξU,V,a(T, z) for this matrix U and the matrix
V = 0 and for any auxiliary mapping λ then describes a holomorphic line bundle
of characteristic class 1; so for a suitable choice λa of the auxiliary mapping the
abelian factor of automorphy

(6.35) ζa(T, z) = λa(T )ξ 1
2giY

−1,0,a(T, z) = λa(T ) exp π
g
tw̃(z, a)Y −1ω(T )

describes the point bundle ζa, or equivalently admits a holomorphic relatively
automorphic function pa(z) having a simple zero at the point a ∈ M̃ and equiv-

alent points Γa ⊂ M̃ but nowhere else on M̃ . The factor of automorphy (6.35)

is called the intrinsic abelian factor of automorphy at the point a ∈ M̃ , since
the root factor is determined explicitly by the period matrix Ω =

(
I Z

)
of the

marked Riemann surface in the normal form; it is determined uniquely up to
a holomorphically trivial flat line bundle. The relatively automorphic function
pa(z) is called the local prime function at the point a ∈ M̃ . Abelian factors of
automorphy representing any divisor on M then can be written as products of
powers of the intrinsic abelian factors of automorphy for the appropriate points
a ∈ M̃ .

There are other abelian factors of automorphy on a marked Riemann surface
that describe point bundles; perhaps the simplest is one that is expressed in
terms of the choice of a holomorphic abelian differential ω1(z) on M . Since the
matrix Y is positive definite its leading term y11 is nonzero. If ∆11 is the matrix
with entries

(
∆11

)
jk

= δ1
j δ

1
k and if U = 1

2iy11
∆11 then

iY (U + tU) =
1

y11
Y∆11 =

1

y11


y11 0 0 · · ·
y21 0 0 · · ·
· · · · · ·
yg1 0 0 · · ·
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so tr
(
iY (U + tU)

)
= 1 as in the preceding case. Thus for a suitable choice

λa,ω1
(T ) of the auxiliary mapping the factor of automorphy

ζa,ω1
(T, z) = λa,ω1

(T )ξ 1
2iy11

∆11,0,a(T, z)(6.36)

= λa,ω1
(T ) exp π

y11
w1(z, a) ω1(T )

also describes the point bundle ζa. This abelian factor of automorphy is called
the minimal abelian factor of automorphy at the point a ∈ M̃ for the abelian
differential ω1(z), and it is defined uniquely up to a holomorphically trivial flat
line bundle.

Corollary 6.10 In terms of the canonical basis for the holomorphic abelian
differentials on a marked Riemann surface M of genus g > 0, for which the
period matrix has the form Ω =

(
I Z

)
where Z = X + iY ∈ Hg, if U0, V0 are

any g×g complex matrices for which tr Y (U0+ tU0) = 0 then an arbitrary abelian
factor of automorphy ζ(T, z) = λ(T )ξU,V,a(T, z) is holomorphically equivalent to
the abelian factor of automorphy

(6.37) ζ∗(T, z) = λ∗(T )ξU+U0,V+V0,a(T, z)

for a suitable auxiliary mapping λ∗(T ). In particular it can always be assumed
that V = 0 in any abelian factor of automorphy.

Proof: It follows from the preceding Corollary 6.9 that if U0, V0 are g × g
complex matrices for which tr Y (U0 + tU0) = 0 there is an auxiliary mapping
λ0(T ) for which the abelian factor of automorphy ζ0(T, z) = λ0(T )ξU0,V0,a(T, z)
describes a holomorphic line bundle of characteristic class 0; moreover after mul-
tiplying by a flat line bundle it can be assuimed that the abelian factor of auto-
morphy ζ0(T, z) = λ0(T )ξU0,V0,a(T, z) is holomorphically trivial so describes the
identity line bundle. Consequently any abelian factor of automorphy ζ(T, z) =
λ(T )ξU,V,a(T, z) is holomorphically equivalent to the abelian factor of automor-
phy ζ(T, z)ζ0(T, z), which has the form (6.37) where λ∗(T ) = λ0(T )λ(T ), and
that suffices for the proof.

6.3 Hyperabelian Factors of Automorphy

A particularly interesting special class of abelian factors of automorphy for
a compact Riemann surface M consists of those for which the auxiliary map-
pings are trivial on the commutator subgroup [Γ,Γ] ⊂ Γ; they are called the
hyperabelian factors of automorphy for the Riemann surface M . It is clear that
the hyperabelian factors of automorphy form a subgroup of the group of abelian
factors of automorphy on M ; that subgroup will be denoted by A0(M) ⊂ A(M).
Since the restriction to the commutator subgroup of any auxiliary mapping for
an abelian factor of automorphy is determined fully by the root factor it fol-
lows that the condition that an abelian factor of automorphy be hyperabelian
depends solely on the root factor; the root factors of hyperabelian factors of
automorphy hence are called hyperabelian root factors.
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Lemma 6.11 A function ξU,V,a(T, z) is a hyperabelian root factor if and only
if

(6.38) φU,V (S, T ) = φU,V (T, S) for alll S, T ∈ Γ

where φU,V (S, T ) is the function (6.15).

Proof: It follows from Theorem 6.6 that any tentative auxililary mapping for
the root factor ξU,V,a(T, z) vanishes on the commutator subgroup [Γ,Γ] if and
only if it satisfies (6.38); and since (??) is automatically satisfied

Any hyperabelian root factor automatically satisfies the condition (??) since
C ∈ [Γ,Γ]; so any expression ξU,V,a(T, z) that satisfies the condition that the
associated mapping must vanish on the commutator subgroup automatically
satisfies the condition that it be the root factor of an abelian factor of automor-
phy.

Theorem 6.12 A root factor ξU,V,a(T, z) is hyperabelian if and only if

(6.39) tU = −U, tV = V, 2<
(
tΩUΩ

)
is an integral matrix.

Proof: If Tk ∈ Γ for 1 ≤ k ≤ 2g are generators of the covering translation group
that represent a basis for H1(M) then since [Γ,Γ] ⊂ Γ is the normal subgroup
of Γ generated by the commutators [Tk, Tl] and the auxiliary mappings for any
root factor restrict to homomorphisms on the commutator subgroup it follows
from Theorem 6.6 that a root factor ξU,V,a(T, z) is hyperabelian if and only if

(6.40) φU,V (Tk, Tl) = φU,V (Tl, Tk) for 1 ≤ k, l ≤ 2g

in terms of the mapping (6.15). If Ω is the period matrix of the Riemann
surface in terms of the generators Tk and the abelian differentials ωi(z) then
ω(Tk) = Ωδk where δk are the column vectors of the identity matrix; hence

φU,V (Tk, Tl) = exp 2πi tω(Tl)
(
Uω(Tk) + V ω(Tk)

)
= exp 2πi tδl

tΩ
(
UΩδk + V Ωδk

)
so (6.40) is equivalent to the condition that the difference

(6.41) nlk = tδl
tΩ
(
UΩδk + V Ωδk

)
− tδk

tΩ
(
UΩδl + V Ωδl

)
is an integer for any indices k, l, or in matrix terms that the 2g × 2g matrix
N = {nlk} defined by

N = tΩ(UΩ + V Ω)−
t
(
tΩ(UΩ + V Ω)

)
(6.42)

= tΩUΩ + tΩV Ω− tΩ tUΩ− tΩ tV Ω

=
(
tΩ tΩ

)(
V − tV U
− tU 0

)(
Ω
Ω

)
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is an integral matrix. It is evident from its definition (6.41) that N is a skew
symmetric matrix. Now if Π is the inverse period matrix to the period matrix
Ω, the g × 2g matrix Π for which(

Π
Π

)
=
(
tΩ tΩ)−1

as in Theorem F.12 in Appendix F.1, then equation (6.42) can be rewritten

(6.43)

(
V − tV U
− tU 0

)
=

(
Π
Π

)
N
(
tΠ tΠ

)
=

(
ΠN tΠ ΠN tΠ
ΠN tΠ ΠN tΠ

)
or equivalently

(6.44) V − tV = ΠN tΠ, U = ΠN tΠ. − tU = ΠN tΠ, 0 = ΠN tΠ.

Using these observations, if N is an integral matrix it follows from (6.44) that

0 = ΠN tΠ = ΠN tΠ = V − tV so tV = V

and also that

U = ΠN tΠ = ΠN tΠ = − tU so tU = −U,

thus demonstrating the first two assertions in (6.39). Substituting these obser-
vations in the matrix (6.42) shows that

N =
(
tΩ tΩ

)(0 U
U 0

)(
Ω
Ω

)
(6.45)

= tΩUΩ + tΩUΩ = 2<
(
tΩUΩ

)
,

which is the third assertion in (6.39). Conversely if the three conditions (6.39)
are satisfied then substituting the first two conditions in the matrix N of (6.42)
shows as in the preceding calculation (6.45) that N has the form (6.45), hence
N is integral as a consequence of the third condition, to conclude the proof.

Corollary 6.13 If M is a marked Riemann surface with the period matrix Ω =(
I Z

)
in terms of a canonical basis for the holomorphic abelian differentials,

where Z = X + iY ∈ Hg, a root factor ξU,V,a(T, z) is hyperabelian if and only if

(i) tU = −U and tV = V,

(6.46)

(ii) <(U) = N = − tN ∈ 1
2Z

g×g,

(iii) =(U) = (N1 −NX)Y −1 = Y −1( tN1 +XN) where N1 ∈ 1
2Z

g×g,

(iv) −XNX + Y NY +XN1 − tN1X ∈ 1
2Z

g×g.
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Proof: The preceding theorem shows that the root factor ξU,V,a(T, z) is hyper-
abelian if and only if tU = −U , tV = V and 2<( tΩUΩ) is an integral matrix.
The first two of these conditions are listed in (i); the third condition for the
period matrix Ω =

(
I Z

)
, where Z ∈ Hg so that tZ = Z, can be written

(6.47) 2<( tΩUΩ) = 2<
(
I
Z

)
U
(
I Z

)
= 2<

(
U UZ
ZU ZUZ

)
∈ Z2g×2g.

If U = N + iT for some real g × g matrices N,T , where tN = −N and tT = T
since tU = −U , the preceding condition (6.47) can be written as the set of
conditions

(a) 2<(U) = 2N ∈ Zg×g

(b) 2<(UZ) = 2(NX + TY ) ∈ Zg×g

(c) 2<(ZU) = 2(XN − Y T ) ∈ Zg×g

(d) 2<(ZUZ) = 2(XNX + Y NY +XTY − Y TX) ∈ Zg×g

Condition (ii) in the corollary is condition (a), where tN = −N as already
noted. Since t(NX + TY ) = −XN + Y T conditions (b) and (c) are equivalent;
and (b) is really just the assertion that NX+TY = N1 ∈ Zg×g so that =(U) =
T = (N1 − NX)Y −1, which is the first part of (iii); since tT = T as already
noted that yields the second part of (iii). Replacing T in (d) by the expressions
for T in terms of the matrices N and N1 easily leads to condition (iv), and that
suffices for the proof.

The preceding corollary gives necessary and sufficient conditions for the exis-
tence of nontrivial hyperabelian factors of automorphy ξU,V,a(T, z)) on a marked
Riemann surface in terms of the period matrix Ω =

(
I Z

)
of that surface in

the standard form. These conditions involve integral relations between the real
and imaginary parts of the matrix Z; so they are either further restrictions on
the period matrix of a surface or special sets of auxiliary integral matrices N1

and N2 that describe hyperabelian factors of automorphy for general Riemann
surfaces. The simplest solutions of these equations for general Riemann sur-
faces are those for which the the matrix U is purely imaginary; in that case the
conditions (6.46) reduce to

U = iN1Y
−1 = i Y −1 tN1 where N1 ∈ 1

2Z
g×g and(6.48)

XN1 − tN1X = N2 ∈ 1
2Z

g×g.

The first set of equalities imply that Y N1 = tN1Y . Generally the only half-
integral matrices N1 satisfying this condition are scalar matrices, so integral
multiples of the matrix N1 = − 1

2I; and since this matrix commutes with any
matrix the second condition is satisfied for N2 = 0. Thus the matrices U =
iN1Y

−1 = 1
2iY

−1, V = 0 satisfy the conditions of the preceding corollary so
there is a hyperabelian root factor of the form

(6.49) ξ 1
2iY

−1,0,a(T, z) = expπ tw̃(z, a)Y −1ω(T ).
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The associated factor of automorphy for a suitable auxiliaryi mapping is just
the g-th power of the intrinsic abelian factor of automorphy ζa(T, z) of (6.35),
the factor of automorphy describing the point bundle ζa.

————————————–
When a compact Riemann surface M of genus g > 0 is represented as the

quotient M = M̃/Γ of its universal covering space M̃ by the covering translation
group Γ then since the commutator subgroup [Γ,Γ] ⊂ Γ is a normal subgroup the

covering projection π̃ : M̃ −→M = M̃/Γ can be decomposed as the composition
π̃ = π̂ ◦ πa of two mappings in the chain of covering projections

(6.50) M̃
πa−→ M̂ = M̃/[Γ,Γ]

π̂−→M = M̂/Γa

where Γa = Γ/[Γ,Γ] is the abelianization of the group Γ. The group Γ can be
generated by 2g generators with the single relation (D.4) so its abelianization
Γa is a free abelian group on 2g generators. The subgroup [Γ,Γ] ⊂ Γ is not of

finite index, since the quotient Γa = Γ/[Γ,Γ] is an infinite group, so M̂ is not

a compact Riemann surface. The surface M̂ is not simply connected; indeed
its fundamental group is isomorphic to [Γ,Γ]. The fundamental group of any
noncompact connected surface is a free group4; so the group [Γ,Γ] actually is
a free group, a result which though interesting will not be used here. The
Riemann surface M̃ can be identified with the unit disc, through the general
uniformization theorem. The Riemann surface M̂ however appears to be an
example of a non-continuable5 Riemann surface, a noncompact Riemann surface
that cannot be realized as a proper subset of another Riemann surface; but that
topic will not be pursued further here.

The holomorphic abelian differentials on M are represented by Γ-invariant
holomorphic differential 1-forms ωi on M̃ , and their integrals wi(z, z0) =

∫ z
z0
ωi

are holomorphic functions on M̃ such that

(6.51) wi(Tz, z0) = wi(z, z0) + ωi(T ) for all T ∈ Γ.

The set of period vectors ω(T ) = {ωi(T )} ∈ Cg for all T ∈ Γ form the lattice
subgroup L(Ω) ⊂ Cg; and the set of integrals wi(z, z0) describe a holomorphic
mapping

(6.52) w̃z0 : M̃ −→ Cg where w̃z0(z) = {wi(z, z0)} ∈ Cg.

It follows from (13.25) that the mapping (13.26) commutes with the covering

projections π̃ : M̃ −→ M and π : Cg −→ J(M) = Cg/L(Ω), so it induces
the Abel-Jacobi mapping wz0 : M −→ J(M) as in the commutative diagram
(3.4). Recall from the earlier discussion that the Abel-Jacobi mapping is a
nonsingular biholomorphic mapping from the Riemann surface M to its image
W1 = wz0(M) ⊂ J(M), which is an irreducible holomorphic submanifold of the

4See the discussion the book Riemann Surfaces by Lars Ahlfors and Leo Sario, section 44.
5See the discussion in the paper by S. Bochner, “Fortsetzung Riemannscher Flächen” Math.

Annalen 98(1928), pp. 406-421.
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complex torus J(M). The holomorphic mapping (13.26) and the Abel-Jacobi
mapping have the same local expression; so if the image of the mapping (13.26)
is denoted by

(6.53) W̃1 = w̃z0(M̃) ⊂ Cg

then the mapping (13.26) is a nonsingular holomorphic mapping, hence is a
locally biholomorphic mapping

(6.54) w̃z0 : M̃ −→ W̃1.

This situation can be summarized in the commutative diagram of holomorphic
mappings

(6.55)

M̃
w̃z0−−−−→ W̃1

ι−−−−→
⊂

Cg

π̃

y π

y π

y
M = M̃/Γ

wz0−−−−→∼= W1 = W̃1/L(Ω)
ι−−−−→
⊂

J(M) = Cg/L(Ω)

in which ι is the natural inclusion mapping. Although the subset W̃1 is defined
as the image (13.27) it also can be characterized by

(6.56) W̃1 = π−1(W1) so W̃1 + λ = W̃1 for all λ ∈ L(Ω).

Indeed if t ∈ W̃1 ⊂ Cg then by definition t = w̃z0(z) for some point z ∈ M̃ .
and if λ ∈ L(Ω) then λ = ω(T ) for some T ∈ Γ; it then follows from (13.25)

that wz0(Tz) = wz0(z) + λ = t + λ, so t + λ ∈ W̃1. This also shows that the

mapping w̃z0 is a covering projection. Since W̃1 is the inverse image of the

holomorphic submanifold W1 by the holomorphic mapping π it follows that W̃1

is a holomorphic submanifold of Cg.
The holomorphic mapping (13.28) is locally biholomorphic but it is not glob-

ally biholomorphic. Indeed if w̃z0(z1) = w̃z0(z2) for two points z1, z2 ∈ M̃
then by the commutativity of the diagram (13.29) the images a1 = π̃(z1) and
a2 = π̃(z2) in M have the same image under the Abel-Jacobi mapping wz0 ;
and since the mapping wz0 is injective it follows that a1 = a2. Consequently
z1 = Tz2 for some T ∈ Γ; and then wz0(z1) = wz0(Tz2) = wz0(z1) + ω(T )
so that ω(T ) = 0, which by Corollary 3.6 is equivalent to the condition that
T ∈ [Γ,Γ]. The converse clearly holds, so

(6.57) w̃z0(z1) = w̃z0(z2) if and only if z1 = Tz2 where T ∈ [Γ,Γ].

That means that the mapping w̃z0 in the diagram (13.29) is a covering projec-
tion, with the covering translation group [Γ,Γ], and that this mapping can be

factored through the quotient surface M̂ = M̃/[Γ,Γ] so the diagram (13.29) can
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be factored into the commutative diagram of holomorphic mappings
(6.58)

M̃
w̃z0−−−−→ w̃z0(M̃) = W̃1

ι−−−−→
⊂

Cg

πa

y ∥∥∥ ∥∥∥
M̂ = M̃/[Γ,Γ]

ŵz0−−−−→∼= ŵz0(M̂) = W̃1
ι−−−−→
⊂

Cg

π̂

y π

y π

y
M = M̂/Γa

wz0−−−−→∼= wz0(M) = W1 = W̃1/L(Ω)
ι−−−−→
⊂

J(M) = Cg/L(Ω)

where all the vertical arrows are covering projections, as also is the mapping
w̃z0 : M̃ −→ W̃1. The holomorphic mapping ŵz0 clearly is surjective, it is
injective as a consequence of (13.31), and it is locally biholomorphic since it
has the same local expression as the Abel-Jacobi mapping wz0 ; hence it is a

biholomorphic mapping, as indicated in the diagram. The image ŵz0(M̂) = W̃1

thus is an irreducible holomorphic submanifold of Cg that is biholomorphic to
M̃ .

The holomorphic mapping ŵz0 is defined as the mapping induced by the
mapping w̃z0 ; but it also can be described somewhat independently. Indeed it
follows from (13.25) that the holomorphic abelian integrals wi(z, z0) are invari-
ant under the covering translation group [Γ,Γ] so they can be viewed as holo-

morphic functions ŵi(ẑ, z0) of points ẑ in the complex manifold M̂ . Of course
the holomorphic abelian differentials can be viewed as holomorphic differential
forms on the Riemann surface M̂ , which is not simply connected; but their in-
tegrals actually also are well defined global holomorphic functions ŵi(ẑ, z0) on

the manifold M̂ . In terms of these integrals the mapping ŵz0 can be viewed as
the mapping defined by

(6.59) ŵz0(ẑ) = {ŵi(ẑ, z0)} ∈ Cg;

and

(6.60) ŵi(T̂ ẑ, z0) = ŵi(ẑ, z0) + ω̂i(T̂ ) for all T̂ ∈ Γa

where ω̂i(T̂ ) ∈ C is the period ωi(T ) for any T ∈ Γ representing T̂ ∈ Γa. The set

of period vectors ω̂(T̂ ) for all T̂ ∈ Γa also form the lattice subgroup L(Ω) ⊂ Cg.
—————————

6.4 The Prime Function

Since the associated mappings for any of these root factors are determined
only up to the multiplication by an arbitrary flat factor of automorphy it is
possible to choose an associated mapping λa(T ) for the intrinsic root factor
ξ1,a(T, z) so that the factor of automorphy ζa(T, z) = λa(T )ξ1,a(z) represents
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the point bundle ζa. With this choice there will exist a holomorphic relatively
automorphic function pa(z) for the factor of automorphy ζa(T, z) such that

pa(z) has a simple zero at the point a ∈ M̃ and the equivalent points Γa but is
nonzero otherwise; and the automorphy condition has the form

(6.61) pa(Tz) = pa(z)λa(T ) exp
(π
g
tw̃(z, a)Y −1ω(T )

)
for all T ∈ Γ.

If q(z, z0;w, a) is the intrinsic cross-ratio function as characterised in Theo-

rem 5.6, a relatively automorphic function on M̃4 that as a function of z ∈ M̃
has a simple zero at z = w and a simple pole at z = a, then the product

(6.62) p(z, w) = pa(z)q(z, z0;w, a)

is a holomorphuic function of the variables z, w ∈ M̃ that has a simple zero on
the subvariety z = w and no other zeros. By Theorem 5.6 the intrinsic cross-
ratio function on any Riemann surface is a relatively automorphic function of
the variable z for the flat factor of automorphy

ζp(T, z) = exp−2π tw̃(w, a)Gω(T )),

using the form given in (5.24). For a marked Riemann surface with the stan-
dard basis for the holomorphic abelian differentials the period matrix has the
form Ω =

(
I Z

)
where Z = X + iY ∈ Hg and G = 1

2Y
−1, so the factor of

automorphy actually has the form

(6.63) ζp(T, z) = expπ tw̃(a,w)Y −1[Ω(T ).



Chapter 7

Families of Holomorphic
Line Bundles

PRELIMIINAARY VERSION

7.1 Local Bases for Bounded Spaces of Mero-
morphic Automorphic Functions

When considering the spaces of holomorphic cross-sections of families of
holomorphic line bundles over a compact Riemann surface M from an ana-
lytic perspective, it is convenient and relevant to the analytic interpretation
to represent line bundles by factors of automorphy for the action of the cov-
ering translation group Γ on the universal covering space M̃ of that Riemann
surface and to describe the holomorphic cross-sections of these line bundles by
holomorphic relatively automorphic functions for the factors of automorphy.
Every holomorphic line bundle over M actually can be described by a simple
explicit factor of automorphy, indeed by an abelian factor of automorphy. For
the discussion in this chapter the specific form of the factor of automorphy gen-
erally is not relevant. What is very relevant though is that if η(T, z) is a factor
of automorphy describing a holomorphic line bundle η of characteristic class
c(η) = r over M , all holomorphic line bundles of characteristic class r can be
represented by factors of automorphy of the form ρt(T )η(T, z) for parameters
t ∈ C2g, where ρt is the flat line bundle parametrized by the point t ∈ C2g under
the canonical parametrization (3.27) of flat line bundles associated to generators
T1, . . . , T2g ∈ Γ representing a basis τj ∈ H1(M); explicitly ρt ∈ Hom(Γ,C∗) is
the representation of the group Γ for which ρt(Tj) = exp 2πitj for 1 ≤ j ≤ 2g.
Families of holomorphic line bundles of characteristic class g then can be de-
scribed by factors of automorphy ρt(T )η(T, z) for parameter values t ∈ V lying
in subsets V ⊂ C2g; and holomorphic cross-sections of these families of line bun-
dles can be described by relatively automorphic functions f(z, t) ∈ Γ(M,O(ρtη)

175
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of the variable z ∈ M̃ that also depend on the variable t ∈ C2g. When the sub-
set V ⊂ C2g is a holomorphic subvariety the factors of automorphy ρt(T )η(T, z)
are holomorphic functions of the parameter t ∈ V , and it is possible to consider
relatively automorphic functions f(z, t) for these factors of automorphy that are
also holomorphic or meromorphic functions of the variables (z, t) ∈ M̃ × V .

Theorem 7.1 Let η be a factor of automorphy describing a holomorphic line
bundle of characteristic class c(η) = r on a compact Riemann surface M of
genus g > 0; let a1, . . . , an be n points of the universal covering space M̃ of
the surface M , not necessarily distinct; and let t0 ∈ C2g be a point in the
parameter space for the canonical parametrization of flat line bundles over M
associated to generators T1, . . . , T2g ∈ Γ of the covering translation group of M .

If r + n > 2g − 2 there are open neighborhoods Ũj ⊂ M̃ of the points aj, an

open neighborhood Ũ0 ⊂ C2g of the point t0, and r + n + 1 − g meromorphic
functions fi(z, u, t) of the variables z ∈ M̃, uj ∈ Ũj , t ∈ Ũ0 with singularities
at most simple poles along the subvarieties z = Tuj for T ∈ Γ and 1 ≤ j ≤ n,

such that for any fixed points uj ∈ Ũj , t ∈ Ũ0 these functions are a basis for the
vector space

(7.1) Λη(u, t) =
{
f ∈ Γ(M,M(ρtη))

∣∣∣ d(f) + u1 + · · ·+ un ≥ 0
}
.

Proof: To simplify the calculations slightly, choose a marking of the surface
M , that is, a base point a ∈ M̃ and generators Aj = Tj , Bj = Tg+j ∈ Γ for
1 ≤ j ≤ g; and suppose that the canonical parametrization of flat line bundles
is expressed in terms of these generators Tj ∈ Γ. Let ωi(z) be the canonical
basis for the holomorphic abelian differentials on the marked Riemann surface
M and let wi(z, a) be the associated holomorphic abelian integrals at the base
point a ∈ M̃ . The g × 2g period matrix of the differentials ωi(z) has the form
Ω = (I Z) for a g × g symmetric matrix Z = {zij} in the Siegel upper half-

space Hg of rank g, as in Theorem 3.22. Let Ũj ⊂ M̃ be open coordinate

neighborhoods of the points aj ∈ M̃ for 1 ≤ j ≤ n. Choose g auxiliary points

bk ∈ M̃ that represent distinct points of the surface M that are also distinct from
any of the points of M represented by the points aj and are such that the g× g
matrix W ′ = {w′i(bk, a)} is nonsingular, where w′i(bk, a) = ∂wi(zk, a)/∂zk|zk=bk

in terms of a local coordinate zk centered at the point bk; and let Ṽk ⊂ M̃ be open
coordinate neighborhoods of the points bk. By shrinking the neighborhoods Ũj
and Ṽk if necessary it can be supposed that the open subsets Ṽ1, . . . , Ṽg,

⋃n
j=1 Ũj

of M̃ represent g+1 disjoint open subsets of the surfaceM . The holomorphic line
bundles ζa = ζa1+···+an and ζb = ζb1+···+bg have characteristic classes c(ζa) = n
and c(ζb) = g respectively; and since c(ηζa) = r + n > 2g − 2 by assumption
it follows from the Riemann-Roch Theorem that γ(ρt0ηζa) = r + n+ 1− g and
γ(ρt0ηζaζb) = r + n+ 1. Consider then the vector space

X =
{
g ∈ Γ(M,M(ρt0ηζa))

∣∣∣ d(g) + b1 + · · ·+ bg ≥ 0
}

consisting of meromorphic cross-sections of the line bundle ρt0ηζa with singulari-
ties at most simple poles at the points Γbk ∈ M̃ . Since X and Γ(M,O(ρt0ηζaζb))
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are isomorphic vector spaces under the isomorphism that arises by multiply-
ing a cross-section g ∈ X by a nontrivial cross-section h ∈ Γ(M,O(ζb)) that
vanishes at the points bk, as in the argument on page 53, it follows that
dimX = γ(ρt0ηζaζb) = r + n + 1. Let gi(z) be a basis for the vector space
X for 0 ≤ i ≤ r + n, where the cross-sections gi(z) are meromorphic functions
on M̃ that are relatively automorphic functions for the factor of automorphy
ρt0ηζa; and if q̂(z1, z2; z3, z4) is the canonical cross-ratio function of the marked
Riemann surface M and haj (z) ∈ Γ(M,O(ζaj )) is a nontrivial holomorphic
cross-section vanishing at the points Γaj , set

ĝi(z, u, x, s) = gi(z) ·
n∏
j=1

(
haj (z)

−1q̂(z, p; aj , uj)
)
·
g∏
k=1

q̂(z, q; bk, xk) ·

· exp 2πi

g∑
l=1

slwl(z, b)

for 0 ≤ i ≤ r + n, where z ∈ M̃ , uj ∈ Ũj ⊂ M̃ , xk ∈ Ṽk ⊂ M̃ , sl ∈ C, and

p, q ∈ M̃ are fixed points of M̃ such that p, q 6∈
(⋃n

j=1 ΓŨj
)
∪
(⋃g

k=1 ΓṼk
)
;

thus Tuj 6= p and Txk 6= q for any points uj ∈ Ũj , xk ∈ Ṽk, and any T ∈ Γ,
so in particular Taj 6= p and Tbk 6= q. Recall from Theorem 5.16 (i) that
the cross-ratio function q̂(z1, z2; z3, z4) has simple zeros along the subvarieties
z1 = Tz3 and z2 = Tz4 and simple poles along the subvarieties z1 = Tz4

and z2 = Tz3 for all T ∈ Γ, and no other zeros or poles on the surface M̃ .
It follows that the product haj (z)

−1q̂(z, p; aj , uj) is a nontrivial meromorphic

function of the variables (z, uj) ∈ M̃ × Ũj with at most simple poles along the
subvarieties z = Tuj for 1 ≤ j ≤ n and all T ∈ Γ and no other singularities,
since the poles of the function haj (z)

−1 at z = Taj are cancelled by the zeros
of the cross-ratio function there; and the product gi(z)

∏g
k=1 q̂(z, q; bk, xk) is a

nontrivial meromorphic function of the variables (z, x) ∈ M̃ ×
∏g
k=1 Ṽk with at

most simple poles along the subvarieties z = Txk ∈ M̃ for 1 ≤ k ≤ g and all
T ∈ Γ and no other singularities, since the poles of the function gi(z) at the
points Tbk are cancelled by the zeros of the cross-ratio functions at those points.
Altogether the functions ĝi(z, u, x, s) are meromorphic functions of the variables
(z, u, x, s) ∈ M̃×

∏n
j=1 Ũj×

∏g
k=1 Ṽk×Cg with singularities at most simple poles

along the subvarieties z = Tuj and z = Txk and no other singularities; and for
any fixed points (u, x, s) they are r + n + 1 linearly independent meromorphic
functions of the variable z ∈ M̃ . Furthermore it follows from Theorem 5.16 (iii)
that

ĝi(Amz, u, x, s) = ĝi(z, u, x, s)ρt0(Am)η(Am, z) exp 2πism

ĝi(Bmz, u, x, s) = ĝi(z, u, x, s)ρt0(Bm)η(Bm, z) ·

· exp 2πi
(
−

n∑
j=1

wm(uj , aj)−
g∑
k=1

wm(xk, bk) +

g∑
l=1

slzlm

)
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for 1 ≤ m ≤ g; hence for each fixed point (u, x, s) these functions are r + n +
1 linearly independent meromorphic relatively automorphic functions for the
factor of automorphy ρtη where

(7.2)

tm =


t0m + sm

for 1 ≤ m ≤ g,

t0m −
∑n
j=1 wm−g(uj , aj)−

∑g
k=1 wm−g(xk, bk) +

∑g
l=1 slzlm−g

for g + 1 ≤ m ≤ 2g,

and t0m are the coordinates of the initial point t0 ∈ C2g. In particular since
q̂(z, p; aj , aj) = q̂(z, q; bk, bk) = 1 by Theorem 5.16 (i) it follows that

ĝi(z, a, b, 0) = gi(z)

n∏
j=1

haj (z)
−1 ∈ Γ(M,M(ρt0η));

these are r + n + 1 linearly independent meromorphic relatively automorphic
functions for the factor of automorphy ρt0η with poles at most at the divisors
a = a1 + · · ·+ an and b = b1 + · · ·+ bg and no other singularities, so they are a
basis for the vector space

Y =
{
g ∈ Γ(M,M(ρt0η))

∣∣∣ d(g) + a1 + · · ·+ an + b1 + · · ·+ bg ≥ 0
}

since as in the earlier argument dimY = γ(ρt0ηζaζb) = r + n+ 1.
The residue of the meromorphic function ĝi(z, u, x, s) of the variable z ∈ M̃

at the simple pole z = xp is

rip(u, x, s) =
1

2πi

∫
z∈∂Ṽp

ĝi(z, u, x, s)dz,

which is a holomorphic function of the variables uj ∈ ΓŨj , xk ∈ ΓṼk, sl ∈
C. Let R(u, x, s) = {rip(u, x, s)} be the (r + n + 1) × g matrix composed of
these functions. For any vector c = (c0, . . . , cr+n) ∈ Cr+n+1 it is evident that∑r+n
l=0 clrlp(a, b, 0) = 0 for 1 ≤ p ≤ g if and only if the linear combination

ĝc(z) =
∑r+n
l=0 clĝl(z, a, b, 0) is a meromorphic relatively automorphic function

ĝc ∈ Γ(M,M(ρt0η)) for which d(ĝc)+a ≥ 0. Since the functions ĝi(z, a, b, 0) are
a basis for the vector space Y it follows that the functions ĝc(z) for vectors c for
which

∑r+n
l=0 clrlp(a, b, 0) = 0 for 1 ≤ p ≤ g span the (r+n+ 1− g)-dimensional

space of relatively automorphic functions for the factor of automorphy ρt0η
with singularities at most along the divisor a; consequently there are precisely
r + n+ 1− g linearly independent such vectors c, so the (r + n+ 1)× g matrix
R(u, x, s) must have rank g at the point (u, x, s) = (a, b, 0). This matrix then
also has rank g at all nearby points, so it follows from familiar arguments that
after shrinking the neighborhoods Ũj , Ṽk further if necessary and choosing a
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sufficiently small open neighborhood W̃ of the origin in Cg there will exist
r + n+ 1− g holomorphic mappings

ci :

n∏
j=1

Ũj ×
g∏
k=1

Ṽk × W̃ −→ Cr+n+1

that are linearly independent vectors at each point (u, x, s) and are such that∑r+n
l=0 c

i
l(u, x, s)rlp(u, x, s) = 0 for 1 ≤ p ≤ g, where ci(u, x, s) = {cil(u, x, s)}.

In case the sort of arguments required for this conclusion are not altogether
familiar, a detailed proof is included in Lemma 7.2 following the proof of the
present theorem. The r + n+ 1− g linear combinations

fi(z, u, s, x) =

r+n∑
l=0

cil(u, x, s)ĝl(z, u, x, s)

therefore are meromorphic functions of the variables z ∈ M̃, uj ∈ Ũj , xk ∈
Ṽk, s ∈ W̃ with singularities at most simple poles along the subvarieties z =
Tuj , since the singularities along the subvarieties z = Txk have been eliminated;
and for any fixed point (u, x, s) they are linearly independent meromorphic
relatively automorphic functions for the factor of automorphy ρtη, so are a
basis for the vector space Λη(u, t) where the parameter t ∈ C2g is the function
of the parameters (u, x, s) given explicitly by (7.2).

To examine t as a function of the variables (u, x, s) consider the holomorphic
mapping

F :

n∏
j=1

Ũj ×
g∏
k=1

Ṽk × W̃ −→
n∏
j=1

Ũj × C2g

defined by F (u, x, s) =
(
u, t(u, x, s)

)
, and note that in particular F (a, b, 0) =

(a, t0). It is natural to write t(u, x, s) =
(
t′(u, x, s), t′′(u, x, s)

)
∈ Cg ×Cg, since

t(u, x, s) is defined separately in (7.2) for the first and second g components; it
then follows from (7.2) that the Jacobian matrix J of this mapping at the point
(a, b, 0) is

∂u

∂u

∂u

∂x

∂u

∂s

∂t′

∂u

∂t′

∂x

∂t′

∂s

∂t′′

∂u

∂t′′

∂x

∂t′′

∂s


u = a
x = b
t = 0

=


I 0 0

∗ 0 I

∗ −W ′ Z

 .

The matrix W ′, consisting of the derivatives of the holomorphic abelian inte-
grals at the points bk, is nonsingular by the choice of the auxiliary points bk;
consequently the Jacobian matrix J also is nonsingular, so after shrinking the
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neighborhoods Ũj , Ṽk and W̃ further if necessary F will be a biholomorphic map-

ping onto an open neighborhood of the point (a, t0) ∈
∏n
j=1 Ũj ×C2g. Through

this mapping the cross-sections fi(z, u, x, s) ∈ Γ(M,O(ρtη)) can be viewed al-
ternatively as cross-sections fi(z, u, t) ∈ Γ(M,O(ρtη)) that are meromorphic
functions of the parameters (u, t) rather than of the parameters (u, x, s). Al-
though it was assumed for convenience that the canonical parametrization of
flat line bundles over M was taken with respect to generators for Γ arising from
a marking of the surface, it is clear once the theorem has been proved for these
generators that it is valid for the canonical parametrization of flat line bundles
with respect to any generators Tj ∈ Γ representing a basis for the homology
H1(M). That suffices to conclude the proof of the theorem.

The auxiliary result used in the proof of the preceding theorem is demon-
strated by the following slightly more general lemma.

Lemma 7.2 If F (z) is an m × n matrix of holomorphic functions in an open
neighborhood U of a point z0 in a holomorphic variety, and if rankF (z) = r at
all points z ∈ U , then after shrinking the neighborhood U if necessary there are
n−r holomorphic mappings gi : U −→ Cn that have linearly independent values
at each point z ∈ U and that satisfy F (z)gi(z) = 0 at each point z ∈ U .

Proof: After rearranging rows and columns as necessary it can be assumed that
the leading r × r minor of the matrix F (z0) is nonsingular; and after shrinking
the neighborhood U if necessary that also will be the case for the matrices F (z)
at all points z ∈ U . The matrix F (z) thus can be decomposed into matrix
blocks

F (z) =

(
F11(z) F12(z)
F21(z) F22(z)

)
where the r × r submatrix F11(z) is nonsingular for all points z ∈ U . Since
rankF (z) = r the last m− r rows of the matrix F (z) are unique linear combi-
nations of the first r rows, where the coefficients in these linear combinations
must be holomorphic functions in U ; thus(

F21(z) F22(z)
)

= A(z)
(
F11(z) F12(z)

)
for some (m−r)×r matrix A(z) of holomorphic functions of the variable z ∈ U .
If ci ∈ Cn−r for 1 ≤ i ≤ n − r are n − r linearly independent constant vectors
then the n− r vectors

gi(z) =

(
−F11(z)−1F12(z)ci

ci

)
∈ Cn

for 1 ≤ i ≤ n− r are linearly independent holomorphic functions of the variable
z ∈ U such that (

F11(z) F12(z)
)
gi(z) = 0;

and in addition(
F21(z) F22(z)

)
gi(z) = A(z)

(
F11(z) F12(z)

)
gi(z) = 0
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as well, so altogether F (z)gi(z) = 0 for 1 ≤ i ≤ n− r. That suffices to conclude
the proof.

In the definition (7.1) of the vector space Λη(u, t) the meromorphic cross-
sections f ∈ Γ(M,M(ρtη)) are required to satisfy the condition that

d(f) + u1 + · · ·+ un ≥ 0

for points ui ∈ M̃ , a condition that arose naturally in the course of the proof
through the use of cross-ratio functions. However the cross-sections f have the
same singularities at all points of M̃ representing the same point of M , so it
is evident that this condition actually can be viewed as a condition involving
points ui ∈ M rather than points on the universal covering space; that is the
most convenient interpretation for most applications of the theorem. The hy-
pothesis in the preceding theorem that c(η) + n > 2g − 2 can be replaced by
the hypothesis that the family of holomorphic line bundles involved and the
singularities allowed for the cross-sections are restricted so that dim Λη(u, t) is
independent of u and t. With these modifications the preceding theorem can be
restated as follows.

Corollary 7.3 Let η be a factor of automorphy describing a holomorphic line
bundle on a compact Riemann surface M of genus g > 0; let W be a holomorphic
subvariety of an open subset of the complex manifold Mn; and consider the
family of flat line bundles ρt parametrized by a holomorphic subvariety Ṽ of an
open subset of the parameter space C2g for the canonical parametrization of flat
line bundles over M associated to generators T1, . . . , T2g ∈ Γ of the covering
translation group Γ of M . If dim Λη(u, t) = ν for all points u = (u1, . . . , un) ∈
W and t ∈ Ṽ then for any points a ∈W and t0 ∈ Ṽ there are open neighborhoods
U ′ ⊂ Mn of the point a and Ũ ′′ ⊂ C2g of the point t0 and ν meromorphic
functions fi(z, u, t) on the holomorphic variety M̃ × (U ′ ∩W )× (Ũ ′′ ∩ V ) such
that for any fixed points u ∈ U ′ ∩W and t ∈ Ũ ′′ ∩ V these functions are a basis
for the vector space Λη(u, t).

Proof: If c(η) + n > 2g − 2 the desired result is just that of the preceding the-
orem, upon recalling that in the conclusions of that theorem it can be assumed
that the parameters ui lie in the Riemann surface M rather than in its universal
covering space. If c(η)+n ≤ 2g−2 choose m = 2g−c(η)−n−1 points b1, . . . , bm
on M which represent distinct points of M which are also distinct from the
points aj ; and let hb ∈ Γ(M,O(ζb1+···+bm)) be a holomorphic cross-section such
that d(hb) = b1 + · · ·+bm. Since c(ηζaζb) = c(η)+n+m = 2g−1 it follows from
the preceding theorem applied to the line bundle ηζb that there are open neigh-
borhoods U ′j ⊂M of the points aj , an open neighborhood Ũ ′′ ⊂ C2g of the point

t0, and g meromorphic functions gl(z, u, t) on the variety M̃×U ′1×· · ·×U ′n×Ũ ′′
with singularities at most simple poles along the subvarieties z = Tuj for

T ∈ Γ, 1 ≤ j ≤ n, such that for any fixed points uj ∈ U ′j , t ∈ Ũ ′′ these
functions are a basis for the g-dimensional vector space

X =
{
g ∈ Γ(M,M(ρtηζb))

∣∣∣ d(g) + u1 + · · ·+ un ≥ 0
}
.
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Assume that the neighborhoods U ′j are sufficiently small that they do not contain
any of the points bk, and set U ′ = U ′1 × · · · × U ′n ⊂ Mn. If (u1, . . . , un) ∈
U ′ ∩ W and t ∈ Ũ ′′ ∩ V and if c = (c1, . . . , cg) ∈ Cg is a vector such that∑g
l=1 clgl(bk, u, t) = 0 for 1 ≤ k ≤ m then gc(z, u, t) =

∑g
l=1 hb(z)−1clgl(z, u, t)

is an element of the vector space Λη(u, t). Conversely whenever g(z) is an

element of the vector space Λη(u, t) where (u1, . . . , un) ∈ U ′∩W and t ∈ Ũ ′′∩V
then hb(z)g(z) is an element of the vector space X that vanishes at the distinct
points bk, hence it can be written g(z) =

∑g
l=1 clgl(bk, u, t) for some vector

c = (c1, . . . , cg) ∈ Cg for which
∑g
l=1 clgl(bk, u, t) = 0 for 1 ≤ k ≤ m. Since

dim Λη(u, t) = ν it follows that the set of vectors c such that
∑g
l=1 clgl(bk, u, t) =

0 for 1 ≤ k ≤ m is a vector space of dimension ν; consequently the g × m
matrix G(u, t) = {gl(bk, u, t)} has rank g − ν for any points (u1, . . . , un) ∈
U ′ ∩W and t ∈ Ũ ′′ ∩ V . It then follows from Lemma 7.2 that, after shrinking
the neighborhoods U ′j and Ũ ′′ sufficiently, there are ν holomorphic mappings

ci : (U ′ ∩ W ) × (Ũ ′′ ∩ V ) −→ Cg that have linearly independent values at
each point and satisfy

∑g
l=1 c

i
l(u, t)gl(bk, u, t) = 0 for 1 ≤ k ≤ m and for all

points u ∈ U ′ ∩W and t ∈ Ũ ′′ ∩ V , where ci(u, t) = {cil(u, t)}. The functions
fi(z, u, t) =

∑g
l=1 c

i
l(u, t)hb(z)−1gl(z, u, t) are meromorphic functions on the

variety M̃ × (U ′ ∩W )× (Ũ ′′ ∩ V ), and for any fixed point (u, t) ∈ (U ′ ∩W )×
(Ũ ′′∩V ) they are a basis for the vector space Λη(u, t). That suffices to conclude
the proof of the corollary.

7.2 Bases for Automorphic Functions for Equiv-
alent Factors of Automorphy

Two factors of automorphy ρt′η and ρt′′η are holomorphically equivalent
whenever t′ − t′′ ∈ tΩCg +Z2g, by Corollary 3.14; and in that case the preced-
ing results can be extended somewhat to show that the relatively automorphic
functions for these two bundles are related through this holomorphic equiv-
alence, when that equivalence is described fairly explicitly. For this purpose
select generators Tj ∈ Γ associated to a homology basis on the Riemann surface
M and a basis ωi ∈ Γ(M,O(1,0)) for the holomorphic abelian differentials on
M ; so the associated period matrix of the surface is the g × 2g complex matrix
Ω with entries ωij = ωi(Tj). In these terms introduce the auxiliary function

φ(z, s) of points (z, s) ∈ M̃ × Cg defined by

(7.3) φ(z, s) = exp 2πi

g∑
k=1

skwk(z, p)

where wk(z, p) =
∫ z
p
ωi are the integrals of the abelian differentials ωi for a

base point p ∈ M̃ ; as a function of the variable z ∈ M̃ this is a holomorphic
and nowhere vanishing function on the universal covering surface M̃ , and as a
function of the variable s = (s1, . . . , sg) ∈ Cg it is a homomorphism from the
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additive group Cg to the multiplicative group C∗. Note that

φ(Tjz, s) = exp 2πi

g∑
k=1

skwk(Tjz, p) = exp 2πi

g∑
k=1

sk
(
wk(z, p) + ωkj

)
= ρtΩs

(Tj)φ(z, s)

for the flat line bundle ρtΩs
∈ Hom(Γ,C∗) described by vector tΩs ⊂ C2g. Since

ρtΩs
is a group homomorphism iterating the preceding formula shows that

φ(TjTkz, s) = ρtΩs
(Tj)φ(Tkz, s) = ρtΩs

(Tj)ρtΩs
(Tk)φ(z, s)

= ρtΩs
(TjTk)φ(z, s);

and since any element T ∈ Γ can be written as a product of the elements Tj
and their inverses it follows that

(7.4) φ(Tz, s) = ρtΩs
(T )φ(z, s)

for all T ∈ Γ. This exhibits explicitly the holomorphic triviality of the flat line
bundles parametrized by these points t ∈ tΩCg, and hence the holomorphic
equivalence of the flat line bundles parametrized by points t′, t′′ ∈ C2g for which
t′ − t′′ ∈ tΩCg. Of course it is clear from the definition of the canonically
parametrized flat line bundle ρt is the identity bundle whenever t ∈ Z2g.

There is a convenient interpretation of this holomorphic equivalence that is
worth noting here. The holomorphic equivalence of flat line bundles of Corol-
lary 3.14 was expressed by the exact sequence

(7.5) 0 −→ tΩCg + Z2g ι−→ tCg p−→ P (M) −→ 0

where ι is the inclusion mapping and p is the mapping that associates to a point
t ∈ C2g the holomorphic line bundle represented by the canonically parametrized
flat line bundle ρt ∈ P (M) for the Picard variety P (M) of the Riemann surface
M . In this exact sequence (7.5) each coset t + tΩCg + Z2g ⊂ C2g consists
of all the points of C2g parametrizing an holomorphic equivalence class of flat
line bundles; but for present purposes it is convenient to describe these cosets
slightly differently. The full period matrix

(
Ω
Ω

)
of the Riemann surface M is

a nonsingular 2g × 2g matrix, and the inverse of its transpose conjugate is a
matrix of the form

(
Π
Π

)
where the g × 2g matrix Π is the inverse period matrix

to Ω; thus Π is a g × 2g matrix such that

(7.6) Π tΩ = 0, Π tΩ = Ig,
tΩΠ + tΩΠ = I2g,

where Ir denotes the identity matrix of rank r. The last identity in (7.6) shows
that any point s ∈ C2g can be written s = tΩ(Πs)+ tΩ(Πs), which is an explicit
formula for the direct sum decomposition

(7.7) C2g = tΩCg ⊕ tΩCg
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of the vector space C2g into the two complementary linear subspaces tΩCg and
tΩCg. Points t ∈ tΩCg thus can be viewed as representing cosets t+ tΩCg ⊂ C2g;
and since parameter values in tΩCg ⊂ C2g describe holomorphically trivial flat
line bundles it follows that any holomorphic equivalence class of flat line bundles
can be parametrized by a point t ∈ tΩCg ⊂ C2g. Different points of tΩCg still
may parametrize holomorphically equivalent flat line bundles though. The first
two identities in (7.6) show that the linear mapping tΩΠ : C2g −→ C2g defined
by the 2g×2g matrix tΩΠ is the zero mapping on the linear subspace tΩCg ⊂ C2g

and is the identity mapping on the linear subspace tΩCg ⊂ C2g; thus it is the
natural projection of the direct sum (7.7) to its second factor. Applying this
projection to the exact sequence (7.5) hence yields the exact sequence

(7.8) 0 −→ tΩΠZ2g ι−→ tΩCg p0−→ P (M) −→ 0

in which ι again is the natural inclusion mapping and p0 is just the restriction
p0 = p

∣∣ tΩCg of the mapping p in the sequence (7.5) to the subspace tΩCg ⊂
C2g. The resulting description of the Picard variety P (M) as the quotient
P (M) = tΩCg/ tΩΠZ2g clearly is equivalent to the customary description as the
quotient P (M) = Cg/ΠZ2g; so the mapping p0 in (7.8) is a covering projection,
and two points of tΩCg parametrize holomorphically equivalent flat line bundles
precisely when they differ by a point in the lattice subgroup tΩΠZ2g ⊂ tΩCg.
If U ⊂ P (M) is a contractible open subset and Û ⊂ tΩCg is a connected
component of the inverse image p−1

0 (U) under the covering projection p0 of

(7.8) the restriction of the mapping p0 to the set Û is a one-to-one mapping
p0 : Û −→ U ; so parameters t ∈ Û can be used as local coordinates in the
subset U ⊂ P (M). The complete inverse image of the subset U under the
covering projection p0 is the disjoint union

(7.9) p−1
0 (U) =

⋃
ν∈Z2g

(
Û +tΩΠν

)
⊂ tΩCg

of translates of the subset Û ⊂ tΩCg by points in the lattice subgroup tΩΠZ2g ⊂
tΩCg. The complete inverse image of the subset U under the mapping p of the
exact sequence (7.5), the set of all points of C2g parametrizing holomorphic line
bundles in the subset U ⊂ P (M), is the disjoint union

(7.10) p−1(U) =
⋃

ν∈Z2g

(
Û + tΩCg +tΩΠν

)
⊂ C2g

of translates of the connected open subset Û + tΩCg ⊂ C2g by points of the
lattice subgroup tΩΠZ2g ⊂ tΩCg.

Corollary 7.4 Let η be a factor of automorphy describing a holomorphic line
bundle on a compact Riemann surface M of genus g > 0, let W be a holomorphic
subvariety of an open subset of the complex manifold Mn, let V be a holomorphic
subvariety of an open subset of the Picard variety P (M) and set Ṽ = p−1(V ) ⊂
C2g; and suppose that dim Λη(u, t) = ν for all points u = (u1, . . . , un) ∈W and
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t ∈ Ṽ ⊂ C2g. For any points u0 ∈ W and ξ0 ∈ V there are open neighborhoods
U ′ ⊂ Mn of the point u0 and U ′′ ⊂ P (M) of the point ξ0 and ν meromorphic
functions fi(z, u, t) on the holomorphic variety M̃ × (W ∩ U ′) × (Ṽ ∩ Ũ ′′) for
1 ≤ i ≤ ν, where Ũ ′′ = p−1(U ′′) ⊂ C2g, such that these functions are a basis for
the vector space Λη(u, t) at any point (u, t) ∈ (W ∩ U ′)× (Ṽ ∩ Ũ ′′) and satisfy

(7.11) fi(z, u, t+ tΩs+ tΩΠν) = φ(z, s−Πν)fi(z, u, t)

for all points z ∈ M̃, u ∈W ∩ U ′, t ∈ Ṽ ∩ Ũ ′′, s ∈ Cg, ν ∈ Z2g.

Proof: If (u0, ξ0) ∈ W × V and t0 ∈ p−1
0 (ξ0) ⊂ tΩCg ⊂ C2g it follows from

Corollary 7.3 that there are open neighborhoods U ′ ⊂ Mn of u0 and Ũ ⊂ C2g

of t0 and meromorphic functions f̃i(z, u, t) on the holomorphic variety M̃ ×
(W ∩ U ′) × (Ṽ ∩ Ũ) that are a basis for the vector space Λη(u, t) at any point

(u, t) ∈ (W ∩ U ′)× (Ṽ ∩ Ũ); these functions thus satisfy

(7.12) f̃i(Tz, u, t) = ρt(T )η(T, z)f̃i(z, u, t)

for all T ∈ Γ and all points (z, u, t) ∈ M̃×(W ∩U ′)×(Ṽ ∩Ũ). By restricting the
neighborhood Ũ suitably it can be assumed that the intersection Û = Ũ ∩ tΩCg
is a contractible open neighborhood of t0 in the linear subspace tΩCg ⊂ C2g, so
is homeomorphic to an open neighborhood U ′′ ⊂ P (M) of the point ξ0 under
the restriction p0 : Û −→ U ′′ of the covering projection p0. The restriction of
the function f̃i(z, u, t) then is a meromorphic function f̂i(z, u, t) on M̃ × (W ∩
U ′)× (Ṽ ∩ Û). For any points z ∈ M̃, u ∈W ∩U ′, t̂ ∈ Ṽ ∩ Û , s ∈ Cg, ν ∈ Z2g

set
fi(z, u, t̂+ tΩs+ tΩΠν) = φ(z, s−Πν)f̂i(z, u, t̂).

If Ũ ′′ = p−1(U ′′) ⊂ C2g then since any point t ∈ Ṽ ∩ Ũ ′′ can be written uniquely
as the sum t = t̂ + tΩs + tΩΠν for points t̂ ∈ Ṽ ∩ Û , s ∈ Cg, ν ∈ Z2g in view
of the decomposition (7.10) it is evident that these functions are meromorphic
functions fi(z, u, t) of the variables (z, u, t) ∈ M̃ × (W ∩ U ′) × (Ṽ ∩ Ũ ′′). If
t = t̂+ tΩs+ tΩΠν and T ∈ Γ it follows from (7.12) and (7.4) that

fi(Tz, u, t) = φ(Tz, s−Πν)f̂i(Tz, u, t̂)

= ρ tΩ(s−Πν)
(T )φ(z, s−Πν) · ρ

t̂
(T )η(T, z)f̂i(z, u, t̂)

= ρt(T )η(T, z)fi(z, u, t),

since t̂ + tΩs − tΩΠν = t̂ + tΩs + tΩΠν − ν = t − ν by the second identity in
(7.6) and ρt−ν(T ) = ρt(T ); thus fi(z, u, t) ∈ Λη(u, t) for all u ∈ W ∩ U ′ and

t ∈ Ṽ ∩ Ũ ′′, and since these functions are linearly independent they are a basis
for the vector space Λη(u, t). Furthermore for any s0 ∈ Cg and ν0 ∈ Z2g

fi(z, u, t+ tΩs0 + tΩΠν0) = fi
(
z, u, t̂+ tΩ(s+ s0) + tΩΠ(ν + ν0)

)
= φ

(
z, s+ s0 −Π(ν + ν0)

)
f̂i(z, u, t̂)

= φ(z, s0 −Πν0) · φ(z, s−Πν)f̂i(z, u, t̂) = φ(z, s0 −Πν0)fi(z, u, t).
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That suffices to conclude the proof.

When the subvarieties W ⊂Mn and V ⊂ P (M) are sufficiently regular the
local result of the preceding corollary can be extended to the following global
assertion.

Theorem 7.5 Let η be a factor of automorphy describing a holomorphic line
bundle on a compact Riemann surface M of genus g > 0, let W be a holo-
morphic submanifold of an open subset of the complex manifold Mn, let V
be a holomorphic submanifold of an open subset of the Picard variety P (M)
and set Ṽ = p−1(V ) ⊂ C2g; and suppose that dim Λη(u, t) = ν for all points

u = (u1, . . . , un) ∈W and t ∈ Ṽ . Then the union

(7.13) Λη(W, Ṽ ) =
⋃

u∈W, t∈Ṽ

Λη(u, t)

has a uniquely determined structure as a holomorphic vector bundle of rank ν
over the complex submanifold W × Ṽ such that for any sufficiently fine coor-
dinate coverings {U ′a} of the complex manifold Mn and {U ′′l } of the complex
manifold P (M) there are meromorphic functions fal,i(z, u, t) on the holomor-

phic submanifolds M̃ × (W ∩ U ′a) × (Ṽ ∩ Ũ ′′l ) for 1 ≤ i ≤ ν, where Ũ ′′l =
p−1(U ′′l ) ⊂ C2g, that are a basis for the vector space Λη(u, t) for any fixed point

(u, t) ∈ (W ∩ U ′a) × (Ṽ ∩ Ũ ′′l ) and that for any fixed point z ∈ M̃ are a mero-

morphic cross-section of the vector bundle Λη(W, Ṽ ). Under translation of the

parameter t ∈ Ṽ through vectors in tΩCg + tΩΠZ2g the vector bundle Λη(W, Ṽ )
is invariant while the functions fal,i(z, u, t) satisfy 7.11.

Proof: For any sufficiently fine open coverings {U ′a} of the product Mn and
{U ′′l } of the Picard variety P (M) the conclusions of Corollary 7.4 hold for the
products U ′a × U ′′l ; thus there are ν meromorphic functions fal,i(z, u, t) on the

holomorphic submanifolds M̃ × (W ∩ U ′a) × (Ṽ ∩ Ũ ′′l ) for 1 ≤ i ≤ ν, where

Ũ ′′l = p−1(U ′′l ) ⊂ C2g, that are a basis for the vector space Λη(u, t) at any point

(u, t) ∈ (W ∩U ′a)× (Ṽ ∩U ′′l ) and that satisfy (7.11). The union of the subspaces

Λη(u, t) for points (u, t) ∈ (W∩U ′a)×(Ṽ ∩Ũ ′′l ) can be identified with the product

(W ∩U ′a)× (Ṽ ∩ Ũ ′′l )×Cν by associating to any point (u, t, x) ∈ (W ∩U ′a)× (Ṽ ∩
Ũ ′′l )× Cν the element

∑ν
i=1 xifal,i(z, u, t) ∈ Λη(u, t); the union (7.13) thus has

a local product structure over each subset (W ∩ U ′a)× (Ṽ ∩ Ũ ′′l ) ⊂ W × Ṽ . To
combine these local product structures into a vector bundle note that there are
two sets of meromorphic functions fal,i(z, u, t) and fbm,j(z, u, t) of the variable

z ∈ M̃ that are bases for the vector space Λη(u, t) at any point (u, t) in an

intersection (W ∩U ′a∩U ′b)×(Ṽ ∩Ũ ′′l ∩Ũ ′′m); hence there are uniquely determined
complex values λab,lm;ij(u, t) depending on the point (u, t) such that

(7.14) fal,i(z, u, t) =

ν∑
j=1

λab,lm;ij(u, t)fbm,j(z, u, t).
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It follows from Cramer’s rule that these values λab,lm;ij(u, t) are determinants of
matrices having as entries various of the functions fal,i(z, u, t) and fbm,j(z, u, t),
so they are meromorphic functions of the variables (u, t) on the complex man-
ifold (W ∩ U ′a ∩ U ′b) × (Ṽ ∩ Ũ ′′l ∩ Ũ ′′m); and since they take finite values on
this complex manifold they are actually holomorphic functions. The nonsingu-
lar matrices Λab,lm(u, t) = {λab,lm;ij(u, t)} are thus holomorphic matrix-valued

functions on the complex manifold (W ∩U ′a∩U ′b)×(Ṽ ∩ Ũ ′′l ∩ Ũ ′′m); and it follows
immediately from their uniqueness that Λab,lm(u, t) · Λbc,mn(u, t) = Λac,ln(u, t)

whenever (u, t) ∈ (W ∩U ′a ∩U ′b ∩U ′c)× (Ṽ ∩ Ũ ′′l ∩ Ũ ′′m ∩ Ũ ′′n ), so they are the co-

ordinate transition functions describing a holomorphic vector bundle Λη(W, Ṽ )

of rank ν over the complex manifold W × Ṽ . Equation(7.14) is just the condi-
tion that for any fixed point z ∈ M̃ the functions fal,i(z, u, t) are a meromorphic

cross-section of the vector bundle Λη(W, Ṽ ). Any other local meromorphic func-
tions gal,i(z, u, t) that are bases of the vector spaces Λη(u, t) can be expressed
in terms of the functions fal,i(z, u, t) as

gal,i(z, u, t) =

ν∑
j=1

cal;ij(u, t) · fal,j(z, u, t)

for some nonsingular complex matrices Cal(u, t) = {cal;ij)u, t)}; again the en-
tries in these matrices are bounded meromorphic functions and consequently
holomorphic functions on the submanifolds (W ∩U ′a)×(Ṽ ∩Ũ ′′l ). The coordinate
transition functions for the vector bundle defined in terms of this alternative ba-
sis are Cal(u, t) Λab,lm(u, t) Cal(u, t)

−1, so they describe the same holomorphic

vector bundle Λη(W, Ṽ ); and that demonstrates the uniqueness of this vector
bundle. For any vector tΩs+ tΩΠν ∈ tΩCg + tΩΠZ2g equation (7.14) takes the
form

fal,i(z, u, t+ tΩs+ tΩΠν) =

ν∑
j=1

λab,lm;ij(u, t+ tΩs+ tΩΠν) ·

·fbm,j(z, u, t+ tΩs+ tΩΠν);

and since the functions fal,i(z, u, t) and fbm,j(z, u, t) satisfy (7.11) with the same
factor φ(z, s−Πν) it follows from the preceding equation that

fal,i(z, u, t) =

ν∑
j=1

λab,lm;ij(u, t+ tΩs+ tΩΠν)fbm,j(z, u, t).

Comparing this last equation with (7.14) and using the uniqueness of the coef-
ficients λab,lm;ij(u, t) shows that

(7.15) λab,lm;ij(u, t+ tΩs+ tΩΠν) = λab,lm;ij(u, t),

so the vector bundle Λη(W, Ṽ ) is invariant under translation of the variable
t ∈ C2g by vectors in tΩCg + tΩΠZ2g and that suffices to conclude the proof.



188 CHAPTER 7. FAMILIES OF LINE BUNDLES

The proof of the preceding theorem required the subsets W ⊂ Mn and
V ⊂ P (M) to be submanifolds rather than merely holomorphic subvarieties
in order to show that the coordinate transition functions for the holomorphic
vector bundle Λη(W, Ṽ ) are holomorphic functions rather than merely bounded
meromorphic functions (weakly holomorphic functions)1. For most applications
this additional hypothesis is not a problem. Without this additional hypothe-
sis the vector bundle Λη(W, Ṽ ) at least is a weakly holomorphic vector bundle

over the subvariety W × Ṽ . The invariance of the vector bundle Λη(W, Ṽ ) un-

der translation of the parameter t ∈ Ṽ through vectors in tΩCg + Z2g, means
that this vector bundle induces a holomorphic vector bundle Λη(W,V ) over the
quotient submanifold W × V when the Picard variety P (M) is described as in
(7.5) as the quotient space of C2g under the group of such translations. The
meromorphic functions fal,i(z, u, t) are not invariant under such translations so
they do not describe a meromorphic cross-section of the induced vector bun-
dle Λη(W,V ) over W × V ; but they do satisfy the relative invariance condition
(7.11), which has a related interpretation. To see this assume further that the
open subsets U ′′l ⊂ P (M) are contractible and that the intersections U ′′l ∩ U ′′m
are connected, and choose a connected component Ûl ⊂ tΩCg of the inverse
image p−1

0 (U ′′l ) of each set U ′′l under the covering projection p0 of (7.8). In view
of the decomposition (7.7) the bundle Λη(V,W ) can be described equivalently

as the quotient of the restriction λη(V, W̃ )|(V × W̃ ∩ tΩΠCg under the action
of the covering translation group of the covering p0 of (7.8), the lattice sub-
group tΩΠZ2g ⊂ tΩCg. The restriction is defined by the coordinate transition
functions Λab,lm(u, t) in the intersections

(7.16) (W∩U ′a∩U ′b)×(Ṽ ∩U ′′l ∩U ′′m∩ tΩCg = (W∩U ′a∩U ′b)×(Ṽ ∩p−1
0 (Ul∩Um),

and these coordinate functions are invariant under translation through the lat-
tice subgroup tΩΠZ2g. In view of (7.9) the intersection (7.16) is a union
of disjoint components, translates of the intersection (W ∩ U ′a ∩ U ′b) × (Ṽ ∩
Ûl ∩ Ûm) by vectors in the lattice subgroup tΩΠZ2g; consequently the bundle
Λη(V,W ) can be described by the restrictions of the coordinate transition func-

tions Λab,lm(u, t) to the intersections (W ∩U ′a ∩U ′b)× (Ṽ ∩ Ûl ∩ Ûm) where the

subsets Ûl are viewed as a coordinate covering of the Picard variety P (M). If
tl ∈ Ûl and tm ∈ Ûm have the same image p0(tl) = p0(tm) ∈ U ′′l ∩ U ′′m then it
follows from the exact sequence (7.8) that

(7.17) tl − tm = tΩΠνlm where νlm ∈ Z2g,

and the integer νlm is independent of the point p0(tl) = p0(tm) ∈ U ′′l ∩U ′′m since

this intersection is assumed to be connected. If points tl ∈ Ûl, tm ∈ Ûm, tn ∈
Ûn have the same image p0(tl) = p0(tm) = p0(tn) ∈ U ′′l ∩ U ′′m ∩ U ′′n then the
analogue of (7.17) holds for any pair of these points, so

0 = (tl − tm) + (tm − tn) + (tn − tl) = tΩ(Πνlm + Πνmn + Πνnl);

1Weakly holomorphic functions are discussed on page 417 in Appendix A.
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and since the linear mapping tΩ : Cg −→ C2g is injective it follows that Πνlm +
Πνmn + Πνnl = 0, so taking complex conjugates Πνlm + Πνmn + Πνnl = 0 since
νlm = νlm. Therefore for any fixed point z ∈ M̃

φ(z, −Πνlm)φ(z, −Πνmn)φ(z, −Πνnl)

(7.18)

= φ(z, −Πνlm −Πνmn −Πνnl) = φ(z, 0) = 1,

and the complex constants φ(z, −Πνlm) for that fixed point z ∈ M̃ consequently
can be viewed as the coordinate transition functions describing a flat line bundle
Φz over the Picard variety P (M) in terms of the coordinate covering {Ûl}.

Corollary 7.6 The functions fal,i(z, u, t) of the preceding theorem when re-
stricted to the subspace tΩCg ⊂ C2g describe a meromorphic cross-section of
the vector bundle Φz ⊗ Λη(W,V ) over W × V .

Proof: If u ∈ U ′a ∩ U ′b and the points tl ∈ Ûl and tm ∈ Ûm have the same
image pη(tl) = pη(tm) ∈ U ′′l ∩ U ′′m then from (7.14), (7.17) and the invariance
conditions (7.15) and (7.11) it follows that

fal,i(z, u, tl) =

ν∑
j=1

λab,lm;ij(u, tl) fbm,j(z, u, tl)

=

ν∑
j=1

λab,lm;ij(u, tm + tΩΠνlm) fbm,j(z, u, tm + tΩΠνlm)

=

ν∑
j=1

λab,lm;ij(u, tm) · φ(z,−Πνlm) fbm,j(z, u, tm);

that is just the condition that for a fixed point z ∈ M̃ the functions fal,i(z, u, tl)

of the variables (u, tl) ∈ (U ′a × Ûl) ⊂ (Mn × tΩCg) are a meromorphic cross-
section of the product bundle Φz ⊗Λη(W,V ) over W × V , which concludes the
proof.

For many applications of the results in this section the primary interest is
in cross-sections f ∈ Λη(u, t) for a compact Riemann surface M of genus g > 0
viewed as functions of the parameters u ∈ Mn and ξ = ρtη ∈ Pr(M), where
Pr(M) is the connected component of the extended Picard variety consisting
of holomorphic line bundles ξ of characteristic class c(ξ) = r; and there is
somewhat less interest in the explicit description of the line bundles ξ as being
represented by canonically parametrized flat line bundles. Thus in these cir-
cumstances it is more convenient to describe the vector space Λη(u, t) in the
equivalent form

(7.19) Λ(u, ξ) =
{
f ∈ Γ(M,M(ξ))

∣∣∣ d(f) + u1 + · · ·+ un ≥ 0
}

where u = (u1, . . . , un) ∈ Mn and ξ ∈ Pr(M); these two forms are clearly
equivalent under the identification ξ = ρtη. Coordinate coverings Ûl of the
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universal covering space tΩCg of the Picard variety P (M), viewed as coordinate
coverings of P (M) itself, can be viewed as coordinate coverings of the component
Pr(M) of the extended Picard variety through the same identification ξ = ρtη ∈
Pr(M); and unless it is necessary to be more explicit this identification can
be ignored. The flat line bundle Φz over the Picard variety P (M) can be
identified correspondingly with a flat line bundle over Pr(M). Since all flat line
bundles over M can be described by local coordinate bundles in a sufficiently
fine coordinate covering of the surface M the line bundles ξ in any family of
line bundles can be represented by coordinate bundles ξαβ in a fixed suitably
fine coordinate covering {Uα} of M . Then for coordinate coverings U ′a of Mn

and Ûl of Pr(M) the meromorphic cross-sections of Theorem 7.5 can be viewed
as local meromorphic functions fαal(zα, ua, ξl) of the variables z ∈ Uα ⊂ M ,
u ∈ U ′a ⊂Mn and ξ ∈ Ûl ⊂ Pr(M) such that

(7.20) fαal(z, u, ξ) = ξαβ(z)fβal(z, u, ξ)

for z ∈ Uα ∩ Uβ . In these terms Theorem 7.5 and its corollary can be restated
as follows.

Corollary 7.7 If M is a compact Riemann surface of genus g > 0, W is a
holomorphic submanifold of an open subset of the compact manifold Mn, and
V is a holomorphic submanifold of an open subset of the component Pr(M) of
the extended Picard variety of M , and if dim Λ(u, ξ) = ν for all points (u, ξ) ∈
W × V , then the union

Λ(W,V ) =
⋃

u∈W ξ∈V

Λ(u, ξ)

has a uniquely determined structure as a holomorphic vector bundle of rank ν
over the manifold W × V such that for any sufficiently fine open coordinate
coverings {Uα} of the surface M , {U ′a} of the product Mn, and {U ′′l } of the
complex manifold Pr(M) there are ν meromorphic functions fαal,i(zα, ua, ξl) on
the subsets Uα × (W ∩ U ′a) × (V ∩ U ′′l ) that are a basis for the vector space
Λ(u, ξ) at any point (u, ξ) ∈ (W ∩ U ′a) × (V ∩ U ′′l ) and that for any fixed point
zα ∈ Uα are a meromorphic cross-section of the product bundle Φzα ⊗ Λ(W,V )
over W × V .

Proof: This is merely a restatement of the result of the preceding theorem and
its corollary, so no further proof is required.

In the special case that n + r > 2g − 2 it is possible to take W = Mn and
V = Pr(M) in Theorem 7.5 and its corollaries, and the conclusions then take a
slightly simpler form.



Chapter 8

Prym Differentials and
Prym Cohomology

A holomorphic Prym differential for a flat line bundle ρ over a Riemann
surface M is a holomorphic cross-section σ ∈ Γ(M,O(1,0)(ρ)). Holomorphic dif-
ferential forms that are cross-sections of an arbitrary holomorphic line bundle
were introduced on page 16; holomorphic Prym differentials are just the special
case in which the line bundle is a flat line bundle. A holomorphic Prym differ-
ential can be viewed as a collection of holomorphic differential forms σα in the
open neighborhoods of a coordinate covering U = {Uα} of the surface M such
that σα = ραβσβ in any nonempty intersection Uα ∩ Uβ , when the bundle ρ is
described by a flat cocycle ραβ ∈ Z1(U,C∗). When these local differential forms
are written σα = fα(zα)dzα in terms of local coordinates zα in the coordinate
neighborhoods Uα, the coefficients fα(zα) describe a holomorphic cross-section
f ∈ Γ(M,O(ρκ)) where κ is the canonical bundle of the surface M ; thus holo-
morphic Prym differentials can be viewed equivalently as holomorphic cross-
sections of the holomorphic line bundle ρκ of characteristic class c(ρκ) = 2g−2,
and the sheaf O(1,0)(ρ) of germs of holomorphic Prym differentials for the flat
line bundle ρ can be identified in this way with the sheaf O(ρκ). Correspond-
ingly a meromorphic Prym differential is a cross-section σ ∈ Γ(M,M(1,0)(ρ))
and can be viewed as a meromorphic cross-section of the holomorphic line bun-
dle ρκ. On the other hand a C∞ Prym differential is defined to be a cross-section
σ ∈ Γ(M, E1

c (ρ)), where E1
c (ρ) is the sheaf of germs of closed complex-valued

C∞ differential forms of total degree 1 that are cross-sections of ρ. Holomorphic
and meromorphic Prym differentials are automatically closed differential forms
on M ; C∞ Prym differentials are closed by definition, and do not correspond
simply to C∞ cross-sections of the line bundle ρκ. There are no nontrivial flat
line bundles over the Riemann sphere P1 since it is simply connected. There are
nontrivial flat line bundles over a compact Riemann surface M of genus g = 1;
but since the canonical bundle of M is trivial by Corollary ??, Prym differ-
entials are just cross-sections of a flat line bundle over M . For these reasons

191
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the discussion of Prym differentials generally is limited to Riemann surfaces of
genus g > 1.

Holomorphic Prym differentials have well defined period classes, analogous to
the period classes of holomorphic abelian differentials. There are two equivalent
definitions of these period classes, a sheaf-theoretic definition which will be
discussed first and a group-theoretic definition which in some ways is more
convenient. Since the coordinate transition functions ραβ of a flat line bundle
ρ over a Riemann surface M are constant, exterior differentiation leads to the
exact sequence of sheaves

0 −→ C(ρ) −→ O(ρ)
d−→ O(1,0)(ρ) −→ 0

over M , where C(ρ) ⊂ O(ρ) is the subsheaf of locally constant cross-sections of
the flat line bundle ρ. The associated exact cohomology sequence includes the
segment

Γ(M,O(ρ))
d−→ Γ(M,O(1,0)(ρ))

δs−→ H1(M,C(ρ)),

which can be rewritten equivalently

(8.1) 0 −→ Γ(M,O(1,0)(ρ))

dΓ(M,O(ρ))

δs−→ H1(M,C(ρ)).

The image δsσ ∈ H1(M,C(ρ)) of a Prym differential σ ∈ Γ(M,O(1,0)(ρ)) is the
sheaf-theoretic period class of that differential. If the bundle ρ is not analytically
trivial, indicated by writing ρ � 1, then Γ(M,O(ρ)) = 0 by Corollary 1.4 so the
exact sequence (8.1) reduces to the exact sequence

(8.2) 0 −→ Γ(M,O(1,0)(ρ))
δs−→ H1(M,C(ρ)) if ρ � 1.

Correspondingly for C∞ Prym differentials exterior differentiation leads to the
exact sequence of sheaves

0 −→ C(ρ) −→ E(ρ)
d−→ E1

c (ρ) −→ 0

over M , where E(ρ) is the sheaf of germs of complex-valued C∞ cross-sections
of the flat line bundle ρ; it is to obtain this exact sequence, paralleling the
corresponding sequence for holomorphic Prym differentials, that C∞ Prym dif-
ferentials are defined to be closed differential forms. The exact cohomology
sequence associated to this exact sequence of sheaves contains the segment

Γ(M, E(ρ))
d−→ Γ(M, E1

c (ρ))
δs−→ H1(M,C(ρ)) −→ H1(M, E(ρ));

but H1(M, E(ρ)) = 0 since E(ρ) is a fine sheaf1, so this exact sequence can be
written as the isomorphism

(8.3) δs :
Γ(M, E1

c (ρ))

dΓ(M, E(ρ))

∼=−→ H1(M,C(ρ)).

1Fine sheaves and their cohomological properties are discussed in Appendix C.2.
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The image δsσ ∈ H1(M,C(ρ)) of a C∞ Prym differential σ ∈ Γ(M, E1
c (ρ)) is the

sheaf-theoretic period class of that differential. It follows from the isomorphism
(8.3) that every cohomology class in H1(M,C(ρ)) is the period class of a C∞
Prym differential; that is not the case for holomorphic Prym differentials though,
as will be seen as the discussion continues.

For a more explicit description of the exact cohomology sequence leading to
the sheaf-theoretic period class, a C∞ Prym differential σ for a flat line bundle
ρ is represented by closed differential forms σα(z) in the open subsets of a
coordinate covering U = {Uα} of M ; and σα(z) = ραβσβ(z) in any intersection
Uα∩Uβ , where the cocycle ραβ ∈ Z1(U,C∗) is a coordinate bundle describing the
flat line bundle ρ. After a refinement of the coordinate covering if necessary, the
local differentials σα(z) can be written as the exterior derivatives σα(z) = dfα(z)
of C∞ functions fα(z) in the coordinate neighborhoods Uα; and these functions
form a zero-cochain f ∈ C0(U, E(ρ)). Since d(fβ(z) − ρβαfα(z)) = σβ(z) −
ρβασα(z) = 0 in any intersection Uα ∩ Uβ it follows that

(8.4) σαβ = fβ(z)− ρβαfα(z)

is a complex constant; these constants form the one-cochain σ ∈ C1(U,C(ρ)) for
which σ = δf , as in (1.42), so this one-cochain is a one-cocycle σ ∈ Z1(U,C(ρ)).
The cohomology class of this cocycle is independent of the choice of the lo-
cal integrals fα(z), since adding constants cα to the functions fα(z) adds the
coboundary cβ − ρβαcα to the cocycle (8.4). This cohomology class is the pe-
riod class δsσ of the Prym differential σ. For a holomorphic Prym differential
σ ∈ Γ(M,O(1,0)(ρ)) ⊂ Γ(M, E1

c (ρ)) the same construction with holomorphic
functions fα yields the corresponding period class.

The period classes of Prym differentials can be interpreted alternatively and
more conveniently in terms of the cohomology2 of the covering translation group
Γ of the Riemann surface M . Since the universal covering space M̃ of the surface
M is simply connected, any holomorphic differential form on M̃ can be written
as the exterior derivative of a holomorphic function defined on all of M̃ ; thus
there is the exact sequence of complex vector spaces

(8.5) 0 −→ C −→ Γ(M̃,O)
d−→ Γ(M̃,O(1,0)) −→ 0.

A flat line bundle ρ over the Riemann surface M can be represented by a flat
factor of automorphy ρ ∈ Hom(Γ,C∗), that is, by a one-dimensional representa-
tion of the covering translation group Γ, as in Theorem 3.11. The group Γ acts
as a group of operators on the right on the vector space Γ(M̃,O(1,0)) by associ-
ating to an element T ∈ Γ and a holomorphic differential form σ ∈ Γ(M̃,O(1,0))
the holomorphic differential form σ|ρT ∈ Γ(M̃,O(1,0)) defined by

(8.6) (σ|ρT )(z) = ρ(T )−1σ(Tz);

for it is readily verified that σ|ρ(ST ) = (σ|ρS)|ρT for any S, T ∈ Γ. The group

Γ acts as a group of operators on the right on the vector space Γ(M̃,O) in

2The machinery of the cohomology of groups used here is discussed in Appendix E.
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the same way, with the group operation (8.6) on holomorphic functions rather
than on holomorphic differential forms. The subspace C ⊂ Γ(M̃,O) of constant
functions under this group operation will be denoted by Cρ for clarity in the
subsequent discussion; this is just the complex numbers under the group oper-
ation that associates to an element T ∈ Γ and a complex number c ∈ C the
complex number

(8.7) c|ρT = ρ(T )−1 c.

It is evident that these group actions commute with the mappings in the exact
sequence (8.5); so, as in the discussion on page 503 in Appendix E.1, associated
to this exact sequence is the exact sequence of cohomology groups of the group
Γ, which contains the segment

H0(Γ,Γ(M̃,O))
d−→ H0(Γ,Γ(M̃,O(1,0)))

δ−→ H1(Γ,Cρ).

By (E.15) the cohomology group H0(Γ,Γ(M̃,O)) is the subspace of Γ(M̃,O)
consisting of elements f ∈ Γ(M̃,O) that are invariant under the action of the
group Γ, hence that satisfy f(z) = (f |ρT )(z) = ρ(T )−1f(Tz) for each T ∈ Γ;

consequently there is the natural identification H0(Γ,Γ(M̃,O)) ∼= Γ(M,O(ρ)),
and correspondingly H0(Γ,Γ(M̃,O(1,0))) ∼= Γ(M,O(1,0)(ρ)). Thus the preced-
ing segment of the exact cohomology sequence can be rewritten as the exact
sequence

Γ(M,O(ρ))
d−→ Γ(M,O(1,0)(ρ))

δ−→ H1(Γ,Cρ),

or equivalently as the exact sequence

(8.8) 0 −→ Γ(M,O(1,0)(ρ))

dΓ(M,O(ρ))

δ−→ H1(Γ,Cρ).

The image δσ ∈ H1(Γ,Cρ) of a Prym differential σ ∈ Γ(M,O(1,0)(ρ)) under
the coboundary mapping δ is the group-theoretic period class of that differen-
tial. Again if the bundle ρ is not analytically trivial, that is if ρ � 1, then
Γ(M,O(ρ)) = 0 by Corollary 1.4 so the preceding exact sequence takes the
form

(8.9) 0 −→ Γ(M,O(1,0)(ρ))
δ−→ H1(Γ,Cρ) if ρ � 1.

For C∞ Prym differentials paralleling (8.5) is the exact sequence of complex
vector spaces

(8.10) 0 −→ C −→ Γ(M̃, E)
d−→ Γ(M̃, E1

c ) −→ 0

on which the group Γ acts in the same way, and hence there is the associated
exact cohomology sequence containing the segment

H0(Γ,Γ(M̃, E))
d−→ H0(Γ,Γ(M̃, E1

c ))
δ−→ H1(Γ,Cρ).
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It follows from (E.15) again that there are the isomorphisms H0(Γ,Γ(M̃, E)) ∼=
Γ(M, E(ρ)) and H0(Γ,Γ(M̃, E1

c )) ∼= Γ(M, E1
c (ρ)), so the preceding exact se-

quence can be rewritten as the exact sequence

(8.11) 0 −→ Γ(M, E1
c (ρ))

dΓ(M, E(ρ))

δ−→ H1(Γ,Cρ).

The image δσ ∈ H1(Γ,Cρ) of a C∞ Prym differential σ ∈ Γ(M, E1
c (ρ)) under the

coboundary mapping δ is its group-theoretic period class, and the exact sequence
(8.8) is just the restriction of the exact sequence (8.11) to holomorphic Prym
differentials.

The cohomology group H1(Γ,Cρ), called the Prym cohomology group of the
Riemann surface M for the flat line bundle ρ, is the quotient

(8.12) H1(Γ,Cρ) =
Z1(Γ,Cρ)
B1(Γ,Cρ)

,

where as in (E.17) the group Z1(Γ,Cρ) of cocycles consists of those mappings
σ : Γ −→ C for which

(8.13) σ(ST ) = σ(S)|ρT + σ(T ) = ρ(T )−1σ(S) + σ(T )

for all S, T ∈ Γ and as in (E.18) the subgroupB1(Γ,Cρ) ⊂ Z1(Γ,Cρ) of cobound-
aries consists of cocycles of the form

(8.14) (δc)(T ) = c|ρT − c = c
(
ρ(T )−1 − 1

)
for all T ∈ Γ and a complex constant c. For a more explicit description of
the exact cohomology sequence leading to the group-theoretic period class, a
C∞ Prym differential σ for the flat line bundle ρ is represented by a closed
differential form σ(z) on the universal covering space M̃ such that (σ|ρT )(z) =

σ(z), or equivalently such that σ(Tz) = ρ(T )σ(z), for all T ∈ Γ. Since M̃ is
simply connected σ(z) is the exterior derivative of a C∞ function f(z) on M̃ ;
the function f(z) is called a Prym integral, and is determined uniquely up to
an arbitrary additive constant. If f(z) is any choice of a Prym integral then
d
(
(f |ρT )(z)− f(z)

)
= (σ|ρT )(z)− σ(z) = 0 for any T ∈ Γ, so

(8.15) σ(T ) = (f |ρT )(z)− f(z) = ρ(T )−1f(Tz)− f(z)

is a complex constant, and clearly σ(I) = 0 for the identity I ∈ Γ; equivalently

(8.16) f(Tz) = ρ(T )
(
f(z) + σ(T )

)
for any T ∈ Γ for a complex constant σ(T ), and σ(I) = 0 for the identity I ∈ Γ.
The mapping σ : Γ −→ C that associates to any T ∈ Γ the value σ(T ) is a one-
cochain σ ∈ C1(Γ,Cρ); and since (8.15) amounts to the condition that σ = δf ,
when the function f(z) is viewed as a zero-cochain f ∈ C0(Γ,Γ(M,O(ρ)), it
follows that σ actually is a one-cocycle σ ∈ Z1(Γ,Cρ). When the Prym integral
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f(z) is replaced by f(z) + c for a complex constant c the cocycle σ is modified
by adding to it the coboundary c

(
ρ(T )−1 − 1

)
; thus the cohomology class

of the cocycle σ ∈ Z1(Γ,Cρ) is independent of the particular choice of the
Prym integral f(z). This cohomology class is the period class δσ of the Prym
differential σ(z). For a holomorphic Prym differential the same construction
yields its period class, and the Prym integral is a holomorphic function on M̃ .

Lemma 8.1 Every cohomology class in H1(Γ,Cρ) is the period class of a C∞
Prym differential, so the period mapping

(8.17) δ :
Γ(M, E1

c (ρ))

dΓ(M, E(ρ))

∼=−→ H1(Γ,Cρ)

is an isomorphism of complex vector spaces.

Proof: Choose a C∞ partition of unity {rα(z)} on the Riemann surface M
subordinate to a finite covering {Uα} of M by contractible open subsets, and
view the functions rα(z) as Γ-invariant functions on the universal covering sur-
face M̃ . For each set Uα choose a connected component Ũα ⊂ M̃ of the inverse
image π−1(Uα) under the universal covering π : M̃ −→ M ; the restrictions
π : Ũα −→ Uα then are biholomorphic mappings, the sets SŨα for S ∈ Γ
are pairwise disjoint, and the full inverse image of the set Uα is the union
π−1(Uα) =

⋃
S∈Γ SŨα ⊂ M̃ . For any cocycle σ ∈ Z1(Γ,Cρ) and for each index

α introduce the C∞ function fα(z) on M̃ defined by

fα(z) =

 ρ(S)σ(S)rα(z) if z ∈ SŨα,

0 if z 6∈
⋃
S∈Γ SŨα;

it is evident that this is a well defined C∞ function on M̃ that vanishes outside
the sets SŨα. If z ∈ SŨα and T ∈ Γ then Tz ∈ TSŨα so it follows from the
definition of the functions fα(z) and(8.13) that

fα(Tz) = ρ(TS)σ(TS)rα(Tz)

= ρ(TS)
(
σ(S) + ρ(S)−1σ(T )

)
rα(z)

= ρ(T )fα(z) + ρ(T )σ(T )rα(z);

and of course this holds trivially if z 6∈
⋃
S∈Γ SŨα since all the terms vanish.

The sum f(z) =
∑
α fα(z) is a C∞ function on M̃ ; and since 1 =

∑
α rα(z),

summing the preceding identity shows that f(Tz) = ρ(T )
(
f(z) + σ(T )

)
. Then

σ(z) = d f(z) is a C∞ Prym differential on M , and it is evident from (8.16) that
the period class of this Prym differential is represented by the cocycle σ; that
suffices to conclude the proof.

The sheaf-theoretic and group-theoretic period classes of Prym differentials
can be identified through the isomorphisms δs of (8.3) and δ of (8.17), which
when combined provide the commutative diagram
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(8.18)

Γ(M, E1
c (ρ))

dΓ(M, E(ρ))

H1(Γ,Cρ) H1(M,C(ρ))-

HH
HY

��
�*

φ

δ δs

in which δ and δs are isomorphisms and φ = δs · δ−1 consequently also is an
isomorphism. When the period mappings δ and δs are restricted to the subspace
Γ(M,O(1,0)(ρ)) ⊂ Γ(M, E1

c (ρ)) it follows that the restriction of the isomorphism
φ is an isomorphism

(8.19) φ : δΓ(M,O(1,0)(ρ))
∼=−→ δsΓ(M,O(1,0)(ρ))

between the subspaces of the cohomology groups H1(Γ,Cρ) and H1(M,C(ρ))
consisting of the group-theoretic and sheaf-theoretic period classes of holomor-
phic Prym differentials. The isomorphism φ of (8.18) can be described alterna-
tively and rather more explicitly. Choose a coordinate covering of the Riemann
surface M by finitely many contractible coordinate neighborhoods Uα such that
the intersections Uα ∩ Uβ are connected; and for each subset Uα choose a con-

nected component Ũα ⊂ M̃ of the inverse image π−1(Uα) ⊂ M̃ under the cover-
ing projection π : M̃ −→M . The restricted covering projection πα : Ũα −→ Uα
then is a biholomorphic mapping between these two coordinate neighborhoods.
For any point z ∈ Uα ∩ Uβ the two points π−1

α (z) ∈ Ũα and π−1
β (z) ∈ Ũβ are

related by π−1
α (z) = Tαβ · π−1

β (z) for a uniquely determined covering transla-
tion Tαβ ∈ Γ that is independent of the choice of the point z ∈ Uα ∩ Uβ . If

σ(z) is a closed C∞ differential form on the universal covering surface M̃ rep-
resenting a Prym differential σ ∈ Γ(M, E1

c (ρ)) then σ(Tz) = ρ(T )σ(z) for each
T ∈ Γ. Introduce the associated differential forms σα in the coordinate neigh-
borhoods Uα defined by σα(z) = σ(π−1

α (z)) for z ∈ Uα. If z ∈ Uα ∩ Uβ then
σα(z) = σ(π−1

α (z)) = σ(Tαβ · π−1
β (z)) = ρ(Tαβ)σ(π−1

β (z)) = ρ(Tαβ)σβ(z); thus
the local differentials σα(z) also represent the Prym differential σ when the line
bundle ρ is represented by the cocycle ραβ = ρ(Tαβ) for the coordinate cover-
ing U = {Uα}. If f(z) is a Prym integral of the Prym differential σ(z), so that
df(z) = σ(z), then the group-theoretic period class δσ of the Prym differential is
represented by the cocycle σ(T ) = ρ(T )−1f(Tz)−f(z) ∈ Z1(Γ,Cρ)) as in (8.15);
and if fα(z) = f(π−1

α (z)) then these local functions satisfy dfα(z) = σα(z) so
the sheaf-theoretic period class δsσ of the Prym differential σ is represented by
the cocycle σαβ = ρβαfα(z)− fβ(z) ∈ Z1(U,C(ρ)) as in (8.4). Thus

σαβ = ρβαf(π−1
α (z))− f(π−1

β (z)) = ρ(Tβα)f(Tαβ · π−1
β (z))− f(π−1

β (z))

= ρ(Tβα)ρ(Tαβ)
(
f(π−1

β (z)) + σ(Tαβ)
)
− f(π−1

β (z)) = σ(Tαβ);
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consequently the image φ(σ) ∈ H1(Γ,C(ρ)) under the isomorphism (8.18) of the
cohomology class σ ∈ H1(Γ,Cρ) represented by a cocycle σ(T ) ∈ Z1(Γ,Cρ) is
the cohomology class represented by the cocycle σαβ ∈ Z1(M,C(ρ)) for which

(8.20) σαβ = σ(Tαβ).

Before continuing with a more detailed discussion of the Prym cohomology group
it is convenient first to list some general properties of Prym cocycles, properties
that hold for an arbitrary group Γ.

Lemma 8.2 If ρ ∈ Hom(Γ,C∗) is a representation of a group Γ then for any
cocycle σ ∈ Z1(Γ,Cρ) and any elements S, T ∈ Γ
(i) σ(I) = 0 for the identity I ∈ Γ,
(ii) σ(T−1) = −ρ(T )σ(T ),
(iii) σ(STS−1) = ρ(S)σ(T ) +

(
ρ(T )−1 − 1

)
ρ(S)σ(S),

(iv) σ([S, T ]) =
(
1− ρ(T )

)
ρ(S)σ(S)−

(
1− ρ(S)

)
ρ(T )σ(T )

for the commutator [S, T ] = STS−1T−1; and
(v) if R ∈ Γ is an element for which ρ(R) 6= 1 the cocycle σ is cohomologous

to a unique cocycle σR for which σR(R) = 0.

Proof: The first four results follow from the defining equation (8.13) by straight-
forward calculations, so no details need be given here. As for (v), the cocycle σ
is cohomologous to the cocycle σR defined by

σR(T ) = σ(T )− σ(R)

ρ(R)−1 − 1

(
ρ(T )−1 − 1

)
,

as is evident from (8.14), and σR(R) = 0. A cocycle τ ∈ Z1(Γ,Cρ) cohomologous
to σ must be of the form τ(T ) = σR(T ) + c

(
ρ(T )−1 − 1

)
; and if τ(R) =

c
(
ρ(R)−1 − 1

)
= 0 then c = 0 so τ = σR, which suffices for the proof.

It follows from (v) of the preceding lemma that if ρ(R) 6= 1 for an element
R ∈ Γ then any cohomology class in H1(Γ,Cρ) can be represented by a unique
cocycle σR for which σR(R) = 0, a cocycle called a normalized cocycle with
respect to the element R ∈ Γ; thus if Z1

R(Γ,Cρ) ⊂ Z1(Γ,Cρ) is the subgroup of
normalized cocycles with respect to R then

(8.21) H1(Γ,Cρ) ∼= Z1
R(Γ,Cρ).

This provides an explicit description of the Prym cohomology group H1(Γ,Cρ)
for a nontrivial representation ρ, and it is useful in various circumstances; but
this description involves the choice of a particular element R ∈ Γ for which
ρ(R) 6= 1, so to that extent it is not intrinsic. However there is a more intrinsic
description of the Prym cohomology group H1(Γ,Cρ) for a nontrivial represen-
tation ρ of an arbitrary group Γ. Since the representation ρ is trivial on the
commutator subgroup [Γ,Γ] ⊂ Γ it is clear from the cocycle condition (8.13)
that the restriction of a cocycle σ ∈ Z1(Γ,Cρ) to the commutator subgroup
[Γ,Γ] ⊂ Γ is a group homomorphism σ

∣∣[Γ,Γ] ∈ Hom([Γ,Γ],C); and it follows
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from Lemma 8.2 (iii) that this homomorphism satisfies σ(TCT−1) = ρ(T )σ(C)
for any elements T ∈ Γ, C ∈ [Γ,Γ] since ρ(C) = 1. That suggests introduc-
ing for an arbitrary homomorphism ρ ∈ Hom(Γ,C∗) of a group Γ the set of
homomorphisms
(8.22)

Homρ([Γ,Γ],C) =

 σ ∈ Hom([Γ,Γ],C)

∣∣∣∣∣∣
σ(TCT−1) = ρ(T )σ(C)

for all T ∈ Γ, C ∈ [Γ,Γ]

 .

It is clear that the set Homρ([Γ,Γ],C) has the natural structure of a complex
vector space, since if σ1, σ2 ∈ Homρ([Γ,Γ],C) and c1, c2 ∈ C then c1σ1 + c2σ2 ∈
Homρ([Γ,Γ],C) as well. The individual homomorphisms in Homρ([Γ,Γ],C) have
the following properties.

Lemma 8.3 If σ ∈ Homρ([Γ,Γ],C) then for any R,S, T ∈ Γ
(i) σ([ST,R]) = σ([S,R]) + ρ(S)σ([T,R]),
(ii) σ([T−1, R]) = −ρ(T )−1σ([T,R]),
(iii)

(
1− ρ(R)

)
σ([S, T ]) +

(
1− ρ(T )

)
σ([R,S]) +

(
1− ρ(S)

)
σ([T,R]) = 0;

(iv) if ρ(R) 6= 1 then σ is the restriction σ = σR|[Γ,Γ] to the commutator
subgroup of a unique normalized cocycle σR ∈ Z1

R(Γ,Cρ), that given by

(8.23) σR(T ) =
σ([T,R])

ρ(T )
(
1− ρ(R)

) .
Proof: (i) From the standard commutator identity

[ST,R] = STRT−1S−1R−1

= S · TRT−1R−1 · S−1 · SRS−1R−1(8.24)

= S[T,R]S−1 · [S,R]

and the assumption that σ ∈ Homρ([Γ,Γ],C) it follows that

σ([ST,R]) = σ(S[T,R]S−1) + σ([S,R])

= ρ(S)σ([T,R]) + σ([S,R]).

(ii) This follows immediately from (i) upon setting S = T−1, since σ([I,R]) =
σ(I) = 0.
(iii) From the commutator identity

R[S, T ]R−1 = RSTS−1T−1R−1

= [R,S]SR · TS−1 ·R−1T−1[T,R]

= [R,S]S[R, T ]TR · S−1R−1T−1[T,R]

= [R,S] · S[R, T ]S−1 · [S, T ] · T [S,R]T−1 · [T,R]

and the assumption that σ ∈ Homρ([Γ,Γ],C) it follows that

ρ(R)σ([S, T ]) = σ([R,S]) + ρ(S)σ([R, T ]) + σ([S, T ])

+ ρ(T )σ([S,R]) + σ([T,R]);
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and since σ([S,R]) = −σ([R,S]) and σ([T,R]) = −σ([R, T ]) this is equivalent
to (iii).
(iv) For the mapping σR : Γ −→ C defined by (8.23) it follows from (i) that

σR(ST ) =
σ([ST,R])

ρ(ST )
(
1− ρ(R)

) =
ρ(S)σ([T,R]) + σ([S,R])

ρ(ST )
(
1− ρ(R)

)
= σR(T ) + ρ(T )−1σR(S);

hence σR is a cocycle, and since it is clear from (8.23) that σR(R) = 0 it is even
a normalized cocycle with respect to R. Next for any commutator C ∈ [Γ,Γ]

σ([C,R]) = σ(C ·RC−1R−1) = σ(C) + σ(RC−1R−1)

=
(
1− ρ(R)

)
σ(C),

or equivalently

σ(C) =
σ([C,R])

ρ(C)
(
1− ρ(R)

) = σR(C)

since ρ(C) = 1; thus the normalized cocycle σR restricts to the homomorphism
σ on commutators. Finally if σ′R ∈ Z1

R(Γ,Cρ) is a normalized cocycle that
vanishes on commutators then σ′(R) = σ′([R, T ]) = 0 for any T ∈ Γ so by
Lemma 8.2 (iv)

0 = σ′R([R, T ]) =
(
1− ρ(T )

)
ρ(R)σ′R(R)−

(
1− ρ(R)

)
ρ(T )σ′R(T )

= 0−
(
1− ρ(R)

)
ρ(T )σ′R(T );

and since ρ(R) 6= 1 it follows that σ′R(T ) = 0. Thus there is a unique normalized
cocycle that restricts to σ on the commutator subgroup [Γ,Γ] ⊂ Γ, and that
suffices to conclude the proof.

The symmetry expressed in part (iii) of the preceding lemma is a form of
Lie identity for cocycles in the group Z1(Γ,Cρ). The result in part (iv) leads to
the following intrinsic description of the cohomology group H1(Γ,Cρ).

Theorem 8.4 If ρ ∈ Hom(Γ,C∗) is a nontrivial representation of a group Γ,
the mapping that associates to a cocycle σ ∈ Z1(Γ,Cρ) its restriction to the
commutator subgroup [Γ,Γ] ⊂ Γ induces an isomorphism

(8.25) H1(Γ,Cρ) ∼= Homρ([Γ,Γ],C)

of complex vector spaces.

Proof: It was already observed that the restriction of a cocycle σ ∈ Z1(Γ,Cρ)
to the commutator subgroup is a homomorphism σ|[Γ,Γ] ∈ Homρ([Γ,Γ],C); so
restricting normalized cocycles to the commutator subgroup is a homomorphism
of complex vector spaces

Z1
R(Γ,Cρ) −→ Homρ([Γ,Γ],C).
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By Lemma 8.3 (iv) this homomorphism actually is an isomorphism; and since
Z1
R(Γ,Cρ) ∼= H1(Γ,Cρ) by (8.21) that suffices to conclude the proof of the

theorem.

Let Γρ ⊂ Γ be the kernel of the representation ρ ∈ Hom(Γ,C∗), so that

(8.26) Γρ =
{
T ∈ Γ

∣∣∣ ρ(T ) = 1
}
.

Of course [Γ,Γ] ⊂ Γρ since any homomorphism to a commutative group vanishes
on the commutator subgroup. For general representations Γρ = [Γ,Γ]; but for
special representations such as those for which the image ρ(Γ) is a finite group
the subgroup Γρ ⊂ Γ is of finite index. In analogy with (8.22) let

(8.27) Homρ(Γρ,C) =

 σ ∈ Hom(Γρ,C)

∣∣∣∣∣∣
σ(TST−1) = ρ(T )σ(S)

for all S ∈ Γρ, T ∈ Γ

 .

Clearly this too has the natural structure of a complex vector space. It follows
from the cocycle condition (8.13) that the restriction of a cocycle σ ∈ Z1(Γ,Cρ)
to the subgroup Γρ is a homomorphism σ|Γρ ∈ Hom(Γρ,C); and it follows
from Lemma 8.2 (iii) that this homomorphism satisfies σ(TST−1) = ρ(T )σ(S)
so it belongs to the subgroup Homρ(Γρ,C). In addition the restriction of a
homomorphism σ ∈ Homρ(Γρ,C) to the subgroup [Γ,Γ] ⊂ Γρ is an element
φ(σ) = σ|[Γ,Γ] ∈ Homρ([Γ,Γ],C).

Theorem 8.5 If ρ ∈ Hom(Γ,C∗) is a nontrivial representation of a group Γ
the restriction mapping

(8.28) φ : Homρ(Γρ,C) −→ Homρ([Γ,Γ],C)

is an isomorphism of complex vector spaces, and consequently

(8.29) Homρ(Γρ,C) ∼= Homρ([Γ,Γ],C) ∼= H1(Γ,Cρ).

Proof: If σ ∈ Homρ(Γρ,C) and σ|[Γ,Γ] = 0 then for any T ∈ Γρ and R /∈ Γρ

0 = σ([T,R]) = σ(T ·RT−1R−1) = σ(T ) + σ(RT−1R−1)

=
(
1− ρ(R)

)
σ(T );

and since ρ(R) 6= 1 it follows that σ(T ) = 0, so the restriction mapping (8.28)
is an injective linear mapping. On the other hand if σ ∈ Homρ([Γ,Γ],C) then
it follows from Lemma 8.3 (iv) that σ is the restriction σ = σR|[Γ,Γ] of a
normalized cocycle σR ∈ Z1

R(Γ,Cρ); and since σR|Γρ ∈ Homρ(Γρ,C) that shows
that the restriction mapping (8.28) also is surjective, and consequently is an
isomorphism. In view of Theorem 8.4 that suffices to conclude the proof.

The further study of the Prym cohomology groups requires more use of the
detailed structure of the covering translation group Γ of a compact Riemann
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surface M of genus g > 0; this structure can be described most conveniently in
terms of a marking3 of the surface. For the purposes of the present discussion
a marking of a compact Riemann surface M of genus g > 1 is a set T =
(T1, T2, . . . , T2g) of generators of the group Γ, often labeled alternatively Ai =
Ti, Bi = Tg+i for 1 ≤ i ≤ g, subject to the relation C1 · · ·Cg = I where
Ci = [Ai, Bi] = [Ti, Tg+i]. A representation ρ ∈ Hom(Γ,C∗) can be described
fully in terms of this marking by the parameters ζi = ρ(Ti) for 1 ≤ i ≤ 2g, since
any representation is determined uniquely by its values on the generators Ti;
and all the relations among these generators are contained in the commutator
subgroup so these values can be specified arbitrarily, leading to the identification

(8.30) Hom(Γ,C∗) = (C∗)2g.

Theorem 8.6 If M is a marked Riemann surface of genus g > 1 with the
marking T = (T1, . . . , T2g), and if ρ ∈ Hom(Γ,C∗) is a representation described
by parameters ζi = ρ(Ti), then for any cocycle σ ∈ Z1(Γ,Cρ) the values zi =
σ(Ti) satisfy

(8.31)

g∑
i=1

(
(1− ζg+i)ζizi − (1− ζi)ζg+izg+i

)
= 0.

Conversely if zi are any 2g complex numbers satisfying this identity there is a
uniquely determined cocycle σ ∈ Z1(Γ,Cρ) for which zi = σ(Ti).

Proof: If σ ∈ Z1(Γ,Cρ) then since σ|[Γ,Γ] ∈ Homρ([Γ,Γ],C) and the generators
Ti of the marking satisfy

∏g
i=1[Ti, Tg+i] = I it follows from Lemma 8.2 (iv) that

0 = σ
( g∏
i=1

[Ti, Tg+i]
)

=

g∑
i=1

σ
(
[Ti, Tg+i]

)

=

g∑
i=1

(
(1− ζg+i)ζiσ(Ti)− (1− ζi)ζg+iσ(Tg+i)

)
,

which is (8.31). For the converse assertion suppose that zi are complex constants
satisfying (8.31). The covering translation group Γ is the quotient of the free
group F on 2g generators T̃1, . . . , T̃2g by the normal subgroup K ⊂ F generated

by the product C̃ = C̃1 · · · C̃g where C̃i = [T̃i, T̃g+i]. The composition of the
representation ρ and the natural homomorphism F −→ Γ is a representation
of the free group F , which to simplify the notation also will be denoted by ρ.
There is a cocycle σ̃ ∈ Z1(F,Cρ) such that σ̃(T̃i) = zi; to avoid a digression
in the proof here, this will be established in the following Lemma 8.7. Since
the restriction of this cocycle is an element σ̃|[F, F ] ∈ Homρ([F, F ],C) it also

3The definition and properties of markings of surfaces are discussed in Appendix D.1.
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follows from Lemma 8.2 (iv) and (8.31) that

σ̃(C̃) = σ̃
( g∏
i=1

[T̃i, T̃g+i]
)

=

g∑
i=1

σ̃
(
[T̃i, T̃g+i]

)

=

g∑
i=1

(
(1− ζg+i)ζiσ̃(T̃i)− (1− ζi)ζg+iσ̃(T̃g+i)

)

=

g∑
i=1

(
(1− ζg+i)ζizi − (1− ζi)ζg+izg+i

)
= 0.

Moreover it follows from Lemma (8.2) (iii) that σ̃(T̃ C̃T̃−1) = ρ̃(T̃ )σ̃(C̃) = 0
for all T̃ ∈ Γ as well, since ρ̃(C̃) = 1; so since K ⊂ F is the normal subgroup
generated by C̃ then σ̃(S̃) = 0 for all S̃ ∈ K. From this and the cocycle condition
(8.13) it follows that σ̃(S̃T̃ ) = ρ̃(T̃ )−1σ̃(S̃) + σ̃(T̃ ) = σ̃(T̃ ) for all S̃ ∈ K and
T̃ ∈ F , which means that σ̃(T̃1) = σ̃(T̃2) for any elements T̃1, T̃2 ∈ F that
represent the same element of Γ under the natural homomorphism F −→ Γ; it
is thus possible to define a mapping σ : Γ −→ C by setting σ(T ) = σ̃(T̃ ) for
any T̃ ∈ F representing T ∈ Γ. The result is a cocycle σ ∈ Z1(Γ,Cρ), since

whenever S̃, T̃ ∈ F represent S, T ∈ Γ then S̃T̃ ∈ F represents ST ∈ Γ so from
the cocycle condition (8.13) for the group F it follows that σ(ST ) = σ̃(S̃T̃ ) =
ρ(T̃ )−1σ̃(S̃)+σ̃(T̃ ) = ρ(T )−1σ(S)+σ(T ). The cocycle thus constructed satisfies
σ(Ti) = zi, and is uniquely determined by this condition; and that suffices to
conclude the proof.

Lemma 8.7 If F is a free group generated by finitely many elements Ti, and if
ρ ∈ Hom(F,C∗) is a representation of that group, then for any complex constants
zi there is a unique cocycle σ ∈ Z1(F,Cρ) such that σ(Ti) = zi.

Proof: To any word T in the formal symbols Ti and T−1
i , that is, to any

finite sequence of these symbols with possible repetitions but no cancellation
of terms, associate a value σ(T ) by setting σ(Ti) = zi and σ(T−1

i ) = −ρ(Ti)zi
and then inductively setting σ(TiT ) = ρ(T )−1σ(Ti) + σ(T ) and σ(T−1

i T ) =
ρ(T )−1σ(T−1

i ) + σ(T ) for any word T . It is easy to see by induction on the
length of the word ST , the number of symbols in that word, that σ satisfies the
cocycle condition σ(ST ) = ρ(T )−1σ(S) + σ(T ) for any words S and T . Indeed
that follows immediately from the definition of the mapping σ if the word ST
is of length 2; and if it true for the word ST then

σ(TiS · T ) = ρ(ST )−1σ(Ti) + σ(ST )

= ρ(ST )−1σ(Ti) + ρ(T )−1σ(S) + σ(T )

= ρ(T )−1
(
ρ(S)−1σ(Ti) + σ(S

)
+ σ(T )

= ρ(T )−1σ(TiS) + σ(T ),
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and similarly for T−1
i in place of Ti. It further follows that the value σ(T )

is unchanged when the pairs TiT
−1
i and T−1

i Ti are deleted from any word.
Indeed σ(TiT

−1
i ) = ρ(Ti)σ(Ti) + σ(T−1

i ) = ρ(Ti)zi − ρ(Ti)zi = 0 and cor-
respondingly for the other order T−1

i Ti; then from the cocycle condition it
follows that σ(ATiT

−1
i B) = ρ(TiT

−1
i B)−1σ(A) + ρ(B)−1σ(TiT

−1
i ) + σ(B) =

ρ(B)−1σ(A) + σ(B) = σ(AB). Thus the mapping σ can be viewed as defined
on the free group F , and is a cocycle σ ∈ Z1(F,Cρ); and that suffices for the
proof.

For the trivial representation ρ = 1 condition (8.31) is vacuous and Theo-
rem 8.6 reduces to the familiar assertion that for any complex numbers zi there
is a cocycle σ ∈ Z1(Γ,C) = Hom(Γ,C) such that σ(Ti) = zi.

Corollary 8.8 Let M be a marked Riemann surface M of genus g > 1 with the
marking T = (T1, . . . , T2g), let ρ ∈ Hom(Γ,C∗) be a representation described by
parameters ζi = ρ(Ti), and assume that ρ(Tl) = ζl 6= 1 for some index l. Then
the linear mapping

(8.32) Zl : Homρ([Γ,Γ],C) −→ C2g

that associates to a homomorphism σ ∈ Homρ([Γ,Γ],C) the vector

(8.33) Zl(σ) =
{
zi,l = σ([Ti, Tl])

∣∣∣ 1 ≤ i ≤ 2g
}
∈ C2g

is an injective linear mapping; its image is the linear subspace Hρ,l ⊂ C2g

consisting of vectors {zi,l} ∈ C2g such that
(i) zl,l = 0

(ii)
∑g
i=1

(
(1− ζg+i)zi,l − (1− ζi)zg+i,l

)
= 0,

and

(8.34) dimHρ,l = 2g − 2.

Proof: A homomorphism σ ∈ Homρ([Γ,Γ],C) is determined completely by the
values zi,j = σ([Ti, Tj ]) for 1 ≤ i, j ≤ 2g, since any elements S, T ∈ Γ can
be written as words in the generators Ti and their inverses and σ([S, T ]) then
can be expressed in terms of the values zi,j = σ([Ti, Tj ]) by repeated use of
Lemma 8.3 (i) and (ii). By Lemma 8.3 (iii)

(8.35) (1− ζi)zj,l + (1− ζl)zi,j + (1− ζj)zl,i = 0,

and since ζl 6= 1 by assumption the values zi,j for all i, j are determined com-
pletely by the values zi,l for 1 ≤ i ≤ 2g. It follows from these two observations
that the linear mapping Zl is injective. Clearly zl,l = σ([Tl, Tl]) = σ(I) = 0, so
the vectors in the image of the linear mapping Zl satisfy (i). Since C1 · · ·Cg = I
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then for any mapping σ ∈ Homρ([Γ,Γ],C)

0 = σ(C1 · · ·Cg) =

g∑
i=1

σ(Ci) =

g∑
i=1

σ([Ti, Tg+i]) =

g∑
i=1

zi,g+i

=
1

1− ζl

g∑
i=1

(
(1− ζg+i)zi,l − (1− ζi)zg+i,l

)
,

by (8.35), so the vectors in the image of the linear mapping Zl also satisfy (ii).
On the other hand for any vector {zi,l} ∈ Hρ,l it follows from (ii) that the
values zi = zi,l/ζi(1 − ζl) satisfy (8.31), so by Theorem 8.6 there is a cocycle
σ ∈ Z1(Γ,Cρ) such that

σ(Ti) = zi =
zi,l

ζi(1− ζl)
;

it then follows from (i) and Lemma 8.2 (iv) that

σ([Ti, Tl]) = (1− ζl)ζiσ(Ti)− (1− ζi)ζlσ(Tl) = zi,l − zl,l = zi,l,

hence {zi,l} is in the image of the linear mapping Zl so the image of Zl is the
full linear subspace Hρ,l. Finally since
(8.36)

(1−ζg+i)zi,l−(1−ζi)zg+i,l =

 −(1− ζl)zl+g,l for i = l if 1 ≤ l ≤ g,

(1− ζl)zl−g,l for i = l − g if g + 1 ≤ l ≤ 2g

and ζl 6= 1, it is clear that the linear equations (i) and (ii) are linearly indepen-
dent, and consequently that dimHρ,l = 2g − 2, which suffices to conclude the
proof.

For any index l in the range 1 ≤ l ≤ 2g, the unique index l′ in that range
such that |l − l′| = g is called the dual index to l; thus if 1 ≤ l ≤ g then
l′ = l + g while if g + 1 ≤ l ≤ 2g then l′ = l − g. If {zi,l} ∈ Hρ,l ⊂ C2g

it is evident from (8.36) that equation (ii) of Corollary 8.8 can be used to
express the entry zl′,l as a linear function of the remaining entries of that vector,
while zl,l = 0 by (i); so since dimHρ,l = 2g − 2 a vector in Hρ,l is determined
uniquely by the entries zi,l for all indices i 6= l, l′, and these values can be
assigned arbitrarily. If ρ is a representation for which ρ(Tl) 6= 1, the composition

of the isomorphism H1(Γ,Cρ)
∼=−→ Homρ([Γ,Γ],C) of Theorem 8.4 and the

isomorphism Zl : Homρ([Γ,Γ],C)
∼=−→ Hρ,l of Corollary 8.8 is an isomorphism

(8.37) Ẑl : H1(Γ,Cρ)
∼=−→ Hρ,l,

so a cohomology class σ ∈ H1(Γ,Cρ) can be described uniquely by the values

(8.38) {zi,l} = {σ([Ti, Tl])} ∈ Hρ,l for 1 ≤ i ≤ 2g, i 6= l, l′,
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for the image Ẑl(σ) ∈ Hρ,l; these values are called the canonical coordinates
of the cohomology class σ with respect to the generator Tl in the marking T ,
and any set of 2g − 2 complex numbers zi,l for 1 ≤ i ≤ 2g, i 6= l, l′ are the
canonical coordinates for some Prym cohomology class. This coordinatization
of the Prym cohomology classes of course depends on the choice of the marking
T and of a generator Tl ∈ T for which ρ(Tl) 6= 1; it is convenient just to say that
the canonical coordinates depend on the indexed marking T (l) of the surface
M , where an indexed marking is defined to be a marking T = (T1, . . . , T2g)
together with the choice of a particular generator Tl ∈ T . Of course only those
indexed markings for which ρ(Tl) 6= 1 can yield a coordinatization of the Prym
cohomology group for the representation ρ.

To describe the relations between different systems of canonical coordinates,
it is useful to introduce some auxiliary algebraic observations. For any nontriv-
ial representation ρ ∈ Hom(Γ,C∗) of the covering translation group Γ of the
Riemann surface M let Z[ρ] ⊂ C be the subring defined by

(8.39) Z[ρ] = Z

[
ρ(T ),

1− ρ(T )

1− ρ(S)

]
for all S, T ∈ Γ, ρ(S) 6= 1;

thus Z[ρ] is the ring generated by ρ(T ) and
(
1−ρ(T )

)
/
(
1−ρ(S)

)
for all S, T ∈ Γ

for which ρ(S) 6= 1. It is an integral domain, as a subring of the field C, and its
field of quotients is denoted by Q(ρ). A representation ρ ∈ Hom(Γ,C∗) is said
to be finite of order q if its image ρ(Γ) ⊂ C∗ is a finite subgroup of order q in
the multiplicative group C∗; the image ρ(Γ) then is the cyclic group of order q
generated by a primitive q-th root of unity. For finite representations the ring
Z(ρ) takes a particularly simple form.

Lemma 8.9 (i) If ρ is a finite representation of order q of a group Γ and ε is a
primitive q-th root of unity then the ring Z[ρ] is generated by ε and the quotients
(1 − ε)(1 − εd)−1 for all integers d such that 1 < d < q and d|q, and the field
of quotients Q(ρ) of the ring Z[ρ] is the cyclotomic field Q(ε) of q-th roots of
unity;
(ii) Z[ρ] = Z[ε] if q = p is prime; and
(iii) Z[ρ] = Z if q = 2.

Proof: If ρ is a finite representation of order q and ε is a primitive q-th root of
unity then for any T ∈ Γ it is the case that ρ(T ) = εn for some integer n in the
range 1 ≤ n ≤ q; so it follows immediately from the definition (8.39) that the
ring Z[ρ] is generated by ε and the quotients (1− εm)/(1− εn) for integers m,n
in the range 1 ≤ m,n < q. If m > 1 then since

1− εm

1− εn
= P (ε) · 1− ε

1− εn

where P (ε) = 1 + ε+ ε2 + · · ·+ εm−1 ∈ Z(ε) it follows that (1− εm)/(1− εn) can
be replaced by (1 − ε)/(1 − εn) in the list of generators of Z[ε]. If n = 1 then
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(1− ε)/(1− εn) = 1, so it can be assumed that 1 < n < q. Then since εq = 1

0 = 1 + ε+ ε2 + · · ·+ εq−1

= (1 + ε+ ε2 + · · ·+ εn−1) + εn(1 + ε+ ε2 + · · ·+ εn−1) + · · ·
· · ·+ εkn(1 + ε+ ε2 + · · ·+ εr−1)

= (1 + ε+ ε2 + · · ·+ εn−1)(1 + εn + ε2n + · · ·+ ε(k−1)n)

+ εkn(1 + ε+ ε2 + · · ·+ εr−1)

where r ≤ n < q and q = kn+ r, so that εkn = ε−r; hence

1− ε
1− εn

=
1

1 + ε+ ε2 + · · ·+ εn−1

=
1 + εn + ε2n + · · ·+ ε(k−1)n

(1 + ε+ ε2 + · · ·+ εn−1)(1 + εn + ε2n + · · ·+ ε(k−1)n)

=
1 + εn + ε2n + · · ·+ ε(k−1)n

− εkn(1 + ε+ ε2 + · · ·+ εr−1)
= − εrP (ε)

(1− ε)
(1− εr)

where P (ε) = 1 + εn + · · · + ε(k−1)n ∈ Z[ε]. If r = n then q = kn + r =
(k+ 1)n so that n|q; hence if n is not a divisor of q then r < n and the quotient
(1− ε)/(1− εn) can be replaced in the list of generators of the ring Z[ρ] by the
quotient (1 − ε)/(1 − εr). The argument can be repeated, and eventually the
only generators left of the form (1 − ε)/(1 − εn) are those for which 1 < n < q
and n|q, as desired. All of these generators are contained in the cyclotomic field
Q(ε), which therefore must be the field of quotients of the ring Z[ρ]. If q = p
is a prime it follows immediately from (i) that the ring Z[ρ] is generated by ε
alone, so that Z[ρ] = Z[ε]; and if p = 2 then ε = −1 and Z[ρ] = Z. That suffices
to conclude the proof.

Part (iii) of the preceding lemma can be demonstrated more directly by
noting that if ρ is a finite representation of order two then ρ(T ) = ±1 ∈ Z for

all T ∈ Γ; consequently
(
1 − ρ(T )

)(
1 − ρ(S)

)−1 ∈ Z for all S, T ∈ Γ for which
ρ(S) 6= 1, since this quotient obviously is either 0 or 1. If q is not a prime the
ring Z[ρ] can be properly larger than just the ring Z[ε] generated by a primitive
q-th root of unity. For example if ρ is a finite representation of order 4 and ε = i
then

Z[ρ] = Z
[
i,

1− i
1− i2

]
= Z

[
i,

1− i
2

]
= Z

[
i

2

]
since

(
1−i

2

)2
= − i

2 ; and if ρ is a finite representation of order 6 and ε =

exp(2πi/6) = 1
2 (1 + i

√
3) then

Z[ρ] = Z
[
ε,

1− ε
1− ε2

,
1− ε
1− ε3

]
= Z

[
ε,

1 + ε

3
,

1− ε
2

]
= Z

[
i

2
√

3

]
= Z

[ ε
3

]
since

(
1+ε

3

) (
1−ε

2

)
= i

2
√

3
. In both of these cases, and in general, the ring Z[ρ]

is not a finite Z-module; but an evident consequence of the preceding lemma is
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that ring Z[ρ] is a finite Z-module whenever ρ is finite of prime order, and that
is one of the reasons that special case is so interesting.

For the application of these algebraic observations, consider first the various
systems of indexed markings T (l) for a fixed marking T of a compact Riemann
surface M of genus g > 0. If ρ : Γ −→ C∗ is a homomorphism for which
ρ(Tl) = ζl 6= 1 and ρ(Tk) = ζk 6= 1 equation (8.35) can be rewritten

(8.40) zi,k =
1− ζk
1− ζl

zi,l −
1− ζi
1− ζl

zk,l,

which expresses the canonical coordinates zi,k of Prym cohomology classes in
terms of the indexed marking T (k) as linear functions of the canonical coordi-
nates zi,l of Prym cohomology classes in terms of the indexed marking T (l); but
this formula also involves the additional variable zl′,l if either i = l′ or k = l′,
and that variable is not one of the canonical coordinates with respect to the
indexed marking T (l). A straightforward calculation shows that equation (ii)
of Theorem 8.8 is equivalent to

(8.41) zl′,l = ε(l)
∑

1≤i≤g

i 6=l,l′

(1− ζi+g
1− ζl

zi,l −
1− ζi
1− ζl

zi+g,l

)

where

(8.42) ε(l) =

 +1 if l < l′

−1 if l > l′,

and this expresses zl′,l as a linear function of the canonical coordinates in terms
of the indexed marking T (l). Equations (8.40) and (8.41) taken together there-
fore express the canonical coordinates zi,k of a Prym cohomology class in terms
of the indexed marking T (k) as linear functions of the canonical coordinates zi,l
of that Prym cohomology class in terms of the indexed marking T (l).

The coefficients of these linear equations are rational functions of the pa-
rameters ζi = ρ(Ti) describing the representation ρ, so they can be viewed as
elements Rijkl(ζ) ∈ Q(ζ1, . . . , ζ2g); and at the same time it is also clear from the
equations (8.40) and (8.41) that for any fixed value of the parameters ζi these
coefficients are contained in the ring Z[ρ] for the representation ρ described by
those values of the parameters ζi. Thus the systems of canonical coordinates
for Prym cohomology classes in terms of the indexed markings T (k) and T (l)
are related by linear equations of the form

(8.43) zi,k =
∑

1≤j≤g

j 6=l,l′

Rijkl(ζ)zj,l for 1 ≤ i ≤ 2g, i 6= k, k′

where Rijkl(ζ) ∈ Q(ζ1, . . . , ζ2g) ∩ Z[ρ]. If the vectors zk = {zi,k} and zl = {zi,l}
are viewed as column vectors of length 2g−2 these linear equations can be writ-
ten more succinctly in matrix form as zk = Rkl(ζ) zl where Rkl(ζ) = {Rijkl(ζ)}.
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When these coefficients are viewed as rational functions in Q(ζ1, . . . , ζ2g) they
are uniquely determined by these linear equations, since the canonical coor-
dinates are independent variables; and from the uniqueness it follows that
Rkl(ζ)Rlk(ζ) = I, so that Rkl(ζ) ∈ Gl

(
2g − 2,Q(ζ1, . . . , ζ2g)

)
, and further that

Rkl(ζ)Rlm(ζ) = Rkm(ζ).
The set of all values ζi 6= 0 for 1 ≤ i ≤ 2g parametrize the full group

H1(M,C∗) of flat line bundles over the Riemann surface M , and the subset of
values ζi not all of which are equal to 1 parametrize the subset U ⊂ H1(M,C∗)
of all nontrivial flat line bundles, those flat line bundles other than the identity
flat line bundle. The set U can be written as the union

(8.44) U =

2g⋃
l=1

Ul where Ul =
{

(ζ1, ζ2, . . . , ζ2g) ∈ C∗)2g
∣∣∣ ζl 6= 1

}
.

The matrix Rkl(ζ) takes well defined numerical values on the intersection Uk∩Ul
so is actually a holomorphic nonsingular matrix-valued function in that subset
The condition that Rkl(ζ)Rlm(ζ) = Rkm(ζ) means that these matrices describe
a holomorphic vector bundle of rank 2g − 2 over the complex manifold U , a
bundle called the Prym cohomology bundle of the marked Riemann surface M ,
an interesting if rather simple bundle that will not be examined further just
here.

Theorem 8.10 If M is a marked Riemann surface with the marking T =
(T1, . . . , T2g), and if ρ ∈ Hom(Γ,C∗) is a representation for which ρ(Tl) 6= 1,
then for any commutator [R,S] ∈ [Γ,Γ] there are complex numbers εj(R,S) ∈
Z[ρ] depending only on the elements R,S ∈ Γ such that

(8.45) σ([R,S]) =

2g∑
j=1

εj(R,S)σ([Tj , Tl])

for every cocycle σ ∈ Z1(Γ,Cρ).

Proof: When a covering translation S ∈ Γ is expressed in terms of the genera-
tors Ti as S = T ν1

k1
T ν2

k2
T ν3

k3
· · · it follows from Lemma 8.3 (i) that

σ([S, Tl]) = σ([T ν1

k1
, Tl]) + ρ(T ν1

k1
)σ([T ν2

k2
, Tl]) + ρ(T ν1

k1
T ν2

k2
)σ([T ν3

k3
, Tl]) + · · ·

=
∑
i

ε′i(S)σ([T νiki , Tl])

where ε′i(S) ∈ Z[ρ] depends only on the element S ∈ Γ. Next it follows induc-
tively from Lemma 8.3 (i) that if ν > 0 then

σ([T νk , Tl]) =
(

1 + ρ(Tk) + · · ·+ ρ(T ν−1
k )

)
σ([Tk, Tl]) = ε′′(T νk )σ([Tk, Tl])

where ε′′(T νk ) ∈ Z[ρ] depends only on the element T νk ∈ Γ; and if ν < 0 it follows
from this and Lemma 8.3 (ii) that

σ([T νk , Tl]) = −ρ(T νk )σ([T−νk , Tl]) = −ρ(T νk )ε′′(T−νk )σ([Tk, Tl])

= ε′′(T νk )σ([Tk, Tl])
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where ε′′(T νk ) = −ρ(T νk )ε′′(T−νk ) ∈ Z[ρ] depends only on the element T νk . Com-
bining these observations shows that

σ([S, Tl]) =
∑
i

ε′i(S)ε′′(T νiki )σ([Tki , Tl])

=

2g∑
j=1

εj(S)σ([Tj , Tl])

where εj(S) ∈ Z[ρ] depends only on the element S ∈ Γ. Finally for any two
covering translations R, S ∈ Γ it follows from Lemma 8.3 (iii) and the preceding
observation that

σ([R,S]) =
1− ρ(S)

1− ρ(Tl)
σ([R, Tl])−

1− ρ(R)

1− ρ(Tl)
σ([S, Tl])

=

2g∑
j=1

(
1− ρ(S)

1− ρ(Tl)
εj(R)− 1− ρ(R)

1− ρ(Tl)
εj(S)

)
σ([Tj , Tl])

=

2g∑
j=1

εj(R,S)σ([Tj , Tl])

where εj(R,S) ∈ Z[ρ] depends only on the elements R,S ∈ Γ, and that suffices
to conclude the proof.

Corollary 8.11 If S = (S1, . . . , s2g) and T = (T1, . . . , T2g) are two markings
of a compact Riemann surface M of genus g > 1, and if ρ ∈ Hom(Γ,C∗) is a
representation for which both ρ(Sl) 6= 1 and ρ(Tm) 6= 1, then there is a uniquely
determined (2g − 2)× (2g − 2) matrix

(8.46) E(ρ) = {εij} ∈ Gl(2g − 2,Z[ρ])

with entries εij ∈ Z[ρ] such that for any Prym cohomology class σ ∈ H1(Γ,Cρ)
the canonical coordinates wi,l = σ([Si, Sl]) and zj,m = σ([Tj , Tm]) of this class
in terms of the generators Sl and Tm in these two markings are related by

(8.47) wi,l =
∑

1≤j≤2g

j 6=m,m′

εij zj,m

for all indices 1 ≤ i ≤ 2g, i 6= l, l′.

Proof: By the preceding theorem there are values ε∗ij ∈ Z[ρ] for all indices
1 ≤ i, j ≤ 2g such that

σ([Si, Sl]) =
∑

1≤j≤2g

ε∗ij σ([Tj , Tm])
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for every cohomology class σ ∈ H1(Γ,Cρ); thus in terms of the canonical coor-
dinates wi,l = σ([Si, Sl]) and zj,m = σ([Tj , Tm]) of that cohomology class

wi,l =
∑

1≤j≤2g

ε∗ij σ([Tj , Tm])

=
∑

1≤j≤g

j 6=m,m′

ε∗ij zj,m + ε∗im σ([Tm, Tm]) + ε∗im′ σ([Tm′ , Tm])

for 1 ≤ i ≤ 2g, i 6= l, l′. Of course σ([Tm, Tm]) = 0, while by (8.41)

σ([Tm′ , Tm]) = ε(m)
∑

1≤j≤g

j 6=m,m′

(
1− ρ(Tj+g)

1− ρ(Tm)
zj,m −

1− ρ(Tj)

1− ρ(Tm)
zj+g,m

)

and the coefficients of the canonical coordinates zi,m in this equation also lie in
the ring Z[ρ]. These observations taken together yield (8.47). Since the canoni-
cal coordinates are linearly independent the complex matrix E(ρ) is invertible.
The same arguments hold when the roles of the two markings are interchanged,
so the inverse matrix also must have coefficients in the ring Z[ρ] and hence
E(ρ) ∈ Gl(2g − 2,Z[ρ]). That suffices to conclude the proof.

The matrix E(ρ) of the preceding corollary can be viewed as a function of
the flat line bundle ρ ∈ U . To be explicit, choose a marking of the surface M by
generators Ri ∈ Γ and use the values ζi = ρ(Ri) to parametrize all nontrivial flat
representations ρ ∈ Hom(Γ,C∗) by points in the complex manifold U defined
as on page 209 in terms of this marking, so that the representations ρ can be
viewed as functions ρ(ζ). Since any element T ∈ Γ can be written in terms of
the generators Ri as a product T =

∏
iR

νi
k(i) where 1 ≤ k(i) ≤ 2g and νi ∈ Z, it

is evident that any element ε ∈ Z[ρ] can be written as a quotient of polynomials
in the variables ζi with integer coefficients, and consequently can be viewed as
an element ε ∈ Q(ζ1, . . . , ζ2g).

Corollary 8.12 If {Si} and {Tj} are two sets of generators of the covering
translation group Γ of a compact Riemann surface M of genus g > 1, describing
two markings of M , there is a uniquely determined (2g − 2)× (2g − 2) matrix

(8.48) E(ζ) = {eij(ζ)} ∈ Gl(2g − 2,Q(ζ))

of rational functions eij(ζ) of the variables ζ = (ζ1, . . . ζ2g) ∈ U parametriz-
ing flat line bundles over M such that for any flat line bundle ρ = ρ(ζ) ∈
Hom(Γ,C∗) for which ρ(Sl) 6= 1 and ρ(Tm) 6= 1 and for any Prym coho-
mology class σ ∈ H1(Γ,Cρ) the canonical coordinates wi,l = σ([Si, Sl]) and
zj,m = σ([Tj , Tm]) of σ in terms of the generators Sl and Tm in these two
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markings are related by

(8.49) wi,l =
∑

1≤j≤2g

j 6=m,m′

eij(ζ) zj,m

for 1 ≤ i ≤ 2g, i 6= l, l′.

Proof: This is merely a restatement of the conclusion of the preceding corollary,
since the coefficients εij of that corollary can be written εij = eij(ζ) for rational
functions eij(ζ) ∈ Q(ζ1, . . . ζ2g), so no further proof is required.

Thus the matrix E(ρ) of Corollary 8.11 when viewed as a function of the
flat line bundle ρ described by the parameters ζi = ρ(Ri) is a rational function
E(ζ) of the variables ζi; and the values taken by this matrix function for a fixed
value of the parameters ζi lie in the ring Z[ρ] for the representation ρ described
by the parameters ζi. It is evident from this that

(8.50) E(ρ) = E(ρ)

since the rational functions eij(ζ) have rational integral coefficients.
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Addendum: Higher Prym Cohomology Groups

The discussion in this chapter so far has involved only the first Prym co-
homology groups. It is perhaps natural to ask about the higher-dimensional
Prym cohomology groups, so a brief discussion of these groups is included here;
but since they play only a very limited role in the study of Riemann surfaces
the discussion is somewhat condensed and is relegated to this addendum, which
can be ignored altogether if desired. If M is a compact Riemann surface of
genus g > 0 with covering translation group Γ then by using a C∞ partition of
unity on M , as in the demonstration of (E.33) in Appendix E.2 or the natural
extension of the proof of Lemma 8.1, it is easy to see that Hq(Γ,Γ(M̃, E)) = 0
whenever q > 0; consequently from the exact cohomology sequence associated
to the exact sequence (8.10) of vector spaces on which the group Γ acts as in
(8.6) it follows that

Hq(Γ,Cρ) ∼= Hq−1(Γ,Γ(M̃, E1
c )) for q ≥ 2.

On the other hand there is also the exact sequence of vector spaces

0 −→ Γ(M̃, E1
c )) −→ Γ(M̃, E1))

d−→ Γ(M̃, E2)) −→ 0

on which the group Γ acts in the same way; and from the associated exact
cohomology sequence it follows first that

H1(Γ,Γ(M̃, E1
c )) ∼=

H0(Γ,Γ(M̃, E2))

dH0(Γ,Γ(M̃, E1))
∼=

Γ(M, E2(ρ))

dΓ(M, E1(ρ))

and second that
Hq(Γ,Γ(M̃, E1

c )) = 0 for q ≥ 2.

Combining these observations shows that

(8.51) Hq(Γ,Cρ) ∼=


Γ(M, E2(ρ))
dΓ(M, E1(ρ))

for q = 2,

0 for q ≥ 3;

consequently for the study of Riemann surfaces only the second cohomology
group H2(Γ,Cρ) really is of interest.

To trace through the isomorphism (8.51) for q = 2 explicitly, recall the
description of the coboundary operators on inhomogeneous cochains in the co-
homology of groups in (E.13) in Appendix E.1 and consider a differential form
φ ∈ Γ(M, E2(ρ)), viewed as a C∞ differential form φ(z) on the universal cover-
ing surface M̃ such that φ(Tz) = ρ(T )φ(z) for all T ∈ Γ. This differential
form can be written as the exterior derivative φ(z) = dψ(z) of a C∞ one-
form ψ(z) on M̃ since M̃ is contractible. Then for any T ∈ Γ it follows that
d
(
ρ(T )−1ψ(Tz) − ψ(z)

)
= ρ(T )−1φ(Tz) − φ(z) = 0, so since M̃ is contractible

there is a C∞ function f(T, z) on M̃ , depending also on the element T ∈ Γ, such
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that ρ(T )−1ψ(Tz)− ψ(z) = df(T, z). In particular df(I, z) = 0 for the identity
element I ∈ Γ, so it always can be assumed that f(I, z) = 0. For these functions
and for any elements T1, T2 ∈ Γ

d
(
ρ(T2)−1f(T1, T2z) + f(T2, z)− f(T1T2, z)

)
= ρ(T2)−1

(
ρ(T1)−1ψ(T1T2z)− ψ(T2z)

)
+
(
ρ(T2)−1ψ(T2z)− ψ(z)

)
−
(
ρ(T1T2)−1ψ(T1T2z)− ψ(z)

)
= 0;

consequently the expression

(8.52) v(T1, T2) = ρ(T2)−1f(T1, T2z) + f(T2, z)− f(T1T2, z)

is a constant in the variable z ∈ M̃ . In particular since f(I, z) = 0 by assumption
it follows that

v(I, T2) = ρ(T2)−1f(I, T2z) + f(T2, z)− f(T2, z) = 0,

v(T1, I) = f(T1, z) + f(I, z)− f(T1, z) = 0,

so the mapping v : Γ×Γ −→ C is an inhomogeneous two-cochain v ∈ C2(Γ,Cρ)
as defined in equation (E.9) of Appendix E.2. Equation (8.52) exhibits the
two-cochain v as the coboundary of the one-cohain f(T, z) ∈ C1(Γ,Γ(M̃, E)),
so it must be a two-cocycle v ∈ Z2(Γ,Cρ). Actually it is a straightforward
calculation to verify directly from (8.52) that the cochain v(T1, T2) satisfies the
cocycle condition

(8.53) ρ(T3)−1v(T1, T2)− v(T2, T3) + v(T1T2, T3)− v(T1, T2T3) = 0,

keeping in mind that the expression (8.52) is independent of the variable z ∈ M̃ .
This cocycle of course depends on the choices of the differential form ψ(z) and
of the functions f(T, z). If dψ1(z) = φ(z) and df1(T, z) = ρ(T )−1ψ1(Tz)−ψ1(z)
then since d

(
ψ1(z)−ψ(z)

)
= 0 it must be the case that ψ1(z)−ψ(z) = dg(z) for

some C∞ function g(z) on M̃ , so ρ(T )−1ψ1(Tz)−ψ1(z) = ρ(T )−1ψ(Tz)−ψ(z)+
d
(
ρ(T )−1g(Tz) − g(z)

)
= d

(
f(T, z) + ρ(T )−1g(Tz) − g(z)

)
and consequently

f1(T, z) = f(T, z)+ρ(T )−1g(Tz)−g(z)+c(T ) for some constants c(T ); in order
that f1(I, z) = 0 it is necessary that c(I) = 0, so the mapping c : Γ −→ C can be
viewed as an inhomogeneous one-cochain c ∈ C0(Γ,Cρ). It is a straightforward
calculation to verify that for these functions f1(T, z) the definition (8.52) yields
the expression v1(T1, T2) = v(T1, T2) + ρ(T2)−1c(T1) + c(T2)− c(T1T2), which is
a cocycle cohomologous to v(T1, T2). Thus the cohomology class in H2(Γ,Cρ)
represented by the cocycle v(T1, T2) is independent of these choices so depends
only on the initial differential form φ(z); this cohomology class is the period
class δφ ∈ H2(Γ,Cρ) of the differential form φ.
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The second cohomology group H2(Γ,Cρ) has an explicit description given
by the theorem of H. Hopf, which for the simpler situation in which the group
Γ acts trivially is Theorem E.2 in Appendix E.2. This description does not
involve any special properties of the group Γ as the covering translation group
of a compact Riemann surface, so will be demonstrated in Theorem 8.14 for
more general groups as well; its application to Riemann surfaces of course does
depend on the special structure of the covering translation group of a surface,
so will be discussed separately in the subsequent Corollary 8.15. Note that any
representation ρ ∈ Hom(Γ,C∗) of any group Γ can be used to exhibit that group
as a group of operators on the complex numbers as in (8.7), in terms of which
the cohomology groups Hp(Γ,Cρ) are well defined.

Lemma 8.13 If F is a finitely generated free group and ρ ∈ Hom(Γ,C∗) then
H2(F,Cρ) = 0.

Proof: The proof is a straightforward extension of the proof of Lemma E.25 in
Appendix E.2. First setting T1 = T3 = T and T2 = T−1 in the cocycle condition
(8.53) shows that v(T−1, T ) = ρ(T )−1v(T, T−1) for any cocycle v ∈ Z2(F,Cρ),
since v(T1, T2) = 0 if T1 = I or T2 = I. Then for any cocycle v ∈ Z2(F,Cρ) and
any free generator Ti of the group F choose a value σ(Ti) ∈ C, set σ(T−1

i ) =
v(Ti, T

−1
i )− ρ(Ti)σ(Ti) = ρ(Ti)v(T−1

i , Ti)− ρ(Ti)σ(Ti), and define σ(T ) for any
formal product of the generators Ti and their inverses, without cancellation, by

(8.54) σ(ST ) = ρ(T )−1σ(S) + σ(T )− v(S, T ).

It follows readily from these definitions that σ(TiT
−1
i ) = σ(T−1

i Ti) = 0, and
it is a straightforward calculation to verify from the definition (8.54) and the
cocycle condition (8.53) that σ(R · ST ) = σ(RS · T ); consequently σ is a well
defined mapping σ : F −→ C, and since σ(I) = 0 it actually is a one-cochain
σ ∈ C0(F,Cρ). Equation (8.54) shows that the cocycle v is the coboundary of
the cochain σ, and consequently that H1(F,Cρ) = 0. That suffices to conclude
the proof.

Next supppose that Γ is any finitely generated group, so can be described
by an exact sequence

(8.55) 0 −→ K
ι−→ F

p−→ Γ −→ 0

in which F is a finitely generated free group, ι is an inclusion mapping and
p is the projection to the quotient group. A representation ρ ∈ Hom(Γ,C∗)
lifts to the representation ρ ◦ p ∈ Hom(F,C∗), which to simplify the notation
also will be denoted just by ρ; so if T̃ ∈ F then by definition ρ(T̃ ) = ρ(p(T̃ )).
For any cocycle v ∈ Z2(Γ,Cρ) the composition v ◦ p = p∗(v) is a cocycle
p∗(v) ∈ Z2(F,Cρ), so by the preceding lemma is the coboundary of a one-
cochain σ ∈ C1(F,Cρ); thus σ is a mapping σ : F −→ C such that σ(I) = 0
and

(8.56) v(T̃1, T̃2) = ρ(T̃2)−1σ(T̃1) + σ(T̃2)− σ(T̃1T̃2)
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for all T̃i ∈ F . Since v(T1, T2) = 0 if either T1 = I or T2 = I then p∗(v)(T̃1, T̃2) =
0 if either T̃1 ∈ K or T̃2 ∈ K. It follows from this and from the cocycle condition
(8.56) that if S̃ ∈ K and T̃ ∈ F then

σ(S̃T̃ ) = ρ(T̃ )−1σ(S̃) + σ(T̃ ),

σ(T̃ S̃) = σ(T̃ ) + σ(S̃);

consequently the restriction σ|K is a homomorphism from the group K to the
additive group C and

σ(T̃ ) + σ(S̃) = σ(T̃ S̃) = σ(T̃ S̃T̃−1 · T̃ )

= ρ(T̃ )−1σ(T̃ S̃T̃−1) + σ(T̃ )

so that σ(T̃ S̃T̃−1) = ρ(T̃ )σ(S̃). Therefore the restriction σ|K is an element of
the group

(8.57) Homρ(K,C) =

 σ ∈ Hom(K,C)

∣∣∣∣∣∣
σ(T̃ S̃T̃−1) = ρ(p(T̃ ))σ(S̃)

for all S̃ ∈ K, T̃ ∈ F


analogous to (8.22). On the other hand for any cocycle τ ∈ Z1(F,Cρ) the

cocycle condition shows that τ(S̃T̃ ) = ρ(T̃ )−1τ(S̃) + τ(T̃ ) for all S̃, T̃ ∈ F ,
and consequently that τ |K ∈ Hom(K,C); and it follows from Lemma 8.2 that
τ(T̃ S̃T̃−1) = ρ(T̃ )τ(S̃) +

(
ρ(S̃)−1 − 1

)
ρ(T̃ )τ(T̃ ) for all S̃, T̃ ∈ F , so if S̃ ∈ K

then ρ(S̃) = 1 and τ(T̃ S̃T̃−1) = ρ(T̃ )τ(S̃). Thus

Z1(F,Cρ)
∣∣∣K ⊂ Homρ(K,C),

so it is possible to introduce the quotient space

(8.58) Homρ,Z(K,C) =
Homρ(K,C)

Z1(F,Cρ)
∣∣∣K .

Theorem 8.14 If Γ is a finitely generated group described by the exact sequence
(8.55) for a finitely generated free group F , and if ρ ∈ Hom(Γ,C∗) is a repre-
sentation of the group Γ, then the mapping φ that associates to the cohomology
class represented by a cocycle v ∈ Z2(Γ,Cρ) the restriction σ|K of any cochain
σ ∈ C1(F,Cρ) with the coboundary δσ = p∗(v) ∈ Z2(F,Cρ) determines an
isomorphism

H2(Γ,Cρ) ∼= Homρ,Z(K,C).

Proof: If v ∈ B2(Γ,Cρ) then v = δσ for a cochain σ ∈ C1(Γ,Cρ) and
p∗(v) = δp∗(σ) where p∗(σ)|K = 0. If v ∈ Z2(Γ,Cρ) is the coboundary of two
cochains σ1, σ2 ∈ C1(F,Cρ) then σ1 − σ2 ∈ Z1(F,Cρ) so that (σ1 − σ2)|K ∈
Z1(F,Cρ)|K and consequently σ1 and σ2 determine the same element in the
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quotient Homρ,Z(K,C). It follows from these observations that the mapping φ
yields a well defined homomorphism

φ∗ : H2(Γ,Cρ) −→ Homρ,Z(K,C).

If a cocycle v ∈ Z2(Γ,Cρ) represents an element in the kernel of the ho-
momorphism φ∗ then p∗(v) = δσ for a cochain σ ∈ C1(F,Cρ) for which

σ|K ∈ Z1(F,Cρ)
∣∣∣K, so there is a cocycle τ ∈ Z1(F,Cρ) such that σ|K = τ |K;

thus σ − τ ∈ C1(Γ,Cρ), and since p∗(v) = δ(σ − τ) it must be the case that
v ∈ B2(Γ,Cρ) and therefore the mapping φ∗ is injective. Finally consider any

element σ ∈ Homρ(K,C). Choose a coset decomposition F =
⋃
iKL̃i for

some elements L̃i ∈ F representing elements Li ∈ Γ, select arbitrary values
σ(L̃i) ∈ C, and in terms of these values define the mapping σ : F −→ C by set-
ting σ(S̃L̃i) = ρ(L̃i)

−1σ(S̃) + σ(L̃i) for all S ∈ K. For any elements R̃, S̃ ∈ K
and for T̃ = S̃L̃i ∈ F it follows that

σ(R̃T̃ ) = σ(R̃S̃L̃i) = ρ(L̃i)
−1σ(R̃S̃) + σ(L̃i)

= ρ(L̃i)
−1σ(R̃) + ρ(L̃i)

−1σ(S̃) + σ(L̃i)

= ρ(T̃ )−1σ(R̃) + σ(T̃ )

and

σ(T̃ R̃) = σ(T̃ R̃T̃−1 · T̃ ) = ρ(T̃ )−1σ(T̃ R̃T̃−1) + σ(T̃ )

= ρ(T̃ )−1ρ(T̃ )σ(R̃) + σ(T̃ )

= σ(R̃) + σ(T̃ ).

The mapping v : F × F −→ C defined by

v(T̃1, T̃2) = ρ(T̃2)−1σ(T̃1) + σ(T̃2)− σ(T̃1T̃2)

is a cocycle v ∈ Z2(F,Cρ) that is the coboundary of the cochain σ ∈ C1(F,Cρ).
For any S̃ ∈ K it follows from the preceding observations that

v(S̃T̃1, T̃2) = ρ(T̃2)−1σ(S̃T̃1) + σ(T̃2)− σ(S̃T̃1T̃2)

= ρ(T̃2)−1
(
ρ(T̃1)−1σ(S̃) + σ(T̃1)

)
+ σ(T̃2)

− ρ(T̃1T̃2)−1σ(S̃) + σ(T̃1T̃2)

= ρ(T̃2)−1σ(T̃1) + σ(T̃2)− σ(T̃1T̃2) = v(T̃1, T̃2)

and similarly v(T̃1, S̃T̃2) = v(T̃1, T̃2); thus v ∈ Z2(Γ,Cρ), and since σ = φ∗(v)
that shows that the mapping φ∗ is surjective and thereby concludes the proof.

Corollary 8.15 If Γ is the covering translation group of a compact Riemann
surface M of genus g > 1 then H2(Γ,Cρ) = 0 for any nontrivial representation
ρ ∈ Hom(Γ,C∗).
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Proof: Choose a marking of M described by 2g generators Ti = Ai, Tg+i = Bi
of the group Γ for 1 ≤ i ≤ g. The group Γ then is described by an exact
sequence (8.55) in which F is the free group generated by 2g symbols T̃i for which
p(T̃I) = Ti; and the kernelK ⊂ F is the normal subgroup generated by the single
element C ∈ [F, F ] where C = C1 · · ·Cg for Ci = [A,Bi]. Thus an element
σ ∈ Homρ(K,C) is determined fully by the value σ(C) alone, and consequently
dim Homρ(K,C) ≤ 1. On the other hand there is a cocycle σ ∈ Z1(F,Cρ) taking

any specified values σ(T̃i) on the generators T̃i; for given any values σ(T̃i) the
cocyle condition σ(S̃T̃ ) = ρ(T̃ )−1σ(S̃) + σ(T̃ ) can be used to define the value
σ(T̃ ) for any word T̃ ∈ F . Then as in Lemma8.2

σ([S̃, T̃ ]) =
(
1− ρ(T̃ )

)
ρ(S̃)σ(S̃)−

(
1− ρ(S̃)

)
ρ(T̃ )σ(T̃ ).

It is clear from this that if the representation ρ is nontrivial there is a cocycle
σ such that σ(C) 6= 0, and consequently that Z1(Γ,Cρ)|K 6= 0; and then
0 < dim Z1(Γ,Cρ)|K ≤ dim Homρ(K,C) ≤ 1 and therefore Homρ,Z(K,C) = 0.
It then follows from the preceding theorem that H2(Γ,Cρ) = 0, and that suffices
for the proof.

For the trivial representation ρ = 1 of course Z1(F,C1) = Hom(F,C); and
since any homomorphism σ ∈ Hom(F,C) is trivial on the commutator subgroup
[F, F ] ⊂ F necessarily Z1(F,C1)|K = 0 so Hom1,Z(K,C) = Hom(K,C) ∼= C.
Thus in this special case Theorem 8.14 reduces to the isomorphism H2(Γ,C) ∼=
C, as expected since H2(Γ,C) = C.
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Chapter 9

Mappings to the Riemann
Sphere

PRELIMINARY VERSION

9.1 Topological Properties of Mappings
Between Riemann Surfaces

A holomorphic mapping φ : M −→ N between Riemann surfaces M and N is
a continuous mapping between these topological manifolds that is holomorphic
when expressed in terms of the local coordinates on M and N . If Uα ⊂ M is
a coordinate neighborhood of a point a ∈ M with local coordinate zα and if
Vβ ⊂ N is a coordinate neighborhood of the image b = φ(a) ∈ N with local
coordinate wβ , the image of a point zα ∈ Uα sufficiently near a under the
mapping φ : M −→ N is a point φ(zα) = wβ ∈ Vβ ; in this way the coordinate
wβ is expressed as a complex-valued function wβ(zα) of the complex variable
zα, and the mapping φ is holomorphic if all of these local representations are
holomorphic. If the function wβ(zα) is constant the entire neighborhood Uα is
mapped to the single point b ∈ N , and it follows from the identity theorem for
holomorphic functions that the entire surface M is mapped to the point b; such
trivial mappings generally will be excluded from consideration. A nonconstant
holomorphic function of a complex variable is an open mapping, so the image
of a nontrivial holomorphic mapping φ : M −→ N between Riemann surfaces
is an open subset of N ; and if M is compact its image is a compact and hence
closed subset of N , so since N is connected φ(M) = N . Therefore a nontrivial
holomorphic mapping between compact Riemann surfaces is always surjective.
Of course that is not the case ifM is a noncompact Riemann surface; for instance
the inclusion mapping of an open subset M ⊂ N is a holomorphic mapping
φ : M −→ N between two Riemann surfaces. If the local coordinates zα and wβ
are chosen so that a ∈ Uα corresponds to the origin zα = 0 and b = φ(a) ∈ Vβ

221
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corresponds to the origin wβ = 0, then the local holomorphic function wβ(zα)
vanishes at the origin zα = 0 and is determined uniquely up to nonsingular
holomorphic changes of coordinates in its domain and range preserving the
origin; since the non-negative integer ord0

(
wβ(zα)

)
− 1 is invariant under such

changes of coordinates it is an intrinsic property of the mapping φ, called the
ramification order of the mapping φ at the point a ∈M and denoted by ra(φ).
For a nontrivial holomorphic mapping φ the local coordinates zα and wβ can
be chosen so that

(9.1) wβ(zα) = zr+1
α where r = ra(φ) ≥ 0,

thus providing a local normal form of the mapping φ : M −→ N . A point
a ∈ M at which ra(φ) > 0 is called a ramification point of the mapping φ, or
equivalently the mapping φ is said to be ramified at the point a. The ramification
points are a discrete set of points on M , since they are just the points at which
the derivative of the mapping φ in terms of any local coordinate is zero; so since
M is compact the set of ramification points is a finite subset of M , which is
called the ramification locus of the mapping φ and is denoted by R or by R(φ)
when it is useful to be specific. The divisor

(9.2) r(φ) =
∑
a∈M

ra(φ) · a

hence is a well defined positive divisor on M , called the ramification divisor of
the holomorphic mapping φ. The mapping φ is said to be simply ramified at
a point a ∈ M if ra(φ) = 1, and such a ramification point is called a simple
ramification point; the mapping φ itself is said to be simply ramified if all of its
ramification points are simple ramification points. A point a ∈ M that is not
a ramification point, a point at which ra(φ) = 0, is called a regular point or an
unramified point of the mapping φ; the regular points are those points of M at
which the mapping φ is locally biholomorphic.

The images φ(ai) ∈ N of the ramification points ai ∈ M of a nontrivial
holomorphic mapping φ : M −→ N between compact Riemann surfaces are
called the branch points of the mapping φ; the finite set of branch points is
called the branch locus of the mapping φ and is denoted by B or by B(φ) when
it is useful to be more specific. The inverse image φ−1(b) ⊂ N of any point b ∈ N
consists of a finite number of points of M . If b is not a branch point none of
these points are ramification points, so for a suitably small open neighborhood
W of the point b in N the inverse image φ−1(W ) is a collection of δ disjoint
open subsets of M , each of which is mapped biholomorphically to W under the
mapping φ; thus the mapping φ exhibits the inverse image φ−1(W ) as a covering
space of δ sheets over W . The number δ is independent of the point b 6∈ B,
since it is a locally constant function on the connected manifold N ∼ B; it is
called the degree of the mapping φ, and it is denoted by deg φ. The restriction

(9.3) φ :
(
M ∼ R(φ)

)
−→

(
N ∼ B(φ)

)
of a holomorphic mapping φ : M −→ N of degree δ with branch locus B ⊂ N
thus is a δ-sheeted covering space in the usual sense, called the regular part
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of the holomorphic mapping φ. On the other hand if b ∈ B then at least
some of the points ai ∈ φ−1(b) ⊂ M are ramification points. However for
each point ai ∈ φ−1(b) there are local coordinates zi centered at ai and wi
centered at b such that the mapping φ is described locally by the holomorphic
function wi(zi) = zri+1

i where ri = rai(φ); so if Ui is a sufficiently small open
neighborhood of ai the restriction of the mapping φ to the complement Ui ∼ ai
is a covering mapping of ri + 1 sheets and ai is the only point in Ui that has
the point b as its image under φ. It is evident from this that

(9.4) deg φ =
∑

a∈φ−1(b)

(
ra(φ) + 1

)
for any point b ∈ N,

so the branch points of the mapping φ can be characterized as those points
b ∈ N at which φ−1(b) consists of fewer than deg φ distinct points; the difference
between deg φ and the number of distinct points in φ−1(b) is called the local
branch order of the mapping φ over the point b and is denoted by bb(φ), so

(9.5) bb(φ) =
∑

a∈φ−1(b)

ra(φ).

The branch points are precisely those points b ∈ N at which bb(φ) > 0, and the
branch divisor is defined to be the divisor

(9.6) b(φ) =
∑
b∈N

bb(φ) · b

on the image surface N ; thus the branch locus of the mapping φ is the support
B(φ) = |b(φ)| of the branch divisor of that mapping. The branch order of the
mapping φ is the integer br (φ) defined by

(9.7) br (φ) =
∑
b∈N

bb(φ) =
∑
a∈M

ra(φ),

and it is evident from (9.2) and (9.6) that

(9.8) br (φ) = deg r(φ) = deg b(φ).

The mapping φ is said to be simply branched over a point b ∈ N if bb(φ) = 1,
and is said to be simply branched if it is simply branched over each point of N ;
clearly φ is simply branched precisely when it has brφ branch points altogether,
and in that case there is precisely one simply ramified point of M over each
of these branch points in N . The mapping φ is said to be fully branched over
a point b ∈ N if φ−1(b) = a is a single point a ∈ M , and in that case it is
also said to be fully ramified at the point a ∈ M ; thus these are equivalent
notions, and it is clear that the mapping φ is fully ramified at a point a ∈ M
whenever ra(φ) = deg φ−1 and it is fully branched over a point b ∈ N whenever
bb(φ) = deg φ− 1. A mapping φ : M −→ N for which deg φ = 2 is both simply
branched and fully branched over each point of N , while these notions are quite
distinct if deg φ ≥ 3.
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Theorem 9.1 (Riemann-Hurwitz Formula) If φ : M −→ N is a nontriv-
ial holomorphic mapping from a compact Riemann surface M of genus g to a
compact Riemann surface N of genus h then

(9.9) 2g − 2 = (2h− 2) deg φ+ br (φ).

Proof: It is always possible to triangulate1 the manifold N in such a way that
the branch points of the mapping φ are among the vertices of the triangulation.
If there are ni simplices of dimension i in the triangulation of N and mi simplices
of dimension i in the induced triangulation of M then

m0 = δ n0 − β, m1 = δ n1, m2 = δ n2,

where δ = deg φ and β = brφ, since each simplex of N of dimension 1 or 2 is
covered by δ simplices of M while each simplex of N of dimension 0 is covered by
δ simplices of M except for the branch points, at which the number of simplices
in M is reduced by the local branch order of the mapping φ at that point of N .
Euler’s formula (D.11) asserts that the Euler characteristic χ(M) of the surface
M , the alternating sum of the ranks of the homology groups, is equal to the
alternating sum of the numbers of simplices of each dimension in a triangulation
of the surface; for the surface M with Betti numbers bi = rankHi(M) the
Euler characteristic is χ(M) = b0 − b1 + b2 = 2 − 2g, so by Euler’s formula
2 − 2g = m0 − m1 + m2, and correspondingly 2 − 2h = n0 − n1 + n2 for the
surface N . Consequently

2− 2g = m0 −m1 +m2

= (δ n0 − β)− δ n1 + δ n2 = δ(2− 2h)− β,

which yields the desired formula and thereby concludes the proof.

Corollary 9.2 (i) If there is a nontrivial holomorphic mapping φ : M −→ N
from a compact Riemann surface M of genus g to a compact Riemann surface
N of genus h the branch order of φ is an even integer and g ≥ h.
(ii) If g = h > 1 the mapping φ is a biholomorphic mapping between the two
surfaces. If g = h = 1 the mapping φ is a holomorphic covering mapping in the
usual sense; there are holomorphic covering mappings of δ sheets for any δ > 0.

Proof: It is clear from the Riemann-Hurwitz formula (9.9) that the branch
order br (φ) is an even integer. That formula can be rewritten

(9.10) g − h = (h− 1)(δ − 1) +
β

2

where δ = deg φ and β = br (φ). If h = 0 then of course g ≥ h for any g ≥ 0. If
h > 0 then both terms on the right-hand side are non-negative, hence g−h ≥ 0;

1Some basic topological properties of surfaces are discussed in Appendix D. A triangulation
of a surface is a decomposition of the surface into a collection of 2-dimensional simplices that
intersect only in 1-dimensional boundary simplices.
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and g = h if and only if (h − 1)(δ − 1) = β = 0, so if and only if φ is an
unbranched covering and either δ = 1 or h = 1. If g = h > 1 then δ = 1
and the mapping φ is a biholomorphic mapping. If g = h = 1 the mapping φ
is an unbranched covering mapping between two Riemann surfaces of genus 1.
To see that there are unbranched coverings of δ sheets between two Riemann
surfaces of genus 1 for any δ ≥ 1, by Corollary 12.9 (iii) a compact Riemann
surface N of genus g = 1 can be identified with a complex torus N = C/ΩZ2

for a 1 × 2 period matrix Ω = (ω1 ω2), and for any integer δ ≥ 1 the period
matrix Ω′ = (δω1 ω2) describes another complex torus M = C/Ω′Z and the
identity mapping z −→ z induces a holomorphic mapping M −→ N that is an
unbranched covering of degree δ. That suffices for the proof.

9.2 Mappings Defined by Meromorphic
Functions

The Riemann sphere P1 can be described explicitly as the union P1 = V0∪V1

of two coordinate neighborhoods V0 = { w0 ∈ C } and V1 = { w1 ∈ C }, where
the local coordinates are related by

(9.11) w1 = 1/w0 in V0 ∩ V1 = { w0 ∈ C
∣∣ w0 6= 0 } = { w1 ∈ C

∣∣ w1 6= 0 }.

Except for the origins in these two coordinate neighborhoods there is a one-
to-one correspondence between the points w0 ∈ V0 and w1 ∈ V1. As a point
w1 ∈ V1 approaches the origin the corresponding point w0 ∈ V0 increases in
modulus without limit; so P1 can be viewed as the completion of the coordinate
neighborhood V0 = C of the variable w0 by adjoining the “point at infinity”
of the plane of the variable w0, represented by the origin in the coordinate
neighborhood of the variable w1. This interpretation of the Riemann sphere is
indicated by writing P1 = C∪∞. If f is a meromorphic function on a Riemann
surface M and U0 ⊂M is the set of points z ∈M at which f(z) is holomorphic
while U1 ⊂M is the set of points z ∈M at which f(z) 6= 0 then the function f
determines a holomorphic mapping φf : M −→ P1 by associating to any point
z ∈ U0 the point φf (z) ∈ V0 with the coordinate w0(z) = f(z) and to any point
z ∈ U1 the point φf (z) ∈ V1 with the coordinate w1(z) = 1/f(z); clearly these
definitions are compatible in the intersection U0 ∩U1 and define a holomorphic
mapping of M to P1. Conversely if φ : M −→ P1 is a holomorphic mapping and
U0 = φ−1(V0) while U1 = φ−1(V1) then the function f on M defined by setting
f(z) = w0(z) if z ∈ U0 and f(z) = 1/w1(z) if z ∈ U1 clearly is a well defined
meromorphic function on M for which φ = φf . This establishes a formal one to-
one correspondence between meromorphic functions f on M and holomorphic
mappings φf : M −→ P1, which will be used systematically in the subsequent
discussion.

Since the mapping φf associated to a meromorphic function is described
locally by either the function f(z) or the function (1/f)(z) it follows that the



226 CHAPTER 9. MAPPINGS TO THE RIEMANN SPHERE

ramification divisor of the mapping φf can be described by

(9.12) ra(φf ) =

 dega f
′(z) if a ∈ U0,

dega(1/f)′(z) if a ∈ U1,

where these two definitions are easily seen to be compatible for points in U0∩U1.
When the divisor of a meromorphic function f is decomposed as the difference
d(f) = d+(f)−d−(f) of two disjoint positive divisors, the degree of the function
f is the common value deg f = deg d+f = deg d−f as defined on page 5. The
function f − c for any complex number c has the same degree as the function
f , so its zero divisor d+(f − c) is a divisor of degree deg f and consists of those
points at which the function f takes the value c, where these points are counted
with the appropriate multiplicities. So long as c is not one of the finitely many
values taken by the function f at points of the ramification divisor r(φf ) the
divisor d+(f − c) consists of deg f distinct points; hence the mapping φf is a
mapping of degree deg f , so that

(9.13) deg φf = deg f.

Consequently by the Rieman-Hurwitz Theorem the branch order of the mapping
φf : M −→ P1 from a compact Riemann surface M of genus g to the Riemann
sphere described by a meromorphic function f on the surface M is

(9.14) br (φf ) = 2 deg f + 2g − 2.

For example, there are rational functions of any degree δ > 0 on P1 so
it follows that there are nontrivial holomorphic mappings φf : P1 −→ P1 of
any positive degree δ, for which br (φf ) = 2(δ − 1) by (9.14). A holomorphic
mapping φf : P1 −→ P1 of degree 1 is a biholomorphic mapping, also called an
automorphism, of the Riemann sphere; and the set of automorphisms clearly
form a group under the composition of mappings. An automorphism φf is
described by a meromorphic function f of degree 1, a function with a single
simple pole and a single simple zero on P1, so a function of the form f(z) =
(az + b)/(cz + d) for an invertible matrix A =

(
a b
c d

)
when the Riemann sphere

is viewed as the union P1 = C ∪∞ with the coordinate z in C; such functions
traditionally are called linear fractional mappings. It is perhaps worth noting
incidentally that a linear fractional mapping f(z) actually is just the cross-
ratio function q(z, α;−b/a − d/c) for the Riemann sphere, as characterized in
Theorem 5.6; in this case it is the uniquely determined meromorphic function on
P1, which is its own universal covering space, having a simple zero at the point
z = −b/a and a simple pole at the point z = −d/c and taking the value 1 at
the point α = (d− b)/(a− c). At any rate, it is evident from this that there is a
uniquely determined automorphism of P1 that takes any three distinct points to
the three points 1, 0,∞ on P1, or equivalently that takes any three distinct points
to any other three distinct points of P1. Clearly two matrices A and B determine
the same automorphism if and only ifA = εB for some nonzero complex constant
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ε; so the group of automorphisms of the Riemann sphere P1 can be identified
with the projective linear group Pl(2,C) = Gl(2,C)/C∗, the quotient of the
general linear group by the subgroup of diagonal matrices. A rational function
f(z) = (az+b)/(cz+d) on P1 can be written as the quotient f(z) = f0(z)/f1(z)
of the two affine functions f0(z) = az + b and f1(z) = cz + d of the variable
z, which are unique up to a common constant factor; but this decomposition is
really valid just on the coordinate neighborhood of the Riemann sphere P1 =
C ∪∞ defined by the variable z. In terms of the variable z1 = 1/z in the other
coordinate neighborhood the function f(z) has the corresponding representation
f(z) = f(1/z1) = (a + bz1)/(c + dz1) on P1, and it too can be written as the
quotient f(1/z1) = g0(z1)/g1(z1) of two affine functions g0(z1) = bz1 + a and
g1(z1) = dz1 + c. For these functions f0(z) = az + b = z(bz1 + a) = zg0(z1)
and similarly f1(z) = zg1(z1), so the pairs of functions

(
f0(z), g0(z1)

)
and the

pair of functions
(
f1(z), g1(z1)

)
really describe two holomorphic cross-sections

of the holomorphic line bundle over P1 defined by the cocycle λ01 = z in terms
of the local coordinate z in V0 and z1 in V1. That is also the case for mappings
of the Riemann sphere P1 to itself of degree δ > 1 as well as for mappings from
compact Riemann surfaces of genus g > 1 to the Riemann sphere.

Theorem 9.3 A meromorphic function f of degree δ > 0 on a compact Rie-
mann surface M can be written as the quotient f = fα1/fα0 of two holomorphic
cross-sections with no common zeros for the holomorphic line bundle ζd−(f) of
the polar divisor of the function f , where c(ζd−(f)) = δ; and the cross-sections
fα0 and fα1 are determined uniquely up to a common constant factor. The line
bundle ζd−(f) is base-point-free, and any base-point-free holomorphic line bundle
on M of characteristic class δ > 0 arises in this way.

Proof: If f is a meromorphic function of degree δ > 0 on the surface M and
f has the divisor d(f) = d+(f) − d−(f), where d+(f) and d−(f) are disjoint
positive divisors, these two divisors are linearly equivalent so ζd+(f) = ζd−(f) as
in (1.10). The holomorphic line bundle ζd−(f) has characteristic class c(ζd−(f)) =
deg d−(f) = δ as in (1.15); and it has a holomorphic cross-section fα− with the
divisor d(fα−) = d−(f), where that cross-section is determined uniquely up
to a constant factor. The product f fα− = fα+ is another holomorphic cross-
section of the line bundle ζd−(f) and has the divisor d(fα+) = d+(f); and the
function f is the quotient f = f+/f−. Since the divisors d+(f) and d−(f) are
disjoint it follows from Lemma 2.9 that the line bundle ζd−(f) is base-point-
free. Conversely if λ is a base-point-free holomorphic line bundle over M with
c(λ) = δ then λ has two holomorphic cross-sections fα0, fα1 with no common
zeros by Lemma 2.9; the quotient f = fα0/fα1 is a meromorphic function with
polar divisor d−(f) = d(fα1

), where deg f = deg d(fα1) = c(λ) = δ, and fα0 is a
holomorphic cross-section of the line bundle ζd−(f). That suffices for the proof.

An alternative description of the Riemann sphere P1 is as the quotient of the
space C2 ∼ (0, 0), the complement of the origin in C2, under the equivalence
relation for which (z0, z1) � (t z0, t z1) for any nonzero complex number t ∈ C.
The equivalence class of the point (z0, z1) ∈ C2 is denoted by [z0, z1] ∈ P1. If
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z0 ·z1 6= 0 then (z0, z1) �
(

1, z1z0

)
�
(
z0
z1
, 1
)

so [z0, z1] can be described uniquely

by either w0 = z0
z1

or w1 = z1
z0

where w0w1 = 1; that essentially identifies this

description of the space P1 with the earlier description in this section. When
a meromorphic function f on a Riemann surface M is written as the quotient
f = fα0/fα1 of two holomorphic cross-sections of a holomorphic line bundle λ
and these cross-sections have no common zeros then [fα0(z), fα1(z)] is a well-
defined point in the projective space P1 for each point z ∈ Uα for the coordinate
neighborhood Uα. In an intersection Uα ∩ Uβ of two coordinate neighborhoods
[fα0(z), fα1(z)] = [λαβ(z)fβ0(z), λαβ(z)fβ1(z)] = [fβ0(z), fβ1(z)]; therefore the
mapping that associates to any point z ∈ Uα the point Fλ(z) = [fα0(z), fα1(z)] is
a well defined holomorphic mapping Fλ : M −→ P1. Of course since [fα0, fα1] =
[fα0/fα1, 1] the mapping Fλ is really the same as the mapping φf defined by the
meromorphic function f = fα0/fα1. This alternative description of the mapping
is sometimes quite convenient. Introduce the holomorphic functions

(9.15) Dα(z) = det

(
fα0(z) f ′α0(z)
fα1(z) f ′α1(z)

)
in the coordinate neighborhoods Uα ⊂ M . Since fα i = λα,βfβ i in an intersec-
tion Uα ∩ Uβ it follows that

f ′α i = καβλα,βf
′
β i + καβλ

′
α,βfβ i

in an intersection Uα ∩ Uβ , hence that

(9.16) Dα(z) = λ2
αβ(z)καβ(z)Dβ(z)

in an intersection Uα∩Uβ , where λαβ(z) are the coordinate transition functions
for the line bundle λ and καβ(z) are the coordinate transition functions for the
canonical bundle κ. The functions {Dα} thus form a holomorphic cross-section
of the line bundle κλ2.

Corollary 9.4 On a compact Riemann surface M the ramification divisor of
the holomorphic mapping Fλ : M −→ P1 described by two holomorphic cross-
sections fα0, fα1 ∈ Γ

(
M,O(λ)

)
with no common zeros is the divisor r(Fλ) =

d(Dα) of the holomorphic cross-section Dα ∈ Γ
(
M,O(κλ2)

)
.

Proof: The mapping Fλ is just the mapping φf described by the meromorphic
function f = fα0/fα1, so for any point a ∈ M the ramification order of the
mapping φf is given by (9.12); hence ra = ord af

′(z) if f(z) is holomorphic
at the point a ∈ M , or equivalently if fα1(a) 6= 0, and ra = ord a(1/f)′(z)
if (1/f)(z) is holomorphic at the point a ∈ M , or equivalently if fα0(a) 6= 0.
Therefore if fα1(a) 6= 0 then since

f ′(z) =

(
fα0

fα1

)′
=
fα1f

′
α0 − fα0f

′
α1

f2
α1

= −f−2
α1 Dα(z)
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it follows that ra = ordaf
′(z) = ordaDα(z); on the other hand if fα0(a) 6= 0

then since (
1/f(z)

)′
=

(
fα1

fα0

)′
=
fα0f

′
α1 − fα1f

′
α0

f2
α0

= f−2
α0 Dα(z)

it follows that ra = ordaf
′(z) = ordaDα(z), in that case as well, which suffices

for the proof.

Since Dα ∈ Γ
(
M,O(κλ2)

)
it follows that

(9.17) deg d(Dα) = c(κλ2) = 2c(λ) + 2g − 2,

and since fα1 ∈ Γ
(
M,O(λ)

)
it follows that

(9.18) c(λ) = deg d(fα1) = degFλ

where again Fλ is just the mapping φf described by the meromorphic function
f = fα0/fα1; so altogether deg d(Dα) = 2 degFλ + 2g − 2. It then follows from
the preceding theorem that

(9.19) deg r(Fλ) = deg d(Dα) = 2 degFλ + 2g − 2,

which provides an alternative proof of (9.14) in view of (9.8).
The degrees of holomorphic mappings φ : M −→ P1 actually are integers

that appear in the Lüroth semigroup L(M) of the compact Riemann surface
M ; the Lüroth semigroup was defined on page 39 as the additive semigroup
of nonnegative integers consisting of the characteristic classes of base-point-
free holomorphic line bundles over M . The identity bundle is a base-point
free holomorphic line bundle of characteristic class 0, so the Lüroth semigroup
begins with the integer 0; and the integers in the Lüroth semigroup can be
labeled 0 = δ0(M) < δ1(M) < δ2(M) < · · · .

Theorem 9.5 There exists a meromorphic function of degree δ > 0 on a com-
pact Riemann surface M , or equivalently there exists a nontrivial holomorphic
mapping φ : M −→ P1 of degree δ > 0, if and only if δ is an integer in the
Lüroth semigroup L(M) of the surface M .

Proof: Theorem 9.3 shows that the base-point-free holomorphic line bundles λ
on M are precisely the line bundles of the polar divisors of meromorphic func-
tions on M , where the degree δ of the meromorphic function is the characteristic
class δ = c(λ) of the line bundle; and these are precisely the meromorphic func-
tions describing holomorphic mappings φf : M −→ P1 of degree δ, which suffices
for the proof.

The least integer δ > 0 such that there is a meromorphic function of degree
δ on the compact Riemann surface M , or equivalently such that there is a
nontrivial holomorphic mapping φ : M −→ P1 of degree δ, is known rather
uneuphoniously as the gonality of the Riemann surface M ; so by Corollary 9.5
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the gonality of the surface M is the integer δ = δ1(M) in the Lüroth semigroup
of M . On an elliptic curve, a compact Riemann surface M of genus g = 1, it
follows from the Riemann-Roch Theorem that γ(ζa) = 1 and γ(ζ2

a) = 2 for any
point a ∈ M ; so by Lemma 2.10 (i) the line bundle ζ2

a is base-point-free; and
since no nontrivial line bundle λ with c(λ) = 1 is base-point-free it follows that
δ1(M) = 2. In general a compact Riemann surface M of genus g > 1 is said to
be hyperelliptic if δ1(M) = 2, so it it admits a nontrivial holomorphic mapping
φ : M −→ P1 of degree 2. Hyperelliptic Riemann surfaces have a number of quite
special properties, and were the first general class of surfaces beyond elliptic
surfaces to be examined in considerable detail. A compact Riemann surface M
of genus g > 1 is said to be trigonal if it admits a nontrivial holomorphic mapping
φ : M −→ P1 of degree 3 but is not hyperelliptic, so if δ1(M) = 3; and M is said
to be quadrigonal if it admits a nontrivial holomorphic mapping φ : M −→ P1 of
degree 4 but is not trigonal or hyperelliptic, so if δ1(M) = 4. The term gonality
is thus a rather natural extension of this classical terminology.Lüroth semigroup
An alternative characterization is occasionally useful.

Theorem 9.6 Let M be a compact Riemann surface of genus g > 1.
(i) The gonality δ = δ1(M) of M is the least integer δ such that there is a
holomorphic line bundle λ over M with c(λ) = δ and γ(λ) = 2.
(ii) If λ is a holomorphic line bundle over M with c(λ) = δ1(M) then γ(λ) ≤ 2,
and γ(λ) = 2 if and only if λ is base-point-free.

Proof: (i) Let λ be a holomorphic line bundle over M such that γ(λ) = 2 and
γ(σ) ≤ 1 whenever c(σ) < c(λ); then γ(λζ−1

a ) ≤ 1 for any point a ∈ M , so it
follows from Lemma 2.10 that λ is base-point-free, hence c(λ) ≥ δ1(M). On the
other hand no line bundle σ over M for which 0 < c(σ) < c(λ) is base-point-free,
since no holomorphic line bundle σ with c(σ) > 0 and γ(σ) ≤ 1 can be base-
point-free on a compact Riemann surface of genus g > 1; hence δ1(M) ≥ c(λ)
as well, so actually δ1(M) = c(λ).
(ii) It follows from (i) that γ(σ) ≤ 1 whenever c(σ) < δ1(M). Therefore if λ is
a line bundle for which c(λ) = δ1(M) then for any point a ∈ M it follows that
c(λζ−1

a ) < c(λ) = δ1(M) so γ(λζ−1
a ) ≤ 1; and it then follows from Lemma 2.6

that γ(λ) ≤ γ(λζ−1
a ) + 1 = 2. If γ(λ) = 2 then γ(λζ−1

a ) = 1 = γ(λ) − 1 for
any point a ∈M and it follows from Lemma 2.10 that λ is base-point-free; and
of course if γ(λ) = 1 the bundle λ is not base-point-free. That suffices for the
proof.

9.3 The Local Maximal Function

The degrees of special classes of holomorphic mappings f : M −→ P1 from
a compact Riemann surface M to the Riemann sphere form various special
subsets of the Lüroth semigroup of M . The simplest mappings are probably
those defined by a meromorphic functions f on M having a single pole; such a
mapping is fully ramified at the pole of f and fully branched over the point ∞.
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A convenient tool in examining such mappings is the local maximal function of
the surface M at the point a ∈M , the mapping µa : Z −→ Z defined by

(9.20) µa(r) = γ(ζra)− 1 for any r ∈ Z

for the point bundle ζa.

Theorem 9.7 The local maximal function µa(r) of a compact Riemann surface
M of genus g > 1 at a point a ∈M satisfies the following conditions:

(9.21) µa(r) ≤ µa(r + 1) ≤ µa(r) + 1 for any r ∈ Z.

(9.22) µa(r) =

 −1 for r ≤ −1,
0 for r = 0, 1

r − g for r ≥ 2g − 1.

Proof: Lemma 2.6 asserts that γ(λ) ≤ γ(λζa) ≤ γ(λ) + 1 for any holomorphic
line bundle λ and point bundle ζa on M ; in particular for λ = ζra that yields
(9.21). Since γ(ζra) = 0 for r < 0 it follows that µa(r) = −1 for r < 0; and
since γ(ζ0

a) = γ(1) = 1 for any compact Riemann surface and γ(ζ1
a) = 1 for any

compact Riemann surface of genus g > 1 by Theorem 2.7 it follows that µa(0) =
µa(1) = 0. By the Riemann-Roch Theorem γ(ζra) = γ(κζ−ra ) + c(ζra) + 1 − g;
here c(ζra) = r hence c(κζ−ra ) = 2g−2−r < 0 for r > 2g−2 so γ(ζra) = r+1−g
for r > 2g − 2 and µa(r) = r − g for r > 2g − 2, which suffices for the proof.

For a surface of genus g = 1 the local maximal function is fully determined
by the preceding theorem and is actually independent of the choice of the point
a ∈M , since Theorem 9.7 shows that

(9.23) if g = 1 then µa(r) =

 −1 if r ≤ −1,
0 if r = 0,

r − 1 if r ≥ 1;

thus in this case µa(r) is actually even independent of the particular Riemann
surface of genus g = 1 being considered. For g = 2 the preceding Theorem 9.7
only shows that

(9.24) if g = 2 then µa(r) =


−1 if r ≤ −1,
0 if r = 0, 1,

0 or 1 if r = 2,
r − 2 if r ≥ 3.

By the Riemann-Roch Theorem if g = 2 then γ(ζ2
a) = γ(κζ−2

a ) + 1, and since
c(κζ−2

a ) = 0 then γ(κζ−2
a ) = 1 if κζ−2

a is the trivial line bundle while otherwise
γ(κζ−2

a ) = 0, so

(9.25) if g = 2 then µa(2) =

{
1 if κ = ζ2

a ,
0 if κ 6= ζ2

a ;
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thus generally µa(2) = 0, but if M is a Riemann surface for which the canonical
bundle has the form κ = ζ2

a for some point a ∈ M then µa(2) = 1 for that
particular point a. This is a model for the values of the local maximal function
µa(r) for Riemann surfaces of genus g > 2 in the range 2 ≤ r ≤ 2g− 2 in which
the local critical values are not fully determined by Theorem 9.7. A discussion
of the essential properties of mappings satisfying the basic property (9.21) of the
local lmaximal sequience will be taken up in Chapter 11 in connection with the
Brill-Noether diagram. For the simple case of the local maximal function the
essential results can be derived directly quite easily though, as will be done here.
The basic tool in the more explicit description of the local maximal function is
the collection of indices

(9.26) ri(a) = inf
{
r ∈ Z

∣∣∣ µa(r) ≥ i
}
,

called the local critical values of the Riemann surface M at the point a ∈M .

Theorem 9.8 The local critical values at a point a of a compact Riemann sur-
face M of genus g > 0 take the following values:

(9.27) ri(a) =

 −∞ for i ≤ −1,
0 for i = 0,

g + i for i ≥ g,

so all indices r ≥ 2g are local critical values; and

(9.28) r1(a) ≥ 2.

For any index i ≥ 0

(9.29) ri(a) < ri+1(a) and µa(r) = i for ri(a) ≤ r < ri+1(a).

The local critical values at a point a ∈M are characterized by the condition that

(9.30) µa(r)− µa(r − 1) =

 1 if r is a local critical value at a,

0 otherwise.

Proof: Since µa(r) = −1 for r < 0 by (9.22) it follows that ri(a) = −∞
whenever i < 0; and since µa(−1) = −1 and µa(0) = 0 by (9.22) it further
follows that r0(a) = 0. The equation µa(r) = r − g for all r ≥ 2g − 1 in (9.22)
can be rewritten by setting i = r − g as the equation µa(g + i) = i for all
i ≥ g − 1; hence µa(2g − 1) = g − 1, µa(2g) = g, µa(2g + 1) = g + 1, · · · , which
shows that rg(a) = 2g and more generally that ri(a) = g + i for all i ≥ g, thus
demonstrating (9.27). Since r0(a) = 0 then r1(a) ≥ 1; but if r1(a) = 1 then
γ(ζ1

a) = µa(1) + 1 = 2 and by Theorem 2.4 the Riemann surface M would be
the Riemann sphere P1 of genus g = 0, which is excluded. From the definition
of the local critical values it is evident that µa

(
ri(a)

)
≥ i and µa

(
ri(a)− 1

)
< i
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for any finite values of ri(a), so for i ≥ 0; and from (9.24) it is evident that
µa
(
ri(a)

)
≤ µa

(
ri(a)− 1

)
+ 1, hence

i ≤ µa
(
ri(a)

)
≤ µa

(
ri(a)− 1

)
+ 1 < i+ 1 ≤ µa

(
ri+1(a)

)
,

which shows that µa
(
ri(a)

)
= i and µa

(
ri(a)

)
< µa

(
ri+1(a)

)
hence that ri(a) <

ri+1(a). In view of this it is apparent that µa(r) = i for ri(a) ≤ r < ri+1(a),
thus demonstrating (9.29). Finally if µa(r) = µa(r − 1) it is clear from the
definition of the local critical values that r cannot be a local critical value; on
the other hand it follows from (9.29) that µa

(
ri(a)

)
−µa

(
ri(a)− 1

)
= 1 for any

local critical value ri(a), and that suffices for the proof.

The preceding Theorem 9.8 shows that the finite local critical values at a
point a ∈M are nonnegative integers, beginning with

(9.31) 0 = r0(a) < 1 < r1(a) < · · · < rg−1(a) < rg(a) = 2g

and continuing with all integers r > 2g; but the theorem does not determine
the g−1 local critical values r1(a), . . . , rg−1(a) in the range [2, 2g−1] explicitly.
The integers that are not local critical values at the point a ∈M are called the
local gap values at the point a ∈ M . The local gap values thus are all integers
ν < 0 together with the g integers ν in the range [1, 2g − 1] that are not local
critical values; the positive local gap values also are called the Weierstrass gaps
at the point a of the Riemann surface M . Since µa(r) = 0 for r = 0 and r = 1
it follows that ν1(a) = 1 is a gap value; thus the Weierstrass gaps are g integers
in the range

(9.32) 1 = ν1(a) < ν2(a) < . . . < νg(a) ≤ 2g − 1,

and g − 1 of these are not specified explicitly by the preceding theorem. It
follows immediately from these observations that the characterization (9.30) of
the local critical values can be extended to assert that

(9.33) µa(r)− µa(r − 1) =

 1 if r is a local critical value at a

0 if r is a local gap value at a.

The local maximal function at the point a ∈M thus can be described either in
terms of the local gap values or in terms of the local critical values at the point
a ∈M .

Theorem 9.9 The holomorphic line bundle ζra on a compact Riemann surface
M is base-point-free if and only if r is a local critical value at the point a;
therefore the line bundle ζra is not base-point-free if and only if r is a local gap
value at the point a.

Proof: The line bundle ζra is base-point-free if and only if γ(ζraζ
−1
x ) = γ(ζra)−1

for all x ∈M , by Lemma 2.10; hence ζra fails to be base-point-free if and only if
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γ(ζraζ
−1
x ) = γ(ζra) for some point x ∈ M , and by Lemma 2.6 that is equivalent

to the condition that all holomorphic cross-sections of the bundle ζra vanish at
the point x. There is always at least one holomorphic cross-section of ζrz that
vanishes only at the point a, the r-th power of a holomorphic cross-section of the
bundle ζa; hence the only point x at which all the holomorphic cross-sections
of the bundle ζra can possibly vanish is the point x = a, and the condition that
all the holomorphic cross-sections of the line bundle ζra vanish at the point a is
that γ(ζra) = γ(ζr−1

a ), or equivalently that µa(r) = µa(r−1). Therefore the line
bundle ζra is not base-point-free if and only if µa(r) = µa(r−1), which by (9.33)
is just the condition that r is a local gap value at the point a. That suffices for
the proof.

Corollary 9.10 The local critical values of a compact Riemann surface M form
an additive semigroup of the integers Z that is contained in the Lüroth semigroup
L(M) ⊂ Z of the surface M .

Proof: This follows immediately from the preceding theorem and the definition
of the Lüroth semigroup, so no further proof is required.

The semigroup of local critical values at a point a of a compact Riemann
surface M is called the Weierstrass semigroup2 at the point a and is denoted
by Wa(M). The Weierstrass semigroups at the points a ∈M thus are subsemi-
groups Wa(M) ⊂ L(M) of the Lüroth semigroup of the surface M associated
to all the points a ∈ M ; and the integers ν ≥ 1 that are not contained in the
semigroup Wa(M) are precisely the g Weierstrass gap values νi(a) at the point
a for 1 ≤ i ≤ g, integers in the range 1 ≤ νi(a) ≤ 2g − 1. Altogether this
is a fascinating structure associated to the Riemann surface M , an intricate
refinement of the Lüroth semigroup of the surface.

9.4 Weierstrass Points

Another approach to the local critical values at points of a Riemann surface
M is through the holomorphic abelian differentials and their integrals on M .
For each point a ∈ M of a compact Riemann surface M of genus g > 1 it is
possible to choose a basis wi for the holomorphic abelian integrals so that

(9.34) ordawi,a(z) = ρi(a) where 1 = ρ1(a) < ρ2(a) < · · · < ρg(a).

Indeed since not all the holomorphic abelian differentials vanish at any point
there is an abelian integral w1,a(z) of order 1 at the point a. After subtracting
suitable multiples of w1,a(z) from the remaining integrals it can be assumed that

2Hurwitz pointed out the problem of describing precisely which semigroups of nonnegative
integers can be such a semigroupWa(M) for some point a on some compact Riemann surface
M . That not all semigroups of nonnegative integers can be such semigroups was first estab-
lished by R.-O. Buchweitz in his Hanover PhD thesis, 1976; the problem has been studied
extensively but is still not fully solved.
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they all vanish to at least order 2 at a; so let w2,a(z) be one of the integrals of the
least order ρ2(a) among them. After subtracting suitable multiples of w2,a(z)
from the remaining integrals it can be assumed that they all vanish to at least
order ρ2(a)+1; so let w3,a(z) can one of the integrals of least order ρ3(a) among
them, and so on. The integers ρi(a) thus are well defined analytic invariants
intrinsically attached to the point a ∈ M ; they are called the local orders of
the holomorphic abelian integrals at the point a ∈ M . It follows immediately
from (9.34) that for the holomorphic abelian differentials ωi,a(z) = dwi,a(z)
correspondingly

(9.35) ordaωi,a(z) = ρi(a)− 1 where 1 = ρ1(a) < ρ2(a) < · · · < ρg(a).

To analyze this further it is convenient to set

(9.36) Na(r) = the number of integers ρi(a) such that ρi(a) ≤ r.

It is evident from this definition that

(9.37) Na(r)−Na(r − 1) =

 1 if r = ρi(a) for some i

0 otherwise.

It is also the case that

(9.38) µa(r) = r −Na(r).

Indeed to verify (9.38) note that Na(r) can be described equivalently as the
number of the integers ρi(a) in the preceding list such that ρi(a)−1 < r; so since
there are g of the integers ρi(a) altogether it follows that g −Na(r) is number
of the integers ρi(a) for which ρi(a) − 1 ≥ r, or equivalently is the number of
the holomorphic abelian differentials ωi,a(z) for which ordaωi,a(z) ≥ r. The
differentials ωi,a are a basis for the vector space B = {b0, b1, . . . , bn} ⊂ P1of
holomorphic abelian differentials on M so g − Nr(a) actually is the dimension
of the space of those holomorphic abelian differentials ω(z) on M for which
ordaωi,a(z) ≥ r; and since that dimension is γ(κζ−ra ) it follows that g−Na(r) =
γ(κζ−r). By the Riemann-Roch Theorem µa(r) = γ(ζra)− 1 = γ(κζra) + r− g =
r −Na(r), and that suffices for the proof.

Theorem 9.11 The Weierstrass gaps νi(a) are precisely the local orders ρi(a)
of the holomorphic abelian differentials at a point a of a compact Riemann
surface M of genus g > 1, that is,

(9.39) ρi(a) = νi(a) for 1 ≤ i ≤ g.

Proof: From (9.38) and and (9.37) it follows that

µa(r)− µa(r − 1) =
(
r −Na(r)

)
−
(
r − 1−Na(r − 1)

)
= 1−

(
Na(r)−Na(r − 1)

)
=

 0 if r = ρi(a) for some i

1 otherwise.
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On the other hand from (9.30) it follows that r is a local gap value r = νj(a) if
and only if µa(r)−µa(r−1) = 0, hence the preceding equation shows that ρi(a)
are precisely the finite local gap values at the point a, the Weierstrass gaps, and
that suffices for the proof.

If the abelian differentials ωi,a(z) are written in terms of local coordinates zα
in a coordinate covering {Uα} of M as ωi,a(z) = fi,a(zα)dzα for some functions
fi,a(zα) the g × g matrix

(9.40) Ωa(zα) =


f1,a(zα) f ′1,a(zα) · · · f

(g−1)
i,a (zα)

f2,a(zα) f ′2,a(zα) · · · f
(g−1
2,a )(zα)

· · · · · · · · · · · ·
fg,a(zα) f ′g,a(zα) · · · f

(g−1)
g,a (zα)

 ,

where f
(n)
i,a (zα) denotes the n-th derivative with respect to the variable zα, is

called the local Brill-Noether matrix of the surface M . Of course it can be
defined in terms of any basis for the space of holomorphic abelian differentials
on M ; but it is particularly interesting for the basis (9.34), for which the Taylor
expansions in a local coordinate zα centered at the point a begin fi,α(z) =

z
ρi(a)−1
α + · · · . The Taylor expansion of the function det Ωa(zα) at the point
a ∈ M can be calculated by replacing the functions fi,α(z) by their Taylor
expansions; so the initial term of the Taylor expansion of the function det Ωa(zα)
is given aside from a nonzero constant factor by

(9.41) det


z
ρ1(a)−1
α z

ρ1(a)−2
α z

ρ1(a)−3
α · · · z

ρ1(a)−g
α

z
ρ2(a)−1
α z

ρ2(a)−2
α z

ρ2(a)−3
α · · · zρ2(a)−g

· · · · · · · · · · · · · · ·
z
ρg(a)−1
α z

ρg(a)−2
α z

ρg(a)−3
α · · · z

ρg(a)−g
α

 ,

where any terms involving a negative power of the variable zα should be replaced
by 0. The matrix in (9.41) is essentially the Wronskian of the polynomials

z
ρi(a)−1
α ; and since these polynomials are linearly independent the determinant

(9.41) does not vanish identically3. The determinant (9.41) explicitly is the
sum of products of one element from each separate row and column; so since

the entry in row i and column j is z
ρi(a)−j
α it follows that the determinant is a

nonzero constant multiple of the variable zα to the power
∑g
i=1 ρi(a)−

∑g
j=1 j =∑g

i=1(ρi(a)− i). Therefore if

(9.42) ω(a) = orda det Ωα(zα)

then

(9.43) ω(a) =

g∑
i=1

(ρi(a)− i) =

g∑
i=1

(νi(a)− i),

3For the relevant property of the Wronskian matrix see for instance the paper by Alin
Bostan and Philippe Dumas “Wronsksians and Linear Independence ” in The American Math-
ematical Monthly, vol. 117 (2010), pp. 722-272.
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since νi(a) = ρi(a) as already observed. The integer ω(a) ≥ 0 is called the
Weierstrass weight of the point a ∈ M , and a point a ∈ M is called a Weier-
strass point of M if ω(a) > 0. The Weierstrass points form a particularly
interesting intrinsically defined set of points on any compact Riemann surface.
It is convenient to note explicitly the characterizations of Weierstrass points in
terms of the indices ri(a), νi(a), ρi(a).

Theorem 9.12 (i) A point a ∈M on a compact Riemann surface M of genus
g > 1 is not a Weierstrass point if and only if νi(a) = ρi(a) = i for 1 ≤ i ≤ g,
hence is a Weierstrass point if and only if νi(a) = ρi(a) > i for some index
1 ≤ i ≤ g,
(ii) A point a ∈ M on a compact Riemann surface M of genus g > 1 is not a
Weierstrass point if and only if r1(a) = g + 1, hence is a Weierstrass point if
and only if r1(a) ≤ g.

Proof: (i) Since the Weierstrass gaps are in the range (9.32) it follows that
νi(a) ≥ i for 1 ≤ i ≤ g; and since the Weierstrass weight is defined by (9.43)
clearly ω(a) = 0 if and only if νi(a) = i for 1 ≤ i ≤ g, which is therefore the
condition that a not be a Weierstrass point. The point a then is a Weierstrass
point precisely when it is not the case that νi(a) = i for all indices i, hence if
and only if νi(a) > i for at least one of the indices i. The same conditions hold
for the indices ρi(a) since ρi(a) = νi(a) by (9.39).
(ii) Since the local critical values are the complement of the local gap values it
follows directly from (i) that a is a Weierstrass point if and only if r1(a) occurs
somewhere among the indices 1, 2, . . . , g, hence if and only if r1(a) ≤ g; and
since the local critical values are in the range (9.31) it follows that a is not a
Weierstrass point if and only if r1(a) = g + 1, and that suffices for the proof.

In the intersection Uα ∩ Uβ of two coordinate neighborhoods on M , with
local coordinates zalpha and zbeta, the coefficients fi,a(zα) and fi,a(zβ) of the
holomorphic abelian differentials satisfy fi,a(zα) = καβfi,a(zβ) where {καβ} is
the holomorphic coordinate bundle describing the canonical bundle κ in terms of
these coordinates; and since d/dzα = καβ d/dzβ it follows from the chain rule for
differentiation that the coefficient functions fi,α(p) and fi,β(p) and their deriva-
tives at the point p with respect to the local coordinates zα and zβ respectively
are related by

fi,a(zα) = καβfi,a(zβ)

f ′i,a(zα) = κ2
αβf

′
i,a(zβ) + καβκ

′
αβfi,a(zβ)(9.44)

f ′′i,a(zα) = κ3
αβf

′′
i,a(zβ) + 3κ2

αβκ
′
αβf

′
i,a(zβ)

+
(
καβκ

′
αβ

2 + κ2
αβκ

′′
αβ

)
fi,a(zβ)

and so on,

where κ
(n)
αβ denotes the n-th derivative of the function καβ with respect to the

variable zβ and correspondingly for the higher derivatives. It is a straightforward
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matter to verify that

(9.45) Ωa(zα) = Ωa(zβ) ·Kαβ

for the nonsingular g × g matrix

Kαβ =



καβ καβκ
′
αβ καβ(κ′αβ)2 + κ2

αβκ
′′
αβ · · ·

0 κ2
αβ 3κ2

αβκ
′
αβ · · ·

0 0 κ3
αβ · · ·

· · · · · · · · · · · ·


for which

(9.46) detKαβ = κ
1
2 g(g+1)

αβ .

Consequently

(9.47) det Ωa(α) = κ
g(g+1)/2
αβ (z) det Ωa(zβ) in Uα ∩ Uβ ,

so the determinants of the local Brill-Noether matrices describe a holomorphic
cross-section

(9.48) det Ωa(z) ∈ Γ
(
M,O(κg(g+1)/2)

)
.

As noted before the local Brill-Nother matrix is essentially the Wronskian matrix
of the local functions fi,a(zα), so since these functions are linearly independent
it is a nontrivial holomorphic cross-section. That is the key to a basic property
of the Weierstrass points of M .

Theorem 9.13 There are only finitely many Weierstrass points on a compact
Riemann surface M of genus g > 1, and the Weierstrss weights at these points
satisfy

(9.49)
∑
a∈M

ω(a) = (g − 1)g(g + 1).

Proof: The functions det Ωa(zα) describe a holomorphic cross-section (9.48)
of the line bundle κg(g+1)/2 so the degree of the divisor of this cross-section is

equal to the characteristic class c(κg(g+1)/2) = (2g − 2) g(g+1)
2 = (g − 1)g(g + 1)

of the line bundle κg(g+1)/2. By (9.42) the degree of the divisor of the function
det Ωa(zα) at a point a ∈M is just the Weierstrass weight ω(a) of the point a,
so the sum of the weights ω(a) at all points a ∈M is equal to c(κg(g+1)/2), and
that yields equation (9.49). It follows from this equation that there are only
finitely many points a ∈ M at which ω(a) > 0, that is, there are only finitely
many Weierstrass points, and that suffices for the proof.
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Theorem 9.14 ( (i) The Weierstrass weight ω(a) of a Weierstrass point a ∈M
on a compact Riemann surface M of genus g > 1 satisfies the inequalities

(9.50) 1 ≤ ω(a) ≤ 1

2
g(g − 1).

(ii) The minimal value ω(a) = 1 is attained when the Weierstrass gap sequence
at the point a is

(9.51) (1, 2, . . . , g − 1, g + 1).

(iii) The maximal value ω(a) = 1
2g(g − 1) is attained when the Weierstrass gap

sequence at the point a is

(9.52) (1, 3, 5, . . . , 2g − 3, 2g − 1).

(iv) The total number N of Weierstrass points on M satisfies the inequalities

(9.53) 2(g + 1) ≤ N ≤ (g − 1)g(g + 1).

The minimum value of N is taken on a Riemann surface for which all the
Weierstrass points have the maximum Weierstrass weight while the maximum
value of N is taken on a Riemann surface for which all the Weierstrass points
have the minimum Weierstrass weight.

Proof: (i) and (ii) By (9.43) the Weierstrass weight at a point a ∈ M is given
by ω(a) =

∑g
i=1(νi(a) − i). If νj(a) ≥ j + 1 for some index 1 ≤ j ≤ g then

νi(a) ≥ i+ 1 for all i ≥ j so that ω(a) ≥ g − j; the least Weierstrass weight at
a Weierstrass point thus is ω(a) = 1, which is the first inequality in (9.50, and
that occurs when νj = j for 1 ≤ j ≤ g and νg = g + 1, which shows that the
associated Weierstrass gap sequence is (9.51). (1) and (iii) If r = r1(a) ≥ 2 is
the least local critical value at a Weierstrass point a ∈M then 2r, 3r, . . . are also
local critical values at a ∈ M , since the local critical values form a semigroup
in Z by Corollary 9.10. Each integer i in the range 1 ≤ i ≤ r − 1 then is a
Weierstrass gap at the point a ∈ M ; and for each of these integers there is a
further integer λi ≥ 0 such that

(9.54) i, (i+ r), (i+ 2r), . . . , (i+ λir) are Weierstrass gaps at a

while

(9.55) i+ (λi + 1)r, i+ (λi + 2)r, . . . are local critical values at a.

Any integer is congruent to one of the integers 1 ≤ i ≤ r − 1 modulo r so all
the Weierstrass gaps are included in the lists (9.54); hence the total number of
Weierstrass gaps at a is

(9.56) g =

r−1∑
i=1

(λi + 1) = r − 1 +

r−1∑
i=1

λi.
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By (9.43) the Weierstrass weight of the point a is

ω(a) =

g∑
i=1

(νi(a)− i) =

g∑
i=1

νi(a)− 1

2
g(g + 1)(9.57)

=

r−1∑
i=1

λi∑
j=0

(i+ jr)− 1

2
g(g + 1)

=

r−1∑
i=1

(
i(λi + 1) +

1

2
rλi(λi + 1)

)
− 1

2
g(g + 1)

=
1

2
r(r − 1) +

r−1∑
i=1

1

2
λi(2i+ rλi + r)− 1

2
g(g + 1).

Here i ≤ r− 1, and since the largest Weierstrass gap is νg(a) ≤ 2g− 1 by (9.32)
then i+ λir ≤ 2g − 1; consequently

2i+ rλi + r = i+ (i+ rλi) + r

≤ (r − 1) + (2g − 1) + r = 2(g + r − 1)

so recalling (9.56)

r−1∑
i=1

1

2
λi(2i+ rλi+ r) ≤ (g+ r− 1)

r−1∑
i=1

λi = (g+ r− 1)(g− r+ 1) = g2− (r− 1)2.

Substituting this inequality in (9.57) shows that

ω(a) ≤ 1

2
r(r − 1) + g2 − (r − 1)2 − 1

2
g(g + 1)(9.58)

≤ 1

2
g(g − 1)− 1

2
(r − 1)(r − 2).

It is evident from this inequality that the largest Weierstrass weight at a Weier-
strass point is 1

2g(g − 1), which is the second inequality in (9.50); and since
r ≥ 2 that occurs when r = 2, so that all even numbers are local critical values
at the point a and hence the Weierstrass gap sequence consists just of the odd
integers (9.53). (iv) If all of the Weierstrass points on M have the minimal
Weierstrass weight ω(a) = 1 it is evident from (9.49) in Theorem 9.13 that the
number of Weierstrass points on M is (g − 1)g(g + 1), and that of course is the
largest possible number of Weierstrass points on M . On the other hand if all
the Weierstrass points on M have the maximal Weierstrass weight 1

2g(g − 1) it
is evident from (9.49) that the number of Weierstrass points on M is 2g + 2,
and that is the minimal number of Weierstrass points on M . That demonstrates
(9.53) and concludes the proof.

A slight refinement of the preceding theorem is occasionally useful.
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Corollary 9.15 On a compact Riemann surface M of genus g > 1 the Weier-
strass weight at a point a ∈ M at which the first local critical value is r1(a)
satisfies

(9.59) ω(a) ≤ 1

2
g(g − 1)− 1

2

(
r1(a)− 1

)(
r1(a)− 2

)
.

Proof: The inequality (9.59) is just the inequality (9.58) in the proof of the
preceding theorem, so no further proof is required here.

The collection of Weierstrass points on a compact Riemann surface M of
genus g > 1 is an intrinsically defined finite set of exceptional points of the
Riemann surface M . Actually the Weierstrass points can be distinguished by
their weights, or rather more precisely by their Weierstrass gap sequences; and
each of these separate subsets of Weierstrass points is an intrinsically defined
set of exceptional points on the Riemann surface M .

9.5 Hyperelliptic Riemann Surfaces

The role of Weierstrass points can be illustrated by examining one of the
classical special classes of Riemann surfaces, the hyperelliptic Riemann surfaces
defined on page 229.

Theorem 9.16 Hyperelliptic Riemann surfaces of genus g > 1 are character-
ized by any of the following equivalent conditions:
(i) There is a point a at which the first critical value is r1(a) = 2.
(ii) The surface has a point at which the Weierstrass gap sequence is (9.52).
(iii) The surface has a Weierstrass point of the maximal possible Weierstrass
weight ω(a) = 1

2g(g − 1).
(iv) The surface has the minimal possible number 2(g+1) of Weierstrass points.

Proof: (i) If M is a hyperelliptic then by definition there is a holomorphic
mapping φ : M −→ P1 of degree 2, which as on page 225 is the mapping φf
described by a meromorphic function f of degree 2. The mapping φf is not
a homeomorphim since g > 1 so it must have at least one ramification point
a ∈M , which must be of ramification order 1; and after replacing the function
f by 1/

(
f − f(a)

)
if necessary it can be assumed that the function f has a pole

at the ramification point a, which must be a double pole. Then by Theorem 9.3
the function f can be written as the quotient of two holomorphic cross-sections
of the holomorphic line bundle ζ2

a of the polar divisor of f ; so γ(ζ2
a) ≥ 2 hence

r1(a) = 2. Conversely if r1(a) = 2 then 2 is in the Lüroth semigroup by Corol-
lary 9.10 hence M is hyperelliptic.
(ii) If the Weierstrass gap sequence at a point a is (9.52) then the first local
critical value at the point a is r1(a) = 2, so the surface is hyperelliptic by (i).
Conversely if the surface is hyperelliptic then r1(a) = 2 for some point a ∈ M
by (ii); and since the local critical values form a semigroup under addition, all
even values are local critical values hence the Weierstrass gap sequence must be
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(9.52).
(iii) If the surface has a Weierstrass point of the maximal possible Weierstrass
weight then by Theorem 9.14 the Weierstrass gap sequence at that point is
(9.52), and conversely; and by (ii) that is equivalent to the surface being hyper-
elliptic.
(iv) If the surface has the minimal possible number of Weierstrass points then
each Weierstrass point has the maximal Weierstrass weight, and conversely; so
by (iii) that is equivalent to the surface being hyperelliptic. That suffices for
the proof.

Theorem 9.17 A hyperelliptic Riemann surface M of genus g > 1 has a unique
representation as a two sheeted branched covering of P1, up to biholomorphic
mappings of P1 to itself; the 2g + 2 ramification points are precisely the Weier-
strass points of M , each of which has the Weierstrass gap sequence (9.52).

Proof: By definition a hyperelliptic Riemann surface M has a holomorphic
mapping φ : M −→ P1 of degree 2, which can be taken as the mapping φ = φf
defined by a meromorphic function f of degree 2 on M . For such a mapping all
ramification points a ∈ M clearly have the ramification order ra(φf ) = 1; and
since the Riemann-Hurwitz formula takes the form (9.14), when deg φ = 2 the
total branch order is br(φf ) = 2g+ 2 so there are altogether 2g+ 2 ramification
points of the mapping. At any ramification point a ∈M the function f defining
the mapping φ = φf can be assumed to have a double pole, by replacing f
by 1/

(
f − f(a)

)
if necessary; that amounts to composing the mapping φf with

the biholomorphic mapping of P1 to itself defined by t −→ 1/
(
t− f(a)

)
. As in

Theorem 9.3 the function f then can be written as a quotient f = fα0/fα1 of two
holomorphic cross-sections of the holomophic line bundle of the polar divisor of
the function f , the line bundle ζ2

a , which is base-point free and for which γ(ζ2
a) =

2 since the bundle has the two holomorphic cross-sections fα0, fα1 and γ(ζ2
a) ≤ 2

by Theorem 2.7. On the one hand that means that the first local critical value
at the point a is r1(a) = 2, so a is a Weierstrass point with the Weierstrass gap
sequence (9.52). That is the case for any of the 2g+ 2 ramification points of the
mapping f , so all the ramification points are Weierstrass points; and since by
(9.49) there are also altogether 2g + 2 Weierstrass points, all of which must be
ramification points. On the other hand the cross-sections fα0, fα1 are a basis
for the holomorphic cross-sections of the line bundle ζ2

a , and fα1 has a double
zero at the point a ∈M . Any other meromorphic function g on the surface M
having a double pole at the point a ∈M and defining a mapping φg : M −→ P1

of degree 2 can also be expressed in the same way as a quotient g = gα0/gα1

of two holomorphic cross-sections of the line bundle ζ2
a , where gα1 = cfα1 for

some constant c 6= 0 since gα1 also has a double zero at the point a ∈ M and
gα0

= c0fα0
+ c1fα1

for some further constants c0, c1; thus g = (c0/c)f + (c1/c),
so the mapping φg is the composition of the mapping φf and the biholomorphic
mapping t −→ (c0/c)t+ (c1/c) of P1 to itself. That suffices for the proof.

If M is a hyperelliptic Riemann surface and φ : M −→ P1 is a holomorphic
mapping exhibiting M as a two sheeted branched covering of P1 then for each
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point z ∈M that is not a ramification point of the mapping φ there is a unique
point Tz ∈M other than z for which φ(Tz) = φ(z); the mapping T : z −→ Tz,
extended by setting Tz = z for each ramification point z ∈ M , is called the
hyperelliptic involution on M . Since the mapping φ is uniquely defined up to a
biholomorphic mapping of P1 to itself it is clear that the hyperelliptic involution
is uniquely determined. Aside from the ramification points of the mapping φ it
is clear that the hyperelliptic involution is a one-to-one holomorphic mapping
of the surface M to itself, that its square is the identity mapping T 2 = I on M ,
and that it is locally biholomorphic; but it follows from the Riemann removable
singularities theorem that the mapping is also holomorphic at the ramification
points, since it is continuous at these points and holomorphic except at these
points. Thus the mapping T : M −→M is an automorphism of of the Riemann
surface M , a biholomorphic mapping of the surface M to itself. The quotient
of the Riemann surface M under the group of transformations {T, I} is just
the Riemann sphere; and conversely any compact Riemann surface M with
an automorphism T for which T 2 = I and M/{T, I} = P1 obviouslly is a
hyperelliptic Riemann surface. The description of other possible automorphisms
of a hyperelliptic Riemann surface rests on their action on the Weierstrass points
of the surface.

Corollary 9.18 An automorphism of a hyperelliptic Riemann surface M of
genus g > 1 permutes the Weierstrass points of M ; and an automorphism fixes
all the Weierstrass points if and only if the automorphism is the hyperelliptic
involution or the identity mapping.

Proof: Since the Weierstrass points on M are intrinsically determined they are
clearly mapped to themselves by any automorphism of the surface. If f : M −→
P1 is a mapping exhibiting the Riemann surface M as a two-sheeted cover of
the Riemann sphere and if φ : M −→ M is an automorphism of the Riemann
surface M then the composite mapping f ◦ φ−1 : M −→ P1 also exhibits the
surface M as a two-sheeted cover of the Riemann sphere, so by the preceding
theorem f ◦ φ−1 = θ ◦ f for an automorphism θ : P1 −→ P1, a linear fractional
transformation of the projective space P1. If the automorphism φ preserves the
Weierstrass points, the ramification points of the mapping f , then the branch
points of f must be preserved by the mapping θ : P1 −→ P1; but there are 2g+
2 > 3 of these points, so the mapping θ is linear fractional transformation leaving
at least 3 points fixed hence θ is the identity transformation. Consequently the
automorphism φ at most interchanges the two points f−1(a) over each point
a ∈ P1 so φ is either the identity mapping or the hyperelliptic involution, and
that suffices for the proof.

Corollary 9.19 If M is a hyperelliptic Riemann surface of genus g with the
hyperelliptic involution T : M −→M then ω(Tz) = −ω(z) for any holomorphic
abelian differential on M ; hence the canonical divisors on M are precisely the
divisors of the form k =

∑g−1
j=1(1 · aj + 1 · Taj) for any points a1, . . . , ag−1 ∈M .
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Proof: If ω is a holomorphic abelian differential on M then ω(Tz) also is a
holomorphic abelian differential on M , since the hyperelliptic involution T :
M −→ M is a biholomorphic mapping. The sum ω(z) + ω(Tz) then is a holo-
morphic abelian differential on M that is invariant under the hyperelliptic invo-
lution T , so determines a holomorphic abelian differential on the quotient space
M/{I, T} = P1; but there are no nontrivial holomorphic abelian differentials on
P1 and consequently ω(z) + ω(Tz) = 0. It follows from this that if ω(a) = 0
for a point a ∈ M then ω(Ta) = 0 as well, so the divisor of the holomorphic

abelian differential ω(z) must be of the form d(ω) =
∑g−1
j=1(1 · aj + 1 · Taj)

for some points a1, . . . , ag−1 on M . Conversely for any divisor of the form

d =
∑g−1
j=1(1 · aj + 1 · Taj) there is a nontrivial holomorphic abelian differential

ω(z) such that ω(aj) = 0 for 1 ≤ j ≤ g−1, since there are g linearly independent
holomorphic abelian differentials on M ; and since ω(Tz) = ω(z) the divisor of

this differential is d(ω) =
∑g−1
j=1(1 · aj + 1 · Taj), and that suffices for the proof.

A hyperellipic Riemann surface M of genus g > 1 is a two-sheeted branched
covering of the Riemann sphere P1 with 2g + 2 branch points ai ∈ P1; so M is
the Riemann surface represented by the holomorphic subvariety

(9.60) V =
{

(w, z) ∈ P1 × P1
∣∣∣ w2 =

2g+2∏
j=1

(z − ai)
}
, ⊂ P1 × P1,

since V has the natural structure of a compact Riemann surface for which the
natural projection π : P1 × P1 −→ P1 defined by π(w, z) = z exhibits V as
a branched covering of P1 branched over the 2g + 2 pairwise distinct points
ai ∈ P1. The 2g + 2 points (wi, zi) ∈ V are the ramification points of the
mapping π : V −→ P1, and are precisely the Weierstrass points on V = M ,
each of which has the Weierstrass gap sequence (9.52) as in Theorem 9.16.

9.6 Automorphisms of Riemann Surfaces

For Riemann surfaces other than hyperelliptic surfaces the Weierstrass points
also are useful in the examination of automorphisms of the surface.

Theorem 9.20 An automorphism of a non hyperelliptic compact Riemann sur-
face of genus g > 1 permutes the Weierstrass points of the surface and fixes all
the Weierstrass points if and only if it is the identity mapping.

Proof: The Weierstrass points on any compact Riemann surface M are in-
trinsically defined so they are mapped to themselves by any automorphism
T : M −→ M of the surface. Suppose T is a nontrivial automorphism of the
Riemann surface M that fixes the Weierstrass points of M . There must be
a point a ∈ M that is not a Weierstrass point and that is not preserved by
the mapping T , since there are only finitely many Weierstrass points so the
complement of the set of Weierstrass points is a dense subset of M and any
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automorphism that is the identity on a dense subset is the identity automor-
phiosm. Since a is not a Weierstrass point r1(a) = g + 1 by Lemma 9.12, so
γ(ζg+1

a ) = 2. One cross-section f0 of ζg+1
a can be taken to be a power of a

nontrivial cross-section of ζa, so it has a zero of order g+ 1 at the point a, while
the other cross-section f1 is necessarily nonzero at the point a, since ζg+1

a is
base-point-free; the quotient f = f1/f0 is a nontrivial meromorphic function on
M with a pole of order g + 1 at the point a and no other singularities. Since
Ta 6= a the function g = f − f ◦ T is a nontrivial meromorphic function on M
with poles of order g+1 at the points a and Ta but no other singularities on M ,
so it is a meromorphic function of degree 2g+2; its zero divisor then is a positive
divisor of degree 2g + 2, so consists of at most 2g + 2 points of M . Howwever
Tz = z for each Weierstrass point z ∈ M so the the function g = f − f ◦ T
must vanish at each Weierstrass point of M ; and if M is not hyperelliptic then
g > 1 and by Theorem 9.16 (iii) there are N > 2g + 2 Weierstrass points on
M , so the function g has at least N > 2g + 2 zeros. That is a contradiction,
so any automorphism θ of M that preserves the Weierstrass points must be the
identity mapping, and that concludes the proof

Corollary 9.21 The group of automorphisms of a compact Riemann surface
of genus g > 1 is finite.

Proof: For a hyperelliptic Riemann surface of genus g > 1 this follows from
Corollary 9.18, since every automorphism preserves the finite set of Weierstrass
points and the only automorphisms that fix the Weierstrass points are the iden-
tity mapping and the hyperelliptic involution. For a non-hyperelliptic Riemann
surface of genus g > 1 this follows from Theorem 9.20, since every automor-
phism preserves the finite set of Weierstrass points and the only automorphism
that fixes the finitely many Weierstrass points is the identity mapping. That
suffices for the proof.

The quotient space M/G of a Riemann surface M under any group G of
automorphisms of M is another Riemann surface that is closely related to the
surface M , as follows.

Theorem 9.22 (i) If G is a group of automorphisms of a compact Riemann
surface M of genus g > 1 the quotient space N = M/G has the natural structure
of a compact Riemann surface for which the quotient mapping π : M −→ N is
a holomorphic mapping of degree ν = |G|, the order of the group G.
(ii) For any point p ∈M the ramification order of the mapping π at the point p
is rp(π) = νp−1 where νp = |Gp| is the order of the subgroup Gp ⊂ G consisting
of those automorphisms that fix the point p.
(iii) For any point q ∈ N the subgroups Gp for all the points p ∈ π−1(q) are
conjugate subgroups of G so they all have the same order, which will be denoted
by ν∗q ; and there are ν/ν∗q points in π−1(q).
(iv) The branch divisor of the mapping π is

(9.61) b(π) =
∑
q∈N

ν

(
1− 1

ν∗q

)
· q,
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and the branch order of the mapping π is

(9.62) br(π) =
∑
q∈N

ν

(
1− 1

ν∗q

)
.

(v) The genus h of the quotient surface N is determined by the equation

(9.63) 2g − 2 = (2h− 2)ν + ν
∑
q∈N

(
1− 1

ν∗q

)
.

Proof: (i) The group G of automorphisms of a compact Riemann surface M
of genus g > 1 is a finite group by Corollary 9.21. Let π : M −→ N be the
natural mapping from M to the quotient space N = M/G and let X ⊂ M
be the set of those points of M that are fixed under an automorphism in G
other than the identity. Each automorphism is a holomorphic mapping so its
fixed points are a discrete subset of the compact manifold M , hence a finite
set of points of M ; and since the group G is finite the set X also is finite. For
a sufficiently small open neighborhood Up of a point p ∈ (M ∼ X) each of
the finitely many automorphisms T ∈ G determines a biholomorphic mapping
T : Up −→ TUp and the images TUp for distinct automorphisms T ∈ G are
disjoint subsets of M ; therefore the neighborhood Up can be identified with an
open neighborhood Vp in the quotient space N , thus providing the structure of a
Riemann surface on the quotient (M ∼ X)/G. The quotient mapping π then is
a holomorphic mapping exhibiting M ∼ X as a covering map of ν = |G| sheets
over the quotient manifold (M ∼ X)/G. On the other hand if p ∈ X the set of
automorphisms T ∈ G such that Tp = p form a finite subgroup Gp ⊂ G. If Up
is an open neighborhood of p then so is the finite intersection U ′p =

⋂
T∈Gp TUp,

and TU ′p = U ′p for all T ∈ Gp. If Up is sufficiently small the images TU ′p coincide
with U ′p when T ∈ GP and are disjoint from U ′p otherwise; so the quotient U ′p/Gp
can be identified with a subset of the quotient space N = M/G. If z is a local
coordinate in M centered at the point p then g(z) =

∏
T∈Gp Tz is a holomorphic

function in U ′p that is invariant under the action of the subgroup Gp; it describes
a holomorphic mapping g : U ′p −→ Vp to an open subset Vp ∈ C that induces
a bijective mapping g : U ′p/Gp −→ Vp, so Vp can be identified with a local
coordinate neighborhood on the quotient space N . The same construction at
all points of X extends the Riemann surface (M ∼ X)/G to a Riemann surface
structure on the quotient space N = M/G for which the natural mapping
π : M −→ N is a holomorphic mapping of degree ν = |G|.
(ii) It clear from the construction in (i) that the mapping π is ramified just at
the points p ∈ X, and that the ramification order at any point p ∈M is νp − 1
where νp = |Gp| is the order of the subgroup Gp.
(iii) It is evident from the definition of the subgroups Gp ⊂ G that TGpT

−1 =
GTp for any T ∈ G; thus the subgroups GTp for all T ∈ G are conjugate
subgroups of G so all of them have the same order νTp = ν∗q . The number of
distinct points in π−1(q) for any point q ∈ N is the number of cosets of the
subgroup Gp so is the index ν/νp = ν/ν∗q of the subgroup Gp.
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(iv) A point q ∈ N is a branch point of the mapping π precisely when q = π(p)
for a ramification point p ∈ M ; and since by (ii) the ramification order of a
point p ∈M is νp − 1 while by (iii) there are ν/ν∗q points p ∈ π−1(q) ⊂M and
νp = ν∗q for all of them it follows from (9.5) that the local branch order at the
point q is

bq(π) =
ν

ν∗q
(ν∗q − 1) = ν

(
1− 1

ν∗q

)
so the branch divisor is

b(π) =
∑
q∈N

bq(π) · q =
∑
q∈N

ν

(
1− 1

ν∗q

)
· q,

which is (9.62). By (9.7) the total branch order is

br(π) =
∑
q∈N

bq(π) =
∑
q∈N

ν

(
1− 1

ν∗q

)
,

which is (9.62).
(v) Substituting the results in (iv) into the Riemann-Hurwitz equation (9.9)
then yields (9.63), and that suffices for the proof.

The preceding result can be applied to yield bounds on the sizes of the groups
of automorphisms of compact Riemann surfaces, following Hurwitz4.

Theorem 9.23 (Hurwitz’s Theorem) The order of the group of all auto-
morphisms of a compact Riemann surface of genus g > 1 is bounded above by
84(g − 1).

Proof: It follows from the preceding Theorem 9.22 that if G is the group
of automorphisms of a compact Riemann surface M of genus g > 1 and if the
quotient space N = M/G is a Riemann surface of genus h then the order ν = |G|
of the group satisfies

(9.64) 2g − 2 = ν
(

2h− 2 +H
)

where H =
∑r
i=1

(
1− 1

νi

)
for some r ≥ 1 and νi ≥ 2. Here 2g − 2 > 0 since

g > 1 so it follows from (9.64) that 2h − 2 + H > 0; a positive lower bound to
2h − 2 + H in (9.64) provides an upper bound for the order ν of the group G
depending on the explicit values of h and H.
(i) First if H = 0 then since 2h−2+H > 0 necessarily h ≥ 2 hence 2h−2+H ≥ 2
and it follows from (9.64) that ν ≤ g − 1.
(ii) Next if H > 0 since r ≥ 1 and νi ≥ 2 so 1 − 1

νi
≥ 1

2 then H ≥ 1
2 ; and if it

also the case that h ≥ 1 then 2h − 2 + H ≥ 1
2 and it follows from (9.64) that

4This result can be found in the paper by Adolph Hurwitz, ”Ueber algebraische Gebilde
mit Eindeutigen Transformationen in sich”, Mathematische Annalen vol. 41, 1893, pp. 403 -
442.



248 CHAPTER 9. MAPPINGS TO THE RIEMANN SPHERE

ν ≤ 4(g − 1).
(iii) That leaves just the case that H > 0 and h = 0, for which (9.64) takes the
form

(9.65) 2g − 2 = (H − 2)ν.

Here H > 2 since g > 1; so to finish the proof it is sufficient to find the least

value of H subject to the restriction that H > 2. Since
(

1− 1
νi

)
< 1 then

H =
∑r
i=1(1 − 1

νi
) < r, so since H > 2 then necessarily r ≥ 3. There are

various lower bounds for H depending on the value of r.

(iii,a) If r ≥ 5 then since ν1 ≥ 2 and therefore
(

1− 1
νi

)
≥ 1

2 it follows that

H ≥ 5
2 so H − 2 = 1

2 and hence ν ≤ 4(g − 1) again.

(iii,b) If r = 4 it cannot be the case that νi = 2 for all i since then
(

1− 1
νi

)
= 1

2

so H = 4 1
2 = 2; therefore it must be the case that νi ≥ 3 for at least one index

i so
(

1− 1
νi

)
≥ 2

3 for at least one index i therefore H ≥ 3 · 1
2 + 1 · 2

3 = 13
6 so

H − 2 ≥ 1
6 hence ν ≤ 12(g − 1).

(iii,c) If r = 3 there are a few cases to consider but after a final analysis that will
be left to the reader the result is that in this case the lower bound is attained
for ν1 = 2, ν2 = 3, ν3 = 7 and is H = 85

42 so H − 2 = 1
42 hence ν ≤ 84(g − 1).

This is the largest of the upper bounds for ν in all the cases and it provides the
Hurwitz bounds and therefore concludes the proof.

The Riemann surfaces M of genus g > 1 for which the group G of auto-
morphisms has the maximum order 84(g − 1) are called Hurwitz surfaces, and
their groups of automorphisms are called Hurwitz groups. Hurwitz surfaces are
characterized by the values of the invariants listed in part (iii,c) of the proof of
the preceding theorem; with the notation as in that proof, Hurwitz surfaces are
characterized by the conditions that h = 0, H > 2, and ν1 = 2, ν2 = 3, ν3 = 7.
Thus the quotient surface M/G is the Riemann sphere; and the branch order of
the mapping π : M −→ M/G = P1 is ν = 84 while by (9.61) where ν∗q are the
values νi the branch divisor of the mapping π is

(9.66) b(π) = 2 · z1 + 3 · z2 + 7 · z3

for three points z1, z2, z3 ∈ P1. The automorphism group G of order 84(g − 1)
has three conjugacy classes of subgroups of G, where the i-th conjugacy class is
formed by the ν/νi subgroups of order νi consisting of the transformations that
leave one of the ν/νi points of π−1(zi) ⊂M fixed.

The proof of the Hurwitz upper bound for the order of the group of au-
tomorphisms of a Riemann surface of genus g > 1 was derived from general
topological properties that any group of automorphisms of a Riemann surface
of genus g necessarily has; but the proof does not show that there actually are
Riemann surfaces for which the group of automorphisms has order 84(g − 1).
Fortunately about the same time that Hurwitz was deriving these results Felix
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Klein5 was investigating a quartic curve with remarkable symmetries, a curve
of genus g = 3 with an automorphism group of order 168 = 84 · 2, so a Hurwitz
surface of genus g = 2 showing that there do exist some Hurwitz surfaces. The
next example of a Hurwitz surface was discovered by Robert Fricke 6, a surface
of genus 7 with an automorphism group of order 504; and until 1960 those were
the only known examples of Hurwitz surfaces. However in 1961 Alexander Mur-
ray Macbeath7 rediscovered the Fricke surface independently (so the surface is
generally called the Fricke-Macbeath surface) and demonstrated that there ac-
tually are infinitely many Hurwitz surfaces. On the other hand there are values
of the genus g for which there are no Riemann surfaces with an automorphism
group of order 84(g−1). For instance it has been shown that the maximal order
of the automorphism group of a Riemann surface of genus g = 2 is 48 rather
than 84; the unique example of such a surface is the Bolza curve8. Hurwitz
surfaces and Hurwitz groups have been extensively investigated but still remain
somewhat mysterious9

5See the paper by F. Klein, “Ueber die Transformation siebenter Ordnung der elliptischen
Functionen” in Mathematische Annalen vol. 14, 1878, pp. 428 - 471.

6See the paper by R. Fricke, R. (1899), “Ueber eine einfache Gruppe von 504 Operationen”,
Mathematische Annalen, vol.52, 1899, pp.321-329.

7See the paper by A. Macbeath, “On a Theorem of Hurwitz”, in Proc. Glasgow Math.
Assoc., vol. 5 (1961), pp 90-96.

8See the paper by Oskar Bolza, “On Binary Sextics with Linear Transformations into
Themselves”, in American Journal of Mathematics vol. 10, 1887, pp. 47-70.

9For a general discussion of Hurwitz surfaces and groups see the book The Eightfold Way:
The Beauty of Klein’s Quartic Curve, MSRI Publications, Vol. 35, edited by Silvio Levy.
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Chapter 10

The Hurwitz Parameters

10.1 The Varieties of Positive Divisors

The branch divisor of a holomorphic mapping between two Riemann surfaces
is an example of a positive divisor on a Riemann surface, a special class of
divisors that play a significant role in the study of Riemann surfaces. It is
convenient to digress briefly here to examine in more detail the sets of positive
divisors on Riemann surfaces. A positive divisor of degree r on a Riemann
surface M can be viewed as an unordered set of r not necessarily distinct points
of M ; so the set of all positive divisors of degree r can be identified with the
quotient M (r) = Mr/Sr of the r-dimensional complex manifold Mr by the
symmetric group Sr acting as the group of permutations of the factors, a set
called the r-th symmetric product of the surface with itself. The mapping that
associates to an ordered set of r points the corresponding unordered set of those
points is the natural quotient mapping

(10.1) πr : Mr −→M (r) = Mr/Sr.

The quotient space M (r) has the natural quotient topology, in which a subset
U ⊂M (r) is open precisely when the inverse image π−1

r (U) ⊂Mr is open. The
restriction of the quotient mapping πr to the subset

(10.2) Mr∗ =
{

(z1, . . . , zr) ∈Mr
∣∣∣ zi 6= zj for i 6= j

}
⊂Mr

clearly is a locally homeomorphic mapping.

Lemma 10.1 The symmetric product C(r) has the structure of a complex man-
ifold of dimension r such that the natural quotient mapping πr : Cr −→ C(r)

is a holomorphic mapping and its restriction to the subset Cr∗ is locally biholo-
morphic.

Proof: Consider the mapping τr : Cr −→ Cr defined by

τr(z1, z2, . . . , zr) =
(
e1(z1, . . . , zr), e2(z1, . . . , zr), . . . , er(z1, . . . , zr)

)
,

251
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where ei(z1, . . . , zr) are the elementary symmetric functions in r variables. It
will be shown first that there is a one-to-one mapping σr : C(r) −→ Cr such
that the following diagram

(10.3)

C(r)

Cr Cr-

HHHj ��
�*

τr

πr σr

is a commutative diagram of mappings. The elementary symmetric functions
ei = ei(z1, . . . , xr) are the polynomials in the variables z1, . . . , zr defined as the
coefficients of the polynomial

(10.4)

r∏
i=1

(X − zi) = Xr − e1X
r−1 + e2X

r−2 − · · ·+ (−1)rer.

These coefficients clearly are invariant under permutations of the variables
z1, . . . , zr, so the mapping τr factors through the quotient mapping πr as the
composition τr = σr ◦ πr for some mapping σr for which the resulting dia-
gram (12.20) is a commutative diagram of mappings. The mapping τr is sur-
jective since any monic polynomial of degree r can be written as the product∏r
i=1(X − zi) where zi are its roots; consequently the mapping σr also is sur-

jective. Since a monic polynomial is determined uniquely by its roots and con-
versely determines the roots uniquely up to order, two points of Mr have the
same image under τr if and only if they have the same image under πr, so the
mapping σr is injective. Altogether then the mapping σr is one-to-one, so can be
used to identify the symmetric product C(r) with the image Cr, and thereby to
give the symmetric product the structure of a complex manifold. The mapping
τr clearly is holomorphic, and its restriction to Cr∗ is locally biholomorphic; so
from the commutativity of the diagram (12.20) the same is true for the mapping
σr, and that suffices for the proof.

For some purposes it is more convenient to use the power sums

(10.5) si(z1, . . . , zr) = zi1 + · · ·+ zir

for 1 ≤ i ≤ r in place of the elementary symmetric functions in the definition
of the mapping τr in the preceding lemma; Newton’s formulas expressing the
elementary symmetric functions in terms of the power sums and conversely show
that the two choices lead to equivalent results.

Theorem 10.2 The symmetric product M (r) of a compact Riemann surface M
has the natural structure of a compact complex manifold of dimension r. The
quotient mapping πr : Mr −→ M (r) is a holomorphic mapping that is a locally
biholomorphic mapping from the dense open subset Mr∗ ⊂Mr consisting of sets
of r distinct points of M to its image M (r)∗ = πr(M

r∗).
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Proof: For any divisor d = ν1 · a1 + · · · + νs · as ∈ M (r) for which a1, . . . , as
are distinct points of M choose disjoint open neighborhoods Ui ⊂ M of the

points ai. The quotient spaces U
(νi)
i have the natural structures of complex

manifolds by the preceding lemma; and the product Ud = U
(ν1)
1 × · · · × U (νs)

s

then provides the structure of a complex manifold on an open neighborhood of
the divisor d ∈ M (r). If the divisor d consists of distinct points, so that νi = 1

for all indices i, the quotient spaces U
(νi)
i = U

(1)
i are just the neighborhoods

Ui themselves, so the quotient mapping πr : Mr −→ M (r) then is a locally
biholomorphic mapping in an open neighborhood of the divisor d. That suffices
to conclude the proof.

The set M (r) often is called the variety of positive divisors of degree r on the
Riemann surface M since it has the natural structure of a holomorphic variety,
actually of a compact complex manifold. The quotient mapping (12.18) clearly
is a finite, proper, surjective holomorphic mapping from Mr onto M (r). The
complement V r = (Mr ∼ Mr∗) is the union V r =

⋃
i 6=j V

i,j of the proper

holomorphic subvarieties V i,j = { (z1, . . . , zr) ∈ Mr | zi = zj }, so is a proper
holomorphic subvariety of Mr; and by Remmert’s Proper Mapping Theorem1its
image πr(V

r) = V (r) ⊂M (r) is a proper holomorphic subvariety of the complex
manifoldM (r). The inverse image π−1

r (V (r)) ⊂Mr then is a proper holomorphic
subvariety of Mr and the restriction

πr :
(
Mr ∼ π−1

r (V (r))
)
−→

(
M (r) ∼ V (r)

)
clearly is a locally biholomorphic covering mapping of r sheets; but the inverse
image under πr of any point in V (r) consists of strictly fewer than r points of
Mr, so the mapping πr is a branched holomorphic covering2of r sheets over the
complex manifold M (r), branched over the subvariety V (r) ⊂M (r).

10.2 Special Branch Divisors

The branch divisors of holomorphic mappings φ : M −→ P1 from compact
Riemann surfaces to the Riemann sphere are examples of positive divisors in
P1. A particular class of these divisors play a significant role in the study of
holomorphic mappings to the Riemann sphere, the divisors of mappings that
are fully branched over a point of P1, usually the point ∞ when the Riemann
sphere is viewed as the union P1 = C ∪∞.

1Remmert’s Proper Mapping Theorem asserts that if f : V −→W is a proper holomorphic
mapping from a holomorphic variety V to a holomorphic variety W then the image f(V ) is
a holomorphic subvariety of W with dim f(V ) ≤ dimV ; in particular if f is a holomorphic
mapping from a compact complex manifold V to a complex manifold W then the image f(V )
is a holomorphic subvariety of W with dim f(V ) ≤ dimV . This is discussed in more detail in
Appendix A.3.

2The definitions and general properties of branched holomorphic coverings are given on
page 423 in Appendix A.3.
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Theorem 10.3 If M is a compact Riemann surface of genus g > 1 then for
any point a ∈M there is a holomorphic mapping φa : M −→ P1 of degree r > 1
that is fully ramified at the point a if and only if r is a local critical value of the
Riemann surface M at the point a.

Proof: If φ : M −→ P1 is a holomorphic mapping of degree r that is fully
ramified at the point a it can be assumed by choosing suitable coordinates on
P1 that φ(a) = ∞ where P1 = C ∪ ∞; so φ = φf actually is the holomorphic
mapping described by a meromorphic function f on M that is of degree r and
that has a pole of order r at the point a as its sole singularity. Conversely any
meromorphic function f on M of degree r that has a single pole at the point
a describes a holomophic mapping φf : M −→ P1 that is fully ramified at the
point a. By Theorem 9.3 a meromorphic function f on M of degree r with a
pole just at the point a ∈M can be written as the quotient f = fα1/fα0 of two
holomorphic cross-sections fα0, fα1 ∈ Γ

(
M,O(ζra)

)
with no common zeros for

the holomorphic line bundle ζra of the polar divisor r · a of the function f . The
line bundle ζra therefore is base-point-free, and it then follows from Theorem 9.9
that r is a local critical value of the Riemann surface M at the point a. That
suffices for the proof.

To study these mappings in more detail it is necessary to examine the local
maximal function a bit more closely.

Lemma 10.4 If M is a compact Riemann surface of genus g > 1 then for any

point a ∈ M there are holomorphic cross-sections fi,α ∈ Γ
(
M,O(ζ

ri(a)
a )

)
for

i ≥ 0 such that f0,α(a) has a simple zero at a while fi,α(a) 6= 0 if i > 0. For
any integer r in the interval ri(a) ≤ r < ri+1(a) for i > 0 the vector space
Γ
(
M,O(ζra)

)
has dimension i+ 1 and has a basis consisting of the holomorphic

cross-sections fr0,a and fj,af
r−rj(a)
0,a for 1 ≤ j ≤ i.

Proof: The vector space Γ
(
M,O(ζa)

)
of holomorphic cross-sections of the line

bundle ζa is one-dimensional and is spanned by a holomorphic cross-section
f0,a ∈ Γ

(
M,O(ζa)

)
that has a simple zero at the point a ∈ M . On the

other hand for any local critical value ri(a) for i > 0 the line bundle ζ
ri(a)
a

is base-point-free, by Theorem 9.9, so there is a holomorphic cross-section

fi,a ∈ Γ
(
M,O(ζ

ri(a)
a )

)
for which fi,a(a) 6= 0. It follows from Theorem 9.8

that dim Γ
(
M,O(ζra)

)
= i + 1 if ri(a) ≤ r < ri+1(a). The i + 1 cross-sections

fr0,a and fj,af
r−rj(a)
0,a in Γ

(
M,O(ζa)

)
for 1 ≤ j ≤ i (equivalently for rj(a) ≤ r)

are linearly independent, since their orders at the point a are distinct, so they
form a basis, and that suffices for the proof.

By the preceding Lemma the holomorphic cross-sections of the line bundle

ζ
ri(a)
a for i > 0 form the complex vector space of dimension i + 1 consisting of

the cross-sections

(10.6) ft,α = t0f
ri(a)
0,α +

i∑
j=1

tjfj,αf
ri(a)−rj(a)
0,α ∈ Γ

(
M,O(ζri(a)

a )
)
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for vectors t = (t0, t1, . . . , ti) ∈ Ci+1; and fi,α(a) 6= 0 for i > 0 while f0,α(a) = 0

and f0,α(z) 6= 0 at any point z 6= a. The quotients ft = ft,α/f
ri(a)
0,α thus are

meromorphic functions on M of degree at most ri(a) and with a pole only at
the point a ∈ M ; and by Theorem 9.3 all such meromorphic functions f on M
are of this form so all of them can be written

(10.7) ft = t0 + t1f1,αf
−r1(a)
0,α + · · ·+ ti−1fi−1,αf

−ri−1(a)
0,α + tifi,αf

−ri(a)
0,α

for vectors t = (t0, t1, . . . , ti) ∈ Ci+1. These are the meromorphic functions that
describe holomorphic mappings φft : M −→ P1 of degree at most ri(a) that are
fully ramified at the point a ∈ M and for which φft(a) = ∞ ∈ P1 = C ∪∞. If
ti 6= 0 the mapping φ is of degree precisely ri; but if ti = 0 the meromorphic
function ft,a has a pole of degree strictly less than ri(a) at the point a, indeed
of degree rj(a) if tj 6= 0 but tj+1 = tj+2 = · · · = ti = 0. Thus the set of those
holomorphic mappings φ : M −→ P1 of degree ri(a) that are fully ramified at
the point a ∈ M and for which φft(a) = ∞ ∈ P1 = C ∪∞ is parametrized by
the set of vectors t = (t0, t1, . . . , ti) ∈ Ci+1 for which ti 6= 0. In particular there
are meromorphic functions ft of degree r1(a) that have a pole only at the point
a ∈M and all of them can be written

(10.8) ft = t0 + t1f1,a/f
r1(a)
0,a for constants t0, t1 ∈ C, t1 6= 0.

These functions describe holomorphic mappings φft : M −→ P1 of degree r1(a)
that are fully ramified at the point a ∈M and for which φft(a) =∞ ∈ P1.

Theorem 10.5 If M is a compact Riemann surface of genus g > 1 then for
any point a ∈M there are meromorphic functions fa on M that have a pole of
order r1(a) at the point a ∈ M as their only singularity; and the holomorphic
mappings φa = φfa : M −→ P1 described by such functions are of degree r1(a),
are fully ramified at the point a ∈ M , map that point to the point φa(a) =
∞ ∈ P1 = C ∪ ∞ and are determined uniquely up to arbitrary holomorphic
automorphisms T : P1 −→ P1 that preserve the point ∞ ∈ P1 = C ∪∞.

Proof: The meromorphic functions ft on M that have a pole of order r1(a)
just at the point a ∈ M all have the form (10.8) for constants t0, t1 ∈ C where
t1 6= 0, as just noted; and the mappings φt = φft described by these functions
are precisely the holomorphic mappings of M to the Riemann sphere of degree
r1(a) that are fully branched at the point a ∈M . If f0 is the particular function
for the parameters t0 = 0, t1 = 1 then all the other functions of the form (10.8)
have the form f(t0,t1) = t1fa + t0 for some values t0, t1 ∈ C for which t1 6= 0.
The mapping φ(t0,t1) : M −→ P1 defined by the function f(t0,t1) then is the
composition φ(t0,t1) = T ◦φ0 where φ0 is the mapping described by the function
f0 and T : P1 −→ P1 is the automorphism of the Riemann sphere P1 = C ∪∞
given by Tz = t1z + t0; these are precisely the automorphisms of P1 = C ∪∞
that leave the point ∞ fixed, as discussed on page 226, and that suffices for the
proof.
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Corollary 10.6 If M is a compact Riemann surface of genus g > 1 and if
a ∈ M is not a Weierstrass point of M then r1(a) = g + 1 and there are
holomorphic mappings

(10.9) φa : M −→ P1

of degree g+ 1 that are fully ramified at the point a ∈M and for which φa(a) =
∞ ∈ P1 = C ∪∞; and these mappings are determined uniquely up to arbitrary
holomorphic automorphisms T : P1 −→ P1 that preserve the point ∞ ∈ P1 =
(C ∪∞).

Proof: If M is a compact Riemann surface of genus g > 1 the Riemann-Roch

Theorem shows that γ(ζg+1
a ) = γ(κζ

−g−1)
a ) + 2 ≥ 2, so that r1(a) ≤ g + 1.

On the other hand Theorem 9.12 shows that a ∈ M is a Weierstrass point of
M if and only if r1(a) ≤ g. Therefore for all points a ∈ M except for the
finitely many Weierstrass points it must be the case that r1(a) = g + 1. Then
by the preceding Theorem 10.5 there are holomorphic mappings φa : M −→ P1

of degree g + 1 that are fully ramified at the point a, that satisfy φa(a) = ∞,
and that are determined uniquely up to holomorphic automorphisms of P1 that
preserve the point ∞, which suffices for the proof.

A triply generally pointed Riemann surface Ma;b,c of genus g > 1 is defined
to be a compact Riemann surface M of genus g > 1 together with the choice of
a base point a ∈M that is not a Weierstrass point of M and of two other points
b, c ∈M such that φa(a), φa(b), φa(c) are distinct points of P1 for some choice of
the mapping φa of Corollary 10.6. Since the mappings φa of Corollary 10.6 differ
by holomorphic automorphisms of P1 that preserve the point ∞ it then follows
of course that φa(a), φa(b), φa(c) are distinct points of P1 for any choice of the
mapping φa. The collection of all triply generally pointed compact Riemann
surfaces of genus g will be denoted by Mg,3. That these surfaces are triply
pointed just indicates that they are surfaces together with a choice of three
distinct points on the surface; that these surfaces are generally pointed indicates
that the point a is in a natural sense a general point of the surface, a point other
than a Weierstrass point, and that the three points have distinct images on P1.

Corollary 10.7 If Ma;b,c ∈Mg,3 is a triply generally pointed Riemann surface
there is a uniquely determined holomorphic mapping

(10.10) φa;b,c : Ma;b,c −→ P1

of degree g + 1 that is fully ramified at the point a ∈ Ma;b,c and for which
φa;b,c(a) =∞, φa;b,c(b) = 0 and φa;b,c(c) = 1.

Proof If Ma;b,c ∈ Mg,3 then a is not a Weierstrass point of M so by the pre-
ceding Corollary 10.6 there is a holomorphic mapping φa : Ma;b,c −→ P1 of
degree g + 1 that is fully ramified at the point a and for which φ(a) =∞ ∈ P1;
and that mapping is determined uniquely up to holomorphic automorphisms
T : P1 −→ P1 for which T (∞) =∞. Since by the definition of a triply generally
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pointed Riemann surface the images φa(a), φa(b), φa(c) are three distinct points
of P1, and since as discussed on page 226 there is a uniquely determined holo-
morphic automorphism T : P1 −→ P1 for which Tφa(a) = ∞, Tφa(b) = 0 and
Tφa(c) = 1, it follows that the composition T ·φa : M −→ P1 is the unique holo-
morphic mapping as asserted in the statement of the corollary, which suffices
for the proof.

The branch divisor of the mapping φa;b,c of the preceding Corollary 10.7 has
the special form

(10.11) b(φa;b,c) = g · ∞+ b(a, b, c)

where the residual part b(a, b, c) of that divisor actually is a divisor of degree 3g
in the finite part C ⊂ P1 of the projective plane so it can be viewed as a point
b(a, b, c) ∈ C(3g); this point is called the Hurwitz parameter of the Riemann
surface Ma;b,c. The divisor b(a, b, c) =

∑n
i=1 νi · zi automatically satisfies the

additional condition that νi ≤ g for each index i, so the Hurwitz parameters
really lie in the proper subset

(10.12) P3g =
{
d =

∑
i

νi · zi ∈ C(3g)
∣∣∣ νi ≤ g } ⊂ C(3g).

It is easy to see that the complement C(3g) ∼ P3g is a proper holomophic
subvariety of the complex manifold C(3g), so that P3g is a dense open subset of
the complex manifold C(3g).

All Riemann surfaces of genus g > 1 appear among the triply generally
pointed Riemann surfaces Mg,3, so all surfaces of genus g > 1 can be represented
as branched coverings of degree g + 1 over the Riemann sphere that are fully
ramified at any chosen point a ∈ M that is not a Weierstrass point; and the
branched covering can be specifed uniquely by the choice of two other points
b, c ∈ M . At least for some Weierstrass points a ∈ M the surface can be
represented as a branched covering of degree g + 1 over the Riemann sphere
that is fully ramified at the point a ∈M , but with varying additional conditions
to ensure the uniqueness of the representation. A specially pointed Riemann
surface of genus g > 1 of type i is a Riemann surface of genus g > 1 together
with the choice of a Weierstrass point a ∈ M for which ri(a) = g + 1; since
r1(a) < g + 1 for any Weierstrass point a ∈ M by Lemma 9.12 it follows that
the the type must be an integer i > 1. Not all Riemann surface of genus g > 1
have Weierstrass points of this special type; that is a topic that will be discussed
later in connection with more general holomorphic mappings between Riemann
surfaces. However if M is a specially pointed surface and if ri(a) = g + 1 for a
Weierstrass point a ∈M then by Lemma 10.4 as in equation (10.7) the space of
meromorphic functions on M with a pole of order g + 1 at the point a and no
other singularities has dimension i+ 1; these functions describe representations
of M as a branched covering of degree g + 1 over P1 fully ramified at the point
a with image ∞ ∈ P1. However to specify a unique such representation, as in
Corollary10.6, it is necessary to specify i + 1 points of M and their images on
P1. This is not a topic that merits much further discussion just here though.
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10.3 Monodromy

If a compact Riemann surface M is represented as a holomorphic branched
covering π : M −→ P1 of degree d over the Riemann sphere P1 it is possible
to describe that surface in a convenient and useful way in terms of its branch
divisor d. The branch locus B = |d| ⊂ P1 is a set of n+ 1 distinct points

(10.13) B = {b0, b1, . . . , bn} ⊂ P1.

The branched covering π restricts to an unbranched covering π0 : M0 −→ P1
0

of degree d over the complememt P1
0 = P1 ∼ B of the branch locus, where

M0 = M ∼ π−1(B). For any base point p ∈ P1
0 choose n+1 circles γi in P1

0 that
bound disjoint discs centered at the points bi and are oriented in the clockwise
direction; and choose n + 1 paths λi from the base point p ∈ P1

0 to the circle
γi, then around the circle γi, and finally back to p along the original segment of
that path, as sketched in the accompanying Figure 10.1. The paths λi represent
elements of the fundamental group π1(P1

0, p) of the punctured Riemann sphere
P1

0 at the base point p; these elements of the fundamental group also will be
denoted by λi. If λi · λj denotes the path obtained by traversing first λi then
λj it is clear that the path λ0 · λ1 · · ·λn−1 · λn is contractible in P1

0, since it can
be deformed to a simple closed curve which contains the points bi in its interior
hence it can be shrunk to a point in its exterior; consequently

(10.14) λ0 · λ1 · · · · · λn−1 · λn = 1 in the group π1(P1
0, p).

If X is the union of the paths λi for 1 ≤ i ≤ n, excluding the path λ0, the
complement of X can be deformed continuously to X by expanding the holes
b1, . . . , bn to the full interiors of the circles γ1, . . . , γn and by expanding the hole
b0 to the full exterior of X. It follows that the fundamental group π1(P1

0, p) is
isomorphic to the fundamental group of the subset X, which is easily seen to
be a free group on the homotopy classes λ1, . . . , λn. Consequently there are no
further relations among the homotopy classes λ0, λ1, . . . , λn other than (10.14),
which represents the homotopy class λ0 in terms of the free generators λ1, . . . , λn
of the fundamental group π1(P1

0, p).

The inverse image π−1(p) ⊂ M0 consists of d points in M0, where d is the
degree of the mapping π. A path λ ⊂ P1

0 from the base point p and back to
p lifts to a unique path λ̃ ⊂ M0 beginning at any chosen point p̃ ∈ π−1(p)
and returning to another point in π−1(p), which will be denoted by σ̃λ(p̃) and
may or may not be the original point p̃. The mapping that associates to each
point p̃ ∈ π−1(p) the point σ̃λ(p̃) ∈ π−1(p) thus is a permutation σ̃λ of the set
of d points π−1(p), an element of the group Sπ−1(p) of permuations of the set
π−1(p). It is clear that this permutation depends only on the homotopy class of
the path λ; so the mapping that associates to any homotopy class λ ∈ π1(P1

0, p)
the permutation σ̃λ can be viewed as a mapping

(10.15) σ̃ : π1(P1
0, p) −→ Sπ−1(p).
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a

Figure 10.1: Branch point diagram for the covering mapping π : M −→ P1

The permutation associated to the path λ′ · λ′′, the path defined by proceeding
first along λ′ and then along λ′′, is the permutation σ̃λ′ followed by the per-
mutation σ̃λ′′ , the product permutation σ̃λ′′ · σ̃λ′ in the group Sπ−1(p); hence
the mapping (10.15) is a group homomorphism. If the points of π−1(p) are
numbered p̃1, p̃2, . . . , p̃d a permutation σ̃λ in the group Sπ−1(p) can be identi-
fied with the permutation σλ in the symmetric group Sd of permutations of
the set of integers {1, 2, . . . , d} for which σ̃λ(p̃i) = p̃σλ(i). The composition of
the homomorphism (10.15) with this identification can be used to interpret the
homomorphism σ̃ of (10.15) as a homomorphism

(10.16) σ : π1(P1
0, p) −→ Sd;

this homomorphism is called the monodromy homomorphism or just the mon-
odromy of the covering space3. The numbering of the points in ψ−1(p) is possible
in d! different ways, and this must be kept in mind in counting the numbers of
covering spaces. Since λi for 1 ≤ i ≤ n are free generators of the fundamental
group a homomorphism (10.16) is determined fully by the permutations σ(λi)
for 1 ≤ i ≤ n; and any choice of permutations σ(λi) for 1 ≤ i ≤ n determines a
homomorphism (10.16). For some purposes it is more natural to describe mon-
odromies by specifying the permutations σ(λi) ∈ Sd for all indices 0 ≤ i ≤ d;
and then a set of permuations σ(λi) describes a group homomorphism if and
only if a

(10.17) σ(λ0) · σ(λ1) · · · · · σ(λn−1) · σ(λn) = 1 in Sd,

corresponding to the relation (10.14) expressing λ0 in terms of the free genera-
tors λ1, . . . , λn of the fundamental group.

3The classical discussion of branched coverings of two-dimensional manifolds through mon-
odromy can be found in the book by H. Seifert and W. Threlfall, Lehrbüch der Topologie; some
other books that cover such topics are those by W. S. Massey, Algebraic Topology: An Intro-
duction, and S. S. Cairns, Introductory Topology, for instance.
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Theorem 10.8 Any homomorphism σ : π1(P1
0, p) −→ Sd for a base point p in

the complement P1
0 = P1 ∼ B of a finite subset B ⊂ P1 is the monodromy of a

branched covering π : M0 −→ P1
0 of degree d with the branch locus B.

Proof: Let φ : P̂1
0 −→ P1

0 be the universal covering space of P1
0 and G be

the associated covering translation group. For any point p̂ ∈ φ−1(p) there is
the natural isomorphism θp̂ : G −→ π1(P1

0, p) that associates to any covering

translation T ∈ G the homotopy class λT ∈ π1(P1
0, p) of the image φ(λ̂T ) under

the covering projection φ of any path λ̂T ⊂ P̂1
0 from p̂ to T p̂. If λ̂S is a path from

p̂ to Sp̂ in P̂1
0 and λ̂T is a path from p̂ to T p̂ in P̂1

0 the path λ̂S · Sλ̂T , the path

λ̂S followed by the path Sλ̂T , is a path from P̂ to ST p̂; consequently θp̂(ST ) =

φ(λ̂S ·Sλ̂T ) = θp̂(S)·θp̂(T ) so θp̂ is a group homomorphism. It is a standard result
in topology that the homomorphism θp̂ thus defined actually is an isomorphism.
For any homomorphism σ : π1(P1

0, p) −→ Sd the composite homomorphism
σ ◦ θp̂ : G −→ Sd also can be viewed as the monodromy homomorphism, since

(σ ◦ θp̂)(λ̂T ) is the permutation of π−1(p) obtained by lifting the path φ(λ̂T )

to the universal covering space P̂1
0 as the path λ̂T . Next let M̂i for 1 ≤ i ≤ d

be d separate copies of the Riemann surface P̂1
0 and let M̂ =

⋃d
i=1 M̂i be their

disjoint union, which is thus a noncompact Riemann surface. The identity

mapping M̂i −→ P̂1
0 for each copy M̂i defines a mapping ρ : M̂ −→ P̂1

0 that is a
d-sheeted unbranched covering. Any permutation σ ∈ Sd acts as a permutation
of the sheets of this covering by the natural mapping from the manifold M̂i to
the manifold M̂σ(i); and clearly ρ◦σ = ρ for this action. The action of a covering

translation T ∈ G on P̂1
0 lifts to an action on each of the copies M̂i, hence to an

action on M̂ that commutes with the mapping ρ : M̂ −→ P̂1
0; the composition

Tσ = (σ ◦ θp̂) ◦ T , the action of T on M̂ followed by the permutation σ ◦ θp̂ of

the sheets of M̂ , then is a holomorphic mapping Tσ : M̂ −→ M̂ that commutes

with the action of G on P̂1
0 as in the commuative diagram

(10.18)

M̂
Tσ−−−−→ M̂

ρ

y ρ

y
P̂1

0
T−−−−→ P̂1

0.

The holomorphic mapping ρ then clearly induces an unbranched covering map-
ping ρ : M −→ P1

0 between the quotient Riemann surfaces M = M̂/G and

P1
0 = P̃1

0/G, and it is clear from the construction that σ is the monodromy of
this covering. That suffices for the proof.

The construction in the preceding Theorem 10.8 identified the symmetric
group Sd as a group of permutations of the sheets in M̂ by chosing a num-
bering of the sheets M̂i and setting σ(M̂i) = M̂σ(i). A renumbering of the
sheets changes this identification by an inner automorphism of the symmetric
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group Sd but yields the same covering mapping; thus any two homomorphisms
(10.15) that differ by an inner automorphism of the symmetric group Sd yield
the same branched covering. The relation between unbranched coverings of
P1

0 = (P1 ∼ B) and homomorphisms σ : π1(P1
0, p) −→ Sd generated by the

monodromy construction consequently is a bijective corresondence between un-
branched coverings and equivalence classes of homomorphisms σ, where two
homomorphisms are equivalent if and only if when they differ by an inner au-
tomorphism of the symmetric group Sd.

The unbranched covering π0 : M0 −→ P1
0 is derived from the branched

covering π : M −→ P1, and the monodromy of π0 explicitly describes the
branching of the mapping π. Indeed for any branch point bi ∈ B the restriction
of the covering mapping π to the inverse image π−1(γi) of the circle γi ⊂ P1

0 is
an unbranched covering of degree d of γi, the monodromy of which is the cyclic
group generated by the permutation σ(λi). The connected components of this
unbranched covering of γi clearly are the orbits of the action of the permutation
σ(λi). If the number of elements in the j-th orbit of the permutation σ(λi) is
denoted by dij then dij is the degree of the restriction of the mapping π to the

associated component of π−1(γi) so
∑
j d

i
j = d for each index i. A connected

component of dij sheets of this covering of γi can be completed to a branched
covering of the interior of the circle with a single ramification point of order
dij over bi; this branched covering is homeomorphic to the branched acovering

described by the holomorphic function zd
i
j at the origin. When this completion

is applied to all components of the coverings of all the circles γi the result is an
extension of the unbranched covering M0 of P1

0 to the branched covering M of
the Riemann sphere P1 branched at the points B ⊂ P1; and the divisor of this
branched covering thus is d =

∑n
i=1

∑
j d

i
j · bi.

10.4 The Hurwitz Moduli Space

INCOMPLETE VERSION – TO BE REVISED
For any triply generally pointed Riemann surface Ma;b,c of genus g > 1 there

is the branched covering mapping φa;b,c : Ma;b,c −→ P1 of degree g + 1 used in
Corollary 10.7 to define the Hurwitz parameter b(a, b, c) ∈ C(3g) of that surface;
this mapping exhibits the surface as a branched covering of P1 of degree g + 1
with the branch divisor

(10.19) d = g · ∞+ b(a, b, c).

The surface Ma;b,c can be reconstructed from the monodromy of the branched
covering (10.19). To examine branched coverings of this form but for general
divisors b ∈ C(3g) it is convenient to begin with the special case in which b is a
divisor in the set of divisors

(10.20) Sg =
{
b1 + b2 + . . .+ b3g−1 + b3g ∈ C(3g)

∣∣∣ bi 6= bj for i 6= j
}

consisting of positive divisors formed by 3g distinct points in C ⊂ P1. Since
any branched covering with a branch divisor of this form is fully branched
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over ∞ the covering space must be a connected surface; and since the genus
of that covering space is determined by the degree and branch order of the
branched covering through the Riemann-Hurwitz Formula, Theorem 9.1, the
covering space is a Riemann surface of genus g. The possible monodromies for
such branched coverings, if there are any, can be described as in (10.14) by
collections σ ∈ S3g+1

g+1 of 3g + 1 permutations σi ∈ Sg+1 belonging to the set

T̂g =
{
σ = {σ0, σ1, . . . , σ3g}

∣∣∣ σi ∈ Sg+1

}
⊂ S3g+1

g+1 where(10.21)

σ3g · σ3g−1 · · · · · σ1 · σ0 = 1

σ0 = (1, 2, . . . , g + 1),

σi are transpositions for 1 ≤ i ≤ n;

here σ0 is the permutation associated to the point b0 = ∞ while σi is the
permutation associated to the point bi for 1 ≤ i ≤ 3g. As noted in the ear-
lier discussion, sets of permutations that are equivalent under the equivalence
relation

(10.22) σ1 ∼ σ2 if σ1 = τσ2τ
−1 for a permutation τ ∈ Sg+1

determine the same branched coverings, but coverings described by different
numberings of the sheets in the covering space; so the monodromy really is
described by elements in the quotient space Tg = T̂g under this equivalence

relation. The set T̂g is actually a nonempty set, which can be seen by exhibiting
an element in that set. Indeed by direct calculation

πg = (g + 1, g)(g, g − 1) · · · (4, 3)(3, 2)(2, 1)(1, 2, 3, · · · , g, g + 1)

is the identity permutation, where the product σ2 ·σ1 of two permuations is the
permutation σ1 followed by the permutation σ2. Since τ2

j = 1 for any transpo-

sitions τj the product
(∏g

j=1(τj · τj)
)
·πg then is also the identity permutation;

it is a representation of the identity as the product of the cyclic permutation
σ0 = (1, 2, 3, · · · , g, g + 1) and 3g transpositions, as in (10.21), so the permuta-

tions in this product represent a nontrivial element of the set T̂g. The number

of elements in T̂g clearly is the number of ways in which the cyclic permutation
σ0 ∈ Sg+1 can be expressed as a product of 3g transpositions; that number di-
vided by (g+ 1)!, which is the number of elements in the set Tg, will be denoted
by hg and will be called the Hurwitz number4. The explicit value of hg will not
be needed in the discussion here.

4The number hg is actually a special case of the general Hurwitz numbers, which count the
number of ways in which permutations can be factored in specific manners. See the papers
by A. Hurwitz “Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten”, in Math.
Ann. 39 (1891), pp. 1-60, and “Ueber die Anzahl der Riemann’schen Flächen mit gegebenen
Verzweigungspunkten”, in Math. Ann. 55 (1901), pp. 53 - 66. There has been a good deal of
work on this problem since Hurwitz’s papers. See for instance the paper by A. Okounkov and
R. Pandharipande “Gromov-Witten theory, Hurwitz theory, and completed cycles’, in Annals
of Math. 163, (1996), pp.517-606, and the paper by T. Ekedahl, S. Lando, M. Shapiro, and A.
Vainshtein “Hurwitz numbers and intersections on moduli spaces of curves”, in Invent. Math.
146, (2001), pp.297-327. These results provide formulas for hg but not simple expressions.
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The set Sg has the natural structure of a complex manifold of dimension
3g, as an open subset of the connected complex manifold C(3g); and since the
complement C(3g) ∼ Sg is a holomorphic subvariety of C(3g) it follows that the

complex manifold Sg is connected. The universal covering space S̃g of the man-
ifold Sg inherits a complex structure from that of Sg so it too is a connected
complex manifold; as is customary it can be identified with the space of homo-
topy classes of paths in Sg beginning at a base point b̃0 ∈ S̃g. The product
space

(10.23) H̃g,0 =
{

(b̃, σ)
∣∣∣ b̃ ∈ S̃g, σ ∈ Tg

}
where Tg has the discrete topology is another complex manifold of dimension 3g,

really a disjoint union of hg(g+1)! copies of the manifold S̃g. A monodromy σ0

at the base point b̃0 = (b1,0, b2,0, . . . , b3g,0) is described by 3g + 1 permutations

σi,0 ∈ Sg+1 associated to the points bi,0. If b̃t is a path in S̃g beginning at
the base point b0 when t = 0 then there is a natural continuation σt of the
monodromy σ0 along that path determined by associating to the points bi,t
the permutation σi,t = σi,0. If the path b̃t returns to the base point b̃0 when
t = t1 then since the entire path can be deformed to the constant path in the
simply connected manifold S̃g it follows that the permutations σi,t return to

their initial values σi,0. However if b̃t1 represents the same point of Sg as b̃0

it is not necessarily the case that σi,t1 = σt,0, but only that σi,t1 ∼ σt,0 since
although the covering space is the same the numbering of the points of the
covering space may change. For example if the point b1,t moves once around
the point b2,0 as t ranges from t0 to t1 but all the other points remain fixed then
the effects of the permutation σt1 are those of the permutation τ1σ0τ

−1
1 .

——————————
, which is called the Hurwitz special moduli space of Riemann surfaces of

genus g, special since the branch divisors are of the form (10.19) for the special
case in which b ∈ Sg. To each point (b, σ) ∈ Hg,0 there can be associated the
Riemann surface Mb, σ that is a branched covering

(10.24) φb,σ : Mb,σ −→ P1

of degree g + 1 over the Riemann sphere having the branch divisor g · ∞ + b
and the monodromy σ. If a = φ−1

b,σ(∞) is not a Weierstrass point of Mb,σ

while b = φ−1
b,σ(0) and c = φ−1

b,σ(1) then Mb,σ = Ma;b,c ∈ Mg,3 and b is its

Hurwitz parameter. On the other hand if a = φ−1
b,σ(∞) is a Weierstrass point

of the Riemann surface Mb,σ then g + 1 > r1(a) by Lemma 9.12, and since the
mapping φσ,b is of degree g+ 1 and is fully ramified at the point a it is also the
case that g + 1 = ri(a) for some i > 1 by Theorem 10.3; thus the point a is a
somewhat special Weierstrass point of the Riemann surface Mb,σ. Altogether
the Riemann surfaces parametrized by points in Hg,0 are all the triply generally
pointed Riemann surfaces M ∈ Mg,3 with Hurwitz parameters in Sg, and in
addition those Riemann surfaces of genus g with Weierstrass points a for which
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g + 1 = ri(a) for some i > 1, called the exceptional Riemann surfaces of genus
g. In the first case some of the Riemann surfaces Mb,σ are holomorphically
equivalent but are distinguished by the points a, b, c of the marking; in the
second case some of the surfaces are holomorphically equivalent but can be
distinguished by a choice of i+ 1 rather than just of 3 points for a marking, in
view of (10.7). The exceptional Riemann surfaces will be examined later in the
discussion of more general mappings between Riemann surfaces.

——————————
This representation of Riemann surfaces can be extended to more general

cases of the Hurwitz parameters through continuity. A Hurwitz parameter
b ∈ Sg is a divisor b =

∑3g
i=1 formed by 3g distinct points bi ∈ C, and it

can be modified continuously by m0oving the points bi in C so long as they
remain distinct. It is also possible to consider the limits as some of the points
are merged. For example suppose that two points bj and bj+1 in Figure??The
number of elements in the nonempty set Tg of course is just the number of ways
in which the cyclic permutation σ0 ∈ Sg+1 can be expressed as a product of 3g
transpositions, a number that will be denoted by hg. The explicit determina-
tion of this number is a rather difficult matter, which was initially explored by
Hurwitz so the number hg is called

are near and are to be merged. Choose circles around these two points and
touching at a single point q, as sketched in Figure 10.4. The path λj can be
taken to proceed from the point p to the point q, then along the circles around bj
back to the point q and then back to the point p, and corresondingly for the path
λk. In the product path λjλj+1 the segment of the path λj proceeding from q to
p cancels the segment of the path λj+1 from p to q, so the resulting path λj,j+1

proceeds from p to q, then follows the circle around bj then the circle around bj+1

then back to p; so that path really amounts to a path λj,j+1 from p encircling
both bj and bj+1 before proceeding back to p. The permutation σj,j+1 associated
to the path λj,j+1 is just the product σj,j+1 = σjσj+1, so the result is to merge
the branch points bj and bj+1 to a single point with the associated permutation
σjk. When the product σjσj+1 is replaced by the single permutation σj,j+1 the
permutations still satisfy (??) so the result is still a branched covering. It may
be the case that σjσj+1 = 1, and the mapping is locally unbranched in the limit;
or it may be the case that there are two simply ramified points over the limit
point in P1. Ietone fewer branch points. The process can be reversed, replacing
a single branch point bjk with an associated permutation σjk to a pair of branch
points bj and bk with associated permutations σj and σk so long as σjk = σjσk
in Sd.
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Figure 10.2: Merger of branch points for a branched covering

The number of elements in the nonempty set Tg of course is just the number
of ways in which the cyclic permutation σ0 ∈ Sg+1 can be expressed as a
product of 3g transpositions, a number that will be denoted by hg. The explicit
determination of this number is a rather difficult matter, which was initially
explored by Hurwitz so the number hg is called
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Chapter 11

The Brill-Noether Diagram

PRELIMINARY VERSION

11.1 Some Examples

The Riemann-Roch Theorem in the form of Theorem‘2.23 asserts that

(11.1) γ(λ) = γ(κλ−1) + c(λ) + 1− g

for any holomorphic line bundle λ over a compact Riemann surface of genus
g. If c(λ) < 0 of course γ(λ) = 0 by Corollary 1.3. On the other hand if
c(λ) > 2g − 2 = c(κ) then c(κλ−1) < 0 so γ(κλ−1) = 0 and by (11.1)

(11.2) γ(λ) = c(λ) + 1− g if c(λ) > 2g − 2.

Thus γ(λ) is fully determined as a function of c(λ) whenever c(λ) < 0 or
c(λ) > 2g − 2. In the intermediate or interesting range 0 ≤ c(λ) ≤ 2g − 2
the dimension γ(λ) generally is not uniquely determined by the characteristic
class c(λ), although a good deal can be said about the function γ(λ) nonetheless,
as will be illustrated as the discussion proceeds. Riemann surfaces of small genus
are simple examples, since the interesting range is quite limited and something
can be said easily about line bundles in that range.

Theorem 11.1 (i) If M is a is a unique compact Riemann surface of genus
g = 0, the Riemann sphere P1, for which c(κ) = −2..
(ii) For any integer n there is a unique holomorphic line bundle λ on P1 for
which c(λ) = n, and

(11.3) γ(λ) =

{
c(λ) + 1 if c(λ) ≥ 0,
0 if c(λ) < 0.

(ii) All holomorphic line bundles λ on P1 for which c(λ) ≥ 0 are base-point-free,
so the Lüroth semigroup of P1 is

(11.4) L(P1) =
{
n ∈ Z

∣∣ n ≥ 0
}
.

267
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(iii) For any d > 0 a basis for the space of polynomials of degree d are the
coefficients of a nonsingular biholomorphic mapping F from P1 to a connected
one-dimensional complex submanifold F (P1) ⊂ Pd.

Proof: (i) If M is a compact Riemann surface of genus g = 0 then c(κ) = −2 by
the Canonical Bundle Theorem, Theorem 2.24. Of course γ(λ) = 0 if c(λ) < 0;
and if c(λ) ≥ 0 then c(κλ−1) = −2− c(λ) < 0 so γ(κλ−1) = 0 and substituting
this into (11.1) yields the remainder of (11.3). In particular then (11.3) shows
that γ(ζa) = 2, so by Theorem 2.4 the Riemann surface is the Riemann sphere
M = P1.
(ii) Since 2g = 0 it follows from Theorem 2.28 (i) that all holomorphic line
bundles λ on P1 for which c(λ) ≥ 0 are base-point-free, while those bundles λ
for which γ(λ) < 0 of course are not; hence the Lüroth semigroup of P1 has the
form (11.4).
(iii) If λ is a holomorphic line bundle on P1 with c(λ) = d > 0 then λ = ζda
for a point a ∈ P1 and the cross-sections Γ

(
P1,O(ζda)

)
can be identified with

polynomials of degree d in a coordinate system on P1 by Theorem 2.1 (iii). The
holomorphic mapping described by basis for Γ

(
P1,O(ζda)

)
then is a biholomor-

phic mapping F from P1 to its image F (P1) ⊂ Pd by Theorem 2.17 (iv), and
that suffices for the proof.

Theorem 11.2 (i) If M is a compact Riemann surface of genus g = 1 then
c(κ) = 0 and

(11.5) γ(λ) =


c(λ) if c(λ) > 0,
1 if c(λ) = 0 and λ = 1
0 if c(λ) = 0 and λ = 6= 1
0 if c(λ) < 0,

where λ = 1 indicates that λ is the identity bundle. (ii Only the identity bundle
and holomorphic line bundles λ for which c(λ) ≥ 2 are base-point-free, hence
the Lüroth semigroup for this surface is

(11.6) L(M) =
{
n ∈ Z

∣∣∣ n = 0 or n ≥ 2
}
.

(iii) The set of holomorphic line bundles λ for which c(λ) = n can be identified
with the points of M .

Proof: (i) If M is a compact Riemann surface of genus g = 1 then c(κ) = 0 by
the Canonical Bundle Theorem, Theorem 2.24. Again if c(λ) < 0 then γ(λ) = 0.
If c(λ) = 0 and γ(λ > 0 a holomorphic crosss-section of λ can have no zeros
so must exhibit the reduction of λ to the identity bundle, for which λ = 1. If
c(λ) > 0 then c(κλ−1) = −c(λ) < 0 so γ(κλ−1) = 0 and iti follows from (11.1)
that γ(λ) = c(λ).
(ii) Bundles λ for which c(λ) < 0 of course are not base-point-free. If λ is a line
bundle for which c(λ) = 0 then either γ(λ) = 0 and λ is not base-point-free or
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γ(λ) 6= 0 and λ is the identity bundle, which is base-point-free. If c(λ) = 1 then
γ(λ) = 1 as in (i) and λ cannot be base-point-free. If c(λ) ≥ 2 = 2g then λ is
base-point-free by Theorem 2.28 (i). Consequently the Lüroth semigroup has
the form asserted.
(iii) On a compact Riemann surface of genus g = 1 the base-point-free holomor-
phic line bundles are the identity bundle and all bundles λ for which c(λ) ≥ 2;
consequently the Lüroth semigroup of such a surface is

(11.7) L(M) =
{
n ∈ Z

∣∣ n = 0 or n ≥ 2
}
.

Proof: (i) For a compact Riemann surface of genus g = 0 it follows from
Theorem 2.28 (i) that all holomorphic line bundles λ for which c(λ) ≥ 0 are
base-point-free.
(ii) For a compact Riemann surface of genus g = 0 it follows from Theo-
rem 2.28 (ii) that all holomorphic line bundles λ for which c(λ) ≥ 2 are base-
point-free. If c(λ) = 1 then it follows from the Riemann-Roch Theorem that
γ(λ) = 1; hence λ is a point bundle λ = ζa by Theorem 2.4, and therefore λ is
not base-point-free. If c(λ) = 0 then either λ is the identity bundle, which is
base-point-free, or γ(λ) = 0 and λ is not base-point-free. That suffices for the
proof. (ii) On a compact Riemann surface of genus g = 1 the base-point-free
holomorphic line bundles are the identity bundle and all bundles λ for which
c(λ) ≥ 2; consequently the Lüroth semigroup of such a surface is

(11.8) L(M) =
{
n ∈ Z

∣∣ n = 0 or n ≥ 2
}
.

Proof: (i) For a compact Riemann surface of genus g = 0 it follows from
Theorem 2.28 (i) that all holomorphic line bundles λ for which c(λ) ≥ 0 are
base-point-free.
(ii) For a compact Riemann surface of genus g = 0 it follows from Theo-
rem 2.28 (ii) that all holomorphic line bundles λ for which c(λ) ≥ 2 are base-
point-free. If c(λ) = 1 then it follows from the Riemann-Roch Theorem that
γ(λ) = 1; hence λ is a point bundle λ = ζa by Theorem 2.4, and therefore λ is
not base-point-free. If c(λ) = 0 then either λ is the identity bundle, which is
base-point-free, or γ(λ) = 0 and λ is not base-point-free. That suffices for the
proof.

————————————————–

11.2 The Brill-Noether Matrix

The Riemann-Roch Theorem in the form given in Corollary 2.26 can be
rewritten for the special case of nontrivial positive divisors in terms of a useful
auxiliary expression involving holomorphic differential forms. On a compact
Riemann surface M of genus g > 0 choose a coordinate covering {Uα} with
local coordinates {zα} and a basis ωi = fiαdzα for the space of holomorphic
differential forms for 1 ≤ i ≤ g; that there are g differential forms in a basis
follows from (2.28). If d =

∑n
j=1 νj · pj is a positive divisor of degree r =
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∑n
j=1 νj > 0 in which pj are distinct points and if pj ∈ Uαj the Brill-Noether

matrix Ωα1...αn(d) of this divisor in terms of the local coordinates zαj in Uαj is
the g × r matrix in which row i for 1 ≤ i ≤ g is

(11.9)

fiα1
(p1), f ′iα1

(p1), 1
2f
′′
iα1

(p1), . . . , 1
(ν1−1)!f

(ν1−1)
iα1

(p1),

fiα2(p2), f ′iα2
(p2), 1

2f
′′
iα2

(p2), . . . , 1
(ν2−1)!f

(ν2−1)
iα2

(p2),

· · · · · · · · · · · ·
fiαn(pn), f ′iαn(pn), 1

2f
′′
iαn

(pn), . . . , 1
(νn−1)!f

(νn−1)
iαn

(pn),

where the derivatives of the function fiαj at the point pj ∈ Uαj are with respect
to the local coordinate zαj . One extreme case is that in which d is a positive
divisor consisting of r distinct points pj , in which case

(11.10) row i of Ωα1···αr (p1 + · · ·+ pr) =
{
fiα1(p1), . . . , fiαr (pr)

}
.

Another extreme case is that in which d is a multiple of a single point p ∈ Uα,
in which case

(11.11) row i of Ωα(r · p) =

{
fiα(p), f ′iα(p), . . . ,

1

(r − 1)!
f

(r−1)
iα (p)

}
.

If {Uα, καβ} is the holomorphic coordinate bundle describing the canonical bun-
dle κ in terms of the chosen coordinates and p ∈ Uα ∩ Uβ then upon differen-
tiating (2.22) and noting that d/dzα = καβ d/dzβ by the chain rule for dif-
ferentiation it follows that the coefficient functions fiα(p) and fiβ(p) and their
derivatives at the point p with respect to the local coordinates zα and zβ re-
spectively are related by

fiα(p) = καβ(p)fiβ(p)

f ′iα(p) = καβ(p)2f ′iβ(p) + καβ(p)κ′αβ(p)fiβ(p)(11.12)

f ′′iα(p) = καβ(p)3f ′′iβ(p) + 3καβ(p)2κ′αβ(p)f ′iβ(p)

+
(
καβ(p)κ′αβ(p)2 + καβ(p)2κ′′αβ(p)

)
fiβ(p)

and so on,

where κ′αβ denotes the derivative of the function καβ with respect to the variable
zβ and correspondingly for the higher derivatives. It is a straightforward matter
to verify using (11.9) and (11.12) that

(11.13) Ωα1...αn(d) = Ωβ1...βn(d) ·Kαβ

for the nonsingular r × r matrix

Kαβ =



κα1β1
κα1β1

κ′α1β1
κα1β1

(κ′α1β1
)2 + κ2

α1β1
κ′′α1β1

· · ·

0 κ2
α1β1

3κ2
α1β1

κ′α1β1
· · ·

0 0 κ3
α1β1

· · ·

· · · · · · · · · · · ·
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for which

(11.14) detKαβ = κ
1
2ν1(ν1+1)

α1β1
κ

1
2ν2(ν2+1)

α2β2
· · ·κ

1
2νn(νn+1)

αnβn
.

Since the matrix Kαβ is nonsingular the rank of the matrix Ωα1···αn(d) is inde-
pendent of the choice of local coordinates; so when considering merely the rank
of the Brill-Noether matrix the notation can be simplified by dropping the sub-
scripts indicating the choice of local coordinates at the points of the divisor. The
rank of the matrix Ω(d) also clearly is independent of the choice of a basis for
the space of holomorphic differential forms on M . The Riemann-Roch Theorem
then takes the following form in terms of the Brill-Noether matrix Ω(d).

Theorem 11.3 (Riemann-Roch Theorem) If d is a nontrivial positive di-
visor on a compact Riemann surface M of genus g > 0

(11.15) γ(ζd) = dimL(d) = deg d− rank Ω(d) + 1,

where Ω(d) is the Brill-Noether matrix of the divisor d.

Proof: For a positive divisor d the vector space L(1,0)(−d) of meromorphic
differential forms ω = fα dzα such that d(fα)−d ≥ 0 consists of the holomorphic
differential forms that vanish on the divisor d. A holomorphic differential form
ω = fα dzα can be written in terms of the basis ωi = fiα dzα as the sum ω =∑
i ci ωi for some complex constants ci, so fα =

∑g
i=1 ci fiα. If c = (c1, . . . , cg)

is the row vector formed from these constants and the divisor d is nontrivial and
has the Brill-Noether matrix Ω(d) then the entries in the row vector c ·Ω(d) are
just the values of the function fα(zα) and of its derivatives at the points of the
divisor d, paralleling the entries in row i of the matrix Ω(d). Consequently the
holomorphic differential form ω = f dz vanishes on the divisor d precisely when
c · Ω(d) = 0, so

(11.16) dimL(1,0)(−d) = dim
{
c ∈ Cg

∣∣∣ c · Ω(d) = 0
}

= g − rank Ω(d).

Substituting this into the Riemann-Roch formula of Corollary 2.26 yields the
desired result and thereby concludes the proof.

11.3 Special Positive Divisors

The Riemann-Roch Theorem in the form of Theorem 11.3 yields an effective
lower bound for the dimension γ(ζd) of the space of holomorphic cross-sections
of the line bundle ζd of a positive divisor d ≥ 0. The following auxiliary lemma
is useful for this purpose.

Lemma 11.4 If fi(z) are g linearly independent holomorphic functions in a
connected open subset U ⊂ C then rank {fi(zj)} = min(r, g) for all points z =
(z1, z2, . . . , zr) ∈ Ur outside a proper holomorphic subvariety of Ur.
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Proof: For convenience of notation let f(z) = {fi(z)} be the vector valued
function formed from the functions fi(z). First it will be demonstrated by
induction on r that if fi(z) are g linearly independent holomphic functions in
U then

(11.17) rank
(
f(z1) f(z2) · · · f(zr)

)
= min(r, g)

for at least one point (z1, . . . , zr) ∈ Ur. It is clearly enough just to show that
for r ≤ g. The result is trivially true for r = 1, so assume it holds for r− 1 and
consider the matrix in (11.17) where r ≤ g. By the inductive hypothesis there
will be some points z1, . . . , zr−1 ∈ U so that the vectors f(z1), . . . , f(zr−1) are
linearly independent. If the result for the case r were not true then for any point
z ∈ U the vector f(z) would be a linear combination f(z) =

∑r−1
i=1 ai(z)f(zi)

for some ai(z) depending of course on the point z; but since r− 1 < g there are
constants bj ∈ C, not all zero, such that

∑g
j=1 bjfj(zi) = 0 for 1 ≤ i ≤ r − 1,

and then
∑g
j=1 bjfj(z) = 0 for all z, a contradiction since the functions fi(z)

are assumed to be linearly independent. That shows that the set of points
(z1, . . . , zr) ∈ Ur at which rank {fi(zj)} < r for any r ≤ g is a proper subset of
Ur. Since this set clearly is a holomorphic subvariety of Ur it must be a proper
holomorphic subvariety, which suffices for the proof.

The converse of the preceding lemma is rather more difficult to show, indeed
is not true just for C∞ functions, as demonstrated by Böcher1.

Theorem 11.5 If d ≥ 0 is a positive divisor on a compact Riemann surface M
of genus g > 0 then

(11.18) γ(ζd)− 1 = dimL(d)− 1 ≥ max(0,deg d− g),

and this lower bound is attained for some positive divisors d of any degree.

Proof: For the trivial divisor d = 0 of course deg d = 0 and γ(ζd) = γ(1) = 1, so
the asserted inequality holds trivially as an equality. The Brill-Noether matrix
Ωd for a positive divisor d of degree r > 0 on a compact Riemann surface M
of genus g > 0 is a g × r matrix, and consequently rank Ωd ≤ min(r, g); hence
from the Riemann-Roch Theorem in the form of equation (11.15) it follows that
γ(ζd) = deg d − rank Ω(d) + 1 ≥ r − min(r, g) + 1 = r + max(−r,−g) + 1 =
max(0, r−g)+1, which is (11.18). If U ⊂M is a coordinate neighborhood with a
local coordinate z then r distinct points in U can be described by their r distinct
coordinate values zj ; so if fi(z)dz is a basis for the holomorphic differentials
on M for 1 ≤ i ≤ g then as in (11.10) the Brill-Noether matrix for the divisor
d = z1+· · ·+zr is the g×r matrix {fi(zj)}. Since the holomorphic functions fi(z)
are linearly independent, rank {fi(zj)} = min(r, g) for general sets of r distinct
points of this coordinate neighborhood, by the preceding Lemma11.4. It follows

1See Böcher, The theory of linear dependence, Annals of Math vol 2 (1901), pages 81 - 96,
and a simpler proof by Bostan and Dumas, Wronskians and Linear Independence, American
Mathematical Monthly, vol 117 (2010), pages 722-727.
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that in general γ(ζd) − 1 = r − rank {fi(zj)} = r −min(r, g) = max(0, r − g),
which suffices to conclude the proof.

A positive divisor d ≥ 0 for which the difference γ(ζd)− 1 exceeds the lower
bound of the preceding theorem is called a special positive divisor2 while a divisor
for which the difference γ(ζd) − 1 attains that lower bound is called a general
positive divisor; thus

(11.19)
d ≥ 0 is a special positive divisor if γ(ζd)− 1 > max(0,deg d− g),

d ≥ 0 is a general positive divisor if γ(ζd)− 1 = max(0,deg d− g),

and any positive divisor d ≥ 0 is either special or general. By the preceding
theorem there are general positive divisors of any degree r ≥ 0 on a compact
Riemann surface of genus g > 0; indeed in the proof of that theorem it was
demonstrated that general positive divisors actually are general in a fairly nat-
ural sense, which will be made more precise in the discussion of subvarieties of
special positive divisors on page 319. It is worth noting explicitly here some
common special and general positive divisors.

Corollary 11.6 On a compact Riemann surface M of genus g > 0 the divi-
sor 1 · p for a point p ∈ M is a general positive divisor. Equivalently not all
holomorphic differential forms on M vanish at any point p ∈M .

Proof: For any point p of a compact Riemann surface M of genus g > 0 it
follows from Theorem 2.4 that γ(ζp)− 1 = 0 = max(0, 1− g) so the divisor 1 · p
is a general positive divisor. It follows from Theorem 11.3 that rank Ω(p) =
2− γ(ζp) = 1 for the Brill-Noether matrix Ω(1 · p) of this divisor; and since as
in (11.11) the Brill-Noether matrix for this divisor is the g × 1 matrix

Ω(1 · p) =

 f1α(p)
· · ·

fgα(p)


where fiαdzα are the holomorphic differential forms on M it follows that not
all of these differential forms vanish at the point p, which suffices for the proof.

Corollary 11.7 On a compact Riemann surface M of genus g > 0 a posi-
tive divisor d with deg d > 2g − 2 is a general positive divisor. Equivalently
rank Ω(d) = g for the g × deg d Brill-Noether matrix Ω(d) of any positive divi-
sor d with deg d > 2g − 2.

2There is some variety in the literature in what is meant by the term “special positive
divisor”. Traditionally the index of speciality of a positive divisor d on a compact Riemann
surface of genus g is defined to be the difference g − rank Ω(d) = dimL(1,0)(−d), and special
positive divisors are defined to be those positive divisors for which this index is positive, hence
those positive divisors d for which rank Ω(d) < g. On the other hand the definition adopted
here seems quite commonly used in informal discussions of properties of positive divisors, and
reflects more closely the most interesting aspect of the discussion of these divisors. The two
notions obviously agree for divisors of degree at least g.
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Proof: If d is a positive divisor and deg d > 2g − 2 then c(κζ−1
d ) < 0 so

γ(κζ−1
d ) = 0 by Corollary 1.3, and it then follows from the Riemann-Roch

Theorem (2.29) that γ(ζd)− 1 = deg d− g = max(0,deg d− g) so d is a general
positive divisor. From Theorem 11.3 it then follows that rank Ω(d) = deg d +
1− γ(ζd) = g, and that suffices for the proof.

Corollary 11.8 On a compact Riemann surface M of genus g > 1 a positive
divisor of degree 2g−2 is a special positive divisor if and only if it is a canonical
divisor; all positive divisors of degree 2g − 2 other than canonical divisors are
general positive divisors.

Proof: A positive divisor d of degree 2g − 2 is a special positive divisor if and
only if γ(ζd) − 1 > max(0, g − 2), hence if and only if γ(ζd) ≥ max(2, g); thus
γ(ζd) ≥ g when g > 1, hence ζd is the canonical bundle by the Canonical Bundle
Theorem, Theorem 2.24, so d is a positive canonical divisor and that suffices for
the proof.

This last corollary is a special case of the more general observation that the
special positive divisors on compact Riemann surfaces of genus g > 1 arise from
positive canonical divisors. To make this more precise, a nontrivial positive
divisor d is said to be part of a positive canonical divisor if its residual divisor
d′ is also a positive divisor, that is, if there is a positive divisor d′ such that
d + d′ = k; in particular a positive canonical divisor itself is part of a positive
canonical divisor.

Corollary 11.9 A nontrivial special positive divisor on a compact Riemann
surface of genus g > 0 is part of a positive canonical divisor; and conversely
any positive divisor d of deg d ≥ g that is part of a positive canonical divisor is
a special positive divisor.

Proof: Combining the Riemann-Roch Theorem in the form of equation (11.15)
with the definition (11.19) shows that a positive divisor d of degree r > 0
with the Brill-Noether matrix Ω(d) is a special positive divisor if and only if r−
rank Ω(d) = γ(ζd)−1 > max(0, r−g), hence if and only if rank Ω(d) < min(r, g).
Thus if d is a special positive divisor then rank Ω(d) < g, so if the Brill-Noether
matrix is defined in terms of a basis fi(z)dz for the holomorphic differential
forms on M there is a nontrivial row vector c ∈ Cg such that c ·Ω(d) = 0; then∑
i cifi(z)dz is a nontrivial holomorphic differential form that vanishes at the

divisor d, hence d is part of the positive canonical divisor that is the divisor of
this holomorphic differential form. Conversely if d is part of a positive canonical
divisor then there is a nontrivial holomorphic differential form that vanishes on
d, so that rank Ω(d) < g; and if r ≥ g that is just the condition that d is a
special divisor. That suffices for the proof.

On a compact Riemann surface of genus g > 0 the line bundle of the trivial
divisor d = 0 is the identity bundle ζ0 = 1, and since γ(ζ0)−1 = 0 = max(0,−g)
it follows that the trivial divisor is a general positive divisor. A divisor d for
which deg d = 1 is a point bundle, so also is a general positive divisor by



11.3. SPECIAL POSITIVE DIVISORS 275

Corollary 11.6. On the other hand any positive divisor d for which deg d > 2g−2
is a general divisor by Corollary 11.7. Consequently on a compact Riemann
surface of genus g > 0

(11.20) 2 ≤ deg d ≤ 2g − 2 for any special positive divisor d ≥ 0.

The upper bound 2g−2 for the degrees of the special positive divisors is effective
for compact Riemann surfaces of genus g > 1 by Corollary 11.8. Thus the
investigation of special positive divisors can be limited to an examination of
special positive divisors with degrees limited to the values (11.20); this will be
taken up again in the discussion of maximal sequences in Chapter‘11.

The Riemann-Roch Theorem is the basic result about the dimensions γ(λ) =
dim Γ(M,O(λ)) of the spaces of holomorphic cross-sections of holomorphic line
bundles λ over a compact Riemann surface M . For many purposes it is more
convenient to focus on the difference γ(λ) − 1, the dimension of the complex
projective space PΓ(M,O(λ)) associated to the vector space Γ(M,O(λ)). Of
course γ(λ) ≥ 0 while from the Riemann-Roch Theorem it follows that γ(λ) =
γ(κλ−1) + c(λ) + 1− g ≥ c(λ) + 1− g, and consequently

(11.21) γ(λ)− 1 ≥ max(−1, c(λ)− g).

On the other hand γ(λ) = 0 if c(λ) < 0 by Corollary 1.3 and γ(λ) = 0 or 1 if
c(λ) = 0 by Corollary 1.4, while γ(λ) ≤ c(λ) + 1 if c(λ) > 0 by Theorem 2.7, so

(11.22) γ(λ)− 1 ≤ max
(
− 1, c(λ)

)
.

More precise upper bounds can be described in terms of the maximal function
of the compact Riemann surface M , the function µ(r) of integers r ∈ Z defined
by

(11.23) µ(r) = sup
{
γ(λ)− 1

∣∣∣ λ ∈ Pr(M)
}

where Pr(M) is the set of holomorphic line bundles over M of characteristic
class r. As will become clear in the later discussion, the maximal function shares
some of the basic properties of the local maximal function µa(r) defined in (9.20)
in the preceding chapter, and is a somewhat related invariant. Some general
properties of the maximal function, special cases of which were demonstrated
for the local maximal function in Theorem 9.7, can be established quite easily.

Theorem 11.10 The maximal function of a compact Riemann surface satisfies

(11.24) µ(r) ≤ µ(r + 1) ≤ µ(r) + 1

and

(11.25) µ(2g − 2− r) = µ(r) + g − 1− r

for all r ∈ Z, while

(11.26) µ(r) = −1 for r < 0 and µ(r) = r − g for r > 2g − 2.
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In particular

(11.27) µ(0) = 0 and µ(2g − 2) = g − 1

and if g > 0

(11.28) µ(1) = 0 and µ(2g − 3) = g − 2.

Proof: First let λr be a holomorphic line bundle for which c(λr) = r and
γ(λr) − 1 = µ(r). For any point bundle ζp clearly c(λrζp) = r + 1 while
γ(λrζp) ≥ γ(λr) by Lemma 2.6, so µ(r + 1) ≥ γ(λrζp)− 1 ≥ γ(λr)− 1 = µ(r),
which is the first inequality in (11.24). On the other hand c(λrζ

−1
p ) = r − 1

while γ(λrζ
−1
p ) ≥ γ(λr)− 1 by Lemma 2.6 again, so µ(r− 1) ≥ γ(λrζ

−1
p )− 1 ≥

γ(λr) − 2 = µ(r) − 1, which is equivalent to the second inequality in (11.24).
By the Riemann-Roch Theorem γ(λ) = γ(κλ−1) + r + 1− g so

µ(r) = sup
{
γ(λ)− 1

∣∣ c(λ) = r
}

= sup
{
γ(κλ−1) + (r + 1− g)− 1

∣∣ c(λ) = r
}

= (r + 1− g) + sup
{
γ(λ′)− 1

∣∣ c(λ′) = 2g − 2− r
}

= (r + 1− g) + µ(2g − 2− r)

where λ′ = κλ−1, thus yielding (11.25). The first part of (11.26) follows im-
mediately from (11.22) while from the Riemann-Roch Theorem again γ(λ) =
γ(κλ−1) + c(λ) + 1 − g = c(λ) + 1 − g if c(λ) > c(κ) = 2g − 2, which yields
the second part of (11.26). If c(λ) = 0 then γ(λ) ≤ 1 by (11.22) and γ(λ) = 1
when λ is the trivial bundle, so µ(0) = 0; and it then follows from (11.25) that
µ(2g − 2) = µ(0) + g − 1 = g − 1, which yields (11.27). Finally if g > 0 and
c(λ) = 1 then γ(λ) ≤ 1 by Theorem 2.7 while γ(λ) = 1 if λ is a point bundle, so
µ(1) = 0; and it then follows from (11.25) that µ(2g−3) = µ(1) + g−2 = g−2,
which suffices to conclude the proof.

For Riemann surfaces of small genus the maximal function is fully determined
by the preceding theorem. Indeed if g = 0 it follows immediately from (11.26)
that

(11.29) µ(r) =

{
−1 for r < 0
r for r ≥ 0

if g = 0;

if g = 1 it follows immediately from (11.26) and (11.27) that

(11.30) µ(r) =

 −1 for r < 0
0 for r = 0

r − 1 for r ≥ 1
if g = 1;

and if g = 2 it follows immediately from (11.26), (11.27) and (11.28) that

(11.31) µ(r) =


−1 for r < 0
0 for r = 0, 1
1 for r = 2

r − 2 for r ≥ 3

if g = 2.
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For surfaces of genus g ≥ 3 the value of the maximal function in the interval
2 ≤ g ≤ 2g − 2 depends on the particular Riemann surface while outside that
range it follows from (11.26), (11.27) and (11.28) that

(11.32) µ(r) =

 −1 for r < 0
0 for r = 0, 1

r − g for r > 2g − 2
if g ≥ 3.

Any integral-valued function µ(r) of the integers that satisfies (11.24), that
is, that satisfies

(11.33) µ(r) ≤ µ(r + 1) ≤ µ(r) + 1 for all r ∈ Z,

can be described fully by the parameters

n+ = sup
{
µ(r)

∣∣∣ r ∈ Z },(11.34)

n− = inf
{
µ(r)

∣∣∣ r ∈ Z },
ri = inf

{
r ∈ Z

∣∣∣ µ(r) ≥ i
}

for i ≤ n+ ;

for it is clear from the preceding equation that

(11.35) µ(r) = i for ri ≤ r < ri+1

and that

(11.36) µ(r)− µ(r − 1) =

{
1 if r = ri for some i and
0 otherwise.

It is convenient to set ri = +∞ for i > n+, while it follows from the preceding
definitions that ri = −∞ for i ≤ n−. It is also clear that ri < ri+1 for n− ≤ i <
n+ since µ(ri+1) = i+ 1 while µ(ri+1)− 1 = i so ri ≤ ri+1 − 1.

For some purposes it is also useful to consider the dual function

(11.37) µ∗(s) = s− µ(s),

for which

(11.38) µ∗(s+ 1)− µ∗(s) = 1−
(
µ(s+ 1)− µ(s)

)
and consequently

(11.39) µ∗(s) ≤ µ∗(s+ 1) ≤ µ∗(s) + 1;

thus the dual function µ∗(s) satisfies the same basic equation as does the func-
tion µ(r), so in parallel with the preceding discussion introduce the correspond-
ing basic parameters

n∗+ = sup
{
µ∗(s)

∣∣∣ s ∈ Z },(11.40)

n∗− = inf
{
µ∗(s)

∣∣∣ s ∈ Z },
sj = inf

{
s ∈ Z

∣∣∣ µ∗(s) ≥ j for j ≤ n∗+
}

;
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it is clear from the preceding equation that

(11.41) µ∗(s) = j for sj ≤ s < sj+1

and that

(11.42) µ∗(s)− µ∗(s− 1) =

{
1 if s = sj for some j and
0 otherwise.

It is convenient to set sj = +∞ for j > n∗+, while it follows from the preceding
equation that sj = −∞ for j ≤ n∗−. It is clear that sj < sj+1 for n∗− ≤ j < n∗+
as before. Furthermore for any integer n ∈ Z it follows immediately from (11.38)
that

(11.43) either n = ri for some i or n = sj for some j but not both,

so the sets {ri} and {sj} are disjoint and cover Z.

The maximal function of a compact Riemann surface satisfies (11.33) so
it can be described fully by the paramters (11.34). The Riemann sphere is a
somewhat anomalous Riemann surface in many ways, and its maximal function
is fully determined by (11.29); so to avoid considering too many special cases
the subsequent discussion in this chapter generally will be limited to compact
Riemann surfaces of genus g > 0. It is evident from Theorem 11.10 that

(11.44) n+ = +∞ and n− = −1;

the parameters ri are called the critical values of the Riemann surface M . The
dual function µ∗(r) = r−µ(r) is called the dual maximal function of the Riemann
surface M , and its invariants sj are called the gap values of the Riemann surface
M . From (11.43) it follows that the critical values and gap values are disjoint,
and any integer is either a critical value or a gap value. When it is necessary or
convenient to specify the Riemann surface M explicity the maximal function and
dual maximal function will be denoted by µM (r) and µ∗M (r), and the critical
values and gap values will be denoted correspondingly by ri(M) and sj(M).
The maximal function of the surface M is determined fully by either the critical
values ri or the gap values sj of that surface. Since µ(r) = −1 for r < 0 it
follows from the definition of the critical values that

(11.45) ri = −∞ for i < 0;

and since µ(r) = r − g for r > 2g − 2 it further follows from the definition of
the critical values that

(11.46) ri = g + i for i ≥ g.

It was already observed in the preceding general discussion of consequences of
the basic inequality (11.24) that ri < ri+1 for n− ≤ i < n+, so for the critical
values of the Riemann surface

(11.47) ri < ri+1 for 0 ≤ i < +∞,
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while of course ri = ri+1 = −∞ for i < −1 as in (11.45). Since µ(0) = µ(1) = 0
by (11.27) and (11.28) it follows that

(11.48) r0 = 0, and r1 > 1;

while since µ(2g − 3) = g − 2 and µ(2g − 2) = g − 1 by the same equations it
also follows that

(11.49) rg−1 = 2g − 2.

The gap values of a compact Riemann surface of genus g > 0 are the complement
of the critical values; so since all integers r ≥ 2g are critical values while no
integers r < 0 are critical values it follows that all integers s < 0 are gap values
and the remaining gap values are just those integers in the interval (0, 2g − 1)
that are not critical values. In more detail, since µ(r) = −1 for r < 0 it follows
that µ∗(r) = r−µ(r) = r+ 1 for r < 0 hence by the definition of the gap values

(11.50) sj = j − 1 for j ≤ 0.

and since all integers r ≥ 2g are critical values by (11.46) none of these integers
are gap values so

(11.51) sj = +∞ for j > g.

Further since µ(ri) = i and µ(ri − 1) = i− 1 for i ≥ 0 substituting these values
into (11.25) shows that

µ(2g − 2− ri) = i+ g − 1− ri and µ(2g − 1− ri) = i+ g − 1− ri,

or in terms of the dual maximal function

µ∗(2g − 2− ri) = g − i− 1 and µ∗(2g − 1− ri) = g − i

for i ≥ 0, and consequently sg−i = 2g − 1− ri for i ≥ 0 or equivalently

(11.52) sj = 2g − 1− rg−j for j ≤ g.

In particular since r0 = 0 and rg−1 = 2g − 2

(11.53) s1 = 1 and sg = 2g − 1.

For convenience the preceding results about the ranges of the critical and gap
values are summarized as follows.

Theorem 11.11 For a compact Riemann surface M of genus g > 0 the critical
values satisfy

(11.54) 0 = r0 ≤ 1 < r1 < r2 < · · · < rg−1 = 2g − 2

while

(11.55) ri = −∞ for i < 0 and ri = g + i for i ≥ g.
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The complementary gap values sj satisfy

(11.56) 1 = s1 < s2 < · · · < sg = 2g − 1

while

(11.57) sj = +∞ for j > g and sj = j − 1 for j ≤ 0

Proof: Since this is just a summary of the preceding discussion no further proof
is required.

It is traditional to call the g positive gap values (11.56) the Weierstrass gap
values of the Riemann surface M . The maximal function of a compact Riemann
surface M can be represented conveniently and usefully by the Brill-Noether di-
agram, as in the example in Figure 11.1. In this figure the characteristic classes
r = c(λ) of holomorphic line bundles over M extend along the horizontal axis
while the projective dimensions ν = γ(λ)−1 of the spaces of holomorphic cross-
sections of these line bundles extend along the vertical axis. The upper heavy
broken line is the graph of the maximal function itself, consisting of the line
segments connecting points

(
r, µ(r)

)
); for short it is called the maximal curve

of the Brill-Noether diagram. The lower heavy broken line is the graph of the
lower bound µ−(r) = max(−1, r − g) for the values γ(λ) − 1 for holomorphic
line bundles λ with c(λ) = r, as given in (11.21); for short this broken line is
called the minimal curve of the Brill-Noether diagram, and the function µ−(r)
is called the minimal function of the Riemann surface M . The shaded region
in the diagram, lying between the maximal and minimal curves, thus consists
of those points (r, ν) for which there may be line bundles λ for which r = c(λ)
and ν = γ(λ)− 1. The maximal and minimal curves coincide with the horizon-
tal straight line of height −1 for r < 0, and coincide with the straight line of
slope 1 if r > 2g − 2; those are the ranges of values the characteristic classes
c(λ) of holomorphic line bundles λ for which the dimension γ(λ) is determined
completely by the value c(λ) through the Riemann-Roch Theorem, as in The-
orem 11.11. The critical value ri of M is that point on the horizontal axis at
which the maximal curve first takes the value i; the critical values are indicated
explicitly on the diagram in Figure 11.1, while the points on the horizontal axis
that are not the critical values are the gap values of M . The Riemann-Roch
Theorem takes the form of a symmetry of the Brill-Noether diagram about the
axis r = g − 1, as is evident upon examining Figure 11.1 more closely. Indeed
formula (11.25), which is a direct consequence of the Riemann-Roch Theorem,
can be rewritten

(11.58) µ(2g − 2− r)− 2g − 2− r
2

= µ(r)− r

2
,

so it asserts that the difference µ(r)− r
2 is symmetric about the axis r = g − 1.

Similarly the minimal function µ−(r) = max(−1, r−g) for 0 ≤ r ≤ g−1 satisfies

µ−(2g − 2− r)− 2g − 2− r
2

= g − 2− r − 2g − 2− r
2

= −1− r

2
= µ−(r)− r

2
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Figure 11.1: Example of a Brill-Noether diagram for a compact Riemann surface
of genus g = 16.

so it too is symmetric about the axis r = g − 1. Consequently the difference
µ(r)− µ−(r), the height of the maximal curve above the minimal curve, also is
symmetric about the axis r = g − 1. The pattern of increases in the height of
the maximal curve above the mininal curve to the left of this axis as r increases
is reflected in a corresponding pattern of increases in the height of the maximal
curve above the minimal curve to the right of that axis as r decreases. Horizontal
line segments of the maximal curve to the left of the axis are reflected in line
segments parallel to the minimal curve to the right of the axis. In terms of the
critical values this symmetry takes the form

(11.59) r ≥ 0 is a critical value if and only if 2g − 1− r is a gap value.

These symmetries hold in general cases as well as in the special case considered
in Figure 11.1.

To each point (r, ν) in the Brill-Noether diagram of a compact Riemann
surface M of genus g > 0 there can be associated the set of holomorphic line
bundles λ for which c(λ) = r and γ(λ)− 1 = ν, the set

(11.60) X̂ν
r =

{
λ ∈ Pr(M)

∣∣∣ γ(λ)− 1 = ν
}
⊂ Pr(M)

where Pr(M) is the complex torus consisting of those holomorphic line bundles
of characteristic class r. It is evident that

(11.61) X̂ν
r = Ŵ ν

r ∼ Ŵ ν+1
r
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where Ŵ ν
r =

{
λ ∈ Pr(M)

∣∣∣ γ(λ)− 1 ≥ ν
}

are the holomorphic subvarieties of

Pr(M) defined in (12.42). The subset X̂ν
r ⊂ Pr(M) thus is not necessarily a

holomorphic subvariety of the complex torus Pr(M); but as the subset described
by (11.61) in terms of the holomorphic subvarieties Ŵ ν+1

r ⊂ Ŵ ν
r the set X̂ν

r

at least has the structure of a holomorphic variety, since it is a holomorphic
subvariety of the complex torus Pr(M) in an open neighborhood of each of its
points. The sets X̂ν

r thus are examples of sets that have natural complex analytic
structures but do not have such natural structures as algebraic varieties. For
convenience the sets of line bundles associated to points on the maximal curve
are called the maximal line bundles and are denoted by X̂MAX

r , while the sets of
line bundles associated to points on the minimal curve are called the minimal
line bundles and are denoted by X̂MIN

r ; thus

(11.62) X̂MAX

r = X̂µ(r)
r and X̂MIN

r = X̂µ−(r)
r = X̂max(−1,r−g)

r

while

(11.63) Pr(M) =

µ(r)⋃
ν=µ−(r)

X̂ν
r = X̂MIN

r ∪ · · · ∪ X̂MAX

r

and the holomorphic subvariety Ŵ ν
r ⊂ Pr(M) is the union

(11.64) Ŵ ν
r =

µ(r)⋃
σ=ν

X̂σ
r = X̂ν

r ∪ · · · ∪ X̂MAX

r .

The set X̂MAX
r = Ŵ

µ(r)
r hence actually is a holomorphic subvariety of the com-

plex torus Pr(M) for any index r. Of course

(11.65) X̂MAX

r = X̂MIN

r = Pr(M) if r < 0 or r > 2g − 2.

It follows from Corollary 1.4 that X̂MAX
0 = X̂0

0 consists of the identity bundle
alone; and it follows from the Canonical Bundle Theorem, Theorem 2.24, that
X̂MAX

2g−2 = X̂g−1
2g−2 consists of the canonical bundle κ alone.

The symmetry about the axis r = g−1 of the maximal and minimal curves in
the Brill-Noether diagram can be extended to a corresponding symmetry of the
varieties X̂ν

r . Indeed from the symmetric form of the Riemann-Roch Theorem,
the Brill-Noether formula of Corollary 2.25 stating that C(λ) = C(κλ−1) where
C(λ) = c(λ)− 2

(
γ(λ)− 1

)
is the Clifford Index of a holomorphic line bundle λ,

it follows that

γ(λ)− 1− 1

2
c(λ) = −1

2
C(λ) = −1

2
C(κλ−1) = γ(κλ−1)− 1− 1

2
c(κλ−1).

Hence whenever λ ∈ X̂ν
r , so that c(λ) = r and γ(λ) − 1 = ν, then c(κλ−1) =

2g − 2 − r and γ(κλ−1) = g − 1 − (r − ν) or equivalently κλ−1 ∈ X̂g−1−(r−ν)
2g−2−r .

This observation can be expressed conveniently as the symmetry

(11.66) κ · {X̂ν
r }−1 = X̂

g−1−(r−ν)
2g−2−r
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where κ{X̂ν
r }−1 denotes the set of line bundles κλ−1 for all λ ∈ X̂ν

r ; the sym-
metry (11.66) actually is equivalent to the Riemann-Roch Theorem.

The symmetry relation (11.66) among holomorphic varieties in the complex
manifold Pr(M) appears more natural when these varieties are viewed as subsets
of the Jacobi variety J(M). It is possibly worth digressing here to discuss
equivalent formulations of the Brill-Noether diagram and the varieties X̂ν

r in
terms of the Jacobi manifold J(M) or the the manifold M (r) of positive divisors.
The mappings in the Abel-Jacobi diagram (12.41) of Theorem 12.21 associate
to the varieties X̂ν

r contained in the complex manifold Pr(M) corresponding
varieties contained in the complex manifolds J(M) and M (r); and these varieties
can be grouped in analogues of the Brill-Noether diagram. Thus set

(11.67) Xν
r = W ν

r ∼W ν+1
r ⊂ J(M) for r, ν ∈ Z

and correspondingly set

(11.68) Y νr = Gνr ∼ Gν+1
r ⊂M (r) for r, ν ∈ Z, r > 0,

noting that the sets Y νr are defined only for intergers r > 0. As the complements
of holomorphic subvarieties of holomorphic varieties all of these sets at least have
the structures of holomorphic varieties. In analogy to (11.62) introduce the

holomorphic varieties XMAX
r = X

µ(r)
r ⊂ J(M) and XMIN

r = X
µ−(r)
r ⊂ J(M),

and note that as in (11.63) and (11.64)

(11.69) J(M) =

µ(r)⋃
ν=µ−(r)

Xν
r = XMIN

r ∪ · · · ∪XMAX

r

and

(11.70) W ν
r =

µ(r)⋃
σ=ν

Xσ
r = Xν

r ∪ · · · ∪XMAX

r ⊂ J(M).

Similarly for positive divisors let Y MAX
r = Y µ(r) ⊂M (r). However the varieties

Y νr are empty for points on the minimal curve for which ν = −1, so when
considering the varieties Y νr ⊂ M (r) it is more natural to consider in place of
the minimal curve the general curve consisting of points in the Brill-Noether
diagram associated to the sets of general positive divisors on the surface M as
defined in (11.19); thus set

(11.71) Y GEN

r = Y max(0,r−g)
r ⊂M (r) for r > 0.

The general curve differs from the minimal curve in that it is the horizontal line
of height 0 for r ≤ g − 1 rather than the horizontal line of height −1; but it
coincides with the mininal curve for r ≥ g. All points above the general curve
in the Brill-Noether diagrams for the manifold M (r) then are special positive
divisors, as defined in (11.19). It follows that

(11.72) M (r) =

µ(r)⋃
ν=max(0,r−g)

Y νr = Y GEN

r ∪ · · · ∪ Y MAX

r for r > 0
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and

(11.73) Gνr =

µ(r)⋃
σ=ν

Y σr = Y νr ∪ · · · ∪XMAX

r for r > 0 and ν ≥ 0.

The relations between these three families of sets follow from the Abel-Jacobi
diagrams (12.16) or (12.41), which are expressed in terms of the holomorphic
mappings

(11.74) ζ = ζ̂ ◦ ψ : M (r) −→ Pr(M) and wz0 = ŵz0 ◦ ψ : M (r) −→ J(M),

where ζ : M (r) −→ Pr(M) takes the holomorphic variety Y νr ⊂ M (r) to the
holomorphic variety X̂ν

r ⊂ Pr(M) and wz0 : M (r) −→ J(M) takes the subvariety
Y νr ⊂M (r) to the holomorphic variety Xν

r ⊂ J(M). This is summarized in the
following commutative diagram.

(11.75)

Xν
r ⊂ J(M)

Y νr ⊂M (r) X̂ν
r ⊂ Pr(M)

for r > 0.

-

HHHj
����

ζ

wz0 φa0

Theorem 11.12 The diagram (11.75) is a commutative diagram of surjective
holomorphic mappings between holomorphic varieties. The mapping φa0

is bi-
holomorphic, but the inverse image of a point under either of the holomorphic
mappings ζ or wz0 is a complex submanifold of Y νr that is biholomorphic to the
complex projective space Pν and consequently

(11.76) dimXν
r = dim X̂ν

r = dimY νr − ν for r > 0 and ν ≥ 0.

Proof: That (11.75) is a commutative diagram of holomorphic mappings in
which φa0

is a biholomorphic mapping is clear from the diagrams (12.16) or
(12.41), in which φa0

is a biholomorphic mapping. By Theorem 12.21 the inverse
image w−1

z0 (t) of a point t ∈ Xν
r is a complex submanifold of M (r) that is

biholomorphic to the complex projective space Pν ; and the commutativity of
the diagram (11.75) together with the fact that φa0 is a biholomorphic mapping
show that the the inverse image ζ−1(λ) of a point λ ∈ X̂ν

r also is a complex
submanifold of M (r) that is biholomorphic to the complex projective space Pν .
If V νr ⊂ Y νr is an irreducible component of the holomorphic variety Y νr its image
wz0(V νr ) is an irreducible component of the holomorphic variety Xν

r , and since
the fibres of this mapping have dimension ν it follows from Remmert’s Proper
Mapping Theorem that

dimwz0(V νr ) = dimV νr − ν for r > 0 and ν ≥ 0.

Since dimY νr is the largest of the dimensions of its irreducible components, and
correspondingly for dimXν

r , it follows that

dimXν
r = dimY νr − ν for r > 0 and ν ≥ 0.
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Of course dim X̂ν
r = dimXν

r since the varieties X̂ν
r and Xν

r are biholomorphic,
and that suffices for the proof.

In view of the isomorphisms of the preceding theorem, it is generally suffi-
cient to state and prove results about the varieties X̂ν

r , Xν
r and Y νr just in terms

of one of the three sets of varieties; hence much of the subsequent discussion
will continue to be phrased in terms of the sets X̂ν

r ⊂ Pr(M) of holomorphic
line bundles, although when another interpretation is more useful or more con-
venient it will be used. It is always possible to translate the results back and
forth among these sets of varieties through Theorem 11.12.

Actually the symmetry relation (11.66) is one example in which an alter-
native description is more natural; for in terms of points of the Jacobi variety
J(M) the symmetry relation takes the form

(11.77) k −Xν
r = X

g−1−(r−ν)
2g−2−r for all ν, r

where k = φa0(κ) ∈ J(M) is the image of the canonical line bundle κ. This is a
simple relation between two subsets of the same complex torus J(M). Indeed the
mapping of the Jacobi variety to itself that sends a point t ∈ J(M) to the point
k − t ∈ J(M) is a biholomorphic mapping of the complex torus J(M) to itself

which takes the holomorphic variety Xν
r to the holomorphic variety X

g−1−(r−ν)
2g−2−r ;

so these two holomorphic varieties are biholomorphic, and consequently

(11.78) dimX
g−1−(r−ν)
2g−2−r = dimXν

r for all ν, r.

The sets Xν
r and X

g−1−(r−ν)
2g−2−r are associated to symmetric points in the diagram

of the maximal function, in the sense that these points have coordinates r that
are symmetric with respect to the axis r = g−1 and have the same height above
the minimal curve, or equivalently below the maximal curve. In particular

(11.79) k −XMAX

r = XMAX

2g−2−r and k −XMIN

r = XMIN

2g−2−r,

showing that dimXMAX
r = dimXMAX

2g−2−r and dimXMIN
r = dimXMIN

2g−2−r.
It is a useful preliminary to the further discussion to note that the vari-

eties XMIN
r ⊂ J(M) on the minimal curve of the Brill-Noether diagram can be

described quite explicitly for all Riemann surfaces. First

(11.80) XMIN

r = J(M) ∼Wr for 0 ≤ r ≤ g − 1

since if 0 ≤ r ≤ g − 1 then XMIN
r = X−1

r = W−1
r ∼ W 0

r = J(M) ∼ Wr; and by
the symmetry relation (11.79) the preceding equation implies that

(11.81) XMIN

r = J(M) ∼ (k −W2g−2−r) for g − 1 ≤ r ≤ 2g − 2.

Since XMIN
r = J(M) for r > 2g − 2 as in (11.65) it follows from this and the

two preceding two equations that

(11.82) dim X̂MIN

r = g for all g ≥ 0.
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This observation shows incidentally that the lower bound (11.21) actually is an
effective lower bound; of course the upper bound (11.23) is effective by definition.
More precisely the observations (11.80) and (11.81 show that the lower bound
(11.21) is attained by most holomorphic line bundles, indeed by all holomorphic
line bundles except those in a proper holomorphic subvariety of the complex
torus Pr(M). Since the varieties Xν

r ⊂ J(M) for a fixed value of r and values
of ν in the range µ−(r) ≤ ν ≤ µ(r) are disjoint it follows from (11.69), (11.80)
and (11.81) that

(11.83) Xµ−(r)+1
r ∪ · · · ∪Xµ(r) ⊂

 Wr ⊂ J(M) if 0 ≤ r ≤ g − 1,

k − (W2g−2−r) if g − 1 ≤ r ≤ 2g − 2,

which bounds the varieties Xν
r . Of course the corresponding observation holds

in the other versions of the Brill-Noether diagram.
The first critical value r1 of a compact Riemann surface of genus g > 0 is

in many ways the most significant of the critical values of the surface M ; and
bounds on its possible values are of considerable interest. The basic result about
these boundes is the following theorem, which has an extensive history3 and for
which there are a variety of proofs.

Theorem 11.13 The first critical value r1 of a compact Riemann surface M
of genus g > 0 satisfies

(11.84) 2 ≤ r1 ≤
[g

2

]
+ 1

where as usual
[
g
2

]
is the integer part of g

2 .

Proof: The lower bound is just that of Theorem 11.11. For the upper bound,
suppose to the contrary that r1 >

[
g
2

]
+ 1. If g = 2h let r = h+ 1, s = h, and if

g = 2h+1 let r = h+1, s = h+1, so in either case r =
[
g
2

]
+1 and consequently

r < r1; therefore γ(λ) < 2 for any holomorphic line bundle λ for which c(λ) = r,
or equivalently Ŵ 1

r = ∅. It is more convenient for the rest of the argument to
work with the Jacobi variety J(M); thus W 1

r = ∅, and then of course W 1
s = ∅

also since s ≤ r. Choose a base point z0 ∈ M̃ for the Abel-Jacobi mappping
wz0 : M −→ J(M) such that the point a ∈M it represents is not a Weierstrass
point of M . It then follows from Lemma 9.12 that r1(a) = g + 1 hence that
ζg+1
a is base-point-free and γ(ζg+1

a ) = 2. Since 0 ∈ Wr ∩ (−Ws) and dimWr +
dim(−Ws)− g = r + s− g = 1 the intersection (Wr ∩ (−Ws) is a holomorphic
subvariety of the Jacobi variety of dimension at least 1 containing the origin
0; that is a general property of the intersection of holomorphic subvarieties of
a complex manifold as discussed on page 418 in Appendix A.3. Consequently
there is an irreducible one-dimensional holomorphic subvariety W ⊂ J(M) for
which 0 ∈ W ⊂ Wr ∩ (−Ws). Since W 1

s = W 1
r = ∅, and hence G1

r = G1
s = ∅

3See for example the discussion in the book Geometry of Algebraic Curves, I by E. Ar-
barello, M. Cornalba, P. Griffiths and J. Harris.



11.3. SPECIAL POSITIVE DIVISORS 287

as well, the surface M has no special positive divisors of degrees r or s, as in
(12.40); consequently by Corollary 12.9 (i) the Abel-Jacobi mappings

(11.85) wz0 : M (r) −→Wr and wz0 : M (s) −→Ws

are biholomorphic mappings. Any point t ∈W ⊂W (r)∩W (s) consequently can
be written uniquely in the form

(11.86) t = wz0(a1 + · · ·+ ar) = −wz0(b1 + · · ·+ bs)

for some divisors a1 + · · ·+ ar ∈M (r) and b1 + · · ·+ bs ∈M (s). Then

(11.87) wz0(a1 + · · ·+ ar + b1 + · · ·+ bs) = 0,

so since r+ s = g+ 1 and it is also the case that wz0
(
(g+ 1) · a0

)
= 0 it follows

from Abel’s Theorem, Corollary 5.10, that

(11.88) a1 + · · ·+ ar + b1 + · · ·+ bs ∼ (g + 1) · a0;

the divisors dt = a1 + · · ·+ar+ b1 + · · ·+ bs thus are the divisors of holomorphic
cross-sections of the holomorphic line bundle ζg+1

a for any point t ∈ W . If
X ⊂ M (r+s) is the set of divisors of holomorphic cross-sections of the line
bundle ζg+1

a then since γ(ζg+1
a ) = 2 and the line bundle ζg+1

a is base-point-
free it follows that any divisor d ∈ X is uniquely determined by specifying
any of its points, and any point of M is in the divisor of some holomorphic
cross-section of ζg+1

a ; for if f0(z), f1(z) ∈ γ
(
M,O(ζg+1

a )
)

is a basis for this
space of holomorphic cross-sections then f0(z) and f1(z) have no common zeros
and fp(z) = f1(p)f0(z) − f0(p)f1(z) is the unique cross-section that vanishes
at a point p ∈ M . The mapping that associates to a nontrivial cross-section
fx0,x1

= x0f0(z) + x1f1(z) ∈ γ
(
M,O(ζg+1

1 )
)

its divisor d(fx0,x1
) ∈ M (r+s) is a

holomorphic mapping from the nonzero points of C2 to M (r+s); and since this
mapping is the same for any pairs x0, x1 that represent the same point in P1

it induces a holomorphic mapping from P1 to M (r+s), a proper mapping since
P1 is a compact manifold. It then follows from Remmert’s Proper Mapping
Theorem4 that the image of this mapping, the set of divisors of holomorphic
cross-sections of ζg+1

a , is an irreducible holomorphic subvariety X ⊂M (r+s) and
dimX = 1. The mapping that associates to any point t ∈ W the divisor dt =
a1+· · ·+ar+b1+· · ·+bs ∈ X is then a well defined proper holomorphic mapping
d : W −→ X; and since its image contains more than a single point the image
must be a holomorphic subvariety of dimension 1 in X, so actually φ(W ) = X.
Consequently any divisor dt also is uniquely determined by specifying any one
of its points, and that can be an arbitrary point of M ; hence the decomposition
of the divisor dt as the sum of the two divisors a1 + · · ·+ar and b1 + · · ·+bs also
is unique. On the other hand the divisors dt can be deformed continuously by
moving the point a1 along any path in M , and the decomposition of the divisors
dt is preserved in this motion; but moving the point a1 along a continuous path

4Remmert’s Proper Mapping Theorem is discussed on page 423 of Appendix A.3.
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to the point b1 cannot preserve the decomposition of the divisors dt, and that
contradiction serves to conclude the proof.

Part of the significance of the first critical value on a compact Riemann
surface M follows from the fact that it is also the smallest positive integer in
the Lüroth semigroup of M ; more generally though there is the following simple
observation.

Theorem 11.14 On a compact Riemann surface M of genus g > 0 all the
holomorphic line bundles in X̂MAX

ri for any critical value ri are base-point free.
Consequently the critical values ri of M belong to the Lüroth semigroup L(M)
of the Riemann surface M , and in particular the critical value r1 is the smallest
positive integer in the Lüroth semigroup.

Proof: If λ ∈ XMAX
ri for i ≥ 0 then c(λ) = ri and γ(λ) − 1 = µ(ri) = i.

Since c(λζ−1
a ) = ri − 1 for any point a ∈ M it follows that γ(λζ−1

a ) − 1 ≤
µ(ri − 1) = µ(ri)− 1 = i− 1 < γ(λ)− 1, hence λ is base-point-free by Lemma
2.10. By definition then its characteristic class c(λ) = ri belongs to the Lüroth
semigroup. If 0 < r < r1 and λ is a holomorphic line bundle with c(λ) = r
then γ(λ) = 1 so the bundle λ cannot be base-point-free; therefore there are no
base-point-free line bundles λ such that 0 < c(λ) < r1, and that suffices for the
proof.

A basic property of the Brill-Noether diagram is a convexity determined
by the base-point-free holomorphic line bundles on M , a consequence of the
following simple observation.

Theorem 11.15 If τ is a base-point-free holomorphic line bundle on a compact
Riemann surface M and if h0, h1 ∈ Γ(M,O(τ)) are two holomorphic cross-
sections of τ with no common zeros then for any holomorphic line bundle λ on
M for which γ(λ) 6= 0 there is the exact function of sheaves

(11.89) 0 −→ O(λτ−1)
p1−→ O(λ)2 p2−→ O(λτ) −→ 0

in which the sheaf homomorphisms p1, p2 are defined by

p1(g) = (h0g, h1g) ∈ Op(λ)2 for all g ∈ Op(λτ−1),

p2(g0, g1) = h1g0 − h0g1 ∈ Op(λτ) for all g0, g1 ∈ Op(λ)

for any point p ∈M .

Proof: It is evident that the sheaf homomorphisms p1 and p2 are well defined,
that p1 is injective, and that p2p1 = 0. If (g0, g1) ∈ Op(λ)2 and if 0 =
p2(g0, g1) = h1g0 − h0g1 then g0/h0 = g1/h1 = g ∈ Mp(λτ

−1); however either
h0(p) 6= 0 or h1(p) 6= 0 so g actually is a holomorphic germ g ∈ Op(λτ−1), and
(g0, g1) = (h0g, h1g) = p1(g). Thus the kernel of p2 is contained in the image
of p1, so the sheaf sequence is exact at the sheaf O(λ)2. If f ∈ Op(λτ) and if
for instance h0(p) 6= 0 then f = h0 · (f/h0) = p2(f/h0, 0) so f is in the image
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of the homomorphism p2. The corresponding argument holds if h1(p) 6= 0, so
the sheaf homomorphism p2 is surjective, and that concludes the proof of the
theorem.

The exact cohomology sequence arising from the exact sequence of sheaves
(11.90) of the preceding theorem begins

(11.90) 0 −→ Γ(M,O(λτ−1))
p1−→ Γ(M,O(λ))2 p2−→ Γ(M,O(λτ)).

An immediate consequence of this exact sequence is the following corollary.

Corollary 11.16 If τ is a base-point-free holomorphic line bundle on a compact
Riemann surface M then for any holomorphic line bundle λ on M

(11.91) γ(λ)− γ(λτ−1) ≤ γ(λτ)− γ(λ).

and this is an equality if and only if the homomorphism p2 in the exact sequence
(11.90) is surjective.

Proof: If γ(λ) = 0 the corollary holds trivially. If γ(λ) 6= 0 then since
γ(λτ) = dim Γ(M,O(λτ)) is at least equal to the dimension of the image of
the homomorphism p2 in (11.90) it follows from the exactness of the cohomol-
ogy sequience (11.90) that

γ(λτ) ≥ dim Γ(M,O(λ))2 − dim Γ(M,O(λτ−1)) = 2γ(λ)− γ(λτ−1);

and this is an equality if and only if the sheaf homomorphism p2 in the exact
sequence (11.90) is surjective. That suffices for the proof.

Corollary 11.17 (Convexity Theorem for the Brill-Noether Diagram)
For any integer t ∈ L(M) in the Lüroth semigroup of a compact Riemann surface
M of genus g > 0 the maximal function of M satisfies the convexity condition

(11.92) µ(r)− µ(r − t) ≤ µ(r + t)− µ(r)

for all r.

Proof: If t = 0 the inequality is trivial. If t ∈ L(M) and t 6= 0 then by definition
of the Lüroth semigroup t = c(τ) for a base-point-free holomorphic line bundle
τ . For any integer r choose a maximal bundle λ ∈ Xmax

r , so that c(λ) = r and
µ(r) = γ(λ) − 1. The inequality of the preceding Corollary can be rewritten
γ(λτ) + γ(λτ−1) ≥ 2γ(λ); and since by the definition of the maximal function
µ(r + t) ≥ γ(λτ)− 1 and µ(r − t) ≥ γ(λτ1)− 1 it follows that

µ(r + t) + µ(r − t) ≥
(
γ(λτ)− 1

)
+
(
γ(λτ−1)− 1

)
≥ 2γ(λ)− 2 = 2µ(r),

which suffices to prove the corollary.
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To examine some of the conseqences of the preceding convexity theorem
introduce the successive differences

(11.93) δi = ri − ri−1 > 0 for i ≥ 1

of the critical values ri of a compact Riemann surface M . It is clear that diffpart1

(11.94) ri = δi + δi−1 + · · ·+ δ1 for i ≥ 1

since r0 = 0, so in particular δ1 = r1; and it follows from Corollary ?? thatmudiffpart

(11.95) δg = 2, and δi = 1 for i > g.

The convexity condition of the preceding corollary then can be rephrased as
follows.diffcor1

Corollary 11.18 The successive differences of the critical values of a compact
Riemann surface of genus g > 0 satisfy

δi ≤ r1 for all i ≥ 1;

moreover if

δi + δi−1 + · · ·+ δi−ν+1︸ ︷︷ ︸
ν terms

< r1

for some indices i ≥ ν ≥ 1 then

δi+1 + δi+2 + · · ·+ δi+ν+1︸ ︷︷ ︸
ν+1 terms

≤ r1.

As in Corollary ?? the difference µ(r) − µ(s) for any integers r > s is equal
to the number of critical values ri in the half-open half-closed interval (s, r],
that is to say, such that s < ri ≤ r. If ri−ν > ri − r1 where i ≥ ν ≥ 0 then
there are at least the ν + 1 critical values ri−ν , ri−ν+1, . . . , ri in the interval
(ri − r1, ri] so that µ(ri) − µ(ri − r1) ≥ ν + 1. It follows from the preceding
theorem that µ(ri+r1)−µ(ri) ≥ ν+1, and consequently that there are at least
ν+1 critical values in the interval (ri, r+r1]; these of course must be the critical
values ri+1, ri+2, . . . , ri+ν+1, so that ri+ν+1 ≤ ri+r1. The first conclusion of the
corollary is the result just ddemonstrated for the case ν = 0, since ri − ri < r1

for all indices i ≥ 1, while the second conclusion is that for the case ν ≥ 1, and
that suffices to conclude the proof of the corollary.

The property of the successive differences of the critical values described in
the preceding lemma can be handled conveniently by introducing the charac-
teristics of the maximal function of of the Riemann surface M , the integers kν
defined bychar

(11.96)
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kν = min
{
i
∣∣∣ i ≥ ν, δi + δi−1 + · · ·+ δi−ν+1︸ ︷︷ ︸

ν terms

< r1

}
for 1 ≤ ν < r1.

Since δi = 1 for all sufficiently large indices i it is clear that these characteristics
are well defined. For some purposes it is convenient to extend this definition and
to set k0 = 0; although this extension is somewhat anomalous, it does reflect
what is the most significant property of the characteristics, that they describe
the intervals in the parameter i of the critical values ri in which the maximal
function µ(r) increases at different rates. This will become more apparent during
the subsequent discussion. Initially though this will be taken as a reason for
the terminology, since with this interpretation the characteristics are analogous
to the relative characteristics kν(λ; τ). However the behavior of the maximal
function µ(r) is rather more complicated than that of the simple dimensions
γ(λτ i), so that there are some further subtleties involved. All of this probably
can be clarified best through a discussion of some illustrative examples. First,
though, it is useful to note the following.

Lemma 11.19 The characteristics of the maximal function of a compact Rie-
mann surface of genus g > 0 satisfy

1 < k1 < k2 < · · · < kr1−1 = r1 + g − 1.

Proof: By definition k1 is the least integer i ≥ 1 such that δi < r1; so since
δ1 = r1 ≥ 2 it follows that k1 > 1. If i < kν for some integer ν < 1 then

δi + δi−1 + · · ·+ δi−ν+1︸ ︷︷ ︸
ν terms

≥ r1;

and since δi+1 ≥ 1 it is also the case that

δi+1 + δi + δi−1 + · · ·+ δi−ν+1︸ ︷︷ ︸
ν+1 terms

≥ r1

hence that i+ 1 < kν+1. In particular for i = kν − 1 it follows that kν < kν+1.
Finally since δi ≥ 1 for all indices i

kr1−1 = min
{
i
∣∣∣ i ≥ r1 − 1 and δi + δi−1 + · · ·+ δi−r1+2︸ ︷︷ ︸

r1−1 terms

< r1

}
= min

{
i
∣∣∣ i ≥ r1 − 1 and δi = δi−1 = · · · = δi−r1+2︸ ︷︷ ︸

r1−1 terms

= 1
}
.

Now δg = 2 and δi = 1 for i ≥ g + 1 by equation (11.94), so it is clear that
kr1−1 = r1 + g − 1 and that suffices to conclude the proof of the lemma.

Possibly the clearest illustration of the significance of the characteristics is
provided by examining the first few characteristics more closely. Since δ1 = r1

and k1 is the first index i for which δi < r1 then clearly diffseq1
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(11.97) δ1 = δ2 = · · · = δk1−1 = r1, δk1 < r1;

correspondingly the sequence of critical values begins diffseq2

(11.98) r2 = 2r1, r3 = 3r1, · · · , rk1−1 = (k1 − 1)r1, rk1 < k1r1.

Now since δk1
< r1 then from Corollary 11.18 for the case ν = 1 it follows that

δk1+1 + δk1+2 ≤ r1; and since δi ≥ 1 necessarily δk1+1 < r1 and δk1+2 < r1 as
well. The argument can be repeated for k1 + 1 and k1 + 2 in place of k1, so that
δk1+3 < r1, δk1+4 < r1, and δk1+5 < r1, and so on. Altogether, since k2 is the
least index i such that δi + δi+1 < r1, it follows thatdiffseq3

(11.99) δi < r1 for i ≥ k1 and δi + δi−1 = r1 for k1 + 2 ≤ i < k2.

Of course it may be the case that k2 ≤ k1 + 2, and then the last half of the pre-
ceding equation is vacuous; otherwise the successive differences δi in the range
k1 + 2 ≤ i < k2 are determined uniquely by the value δk1+1 and the recursion
relation δi = r1 − δi−1. Thus the value of δk1+1 is a parameter that describes
all the other successive differences up to δk2−1, while the value of δk1

is a tran-
sitional term between the two ranges in which the successive differences behave
quite regularly. The sequence of critical values ri up to rk2−1 is also determined
by these parameters, although the explicit form is slightly more complicated
so it is really more convenient just to consider the successive differences. It
may be worth noting in passing that δi + δi−1 = 2r1 for 1 ≤ i < k1 while
δk1

+ δk1−1 < 2r1 and δk1+1 + δk1
< 2r1 − 1.

The argument can be repeated but with increasing complication; it may be
sufficient here just to describe the next stage in detail, to indicate the general
pattern. Since δk2

+ δk2−1 < r1 then from Corollary 11.18 for the case ν =
2 it follows that δk2+1 + δk2+2 + δk2+3 ≤ r1; and since δi ≥ 1 necessarily
δk2+2 + δk2+1 < r1 and δk2+3 + δk2+2 < r1. Consequently the argument can
be repeated with k2 + 2 and k2 + 3 in place of k2, although not with k2 + 1
in place of k2; more gaps of this sort arise as the process continues, explaining
part of the increase in complication. However it is at least the case here that
δk2+4 + δk2+3 < r1, δk2+5 + δk2+4 < r1 and δk2+6 + δk2+5 ≤ r1, and that is
enough to continue the argument to all the rest of the successive differences.
Altogether, since k3 is the least index i such that δi+δi−1 +δi−2 < r1, it follows
thatdiffseq4

(11.100) δi + δi−1 < r1 for i ≥ k2, i 6= k2 + 1, and

δi + δi−1 + δi−2 = r1 for k2 + 3 ≤ i < k3, i 6= k2 + 4.

Again the last half of the preceding equation is vacuous if k3 ≤ k2 +3; otherwise
the successive differences δi in the range k2+5 ≤ i < k3 are determined uniquely
by the values δk2+4 and δk2+3 and the recursion relation δi = r1 − δi−1 −
δi−2. Thus the values of δk2+3 and δk2+4 are parameters that describe all the
remaining successive differences in this range, while the values δk2 , δk2+1, and
δk2+2 describe the transitional range, subject to the relation δk2+3 + δk2+2 +
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δk2+1 = 0. The process can be continued to describe the remaining successive
differences, with corresponding patterns in subsequent cases.

To see the significance of these observations for the behavior of the maximal
function itself, note as a consequence of (11.97) that each interval (r, r + r1] of
length r1 for 0 ≤ r < rk1

−r1 includes precisely one critical value of the maximal
function, so that rate1

(11.101) µ(r + r1)− µ(r) = 1 for 0 ≤ r < rk1 − r1.

Similarly as a consequence of (11.99) each interval (r, r + r1] of length r1 for
rk1+2 ≤ r < rk2

− r1 includes precisely two critical values, so that rate2

(11.102) µ(r + r1)− µ(r) = 2 for rk1+2 ≤ r < rk2
− r1.

There is a transitional region between these two intervals, in which the increase
of the maximal function modulates between 1 and 2. Of course µ(r+r1)−µ(r) =
0 whenever r < rk0

− r1 = −r1, so that the separately defined characteristic
k0 = 0 also describes a point at which the rate of increase of the maximal
function changes. There are corresponding results for higher characteristics,
until finally µ(r + r1)− µ(r) = r1 whenever r > 2g − 2.

Rather than continuing this process, though, it may be better just to turn to
the end of the sequence of successive differences of the critical values. Of course
δi = 1 whenever i > g as in (11.94). The differences δi for i ≤ g but i near g can
be determined readily from the duality between the critical values and the gap
values of the maximal function. By equation (11.97) it is evident that there is
a string of r1 − 1 consecutive gap values beginning with s1 = 1 and continuing
through sr1−1, followed by the critical value r1 for a gap of 2 between the gap
values sr1−1 and sr1 , followed by another string of r1−1 consecutive gap values
from r1 + 1 to r2 − 1 = 2r1 − 1 − 1, and so on; consequently from the duality
between the gap values and the critical values, as expressed in Corollary ??, it
follows that the string of successive differences of the critical values ending with
δg = 2 has the form diffseq6

(11.103) 1, 1, . . . , 1, 2︸ ︷︷ ︸
r1−1 terms

, 1, 1, . . . , 1, 2︸ ︷︷ ︸
r1−1 terms

, . . . , 1, 1, . . . , 1, 2︸ ︷︷ ︸
r1−1 terms

where there are k1 − 1 such blocks. This duality of course can be continued to
the next string (11.99) of successive differences, and so on, although again with
more complication than justifies any detailed treatment here. It may be more
useful at this stage to examine some particular cases that arise naturally and in
which the results obtained so far can be applied usefully.

——————————————
—————————————
Base-point free holomorphic line bundles play a significant role in the Brill-

Noether diagram, beyond their appearance in the preceding theorem. The base
divisior of a holomorphic line bundle λ on M was defined in (2.9), and by The-
orem 2.11 any holomorphic line bundle can be written uniquely as the product
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λ = λ0ζb(λ) of a base-point-free holomorphic line bundle λ0 and the line bun-
dle ζb(λ) associated to the base divisor b(λ) of λ, where γ(λ0) = γ(λ) and
γ(ζb(λ)) = 1; this is the base decomposition of the holomorphic line bundle λ.
In this context the base degree of a holomorphic line bundle λ is defined by

(11.104) bdeg(λ) = deg b(λ);

so in the base decomposition λ = λ0ζb(λ) of a line bundle, bdeg(λ) = c(ζb(λ)) =

c(λ) − c(ζ0), hence bdeg(λ) = 0 if and only if λ is base-point-free. Let X̂ν,o
r

denote the set of base-point-free line bundles in X̂ν
r and let X̂ν,]

r denote the
complementary set of line bundles in X̂ν

r with a nontrivial base divisor, so that

(11.105) X̂ν,o
r =

{
λ ∈ X̂ν

r

∣∣∣ b(λ) = 0
}

and

(11.106) X̂ν,]
r =

{
λ ∈ X̂ν

r

∣∣∣ b(λ) > 0
}
.

By definition then there is the decomposition

(11.107) X̂ν
r = X̂ν,o

r ∪ X̂ν,]
r where X̂ν,o

r ∩ X̂ν,]
r = ∅.

The basic result about this decomposition is the following.

Theorem 11.20 For any compact Riemann surface M of genus g > 0 the
subset

(11.108) Bνr =
{

(z, λ) ∈M × X̂ν
r

∣∣∣ z ∈ b(λ) }
}

is a holomorphic subvariety of the holomorphic variety M × X̂ν
r . The natural

projection π : M × X̂ν
r −→ X̂ν

r induces a finite proper surjective holomorphic
mapping

(11.109) π : Bνr −→ X̂ν,]
r ,

so X̂ν,]
r is a holomorphic subvariety of X̂ν

r and dim X̂ν,]
r = dimBνr .

Proof: As in the discussion in Chapter 7, holomorphic line bundles λ ∈ X̂ν
r

can be described by factors of automorphy of the form ρtη, where η is a fixed
factor of automorphy describing a fixed holomorphic line bundle of character-
istic class r and ρt are canonically parametrized flat factors of automorphy for
parameter values t ∈ V for a suitable holomorphic subvariety V ⊂ C2g of an
open subset of the parameter space for flat line bundles; the subvariety V in
this way parametrizes the variety X̂ν

r of holomorphic line bundles. Holomorphic
cross-sections of a line bundle λ ∈ X̂ν

r correspond to holomorphic relatively au-
tomorphic functions for the factor of automorphy ρtη for the parameter value
t ∈ V parametrizing the line bundle λ. The condition that λ ∈ X̂ν

r means that
the dimension of the space of relatively automorphic functions is ν + 1 for all



11.3. SPECIAL POSITIVE DIVISORS 295

t ∈ V . It then follows from Corollary 7.3, for the special case that the relatively
automorphic functions are holomorphic so the auxiliary parameter variety W
is empty, that for any bundle λ0 described by a parameter t0 ∈ V there is an
open neighborhood U ⊂ V of the point t0 and there are ν + 1 holomorphic
relatively automorphc functions fi,t for the factor of automorphy ρtη that are
holomorphic functions of the paramter t ∈ U and are a basis for space of rela-
tively automorphic functions for for the factor of automorphy ρtη for all t ∈ U .
The subset

(11.110) Y =
{

(z, t) ∈M × U
∣∣∣ fi,t(z) = 0 for all 1 ≤ i ≤ ν + 1

}
consequently is a holomorphic subvariety of M × U . If (z, t) ∈ Y then all the
relatively automorphic functions fi,t(z) vanish at the point z ∈M ; that means
that all the holomorphic cross-sections of the line bundles λ parametrized by
values t ∈ U vanish at the point z, so by definition z is a point in the divisor
b(λ). Conversely if z is a point in the divisor b(λ) then by definition all the
holomorphic cross-sections of the line bundle λ vanish at the point z ∈ M
so all the relatively automorphic functions fi,t(z) vanish at the point z and
consequently (z, t) ∈ Y . Thus locally the set Bνr is just the set Y ; and since Y is
a holomorphic variety that shows thats the set Bνr is a holomorphic subvariety
in an open neighborhood of each of its points, so Bνr itself is a holomorphic
variety. The natural projection mapping π : M × X̂ν

r −→ X̂ν
r is a proper

holomorphic mapping, since M is compact; so there is the commutative diagram
of holomorphic mappings

(11.111)

Bνr
ι−−−−→ M × X̂ν

r

π

y π

y
π(Bνr )

ι−−−−→ X̂ν
r

where in both cases π is a proper holomorphic mapping and ι is the natural
inclusion mapping. By Remmert’s Proper Mapping Theorem, as discussed on
page 423 in Appendix A.3, the image π(Bνr ) is a holomorphic subvariety of X̂ν

r ,
so it is a holomorphic variety. If λ ∈ π(Bνr ) there is at least one point z ∈ M
for which (z, λ) ∈ Bνr hence for which z is a point of the divisor b(λ), so the
bundle λ is not base-point-free, while on the other hand if λ /∈ π(Bνr ) then there
is no point z ∈ M that is a base point for λ, so λ is base-point-free; therefore
π(Bνr ) = X̂ν,]

r , the subset of non-base-point-free holomorphic line bundles in X̂ν
r .

The set of points (z, λ) ∈ X̂ν
r that have the same image π(z, λ) = λ consists of

those points z ∈M that are points in the base divisor of the line bndle λ so is a
finite set of points; the mapping (11.109) thus also is a finite mapping. It then
follows from the more detailed version (A.20) of Remmert’s Proper Mapping
Theorem that dim X̂ν,]

r = dimBνr , and that suffices for the proof.

For an alternative to the decomposition (11.107) introduce the set X̂ν,∗0
r

of those holomorphic line bundles in Xν
r such that the line bundle κλ−1 ∈
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X̂
g−(r−ν−1)
2g−2−r is base-point-free and the set X̂ν,∗]

r of those holomorphic line bun-

dles in Xν
r such that the line bundle κλ−1 ∈ X̂g−(r−ν−1)

2g−2−r has a nontrivial base

divisor; of course these are defined only if X̂
g−(r−ν−1)
2g−2−r 6= 0. There is then the

decomposition
—————————–
Some basic relations between the various varieties X̂ν

r rest on the decomposi-
tion (11.107). Recall from the discussion in Chapter 2 that for any holomorphic
line bundle λ with base divisor b(λ) and for any point a ∈M

(11.112) γ(λζ−1
a ) =

{
γ(λ) if a ∈ b(λ),
γ(λ)− 1 if a /∈ b(λ);

Thus for any line bundle λ ∈ X̂ν
r and for any point a ∈ λ it follows that

γ(λ)− 1 ≤ γ(λζ−1
a ) ≤ γ(λ), so the mapping that associates to any pair (a, λ) ∈

M × X̂ν
r the line bundle ψ(a, λ) = λζ−1

a is a well defined holomorphic mapping

(11.113) ψ : M × X̂ν
r −→ X̂ν−1

r−1 ∪ X̂ν
r−1.

If (a, λ) ∈ Bνr then a ∈ b(λ) so γ(λζ−1
a ) = γ(λ), while if (a, λ) /∈ Bνr then

γ(λζ−1
a ) = γ(λ)− 1; thus

(11.114) ψ (Bνr ) ⊂ X̂ν
r−1 while ψ

(
(M × X̂ν

r ) ∼ Bνr
)
⊂ X̂ν−1

r−1 .

Note that from the definitions it follows that

(11.115) Bνr ⊂M × X̂ν,]
r while M ×Xν,o

r ⊂ (M × X̂ν
r ) ∼ Bνr .

On the other hand if γ(κλ−1) 6= 0 and b(κλ−1) is the base divisor of the line
bundle κλ−1 then by Corollary 2.30

(11.116) γ(λζa) =

{
γ(λ) + 1 if a ∈ b(κλ−1),
γ(λ) if a /∈ b(κλ−1),

hence for any line bundle λ ∈ X̂ν
r and for any point a ∈ λ it follows that

γ(λ) ≤ γ(λζa) ≤ γ(λ) + 1. Therefore the mapping that associates to any pair
(a, λ) ∈ M × X̂ν

r the line bundle φ(a, λ) = λζa is a well defined holomorphic
mapping

(11.117) φ : M × X̂ν
r −→ X̂ν

r+1 ∪ X̂ν+1
r+1 .

Through the isomorphism (11.66) the decomposition (11.107) for a nonempty
variety X̂ν+g−1−r

2g−2−r can be carried over to a different decomposition of the variety

X̂ν
r by setting

(11.118) X̂ν,∗o
r =

{
λ ∈ X̂ν

r

∣∣∣ b(κλ−1) = 0
}

and

(11.119) X̂ν,∗]
r =

{
λ ∈ X̂ν

r

∣∣∣ b(κλ−1) > 0
}

;
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this provides an alternative disjoint union decomposition

(11.120) X̂ν
r = X̂ν,∗o

r ∪ X̂ν,∗]
r where X̂ν,∗o

r ∩ X̂ν,∗]
r = ∅

and the alternative subset

(11.121) B∗νr =
{

(z, λ) ∈M × X̂ν
r

∣∣∣ z ∈ b(κλ−1) }
}

Corollary 11.21 For any compact Riemann surface M of genus g > 0 the
subset B∗νr is a holomorphic subvariety of the holomorphic variety M × X̂ν

r .
The natural projection π : M × X̂ν

r −→ X̂ν
r induces a finite proper surjective

holomorphic mapping

(11.122) π : Bνr −→ X̂ν,∗]
r ,

so X̂ν,∗]
r is a holomorphic subvariety of X̂ν

r and dim X̂ν,∗]
r = dimB∗νr .

This follows immediately from Theorem 11.20 applied to the variety X̂ν+g−1−r
2g−2−r

if it is nonempty, so no further proof is required.

It follows from the preceding observations that in terms of the subvariety
(11.108)

(11.123) φ (Bνr ) ⊂ X̂ν
r+1 while φ

(
(M × X̂ν

r ) ∼ Bνr
)
⊂ X̂ν

r−1.

————————–
For line bundles on the maximal and minimal curves of the Brill-Noether

diagram this decomposition of the holomorphic varieties X̂ν
r can be determined

readily.

Theorem 11.22 Let M be a compact Riemann surface of genus g > 0.
(i) For g < r ≤ 2g − 1

(11.124) X̂MIN,[
r =

{
κζaζ

−1
b

∣∣∣ a ∈M, ζb ∈ X̂0
2g−1−r and a /∈ b

}
.

(ii) For r > 2g − 1

(11.125) X̂MIN,[
r = ∅

so all line bundles in X̂ν
r for r > 2g − 1 are base-point-free.

Proof: (i) If g < r < 2g − 1 and λ ∈ X̂MIN
r = X̂r−g

r is not base-point-free
then there is a point a ∈ M such that γ(λζ−1

a ) = γ(λ) = r − g + 1; and
by the Riemann-Roch Theorem that is equivalent to γ(κλ−1ζa) = 1. Since
c(κλ−1ζa) > 0 then κλ−1ζa = ζb ∈ X̂0

2g−r−1 for a uniquely determined positive

divisor b ∈M (2g−1−r); thus λ = κζaζ
−1
b where ζb ∈ X̂0

2g−r−1. There is a unique
holomorphic cross-section of the line bundle ζb, up to a constant factor, and if
a ∈ b that cross-section vanishes at a hence 1 = γ(ζbζ

−1
a ) = γ(κλ−1); but then

by the Rieman-Roch theorem γ(λ) = r − g + 2, a contradiction. Consequently
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a /∈ b, which shows that the holomorphic line bundles λ ∈ X̂MIN
r that are not

base-point-free satisfy (11.124) in this case. Actually if r = 2g − 1 it follows
from Theorem 2.28 that the holomorphic line bundles λ ∈ X̂g−1

2g−1 that are not
base-point-free are precisely those of the form λ = κζa, which is the special case
of (11.124) for which the divisor b is the empty set.

Conversely to show that for g < r ≤ 2g − 1 all the bundles of the form
(11.124) actually are not base-poiont-free, suppose that λ is a holomorphic line
bundle such that λ = κζaζ

−1
b where ζb ∈ X̂0

2g−1−r and a /∈ b. Then c(λ) = r
and by the Riemann-Roch Theorem γ(λ) = γ(ζbζ

−1
a ) + r+ 1− g and γ(λζ−1

a ) =
γ(ζb) + r − g = r + 1 − g. Since a /∈ b and γ(ζb) = 1 it must be the case
that γ(ζbζ

−1
a ) = 0; the preceding equations then show γ(λ) = r + 1 − g so

λ ∈ X̂r−g
r = X̂MIN

r and γ(λζ−1
a ) = γ(λ) hence λ is not base-point-free.

(ii) Finally if r > 2g − 1 then c(κλ−1ζa) < 0 so γ(κλ−1ζa) = 0, which
contradicts the condition that γ(κλ−1ζa) = 1; thus there can be no holomorphic
line bundles in X̂MIN

r that are not base-point free if r > 2g − 1. That suffices
to conclude the proof.

Corollary 11.23 For a compact Riemann surface M of genus g > 0 all integers
r > g belong to the Lüroth semigroup L(M) of M .

Proof: Since the Lüroth semigroup L(M) by definition is the set of integers r
such that there is a base-point-free holomorphic line bundle λ with c(λ) = r,
the corollary will be proved by showing that the holomorphic varieties X̂MIN

r

for r > g contain base-point-free holomorphic line bundles. That is of course
the case for r > 2g − 1 by part (ii) of the preceding theorem, so it suffices to
consider the varieties X̂MIN

r for g < r ≤ 2g − 1. The subset V ⊂ X̂MIN
r ⊂

Pr(M) consisting of holomorphic line bundles that are not base-point-free is a
holomorphic subvariety by Theorem ??; and if g < r ≤ 2g − 1 the subvariety
V consists of those holomorphic line bundles of the form λ = κζaζ

−1
b where

ζb ∈ X̂0
2g−r−1 and a /∈ b by (i) of the preceding theorem, so V is contained

in the image of the holomorphic mapping φ : M × X̂2g−r−1 −→ P r(M) that

associates to any point a ∈ M any line bundle ζb ∈ X̂0
2g−r−1 the line bundle

κζaζ
−1
b ∈ Pr(M). The product M × X̂2g−r−1 is a compact complex manifold

of dimension 2g − r, since dimM = 1 and dim X̂2g−r−1 = 2g − r − 1; and by
the detailed form (A.20) of Remmert’s Proper Mapping Theorem it follows that
dimφ(M ×X2g−r−1) ≤ 2g − r hence dimV ≤ 2g − r. The holomorphic variety

X̂MIN
r has dimension g by (11.82), and since 2g− r < g for r > g it follows that

dimV < dim X̂MIN
r so the complement X̂MIN

r ∼ V , the set of base-point-free
holomorphic line bundles in X̂MIN

r , is nonempty. That suffices for the proof.

For g < r < 2g − 1 the proof of the preceding corollary really amounted
to showing that both the subvariety X̂MIN,[

r and its complement X̂MIN,o
r are

nonempty, so in that range the variety X̂ν
r contains both base-point-free line

bundles and line bundles with nontrivial base divisors.
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Theorem 11.24 If M is a compact Riemann surface of genus g > 0 with
the critical values ri then for any integer r in the range ri < r < ri+1 for

i ≥ 0 a holomorphic line bundle λ = λiζd where λi ∈ XMAX
ri and d ∈ M (r−ri)

r

is a maximal bundle λ ∈ X̂MAX
r and λ = λiζd is its base decomposition; so

bdeg(λ) = deg d and λ is not base-point-free.

Proof: If 0 ≤ ri < r < ri+1 and λi ∈ X̂MAX
ri then λi is base-point-free by the

preceding theorem. If λ = λiζd where d is a positive divisor with deg d = r− ri
then γ(λ) ≥ λi by Lemma 2.6 and c(λ) = c(λi)+deg d < ri+1 so γ(λ) < γ(λi) as
well and consequently γ(λ) = γ(λi) so λ ∈ X̂MAX

r ; and by Theorem 2.12 (i) in
addition λ = λiζd is the base decomposition of the line bundle λ. That suffices
for the proof.

Theorem ?? shows that the varieties X̂MAX
ri for the critical values ri contain

only base-point-free holomorphic line bundles, while Theorem 11.24 shows that
the varieties X̂MAX

r contain line bundles that are not base-point-free if r is not a
critical value; thus the critical values of a compact Riemann surface M of genus
g > 0 can be characterized as those integers r ≥ 0 such that X̂MAX

r consists
entirely of base-point-free holomorphic line bundles. For the general varieties
Xν
r , recall from the discussion in Chapter 2 that for any holomorphic line bundle

λ with base divisor b(λ) on a compact Riemann surface M of genus g > 0 and
any point a ∈M

(11.126) γ(λζ−1
a ) =

{
γ(λ) if a ∈ b(λ),
γ(λ)− 1 if a /∈ b(λ);

and if γ(κλ−1) 6= 0 and b(κλ−1) is the base divisor of the line bundle κλ−1 then
by Corollary 2.30

(11.127) γ(λζa) =

{
γ(λ) + 1 if a ∈ b(κλ−1),
γ(λ) if a /∈ b(κλ−1).

————————————————–
————————————————–
For a special case of the preceding discussion, if λ ∈ X̂1

r is base-point-free
then for any point z ∈M clearly λζ−1

z ∈ X̂0
r−1 so

(11.128) λζ−1
z = ζd(z) for a unique divisor d(z) ∈Mr−1

thus describing a holomorphic mapping φ : M −→Mr−1. Assume first that the
divisor d(z) consists of r−1 distinct poins zi for all points z ∈M ∼ E for a finite
subset E ⊂ M . Then in an open neighborhood U of any point z0 ∈ M ∼ E
there are well defined holomorphic mappings φi : U −→ M such that d(z) =∑r−1
i=1 1 · φi(z). In any simply connected intersection of such neighborhoods U

the local holomorphiuc mappings match so continue analytically to holomorphic
mappings in the union of the neighborhoods. For any paths in the universal

covering space M̃ ∼ E the local mappings continue analytically to single valued
holomorphic mappings φ̃i : M ∼ E −→ M ; but for any covering translation
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T ∈ ΓE of the universal covering space over M ∼ E the local mappings satisfy
φi(Tz) =

∑r−1
j=1 aij(T )φj(z) for some complex constants aij(T ); describing a

permutation matrix AT ; thus if φ = {φ̃i} is the mapping φ̃ : M̃ ∼ E −→Mr−1

then φ̃(z) = Aφ̃(z) for some nonsingular matrices AT describing a permutation

representation A ∈ Hom(ΓE ,Gl(r − 1,C). This describes a branched covering

space M̂ of degree r − 1 over M , branched at the points of E. (The abelian
differentials on M lift fo this covering in two ways; more Riemann relations?).

—————————————————–
—————————————————-
If M is a compact Riemann surface of genus g > 0 then for any point a ∈M

there is the local maximal function µa(r) defined by µa(r) = γ(ζra) − 1, as
discussed in Chapter 9. It is evident from the definitions that

(11.129) µ(r) ≥ µa(r) for all a ∈M.

The local critical values ri(a) are defined in terms of the local maximal function
µa(r) just as the critical values ri are defined in terms of the maximal function
µ(r), both as special cases of the general discussion of functions similar to the
maximal functions in (11.34); thus

(11.130) ri(a) = inf
{
r ∈ Z

∣∣∣ µa(r) ≥ i
}
.

Since µ
(
ri(a)

)
≥ µa

(
ri(a)

)
= i it follows from the definition of the critical value

ri that

(11.131) ri ≤ ri(a) for all a ∈M.

The sequence ri(a) for any point a ∈M is also an additive semigroup in Z and
a subsemigroup of of the Lüroth semigroup L(M) of the Riemann surface, by
Corollary 9.10, properties which are shared with the sequence ri. A somewhat
different local version of the maximal function is also of interest.

The semilocal maximal function of M for a positive divisor a ∈ M (n) of
degree n is defined as the function of integers

(11.132) µa(r) = max

{
γ(ζa′)− 1

∣∣∣∣ a = a′ + a′′,
a′ ∈M (r), a′′ ∈M (n−r)

}
for integers 1 ≤ r ≤ n − 1, extended to be a function of all integers r ∈ Z by
setting

(11.133) µa(r) =

 −1 for r < 0,
0 for r = 0,

γ(ζa)− 1 for r ≥ n.

As a word of caution, the semilocal maximal function µa(r) differs significantly
from both the maximal function µ(r) and the local maximal function µa(r) since
unlike the latter two the function µa(r) involves the dimensions of the spaces of
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holomorphic cross-sections of only finitely many holomorphic line bundles so it
is bounded above. Thus although the local maximal function for a point a ∈M
and the semilocal maximal function for the divisor n · a for n > 0 coincide
initially, since as is evident from their definitions µa(r) = µn·a(r) for 0 ≤ r ≤ n,
nonetheless µa(r) > µn·a(r) = γ(ζna )− 1 for r > n.

Theorem 11.25 The semilocal maximal function of a compact Riemann sur-
face M of genus g > 0 for a positive divisor a satisfies

(11.134) µa(r) ≤ µa(r + 1) ≤ µa(r) + 1,

and in particular

(11.135) µa(1) = 0.

For any two positive divisors a1 and a2

(11.136) if a1 ≥ a2 then µa1
(r) ≥ µa2

(r).

The semilocal maximal function and the maximal function are related by

(11.137) µa(r) ≤ µ(r) for all r

and

(11.138) µ(r) = sup
{
µa(r)

∣∣∣ deg a ≥ r
}

for all r

Proof: First since γ(ζp) = 1 for any point p ∈ M it is evident that µa(1) = 0,
which is (11.135).

If 1 ≤ r ≤ n− 1 and a = a′+ a′′ where a ∈M (n) and a′ ∈M (r) then for any
point p ∈ a′′ it follows from Lemma 2.6 that γ(ζa′) ≤ γ(ζa) and

(11.139) γ(ζa′)− 1 ≤ γ(ζa′+p)− 1 ≤ γ(ζa′) ≤ γ(ζa).

If r ≤ n−2 then γ(ζa′+p)−1 ≤ µa(r+1) by Definition (11.132), while if r = n−1
then a′+p = a so γ(ζa′+a)−1 = γ(ζa)−1 = µa(r+1) by (11.133); thus in either
case γ(ζa′)− 1 ≤ µa(r + 1), and since that is the case for all divisors a′ ∈M (r)

it follows from (11.139) that µa(r) ≤ µa(r + 1) ≤ µa(r) + 1, which is (11.134)
for 1 ≤ r ≤ n − 1. If r = 0 then since µa(0) = µa(1) = 0 by (11.133) and
(11.135) that is enough to demonstrate (11.134) for r = 0; if r = −1 since also
µa(−1) = −1 by (11.133) that is enough to demonstrate (11.134) for r = −1;
and finally since also µa(r) = −1 for r < −1 by (11.133) that is enough to
demonstrate (11.134) for r < −1 Since µa(r) = γ(ζa)− 1 for r ≥ n by (11.133)
that is enough to demonstrate (11.134) for r ≥ n, which establishes (11.134) for
all r.

If a1 ≥ a2 then a1 = a2 + a3 for another positive divisor a3, so if ni = deg ai
then n1 = n2 + n3. If 1 ≤ r ≤ n2 − 1 and if a2 = a′2 + a′′2 for positive divisors
a′2 and a′′2 for which deg a′2 = r then a1 = a′2 + (a′′2 + a3) and consequently it
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follows from the definition (11.132) for the divisor a1 that γ(a′2) − 1 ≤ µr(a1);
and since that is the case for any choice of the divisor a′2 it follows from the
definition (11.132) for the divisor a2 now that µa2

(r) ≤ µa1
(r). On the other

hand if n2 ≤ r ≤ n1 − 1 and if a3 = a′3 + a′′3 for positive divisors a′3 and a′′3 for
which deg a′3 = r − n2 then a1 = (a2 + a′3) + a′′3 where deg(a2 + a′3) = r so from
the definition (11.132) it follows that γa2+a′3

≤ µa1
(r); but from (11.133) and

Lemma 2.6 it further follows that µa2(r) = γ(ζa2) − 1 ≤ γ(ζa2+a′3
), and these

two inequalities show that µa2
(r) ≤ µa1

(r) also for n2 ≤ r ≤ n1 − 1. Finally if
r ≤ 0 then µa1

(r) = µa2
(r) = 0 by (11.133) while if r ≥ n1 then from (11.132)

and Lemma 2.6 it follows that µa2
(r) = γ(ζa2

− 1) ≤ γ(ζa1
− 1) = µa1

(r), and
that suffices to demonstrate (11.136).

Finally (11.137) is quite obvious from the definitions of the two maximal
functions; and if µ(r) = γ(ζa)−1 for some divisor a ∈M (r) then it follows from
definition (11.133) that µa(r) = γ(ζa)−1 = µa(r), and that suffices to establish
(11.138) and thereby to conclude the proof.

Since the semilocal maximal function satisfies (11.33) it has all the properties
discussed on page 277 and the following pages. For a positive divisor a ∈M (n) of
degree n the maximum and minimum values of the semilocal maximal function
are n+(a) = γ(ζa) − 1 and n−(a) = −1. The invariants ri for the semilocal
maximal function are defined by

(11.140) ri(a) = inf
{
r ∈ Z

∣∣∣ µa(r) ≥ i
}
,

following the general definition in (11.34), and are called the the semilocal criti-
cal values for the divisor a; there are altogether just the n+(a)+1 = γ(ζa) finite
semilocal critical values

(11.141) 0 = r0(a) < r1(a) < · · · < rγ(ζa)−1(a)

extended for convenience in use in subsequent formulas by setting r−1(a) = −∞
and rγ(ζa)(a) = +∞. The complement of the set of semilocal critical values for
a divisor a is the set of semilocal gap values sj(a) for the divisor a. An example
of the graph of a semilocal maximal function, indicating the semilocal critical
values, is sketched in Figure 11.2.

The basic properties of the semilocal critical values follow the pattern of the
basic properties of the critrical values and local critical values. It follows from
(11.35) that

(11.142) µa(r) = i for ri(a) ≤ r < ri+1(a),

and it follows from (11.36) that

(11.143) µa(r)− µa(r − 1) =

{
1 if r = ri(a) for some i and
0 otherwise.

The local maximal functions for different divisors are related as in (11.136), so if
a1 ≥ a2 then µa1

(
(ri(a2)

)
≥ µa2

(
(ri(a2)

)
= i and it follows from the definition
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Figure 11.2: Example of a semilocal maximal function for a positive divisor a
of degree 13.

(11.140) of the semilocal critical value ri(a1) that

(11.144) if a1 ≥ a2 then ri(a1) ≤ ri(a2) for any index i.

in particular ri(a) ≤ ri(a) for any point a in the divisor a since then 1 ·a ≤ a. In
view of (??) the corresponding argument shows that ri ≤ ri(a) for any positive
divisor a. In summary, the semilocal critical values ri(a), the local critical values
ri(a) and the critical values ri of a Riemann surface M are related by

(11.145) ri ≤ ri(a) ≤ ri(a) for any point a in a positive divisor a.

The interest of these critical values lies in part in the following observation.

Theorem 11.26 The semilocal critical values at a divisor a on a compact Rie-
mann surface M of genus g > 0 belong to the Lüroth semigroup of M .

Proof: Since r0(a) = 0 does belong to the Lüroth semigroup of M it is enough
just to demonstrate the theorem for strictly positive semilocal critical values. If
r = ri(a) > 0 is a semilocal critical value for the divisor a then µa(r) = i while
µa(s) < i if s < r. By the definition (11.132) of the semilocal maximal function
there are positive divisors a′ and a′′ of degrees deg a′ = r and deg a′′ = n − r
such that a = a′+a′′ and γ(ζa′)−1 = i. The theorem will be proved by showing
that the line bundle ζa′ of characteristic class c(ζa′) = r is base-point-free. If
to the contrary ζa′ is not base-point-free then there is some point x ∈ M for
which γ(ζa′ζ

−1
x ) = γ(ζa′) = i; and in that case it follows from Lemma 2.6 that

all the holomorphic cross-sections of the line bundle ζa′ vanish at the point x.
If a′ =

∑
k µk · ak and hk is a nontrivial holomorphic cross-section of the bndle

ζak then hk has a simple zero at the point ak as its sole zero; the product
h =

∏
k h

µk
k then is a holomorphic cross-section of the bundle ζa′ that vanishes

only at points of a′, and since h(x) = 0 it follows that x is a point of the divisor a′.
If a′ = a′′′+1·x for another positive divisor a′′′ then a = a′+a′′ = a′′′+(a′′+1·x)
where deg a′′′ = r − 1, so from the definition (11.132) of the semilocal maximal
function again it follows that µa(r − 1) ≥ γ(ζa′′′) = i, which contradicts the
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assumption that r is the local critical value r = ri(a). That contrdiction suffices
to conclude the proof.

————————-
The semilocal maximal function for a divisor a can be read directly from the

Brill-Noether matrix Ω(a) of a, extending to the semilocal maximal function the
treatment of the local maximal function discussed on page ?? and the following
pages. If a = ν1·p1+· · ·+νm·pm is a divisor of degree n = ν1+· · ·+νm for distinct
points p1, . . . , pm the Brill-Noether matrix is the g×n complex matrix with the
rows as in (11.9). Explicitly if ωi = fiαj (zαj )dzαJ for 1 ≤ i ≤ g is a basis for the
holomorphic abelian differentials, expressed in terms of local coordinates zαj at
the points pj , the entries in row i of the matrix Ωα1,...,αm(a) are the functions

f
(kj)
i,αj

(pj)/kj ! for 1 ≤ j ≤ m and 0 ≤ kj ≤ νj − 1; the columns are indexed by
j and kj . The Riemann-Roch Theorem in terms of the Brill-Noether has the
form (11.3) so

(11.146) γ(ζa)− 1 = n− rank Ωα1,...,αm(a).

The divisors a′ for which there is a decomposition a = a′ + a′′ into a sum of
positive divisors where deg a′ = r are just the divisors a′ = µ1 ·p1 + · · ·+µm ·pm
for which 0 ≤ µi ≤ νi and µ1 + · · ·+ µm = r; and the Brill-Noether matrix for
the divisor a′ is just the matrix Ωµ1,...,µm

α1,...,αm(a) formed by the r = µ1 + · · · + µm
columns of the matrix Ωα1,...,αm(a) for the column parameters restricted to the
values 1 ≤ j ≤ m, 0 ≤ kj ≤ µj − 1. Consequently from definition (11.132) it
follows that

(11.147) µa(r) =

 max
{
r − rank Ωµ1,...µm

α1,...,αm(a)
∣∣∣ 0 ≤ µj ≤ νj

}
r −min rank

{
Ωµ1,...µm
α1,...,αm(a)

∣∣∣ 0 ≤ µj ≤ νj
}

for integers 1 ≤ r ≤ n− 1.
———————————–
————————-
[refer to chap max2 ]

Theorem 11.27 ????? If M is a compact Riemann surface with the first crit-
ical value r1 then

(11.148) rank{fi(zj)} ≥ r1 − 1

for any divisor d =
∑r1−1
j=1 zj ∈ M (r1−1), where the holomorphic abelian differ-

entials on M are written ωi(z) = fi(z)dz.

Proof: Since γ(ζd) < 1 for any divisor d of degree deg d < r1 it follows from
(??) in the proof of the preceding theorem that rank {fi(zj)} ≥ r1 − 1, which
suffices for the proof.

———————————-



11.3. SPECIAL POSITIVE DIVISORS 305

———————
When there are at least 2 linearly independent holomorphic cross-sections of

a holomorphic line bundle λ it is possible to use these cross-sections to obtain
some further information about the spaces of holomorphic cross-sections of the
line bndles λn for any n > 0. Since the first critical value r1 is the least integer
for which there are line bundles λ of characteristic class c(λ) = r1 such that
γ(λ) ≥ 2, the value r1 plays a particularly significant role in the study of the
maximal function for Riemann surfaces.

Theorem 11.28 If f0, f1 ∈ Γ(M,O(λ)) are linearly independent holomorphic
cross-sections of a holomorphic line bundle λ over a compact Riemann surface
M then for any n > 0 the n + 1 products f i1f

n−i
2 for 0 ≤ i ≤ n are linearly

independent holomorphic crosss-sections of the line bundle λn.

Proof: If there is a nontrivial linear relation
∑n
i=0 cif

i
0f
i−n
1 = 0 and if g = f0/f1

then
∑n
i=0 cig

i = 0, so g is a constant, contradicting the assumption that the
cross-sections f0, f1 are linearly independent; and that suffices for the proof.

Corollary 11.29 The critical values ri of a compact Riemann surface M of
genus g > 0 satisfy rn ≤ nr1 for all n > 0.

Proof: There is a holomorphic line bundle λ for which c(λ) = r1 and γ(λ) = 2,
and that line bundle has two linearly independent holomorphic cross-sections
f0, f1. The preceding theorem shows that the n + 1 cross-sections f i1f

n−i
2 ∈

Γ(M,O(λn)) for 0 ≤ i ≤ n are linearly independent, hence γ(λn)− 1 ≥ n; and
consequently n r1 = c(λn) ≥ rn, which suffices for the proof.

Theorem 11.30 If f0, f1 ∈ Γ(M,O(λ)) and g0, g1, . . . , gn ∈ Γ(M,O(σ)) are
linearly independent holomorphic cross-sections of the holomorphic line bundles
λ, σ over a compact Riemann surface M , where f0, f1 have no common zeros,
then either the 2n + 2 holomorphic cross-sections figj ∈ Γ(M,O(λσ)) for the
indices 0 ≤ i ≤ 1 and 0 ≤ j ≤ n are linearly independent or σ = λζd for the
line bundle ζd of a positive divisor d on M .

Proof: Any nontrivial linear relation
∑1
i=0

∑n
j=0 ci,jfigj = 0 among the cross-

sections figj can be rewritten as the identity f0g
′
0 = f1g

′
1 for the nontrivial

holomorphic cross-sections g′0 =
∑n
j=0 c0,jgj and g′1 = −

∑n
j=0 c1,jgj of the line

bundle σ, or equivalently as the equality f0/f1 = g′1/g
′
0 of two meromorphic

functions on M . If d = d(g′0, g
′
1) is the divisor of common zeros of the cross-

sections g′0, g
′
1 and h ∈ Γ(M,O(ζd)) is a cross section for which d(h) = d then

g′0 = hg′′0 and g′1 = hg′′1 for holomorphic cross-sections g′′0 , g
′′
1 ∈ Γ(M,O(σζ−1

d )
which have no common zeros; and f0/f1 = g′′1/g

′′
0 . Since neither the cross-

sections g′′0 , g
′′
1 nor the cross-sections f0, f1 have any common zeros, the polar

divisor of the meromorphic function f0/f1 = g′′1/g
′′
0 is d(f1) = d(g′′0 ); and since

ζd(f1) = λ and ζd(g′′0 ) = σζ−1
d it follows that λ = σζ−1

d , which suffices for the
proof.
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Corollary 11.31 If λ1 ∈ X̂MAX
r1 = X̂1

r1 and λi ∈ X̂MAX
ri = X̂i

ri for any i > 0
then either (i) r2i+1 − ri ≤ r1 or (ii) λi = λ1ζd for a positive divisor d.

Proof: If λ1 ∈ X̂MAX
r1 then λ1 has two linearly independent holomorphic cross-

sections, which have no common zeros since λ1 is base-point-free by Theorem ??;
and if λi ∈ X̂MAX

ri then λi has i + 1 linearly independent holomorphic cross-
sections. It follows from the preceding theorem that either γ(λ1λi) ≥ 2i + 2
or λi = λ1ζd for some positive divisor d. If γ(λ1λi) − 1 ≥ 2i + 1 then by the
definition of the critical values r1 + ri = c(λ1λi) ≥ r2i+1. That suffices for the
proof.

———————————————————
If λ and σ are inequivalent base-point-free holomorphic line bundles of char-

acteristic classes c(λ) = r and c(σ) = s then r3 ≤ r + s.????????
(ii) If λ, σ are base-point-free holomorphic line bundles then by Lemma 2.9

there are linearly independent holomorphic cross-sections f1, f2 ∈ Γ(M,O(λ))
with no common zeros and g1, g2 ∈ Γ(M,O(σ)) also with no common zeros;
the products of these cross-sections are the four holomorphic cross-sections
f1g1, f1g2, f2g1, f2g2 ∈ Γ(M,O(λσ)). If there were a nontrivial linear relation
between these four cross-sections it could be written as an identity of the form
f1g
′
1 + f2g

′
2 = 0 where g′1 = a1g1 +a2g2 and g′2 = b1g1 + b2g1 for some constants

ai, bi, not all of which are zero; and the cross-sections g′1 and g′2 would have to be
linearly independent, since the cross-sections f1 and f2 are, so the cross-sections
g′1 and g′2 also have no common zeros. But then f2/f1 = −g′1/g′2 is a meromor-
phic function with the polar divisor d(f1) = d(g′2) and consequently λ = ζd1

=
ζd2

= σ, contradicting the assumption that the line bundles λ and σ are dis-
tinct. Therefore the four cross-sections f1g1, f1g2, f2g1, f2g2 ∈ Γ(M,O(λσ)) are
linearly independent, so γ(λσ)−1 ≥ 3 and threrefore r+s = γ(λσ) ≥ r3, which
suffices for the proof.

————————————
The preceding results can be used to describe fully the first part of the

interesting region of the Brill-Noether diagram, at least for some cases.

Theorem 11.32 If M is a compact Riemann surface of genus g > 0 for which
X1
r1 is a finite set then whenever r1 < r < r2 the holomorphic variety X1

r is
a finite union of holomorphic varieties of dimension r − r1 and contains no
base-point-free holomorphic line bundles.

Proof: If r1 < r < r2 then since r2 < 2r1 by Lemma ?? it follows that
0 < r− r1 < r2− r1 < r1 so γ(ζd) = 1 for any divisor d of degree deg d = r− r1.
Any holomorphic line bundle λ0 ∈ X1

r1 is base-point-free by Theorem ??, and if
deg d = r− r1 the product λ = λ0ζd for a divisor d of degree deg d = r− r1 is a
line bundle of characteristic class c(λ) = r; and γ(λ) ≥ γ(λ0 = 2 while γ(λ) ≤ 2
since c(λ) < r2, so actually γ(λ) = γ(λ0) = 2. Therefore the decomposition
λ = λ0ζd is the base decomposition of that line bundle, so λ is not base-point-
free. Conversely if λ ∈ X1

r is not base-point-free it must be a product λ = λ0ζd
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for some base-point-free line bundle λ0 with c(λ0) < r, and the only possibility
is c(λ0) = r1. For a fixed such line bundle λ0 the set of line bundles λζd for
divisors d with deg d = r − r1 is the image of the compact complex manifold
M (r−r1) under the

11 ———————————————-
——————————————–
Of interest in connection with the base-decomposition of holomorphic line

bundles are relations between the subvarieties r, induced by the mappings

(11.149) πr : M ×M (r−1) −→M (r) for which πr(a, d) = a+ d.

For any divisor d in the open subset M (r)∗ ⊂ M (r) consisting of divisors of r
distinct points of M it is evident that π−1

r (d) consists of r distinct points of
M ×M (r−1) and that the restriction of the mapping πr is a covering projection
of r sheets over M (r)∗. On the other hand for any divisor d in the comple-
mentary holomorphic subvariety (M (r) ∼ M (r)∗) ⊂ M (r) the inverse image
π−1
r (d) consists of strictly fewer than r points. The mapping πr thus is a finite

branched holomorphic covering of r sheets over M (r), branched over the subva-
riety M (r) ∼ M (r)∗. In particular the mapping πr is a finite proper surjective
holomorphic mapping; so by Remmert’s Proper Mapping Theorem the image
under this mapping of the subvariety M ×Gνr−1 ⊂M ×M (r−1) is a well defined

holomorphic subvariety πr(M ×Gνr−1) ⊂M (r).

Theorem 11.33 If M is a compact Riemann surface of genus g > 0

(11.150) Gν+1
r ⊂ πr(M ×Gνr−1) ⊂ Gνr for r ≥ 2 and all ν;

and if ν > 0 and Gν+1
r 6= Gνr then πr(M × Gνr−1) = Gνr if and only if none of

the line bundles ζd ∈ Pr(M) is base-point-free for any divisor d ∈ (Gνr ∼ Gν+1
r ).

Proof: If ν ≤ 0 the inclusion (11.150) reduces to Gν+1
r ⊂ πr(M ×M (r−1)) ⊂

M (r) in view of (??), and that holds quite trivially; so it can be assumed for
the remainder of the proof that ν > 0. If d ∈ Gν+1

r and if a ∈ M is a point
in the divisor d, so that d = a + d′ = πr(a, d

′) for a divisor d′ ∈ M (r−1), then
γ(ζd)−1 ≥ ν+1 and it follows from Lemma 2.6 that γ(ζd′)−1 = γ(ζ−1

a ζd)−1 ≥
γ(ζd) − 2 ≥ ν and hence that d′ ∈ Gνr−1; thus Gν+1

r ⊂ πr(M × Gνr−1). If
a ∈ M, d′ ∈ Gνr−1 and d = a + d′ = πr(a, d

′) then γ(ζd′) − 1 ≥ ν and it follows
from Lemma 2.6 again that γ(ζd) − 1 = γ(ζaζd′) − 1 ≥ γ(ζd′) − 1 ≥ ν so that
d ∈ Gνr ; thus πr(M × Gνr−1) ⊂ Gνr . That demonstrates both inclulsions in
(11.150). Next if d ∈ (Gνr ∼ Gν+1

r ) for ν > 0 then γ(ζd) = ν + 1 > 1. If
the line bundle ζd is not base-point-free then all the holomorphic cross-sections
of the line bundle ζd vanish at some point a, which must be a point of the
divisor d, so d = a + d′ = πr(a, d

′) for some divisor d′ ∈ M (r−1); and since all
the holomorphic cross-sections of the bundle ζd vanish at the point a it follows
from Lemma 2.6 that γ(ζd′) − 1 = γ(ζ−1

a ζd) − 1 = γ(ζd) − 1 ≥ ν, hence that
d′ ∈ Gνr−1 so d ∈ πr(M × Gνr−1). Thus if none of the line bundles ζd is base-
point-free for any divisor d ∈ (Gνr ∼ Gν+1

r ) then (Gνr ∼ Gν+1
r ) ⊂ πr(M ×Gνr−1).
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Since Gν+1
r ⊂ πr(M × Gνr−1) by the first part of the proof then altogether

Gνr ⊂ πr(M ×Gνr−1), and this inclusion must be an equality since the reversed
inclusion was demonstrated in the first part of the proof. Conversely if Gνr =
πr(M × Gνr−1) and if d ∈ Gνr ∼ Gν+1

r then γ(ζd) − 1 = ν and d = a + d′ for
some divisor d′ ∈ Gνr−1. Thus ν ≤ γ(ζd′)− 1 = γ(ζ−1

a ζd)− 1 ≤ γ(ζd)− 1 = ν by
Lemma 2.6, and consequently γ(ζ−1

a ζd) = γ(ζd); so by Lemma 2.6 yet again all
the holomorphic cross-sections of the bundle ζd must vanish at the point a, so
the bundle ζd is not base-point-free. That suffices to conclude the proof of the
theorem.

Corollary 11.34 If M is a compact Riemann surface of genus g > 0

(11.151) dimGν+1
r ≤ 1 + dimGνr−1 ≤ dimGνr for r ≥ 2 and all ν;

and if ν > 0 and Gν+1
r 6= Gνr and none of the line bundles ζd ∈ Pr(M) is

base-point-free for any divisor d ∈ Gνr ∼ Gν+1
r then

(11.152) 1 + dimGνr−1 = dimGνr .

Proof: Since the mapping πr in (11.149) is finite and proper, Remmert’s Proper
Mapping Theorem implies not only that the image πr(M ×Gνr−1) is a holomor-

phic subvariety of M (r) but also that dimπr(M×Gνr−1) = dim(M×Gνr−1); and
of course dim(M × Gνr−1) = 1 + dimGνr−1 whenever Gνr−1 is nonempty. The
corollary follows immediately from these observations and the inclusion relations
of the preceding theorem, and that suffices for the proof.

Corollary 11.35 If M is a compact Riemann surface of genus g < 0 with
the maximal function ri and if ri ≤ r < ri+1 and there are no base-point-free
holomorphic line bundles in dimXMAX

r then dimXMAX
r = dimXMAX

r−1 + 1 (ii) If
ri ≤ r < ri+1 then dimXMAX

r > dimXMAX
r−1 + 1;

Proof: If ri ≤ r ≤ ri+1 and there are no base-point-free holomorphic line bun-
dles in dimXMAX

r it follows from Corollary 11.34 that dimGMAX
r = dimGMAX

r−1 +
1 and from this in view of Corollary ?? it follows that dimXMAX

r = dimXMAX
r−1 +

1;
and that suffices for the proof.

[REMARK:] Deduce the consequences for the maximal function from this.
————————————-
OOOOOOOOOOOOOOOOOOOOOOOOOONEXT MOVED TO CHAP-

TER 9 Of course the equality of the dimensions is not of interest here; what is of
interest though is that the holomorphic variety Xν

g−1 is mapped to itself by the
automorphism

(11.153) εk : J(M) −→ J(M) defined by εk(t) = k − t,

a biholomorphic mapping of the Jacobi variety J(M) to itself of period 2, and
consequently of course that εk(W ν

g−1) = W ν
g−1 as well. The automorphism εk
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also has individual fixed points, which are just those points t ∈ J(M) such that
t = k − t so which are the 22g points of the quotient torus J(M) = Cg/ΩZ2g

represented by the half-periods 1
2ΩZ2g modulo the periods ΩZ2g; they are called

either the points of order 2 or the half-periods of the torus J(M). These fixed
points are distributed among the disjoint fixed varieties Xν

g−1 ⊂ J(M); so if
there are υν fixed points in Xν

g−1 for −1 ≤ ν ≤ µ(g − 1) then

(11.154)

µ(g−1)∑
ν=−1

υν = 22g.

Under the biholomorphic mapping φa0
: Pg−1(M) −→ J(M) the fixed points

correspond to holomorphic line bundles λ ∈ PSg − 1(M) for which λ2 = κ; they
are called the semicanonical bundles of the Riemann surface M , or alternatively
the theta characteristics of M in view of their natural appearance in another
form in the study of theta functions on Riemann surfaces. Perhaps the most
interesting of the semicanonical line bundles are those that admit holomorphic
cross-sections, so those that are contained in the varieties X̂ν

g−1 for indices ν ≥ 0.

Theorem 11.36 The semicanonical bundles λ ∈ X̂ν
g−1 for ν ≥ 0 are the line

bundles λ = ζd of positive divisors d ∈M (g−1) of degree g− 1 such that 2 d = k,
the canonical divisor on M .

Proof: A semicanonical line bundle λ such that γ(λ) > 0 has a nontrivial
holomorphic cross-section f ∈ Γ

(
M,O(λ)

)
with a divisor d(f); and since f2 ∈

Γ
(
M,O(λ2)

)
= Γ

(
M,O(κ)

)
it follows that 2 d(f) = d(f2) is a canonical divisor

on the Riemanan surface M . Conversely if there is a canonical divisor on M of
the form k = 2d for a positive divisor d ∈ M (g−1) then there is a holomorphic
cross-section h ∈ Γ

(
M,O(κ)

)
of the canonical bundle κ of the Riemann surface

M with the divisor d(h) = 2d. When the canonical line bundle κ on M is
represented by a holomorphic factor of automorphy κ(T, z) for the action of
the covering translation group of M on the universal covering space M̃ of M ,
the cross-section h corresponds to a holomorphic function h(z) on M̃ that is a
relatively automorphic function for this factor of automorphy. Since the function
h(z) has a divisor of even order it has a well defined square root in an open
neighborhood of each point of M̃ ; and since M̃ is simply connected any choice
of a local square root at one point can be continued to the entire Riemann
surface M̃ as a well defined holomorpic function f(z) =

√
h(z) on M̃ . The

divisor d
(
f(z)

)
of this function is invariant under the action of the covering

translation group Γ, so the quotients λ(T, z) = f(Tz)/f(z) are well defined
holomorphic and nowhere vanishing functions on M̃ ; and it follows from their
definition that they satisfy λ(ST, z) = λ(S, Tz)λ(T, z) for any two covering
translations T ∈ Γ, so they form a factor of automorphy for the action of the
group Γ on M̃ . This factor of automorphy describes a holomorphic line bundle
λ over M , and f(z) represents a holomorphic cross-section f ∈ Γ

(
M,O(λ)

)
of

this bundle. Since f2 = h ∈ Γ(M,O(κ)) it follows that λ2 = κ and consequently
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that λ is a semicanonical bundle over M , which has the nontrivial holomorphic
cross-section f . That suffices for the proof.

————————————————————– [Alternative lemma for proof
of Theorem 11.13.]

Lemma 11.37 On a compact Riemann surface M of genus g > 0 the line
bundle ζg+1

a is base-point-free and γ(ζg+1
a ) = 2 for all but at most finitely many

points a ∈M .

Proof: For any point a ∈ M it follows from the Riemann-Roch Theorem
in the form of Theorem 2.24 that γ(ζga) = γ(κζ−ga ) + 1 ≥ 1 and γ(ζg+1

a ) =
γ(κζ−g−1

a )+2 ≥ 2. On the other hand it follows from the Riemann-Roch Theo-
rem in the form of Theorem 11.3 that γ(ζga) = g+1−rank Ω(g ·a) where Ω(g ·a)
is the Brill-Noether matrix of the divisor g · a. When the holomorphic abelian
differentials on M are written in terms of local coordinates zα as ωi = fiα(zα),
the determinant of the Brill-Noether matrix Ω(g ·a) is just the Wronskian of the
functions fiα(zα), as in (11.11). Since the abelian differentials are linearly in-
dependent holomorphic functions their Wronskian does not vanish identically5;
hence rank Ω(g · a) = g and γ(ζga) = 1 at all but the finitely many points a ∈M
at which det Ω(g · a) = 0. If γ(ζga) = 1 then γ(ζg+1

a ) ≤ 2 by Lemma 2.6, and
since it was already noted that γ(ζg+1

a ) ≥ 2 it follows that γ(ζg+1
a ) = 2. Fur-

thermore if γ(ζga) = 1 the line bundle ζga is not base-point-free, indeed it has the
base decomposition ζga = 1 · ζga for the identity bundle 1; and since γ(ζgaζa) = 2
it follows from Theorem 2.12 (iii) that ζra is base-point-free for some r in the
range 1 ≤ r ≤ g + 1, which can only be the case for r = g + 1. That suffices for
the proof.

5It is obvious that if a finite number of functions are linearly dependent their Wronskian
determinant is zero. The converse was long known to be false for C∞ functions but it is
true for holomorphic functions; see for instance the paper by M. Bôcher, The theory of linear
dependence, Annals of Math. vol 2 (1900), pages 81-96; or more recently the paper by Alin
Bostan and Philippe Dumas, Wronskians and Linear Independence, Amer. Math. Monthly,
vol.117, (2010), pp. 722-727.



Chapter 12

The Abel-Jacobi Mapping

PRELIMINARY FORM

12.1 The Abel-Jacobi Diagram

If Ω is the period matrix of a compact Riemann surface M of genus g > 0,
in terms of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M), the Abel-Jacobi mapping
(3.4) is the holomorphic mapping wz0 : M −→ J(M) from the Riemann surface
M to its Jacobi variety J(M) = Cg/ΩZ2g induced by the holomorphic mapping
w̃z0 : M̃ −→ Cg that associates to a point z in the universal covering surface
M̃ of M the point w̃z0(z) = {wi(z, z0)} ∈ Cg, where wi(z, z0) =

∫ z
z0
ωi for the

base point z0 ∈ M̃ . For some purposes, and as in the earlier discussion of the
Abel-Jacobi mapping in Section 3.1, it is convenient not to specify the base
point z0 ∈ M̃ but to allow the mapping w̃z0 to be modified by an arbitrary
additive constant and hence to allow the mapping wz0 to be modified by an
arbitrary translation in the complex torus J(M); in that case the mappings will
be denoted just by w̃ and w. However for much of the discussion in the present
chapter it will be assumed that there is a specified base point z0 ∈ M̃ in terms of
which the Abel-Jacobi mapping wz0 is defined. Furthermore the Jacobi variety
will be viewed not just as a complex manifold but also as a complex Lie group, so
that it has a specified identity element 0 ∈ J(M) for the additive structure of the
complex torus J(M); the identity will be taken to be the point in the quotient
space Cg/ΩZ2g represented by the origin 0 ∈ Cg, which is independent of the
choice of bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M). With this structure as a
complex Lie group the Jacobi variety J(M) will be called the Jacobi group. The
Abel-Jacobi mapping then extends naturally to the Abel-Jacobi homomorphism,
the group homomorphism

(12.1) wz0 : Γ(M,D) −→ J(M)

311
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from the additive group Γ(M,D) of divisors on M to the additive Jacobi group
J(M) that associates to any divisor d =

∑r
j=1 νj · aj ∈ Γ(M,D) the point

(12.2) wz0(d) =

r∑
j=1

νjwz0(aj) ∈ J(M);

thus the image wz0(d) is the point in the quotient space J(M) = Cg/ΩZ2g

represented by the vector
∑r
j=1 νjw̃(zj , z0) ∈ Cg for any points zj ∈ M̃ such

that π(zj) = aj under the universal covering projection π : M̃ −→M .
———————

Theorem 12.1 If M is a compact Riemann surface of genus g > 0 with a
base point z0 ∈ M̃ and a0 = π(z0) ∈ M is the image of that base point
under the universal covering projection π : M̃ −→ M , then for any bases
ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) there is a uniquely determined group iso-
morphism φa0

: P (M) −→ J(M) such that

(12.3)

J(M)

Γ0(M,D) P (M)-

HHHj
����

ζ

wz0 φa0

is a commutative diagram of surjective group homomorphisms.

Proof: By Theorem 3.14 any holomorphic line bundle λ ∈ P (M) can be repre-
sented by the flat line bundle described through the canonical parametrization
of flat line bundles (3.27) by a representation ρt for a vector t ∈ C2g; all vectors
t ∈ C2g describe line bundles in P (M) in this way, and two vectors describe
the same line bundle if and only if they differ by a vector in the linear subspace
Z2g + tΩCg ⊂ C2g. The mapping that associates to a line bundle λ ∈ P (M) the
point in the quotient space C2g/(Z2g + tΩCg) represented by any vector t ∈ Cg
such that ρt = λ thus is a group isomorphism

φ∗a0
: P (M) −→ C2g/(Z2g + tΩCg)

from the Picard group to additive group of a complex torus. If P is the in-
tersection matrix of the surface M in terms of the basis τj ∈ H1(M) then by
Theorem 3.23 the linear mapping ΩP : C2g −→ Cg induces a biholomorphic
mapping

(ΩP )∗ :
C2g

Z2g + tΩCg
−→ J(M)

between these two tori; and since it is induced by a linear mapping between
their universal covering spaces it is also a group isomorphism. The composition

φa0
= (ΩP )∗ ◦ φ∗a0

: P (M) −→ J(M)
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then is a group isomorphism from the Picard group to the Jacobi group J(M)
of M . Since all the mappings in the diagram (12.3) are group homomorphisms
and the group of divisors of degree 0 is generated by divisors of the form a′−a′′
for points a′, a′′ ∈M , to show the commutativity of the diagram it is sufficient
just to show that φa0

(ζa′−a′′) = wz0(a′ − a′′) for any two points a′, a′′ ∈ M .
By Corollary 5.9 the line bundle ζa′−a′′ ∈ P (M) can be represented by the flat
line bundle described through the canonical parametrization of flat line bundles
by the representation ρt(z′,z′′) for the vector t(z′, z′′) = i tΩ tGw̃(z′, z′′) ∈ C2g,

where G = tH−1 for the positive definite Hermitian matrix H = iΩP tΩ and
z′, z′′ ∈ M̃ are any points in the universal covering space of M that cover the
points a′, a′′ respectively. Since iΩP tΩ tG = H tG = I it follows that

ΩPt(z′, z′′) = iΩP tΩ tGw̃(z′, z′′) = w̃(z′, z′′)(12.4)

= w̃(z′, z0)− w̃(z′, zz0) ∈ Cg,

which represents the point wz0(a′−a′′) in the quotient torus J(M) = Cg/ΩZ2g,
thus establishing the commutativity of the diagram (12.3). The homomorphism
ζ is surjective since any holomorphic line bundle is the line bundle of some
divisor by Corollary 2.20; and since φa0 is an isomorphism and the diagram
(12.3) is commutative it follows immediately that the homomorphism wz0 is also
surjective. From this and the commutativity of the diagram (12.3) it further
follows that the isomorphism φa0

is uniquely determined, and that suffices to
conclude the proof.

The commutative diagram (12.3) can be extended to a homomorphism from
the full group Γ(M,D) of divisors on M . First the homomorphism φa0

can be
extended to a homomorphism

(12.5) φ̂a0
: H1(M,O∗) −→ J(M)

defined on arbitrary line bundles by setting

(12.6) φ̂a0(λ) = φa0(ζ−c(λ)
a0

λ)

for any holomorphic line bundle λ. The restriction of this mapping to the
subgroup P (M) ⊂ H1(M,O∗) is just the homomorphism φa0

, and the extended
mapping is also a homomorphism since if λ1, λ2 are line bundles with c(λ1) =

r1, c(λ2) = r2 then by definition φ̂a0(λ1λ2) = φa0(ζ−r1−r2a0
λ1λ2) = φa0(ζ−r1a0

λ1 ·
ζ−r2a0

λ2) = φa0(ζ−r1a0
λ1) · φa0(ζ−r2a0

λ2) = φ̂a0(λ) · φ̂a0(λ2). It is clear that any
holomorphic line bundle λ can be written uniquely as the product

(12.7) λ = ζra0
λ0 where r = c(λ) and λ0 ∈ P (M);

and since φ̂a0
(ζra0

λ0) = φa0
(λ0) where φa0

is an isomorphism by Theorem 12.1

it is apparent that the kernel of the homomorphism φ̂a0
is the cylic subgroup

(12.8) Γa0
=
{
ζra0

∣∣∣ r ∈ Z } ⊂ H1(M,O∗).
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The homomorphism φ̂a0 is surjective, since its restriction φa0 to the subgroup
of holomorphic line bundles of characteristic class 0 is already surjective by
Theorem 12.1, so there is the exact sequence of groups

(12.9) 0 −→ Γa0

ι−→ H1(M,O∗)
φ̂a0−→ P (M) −→ 0

in which ι : Γa0 −→ H1(M,O∗) is the natural inclusion homomorphism. Actu-
ally in view of (12.7) this exact sequence splits, so the group of all holomorphic
line bundles is just the product

(12.10) H1(M,O∗) = Γa0
· P (M).

It follows that the cosets of the subgroup P (M) ⊂ H1(M,O∗) are the sets

(12.11) Pr(M) = ζra0
· P (M),

and through this identification with the Picard group P (M) the sets Pr(M)
have natural structures as complex tori biholomorphic to P (M); they can be
described alternatively as

(12.12) Pr(M) =
{
λ ∈ H1(M,O∗)

∣∣∣ c(λ) = r
}
⊂ H1(M,O∗).

The Abel-Jacobi homomorphism (12.1) takes linearly equivalent divisors to the
same point in the Jacobi variety by Abel’s Theorem, Corollary 5.10, while the
homomorphism (??) takes linearly linearly equivalent divisors to the same holo-
morphic line bundle by Theorem ??; consequently both of these homomorphisms
can be factored through the natural homomorphism

(12.13) ψ : Γ(M,D) −→
(

Γ(M,D)/ ∼
)

that associates to any divisor its linear equivalence class, and written as the
compositions

(12.14) ζ = ζ̂ ◦ ψ wz0 = ζ̂ ◦ ŵz0

for homomorphisms

ζ̂ :
(

Γ(M,D)/ ∼
)
−→ H1(M,O∗) and

(12.15)

ŵz0 :
(

Γ(M,D)/ ∼
)
−→ J(M).

In these terms there is the following extension of Theorem 12.1.

Theorem 12.2 If M is a compact Riemann surface of genus g > 0 with a base
point z0 ∈ M̃ and a0 = π(z0) ∈ M is the image of that base point under the
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universal covering projection π : M̃ −→M , then for any bases ωi ∈ Γ(M,O(1,0))
and τj ∈ H1(M) there is the commutative diagram of group homomorphisms

(12.16)

J(M)

(
Γ(M,D)/∼

)
Γ(M,D) - H1(M,O∗)-

H
HHj

�
���

ζ̂ψ

ŵz0 φ̂a0

where ζ̂ is an isomorphism, ŵz0 is a surjective group homomorphism the kernel
of which is the image under the homomorphism ψ of the subgroup

(12.17) Da =
{
n · a0

∣∣∣ n ∈ Z } ⊂ Γ(M,D),

φ̂a0 is a surjective group homomorphism the kernel of which is the cyclic sub-

group Γa0
⊂ H1(M,O∗), and for any r ∈ Z the restriction of φ̂a0

to the subset
Pr(M) ⊂ H1(M,O∗) is a biholomorphic mapping between complex tori.

Proof: If d ∈ Γ(M,D) is a divisor of degree r = deg d then by definition

φ̂a0

(
ζ(d)

)
= φ̂a0(ζd) = φa0(ζ−ra0

ζd), and it follows from the commmutativity of
the diagram (12.3) that φa0

(ζ−ra0
ζd) = wz0(ζ−ra0

ζd) = wz0(ζd) since wz0(ζ−ra0
) =

0; that demonstrates the commutativity of the diagram (12.16), since both

mappings ζ and wz0 factor through the mapping (12.13). The homomorphism ζ̂
is an isomorphism by Theorem ?? since the line bundle of a divisor is the trivial
line bundle precisely when the divisor is linearly equivalent to zero and every line
bundle is the line bundle of some divisor. The homomorphism φ̂a0

is surjective
since its restriction φa0

to the subgroup of line bundles of characteristic class zero
is surjective by Theorem 12.1, so from the commutativity of (12.16) it follows
that the homomorphism ŵz0 also is surjective. The kernel of the homomorphism

φ̂a0
is the subgroup Γa0

⊂ H1(M,O∗) by (12.9); and since Γa is the image

under the isomorphism ζ̂ of the group of linear equivalence classes of divisors
in Da it follows from the commutativity of (12.16) that the kernel of the group

homomorphism wz0 is the subgroup ψ(Da) ⊂
(

Γ(M,D)/ ∼
)

. The complex

structure on Pr(M) is that as the coset Pr(M) = ζra0
P (M) in view of (12.6),

so the mapping φ̂a0
: Pr(M) −→ J(M) is a biholomorphic mapping, and that

suffices for the proof.

The diagram (12.16) is called the Abel-Jacobi diagram for the Riemann sur-

face M . The homomorphisms ψ and ζ̂ along the top line are intrinsically defined
mappings, while the mappings ŵz0 and φ̂a0

involve the choice of bases for the
holomorphic abelian differentials and for the homology of M and of a base point
on M̃ .
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12.2 The Variety of Positive Divisors

The restriction of this diagram to the set of positive divisors of a fixed degree
is particularly interesting and useful; but the examination of that restriction
requires as a preliminary a somewhat more detailed discussion of the sets of
positive divisors on a Riemann surface M . A positive divisor of degree r on
M can be viewed as an unordered set of r points of M , not necessarily distinct
points; so the set of all positive divisors of degree r can be identified with the
quotient M (r) = Mr/Sr of the r-dimensional complex manifold Mr by the
symmetric group Sr acting as the group of permutations of the factors, a set
called the r-th symmetric product of the surface with itself. The mapping that
associates to an ordered set of r points the corresponding unordered set of those
points is the natural quotient mapping

(12.18) πr : Mr −→M (r) = Mr/Sr.

The quotient space M (r) has the natural quotient topology, in which a subset
U ⊂M (r) is open precisely when the inverse image π−1

r (U) ⊂Mr is open. The
restriction of the quotient mapping πr to the subset

(12.19) Mr∗ =
{

(z1, . . . , zr) ∈Mr
∣∣∣ zi 6= zj for i 6= j

}
⊂Mr

clearly is a locally homeomorphic mapping.

Lemma 12.3 The symmetric product C(r) has the structure of a complex man-
ifold of dimension r such that the natural quotient mapping πr : Cr −→ C(r)

is a holomorphic mapping and its restriction to the subset Cr∗ is locally biholo-
morphic.

Proof: Consider the mapping τr : Cr −→ Cr defined by

τr(z1, z2, . . . , zr) =
(
e1(z1, . . . , zr), e2(z1, . . . , zr), . . . , er(z1, . . . , zr)

)
,

where ei(z1, . . . , zr) are the elementary symmetric functions in r variables. It
will be shown first that there is a one-to-one mapping σr : C(r) −→ Cr such
that

(12.20)

C(r)

Cr Cr-

H
HHj ��

�*

τr

πr σr

is a commutative diagram of mappings. The elementary symmetric functions
ei = ei(z1, . . . , xr) are the polynomials in the variables z1, . . . , zr defined as the
coefficients of the polynomial

(12.21)

r∏
i=1

(X − zi) = Xr − e1X
r−1 + e2X

r−2 − · · ·+ (−1)rer.



12.2. VARIETY OF POSITIVE DIVISORS 317

These coefficients clearly are invariant under permutations of the variables
z1, . . . , zr, so the mapping τr factors through the quotient mapping πr as the
composition τr = σr ◦ πr for some mapping σr for which the resulting dia-
gram (12.20) is a commutative diagram of mappings. The mapping τr is sur-
jective since any monic polynomial of degree r can be written as the product∏r
i=1(X − zi) where zi are its roots; consequently the mapping σr also is sur-

jective. Since a monic polynomial is determined uniquely by its roots and con-
versely determines the roots uniquely up to order, two points of Mr have the
same image under τr if and only if they have the same image under πr, so the
mapping σr is injective. Altogether then the mapping σr is one-to-one, so can be
used to identify the symmetric product C(r) with the image Cr, and thereby to
give the symmetric product the structure of a complex manifold. The mapping
τr clearly is holomorphic, and its restriction to Cr∗ is locally biholomorphic; so
from the commutativity of the diagram (12.20) the same is true for the mapping
σr, and that suffices for the proof.

For some purposes it is more convenient to use the power sums

(12.22) si(z1, . . . , zr) = zi1 + · · ·+ zir

for 1 ≤ i ≤ r in place of the elementary symmetric functions in the definition
of the mapping τr in the preceding lemma; Newton’s formulas expressing the
elementary symmetric functions in terms of the power sums and conversely show
that the two choices lead to equivalent results.

Theorem 12.4 The symmetric product M (r) of a compact Riemann surface M
has the natural structure of a compact complex manifold of dimension r. The
quotient mapping πr : Mr −→ M (r) is a holomorphic mapping that is a locally
biholomorphic mapping from the dense open subset Mr∗ ⊂Mr consisting of sets
of r distinct points of M to its image M (r)∗ = πr(M

r∗).

Proof: For any divisor d = ν1 · a1 + · · · + νs · as ∈ M (r) for which a1, . . . , as
are distinct points of M choose disjoint open neighborhoods Ui ⊂ M of the

points ai. The quotient spaces U
(νi)
i have the natural structures of complex

manifolds by the preceding lemma; and the product Ud = U
(ν1)
1 × · · · × U (νs)

s

then provides the structure of a complex manifold on an open neighborhood of
the divisor d ∈ M (r). If the divisor d consists of distinct points, so that νi = 1

for all indices i, the quotient spaces U
(νi)
i = U

(1)
i are just the neighborhoods

Ui themselves, so the quotient mapping πr : Mr −→ M (r) then is a locally
biholomorphic mapping in an open neighborhood of the divisor d. That suffices
to conclude the proof.
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12.3 The General Abel-Jacobi Mapping and the
Brill-Noether Matrix

The restriction of the Abel-Jacobi homomorphism (12.1) to the subset
M (r) ⊂ Γr(M,D) consisting of positive divisors of degree r ≥ 1 is a mapping

(12.23) wz0 : M (r) −→ J(M)

called the general Abel-Jacobi mapping, although sometimes for simplicity it
is called just the Abel-Jacobi mapping again. It is a holomorphic mapping
between these two complex manifolds, since it is induced by a holomorphic
mapping wz0 : Mr −→ J(M) that commutes with permutations of the factors
of the product Mr. As in the case of the Abel-Jacobi mapping itself, for some
purposes it is convenient not to specify the base point z0 ∈ M̃ but to allow the
mapping to be modified by an arbitrary translation in the complex torus J(M),
and in that case the mapping is denoted just by w.

Theorem 12.5 For a compact Riemann surface M of genus g > 0 the Brill-
Noether matrix Ω(d) at a divisor d ∈ M (r) can be identified with the Jacobian
of the general Abel-Jacobi mapping w : M (r) −→ J(M) at the point d.

Proof: If da ∈ M (r) is a divisor of the form d = ν1 · a1 + · · · + νs · as, where
a1, . . . , as are s distinct points of the surface M , choose disjoint coordinate
coordinate neighborhoods Ui of the points ai with local coordinates zi centered
at the points ai. A coordinate neighborhood of the divisor da in the complex

manifold M (r) is of the form U = U
(ν1)
1 ×· · ·×U (νs)

s as in the preceding theorem.
Explicitly the divisors in M (r) near d are of the form dz =

∑s
i=1

∑νi
j=1 1 · zij

where zij ∈ Ui for 1 ≤ j ≤ νi are the coordinate values of νi points of that
neighborhood; and by using power sums in place of the elementary symmetric
functions the local coordinates of such a divisor dz in the quotient space Uνii
can be taken to be of the form

tim(zi1, . . . , ziνi) = zmi1 + · · ·+ zmiνi

for 1 ≤ i ≤ s, 1 ≤ m ≤ νi. For points zij sufficiently near ai in the coordinate
neighborhoods Ui an abelian integral wk(zij) has the Taylor expansion

wk(zij) = wk(ai) + w′k(ai)zij +
1

2
w′′k(ai)z

2
ij + · · · ;
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consequently the coordinates of the image of the divisor dz under the general
Abel-Jacobi mapping are

wk(dz) =

s∑
i=1

νi∑
j=1

wk(zij)

=

s∑
i=1

νi∑
j=1

(
wk(ai) + w′k(ai)zij +

1

2
w′′k(ai)z

2
ij + · · ·

)
= wk(d) +

s∑
i=1

(
w′k(ai)ti1(z) +

1

2
w′′k(ai)ti2(z) + · · ·

· · ·+ 1

νi!
w

(νi)
k (ai)tiνi(z) + · · ·

)
,

where the further terms in the last expansion are higher powers in the local
coordinates tim. The partial derivatives of the functions wk(dz) with respect to
the coordinates tim in M (r) evaluated at the divisor da, at which tim = 0, thus
are precisely the entries in row k of the Brill-Noether matrix (11.9) in terms of
the local coordinates in Ui, and that suffices to conclude the proof.

Corollary 12.6 If M is a compact Riemann surface of genus g > 0 the rank
of the differential of the general Abel-Jacobi mapping w : M (r) −→ J(M) at a
divisor d ∈M (r) is

rankddw = rank Ω(d) = r + 1− γ(ζd).

Proof: It follows from the preceding theorem that rankddw = rank Ω(d), while
rank Ω(d) = r + 1− γ(ζd) by the Riemann-Roch Theorem in the form of Theo-
rem 11.3; that suffices for the proof.

Although there is some variation in the precise meaning of the term in the
differential-geometric literature, it is convenient here to define a critical point of
a holomorphic mapping f : M −→ N between two connected complex manifolds
to be any point p ∈ M at which rankp df < min (dimM,dimN). If dimM =
dimN the critical points of the mapping f are precisely those points p ∈M at
which the mapping f fails to be locally biholomorphic.

Corollary 12.7 If M is a compact Riemann surface of genus g > 0 the critical
points of the general Abel-Jacobi mapping w : M (r) −→ J(M) form a proper
holomorphic subvariety spM (r) ⊂ M (r) that consists precisely of the special
positive divisors of degree r.

Proof: A positive divisor d of degree r on a compact Riemann surface of genus
g > 0 is a special positive divisor if and only if γ(ζd) − 1 > max(0, r − g),
by definition (11.19), while the preceding corollary shows that γ(ζd)− 1 = r −
rankddw; thus a positive divisor d of degree r is special if and only if rankd dw <
min(r, g), which is just the condition that d is a critical point of the general
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Abel-Jacobi mapping. The differential dw is an r × g matrix of holomorphic
functions in any local coordinate neighborhood on the complex manifold M (r),
so the points at which it has rank less than min(r, g) form the holomorphic
subvariety spM (r) ⊂M (r) defined by the vanishing of some subdeterminants of
that matrix. There are nonspecial positive divisors in any of the manifolds M (r)

by Theorem 11.5; consequently spM (r) is a proper subvariety of the connected
complex manifold M (r), and that suffices to conclude the proof.

12.4 The Subvariety of Special Positive Divisors

In view of the preceding theorem it is customary to call the subset spM (r) ⊂
M (r) the subvariety of special positive divisors of degree r, since it is indeed
a holomorphic subvariety of the complex manifold M (r). The set of general
divisors thus is the complement of a proper holomorphic subvariety of M (r) so
is a dense open subset of M (r); that observation perhaps explains the use of the
terms special positive divisor and general positive divisor.

Theorem 12.8 (i) If M is a compact Riemann surface of genus g > 0 the
image Wr = w(M (r)) ⊂ J(M) of the complex manifold M (r) under the general
Abel-Jacobi mapping w : M (r) −→ J(M) is an irreducible holomorphic subvari-
ety of the Jacobi variety J(M).
(ii) If r ≥ g then Wr = J(M).
(iii) If r < g then dim Wr = r.
(iv) If r ≤ g the image spWr = w(spM (r)) of the subvariety spM (r) ⊂ M (r)

of special positive divisors is a proper holomorphic subvariety of Wr. The sub-
variety Wr ⊂ J(M) is a complex submanifold of J(M) outside spWr; and the
restriction of the general Abel-Jacobi mapping is a biholomorphic mapping

(12.24) w :
(
M (r) ∼ spM (r)

) ∼=−→
(
Wr ∼ spWr

)
between these two complex manifolds.

Proof: (i) The image Wr = w(M (r)) is a holomorphic subvariety of the Jacobi
variety J(M) by Remmert’s Proper Mapping Theorem; and since Wr is the im-
age of a connected complex manifold it is necessarily an irreducible holomorphic
subvariety.
(ii) If r ≥ g the Abel-Jacobi mapping is of rank g = dim J(M) at any nonspecial
positive divisor d ∈M (r) by Corollary 12.7, so this mapping is a biholomorphic
mapping between an open neighborhood of the point d in M (r) and an open
neighborhood of the image w(d) in J(M); therefore dimWr = g, and conse-
quently Wr = J(M) since J(M) is a connected g-dimensional complex mani-
fold.
(iii) If r < g the differential of the Abel-Jacobi mapping is of rank r = dimM (r)

at any general positive divisor d ∈ (M (r) ∼ spM (r)) by Corollary 12.7, so this
mapping is a biholomorphic mapping between an open neighborhood U of d in
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M (r) and its image w(U) ⊂ J(M); thus w(U)is an open subset of Wr that is an
r-dimensional submanifold of J(M), so since Wr is irreducible dimWr = r.
(iv) The set spM (r) is a proper holomorphic subvariety of the connected com-
plex manifold M (r) by Corollary 12.7; and by Remmert’s Proper Mapping The-
orem the image spWr = w(spM (r)) is a holomorphic subvariety of Wr and
dim spWr ≤ dim spM (r) < dimM (r) = dimWr hence spWr is a proper holo-
morphic subvariety of Wr. From Corollary 12.6 it follows that γ(ζd) = 1 for
a divisor d ∈ (M (r) ∼ spM (r)), so there are no other divisors in M (r) that
are linearly equivalent to d; therefore w−1

(
w(d)

)
= d by Abel’s Theorem, and

consequently the restriction of the general Abel-Jacobi mapping to the comple-
ment M (r) ∼ spM (r) is a one-to-one holomorphic mapping between complex
manifolds so must be a biholomorphic mapping. That concludes the proof.

The special case r = g of part (ii) of the preceding theorem shows that
the general Abel-Jacobi mapping w : M (g) −→ J(M) for a compact Riemann
surface M of genus g > 0 is a surjective mapping from the g-fold symmetric
product of the surface M to its Jacobi variety, and consequently that any point
in the Jacobi variety can be represented as the image w(d) of a positive divisor
d of degree g on the surface M ; this result is traditionally known as the Jacobi
Inversion Theorem.

Corollary 12.9 Let M be a compact Riemann surface of genus g > 0.
(i) If M has no special positive divisors of degree r the subvariety Wr ⊂ J(M) is
an r-dimensional complex submanifold of the Jacobi variety J(M) of M and the
general Abel-Jacobi mapping w : M (r) −→ J(M) is a biholomorphic mapping
between the complex manifolds M (r) and Wr.
(ii) For r = 1 the Abel-Jacobi mapping w : M −→ J(M) is a biholomorphic
mapping between M and the complex submanifold W1 = w(M) ⊂ J(M).
(iii) If M is of genus g = 1 the Abel-Jacobi mapping w : M −→ J(M) is a
biholomorphic mapping between M and its Jacobi variety J(M).

Proof: (i) This is an immediate consequence of Theorem 12.8, the special case
in which spM (r) = spWr = ∅.
(ii) This is a special case of (i), since by Corollary 11.6 there are no special
positive divisors of degree 1 on a Riemann surface M of genus g > 0.
(iii) This is a special case of (ii), and that concludes the proof.

An incidental consequence of the preceding corollary is the observation that
if r > g there always exist special positive divisors of degree r on a compact
Riemann surface of genus g > 0; this also could have been deduced from Corol-
lary 11.9, but does not merit further discussion here since more refined results
will be obtained later. The Abel-Jacobi imbedding w : M −→ J(M) of a com-
pact Riemann surface M of genus g > 0 as a submanifold W1 = w(M) ⊂ J(M)
of its Jacobi variety is a very useful concrete representation of the Riemann
surface M . The identification of a compact Riemann surface of genus g = 1
with the complex torus J(M) is the classical way of handling compact Riemann
surfaces of genus g = 1 through the theory of elliptic functions. For a fixed
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base point point z0 ∈ M̃ the images Wr = wz0(M (r)) ⊂ J(M) of the manifolds
of positive divisors when viewed as subvarieties of the Jacobi group are related
to one another in a variety of ways through the group structure on J(M). In
terms of this group structure, for any subsets A, B ⊂ J(M) set

(12.25) A+B =
{
a+ b

∣∣∣ a ∈ A, b ∈ B },
and following Henrik Martens set

(12.26) A	B =
{
t ∈ J(M)

∣∣∣ t+B ⊂ A
}
.

It is convenient to insert here the following useful auxiliary result before exam-
ining these two operations.

Lemma 12.10 If σ is a holomorphic line bundle over a compact Riemann sur-
face M of genus g > 0 and if c(σ) < g − 1 and γ(σζa) > 0 for all points a ∈M
then γ(σ) > 0.

Proof: If to the contrary γ(σ) ≤ 0 it follows from Lemma 2.6 that γ(σζa) = 1 for
all points a ∈M and γ(σ) = 0, so by the Riemann-Roch Theorem γ(κσ−1ζ−1

a ) =
g−1− c(σ) for all a ∈M and γ(κσ−1) = g−1− c(σ) > 0. Thus the line bundle
κσ−1 has nontrivial holomorphic cross-sections and in addition γ(κσ−1ζ−1

a ) =
γ(κσ−1) for all a ∈M . However by Lemma 2.6 again γ(κσ−1ζ−1

a ) = γ(κσ−1) if
and only if all holomorphic cross-sections of κσ−1 vanish at the point a ∈M , so
this equality can hold for at most finitely many points of M ; that contradiction
to conclude the proof.

Theorem 12.11 If M is a compact Riemann surface of genus g > 0 with a
base point z0 ∈ M̃ then for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) the
subvarieties Wr = wz0(M (r)) ⊂ J(M) of the Jacobi group for integers r > 0
satisfy

(i) Wr ⊂Wr+1 and Wg = J(M)
(ii) Wr +Ws = Wr+s

(iii) Wr = W1 +W1 + · · ·+W1 (r terms).

(iv) Wr 	Ws =

 J(M) if r ≥ g,
Wr−s if r < g and r ≥ s,
∅ if r < g and r < s.

Proof: (i) The image under the Abel-Jacobi homomorphism of the point a0 =
π(z0) ⊂ M is the point of the Jacobi group J(M) = Cg/ΩZ2g represented
by the vector wz0(z0) = w(z0, z0) = 0 ⊂ Cg, so is the identity of the Jacobi
group. Therefore wz0(d) = wz0(d) + wz0(a0) = wz0(d + a0) ∈ Wr+1 ⊂ J(M)
for any divisor d ∈M (r) so Wr ⊂Wr+1. It follows from Theorem 12.8 (ii) that
Wg = J(M).

(ii) and (iii) If t1 = wz0(d1) ∈ Wr and t2 = wz0(d2) ∈ Ws, for positive
divisors d1 ∈ M (r) and d2 ∈ M (s), then t1 + t2 = wz0(d1 + d2) ∈ Wr+s so
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Wr+Ws ⊂Wr+s. On the other hand if t = wz0(d) ∈Wr+s for a positive divisor
d ∈M (r+s) then it is possible to write d = d1+d2 where d1 ∈M (r) and d2 ∈M (s)

so t = wz0(d1 + d2) ∈Wr +Ws and consequently Wr+s ⊂Wr +Ws. Altogether
then Wr+s = Wr + Ws, and by iterating this result W1 + · · · + W1 = Wr for r
copies of the subvariety W1.

(iv) If r ≥ g then Wr = J(M) by Theorem 12.8 (ii) so t+Ws ⊂ J(M) = Wr

for all t ∈ J(M) and consequently from the definition (12.25) it follows that
Wr 	 Ws = J(M). If r < g and r < s it follows from Theorem 12.8 that
dimWs = min(s, g) > r = dimWr so no translate t + Ws can be contained
in Wr and consequently Wr 	 Ws = ∅. The interesting case is that in which
s ≤ r < g. If t ∈ Wr−s then it follows from (ii) that t + Ws ⊂ Wr and
consequently that t ∈ Wr 	Ws, so Wr−s ⊂ Wr 	Ws. Any t ∈ J(M) can be
written as the image t = wz0(d) of some divisor d with deg d = r − s, since
the group homomorphism wz0 in the Abel-Jacobi diagram (12.16) is surjective
and its kernel contains divisors of any degree. If t ∈ Wr 	Ws and a ∈ M (s)

then wz0(d + a) = t + wz0(a) ∈ Wr, so wz0(d + a) = wz0(b) for some divisor
b ∈ M (r); and since deg(d + a) = deg b it follows from Abel’s Theorem that
(d + a) ∼ b. The holomorphic line bundles of linearly equivalent divisors are
holomorphically equivalent so ζd ·ζa = ζb; and since b is a positive divisor its line
bundle has nontrivial holomorphic cross-sections, so γ(ζd ·ζa) > 0 for all positive
divisors a ∈ M (s). In particular γ(ζdζa′ζa) > 0 if a = a′ + a for any positive
divisor a′ ∈ M (s−1) and any point a ∈ M , so since c(ζdζa′) = r − 1 < g − 1 it
follows from Lemma 12.10 that γ(ζdζa′) > 0; a repetition of this argument shows
eventually that γ(ζd) > 0 hence that d ∈M (r−s), so t ∈Wr−s and consequently
Wr 	 Ws ⊂ Wr−s. Altogether then Wr 	 Ws = Wr−s, and that suffices to
conclude the proof.

It follows from (iii) of the preceding theorem that all of the subvarieties
Wr ⊂ J(M) are determined just by the submanifold W1 alone. On the other
hand it follows from (iv) of that theorem that W1 = Wg−1 	Wg−2 so W1 in
turn is determined fully by the subvarieties Wg−1 and Wg−2; that is of some
interest since subvarieties of lower codimension are often easier to handle than
subvarieties of higher codimension, and subvarieties of codimension 1 are usually
the easiest to handle. A further significance of (iv) is that the holomorphic
subvarieties Wr ⊂ J(M) admit only trivial translations, in the sense that

(12.27) t+Wr ⊂Wr for r < g if and only if t = 0;

in that way these subvarieties differ significantly from subtori.

12.5 The Subvariety W1 ⊂ J(M)

As the image W1 = wz0(M) of the 2-dimensional compact topological man-
ifold M the subset W1 ⊂ J(M) can be viewed as a singular 2-cycle in the 2g-
dimensional manifold J(M), so it represents a homology class [W1] ∈ H2(J(M))
in the complex torus J(M). When the torus J(M) is described as the quotient
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group J(M) = Cg/Ω Z2g of the vector space Cg by the lattice subgroup gen-
erated by the column vectors ω1, . . . , ω2g of the period matrix Ω, a basis1for
the homology group H2

(
J(M)

)
consists of the homology classes represented by

the singular 2-cycles ωl,m spanned by pairs of column vectors ωl and ωm, and
ωl,m = −ωm,l and ωl,l = 0.

Theorem 12.12 If M is a compact Riemann surface of genus g > 0 with
period matrix Ω and intersection matrix P = {plm} in terms of any bases ωi ∈
Γ(M, O∗(1, 0)) and τj ∈ H1(M), the submanifold W1 ⊂ J(M) represents the
homology class

(12.28) [W1] = 1
2

2g∑
l,m=1

plm ωl,m ∈ H2(J(M)).

Proof: If Π = {πij} is the inverse period matrix to the period matrix Ω, the

differential forms φi =
∑g
k=1

(
πkiωk(z) + πkiωk(z)

)
∈ Γ(M, E1

c ) form a basis for
the deRham group H1(M) dual to the homology basis τj ∈ H1(M) since∫

τj

φi =

g∑
k=1

(πkiωkj + πkiωkj) = δij

by (F.7). The integrals

ti(z, z0) =

∫ z

z0

φi =

g∑
k=1

(
πkiwk(z, z0) + πkiwk(z, z0)

)
for any base point z0 ∈ M̃ are C∞ functions of the variable z ∈ M̃ that describe
a C∞ mapping t̃z0 : M̃ −→ R2g; and ti(Tjz, z0) = ti(z, z0) + δij so the mapping

t̃z0 induces a C∞ mapping

(12.29) tz0 : M = M̃/Γ −→ T = R2g/Z2g

of the Riemann surface M into the standard torus T = (R/Z)2g. Since t̃z0(z) =
tΠw̃z0(z) + tΠw̃z0(z) the mapping tz0 is the composition of the Abel-Jacobi
mapping wz0 : M −→ J(M) and the homeomorphism

(12.30) Π̃ : J(M) −→ T

of (F.15); thus the mapping tz0 is a C∞ imbedding of the surface M as a subman-
ifold tz0(M) ⊂ R2g/Z2g. Since dtk(z, z0) = φk(z) it follows that the differential
form on M induced by the differentials dtk on T under the mapping tz0 is
t∗z0(dtk) = φk; hence

(12.31)

∫
t0(M)

dtk ∧ dtl =

∫
M

φk ∧ φl = pkl

1Some of the topological properties of complex tori are discussed in Appendix F.2.
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in terms of the intersection matrix P = {pkl}. The basis for the homology group
H2(T ) dual to the basis dtk ∧ dtl of the deRham group H2(T ) consists of the
homology classes represented by the singular 2-cycles δk,l spanned by the pairs
of basis vectors δk and δl, where the vectors δi are generators of the lattice
subgroup Z2g ⊂ R2g; consequently it follows from (12.31) that the homology
class represented by the submanifold tz0(M) ⊂ T is

(12.32) [tz0(M)] = 1
2

2g∑
k,l=1

pklδ
k,l ∈ H2(T ).

The real linear mapping Ω : R2g −→ Cg defined by the matrix Ω induces the
homeomorphism Ω : T −→ J(M) inverse to the homeomorphism (12.30) as
in (F.13). The mapping Ω therefore maps the subvariety tz0(M) ⊂ T to the
subvariety W1 = Ω · tz0(M) ⊂ J(M), so the homology class represented by W1

is the corresponding image

[W1] = [Ω · tz0(M)] = Ω · 1
2

∑2g
k,l=1 pklδ

k,l = 1
2

∑2g
k,l=1 pkl · Ωδk,l

of the homology class (12.29) represented by the submanifold tz0(M) ⊂ T ; since
Ωδk,l is the singular 2-cycle spanned by the pairs of basis vectors Ωδk = ωk and
Ωδl = ωl that suffices to conclude the proof.

The preceding result can be extended to yield some information about the
topological properties of other 1-dimensional holomorphic subvarieties of com-
plex tori. If V is a one-dimensional irreducible holomorphic subvariety, possibly
with singularities, in a complex torus T of dimension h > 0, the normalization2

of V is a compact Riemann surface M with a holomorphic mapping n : M −→ V
that is a one-to-one locally biholomorphic mapping except possibly over finitely
many points of V , the singularities of V and some points with finitely many in-
verse images under the mapping n. As the image of a 2-dimensional topological
manifold the subset V ⊂ T can be viewed as a singular 2-cycle so represents a
homology class [V ] ∈ H2(T ). Just as for the Jacobi variety J(M), if the torus
T is described as the quotient T = Ch/Λ Z2h of the vector space Ch by the
lattice subgroup spanned by the columns λ1, . . . λ2h of the period matrix Λ, the
singular 2-cycles λl,m spanned by pairs of column vectors λl and λm represent
a basis for the homology group H2(T ), and λl,m = −λm,l and λl,l = 0.

Theorem 12.13 If V is an irreducible one-dimensional holomorphic subvariety
of an h-dimensional complex torus T = Ch/ΛZ2h and the normalization of V is
a compact Riemann surface M of genus g, then for any basis ωi ∈ Γ(M,O(1,0))
and τj ∈ H1(M) in terms of which Ω is the period matrix and P is the inter-
section matrix of the surface M , the normalization mapping n : M −→ V is
the composition n = f ◦ w of the Abel-Jacobi mapping

w : M −→ J(M) = Cg/ΩZ2g

2Further properties of holomorphic varieties, in particular the existence and nature of
the normalization mapping for one-dimensional holomorphic varieties, are discussed in Ap-
pendix A.3.
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of the Riemann surface M into its Jacobi variety J(M) and a holomorphic
mapping f : J(M) −→ T between these two complex tori. If the mapping f is
described by a Hurwitz relation (A,Q) from the period matrix Ω of the surface
M to the period matrix Λ of the torus T then the homology class represented by
the subvariety V is

(12.33) [V ] = 1
2

2h∑
j,k=1

cjkλ
j,k ∈ H2(T )

where {cjk} = C = QP tQ ∈ Z2h×2h.

Proof: The normalization mapping n : M −→ V is induced by a holomorphic
mapping n : M −→ T from the Riemann surface M into the torus T with image
n(M) = V . By Theorem 3.7 this mapping can be factored as the composition
n = f ◦ w of the Abel-Jacobi mapping w : M −→ J(M) from the Riemann
surface M to its Jacobi variety J(M) = Cg/ΩZ2g and a holomorphic mapping
f : J(M) −→ T from the Jacobi variety J(M) to the complex torus T , where
the mapping f is described up to a translation in T by a Hurwitz relation (A,Q)
from Ω to Λ; the mapping f is induced by the affine mapping f̃(z) = Az+a for
some point a ∈ Ch, and AΩ = ΛQ. The mapping f induces a homomorphism
f∗ : H∗(J(M)) −→ H∗(T ) between the homology groups of these two tori that
takes the homology class represented by the singular 1-cycle carried by the
column ωl of the period matrix Ω to the homology class carried by the singular
cycle described by the linear combination Aωl = AΩδl = Λ Qδl =

∑2h
j=1 λ

jqjl
of the singular 1-cycles carried by the columns of the period matrix Λ, and
correspondingly takes the homology class represented by the singular 2-cycle
ωl,m spanned by the pair of column vectors ωl and ωm to the homology class
represented by the linear combination Aωl,m =

∑2h
j,k=1 λ

j,kqjlqkm of the singular

2-cycles λj,k spanned by the pairs of column vectors λj and λk. By the preceding
theorem the homology class represented by the image W1 = w(M) ⊂ J(M)

is [W1] = 1
2

∑2g
l,m=1 plm ωl,m ∈ H1(J(M); consequently the homology class

represented by the subvariety V = n(M) = f(w(M)) is

[V ] = f∗([W1]) = f∗

 1
2

2h∑
l,m=1

plmω
l,m

 = 1
2

2g∑
l,m=1

2h∑
j,k=1

plmqjlqkmλ
j,k,

which is just (12.33) where cjk =
∑2g
l,m=1 qjlplmqkm, and that suffices for the

proof.

Corollary 12.14 (Matsusaka’s Theorem) A complex torus T = Cg/Λ2g

described by a nonsingular period matrix Λ is biholomorphic to the Jacobi variety
of a compact Riemann surface of genus g if and only if it contains an irreducible
one-dimensional holomorphic subvariety V such that the normalization of V is
a Riemann surface of genus g and the homology class in H2(T ) represented by
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V is

(12.34) [V ] = 1
2

2g∑
j,k=1

cjkλ
j,k ∈ H2(T )

where detC = ±1. The subvariety V is necessarily a nonsingular submanifold
of the complex torus T , and T is biholomorphic to the Jacobi variety J(V ) of
the compact Riemann surface V .

Proof: If a complex torus T contains an irreducible one-dimensional holomor-
phic subvariety V with normalization a compact Riemann surface M of genus
g = dimT such that V represents the homology class (12.34) then by the pre-
ceding theorem there is a holomorphic mapping f : J(M) −→ T described
by a Hurwitz relation (A,Q) from the period matrix Ω to the period matrix Λ
such that the matrix C is given by C = QP tQ. If detC = ±1 then detQ = ±1
as well, since detP = ±1; thus Q ∈ Gl(2g,Z) and the mapping f is biholo-
morphic by Theorem F.9 (ii). That mapping induces a biholomorphic mapping
between M and V , and shows as well that V is imbedded as a submanifold of
T and that T = J(M) = J(V ). Conversely if there is an analytic equivalence
f : J(M) −→ T between the complex torus T and the Jacobi variety J(M) of a
compact Riemann surface M of genus g then Theorem 12.12 exhibits the sub-
variety V = f(W1) as having the desired properties. That suffices to conclude
the proof.

12.6 The Variety of Linear Equivalencence Classes
of Divisors

The general Abel-Jacobi mapping (12.23) fails to be a locally biholomorphic
mapping at the special positive divisors, since by Corollary 12.7 the special pos-
itive divisors are precisely the critical points of that mapping. To examine the
local behavior of the general Abel-Jacobi mapping at such points, consider first
a holomorphic line bundle λ of characteristic class c(λ) = r > 0 over a compact
Riemann surface M of genus g > 0 and a collection {f0, . . . , fν} of linearly
independent holomorphic cross-sections fi ∈ Γ(M, O(λ)); and introduce the
mapping

(12.35) F̃ :
(
Cν+1 ∼ 0

)
−→M (r)

that associates to any nonzero vector t = (t0, . . . , tν) ∈ Cν+1 the divisor

(12.36) F̃ (t) = d(t0f0 + · · ·+ tνfν) ∈M (r).

Since two holomorphic cross-sections of the bundle λ have the same divisor if
and only if they are constant multiples of one another, and the cross-sections
fi are linearly independent, it is evident that the divisor F̃ (t) depends only on
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the point t ∈ Pν represented by the vector (t0, . . . , tν) ∈ Cν+1 and that the
naturally induced mapping

(12.37) F : Pν −→M (r)

is a one-to-one mapping from the complex projective space Pν into the complex
manifold M (r).

Theorem 12.15 (i) If M is a compact Riemann surface of genus g > 0 the
mapping F : Pν −→ M (r) determined by a collection {f0, . . . , fν} of linearly
independent holomorphic cross-sections fi ∈ Γ(M,O(λ)) of a holomorphic line
bundle λ over M with c(λ) = r is a holomorphic mapping. The image of F is
a complex submanifold F (Pν) ⊂ M (r) consisting of linearly equivalent divisors,
and F is a biholomorphic mapping between Pν and its image F (Pν).
(ii) If {f0, . . . , fν} is a basis for Γ(M,O(λ)) the submanifold F (Pν) ⊂ M (r) is
a full linear equivalence class of divisors of degree r on M .
(iii) If the cross-sections f0, . . . , fν are holomorphic functions of additional pa-
rameters in a holomorphic variety V the mapping F : Pν × V −→ M (r) is also
a holomorphic mapping.

Proof: The image of a point c ∈ Pν represented by an arbitrary nonzero vector
(c0, . . . , cν) ∈ Cν+1 can be written as a divisor

F (c) = d0 = n1 · a1 + · · ·+ ns · as ∈M (r)

where ai are distinct points of M . If Ui are disjoint open coordinate neigh-
borhoods of the points ai with local coordinates zi ∈ Ui, then for any point
(t0, . . . , , tν) ∈ Cν+1 sufficiently near the point (c0, . . . , cν) the divisor of the
cross-section t0f0 + · · ·+ tνfν is near the divisor d0 in M (r) so can be written

d(t0f0 + · · ·+ tνfν) =

s∑
i=1

ni∑
k=1

1 · zik

for some points zi,1, . . . , zi,ni ∈ Ui. As in the proof of Theorem 12.5, the values

ζij = zji1 + · · ·+ zjini for 1 ≤ i ≤ s, 1 ≤ j ≤ ni can be taken as local coordinates

in the manifold M (r) in an open neighborhood of the point d0 ∈ M (r). In
terms of these coordinates the mapping F is described by r coordinate functions
ζij(t0, . . . , tr), which by the Cauchy integral formula can be written

ζij(t0, . . . , tr) =
1

2πi

∫
∂Ui

t0f
′
0(zi) + · · ·+ tνf

′
ν(zi)

t0f0(zi) + · · ·+ tνfν(zi)
zji dzi.

This integral clearly is a holomorphic function of the values t0, . . . , tν when-
ever the point (t0, . . . , tν) is sufficiently near the point (c0, . . . , cν) that the
denominator is nonzero on the boundary ∂Ui, so the mapping F is holomor-
phic in an open neighborhood of the point c ∈ Pν ; and if the functions fi are
holomorphic functions of additional parameters in another holomorphic vari-
ety V the integral is also a holomorphic function of these other parameters
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as well, so the mapping F : Pν × V −→ M (r) also is holomorphic. For the
mapping F itself, since Pν is a compact manifold it follows from Remmert’s
Proper Mapping Theorem that the image F (Pν) ⊂M (r) is an irreducible holo-
morphic subvariety of the complex manifold M (r) with dimF (Pν) = ν; and
it was already noted that the mapping F takes distinct points of Pν to dis-
tinct points of M (r). All the divisors in the image F (Pν) ⊂ M (r) are divisors
of holomorphic cross-sections of the same holomorphic line bundle, so all are
linearly equivalent; and from Abel’s Theorem, Theorem 5.10, it follows that
the image of the subset F (Pν) ⊂ M (r) under the general Abel-Jacobi mapping
w : M (r) −→ J(M) is a single point wF = w

(
F (Pν)

)
⊂ J(M). If the cross-

sections fi are a basis for the space Γ(M,O(λ)) the divisors d(t0f0 + · · ·+ tνfν)
for all nonzero vectors (t0, . . . , tν) ∈ Cν+1 are a full linear equivalence class of
divisors so F (Pν) = w−1(wF ); and since rankd0dw = r − ν by Corollary 12.6
the ν-dimensional holomorphic subvariety F (Pν) is a ν-dimensional complex
submanifold of M (r). The mapping F : Pν −→ F (Pν) then is a one-to-one holo-
morphic mapping between two complex manifolds, so must be biholomorphic.
Its restriction to a linear subspace Pµ ⊂ Pν is also a biholomorphic mapping
between Pµ, with the image F (Pµ) ⊂ F (Pν); and since the mappings defined
by an arbitrary set of linearly independent holomorphic cross-sections always
can be obtained by restricting some basis of the space of cross-sections, which
suffices to conclude the proof.

Corollary 12.16 Under the general Abel-Jacobi mapping w : M (r) −→ J(M)
of a compact Riemann surface M of genus g > 0 into its Jacobi variety the
inverse image w−1

(
w(d)

)
⊂ M (r) of any divisor d ∈ M (r) is a complex sub-

manifold of M (r) that is biholomorphic to the complex projective space Pν of
dimension ν = γ(ζd)− 1 and that consists of all those positive divisors of degree
r linearly equivalent to d.

Proof: If d ∈ M (r) and f0, . . . , fν ∈ Γ(M,O(ζd)) is a basis for the space of
holomorphic cross-sections of the line bundle ζd, where ν = γ(ζd) − 1, then by
the preceding theorem the image F (Pν) ⊂ M (r) of the holomorphic mapping
F : Pν −→ M (r) described by these cross-sections is a holomorphic submanifold
of M (r) that is biholomorphic to Pν and that consists of all the positive divisors
linearly equivalent to d. By Abel’s Theorem, Theorem 5.10, this set of divisors
is also the inverse image w−1

(
w(d)

)
, and that suffices for the proof.

By definition (11.19) the special positive divisors in M (r) for a compact
Riemann surface M of genus g > 0 are those divisors for which γ(ζd) − 1 >
max(0, r − g). It then follows from the preceding corollary that the special
positive divisors of degree r ≤ g are precisely those divisors d ∈ M (r) such
that dimw−1(w(d)) > 0. However if r > g then for any divisor d ∈ M (r) the
Riemann-Roch Theorem shows that γ(ζd) − 1 = γ(κζ−1

d ) + r − g ≥ r − g > 0
and consequently that dimw−1(w(d)) ≥ r − g > 0; and d is a special positive
divisor if and only if dimw−1

(
w(d)

)
> r−g. Thus the manifolds M (r) for r > g

always contain nontrivial complex projective spaces as submanifolds, as do the
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manifolds M (r) for r ≤ g so long as there are special positive divisors of degree
r on the surface M . It is perhaps worth noting that all projective subspaces of
M (r) arise precisely in this way.

Corollary 12.17 If M is a compact Riemann surface of genus g > 0 the image
F (Pν) ⊂ M (r) of any holomorphic mapping F : Pν −→ M (r) from a complex
projective into M (r) consists of linearly equivalent divisors in M (r).

Proof: Since complex projective spaces are simply connected the composition
G = w ◦ F : Pν −→ J(M) of the mapping F followed by the general Abel-
Jacobi mapping w : M (r) −→ J(M) can be lifted to a holomorphic mapping
G̃ : Pν −→ Cg from the simply connected compact complex manifold Pν to
the universal covering space Cg of the complex torus J(M) = Cg/ΩZ2g; the
image G̃(Pν) is a compact holomorphic submanifold of Cg so must be a single
point since the coordinate functions in Cg are constant as a consequence of the
maximum modulus theorem; therefore the image (w ◦F )(Pν) is a single point of
the Jacobi variety J(M). It then follows from Abel’s Theorem, Theorem 5.10,
that all the divisors in F (Pν) are linearly equivalent, which suffices for the proof.

Corollary 12.18 If M is a compact Riemann surface of genus g > 0 and if
there are no special positive divisors in M (r) for some r < g then the com-
plex manifold M (r) contains no rational curves, no holomorphic images of the
projective space P1 under a nonconstant holomorphic mapping F : P1 −→M (r).

Proof: By the preceding Corollary 12.17 the image F (P1) ⊂ M (r) of a holo-
morphic mapping from the complex projective space P1 into M (r) consists of
linearly equivalent divisors; and if the mapping F is nonconstant this set consists
of more than one divisor. If d is one of these divisors then by Corollary 12.16
the set of all divisors linearly equivalent to d form a complex projective space
Pν of dimension ν = γ(ζd) − 1. Since there are at least two such divisors it
must be the case that ν > 0, and consequently that γ(ζd) − 1 > 0; and since
deg d = r < g it is a consequence of the definition (11.19) that the divisor d is a
special positive divisor in M (r). That contradicts the assumption, and thereby
concludes the proof.

12.7 The Subvarieties Gν
r and W ν

r

The divisors in the subvarieties spM (r) ⊂ M (r) of special positive divisors
can be grouped according to the extent to which they are special, that is, ac-
cording to the extent to which γ(ζd) − 1 exceeds the value max(0,deg d − g).
With a slight modification of the classical notation set

(12.38) Gνr =
{
d ∈M (r)

∣∣∣ γ(ζd)− 1 ≥ ν
}

for r > 0 and ν ∈ Z.
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For Riemann surfaces of genus g > 0 with bases ωi ∈ Γ(M,O(1,0)) and τj ∈
H1(M) it follows from Corollary 12.6 that (12.38) is equivalent to either of the
alternative characterizations

(12.39) Gνr =


{
d ∈M (r)

∣∣∣ rankddw ≤ r − ν
}
,

{
d ∈M (r)

∣∣∣ rank Ω(d) ≤ r − ν
}
,

for r > 0 and ν ∈ Z,

where w : M (r) −→ J(M) is the general Abel-Jacobi mapping and Ω(d) is
the Brill-Noether matrix at the divisor d. In the classical terminology a divisor
d ∈ Gνr is called simply a gνr .

Theorem 12.19 If M is a compact Riemann surface of genus g > 0 the subsets
Gνr ⊂M (r) for r > 0 and ν ∈ Z are holomorphic subvarieties.

Proof: In view of the first alternative characterization in (12.39), the subset
Gνr ⊂ M (r) consists of those points of the compact complex manifold M (r) at
which all the (r − ν + 1) × (r − ν + 1) subdeterminants of the differential dw
of the general Abel-Jacobi mapping vanish. The differential is a g × r matrix
of holomorphic functions in a coordinate neighborhood of the complex manifold
M (r), so the subdeterminants are well defined local holomorphic functions and
their zeros consequently form a holomorphic subvariety of M (r). That suffices
for the proof.

For convenience the following is a list of some useful general properties of
the subvarieties Gνr .

Theorem 12.20 If M is a compact Riemann surface of genus g > 0 the holo-
morphic subvarieties Gνr ⊂M (r) for r > 0 satisfy

(i) Gν+1
r ⊂ Gνr ,

(ii) Gνr = M (r) for ν ≤ max(0, r − g),

(iii) Gνr =

{
M (r) for ν ≤ r − g
∅ for ν > r − g

}
if r ≥ 2g − 1,

(iv) G
1+max(0,r−g)
r = spM (r) for any r > 0.

Proof: It is clear from the definition (12.38) that the defining conditions for
these subvarieties are increasingly restrictive as ν increases, which yields (i).
Of course γ(ζd) − 1 ≥ 0 for every positive divisor d, and it follows from the
Riemann-Roch Theorem that γ(ζd)−1 = γ(κζ−1

d ) +r−g ≥ r−g for any divisor
d ∈ M (r); thus γ(ζd) − 1 ≥ max(0, r − g) for every positive divisor d ∈ M (r),
which yields (ii). If r ≥ 2g− 1 it follows from the Riemann-Roch Theorem that
γ(ζd)− 1 = γ(κζ−1

d ) + r− g = r− g for any divisor d ∈M (r), which yields (iii).

If d ∈M (r) then d ∈ G1+max(0,r−g)
r precisely when γ(ζd)− 1 ≥ 1 + max(0, r− g)

by (12.38), and that is just the condition that d is a special positive divisor as
defined in (11.19). That suffices to conclude the proof.
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The characterization of special positive divisors in (iv) of the preceding the-
orem is perhaps most easily remembered in the form

(12.40) spM (r) =

 G1
r for 1 ≤ r ≤ g,

Gr−g+1
r for r ≥ g.

For Riemann surfaces of genus g > 0 it follows from Theorem 2.4 that γ(ζp) = 1
and hence G1

1 = ∅, while it follows from (ii) of the preceding theorem that
G0

1 = M ; this observation together with (iii) of the preceding theorem show
that the interesting range for the more detailed investigation of the subvarieties
Gνr is 2 ≤ r ≤ 2g − 2, which is also the interesting range for the Riemann-Roch
Theorem. The restriction of the Abel-Jacobi diagram (12.16) of Theorem 12.2
to the subvarieties Gνr ⊂ Γ(M,D) can be used to introduce corresponding sub-
varieties of the complex tori J(M) and Pr(M).

Theorem 12.21 For any compact Riemann surface M of genus g > 0 the set
(Gνr/ ∼) of linear equivalence classes of divisors in the holomorphic subvariety
Gνr ⊂ M (r) can be given the structure of a holomorphic variety so that for any
bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and for any base point z0 ∈ M̃ with
image a0 = π(z0) ∈M there is a commutative diagram of holomorphic mappings

(12.41)

W ν
r ⊂ J(M)

(Gνr/ ∼)-Gνr Ŵ ν
r ⊂ Pr(M)

for r > 0.

-

H
HHj

�
���

ζ̂

ŵz0 φ̂a0

ψ

The mappings ζ̂, ŵz0 and φ̂a0
are biholomorphic, while the mapping ψ is sur-

jective and the inverse image of any point of (Gνr/ ∼) under the mapping ψ is
a holomorphic subvariety of Gνr that is biholomorphic to a complex projective
space Pν .

Proof: The restriction of the Abel-Jacobi diagram (12.16) of Theorem 12.2 to
the subset Gνr ⊂ Γ(M,D) yields the commutative diagram of mappings (12.41)

in which Ŵ ν
r = ζ̂(Gνr/ ∼) ⊂ Pr(M) and W ν

r = ŵz0(Gνr/ ∼) ⊂ J(M) for the

mappings ζ̂ and ŵz0 as in (12.15). Since wz0 = ŵz0 ◦ ψ the subset W ν
r ⊂ J(M)

can be described alternatively as the image W ν
r = wz0(Gνr ) of the holomorphic

variety Gνr under the proper holomorphic mapping wz0 : M (r) −→ J(M); so by
Remmert’s Proper Mapping Theorem W ν

r is a holomorphic subvariety of the
Jacobi variety J(M). All the divisors in Gνr are of degree r so it follows from
Abel’s Theorem, Corollary 5.10, that two divisors in Gνr have the same image
under the mapping wz0 if and only if they are linearly equivalent; consequently
the mapping ŵz0 is a one-to-one mapping. This mapping then can be used to
identify the set (Gνr/ ∼) with the holomorphic variety W ν

r , and thereby to deter-
mine the structure of a holomorphic variety on (Gνr/ ∼) for which the mapping
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ŵz0 is biholomorphic. The restriction of the mapping φ̂a0 in the Abel-Jacobi
diagram (12.16) to the subset Pr(M) ⊂ H1(M,O∗) is a biholomorphic mapping
between the complex tori Pr(M) and J(M) by Theorem 12.2; and through this

biholomorphic mapping the set Ŵ ν
r = φ̂−1

a0
(W ν

r ) receives the structure of a holo-
morphic subvariety of Pr(M) that is biholomorphic to the variety W ν

r . It then

follows from the commutativity of the diagram (12.41) that the mapping ζ̂ also
is a biholomorphic mapping. The inverse image under w̃z0 ◦ ψ of any point of
J(M) is a complex submanifold of M (r) that is biholomorphic to the complex
projective space Pν by Corollary 12.16, and it is contained in Gνr by definition
of that subset; and since w̃z0 is a biholomorphic mapping it follows that the
inverse image under ψ of any point of (Gνr/ ∼) is a complex submanifold of
Gνr that is biholomorphic to the complex projective space Pν , which suffices to
conclude the proof.

The commutative diagram (12.41) is called the restricted Abel-Jacobi dia-
gram. Since the variety Ŵ ν

r ⊂ Pr(M) can be characterized as the set of line
bundles ζd of the divisors d ∈ Gνr ⊂M (r) it is evident from the definition (12.38)
that it can be described alternatively as

(12.42) Ŵ ν
r =

{
λ ∈ Pr(M)

∣∣∣ γ(λ)− 1 ≥ ν
}
⊂ Pr(M).

This holds initially for all ν but only for r > 0, for which the subvarieties Gνr are
defined; but (12.42) can be used to define subsets Ŵ ν

r ⊂ Pr(M) for arbitrary

integers ν and r, and then through the biholomorphic mapping φ̂a0
these in

turn determine subsets W ν
r ⊂ J(M) for arbitrary ν and r. For the extended

range r ≤ 0 the sets so defined are also holomorphic subvarieties, but the rather
simple ones

(12.43) Ŵ ν
r =


Pr(M) for r ≤ 0 and ν < 0,
∅ for r < 0 and ν ≥ 0,
∅ for r = 0 and ν > 0,
1 for r = 0 and ν = 0,

where 1 ∈ Pr(M) is the trivial line bundle, and

(12.44) W ν
r =


J(M) for r ≤ 0 and ν < 0,
∅ for r < 0 and ν ≥ 0,
∅ for r = 0 and ν > 0,
0 for r = 0 and ν = 0,

where 0 ∈ J(M) is the identity element of the Jacobi group J(M). For many
purposes it is more convenient to focus on the subvarieties W ν

r ⊂ J(M) since
all of them are contained in the same complex manifold J(M), even though
there is no direct characterization of them comparable to the characterization
of the subvarieties Ŵ ν

r ⊂ Pr(M) in (12.42). For convenience a list of some useful
general properties of these subvarieties is included here.
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Theorem 12.22 If M is a compact Riemann surface of genus g > 0 then for
any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and any base point z0 ∈ M̃ with
image a0 = π(z0) ∈ M the holomorphic subvarieties W ν

r ⊂ J(M) of the Jacobi
group J(M) satisfy

(i) W 0
r = Wr for r > 0,

(ii) W ν
r ⊂W ν

r+1 for all r, ν,
(iii) W ν+1

r ⊂W ν
r for all r, ν,

(iv) W ν
r = J(M) for ν ≤ max(−1, r − g) and all r,

(v) W ν
r =

{
J(M) for ν ≤ r − g
∅ for ν > r − g

}
if r ≥ 2g − 1.

Proof: From the restricted Abel-Jacobi diagram (12.41) it follows that W 0
r =

w̃z0
(
ψ(G0

r)
)

= wz0(G0
r) for r > 0; and G0

r = M (r) by Theorem 12.20 (ii) so

W 0
r = wz0(M (r)) = Wr, as the latter set was defined in Theorem 12.8, thus

demonstrating (i). If t ∈ W ν
r then t = φ̂a0

(λ) for some line bundle λ ∈ Ŵ ν
r ,

as in the restricted Abel-Jacobi diagram (12.41), and c(λ) = r while γ(λ) −
1 ≥ ν; then c(λζa0

) = r + 1 and γ(λζa0
) − 1 ≥ γ(λ) − 1 ≥ ν by Lemma 2.6

so λζa0 ∈ Ŵ ν
r+1, and from the commutativity of the restricted Abel-Jacobi

diagram (12.41) it follows that φ̂a0
(ζa0

) = φ̂a0

(
ζ̃(a0)

)
= w̃z0(a0) = 0 ∈ J(M)

so t = φ̂a0
(λζa0

) ∈ φ̂a0
(Ŵ ν

r+1) = W ν
r+1, which demonstrates (ii). The defining

conditions (12.42) clearly are more restrictive as ν increases, and that yields
(iii). Of course γ(λ) − 1 ≥ −1 for any line bundle λ, and it follows from the
Riemann-Roch Theorem that γ(λ) − 1 = γ(κλ−1) + r − g ≥ r − g if c(λ) = r;
thus γ(λ) ≥ max(−1, r−g) for any line bundle λ ∈ Pr(M), and that yields (iv).
Finally if r ≥ 2g − 1 then γ(λ) > 0 so λ = ζd for a positive divisor d and (v)
then follows from Theorem 12.20 (iii), which concludes the proof.

It is perhaps worth pointing out, to avoid its being overlooked, that the result
of part (iv) of the preceding theorem differs slightly from the corresponding
result in part (ii) of Theorem 12.20, reflecting the facts that γ(ζd) ≥ 1 for
all positive divisors d while γ(λ) = 0 for line bundles λ that are not the line
bundles of positive divisors. The point of including the rather trivial observation
(i) is just to indicate explicitly that the subvarieties Wr ⊂ J(M) introduced in
Theorem 12.8 are included among the more extended class of subvarieties W ν

r .
In addition to the subvarieties W ν

r ⊂ J(M) it is useful to consider explicitly
their negatives

(12.45) −W ν
r =

{
− t ∈ J(M)

∣∣∣ t ∈W ν
r

}
.

The holomorphic subvariety −W ν
r ⊂ J(M) is biholomorphic to the holomorphic

subvariety W ν
r ⊂ J(M) under the biholomorphic mapping of the Jacobi group

to itself that takes a point t ∈ J(M) to its inverse −t ∈ J(M). The negative
varieties −W ν

r can be identified with translates of positive varieties Wµ
s through

a relation that is equivalent to the Riemann-Roch Theorem.
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Theorem 12.23 (Riemann-Roch Theorem) If M is a compact Riemann
surface M of genus g > 0 then for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M)

and any base point z0 ∈ M̃

(12.46) k −W ν
r = W ν+g−1−r

2g−2−r for all r, ν,

where k = φ̂a0
(κ) ∈ J(M) is the image of the canonical bundle κ in the Jacobi

group.

Proof: If λ ∈ Ŵ ν
r , so that c(λ) = r and γ(λ)−1 ≥ ν, then c(κλ−1) = 2g−2−r

and it follows from the Riemann-Roch Theorem that

γ(κλ−1)− 1 = γ(λ)− 1 + g − 1− c(λ) ≥ ν + g − 1− r

so that κλ−1 ∈ Ŵ ν+g−1−r
2g−2−r ; and the same argument shows conversely that any

line bundle λ ∈ Ŵ ν+g−1−r
2g−2−r can be written as the product κλ−1 for some line

bundle λ ∈ Ŵ ν
r . These observations are equivalent to (12.46) through the iso-

morphism φ̂a0
in the restricted Abel-Jacobi diagram (12.41), and that concludes

the proof.

The simplest special cases of the preceding theorem are the identities

(12.47) k −W ν
g−1 = W ν

g−1 for all ν,

where again k = φ̂a0
(κ) ∈ J(M) is the image of the canonical bundle κ in the

Jacobi group. When expressed in terms of line bundles through the restricted
Abel-Jacobi diagram (12.41) this is merely the observation that if λ ∈ Pg−1(M)
and γ(λ) − 1 ≥ ν then γ(κλ−1) − 1 ≥ ν as well, an immediate consequence
of the Riemann-Roch Theorem. Another set of translation relations provides
an extension of the result of Theorem 12.11 expressed in terms of the Martens
difference operation (12.26).

Theorem 12.24 If M is a compact Riemann surface M of genus g > 0 then
for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and any base point z0 ∈ M̃ the
holomorphic subvarieties Wr ⊂ J(M) of the Jacobi group satisfy

(12.48) Wr 	 (−Ws) =

 J(M) if r, s > 0 and r ≥ g,

W s
r+s if r, s > 0 and r < g.

Proof: Of course if r ≥ g then Wr = J(M) and t−Ws ⊂ J(M) = Wr for any
t ∈ J(M), so that Wr 	 (−Ws) = J(M). Any t ∈Wr 	 (−Ws) ⊂ J(M) can be

written as the image t = φ̂a0
(λ) of a holomorphic line bundle λ ∈ Pr+s, since the

group homomorphism φ̂a0 in the Abel-Jacobi diagram (12.16) is surjective and
its kernel contains line bundles of any characteristic class. The condition that
t ∈ Wr 	 (−Ws), or equivalently that t −Ws ⊂ Wr, when expressed in terms
of the associated line bundle λ is the condition that λσ−1 ∈ Ŵr = Ŵ 0

r for any
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line bundle σ ∈ Ŵs; and if r < g that is just the condition that γ(λσ−1)−1 ≥ 0
for any line bundle σ ∈ Ŵs, or equivalently that γ(λζ−1

a1
· · · ζ−1

as ) − 1 ≥ 0 for
any points ai ∈ M , since the line bundles σ ∈ Ws can be written as products
σ = ζa1

· · · ζas for points ai ∈ M . Of course then γ(λ) > 0; if γ(λ) = n > 0
and f1, . . . , fn ∈ Γ(M,O(λ)) is a basis for the holomorphic cross-sections of the
bundle λ, choose s points ai ∈M such that fi(ai) 6= 0 for 1 ≤ i ≤ min(s, n). If
n ≤ s then none of the cross-sections f1, . . . , fn can vanish at all of the points
ai and hence γ(λζ−1

a1
· · · ζ−1

as ) = 0, a contradiction; therefore n > s so γ(λ) > s

or equivalently γ(λ) − 1 ≥ s, hence λ ∈ Ŵ s
r+s and t ∈ W s

r+s, showing that

Wr 	 (−Ws) ⊂ W s
r+s. Conversely if t ∈ W s

r+s and t = φ̂a0
(λ) for a line bundle

λ ∈ Ŵ s
r+s then γ(λ) − 1 ≥ s. For any line bundle σ = ζa1

· · · ζas ∈ Ps(M) it
follows from Lemma 2.6 that γ(λσ−1) = γ(λζ−1

a1
· · · ζ−1

as ) ≥ γ(λ)− s > 0, hence

λσ−1 ∈ Ŵ 0
r = Wr so t − φ̂a0(σ) ∈ Wr; since the points φ̂a0(σ) ⊂ J(M) form

the subvariety Ws ⊂ J(M) it follows that t −Ws ⊂ Wr so t ∈ Wr 	 (−Ws)
and consequently W s

r+s ⊂Wr 	 (−Ws). Altogether then W s
r+s = Wr 	 (−Ws),

which concludes the proof.

Corollary 12.25 If M is a compact Riemann surface of genus g > 0 then

(12.49) Gνr = Ŵ ν
r = W ν

r = ∅

 if ν ≥ r for any r > 0, or

if ν > r
2 for 0 < r ≤ 2g − 2.

Proof: Since g > 0 it follows from Theorem 2.7 that γ(λ) − 1 < c(λ) for
every holomorphic line bundle λ over M with c(λ) > 0 , so Ŵ ν

r = ∅ whenever
ν ≥ r > 0. Since the varieties Ŵ ν

r and W ν
r are biholomorphic, as in the

restricted Abel-Jacobi diagram (12.41), it is also the case that W ν
r = ∅ whenever

ν ≥ r > 0; and since the general Abel-Jacobi mapping wz0 : Gνr −→ W ν
r in the

restricted Abel-Jacobi diagram (12.41) is surjective it follows that Gνr = ∅ also
whenever ν > r > 0. Therefore Gνr = Ŵ ν

r = W ν
r = ∅ whenever ν ≥ r >

0. If r < g and r > ν > r
2 > 0 then ν > r − ν > 0 and it follows from

Theorem 12.8 (iii) that dimWν = ν > r − ν = dimWr−ν ; consequently there
are no points t ∈ J(M) for which t−Wν ⊂Wr−ν , so by the preceding theorem
W ν
r = Wr−ν	(−Wν) = ∅, and of course the same is true for the varieties Ŵ ν

r and
Gνr as before. If g ≤ r ≤ 2g−2 and r > ν > r

2 > 0 it follows from Theorem 12.23
that the varieties W ν

r and Wµ
s are biholomorphic, where µ = ν + g − 1− r and

s = 2g − 2 − r. Since r ≥ g it follows that s < g, since r < 2g − 2 it follows
that s > 0, and since 2ν > r it follows that 2µ− s = 2ν− r > 0; thus altogether
s < g and µ > s

2 > 0. If s ≥ µ the first condition in (12.49) is satisfied and

consequently Wµ
s = Gνr = Ŵ ν

r = W ν
r = ∅; and if s < µ it follows from what

has already been demonstrated that Wµ
s = Gνr = Ŵ ν

r = W ν
r = ∅. Finally if

λ is a holomorphic line bundle for which c(λ) = 2g − 2 then it follows from
the Riemann-Roch Theorem that γ(λ) = γ(κλ−1) + c(λ) + 1 − g ≤ g, since
c(κλ−1) = 0 so γ(κλ−1) ≤ 1; consequently W ν

2g−2 = ∅ whenever ν > (g − 1),
and correspondingly of course for W ν

2g−2 and W ν
2g−2, which suffices to conclude

the proof.
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The stronger result in (12.49) holds just for indices r in the indicated range,
the usual interesting range 0 < r ≤ 2g − 1; for if c(λ) > 2g − 2 then γ(λ) =
c(λ) + 1− g by the Riemann-Roch Theorem so

(12.50) 1 ≥ γ(λ)

c(λ)
= 1− g − 1

c(λ)
>

1

2
if c(λ) > 2g − 2.

The results in (12.49) are the best possible for all Riemann surfaces, as will
be demonstrated in the discussion of the Brill-Noether sequence in Chapter 11.
Some further useful properties of the subvarieties of special positive divisors
follow from an extension of Theorem 12.24, which in turn follows from an ap-
plication of the following simple lemma.

Lemma 12.26 For any subsets A,B,C ⊂ J(M) of a complex torus J(M)

(12.51) (A	B)	 C = A	 (B + C).

Proof: It is evident from the definition (12.26) of the Martens difference oper-
ator that t ∈ (A	B)	 C if and only if t+ C ⊂ (A	B), that is if and only if
(t+C) +B ⊂ A, which is just the condition that t ∈ A	 (B+C). That suffices
for the proof.

Theorem 12.27 If M is a compact Riemann surface M of genus g > 0 then
for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and any base point z0 ∈ M̃
with image a0 = π(z0) ∈ M the holomorphic subvarieties W ν

r ⊂ J(M) of the
Jacobi group satisfy
(i) W ν

r 	Ws = W ν
r−s if r > ν > 0 and g > r − ν > s > 0,

(ii) W ν
r 	 (−Ws) = W ν+s

r+s if r > ν > 0, s > 0 and r − ν < g.

Proof: If r > ν > 0 and g > r − ν > s > 0 it follows from Theorem 12.24 that
W ν
r = Wr−ν 	 (−Wν) and further that

W ν
r 	Ws =

(
Wr−ν 	 (−Wν)

)
	Ws

= Wr−ν 	
(
(−Wν) +Ws

)
by Lemma 12.26

= Wr−ν 	
(
Ws + (−Wν)

)
by rearranging the sum

= (Wr−ν 	Ws)	 (−Wν) by Lemma 12.26

= Wr−ν−s 	 (−Wν) by Theorem 12.11 (iv)

= W ν
r−s by Theorem 12.24,

which demonstrates (i). If r > ν > 0, s > 0 and r − ν < g then

W ν
r 	 (−Ws) =

(
Wr−ν 	 (−Wν)

)
	 (−Ws)

= Wr−ν 	
(
(−Wν) + (−Ws)

)
by Lemma 12.26

= Wr−ν 	 (−Wν+s) by Theorem 12.11 (ii)

= W ν+s
r+s by Theorem 12.24,
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which demonstrates (ii) and concludes the proof.

There is another approach to the Abel-Jacobi mapping itself that is rele-
vant to the discussion here. The Abel-Jacobi mapping wz0 : M −→ J(M) is
defined as the mapping induced by the holomorphic mapping w̃z0 : M̃ −→ Cg
that associates to a point z ∈ M̃ the point w̃z0(z) = {wi(z, z0)} ∈ Cg, where
wi(z, z0) =

∫ z
z0
ωi for a basis ωi ∈ Γ(M,O(1,0))); and as such it depends on the

choice of the base point z0 ∈ M̃ . On the other hand there is also the mapping

(12.52) w2 : M ×M −→ J(M)

induced by the holomorphic mapping

(12.53) w̃2 : M̃ × M̃ −→ Cg

that associates to a point (z1, z2) ∈ M̃ × M̃ the point

(12.54) w̃2(z1, z2) = {wi(z1, z2)} ∈ Cg.

That the mapping (12.53) induces a mapping (12.52) follows just as for the
ordinary Abel-Jacobi mapping; alternatively since w2(z1, z2) = wz0(z1)−wz0(z2)
it follows that w2(a1, a2) = wz0(a1)−wz0(a2) for any points a1, a2 ∈M and any
choice of a base point z0 ∈ W̃ . The mapping w2 is more intrinsically defined
than the general Abel-Jacobi mapping wz0 , since the definition of w2 does not
depend on the choice of a base point z0 ∈ M̃ ; and the image of the mapping w2

is the intrinsically defined subset

(12.55) W1 −W1 = W1 + (−W1) =
{
t1 − t2

∣∣∣ t1, t2 ∈W1

}
⊂ J(M),

which as the image of the proper holomorphic mapping (12.52) is a holomorphic
subvariety of the Jacobi group J(M) by Remmert’s Proper Mapping Theorem.

Theorem 12.28 If M is a compact Riemann surface of genus g > 2 and M
has no special positive divisors of degree 2, the holomorphic mapping w2 takes
the diagonal subvariety

(12.56) ∆ =
{

(z, z)
∣∣∣ z ∈M }

⊂M ×M

to the identity 0 ∈ J(M) and restricts to a biholomorphic mapping

(12.57) w2 : (M ×M) ∼ ∆ −→ (W1 −W1) ∼ 0.

Proof: It is clear from the definition that w̃2(z, z) = {wi(z, z)} = 0 ∈ Cg for
any point z ∈ M̃ and consequently that w2(∆) = 0. If w2(a1, a2) = w2(b1, b2) for
two points (a1, a2), (b1, b2) ∈M×M then wz0(a1)−wz0(a2) = wz0(b1)−wz0(b2)
and consequently

wz0(a1 + b2) = wz0(b1 + a2);
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and since there are no special divisors of degree 2 on the Riemann surface M
it follows from Corollary 12.9 (i) that a1 + b2 = b1 + a2. Thus either a1 = a2

and b1 = b2, so the two points points (a1, a2), (b1, b2) lie on the diagonal ∆,
or a1 = b1 and a2 = b2, so (a1, a2) = (b1, b2); and therefore the restriction of
the mapping w2 to the complement of the diagonal is a one-to-one mapping
onto (W1 −W1) ∼ 0 and w−1

2 (0) = ∆. If a1 6= a2 and zα1 and zα2 are local
coordinates centered at the points a1 and a2 respectively then (zα1, zα2) is a
local coordinate system in an open neighborhood of the point (a1, a2) in M×M ,
in terms of which the mapping (12.57) has the local form

w2 : (zα1, zα2) −→ w(zα1, z0)− w(zα2, z0) ∈ Cg;

the differential of this mapping then is the 2× g matrix

dw2(zα1, zα2) =

(
∂w(zα1, z0)

∂zα1
−∂w(zα2, z0)

∂zα2

)
,

and clearly rank dw2(zα1, zα2) = rank Ω(zα1 + zα2) in terms of the Brill-
Noether matrix (11.10) of the divisor zα1 + zα2. On the other hand

rank Ω(zα1 + zα2) = 3− γ(ζzα1+zα2)

by the Riemann-Roch Theorem in the form of Theorem 11.3 while γ(ζzα1+zα2) =
1 since the Riemann surface M has no special positive divisors of degree 2 by
assumption, so rank dw2(zα1, zα2) = 2 and therefore the mapping w2 is locally
biholomorphic near the point (a1, a2) ∈M ×M . That suffices for the proof.

Corollary 12.29 If M is a compact Riemann surface M of genus g > 0 then
for any bases ωi ∈ Γ(M,O(1,0)) and τj ∈ H1(M) and any base point z0 ∈ M̃
with image a0 = π(z0) ∈ M the holomorphic subvarieties W ν

r ⊂ J(M) of the
Jacobi group satisfy

(12.58) W ν
r 	 (W1 −W1) = W ν+1

r if 0 < ν < r and 1 < r − ν < g.

Proof: If g > r − ν > 1 then

W ν
r 	 (W1 −W1) = (W ν

r 	W1)	 (−W1) by Lemma 12.26

= W ν
r−1 	 (−W1) by Theorem 12.27 (i)

= W ν+1
r by Theorem 12.27 (ii),

and that suffices for the proof.

Corollary 12.30 On a compact Riemann surface M of genus g > 0 the holo-
morphic subvariety W ν+1

r ⊂W ν
r is contained in the singular locus of the subva-

riety W ν
r if 0 < ν < r and 1 < r − ν < g.
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Proof: In an open neighborhood U ⊂ J(M) of a point t ∈ W ν
r the subvariety

W ν
r is the zero locus of a finite number of holomorphic functions fi ∈ Γ(U,O),

which also generate the ideal of that subvariety at any point in U . It follows
from the preceding corollary that if t ∈ W ν+1

r then t + W1 −W1 ⊂ W ν
r , and

consequently

(12.59) fi
(
t+ w̃(z)− w̃(a)

)
= 0

for any points z, a ∈ M sufficiently close that t + w̃(z) − w̃(a) ∈ U . The
differential of the function (12.59) with respect to the variable z ∈M therefore
vanishes identically in z, so in particular for any point a ∈ U and for z = a

(12.60) 0 = dfi
(
t+ w̃(z)− w̃(a)

)∣∣∣
z=a

=

g∑
j=1

∂jfi(t)ωj(a)

in terms of the holomorphic abelian differentials ωj(a). These holomorphic
abelian differentials are linearly independent, so (12.60) implies that ∂jfi(t) = 0
for all i, j; that implies that the point t lies in the singular locus of the subvariety
W ν
r defined by the functions fi, which suffices for the proof.



Chapter 13

The General Cross-Ratio
Function

13.1 The Product Cross-Ratio Function

PRELIMINARY VERSION Another approach to the Abel-Jacobi mapping
is through an application of the cross-ratio function defined in (5.23). By Theo-
rem 5.6 the intrinsic cross-ratio function for a compact Riemann surface M with
the universal covering surface M̃ is the meromorphic function q(z, a; z+, z−) on

the product M̃4 that as a function of the variable z ∈ M̃ is meromorphic on
M̃ , takes the value 1 at the point z = a, has simple zeros at the points Tz+

and simple poles at the points Tz− for all covering translations T ∈ Γ, and is a
meromorphic relatively automorphic function for the flat factor of automorphy
ρt(z+,z−). In terms of a basis ωi(z) ∈ Γ(M,O((1,0)) and the generators Tj ∈ Γ of
the covering translation group of M this factor of automorphy has the explicit
form

(13.1) ρz+,z−(T ) = exp−2π

g∑
m,n=1

wm(z+, z−)gmnωn(T )

for any covering translation T ∈ Γ, where wm(z+, z−) =
∫ z+

z−
ωm are the in-

tegrals of the abelian differentials, ωn(T ) is the period of the abelian differ-
ential ωn(z) on the covering translation T , P is the intersection matrix and
G = tH−1 for the positive definite Hermitian matrix H = iΩP tΩ for the
period matrix Ω = {ωij} = {ωi(Tj)}. For any two ordered sets of r points

A+ = {a+
1 , a

+
2 , . . . , a

+
r } and A− = {a−1 , a

−
2 , . . . , a

−
r } on M̃ the product cross-

ratio function of degree r is defined to be the meromorphic function

(13.2) Q(z, a;A+, A−) =

r∏
ν=1

q(z, a; a+
ν , a

−
ν ).

341
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As a function of the variable z ∈ M̃ this is a relatively automorphic function
for the flat factor of automorphy

ρA+,A−(T ) =

r∏
ν=1

ρa+
ν ,a
−
ν

(T )(13.3)

= exp−2π

g∑
m,n=1

r∑
ν=1

wm(a+
ν , a

−
ν )gmnωn(T ).

The divisor of the relatively automorphic function Q(z, a;A+, A−) of the vari-

able z ∈ M̃ is

(13.4) dQ(z, a;A+, A−) = d+ − d− where d+ =

r∑
ν=1

π(a+
ν ) , d+ =

r∑
ν=1

π(a−ν )

where π : M̃ −→M is the universal covering projection.

Lemma 13.1 There is a meromorphic function on the compact Riemann sur-
face M with the divisor d+ − d− if and only if there is a holomorphic abelian
differential ω(z) on M with the period class ω(T ) for which

(13.5) ρA+,A−(T ) = expω(T );

if that condition is satisfied then for any integral w(z) =
∫ z
z0
ω

(13.6) f(z) = Q(z, a;A+, A−)e−w(z)

is the unique meromorphic function on M with the divisor d+ − d−, up to an
arbitrary nonzero constant factor.

Proof: If there is a meromorphic function f(z) on the Riemann surface M
with the divisor d = d+ − d− then the quotient Q(z, a;A+, A−)/f(z) is a holo-
morphic and nowhere vanishing relatively automorphic function for the flat
factor of automorphy ρA+,A− ; consequently that factor of automorphy repre-
sents the trivial holomorphic line bundle, so as in Corollary 3.10 it has the
form ρA+,A−(T ) = expω(T ) where ω(T ) is the period class of a holomorphic
abelian differential ω(z). Conversely if ρA+,A−(T ) = expω(T ) for the period
class of the holomorphic abelian differential ω(z) and if w(z) =

∫ z
z0
ω then

f(z) = Q(z, a;A+, A−) exp−w(z) is a relatively automophic function for the
factor of automorphy ρA+,A−(T ) exp−ω(T ) = 1 with the divisor d+ − d−; any
meromorphic function on M with this divisor of course is a constant multiple
of the function f(z), and that suffices for the proof.

This simple lemma leads directly to the following rather more explicit for-
mulation of Abel’s Theorem than that given earlier in Corollary 5.10.

Theorem 13.2 Let M be a compact Riemann surface of genus g > 0, let Ω be
the period matrix of M in terms of a basis ωi(z) ∈ Γ(M,O((1,0)) and generators
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Tj of the covering translation group Γ, let w̃z0 : M̃ −→ Cg be the holomorphic

mapping described by the integrals wi(z, z0) =
∫ z
z0
ωi, and let π : M̃ −→M be the

universal covering space of the surface M . Further let d+ and d− be two positive
divisors of degree r on M given by d+ =

∑r
ν=1 π(a+

ν ) and d− =
∑r
ν=1 π(a−ν )

where A+ = {a+
1 , a

+
2 , . . . , a

+
r } and A− = {a−1 , a

−
2 , . . . , a

−
r } are two ordered sets

of points of M̃ .
(i) The necessary and sufficient condition that there exists a meromorphic func-
tion on M with divisor d+ − d− is that

(13.7)

r∑
j=1

(
w̃z0(a+

i )− w̃z0(a−j )
)

= Ω n for a vector n ∈ Z2g.

(ii) If the condition (13.7) is satisfied then the function

(13.8) f(z) = Q(z, a;A+, A−) exp−2πi

g∑
k,l=1

2g∑
s=1

wk(z, z0)gklωlsns,

where G = tH−1 for the matrix H = iΩP tΩ expressed in terms of the period
matrix Ω and the intersection matrix P of the surface in terms of the given
bases, is a meromorphic function on M with the divisor d = d+ − d− and this
function is unique up to a nonzero constant factor.

Proof: (i) The proof just amounts to interpreting the condition of the preceding
Lemma 13.1. A holomorphic abelian differential ω(z) can be written as the
sum ω(z) =

∑g
k=1 ckωk(z) in terms of the basis ωk(z) ∈ Γ(M,O(1,0)); and

then expω(Tj) = exp
∑g
k=1 ckωkj in terms of the period matrix Ω = {ωkj}

where ωkj = ωk(τj). To simplify the notation set wm(A+) =
∑r
ν=1 wm(a+

ν , z0),
wm(A−) =

∑r
ν=1 wm(a+

ν , z0) and wm(A) = wm(A+)− wm(A−). By (13.3)

(13.9) ρA+,A−(Tj) = exp−2π

g∑
m,n=1

wm(A)gmnωnj .

Condition (13.5) that ρA+,A−(Tj) = expω(Tj) = exp
∑g
k=1 ckωkj can be written

as the condition that

(13.10) −2π

g∑
m,n=1

wm(A)gmnωnj = 2πiNj +

g∑
k=1

ckωkj

for some integers Nj . The preceding equation can be viewed as a system of
linear equations vj = 2πiNj +

∑g
k=1 ckωkj in the unknowns Nj and ck, where

vj denotes the left-hand side of (13.10); and in terms of the column vectors
v = {vj}, N = {Nj} ∈ C2g and c = {ck} ∈ Cg this equation can be written

(13.11) v − 2πiN = tΩc.
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The inverse period matrix to Ω as defined in Theorem F.12 in Appendix F.1 is
the g × 2g complex matrix Π for which

(13.12) Π tΩ = 0, Π tΩ = I, tΩΠ +tΩΠ = I.

In view of these properties of the inverse period matrix, if for some N there is
a solution c to the linear equation (13.11) then Π(v − 2πiN) = Π tΩc = 0; and
conversely if Π(v − 2πiN) = 0 then

v − 2πiN = (tΩΠ +tΩΠ)(v − 2πiN) =tΩΠ(v − 2πiN) =tΩc.

Thus there is a solution c to (13.11) if and only if

(13.13) Π(v − 2πiN) = 0,

and a solution is given explicitly by

(13.14) c = Π(v − 2πiN).

Condition (13.13) is just that
∑g
k=1 Πkj(vj − 2πiNj) = 0 or, upon replacing vj

by its explicit value and using (13.10), that

(13.15) −2π

g∑
m,n=1

2g∑
j=1

wm(A)gmnωnjΠkj − 2πi

2g∑
j=1

NjΠkj = 0

for 1 ≤ k ≤ g. If this condition is satisfied then a solution ck is given by
ck =

∑2g
j=1 Πkj(vj−2πiNj) as in (13.14); upon replacing vj by its explicit value

and using (13.10) again this solution takes the form

(13.16) ck = −2π

g∑
m,n=1

2g∑
j=1

wm(A)gmnωnjΠkj − 2πi

2g∑
l=1

NjΠkj

for 1 ≤ k ≤ g. However
∑2g
j=1 ωnjΠkj = δnk by (13.12) so equation (13.15)

reduces to

(13.17)

g∑
m=1

wm(A)gmk = −i
2g∑
j=1

NjΠkj

for 1 ≤ k ≤ g; and
∑g
k=1 gmkhrk = δmr so multiplying the preceding equation

by hrk and adding the result for 1 ≤ k ≤ g yields the equation

(13.18) wr(A) = −i
2g∑
j=1

g∑
k=1

NjΠkjhrk

for 1 ≤ r ≤ g. In this equation though HΠ = iΩP tΩΠ = iΩP (I − tΩΠ) = iΩP
by (13.12) and Riemann’s equality ΩP tΩ = 0, so (13.18) can be rewritten

(13.19) wr(A) =

2g∑
s,j=1

ΩrsPsjNj
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for 1 ≤ r ≤ g. The intersection matrix P is an integral matrix of determinant
detP = 1, so as the entries Nj vary over all integral values in Z2g so do the

entries ns =
∑2g
j=1 PsjNj ; consequently the preceding equation (13.19) is just

the assertion that

(13.20) wr(A) = wr(A
+)− wr(A−) =

2g∑
s=1

Ωrsns

for some integers ns, which is (13.7).
(ii) If the condition (i) is satisfied then as in the discussion preceding the state-
ment of the theorem the function f(z) of (13.6) is a meromorphic function with
the divisor d+−d− where w(z) =

∑g
k=1 ckwk(z) for the constants ck of (13.16).

Since Ω tΠ = 0 by (13.12) equation (13.16 reduces to the simpler form

(13.21) ck = −2πi

2g∑
l=1

NlΠkl.

Since condition (13.20) is expressed in terms of the constants ns =
∑2g
l=1 PslNl

it is natural to use those same constants in the expression for the function f(z)
hence to rewrite the preceding equation as

(13.22) ck = −2πi

2g∑
l,s=1

nsP
−1
ls Πkl.

Equation (F.35) in Appendix F shows that G = iΠ tP−1 tΠ where G = tH−1;
hence

tGΩ = iΠP−1 tΠΩ = iΠP−1(I − tΠΩ) = iΠP−1

from (13.12) and (F.35); substituting this into (13.22) shows that

(13.23) ck = −2π

g∑
k=1

2g∑
s=1

gklωksns,

and substituting these values of the coefficients ck in the formula for the integral
w(z) yields (13.8) to conclude the proof.

To examine the product cross-ratio function further it is necessary to con-
sider in somewhat more detail the complex manifolds M̃ (r) and various quotients
of these manifolds. Since the commutator subgroup [Γ,Γ] ⊂ Γ is a normal sub-

group the universal covering projection π̃ : M̃ −→ M = M̃/Γ can be decom-
posed as the composition π̃ = π̂◦πa of the two mappings in the chain of covering
projections

(13.24) M̃
πa−→ M̂ = M̃/[Γ,Γ]

π̂−→M = M̂/Γa

where Γa = Γ/[Γ,Γ] is the abelianization of the group Γ. The group Γ can
be generated by 2g generators with the single relation (D.4), as discussed in
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Appendix D.1; consequently its abelianization Γa is a free abelian group on 2g
generators. The subgroup [Γ,Γ] ⊂ Γ is not of finite index, since the quotient

Γa = Γ/[Γ,Γ] is an infinite group, so M̂ is not a compact Riemann surface. The

surface M̂ is not simply connected; indeed its fundamental group is isomorphic
to [Γ,Γ]. The fundamental group of any noncompact connected surface is a
free group1; so the group [Γ,Γ] actually is a free group, a result which though

interesting will not be used here. The Riemann surface M̃ can be identified
with the unit disc, through the general uniformization theorem. The Riemann
surface M̂ however appears to be an example of a non-continuable2 Riemann
surface, a noncompact Riemann surface that cannot be realized as a proper
subset of another Riemann surface; but that topic will not be pursued further
here.

The holomorphic abelian differentials on M are represented by Γ-invariant
holomorphic differential 1-forms ωi on M̃ , and their integrals wi(z, z0) =

∫ z
z0
ωi

are holomorphic functions on M̃ such that

(13.25) wi(Tz, z0) = wi(z, z0) + ωi(T ) for all T ∈ Γ.

The set of period vectors ω(T ) = {ωi(T )} ∈ Cg for all T ∈ Γ form the lattice
subgroup L(Ω) ⊂ Cg; and the set of integrals wi(z, z0) describe a holomorphic
mapping

(13.26) w̃z0 : M̃ −→ Cg where w̃z0(z) = {wi(z, z0)} ∈ Cg.

It follows from (13.25) that the mapping (13.26) commutes with the covering

projections π̃ : M̃ −→ M and π : Cg −→ J(M) = Cg/L(Ω), so it induces
the Abel-Jacobi mapping wz0 : M −→ J(M) as in the commutative diagram
(3.4). Recall from the earlier discussion that the Abel-Jacobi mapping is a
nonsingular biholomorphic mapping from the Riemann surface M to its image
W1 = wz0(M) ⊂ J(M), which is an irreducible holomorphic submanifold of the
complex torus J(M). The holomorphic mapping (13.26) and the Abel-Jacobi
mapping have the same local expression; so if the image of the mapping (13.26)
is denoted by

(13.27) W̃1 = w̃z0(M̃) ⊂ Cg

then the mapping (13.26) is a nonsingular holomorphic mapping, hence is a
locally biholomorphic mapping

(13.28) w̃z0 : M̃ −→ W̃1.

This situation can be summarized in the commutative diagram of holomorphic

1See the discussion the book Riemann Surfaces by Lars Ahlfors and Leo Sario, section 44.
2See the discussion in the paper by S. Bochner, “Fortsetzung Riemannscher Flächen” Math.

Annalen 98(1928), pp. 406-421.
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mappings

(13.29)

M̃
w̃z0−−−−→ W̃1

ι−−−−→
⊂

Cg

π̃

y π

y π

y
M = M̃/Γ

wz0−−−−→∼= W1 = W̃1/L(Ω)
ι−−−−→
⊂

J(M) = Cg/L(Ω)

in which ι is the natural inclusion mapping. Although the subset W̃1 is defined
as the image (13.27) it also can be characterized by

(13.30) W̃1 = π−1(W1) so W̃1 + λ = W̃1 for all λ ∈ L(Ω).

Indeed if t ∈ W̃1 ⊂ Cg then by definition t = w̃z0(z) for some point z ∈ M̃ .
and if λ ∈ L(Ω) then λ = ω(T ) for some T ∈ Γ; it then follows from (13.25)

that wz0(Tz) = wz0(z) + λ = t + λ, so t + λ ∈ W̃1. This also shows that the

mapping w̃z0 is a covering projection. Since W̃1 is the inverse image of the

holomorphic submanifold W1 by the holomorphic mapping π it follows that W̃1

is a holomorphic submanifold of Cg.
The holomorphic mapping (13.28) is locally biholomorphic but it is not glob-

ally biholomorphic. Indeed if w̃z0(z1) = w̃z0(z2) for two points z1, z2 ∈ M̃
then by the commutativity of the diagram (13.29) the images a1 = π̃(z1) and
a2 = π̃(z2) in M have the same image under the Abel-Jacobi mapping wz0 ;
and since the mapping wz0 is injective it follows that a1 = a2. Consequently
z1 = Tz2 for some T ∈ Γ; and then wz0(z1) = wz0(Tz2) = wz0(z1) + ω(T )
so that ω(T ) = 0, which by Corollary 3.6 is equivalent to the condition that
T ∈ [Γ,Γ]. The converse clearly holds, so

(13.31) w̃z0(z1) = w̃z0(z2) if and only if z1 = Tz2 where T ∈ [Γ,Γ].

That means that the mapping w̃z0 in the diagram (13.29) is a covering projec-
tion, with the covering translation group [Γ,Γ], and that this mapping can be

factored through the quotient surface M̂ = M̃/[Γ,Γ] so the diagram (13.29) can
be factored into the commutative diagram of holomorphic mappings
(13.32)

M̃
w̃z0−−−−→ w̃z0(M̃) = W̃1

ι−−−−→
⊂

Cg

πa

y ∥∥∥ ∥∥∥
M̂ = M̃/[Γ,Γ]

ŵz0−−−−→∼= ŵz0(M̂) = W̃1
ι−−−−→
⊂

Cg

π̂

y π

y π

y
M = M̂/Γa

wz0−−−−→∼= wz0(M) = W1 = W̃1/L(Ω)
ι−−−−→
⊂

J(M) = Cg/L(Ω)

where all the vertical arrows are covering projections, as also is the mapping
w̃z0 : M̃ −→ W̃1. The holomorphic mapping ŵz0 clearly is surjective, it is
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injective as a consequence of (13.31), and it is locally biholomorphic since it
has the same local expression as the Abel-Jacobi mapping wz0 ; hence it is a

biholomorphic mapping, as indicated in the diagram. The image ŵz0(M̂) = W̃1

thus is an irreducible holomorphic submanifold of Cg that is biholomorphic to
M̃ .

The holomorphic mapping ŵz0 is defined as the mapping induced by the
mapping w̃z0 ; but it also can be described somewhat independently. Indeed it
follows from (13.25) that the holomorphic abelian integrals wi(z, z0) are invari-
ant under the covering translation group [Γ,Γ] so they can be viewed as holo-

morphic functions ŵi(ẑ, z0) of points ẑ in the complex manifold M̂ . Of course
the holomorphic abelian differentials can be viewed as holomorphic differential
forms on the Riemann surface M̂ , which is not simply connected; but their in-
tegrals actually also are well defined global holomorphic functions ŵi(ẑ, z0) on

the manifold M̂ . In terms of these integrals the mapping ŵz0 can be viewed as
the mapping defined by

(13.33) ŵz0(ẑ) = {ŵi(ẑ, z0)} ∈ Cg;

and

(13.34) ŵi(T̂ ẑ, z0) = ŵi(ẑ, z0) + ω̂i(T̂ ) for all T̂ ∈ Γa

where ω̂i(T̂ ) ∈ C is the period ωi(T ) for any T ∈ Γ representing T̂ ∈ Γa. The set

of period vectors ω̂(T̂ ) for all T̂ ∈ Γa also form the lattice subgroup L(Ω) ⊂ Cg.
The chain of covering projections (13.24) naturally induces a chain of cov-

ering projections

(13.35) M̃r πra−→ M̂r π̂r−→Mr

between the cartesian products of these Riemann surfaces, with the composition

(13.36) π̃r = π̂r ◦ πra : M̃r −→Mr.

The symmetric group Sr of permutations of r points acts naturally on these
products; and the quotients have the structures of complex manifolds of dimen-
sion r, as in Theorem 12.4 for the case of the surface M itself. The quotient
Mr/Sr was denoted by M (r) and was identified with the set of positive divi-
sors of degree r on M in the discussion at the beginning of Chapter 12; the
corresponding assertions and notation can be applied to surfaces M̃ and M̂ as
well. The holomorphic mappings in (13.35) commute with the action of the
symmetric group Sr, so there results the corresponding chain of holomorphic
mappings

(13.37) M̃ (r) π(r)
a−→ M̂ (r) π̂(r)

−→M (r).

with the composition

(13.38) π̃(r) = π̂(r) ◦ π(r)
a : M̃ (r) −→M (r).
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Since π
(r)
a (z′1 + · · ·+z′r) = π

(r)
a (z′′1 + · · ·+z′′r ) for two divisors in M̃ (r) if and only

if z′′1 = T1z
′
i1
, . . . , z′′r = Trz

′
ir

for some permutation (i1, . . . , ir) of the indices

(1, . . . , r) and some mappings Ti : M̃ −→ M̃ where Ti ∈ {Γ,Γ], it is evident

that the mapping π
(r)
a : M̃ (r) −→ M̃ (r) is a covering projection; and so is

the mapping π
(r)
a : M̃ (r) −→ M̃ (r), with the corresponding argument, and the

composition (13.37).
The holomorphic mappings w̃z0 and ŵz0 in the diagram (13.32) can be ex-

tended to the symmetric products, in analogy with the extension of the holo-
morphic mapping wz0 to the Abel-Jacobi mapping (12.23); thus there is the
holomorphic mapping

(13.39) w̃(r)
z0 : M̃ (r) −→ Cg

defined by

(13.40) w̃(r)
z0 (z1 + · · ·+ zr) = w̃z0(z1) + · · ·+ w̃z0(zr) ∈ Cg

for any divisor z1 + · · · + zr ∈ M̃ (r), where w̃z0(z) is the mapping (13.26),

and this induces the corresponding holomorphic mapping ŵ
(r)
z0 : M̂ (r) −→ Cg

defined by the restricted abelian integrals (13.33) on M̃ . The image of the

Abel-Jacobi mapping w
(r)
z0 : M (r) −→ J(M) is the irreducible holomorphic

subvariety Wr ⊂ J(M), as in Theorem 12.8; and if the image of the holomorphic

mapping w̃
(r)
z0 is denoted correspondingly by W̃ (r) then it is also the image of

the holomorphic mapping w̃
(r)
z0 and there results the commutative diagram of

holomorphic mappings

(13.41)

M̃ (r)
w̃(r)
z0−−−−→ w̃

(r)
z0 (M̃ (r)) = W̃r

ι−−−−→
⊂

Cg

π(r)
a

y ∥∥∥ ∥∥∥
M̂ (r)

ŵ(r)
z0−−−−→ ŵ

(r)
z0 (M̂ (r)) = W̃r

ι−−−−→
⊂

Cg

π̂(r)

y π

y π

y
M (r)

w(r)
z0−−−−→ w

(r)
z0 (M (r)) = Wr

ι−−−−→
⊂

J(M).

The mappings in the vertical columns are covering projections; that was already
noted for the first and third columns, and the second column is a restriction of
the third column so is also a covering projection. It follows from (13.25) just as
in the proof of (13.30) that

(13.42) W̃r = π̃−1(Wr) so W̃r + λ = W̃r for all λ ∈ L(Ω);

indeed if t ∈ W̃r then t = w̃
(r)
z0 (z1 + · · ·+zr) for some divisor z1 + · · ·+zr ∈ M̃ (r),

and since any lattice vector λ ∈ L(Ω) is the period λ = ω(T ) for some covering
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translation T ∈ Γ it follows that t + λ = w̃z0(Tz1 + · · · + zr) ∈ W̃r. As the
inverse image of the holomorphic subvariety Wr ⊂ J(M) under the holomorphic

mapping π̃ the subset W̃r ⊂ Cg is a holomorphic subariety; and as the image

of a connected complex manifold under the holomorphic mapping w̃
(r)
z0 it is an

irreducible holomorphic subvariety.
The diagram (13.41) for r = 1 reduces to the diagram (13.32) in which

both wz0 and ŵz0 are biholomorphic mappings which identify the Riemann sur-

faces M and M̂ with holomorphic submanifolds of J(M) and Cg respectively;
but for r > 1 the situation is a bit more complicated. Subsets G1

r ⊂ M (r) for
1 < r ≤ g were defined in (12.38) and (12.39); they are holomorphic subvarieties
by Theorem 12.19, and can be identified with the proper holomorphic subva-
rieties spM (r) ⊂ M (r) of special positive divisors as in (12.40). Their images
W 1
r = wz0(G1

r) ⊂ J(M) are holomorphic subvarieties of J(M) by Remmert’s
Proper Mapping Theorem, as in Theorem 12.21. By Theorem 12.8 (iv) with
the interpretation (12.40) the restriction

(13.43) w(r)
z0 :

(
M (r) ∼ G1

r

)
−→

(
Wr ∼W 1

r

)
is a biholomorphic mapping. The inverse images G̃1

r = (π̃(r))−1(G1
r) ⊂ M̃ (r)

and W̃ 1
r = π−1(W 1

r ) ⊂ W̃r then are holomorphic subvarieties for which W̃ 1
r =

w̃z0(G̃1
r), and correspondingly for Ĝ1

r and Ŵ 1
r ; and the restriction of the holo-

morphic mapping w̃
(r)
z0 is a surjective holomorphic mapping

(13.44) w̃(r)
z0 :

(
M̃ (r) ∼ G̃1

r

)
−→

(
W̃r ∼ W̃ 1

r

)
.

The mappings π̃(r) = π̂(r) ◦ π(r)
a and π in (13.41) are covering mappings so it

follows from (13.43) that the mapping (13.44) is a locally biholomorphic map-
ping.

Introduce an equivalence relation on the divisors in M̃ (r) by setting

(z̃1 + · · ·+ z̃r) ∼ (T1z̃1 + · · ·+ Tr z̃r)(13.45)

for any Ti ∈ Γ for which

ω(T1) + · · ·+ ω(Tr) = ω(T1 · · ·Tr) = 0;

and let
./

M (r) = M̃ (r)/ ∼ be the quotient of M̃ (r) by this equivalence relation.
This is a weaker equivalence relation than that defined by the quotient mapping
to M (r), in the sense that any divisors equivalent under the relation (13.45)
have the same image in M (r); and since ω(T ) = 0 for all T ∈ [Γ,Γ] it is
a stronger equivalence relation than that defined by the quotient mapping to
M̂ (r), in the sense that any two divisors that have the same image in M̂ (r)

are equivalent under the relation (13.45). Consequently the covering projection

π̂(r) : M̂ (r) −→ M (r) can be factored into the composition π̂(r) =
./
π(r) ◦ π̂(r)

0 of
covering projections

(13.46) M̂ (r) π̂
(r)
0−→

./

M
(r)

./
π (r)

−→ M (r),
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so the quotient space
./

M (r) has the structure of a complex manifold for which
the covering projections in (13.46) are holomorphic and locally biholomorphic

mappings. If
./

G1
r = (

./
π (r))(−1)(G1

r) ⊂
./

M(r) then
./

G1
r is a holomorphic subvariety

of
./

M (r) and
./

G1
r = π̂

(r)
a (Ĝ1

r).

Theorem 13.3 (i) If two divisors d′, d′′ ∈ M̃ (r) are equivalent under the equiv-

alence relation (13.45) then w̃
(r)
z0 (d′) = w̃

(r)
z0 (d′′) ∈ W̃r.

(ii) Conversely if w̃
(r)
z0 (d′) = w̃

(r)
z0 (d′′) ∈ W̃r ∼ G̃1

r then the divisors d′ and d′′

are equivalent under the equivalence relation (13.45).

Proof: (i) If d′ = z′1 + · · · + z′r and d′′ = z′′1 + · · · + z′′r are equivalent divisors

in M̃ (r) then after reordering the points z′′i if necessary there will be covering

translations Ti ∈ Γ such that z′′i = Tiz
′
i where

∑r
i=1 ω(Ti) = 0. Then w̃

(r)
z0 (d′′) =∑r

i=1 w̃
(r)
z0 (z′′i ) =

∑r
i=1 w̃

(r)
z0 (Tiz

′) =
∑r
i=1

(
w̃

(r)
z0 (z′) + ω(Ti)

)
= w̃

(r)
z0 (d′) as de-

sired.
(ii) If w̃

(r)
z0 (d′) = w̃

(r)
z0 (d′′) for two divisors d′, d′′ ∈ M̃ (r) ∼ G̃1

r then from the
commutativity of the diagram (13.41) it follows that

w(r)
z0

(
π̃(r)(d′)

)
= w(r)

z0

(
π̃(r)(d′′)

)
∈ J(M).

Since the mapping (13.43) is injective it must be the case that π̃(r)(d′) =

π̃(r)(d′′); thus the divisors d′ and d′′ in M̃ (r) represent the same divisor in
M (r), so after reordering the points in these divisors as necessary there will
be covering translations Ti ∈ Γ such that Tiz

′
i = z′′i for each index i. Then

w̃
(r)
z0 (d′′) =

∑r
i=1 w̃z0(Tiz

′
i) =

∑r
i=1 (w̃z0(z′i) + ω(Ti)) = w̃

(r)
z0 (d′) +

∑r
i=1 ω(Ti),

and since w̃
(r)
z0 (d̃′′) = w̃

(r)
z0 (d̃′) by assumption it follows that

∑r
i=1 ω(Ti) = 0 so

the two divisors d′ and d′′ are equivalent. That suffices for the proof.

Corollary 13.4 The holomorphic mapping w̃
(r)
z0 : M̃ (r) −→ W̃r for a compact

Riemann surface M induces a biholomorphic mapping

(13.47)
./
w (r)
z0 :

./

M
(r) ∼

./

G
1
r

∼=−→ W̃r ∼ W̃ 1
r .

Proof: Part (i) of the preceding theorem shows that equivalent divisors d′, d′′ ∈
M̃ have the same image under the holomorphic mapping w̃

(r)
z0 : M̃ (r) −→ W̃r,

hence this mapping induces a holomorphic mapping
./
w (r)
z0 :

./

M (r) −→ W̃r; and
part (ii) of the preceding theorem shows that the restriction of this mapping is
a biholomorphic mapping which is the mapping (13.47), and that suffices for
the proof.

From these observations it follows that the commutative diagram (13.41)
can be extended to a further commutative diagram of holomorphic mappings
(13.48), in which all the columns are covering projections, the first mappings in
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each row are surjective holomorphic mappings and the second mappings in each
row are inclusion mappings.

(13.48)

M̃ (r) ∼ G̃1
r

w̃(r)
z0−−−−→ W̃r ∼ W̃ 1

r
ι−−−−→
⊂

Cg

π(r)
a

y ∥∥∥ ∥∥∥
M̂ (r) ∼ Ĝ1

r

ŵ(r)
z0−−−−→ W̃r ∼ W̃ 1

r
ι−−−−→
⊂

Cg

π̂
(r)
0

y ∥∥∥ ∥∥∥
./

M (r) ∼
./

G1
r

./
w (r)
z0−−−−→∼= W̃r ∼ W̃ 1

r
ι−−−−→
⊂

Cg

./
π (r)

y π

y π

y
M (r) ∼ G1

r

w(r)
z0−−−−→∼= Wr ∼W 1

r
ι−−−−→
⊂

J(M).

13.2 The General Cross-Ratio Function

The product cross-ratio function was defined in (13.2) as the meromorphic
function

(13.49) Q(z; a; z+
1 , . . . , z

+
r ; z−1 , . . . , z

−
r ) =

r∏
ν=1

q(z, a; z+
ν , z

−
ν )

of the ordered set of variables

(13.50) (z; a; z+
1 , . . . , z

+
r ; z−1 , . . . , z

−
r ) ∈ M̃ × M̃ × M̃r × M̃r;

but it is symmetric in the variables (z+
1 , . . . , z

+
r ) and (z−1 , . . . , z

−
r ) and it is

invariant under the mappings π
(r)
a : M̃ (r) −→ M̂ (r) and π̂

(r)
0 : M̂ (r) −→

./

M (r).

Theorem 13.5 The product cross-ratio function of degree r can be viewed as a
meromorpic function Q(z, a; d̃+, d̃−) of the variables

(13.51) (z, a; d̃+, d̃−) ∈ M̃ × M̃ × M̃ (r) × M̃ (r),

or as a meromorphic function Q(z, a; d̂+, d̂−) of the variables

(13.52) (z, a; d̂+, d̂−) ∈ M̃ × M̃ × M̂ (r) × M̂ (r),

or even as a meromorphic function Q(z, a;
./
d +,

./
d −) of the variables

(13.53) (z, a;
./
d +,

./
d −) ∈ M̃ × M̃×

./

M
(r)×

./

M
(r).
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Proof: The intrinsic cross-ratio function q(z, a; z+, z−) as a function of the

variable z ∈ M̃ is a meromorphic relatively automorphic function for the factor
of automorphy ρz+,z−(T ) given explicitly in (13.1), and it has simple zeros at
the points Tz+ and simple poles at the points Tz− for all T ∈ Γ. For any fixed
points z+

ν , z
+
ν the quotient

(13.54) g(z) =
q(z, a; z+

1 , z
−
1 )q(z, a; z+

2 , z
−
2 )

q(z, a; z+
2 , z

−
1 )q(z, a; z+

1 , z
−
2 )

therefore is a nowhere vanishing holomorphic function in M̃ , since the zero
divisor of the numerator is the same as the zero divisor of the denominator
and correspondingly for the pole divisors. The function g(z) is also a relatively
automorphic function for the factor of automorphy

(13.55) ρ(T ) =
ρz+

1 ,z
−
1

(T )ρz+
2 ,z
−
2

(T )

ρz+
2 ,z
−
1

(T )ρz+
1 ,z
−
2

(T )
;

and from the explicit form (13.1) for the factor of automorphy ρz+,z−(T ) it
is clear that ρ(T ) = 1 for all T ∈ Γ. Therefore the function g(z) really is a
function on the compact Riemann surface M , so it is actually a constant in the
variable z. Since q(a, a; z+

ν , z
−
ν ) = 1 for any z+

ν , z
−
ν , it follows that g(z) = 1 for

all z ∈ M̃ . That is the case for any values of the auxiliary parameters z+
ν , z

−
ν

so the function (13.54) is identically equal to 1 in all variables, or equivalently
the product q(z, a; z+

1 , z
−
1 )q(z, a; z+

2 , z
−
2 ) is symmetric in the parameters z+

1 , z
+
2 .

This argument can be applied to any pair of points among those in z+
1 , . . . , z

+
r

or z−1 , . . . , z
−
r , showing that the product cross-ratio function is symmetric in the

parameters z+
1 , . . . , z

+
r as well as in the parameters z−1 , . . . , z

−
r and consequently

the product cross-ratio function can be viewed as a meromorphic function of the
divisors d+ = z+

1 + · · · + z+
r ∈ M̃ (r) and d− = z−1 + · · · + z−r ∈ M̃ (r). In view

of the symmetry q(z, a; z+, z−) = q(z+, z−; z, a) of Theorem 5.28 (ii) the cross-
ratio function is also a relatively automorphic function of the variable z+, in
the sense that

q(z, a; Tz+, z−) = ρz,a(T )q(z, a; z+, z−)

for any T ∈ Γ; consequently the product crosss-ratio function (13.2) as a func-

tion of the variables d+ = z+
1 + · · ·+ z+

r ∈ M̃ (r) and d− = z−1 + · · ·+ z−r ∈ M̃ (r)

satisfies

Q(z, a;T1z
+
1 + · · ·+ Trz

+
r , z

−
1 + · · ·+ z−r )(13.56)

= ρz,a(T1 · · ·Tr)Q(z, a; z+
1 · · ·+ z+

r , z
−
1 + · · ·+ z−r )

for any covering translations T1, . . . , Tr ∈ Γ. In particular

Q(z, a;T1z
+
1 + · · ·+ Trz

+
r , z

−
1 + · · ·+ z−r )(13.57)

= Q(z, a; z+
1 · · ·+ z+

r , z
−
1 + · · ·+ z−r )

if ω(T1 · · ·Tr) = ω(Ti) + · · ·+ ω(Tr) = 0
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since ρz,a(T1 · · ·Tr) = 1 if ω(T1 · · ·Tr) = 0; thus the product cross-ratio function
Q(z, a; z+

1 · · · + z+
r , z

−
1 + · · · + zir) as a function of the divisor d+ = z+

1 · · · +
z+
r ∈ M̃ (r) is invariant under the equivalence relation (13.45) on the manifold

M̃ (r) and therefore it can be viewed as a meromorphic function of the variables

(z, a;
./
d +,

./
d −) ∈ M̃ × M̃×

./

M (r)×
./

M (r). The equivalence relation (13.45)

is stronger than the equivalence relation defining the quotient M̃ (r), and if
r = 1 it is just the equivalence relation defining M̃ ; consequently the product
cross-ratio function automatically can be viewed as a function of the variables
(z̃, ã; d̂+, d̂−) ∈ M̃ × M̃ × M̂ (r) × M̂ (r), and that suffices for the proof.

For the special case r = g the subvariety W̃g ⊂ Cg is the entire space Cg and

the subvariety W̃ 1
g ⊂ W̃ = Cg is a holomorphic subvariety of dimension g − 2,

since W̃ 1
g is a covering space of the submanifold W 1

g ⊂ J(M) in the diagram
(13.48) and W 1

g = k−Wg−2 by Theorem 12.23. The mapping (13.47) then is a
biholomorphic mapping

(13.58)
./
w (g)
z0 :

( ./
M

(g) ∼
./

G
1
g

) ∼=−→
(
Cg ∼ W̃ 1

g

)
,

by Corollary 13.4 and as indicated in the diagram (13.48) ; and through this

biholomorphic mapping the meromorphic function Q(z, a;
./
d +,

./
d −) on M̃×M̃×( ./

M (g) ∼
./

G1
g

)
×
( ./
M (g) ∼

./

G1
g

)
can be identified with a meromorphic function

Q(z, a; t+, t−) on the product manifold M̃ ×M̃ ×
(
Cg ∼ W̃ 1

g

)
×
(
Cg ∼ W̃ 1

g

)
for

which

(13.59) Q
(
z, a;

./
w (g)
z0 (

./
d +),

./
w (g)
z0 (

./
d −)

)
= Q(z, a;

./
d +,

./
d −)

for any z, a ∈ M̃ and any divisors
./
d +,

./
d − ∈

./

M (g) ∼
./

G 1
g. Since W̃ 1

g is a
holomorphic subvariety of codimension 2 in the complex manifold Cg it follows
from the Theorem of Levi3 that the function Q(z, a; t+, t−) extends uniquely to

a meromorphic function on the entire product manifold M̃ ×M̃ ×Cg×Cg. This
extension is called the general cross-ratio function of the Riemann surface M ,

and for this extension (13.59) holds for all divisors
./
d +,

./
d − ∈

./

M (g) by analytic
continuation. When the product cross-ratio function is written out explicitly
as a product of the intrinsic cross-ratio functions q(z, a; zj , aj) of the variables

z, a; zj , aj ∈ M̃ equation (13.59) takes the form

(13.60) Q
(
z, a;

g∑
j=1

w̃z0(zj),

g∑
j=1

w̃z0(aj)
)

=

g∏
j=1

q(z, a; zj , aj)

for all points z, a, z1, . . . , zg, a1, . . . , ag ∈ M̃ . Equations (13.59) and (13.60) thus
are alternative characterizations of the general cross-ratio function. It should be

3See the discussion of extension properties of meromorphic functions on page 409 in Ap-
pendix A



13.2. GENERAL CROSS-RATIO FUNCTION 355

observed that the mapping (13.47 and all the mappings in the diagram (13.48)

are defined in terms of the choice of a base point z0 ∈ M̃ ; so the general cross-
ratio function should be viewed as defined for a pointed Riemann surface M ,
one with a specified base point z0 ∈ M̃ . A change of the base point amounts to
a translation in the space Cg, so the actual dependence on the choice of a base
point is of limited significance. The basic properties of the general cross-ratio
can be summarized as follows.

Theorem 13.6 (i) On a compact Riemann surface M = M̃/Γ of genus g > 0,
with the period matrix Ω for the choice of a basis ωi ∈ Γ(M,O(1,0)) and gener-
ators Tj ∈ Γ, the general cross-ratio function Q(z, a; t+, t−) is a meromorphic

function on the complex manifold M̃ × M̃ × Cg × Cg with the symmetries

(13.61) Q(z, a; t+, t−) = Q(a, z; t+, t−)−1 = Q(z, a; t−, t+)−1.

and the normalizations

(13.62) Q(a, a; t+, t−) = Q(z, a; t, t) = 1.

(ii) For any T ∈ Γ

(13.63) Q(Tz, a; t+, t−) = ρt+,t−(T )Q(z, a; t+, t−)

where

(13.64) ρt+,t−(T ) = exp−2π

g∑
m,n=1

(
t+m − t−n

)
gmnωn(T ).

(iii) For any lattice vector λ ∈ L(Ω)

(13.65) Q(z, a; t+ + λ, t−) = ρz,a(λ) Q(z, a; t+, t−)

where

(13.66) ρz,a(λ) = exp−2π

g∑
m,n=1

wm(z, a)gmnλn

for the abelian integrals wm(z, a) =
∫ z
a
ωm.

(iv) For any fixed points a, b ∈ M̃ and t0 ∈ Cg for which Q(a, b; t, t0) is a
nontrivial meromorphic function of the variable t ∈ Cg, neither identically 0
nor identically ∞, its zero locus is the holomorphic subvariety

(13.67) Ṽa = w̃z0(a) + W̃g−1 ⊂ Cg,

at which it has a simple zero, and its pole locus is the holomorphic subvariety

(13.68) Ṽa = w̃z0(b) + W̃g−1 ⊂ Cg,

at which it has a simple pole.
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Proof: (i) Since the cross-ratio function has the symmetries q(z1, z2; z3, z4) =
q(z2, z1; z3, z4)−1 = q(z1, z2; z4, z3)−1 by Theorem 5.6 (ii) it follows from (13.60)
that the general cross-ratio has the symmetries (13.61); and since the cross-
ratio function has the normalization q(z1, z1; z3, z4) = q(z1, z2; z3, z3) = 1 by
Theorem 5.6 (i) it follows from (13.60) that the general cross-ratio has the nor-
malization (13.62).
(ii) As noted in the discussion on page 342, the product cross-ratio function
Q(z, a;A+, , A−) for A+ = (a+

1 , . . . , a
+
g ) and A− = (a−1 , . . . , a

−
g ) is a relatively

automorphic function of the variable z ∈ M̃ for the factor of automorphy
ρA+,A−(T ) of (13.3); therefore when the product cross-ratio function is viewed
as a function of the divisors d+ = a+

1 + · · ·+ a+
g and d− = a−1 + · · ·+ a−g as in

Theorem 13.5

Q(Tz, a ; d+, d−) = Q(z, a ; d+, d−)ρA+,A−(T )(13.69)

= Q(z, a ; d+, d−) · exp−2π

g∑
m,n=1

wm(d+, d−) gmn ωn(T )

where wm(d+, d−) =
∑g
ν=1 wm(a+

ν − a−ν ). The image t+ = w̃
(g)
z0 (d+) ∈ Cg is

the vector with coefficients t+m =
∑g
ν=1 wm(a+

ν , z0), and similarly for the vector
t− ∈ Cg; thus wm(d+, d−) = wm(d+, z0)−wm(d+, z0) = t+m − t−m so (13.69) can
be written

(13.70) Q(Tz, a ; d+, d−) = Q(z, a ; d+, d−)·exp−2π

g∑
m,n=1

(t+m−t−m) gmn ωn(T ).

This equation is invariant under the equivalence relation (13.45) so through

(13.59) yields the result of part (ii). (iii) For any T ∈ Γ and any divisor
./
d + =

z+
1 + z+

2 + · · · + z+
g ∈

./

M (g) ∼
./

G 1
g let T

./
d + = Tz+

1 + z+
2 + · · · + z+

g ; with this
convention (13.56) takes the form

(13.71) Q(z, a;T
./
d +,

./
d −) = ρz,a(T )Q(z, a;

./
d +,

./
d −)

where the factor of automorphy ρz,a(T ) has the explicit form (13.1). Now if
./
w (g)
z0 (

./
d ±) = t+ then

./
w (g)
z0 (T

./
d +) =

./
w (g)
z0 (

./
d

+

) + λ where λ = ω(T ) ∈ L(Ω); so
through the biholomorphic mapping (13.58) equation (13.71) takes the form

(13.72) Q(z, a; t+ + λ, t−) = ρz,a(T )Q(z, a; t+, t−)

where

ρz,a(T ) = exp−2π

g∑
m,n=1

(wm(z)− wn(a)) gmnλn.

That identity extends across the subvariety
./

G1
g by analytic continuation, thereby

demonstrating (13.65). Since any lattice vector λ ∈ L(Ω) can be written as
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λ = ω(T ) for some T ∈ Γ that equation holds for all λ ∈ L(Ω).

(iv) For any fixed points a, b, a1, , . . . , ag ∈ M̃ for which a 6= Tb and a 6= Taj
and b 6= Taj for any index j and any T ∈ Γ the product cross-ratio func-
tion Q(a, b; z1, , . . . , zg; a1, , . . . , ag) =

∏g
j=1 q(a, b; zj , aj) is a nontrivial mero-

morphic function of the variables (z1, . . . , zg) ∈ M̃g and is zero at those points

(z1, . . . , zg) ∈ M̃g for which zj = Ta for some index j and some T ∈ Γ; conse-
quently the zero locus of the product cross-ratio function viewed as a function

of divisors z1 + · · ·+ zg ∈
./

M(g) consists of divisors of the form Ta+ z2 + · · ·+ zg
for some T ∈ Γ and for arbitrary points zj ∈ M̃ . The set of those divisors that

are contained in
./

M g) ∼
./

G1
g is mapped through the biholomorphic mapping

./
w g)
z0 :

./

M
g) ∼

./

G
1
g −→ W̃g ∼ W̃ 1

g

in the diagram (13.48) to the subset(
w̃z0(a) + W̃g−1

)
∩
(
Cg ∼ W̃ 1

g

)
⊂ Cg;

so by (13.60) this is the zero locus of Q(a, b; t, t0) in the subset Cg ∼ W̃ 1
g ⊂ Cg,

where t0 ∈ Cg is the image of the divisor a1 + · · ·+ag. The subvariety W̃ 1
g ⊂ Cg

is the inverse image of the subvariety W 1
g ⊂ J(M) under the covering projection

π : Cg −→ J(M), so dim Ŵ 1
g = dimW 1

g = g − 2 since W 1
g = k −Wg−2 by the

Riemann-Roch Theorem in the form of Theorem 12.23; consequently the zero
locus of the general cross-ratio function Q(a, b; t, t0) as a function of the variable

t ∈ Cg actually is the holomorphic subvariety Ṽa = w̃
(g)
z0 (a) + W̃g−1 ⊂ Cg.

The composition Mg −→ Cg of the branched covering mapping Mg −→ M (g)

and the other mappings in the diagram (13.48) is locally biholomorphic in a

neighborhood of any point (z1, . . . , zg) ∈ M̃g for which z1, . . . , zg are distinct

points of M̃ ; and since each factor q(z, a; zj , aj) has a simple zero at the point
zj = z it follows that the general cross-ratio function Q(a, b; t, t0) vanishes to the

first order on the subvariety Ṽa = w̃
(g)
z0 (a) + W̃g−1. In view of what was already

proved in part (i) of this theorem the pole locus of the function Q(a, b; t, t0) as
a function of the variable t ∈ Cg is the zero locus of the function Q(b, a; t, t0) as
a function of the variable t ∈ Cg, so it is a simple pole of the general cross-ratio
function, and that concludes the proof.

Since the general cross-ratio function Q(a, b; t, t0) is a relatively automorphic
function of the variable t ∈ Cg for the action of the lattice subgroup L(Ω), by

(iii) of the preceding theorem, it follows that its zero locus Ṽa is invariant under
L(Ω) so describes a holmorphic subvariety

(13.73) Va = Ṽa/L(Ω) ⊂ J(M),

and similarly for the pole locus. The general cross-ratio function Q(a, b; t, t0)

also is a relatively automorphic function of the variable a ∈ M̃ , by (ii) of
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the preceding theorem, so the zero locus Va really depends only on the point
of the Riemann surface M represented by the point a ∈ M̃ ; so the subva-
riety Va can be viewed alternatively as indexed by the point a ∈ M . By
Corollary 5.7 the intrinsic cross-ratio function satisfies the product formula
q(a, b; z, z0) = q(a, b; z, z1)q(a, b; z1, z0) for any points a, b, z, z0, z1 ∈ M̃ ; con-
sequently the product cross-ratio function and therefore the general cross-ratio
function as well satisfy the corresponding product formula

(13.74) Q(a, b; t, t0) = Q(a, b; t, t1)Q(a, b; t1, t0).

Thus so long as the constant Q(a, b; t1, t0) is nonzero the two general cross-ratio
functions Q(a, b; t, t0) and Q(a, b; t, t1) of the variable t ∈ Cg have the same
zero locus as well as the same pole locus; that indicates why in considering
the zero locus or pole locus of the general cross-ratio Q(a, b; t, t0) the particular
parameter value t0 is essentially irrelevant.

Corollary 13.7 For any fixed points a, b ∈ M and t0 ∈ J(M) for which the
general cross-ratio function Q(a, b; t, t0) is a nontrivial meromorphic function
of the variable t ∈ J(M) its zero locus Va and pole locus Vb satisfy

(13.75) W 1
g ⊂ Va ∩ Vb ⊂ J(M).

Proof: If t = wz0(d) ∈ W 1
g ⊂ J(M) for a divisor d ∈ G1

g ⊂ M (g) then
γ(ζd) ≥ 2 so there are two linearly independent holomorphic cross-sections
h1, h2 ∈ Γ

(
M,O(ζd)

)
. The holomorphic cross-section h = h2(a)h1 − h1(a)h2 ∈

Γ
(
M,O(ζd)

)
vanishes at the point a so its divisor has the form d(h) = a+ a1 +

· · ·+ag−1 for some points aj ∈M ; hence the image of this divisor under the Abel-
Jacobi mapping is wz0

(
d(h)

)
= wz0(a+ a1 + · · ·+ ag−1) ∈ wz0(a) +Wg−1 = Va.

Since h ∈ Γ
(
M,O(ζd)

)
the divisor d(h) is linearly equivalent to the divisor d;

so from Abel’s Theorem, Theorem 5.10, it follows that wz0
(
d(h)

)
= wz0(d),

hence t = wz0(d) = wz0
(
d(h)

)
⊂ Va. That is the case for any point t ∈ W 1

g ,
and therefore W 1

g ⊂ Va. The pole locus Vb of the general cross-ratio function
Q(a, b; t, t0) is the zero locus of the general cross-ratio function Q(b, a; t, t0) so
V −b also contains W 1

g , and that suffices for the proof.

The assertion of the preceding corollary that W 1
g ⊂ Va = wz0(a) +Wg−1 for

all points a ∈M of course is equivalent to the assertion that that W 1
g −t ⊂Wg−1

for all t ∈W1; the converse is also true, and both assertions can be derived more
directly as follows.

Lemma 13.8 If t ∈ J(M) is a point in the Jacobi variety J(M) of a compact
Riemann surface M of genus g > 0 then

(13.76) W 1
g − t ⊂Wg−1 if and only if t ∈W1.

Proof: Since W 1
g = k −Wg−2 by the Riemann-Roch Theorem in the form of

Theorem 12.23, where k ∈ J(M) is the canonical point of the Jacobi variety, it
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follows that W 1
g − t ⊂Wg−1 if and only if k− t−Wg−2 ⊂Wg−1 or equivalently

if and only if

(13.77) t+Wg−2 ⊂ k −Wg−1 = Wg−1,

where the last equality is the identity (12.47) for ν = 0, a consequence of
the Riemann-Roch theorem. In terms of the Martens differential operator on
subvarieties of the Jacobian variety, as defined in (12.26), the preceding equation
(13.77) is equivalent to t ∈ Wg−1 	Wg−2; and since Wg−1 	Wg−2 = W1 by
Theorem 12.11 (iv), that suffices for the proof.

The set of common zeros of a collection of general cross-ratio functions also
can be identified with a standard holomorphic subvariety of the Jacobi variety.
More generally, for any fixed points b ∈ M̃, t0 ∈ Cg for which the general cross-
ratio function Q(z, b; t, t0) is a nontrivial meromorphic relatively automorphic

function of the variables z ∈ M̃, t ∈ C, let

(13.78) Q(j)(z, b; t, t0) =
∂jQ(z, b; t, t0)

∂zj

be the derivatives of the function Q(z, b; t, t0) with respect to a local coordinate

z ∈ M̃ ; and for any divisor d =
∑s
ν=1 nνaν ∈ M̃ (r) of degree r =

∑s
ν=1 nν

where aν ∈ M̃ represent distinct points on the Riemann surface M let

Ṽd =
{
t ∈ Cg

∣∣∣Q(aν , b; t, t0) = Q(1)(aν , b; t, t0) = · · ·(13.79)

· · · = Q(nν−1)(aν , b; t, t0) = 0 for 1 ≤ ν ≤ s
}
⊂ Cg.

For the divisor d = 1 · a of degree 1 the subset Ṽd is just the subvariety Ṽa of
(13.67); and for a divisor d =

∑r
ν=1 aν where the points aν ∈ M̃ represent r

distinct points on M the definition (13.79) takes the simpler form

(13.80) Ṽd =
{
t ∈ Cg

∣∣∣Q(aν , b; t, t0) = 0 for 1 ≤ ν ≤ r
}
⊂ Cg.

The general cross-ratio function satisfies (13.65) for any arbitrariy lattice vector
λ ∈ L(Ω) and differentiating that equation repeatedly shows that

Q(aν , b; t+ λ, t0) = ρz,aν (λ)Q(aν , b; t, t0)(13.81)

Q(1)(aν , b; t+ λ, t0) = ρz,aν (λ)Q(1)(aν , b; t, t0)+

+ ∂
∂zρz,aν (λ)Q(aν , b; t, t0)

and so on.

In parallel with the discussion of the Brill-Noether matrix it follows that the
zero locus Ṽd of these derivatives is invariant under translation through lattice
vectors λ ∈ L(Ω) so describes a holomorphic subvariety

(13.82) Vd = Ṽd/L(Ω) ⊂ J(M).
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Theorem 13.9 (i) For any divisor d =
∑s
ν=1 nνaν on M̃ of degree r, where aν

represent distinct points of M and 1 ≤ r ≤ g, and for any points b ∈ M̃, t0 ∈ Cg
for which the general cross-ratio functions Q(aν , b; t, t0) for all ν are nontrivial
meromorphic functions of the variable t ∈ Cg, the subvariety Vd ⊂ J(M) has
the form

(13.83) Vd =
(
wz0(d) +Wg−r

)
∪W 1

g ⊂ J(M);

it is the union of two irreducible holomorphic subvarieties of J(M), one of
dimension g − r and the other of dimension g − 2, and wz0(d) +Wg−r ⊂W 1

g if
and only if wz0(d) ∈W 1

r .
(ii) If nν = 1 for all ν the subvariety Vd can be described alternatively as the
intersection

(13.84) Vd =

r⋂
ν=1

(
wz0(aν) +Wg−1

)
.

Proof: (i) The restriction of the general cross-ratio function to the complement

of the subvariety W̃ 1
g ⊂ Cg is identified with the restriction of the product

cross-ratio function to the complement of the subvariety
./

G1
g ⊂

./

M (g) through

the biholomorphic mapping (13.58), under which a divisor d ∈
./

M(g) corresponds

to the point t =
./
w(g)
z0 (d) ∈ Cg. Therefore the restriction Ṽd

∣∣∣(Cg ∼ W̃ 1
g

)
can be

identified with the restriction X̃d

∣∣∣( ./

M(g) ∼
./

G1
g

)
, where the subvariety X̃d ⊂

./

M(g)

is defined by the formulas analogous to (13.79) but involving the derivatives of
the product cross-ratio function rather than of the general cross-ratio function.
Since the product cross-ratio is defined as the product (13.2) it follows that the

subvariety X̃d ⊂
./

M(g) can be described as the subset consisting of those divisors

z1 + · · ·+ zg ∈
./

M (g) such that Q(z, b; z1, . . . , zg; b1, . . . , bg) =
∏g
k=1 q(z, b; zk, bk)

as a function of the variable z ∈ M̃ has zeros of order nν at the points z =
aν . Each factor q(z, b; zk, bk) has a simple zero at the point z = zk and no
other zeros, so the product has the desired zeros precisely when the divisor
z1 + · · ·+ zg contains the divisor d, that is to say, precisely when z1 + · · ·+ zg =

d + d′ for some divisor d′ ∈
./

M (g−r); and the image of such divisors under the

holomorphic mapping
./
w(g)
z0 :

./

M (g) −→ Cg is the subset
./
wz0 (d) + W̃g−r ⊂ Cg,

which represents the subvariety wz0(d) + Wg−r ⊂ J(M). By construction this
subvariety is contained in Vd and contains the complement Vd ∼

(
Vd∩W 1

g

)
; but

since Q(z, b; t, t0) = 0 for all z ∈ M̃ for any fixed point t ∈W 1
g as a consequence

of Corollary 13.7, it follows that W 1
g ⊂ Vd so that altogether the subvariety

Vd ⊂ J(M) has the form (13.83). Here Wg−r is an irreducible holomorphic
subvariety of dimension g − r and as already observed W 1

g = k − Wg−2 so
W 1
g is an irreducible holomorphic subvariety of dimension g − 2. The inclusion

wz0(d) +Wg−r ⊂W 1
g = k −Wg−2, or equivalently

k − wz0(d)−Wg−r ⊂Wg−2,
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can be written in Marten’s notation, discussed on page 322, as the inclusion
k − wz0(d) ∈ Wg−2 	 −Wg−r; and Wg−2 	 −Wg−r = W g−r

2g−r−2 by Theo-

rem 12.24 while W g−r
2g−r−2 = k − W 1

r by the Riemann-Roch Theorem in the
form of Theorem 12.23. Therefore the inclusion amounts to the condidition
that wz0(d) ∈W 1

r .
(ii) If nν = 1 the points aν are distinct, so as in (13.80) the subvariety Vd is the
locus of common zeros of the r meromorphic functions Q(aν , b; t, t0); thus Vd is
the intersection of the zero loci of these two functions, and since the zero locus of
the function Q(aν , b; t, t0) is the subvariety w̃z0(aν) +Wg−1, that demonstrates
(13.86), and thereby concludes the proof.

Some special cases of the preceding theorem are worth stating explicitly here
for emphasis; the first is an extension of the result in Corollary 13.7.

Corollary 13.10 (i) For any divisor d = a1 + a2 ∈ M (2), and for any points
b ∈ M, t0 ∈ J(M) for which the general cross-ratio functions Q(aν , b; t, t0) for
ν = 1, 2 are nontrivial meromorphic functions of the variable t ∈ Cg,

(13.85) Vd =
(
wz0(d) +Wg−2

)
∪W 1

g ⊂ J(M).

The subvarieties wz0(d)+Wg−2 and W 1
g are irreducible holomorphic subvarieties

of dimension g − 2 in J(M), and are equal if and only if M is a hyperelliptic
Riemann surface and wz0(d) ∈W 1

2 .
(ii) If a1 6= a2 in M then the subvariety Vd can be described alternatively as

(13.86) Vd =
(
wz0(a1) +Wg−1

)
∩
(
wz0(a2) +Wg−1

)
.

Proof: This is just the special case r = 2 of the preceding Theorem 13.9,
together with the observations first that the two subvarieties wz0(d) + Wg−2

and W 1
g are irreducible holomorphic subvarieties of the same dimension so an

inclusion of one in the other is an equality of the two divisors, and second that
there exist divisors d ∈W 1

2 if and only if the Riemann surface M is hyperelliptic.
That suffices for the proof.

Any intersection
(
t1 + Wg−1

)
∩
(
t2 + Wg−1

)
for points t1, t2 ∈ J(M) is a

holomorphic subvariety of the complex torus J(M). It can be demonstrated4

that this intersection is homologous to twice the homology class carried byWg−2,
as would be expected from (13.85). However in general this intersection is an
irreducible subvariety of the torus J(M); at least it follows from Lemma 13.8
that a translate of W 1

g = k −Wg−2 is contained in the subvariety Wg−1 if and
only it is the translate W 1

g − t for a point t ∈ Wg−1, hence by the preceding
lemma if and only if it is an irreducible component of the interssection (13.86).

Corollary 13.11 For any divisor d =
∑s
ν=1 nνaν ∈M (g−1), of distinct points

aν ∈ M and for any points b ∈ M, t0 ∈ J(M) for which the general cross-ratio

4This is one case of Poincaré’s fomula, as discussed on page 350 of Griffiths and Harris,
Principles of Algebraic Geometry, and will be discussed later here as well.
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functions Q(aν , b; t, t0) for 1 ≤ ν ≤ g are nontrivial meromorphic functions of
the variable t ∈ Cg, the subvariety Vd has the form

(13.87) Vd =
(
wz0(d) +W1

)
∪W 1

g ⊂ J(M);

thus it is the union of an irreducible curve wz0(d) + W1 and the irreducible
holomorphic subvariety W 1

g of dimension g − 2, and wz0(d) +W1 ⊂ W 1
g if and

only if wz0(d) ∈W 1
g−1.

(ii) If nν = 1 for all ν the subvariety Vd can be described alternatively as the
intersection

(13.88) Vd =

g−1⋂
ν=1

(
wz0(aν) +Wg−1

)
.

Proof: This is just the special case of the preceding Theorem 13.9 for which
r = g − 1, so no further proof is required.

The curve wz0(d) in the preceding corollary is the Riemann surface M imbed-
ded in its Jacobi variety through the Abel-Jacobi mapping as usual; but the
interest here is that the subvariety M ⊂ J(M) is described as an intersection of
g − 1 translates of the hypersurface Wg−1 outside of the exceptional subvariety
W 1
g , which is contained in each of the translates of Wg−1.

Corollary 13.12 If d =
∑g+1
ν=1 aν is a divisor of degree g + 1 consisting of

distinct points on M then

(13.89) Vd = W 1
g ⊂ J(M)

and

(13.90)

g+1⋂
ν=1

(
wz0(aν) +Wg−1

)
= W 1

g .

Proof: In the proof of Theorem 13.9 the restriction X̃d

∣∣∣( ./

M(g) ∼
./

G1
g

)
is the set

of points in
./

M(g) ∼
./

G1
g at which the product Πg

ν=1(z, b; zν , bν) vanishes at points
representing g+ 1 distinct points of M , and there are no such points. Hence Vd
consists just of the subvariety W 1

g ; and since Vd is still the intersection (13.90)
that intersection too is just the subvariety W 1

g , which suffices for the proof.

13.3 The Role of the Classical Theta Function

The discussion in the first section of this chapter focused on the intrinsic
cross-ratio function; but to relate it to more classical treatments it is necessary
to consider instead the canonical cross-ratio function q̂(z1, z2; z3, z4), which is
normalized in terms of a marking of the Riemann surface M . As discussed



13.3. THE CLASSICAL THETA FUNCTION 363

in Appendix D.1, a marking involves a choice of a base point z0 ∈ M̃ and a
collection of paths α̃j ⊂ M̃ from z0 to Ajz0 and β̃j ⊂ M̃ from z0 to Bjz0, where
Aj , Bj ∈ Γ are generators of the covering translation group Γ of the Riemann

surface M . Translates of the paths α̃j β̃j form the boundary of a fundamental

domain ∆ ⊂ M̃ for the action of the covering translation group Γ on M̃ ; and the
Riemann surface M = M̃/Γ itself can be recaptured by identifying appropriate
boundary segments of ∆. The boundary ∂∆ indeed has the explicit form
(13.91)

∂∆ =

g∑
j=1

(
C1 · · ·Cj−1α̃j + C1 · · ·Cj−1Aj β̃j − C1 · · ·CjBjα̃j − C1 · · ·Cj β̃j

)
as in (D.2) in Appendix D.1, but written additively here. Associated to the
marking is the canonical basis {ωi} for the holomorphic abelian differentials,
defined by having the periods ωi(Aj) = δij . The period marix of the surface

for this marking is the matrix Ω =
(
I Z

)
where Z = {zij} for the periods

zij = ωi(Bj); and the matrix Z is an element in the Siegel upper half-space
Hg of rank g, as discussed in Appendix F.3. The associated abelian integrals
are defined by wi(z) = wi(z, z0) =

∫ z
z0
ωi, so that wi(z0) = 0 and

∫
αj
ωi = δij

whlle
∫
βj
ωi = zij . The Jacobi variety of the marked Riemann surface M of

genus g > 0 is the quotient torus J(M) = Cg/L(Ω) for the lattice subgroup
L(Ω) = ΩZ2g = { µ+ Zν | µ, ν ∈ Zg }.

Another invariant of the abelian differentials plays a significant role in the
discussion of theta functions. In addition to the regular periods of the holomor-
phic abelian differentials there are the quadratic periods, defined in terms of the
marking of the surface as the integrals

(13.92) rij =

∫
α̃j

wi(z)ωj(z) for 1 ≤ i, j ≤ g.

The vector

(13.93) R = {Ri} ∈ Cg where Ri =

g∑
j=1

(
rij + zij

)
− 1

2zii,

defined in terms of the ordinary periods zij and the quadratic periods rij of the
holomorphic abelian differentials, is called the Riemann vector of the marked
Riemnann surface; the image of this vector in the Jacobi variety J(M) =
Cg/L(Ω) is a point

(13.94) R = R mod L(Ω) ∈ J(M)

called the Riemann point of the surface M .
The canonical cross-ratio function q̂(z1, z2; z3, z4) is characterized in Theo-

rem 5.16 as the meromorphic function of the variables zj ∈ M̃ that has the
divisor and symmetries of the intrinsic cross-ratio function but is normalized by
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the alternate period conditions

q̂(Tz1, z2; z3, z4) = ρ̂z3,z4(T )q̂(z1, z2; z3, z4) where(13.95)

ρ̂z3,z4(Aj) = 1 and ρ̂z3,z4(Bj) = exp 2πiwj(z3, z4)

in terms of the integrals wj(z3, z4) =
∫ z3
z4
ωj = wj(z3) − wj(z4) of the canoni-

cal abelian differentials ωj . The associated canonical general cross-ratio func-

tion Q̃c(a, b; t, t0) is defined just as for the general cross-ratio function, but in
terms of products of the canonical rather than the intrinsic cross-ratio func-
tions. The basic results in the preceding part of this chapter carry over with
just the corresponding change in the periods. In particular in the proof of
Theorem 13.6 (iii) equation (13.71) holds for the canonical product cross-ratio
function, with ρ̂z,a(T ) as in (13.95) in place of ρz,a(T ), so equation (13.72) takes
the form

(13.96) Q̃c(z, a; t+ + λ, t−) = ρ̂z,a(T ) Qc(z, a; t+, t−)

where λ = ω(T ) ∈ L(Ω). If T =
(∏g

j=1A
µj
j

)
·
(∏g

j=1B
νj
j

)
·C for some commu-

tator C ∈ [Γ,Γ] then ρ̂z,a(T ) = ρ̂z,a(
∏g
j=1B

νj
j ) = exp 2πi

∑g
j=1 νjwj(z, a) and

also λ = ω(T ) = µ+ Zν where µ = {µj} ∈ Zg and ν = {νj} ∈ Zg. The preced-
ing equation (13.96) then can be rewritten as the form of Theorem 13.6 (iii) for
the canonical cross-ratio functions, thus as the condition that for any µ, ν ∈ Zg

(13.97) Q̃c(z, a; t+ + µ+ Zν, t−) = ρ̂z,a(µ+ Zν) Qc(z, a; t+, t−)

where

(13.98) ρ̂z,a(µ+ Zν) = exp 2πi

g∑
j=1

νjwj(z, a).

The result of part (ii) of Theorem 13.6 is changed correspondingly to hold for
the canonical general cross-ratio function just by replacing the factor (13.64)
by (13.95); otherwise that theorem holds as stated for the canonical general
cross-ratio function.

The classical theta function associated to a period matrix Ω =
(
I Z

)
for

any matrix Z ∈ Hg is defined by the series expansion

(13.99) Θ(t;Z) =
∑
n∈Zg

exp 2πi
(

1
2
tnZn+ tn t

)
,

as in (G.1) in Appendix G. It is a holomorphic even function in the variable
t ∈ Cg, in the sense that

(13.100) Θ(−t;Z) = Θ(t;Z);

and it is a relatively automorphic function of the variable t ∈ Cg for the action
of the lattice subgroup L(Ω) with the factor of automorphy

(13.101) Ξ(µ+ Zν, t) = exp−2πi
(

1
2
tνZ ν + tνt

)
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for any µ, ν ∈ Zg, as in (G.7) in Appendix G. The zero locus of the classical
theta function, called the theta variety, is the holomorphic subvariety

(13.102) ṼΘ =
{
s ∈ Cg

∣∣∣ Θ(s;Z) = 0
}
⊂ Cg

of dimension g − 1 in Cg. The theta variety is invariant under the lattice
subgroup L(Ω), since the theta function is a relatively automorphic function,

so it determines a holomorphic subvariety VΘ = ṼΘ/L(Ω) ⊂ J(M), also called
the theta variety. These subvarieties of course satisfy the symmetry conditions
ṼΘ = −ṼΘ and VΘ = −VΘ as a consequence of (13.100).

If Ω =
(
I Z

)
is the period matrix of a compact Riemann surface the

composition of the classical theta function Θ(t;Z) and the translate through a

vector s ∈ Cg of the holomorphic mapping w̃z0 : M̃ −→ Cg of (13.26) defined
by the abelian integrals wi(z) = wi(z, z0) =

∫ z
z0
ωi is a well defined holomorphic

function of the variable z ∈ M̃ called the Riemann theta function and denoted
by

(13.103) ϑs(z) = Θ
(
s+ w̃z0(z);Z

)
.

If Θ(s) 6= 0 then ϑs(z0) 6= 0 so the function ϑs(z) does not vanish identically.
However for some values s ∈ Cg the Riemann theta function ϑs(z) does vanish

identically in the variable z ∈ M̃ ; the functions ϑs(z) for such parameter values
are the trivial Riemann theta functions. To examine this situation introduce
the subset

(13.104) X̃Θ =
{
s ∈ Cg

∣∣∣ ϑs(z) = Θ
(
s+ w̃0(z);Z

)
= 0 for all z ∈ M̃

}
⊂ ṼΘ.

This set too is invariant under the lattice subgroup L(Ω) so it determines the

corresonding subset XΘ = X̃Θ/L(Ω) ⊂ J(M). Another characterization of the
latter set, familiar from the algebraic conditions on subvarieties of the Jacobi
variety considered in Chapter 12, is that

(13.105) XΘ =
{
s ∈ J(M)

∣∣∣ s+W1 ⊂ VΘ

}
= VΘ 	W1.

Lemma 13.13 For any marked Riemann surface M of genus g > 0 the subset
XΘ ⊂ J(M) is a holomorphic subvariety of J(M) of dimension at most g − 2.

Proof: For each fixed point z ∈ M̃ the equation Θ
(
s + w̃0(z);Z

)
= 0 in the

variable s ∈ J(M) describes a holomorphic subvariety of J(M); consequently
XΘ is the intersection of a collection of holomorphic subvarieties of J(M) so
is itself a holomorphic subvariety of J(M). Since XΘ is a proper subvariety of
J(M) necessarily dimXΘ ≤ g − 1; so to prove the lemma it is enough just to
show that dimXΘ 6= g − 1. For any irreducible component X0 ⊂ XΘ the sum

X0 +W1 =
{
s+ t

∣∣∣ s ∈ X0, t ∈W1

}
⊂ J(M)
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is an irreducible holomorphic subvariety of J(M) by Remmert’s proper mapping
theorem5, since it is the image of the compact irreducible holomorphic variety
X0 ×W1 under the holomorphic mapping that takes a point (s, t) ∈ X0 ×W1

to the sum s + t ∈ J(M). Since X0 + W1 ⊂ VΘ by its definition it follows
that dim(X0 + W1) ≤ g − 1. If dimX0 = g − 1 then since X0 is an irreducible
holomorphic subvariety of dimension g−1 contained in the irreducible holomor-
phic subvariety X0 +W1 of dimension g − 1 it follows that X0 = X0 +W1. By
iterating this equation it follows further that X0 = X0 +W1 +W1 + · · ·+W1;
but since W1 + · · ·+W1 = J(M) if there are g summands W1 then X0 = J(M),
an evident contradiction which serves to conclude the proof.

Lemma 13.14 A nontrivial Riemann theta function ϑs for a marked compact
Riemann surface M is a relatively automorphic function for the action of the
covering translation group Γ on M̃ with the factor of automorpny

(13.106) ξs(T, z) = exp−2πi
(

1
2
tνZ ν + tν(s+ w̃z0(z))

)
for any T =

(∏g
j=1A

µj
j

)
·
(∏g

j=1B
νj
j

)
· C ∈ Γ, where Aj , Bj ∈ Γ are the

generators of Γ associated to the marking and C ∈ [Γ,Γ].

Proof: For the transformation T ∈ Γ as in the statement of the lemma the
canonical abelian integrals satisfy w̃z0(Tz) = w̃z0(z) +µ+Zν and consequently

ϑs(Tz) = Θ
(
s+ w̃z0(Tz);Z

)
= Θ

(
s+ w̃z0(z) + µ+ Zν;Z

)
= Ξ(µ+ Zν, s+ w̃z0(z))Θ

(
s+ w̃z0(z);Z

)
= exp−2πi

(
1
2
tνZ ν + tν

(
s+ w̃z0(z)

))
· ϑs(z),

and that suffices for the proof.

Since a nontrivial Riemann theta function ϑs is a relatively automorphic
function for the action of the covering translation group Γ its divisor d(ϑs) on

M̃ is invariant under Γ so it can be viewed as a divisor dM (ϑs) on the Riemann
surface M itself.

Theorem 13.15 The divisor dM (ϑs) of a nontrivial Riemann theta function
ϑs on a marked compact Riemann surface M of genus g is a positive divisor
and deg dM (ϑs) = g.

Proof: The divisor dM (ϑs) is a positive divisor since the Riemann theta func-
tion is holomorphic. The degree deg dM (ϑs) is the degree of that part of the

divisor d(ϑs) that is contained in the fundamental domain ∆ ⊂ M̃ . By a suit-

able choice of the base point z0 ∈ M̃ it can be assumed that the divisor d(ϑs)
is disjoint from the boundary ∂∆; hence by the Cauchy integral formula

(13.107) deg dM (ϑs) =
1

2πi

∫
∂∆

d log ϑs.

5Remmert’s proper mapping theorem is discussed on page 423 of appendix A.3.
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Since the boundary ∂∆ has the explicit form (13.91) it follows that

∫
∂∆

d log ϑs =

g∑
j=1

∫
C1···Cj−1α̃j−C1···CjBj α̃j+C1···Cj−1Aj β̃j−C1···Cj β̃j

d log ϑs(z)

(13.108)

=

g∑
j=1

∫
α̃j

(
d log ϑs(C1 · · ·Cj−1z)− d log ϑs(C1 · · ·CjBjz)

)
+

g∑
j=1

∫
β̃j

(
d log ϑs(C1 · · ·Cj−1Ajz)− d log ϑs(C1 · · ·Cj)

)
The factor of automorphy of the relatively automorphic function ϑs(z) has the
form (13.106) by the preceding lemma, so in particular

ϑs(Cz) = ϑs(Ajz) = ϑs(z) for Aj ∈ Γ, C ∈ [Γ.Γ] and(13.109)

ϑs(Bjz) = exp−2πi
(

1
2zjj + sj + wj(z, z0)

)
· ϑs(z) for Bj ∈ Γ

where Z = {zij}; consequently

d log ϑs(Cz) = d log ϑs(Ajz) = d log ϑs(z) and(13.110)

d log ϑs(Bjz) = d log ϑs(z)− 2πiωj(z).

Therefore

d log ϑs(C1 · · ·Cj−1z)− d log ϑs(C1 · · ·CjBjz)
= d log ϑs(z)− d log ϑs(Bjz) = 2πiωj(z)

and

d log ϑs(C1 · · ·Cj−1Ajz)− d log ϑs(C1 · · ·Cj)
= d log ϑs(z)− d log ϑs(z) = 0.

Upon substituting these observations into (13.108) it follows that

deg dM (ϑs) =
1

2πi

∫
∂∆

d log ϑs =

g∑
j=1

∫
α̃i

ωj(z) = g,

since
∫
α̃i
ωi(z) = 1, and that concludes the proof.

The image wz0
(
dM (ϑs)

)
∈ J(M) of the divisor dM (ϑs) of the Riemann

theta function under the Abel-Jacobi mapping wz0 : M −→ J(M) induced by
the holomorphic abelian integrals as in (13.26) can be calculated quite explicitly
by a straightforward modification of the Cauchy integral used in the proof of
the preceding theorem, following Riemann.



368 CHAPTER 13. CROSS-RATIO FUNCTION

Theorem 13.16 For any marked Rieman surface M of genus g > 0 and any
parameter s ∈ Cg ∼ X̃Θ the image wz0

(
dM (ϑs)

)
∈ J(M) of the divisor of ϑs

under the Abel-Jacobi mapping is the point

(13.111) wz0
(
dM (ϑs)

)
= R− s,

where R ∈ J(M) is the Riemann point of the Jacobi variety of M and s ∈ J(M)
is the image of the vector s ∈ Cg in J(M) = Cg/L(Ω).

Proof: The divisor dM (ϑs) of the Riemann theta function on M can be de-

scribed as that part of the divisor d(ϑs) on M̃ that is contained in the funda-
mental domain ∆, thus as a divisor

(13.112) dM (ϑs) =

r∑
k=1

νk ak where νk > 0 and ak ∈ ∆ ⊂ M̃.

By a suitable choice of the base point z0 ∈ M̃ it can be assumed that the divisor
d(ϑs) is disjoint from the boundary ∂∆; hence by the Cauchy integral formula
the image of the divisor (13.112) in Cg under the Abel-Jacobi mapping is the
vector with the components

(13.113) w̃i =

r∑
k=1

νkwi(ak) =
1

2πi

∫
∂∆

wi(z)d log ϑs(z).

Since the boundary ∂∆ has the explicit form (13.91) it follows that

2πi w̃i =

g∑
j=1

∫
C1···Cj−1α̃j−C1···CjBj α̃j+C1···Cj−1Aj β̃j−C1···Cj β̃j

wi(z) d log ϑs(z)

(13.114)

=

g∑
j=1

∫
α̃j

(
wi(C1 · · ·Cj−1z)d log ϑs(C1 · · ·Cj−1z)

− wi(C1 · · ·CjBjz)d log ϑs(C1 · · ·CjBjz)
)

+

g∑
j=1

∫
β̃j

(
wi(C1 · · ·Cj−1Ajz)d log ϑs(C1 · · ·Cj−1Ajz)

− wi(C1 · · ·Cjz)d log ϑs(C1 · · ·Cjz)
)

In view of (13.110) and the known periods of the holomorphic abelian differen-
tials it follows that

wi(C1 · · ·Cj−1z)d log ϑs(C1 · · ·Cj−1z) = wi(z)d log ϑs(z)

wi(C1 · · ·CjBjz)d log ϑs(C1 · · ·CjBjz)
)

=
(
wi(z) + zij

)(
d log ϑs(z)− 2πiωj(z)

)
wi(C1 · · ·Cj−1Ajz)d log ϑs(C1 · · ·Cj−1Ajz) =

(
wi(z) + δij

)
d log ϑs(z)

wi(C1 · · ·Cjz)d log ϑs(C1 · · ·Cjz) = wi(z)d log ϑs(z).
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Substituting these observations into (13.113) leads to the identity

2πi w̃i =

g∑
j=1

∫
α̃j

(
wi(z)d log ϑs(z)−

(
wi(z) + zij

)(
d log ϑs(z)− 2πiωj(z)

))(13.115)

+

g∑
j=1

∫
β̃j

((
wi(z) + δij

)
d log ϑs(z)− wi(z)d log ϑs(z)

)
=

g∑
j=1

∫
α̃j

(
2πiwi(z)ωj(z)− zij d log ϑs(z) + 2πi zijωj(z)

)
+

g∑
j=1

∫
β̃j

δij d log ϑs(z)

Since ϑs(Ajz0) = ϑs(z0) by (13.109) it follows that for any choice of a branch
of log ϑs(z) along the path α̃j

(13.116)

∫
α̃j

d log ϑs(z) = log ϑs(Ajz0)− log ϑs(z0) = 2πinj

for some integer nj ∈ Z; for although the function ϑs(z) has the same value at
the beginning and end points of the path α̃j the analytic continuation of log ϑs(z)
along the path α̃j may lead to a value that differs from ϑs(z0) by some integral
multiple of 2πi. Similarly since ϑs(Bjz) = exp−2πi

(
1
2zjj + sj + wj(z)

)
· ϑs(z)

by (13.109) while wj(z0) = 0 it follows that for any choice of a branch of log ϑs(z)

along the path β̃j

(13.117)

∫
β̃j

d log ϑs(z) = log ϑs(Bjz0)− log ϑs(z0) = −2πi
(

1
2zjj + sj +mj

)
for some integer nj . Substituting the auxiliary integrals (13.116), (13.117) and
the quadratic period (13.92) into (13.115) shows that (13.115) takes the form

(13.118) w̃i =

g∑
j=1

(
rij − zijnj + zij − δij

(
1
2zjj + sj +mj

) )
.

Here
∑g
j=1(rij + zij − δij 1

2zjj) = Ri are the components of the Riemann vector
R ∈ Cg defined in (13.93); and the image of this vector in the Jacobi variety
j(M) is the Riemann point R ∈ J(M). The terms λi =

∑g
j=1(−zijnj − δijmj)

are the components of a vector λ ∈ L(Ω) which maps to 0 in the Jacobi varietiy
J(M) = Cg/L(Ω). The vector s = {si} ∈ Cg represents a point s ∈ J(M).
Therefore (13.118) is just the equation w̃i = Ri + λi − si among vectors in Cg,
which reduces to the equation (13.111) in the Jacobi variety; and that concludes
the proof.
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Corollary 13.17 If s ∈ J(M) is a point in the Jacobi variety J(M) = Cg/L(Ω)
of a compact Riemann surface M of genus g > 0 and if s /∈ XΘ ∪ (R −W 1

g )
then Θ(s;Z) = 0 if and only if s ∈ R−Wg−1.

Proof: First suppose that Θ(s;Z) = 0 for a point s ∈ Cg where s /∈ X̃Θ. The
Riemann theta function ϑs(z) = Θ

(
s + w̃z0(z);Z

)
does not vanish identically

in z ∈ M̃ since s /∈ X̃Θ; so it follows from Theorems 13.15 and 13.16 that the
divisor dM (ϑs) is a positive divisor of degree g on M for which

(13.119) wz0
(
dM (ϑs)

)
= R− s.

Now ϑs(z0) = Θ
(
s + w̃z0(z0);Z) = Θ

(
s;Z

)
= 0 since the abelian integrals are

normalized by requiring that w̃z0(z0) = 0 and it is asssumed that Θ(s;Z) = 0;

thus the base point z0 ∈ M̃ represents one of the points in the divisor dM (ϑs),
so dM (ϑs) = d′M (ϑs) + z0 where d′M (ϑs) is a positive divisor of degree g − 1 for
which wz0

(
dM (ϑs)

)
= wz0

(
d′M (ϑs)

)
. Substituting this in (13.119) shows that

(13.120) s = R− wz0
(
d′M (ϑs)

)
∈ R−Wg−1.

Conversely suppose that s = R − wz0(d0) where d0 is a positive divisor of
degree g − 1 on M and that s /∈ XΘ ∪ (R − W 1

g ), hence in particular that
wz0(d0) = (R− s) /∈ W 1

g . If d = d0 + z0 then d is a positive divisor of degree g
on M , and since wz0(d) = wz0(d0) it is also the case that wz0(d) /∈ W 1

g . Since

s /∈ XΘ the function ϑs(z) does not vanish identically in the variable z ∈ M̃ , so
by Theorems 13.15 and 13.16 again dM (ϑs) is a positive divisor on M of degree
g for which s = R− wz0(dM (ϑs)), hence

(13.121) wz0
(
dM (ϑs)

)
= wz0(d).

Here deg dM (ϑs) = deg d = g so by Abel’s theorem (13.121) implies that dM (ϑs)
and d are linearly equivalent divisors; and since wz0(d) /∈ W 1

g the two divisors
actually must be equal. Consequently the base point z0 also is one of the points
of the divisor dM (ϑs), so Θ(s;Z) = Θ

(
s + w̃z0(z0);Z

)
= ϑs(z0) = 0. That

suffices for the proof,

Corollary 13.18 (Riemann Vanishing Theorem) The function Θ(t;Z) on
any compact Riemann surface of genus g > 0 vanishes to the first order on the
subvariety VΘ ⊂ J(M) and

(13.122) VΘ = R−Wg−1 = −R +Wg−1

where R ∈ J(M) is the Riemann point of J(M).

Proof: The preceding Corollary 13.17 shows that the two holomorphic subva-
rieties Vθ and R −Wg−1 of pure dimension g − 1 in the Jacobi variety J(M)
coincide in the complement of the subvariety XΘ ∪ (R −W 1

g ). The subvariety
XΘ is of dimension at most g−2 by Lemma 13.13, while W 1

g = k−Wg−2 by the
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Riemann-Roch Theorem in the form of Theorem 12.23 so is of pure dimension
g−2; therefore necessarily Vθ = R−Wg−1, since subvarieties of pure dimension
g − 1 are uniquely determined by their restrictions to the complements of sub-
varieties of dimension strictly less than g − 1. Since Θ(t;Z) is an even function
VΘ = −VΘ as noted on page 365, so it is also the case that Vθ = −R + Wg−1.
Since the subvarietiy VΘ ⊂ J(M) is an irreducible holomorphic subvariety then
if the function Θ(t;Z) does not vanish to the first order it must vanish to an
order r > 1 at each point of its zero locus VΘ. That means then that in the proof
of Corollary 13.17 the divisor dM (ϑs) contains the multiple r · z0 so the divisor
d′M (ϑs) is of degree g − r and consequently s ∈ R −Wg−s; that is impossible,
since it would mean that the zero locus of Θ(t;Z) is of dimension g − r. That
suffices for the proof.

The preceding corollary also yields some information about the Riemann
point R in the Jacobi variety J(M) of a compact Riemann surface M , in the
notation discussed in Chapter 12.

Corollary 13.19 If z0 is the base point for a marking of a compact Riemann
surface of genus g > 0 then R2 · ζ2g−2

z0 = κ, the canonical bundle of M .

Proof: Equation (13.122) implies that 2R − Wg−1 = Wg−1, or equivalently

2R ∈Wg−1	 (−Wg−1); and Wg−1	 (−Wg−1) = W g−1
2g−2 by the Riemanan-Roch

theorem in the form of Theorem 12.24. By the Canonical Bundle Theorem the
canonical bundle κ is characterized by the condition that c(κ) = 2g − 2 and
γ(κ) = g; hence W g−1

2g−2 = κ when points in the Jacobi variety are viewed as
line bundles of characteristic class 2g − 2, which is the identification of a point
t ∈ J(M) with the line bundle t · ζ2g−2

z0 , which suffices for the proof.

The preceding corollary can be restated as the assertion that the Riemann
point R ⊂ J(M) is what is called a theta characteristic, a point of J(M) such
that 2R = k is the canonical point of J(M); that determines the Riemann
point up to a half period of the lattice L(Ω). Mumford6 gave a more precise
characterization of the Riemann point. That is another topic, thoug; but to
return to the canonical general cross-ratio function, the zero locus and pole
locus of Qc(a, b; t, t0) as a function of the variable t ∈ Cg are translates of the
zero locus of the theta function Θ(t;Z), so these two functions must be closely
related.

Theorem 13.20 On a marked compact Riemann surface M of genus g > 0
the canonical general cross-ratio function Qc(a, b; t, t0) for parameters a, b, t0
for which it is a nontrivial meromorphic function of the variable t ∈ Cg and the
classical theta function Θ(t;Z) are related by

(13.123) Qc(a, b; t, t0) = c Θ (t−R− w̃z0(a);Z) Θ (t−R− w̃z0(b);Z)
−1

for some nonzero constant c, where R ∈ Cg is the Riemann point in Cg.

6See the book Tata Lectures on Theta, vol. I, by David Mumford, (Birkhäuser), 1983.
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Proof: By Theorem 13.6 (iv) for any fixed points a, b ∈ M̃ and t0 ∈ Cg for
which Qc(a, b; t, t0) is a nontrivial meromorphic function of the variable t ∈ Cg

that function vanishes to first order on the subvariety w̃z0(a) + W̃g−1 ⊂ Cg and

has a simple pole on the subvariety wz0(b) + W̃g−1 ⊂ Cg. By the Riemann
Vanishing Theorem, Corollary 13.18, the function Θ(t;Z) vanishes to the first

order on the subvariety −R+ W̃g−1 ⊂ J(M). Therefore Θ
(
t−R− w̃z0(a);Z

)
has the same zero locus as Qc(a, b; t, t0) and Θ

(
t − R − w̃z0(b);Z

)−1
has the

same pole locus as Qc(a, b; t, t0), hence the quotient

(13.124) f(t) =
Qc(a, b; t, t0)

Θ
(
t−R− w̃z0(a);Z

)
Θ
(
t−R− w̃z0(b);Z

)−1

is a holomorphic and nowhere vanishing function of the variable t ∈ Cg. The
functions Qc(a, b; t, t0) and Θ

(
t− w̃z0(a)−R;Z

)
are relatively automorphic for

the action of the lattice subgroup L(Ω); indeed by (13.97)

Qc(a, b; t+ µ+ Zν, t0) = exp 2πitνw̃z0(a, b) · Qc(a, b; t, t0)

and by (13.98)

Θ
(
t−R− w̃z0(a) + µ+ Zν;Z

)
= exp 2πi

(
1

2
tνZν + tν

(
t−R− w̃z0(a)

))
·

·Θ
(
t−R− w̃z0(a);Z).

Substituting these results into (13.124) shows that

f(t+ µ+ Zν) = f(t)

so that f(t) = c is a nonzero constant, and that suffices for the proof.

The descriptions of some standard holomorphic subvarieties of the Jacobi
varieti J(M) in terms of the general theta function can be rephrased in terms
of the classical theta function by applying the preceding theorem relating these
two functios.

Theorem 13.21 If Θ(t;Z) is the classical theta function for the period matrix
Ω =

(
I Z

)
of a marked Riemann surface M of genus g > 0 then

(13.125) Θ(t− W̃ 1
g ;Z) = 0 if and only if t−R ∈ W̃1 ⊂ Cg

where R ∈ Cg is the Riemann point.

Proof: The assumption is that t − W̃ 1
g ⊂ ṼΘ where ṼΘ is the zero locus of

the classical theta function Θ(t;Z). By Corollary 13.18 the zero locus is the

subvariety ṼΘ = R− W̃g−1 when viewed as a holomorphic subvariety of Cg; so

the assumption is just that t−W̃ 1
g ⊂ R−W̃g−1 or equivalently thatR−t+W̃ 1

g ⊂
W̃g−1; but by Lemma 13.8 that is just the condition that t − R ∈ W̃1, when
viewed as a subset of Cg, so that suffices for the proof.
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Theorem 13.22 If Θ(t;Z) is the classical theta function for the period matrix
Ω =

(
I Z

)
of a marked Riemann surface M of genus g > 0 and if the points

aν ∈ M̃ for 1 ≤ aν ≤ r ≤ g represent distinct points of M then{
t ∈ Cg

∣∣∣Θ
(
t−R− w̃z0(aν ;Z) = 0

)
for 1 ≤ ν ≤ r

}
(13.126)

=
(
w̃0(a1 + · · ·+ ar) + W̃g−r

)
∪ W̃ 1

g ⊂ Cg

=

r⋂
ν=1

(
w̃z0(aν) + W̃g−1

)⋃
W̃ 1
g ⊂ Cg

where R ∈ Cg is the Riemann point.

Proof: Since Q(aν , b; t, t0) = cΘ
(
t − R − w̃(aν);Z

)
Θ
(
t − R − w̃(b);Z

)−1
by

Theorem 13.20 then if Θ
(
t−R−w̃z0(aν);Z

)
= 0 it follows that Q(aν , b; t, t0) = 0,

assuming that b ∈ M̃ represents a point of M that is distinct from the points
aν so that the zero locus and the pole locus of the function Q(aν , b; t, t0) are
distinct; so the assumption of the theorem implies that the point t is contained
in the zero locus Ṽd of the divisor d = a1 + · · ·+ ar, as defined in (13.80). The
conclusion of the present theorem then follows from Theorem 13.9.

It is evident from the preceding discussion that the subvariety W 1
g = k −

Wg−2 ⊂ J(M) plays a surprisingly central role in Jacobi varieties. The Riemann
surface M imbedded in the Jacobi variety as the submanifold W1 ⊂ J(M) can
be described in terms of the subvariety W 1

g as

(13.127) W1 =
{
t ∈ J(M)

∣∣∣Θ(t+ R−W 1
g ;Z) = 0

}
;

the Riemann point R is not needed to describe the submanifold W1 just up to
translation in J(M). By Theorem 13.22 the submanifold W 1

g can be character-
ized as one of the two irreducible components w̃z0(a1 + a2) and k −wg−2 = w1

g

of the intersection Θ(w̃z0(a1);Z) = Θ(t + w̃z0(a2);Z) = 0. The subvariety W 1
g

is also the exceptional locus of the Abel-Jacobi mapping w̃z0 : M (g) −→ J(M).
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Chapter 14

Pseudouniformizing
Mappings

REVISED IN PART
A Riemann surface has the pseudogroup structure of a complex manifold;

but it may possess in addition finer pseudogroup structures, leading to what
can be called the pseudouniformization of Riemann surfaces. The pseudogroups
of interest here are the pseudogroup F1 of affine transformations and the pseu-
dogroup F2 of linear fractional or projective transformations; explicitly

T ∈ F1 ⇔ T (z) = az + b where a 6= 0(14.1)

for z ∈ C

T ∈ F2 ⇔ T (z) =
az + b

cd+ d
where det

(
a b
c d

)
6= 0(14.2)

for z ∈ P1.

There are pseudogroup structures on Riemann surfaces associated to each of
the pseudogroups Fν , affine structures associated to the pseudogroup F1 and
projective structures associated to the pseudogroup F2. The pseudogroup F1

consists of actions of the affine Lie group

(14.3) G1 = A(1,C) =

{(
a b
0 1

) ∣∣∣∣∣ a, b ∈ C, a 6= 0

}

on the complex manifold V1 = C while the pseudogroup F2 consists of actions
of the projective Lie group

(14.4) G2 = Pl(2,C) = Gl(2,C)/C∗ = Sl(2,C)/± I

on the complex manifold V2 = P1. The mapping that associates to each matrix
in G1 = A(1,C) the projective linear transformation represented by that matrix
is an injective homomorphism from the affine Lie group G1 to the projective Lie

375
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group G2 which determines an injective homomorphism from the pseudogroup
F1 into the pseudogroup F2.

The pseudogroups Fν are particularly interesting in that they can be de-
scribed as sets of solutions of systems of differential equations; indeed it will
be demonstrated next that the pseudogroup Fν consists of local biholomorphic
mappings that are solutions of the differential equation Dνf = 0, where

(D1f)(z) =
f ′′(z)

f ′(z)
,(14.5)

(D2f)(z) =
2f ′(z)f ′′′(z)− 3f ′′(z)2

2f ′(z)2
.(14.6)

The differential operator D2, customarily called the Schwarzian differential op-
erator, can be written in either of the alternative forms
(14.7)

(D2f)(z) =


−2

h′′(z)
h(z)

where h(z) = f ′(z)−1/2, or

k′′(z)− 1
2k
′(z)2 where k(z) = log f ′(z), or

d
dz (D1f)(z)− 1

2 (D1f)(z)2,

as can be seen by a straightforward calculation. In addition if u1(z) and
u2(z) are two linearly independent holomorphic solutions of the differential
equation u(z)′′ + g(z)u(z) = 0 for some holomorphic function g(z) and if
f(z) = u2(z)/u1(z) then

(14.8) (D2f)(z) = g(z)

by another straightforward calculation, accomplished most easily by using the
second expression for the differential operator D2 in (14.7); and

(14.9)
d

dz

(
u1(z)u′2(z)− u′1(z)u2(z)

)
= u1(z)u′′2(z)− u′′1(z)u2(z) = 0,

so the Wronskian of these two functions is a nonzero constant c and f ′(z) =
cu1(z)−2 6= 0.

Theorem 14.1 The differential operators Dν have the following properties:
(i) if h = f ◦ g is the composition of the holomorphic local homeomorphisms f
and g, so that h(z) = f(w) where w = g(z), then

(14.10) (Dνh)(z) = (Dνf)(w) · g′(z)ν + (Dνg)(z);

(ii) Dνf = 0 for a holomorphic local homeomorphism f if and only if f ∈ Fν ;
(iii) for any holomorphic function g in an open neighborhood of a point a ∈ C
there exist holomorphic functions fν in an open subneighborhood of a such that
f ′ν(a) 6= 0 and Dνfν = g; and if f̃ν is another holomorphic function for which
f̃ ′ν(a) 6= 0 and Dν f̃ν = g then f̃ν = T ◦ fν for some T ∈ Fν .
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Proof: (i) It follows immediately from the chain rule for differentiation that

h′ = f ′g′,

h′′ = f ′′g′2 + f ′g′′,

h′′′ = f ′′′g′3 + 3f ′′g′g′′ + f ′g′′′,

where the variables are omitted to simplify the notation; but it should be un-
derstood that f is viewed as a function of the variable w and g and h are viewed
as functions of the variable z. A straightforward calculation using these forms
of the chain rule shows that

(D1h) =
f ′′g′2 + f ′g′′

f ′g′
= (D1f) · g′ + (D1g)

and

(D2h) =
2f ′g′(f ′′′g′3 + 3f ′′g′g′′ + f ′g′′′)− 3(f ′′g′2 + f ′g′′)2

2f ′2g′2

= (D2f) · g′2 + (D2g).

(ii) It is obvious that D1f = 0 if and only if f ′′ = 0, hence if and only if
f(z) = az + b or equivalently f ∈ F1. It is equally obvious from (14.7) that
D2f = 0 if and only if h′′ = 0, or equivalently h(z) = cz+d, where h = (f ′)−1/2.
If h(z) = cz + d then f ′(z) = (cz + d)−2 hence f(z) = −1

c(cz+d) + c1 = az+b
cz+d for

some constants c1, a and b. Conversely if f(z) = az+d
cz+d then f ′(z) = ad−bc

(cz+d)2 and

h = (f ′)−1/2 = (c1z + d1) for some constants c1 and d1. Thus D2f = 0 if and
only if f ∈ F2.
(iii) If g(z) is holomorphic in an open neighborhood of a point a ∈ C its indefinite
integral F (z) =

∫ z
g(ζ)dζ is a holomorphic function near that point, as is the

further indefinite integral f1(z) =
∫ z

expF (ζ)dζ; and f ′1(a) = expF (a) 6= 0
while D1f1(z) = f ′′1 (z)/f ′1(z) = F ′(z) expF (z)/ expF (z) = g(z). Next it is
a familiar result from the local theory of holomorphic differential equations1

that if g(z) is a holomorphic function in an open neighborhood of a point a ∈
C then there exist two linearly independent holomorphic functions u1(z) and
u2(z) near that point that are solutions of the differential equation u′′(z) +
g(z)u(z) = 0; it is always possible to choose these solutions so that u1(a) 6= 0,
and it then follows from (14.8) that the quotient f2(z) = u2(z)/u1(z) is a
holomorphic function which satisfies D2f2 = g and f ′2(a) 6= 0. If Dνfν =
Dν f̃ν = g for holomorphic functions fν and f̃ν such that f ′ν(a)f̃ ′ν(a) 6= 0 then the
restriction of each of these functions to a sufficiently small open neighborhood
of the point a is a biholomorphic mapping, and consequently f̃ν = hν ◦ fν for
the biholomorphic mapping hν = f̃ν ◦ f−1

ν from an open neighborhood of fν(a)
to an open neighborhood of f̃ν(a); it then follows from (i) that g = Dν f̃ν =

1These results about holomorphic differential equations are discussed among other places
in C. Carathéodory, Theory of Functions of a Complex Variable, vol. II (Chelsea, 1960),
where the role of the Schwarzian differential operator is examined in some detail.
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(Dνhν)(f ′ν)ν+(Dνfν) = (Dνhν)(f ′ν)ν+g hence that Dνhν = 0 and consequently
hν ∈ Fν by (ii). That suffices to conclude the proof.

The result (14.10) of the preceding theorem can be written more succinctly
as

(14.11) Dν(f ◦ g) = Dνf · (g′)ν +Dνg.

It is clear from this that the composition of any two solutions of the differential
equation Dνf = 0 is again a solution of that differential equation, hence that
the set of solutions is a pseudogroup of locally biholomorphic mappings, even
without determining explicitly what the set of solutions is. The differential
operators Dν are chosen particularly so that this identity is satisfied; these
operators of course can be simplified by eliminating the denominators in (14.5)
and (14.6), which does not change the set of solutions of the differential equations
Dνf = 0 but does not lead to quite as convenient a formula as (14.11). It is
worth noting that the derivatives f ′(a) at any particular point a of the solutions
f of the differential equations Dνf = 0 near that point can have quite arbitrary
values; that can be viewed as the assertion that changes of coordinates in the
pseudogroups Fν can have quite arbitrary actions on the tangent space at any
point, which is often phrased as the assertion that these particular pseudogroups
of transformations are tangentially transitive.

It can be shown that up to a natural equivalence these are the only tan-
gentially transitive pseudogroups in one variable that can be described as the
sets of solutions of systems of differential equations; that is one reason for fo-
cusing attention on these particular pseudogroups. Although the proof of that
assertion would lead far too far afield, it may be worth including here a brief
digression2 on the classification of pseudogroups defined by systems of ordinary
or partial differential equations in order to clarify the role of the particular
differential operators D1 and D2. First, though, it is worth pointing that the
pseudogroup of holomorphic mappings in one complex variable can be defined as
the pseudogroup of C1- mappings f : R2 −→ R2 that are solutions of the Cauchy-
Riemann differential equation ∂f = 0, which really amounts to the condition
that the differential of the mapping f lies in the subgroup Gl(1,C) ⊂ Gl(2,R).
This is perhaps the simplest interesting example of a non tangentially transitive
pseudogroup that can be defined by a system of partial differential equations,
and one for which the defining differential equations are linear. There are very
few pseudogroups that can be defined by linear systems of partial differential
equations, and all impose some restrictions on the differentials of the mappings3.
For further examples it is necessary to consider pseudogroups defined by systems
of nonlinear differential equations, which is not as difficult as might be expected.

2This topic is discussed among other places in R. C. Gunning, On Uniformization of
Complex Manifolds: the Role of Connections, Mathematical Notes number 22 (Princeton
University Press, 1978), and in S. Sternberg, Lectures on Differential Geometry, Prentice-
Hall, 1964.

3This is discussed in S. Bochner and R. C. Gunning,“Infinite linear pseudogroups of trans-
formations”, Annals of Mathematics 75 (1962), 93-104.
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The set of germs at the origin of holomorphic functions of a complex variable
that vanish but have nonvanishing first derivative at the origin form a group
G under composition; and the Taylor expansions of these functions up to any
finite order k with the induced group structure form a Lie group Gk, the group
of k-jets of holomorphic mappings in one variable. For instance the 3-jets of two
germs of holomorphic functions f(z) =

∑∞
n=1 xn · zn and g(z) =

∑∞
n=1 yn · zn

are described by the points (x1, x2, x3) and (y1, y2, y3) in the complex manifold
C∗ × C2, and the group structure defined by the composition of functions is
easily seen to be explicitly

(x1, x2, x3) ◦ (y1, y2, y3) = (x1y1, x1y2 + x2y
2
1 , x1y3 + 2x2y1y2 + x3y

3
1),

thus identifying the complex manifold underlying the Lie group G3 with the
three-dimensional complex manifold C∗ × C2. For any subgroup G ⊂ Gk, de-
scribed as the set of points x ∈ Gk such that Pi(x) = 0 for some polynomials
Pi, the set of holomorphic local homeomorphisms with k-jets in G is closed
under composition and is the pseudogroup defined by the system of differential
equations Pi(f, f

′′, . . . , f (k)) = 0.
The first step in classifying the pseudogroups defined by systems of differen-

tial equations is the classification of subgroups of Gk, a simple algebraic problem
that can be handled most readily by examining the Lie algebra of the group Gk.
Of course conjugate subgroups yield pseudogroups that are equivalent under
changes of coordinates in C, so it is only the classification of subgroups up to
inner automorphism that is relevant. However quite different nonconjugate sub-
groups G ⊂ Gk may lead to equivalent pseudogroups of transformations. For
instance it is not necessarily the case that the set of points of Gk consisting of
the values (f(x), f ′′(x), . . . , f (k)(x)) for mappings defined by that group actually
span the entire group G; they may lie in a proper subgroup G′ ⊂ G, and then the
subgroups G and G′ describe the same pseudogroup of transformations. Hence
the next step is to examine the explicit pseudogroups defined by various sub-
groups of Gk. That also can be handled quite readily by using the Lie algebras,
at least for the tangentially transitive pseudogroups. In this way it is not difficult
to show that the only tangentially transitive pseudogroups described by differ-
ential equations are, first, the pseudogroup described by the subgroup x2 = 0 in
G2, and second, the pseudogroup described by the subgroup x1x3−x2

2 = 0 in G3;
these are just the pseudogroups described by the differential operators D1 and
D2, which are expressed in terms of the derivatives f (n) = xn/n! rather than in
terms of coefficients in the power series expansions. Higher order differential op-
erators lead to no additional pseudogroups. The first pseudogroup of course also
is described by the subgroup x2 = x3 = 0 in G3, a simple example of distinct sub-
groups determining the same pseudogroup. The situation in higher dimensions
is quite similar. There are up to equivalence only three nontrivial tangentially
transitive pseudogroups defined by systems of partial differential equations in
dimensions n > 2: the pseudogroup of affine mappings, the pseudogroup of
mappings having constant Jacobian determinants, and the pseudogroup of pro-
jective transformations in n dimensions. All of these pseudogroups actually are
defined by systems of second-order partial differential equations.
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To examine the role of the differential operators (14.5) and (14.6) further,
consider a Riemann surface M having a coordinate covering U = {Uα} with
local coordinates zα and holomorphic coordinate transition functions fαβ , so
that zα = fαβ(zβ) in an intersection Uα ∩ Uβ . Since fαγ = fαβ ◦ fβγ in any
triple intersection Uα ∩ Uβ ∩ Uγ it follows from (14.11) that Dνfαγ = Dνfαβ ·
(f ′βγ)ν +Dνfβγ , or equivalently that

(14.12) Dνfαγ = κνγβ ·Dνfαβ +Dνfβγ

where f ′βγ = dzβ/dzγ = κγβ are the coordinate transition functions of the canon-
ical bundle κ as defined in (2.23); that is just the condition that the functions
Dνfαβ describe a cocycle in Z1(U,O(κν)), as in (1.45). For ν = 1 the sheaf
O(κ) is identified as usual with the sheaf O(1,0) of germs of abelian differentials
on M by associating to a germ fα ∈ O(κ) the germ of the holomorphic differ-
ential fαdzα ∈ O(1,0). Correspondingly for ν = 2 to each germ fα ∈ O(κ2) can
be associated the invariantly defined expression fα · dz2

α, called the germ of a
quadratic differential on M , and in this way the sheaf O(κ2) is identified with
the sheaf O2(1,0) of germs of quadratic differentials on M ; the associated vector
space Γ(M,O2(1,0)) is called the space of quadratic differentials on the Riemann
surface M . In these terms (14.12) can be written somewhat more intrinsically
in the form

(14.13) Dνfαγ · dzνγ = Dνfαβ · dzνβ +Dνfβγ · dzνγ

involving abelian differentials if ν = 1 and quadratic differentials if ν = 2;
this is just the condition that the expressions Dνfαβ · dzνβ describe a cocycle in

Z1(M,Oν(1,0)).
A holomorphic change of coordinates on the manifold M is effected by bi-

holomorphic mappings wα = fα(zα) in the coordinate neighborhoods Uα, after a
refinement of the coordinate covering if necessary; and the new coordinates have
the coordinate transition functions wα = f̃αβ(wβ) where f̃αβ = fα ◦ fαβ ◦ f−1

β ,

or equivalently where f̃αβ ◦ fβ = fα ◦ fαβ in an intersection Uα ∩ Uβ . Applying
the differential operator Dν to this last identity and using (14.11) lead to the
result that

Dν(f̃αβ ◦ fβ) = Dν f̃αβ · (f ′β)ν +Dνfβ

= Dν(fα ◦ fαβ) = Dνfα · (f ′αβ)ν +Dνfαβ ,

so that

(14.14) Dνfαβ −Dν f̃αβ · (f ′β)ν = Dνfβ −Dνfα · (f ′αβ)ν .

Since f ′β = dwβ/dzβ and f ′αβ = dzα/dzβ this can be written more intrinsically
as

(14.15) Dν f̃αβ · dwνβ −Dνfαβ · dzνβ = Dνfα · dzνα −Dνfβ · dzνβ
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in terms of abelian differentials if ν = 1 or quadratic differentials if ν = 2, and
in this form it is just the condition (1.42)that the cocycles Dνfαβ · dzνβ and

Dν f̃αβ ·dwνβ differ by the coboundary of the cochain Dνfα ·dzνα ∈ C0(U,Oν(1,0))
so are cohomologous. Therefore the cohomology class

(14.16) Dν(M) ∈ H1(M,Oν(1,0))

represented by the cocycle Dνfαβ ·dzνβ is intrinsically defined, so is independent
of the choice of coordinate covering of the Riemann surface. The cohomology
class Dν(M) is trivial if and only if, after a refinement of the coordinate cov-
ering if necessary, the cocycle Dνfαβ · dzνβ is the coboundary of a cochain in

C0(U,Oν(1,0)); such a cochain is called an Fν connection on the surface M , an
affine connection if ν = 1 and a projective connection if ν = 2, using a terminol-
ogy modeled on the traditional terminology in differential geometry. Thus an
Fν connection on M is a collection of local holomorphic ν-differentials pα · dzνα
in the coordinate neighborhoods Uα such that

(14.17) Dνfαβ · dzνβ = pβ · dzνβ − pα · dzνα

in each intersection Uα ∩ Uβ , as in (1.42).

Theorem 14.2 A Riemann surface M admits an Fν structure if and only if
Dν(M) = 0 in H1(M,Oν(1,0)). If the surface admits an Fν structure then the
set of all Fν structures is in canonical one-to-one correspondence with the set
of Fν connections on the surface M , a linear space of dimension γ(κν).

Proof: Choose a coordinate covering U = {Uα} of the Riemann surface M with
local coordinates zα and coordinate transition functions fαβ . If the surface
admits an Fν structure then after a refinement of the coordinate covering if
necessary there is a change of coordinates wα = fα(zα) such that the coordinate
transition functions wα = f̃αβ(wβ) belong to the pseudogroup Fν . It then

follows from (14.15) that 0 = Dν f̃αβ · dwνβ = Dνfαβ · dzνβ + Dνfα · dzνα −
Dνfβ · dzνβ , so Dνfα · dzνα is an Fν connection on the surface M and therefore
Dν(M) = 0. Conversely if Dν(M) = 0 then there is an Fν connection on the
surface M ; thus after a refinement of the coordinate covering if necessary there
are holomorphic abelian or quadratic differentials pα · dzνα in the coordinate
neighborhoods Uα satisfying (14.17). It follows from Lemma 14.1 (iii) that,
after a further refinement of the coordinate covering if necessary, there is a
holomorphic change of coordinates wα = fα(zα) for which Dνfα = pα; the
coordinate transition functions f̃αβ for the coordinates wα satisfy (14.15), and

since Dνfα = pα while the functions pα satisfy (14.17) it follows that Dν f̃αβ = 0
so the coordinates wα provide an Fν structure on M .

If there is an Fν structure on M then the most general coordinate covering
defining the same Fν structure is of the form hα◦fα where hα ∈ Fν , after another
refinement of the coordinate covering if necessary; and since Dνhα = 0 it follows
from (14.11) that Dν(hα◦fα) = Dνfα = pα, so all these Fν coordinate coverings
yield the same Fν connection on M . On the other hand it further follows from
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Lemma 14.1 (iii) that all solutions fα of the differential equation Dνfα = pα
are of the form hα ◦ fα, where fα is any one solution and hα are biholomorphic
mappings such that Dνhα = 0, after a further refinement of the coordinate
covering if necessary; thus any such solutions yield the same Fν structure on
M . Altogether, if Dν(M) = 0 then the set of possible Fν structures on M is in
natural one-to-one correspondence with the set of Fν connections on the surface
M . If there is an Fν connection on M then any two such connections differ by a
cocycle, that is, by an element of Γ(M,O(κν)); thus the set of all Fν connections
form a linear space of dimension γ(κν), and that suffices to conclude the proof
of the theorem.

Corollary 14.3 If pα · dzνα is an Fν connection on a Riemann surface M in
terms of local coordinates zα, the associated Fν structure is described by local
coordinates wα = fα(zα) for any local solutions of thke differential equation
Dνfα = pα.

Proof: This was demonstrated in the proof of the preceding theorem, and is
included explicitly here just as a convenience for later reference.

Corollary 14.4 (i) A compact Riemann surface M admits an affine structure
if and only it has genus g = 1; and if g = 1 the set of affine structures naturally
form a one-dimensional linear space.
(ii) Any compact Riemann surface M admits a projective structure; if g = 0
the structure is unique, if g = 1 the set of projective structures naturally form
a one-dimensional linear space, and if g > 1 the set of projective structures
naturally form a (3g − 3)-dimensional linear space.

Proof: (i) If a compact Riemann surface M admits an affine structure, de-
scribed by local coordinates zα for some coordinate covering U = {Uα} of
the Riemann surface M , then zα = aαβzβ + bαβ for some constants aαβ and
bαβ in any intersection Uα ∩ Uβ of coordinate neighborhoods. The canonical
bundle κ consequently is described by constant coordinate transition functions
καβ = dzβ/dzα = aβα, so it is a flat bundle and therefore c(κ) = 0 by Corol-
lary 3.9; and since c(κ) = 2g − 2 by the Canonical Bundle Theorem, Theo-
rem 2.24, it follows that g = 1. Conversely any compact Riemann surface of
genus g = 1 is biholomorphic to its Jacobi variety under the Abel-Jacobi map-
ping, as in Corollary 12.9 (iii), so is a complex torus and hence has a natural
affine structure. By Theorem 14.2 the set of all affine structures is in one-to-
one correspondence with the set of affine connections on M , a linear space of
dimension γ(κ), and γ(κ) = 1 since the canonical bundle is trivial.
(ii) By Theorem 14.2 a Riemann surface M admits a projective structure if
and only if the cohomology class D2(M) ∈ H1(M,O(κ2)) is zero. If M is a
compact Riemann surface of genus g the Serre Duality Theorem in the form
of Corollary 1.18 shows that dimH1(M,O(κ2)) = dim Γ(M,O(1,0)(κ−2)) =
dim Γ(M,O(κ−1)). If g > 1 the canonical bundle κ has Chern class c(κ) =
2g − 2 > 0 and consequently Γ(M,O(κ−1)) = 0 so D2(M) = 0 and the surface
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does admit a projective structure; furthermore by Theorem 14.2 the set of all
projective structures is in one-to-one correspondence with the set of projective
connections, a linear space of dimension γ(κ2), and γ(κ2) = 3g − 3 when g > 1
by the Riemann-Roch Theorem. If g = 1 then by the first part of this theorem
the surface has an affine structure, which is a special case of a projective struc-
ture; again the set of projective structures is in one-to-one correspondence with
the set of projective connections, which is a linear space of dimension γ(κ2),
and γ(κ2) = 1 since the canonical bundle is trivial. Finally if g = 0 the surface
is just the Riemann sphere P1, which has the natural projective structure de-
scribed by its standard coordinate covering; yet again the set of all projective
structures is in one-to-one correspondence with the set of projective connections
on M , which is a linear space of dimension γ(κ), and γ(κ) = 0 since c(κ) = −2
so this projective structure is unique. That suffices to conclude the proof.

Theorem 14.2 holds for noncompact Riemann surfaces as well. If M is a
noncompact Riemann surface it is a standard result4 thatH1(M,Oν(1,0)) = 0 for
any ν, since M is a Stein manifold and Oν(1,0) is a coherent analytic sheaf over
M ; hence M admits both affine and projective structures, and the vector space
Γ(M,O(κν)) is infinite dimensional so there are a vast number of distinct affine
and projective structures on M . That topic will not be pursued further here,
since the discussion generally has been limited to compact Riemann surfaces,
although the next few general definitions do not require compactness. If a
Riemann surface M has an Fν structure and if U = {Uα} is a coordinate covering
describing that structure, with local coordinates zα and coordinate transition
functions fαβ consisting of the operation of group elements f̂αβ ∈ Gν , these

group elements can be viewed as constant mappings f̂αβ : Uα ∩ Uβ −→ Gν to

the Lie group Gν and they satisfy f̂αγ = f̂αβ · f̂βγ in any triple intersection
Uα ∩Uβ ∩Uγ so they describe a flat Gν bundle over M , a flat fibre bundle with
group the Lie group Gν and with fibre the complex manifold Vν on which the
group Gν acts, the complex plane V1 = C or the Riemann sphere V2 = P1.
Any other coordinate covering describing the same Fν structure on M , after
refining the coordinate covering if necessary, is of the form wα = hα(zα) for

mappings hα ∈ Fν consisting of the operations of group elements ĥα ∈ Gν ; and
the coordinate transition functions for this covering are hα ◦ fαβ ◦ h−1

β ∈ Fν ,

which consist of the actions of the group elements ĥα◦f̂αβ◦ĥ−1
β ∈ Gν so describe

an equivalent flat Gν bundle over M . In this way there is associated to any Fν
structure on an arbitrary Riemann surface M a unique flat Gν bundle over M ,
called the holonomy bundle of the Fν structure of M . The holonomy bundles
are in some ways simpler than the Fν structures to which they are associated,
so they are convenient tools to use in examining these structures. Some caution
is required, though, since generally there is not a one-to-one correspondence
between Fν structures on M and flat Gν bundles over M ; not all flat Gν bundles
are holonomy bundles of Fν structures on M , and a flat Gν bundle over M may

4For this property of noncompact Riemann surfaces see for instance O. Forster, Lectures
on Riemann Surfaces, Graduate Texts in Mathematics, No. 81 (Springer-Verlag, 1981).
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be the holonomy bundle of a variety of different Fν structures on M .

Corollary 14.5 The holonomy bundles of Fν structures on a Riemann sur-
face M are the flat Gν bundles over M that admit locally biholomorphic cross-
sections.

Proof: The local coordinates zα describing an Fν structure on M are locally
biholomorphic mappings zα : Uα −→ Vν such that zα = fαβ(zβ) in each intersec-
tion Uα ∩ Uβ of coordinate neighborhoods on M , where fαβ are the coordinate
transition functions of the holonomy bundle of this structure; thus the local
coordinates zα can be viewed as a locally biholomorphic cross-section of the
holonomy bundle of the Fν structure on M . Conversely if a flat Gν bundle
over a Riemann surface M has a locally biholomorphic cross-section zα then the
functions zα can be taken as local coordinates on M , and clearly they describe
an Fν structure with the given Gν bundle as holonomy bundle. That suffices
for the proof.

It is possible more generally to begin with a two-dimensional topological
manifold M , rather than with a Riemann surface, and to consider Fν structures
on M . Any Fν structure is in particular a complex structure; but of course there
are Fν structures on M associated to the various different complex structures
on M . Each Fν structure though has an associated holonomy bundle; and it is
evident that the analogue of Corollary 14.5 is the assertion that the holonomy
bundles of Fν structures on a topological manifold M are precisely those flat Gν
bundles over M that admit locally homeomorphic cross-sections. The problem
of determining whether a particular flat Gν bundle has a locally homeomorphic
cross-section is a purely topological problem, but one of some difficulty as will
become apparent in the further discussion.

As for the case of flat vector bundles, discussed in Part ????, flat Fν bundles
over a Riemann surface or over just a two-dimensional topological manifold M
can be described by flat factors of automorphy for the action of the covering
translation group Γ on the universal covering space M̃ of the surface M . Indeed
a flat Fν bundle B over M lifts to a Γ-invariant flat Fν bundle B̃ over M̃ ,
and B can be identified with the quotient B = B̃/Γ of the bundle B̃ under the
natural induced action of Γ. Since M̃ is simply connected the usual monodromy
argument shows that the flat bundle B̃ is equivalent to a product bundle M̃×Vν
over M . The action of a covering translation T ∈ Γ on the product bundle
M̃ × Vν must have the form

(14.18) T · (z, v) =
(
Tz, ρ(T ) · v

)
for some group homomorphism ρ ∈ Hom(Γ,Fν); and this homomorphism is the
flat factor of automorphy describing the bundle B. Clearly any homomorphism
ρ ∈ Hom(Γ,Fν) can be taken as the flat factor of automorphy describing a flat
Fν bundle over M . On the other hand the bundle B̃ is equivalent to a product
bundle in various ways, for it is always possible to apply an automorphism
A : M̃ × Vν −→ M̃ × Vν of flat product bundles; if this automorphism is given
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explicitly by A(z, v) = (z, α·v) for some α ∈ Fν then it follows from (14.18) that
ATA−1(z, v) = (Tz, αρ(T )α−1 · v), so this automorphism changes the factor of
automorphy describing the bundle B to the conjugate homomorphism αρα−1.
It is evident from this that just as in the case of flat vector bundles two flat
factors of automorphy describe the same flat Fν bundle if and only if they are
conjugate homomorphisms.

This global description of flat Fν bundles can be used to derive a very conve-
nient global description of Fν structures on a Riemann surface. The holonomy
bundle of an Fν structure can be described by a flat factor of automorphy
ρ ∈ Hom(Γ,Fν), which is called simply the holonomy of the Fν structure; it is
of course determined only up to conjugation. Cross-sections of the holonomy
bundle correspond to relatively automorphic functions for the flat factor of au-
tomorphy or holonomy ρ ∈ Hom(Γ,Fν), hence to mappings φ : M̃ −→ Vν such
that

(14.19) φ(Tz) = ρ(T ) · φ(z)

for all T ∈ Γ. It follows from Corollary 14.5 that a group homomorphism
ρ ∈ Hom(Γ,Fν) is the holonomy of an Fν structure on M if and only if there
is a locally biholomorphic mapping φ satisfying (14.19); this mapping, called
the development mapping of the Fν structure, provides local coordinates on M
describing the Fν structure. If A ∈ Fν then the composition A◦φ : M̃ −→ Vν is
a locally biholomorphic mapping such that (A◦φ)(Tz) = Aρ(T )A−1 · (A◦φ)(z),
so it is the development mapping for the same Fν structure but for a conjugate
holonomy. It follows from Theorem 14.2 that if there are other Fν structures
on M then they are in one-to-one correspondence with the Fν connections on
M , where the correspondence is as described explicitly in Corollary ??. The
local coordinates provided by the development mapping φ are an Fν coordinate
covering though, so their coordinate transition functions fαβ are solutions of the
differential equation Dνfαβ = 0; consequently it is evident from the defining
equation (14.17) for an Fν connection that such a connection is just an Fν
differential π(z) = pα(zα) · dzνα on the surface M in terms of this coordinate
covering, an abelian differential if ν = 1 or a quadratic differential if ν = 2. The
local coordinates wα describing the Fν structure associated to this connection
π(z) then are given by wα = fα(zα) for any solutions of the differential equation
Dνfα(zα) = pα(zα) by Corollary ??. Of course this new Fν structure also can
be described by a development mapping ψ : M̃ −→ Vν for its holonomy σ ∈
Hom(Γ,Fν), so it can be assumed that the local coordinates wα are given by this
development mapping and hence that wα = ψ(zα); therefore the development
mapping is a global solution of the differential equation Dνψ(z) = π(z) on the
universal covering space M̃ , and the holonomy σ is determined from this since
ψ(Tz) = σ(T ) · ψ(z) for all T ∈ Γ.

The use of holonomy and the development mapping to study pseudogroup
structures can be illustrated nicely by examining in some detail the simplest
cases. The situation for the Riemann sphere is rather trivial, since as in Corol-
lary 14.4 it has a unique projective structure and no affine structures. A Rie-
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mann surface M of genus g = 1 has both affine and projective structures, as in
Corollary 14.4. Indeed when M is identified with its Jacobi variety it appears as
the quotient of the complex plane C by the lattice subgroup L generated by two
complex numbers ω1 and ω2 that are linearly independent over the real numbers,
and that provides a natural affine structure on M . The complex plane is the
universal covering surface M̃ of M , and the lattice subgroup L is the covering
translation group, generated by the translations Tj : z −→ z + ωj for i = 1, 2.

The development mapping φ : M̃ = C −→ V1 = C for this affine structure is
just the identity mapping, and the holonomy ρ : Γ = L −→ F1 is the trivial
homomorphism ρ(Tj) = Tj . Other affine structures on M are described by
affine connections; in terms of the coordinates on the torus, affine connections
are just holomorphic abelian differentials, which are of the form π(z) = a ·dz for
arbitrary complex constants a ∈ C. The development mapping ψ for the affine
structure described by such a differential is a global solution of the differential
equation D1ψ(z) = ψ′′(z)/ψ′(z) = d

dz logψ′(z) = a on the universal covering
space C. If a = 0 the identity mapping is a solution, so as might be expected
the trivial affine connection corresponds to the initial affine structure. If a 6= 0
the function ψ(z) = eaz is a solution; in this case the development mapping
satisfies

(14.20) ψ(Tjz) = ea(z+ωj) = eaωjψ(z),

so the holonomy of this affine structure is the homomorphism ρ : L −→ F1 for
which

(14.21) ρ(Tj) =

(
eaωj 0

0 1

)
.

Of course any other solution ψ1 of the differential equation D1ψ1 = a is of the
form ψ1 = A ◦ ψ for some A ∈ F1 by Lemma 14.1 (iii); that solution leads to
an equivalent affine structure on M , with the conjugate holonomy ρ1 = AρA−1.
The initial affine structure is also a projective structure and other projective
structures are described by projective connections; in terms of the coordinates
on the torus, projective connections are just holomorphic quadratic differentials,
which are of the form π(z) = a · dz2 for arbitrary complex constants a ∈ C.
The development mapping ψ for the projective structure described by such a
differential is a global solution of the differential equation D2ψ(z) = a on the
universal covering space C. If a = 0 the identity mapping is a solution, so again
as might be expected the trivial projective connection corresponds to the initial
projective structure. If a 6= 0 and the differential operator D2 is taken in the
first form of (14.7) then solving the differential equation D2ψ = a amounts first
to solving the differential equation −2h′′(z)/h(z) = a and then to solving the
differential equation ψ′(z) = h(z)−2. If h(z) = ebz then −2h′′(z)/h(z) = −2b2,
so it is possible to take h(z) = ebz where −2b2 = a; note that there are two
choices of the parameter b that provide solutions. For either choice of the
parameter b the function ψ is a solution of the differential equation ψ′(z) =
h(z)−2 = e−2bz, and it is possible to take ψ(z) = − 1

2be
−2bz. The development
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mapping satisfies

(14.22) ψ(Tjz) = − 1

2b
e−2b(z+ωj) = e−2bωjψ(z)

so the holonomy of this projective structure is the group homomorphism ρ :
L −→ F2 for which

(14.23) ρ(Tj) =

(
e−2bωj 0

0 1

)
.

This of course is an affine mapping; so all projective structures on M are equiv-
alent to affine structures. In addition when a 6= 0 there are two choices of the
parameter b that correspond to the parameter a describing the projective struc-
ture; as in the earlier discussion of affine structures these two choices of the
parameter b determine different affine structures, but the two different affine
structures are equivalent when viewed as projective structures.

It is worth examining a bit more closely the holonomy bundles of affine
and projective structures on surfaces of genus g = 1 as special flat affine and
projective bundles; and for that purpose it is convenient to consider marked
surfaces. Suppose therefore that M is a compact Riemann surface of genus g = 1
and that T1, T2 ∈ Γ are generators of the covering translation group Γ. A flat
affine bundle over M can be described by a conjugacy class of homomorphisms
ρ ∈ Hom(Γ,F1) of the covering translation group Γ. A homomorphism ρ in
turn is described completely by the two matrices

(14.24) ρ(Tj) =

(
aj bj
0 1

)
∈ F1 for j = 1, 2,

which can be any two matrices of this form that commute. Finally these two
matrices are described fully by the parameters (a1, a2; b1, b2) ∈ C4 where a1a2 6=
0, and the condition that the two matrices commute is easily seen to be that
a1b2 + b1 = a2b1 + b2. Thus the set Hom(Γ,F1) of all these homomorphisms
can be identified with the subset V ⊂ C4 defined by

(14.25) V =
{

(a1, a2; b1, b2)
∣∣∣ a1a2 6= 0, (a1 − 1)b2 = (a2 − 1)b1

}
for a chosen marking of the surface M ; this is an algebraic subvariety of the
complex manifold C∗×C∗×C×C. It is easy to see from this explicit description
that the subvariety V actually is a submanifold except for the single singular
point P0 = (1, 1; 0, 0) at which all the partial derivatives of the defining equation
vanish. Since(

c d
0 1

)(
a b
0 1

)(
c d
0 1

)−1

=

(
a cb+ d(1− a)
0 1

)
conjugation in Hom(Γ,F1) amounts to the action of the group C∗ × C on the
subvariety V given by

(14.26) (c, d) · (a1, a2; b1, b2) =
(
a1, a2; cb1 + d(1− a1), cb2 + d(1− a2)

)
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where (c, d) ∈ C∗ × C and (a1, a2; b1, b2) ∈ V . The set of orbits of this group
action has a somewhat complicated structure. First it is clear that the only point
of V left fixed by the action of all (c, d) is the singular point P0 = (1, 1; 0, 0) ∈
V ; this point describes the identity homomorphism and represents the trivial
affine bundle over M . Next the orbit of a point (1, 1; b1, b2) where (b1, b2) 6=
(0, 0) consists of all points (1, 1; cb1, cb2) for arbitrary c ∈ C∗, so is naturally
isomorphic to C∗; and the set of orbits of this form can be put into one-to-
one correspondence with the points of the Riemann sphere P1 by associating
to the orbit of a point (1, 1; b1, b2) the point of P1 represented by (b1, b2). The
points of P1 thus parametrize the flat affine bundles described by flat factors of
automorphy consisting of pure translations. Finally for any point (a1, a2; b1, b2)
for which (a1, a2) 6= (1, 1) the system of linear equations

cb1 + (a1 − 1)d = 0, cb2 + (a2 − 1)d = 0

in the variables c, d has rank 1, since the determinant of this system of equations
is zero in view of (??); consequently this system of equations has a nontrivial
solution, showing that the orbit of the point (a1, a2; b1, b2) contains a point of the
form (a1, a2; 0, 0), which clearly is unique. The orbit of the point (a1, a2; 0, 0)
when (a1, a2) 6= (1, 1) consists of all points

(
a1, a2; d(1 − a1), d(1 − a2)

)
for

arbitrary d ∈ C, so is naturally isomorphic to C. The set of orbits of this form,
parametrizing the set of nontrivial flat affine bundles that can be described
by factors of automorphy consisting entirely of pure multiplications, that is, of
transformations of the form z −→ cz, can be put into one-to-one correspondence
with the complement of the point (1, 1) in the product (C∗)2 by associating to
the orbit of a point (a1, a2; b1, b2) for which (a1, a2) 6= (1, 1) the point (a1, a2) ∈
(C∗)2 ∼ (1, 1). Altogether then the set of all orbits under the group action (??),
parametrizing the set of all flat affine bundles over the marked surface M , has
the form

(14.27) V/F1
∼= P0 ∪ P1 ∪

(
(C∗)2 ∼ (1, 1)

)
;

each of the three components is a complex manifold, and they are of dimensions
0, 1, and 2.

To examine more closely the way in which these separate manifolds are linked
consider the surjective projection

(14.28) p : V −→ (C∗)2 defined by p(a1, a2; b1, b2) = (a1, a2).

The inverse image p−1(a1, a2) of a point (a1, a2) ∈ (C∗)2 consists of those points
(b1, b2) ∈ C2 such that (a1 − 1)b2 = (a2 − 1)b1, so is a one-dimensional linear
subspace of C2 if (a1, a2) 6= (1, 1) but is C2 if (a1, a2) = (1, 1). This inverse image
is preserved by the group action (??), so the projection p induces a surjective
projection

(14.29) p∗ : V/F1 −→ (C∗)2.

The inverse image p−1
∗ (a1, a2) of a point (a1, a2) ∈ (C∗)2 is a single point so long

as (a1, a2) 6= (1, 1) but is P0 ∪ P1 if (a1, a2) = (1, 1). Thus when the singular
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point P0 is excluded the mapping p∗ exhibits the remainder of set of orbits V/F1

as the result of “blowing up” the point (1, 1) ∈ (C∗)2 to a projective space P1;
indeed the quotient set aside from the point P0 is the algebraic subvariety of
the product (C∗)2 × P1 defined by (??) when the values (b1, b2) are viewed as
projective coordinates of a point in P1. Alternatively when the subvariety P1 is
excluded the mapping p∗ identifies the remainder of the set of orbits V/F1 with
C2, where the origin represents the trivial affine bundle over M viewed in this
way as a special case of the affine bundle described by a factor of automorphy
consisting entirely of pure multiplications. This is a nice example of a general
phenomenon. Often the set of general mathematical structures of some sort
naturally has the structure of a noncompact complex variety, which can be
completed to a compact variety in which it appears as the complement of a
proper holomorphic subvariety consisting of special structures; but there can
be different compactifications, in which the complementary subvarieties are the
moduli of different sorts of special structures.

To interpret the moduli space (14.27) in terms of fibre bundles over M , the
projection p of (14.28) can be identified with the surjective mapping

(14.30) p : Hom(Γ,F1) −→ Hom(Γ,C∗)

that associates to a homomorphism ρ ∈ Hom(Γ,F1) the composition p(ρ) = π◦ρ
with the homomorphism π of (??), since any homomorphism φ ∈ Hom(Γ,C∗)
is determined by the values φ(Tj) = aj and these can be any points (a1, a2) ∈
(C∗)2. The image p(ρ) of a homomorphism ρ ∈ Hom(Γ,F1) depends only on
its conjugacy class, hence on the flat affine bundle described by that homo-
morphism; the mapping (14.28) therefore induces a surjective mapping from
flat affine bundles over M to flat line bundles over M , which can be identified
with the mapping p∗ of (14.29). The image of a flat affine bundle is called the
subordinate line bundle to the affine bundle. The preceding discussion shows
that there is a unique flat affine bundle having a nontrivial flat line bundle as
a subordinate line bundle; but the set of flat affine bundles having the iden-
tity line bundle as a subordinate line bundle is the set P0

⋃
P1 consisting of

the identity bundle, represented by the point P0, together with the set of flat
affine bundles that can be described by nontrivial flat factors of automorphy
consisting entirely of translations, which set is naturally parametrized by the
complex manifold P1. Not all flat affine bundles are holonomy bundles of affine
structures on a topological surface of genus g = 1 however.

Theorem 14.6 All flat affine bundles over a compact topological surface of
genus g = 1 are the holonomy bundles of affine structures on that surface except
for those bundles represented by factors of automorphy ρ ∈ Hom(Γ,F1) that are
conjugate to homomorphisms that either
(i) consist of pure translations through vectors all of which are parallel, or
(ii) consist of pure multiplications by complex numbers of absolute value 1.
A flat affine bundle that is the holonomy bundle of an affine structure on the
surface determines that affine structure completely.
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Proof: The identity bundle, represented by the singular point P0 ∈ V/F1

and a special case of the exceptional bundles of type (ii) in the statement of
the theorem, obviously is not the holonomy bundle of any affine structure. A
topological surface with an affine structure of course has the associated complex
structure, so is naturally a Riemann surface; and a marked Riemann surface M
of genus g = 1 has a unique affine structure with holonomy parametrized by a
point of the subset P1 ⊂ V/F1. That is the affine structure arising from the
identification of M with its Jacobi variety and hence from the representation of
M as the quotient of the complex plane by the lattice subgroup generated by two
complex numbers b1, b2 ∈ C that are linearly independent over the real numbers;
and by (14.21) all other affine structures on M are parametrized by points of the
set (C∗)2 ∼ (1, 1). Thus all flat affine bundles parametrized by points of P1 ⊂
V/F1 are the holonomy bundles of affine structures except for those for which
b1, b2 are linearly dependent over the real numbers; and in that exceptional case
the homomorphisms ρ ∈ Hom(Γ,F1) are translations through vectors that are
integral linear combinations of b1 and b2 and hence that are parallel vectors
in the complex plane. It is evident that such a holonomy describes the flat
affine structure uniquely. A Riemann surface of genus g = 1 represented as the
quotient of C by the lattice subgroup generated by b1, b2 ∈ C also has an affine
structure with the development mapping ψ(z) = eaz for any nonzero complex
number a; the holonomy of this affine structure clearly is parametrized by the

point (a1, a2) ∈
(
C∗
)2 ∼ (1, 1) ∈ V/F1 where a1 = eab1 , a2 = eab2 . In this case

too it is easy to see that the holonomy determines the affine structure uniquely.
Indeed if the affine structures determined by two affine connections adz and
a′dz have the same holonomy then ea

′bj = eabj so that a′bj = abj + 2πinj for
some integers nj for j = 1, 2; but then a′ − a = 2πinj/bj for j = 1, 2 so that
n1b2 = n2b1, which is impossible since the complex numbers b1, b2 are linearly
independent over the real numbers. Any pair of parameter values a1, a2 can
be written in the form aj = ebj , and if b1, b2 are linearly independent over the
real numbers then the associated Riemann surface has the affine structure with
that holonomy. If b1, b2 are linearly dependent over the real numbers, say for
instance if b2 = rb1 for some real number r, and if b1 is not purely imaginary,
then b1 and b2 +2πi are linearly independent over the real numbers so a1, a2 are
the parameter values for the holonomy of an affine structure of this surface. If
b1 and b2 are both purely imaginary though no combinations bj +2πinj are ever
linearly independent over the real numbers so the associated bundle cannot be
the holonomy bundle of an affine structure on any surface; in this exceptional
case the homomorphism ρ ∈ Hom(Γ,F1) consists of pure multiplications of
absolute value 1. That suffices to conclude the proof of the theorem.

To turn next to flat projective bundles over a marked Riemann surface M
of genus g = 1, any such bundle can be described by a conjugacy class of ho-
momorphisms ρ ∈ Hom(Γ,F2) of the covering translation group Γ of M . Any
such homomorphism in turn can be described by matrices Aj ∈ Sl(2,C) repre-
senting the projective transformations ρ(Tj) ∈ F2 for j = 1, 2; these matrices
are determined uniquely only up to a factor of ±1, and can be any two matri-
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ces representing projective linear transformations that commute, hence any two
special linear matrices A1, A2 such that A1A2 = εA2A1 where ε = ±1. Note
that if ε = 1 then the homomorphism ρ actually lifts to a homomorphism in
Hom(Γ,Sl(2,C)), while that is not the case if ε = −1.

Theorem 14.7 A flat projective bundle over a compact topological surface of
genus g = 1 is equivalent to a flat affine bundle if and only a factor of au-
tomorphy ρ ∈ Hom(Γ,F2) describing that bundle lifts to a homomorphism
ρ ∈ Hom(Γ,Sl(2,C)). A flat projective bundle is the holonomy bundle of a
projective structure on the surface M if and only it is equivalent to a flat affine
bundle that is the holonomy bundle of an affine structure on that surface.

Proof: Suppose that ρ ∈ Hom(Γ,F2) is a factor of automorphy describing a
flat projective bundle over a topological surface M of genus g = 1, where the
homomorphism ρ is described by matrices A1, A2 ∈ Sl(2,C) such that A1A2 =
εA2A1. If v is an eigenvector of the matrix A1 with eigenvalue a then A1(A2v) =
εA2A1v = εA2av = εa(A2v), so A2v is also an eigenvector of the matrix A1 but
with eigenvalue εa. There are three cases to consider.
(i) First if A1 has but a single eigenvector v then A2v must be a multiple of that
eigenvector and ε = 1; and v is also an eigenvector of A2. After conjugation it

can be assumed that v =

(
1
0

)
, so A1 =

(
a b
0 d

)
where ad = 1; and since

A1 has but a single eigenvector necessarily b 6= 0 and a = d = ±1. Of course
since A1 can be multiplied by ±1 it can be assumed that a = d = 1, so that A1

actually is a pure translation A1 =

(
1 b1
0 1

)
by the vector b1 6= 0. Similarly

the matrix A2 can be taken to be a pure translation A2 =

(
1 b2
0 1

)
by a

vector b2. An easy calculation shows that a pair of such matrices is conjugate in
F2 to another pair if and only if they are conjugate in F1. Thus a flat projective
bundle of this special type is equivalent to a unique flat affine bundle represented
by a homomorphism ρ ∈ Hom(Γ,F1) consisting of pure translations, a flat affine
bundle parametrized by a point in the projective line P1.
(ii) Next suppose that A1 has two distinct eigenvectors v1 and v2, and that
A2vj is a multiple of vj for j = 1, 2 so v1 and v2 are also eigenvectors for A2.

After conjugation it can be assumed that v1 =

(
1
0

)
and v2 =

(
0
1

)
, so the

matrices A1 and A2 are diagonal matrices Aj =

(
aj 0
0 bj

)
where ajbj = 1;

and since they clearly commute ε = 1. Another easy calculation shows that a
pair of diagonal matrices with diagonal entries aj , bj for j = 1, 2 is conjugate in
F2 to another pair of diagonal matrices with diagonal entries a′j , b

′
j if and only

if either a′j = aj and b′j = bj or a′j = bj and b′j = aj . Thus a flat projective
bundle of this special type is equivalent to a flat affine bundle consisting of pure
multiplications, that is, described by affine transformations of the form ρ(Tj)z =
cjz, so it is either the identity bundle or one of the bundles parametrized by
points of (C∗)2 ∼ (1, 1). Furthermore flat affine bundles generated by pure
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multiplications by cj and c′j for j = 1, 2 represent the same flat projective
bundle if and only either c′j = cj or c′j = 1/cj .
(iii) Finally suppose that A1 has two distinct eigenvectors v1 and v2, and that
A2v1 is a multiple of v2 while A2v2 is a multiple of v1; after conjugation it can

be assumed that v1 =

(
1
0

)
and v2 =

(
0
1

)
, so that A1 =

(
a1 0
0 d1

)
and

A2 =

(
0 b2
c2 0

)
where a1d1 = −b2c2 = 1. If ε = 1 another easy calculation

shows that a1 = d1 = ±1, so after a change of sign A1 = I, the identity matrix;
in that case the arguments iin (i) and (ii) can be applied to the matrix A2

rather than A1, so the bundle falls under either case (i) or case (ii). On the
other hand if ε = −1 then d1 = −a1 so that a1 = ±i, and after a change of

sign A1 =

(
i 0
0 −i

)
. Another easy calculation shows that matrix pairs of

this form are conjugate in F2 if and only if the quotients b2/c2 are the same;
thus a flat projective bundle of this special type can be reduced to the form
ρ(T1)z = −z, ρ(T2)z = c/z for some nonzero constant c when ε = −1, and
is not equivalent to a flat affine bundle. Since all projective structures on M
are equivalent to affine structures, having holonomy (14.23), that suffices to
conclude the proof of the theorem.

Suppose that M is a Riemann surface with an Fν structure described by a
coordinate covering {Uα, zα} with coordinate transition functions zα = fαβ(zβ)
in the intersections Uα∩Uβ , where fαβ ∈ Fν . The mappings fαβ can be viewed
as abstract mappings, either as affine mappings fαβ : C −→ C for ν = 1 or as
projective mappings fαβ : P1 −→ P1 for ν = 2; and for any triple intersection
Uα ∩Uβ ∩Uγ these mappings satisfy the compatibility condition fαβfβγ = fαγ ,
so they define coordinate bundles over M , indeed define flat coordinate bundles
since the mappings are constant in each intersection. For an equivalent Fν
structure, given by a change of coordinates wα = fα(zα) after passing to a
refinement of the coordinate covering if necessary, the corresponding mappings
are fαfαβf

−1
β , which determine equivalent flat coordinate bundles over M . Thus

to each Fν structure on M there is associated in this way a flat fibre bundle over
M , with group A(1,C) and fibre C in the case of an affine structure and with
group Pl(1,C) and fibre P1 in the case of a projective structure. This bundle is
called the monodromy bundle associated to the Fν structure on M . The local
coordinates zα can be viewed as holomorphic cross-sections of the monodromy
bundle. Actually these cross-sections have the special property that they are
holomorphic local homeomorphisms from M into the fibre C or P1; indeed it
is evident that a flat fibre bundle of one or the other of these two types is
the monodromy bundle of an Fν structure on the Riemann surface M for the
appropriate value of ν if and only if it admits a holomorphic cross-section that
is a local homeomorphism from M to the fibre.

Any fibre bundle over M can be represented by a factor of automorphy for
the action of the covering translation group Γ on the universal covering space M̃ .
Although that was discussed only for holomorphic line bundles in Addendum
??, it is true, and even easier to prove, for the monodromy bundles of Fν
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structures over M . Indeed any flat fibre bundle over M naturally lifts to a flat
fibre bundle over the universal covering space M̃ by using the same coordinate
transition functions in each lift to M̃ of an intersection Uα ∩ Uβ of coordinate
neighborhoods in M , since it can be assumed by passing to a suitable refinement
that the coordinate covering is chosen so that these intersections are simply
connected; and the quotient of the lifted bundle over M̃ by the natural action
of the covering translation group Γ is isomorphic to the initial bundle over M .
A familiar argument shows that the associated flat principal bundle over M̃ has
a locally constant cross-section. Indeed the identity group element viewed as a
constant cross-section over a base coordinate neighborhood Uα0

can be extended
to a cross-section over any intersecting coordinate neighborhood through the
appropriate constant coordinate transition function, and that process can be
continued; the resulting cross-section of the principal bundle over the simply
connected manifold M̃ is well defined and single valued as a consequence of the
familiar monodromy principle, since it admits a continuation along any path in
M̃ . Such a cross-section then can be used to reduce the lifted bundle over M̃
to an equivalent flat bundle that is trivial, a product of the manifold M̃ and
the fibre; of course the trivialization is unique only up to a flat isomorphism of
the product bundle. This trivialization transforms the action of the covering
translation group on the lifted bundle to an action on the product bundle such
that the quotient again is the initial bundle over M ; and this action is described
by a flat factor of automorphy for the covering translation group Γ, where
equivalent trivializations lead to equivalent factors of automorphy.

For a flat affine bundle over M , for example, the lifted bundle is equivalent
to the product bundle M̃ × C, and the action of a covering translation T ∈ Γ
on the product takes a point (z, t) ∈ M̃ × C to the point T (z, t) = (Tz, ρ(T )t)
where Tz is the image of the point z ∈ M̃ under the covering translation T
and ρ(T ) ∈ A(1,C) is an affine transformation depending on the element T
and acting on the fibre C. This exhibits Γ as a group of transformations act-
ing on M̃ ×C, so ρ(ST ) + ρ(S)ρ(T ) for any two covering translation mappings
S, T,∈ Γ. The group homomorphism ρ : Γ −→ A, which is the flat factor of
automorphy describing the flat affine bundle over M , is called the monodromy
representation of that bundle. Equivalent trivializations of the lifted bundle arise
from flat bundle isomorphisms (z, t) −→ (z, σt) for some affine transformations
σ ∈ A(1,C), which clearly transform the monodromy representation to the con-
jugate ρ̃(T ) = σρ(T )σ−1. If the initial flat affine bundle is the monodromy
bundle of an affine structure on the Riemann surface M the local coordinate
mappings describe a holomorphic cross-section of the monodromy bundle which
is a holomorphic local homeomorhism into the fibre C. This cross-section lifts
to a Γ invariant cross-section of the lifted bundle; and when that bundle is
trivialized it becomes a holomorphic local homeomorphism f : M̃ −→ C that
is invariant under the action of Γ on the product bundle, hence a holomorphic
local homeomorhism such that f(Tz) = ρ(T ) · f(z) for every point z ∈ M̃ and
every covering translation T ∈ Γ. This mapping is called the development map-
ping of the affine structure on M . The same affine structure is described by
the composite development mapping σ ◦ f with the monodromy representation
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σρσ−1 for any affine transformation σ ∈ A(1,C). The situation is quite the
same for flat projective structures, which are described by development map-
pings f : M̃ −→ P1 which are holomorphic local homeomorphisms such that
f(Tz) = ρ(T )f(z) for the monodromy representation ρ : Γ −→ Pl(1,C); equiva-
lent projective structures are described by the equivalent development mappings
σ ◦ f for the conjugate homomorphisms σρσ−1 for any element σ ∈ Pl(1,C).

The only compact Riemann surfaces that admit an affine structure are those
of genus g = 1; and since that case can be worked out quite simply and com-
pletely it may serve as a useful model for the general theory of such structures
on compact Riemann surfaces. Consider therefore a compact Riemann surface
M of genus g = 1, which can be represented by the quotient M = C/L where
L ⊂ C is a lattice subgroup that can be taken as generated by the complex
numbers 1 and ω where =ω > 0. The complex coordinate z the plane provides
an affine structure on the quotient, for which the coordinate transformations
are either the identity or translation by a vector in the lattice subgroup L. The
covering translation group is just the lattice group L itself, generated by the
translations T1 : z −→ z + 1 and T2 : z −→ z + ω; and the universal covering
space C is already a trivial affine structure, so the monodromy is the identity
mapping from the lattice L to itself and the development mapping is the identity
mapping.

The monodromy of any flat affine bundle over Riemann surface M of genus
1 is described by an element of the quotient space V/A where V = Hom(Γ,A)
and the affine group A acts on V by conjugation. If the affine group is viewed

as the subgroup A ⊂ Gl(2,C) consisting of matrices of the form

(
a b
0 1

)
and each such matrix is described by the pair of complex numbers (a, b) for
which a 6= 0 then an element ρ ∈ V can be described by the two matrices ρ(Ti)
or equivalently by the four complex numbers (a1, a2; b1, b2) where a1a2 6= 0.
These four numbers describe an element of V precisely when the matrices ρ(Ti)
commute, which is easily seen to be the condition that a1b2 + b1 = a2b1 + b2;
thus there results the natural identification

(14.31) V ∼=
{

(a1, a2; b1, b2)
∣∣∣ a1a2 6= 0, (a1 − 1)b2 = (a2 − 1)b1

}
.

This describes the set V as a three-dimensional complex analytic or even al-
gebraic subvariety of the product manifold C∗ × C∗ × C × C, defined by the
vanishing of this single polynomial equation. It is easy to see from this explicit
description that this subvariety V actually is a submanifold except for the sin-
gle singular point (1, 1; 0, 0), at which all the partial derivatives of the defining
equation vanish. Under conjugation

STS−1 =

(
c d
0 1

)(
a b
0 1

)(
1
c −dc
0 1

)
=

(
a cb+ d(1− a)
0 1

)

where S =

(
c d
0 1

)
and T =

(
a b
0 1

)
. Thus conjugation by the affine
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transformation described by the parameters (c, d) has the effect

(14.32) (c, d)(a1, a2; b1, b2) = (a1, a2; cb1 + d(1− a1), cb2 + d(1− a2)).

This action actually is rather nontrivial, and the space of orbits has a somewhat
complicated structure. First it is easy to see that the only point left fixed by
conjugation by all elements of the affine group A is the singular point P0 =
(1, 1; 0, 0); it thus represents one special flat affine bundle over M , the identity
bundle. Next the orbit of a point (1, 1; b1, b2) where (b1, b2) 6= (0, 0) consists of all
points (1, 1; cb1, cb2) for arbitrary c ∈ C∗; thus each orbit is naturally isomorphic
to C∗, and the set of orbits can be put into one-to-one correspondence with the
points of the Riemann sphere P1. The flat affine bundles represented by these
orbits are those defined by pure translations. Finally for any point a1, a2; b1, b2)
where (a1, a2) 6= (1, 1) the system of linear equations

cb1 + (a1 − 1)d = 0

cb2 + (a2 − 1)d = 0

in the variables c, d has rank 1, since the determinant of this system of equations
is just the polynomial that characterizes the commutativity condition; thus any
orbit contains a point of the form (a1, a2; 0, 0), indeed obviously a unique point
of this form, so the space of orbits can be put into one-to-one correspondence
with the complement of the point (1, 1) in the produce C∗ × C∗. Altogether
therefore

(14.33) V/A ∼= P0 ∪ P1 ∪ {C∗ × C∗ − (1, 1)}.

The variety V can be mapped onto the product space C∗ × C∗ by the natural
projection mapping π : (a1, a2; b1, b2) −→ (a1, a2); the fibre of this mapping
over any point is naturally the product C× C, consisting of the points (b1, b2).
The action of the group A of analytic mappings of this space to itself commutes
with the projection π, so acts on the fibres separately. It is transitive on all the
fibres except those over the point (1, 1), while its action on the fibre over that
point identifies the quotient with the union of a point and the projective line
P1; so the quotient variety V/A appears as a rather singular blowing up of the
product C∗ × C∗ at the point (1, 1)). Although it is possible to say more, this
is probably quite enough for present purposes.

When a = 0 the mapping f(z) is just the identity mapping, yielding the
initial affine structure on M . When a 6= 0 the development mapping f : C −→ C
exhibits the universal covering spce C of the surface M as the universal covering
space of the punctured plane C∗. The development mapping clearly satisfies

f(T1z) = ea(z+1) = eaf(z),

f(T2(z) = ea(z+ω) = eaωf(z),

so the flat affine bundle associated to the affine structure is described by the
representation

ρ(T1) = ea, ρ(T2) = eaω;
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it thus corresponds to the point (a1, a2; b1, b2) = (ea, eaω; 00) ∈ V . The case
a = 0 thus yields a point on the moduli space V/A corresponding to the singular
point P0. Since =ω 6= 0 it is evident that (a1, a2) 6= (1, 1), so there are no affine
structures corresponding to the points (1, 1; b1, b2) ∈ V/A, which means that
the representations in that orbit do not correspond to any affine structures on
a torus. Finally the points in V/A for which (a1, a2) 6= (1, 1) in the moduli
space for flat affine bundles that actually arise from affine structures are those
for which a1 = ea, a2 = eaω for some complex number ω with =Ω 6= 0. That
condition on ω is equivalent to the condition that the points a1, a2 are not real
multiples of one another, that is, are not collinear with the origin in the complex
plane; so the representations corresponding to such bundles also can never be
represented by an affine structure. Thus the subset of the moduli space of flat
affine bundles that arise from affine structures is the complement of a proper
subset of the moduli space V/A as described. Note further that

ω =
log a1 + 2πin1

log a2 + 2πin2

for some integers n1, n2, for any given determination of the logarithms of the
constants a1, a2; thus the bundle determines the Riemann surface itself at least
locally, in the obvious sense.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
[CHECK THIS SECTION]
The situation for affine or projective structures on Riemann surfaces is sim-

plified by the observation that the monodromy group really determines the
structure. The situation for affine structures is particularly simple.

Theorem 14.8 A flat affine structure on a compact Riemann surface is deter-
mined uniquely by the flat affine bundle associated to the structure.

Proof: Consider a coordinate covering U = {Uα} of the Riemann surface M for
which there are two sets of affine coordinates {zα} and {wα} that determine the
same flat affine bundle over M . Thus in each intersection Uα∩Uβ the coordinate
functions satisfy

zα = aαβzβ + bαβ and wα = aαβwβ + bαβ .

The two sets of local coordinates are also satisfy wα = fα(zα) for some holo-
morphic functions fα, and for each intersection Uα ∩ Uβ these functions must
therefore be such that

aαβfβ(zβ) + bαβ = fα(aαβzβ + bαβ)

where wβ = fβ(zβ); differentiating this equation with respect to the variable zβ
shows that

aαβf
′
β(zβ) = f ′α(aαβzβ + bαβ)aαβ .

The derivatives gα = f ′α(zα) thus are holomorphic functions in the coordinate
neighborhoods Uα such that gα = gβ in the intersection Uα ∩ Uβ , hence they
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describe a global holomorphic function on the entire compact Riemann surface
M , which must be a constant c; and therefore wα = czα+dα for some constants
dα, so that the two systems of local coordinates are related by a affine transfor-
mations so determine the same affine structure. That suffices to conclude the
proof of the theorem.

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
Compact Riemann surfaces of genus g > 1 admit branched affine structures

though; indeed for any choice of a base point a0 ∈ M there is a unique nor-
malized basic affine structure on M , an affine structure on M ∼ a0 branched
at the point a0 and with unitary submonodromy group. To be more explicit,
choose a coordinate covering Uα of the surface M with local coordinates zα;
and assume that the branch point a0 ∈ M is contained in a single coordinate
neighborhood U0. If pαdzα is the meromophic affine connection describing the
normalized branched affine structure, and fα(zα) are holomorphic functions in
the coordinate neighborhoods such that D1fαdzα = pαdzα in each coordinate
neighborhood then wα = fα(zα) are local coordinates in Uα for all coordinate
neighborhoods other than U0 while the local coordinate w0 in the coordinate
neighborhood U0 is such that f0(z0) = w2g−1

0 . The functions fα(zα) satisfy

fα(zα) = φαβ
(
fβ(zβ)

)
= aαβfβ(zβ) + bαβ

in each intersection Uα ∩ Uβ , for the affine transformations φαβ defining the
monodromy bundle of the branched affine structure.

The branched affine structure lifts to a branched affine structure on the
universal covering space M̃ , branched at all the points covering a0; this is as
usual accomplished merely by using the local coordinates wα in all the lifts of the
coordinate neighborhoods Uα, which can be assumed to be simply connected.
The resulting structure, and its monodromy bundle, are invariant under the
covering translation group. The monodromy bundle can be trivialized over M̃ ,
by choosing a flat cross-section φα; the functions φ−1

α ◦ fα are then equal in the
intersections of the lifted coordinate neighborhoods on M̃ , but are transformed
by affine transformations under the action of the covering translation group.
Thus there results a holomorphic function f on the universal covering space M̃
such that the restriction of this function to the inverse image of any coordinate
neighborhood Uα ⊂ M is the composition f = φ−1

α ◦ fα for the affine mapping
φα, and

f(Tz) = φ(T ) ◦ f(z)

for any covering translation T ∈ Γ and for some affine mapping φ(T ). It is
evident that

φ : Γ −→ UA(1,C)

is a homomorphism from the covering translation group Γ to the group of uni-
tary affine transformations, called the monodromy mapping, and its image is a
subgroup of the unitary affine group called the monodromy group of the branched
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affine structure. The holomorphic mapping

f : M̃ −→ C

is a local homeomorphism except at the points lying over the branch point
a0 ∈M , where it is a branched covering of degree 2g− 2. The mapping f is the
development mapping of the branched affine structure and the homomorphism φ
is its monodromy representation. It is evident that the development mapping is
an isometric mapping from M̃ to the complex plane, since the local form of the
metric is precisely that induced by the euclidean metric in the complex plane
by the affine coordinates.

Theorem 14.9 If M is a compact Riemann surface of genus g > 0 with the
normalized basic branched affine structure with a branch point a0 ∈ M and if
the image of the development mapping f is the open subset U ⊂ C then the
monodromy group acts as a properly discontinuous group of transformations of
the set U ; the quotient U/φ(Γ) = N is a compact Riemann surface, and the
development mapping f induces a branched covering mapping f : M −→ N .

Proof: Consider then a point p̃ ∈ M̃ , which may or may not be a branch point
of the branched affine structure. The points T p̃ are precisely the points of M̃
that cover the same image p = π(p̃) ∈M ; and f(T p̃) = φ(T )f(p̃) for all covering
translations T ∈ Γ. Since the development mapping is an isometry, the distance
|φ(T )f(p̃) − f(p̃)| is the length of a geodesic in M̃ from p̃ to T p̃. Each such
geodesic projects to a geodesic on the initial Riemann surface M from the point
p to itself but representing a nontrivial class in the fundamental group of the
surface M at that point. Since an open neighborhood of p is simply connected,
each such geodesic must leave and re-enter that neighborhood, so that its length
is bounded below by ε, the distance from the point p to the boundary of that
neighborhood. Consequently if z = f(p̃) then φ(T )z − z| ≥ ε for every T ∈ Γ
other than the identity element. That is just the condition that the group φ(Γ)
is properly discontinuous. It is well known that that is a sufficient condition for
the quotient N = C/φ(Γ) to have the natural structure of a Riemann surface
itself. The development mapping induces a surjective holomorphic mapping
f : M −→ N , and since M is compact necessarily N also is compact. That
suffices for a proof of the theorem.

Although the only compact Riemann surfaces that admit affine structures
are those of genus g = 1, by Corollary 14.4, nonetheless any compact Riemann
surface admits branched affine structures arising from meromorphic affine con-
nections on the surface. A meromorphic affine connection expressed in terms
of a coordinate covering U = {Uα} of a Riemann surface M , with local co-
ordinates zα and coordinate transition functions fαβ , is a collection of local
meromorphic differential forms pα · dzα in the coordinate neighborhoods {Uα}
of a coordinate covering U satisfying (14.17). That is just the condition that the
one-cocycle D1fαβ · dzβ ∈ Z1(U,M(1,0)) is the coboundary of the zero-cochain
−pα · dzα ∈ C0(U,M(1,0)); and since H1(M,M(1,0)) = 0 by Corollary ?? it
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follows that any compact Riemann surface actually has meromorphic affine con-
nections. For any meromorphic affine connection the difference pα ·dzα−pβ ·dzβ
is a holomorphic differential form in the intersection Uα∩Uβ , so the local differ-
ential forms pα ·dzα and pβ ·dzβ have the same differential principal part in the
intersection Uα∩Uβ ; thus any meromorphic affine connection has a well defined
differential principal part on the entire Riemann surface M , naturally called the
principal part of that affine connection. In particular the residue resa(pα · dzα)
of a meromorphic affine connection at a point a ∈ M is well defined, and of
course is just the residue of the principal part of that affine connection.

Theorem 14.10 If pα · dzα is a meromorphic affine connection on a compact
Riemann surface M of genus g > 0 then∑

a∈M
resa(pα · dzα) = 2g − 2.

Proof: Choose a coordinate covering {Uα} of the surface M such that each
pole ai of the affine connection pα · dzα is contained in a single coordinate
neighborhood Uαi ⊂M . Choose C∞ functions ri(zαi) in each of these coordinate
neighborhoods Uαi such that ri(zαi) is identically zero in an open neighborhood
of the pole ai and ri(zαi) is identically equal to 1 in any nontrivial intersection
Uα ∩ Uαi ; and extend these local functions to a global C∞ function r(z) on
the entire surface M by setting r(z) = 1 outside the neighborhoods Uαi . The
product qα · dzα = r pα · dzα is equal to pαdzα in any intersection of coordinate
neighborhoods, so the local C∞ differential forms qα · dzα form a C∞ affine
connection in the sense that they satisfy

D1fαβ · dzβ = −qα · dzα + qβ · dzβ
in any intersection Uα ∩ Uβ of coordinate neighborhoods. Since D1fαβ · dzβ is
holomorphic ∂(qα ·dzα) = ∂(qβ ·dzβ) in Uα∩Uβ , so these local differentials form
a global differential form of degree 2 on the entire Riemann surface M ; and
∂(qα · dzα) = 0 outside the coordinate neighborhoods Uαi , since qα coincides
with pα and hence is holomorphic there, so it follows from Stokes’s theorem that

1

2πi

∫
M

∂(qα · dzα) =
1

2πi

∑
i

∫
Uαi

d(qαi · dzαi)

=
1

2πi

∑
i

∫
∂Uαi

qαi · dzαi =
1

2πi

∑
i

∫
∂Uαi

pαi · dzαi

=
∑
i

resai(pαi · dzαi)

since qαi = pαi on the boundary ∂Uαi . On the other hand if q̃α ·dzα is any other
C∞ affine connection on M then the differences φα = q̃α · dzα − qα · dzα satisfy
φα = φβ in any intersection Uα ∩ Uβ so form a global C∞ differential form φ of
type (1, 0) on the compact Riemann surface M ; by Stokes’s Theorem again∫

M

∂(q̃α · dzα)−
∫
M

∂(qα · dzα) =

∫
M

∂φ =

∫
M

dφ = 0,
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and consequently from this and the preceding equation it follows that

(14.34)
∑
i

resai(pαi · dzαi) =
1

2πi

∫
M

∂(q̃α · dzα)

for any C∞ affine connection q̃α·dzα onM . Now there are C∞ functions rα > 0 in
the coordinate neighborhoods Uα such that rα = |καβ |2 rβ in each intersection
Uα ∩ Uβ , and

−∂ log rα + ∂ log rβ = −d log καβ = d log f ′αβ =
f ′′αβ
f ′αβ

dzβ = D1fαβ · dzβ .

Therefore q̃αdzα = ∂ log rα is a C∞ affine connection on M , and it follows from
Lemma ?? that

1

2πi

∫
M

∂(q̃αdzα) =
1

2πi

∫
M

∂∂ log rα = c(κ) = 2g − 2

since c(κ) = 2g−2 by the Canonical Bundle Theorem, Theorem 2.24. Combining
thhis identity with (14.34) yields the desired result, which concludes the proof
of the theorem.

The preceding actually is the only restriction on the singularities of mero-
morphic affine connections on a compact Riemann surface.

Corollary 14.11 If p is a differential principal part with total residue 2g − 2
on a compact Riemann surface M of genus g there is a meromorphic affine
connection on M with the principal part p.

Proof: There exists at least one meromorphic affine connection on any com-
pact Riemann surface M , as already observed. It is evident from the defining
equation (14.17) of an affine connection that the difference between any two
meromorphic affine connections is a meromorphic abelian differential, and that
the sum of a meromorphic affine connection and a meromorphic abelian differ-
ential is again a meromorphic affine connection. Since by Theorem 4.4 (ii) there
exists a meromorphic abelian differential having any chosen principal part of
total residue zero, the desired result is immediate. That suffices for a proof of
the corollary.

If pαdzα is a meromorphic affine connection on a compact Riemann surface
M with the principal part p then it is a holomorphic affine connection on the
dense open subset M∗ ⊂ M complementary to the poles of the principal part
p, so it describes an affine structure on M∗; but that structure does not extend
to the poles.

Lemma 14.12 If p(z) is a meromorphic function in a contractible open neigh-
borhood U of the origin in the complex plane, and if p(z) has the principal part

p(z) =
∑
n>0

cnz
−n
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at the origin and is holomorphic at all other points of U , then in an open
neighborhod of any point of U other than the origin itself there exist solutions
f(z) of the differential equation D1f(z) = p(z), and for any solution

(14.35) f ′(z) = zc1h(z) exp

(
−
∑
n>1

cn
1− n

z1−n

)

where h(z) is holomorphic and nowhere vanishing in all of U ; if f(z) is one
solution then all other solutions are of the form T (f(z)) for affine mappings
T ∈ A(1,C).

Proof: Write p(z) = h1(z) + p(z) where h1(z) is holomorphic in U , choose an
indefinite integral h2(z) =

∫
h1(z)dz in U , and set h(z) = exph2(z); thus h(z)

is a holomorphic and nowhere vanishing function in all of U . The differential
equation can be written

d

dz
log f ′(z) = D1f(z) = h1(z) + p(z)

=
d

dz

(
h2(z) + c1 log z +

∑
n>1

cn
1− n

z1−n

)
,

and consequently near any point of U except the origin

log f ′(z) = h2(z) + c1 log z +
∑
n>1

cn
1− n

z1−n

is a solution of the differential equation for any local choice of a branch of the
logarithim; thus f ′(z) has the asserted form. If D1f(z) = D1g(z) = p(z) then it
follows from Lemma 14.1 (iii) that g(z) = T (f(z)) for some affine transformation
T so the derivatives of all solutions have the form (14.35). That suffices to
conclude the proof of the lemma.

The derivative f ′(z) of the solution of the differential equationD1f(z) = p(z)
of the preceding lemma is single-valued near the origin only when the principal
part has an integral residue at the origin, and in that case f ′(z) has an essential
singularity unless the singularity at the origin is a simple pole; even then the
solution f(z) itself may have a logarithmic branch point at the origin if n < 0.
Thus the simplest case is that in which the function p(z) has a simple pole at the
origin with residue a positive integer n; and in that case there is a holomorphic
solution f(z) that has a zero of order n+1 at the origin, while all other solutions
are of the form T (f(z)) for an arbitrary affine mapping T ∈ F1. Meromorphic
affine connections having as their singularities only simple poles with positive
integral residues are called regular meromorphic affine connections; and these
are the meromorphic affine connections that describe branched affine structures
on M . It follows from Theorem 14.10 and Corollary 14.11 that on any compact
Riemann surface M of genus g > 1 there exist regular meromorphic affine
connections, although with at most 2g − 2 poles.
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To describe the branched affine structures that arise from these connections,
suppose that pα · dzα is a regular meromorphic affine connection having the
principal part

p =
∑
i

νi
z − ai

with distinct poles ai ∈ M , and choose a coordinate cover {Uα} of the surface
M so that each pole ai is contained in a single coordinate neighborhood Uαi .
There are holomorphic solutions of the differential equation D1fα = pα in each
coordinate neighborhood Uα; if these neighborhoods are sufficiently small the
mappings fα : Uα −→ Vα are biholomorphic mappings from the coordinate
neighborhoods Uα to open subsets Vα ⊂ C provided that Uα does not contain
any of the poles of the affine connection, but these mappings exhibit Uα as an
(n + 1)-sheeted branched covering of the subset Vα ⊂ C branched at a pole of
the affine connection having residue n. It is still the case that the solutions
fα are uniquely determined up to affine transformations and that fα = fαβ(fβ
for some affine transformation fαβ ∈ F1 in each intersection Uα ∩ Uβ ; so these
mappings describe a unique affine structure on the complement of the poles of
the affine connection pα · dzα. Such a collection of local mappings fα describes
a branched affine structure on the Riemann surface M , branched at the poles of
the affinie connection pα · dzα.

The affine transformations fαβ associated to the intersections Uα ∩ Uβ still
describe a flat affine bundle over M , which is the holonomy bundle of the
branched affine structure on M . When these coordinate transformations are
written out more explicitly as fα(zα) = aαβfβ(zβ) + bαβ the coefficients aαβ
satisfy aαβaβγaγα = 1 in each triple intersection Uα ∩ Uβ ∩ Uγ so define a flat
line bundle α over M called the subordinate line bundle to the holonomy bundle;
it is evident that an affine change of the local functions fα yields an equivalent
flat line bundle, so the subordinate line bundle is uniquely determined by the
holonomy bundle. The differentials φα(zα) = dfα(zα) of the functions fα(zα are
holomorphic differential forms in the coordinate neighborhoods Uα such that
φα(zα) = aαβφβ(zβ) in any intersection Uα ∩ Uβ ; thus these differential forms
describe a holomorphic Prym differential on the Riemann surface M , called the
associated Prym differential to the branched affine structure. It is evident that
the divisors of these Prym differentials are the divisors d(φα) =

∑
i ni · ai of

degree 2g − 2, where the principal part of the meromorphic affine connection is
p =

∑
i ci(zi − ai)−ni . Since the coefficients f ′α(zα) are holomorphic functions

such that f ′α(zα) = aαβκαβf
′
β(zβ) and since the divisor of these functions is the

divisor d =
∑
i ni · ai it follows that ζd = ακ, which determines the subordinate

line bundle α explicitly in terms of the principal part of the meromorphic affine
connection.

oooooooooooooooooooo

Lemma 14.13 The submonodromy line bundles of the branched affine struc-
tures associated to all the basic meromorphic affine connections on a compact
Riemann surface M of genus g > 0 are all analytically equivalent flat line bun-
dles, and all flat line bundles arise from some branched affine structure.
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Proof: It was already observed that if pαdzα and p̃αdzα are two basic mero-
morphic affine connections on M then they differ by a holomorphic abelian
differential, so that p̃αdzα = pαdzα + dwα for some holomorphic abelian inte-
gral wα on M ; so if D1fα = pα and D1f̃α = p̃α then

p̃αdzα = D1f̃αdzα

= d log f̃ ′α + dwα

so that f̃ ′α(zα) = f ′α(zα) expwα(zα). Now for the submonodromy bundles since
df̃α(zα) = ãαβdf̃β(zβ) it follows that

df̃α = expwα(zα)dfα(zα) = expwα(zα)aαβdfβ(zβ)

= ãαβdf̃β(zβ)

= ãαβ expwβ(zβ)dfβ(zβ)

and consequently that ãαβ = aαβ exp
(
wα(zα)−wβ(zβ)

)
so that these two bun-

dles are indeed analytically equivalent. Conversely any analytic equivalence of
these two bundles must be actually holomorphic of course, so the affine structure
is unbranched; and since there is always the standard affine structure associated
to the representation of the surface as the quotient of the complex plane by a
lattice subgroup, for which the submonodromy bundle is the identity bundle,
that is the normalized coordinate structure of an elliptic curve. In that case of
course the structure actually holomorphic of course, so the affine structure is
unbranched; and since there is always the standard affine structure associated
to the representation of the surface as the quotient of the complex plane by a
lattice subgroup, for which the submonodromy bundle is the identity bundle,
that is the normalized coordinate structure of an elliptic curve. In that case of
course the structure does not depend on the choice of a base point. In general
the coordinatization is an affine structure on the complement of the base point,
with the standard branched coordinate system in an open neighborhood of the
base point.

The branched affine structure is a regular affine structure on the complement
M ∼ a0 of the point a0; on the complement straight line segments clearly are
well defined. Furthermore straight line segments from the base point a0 in the
coordinate neighborhood U0 also correspond to straight lines in any intersecting
coordinate neighborhood, since any straight line segment beginning at the origin
w0 = 0 is a straight line segment in terms of the power w2g−1

0 , so is a straight line
in any other coordinate neighborhood. It is evident from this that a straight
line segment in one coordinate neighborhood extends naturally to a straight
line throughout the compact manifold M ; the extension is uniquely determined
except at the base point a0, where there are 2g − 1 choices of the extension of

the line corresponding to the 2g−1 roots of w
1/(2g−1)
0 . For the normalized affine

structure wα = aαβwβ in any intersection Uα ∩Uβ of coordinate neighborhoods
not containing the base point so a0 it follows that |wα| = |wβ |; consequently that
the ordinary Euclidean distance between two points is well defined invariant on
the complement M ∼ a0. Alternatively the distance can be defined in terms of
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the complex Riemannian metric g = dwα dwα in the coordinate neighborhood
Uα, since this metric is independent of the local coordinate system. In an
intersection U0∩Uα, where the local coordinates are related by wα = aα0w

2g−1
0 +

bα0, this metric induces in terms of the local coordinate in U0 the metric form
g = (2g − 1)2|w0|4(g−1)dw0 dw0; this is a riemannian metric with a conical
singularity at the point a0. It is indeed a straightforward calculation to show
that the neighborhood U0 with this metric is isometric to a cone in three space
with the metric induced by the euclidean metric in the ambient space; thus the
riemannian metric on M does define a distance function on M , although with
a conical singularity at the single branch point.
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Appendix A

Manifolds and Varieties

A.1 Holomorphic Functions

This appendix contains a survey of some general properties of complex man-
ifolds and holomorphic varieties, an acquaintance with which is presupposed
in the present book. The emphasis is on those properties that are relevant to
the study of Riemann surfaces. The discussion here is rather abbreviated and
generally does not include complete proofs; references for more detailed treat-
ments of particular topics will be included along the way. Any investigation of
Riemann surfaces of course presupposes familiarity with the standard proper-
ties of holomorphic functions of a single variable; but many topics also involve
some properties of holomorphic functions of several variables, and since these
properties may not be quite so familiar the appendix will begin with a survey
of some of the results that are used in this book1.

A complex-valued function f(z) defined in an open subset U of the n-
dimensional complex vector space Cn is holomorphic in U if in an open neigh-
borhood of any point a ∈ U it has a convergent power series expansion

(A.1) f(z1, . . . , zn) =

∞∑
i1,...,in=0

ci1...in(z1 − a1)i1 · · · (zn − an)in .

The set of holomorphic functions in U form a ring OU under pointwise addition
and multiplication of functions; the units or invertible elements in this ring
are the nowhere vanishing holomorphic functions, which form a multiplicative
group O∗U . The series (A.1) is absolutely convergent in an open neighborhood
of the point (a1, . . . , an) so it can be rearranged as a convergent series in any

1For more extensive treatments of the general properties of holomorphic functions of several
variables see for instance R. C. Gunning, Introduction to Holomorphic Functions of Several
Variables, (Wadsworth and Brooks/Cole, 1990), (references to which for short will be given in
the form G-IIIC12 for Theorem/Corollary/Definition 12, section C, volume III), or L. and B.
Kaup, Holomorphic Functions of Several Variables, (deGruyter, 1983), or S. Krantz, Function
Theory of Several Complex Variables, (Wadsworth and Brooks/Cole, 1992).
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one of the variables when the remaining variables are held constant; thus a
holomorphic function of several is holomorphic in each variable separately. A
basic and nontrivial result is Hartogs’s Theorem2 that conversely any function
that is holomorphic in each variable separately is holomorphic in all variables,
without any additional hypothesis of continuity or measurability in all variables;
thus holomorphic functions of several complex variables can be characterized by
separate conditions in each complex variable zj = xj + i yj or each pair of real
variables (xj , yj). For instance a function of several complex variables that is
continuously differentiable in each pair of variables (xj , yj) and that satisfies the
Cauchy-Riemann equations in each pair of variables (xj , yj) is a holomorphic
function of all variables. It is convenient to write the Cauchy-Riemann equations
in terms of the linear partial differential operators

(A.2)
∂f

∂zj
=

1

2

(
∂f

∂xj
+

1

i

∂f

∂yj

)
,

∂f

∂zj
=

1

2

(
∂f

∂xj
− 1

i

∂f

∂yj

)
where zj = xj + iyj ; in these terms if f is a continuously differentiable function
in an open subset U ⊂ Cn, or just a function that is continuously differentiable
in each pair of variables (xj , yj), then

(A.3) f is holomorphic if and only if
∂f

∂zj
= 0 for 1 ≤ j ≤ n.

If f is holomorphic then ∂f/∂zj is just the ordinary complex derivative of the
holomorphic function f(zj) of the complex variable zj when the remaining vari-
ables are held constant.

The zero locus of a holomorphic function of a single complex variable is a
discrete of points, but the situation is rather more complicated for holomorphic
functions of several complex variables. A holomorphic subvariety of an open
subset U ⊂ Cn is a subset V ⊂ U with the property that for each point a ∈ U
there are an open neighborhood Ua of that point and finitely many holomorphic
functions fai in Ua, not all of which vanish identically, such that

V ∩ Ua =
{
z ∈ Ua

∣∣∣ fa1(z) = fa2(z) = · · · = 0
}
.

It is not required that a holomorphic subvariety V ⊂ U be the set of common
zeros of a collection of functions defined and holomorphic in all of U ; the notion
of a holomorphic subvariety is essentially local in nature. It is evident from
this definition that a holomorphic subvariety of U is a closed subset of U . If
V ⊂ U is a holomorphic subvariety of a connected open subset U ⊂ Cn then
the complement U ∼ V is a connected dense open subset 3. The analogue for
functions of several complex variables of the Riemann Removable Singularities
Theorem4 for functions of a single complex variable is the theorem that if f is
a bounded holomorphic function in the complement U ∼ V of a holomorphic

2Theorem G-IB6
3Corollary G-IA9 and Corollary G-ID3
4Theorem G-ID2
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subvariety V of a connected open subset U ⊂ Cn then f has a unique extension
to a holomorphic function on the entire set. There is actually a stronger remov-
able singularities theorem, a special case of a number of extension theorems that
arise only for functions of more than one variable. This theorem5 asserts that if
V is a holomorphic subvariety of an open subset D ⊂ Cn and if dimV ≤ n− 2
then any holomorphic function in D ∼ V extends uniquely to a holomorphic
function in D. If f and g are two holomorphic functions in a connected open
subset U ⊂ Cn and if they agree on a subset of U that is not a holomorphic
subvariety of U , such as an open subset of U , then clearly they must agree at
all points of U .

If f and g are two holomorphic functions in a connected open subset U ⊂ Cn
and if the function g does not vanish identically then its zero locus is a holomor-
phic subvariety Vg ⊂ U and the quotient m = f/g is a well defined complex-
valued function on the connected dense open subset U ∼ Vg ⊂ U . A complex-
valued function m that is defined in the complement of a holomorphic subvari-
ety Vm ⊂ U of an open subset U ⊂ Cn and that can be represented in an open
neighborhood of each point of U as such a quotient of holomorphic functions is
called a meromorphic function in U . Clearly the set of meromorphic functions
in a connected open subset U ⊂ Cn form a field under pointwise addition and
multiplication of functions; this field is denoted by MU . If the open subset U
is not connected MU is not a field, since meromorphic functions that vanish in
a connected component of U but not in all of U are nontrivial but do not have
multiplicative inverses. Of course any holomorphic function in an open subset
U ⊂ Cn is also meromorphic, so OU ⊂ MU ; and it follows from the Riemann
Removable Singularities Theorem that a bounded meromorphic function in U
actually is holomorphic in U . It is evident that if m is meromorphic in an open
subset U ⊂ Cn then it is a meromorphic function in each variable separately in
U when the remaining variables are held constant, except when all such points
lie in the holomorphic subvariety Vm where m is not necessarily well defined.
An analogue of Hartogs’s Theorem for meromorphic functions is Rothstein’s
Theorem6 that conversely a complex valued function in the complement of a
holomorphic subvariety V of an open subset U ⊂ Cn that is a meromorphic
function in each variable separately in U ∼ V is a meromorphic function in U .
There is also an analogue for meromorphic functioins of the extension theorem
for holomorphic functions. The Theorem of Levi7 asserts that if V is holomor-
phic subvariety of an open subset D ⊂ Cn and if dimV ≤ n − 2 then any
meromorphic function in D ∼ V extends uniquely to a meromorphic function
in D.

A holomorphic mapping from an open subset U ⊂ Cn into Cm is a mapping
that sends a point z = (z1, . . . , zn) ∈ U to the point w = (w1, . . . , wm) ∈ Cm

5Theorem G-IIK1. The theorem requires the notion of the dimension of a holomorhic
subvariety, which will be taken up later in Section A.3; but it is more convenient to include
the statement here in the discussion of functions.

6See the paper by W. Rothstein “Ein neuer Beweis des Hartogsschen Hauptsatzes und eine
Ausdehnung auf meromorphe Funktionen”, Math. Zeit., vol. 53 (1950), pp. 84 - 95.

7Theorem G-IIO6
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where wj = fj(z1, . . . , zn) for some holomorphic functions fj ∈ OU . A holo-
morphic function f in an open subset U ⊂ Cn can be viewed as a holomorphic
mapping f : U −→ C. It is familiar that a holomorphic mapping f : U −→ C
defined in an open subset U ⊂ C is an open mapping; but trivial examples show
that is not the case for holomorphic mappings from open subsets of Cn into Cn
for n > 1. However if F : U −→ V is a one-to-one holomorphic mapping from an
open subset U ⊂ Cn onto a subset V ⊂ Cn then V is necessarily an open subset
of Cn and the mapping F is an open mapping with a holomorphic inverse8. A
holomorphic mapping F : U −→ V between two open subsets U, V ⊂ Cn that
has a holomorphic inverse mapping is said to be biholomorphic. A holomorphic
mapping F : Cn −→ Cn for which det{∂fj/∂zk} 6= 0 at a point a ∈ Cn describes
a biholomorphic mapping from an open neighborhood of the point a ∈ Cn to
an open neighborhood of the image point F (a) ∈ Cn.

Differential forms play a more useful role in several complex variables than
in one variable. A complex-valued differential form φ in an open subset U ⊂ Cn
can be written either in terms of the differentials dxj , dyj of the real coordinates
in Cn or in terms of the complex linear combinations

(A.4) dzj = dxj + i dyj , dzj = dxj − i dyj

of these differentials; a differential form of degree r that can be written

(A.5) φ =
∑
j,k

fj1...jp,k1...kqdzj1 ∧ · · · ∧ dzjp ∧ dzk1
∧ · · · ∧ dzkq

in terms of the complex differentials dzj and dzk it is said to be of type (p, q)
and degree r = p+ q. The vector space of complex-valued C∞ differential forms
of degree r in U is denoted by ErU , and the vector space of complex-valued C∞

differential forms of type (p, q) in U is denoted by E(p,q)
U , so there is the direct

sum decomposition

(A.6) ErU =
⊕
p+q=r

E(p,q)
U .

The exterior derivative of a differentiable function f in U is the differential
1-form

(A.7) df =

n∑
j=1

( ∂f
∂xj

dxj +
∂f

∂yj
dyj

)
.

A straightforward calculation shows that when written in terms of the complex
differentials dzj and dzj the exterior derivative takes the form

df =

n∑
j=1

( ∂f
∂zj

dzj +
∂f

∂zj
dzj

)
8Corollary G-IIE10
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in terms of the differential operators (A.2). The separate differential forms

(A.8) ∂f =

n∑
j=1

∂f

∂zj
dzj and ∂f =

n∑
j=1

∂f

∂zj
dzj

are the components of the differential df of type (1, 0) and type (1, 0) respec-
tively; thus the exterior derivative of a C∞ function f ∈ EU can be written as
the sum

(A.9) df = ∂f + ∂f

of a differential form ∂f ∈ E(1,0)
U of type (1, 0) and a differential form ∂f ∈ E(0,1)

U

of type (0, 1). If f is holomorphic then df = ∂f since ∂f = 0; and conversely if
f is a continuously differentiable function such that df = ∂f then ∂f = 0 so the
Cauchy-Riemann equations show that f is holomorphic. Under a biholomorphic
mapping wk = fk(zj) between open subsets of Cn

dwk =

n∑
j=1

∂wk
∂zj

dzj and dwk =

n∑
j=1

∂wk
∂zj

dzj ;

it is evident from this that the type of a differential form is unchanged under
biholomorphic changes of coordinates in Cn, so to that extent the decomposition
(A.6) is intrinsic. The exterior derivative of the differential form (A.5) is the
differential form

dφ =
∑
j,k

dfj1...jp,k1...kq ∧ dzj1 ∧ · · · ∧ dzjp ∧ dzk1 ∧ · · · ∧ dzkq(A.10)

=
∑
j,k

∂fj1...jp,k1...kq ∧ dzj1 ∧ · · · ∧ dzjp ∧ dzk1 ∧ · · · ∧ dzkq

+
∑
j,k

∂fj1...jp,k1...kq ∧ dzj1 ∧ · · · ∧ dzjp ∧ dzk1
∧ · · · ∧ dzkq ;

thus if φ ∈ E(p,q) then dφ = ∂φ + ∂φ where ∂φ ∈ E(p+1,q)
U and ∂ ∈ φE(p,q+1)

U ,
so there is the direct sum decomposition d = ∂ ⊕ ∂ of exterior differentiation of
arbitrary differential forms in terms of linear differential operators

(A.11) ∂ : E(p,q)
U −→ E(p+1,q)

U and ∂ : E(p,q)
U −→ E(p,q+1)

U .

In particular if φ is a differential form of type (p, 0) then dφ = 0 if and only if
both ∂φ = 0 and ∂φ = 0. When the differential form φ is written

(A.12) φ =
∑
j

fj1...jpdzj1 ∧ · · · ∧ dzjp

the condition that ∂φ = 0 clearly is equivalent to the condition that the co-
efficients fj1...jp are holomorphic functions; a differential form of type (p, 0)
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satisfying this condition is called a holomorphic differential form of type (p, 0),
and the space of such differential forms is denoted by O(p,0). Exterior differen-
tiation satisfies d d = 0; the kernel of the linear operator d is the subspace of
closed differential forms in U , the image of d is the subspace of exact differential
forms in U , and every exact form is closed since d d = 0. When exterior differ-
entiation is written as the sum d = ∂ + ∂ the identity d d = 0 is equivalent to
the identities

(A.13) ∂ ∂ = ∂ ∂ + ∂ ∂ = ∂ ∂ = 0,

so ∂ d = ∂ ∂ = d ∂. It is familiar that any closed differential form is at least
locally exact. If φ is a holomorphic differential form of type (p, 0) that is closed
then it too is locally the exterior derivative φ = dψ of a differential form ψ of
degree p − 1, indeed clearly a differential form ψ of type (p − 1, 0); and since
φ = ∂ψ + ∂ψ it is evident that ψ must be a holomorphic differential form of
type (p− 1, 0). Thus if a holomorphic differential form φ of type (p, 0) is closed
then locally it is the exterior derivative of a holomorphic differential form ψ of
type (p− 1, 0).

A.2 Manifolds

A manifold or topological manifold of dimension n is a second countable Haus-
dorff topological space M such that each point of M has an open neighborhood
homeomorphic to an open subset of the n-dimensional Euclidean space Rn. A
coordinate covering {Uα, xα} of the manifold M is a covering of M by open
subsets Uα ⊂ M , for each of which there is a homeomorphism xα : Uα −→ Wα

between Uα and an open subset Wα ⊂ Rn. The subsets Uα are called the coor-
dinate neighborhoods, and the mappings xα are called the coordinate mappings
or the local coordinates of the coordinate covering. In the intersections Uα ∩Uβ
of coordinate neighborhoods there are two homeomorphisms to subsets of Rn,
the restrictions of xα and of xβ ; the compositions

(A.14) fαβ = xα ◦ x−1
β : xβ(Uα ∩ Uβ)→ xα(Uα ∩ Uβ)

are homeomorphisms called the coordinate transition mappings of the coordinate
covering, and the two local coordinates in an intersection Uα∩Uβ are related by
xα = fαβ(xβ). The manifold M is determined completely by the open subsets
Wα = xα(Uα) ⊂ Rn and the coordinate transition mappings fαβ of a coordinate
covering, since M can be recovered from the disjoint union of the sets Wα by
identifying points xα ∈ Wα and xβ ∈ Wβ whenever xα = fαβ(xβ). If {Uα, xα}
and {Vβ , yβ} are two coordinate coverings of the manifold M their union also
is a coordinate covering of M , consisting of the total collection of coordinate
neighborhoods and local coordinates from the two separate coordinate coverings.
The set of coordinate transition mappings for the union is properly larger than
the union of the sets of coordinate transition mappings for the two separate
coverings, though, since it must include the coordinate transition mappings
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relating the local coordinates xα and yβ in the intersections Uα∩Vβ of coordinate
neighborhoods from the two separate coverings.

Coordinate coverings with special properties can be used to describe addi-
tional structures on a topological manifold. A collection G of homeomorphisms
between open subsets of Rn that is determined by local conditions, that includes
with any homeomorphism its restrictions to open subsets and its inverse, and
that includes with any two homeomorphisms their composition wherever it is
defined, is called a pseudogroup9. One example is the pseudogroup G1 of all con-
tinuously differentiable or C1 homeomorphisms between open subsets of Rn; a
second example is the pseudogroup G2 of all infinitely differentiable or C∞ home-
omorphisms between open subsets of Rn; a third example is the pseudogroup
G3 of all holomorphic homeomorphisms between open subsets of Cm, when the
real vector space is of dimension n = 2m and is identified with the complex vec-
tor space Cm; a fourth example is the pseudogroup G4 of nonsingular complex
linear mappings between open subsets of Cm. This last example is actually a
group, since the composition of any two nonsingular complex linear mappings
is again a nonsingular complex linear mapping; in the previous examples only
those mappings with suitably overlapping ranges and domains can be composed,
hence the terminology pseudogroup rather than group. These four examples are
increasingly restrictive, in the obvious sense that G4 ⊂ G3 ⊂ G2 ⊂ G1. A coordi-
nate covering {Uα, xα} is called a G coordinate covering if all of its coordinate
transition mappings fαβ belong to the pseudogroup G. Two G coordinate cov-
erings are called equivalent if their union is again a G coordinate covering; this
is an equivalence relation in the usual sense, as a simple consequence of the
definition of a pseudogroup, and is actually a nontrivial equivalence relation,
since there are more coordinate transition mappings in the union of two coor-
dinate coverings than just the union of the two sets of coordinate transition
mappings. An equivalence class of G coordinate coverings is called a G structure
on the manifold M , and a manifold M with a fixed G structure is called a G
manifold. Thus for the four examples of pseudogroups just considered there
are continuously differentiable or C1 manifolds, infinitely differentiable or C∞
manifolds, complex analytic manifolds, usually called just complex manifolds,
and flat complex linear manifolds. A complex manifold also is a C∞ manifold,
since any complex analytic coordinate covering is also a C∞ coordinate covering
and any two equivalent complex analytic coordinate coverings are equivalent
as C∞ coordinate coverings; thus a complex manifold can be viewed as a C∞
manifold by ignoring some of the structure, or alternatively a complex structure
is an additional structure that can be imposed on an underlying C∞ manifold.
Similar considerations of course apply to any pseudogroups G′′ ⊂ G′.

Complex manifolds10 are of particular interest in the present book. As a

9There is an extensive literature devoted to pseudogroups and pseudogroup structures
following the initial treatment by E. Cartan, which can be found in his Oeuvres Complétes,
partie II, vol. 2. (Gauthier-Villars, 1953). See for instance the discussion in S. Sternberg,
Lectures on Differential Geometry, (Prentice-Hall, 1964).

10A more detailed discussion of complex manifolds can be found in K. Kodaira and J.
Morrow, Complex Manifolds, (Holt, Rhinehart and Winston, 1971) or R. O. Wells, Differential
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matter of convention, a complex manifold of topological dimension n = 2m
customarily is referred to as a complex manifold of dimension m, viewing the
complex dimension rather than the real dimension as the more significant in-
dex. A complex-valued function f defined in an open subset U of a complex
manifold M is holomorphic if for each intersection U ∩ Uα of the set U with
a coordinate neighborhood of a holomorphic coordinate covering {Uα, xα} of
M the composition f ◦ x−1

α : xα(U ∩ Uα) −→ C is a holomorphic function in
the open subset xα(U ∩ Uα) ⊂ Cn. This condition clearly is independent of
the choice of a complex coordinate covering representing the complex structure
of M , so depends only on the complex structure of M . The same notation is
used for functions on complex manifolds as for functions on open subsets of Cn;
thus the ring of holomorphic functions in the subset U ⊂M is denoted by OU ,
the multiplicative group of nowhere vanishing holomorphic functions is denoted
by O∗U , and if U is connected the field of meromorphic functions is denoted
by MU and the multiplicative group of not identically vanishing meromorphic
functions is denoted by M∗U . The ring CU of continuous complex-valued func-
tions on a topological manifold, the ring EU of C∞ complex-valued functions on
a C∞ manifold, and the ring FU of locally constant complex-valued functions
on a flat manifold are defined correspondingly. For a connected open subset
U ⊂ M of a complex manifold M there are the natural inclusions OU ⊂ MU

and O∗U ⊂M∗U ; and FU ⊂ OU ⊂ EU ⊂ CU , but of courseMU is not a subset of
EU or CU .

In a coordinate neighborhood Uα of a complex manifold M with local coor-
dinates zαj = xαj + i yαj it follows readily from (A.4) that

(A.15)

(
i

2

)n
dzα1∧dzα1∧· · ·∧dzαn∧dzαn = dxα1∧dyα1∧· · ·∧dxαn∧dyαn,

so this differential form can be used as an element of volume in the coordinate
neighborhood Uα ⊂ M ; in particular in a coordinate neighborhood Uα on a
Riemann surface M with local coordinate zα = xα + i yα the differential form
i
2dzα ∧ dzα = dxα ∧ dyα can be taken as an element of area. For another local
coordinate z

β
= x

β
+ i y

β

dxα ∧ dyα =
i

2
dzα ∧ dzα =

∣∣∣∣dzαdz
β

∣∣∣∣2 i2 dzβ ∧ dzβ(A.16)

=

∣∣∣∣dzαdz
β

∣∣∣∣2 dxβ ∧ dyβ ,
so this element of area remains positive under any complex analytic change of
coordinates on the Riemann surface; equivalently the Jacobian determinant of
a complex analytic change of coordinates is everywhere positive. The analogous
result holds for n-dimensional complex manifolds as well, so complex manifolds
are orientable topological spaces. In this book the positive orientation of a

Analysis on Complex Manifolds, (Prentice Hall, 1973).
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complex manifold is taken to be that for which (A.15) is the positive volume
element on the manifold; in particular the orientation of a Riemann surface is
that for which (A.16) is the positive element of area.

A continuous mapping F : M −→ N between complex manifolds M and N
of dimensions m and n with coordinate coverings {Uα, xα} and {V

β
, y

β
} respec-

tively is holomorphic if for any point p ∈ Uα ⊂M for which F (p) ∈ V
β
⊂ N the

composition y
β
◦ F ◦ x−1

α is a holomorphic mapping from an open neighorhood
of the point xα(p) ∈ Cm into the space Cn. Two complex manifolds M and N
are said to be analytically equivalent or biholomorphic if there is a homeomor-
phism F : M −→ N such that both F and F−1 are holomorphic mappings; the
mapping F is called an analytic equivalence or a biholomorphic mapping. Any
one-to-one holomorphic mapping between two complex manifolds of the same
dimension is a biholomorphic mapping since as noted in the preceding section a
one-to-one holomorphic mapping from an open subset of Cn into Cn is a biholo-
morphic mapping. For the most part it is only the analytic equivalence classes
or biholomorphic equivalence classes of complex manifolds that are of primary
interest.

Riemann surfaces are defined as one-dimensional connected complex mani-
folds, and are the main topic of this book; however various complex manifolds
of higher dimension, such as complex projective spaces and complex tori, arise
naturally in the discussion of Riemann surfaces. The n-dimensional complex
projective space Pn is defined to be the set of equivalence classes of nonzero
points (z0, z1, . . . , zn) ∈ Cn+1, where the equivalence relation is defined by
(z0, z1, . . . , zn) ∼ (t z0, t z1, . . . , t zn) for any nonzero complex number t ∈ C∗; al-
ternatively Pn can be defined to be the set of one-dimensional linear subspaces of
Cn+1, since any such subspace is an equivalence class as just defined. The space
Pn is topologized with the natural quotient topology, so the open subsets of Pn
are the equivalence classes of points in open subsets of Cn+1. The equivalence
class containing a point (z0, z1, . . . , zn) ∈ Cn+1 is denoted by [z0, z1, . . . , zn] ∈
Pn, and the point (z0, z1, . . . , zn) is called the set of homogeneous coordinates
for the point of Pn that it represents. In the open subset Ui ⊂ Pn consisting
of points with homogeneous coordinates (z0, z1, . . . , zn) for which zi 6= 0, where
0 ≤ i ≤ n, any point is represented by unique homogeneous coordinates of the
form (zi0, . . . , z

i
i−1, 1, z

i
i+1, . . . , z

i
n), which are called the inhomogeneous coordi-

nates of that point; these provide local coordinates in Ui, identifying that subset
of Pn with the complex vector space Cn. Points in the intersection Ui ∩ Uj for
i 6= j then are described by two sets of inhomogeneous coordinates which are
related by (zi0, . . . , z

i
i−1, 1, z

i
i+1, . . . , z

i
n) = t(zj0, . . . , z

j
j−1, 1, z

j
j+1, . . . , z

j
n), where

clearly t = zij so that

(A.17) zik = zijz
j
k for k 6= i, j;

that is a nonsingular linear, hence holomorphic, change of coordinates, so the
inhomogeneous coordinates describe on the space Pn the structure of a complex
manifold of dimension n. The unit sphere S2n−1 ⊂ Cn+1 consists of points Z =
(z0, . . . , zn) ∈ Cn+1 for which

∑n
i=0 |zi|2 = 1, and is of course a compact subset
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of Cn+1. The natural mapping Cn+1 −→ Pn restricts to a continuous mapping
S2n−1 −→ Pn with image all of Pn, and consequently Pn is a compact complex
manifold. The inverse image of a point w ∈ Pn is the circle {t Z | |t| = 1};
it is not difficult to see that the mapping Cn+1 −→ Pn is a fibration over the
projective space Pn with fibres the unit circle, and that determines the topology
of Pn.

A subset V ⊂ M of a complex manifold such as Cn is a submanifold if
in an open neighborhood Ua of any point a ∈ M there are local coordinates
in M such that Ua ∩ V is a linear subspace in terms of these coordinates.
It is easy to see that a submanifold has the natural structure of a complex
manifold; the dimension of the submanifold is the dimension of that manifold.
If a subset V of an open neighborhood Ua of a point a ∈ Cn is the set of
common zeros of k ≤ n holomorphic functions f1, . . . fk in Ua for which the
n × k matrix {∂ifk(a)} is of rank k ≤ n then V is a submanifold of dimension
n − k near k; indeed if fk+1, . . . , fn are any holomorphic functions in Ua such
that the n × n matrix {∂ifj(a)} has rank n then these functions can be taken
as local coordinates near a and in terms of these coordinates the subset V is
the linear subset as the set of zeros of the coordinates f1, . . . , fk. Similarly if
f1, . . . fn are n ≥ k holomorphic functions in an open neighborhood Ua of a
point a ∈ Ck for which the k × n matrix {∂ifk(a)} is of rank k ≤ n then the
image f(Ua) ⊂ Ck of a subneighborhood of the point a under the mapping
F : Ua −→ Cn defined by F (z) = (f1(z), . . . fn(z) is a submanifold of an
open neighborhood of F (a) of dimension k; for if Ck is viewed as the subspace
consisting of the first k variables z1, . . . , zk in the space Cn with the coordinates
z1, . . . , zn then the functions f1, . . . , fk, zk+1, . . . zn are local coordinates in Cn
for which Ck is the linear subspace defined as the set of zeros of the coordinates
zk+1, . . . , zn, while the mapping F : Cn −→ Cn for which F (z1, . . . , zn) =
(f1(z), . . . , fk(z), zk+1, . . . , zn) is a locally biholomorphic mapping which takes
the linear subspace zk+1 = · · · = zn = 0 to the image of the mapping F .

A.3 Holomorphic Varieties

Almost any consideration of complex manifolds eventually leads to more
general entities as well. A holomorphic subvariety of an open subset U ⊂ Cn is
a subset V ⊂ U with the property that for each point a ∈ U there exist an open
neighborhood Ua and finitely many holomorphic functions fai in Ua such that

V ∩ Ua = {z ∈ Ua | fai(z) = 0}.

If a holomorphic subvariety is defined locally by a finite number of holomorphic
functions having a nonsingular Jacobian determinant at each point then that
subvariety has the natural structure of a complex manifold; thus a complex
submanifold of an open subset U ⊂ Cn is a special case of a holomorphic subva-
riety of U . A holomorphic subvariety of U always is a closed subset of U, as an
immediate consequence of this definition. It is not required that the subvariety
be the set of common zeros of a collection of functions defined and holomorphic
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in all of U ; the notion of a holomorphic subvariety is essentially local in nature.
For this reason it is of course possible to consider a homorphic subvariety of an
arbitrary complex manifold. More generally if V1, V2 ⊂ U are holomorphic sub-
varieties of a complex manifold U and V1 ⊂ V2 then V1 is called a holomorphic
subvariety of V2. A function f on a holomorphic subvariety V ⊂ U in a complex
manifold U is holomorphic on V if in an open neighborhood of each point of
V it is the restriction to V of a holomorphic function in an open neighborhood
of that point in the manifold U ; and a function f on V is meromorphic if it
can be represented in an open neighborhood of each point of V as a quotient
of holomorphic functions on V . On a complex manifold any bounded meromor-
phic function actually is holomorphic; but that is not the case for meromorphic
functions on holomorphic subvarieties, as is illustrated in the examples in the
discussion of singular points on page 419. The bounded meromorphic functions
on a holomorphic subvariety are known as weakly holomorphic functions; and a
holomorphic subvariety for which all weakly holomorphic functions are actually
holomorphic is known as a normal holomorphic variety.

A mapping F : V1 −→ V2 between two holomorphic subvarieties V1 ⊂ U1 and
V2 ⊂ U2 of complex manifolds U1 and U2 is holomorphic if for any holomorphic
function f in an open neighborhood of a point a ∈ V2 the composition f ◦F is a
holomorphic function in an open neighborhod of the point F−1(a) ∈ V1; this is
readily seen to be equivalent to the condition that in an open neighborhood of
each point a ∈ V1 the mapping F is the restriction to V1 of a holomorphic map-
ping of an open neighborhood of a in U1 into U2. Two holomorphic subvarieties
are analytically equivalent or biholomorphic if there are holomorphic mappings
F : V1 −→ V2 and G : V2 −→ V1 that are inverse to one another; and a holomor-
phic variety is a biholomorphic equivalence class of holomorphic subvarieties. A
holomorphic variety thus is an abstract version of a holomorphic subvariety, in-
dependent of a particular representation as a subvariety of a complex manifold;
a complex manifold is a special case of a holomorphic variety. A holomorphic
variety V is reducible if it can be written as a nontrivial union of holomorphic
varieties, and otherwise is irreducible; in particular a complex manifold is an
irreducible holomorphic variety if and only if it is connected. A holomorphic
variety V is locally reducible at a point a ∈ V if the restriction of V to any
sufficiently small open neighborhood of the point a is reducible, and otherwise
is locally irreducible at that point. A complex manifold is locally irreducible at
each of its points; but a holomorphic varietiy may be locally reducible at some
of its points. Any holomorphic variety V can be written uniquely as a union
of irreducible subvarieties, called its irreducible components; and somewhat less
trivially, an open neighborhood of any point of a holomorphic variety can be
written uniquely as a finite union of locally irreducible varieties at that point.

Holomorphic varieties are generalizations of complex manifolds, but actually
are complex manifolds at most points; for an arbitrary holomorphic variety V is
a complex manifold outside a proper holomorphic subvariety S(V ) ⊂ V called
the singular locus of V and consisting of precisely those points at which V fails
to be a complex manifold. An irreducible holomorphic variety V is a connected
complex manifold outside its singular locus S(V ); the dimension of the manifold
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V ∼ S(V ) is considered to be the dimension of the holomorphic variety V
and is denoted by dimV . The dimension of a reducible holomorphic variety
is defined to be the largest of the dimensions of its irreducible components. If
all irreducible components have the same dimension n the variety is said to
be of pure dimension n. For some purposes it is more useful to consider the
local dimension of a holomorphic variety V at a point p ∈ V , the dimension
of arbitrarily small open neighborhods of that point, rather than the global
dimension of the variety V ; the local dimension is denoted by dimp V , and may
vary from point to point unless the variety V is irreducible.

A few more detailed properties11 of the dimension of a holomorphic vari-
ety are also needed. If V1 is a holomorphic subvariety of a holomorphic vari-
ety V2 then dimV1 ≤ dimV2, and this is a strict inequality unless V1 and V2

have a common irreducible component of the common dimension; in particular
dimS(V ) < dimV for the singular locus S(V ) of an irreducible holomorphic
subvariety V . If f is a nontrivial holomorphic function on an irreducible holo-
morphic variety V of dimension n then the zero locus of the function f is a
holomorphic subvariety of pure dimension n−1 in V . Consequently if f1, . . . , fk
are holomorphic functions on an irreducible holomorphic variety V of dimension
n then the locus of common zeros of these functions is a holomorphic subvariety
W ⊂ V for which dimW ≥ n − k. It is not generally true that conversely a
holomorphic subvariety W of dimension n − k of an irreducible holomorphic
variety V of dimension n can be defined as the set of common zeros of pre-
cisely k holomorphic functions on V ; the minimal number of functions required
to describe such a holomorphc subvariety even locally can exceed k. However
a holomorphic subvariety W of dimension n − 1 in a complex manifold V of
dimension n always is locally the set of zeros of a single holomorphic function.
In general if W1,W2 are holomorphic subvarieties of a complex manifold of di-
mension n and W is an irreducible component of the intersection W1 ∩W2 then
dimW ≥ dimW1 + dimW2 − n.

The singular locus S(V ) of a one-dimensional holomorphic variety V is a
discrete set of points, called the singular points of V , and the complement V ∼
S(V ) has the natural structure of a union of Riemann surfaces. It can be
shown that if a ∈ S(V ) is a singular point of the one-dimensional holomorphic
variety V and if Vi are the local irreducible components of V in a neighborhood
of the point a then to each separate irreducible component Vi there can be
associated a Riemann surface V̂i and a holomorphic mapping fi : V̂i −→ Vi such
that f−1

i (a) is a single point of V̂i and the restriction fi : V̂if̃
−1(a) −→ V ã is

an analytic equivalence of Riemann surfaces. This construction can be carried
out at each singular point, yielding a union of Riemann surfaces V̂ called the
normalization of the variety V or the nonsingular model of the variety V . The
local normalization mappings lead to a global normalization mapping f : V̂ −→
V that is a biholomorphic mapping between V ∼ S(V ) and f−1(V ∼ S(V )) ⊂
V̂ ; both V ∼ (V ∼ S(V )) = S(V ) ⊂ V and V̂ ∼ f−1(V ∼ S(V )) ⊂ V̂ are

11These properties are discussed and proved for instance in R. C. Gunning, Introduction to
Holomorphic Functions of Several Variables (Wadsworth & Brooks/Cole, 1990), vol. II.
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discrete sets of points. For example, if V = {(z1, z2) ∈ C2 | z1z2 = 0}, so that V
is the union of the two irreducible components consisting of the two coordinate
axes in C2, then the singular locus S(V ) consists of the origin itself; and V̂
is the disjoint union of two copies of C1 corresponding to the two irreducible
components of V . In this case the singularity arises as the intersection of two
separate manifolds. For another example, if V = {(z1, z2) ∈ C2 | z2

1 − z3
2 = 0}

then the singular locus S(V ) again consists of the origin itself, V̂ is a copy of C1,
and the mapping f : V̂ −→ V is given explicitly by z −→ (z3, z2). In this case
the holomorphic subvariety V is globally irreducible, is locally irreducible at
each point, and has a definite singularity at the origin, a point at which V fails
to be a submanifold even topologically. The singularities of a one-dimensional
subvariety are just those points at which there are locally weakly holomorphic
functions (bounded meromorphic functions) that fail to be holomorphic. In the
first of the two preceding examples the function f(z1, z2) = (bz1+az2)(z1+z2)−1

is a meromorphic function on V that takes the value a on the component z1 = 0
and takes the value b on the component z2 = 0, so is not continuous hence
not holomorphic; in the second example the function f(z1, z2) = z1/z2 is a
meromorphic function that is bounded, since z1/z2 = z is the value of the
normalization mapping, but that is not holomorphic. There is an extensive
literature dealing with the classification of the singular points of one-dimensional
holomorphic subvarieties, for the most part in the context of algebraic geometry
when these subvarieties are viewed as algebraic curves.12

There are considerably more complicated results for subvarieties of higher
dimensions, where the singular loci can be proper holomorphic subvarieties of
various dimensions and the singularities can be resolved only by much more
complicated mappings; nothing further about the resolution of singularities of
higher dimensional varieties is needed in the discussion in the body of the book,
but some familiarity with a few general properties of the singularities of holo-
morphic varieties is required13. For any point p ∈ V of a holomorphic subvariety
V ⊂ U of an open subset U ⊂ Cn the ideal idpV ∈ Op of the subvariety V at
a point p ∈ V is the ideal in the local ring Op of germs of holomorphic func-
tions of n complex variables at the point p consisting of the germs of those
holomorphic functions that vanish on V near the point p. It can be shown that
this ideal always is finitely generated, so has a basis consisting of finitely many
germs in Op. It is not necessarily the case that a collection of holomorphic
functions in U having V as their set of common zeros generate the ideal of
that subvariety at any point p ∈ V . However if V is a holomorphic subvari-
ety of dimension n − 1 any holomorphic function f in U that vanishes to the
first order at the regular points of V does generate the ideal of the subvari-

12A discussion of the singularities of algebraic curves in C2 from a geometric point of view
can be found in E. Brieskorn and H. Knörrer, Plane Algebraic Curves, (Birkhäuser, 1986); a
discussion of the classical results can be found in R. J. Walker Algebraic Curves, (Princeton
University Press, 1950).

13For the proofs of these assertion and a more detailed discussion see for instance R.
C. Gunning, Introduction to Holomorphic Functions of Several Variables (Wadsworth &
Brooks/Cole, 1990), vol. II.
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ety V at each of its points If p is a regular point of the subvariety V , a point
at which V is a submanifold of dimension r, then the set of differentials at p
of a basis for the ideal idpV has dimension n − r; the locus of zeros of these
differentials, which are just the linear approximations at p of the holomorphic
functions in the basis, is an r-dimensional linear subspace of Cn that can be
identified with the complex tangent space Tp(V ) to the manifold V at the point
p. However if p is a singular point of the subvariety V the differentials of this
basis at p span a linear subspace of dimension strictly less than r; indeed it may
be the case that all the differentials vanish at the point p. The common zero
locus of these differentials still form a linear subspace of Cn, defined to be the
complex tangent space Tp(V ) of the holomorphic subvariety V at the point p.
Thus for any r-dimensional subvariety V ⊂ U ⊂ Cn it is always the case that
r ≤ dimTp(V ) ≤ n; and p is a singular point precisely when r < dimTp(V ).
The dimension of the tangent space is called the tangential dimension of the
subvariety V at the point p and is denoted by tdimpV ; it can be character-
ized alternatively as the least dimension of a complex submanifold of an open
neighborhood of p in Cn containing the subvariety V in that neighborhood, so
sometimes is called the imbedding dimension of the subvariety V at the point
p. The point p is a regular point of the subvariety V , a point at which V is a
submanifold, precisely when tdimpV = dimp V ; equivalently p ∈ S(V ) precisely
when tdimpV > dimp V .

The tangential dimension is a measure of the singularity of the subvariety V
at the point p, the greater the tangential dimension the worse the singularity. An
additional measure of the singularity of a point p ∈ V for a proper holomorphic
subvariety V of an open subset of Cn is the multiplicity of the subvariety V at
the point p, defined as the least integer µ such that

(A.18)
∂kf

∂zk1
1 · · · ∂z

kn
n

∣∣∣∣
p

= 0 whenever k = k1 + · · ·+ kn < µ

for all functions f in a basis for the ideal idpV of the holomorphic subvariety V
near p; the multiplicity of the subvariety V at the point p is denoted by multpV .
If p 6∈ V then by this definition multpV = 0. On the other hand multpV ≥ 1 at
all points p ∈ V , and multpV = 1 if and only if in an open neighborhood of the
point p the subvariety V is contained in a proper complex submanifold of Cn,
since that is just the condition that there is a nontrivial holomorphic function
near p that vanishes on the subvariety V but has a nonzero differential at the
point p. The points p ∈ V at which multpV > 1 are singular points p ∈ V ∈ Cn
at which tdimpV = n. The multiplicity consequently distinguishes between
singularities at which the tangential dimension is maximal, that is, singularities
at which the differentials of all functions in the ideal of the subvariety vanish;
it is in this sense a finer measure of the nature of these somewhat extreme
singularities. It should be noted that if V is not a proper subvariety but actually
coincides with Cn then the local defining basis consists just of the function 0
and the multiplicity as defined by (A.18) would be infinite; that is the reason
for restricting this invariant to proper subvarieties of Cn.
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It is useful to note that both the tangential dimension and the multiplicity
of a holomorphic subvariety are monotonic, in the sense that for holomorphic
subvarieties V and W of an open subset of Cn

(A.19) if p ∈ V ⊂W then

 tdimpV ≤ tdimpW,

multpV ≤ multpW.

To see that this is the case, suppose that f1, . . . , fr is a basis for the ideal idpV
of the holomorphic subvariety V at the point p ∈ V and that g is a holomorphic
function in an open neighborhood of the point p in Cn that is part of a defining
basis for the ideal idpW of the subvariety W at p. Since the function g vanishes
on the subvariety W it must also vanish on V , so its germ is in the ideal idpV
generated by the germs of the functions fi and consequently g =

∑r
i=1 hifi for

some holomorphic functions hi in an open neighborhood of p. For any vector
t ∈ Tp(V ) it then follows that

dpg(t) =

r∑
i=1

hi(p)dpfi(t) = 0;

therefore t ∈ Tp(W ), so that Tp(V ) ⊂ Tp(W ) and consequently tdimp(V ) ≤
tdimp(W ). Furthermore

∂kg

∂zk1
1 · · · ∂z

kn
n

∣∣∣∣
p

=

r∑
i=1

hi(p)
∂kfi

∂zk1
1 · · · ∂z

kn
n

∣∣∣∣
p

+ lower derivatives of fi,

and in view of the definition (A.18) it is evident that multpV ≤ multpW
A refinement of the notion of the tangent space of a holomorphic subvariety,

providing a more precise description of the singularities of holomorphic subva-
rieties, is the tangent cone14 of a holomorphic subvariety, which can be defined
in a number of equivalent ways. Geometrically the tangent cone Cp(V ) of a
holomorphic subvariety V of an open subset U ⊂ Cn at a point p ∈ V is defined
to be the set of all vectors v ∈ Cn such that there exist a sequence of points
pi ∈ V tending to the point p ∈ V and a sequence of complex numbers ci ∈ C
such that ci(pi−p) −→ v; thus the tangent cone Cp(V ) is the set of limits of the
secant lines joining points of V to the point p. Although far from obvious, the
tangent cone Cp(V ) can be described as the set of all tangent vectors to smooth
curves through V at the point p, that is, as the set of derivatives v = φ′(0) of C1

mappings φ : (−ε, ε) −→ V from an open neighborhood of the origin in the real
line into the subvariety V such that φ(0) = p. On the other hand the tangent
cone can be defined algebraically as the zero locus of the initial polynomials
f∗i (z) of a basis fi for the ideal idpV ⊂ Op of the subvariety V at the point p;
here the initial polynomial f∗(z) at the point p of a holomorphic function f in

14For a further discussion of tangent cones, and proofs of the results described here, see
for instance H. Whitney, Complex Analytic Varieties (Addison Wesley, 1972), particularly
Chapter 7.
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an open neighborhood of the point p is the homogeneous polynomial consisting
of the terms of lowest degree in the power series expansion of the function f in
terms of local coordinates zi centered at the point p. That too requires proof
and is not trivial. It can be shown also that multpV = mini deg f∗i for a proper
holomorphic subvariety in Cn; so the multiplicity of the subvariety V at a point
p ∈ V is one of the properties of the tangent cone Cp(V ). It is evident from
any of these equivalent definitions that the tangent cone is a cone at the origin
in Cn in the usual sense, namely that if v ∈ Cp(V ) ⊂ Cn then cv ∈ Cp(V ) for
every complex number c ∈ C; consequently the tangent cone determines a well
defined subset PCp(V ) ⊂ Pn−1 in the complex projective space of dimension
g − 1, the projective tangent cone of the subvariety V at the point p ∈ V . It is
frequently more convenient to describe the projective tangent cone rather than
the tangent cone itself; the tangent cone then can be described as the set of all
vectors in Cn that represent points in the subset PCp(V ) ⊂ Pn−1. The tangent
cone Cp(V ) is a holomorphic subvariety of Cn, and the projective tangent cone
is a holomorphic hence an algebraic subvariety of Pn−1. It can be shown that
Cp(V ) ⊂ Tp(V ) and that dimCp(V ) = dimp V . Moreover the tangent cone also
is monotonic, in the sense that if p ∈ V ⊂W for some holomorphic subvarieties
V and W in an open neighborhood of the point p ∈ Cn then Cp(V ) ⊂ Cp(W ).
The tangent cone Cp(V ) may be reducible even though the holomorphic subva-
riety V is irreducible at the point p ∈ V .

There are other possible notions of the tangent cone to a holomorphic sub-
variety at a point, although the preceding is the commonly used notion and is
almost inevitably what is meant by the term “tangent cone”. One alternative
notion that is useful for some purposes is the extended tangent cone C∗p (V ) of a
holomorphic subvariety V of an open neighborhood of a point p in Cn, defined
as the set of all vectors v ∈ Cn that are the limits of tangent vectors to the reg-
ular part of the variety V at points approaching p; the extended tangent cone
coincides with the tangent space at any regular point of V , and is a natural
extension of the tangent space of the regular part of V to the singular points15.
The extended tangent cone is a holomorphic cone containing the usual tangent
cone, so that Cp(V ) ⊂ C∗p (V ) at any point p of a holomorphic subvariety V ;
but this may be a strict inclusion, and indeed the dimension of the extended
tangent cone may exceed the dimension of the subvariety V at the point p.

In addition to the preceding properties of the singularities of holomorphic
varieties, some acquaintance with the properties16 of some special classes of
holomorphic mappings between holomorphic varieties also will be required at
some points in the discussion in the body of the book. Particularly important

15The extended tangent cone is the cone C4 in Whitney’s terminology, while the usual
tangent cone is C3.

16For the proofs and further discussion of these topics see for instance R. C. Gunning, Intro-
duction to Holomorphic Functions of Several Variables, Vol. II, (Wadsworth and Brooks/Cole,
1990), especially Sections L and N. Remmert’s proper mapping theorem was proved in the
paper by R.Remmert, “Holomorphe und meromorphe Abbildungen komplexer Räume”, Math.
Ann., vol 133(1957), pp. 328-370; that result and the local properties of holomorphic mappings
have been discussed extensively in the literature.
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are proper holomorphic mappings, those holomorphic mappings such that the
inverse image of any compact set is compact, and finite holomorphic mappings,
those holomorphic mappings such that the inverse image of any point is a fi-
nite set of points. The simplest finite proper holomorphic mappings are finite
branched holomorphic coverings, holomorphic mappings F : V −→ W between
two holomorphic varieties V and W with the properties that

(i) F is a finite, proper, surjective holomorphic mapping;
(ii) there are dense open subsets V0 ⊂ V and W0 ⊂ W such that
V0 = F−1(W0) and the restriction F |V0 : V0 −→ W0 is a locally
biholomorphic covering mapping;
(iii) the complement W −W0 is a holomorphic subvariety of W .

Any holomorphic mapping between one-dimensional holomorphic varieties is lo-
cally a finite branched holomorphic covering, as is quite familiar; finite branched
holomorphic coverings are those holomorphic mappings between holomorphic
varieties of arbitrary dimensions that are most like holomorphic mappings be-
tween one-dimensional holomorphic varieties. The local parametrization theorem
asserts that any irreducible holomorphic variety of dimension n can be repre-
sented locally as a finite branched holomorphic covering of an open subset of
Cn; that provides a particularly convenient local representation for the study
of holomorphic varieties. A holomorphic mapping F : V −→ W between two
holomorphic varieties V and W is said to be finite if F−1(p) is a finite sub-
set of V for each point p ∈ W ; it can be shown that a holomorphic mapping
F : V −→ W is finite if and only if for each irreducible component Vi of V
the restriction F |Vi : Vi −→ F (Vi) is locally a finite branched holomorphic cov-
ering. More general proper holomorphic mappings arise quite frequently. One
of their most important properties is given in Remmert’s proper mapping the-
orem, which asserts that if F : V −→ W is a proper holomorphic mapping
between holomorphic varieties V and W then the image F (V ) is a holomorphic
subvariety of W ; and if V is irreducible then so is its image, and

(A.20) dimF (V ) = sup
p∈V

(
dimV − dimp F

−1(F (p))
)
.

For a finite proper holomorphic mapping dimpF
−1(F (p)) = 0 for all points

p ∈ V so the preceding formula reduces to

(A.21) dimF (V ) = dimV.

In general the fibres F−1(q) over points q ∈ W need not be irreducible, and
their dimensions may vary from point to point. However there is at least some
regularity to the behavior of the dimension, as a consequence of Remmert’s semi-
continuity theorem, which asserts that if F : V −→W is a holomorphic mapping
between holomorphic varieties V and W , not necessarily a proper holomorphic
mapping, then for any integer ν the subset

{
p ∈ V

∣∣ dimp F
−1(F (p)) ≥ ν

}
is a holomorphic subvariety of V ; this is an extension of the condition that
dimp F

−1(F (p)) is an upper semi-continuous function of the point p ∈ V . Im-
ages of holomorphic varieties under holomorphic mappings that are not proper
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also may be holomorphic subvarieties. The local mapping theorem asserts that
if F : V −→W is a holomorphic mapping between two holomorphic varieties V
and W , not necessarily a proper holomorphic mapping, and if dimp F

−1(F (p)) =
ν is independent of the point p ∈ V , then each point p ∈ V has arbitrarily small
open neighborhoods Vp such that F (Vp) is a holomorphic subvariety of an open
neighborhood of F (p) in W and dimF (p) F (Vp) = dimp V − ν. If the subvariety
V is irreducible at the point p ∈ V then the converse also holds: if there are
arbitrily small open neighborhoods Vp of the point p ∈ V such that F (Vp) is a
holomorphic subvariety of an open neighborhood of the point f(p) ∈ W then
dimq F

−1(F (q)) is a constant independent of the point q ∈ V in some open
neighborhood of the point p ∈ V . Thus the fact that the fibres of a holomorphic
mapping have constant dimension really is almost equivalent to the condition
that the image of the mapping is locally a holomorphic subvariety. These results
will be used at various points in the discussion in the body of this book.



Appendix B

Vector Bundles

B.1 Definitions

A complex vector bundle of rank r over a topological space M is a topological
space λ with a continuous mapping π : λ −→ M such that (i) in an open
neighborhood U of each point p ∈M there is a commutative diagram

(B.1)

λ ⊃ π−1(U)
λU−−−−→ U × Cr

π

y π1

y
M ⊃ U U

where λU is a homeomorphism from π−1(U) to the product U × Cr and π1 is
the projection of the product to its first factor; and (ii) in an intersection U ∩V
of two such neighborhoods of p there is a continuous mapping

(B.2) λV U : U ∩ V −→ Gl(r,C)

such that the composite mapping λV ◦λ−1
U : (U ∩V )×Cr −→ (U ∩V )×Cr has

the form

(B.3) (λV ◦ λ−1
U )(p, t) =

(
p, λV U (p)t

)
for any point (p, t) ∈ (U ∩ V )×Cr. The space M is called the base space of the
vector bundle λ, the mapping π is called the projection, the mappings λU are
called the coordinate mappings or local coordinates, the linear transformations
λV U (p) are called the coordinate transition functions, and the inverse image
λp = π−1(p) of a point p ∈ M is called the fibre over the point p. The local
product structure provided by the homeomorphism λU describes a point in the
open subset π−1(U) ⊂ λ by a pair (p, tU ) ∈ U ×Cr, where the vector tU ∈ Cr is
the fibre coordinate of that point in terms of the local product structure over U ;
the vector tU will be viewed as a column vector of length r when explicit formulas
are required, and the coordinate transition functions then will be viewed as r×r

425
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complex matrices. If p ∈ U∩V the fibre coordinates of points in π−1(p) in terms
of the local product structures over U and V are related by

(B.4) tV = λV U (p) tU .

The simplest example of a complex vector bundle of rank r over a topological
space M is the product bundle or trivial bundle, the product λ = M ×Cr where
π is the natural projection to the first factor; for this bundle all the coordinate
transition functions can be taken to be the identity mapping λV U (p) = I since
the coordinate mappings can be taken to be the identity mapping. A complex
vector bundle of rank 1 also is called a complex line bundle; for a complex
line bundle the coordinate transition functions are merely nowhere vanishing
functions in the intersections U ∩ V . If the base space M is a topological
manifold of dimension n and the subsets U ⊂M are coordinate neighborhoods
in M that are identified with subsets of Rn then the local coordinate mappings
λU impose on the space λ the structure of a topological manifold for which
dimλ = n + r; in addition, since the homeomorphisms λV ◦ λ−1

U belong to the
pseudogroup CL consisting of local homeomorphisms between products Rn×Cr
that are complex linear mappings on Cr, the manifold λ is a CL manifold. If
the base space M is a C∞ manifold and the coordinate transition functions
λUV (p) are C∞ functions the manifold λ is a C∞ manifold and the bundle is
said to be a C∞ vector bundle. If the base space M is a complex manifold
and the coordinate transition functions λUV (p) are holomorphic functions the
manifold λ is a complex manifold and the bundle is said to be a holomorphic
vector bundle. If the coordinate transition functions λV U (p) are locally constant
functions the bundle is called a flat vector bundle. A holomorphic vector bundle
also has the weaker structure of a C∞ vector bundle, and a flat vector bundle
also has the weaker structure of a holomorphic vector bundle.

A cross-section of a complex vector bundle λ over a topological space M is
a continuous mapping f : M −→ λ such that π ◦f(p) = p for each point p ∈M .
The composition of a cross-section f and the coordinate mapping λU over an
open subset U ⊂M has the form

(B.5) (λU ◦ f)(p) = (p, fU (p)) ∈M × Cr

for any point p ∈ U , where fU : U −→ Cr is a continuous mapping called the
local form of the cross-section over U ; thus fU (p) is the fibre coordinate of the
point f(p) ∈ λ in terms of the local product structure over U . It is clear that
a cross-section f is described completely by its local form over subsets U ⊂M ,
and that the local forms satisfy

(B.6) fV (p) = λV U (p) fU (p) for p ∈ U ∩ V

since the fibre coordinates satisfy (B.4). A cross-section f of a C∞ complex
vector bundle λ is a C∞ cross-section if the mapping f : M −→ λ is a C∞
mapping, or equivalently if the local forms fU : U −→ Cr are C∞ mappings; a
cross-section f of a holomorphic vector bundle λ is a holomorphic cross-section
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if the mapping f : M −→ λ is a holomorphic mapping, or equivalently if the
local forms fU : U −→ Cr are holomorphic mappings; and a cross-section f of
a flat vector bundle λ is a flat cross-section if the local forms fU : U −→ Cr
are locally constant mappings. Cross-sections can be added and multiplied by
complex constants, by using the structure of a complex vector space in the fibre;
thus the set of cross-sections has the natural structure of a complex vector space.
Clearly linear combinations of C∞ cross-sections of a C∞ vector bundle again are
C∞ cross-sections, and correspondingly for holomorphic or flat cross-sections; so
the set of all continuous, C∞, holomorphic or flat cross-sections of a complex
vector bundle having the appropriate regularity are also complex vector spaces.
The vector space of continuous cross-sections of a vector bundle λ is denoted by
Γ(M, C(λ)), the vector space of C∞ cross-sections of a C∞ vector bundle λ over
a C∞ manifold M is denoted by Γ(M, E(λ)), the vector space of holomorphic
cross-sections of a holomorphic vector bundle λ over a complex manifold M
is denoted by Γ(M,O(λ)), and the vector space of flat cross-sections of a flat
vector bundle λ over a topological manifold M is denoted by Γ(M,F(λ)).

If λi for 1 ≤ i ≤ n are vector bundles over a topological space M described by
coordinate transition functions λiUV for 1 ≤ i ≤ n their direct sum λ1⊕ · · ·⊕λn
is the vector bundle with the coordinate transition functions λ1

UV ⊕ · · · ⊕ λnUV
and their tensor product λ1 ⊗ · · · ⊗ λn is the vector bundle with the coordinate
transition functions λ1

UV ⊗ · · · ⊗ λnUV , where

(B.7) λ1
UV ⊕ · · · ⊕ λnUV =


λ1
UV 0 · · · 0
0 λ2

UV · · · 0
· · · · · ·

0 0 · · · λnUV


and λ1

UV ⊗ · · · ⊗ λnUV is the linear transformation on tensors vU,i1i2···in defined
by

(B.8) vU,i1i2···in =
∑
j1,...jn

λ1
UV,i1j1 λ

2
UV,i2j2 · · ·λ

n
UV,injn vV,j1j2···jn .

It is evident that

rank (λ1 ⊕ · · · ⊕ λn) = rankλ1 + · · ·+ rankλn and(B.9)

rank(λ1 ⊗ · · · ⊗ λn) = (rankλ1) · · · (rankλn).(B.10)

If λ1 = · · · = λn = λ the tensor product is denoted by λ⊗n. The tensor product
λ1 ⊗ λ2 of two vector bundles can be viewed alternatively as a vector bundle in
which the fibres as well as the coordinate transition functions are matrices; for
in this case (B.8) becomes

vU,i1i2 =
∑
j1,j2

λ1
UV,i1j1 vV,j1j2 λ

2
UV,i2j2 ,

and when the values vU,i1i2 are interpreted as entries in a matrix vU this is the
matrix identity

(B.11) vU = λ1
UV vV

tλ2
UV
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where tλ2
UV is the transpose of the matrix λ2

UV . A tensor product of line bundles
λ1 and λ2 is a line bundle, and the notation usually is simplified by setting
λ1 ⊗ λ2 = λ1λ2; correspondingly the notation for the tensor product of a line
bundle σ and a vector bundle λ usually also is simplified by setting σ⊗λ = σλ.
The tensor product of n copies of a line bundle λ with itself usually is denoted
by λn.

If λ = {λUV } is a vector bundle of rank r over a topological space M then
for any group homomorphism θ : Gl(r,C) −→ Gl(s,C) the mappings θ(λUV )
can be taken as the coordinate transition functions describing a vector bundle
θ(λ) of rank s over M . For example, associated to any vector bundle λ of rank
r over M is its determinant bundle detλ, the line bundle over M described
by the coordinate transition functions detλUV , and its dual bundle λ∗ = tλ−1,
the vector bundle of rank r described by the coordinate transition functions
λ∗UV = tλ−1

UV . Similarly to any vector bundle λ of rank r over M can be
associated its adjoint bundle Adλ, the vector bundle of rank r2 described by the
coordinate transition functions Ad(λUV ) where Ad : Gl(r,C) −→ Gl(r2,C) is
the adjoint representation, the mapping that associates to a matrix A ∈ Gl(r,C)
the linear transformation on the vector space Cr×r of r × r complex matrices
defined by Ad(A)Z = AZ A−1. The linear subspace Cr×r0 ⊂ Cr×r consisting
of matrices of trace zero is preserved under the adjoint representation, and the
restriction of the adjoint representation to this subspace Cr×r0 is another group
homomorphism Ad0 : Gl(r,C) −→ Gl(r2 − 1,C) that can be used to associate
to the vector bundle λ its restricted adjoint bundle Ad0 λ of rank r2−1, defined
by the coordinate transition functions Ad0(λUV ). The changes of coordinates
in the fibres of the bundle Adλ are given by ZU = Ad(λUV )ZV = λUV ZV λUV
where ZU , ZV ∈ Cr×r, so in view of (B.11)there is the natural identification

(B.12) Adλ = λ⊗ λ∗

that is quite commonly used.
If λ and σ are vector bundles of ranks r and s over the same space M ,

with projections πλ : λ −→ M and πσ : σ −→ M , a bundle homomorphism
φ : σ −→ λ is a continuous mapping between the topological spaces σ and λ
such that (i) the diagram

(B.13)

σ
φ−−−−→ λ

πσ

y πλ

y
U U

is commutative, so that φ(σp) ⊂ λp for the fibres over any point p ∈ M ; and
(ii) the restriction φ

∣∣σp : σp −→ λp of the mapping φ to the fibre σp is a linear
mapping for each point p ∈ M . In terms of the fibre coordinates tU for the
bundle λ and sU for the bundle σ over an open subset U ⊂ M the composite
mapping λU ◦ φ ◦ σ−1

U : U × Cs −→ U × Cr has the form

(B.14) (λU ◦ φ ◦ σ−1
U )(p, sU ) = (p, tU ) = (p, φU (p) sU )
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where φU (p) : Cs −→ Cr is a linear mapping for each point p ∈ U that is a con-
tinuous function of the point p ∈ U , called the local form of the homomorphism
φ. If p ∈ U ∩ V

(p, φV (p) sV ) =
(
λV ◦ φ ◦ σ−1

V

)(
p, sV

)
=
(
λV ◦ λ−1

U

)
◦
(
λU ◦ φ ◦ σ−1

U

)
◦
(
σU ◦ σ−1

V

)(
p, sV

)
=
(
λV ◦ λ−1

U

)
◦
(
λU ◦ φ ◦ σ−1

U

)(
p, σUV (p) sV

)
=
(
λV ◦ λ−1

U

)(
p, φU (p) · σUV (p) sV

)
=
(
p, λV U (p) · φU (p) · σUV (p) sV

)
;

consequently

(B.15) φV (p) = λV U (p) · φU (p) · σUV (p) if p ∈ U ∩ V.

The homomorphism φ is a C∞ homomorphism if λ and σ are C∞ bundles and
the mapping φ : σ −→ λ is a C∞ mapping, or equivalently if the local forms
φU (p) are C∞ functions; the homomorphism is a holomorphic homomorphism if
λ and σ are holomorphic bundles and the mapping φ : σ −→ λ is a holomorphic
mapping, or equivalently if the local forms φU (p) are holomorphic functions; and
the homomorphism φ is a flat homomorphism if σ and λ are flat bundles and the
local forms φU (p) are locally constant functions. It is evident from (B.15) that
if φ = {φU} and ψ = {ψU} are two homomorphisms from a vector bundle σ to
a vector bundle λ over M then aφ+ bψ = {aφU + bψU} is also a homomorphism
from σ to λ for any complex constants a, b ∈ C; the set of homomorphisms from
σ to λ thus naturally form a complex vector space, denoted by Hom(σ, λ). If the
bundles λ and σ are C∞ the set of C∞ homomorphisms form a vector subspace
HomE(σ, λ) ⊂ Hom(σ, λ), as do the further subspaces HomO(σ, λ) of holomor-
phic homomorphisms between holomorphic vector bundles and HomF (σ, λ) of
flat homomorphisms between flat vector bundles. When σ = λ vector bundle
homomorphisms also are called endomorphisms of that bundle. Since the com-
position of two endomorphisms is again an endomorphism it is evident that the
set of endomorphisms End(λ) = Hom(λ, λ) has the natural structure of a com-
plex algebra; of course the same is true for special classes of endomorphisms
such as EndE(λ), EndO(λ) and EndF (λ).

If φ : σ −→ λ is a bundle homomorphism, the rank of the linear mapping
φ|σp : σp −→ λp is called the rank of the homomorphism φ at the point p ∈M
and is denoted by rankp(φ); of course rankp(φ) = rankφU (p) in terms of the local
form φU of the homomorphism φ for any coordinate neighborhood U containing
the point p. The maximal rank of a homomorphism φ at all the points of M is
called simply the rank of the homomorphism φ and is denoted by rankφ; thus
rankφ = supp∈M rankpφ. The rank of a homomorphism φ can vary from point
to point on the set M , except in the case of a flat homomorphism of flat vector
bundles over a connected topological space. The condition that rankpφ ≤ n
amounts to the vanishing of all (n+ 1)× (n+ 1) subdeterminants of the matrix
φU (p) at the point p ∈ U ; so for a holomorphic homomorphism φ between two
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holomorphic vector bundles over a complex manifold M the set of points p ∈M
at which rankpφ ≤ t is either the entire complex manifold M or a holomorphic
subvariety of M , and the set of points p ∈ M at which rankpφ < rankφ is
a proper holomorphic subvariety of M . A homomorphism φ is said to be of
constant rank if rankpφ = rankφ at all points p ∈M . A bundle homomorphism
φ : σ −→ λ is injective (surjective) if its restriction φ

∣∣σp : σp −→ λp is an
injective linear mapping (a surjective linear mapping) over each point p ∈M ; it
is an isomorphism if it is both injective and surjective, or equivalently if it has
an inverse vector bundle homomorphism ψ : λ −→ σ. Isomorphic bundles of
course have the same rank; and a homomorphism between two vector bundles
λ and σ for which rankλ = rankσ = r is an isomorphism if and only if the
homomorphism is of constant rank r.

For many purposes it is not necessary to consider the local product structures
of a vector bundle over a space M for all open subsets of M , but suffices to
consider only those for a single open covering of M . If λ is a vector bundle of
rank r over a topological space M then for any sufficiently fine open covering
U = {Uα} of M there will be coordinate mappings

λα : π−1(Uα) −→ Uα × Cr

for the bundle λ; and in an intersection Uα ∩ Uβ as in (B.3) there are the
coordinate transition functions λαβ : Uα ∩ Uβ −→ Gl(r,C) for which

(λα ◦ λ−1
β )(p, t) = (p, λαβ(p)t).

The collection {Uα, λαβ} of the open subsets Uα ⊂M and coordinate transition
functions λαβ is called a coordinate bundle describing the vector bundle λ. The
fibre coordinates tα and tβ of a point of λ lying over a point p ∈ Uα ∩ Uβ ⊂M
are related by

(B.16) tα = λαβ(p) tβ for p ∈ Uα ∩ Uβ

as in (B.4). It is clear that the coordinate transition functions λαβ satisfy the
compatibility conditions

(B.17)

λαα(p) = I if p ∈ Uα,

λαβ(p) · λβα(p) = I if p ∈ Uα ∩ Uβ ,

λαβ(p) · λβγ(p) · λγα(p) = I if p ∈ Uα ∩ Uβ ∩ Uγ .

The sets Uα, Uβ , Uγ in (B.17) are not necessarily distinct; the second condition
follows from the first and third upon setting γ = α, but is included separately
in (B.17) for emphasis. Any collection of open subsets Uα ⊂M covering M and
of continuous mappings

(B.18) λαβ : Uα ∩ Uβ −→ Gl(r,C)
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satisfying the compatibility conditions (B.17) form a coordinate bundle describ-
ing a vector bundle over M . Indeed it is a straightforward matter to verify
that, in terms of the equivalence relation on pairs (pα, tα) ∈ Uα × Cr defined
by (pα, tα) ∼ (pβ , tβ) whenever pα = pβ = p ∈ M and tα = λαβ(p)tβ , which
is an equivalence relation in the usual sense as an immediate consequence of
(B.17), the quotient of the disjoint union of the products Uα×Cr by this equiv-
alence relation is a complex vector bundle described by the coordinate bundle
{Uα, λαβ}. This is a particularly common and useful way of describing com-
plex vector bundles; C∞, holomorphic or flat complex vector bundles can be
described in this way for mappings (B.18) that are C∞, holomorphic, or locally
constant. It should be noted that for there to be a description of a given vector
bundle λ by a coordinate bundle {Uα, λαβ} the covering U = {Uα} of the space
M must be sufficiently fine that the sets π−1(Uα) have the necessary product
structure. However if the sets Uα have the property that any vector bundle
of rank r over Uα is a product bundle then any vector bundle of rank r over
M can be described by a coordinate bundle {Uα, λαβ} for this covering; and
the corresponding assertion of course holds for C∞, holomorphic or flat vector
bundles.

Two coordinate bundles {Uα, λαβ} and {Vk, σkl} that describe the same
complex vector bundle over M are called equivalent coordinate bundles. If
the fibre coordinates are tα over Uα and tk over Vk equivalence means that in
addition to the relations (B.16) between the fibre coordinates tα and tβ over
intersections Uα ∩ Uβ and the corresponding relations tk = σkltl between the
fibre coordinates tk and tl over Vk ∩ Vl there are further relations of the form

(B.19) tα = µαk(p)tk and tk = µkα(p)tα for p ∈ Uα ∩ Vk

between the fibre coordinates tα over Uα and tk over Vk for some continuous
mappings

(B.20) µαk, µkα : Uα ∩ Vk −→ Gl(r,C).

Consequently in addition to the compatibility conditions (B.17) for the coor-
dinate bundle {Uα, λαβ} and the corresponding conditions for the coordinate
bundle {Vk, σkl} there are the further compatibility conditions

(B.21)
λαβ(p)µβm(p)µmα(p) = I for p ∈ Uα ∩ Uβ ∩ Vm,

µαl(p)σlm(p)µmα(p) = I for p ∈ Uα ∩ Vl ∩ Vm.

The corresponding conditions for other orders of the products of the coordinate
transition functions follow automatically from these relations; and for the special
cases in which β = α or l = k it follows that

(B.22) µαk(p)µkα(p) = I.

Conversely two coordinate bundles {Uα, λαβ} and {Vk, σkl} of the same rank
over M are equivalent coordinate bundles if there are mappings (B.20) satis-
fying (B.21), since in that case the collection of all the sets Uα and Vk and of



432 APPENDIX B. VECTOR BUNDLES

all the mappings λαβ , σkl, µαk µkα form a coordinate bundle over M describing
a vector bundle over M that is also described by the two separate coordinate
bundles {Uα, λαβ} and {Vk, σkl}. When it is useful or necessary to specify an
additional regularity condition for the vector bundle the coordinate bundles are
said to be C∞ equivalent or holomorphic equivalent or flat equivalent coordinate
bundles; for the equivalence of bundles with these further regularity conditions
the mappings λαβ , σkl, µαk also must satisfy the appropriate regularity condi-
tions. A somewhat simpler and more useful condition for the equivalence of two
coordinate bundles arises from the observation that if {Uα, λαβ} and {Vk, σkl}
are equivalent coordinate bundles and if p ∈ Uα ∩ Uβ ∩ Vk ∩ Vl then it fol-
lows from (B.21) that µkα(p)λαβ(p)µβl(p) = µkα(p) · µαk(p)µkβ(p) · µβk(p) =
µkβ(p)µβl(p) = σkl(p) and consequently

(B.23) σkl(p) = µkα(p)λαβ(p)µβl(p) for p ∈ Uα ∩ Uβ ∩ Vk ∩ Vl.

Conversely if {Uα, λαβ} and {Vk, σkl} are two coordinate bundles of the same
rank over M and there are mappings (B.20) satisfying (B.22) and (B.23) then
these two coordinate bundles are equivalent; indeed when k = l the equations
(B.23) reduce to the first equations in (B.21) while when α = β they reduce to
the second equations in (B.21), and consequently the two coordinate bundles
are equivalent. In particular a coordinate bundle {Uα, λαβ} describes a trivial
bundle if and only if it is equivalent to the coordinate bundle described by a
single coordinate neighborhood Vk = M ; and in that case condition (B.23) takes
the form

(B.24) λαβ(p) = µα(p)µβ(p)−1.

On the other hand for two coordinate bundles defined in terms of the same
covering ofM , so for two coordinate bundles {Uα, λαβ} and {Uα, σαβ}, condition
(B.23) for the case that Vk = Uα and Vl = Uβ takes the form

(B.25) σαβ(p) = µα(p)λαβ(p)µβ(p)−1 for p ∈ Uα ∩ Uβ

where

(B.26) µα = µαα : Uα −→ Gl(r,C);

thus this condition must be satisfied if {Uα, λαβ} and {Uα, σαβ} are equivalent
coordinate bundles. Conversely if this condition is satisfied then for any point
p ∈ Uα ∩ Uβ ∩ Uγ ∩ Uδ

σαβ(p) = µα(p)λαβ(p)µβ(p)−1

= µα(p)λαγ(p) · λγδ(p) · λδβ(p)µβ(p)−1

= µαγ(p)λγδ(p)µδβ(p)

where µαγ(p) = µα(p)λαγ(p) and µδβ(p) = λδβ(p)µβ(p)−1, and since this is just
(B.23) it follows that the two coordinate bundles are equivalent. Consequently
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(B.25) is a necessary and sufficient condition for the equivalence of the two
coordinate bundles.

If a vector bundle λ over M is described by a coordinate bundle {Uα, λαβ}
and if f ∈ Γ(M, C(λ)) then the mappings fα = fUα of the local form of the
cross-section f , as defined by (B.5) for the open subsets Uα, describe that cross-
section completely. It follows from (B.16) that these mappings satisfy

(B.27) fα(p) = λαβ(p)fβ(p)

for any point p ∈ Uα∩Uβ ; conversely any collection of mappings fα : Uα −→ Cr
satisfying (B.27) describe a cross-section f ∈ Γ(M, C(λ)). If vector bundles σ
and λ are described by coordinate bundles {Uα, σαβ} and {Uα, λαβ} in terms of
a the same covering {Uα} of M , the local form of a homomorphism φ : σ −→ λ
between these two vector bundles for the subsets Uα consist of linear mappings
φα(p) = φUα defined for points p ∈ Uα; and as in (B.15) these linear mappings
satisfy

(B.28) φα(p) = λαβ(p)φβ(p)σβα(p) for p ∈ Uα ∩ Uβ .

Conversely any collection of linear mappings φα satisfying these conditions de-
scribes a vector bundle homomorphism φ : σ −→ λ.

B.2 Basic Properties

Vector bundles of rank r > 1 are more complicated than line bundles in many
ways, so it may be useful to discuss their basic properties in a bit more detail
here. A cross-section φ = {φα} of a vector bundle λ described by a coordinate
bundle {Uα, λαβ} over a topological space M satisfies φα = λαβ φβ over any
intersection Uα ∩ Uβ , as in (B.27); and that can be viewed as the special case
of (B.28) in which σαβ(p) = 1 for all points p ∈ Uα ∩ Uβ , so φ can be identified
with a bundle homomorphism φ : 1 −→ λ from the trivial line bundle 1 to the
bundle λ. Conversely any such homomorphism can be viewed as a cross-section
of the bundle λ, so for instance there is the natural identification

(B.29) HomO(1, λ) = Γ(M,O(λ))

and correspondingly for the other regularity classes of bundles. Similarly a
collection of s cross-sections of the bundle λ can be viewed as a homomorphism
φ : Is −→ λ from the trivial vector bundle of rank s to the bundle λ and
conversely, so that there is the further natural identification

(B.30) HomO(Is, λ) = Γ(M,O(λ))s.

More generally for any bundle homomorphism φ : σ −→ λ equation (B.28) can
be rewritten

(B.31) φα(p) = λαβ(p) φβ(p) σαβ(p)−1;
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and in view of (B.11) this can be interpreted as the condition that the mappings
φα form a cross-section of the vector bundle λ⊗ σ∗ where σ∗ is the dual vector
bundle to σ; thus there is also the natural identification

(B.32) HomO(σ, λ) = Γ(M,O(λ⊗ σ∗)),

and correspondingly for the other regularity classes. In particular if σ = λ it
follows from (B.31) and (B.12) that

(B.33) EndO(λ) = HomO(λ, λ) = Γ(M,O(λ⊗ λ∗)) = Γ(M,O(Adλ)).

Incidentally it follows from (B.31) that

(B.34) tφα(p) = tσ−1
αβ

tφβ(p) tλαβ(p) = σ∗αβ
tφβ(p)λ∗βα(p),

hence that tφ ∈ Hom(λ∗, σ∗); thus taking the transpose of the coordinate func-
tions of a bundle homomorphism yields the natural isomorphism

(B.35) Hom(σ, λ) ∼= Hom(λ∗, σ∗),

so from (B.33) it follows that

(B.36) EndO(λ) = HomO(λ, λ) ∼= HomO(λ∗, λ∗) = EndO(λ∗).

If φ = {φα(p)} ∈ End(λ) is an endomorphism then

detφα(p) = det
(
λαβ(p)φβ(p)λαβ(p)−1

)
= detφβ(p)

in any intersection Uα ∩ Uβ , so these local functions describe a global function
on M that is called the determinant of the endomorphism φ and is denoted by
detφ. Similarly the traces trφα describe a global function on M that is called
the trace of the endomorphism φ and is denoted by trφ. If M is a compact
complex manifold and λ is a holomorphic vector bundle over M it follows from
the maximum modulus theorem that both detφ and trφ are complex constants;
and if detφ 6= 0 the endomorphism is an automorphism of the bundle λ, an
isomorphism from the holomorphic vector bundle λ to itself.

A subset σ ⊂ λ of a vector bundle λ of rank r over a topological space M
is called a subbundle if it has the natural structure of a vector bundle over M
under the restriction of the projection π : λ −→ M . Thus if the bundle λ is
locally the product λ|U = U ×Cr then a subbundle σ ⊂ λ is locally the product
σ|U = U × Cs for a subspace Cs ⊂ Cr; and after a suitable linear change of
coordinates in the fibres, it can be assumed that the subspace Cs consists of the
first s elements of the column vectors comprising the fibre Cr. If the bundle λ is
described by a coordinate bundle {Uα, λαβ} the coordinate transition functions
λαβ(p) must map the fibre Cs ⊂ Cr to itself, and consequently

(B.37) λαβ(p) =

(
σαβ(p) σαβ(p)xαβ(p)

0 ταβ(p)

)
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where σαβ(p) ∈ Gl(s,C) are the coordinate transition functions describing the
subbundle σ ⊂ λ and ταβ(p) ∈ Gl(r − s,C) are the coordinate transition func-
tions describing a vector bundle of rank r− s over M that is called the quotient
bundle and is denoted by τ = λ/σ. The remaining entries of the matrix λαβ(p)
of course can be written σαβ(p)xαβ(p) for some s × (r − s) matrices xαβ(p),
since the matrices σαβ(p) are nonsingular. Conversely whenever the coordinate
transition functions for a coordinate bundle λ can be put into the form (B.37)
where 0 < rank σαβ = s < r then the subset of λ consisting of the first s ele-
ments of the column vectors comprising the fibre Cr form a subbundle σ ⊂ λ.
Clearly rankλ = rankσ + rank τ when σ ⊂ λ and τ = λ/σ.

A vector bundle λ is said to be reducible if it contains a nontrivial subbundle,
and otherwise is said to be irreducible; thus λ is reducible precisely when its
coordinate transition functions can be put into the form (B.37) nontrivially. On
the other hand a vector bundle λ is said to be decomposable if it is a nontrivial
direct sum λ = σ ⊕ τ of two other vector bundles, and otherwise is said to be
indecomposable; thus λ is decomposable precisely when its coordinate transition
functions can be put into the form (B.37) in a nontrivial way and xαβ = 0. For
example the tensor product λ⊗2 of a vector bundle with itself is the direct sum
of the subbundle of symmetric tensors and the subbundle of skew-symmetric
tensors, hence λ⊗2 is decomposable. Reducibility and decomposability depend
of course upon the regularity category being considered; for instance a reducible
holomorphic vector bundle also is reducible when viewed as a C∞ vector bundle,
but the converse is not necessarily true since there may be a C∞ equivalence
of coordinate bundles exhibiting the reducibility of the vector bundle but not a
holomorphic equivalence. Of course any decomposable bundle is reducible, or
equivalently any irreducible bundle is indecomposable; but the converse is not
always true.

A collection of vector bundles and bundle homomorphisms

(B.38) 0 −→ σ
φ−→ λ

ψ−→ τ −→ 0

is called a short exact sequence of vector bundles if its restriction to the fibres
over any point is a short exact sequence of vector spaces and linear mappings.
For example if the coordinate bundle of λ has the form (B.37), so that σ is a
subbundle and τ = λ/σ is the quotient bundle, there is a short exact sequence
of vector bundles (B.38) in which φ and ψ are the bundle homomorphisms
described by the local forms

(B.39) φα(p) =

(
Is
0

)
, ψα(p) =

(
0 It,

)
where Is is the s× s identity matrix, It is the t× t identity matrix, r = rankλ,
s = rankσ, t = rank τ and r = s + t. The homomorphism φ is the inclusion
mapping of the subbundle σ ⊂ λ, and the homomorphism ψ is the projection
mapping to the quotient bundle τ . On the other hand for any short exact
sequence of vector bundles (B.38) the homomorphisms φ and ψ both must be
of maximal rank at each point, so by passing to equivalent coordinate bundles
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they can be represented by coordinate functions of the form (B.39); and in that
case the bundle λ is described by a coordinate bundle of the form (B.37), so σ is
a subbundle of λ and τ = λ/σ is the quotient bundle τ . Thus the existence of a
short exact sequence (B.38) is equivalent to the condition that σ is a subbundle
of λ with quotient bundle τ = λ/σ. Note that the dual of the exact sequence
(B.38) is the exact sequence

(B.40) 0 −→ τ∗
tψ−→ λ∗

tφ−→ σ∗ −→ 0

exhibiting τ∗ as a subbundle of λ∗ with σ∗ = λ∗/τ∗ as quotient bundle, as
follows from the observation that

(B.41) λ∗αβ =

(
σ∗αβ 0

−τ∗αβ txαβ τ∗αβ

)
.

This is an alternate form of the description (B.37) of a subbundle and quotient
bundle.

The short exact sequence of vector bundles (B.38) can be viewed not just
as expressing the reducibility of the vector bundle λ but also as describing λ as
an extension of the subbundle σ by the bundle τ , thus as a new vector bundle
formed by combining the bundles σ and τ . Two extensions λ1, λ2 of the bundle
σ by the bundle τ are called equivalent if there is a bundle homomorphism
φ : λ1 −→ λ2 such that

(B.42)

0 σ λ2 τ 0

0 σ λ1 τ 0

- - - -

- - - -

? ? ?
1 1φ

is a commutative diagram of short exact sequences, where 1 denotes the identity
homomorphism. It is easy to see from this diagram that φ is an isomorphism,
and that equivalence in this sense is an equivalence relation in the usual sense.
In particular when λ = σ ⊕ τ the extension is said to be the trivial extension
of vector bundles. The set of equivalence classes of extensions of a continu-
ous vector bundle σ by a continuous vector bundle τ is denoted by ExtC(σ, τ);
correspondingly the sets of equivalence classes of extensions of C∞, holomor-
phic, or flat vector bundes are denoted by ExtE(σ, τ), ExtO(σ, τ) or ExtF (σ, τ).
These sets have the natural structures of complex vector spaces arising from the
following explicit descriptions.

Theorem B.1 For any vector bundles σ and τ on a topological space M there
is a canonical identification

ExtC(σ, τ) = H1(M, C(σ ⊗ τ∗)).

If M is a C∞ manifold and the bundles are C∞ bundles there is in addition the
canonical identification

ExtE(σ, τ) = H1(M, E(σ ⊗ τ∗));
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if the manifold M and the bundles are holomorphic there is the further canonical
identification

ExtO(σ, τ) = H1(M,O(σ ⊗ τ∗));

and if the bundles are flat there is the canonical identification

ExtF (σ, τ) = H1(M,F(σ ⊗ τ∗)).

Proof: The short exact sequence of vector bundles (B.38) expresses the condi-
tion that the vector bundle λ can be described by a coordinate bundle of the
form (B.37), in which σαβ and ταβ are coordinate bundles describing the vector
bundles σ and τ and the extension itself is described by the matrices xαβ . As
before let r = rankλ, s = rankσ, and t = rank τ , where r = s+ t. In order that
the matrices (B.37) satisfy the consistency conditions (B.17) to be a coordinate
bundle the matrices xαβ must be such that xαα = 0 and(

σαβ σαβxαβ
0 ταβ

)(
σβγ σβγxβγ
0 τβγ

)
=

(
σαγ σαγxαγ
0 ταγ

)
in any intersection Uα ∩ Uβ ∩ Uγ , which is easily seen to be just the condition
that σαβσβγxβγ + σαβxαβτβγ = σαγxαγ , or alternatively that

(B.43) xαγ = σγβxαβτβγ + xβγ ;

and that is just the condition that the matrices xαβ describe a one-cocycle

(B.44) xαβ ∈ Z1(U, C(σ ⊗ τ∗))

of the covering U = {Uα} with coefficients in the sheaf of germs of continuous
cross-sections of the vector bundle σ ⊗ τ∗, the condition for the vector bundle
σ⊗ τ∗ paralleling the corresponding condition for line bundles as in (1.45. The
same considerations of course apply to extensions of more restrictive regularity
classes of vector bundles; for instance extensions of a holomorphic vector bundle
σ by a holomorphic vector bundle τ are holomorphic vector bundles λ described
by cocycles in the group Z1(U,O(σ ⊗ τ∗)). The extensions λ1, λ2 described by
two cocycles x1αβ , x2αβ ∈ Z1(U, C(σ ⊗ τ∗)) are equivalent if and only if there
is a bundle homomorphism φ : λ1 −→ λ2 leading to a commutative diagram of
exact sequences of the form (B.42). The homomorphism φ can be described in
a suitable refinement of the covering of M by coordinate functions φα, which
must be of the form

(B.45) φα =

(
Is fα
0 It

)
for some matrices fα, since φ induces the identity mapping on the subbundle
σ and the quotient bundle τ . The condition that these coordinate functions
describe a bundle homomorphism φ : λ1 −→ λ2 is (B.28), which is equivalent to(

Is fα
0 It

)(
σαβ σαβ x1αβ

0 ταβ

)
=

(
σαβ σαβ x2αβ

0 ταβ

)(
Is fβ
0 It

)
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in any intersection Uα∩Uβ ; and that amounts to the condition that the matrices
xαβ satisfy σαβx1αβ + fαταβ = σαβfβ + σαβx2αβ or equivalently

(B.46) x1αβ − x2αβ = fβ − σβαfαταβ ,

which is the condition that the cocycle x2αβ − x1αβ is the coboundary of the
cochain fα ∈ C0(U, C(σ⊗ τ∗)), again the condition for the vector bundle σ⊗ τ∗
paralleling the corresponding condition for line bundles as in (1.43). Thus the
set of equivalence classes of extensions Ext(σ, τ) is in one-to-one correspondence
with the cohomology classes in H1(M, C(σ ⊗ τ∗)) represented by the cocycles
xαβ ∈ Z1(U, C(σ ⊗ τ∗)), and similary for extensions of the more restrictive
regularity classes. That suffices to conclude the proof.

Corollary B.2 For any vector bundles σ, τ on a topological manifold M

ExtC(σ, τ) = 0;

and if the bundles and the manifold are C∞then

ExtE(σ, τ) = 0.

Proof: Since the sheaves C(σ ⊗ τ∗) and E(σ ⊗ τ∗) are fine sheaves

H1(M, C(σ ⊗ τ∗)) = H1(M, E(σ ⊗ τ∗)) = 0,

as in the discussion of the cohomology groups of fine sheaves on page 456 of
Appendix C.2; the corollary is an immediate consequence of this observation
and the preceding theorem.

For emphasis, and for convenience of reference, the preceding corollary can
be restated equivalently as follows.

Corollary B.3 Reducibility and decomposability are equivalent properties for
continuous or C∞ vector bundles.

Proof: The preceding corollary shows that any reducible continuous or C∞
vector bundle is decomposable, while as noted earlier the converse always holds;
that suffices for the proof.

It should be noted particularly though that distinct extension classes in
ExtO(σ, τ) can lead to analytically equivalent vector bundles. The simplest
instance of this, which arises sufficiently often to merit a separate statement for
purposes of reference, is the following.

Lemma B.4 Two nontrivial extension classes x, y ∈ ExtO(σ, τ) describe an-
alytically equivalent holomorphic vector bundles whenever y = cx for some
nonzero complex constant c ∈ C.



B.2. BASIC PROPERTIES 439

Proof: This is an immediate consequence of the identity(
cI 0
0 I

)(
σαβ σαβ xαβ

0 ταβ

)(
c−1I 0

0 I

)
=

(
σαβ σαβ c xαβ

0 ταβ

)
,

which suffices for a proof.

It is not the case that a reducible holomorphic or flat vector bundle is nec-
essarily decomposable, as will become evident as the discussion continues. It
is particularly useful to have available some simple tests to see whether a par-
ticular extension of holomorphic vector bundles is trivial or not. Note that if
the short exact sequence (B.38) is the trivial extension, so that λ = σ ⊕ τ ,
there is also the bundle homomorphism θ : τ −→ λ described by the coordinate
functions

(B.47) θα(p) =

(
0
It

)
;

and the composition ψθ : τ −→ τ is the identity homomorphism. A short exact
sequence (B.38) is said to split if there is a homomorphism θ : τ −→ λ such that
ψθ = I is the identity homomorphism; thus if (B.38) is a trivial extension then
the short exact sequence splits.

Theorem B.5 A short exact sequence of holomorphic vector bundles

(B.48) 0 −→ σ
φ−→ λ

ψ−→ τ −→ 0

splits if and only if λ = σ ⊕ τ .

Proof: It has been noted already that for the trivial extension λ = σ ⊕ τ the
short exact sequence (B.48) splits. Conversely suppose that the short exact
sequence (B.48) splits, so that there is a bundle homomorphism θ : τ −→ λ
for which the composition ψθ : τ −→ τ is the identity homomorphism, and
let r = rankλ, s = rankσ, and t = rank τ so that r = s + t. When the
vector bundle λ is described by a coordinate bundle λαβ of the form (B.37)
the coordinate functions of the bundle homomorphisms φ and ψ have the form
(B.39); and since ψθ = It the coordinate functions of the homomorphism θ must
have the form

θα =

(
θ′α
It

)
where θ′α is an s× t matrix. These matrices satisfy(

θ′α
It

)
ταβ =

(
σαβ σαβxαβ

0 ταβ

)(
θ′β
It

)
,

so θ′αταβ = σαβθ
′
β + σαβxαβ or equivalently

(B.49) xαβ = σβαθ
′
αταβ − θ′β .
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That is just the condition that the cocycle xαβ ∈ Z2(M,O(σ ⊗ τ∗)) is the
coboundary of the cochain θ′α ∈ C1(M,O(σ⊗ τ∗)) as in (B.46), hence that this
cocycle represents the trivial cohomology class in H2(M,O(σ ⊗ τ∗)); and by
Theorem B.1 that is just the condition that the extension is trivial, hence that
λ = σ ⊕ τ . That concludes the proof.

There is another sometimes useful interpretation of the cohomology class
x ∈ H1(M,O(σ ⊗ τ∗)) describing an extension of holomorphic vector bundles.
Associated to the short exact sequence of holomorphic vector bundles (B.38)
describing this extension is the exact sequence

(B.50) 0 −→ O(σ)
φ−→ O(λ)

ψ−→ O(τ) −→ 0

of sheaves of germs of holomorphic cross-sections of these bundles, since over
a sufficiently small coordinate neighborhood the bundle λ is the direct sum of
the bundles σ and τ . The exact cohomology sequence associated to this exact
sequence of sheaves includes the segment

(B.51)

0 −→ Γ(M,O(σ))
φ−→ Γ(M,O(λ))

ψ−→ Γ(M,O(τ))
δ−→ H1(M,O(σ)).

Theorem B.6 If λ is a holomorphic vector bundle over a complex manifold M
and λ is the extension of a vector bundle σ by a vector bundle τ described by a
cohomology class x ∈ Ext(σ, τ) = H1(M,O(σ ⊗ τ∗)) then multiplication by this
cohomology class x yields a homomorphism

(B.52) x : Γ(M,O(τ)) −→ H1(M,O(σ))

that is precisely the coboundary mapping δ in the exact cohomology sequence
(B.51); so if K ⊂ Γ(M,O(τ)) is the kernel of the homomorphism (B.52) then

(B.53) γ(λ) = γ(σ) + dimK.

Proof: Suppose that the vector bundle λ is described by a coordinate bundle of
the form (B.37) for a covering U of the surface M . For any holomorphic cross-
section f2α ∈ Γ(M,O(τ)) of the vector bundle τ it follows from the cocycle
condition (B.43) that

xαγf2γ = σγβxαβf2β + xβγf2γ ,

which is just the condition that the products xαβf2β describe a cocycle in
Z1(U,O(σ)); thus multiplication by the matrices xαβ determines a homomor-
phism (B.52). A cross-section f2α ∈ Γ(M,O(τ)) is in the kernel K of this
homomorphism if and only if the cocycle xαβf2β is a coboundary, so if and
only if after a refinement of the covering if necessary there will be holomorphic
functions f1α in the open sets of the covering U such that

σβαf1α − f1β = xαβf2β
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as in (B.46). This condition, together with the condition that the functions f2α

are a cross-section of the bundle τ , are easily seen to amount to the condition
that (

f1α

f2α

)
=

(
σαβ σαβxαβ

0 ταβ

)(
f1β

f2β

)
,

which in turn is just the condition that

fα =

(
f1α

f2α

)
∈ Γ(Uα,O(λ)).

Thus a cross-section f2α ∈ Γ(M,O(τ)) is in the kernel K if and only if it is
the image of a cross-section fα ∈ Γ(Uα,O(λ)) under the inclusion mapping φ;
that is precisely the condition satisfied by the coboundary mapping in the exact
cohomology sequence (B.51), which identifies the homomorphism (B.52) with
that coboundary mapping. The sequence (B.51) yields the exact sequence

0 −→ Γ(M,O(σ))
φ−→ Γ(M,O(λ))

ψ−→ K −→ 0,

from which it follows immediately that γ(λ) = γ(σ) + dimK. That suffices to
conclude the proof.

For some purposes the particular extensions involved in building up a vector
bundle from bundles of smaller ranks are not relevant; and for these purposes it
is convenient to introduce another construction. For any complex manifold M
let V (M) be the free abelian group generated by all holomorphic vector bundles
over M , and let V0(M) ⊂ V (M) be the subgroup generated by the expressions
λ− σ − τ whenever λ, σ, τ are holomorphic vector bundles for which there is a
short exact sequence

(B.54) 0 −→ σ −→ λ −→ τ −→ 0.

The quotient group V (M)/V0(M) = K(M) is called the Grothendieck group
of holomorphic vector bundles of the manifold M . For any exact sequence of
holomorphic vector bundles (B.54) it is evident that detλ = (detσ)(det τ); thus
if the operation of taking the determinant line bundle of a holomorphic vector
bundle is extended to a homomorphism det : V (M) −→ H1(M,O∗) by setting

det(λ1 + · · ·+ λn) = (detλ1) · · · (detλn)

then this homomorphism is trivial on the subgroup V0(M) ⊂ V (M) and conse-
quently induces a homomorphism

det : K(M) −→ H1(M,O∗).

It is thus possible to define the determinant line bundle of an arbitrary element
in the Grothendieck group K(M). At least some other constructions for vec-
tor bundles also can be extended to the Grothendieck group; but the further
discussion discussion of this topic will be deferred.
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If φ : σ −→ λ is a homomorphism of vector bundles over a manifold M the
kernel of φ is the union of the kernels of the linear mappings φp : σp −→ λp
on the fibres of these bundles over all the points p ∈ M . The kernel of φ is a
well defined subset of the vector bundle σ and is a linear subspace of each fibre
of σ; but if the rank of the homomorphism φ is not constant the dimensions of
these linear subspaces may vary with the point p ∈M , so the kernel cannot be
a subbundle of σ. The image of φ correspondingly is the subset φ(σ) ⊂ λ, which
is a well defined subset of the vector bundle λ and is a linear subspace of each
fibre of λ; but again if the rank of the homomorphism φ is not constant then
this subset too may not be a subbundle of λ.

Lemma B.7 If F : U −→ Cr×s is a continuous, C∞, holomorphic, or locally
constant mapping from an open neighborhood U ⊂ Cn of the origin in the space
Cn to the space of r × s complex matrices, and if rankF (z) = t at all points
z ∈ U , then in an open subneighborhood V ⊂ U of the origin there are mappings
A : V −→ Gl(r,C) and B : V −→ Gl(s,C) such that

A(z)F (z)B(z) =

(
It 0
0 0

)
at all points z ∈ V , where It is the t × t identity matrix; and these mappings
have the same regularity properties as the mapping F .

Proof: Multiplying the matrix F (z) on the right by a matrix B(z) has the
effect of replacing the columns of the matrix F (z) by linear combinations of
those columns with coefficients from the matrix B. By multiplying on the right
by a nonsingular constant matrix it can be arranged that the first t columns of
the matrix F (z) are of rank t at the origin; and they remain of rank t at all points
of a sufficiently small open neighborhood V of the origin. By then multiplying
on the right by another nonsingular matrix, which has the effect of subtracting
the appropriate linear combinations of the first t columns from the last s − t
columns, it can be arranged that the last s − t columns of the matrix F (z)
vanish; the coefficients of these linear combinations are determined explicitly by
Cramer’s rule, so are continuous, C∞, holomorphic or locally constant according
to the regularity of the entries of the matrix F (z). Multiplying the matrix F (z)
on the left by a matrix A(z) has the corresponding effect on the rows of F (z),
so it can be arranged similarly that the last r − t rows of the matrix F (z) also
vanish. The leading t × t block of the resulting matrix, consisting of the only
nonzero terms in this matrix, then is of rank t throughout V ; so by multiplying
on the left or right by another nonsingular matrix that block can be reduced to
the identity matrix of rank t as asserted, which suffices to conclude the proof.

Theorem B.8 If φ : σ −→ λ is a homomorphism of constant rank t between
two vector bundles over a manifold M there is a commutative diagram of short
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exact sequences of vector bundles and bundle homomorphisms of the form

(B.55)

0 −−−−→ λ1
ρ1−−−−→ λ

ρ2−−−−→ λ2 −−−−→ 0xθ xφ
0 ←−−−− σ1

ρ∗1←−−−− σ
ρ∗2←−−−− σ2 ←−−−− 0

in which rankλ1 = rankσ1 = t and the bundle homomorphism θ is an iso-
morphism. The bundles and bundle homomorphisms in this diagram are C∞,
holomorphic, or flat if the initial bundles have those regularity properties.

Proof: If the bundles σ and λ are described by coordinate bundles {Uα, σαβ}
and {Uα, λαβ} the local form of the homomorphism φ is described by the matrix
functions φα : Uα −→ Cr×s such that φα(p)σαβ(p) = λαβ(p)φβ(p) at all points
p ∈ Uα ∩ Uβ , as in (B.28), and the matrices φα are all of constant rank t.
It follows from the preceding lemma that after passing to a refinement of the
covering if necessary there are mappings Aα : Uα −→ Gl(r,C) and Bα : Uα −→
Gl(s,C) such that Aα(p)φα(p)Bα(p) = ψα(p) for all points p ∈ Uα where

ψα(p) =

(
It 0
0 0

)
,

in which It is the identity matrix of rank t; and the mappings Aα and Bα have
the same regularity as the mapping φα and the bundles λ and σ. Then

Aα(p)φα(p)Bα(p)Bα(p)−1σαβ(p)Bβ(p) = Aα(p)λαβ(p)Aβ(p)−1Aβ(p)φβ(p)Bβ(p)

or equivalently
ψα(p)σ̃αβ(p) = λ̃αβ(p)ψβ(p)

for all points p ∈ Uα ∩ Uβ , where σ̃αβ(p) = Bα(p)−1σαβ(p)Bβ(p) and λ̃αβ(p) =
Aα(p)λαβ(p)Aβ(p)−1; thus the vector bundles σ and λ can be described by the

coordinate bundles σ̃αβ and λ̃αβ , and the homomorphism φ by the coordinate

functions ψα. When the coordinate bundles σ̃αβ and λ̃αβ are decomposed into
matrix blocks corresponding to the decomposition of the matrices ψα then(

I 0
0 0

)(
σ11αβ σ12αβ

σ21αβ σ22αβ

)
=

(
λ11αβ λ12αβ

λ21αβ λ22αβ

)(
I 0
0 0

)
,

and consequently

(B.56) σ11αβ = λ11αβ and σ12αβ = λ21αβ0,

so the coordinate transition functions for the two bundles have the form

σ̃αβ =

(
σ11αβ 0
σ21αβ σ22αβ

)
, λ̃αβ =

(
λ11αβ λ12αβ

0 λ22αβ

)
.

Thus the vector bundles σ and λ are reducible, and there are short exact se-
quences

0 −→ σ2 −→ σ−→σ1 −→ 0
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0 −→ λ1 −→ λ −→ λ2 −→ 0

in which the vector bundles σi are described by the coordinate bundles σiiαβ
and the vector bundles λi are described by the coordinate bundles λiiαβ . More-
over the bundle homomorphism θ : σ1 −→ λ1 defined by the identity mapping
is an isomorphism and is just the homomorphism φ applied to the quotient
bundle σ1 ⊂ σ with image contained in the subbundle λ1 ⊂ λ; that yields the
commutative diagram of the theorem, and suffices for the proof.

The mapping θ : σ1 −→ λ1 in the preceding theorem is a homomorphism
between two vector bundles of the same rank, and consequently its determinant
is a well defined cross-section det θ ∈ Γ(M,O

(
(detλ1)(detσ1)−1

)
; this cross-

section is called the determinant of the initial bundle homomorphism φ : σ −→
λ, and as such is denoted by detφ. It is worth pointing out explicitly that if
rankσ = rankφ in the commutative diagram (B.55) then σ2 = 0 and the second
line reduces to the assertion that σ1

∼= σ; correspondingly if rankλ = rankφ
then λ2 = 0 and the first line reduces to the assertion that λ1

∼= λ. Of course if
rankσ = rankλ = rankφ the theorem is rather vacuous. The theorem is most
useful in the following form.

Corollary B.9 If φ : σ −→ λ is a homomorphism of constant rank t between
vector bundles σ λ over a manifold M , where rank σ = s and rank λ = r, there
is an exact sequence of vector bundles

(B.57) 0 −→ σ2
ρ∗2−→ σ

φ−→ λ
ρ2−→ λ2 −→ 0

over M , where rank σ2 = s − t and rank λ2 = r − t. The bundles and bundle
homomorphisms are C∞, holomorphic, or flat if the initial bundles and bundle
homomorphisms have those regularity properties.

Proof: This follows from the preceding theorem by a chase through the diagram
(B.55). From the top short exact sequence it follows that rank λ2 = rank λ−
rank λ1 = r− t, and from the bottom exact sequence it follows that rank σ2 =
rank σ − rank σ1 = s− t. From these two exact sequences it also follows that
ρ∗2 is injective and ρ2 is surjective. From the commutativity of (B.55) it follows
that φ · ρ∗2 = ρ1 · θ · ρ∗1 · ρ∗2 = 0 since ρ∗1 · ρ∗2 = 0. If s ∈ σ and φ(s) = 0 then
from the commutativity of (B.55) again 0 = φ(s) = ρ1 · θ · ρ∗1(s); since θ and
ρ1 are injective necessarily ρ∗1(s) = 0 and hence s = ρ∗2(s2) for some s2 ∈ σ2,
so (B.57) is exact at the bundle σ. From the commutativity of (B.55) yet again
ρ2 · φ = ρ2 · ρ1 · θ · ρ∗1 = 0 since ρ2 · ρ1 = 0. Finally if t ∈ λ and ρ2(t) = 0 then
t = ρ1(t1) for some t1 ∈ λ1; since θ and ρ∗1 are surjective necessarily t1 = θ ·ρ∗1(s)
for some s ∈ σ and t = ρ1 · θ · ρ∗1(s) = φ(s), so (B.57) is exact at the bundle λ,
and that concludes the proof.

Corollary B.10 The kernel and image of a continuous, C∞, holomorphic or
flat vector bundle homomorphism of constant rank are both subbundles of the
same regularity class.



B.2. BASIC PROPERTIES 445

Proof: In the exact sequence (B.57) of the preceding corollary the kernel of the
homomorphism φ : σ −→ λ is the vector bundle σ2, so the kernel of a bundle
homomorphism of constant rank is a subbundle; and the image of φ is the kernel
of ρ2, so it is a subbundle by the first part of the proof of the present corollary,
and that concludes the proof.
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Appendix C

Sheaves

C.1 General Properties

Sheaves1 were introduced into complex analysis in the early 1950’s, in part
to provide a tool for passing systematically from local to global results and in
part to handle more readily some of the rather complicated semi-local properties
of holomorphic functions of several variables. A sheaf of abelian groups over a
topological space M is a topological space S with a mapping π : S −→M such
that: (i) π is a surjective local homeomorphism; (ii) for each point p ∈ M the
inverse image π−1(p) ⊂ S has the structure of an abelian group; and (iii) the
group operations are continuous in the topology of S. To clarify condition (iii),
the product S × S of a sheaf S with itself can be given the product topology,
and the subset S ×π S consisting of those points (s1, s2) such that π(s1) =
π(s2) inherits a topology as a subset of S × S; the mapping that takes a point
(s1, s2) ∈ S×πS to the point s1−s2 ∈ S is a well defined mapping S×πS −→ S
between two topological spaces, and (iii) is just the condition that this mapping
is continuous. There are of course analogous definitions for sheaves of rings
or of other algebraic structures. It is convenient to speak of a sheaf without
specifying the algebraic structure when the particular structure is not relevant,
and to speak of a sheaf of abelian groups or of another special algebraic structure
when that structure is of particular significance. The space M is called the
base space of the sheaf, the mapping π is called the projection, and the subset
π−1(p) = Sp is called the stalk over the point p ∈M . The simplest example of a
sheaf of groups is a product sheaf or trivial sheaf over M , the Cartesian product
S = M ×G of the space M and a discrete group G with the product topology

1The role of sheaves in complex analysis is discussed in G-III and in the books by H.
Grauert and R. Remmert, Theorie der Steinsche Räumen, (Springer, 1977), by H. Grauert
and K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlcher, (Springer,
1974), by L. and B. Kaup, Holomorphic Functions of Several Variables, (deGruyter, 1983),
by S. G. Krantz, Function Theory of Several Complex Variables, (Wadsworth & Brooks/Cole,
1992), and by R. Narasimhan, Introduction to the Theory of Analytic Spaces, (Springer,
1966), among other places. A definitive treatment of sheaves in general is in the book by R.
Godement, Topologie algèbrique et thèorie des faisceaux, (Hermann, 1958).

447
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and the projection mapping π : M × G −→ M to the first factor; the product
sheaf with the group G usually is denoted just by G, and when G is the zero
group it is called the zero sheaf and is denoted by 0. If N ⊂ M the restriction
S
∣∣N of a sheaf S of groups over M to the subset N is clearly a sheaf of groups

over N ; in particular the restriction of S to a point p ∈ M is just the stalk
S
∣∣p = Sp of the sheaf S over p. A section of a sheaf S over a subset U ⊂ M

of its base M is a continuous mapping s : U −→ S such that the composition
π ◦ s : U −→ U is the identity mapping; the set of all sections of S over U
is denoted by Γ(U,S). By condition (i) in the definition of a sheaf it follows
that for any point s ∈ S there is an open neighborhood V of s in S such that
the restriction π|V of the projection to that set is a homeomorphism between
V ⊂ S and an open subset U ⊂ M ; the inverse of the restriction π|V then is a
section of the sheaf S over U , so there is a section of the sheaf S through any
point s ∈ S and the images of sections over the open subsets of M form a basis
for the topology of S. Any two sections through a point s ∈ S coincide locally
with the inverse of the projection mapping π, so any two sections of the sheaf
S that agree at a point p ∈ M necessarily agree in a full open neighborhood
of p in M . By condition (iii) in the definition of a sheaf it follows that for
any sections s1, s2 ∈ Γ(U,S) the mapping that associates to a point p ∈ U the
difference s1(p) − s2(p) ∈ Sp also is a section; thus the set Γ(U,S) of sections
of S over any subset U ⊂M has the natural structure of an abelian group, and
the corresponding result holds for sheaves of other algebraic structures.

A sheaf over a topological space M is described fully by the collection of
its sections over the open subsets of M ; indeed that is one of the standard
ways in which to construct a sheaf. To make this more precise, a presheaf
{S

U
, ρV,U} of abelian groups over a topological space M is a collection (i) of

abelian groups S
U

indexed by the open subsets U ⊂ M , with S∅ = 0, and
(ii) of group homomorphisms ρ

V,U
: S

U
−→ S

V
indexed by pairs V ⊂ U of

open subsets of M such that ρ
U,U

is the identity mapping and ρ
W,V

ρ
V,U

= ρ
W,U

whenever W ⊂ V ⊂ U . There are analogous definitions for presheaves of other
algebraic structures; and as in the case of sheaves it is convenient to speak of a
presheaf without specifying the algebraic structure when the particular structure
is not relevant, and to speak of a presheaf of abelian groups or of another special
algebraic structure when that structure is of particular significance. The set of
sections S

U
= Γ(U,S) of a sheaf S over the open subsets U ⊂ M with the

natural restrictions ρ
V,U

of sections over a set U to a subset V ⊂ U clearly
form a presheaf, which is called the associated presheaf of the sheaf. Conversely
to any presheaf {S

U
, ρ

V,U
} over M there is an associated sheaf constructed as

follows. For any point p ∈M let Up be the collection of all open subsets U ⊂M
that contain p and let S∗p be the disjoint union of the sets SU for all U ∈ Up.
Two elements s

U
∈ S

U
and s

V
∈ S

V
are considered to be equivalent if there is

a subset W ⊂ M such that p ∈ W ⊂ U ∩ V and ρ
W,U

(s
U

) = ρ
W,V

(s
V

); it is
easy to see that this is an equivalence relation in the usual sense. The set Sp of
equivalence classes of elements in S∗p is a well defined group, known as the direct
limit of the partially ordered collection of groups SU . Let S =

⋃
p∈M Sp be the

union of these groups and π : S −→ M be the mapping for which π(Sp) = p;
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and introduce on S the topology for which the images in S of the elements
s
U
∈ S

U
for all the open subsets U ⊂ M are a basis for the open subsets of

S. It is straightforward to verify that S is a sheaf over M with the projection
π and with the same algebraic structure as that of the presheaf. It may be
the case that the sheaf associated to a nontrivial presheaf is the zero sheaf,
as for instance when all the homomorphisms ρ

V,U
are the zero mappings; so

some conditions must be imposed on presheaves to ensure that they determine
interesting sheaves. A presheaf {S

U
, ρ

V U
} over M is called a complete presheaf

provided that whenever an open subset U ⊂ M is covered by open subsets
Uα ⊂M (i) if ρ

Uα,U
(s) = 0 for an element s ∈ S

U
and all subsets Uα then s = 0;

and (ii) if ρ
Uα∩Uβ,Uα

(sα) = ρ
Uα∩Uβ,Uβ

(sβ) for some elements sα ∈ SUα and all

pairs of subsets Uα, Uβ then there is an element s ∈ S
U

such that sα = ρ
Uα,U

(s)
for all Uα. It is evident that the presheaf of sections of a sheaf is a complete
presheaf; and it is straightforward to verify that a complete presheaf can be
identified naturally with the presheaf of sections of its associated sheaf.

As examples of particular interest here, the collection of rings OU of holo-
morphic functions in the open subsets U ⊂ Cn clearly form a complete presheaf
of rings over Cn; the associated sheaf, denoted by O, is called the sheaf of
germs of holomorphic functions over Cn, and there is the natural identification
OU ∼= Γ(U,O) for any open subset U ⊂ Cn. Similarly the collection of fields
MU of meromorphic functions is a complete presheaf of fields over Cn; the
associated sheaf, denoted by M, is called the sheaf of germs of meromorphic
functions over Cn, and there is the natural identification MU

∼= Γ(U,M) for
any open subset U ⊂ Cn. The sheaf C of germs of continuous functions and the
sheaf E of germs of C∞ functions are sheaves of rings defined correspondingly,
and the sheaves E(p,q) of germs of C∞ complex valued differential forms of type
(p, q) are sheaves of abelian groups. All of these sheaves are defined purely lo-
cally, so can be considered as sheaves over arbitrary complex manifolds as well
as over subsets of Cn.

A subsheaf of a sheaf S of abelian groups over a topological space M is
an open subset R ⊂ S such that Rp = R ∩ Sp is a subgroup of Sp for each
point p ∈ M ; a subsheaf of a sheaf of abelian groups over M clearly is itself
a sheaf of abelian groups over M , and subsheaves of sheaves of other algebraic
structures are defined correspondingly. If R is a subsheaf of a sheaf S of abelian
groups over M the quotient groups Sp/Rp are well defined for each point p ∈M
and the union T =

⋃
p∈M Sp/Rp with the natural quotient topology is another

sheaf of abelian groups over M called the quotient sheaf and denoted by S/R.
A homomorphism between two sheaves R and S of abelian groups over the same
base space M is a continuous mapping φ : R −→ S that commutes with the
projections of the two sheaves, so that φ(Rp) ⊂ Sp for each point p ∈ M , and
that restricts to group homomorphisms φ|Rp : Rp −→ Sp between the stalks of
the two sheaves at all points p ∈ M . It is a straightforward matter to verify
that a homomorphism between the two sheaves is always an open mapping. The
kernel of a homomorphism φ : R −→ S between two sheaves of abelian groups
is the union of the kernels of the homomorphisms φ : Rp −→ Sp between the
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stalks of the sheaves, and easily is seen to be a subsheaf of the sheaf R. The
image of the homomorphism φ is the union of the images of the homomorphisms
φ : Rp −→ Sp between the stalks of the sheaves, and also easily is seen to be a
subsheaf of the sheaf S since a sheaf homomorphism is an open mapping. An
isomorphism between two sheaves of abelian groups is a homomorphism with
an inverse that is also a homomorphism; a homomorphism φ : R −→ S is an
isomorphism if and only if it is injective, has trivial kernel, and is surjective,
has the full sheaf S as its image. The inclusion mapping ι : R −→ S of a
subsheaf R ⊂ S of abelian groups into the sheaf S is injective, and the natural
homomorphism from the sheaf S to the quotient sheaf S/R is surjective. A
sequence

φn−2−→ Sn−1
φn−1−→ Sn

φn−→ Sn+1
φn+1−→

of sheaves of abelian groups and homomorphisms is an exact sequence if for
each n the image of φn−1 is precisely the kernel of φn; a short exact sequence of
sheaves of abelian groups is an exact sequence of the form

(C.1) 0 −→ R φ−→ S ψ−→ T −→ 0

in which 0 are zero sheaves. That (C.1) is an exact sequence means that φ is
injective, that its image φ(R) ⊂ S is the kernel of the homomorphism ψ, and
that ψ is surjective; or equivalently it just means that φ is an imbedding of R
as a subsheaf of S and ψ identifies the quotient sheaf S/R with the image sheaf
T . It is easy to see that if (C.1) is a short exact sequence of sheaves of abelian
groups over a topological space M then the induced sequence of sections

(C.2) 0 −→ Γ(M,R)
φ−→ Γ(M,S)

ψ−→ Γ(M, T )

is exact; but the homomorphism ψ on sections is not necessarily surjective. For
example if e is the mapping that sends the germ of a holomorphic function f(z)
to the germ of the nowhere vanishing homomorphic function exp 2πi f(z) there
is the exact sequence of sheaves

0 −→ Z −→ O e−→ O∗ −→ 0

over Cn; for any open subset M ⊂ Cn the induced sequence of sections

0 −→ Γ(M,Z) −→ Γ(M,O)
e−→ Γ(M,O∗)

is exact, but the mapping e on sections is not necessarily surjective when M
is not simply connected. A measure of the extent to which such a sequence of
sections fails to be exact is provided by the cohomology theory of sheaves.
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C.2 Sheaf Cohomology

Although there are more general approaches to the cohomology theory of
sheaves, for present purposes it is most convenient to consider skew-symmetric
Čech cohomology. For any covering U of a topological space M by open subsets
Uα ⊂M let Up be the collection of all ordered (p+1)-tuples σ = (Uα0

, . . . , Uαp)
of sets of U with nonempty intersection |σ| = Uα0

∩ · · · ∩ Uαp 6= ∅. A (skew-
symmetric) p-cochain s of the covering U with coefficients in a sheaf of abelian
groups S over M is a mapping that associates to each (p + 1)-tuple σ =
(Uα0 , Uα1 , . . . , Uαp) ∈ Up a section

(C.3) sα0,α1...,αp ∈ Γ(|σ|,S)

over the intersection |σ| such that for any permutation π ∈ Sp+1 of the indices
(0, 1, . . . , p)

(C.4) sαπ0,απ1,...,απp = (sgnπ) · sα0,α1,...,αp

where sgnπ is the sign of the permutation π. For example a 0-cochain s asso-
ciates to each set Uα0

a section sα0
∈ Γ(Uα0

,S); and a 1-cochain s associates to
each ordered pair of sets (Uα0

, Uα1
) with a nonempty intersection Uα0

∩Uα1
6= ∅

a section sα0,α1
∈ Γ(Uα0

∩ Uα1
,S) such that sα1,α0

= −sα0,α1
, so that in par-

ticular sα0,α0 = 0. The set of all p-cochains is denoted by Cp(U,S) and clearly
is an abelian group under addition. The coboundary homomorphism δ is the
group homomorphism

δ : Cp(U,S) −→ Cp+1(U,S)

for any p ≥ 0 taking a cochain s ∈ Cp(U,S) to the cochain δs ∈ Cp+1(U,S)
that associates to each (p+ 2)-tuple σ = (Uα0 , . . . , Uαp+1) ∈ Up+1 the section

(δs)α0,...,αp+1
=

p+1∑
i=0

(−1)iρ|σ|(sα0,...,αi−1,αi+1,...,αp+1
)(C.5)

where ρ|σ|(s) is the restriction of the section s to the intersection |σ|. A straight-

forward calculation2 shows that the coboundary of a skew-symmetric cochain
satisfies the skew-symmetry condition (C.4) and that δ δ = 0. The kernel of the
coboundary homomorphism is called the subgroup of p-cocycles and is denoted
by Zp(U,S) ⊂ Cp(U,S); the image δCp−1(U,S) ⊂ Cp(U,S) is called the sub-
group of p-coboundaries. Since δ δ = 0 it follows that δCp−1(U,S) ⊂ Zp(U,S)
for p > 0; the group

(C.6) Hp(U,S) =


Zp(U,S)

δCp−1(U,S)
for p > 0,

Z0(U.S) for p = 0

2For details see G-IIIE.
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is called the p-th (skew-symmetric) Cech cohomology group of the covering U
with coefficients in the sheaf S. For example if s ∈ C0(U,S) then

(C.7) (δs)α0,α1(a) = sα1(a)− sα0(a) for a ∈ Uα0 ∩ Uα1 ,

and clearly δsα1,α0 = −δsα0,α1 . The cochain s is a cocycle if and only if

(C.8) sα0
(a) = sα1

(a) for a ∈ Uα0
∩ Uα1

so that the local sections sα0
are the restrictions to the various sets Uα of a

section s ∈ Γ(M,S) over all of M ; thus there is the natural identification

(C.9) H0(U,S) = Γ(M,S).

If s ∈ C1(U,S) then

(C.10)
(δs)α0,α1,α2

(a) = sα1,α2
(a)− sα0,α2

(a) + sα0,α1
(a)

for a ∈ Uα0 ∩ Uα1 ∩ Uα2 ,

which is easily seen to satisfy the skew-symmetry condition (C.4); the cochain
is a cocycle s ∈ Z1(U,S) if and only if

(C.11) sα0,α1
(a) + sα1,α2

(a) + sα2,α0
(a) = 0 for a ∈ Uα0

∩ Uα1
∩ Uα2

.

A special case of particular interest in this book is that of the sheaf S = O∗ of
germs of nowhere vanishing holomorphic functions on a complex manifold M , a
sheaf of multiplicative abelian groups. A cocycle s ∈ Z1(U,O∗) is a collection of
nowhere vanishing holomorphic functions sα0,α1(z) in the intersections Uα0∩Uα1

such that

(C.12)

sα0,α0
(z) = 1 for z ∈ Uα0

sα0,α1(z) = sα1,α0(z)−1 for z ∈ Uα0 ∩ Uα1

sα0,α1
(z)sα1,α2

(z)sα2α0
(z) = 1 for z ∈ Uα0

∩ Uα1
∩ Uα2

;

thus if s ∈ Z1(U,O∗) then the cross-sections sα0,α1
satisfy (B.17) so that

{Uα, sα0α1
} is a coordinate line bundle describing a holomorphic line bundle

over M . The cocycle s ∈ Z1(U,O∗) is a coboundary if and only if

(C.13) sα0,α1(z) = tα1(z)tα0(z)−1 for z ∈ Uα0 ∩ Uα1

where tα0
(z) are nowhere vanishing holomorphic functions in the open subsets

Uα, hence if and only if the cross-sections sα0,α1 satisfy (B.24) so that the
coordinate line bundle {Uα, sα0α1} describes the trivial holomorphic line bundle
over M . Thus the cohomology group H1(U,O∗) can be identified with the set
of those holomorphic line bundles over M that can be described by coordinate
line bundles in terms of the covering U.
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There remains the question of the relations between the cohomology groups
of different coverings of the space M . A covering V of M is called a refinement
of the covering U if there is a mapping µ : V −→ U which associates to each set
Vα ∈ V a set µ(Vα) = Uµ(α) ∈ U such that Vα ⊂ Uµ(α). The mapping µ, called
a refining mapping, induces group homomorphisms µ : Cp(U,S) −→ Cp(V,S)
for any sheaf S of abelian groups over M ; for a cochain s ∈ Cp(U,S) the image
µs ∈ Cp(V,S) is the cochain that associates to each σ = (Vα0 , . . . , Vαp) ∈ Vp

the section

(C.14) (µs)α0,...,αp = ρ|σ|(sµ(α0),...,µ(αp))

where ρ|σ|(s) is the restriction of the section s to the intersection |σ|. This
homomorphism clearly commutes with the coboundary homomorphism δ and
consequently induces group homomorphisms

(C.15) µ∗ : Hp(U,S) −→ Hp(V,S).

Of course if V is a refinement of the covering U there may be a number of
different refining mappings; but a straightforward calculation3 shows that the
induced homomorphisms µ∗ of the cohomology groups are independent of the
choice of a refining mapping. In the disjoint union of the cohomology groups
Hp(U,S) for all coverings U two cohomology classes s ∈ Hp(U,S) and t ∈
Hp(V,S) are considered to be equivalent if there is a common refinement W of
the coverings U and V, with refining mappings µU : W −→ U and µV : W −→ V,
such that µ∗U(s) = µ∗V(t); this easily is seen to be an equivalence relation in the
usual sense. The set of equivalence classes is a well defined abelian group, the
direct limit of the directed set of groups indexed by coverings U of M , called
the (skew-symmetric) Čech cohomology group of the space M with coefficients
in the sheaf S and denoted by Hp(M,S). For any covering U there is then the
natural homomorphism

(C.16) ι∗U : Hp(U,S) −→ Hp(M,S)

that takes a cohomology class in Hp(U,S) to its equivalence class in Hp(M,S);
and for any refining mapping µ : V −→ U these homomorphisms commute in
the sense that ι∗U = ι∗V ◦ µ∗. For example, since H0(U,S) = Γ(M,S) for any
covering U it follows that

(C.17) H0(M,S) = Γ(M,S),

so H0(U,S) ∼= H0(M,S) for any covering U of M . The cohomology groups
Hp(U,S) and Hp(M,S) generally are not isomorphic for p > 0, although they
are for some special covers of suitably regular topological spaces.

To any short exact sequence (C.1) of sheaves of abelian groups over a topo-
logical space M there corresponds the exact sequence of sections (C.2). Since

3See Theorem G-IIIE8
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the cochain groups Cp(U,S) are just the direct sums of groups of sections over
various subsets of M there are corresponding exact sequences

(C.18) 0 −→ Cp(U,R)
φ−→ Cp(U,S)

ψ−→ Cp(U, T )

of cochain groups. The homomorphisms φ and ψ commute with the coboundary
operators and consequently induce homomorphisms

φ∗ : Hp(U,R) −→ Hp(U,S),

ψ∗ : Hp(U,S) −→ Hp(U, T ).

If M is a paracompact Hausdorff space, a Hausdorff space such that every open
covering has a locally finite refinement, these homomorphisms can be combined
and lead to the exact cohomology sequence4

(C.19)

0 −→ Γ(M,R)
φ∗−→ Γ(M,S)

ψ∗−→ Γ(M, T )
δ∗−→

δ∗−→ H1(M,R)
φ∗−→ H1(M,S)

ψ∗−→ H1(M, T )
δ∗−→ · · ·

· · ·

· · · δ∗−→ Hp(M,R)
φ∗−→ Hp(M,S)

ψ∗−→ Hp(M, T )
δ∗−→

δ∗−→ Hp+1(M,R)
φ∗−→ Hp+1(M,S)

ψ∗−→ Hp+1(M, T )
δ∗−→ · · ·

· · ·

for suitable connecting homomorphisms δ∗. To define these connecting homo-
morphisms and demonstrate the exactness of the sequence (C.19) extend the
exact sequences (C.18) to the short exact sequences

(C.20) 0 −→ Cp(U,R)
φ−→ Cp(U,S)

ψ−→ C
p
(U, T ) −→ 0

in which C
p
(U, T ) ⊂ Cp(U, T ) is the image of the homomorphism ψ. These

short exact sequences are mapped to one another by the coboundary homomor-
phism δ, leading to the following commutative diagram of abelian groups and

4See Theorem G-IIID2.
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homomorphisms. y y y
0 −−−−→ Cp−1(U,R)

φ−−−−→ Cp−1(U,S)
ψ−−−−→ C

p−1
(U, T ) −−−−→ 0

δp−1

y δp−1

y δp−1

y
0 −−−−→ Cp(U,R)

φ−−−−→ Cp(U,S)
ψ−−−−→ C

p
(U, T ) −−−−→ 0

δp

y δp

y δp

y
0 −−−−→ Cp+1(U,R)

φ−−−−→ Cp+1(U,S)
ψ−−−−→ C

p+1
(U, T ) −−−−→ 0

δp+1

y δp+1

y δp+1

y
Each row is exact by (C.20) while the sheaf cohomology groups measure the
inexactness of the columns, in the sense that Hp(U,R) = ker δp/im δp−1 and

similarly for the cohomology groups Hp(U,S) and H
p
(U, T ), where the latter

are defined in terms of the cochain groups C
p
(U, T ). A simple diagram chase

shows that under the induced homomorphisms on the cohomology groups the
sequences

Hp(U,R)
φ∗−→ Hp(U,S)

ψ∗−→ H
p
(U, T )

are exact sequences. For any t ∈ Cp(U, T ) for which δt = 0 select an element
s ∈ Cp(U,S) for which t = ψ(s). Since ψ(δs) = δψ(s) = δt = 0 it follows from
the exactness of the next row that there is an element r ∈ Cp+1(U,R) such that
φ(r) = δs; and φ(δr) = δφ(r) = δ δs = 0, so since φ is an inclusion it follows
that δr = 0. The homomorphism

δ∗ : Z
p
(U, T ) −→ Zp+1(U,R)

is defined by δ∗(t) = r. Further diagram chases show first that the cohomology
class of r is independent of the choice of s, next that cohomologous elements t
lead to cohomologous elements δ∗t, and finally that there results a long exact
cohomology sequence of the form

· · · −→ Hp(U,R)
φ∗−→ Hp(U,S)

ψ∗−→ H
p
(U, T )

δ∗−→ Hp+1(U,S) −→ · · · .

There is a corresponding exact cohomology sequence for any refinement V of
the covering U, and it is easy to see that the homomorphisms induced by the
refining mapping commute with the homomorphisms in these exact sequences;
it follows readily from this that there results the exact sequence

· · ·Hp(M,R)
φ∗−→ Hp(M,S)

ψ∗−→ H
p
(M, T )

δ∗−→ Hp+1(M,S) · · · .

Finally it is a straightforward matter to show that if M is a paracompact Haus-
dorff space then H

p
(M, T ) ∼= Hp(M, T ), since for any locally finite covering U
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it is possible to choose a locally finite refinement V in which the sets Vα are
sufficiently small that sections of the sheaf T over intersections of these sets are
the images of sections of the sheaf S. That demonstrates the exactness of the
sequence (C.19).

Various auxiliary sheaves often are used to calculate cohomology groups
explicitly. A sheaf S of abelian groups over a topological space M is a fine
sheaf if for any locally finite open covering U = {Uα} of M there are sheaf
homomorphisms εα : S −→ S such that (i) εα(s) = 0 if s ∈ Sa for a point
a ∈ M ∼ Uα, and (ii)

∑
α εα(s) = s for any s ∈ S; the latter sum is finite

since the covering U is locally finite so by (i) only finitely many entries in the
sum are nonzero. The collection of homomorphisms {εα} is called a partition of
unity for the sheaf S subordinate to the covering U. For example the sheaves
C(λ) and E(λ) of continuous or C∞ cross-sections of a holomorphic line bundle
λ over a Riemann surface M are fine sheaves since it is a standard result of
analysis that for any locally finite open covering U = {Uα} of M there are C∞
real-valued functions εα on M such that εα(a) ≥ 0 at each point a ∈M , that the
support of the function εα is contained in Uα, and that

∑
α εα(a) = 1 at each

point a ∈ M ; and multiplication of the sheaves C(λ) or E(λ) by such functions
εα is a partition of unity for these sheaves. The basic property of fine sheaves
is that Hp(M,S) = 0 for all p > 0 if S is a fine sheaf over a paracompact
Hausdorff space. To see this it suffices to show that Hp(U,S) = 0 for a locally
finite covering U of M . The first step in doing so is to demonstrate that if
s ∈ Zp(U,S) is a cocycle for p > 0 and if s(a) = 0 whenever a ∈ M ∼ Uβ
for some set Uβ of the covering U then the cocycle s is cohomologous to zero.
Indeed for such a cocycle s consider the (p − 1)-cochain sβ ∈ Cp−1(U,S) that
associates to a p-tuple σ = (Uα0

, . . . , Uαp−1
) ∈ Up−1 the cross-section over |σ|

defined by

sβα0,...,αp−1
(a) =

 s
β ,α0,...,αp−1(a) if a ∈ |σ| ∩ Uβ ,

0 if a ∈ |σ| ∼ |σ| ∩ Uβ ,

noting that this is a well defined cross-section since the cocycle s vanishes
outside Uβ . Since s is a cocycle it follows that for any (p + 2)-tuple τ =
(Uβ , Uα0

, . . . , Uαp) ∈ Up+1 and any point a ∈ |τ |

0 = (δ s)
β ,α0,...,αp(a)

= sα0,...,αp(a)−
p∑
j=0

(−1)js
β ,α0,...,αj−1,αj+1,...αp(a)

= sα0,...,αp(a)−
p∑
j=0

(−1)jsβα0,...,αj−1,αj+1,...αp(a);

this identity holds trivially if α /∈ Uβ , since the cocycle s vanishes outside Uβ , so
it actually holds for all points a ∈ |σ| where σ = (Uα0

, . . . , Uαp) and consequently
s = δ sβ , showing that the cocycle s is cohomologous to zero. Next choose a
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partition of unity εβ for the sheaf S subordinate to the covering U. The sheaf
mappings εβ : S −→ S then induce homomorphisms εβ : Γ(U,S) −→ Γ(U,S)
between the sections of the sheaf S over any open subset U ⊂ M ; and since
the cochain groups Cp(U,S) consist of sections over subsets of M these sheaf
mappings also induce homomorphisms εβ : Cp(U,S) −→ Cp(U,S). Then for
any cocycle s ∈ Zp(U,S) the image εβ(s) ∈ Zp(U,S) vanishes outside the set
Uβ so there are cochains tβ ∈ Cp−1(U,S) such that δtβ = εβ(s); and then
δ
∑
β t

β =
∑
β εβ(s) = s, and consequently the cocycle s is cohomologous to

zero as desired.
If for a sheaf S of abelian groups over a paracompact Hausdorff space M

there is an exact sequence of the form

(C.21) 0 −→ S −→ S0
d0−→ S1

d1−→ S2
d2−→ · · ·

in which all the sheaves Sj are fine sheaves, a sequence called a fine resolution
of the sheaf S, the cohomology groups of S can be calculated in terms of the
groups of cross-sections of these auxiliary fine sheaves. Explicitly the cohomol-
ogy groups of S are isomorphic to the cohomology groups of the not necessarily
exact sequence

(C.22) 0 −→ Γ(M,S) −→ Γ(M,S0)
d∗0−→ Γ(M,S1)

d∗1−→ Γ(M,S2)
d∗2−→ · · ·

in the sense that

(C.23) Hq(M,S) ∼=
ker d∗q

im d∗q−1

If Kj ⊂ Sj is the kernel of the homomorphism dj the initial segment of the long
exact sequence (C.21) is equivalent to the short exact sequence

0 −→ S −→ S0
d0−→ K1 −→ 0;

and since S0 has trivial cohomology groups in strictly positive dimensions it fol-
lows from the exact cohomology sequence associated to this short exact sequence
of sheaves that

H1(M,S) ∼=
Γ(M,K1)

d∗0 Γ(M,S0)

and
Hq(M,S) ∼= Hq−1(M,K1) for q > 1.

The remainder of the long exact sequence (C.21) is equivalent to the collection
of short exact sequences

0 −→ Kj −→ Sj
dj−→ Kj+1 −→ 0

for j > 0; and since the sheaves Sj also have trivial cohomology groups in strictly
positive dimensions it follows from the exact cohomology sequence associated
to these short exact sequences of sheaves that

H1(M,Kj) ∼=
Γ(M,Kj+1)

d∗j Γ(M,Sj)
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and
Hq(M,Kj+1) ∼= Hq+1(M,Kj) for j, q > 0.

From these sets of isomorphisms it follows that

Hq(M,S) ∼= Hq−1(M,K1) ∼= Hq−2(M,K2) ∼= · · · ∼= H1(M,Kq−1)

and hence that

Hq(M,S) ∼=
Γ(M,Kq)

d∗q−1 Γ(M,Sq−1)
for q > 0,

where of course Γ(M,Kq) is just the kernel of the homomorphism

d∗q : Γ(M,Sq −→ Γ(M,Sq+1)

and consequently this suffices to demonstrate (C.23).
This result can be used to calculate the cohomology group ts of sheaves in

another way. A covering U of a topological space M is called a Leray covering
for a sheaf of abelian groups S if Hq(Uα0

∩ · · · ∩ Uαp ,S) = 0 for all indices
p ≥ 0, q ≥ 1 and all Uα0

∩ · · · ∩ Uαp ∈ Up. In these terms the Theorem of
Leray5 asserts that if U is a Leray covering of a paracompact Hausdorff space
M for a sheaf of abelian groups S then the natural homomorphisms (C.16) are
isomorphisms; thus for paracompact Hausdorff spaces the cohomology groups
Hp(M,S) can be calculated in terms of any Leray covering of the space M for
the sheaf S. To demonstrate this result construct a fine resolution of the sheaf
S over M as follows. For any open subset U ⊂ M let Γ∗(U,S) be the group
of not necessarily continuous cross-sections of the sheaf S over U , the group of
quite arbitrary mappings f : U −→ S such that πf(p) = p for all points p ∈ U .
The set of such groups form a complete presheaf over M , and the associated
sheaf S∗ is a fine sheaf since for any locally finite covering U = {Uα} of M and
any subsets Kα ⊂ Uα that are pairwise disjoint and also cover M the mappings
ρα : S∗ −→ S∗ for which ρα(s) = s if s ∈ Kα and ρα(s) = 0 otherwise form
a partition of unity for the sheaf S∗ for the covering U. The same argument
shows that the restriction of the sheaf S∗ to any open subset of M is a fine sheaf
over that subset. The inclusion Γ(U,S) ⊂ Γ∗(U,S) of continuous cross-sections
into the group of not necessarily continuous cross-sections is a homomorphism
of presheaves which leads to an imbedding ι : S −→ S∗. For the fine resolution
of S take S0 = S∗, S1 = (S0/S)∗, and so on. This is a fine resolution over the
entire space M or over any open subset of M ; so the cohomology of M or of
any open subset of M with coefficients in the sheaf S can be calculated from
this fine resolution. In particular since U is assumed to be a Leray covering
H1(|σ|,S) = 0 for any intersection |σ| = Uα0

∩ · · · ∩ Uαp of sets Uα of U, so the
sequence of sections

0 −→ Γ(|σ|,S) −→ Γ(|σ|,S0)
d∗0−→ Γ(|σ|,S1)

d∗1−→ · · ·
5See Theorem G-IIIE5.
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over |σ| is exact. The cochain groups are finite direct sums of these sequences
of sections, so there is also the exact sequence

0 −→ Cq(|σ|,S) −→ Cq(|σ|,S0)
d∗0−→ Cq(|σ|,S1)

d∗1−→ · · · .

The coboundary homomorphisms commute with the homomorphisms of these
exact sequences, so there results the following commutative diagram of abelian
groups and group homomorphisms.

0 0 0 0y y y y
0 −−−−→ Γ(M,S) −−−−→ Γ(M,S0)

d∗0−−−−→ Γ(M,S1)
d∗1−−−−→ Γ(M,S2)y y y y

0 −−−−→ C0(U,S) −−−−→ C0(U,S0)
d∗0−−−−→ C0(U,S1)

d∗1−−−−→ C0(U,S2)

δ

y δ

y δ

y δ

y
0 −−−−→ C1(U,S) −−−−→ C1(U,S0)

d∗0−−−−→ C1(U,S1)
d∗1−−−−→ C1(U,S2)

δ

y δ

y δ

y δ

y
0 −−−−→ C2(U,S) −−−−→ C2(U,S0)

d∗0−−−−→ C2(U,S1)
d∗1−−−−→ C2(U,S2)

δ

y δ

y δ

y δ

y
All rows except the first are exact, while the cohomology of M with coefficients
in the sheaf S measures the extent to which the first row fails to be exact as
in (C.23). All columns except the first are exact, since the sheaves Sj are all
fine sheaves, while the cohomology of the covering U with coefficients in the
sheaf S measures the extent to which the first column fails to be exact. A
straightforward diagram chase then yields the desired result.
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Appendix D

Topology of Surfaces

D.1 Homotopy

This appendix contains a brief survey of some of the basic topological prop-
erties of surfaces, an acquaintance with which is presupposed in the discussion
in this book.1 The choice of topics and the order of presentation are not those
of a standard introduction to the topology of surfaces, in particular are not
those most appropriate for a rigorous development of the subject with complete
proofs. Instead those results that are of primary interest in the study of com-
pact Riemann surfaces will be discussed from a rather intuitive and geometric
point of view; proofs can be found in the references noted.

A surface is a connected two-dimensional topological manifold; only ori-
entable surfaces will be considered here. A path on a surface M is a continuous
image of the closed unit interval [0, 1] oriented in the direction of increasing
parameter values; the beginning point is the image of 0 and the end point
is the image of 1. The path is closed if its beginning and end points coin-
cide, and is simple if distinct real numbers in [0, 1] have distinct images, except
possibly for the beginning and end points; if the beginning and end point do
coincide the path is a simple closed path. Two closed paths σ : [0, 1] −→M and
τ : [0, 1] −→M beginning and ending at p are homotopic if there is a continuous
mapping F : [0, 1]2 −→M of the unit square [0, 1]2 =

{
(t1, t2)

∣∣0 ≤ ti ≤ 1
}

into
M such that F (t1, 0) = σ(t1), F (t1, 1) = τ(t1), F (0, t2) = F (1, t2) = p; this is
readily seen to be an equivalence relation in the usual sense. The fundamental
group π1(M,p0) of a surface M at a point p0 ∈M is the set of homotopy classes
of closed paths in M beginning and ending at the point p0. The product σ · τ of
two paths σ and τ beginning and ending at p0 is the path that arises by travers-
ing first σ and then τ . If σ is homotopic to σ′ and τ is homotopic to τ ′ then
στ is homotopic to σ′τ ′, so this defines a group structure on π1(M,p0). The

1These properties are treated in detail in H. Seifert and W. Threlfall, Lehrbuch der Topolo-
gie (Teubner, 1934), [English translation A Textbook of Topology (Academic Press, 1980)], in
W. S. Massey, A basic course in algebraic topology (Springer-Verlag, 1991), and in W. Fulton,
Algebraic Topology (Springer, 1995), among other places.
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identity element in the group π1(M,p0) is the homotopy class of the constant
mapping of the unit interval to the point p, while the inverse of an element is the
homotopy class of that path traversed in the reverse direction. To any choice
of a path σ from a point p0 ∈ M to another point q0 ∈ M there corresponds
the natural isomorphism σ∗ : π1(M,p0) −→ π1(M, q0) that associates to the
homotopy class of a closed path τ beginning and ending at the point p0 the
homotopy class of the closed path σ−1τσ beginning and ending at the point
q0, since if τ ′ ∼ τ then σ−1τ ′σ ∼ σ−1τσ. The isomorphism σ∗ depends only
on the homotopy class of the path σ, any two such isomorphisms differ by an
inner automorphism of the fundamental group, and any inner automorphism of
the fundamental group can be realized in this way. In the subsequent discus-
sion the homotopy classes represented by a path σ also will be denoted by σ to
avoid complicating the notation; it should be quite clear from context what is
meant in any particular case. A topological space M is simply connected if its
fundamental group is trivial.

The fundamental group is closely related to properties of covering spaces,
which play an important role in the analytic study of Riemann surfaces. A cov-
ering space over a surface M is a surface N together with a continuous mapping
π : N −→ M , called the covering projection, such that each point of M has an
open neighborhood U for which the inverse image π−1(U) consists of a collection
of disjoint open subsets of N each of which is homeomorphic to U under the cov-
ering projection. The universal covering space M̃ over M is the unique simply
connected covering space over M . There is a properly discontinuous group Γ of
homeomorphisms acting without fixed points on the universal covering space M̃ ,
the covering translation group, such that the quotient space M̃/Γ is homeomor-

phic to the surface M and the natural quotient mapping π̃ : M̃ −→ M̃/Γ = M
is the covering projection mapping; that the group Γ is properly discontinuous
means that for each point z ∈ M̃ there is an open neighborhood U of z in
M̃ such that S(U) ∩ T (U) = ∅ whenever S, T are distinct elements of Γ. For
any contractible open subset U ⊂ M the elements of the group Γ permute the
connected components of π−1(U) transitively. For any subgroup ΓN ⊂ Γ the

quotient space N = M̃/ΓN is a surface and the natural mappings π̃ and π in
the diagram

M̃
π̃−−−−→ M̃/ΓN

π−−−−→ M̃/Γ∥∥∥ ∥∥∥
N

π−−−−→ M

are covering projections; and conversely any for any covering projection π :
N −→M there corresponds a subgroup ΓN ⊂ Γ such that the covering projec-
tion π is that arising from the action of the group ΓN on the universal covering
space M̃ . The covering projection π : N −→ M is a regular covering if the
subgroup ΓN is a normal subgroup of Γ; in that case the quotient group Γ/ΓN
acts as a group of covering transformations of the space N with quotient M .

The covering translation group Γ is isomorphic to the fundamental group of
the surface M , and the isomorphism can be made canonical by the choice of a
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Figure D.1: A marking of a compact oriented surface M .

base point z0 ∈ M̃ . A surface M together with of a base point in its universal
covering space M̃ is called a pointed surface2. For a pointed surface M with
base point z0 ∈ M̃ let π : M̃ −→ M be the universal covering projection
and πz0 : Γ −→ π1(M,p(z0)) be the mapping that associates to a covering
translation T ∈ Γ the homotopy class in π1(M,π(z0)) of the image τ = π(τ̃)

in M of any path τ̃ ⊂ M̃ from z0 to Tz0; since M̃ is simply connected the
homotopy class of the path τ is independent of the choice of the path τ̃ . If
σ̃ ⊂ M̃ is a path from the base point z0 to the point Sz0 for another covering
translation S ∈ Γ then the path σ̃ · Sτ̃ extends from z0 to the point STz0 so
πz0(ST ) = π

(
σ̃ · (Sτ̃)

)
= π(σ̃) · π(τ̃) = πz0(S) · πz0(T ), showing that πz0 is

a group homomorphism; that it is an isomorphism is a simple consequence of
the simple connectivity of M̃ . Changing the base point z0 ∈ M̃ to Az0 for a
covering translation A ∈ Γ has the effect of changing the isomorphism πz0 by an
inner automorphism of the group Γ, and any inner automorphism of the group
Γ can be realized in this way.

A compact orientable surface can be represented as a sphere with g handles,
where the integer g is called the genus of the surface; thus a surface of genus
g = 0 is just a sphere, a surface of genus g = 1 is a torus, a surface of genus
g = 2 is a sphere with two handles, and so on. A surface of genus g > 0 can be
represented as a sphere with g handles in a number of different ways though.
A marking of a compact oriented surface M of genus g > 0 with universal
covering space M̃ and covering projection π : M̃ −→ M is the choice of a base

2It is more customary to define a pointed surface as a surface M together with the choice

of a base point in M itself. Of course the choice of a base point z0 ∈ M̃ yields automatically

the choice of the base point π(z0) ∈M where π : M̃ −→M is the covering projection; but for
a canonical isomorphism between the fundamental group and the covering translation group
it is necessary to choose a base point in the universal covering space.
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point z0 ∈ M̃ , of a representation of M as a sphere with g handles, ordered as
the first handle, the second handle, and so on, and of 2g simple closed paths
α1, β1, . . . , αg, βg in M̃ beginning and ending at the point p0 = π(z0) ∈ M ,
disjoint except for the common point p0 and such that the paths αi and βi
encircle the i-th handle as sketched in Figure D.1; the surface M together with
a marking is a marked surface. Any orientation-preserving homeomorphism of
the surface M that preserves the base point p0 ∈ M transforms a marking of
the surface to another marking; two markings related in this way are called
equivalent markings of the surface, and it is really the equivalence classes of
markings of a surface that are of primary interest. When the 2g paths αi and βi
are removed from the surface M the result is a contractible open subset D ⊂M .
The boundary of D can be traversed from the interior of D in the positive sense
of the orientation it inherits from the orientation of the surface, beginning at
the point 1 in Figure D.1 and proceeding first along the path α1 in the direction
of its orientation back to the point 2, then along the path β1 in the direction
of its orientation back to the point 3, then along the path α1 but in the reverse
direction to its orientation back to the point 4, then along the path β1 but again
in the reverse direction to its orientation back to the point 5, then along the
path α2 in the direction of its orientation back to the point 6, and so on; the
traverse ends by proceeding along the path βg in the reverse direction to its
orientation back to the initial point 1.

If α̃i ⊂ M̃ is the lifting of the path αi ⊂ M to a path in the universal
covering space M̃ beginning at the base point z0 ∈ M̃ the end point of the path
α̃i is the point Aiz0 ∈ M̃ for a uniquely determined covering translation Ai ∈ Γ,
that element of the group Γ for which πz0(Ai) ∈ π1(M,p0) is the homotopy class
of the path αi under the canonical isomorphism from the covering translation
group Γ to the fundamental group of the surface M . Correspondingly if β̃i ⊂ M̃
is the lifting of the path βi ⊂ M to a path beginning at z0 it will end at the
point Biz0 for a covering translation B0 ∈ Γ for which πz0(Bi) ∈ π1(M,p0) is
the homotopy class of the path βi. To simplify the formulas in the subsequent
discussion it is convenient to introduce the commutators

(D.1) Ci = [Ai, Bi] = AiBiA
−1
i B−1

i ∈ Γ

of these covering translations. The inverse image π−1(D) ⊂ M̃ of the open
subset D ⊂ M consists of a collection of disjoint open subsets of the universal
covering space M̃ that are homeomorphic to D under the covering projection
π : M̃ −→ M and that are permuted by the action of the covering translation
group Γ; the boundaries of the disjoint connected components of π−1(D) consist
of the images under various covering translations in Γ of the paths α̃i and β̃i.
The set ∆ sketched in Figure D.2 is that connected component of π−1(D) with
the base point z0 and the paths α̃1 and β̃g on its boundary; it is called the
fundamental domain for the action of the covering translation group Γ. The
translates T∆ for all covering translations T ∈ Γ are disjoint subsets of M̃ that
cover the entire space M̃ except for points over the removed paths αi and βi.
The boundary of ∆ can be traversed from the interior of ∆ by lifting the traverse
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Figure D.2: The fundamental domain ∆ ⊂ M̃ .

of the boundary of D, beginning at the point 1 and proceeding first along the
path α̃1 covering α1 to the point 2, then along the path A1β̃1 covering β1 to
the point 3, then in the reverse direction along the path C1B1α̃1 covering α1

to the point 4, then in the reverse direction along the path C1β̃1 covering β1

to the point 5, then along the path c1α̃1 covering α1 to the point 6, and so
on, ending back at the point 1. The vertices of ∆ are the images of the base
point z0 under the indicated elements of the group Γ, and the particular lifts
of the paths α̃i and β̃i that form the boundary of ∆ are determined by their
beginning points as in Figure D.2. A neighborhood of the base point z0 ∈ M̃
is mapped homeomorphically to a neighborhood of the point p0 ∈ M by the
projection π; consequently 2g translates of the fundamental domain ∆ meet at
the vertex z0 in a manner reflecting the configuration of paths emerging from
the point p0 ∈ M as sketched in Figure D.1, and similarly of course at all
the points Γz0. The surface M itself can be constructed from the fundamental
domain ∆ by identifying the sides α̃1 and C1B1α̃1 and the other pairs of sides
correspondingly; this is the traditional “scissors and paste” description of a
compact surface, probably most familiar for surfaces of genus g = 1 described
by identifying the opposite sides of a parallelogram in the traditional treatment
of elliptic functions.

Any closed path τ on the marked surface M beginning at the point p0 can
be deformed homotopically to a closed path lying entirely on the boundary of
D, so is homotopic to the product of the paths αi and βi and their inverses in
some order; thus the fundamental group π1(M,p0) is generated by the group
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elements αi and βi. It is evident from Figure D.2 that the boundary of the
fundamental domain ∆ can be described as the product

∂∆ =

g∏
i=1

(
(C1 · · ·Ci−1α̃i) · (C1 · · ·Ci−1Aiβ̃i) ·(D.2)

(C1 · · ·CiBiα̃i)−1 · (C1 · · ·Ciβ̃i)−1
)
,

where the product is taken in increasing order of the index i and a product
C1 · · ·Ci−1 is interpreted as being the identity element when i = 1; and that
this product is homotopic to the identity element, so that the homotopy classes
αi and βi in π1(M,p0) are subject to the relation

(D.3) I = α1β1α
−1
1 β−1

1 α2 · · ·β−1
g−1αgβgα

−1
g β−1

g .

All the relations between these generators are consequences of this single rela-
tion, so the fundamental group π1(M,p0) has the presentation as the quotient of
the free group F on the symbols αi and βi by the normal subgroup K generated
by the relation (D.3). The fundamental group is isomorphic to the covering
translation group; so the covering translation group Γ can be described corre-
spondingly as the quotient of the free group F on the symbols Ai and Bi by the
normal subgroup K generated by the single word

(D.4) C = C1 · · ·Cg = A1B1A
−1
1 B−1

1 · · ·AgBgA−1
g B−1

g

in the commutator subgroup [F, F ] ⊂ F . Conversely whenever αi, βi are gen-
erators of the fundamental group π1(M,p0) of a surface M of genus g, subject
only to the relation (D.3), these generators can be taken to arise from the paths
of a geometric marking of the surface3; for many purposes this associated pre-
sentation of the fundamental group or covering translation group of the surface
is the most significant aspect of a marking of the surface.

There are situations in which it is necessary to consider the noncompact
surfaces that arise by removing from a surface M a set of n points q1, . . . , qn.
By expanding the holes made by removing the points q1, . . . , qn to small discs
about these points and expanding the whole made by removing the point qn any
closed path in the complement D ∼ (q1∪· · ·∪qn) can be deformed homotopically
to a path on the boundary of the set D together with paths γ1, . . . , γn−1 from
the point p0 out to small circles around the points q1, . . . , qn−1 and then back
to the point p0; that can be visualized by considering the domain D and its
pairs of boundary paths as sketched in Figure D.3. The collection of the paths

3That any presentation of the fundamental group with the single relation (D.3) can be
realized by a geometric marking of the surface is a consequence of the result of J. Nielsen
that an automorphism of the covering translation group can be realized by a homeomorphism
of the surface. This result can be found in the paper by J. Nielsen, “Untersuchungen zur
Topologie der geschlossenen zweiseitige Flächen” I, Acta Math. 50 (1927), pp. 189-358; an
English translation is in J. Nielsen, Collected Papers I, Birkhäuser, 1986, pp. 223-341. See
also the discussion in the book by W. Magnus, A. Karrass and D. Solitar, Combinatorial
Group Theory, Interscience, 1966, page 176.
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Figure D.3: The set resulting from the removal of the points qi from D can be
shrunk to the union of the paths αi, βi, γi.

α1, . . . , αg, β1, . . . , βg, γ1, . . . , γn−1. amounts to the set consisting of 2g + n− 1
circles with a single point in common, a set called a bouquet of circles; its
fundamental group, and therefore the fundamental group of the complement
D ∼ (q1 ∪ · · · ∪ qn), is the free group generated by the paths αi, βi, γj , for
1 ≤ i ≤ g and 1 ≤ j ≤ n− 1 , a free group on 2g + n− 1 generators.

D.2 Homology

To examine the homology groups of a compact Riemann surface M of genus
g > 0 it is convenient to assume that the surface is triangulated4. The group Ci
of i-dimensional chains of the triangulated surface M is the free abelian group
generated by the i-dimensional oriented simplices of the triangulation. The
boundary of a 2-dimensional simplex is the 1-dimensional chain consisting of the
sum of the three 1-dimensional simplices forming the boundary of the triangle,
oriented so that the boundary is traversed in the natural orientation; and the
boundary of a 1-dimensional simplex is the 0-dimensional chain consisting of the
end point of the simplex minus the beginning point of the simplex, as sketched in
Figure D.4. The mapping that associates to any chain the sum of the boundaries
of the simplices comprising that chain is a group homomorphism ∂i : Ci −→
Ci−1 for i = 1, 2; it is apparent from Figure D.4 that ∂1∂2 = 0. The kernel of the
homomorphism ∂i for i = 1, 2 is the subgroup Zi ⊂ Ci of i-dimensional cycles,

4That every compact surface can be triangulated is a classical result; the definition and
general properties of triangulations are discussed in the general references cited on page 461.
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Figure D.4: Boundary cycles of simplices: ∂2τ
2
1 = τ1

1 +τ1
2 +τ1

3 , ∂1τ
1
1 = τ0

2 −τ0
1

and the image of the homomorphism ∂i+1 for i = 0, 1 is the subgroup Bi ⊂ Ci
of i-dimensional boundaries. Clearly B1 ⊂ Z1 since ∂1∂2 = 0; the 1-dimensional
homology group of the surface M is defiined to be the quotient group H1(M) =
Z1/B1. There are no boundaries B2 ⊂ C2 so the 2-dimensional homology group
is defined as the quotient group H2(M) = Z2(M); and every cochain in C0

can be viewed as a cocycle so the 0-dimensional homology group is defined
as the quotient group H0(M) = C0/B0. A basic result is that the homology
groups are independent of the choice of the triangulation. Customarily two
cycles that differ from one another by a boundary are called homologous, so
that alternatively the homology group can be viewed as the group of homology
classes of cycles on M . The rank of the group Hi(M) is called the i-th Betti
number of the surface M and is denoted by bi.

All 2-cycles of the surface M are integral multiples of the fundamental cycle,
the sum of all of the 2-dimensional simplices of the triangulation; the funda-
mental cycle usually is denoted simply by M ; consequently

(D.5) H2(M) ∼= Z,

or equivalently b2 = 1. On a marked surface, with the marking described by
a base point z0 ∈ M̃ and paths αi and βi as in Figure D.2, any 1-cycle is
homologous to a sum of the cycles αi and βi, and no nontrivial combination of
these cycles is homologous to zero; consequently

(D.6) H1(M) ∼= Z2g,

or equivalently b1 = 2g. A basic result is that the homology group H1(M) is
the abelianization of the fundamental group π1(M,p0); the homology group is
a simpler invariant than the fundamental group since it ignores the information
carried by the commutator subgroup of the fundamental group. The homology
classes represented by the paths αi, βi also are denoted by αi, βi, to avoid com-
plicating the notation; it should be quite clear from context what is meant in
any particular case. If p0 = π(z0) ∈M , the composition of the homomorphism
πz0 : Γ −→ π1(M,p0) and the mapping from the fundamental group to the first
homology group yields the natural identification

(D.7) H1(M) ∼=
Γ

[Γ,Γ]
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describing the homology of M in terms of the covering translation group. Since
the mapping πz0 changes by an inner automorphism when the base point is
changed, it follows that this identification is canonical, independent of the choice
of the base point. Finally any 0-dimensional chain is a cycle, and two such
cycles are homologous precisely when the sums of the multiplicities of the points
involved coincide, so that

(D.8) H0(M) ∼= Z,

or equivalently b0 = 1.
The alternating sum of the ranks of the homology groups of the surface M ,

the expression

(D.9) χ(M) =

3∑
i=0

(−1)irank Hi(M) = b0 − b1 + b2,

is called the Euler characteristic of the surface M ; in view of the formulas for
the Betti numbers just derived, it follows that

(D.10) χ(M) = 2− 2g

where g is the genus of the surface. Since the homology groups arise from the
exact sequences

0 −→ Z2 −→ C2
∂−→ B1 −→ 0,

0 −→ Z1 −→ C1
∂−→ B0 −→ 0,

0 −→ Z0 −→ C0
∂−→ 0,

it follows that the Euler characteristic can be expressed alternatively as

χ(M) = rank H2(M)− rank H1(M) + rank H0(M)

= rank Z2 −
(
rank Z1 − rank B1

)
+
(
rank Z0 − rank B0

)
=

(
rank Z2 + rank B1

)
−
(
rank Z1 + rank B0

)
+ rank Z0

= rank C2 − rank C1 + rank C0.

Here rank Ci = ni is just the total number of i-dimensional simplices in the
triangulation, so there results the Euler formula

(D.11) χ(M) = n0 − n1 + n2;

this expresses the Euler characteristic directly in terms of the number of sim-
plices in any triangulation of the surface.

For some purposes it is more convenient to consider the singular homology
groups rather than the homology groups associated to a triangulation of the
surface. A singular simplex of a surface M is a continuous mapping of a standard
simplex, either a point, a line segment, or a triangle, into the surface M ; and
the singular chain complex of M is the free abelian group generated by the
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singular simplices of M . The boundary of a singular simplex is the element of
the singular chain complex consisting of the singular simplices that are formed
by restricting the mapping of a standard simplex into M to the boundary of that
simplex. Again the boundary of a boundary is zero, so it is possible to define
the singular homology groups of a surface M as the homology groups of this
chain complex. It is a standard result that the homology groups formed from
the singular complex of a surface are isomorphic to the homology groups formed
from a triangulation of the surface. The singular homology groups are clearly
invariantly defined, so this shows that the homology groups defined in terms of
a triangulation really are independent of the choice of the triangulation.

Just as important as the homology groups, and in some ways even more
convenient, are the dual cohomology groups. If Ci is the group or Z-module
of i-dimensional chains in a triangulation of the surface M and R is any Z-
module then Ci(R) = Hom(Ci,R) is the group of i-dimensional cochains of
that triangulation with coefficients in the Z-module R. Of primary interest
here are the cases in which R = Z,R, or C, and it will be assumed henceforth
that R is one of these modules. The boundary homomorphisms ∂ : Ci+1 −→ Ci
naturally lead to dual coboundary homomorphisms δ : Ci(R) −→ Ci+1(R),
where δ(φ)(c) = φ(∂c) for any cochain φ ∈ Ci(R) = Hom(Ci,R) and any chain
c ∈ Ci+1; and δδ = 0 since ∂∂ = 0. The kernel of the homomorphism δ is
the subgroup Zi(R) ⊂ Ci(R) of i-dimensional cocycles with coefficients in R,
and the image of that homomorphism is the subgroup Bi(R) = δCi−1(R) of
i-dimensional coboundaries with coefficients in R; clearly Bi(R) ⊂ Zi(R) since
δδ = 0. The quotient group Hi(M,R) = Zi(R)/Bi(R) is the i-th cohomology
group of the surface M with coefficients R. In the case of surfaces the situation
is particularly simple, for Hi(M,R) ∼= Hom(Hi(M),R) since the homology
groups are free abelian groups; in particular

(D.12) Hi(M,Z) ∼= Hom(Hi(M),Z),

Hi(M,R) = Hi(M,Z)⊗ R, Hi(M,C) = Hi(M,Z)⊗ C

for i = 0, 1, 2. Furthermore there is the canonical identification

(D.13) H1(M,Z) = Hom(Γ,Z),

since homomorphisms from Γ to the abelian group Z are necessarily trivial on
the commutator subgroup [Γ,Γ] ⊂ Γ and Γ/[Γ,Γ] ∼= H1(M).

For any Z-module R the cohomology groups Hi(M,R) can be identified
with the sheaf cohomology groups of M with coefficients in the constant sheaf
R. Any finite open covering of a compact Riemann surface M has a refinement
U consisting of nonempty open sets Ui such that any 4 of the sets Ui have an
empty intersection5. Associated to this covering of M is the two-dimensional
simplicial complex in which the vertices are the sets Ui, the one-simplices are
pairs of distinct intersecting sets Ui ∩ Uj 6= ∅, and the two-simplices are triples

5See for instance Hurewicz and Wallman, Dimension Theory, Princeton University Press,
1948.
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of distinct intersecting sets Ui ∩ Uj ∩ Uk 6= ∅; this simplicial complex can be
viewed as a simplicial approximation to the topological space M , associating to
each set Ui a point in that set, associating to each intersection Ui∩Uj a segment
connecting the points associated to these two separate sets, and associating to
the intersection Ui ∩Uj ∩Uk the triangle formed by the segments associated to
the separate pairs of intersecting sets. The sheaf cochain groups of the covering
U with coefficients in the constant sheaf R can be identified with the ordinary
cochains Ci of this simplicial complex, and the coboundary operators then clearly
coincide so the two sets of cochain groups lead to the same cohomology groups.

The cohomology groups of M with real coefficients can be expressed in terms
of differential forms by deRham’s Theorem6 For an arbitrary C∞ manifold M
let Ep be the sheaf of germs of C∞ complex-valued differential forms of degree p
on M and let d : Ep −→ Ep+1 be the operator of exterior differentiation, which
satisfies dd = 0. The kernel of the operator d is the subsheaf Epc ⊂ Ep of closed
differential forms of degree p, and the local form of deRham’s Theorem is the
assertion that the sequence

(D.14) 0 −→ Ep−1
c −→ Ep−1 d−→ Epc −→ 0

is an exact sequence of sheaves for any degree p > 0. Of course E0
c = C, the

subsheaf of E0 consisting of germs of constant functions; and Enc = En and
Ep = 0 for p > n for a manifold M of dimension n. For surfaces E2

c = E2 and
Ep = 0 for p > 2, so that there are just the two exact sequences

(D.15) 0 −→ C −→ E0 d−→ E1
c −→ 0

and

(D.16) 0 −→ E1
c −→ E1 d−→ E2 −→ 0.

The sequences of cross-sections of these two exact sequence of sheaves are not
necessarily exact at the right end; the extent to which it fails to be exact is
measured by the deRham groups of the manifold M , the quotient groups

(D.17) H1(M) =
Γ(M, E1

c )

dΓ(M, E0)
and H2(M) =

Γ(M, E2)

dΓ(M, E1)

where as usual Γ(M, Ep) denotes the space of sections of the sheaf Ep. The
sheaves Ep are fine sheaves, so that Hq(M, Ep−1) = 0 whenever p, q > 0,
and from the exact cohomology sequences associated to the exact sequences
of sheaves (D.15) (D.16) there result the global form of deRham’s Theorem, the
isomorphisms

(D.18) Hp(M) ∼= Hp(M,C) for p = 1, 2.

6A general discussion of differential forms on differentiable manifolds, and proofs of the
basic properties that will be used here, can be found in M. Spivak, Calculus on Manifolds,
(Benjamin, 1965) as well as in W. Fulton, Algebraic Topology (Springer, 1995), among other
places. The general properties of sheaves that arise in this discussion are reviewed in Appendix
C.
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The cohomology class in Hp(M,C) that is associated to the element in the deR-
ham group Hp(M) represented by a closed differential form φ ∈ Γ(M, Epc ) under
the deRham isomorphism (D.18) is the period class of the differential form φ.
This abstract cohomological interpretation of the period class has a more geo-
metric form; the classical statement of deRham’s Theorem is the assertion that
the mapping that associates to a differential form φ ∈ Γ(M, Epc ) the linear func-
tional on the homology group Hp(M) defined by integration of the differential
form φ along representative cycles is an isomorphism between the deRham group
Hp(M) and the cohomology group Hp(M,C) in each dimension p. In particular
the exact differential forms, those in dΓ(M, Ep−1), are precisely the differential
forms having zero integrals along all the cycles of M ; and any linear functional
on the cycles can be represented as the integral of a suitable closed differen-
tial form. Two closed differential forms φ, ψ that differ by an exact differential
form are said to be cohomologous, and that is indicated by writing φ ∼ ψ; so
the deRham isomorphism can be rephrased as the assertion that the space of
cohomology classes of closed differential forms of degree p is a vector space that
is naturally dual to the homology group Hp(M) by integration. The deRham
isomorphism for real cohomology is described correspondingly. The subgroup
of cohomology classes of closed differential forms having integral periods on all
the cycles of M form a lattice subgroup of the deRham group that is naturally
isomorphic to the integral cohomology group Hp(M,Z).

The exterior product of any two closed differential forms φ, ψ ∈ Γ(M, E1
c )

is a closed differential form φ ∧ ψ ∈ Γ(M, E2); and if φ ∼ φ′ and ψ ∼ ψ′ then
clearly φ ∧ ψ ∼ φ′ ∧ ψ′, so this yields a well defined skew-symmetric bilinear
mapping

H1(M)× H1(M) −→ H2(M),

the cup product mapping. Under the deRham isomorphism through the pe-
riod classes of these differential forms this induces the skew-symmetric bilinear
mapping

H1(M,C)×H1(M,C) −→ H2(M,C),

that associates to cohomology classes φ, ψ ∈ H1(M,C) a cohomology class φ∪ψ
called the cup product of these cohomology classes. Since the manifold M is two-
dimensional the composition of the exterior product mapping in the deRham
group and the isomorphism H2(M) ∼= C that associates to the deRham class
represented by a differential form φ ∈ Γ(M, E2) the value

∫
M
φ is the skew-

symmetric bilinear mapping

H1(M)× H1(M) −→ C

that associates to the deRham classes represented by any two differential forms
φ, ψ ∈ Γ(M, E1

c ) the complex number

(φ, ψ) =

∫
M

φ ∧ ψ;

this is called the intersection form on the surface M . In terms of a basis τj ∈
H1(M) for the homology of M and the dual basis φi ∈ Γ(M, E1

c ) for the deRham
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group H1(M), characterized by the period conditions
∫
τj
φi = δij for 1 ≤ i, j ≤

2g, the intersection form is described by the intersection matrix P = {pij}, the
2g × 2g skew-symmetric integral matrix with entries

(D.19) pij = (φi, φj) =

∫
M

φi ∧ φj .

For the basis associated to a marking of the surface the intersection matrix has
the following normal form.

Theorem D.1 If M is a compact oriented surface of genus g > 0 with a mark-
ing described by covering translations Aj , Bj ∈ Γ and if φi ∈ Γ(M, E1

c ) is the
dual basis for the first deRham group of M then in terms of this basis the inter-
section matrix is the 2g × 2g basic skew-symmetric matrix

(D.20) J =

(
0 I
−I 0

)
where I is the g × g identity matrix and 0 is the g × g zero matrix.

Proof: When the differential forms φi are viewed as Γ-invariant differential
forms on the universal covering space M̃ their integrals fi(z) =

∫ z
z0
φi(z) are

functions on the universal covering space M̃ such that fi(Ajz) = fi(z) +
δij , fi(Bjz) = fi(z) + δij+g, and fi(Cjz) = fi(z) for the commutator Cj =
[Aj , Bj ]. By Stokes’s Theorem

pjk =

∫
M

φj ∧ φk =

∫
∆

d(fjφk) =

∫
∂∆

fjφk

in terms of the fundamental polygon ∆. The boundary ∂∆ is described explicitly
in equation (D.2), and it follows that

pjk =

g∑
i=1

∫
C1···Ci−1α̃i−C1···CiBiα̃i

fj(z)φk(z)

+

g∑
i=1

∫
C1···Ci−1Aiβ̃i−C1···Ciβ̃i

fj(z)φk(z)

=

g∑
i=1

∫
α̃i

(
fj(z)φk(z)−

(
fj(z) + δji+g

)
φk(z)

)
+

g∑
i=1

∫
β̃i

((
fj(z) + δji

)
φk(z)− fj(z)φk(z)

)
= −

g∑
i=1

δji+g

∫
α̃i

φk(z) +

g∑
i=1

δji

∫
β̃i

φk(z)

=

g∑
i=1

(
− δji+gδ

k
i + δji δ

k
i+g

)
= δj+gk − δjk+g,
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which is the result asserted and thereby concludes the proof.

Corollary D.2 Any two intersection matrices P and P̃ for a compact oriented
surface of genus g > 0 are related by P̃ = QP tQ for some matrix Q ∈ Gl(2g,Z),
and consequently detP = 1 for any intersection matrix P .

Proof: If P is the intersection matrix of the surface M in terms of a basis
φi of the deRham group the intersection matrix P̃ in terms of another basis
φ̃i =

∑2g
j=1 qjlφj has the form

p̃ij =

∫
M

φ̃i ∧ φ̃j =

2g∑
k,l=1

∫
M

qikφk ∧ qjlφl

= =

2g∑
k,l=1

∫
M

qikpklqjl,

or in matrix terms P̃ = QP tQ. Since one intersection matrix is the basic skew-
symmetric matrix J by the preceding theorem it follows that any other intersec-
tion matrix is of the form PJ tQ for some invertible matrix Q and consequently
detP = det J = 1. That suffices for the proof.
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Appendix E

Cohomology of Groups

E.1 Definitions and Basic Properties

Various analytical and geometrical constructions that arise in the study of
compact Riemann surfaces involve the action of the covering translation group
on the universal covering space of the surface. The universal covering space is
both topologically and analytically trivial, in natural senses, so structures on
the quotient space to a considerable extent are determined by the structure of
the covering translation group; in particular the cohomology of the covering
translation group reflects significant properties of the geometry of the quotient
space. Since the cohomology of groups possibly is not so familiar and the nota-
tion that will be adopted here is not altogether standard, among other things in
that groups will be viewed as acting on the right rather than on the left, a brief
survey of the notation and of some of the basic properties of the cohomology of
groups will be included in this appendix.1

A multiplicative group Γ acts as a group of operators on the right on an
additive abelian group V if there is a mapping V × Γ −→ V that associates to
any elements v ∈ V and T ∈ Γ an element v|T ∈ V such that:

(i) for each T ∈ Γ the mapping v −→ v|T is an automorphism of the
group V ;
(ii) if I ∈ Γ is the identity then v|I = v for all v ∈ V ;
(iii) v|(T1T2) = (v|T1)|T2 for all v ∈ V and T1, T2 ∈ Γ.

If Γ acts as a group of operators on the right on two additive abelian groups
V1, V2, a Γ-homomorphism φ : V1 −→ V2 is a homomorphism of abelian groups
such that φ(v|T ) = φ(v)|T for all v ∈ V1 and all T ∈ Γ.

For any multiplicative group Γ and for any integer n ≥ 0 let Xn(Γ) be
the additive free abelian group generated by the symbols (T0, T1, . . . , Tn) for
arbitrary Ti ∈ Γ, but where (T0, T1, . . . , Tn) = 0 if Ti = Ti−1 for any index i.

1A more detailed treatment of this material can be found in S. MacLane, Homology,
(Springer, 1994), to which reference is made for the proofs that are not included here.
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The group Γ acts as a group of operators on the right on the abelian group
Xn(Γ) by setting

(E.1) (T0, T1, . . . , Tn)|T = (T0T, T1T, . . . , TnT )

for the free generators of Xn(Γ). For any index n > 0 introduce the group
homomorphism

∂ : Xn(Γ) −→ Xn−1(Γ)

defined on the free generators of Xn by

(E.2) ∂(T0, T1, . . . , Tn) =

n∑
i=0

(−1)i(T0, . . . , Ti−1, Ti+1, . . . , Tn);

it is a straightforward exercise to verify that this is compatible with the condition
that (T0, T1, . . . , Tn) = 0 if Ti = Ti−1. These homomorphisms clearly commute
with the operation of Γ on Xn(Γ), so are also Γ-homomorphisms; and it is
another straightforward exercise to verify that ∂∂ = 0. On the other hand it is
somewhat less straightforward to see that

(E.3) X0(Γ)
∂←− X1(Γ)

∂←− X2(Γ)
∂←− · · ·

is an exact sequence of Γ-homomorphisms. To demonstrate that, introduce the
group homomorphisms σ : Xn(Γ) −→ Xn+1(Γ) defined on the free generators of
Xn by σ(T0, T1, . . . , Tn) = (I, T0, T1, . . . , Tn) where I ∈ Γ is the identity element.
One more straightforward calculation shows that ∂σ + σ∂ = I is the identity
homomorphism on Xn(Γ) for n > 0; hence if f ∈ Xn(Γ) for n > 0 and if ∂f = 0
then f = (∂σ + σ∂)f = ∂(σf), so the sequence (E.3) is exact. The cohomology
groups of Γ with coefficients in an abelian group V on which Γ acts on the right
are defined to be the cohomology groups of the sequence of Γ-homomorphisms

(E.4)

HomΓ(X0(Γ), V )
δ−→ HomΓ(X1(Γ), V )

δ−→ HomΓ(X2(Γ), V )
δ−→ · · · ,

where HomΓ denotes the group of Γ-homomorphisms and δ(f) = f ◦∂. In more
detail, the group Cn0 (Γ, V ) = HomΓ(Xn(Γ), V ), called the group of homogeneous
n-cochains of Γ with coefficients in V , can be described alternatively as

(E.5)

Cn0 (Γ, V ) =

f : Γn+1 −→ V

∣∣∣∣∣∣∣∣∣∣
f(T0T, T1T, . . . , TnT ) =

f(T0, T1, . . . , Tn)|T, and

f(T0, T1, . . . , Tn) = 0
if Ti = Ti−1 for any i,


since a homomorphism f ∈ Hom(Xn(Γ), V ) is determined by its values on the
free generators of Xn(Γ). The coboundary homomorphism

δ : Cn0 (Γ, V ) −→ Cn+1
0 (Γ, V )
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takes an n-cochain f ∈ Cn0 (Γ, V ) to the (n+1)-cochain δf ∈ Cn+1
0 (Γ, V ) defined

by

δf(T0, T1, . . . , Tn+1) = f∂(T0, T1, . . . , Tn+1)(E.6)

=

n+1∑
i=0

(−1)if(T0, . . . , Ti−1, Ti+1 . . . , Tn+1).

A cochain f is a cocycle if δf = 0 and is a coboundary if f = δg for some
cochain g; the cocycles are the kernels of the coboundary homomorphisms
and form subgroups Zn0 (Γ, V ) ⊂ Cn0 (Γ, V ) for all n ≥ 0, while the cobound-
aries are the images of the coboundary homomorphisms and form subgroups
Bn0 (Γ, V ) ⊂ Cn0 (Γ, V ) for all n > 0, where the latter definition is extended by
setting B0

0(Γ, V ) = 0. Since ∂∂ = 0 every coboundary is a cocycle, or equiva-
lently Bn0 (Γ, V ) ⊂ Zn0 (Γ, V ); the quotient groups are the cohomology groups

(E.7) Hn(Γ, V ) =
Zn0 (Γ, V )

Bn0 (Γ, V )

of the group Γ with coefficients in V for all indices n ≥ 0.
The cohomology groups can be shown to satisfy the expected naturality

properties, although the details will not be included here; in particular any
Γ-homomorphism φ : V1 −→ V2 naturally induces homomorphisms

(E.8) φ∗ : Hn(Γ, V1) −→ Hn(Γ, V2),

and the compositions of Γ-homomorphisms induce the corresponding composi-
tions of homomorphisms of the cohomology groups. As for any cohomology the-
ory, a critical property is that to any short exact sequence of Γ-homomorphisms

0 −→ V1
φ−→ V2

ψ−→ V3 −→ 0

there is associated a long exact sequence of cohomology groups

· · · −→ Hn(Γ, V1)
φ−→ Hn(Γ, V2)

ψ−→ Hn(Γ, V3)
δ−→ Hn+1(Γ, V1) −→ · · · .

The proof of the exactness of the cohomology sequence in general will not be
included, since it parallels quite closely the proof of the exactness of the cor-
responding cohomology sequence in sheaf cohomology; but the proof of the
exactness in those special cases in which explicit forms of the connecting ho-
momorphism δ are needed will be included, and the proof of the general case
can be constructed by following the pattern of the proof of the exactness in
those special cases. The naturality properties, the exactness of the cohomology
sequence, and the identification of the cohomology groups in a few standard
cases can be shown to characterize the cohomology groups intrinsically.

In calculations it is often more convenient to use the group Cn(Γ, V ) of
inhomogeneous cochains defined by

(E.9) Cn(Γ, V ) =

{
v : Γn −→ V

∣∣∣∣ v(T1, . . . , Tn) = 0
if Ti = I for any i

}
.
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To a homogeneous cochain f ∈ Cn0 (Γ, V ) there can be associated its inhomoge-
neous form v defined by

(E.10) v(T1, . . . , Tn) = f(I, Tn, Tn−1Tn, Tn−2Tn−1Tn, . . . , T1T2 · · ·Tn)

for any Ti ∈ Γ. If Si = Tn−i+1Tn−i+2 · · ·Tn for 1 ≤ i ≤ n, so that S1 =
Tn, S2 = Tn−1Tn, S3 = Tn−2Tn−1Tn, . . . , Sn = T1T2 · · ·Tn, then conversely
Tn = S1 and Tn−i+1 = SiS

−1
i−1 for 2 ≤ i ≤ n; and the homogeneous cochain can

be recaptured from its inhomogeneous form by

(E.11) f(I, S1, S2, . . . , Sn) = v(SnS
−1
n−1, Sn−1S

−1
n−2, . . . , S2S

−1
1 , S1)

since the homogeneous cochain f clearly is determined fully just by the values
f(I, S1, S2, . . . , Sn). The condition that f(I, S1, S2, . . . , Sn) = 0 if S1 = I or
Si = Si−1 for any index i in the range 2 ≤ i ≤ n corresponds to the condition
that v(T1, . . . , Tn) = 0 if Ti = I for any index i in the range 1 ≤ i ≤ n. The map-
ping that associates to a homogeneous cochain its inhomogeneous form thus is
an isomorphism from the group Cn0 (Γ, V ) of homogeneous cochains to the group
Cn(Γ, V ) of inhomogeneous cochains. In particular to a homogeneous cochain
f ∈ C0

0 (Γ, V ) there is associated the inhomogeneous form v = f(I), so that
C0(Γ, V ) = V ; and the homogeneous form is determined by its inhomogeneous
form since f(T ) = f(I)|T = v|T . If v ∈ Cn−1(Γ, V ) is the inhomogeneous form
of a cochain f ∈ Cn−1

0 (Γ, V ) and if w ∈ Cn(Γ, V ) is the inhomogeneous form of
the coboundary δf ∈ Cn0 (Γ, V ) then for any elements Si, Ti ∈ Γ

w(T1, . . . , Tn) = (δf)(I, Tn, Tn−1Tn, . . . , T1T2 · · ·Tn)

= (δf)(I, S1, S2, . . . , Sn)

= f(S1, S2, . . . Sn) +

n∑
i=1

(−1)if(I, S1, . . . , Si−1, Si+1 . . . Sn)

= f(I, S2S
−1
1 , . . . SnS

−1
1 )|S1 +

n∑
i=1

(−1)if(I, S1, . . . , Si−1, Si+1 . . . Sn)

= v(SnS
−1
n−1, Sn−1S

−1
n−2, . . . , S2S

−1
1 )|S1

−v(SnS
−1
n−1, Sn−1S

−1
n−2, . . . , S3S

−1
2 , S2)

+

n−1∑
i=2

(−1)iv(SnS
−1
n−1, . . . , Si+2S

−1
i+1, Si+1S

−1
i−1, Si−1S

−1
i−2, . . . , S1)

+(−1)nv(Sn−1S
−1
n−2, Sn−2S

−1
n−3, . . . , S2S

−1
1 , S1)

= v(T1, T2, . . . , Tn−1)|Tn
−v(T1, T2, . . . , Tn−2, Tn−1Tn)

+

n−1∑
i=2

(−1)iv(T1, . . . , Tn−i−1, Tn−iTn−i+1, Tn−i+2, . . . , Tn)

+(−1)nv(T2, T3, . . . , Tn).
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This expresses the coboundary operator in terms of the inhomogeneous cocycles;
but it is perhaps clearer to change the index of summation and to rewrite the
formula as

(δv)(T1, . . . , Tn) =

(E.12)

= v(T1, T2, . . . , Tn−1)|Tn + (−1)nv(T2, T3, . . . , Tn)

+

n−1∑
i=1

(−1)n+iv(T1, . . . , Ti−1, TiTi+1, Ti+2, . . . Tn)

for any inhomogeneous cochain v ∈ Cn−1(Γ, V ). For the initial cases

(E.13)

v ∈ C0(Γ, V ) : (δv)(T1) = v|T1 − v,

v ∈ C1(Γ, V ) : (δv)(T1, T2) = v(T1)|T2 + v(T2)− v(T1T2)

v ∈ C2(Γ, V ) : (δv)(T1, T2, T3) = v(T1, T2)|T3 − v(T2, T3)
+v(T1T2, T3)− v(T1, T2T3).

The inhomogeneous cocycles are the cochains v ∈ Cn(Γ, V ) such that δv = 0 and
form subgroups Zn(Γ, V ) ⊂ Cn(Γ, V ), while the inhomogeneous coboundaries
are the cochains v ∈ δCn−1(Γ, V ) and form subgroups Bn(Γ, V ) ⊂ Cn(Γ, V )
where B0(Γ, V ) = 0. The cohomology groups are isomorphic to the quotients

(E.14) Hn(Γ, V ) ∼=
Zn(Γ, V )

Bn(Γ, V )
for n > 0

while

(E.15)

H0(Γ, V ) ∼= Z0(Γ, V ) = V Γ

where

(E.16) V Γ =
{
v ∈ V

∣∣∣ v|T = v for all T ∈ Γ
}

is the subgroup of Γ-invariant elements of V . Then for n = 1 the group of
inhomogeneous 1-cocycles is

(E.17) Z1(Γ, V ) =

 v : Γ −→ V

∣∣∣∣∣∣
v(T1)|T2 = v(T1T2)− v(T2)

v(I) = 0


while the subgroup of inhomogeneous 1-coboundaries is

(E.18) B1(Γ, V ) =
{
v : Γ −→ V

∣∣∣ v(T ) = w|T − w for some w ∈ V
}
,
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and for n = 2

(E.19)

Z2(Γ, V ) =

 v : Γ× Γ −→ V

∣∣∣∣∣∣∣∣
v(T1, T2)|T3 =

v(T1, T2T3)− v(T1T2, T3) + v(T2, T3)

v(I, T ) = v(T, I) = 0


while

(E.20)

B2(Γ, V ) =

 v : Γ× Γ −→ V

∣∣∣∣∣∣
v(T1, T2) = w(T1T2)− w(T2)− w(T1)|T2)

where w : Γ −→ V and w(I) = 0.


E.2 Example: Trivial Group Action

A particularly simple case is that in which a multiplicative group Γ acts
trivially on an additive abelian group V , so that v|T = v for all T ∈ Γ and all
v ∈ V , or equivalently V Γ = V ; by (E.15) then

(E.21) H0(Γ, V ) ∼= V if Γ acts trivially on V .

Next by (E.17) the inhomogeneous 1-cocycles are mappings v : Γ −→ V such
that v(I) = 0 and v(T1T2) = v(T1)+v(T2), so Z1(Γ, V ) = Hom(Γ, V ); by (E.18)
the inhomogeneous 1-coboundaries are trivial, and consequently

(E.22) H1(Γ, V ) ∼= Hom(Γ, V ) if Γ acts trivially on V .

The second cohomology group is equally interesting and possibly less familiar.
By (E.19) the group of inhomogeneous two-cocycles consists of those mappings
v : Γ× Γ −→ V such that v(I, T ) = v(T, I) = 0 and

(E.23) v(R,S)− v(R,ST ) + v(RS, T )− v(S, T ) = 0

for any R,S, T ∈ Γ; and by (E.20) the subgroup B2(Γ, V ) of inhomogeneous
two-coboundaries consists of those two-cocycles of the form

(E.24) v(S, T ) = w(S) + w(T )− w(ST )

for a mapping w : Γ −→ V such that w(I) = 0. While there are natural di-
rect interpretations of the quotient cohomology group, what is quite useful for
present purposes is a rather more indirect interpretation of the second cohomol-
ogy group in terms of a presentation of the group Γ, following H. Hopf2 and
beginning with the following preliminary observation.

2H. Hopf, ”Fundamentalgruppe und zweite Bettische Gruppe,“Commentarii Mathematici
Helvetici 14(1941), pp. 257-309. See the historical discussion in MacLane’s Homology, p.137.
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Lemma E.1 If Γ is a finitely generated free group acting trivially on the right
on an abelian group V then H2(Γ, V ) = 0.

Proof: By (E.24) it is only necessary to show that for any inhomogeneous
cocycle v ∈ Z2(Γ, V ) there is a mapping w : Γ −→ V such that w(I) = 0 and

(E.25) w(ST ) = w(S) + w(T )− v(S, T )

for all S, T ∈ Γ. If v ∈ Z2(Γ, V ) it follows from (E.23) for R = S−1 = T
that v(T, T−1) = v(T−1, T ). Now choose arbitrary values w(Ti) ∈ V for a set
of free generators Ti of the group Γ, and set w(T−1

i ) = v(Ti, T
−1
i ) − w(Ti) =

v(T−1
i , Ti)−w(Ti). Since any element of the free group Γ can be written uniquely

as a product of the symbols Ti and T−1
i , equation (E.25) can be used to define

w(S) for any element S ∈ Γ if it is demonstrated that w(TiT
−1
i ) = w(T−1

i Ti) =
0 for each free generator Ti and that the value assigned to w(RST ) for any
elements R,S, T ∈ Γ is independent of the way in which this triple product is
associated. The first follows readily from the way in which w(T−1

i ) is defined,
while the second is a consequence of the cocycle condition (E.23) and can be
verified by a straightforward calculation. That suffices for the proof.

The preceding lemma is also true for a finitely generated free group Γ acting
trivially on a multiplicative abelian group, such as the group C∗ or any finite
subgroup of C∗, rather than on an additive abelian group V ; for the argument
used only the commutativity of the coefficient group V . For present purposes
the principal application of the preceding lemma is to the following general
result.

Theorem E.2 (Hopf’s Theorem) If a group Γ acts trivially on the right on
an abelian group V and if Γ has a presentation Γ = F/K, where F is a finitely
generated free group and K ⊂ F is a normal subgroup, then

(E.26) H2(Γ, V ) ∼=
Hom

(
K/[K,F ], V

)
i
(

Hom(F, V )
)

where [K,F ] ⊂ K is the normal subgroup of F generated by commutators [S, T ]
for S ∈ K and T ∈ F and

(E.27) i : Hom(F, V ) −→ Hom
(
K/[K,F ], V

)
is the restriction of a homomorphism in Hom (F, V ) to the subgroup K.

Proof: If v ∈ Z2(Γ, V ) and p : F −→ Γ is the natural quotient mapping then
vp(S, T ) = v(p(S), p(T )) ∈ Z2(F, V ). Since H2(F, V ) = 0 by the preceding
lemma there is an inhomogeneous 1-cochain w ∈ C1(F, V ) such that vp = δw,
hence such that vp(S, T ) = w(S)+w(T )−w(ST ) for all S, T ∈ F . If S ∈ K then
vp(S, T ) = v(p(S), p(T )) = v(I, p(T )) = 0 and hence w(ST ) = w(S) + w(T ),
and the same of course is true if T ∈ K. One consequence of this observation is
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that w|K ∈ Hom(K,V ). Another consequence is that if S ∈ K and T ∈ F then
T−1ST ∈ K and w(S) +w(T ) = w(ST ) = w(T · T−1ST ) = w(T ) +w(T−1ST );
therefore w(T−1ST ) = w(S), and consequently w

∣∣[K,F ] = 0 so the cochain w
restricts to a homomorphism w|K ∈ Hom(K/[K,F ], V ). Since any two cochains
that have the same coboundary v ∈ Z2(Γ, V ) differ by an element of Z1(F, V ) =
Hom(F, V ), there results a well defined homomorphism

(E.28) p∗ : Z2(Γ, V ) −→ Hom(K/[K,F ], V )

i(Hom(F, V ))
.

The kernel of this homomorphism consists of those cocycles v ∈ Z2(Γ, V ) such
that vp = δw for a cochain w ∈ C1(F, V ) which, after modification by the
addition of a cocycle in Z1(F, V ) = Hom(F, V ), can be supposed to satisfy
w|K = 0; but then w ∈ C1(Γ, V ) so v = δw ∈ B2(Γ, V ) and hence the kernel
of the homomorphism p∗ is the subgroup B2(Γ, V ) ⊂ Z2(Γ, V ). To conclude
the proof it remains only to show that the homomorphism p∗ is surjective. Any
element w ∈ Hom(K,V ) can be extended to a mapping w : F −→ V by choosing
a coset decomposition F = ∪iK Ti, choosing arbitrary values w(Ti) ∈ V , and
setting w(STi) = w(S) + w(Ti) for all S ∈ K. If R ∈ K and T ∈ F then
T = STi for some S ∈ K and w(RT ) = w(RSTi) = w(RS) + w(Ti) = w(R) +
w(S) + w(Ti) = w(R) + w(T ). If w

∣∣[K,F ] = 0 as well then for any S ∈ K

necessarily w(TiS) = w(S ·S−1TiST
−1
i ·Ti) = w(S[S−1, Ti]Ti) = w(S[S−1, Ti])+

w(Ti) = w(S) + w(Ti); and as in the preceding argument it is also the case
that w(RT ) = w(R) + w(T ) whenever R ∈ F and T ∈ K. The expression
v(S, T ) = w(S) + w(T ) − w(ST ) is a cocycle v ∈ Z2(F, V ). If R ∈ K then
v(RS, T ) = w(RS)+w(T )−w(RST ) = w(R)+w(S)+w(T )−w(R)−w(ST ) =
v(S, T ), so that v(S, T ) depends only on the coset of S modulo K; and the same
argument shows that v(S, T ) also depends only on the coset of T modulo K.
That shows that actually v ∈ Z2(Γ, V ) as desired, hence concludes the proof.

In the special cases in which the group Γ has a presentation Γ = F/K
where F is a free group and K ⊂ F is actually a subgroup K ⊂ [F, F ] of the
commutator subgroup of F , Hopf’s Theorem can be restated in a simpler and
more explicit form; this is the special case that is of interest for surface groups.

Corollary E.3 If a group Γ acts trivially on the right on an abelian group V
and if Γ has a presentation Γ = F/K, where F is a finitely generated free group
and K ⊂ F is a normal subgroup such that K ⊂ [F, F ], the natural quotient
mapping p : F −→ Γ induces an isomorphism

(E.29) p∗ : H2(Γ, V )
∼=−→ Hom(K/[K,F ], V );

this isomorphism takes the cohomology class represented by an inhomogeneous
cocycle v ∈ Z2(Γ, V ) to the homomorphism in Hom(K/[K,F ], V ) that is the
restriction to K ⊂ [F, F ] of the mapping w : [F, F ] −→ V for which
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(E.30)

w([S, T ]) = v
(

[p(S), p(T )], p(T )p(S)
)
− v
(
p(S), p(T )

)
+ v
(
p(T ), p(S)

)
for any S, T ∈ F and

(E.31) w(C1C2) = w(C1) + w(C2)− v
(
p(C1), p(C2)

)
for any commutators C1, C2 ∈ [F, F ].

Proof: If K ⊂ [F, F ] then w|K = 0 for any homomorphism w ∈ Hom(F, V ),
so i(Hom(F, V )) = 0 and the isomorphism (E.26) of the preceding theorem
takes the simpler form (E.29). In the proof of the preceding theorem the ho-
momorphism w ∈ Hom(K/[K,F ], V ) associated to an inhomogeneous cocycle
v ∈ Z2(Γ, V ) is the restriction to K ⊂ [F, F ] of any inhomogeneous cochain
w ∈ C1(F, V ) such that δw = vp for the cocycle vp ∈ Z2(Γ, V ) defined by
vp(S, T ) = v

(
p(S), p(T )

)
for all S, T ∈ F ; explicitly

vp(S, T ) = w(S) + w(T )− w(ST ),

which is (E.31) in the special cases in which S, T ∈ [F, F ]. Since w(I) = 0 it
follows from this for S = T−1 that

w(T−1) = −w(T ) + vp(T
−1, T ) = −w(T ) + vp(T, T

−1)

for any T ∈ F . It also follows that

w([S, T ]) = w
(
ST (TS)−1

)
= w(ST ) + w

(
(TS)−1

)
− vp

(
ST, (TS)−1

)
= w(ST )− w(TS) + vp

(
TS, (TS)−1

)
− vp

(
ST, (TS)−1

)
= −vp(S, T ) + vp(T, S) + vp

(
TS, (TS)−1

)
− vp

(
ST, (TS)−1

)
;

but upon replacing R by [S, T ], S by TS, and T by (TS)−1 the cocycle condition
(E.23) takes the form

0 = vp
(
[S, T ], TS

)
− vp

(
TS, (TS)−1

)
+ vp

(
ST, (TS)−1

)
− vp

(
[S, T ], I

)
,

so since vp
(
[S, T ], I

)
= v
(
p([S, T ]), I

)
= 0 then

w
(
[S, T ]

)
= −vp(S, T ) + vp(T, S) + vp

(
[S, T ], TS

)
,

which is (E.30). That suffices to conclude the proof.
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E.3 Example: Surface Groups

When a Riemann surface is represented as the quotient of its universal cov-
ering space M̃ by the covering translation group Γ, the group Γ acts on the
right on the complex vector space V p = Γ(M̃, Ep) of C∞ differential forms of

degree p on M̃ by (φ|T )(z) = φ(Tz). The differential forms on M̃ that are
invariant under this action of the group Γ are precisely the differential forms on
the quotient space M , so in view of (E.15)

(E.32) H0(Γ, V p) = Γ(M, Ep) for p = 0, 1, 2.

To see that

(E.33) Hq(Γ, V p) = 0 for p = 0, 1, 2 and q > 0,

a homogeneous q-cocycle w(T0, T1, . . . , Tq) ∈ Zq0(Γ, V p) can be viewed as a C∞

differential form w(T0, T1, . . . , Tq; z) of degree p on the manifold M̃ indexed by
the elements T0, . . . , Tq ∈ Γ. For any simply-connected open subset U ⊂ M

the complete inverse image π−1(U) ⊂ M̃ is the set ΓŨ = {T Ũ
∣∣ T ∈ Γ},

where Ũ is a connected component of π−1(U) and T1Ũ ∩ T2Ũ = ∅ whenever
T1 6= T2. For any C∞ function r(z) on M with support contained in U , viewed

as a Γ-invariant C∞ function on M̃ with support contained in π−1(U) = ΓŨ ,

the product r(z)w(T0, T1, . . . , Tq; z) also is a C∞ differential form on M̃ , so is a

homogeneous q-cocycle, and its support is contained in ΓŨ . The homogeneous
(q − 1)-cochain in ΓŨ defined by

v(T0, T1, . . . , Tq−1; z) = r(z)w(I, T0, T1, . . . , Tq−1; z) for z ∈ U,

v(T0, T1, . . . , Tq−1;Tz) = v(T0T, T1T, . . . Tq−1T ; z) for z ∈ U, T 6= I,

can be extended to all of M̃ by setting it equal to zero outside ΓŨ . It is
a straightforward calculation to verify that the coboundary of the cochain
v(T0, T1, . . . , Tq−1; z) is the cocycle r(z)w(T0, T1, . . . , Tq; z), so this cocycle is
cohomologous to zero. Since any cocycle can be written as a sum of such co-
cycles for functions ri(z) forming a C∞ partition of unity on M it follows that
any cocycle in Zq(Γ, V p) is cohomologous to zero as asserted.

From the exact sequence of sheaves

(E.34) 0 −→ C −→ E0 d−→ E1
c −→ 0

on the universal covering space M̃ , where E1
c is the sheaf of closed C∞ differential

forms of degree 1 and d is exterior differentiation, there follows the exact sheaf
cohomology sequence beginning

0 −→ C −→ Γ(M̃, E0)
d−→ Γ(M̃, E1

c )
δ−→ H1(M̃,C);
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since M is contractible H1(M̃,C) = 0, so this reduces to the exact sequence

(E.35) 0 −→ C −→ V 0 d−→ V 1
c −→ 0,

where V 0 = Γ(M̃, E0) as before and V 1
c = Γ(M̃, E1

c ). This is an exact sequence
of right Γ-modules, so there results the exact cohomology sequence beginning

(E.36)

0 −→ H0(Γ,C) −→ H0(Γ, V 0)
d−→ H0(Γ, V 1

c )
δ−→ H1(Γ,C) −→ H1(Γ, V 0);

and H1(Γ, V 0) = 0 by (E.33). The coboundary mapping δ in this exact sequence
can be described explicitly by a diagram chase through the cochain complex
associated to the exact sequence of Γ homomorphisms (E.35), the commutative
diagram

(E.37)

0 −−−−→ C0(Γ,C) −−−−→ C0(Γ, V 0)
d−−−−→ C0(Γ, V 1

c ) −−−−→ 0

δ

y δ

y δ

y
0 −−−−→ C1(Γ,C) −−−−→ C1(Γ, V 0)

d−−−−→ C1(Γ, V 1
c ) −−−−→ 0

δ

y δ

y δ

y
0 −−−−→ C2(Γ,C) −−−−→ C2(Γ, V 0)

d−−−−→ C2(Γ, V 1
c ) −−−−→ 0

δ

y δ

y δ

y
An inhomogeneous cocycle φ ∈ C0(Γ, V 1

c ) representing a cohomology class in

H0(Γ, V 1
c ) is just a closed differential form on the universal covering space M̃

that is invariant under the covering translation group as in (E.15). This differ-
ential form can be written as the exterior derivative φ = df of a C∞ function f
on M̃ , and this function in turn is a cochain f ∈ C0(Γ, V 0) that maps to φ un-
der the Γ-homomorphism d in the first line of the commutative diagram (E.37).
The coboundary of this cochain is a 1-cochain δf ∈ C1(Γ, V 0), which actually
is a cocycle contained in the cochain group C1(Γ,C); so by (E.22) it can be
viewed as a homomorphism p1(φ) ∈ Hom(Γ,C). By (E.13) this homomorphism
is given explicitly by

(E.38) p1(φ)(T ) = δf(T ) = f(Tz)− f(z) =

∫ Tz

z

φ

so it is just the usual period class of the closed differential form φ; thus the
exact cohomology sequence (E.36) reduces to the deRham isomorphism

(E.39) p1 :
Γ(M, E1

c )

dΓ(M, E0)

∼=−→ H1(Γ,C) = Hom(Γ,C)

where p1 is the usual period mapping (E.38).
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For a possibly more interesting and less familiar result, the next segment of
the exact cohomology sequence associated to the exact sequence (E.35) is the
exact sequence

H1(Γ, V 0) −→ H1(Γ, V 1
c )

δ−→ H2(Γ,C) −→ H2(Γ, V 0);

and since H1(Γ, V 0) = H2(Γ, V 0) = 0 by (E.33) this reduces to the isomorphism

(E.40) δ : H1(Γ, V 1
c )

∼=−→ H2(Γ,C).

The coboundary mapping giving this isomorphism can be described explicitly
by another diagram chase through the commutative diagram (E.37). A cocycle
in C1(Γ, V 1

c ) representing a cohomology class θ ∈ H1(M,V 1
c ) is a collection

of C∞ closed differential 1-forms θ(T, z) on the universal covering space M̃
such that θ(I, z) = 0 and that θ(T1T2, z) = θ(T1, T2z) + θ(T2, z), the cocycle
condition (E.13). Each of these differential forms can be written as the exterior

derivative θ(T, z) = df(T, z) of a C∞ function f(T, z) on M̃ , and this collection
of functions is a cochain f ∈ C1(Γ, V 0) that maps to the cochain θ under the
Γ-homomorphism d in the second line of the commutative diagram (E.37). The
coboundary of this cochain is a cochain δf ∈ C2(Γ, V 0), which actually is a
cocycle contained in the cochain group C2(Γ,C). By (E.13) this cocycle is
given explicitly by

(E.41) δf(S, T ) = f(S, Tz) + f(T, z)− f(ST, z).

The next segment of the exact cohomology sequence arising from the exact
sequence of sheaves (E.34) is

H1(M̃, E0)
d−→ H1(M̃, E1

c )
δ−→ H2(M̃,C) −→ H2(M̃, E0);

and H1(M̃, E0) = H2(M̃, E0) = 0 since E0 is a fine sheaf while H2(M̃,C) = 0

since the universal covering space M̃ is contractible, so this exact sequence
reduces to the identity

(E.42) H1(M̃, E1
c ) = 0.

The exact cohomology sequence arising from the exact sequence of sheaves

(E.43) 0 −→ E1
c −→ E1 d−→ E2 −→ 0

on the universal covering space M̃ includes the segment

0 −→ Γ(M̃, E1
c ) −→ Γ(M̃, E1)

d−→ Γ(M̃, E2)
δ−→ H1(M̃, E1

c ),

in which H1(M̃, E1
c ) = 0 by (E.42); so this amounts to the exact sequence of

Γ-homomorphisms

(E.44) 0 −→ V 1
c −→ V 1 d−→ V 2 −→ 0,
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from which there follows the exact cohomology sequence containing the segment

0 −→ H0(Γ, V 1
c ) −→ H0(Γ, V 1)

d−→ H0(Γ, V 2)
δ−→ H1(Γ, V 1

c ) −→ H1(Γ, V 1).

Since H1(Γ, V 1) = 0 by (E.33) while H0(Γ, V q) = Γ(M, Eq) by (E.32) this
reduces to the isomorphism

(E.45) δ :
Γ(M, E2)

dΓ(M, E1)

∼=−→ H1(Γ, V 1
c ).

The coboundary mapping giving this isomorphism can be described explicitly by
a diagram chase through the cochain complex associated to the exact sequence
of Γ-homomorphisms (E.44), the commutative diagram

(E.46)

0 −−−−→ C0(Γ, V 1
c ) −−−−→ C0(Γ, V 1)

d−−−−→ C0(Γ, V 2) −−−−→ 0

δ

y δ

y δ

y
0 −−−−→ C1(Γ, V 1

c ) −−−−→ C1(Γ, V 1)
d−−−−→ C1(Γ, V 2) −−−−→ 0.

An inhomogeneous cocycle φ ∈ C0(Γ, V 2) representing a cohomology class in

H0(Γ, V 2) is a C∞ differential 2-form on the universal covering space M̃ that
is invariant under the covering translation group, as in (E.15). Since φ is au-
tomatically closed it can be written as the exterior derivative φ = dψ of a
C∞ differential 1-form ψ on M̃ , and this differential form in turn is a cochain
ψ ∈ C0(Γ, V 1) that maps to φ under the Γ-homomorphism d in the first line
of the commutative diagram (E.46). The coboundary of this cochain is a 1-
cochain δψ ∈ C1(Γ, V 1), which actually is a cocycle contained in the cochain
group C1(Γ, V 1

c ) and represents the cohomology class that is the image of the
class φ under the isomorphism (E.45); by (E.13) this cocycle is explicitly

(E.47) δ(φ)(T ) = δψ(T ) = ψ(Tz)− ψ(z).

Combining the isomorphisms (E.40) and (E.45) yields the isomorphism

(E.48) p2 :
Γ(M, E2)

dΓ(M, E1)

∼=−→ H2(Γ,C).

Combining the explicit descriptions of the isomorphisms (E.40) and (E.45) given
in (E.41) and (E.47) shows that the isomorphism p2 associates to the differential
2-form φ on the surface M the cohomology class in H2(Γ,C) represented by the
cocycle p2(φ) ∈ Z2(Γ,C) for which

p2(φ)(S, T ) = f(S, Tz) + f(T, z)− f(ST, z)(E.49)

where φ = dψ and ψ(Tz)− ψ(z) = df(T, z).

This too can be viewed as a period isomorphism, extending (E.39) to the next
higher dimension.
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The more familiar period mapping of course is the isomorphism

(E.50) p :
Γ(M, E2)

dΓ(M, E1)

∼=−→ C

that associates to any C∞ differential form φ ∈ Γ(M, E2) its period p(φ) =
∫
M
φ;

that this mapping is an isomorphism is just the classical deRham theorem.
Combining the two isomorphisms (E.48) and (E.50) leads to an isomorphism

(E.51) p · p−1
2 : H2(Γ,C)

∼=−→ C,

which can be described quite explicitly in terms of a marking of the surface M .
As discussed in Appendix D.1, a marking of a compact Riemann surface M of
genus g > 0 is a representation of M as a sphere with g handles together with
the choice of a base point z0 ∈ M̃ in the universal covering space of M and
a collection of 2g simple closed paths αi, βi ⊂ M as in Figure D.1. When the
paths αi and βi are lifted to simple paths α̃i, β̃i ⊂ M̃ beginning at the base
point z0 ∈ M̃ their end points are Aiz0 and Biz0, where Ai, Bi ∈ Γ are covering
translations corresponding to the homotopy classes of the paths α,βi; and the

surface M can be recaptured from the fundamental domain ∆ ⊂ M̃ bounded
by pairs of translates of the paths α̃i, β̃i by identifying the boundary paths as
in Figure D.2. The covering translations Ai, Bi are generators of the group Γ
and are subject to the single relation C1 · C2 · · ·Cg = I for the commutators
Ci = [Ai, Bi]. Alternatively the group Γ has a presentation as the quotient Γ =
F/K of the free group F on 2g generators Ãi, B̃i, representing the generators
Ai, Bi of Γ, modulo the normal subgroup K ⊂ F generated by the element
C̃ = C̃1 · C̃2 · · · C̃g for the commutators C̃i = [Ãi, B̃i].

Theorem E.4 In terms of the presentation of the covering translation group Γ
of a compact Riemann surface M of genus g > 0 derived from a marking of M ,
the image under the isomorphism p · p−1

2 : H2(Γ,C) −→ C of the cohomology
class v ∈ H2(Γ,C) represented by a cocycle v(S, T ) ∈ Z2(Γ,C) is the complex
number

p · p−1
2 (v) =

g∑
i=1

(
v(C1 · · ·Ci−1, Ci)

(E.52)

−v(Ci, BiAi) + v(Ai, Bi)− v(Bi, Ai)

)
.

Proof: It follows from the isomorphism (E.48) in the explicit form (E.49) that,
after replacing the cocycle v(S, T ) by a cohomologous cocycle if necessary, it
can be assumed that v(S, T ) = f(S, Tz) + f(T, z) − f(ST, z) for some C∞

functions f(T, z) on M̃ indexed by covering translations T ∈ Γ, where df(T, z) =
ψ(Tz)−ψ(z) and dψ = φ is a differential form φ ∈ Γ(M, E2); thus v = p2(φ) and
consequently p·p−1

2 (v) = p(φ) =
∫
M
φ. The functions f(T, z) can be modified by
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a suitable additive constant so that f(T, z0) = 0 for each T ∈ Γ, which amounts
to replacing the cocycle v(S, T ) by yet another cohomologous cocycle; and then
v(S, T ) = f(S, Tz0). By Stokes’s Theorem for the region ∆ in Figure D.2 it
follows that

p · p−1
2 (v) =

∫
M

φ =

∫
∆

dψ =

∫
∂∆

ψ

=

g∑
i=1

∫
C1···Ci−1α̃i−C1···CiBiα̃i

ψ(z)

+

g∑
i=1

∫
C1···Ci−1Aiβ̃i−C1···Ciβ̃i

ψ(z)

=

g∑
i=1

∫
α̃i

(
ψ(C1 · · ·Ci−1z)− ψ(C1 · · ·CiBiz)

)
+

g∑
i=1

∫
β̃i

(
ψ(C1 · · ·Ci−1Aiz)− ψ(C1 · · ·Ciz)

)
=

g∑
i=1

∫
α̃i

(
df(C1 · · ·Ci−1, z)− df(C1 · · ·CiBi, z)

)
+

g∑
i=1

∫
β̃i

(
df(C1 · · ·Ci−1Ai, z)− df(C1 · · ·Ci, z)

)
=

g∑
i=1

(
f(C1 · · ·Ci−1, Aiz0)− f(C1 · · ·CiBi, Aiz0)

)
+

g∑
i=1

(
f(C1 · · ·Ci−1Ai, Biz0)− f(C1 · · ·Ci, Biz0)

)
=

g∑
i=1

(
v(C1 · · ·Ci−1, Ai)− v(C1 · · ·CiBi, Ai)

)
+

g∑
i=1

(
v(C1 · · ·Ci−1Ai, Bi)− v(C1 · · ·Ci, Bi)

)
.

By using the cocycle condition

v(T1T2, T3) = v(T1, T2T3)− v(T1, T2) + v(T2, T3)

following from (E.13) and noting that

v(C1 . . . Ci−1 · Ci, BiAi) = v(C1 . . . Ci−1, AiBi)

−v(C1 . . . Ci−1, Ci) + v(Ci, BiAi)
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this can be rewritten

p · p−1
2 (v) =

g∑
i=1

(
v(C1 · · ·Ci−1, AiBi)− v(C1 · · ·Ci, BiAi)

+v(Ai, Bi)− v(Bi, Ai)
)

=

g∑
i=1

(
v(C1 · · ·Ci−1, Ci)

−v(Ci, BiAi) + v(Ai, Bi)− v(Bi, Ai)
)
,

and that suffices to conclude the proof.

The explicit form (E.52) of the isomorphism p·p−1
2 can be interpreted alterna-

tively in terms of Hopf’s Theorem in the simplified form given in Corollary E.3.
A cohomology class v ∈ H2(Γ,C) is determined uniquely by its image p∗(v)
under the isomorphism

(E.53) p∗ : H2(Γ,C) −→ Hom(K/[K,F ],C)

of (E.29); and since the group K is generated by the single element C̃ ∈ K
the image homomorphism p∗(v) in turn is determined uniquely by its value
p∗(v)(C̃) ∈ C on this generator.

Corollary E.5 In terms of the presentation of the covering translation group Γ
of a compact Riemann surface M of genus g > 0 derived from a marking of M ,
for which Γ ∼= F/K where K ⊂ F is the normal subgroup of the free group F
generated by a single commutator C̃ ∈ F , the image under the isomorphism p∗ of
the cohomology class v ∈ H2(Γ,C) represented by a cocycle v(S, T ) ∈ Z2(Γ,C)
is the homomorphism p∗(v) ∈ Hom(K/[K,F ],C) characterized by

(E.54) p∗(v)(C̃) = −p · p−1
2 (v)

where p · p−1
2 (v) has the explicit form as in the preceding theorem.

Proof: If v(S, T ) ∈ Z2(Γ,C) is a cocycle representing the cohomology class
v ∈ H2(Γ,C) then by Corollary E.3 the image homomorphism p∗(v) is the
restriction to K ⊂ [F, F ] of the mapping w : [F, F ] −→ C determined by the
cocycle v(S, T ) through the two conditions (E.30) and (E.31). From (E.30) it
follows that

w(C̃i) = w([Ãi, B̃i]) = v(Ci, BiAi)− v(Ai, Bi) + v(Bi, Ai).

and from (E.31) it follows by induction on g that

w(C̃1 · · · C̃g) =

g∑
i=1

(
w(C̃i)− v(C1 · · ·Ci−1, Ci)

)
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with the understanding that v(C1 · · ·Ci−1, Ci) = 0 if i = 1. Combining these
two observations shows that

p∗(v)(C̃) = w(C̃) = w(C̃1C̃2 · · · C̃g)

=

g∑
i=1

(
v(Ci, BiAi)− v(Ai, Bi) + v(Bi, Ai)

−v(C1 · · ·Ci−1, Ci)

)
,

so in view of (E.52) it follows that p∗(C̃) = −p ·p−1
2 , which suffices for the proof.

The negative sign in (E.54) is yet another instance of conventional choices
made in interpreting abstract cohomology groups in concrete terms, such as
the convention that associates to a divisor d the holomorphic line bundle ζd =
δ(−d) as discussed on page 6. Some useful properties of the cohomology of
surface groups follow from these various results about the period classes of
closed differential forms on a compact Riemann surface.

Theorem E.6 If M is a compact Riemann surface of genus g > 0 with the
covering translation group Γ, and if v ∈ H2(Γ,C) is a cohomology class such
that p ·p−1

2 (v) ∈ Z, then the cohomology class v can be represented by an integral
cocycle v(S, T ) ∈ Z2(Γ,Z).

Proof: Choose a marking of the surface M , in terms of which the covering
translation group Γ can be presented as the quotient Γ = F/K of a free grop
F modulo the normal subgroup K ⊂ F generated by a single commutator
C̃ ∈ K ⊂ [F, F ] as before. For any cohomology class v ∈ H2(Γ,C) the image
p∗(v) ∈ Hom(K/[K,F ],Z) under the isomorphism (E.53) is the homomorphism
that is characterized by p∗(v)(C̃) = −p · p−1

2 (v) as in Theorem E.5; therefore
if p · p−1

2 (v) ∈ Z then p∗(v)(C̃) ∈ Z, and since K is generated by the single
commutator C̃ it follows further that p∗(v) ∈ Hom(K/[K,F ],Z). Corollary E.3
for the case that V = Z is the isomorphism p∗ : H2(Γ,Z) −→ Hom(K/[K,F ],Z),
and consequently p∗(v) is the image of an integral cohomology class so the
cohomology class v can be represented by an integral cocycle, which suffices to
conclude the proof.

A special case of a general construction in the cohomology of groups plays
a role in the study of surface groups. To any two inhomogeneous 1-cocycles
vi ∈ Z1(Γ,C) = Hom(Γ,C) of the group Γ acting trivially on the complex
numbers C there can be associated the 2-cocycle v1 ∪ v2 ∈ C2(Γ,C) defined by

(E.55) (v1 ∪ v2)(T1, T2) = v1(T1) · v2(T2) for all T1, T2 ∈ Γ;
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that it is a cocycle can be demonstrated by noting by (E.13) that

δv(T1, T2, T3) = v(T1, T2)− v(T2, T3) + v(T1T2, T3)− v(T1, T2T3)

= v1(T1)v2(T2)− v1(T2)v2(T3) +
(
v1(T1) + v1(T2)

)
v2(T3)

−v1(T1)
(
v2(T2) + v2(T3)

)
= 0.

The cohomology class of this cocycle is called the cup product of the cohomology
classes vi ∈ H1(Γ,C) and also is denoted by v1∪v2. This operation is a reflection
in the cohomology of groups of the exterior product of differential forms, in the
following sense.

Theorem E.7 If φi ∈ Γ(M, E1
c ) are closed differential 1-forms on a compact

Riemann surface M of genus g > 0 the period period class p2(φ1∧φ2) ∈ H2(Γ,C)
of their exterior product can be expressed in terms of the period classes p1(φi) ∈
H1(Γ,C) of theses 1-forms by

(E.56) p2(φ1 ∧ φ2) = p1(φ1) ∪ p1(φ2).

Proof: If φi(z) = dfi(z) for some functions fi ∈ Γ(M̃, E0) then as in (E.38)
the period classes of these differential forms are represented by the cocycles
vi(T ) = fi(Tz) − fi(z) for any covering translation T ∈ Γ. The product form
φ(z) = φ1(z) ∧ φ2(z) can be written as the derivative φ(z) = dψ(z) of the

differential form ψ(z) = f1(z)φ2(z) on M̃ ; and ψ(Tz)− ψ(z) = v1(T ) · φ2(z) =
df(T, z) for the function f(T, z) = v1(T ) ·f2(z). It then follows from (E.49) that
the period class of the differential form φ is represented by the cocycle

v(S, T ) = v1(S)f2(Tz) + v1(T ) · f2(z)− v1(ST ) · f2(z)

= v1(S) ·
(
v1(T ) + f2(z)

)
+ v1(T ) · f2(z)− v1(ST ) · f2(z)

= v1(S) · v1(T ),

and that suffices to conclude the proof.

The factors of automorphy describing holomorphic line bundles over compact
Riemann surfaces can be interpreted in terms of the cohomology of groups. The
exact sequence of sheaves

(E.57) 0 −→ Z ι−→ O e−→ O∗ −→ 0

over the universal covering space M̃ of a compact Riemann surface M of genus
g > 0 as in (1.38), in which e(f) = exp 2πif for any f ∈ O, leads to an exact
cohomology sequence beginning

(E.58) 0 −→ Γ(M̃,Z)
ι−→ Γ(M̃,O)

e−→ Γ(M̃,O∗) −→ 0,

since H1(M̃,Z) = 0 for the simply connected surface M̃ ; and there is the nat-

ural identification Γ(M̃,Z) ∼= Z. When the covering translation group Γ of
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the surface M acts on the right on these groups of cross-sections by setting
(f |T )(z) = f(Tz) the exact sequence (E.58) can be viewed as an exact sequence
of Γ-homomorphisms; and it leads to an exact group cohomology sequence con-
taining the segment

(E.59)

H1
(
Γ,Γ(M̃,O)

) e−→ H1
(
Γ,Γ(M̃,O∗)

) δ−→ H2
(
Γ,Z)

) ι−→ H2
(
Γ,Γ(M̃,O)

)
.

An inhomogeneous 1-cocycle λ ∈ Z1
(
Γ,Γ(M̃,O∗)

)
is a collection of holomor-

phic and nowhere vanishing functions λ(T, z) on M̃ such that λ(I, z) = 1 and
λ(ST, z) = λ(S, Tz)λ(T, z), the multiplicative form of the cocycle condition
(E.17); hence it is a holomorphic factor of automorphy for the action of the
covering translation group Γ. A 1-coboundary is a 1-cocyle λ(T, z) of the form

λ(T, z) = h(Tz)/h(z) for a holomorphic nowhere vanishing function h(z) on M̃ ,
the multiplicative form of (E.18); hence it is a holomorphically trivial holomor-

phic factor of automorphy. Therefore the cohomology group H1
(
Γ,Γ(M̃,O∗)

)
can be identified with the group of holomorphic equivalence classes of holomor-
phic factors of automorphy for the covering translation group of the surface M ,
which by Theorem 3.11 in turn can be identified with the group of holomor-
phic equivalence classes of holomorphic line bundles over M . From the usual
chase through the diagram of cochain groups associated to the exact sequence
of Γ-homomorphisms (E.58), the diagram analogous to (E.37), it follows that
the coboundary mapping

(E.60) δ : H1
(
Γ,Γ(M̃,O∗)

)
−→ H2(Γ,Z)

associates to the cohomology class represented by a factor of automorphy λ(T, z)
the cohomology class δ(λ) ∈ H2(Γ,Z) represented by the cocycle δ(λ)(S, T ) ∈
Z2(Γ,Z) given explicitly by

(E.61) δ(λ)(S, T ) = f(S, Tz) + f(T, z)− f(ST, z)

where λ(T, z) = exp 2πif(T, z); this cohomology class is called the characteristic
class of the factor of automorphy λ(T, z). Parallel constructions can be carried
out for the sheaf C of germs of continuous functions and the sheaf E of germs
of C∞ functions on M̃ ; so the cohomology group H1(Γ,Γ(M̃, C∗)) can be iden-
tified and the group of equivalence classes of continuous factors of automorphy
while the group H1(Γ,Γ(M̃, E∗)) can be identified with the group of equivalence
classes of C∞ factors of automorphy. In these cases the analogues of the exact
sequence (E.59) reduce to the isomorphisms

δ : H1
(
Γ,Γ(M̃, C∗)

) ∼=−→ H2(Γ,Z),

δ : H1
(
Γ,Γ(M̃, E∗)

) ∼=−→ H2(Γ,Z),

since Hi(Γ,Γ(M̃, E)) = 0 for i > 0 by (E.33) and Hi(Γ,Γ(M̃, C)) = 0 for i > 0
by the corresponding argument. Thus the characteristic class of a holomorphic
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factor of automorphy provides a complete description of the continuous or C∞
equivalence class of that factor of automorphy.

Theorem E.8 If λ(T, z) is a holomorphic factor of automorphy for the covering
translation group Γ of a compact Riemann surface M of genus g > 0 then the
image p · p−1

2

(
δ(λ)

)
∈ Z of the characteristic class δ(λ) ∈ H2(Γ,Z) of the factor

of automorphy λ(T, z) is equal to the characteristic class of the holomorphic line
bundle represented by that factor of automorphy.

Proof: A meromorphic relatively automorphic function f(z) for the factor of

automorphy λ(T, z) ∈ H1(Γ,Γ(M̃,O∗)) corresponds to a meromorphic cross-
section of the holomorphic line bundle λ represented by that factor of automor-
phy, as in Theorem 3.11; so by definition (1.14) the characteristic class of the
line bundle λ is the integer deg d(f), where d(f) is the divisor of the function

f(z) on the Riemann surface M . If M is identified with the quotient M = M̃/Γ

of its universal covering space M̃ by the group Γ of covering translations and if
∆ ⊂ M̃ is a fundamental domain for the action of Γ on M̃ as in the discussion
of marked surfaces in Appendix D.1, where ∆ is chosen so that there are no
zeros or poles of the function f(z) on its boundary ∂∆, then

(E.62) deg d(f) =
1

2πi

∫
∂∆

d log f(z)

by the residue theorem. Now the factor of automorphy can be written λ(T, z) =

exp 2πif(T, z) for some holomorphic functions f(T, z) on M̃ ; and its character-
istic is the cohomology class represented by the 2-cocycle

δ(λ)(S, T ) = f(S, Tz) + f(T, z)− f(ST, z) ∈ Z2(Γ,Z).

If ψ(z) is any C∞ differential form on M̃ such that ψ(Tz) − ψ(z) = d f(T, z)
for all T ∈ Γ it follows from (E.49) that the cocycle δ(λ)(S, T ) represents the
period class p2(φ) of the differenteial form φ = dψ, and consequently that

(E.63) p · p−1
2

(
δ(λ)

)
= p(φ) =

∫
M

φ.

The absolute value |f(z)|2 of the relatively automorphic function f(z) is a well

defined positive C∞ function on M̃ except at the zeros and poles of the meromor-
phic function f(z), and |f(Tz)|2 = |λ(T, z)|2 ·|f(z)|2 for all covering translations
T ∈ Γ. The function |f(z)|2 can be modified in small open neighborhoods of
the zeros or poles of the meromorphic function f(z) to yield a strictly positive

C∞ function r(z) on M̃ that is equal to |f(z)|2 except near these zeros or poles,
in particular that is equal to |f(z)|2 on the boundary ∂∆, and that satisfies
r(Tz) = |λ(T, z)|2r(z) for all covering translations T ∈ Γ. The C∞ differential
form ψ(z) = 1

2πi∂ log r(z) then satisfies

ψ(Tz) =
1

2πi
∂ log r(Tz) =

1

2πi
∂
(

log r(z) + log λ(T, z) + log λ(T, z)
)

= ψ(z) + d log λ(T, z),
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since ∂ log λ(T, z) = d log λ(T, z) and ∂ log λ(T, z) = 0; consequently if φ(z) =
dψ(z) it follows from (E.62) and (E.63) that

p · p−1
2

(
δ(λ)

)
=

∫
M

φ =

∫
∆

dψ =

∫
∂∆

ψ

=
1

2πi

∫
∂∆

∂ log r(z) =
1

2πi

∫
∂∆

d log |f(z)|2

=
1

2πi

∫
∂∆

d log f(z) = deg d(f),

since r(z) = |f(z)|2 on ∂∆, and that suffices to conclude the proof.
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Appendix F

Complex Tori

F.1 Period Matrices

A lattice subgroup L ⊂ Cg in the space of g complex variables is an additive
subgroup generated by 2g vectors in Cg that are linearly independent over the
real numbers. These 2g vectors viewed as column vectors of length g can be
taken as the columns of a g × 2g complex matrix Ω, and L = ΩZ2g ⊂ Cg also
is called the lattice subgroup described by the period matrix Ω and is denoted
by L = L(Ω). A complex g × 2g matrix is called a period matrix, and a period
matrix with columns that are linearly independent over the real numbers is
called a nonsingular period matrix. To a g × 2g period matrix Ω there can be
associated the 2g×2g matrix

(
Ω
Ω

)
, called the full period matrix associated to the

period matrix Ω.

Lemma F.1 A g × 2g period matrix Ω is a nonsingular period matrix if and
only if its associated 2g × 2g full period matrix is an invertible square matrix.

Proof: If the column vectors of the period matrix Ω are linearly dependent
over the real numbers there is a nontrivial real column vector x ∈ R2g such that
Ω · x = 0. Since the vector x is real Ω · x = 0 as well, so the 2g × 2g complex
matrix

(
Ω
Ω

)
is singular. Conversely if the square matrix

(
Ω
Ω

)
is singular there is

a nontrivial complex column vector z = x+ iy ∈ C2g such that Ω · z = Ω · z = 0;

then Ω · z = Ω · z = 0 as well, so Ω · x = Ω · y = 0, and since not both x = 0
and y = 0 the columns of Ω must be linearly dependent over the real numbers.
That suffices to conclude the proof.

Theorem F.2 Two nonsingular g× 2g period matrices Ω1 and Ω2 describe the
same lattice subgroup L(Ω1) = L(Ω2) if and only if Ω1 = Ω2Q

−1 for some
matrix Q ∈ Gl(2g,Z).

Proof: The group Gl(2g,Z) of 2g × 2g integral matrices with integral inverses
can be characterized as the set of 2g×2g complex matrices Q such that QZ2g =

523
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Z2g, since a complex matrix Q clearly has this property if and only if it has
integral entries and an integral inverse. If Ω2 = Ω1Q where Q ∈ Gl(2g,Z) then
L(Ω2) = Ω2 Z2g = Ω1QZ2g = Ω1 Z2g = L(Ω1). Conversely if L(Ω2) = L(Ω1)
then Ω2 Z2g = Ω1 Z2g, and by complex conjugation Ω2 Z2g = Ω1 Z2g as well so
the associated full period matrices satisfy(

Ω2

Ω2

)
Z2g =

(
Ω1

Ω1

)
Z2g.

The full period matrices are nonsingular by Lemma F.1 so the matrix

Q =

(
Ω1

Ω1

)−1(
Ω2

Ω2

)
is well defined; this matrix satisfies QZ2g = Z2g so Q ∈ Gl(2g,Z), and since
Ω2 = Ω1Q that suffices to conclude the proof.

The linear mapping A : Cg −→ Cg described by a nonsingular complex
matrix A ∈ Gl(g,C) takes a lattice subgroup L ⊂ Cg to the lattice subgroup
AL ⊂ Cg; two lattice subgroups related in this way are called linearly equivalent
lattice subgroups.

Corollary F.3 Lattice subgroups L(Ω1) and L(Ω2) in Cg are linearly equivalent
if and only if Ω1 = AΩ2Q

−1 for matrices A ∈ Gl(g,C) and Q ∈ Gl(2g,Z).

Proof: If L(Ω1) = AL(Ω2) = L(AΩ2) for some matrix A ∈ Gl(g,C) then Ω1 =
AΩ2Q

−1 for some matrix Q ∈ Gl(2g,Z) by the preceding theorem. Conversely
if Ω1 = AΩ2Q

−1 for some matrices A ∈ Gl(g,C) and Q ∈ Gl(2g,Z) then
L(Ω1) = Ω1Z2g = AΩ2Q

−1Z2g = AΩ2 Z2g = AL(Ω2). That suffices for the
proof.

Two g× 2g period matrices Ω1 and Ω2 are called equivalent period matrices
if Ω1 = AΩ2Q

−1 for matrices A ∈ Gl(g,C) and Q ∈ Gl(2g,Z), and the equiva-
lence of these two period matrices is denoted by Ω1 ' Ω2. If it is only the case
that Q ∈ Gl(2g,Q), that Q is a nonsingular rational matrix, the two matrices
are called weakly equivalent period matrices, and the weak equivalence of these
two period matrices is denoted by Ω1 ∼ Ω2. It is quite evident that both are
equivalence relations in the customary sense, and that equivalent period ma-
trices are weakly equivalent period matrices. To summarize, the equivalence of
period matrices is defined by

(F.1) Ω ' AΩQ−1 for any A ∈ Gl(g,C), Q ∈ Gl(2g,Z),

and the weak equivalence of period matrices is defined by

(F.2) Ω ∼ AΩQ−1 for any A ∈ Gl(g,C), Q ∈ Gl(2g,Q).

In these terms the preceding corollary can be restated as follows.
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Corollary F.4 Two lattice subgroups L(Ω1) and L(Ω2) in Cg are linearly equiv-
alent if and only if the period matrices Ω1 and Ω2 are equivalent period matrices.

Proof: This is equivalent to the preceding Corollary in view of the definition
of equivalent period matrices, so no further proof is necessary.

Perhaps it should be repeated for emphasis that equivalence and weak equiv-
alence of period matrices are defined for arbitrary period matrices, not nec-
essarily just for nonsingular period matrices; but these equivalences preserve
nonsingularity.

Corollary F.5 A period matrix weakly equivalent (or equivalent) to a nonsin-
gular period matrix is itself a nonsingular period matrix.

Proof: It is course sufficient to demonstrate this corollary just for weakly equiv-
alent period matrices. If Ω1 and Ω2 are weakly equivalent period matrices then
by definition Ω2 = AΩ1Q

−1 for some nonsingular square matrices A and Q, so
the associated full period matrices satisfy(

Ω2

Ω2

)
=

(
A 0
0 A

)(
Ω1

Ω1

)
Q−1.

Since

(
A 0
0 A

)
and Q are nonsingular matrices it follows that if one of the

two full period matrices is nonsingular so is the other; the desired result is then
a consequence of Lemma F.1, and that suffices for the proof.

A complex torus of dimension g is the quotient Cg/L of the additive group
Cg by a lattice subgroup L ⊂ Cg. As a quotient group a complex torus has
the natural structure of an abelian group. The natural quotient mapping π :
Cg −→ Cg/L is the universal covering projection, and the complex torus Cg/L
inherits from its universal covering space Cg a natural complex structure; with
this complex structure the complex torus is a compact complex abelian Lie
group. For many purposes though the primary interest is in just the complex
manifold structure of a complex torus rather than its full complex Lie group
structure.

Theorem F.6 A holomorphic mapping f : Cg1/L1 −→ Cg2/L2 between two
complex tori is induced by an affine mapping f̃(z) = Az + a between their
universal covering spaces, where A ∈ Cg2×g1 and a ∈ Cg2 . An affine mapping
f(z) = Az + a induces a holomorphic mapping f : Cg1/L1 −→ Cg2/L2 between
the complex tori for lattice subgroups L1 ⊂ Cg1 and L2 ⊂ Cg2 if and only if
AL1 ⊂ L2; and this mapping is a group homomorphism if and only if a ∈ L2.

Proof: A holomorphic mapping f : Cg1/L1 −→ Cg2/L2 lifts to a holomorphic
mapping f̃ : Cg1 −→ Cg2 between the universal covering spaces of these two
complex manifolds. A holomorphic mapping f̃ : Cg1 −→ Cg2 induces a holo-
morphic mapping f : Cg1/L1 −→ Cg2/L2 between the two quotient groups if
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and only if it takes points in Cg1 that differ by a lattice vector in L1 to points
in Cg2 that differ by a lattice vector in L2, hence if and only if for any point
z ∈ Cg1 and any lattice vector λ1 ∈ L1 there is a lattice vector λ2 ∈ L2 such
that

(F.3) f̃(z + λ1) = f̃(z) + λ2.

Since lattice subgroups are discrete the lattice vector λ2 must be independent
of the point z; so for any lattice vector λ1 there must be a lattice vector λ2 such
that (F.3) holds as an identity in the variable z ∈ Cg1 . The partial derivative
∂f̃/∂zj then is a holomorphic mapping from Cg1 to Cg2 that is invariant under
the lattice subgroup L1, so it is bounded in Cg1 and hence constant by the
maximum modulus theorem for vector-valued holomorphic mappings; therefore
the mapping f̃ must be of the form f̃(z) = Az + a for some complex matrix
A and complex vector a. For such a mapping (F.3) reduces to the condition
that for any lattice vector λ1 ∈ L1 there is a lattice vector λ2 ∈ L2 such that
Aλ1 = λ2, hence to the condition that AL1 ⊂ L2. A holomorphic mapping
f : Cg1/L1 −→ Cg2/L2 is a group homomorphism if and only if for any points
z1, z2 ∈ Cg1 the image of their sum is the sum of their images in the torus
Cg2/L2; for the mapping f(z) = Az+a that is the condition that A(z1+z2)+a =
(Az1 + a) + (Az2 + a)− l2 for some lattice vector l2 ∈ L2, and since the lattice
is discrete this must be an identity in the variables zi so it is just the condition
that a = l2 ∈ L2. That suffices to conclude the proof.

Corollary F.7 A holomorphic mapping between complex tori is the composition
of a group homomorphism from one torus to the other and a translation in the
image torus.

Proof: A holomorphic mapping f : Cg1/L1 −→ Cg2/L2 between two complex
tori is induced by an affine mapping f̃(z) = Az + a between their universal
covering spaces for a matrix A ∈ Cg2×g1 such that AL1 ⊂ L2, by the preceding
theorem. The mapping f̃ can be written as the composition f̃ = g̃ · h̃ where
g̃(z) = z + a and h̃(z) = Az. The mapping g̃(z) induces a translation g in the
torus Cg2/L2, and by the preceding theorem again the mapping h̃(z) induces a
group homomorphism h : Cg1/L1 −→ Cg2/L2 ; since f = g · h that suffices for
the proof.

The complex torus for the lattice subgroup L(Ω) described by a nonsingular
period matrix Ω is denoted by J(Ω), so that J(Ω) = Cg/L(Ω). A Hurwitz
relation (A,Q) from a period matrix Ω1 ∈ Cg1×2g1 to a period matrix Ω2 ∈
Cg2×2g2 is defined to be a pair of matrices A ∈ Cg2×g1 and Q ∈ Z2g2×2g1 such
that

(F.4) AΩ1 = Ω2Q,

whether the period matrices are nonsingular period matrices or not. A Hur-
witz relation is not a symmetric relation, but rather involves a definite ordering
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of the period matrices Ω1 and Ω2. It is clear from (F.4) that if (A1, Q1) and
(A2, Q2) are Hurwitz relations from Ω1 to Ω2 then so is the linear combina-
tion n1(A1, Q1) + n2(A2, Q2) = (n1A1 + n2A2, n1Q1 + n2Q2) for any integers
n1, n2 ∈ Z; thus the set of Hurwitz relations from Ω1 to Ω2 form a Z-module. In
the special case that A ∈ Gl(g,C) and Q ∈ Gl(2g,Z) the Hurwitz relation (F.4)
when written Ω2 = AΩ1Q

−1 amounts to the equivalence (F.1) of the period
matrices Ω1 and Ω2.

Lemma F.8 If (A,Q) is a Hurwitz relation from a nonsingular period matrix
Ω1 to a nonsingular period matrix Ω2 then rank Q = 2 rank A and either one
of the matrices A or Q determines the other matrix uniquely.

Proof: It is evident that the Hurwitz relation (F.4) is equivalent to the relation

(F.5)

(
A 0
0 A

)(
Ω1

Ω1

)
=

(
Ω2

Ω2

)
Q

between the associated full period matrices. If the period matrices Ω1 and Ω2

are nonsingular period matrices the full period matrices are nonsingular square
matrices by Lemma F.1; hence it follows from (F.5) that rank Q = 2 rank A
and that either one of the matrices A or Q determines the other uniquely. That
suffices for the proof.

Theorem F.9 (i) Holomorphic mappings f : J(Ω1) −→ J(Ω2) from the com-
plex torus described by a nonsingular g1 × 2g1 period matrix Ω1 to the complex
torus described by a nonsingular g2×2g2 period matrix Ω2 are in one-to-one cor-
respondence with triples (A,Q, a0) where (A,Q) is a Hurwitz relation from Ω1

to Ω2 and a0 ∈ J(Ω2); the holomorphic mapping f corresponding to (A,Q, a0)
is that induced by the affine mapping f̃(z) = Az + a from Cg1 to Cg2 for any
point a ∈ Cg2 representing the point a0 ∈ J(Ω2).
(ii) A holomorphic mapping f : J(Ω1) −→ J(Ω2) between two complex tori of
the same dimension g corresponding to a Hurwitz relation (A, Q) from Ω1 to
Ω2 is a biholomorphic mapping if and only if A ∈ Gl(g,C) and Q ∈ Gl(2g,Z).

Proof: (i) By Theorem F.6 a holomorphic mapping f : J(Ω1) −→ J(Ω2) is in-
duced by an affine mapping f̃(z) = Az+a; and an affine mapping f̃(z) = Az+a
induces a holomorphic mapping f : J(Ω1) −→ J(Ω2) if and only if AL(Ω1) ⊂
L(Ω2), or equivalently if and only if AΩ1 = Ω2Q for some integral matrix
Q ∈ Z2g2×2g1 , which is just the condition that (A,Q) is a Hurwitz relation from
Ω1 to Ω2. Two affine mappings f1(z) = A1z+a1 and fz(z) = A1z+a1 induce the
same mapping f : J(Ω1) −→ J(Ω2) precisely when (A1−A2)z+(a1−a2) = z+λ2

for all points z ∈ Cg and some lattice vector λ2 ∈ L(Ω2), hence precisely when
A1 = A2 and a1 − a2 = λ2; that is the condition that the Hurwitz relations are
the same and that a1 and a2 represent the same point of J(Ω2).
(ii) Let f : J(Ω1) −→ J(Ω2) be a holomorphic mapping between two com-
plex tori of dimension g corresponding to a triple (A,Q, a) where (A,Q) is a
Hurwitz relation from Ω1 to Ω2. If A ∈ Gl(g,C) and Q ∈ Gl(2g,Z) then
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A−1 ∈ Gl(g,C) and Q−1 ∈ Gl(2g,Z), and it follows from the Hurwitz rela-
tion AΩ1 = Ω2Q that A−1Ω2 = Ω1Q

−1; thus (A−1, Q−1) is a Hurwitz relation
from Ω2 to Ω1, and hence the affine mapping h̃(z) = A−1z − A−1a describes
a holomorphic mapping h : J(Ω2) −→ J(Ω1). Since the affine mapping f̃ h̃ is
the identity mapping it follows that the induced mapping fh also is the identity
mapping, and consequently that f itself is a biholomorphic mapping. Conversely
if f : J(Ω1) −→ J(Ω2) is a biholomorphic mapping the inverse biholomorphic
mapping h = f−1 must be induced by an affine mapping h̃(z) = Bz + b. Since
the mappings f and h are inverse to one another, for any point z ∈ Cg that point
and the point f̃(h̃(z)) = A(Bz+b)+a ∈ Cg must represent the same point in the
torus J(Ω1); consequently there must be a lattice vector λ1 ∈ L(Ω1) such that
ABz+Ab+ a = z+λ1. This holds identically in z by continuity, hence AB = I
so A ∈ Gl(g,C); and it then follows from Lemma F.8 that Q ∈ Gl(2g,Z). That
suffices to conclude the proof.

The image of any holomorphic mapping between two complex tori is a holo-
morphic subvariety of the image manifold by Remmert’s Proper Mapping The-
orem1. The holomorphic mapping f : J(Ω1) −→ J(Ω2) corresponding to a Hur-
witz relation (A,Q) from Ω1 to Ω2 is induced by the affine mapping f̃(z) = Az+a
for some point a ∈ J(Ω2), so its image is a connected complex submanifold of
J(Ω2) of dimension equal to the rank of the matrix A. If rank A = dim J(Ω2)
the induced mapping f is surjective, with image the full complex torus J(Ω2). If
rank A = dimJ(Ω1) = dim J(Ω2) the mapping f is a surjective and locally bi-
holomorphic mapping between these two complex tori; such a mapping is called
an isogeny from the complex torus J(Ω1) to the complex torus J(Ω2). When
a Hurwitz relation (A,Q) determines an isogeny the matrix A is nonsingular,
and then Q also is nonsingular matrix by Lemma F.8; and since AΩ1 = Ω2Q
it follows that A−1Ω2 = Ω1Q

−1. Although Q−1 is not necessarily an integral
matrix it is at least a rational matrix, so qQ−1 will be integral for some integer
q; then (q A−1, q Q−1) is a Hurwitz relation from the period matrix Ω2 to the
period matrix Ω1. Thus if there is an isogeny from the complex torus J(Ω1)
to the complex torus J(Ω2) there also is an isogeny from the complex torus
J(Ω2) to the complex torus J(Ω1). Two complex tori are isogenous if there is
an isogeny from one to another; this clearly is an equivalence relation between
complex tori. Of course a biholomorphic mapping is a special case of an isogeny,
so biholomorphic complex tori are isogenous.

Theorem F.10 An isogeny f : J(Ω1) −→ J(Ω2) that is a group homomor-
phism induces a group isomorphism J(Ω1)/K ∼= J(Ω2) where K ⊂ J(Ω1) is a
finite subgroup; the mapping f exhibits the torus J(Ω1) as a finite unbranched
covering space of the torus J(Ω2).

Proof: By Theorem F.6 an isogeny f : J(Ω1) −→ J(Ω2) is induced by an
affine mapping f̃(z) = Az + a between the universal covering spaces of the
complex tori, and A must be a nonsingular matrix such that AL(Ω1) ⊂ L(Ω2);

1For a discussion of Remmert’s Proper Mapping Theorem see page 423 in Appendix A.3.
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this isogeny is a group homomorphism if and only if a ∈ L(Ω2), in which case
the mapping f also is induced by the linear mapping f̃(z) = Az. The kernel
K ⊂ J(Ω1) of the homomorphism f consists of those points of J(Ω1) represented
by vectors λ ∈ Cg such that Aλ ∈ L(Ω2); consequently K = K/L(Ω1) where
L(Ω1) ⊂ K = A−1L(Ω2) ⊂ Cg, and since A−1 is a linear isomorphism K is a
lattice subgroup of Cg. As the quotient of two lattice subgroups the group K
is a finite group. The representation

J(Ω2) =
Cg

L(Ω2)
∼=

A−1Cg

A−1L(Ω2)
=
Cg

K

exhibits Cg as the universal covering space of the complex torus J(Ω2) with cov-
ering translation group K. The subgroup L(Ω1) ⊂ K of the covering translation
group then corresponds to the sequence of covering projections

Cg −−−−→ Cg

L(Ω1)
−−−−→ Cg

K∥∥∥ ∥∥∥
J(Ω1) −−−−→ J(Ω2);

and since the groups are abelian L(Ω1) is a normal subgroup of K so J(Ω2) =
J(Ω1)/K, which suffices to conclude the proof.

Theorem F.11 The complex tori J(Ω1) and J(Ω2) described by nonsingular
period matrices Ω1 and Ω2 are biholomorphic if and only if the period matrices
Ω1 and Ω2 are equivalent, and are isogenous if and only if the period matrices
Ω1 and Ω2 are weakly equivalent.

Proof: By Theorem F.9 the tori J(Ω1) and J(Ω2) are biholomorphic if and
only if they are of the same dimension g and there are matrices A ∈ Gl(g,C)
and Q ∈ Gl(2g,Z) such that AΩ1 = Ω2Q; and that is precisely the condition
(F.1) that the two period matrices are equivalent. The two tori are isogenous if
and only they are of the same dimension g and there are matrices A ∈ Gl(g,C)
and Q ∈ Z2g×2g such that AΩ1 = Ω2Q; by Lemma F.8 the matrix Q has rank
2g so that Q ∈ Gl(2g,Q), and that is precisely the condition (F.2) that the two
period matrices are weakly equivalent. That suffices for the proof.

A useful alternative description of the complex torus J(Ω) involves a matrix
Π closely related to the period matrix Ω.

Theorem F.12 If Ω is a nonsingular period matrix

t(Ω

Ω

)−1

=

(
Π

Π

)
where Π also is a nonsingular period matrix.
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Proof: The full period matrix associated to the period matrix Ω is a nonsingular
2g × 2g matrix, so its inverse transpose conjugate exists and can be written in
the form

(
Π1

Π2

)
for some g × 2g period matrices Π1 and Π2. Since(

I 0
0 I

)
=

(
Ω

Ω

)t(Π1

Π2

)
=

(
Ω

Ω

)
(tΠ1

tΠ2) =

(
Ω tΠ1 Ω tΠ2

Ω tΠ1 Ω tΠ2

)
it follows that

Ω tΠ1 = Ω tΠ2 = I and Ω tΠ2 = Ω tΠ1 = 0.

By conjugation Ω tΠ2 = Ω tΠ2 = I and Ω tΠ2 = Ω tΠ2 = 0 as well, so

Ω (tΠ1 − tΠ2) = Ω (tΠ1 − tΠ2) = 0;

and since the full period matrix is nonsingular it follows that Π2 = Π1. The
inverse of the full period matrix of course is also nonsingular, so Π itself is a
nonsingular period matrix, and that suffices to conclude the proof.

The matrix Π of the preceding lemma is called the inverse period matrix to
Ω. That Π is the inverse period matrix to Ω when viewed as the identity

I =

(
Ω

Ω

)
·
t(

Π

Π

)
=

(
Ω

Ω

)
·
(
tΠ tΠ

)
=

 Ω tΠ Ω tΠ

Ω tΠ Ω tΠ


is equivalent to the conditions that

(F.6) Ω tΠ = 0 and Ω tΠ = I;

and that Π is the inverse period matrix to Ω when viewed as the identity

I =
t(Ω

Ω

)(
Π

Π

)
=
(
tΩ tΩ

)
·
(

Π

Π

)
= tΩ Π + tΩ Π

is equivalent to the condition that

(F.7) tΩ Π + tΩ Π = I.

Clearly if Π is the inverse period matrix to Ω then Ω is the inverse period matrix
to Π. Furthermore if Ω1 ' Ω2 so that Ω2 = AΩ1Q

−1 where A ∈ Gl(g,C) and
Q ∈ Gl(2g,Z) then (

Ω2

Ω2

)
=

(
A 0
0 A

)(
Ω1

Ω1

)
Q−1,

and the complex conjugate of the inverse transpose of this equation is the equa-
tion (

Π2

Π2

)
=

(
tA
−1

0
0 tA−1

)(
Π1

Π1

)
tQ,
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showing that Π2 = tA
−1

Π1
tQ and consequently that Π1 ' Π2. Similarly of

course if Ω1 ∼ Ω2 then Π1 ∼ Π2 by the same formula. The inverse period matrix
to a nonsingular period matrix can be defined more intrinsically in terms of the
real bilinear form

(F.8) < z,w >= 2<( tz w) = 2<
( g∑
i=1

ziwi

)
for any column vectors z = {zi}, w = {wi} ∈ Cg when Cg is viewed as the
real linear vector space Rg; here <(z) denotes the real part of the complex
number z. For most purposes it is sufficient to describe the lattice subgroup
L(Π) = ΠZ2g ⊂ Cg rather than the inverse period matrix Π itself.

Theorem F.13 If Ω ∈ Cg×2g is a nonsingular period matrix the lattice sub-
group L(Π) described by the inverse period matrix Π is the dual lattice subgroup
to L(Ω) in terms of the real bilinear form (F.8) in the sense that

L(Π) =
{
π ∈ Cg

∣∣∣ < ω, π >∈ Z for all ω ∈ L(Ω)
}
.

Proof: The lattice subgroup L(Ω) = ΩZ2g ⊂ Cg is generated over the integers
by the column vectors ωi ∈ Cg of the matrix Ω, where ωi = {ωki | 1 ≤ k ≤ g}
in terms of the entries ωki of the matrix Ω. The dual lattice then is generated
over the integers by the 2g column vectors πj ∈ Cg defined by the conditions
that < ωi, πj >= δij for 1 ≤ i, j ≤ 2g. If πj = {πkj | 1 ≤ k ≤ g} ∈ Cg
and Π is the matrix Π = {πkj} ∈ Cg×2g this duality condition is just that
δij = 2<( tωi πj) = tωiπj + tωiπj =

∑g
k=1

(
ωkiπkj +ωkiπkj

)
, or in matrix terms

I = tΩΠ + tΩΠ; and by (F.7) that is just the condition that Π is the inverse
period matrix to Ω, which suffices to conclude the proof.

For another use of the inverse period matrix, if Ω is a nonsingular period
matrix the columns of the 2g × 2g matrix

(
tΩ tΩ

)
are linearly independent

vectors, so there is a direct sum decomposition

(F.9) C2g = tΩCg ⊕ tΩCg

of the complex vector space C2g into two complementary linear subspaces, one
spanned by the columns of the matrix tΩ and the other spanned by the columns
of the matrix tΩ. It follows from (F.7) that any point t ∈ C2g can be written

(F.10) t = tΩ Πt+ tΩ Πt,

which is an explicit formula for splitting a vector t ∈ C2g into its components
in the direct sum decomposition (F.9); indeed by (F.6) with the matrices Ω and
Π interchanged the square matrices tΩΠ and tΩΠ are the natural projection
operators

tΩΠ : tΩCg ⊕ tΩCg −→ tΩCg

(F.11)
tΩΠ : tΩCg ⊕ tΩCg −→ tΩCg
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in the direct sum decomposition (F.9), since tΩΠ · tΩΠ = tΩΠ while both
tΩΠ · tΩt = tΩt and tΩΠ · tΩt = 0 for any t ∈ Cg, and correspondingly for
the complex conjugates. A particularly useful application of the inverse period
matrix suggested by these observations is the following.

Theorem F.14 If Ω is a nonsingular g × 2g period matrix there is the exact
sequence of abelian groups

0 −→ Z2g + tΩCg ι−→ C2g Π−→ Cg

ΠZ2g
−→ 0

where ι is the natural inclusion homomorphism and Π is the linear mapping
defined by the inverse period matrix to Ω.

Proof: The complex linear mapping Π : C2g −→ Cg defined by the inverse
period matrix Π is surjective and has as its kernel the linear subspace tΩCg,
as is evident from (F.6); and since this linear mapping takes the subgroup
Z2g ⊂ C2g to the lattice subgroup ΠZ2g ⊂ Cg that suffices for the proof.

Corollary F.15 The complex torus J(Ω) defined by a nonsingular period ma-
trix Ω can be described alternatively as the quotient group

J(Ω) =
C2g

Z2g + tΠCg

where Π is the inverse period matrix to Ω.

Proof: This follows immediately from the exact sequence of the preceding
theorem, when the roles of the period matrices Ω and Π are interchanged, since
the complex torus J(Ω) is the quotient J(Ω) = Cg/ΩZ2g, and that suffices for
the proof.

The inverse period matrix also can be used to provide alternative charac-
terizations of Hurwitz relations (F.4) between nonsingular period matrices in
terms of either the matrix A or the matrix Q.

Theorem F.16 Let Ω1 be a g1 × 2g1 nonsingular period matrix and Ω2 be a
g2 × 2g2 nonsingular period matrix.
(i) A matrix A ∈ Cg2×g1 is part of a Hurwitz relation (A,Q) from the period
matrix Ω1 to the period matrix Ω2 if and only if

2<( tΠ2AΩ1) ∈ Z2g2×2g1

where Π2 is the inverse period matrix to Ω2 and <(Z) denotes the real part of
the complex matrix Z; and Q = 2<( tΠ2AΩ1).
(ii) A matrix Q ∈ Z2g2×2g1 is part of a Hurwitz relation (A,Q) from the period
matrix Ω1 to the period matrix Ω2 if and only if

Ω2Q
tΠ1 = 0 ∈ Cg2×g1

where Π1 is the inverse period matrix to Ω1; and A = Ω2Q
tΠ1.
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Proof: A matrix A ∈ Cg2×g1 is part of a Hurwitz relation from the period
matrix Ω1 to the period matrix Ω2 if and only if there is a matrix Q ∈ Z2g2×2g1

satisfying (F.5); and that equation can be rewritten equivalently as

Q =
t(Π2

Π2

)(
A 0
0 A

)(
Ω1

Ω1

)
=
(
tΠ2

tΠ2

)(AΩ1

AΩ1

)
= tΠ2AΩ1 +tΠ2AΩ1

= 2<
(
tΠ2AΩ1

)
.

Similarly a matrix Q ∈ Z2g2×2g1 is part of a Hurwitz relation from the period
matrix Ω1 to the period matrix Ω2 if and only if there is a matrix A ∈ Cg2×g1

satisfying (F.5); and that equation can be rewritten equivalently as(
A 0
0 A

)
=

(
Ω2

Ω2

)
Q
t(Π1

Π1

)
=

(
Ω2Q

Ω2Q

)(
tΠ1

tΠ1

)
=

(
Ω2Q

tΠ1 Ω2Q
tΠ1

Ω2Q
tΠ1 Ω2Q

tΠ1

)
.

That suffices to conclude the proof.

Corollary F.17 Two nonsingular period matrices Ω1,Ω2 of the same rank g
are equivalent if and only if either of the following two equivalent conditions
hold:
(i) there is a matrix A ∈ Gl(g,C) such that 2<( tΠ2AΩ1) ∈ Gl(2g,Z) where Π2

is the inverse period matrix to Ω2;
(ii) there is a matrix Q ∈ Gl(2g,Z) such that Ω2Q

tΠ1 = 0 where Π1 is the
inverse period matrix to Ω1.

Proof: Two nonsingular period matrices Ω1,Ω2 of the same rank g are equiv-
alent if and only if there is a Hurwitz relation (A,Q) from the period matrix
Ω1 to the period matrix Ω2 where the matrices A and Q are invertible. By
Lemma F.8 it is enough just to show that one of the two matrices A or Q is
invertible. As in the proof of the preceding theorem, for a given matrix A the
matrix Q in the Hurwitz relation is Q = 2<( tΠ2AΩ1) while for a given matrix
Q there is such a matrix A if and only if Ω2Q

tΠ1 = 0, and that suffices to
conclude the proof.

Corollary F.18 Two nonsingular period matrices Ω1,Ω2 of the same rank g
are weakly equivalent if and only if either of the following two equivalent condi-
tions holds:
(i) there is a matrix A ∈ Gl(g,C) such that 2<( tΠ2AΩ1) ∈ Gl(2g,Q) where Π2

is the inverse period matrix to Ω2;
(ii) there is a matrix Q ∈ Gl(2g,Q) such that Ω2Q

tΠ1 = 0 where Π1 is the
inverse period matrix to Ω1.
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Proof: Two nonsingular period matrices Ω1,Ω2 of the same rank g are weakly
equivalent if and only if there is the analogue of a Hurwitz relation (A,Q) from
the period matrix Ω1 to the period matrix Ω2 in which the matrices A and Q
are invertible but Q is only rational rather than integral; with this modification
the proof is as that of the preceding corollary, and that suffices for the proof.

F.2 Topological Properties

Topologically a complex torus of dimension g is a product of 2g circles. To
make this more explicit, if Ω = (ω1, . . . , ω2g) is a nonsingular period matrix its
column vectors ωi ∈ Cg are linearly independent over the real numbers. The
real linear mapping that takes a vector t ∈ R2g to the vector z = Ωt ∈ Cg is an
isomorphism

(F.12) Ω : R2g −→ Cg

of real vector spaces that maps the standard basis column vector δj = {δjk}
in R2g to the column vector ωj ∈ Cg for 1 ≤ j ≤ 2g and consequently maps
the lattice subgroup Z2g ⊂ R2g to the lattice subgroup L(Ω) = ΩZ2g ⊂ Cg; it
therefore determines a one-to-one mapping

(F.13) Ω : R2g/Z2g −→ Cg/ΩZ2g

that identifies the real torus T = R2g/Z2g with the complex torus J(Ω) =
Cg/ΩZ2g topologically. If Π is the inverse period matrix to Ω as introduced in
Theorem F.12 then the real linear mapping that takes a vector z ∈ Cg to the
vector

(F.14) Π̃(z) = tΠz + tΠz ∈ R2g

is the real linear mapping inverse to (F.12) since ΩΠ̃(z) = Ω tΠz+ Ω tΠz = z by
(F.6) and conversely Π̃(Ωt) = tΠΩt + tΠΩt = t by (F.7); the mapping (F.14)
consequently determines the one-to-one mapping

(F.15) Π̃ : Cg/ΩZ2g −→ R2g/Z2g

that is the inverse mapping to (F.13). The real torus T = R2g/Z2g = (R/Z)2g

is the product of 2g circles R/Z, and consequently the complex torus J(Ω) =
Cg/ΩZ2g is topologically the product of 2g circles as well.

The first homology group of a circle is the free abelian group Z, so it follows
from the Künneth formula2 for the homology groups of product spaces that the
homology groups of a torus T are finitely generated free abelian groups. Conse-
quently the cohomology and homology groups of T are dual to one another, and
both can be described fully by considering only the homology and cohomology

2For the general results about homology and cohomology groups of topological spaces see
for instance the book by E. H. Spanier, Algebraic Topology, McGraw-Hill 1966.
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groups with real or complex coefficients; and the complex cohomology group
can be identified with the tensor product of the real cohomology group with C.
Thus for the purposes at hand it is enough to describe the homology and coho-
mology groups of T in terms of the complex deRham groups Hp(T ) of T , the
quotients of the groups of closed complex-valued differential forms by the sub-
groups of exact complex-valued differential forms on the differentiable manifold
T , effectively reducing the topological considerations to rather straightforward
analytic considerations.

A complex-valued differential p-form on the torus T = R2g/Z2g can be
viewed as a complex-valued differential p-form on R2g that is invariant under
translations by vectors in Z2g; and a complex-valued differential p-form on T
that is invariant under all translations of the torus T can be viewed correspond-
ingly as a constant complex-valued differential p-form on R2g. Such a differential
form can be written in terms of the real coordinates t1, . . . , t2g on R2g as

(F.16) φ =
∑

1≤i1<···<ip≤2g

ci1...ipdti1 ∧ · · · ∧ dtip

for arbitrary complex constants ci1...ip ; alternatively when the coefficients ci1...ip
are extended to all values of the indices i1, . . . , ip to be skew-symmetric in these
indices then

(F.17) φ =
1

p!

2g∑
i1,...ip=1

ci1...ipdti1 ∧ · · · ∧ dtip .

One of the many applications of the theory of harmonic differential forms3 is
that on a compact Lie group such as a torus any closed differential form is
cohomologous to a unique group invariant differential form, and consequently
that the deRham group Hp(T ) of the torus T = R2g/Z2g is isomorphic to the
space of constant complex-valued differential p-forms on R2g. Since the deRham
group is isomorphic to the complex cohomology group it follows that

(F.18) dimHp(T,C) = dimHp(T ) =

(
2g

p

)
.

The exterior product of differential forms determines an exterior product struc-
ture on the cohomology group Hp(T,C), exhibiting it as the complex exterior
algebra generated by the first cohomology group H1(T,C).

The cohomology group Hp(T,C) is dual to the homology group Hp(T,C),
so dimHp(T,C) =

(
2g
p

)
as a consequence of (F.18). To describe the homology

3Invariant integrals on groups were introduced by E. Cartan, and the applications of har-
monic differential forms to show that the harmonic differential forms on compact Lie groups
are the invariant differentials forms of Cartan and consequently that harmonic differentials
can be used to describe the deRham groups was due to W. V. D. Hodge, described in de-
tail in his book Harmonic Integrals, Cambridge Univ. Press, 1941. There are many other
derivations of the same result; for the case of complex tori a short proof of a quite different
sort can be found in the book by C. Birkenhake and H. Lange, Complex Abelian Varieties,
Springer-Verlag 2004.
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group Hp(T,C) of the torus T = R2g/Z2g more concretely, for any p distinct
integers j1, . . . , jp in the range 1 ≤ ji ≤ 2g let [δj1,...,jp ] be the singular p-cycle

(F.19) [δj1,...,jp ] : [0, 1]p −→ T

that is the composition of the linear mapping from [0, 1]p to the vector space
R2g defined by

(F.20) δj1,...,jp(s1, . . . , sp) =

p∑
k=1

skδ
jk ∈ R2g

for any point (s1, . . . , sp) where 0 ≤ si ≤ 1, followed by the natural projection

(F.21) t ∈ R2g −→ [t] ∈ T = R2g/Z2g;

with the natural orientation provided by the parameter space Rp these singular
cycles are skew-symmetric in the indices j1, . . . , jp. For p = 1 the singular
1-cycle [δj ] can be viewed as being spanned by the column vector δj itself;
the singular p-cycle [δj1,...,jp ] can be viewed as being spanned by the p column
vectors δj1 , . . . , δjp so sometimes it is denoted also by [δj1 ] ∧ . . . ∧ [δjp ]. In
terms of the coordinates (t1, . . . , t2g) on R2g the image of the mapping (F.20)

is described parametrically by tl =
∑p
k=1 δ

jk
l sk; so the differential form dtl on

R2g induces the differential form dtl =
∑p
k=1 δ

jk
l dsk in terms of the parameters

(s1, . . . , sp) of the singular p-cycle [δj1,...,jp ], and more generally

dtl1 ∧ · · · ∧ dtlp =

p∑
k1,...,kp=1

δ
jk1

l1
dsk1

∧ · · · ∧ δjkplp dskp

=

p∑
k1,...,kp=1

δ
jk1

l1
· · · δjkplp dsk1 ∧ · · · ∧ dskp .

This differential form is clearly 0 unless the set of indices (l1, . . . , lp) is a permu-
tation of the set of indices (j1, . . . , jp); and if (l1, . . . , lp) = π(jk1 , . . . , jkp) for a
permutation π ∈ Sp then

dtl1 ∧ · · · ∧ dtlp = sgn(π)ds1 ∧ · · · ∧ dsp

where sgn(π) is the sign of the permutation π. It thus follows that

(F.22)

∫
[δj1...jp ]

dtl1 ∧ · · · ∧ dtlp = δ
j1,...,jp
l1,...,lp

where δ
j1,...,jp
l1,...,lp

is 0 unless (j1, . . . , jp) is a permutation of (l1, . . . , lp) and then is
the sign of that permutation. As a consequence it is clear that the differential
forms dti1 ∧ · · · ∧ dtip are dual to the cycles δj1...jp , so since these differential
forms are a basis for the deRham group Hp(T ) and hence represent a basis for
the cohomology group Hp(T,C) it follows that the homology classes represented
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by the p-cycles [δj1,...,jp ] for 1 ≤ j1 < · · · < jp ≤ 2g are a basis for the homology
group Hp(T,C); this establishes explicitly the duality between the homology
and cohomology groups of the torus.

The homeomorphism (F.13) carries the skew-symmetric singular p-cycle
[δj1,...,jp ] in the torus T = R2g/Z2g to the skew-symmetric singular p-cycle

(F.23) Ω[δj1,...,jp ] = [Ωδj1,...,jp ] = [ωj1,...,jp ]

in the torus J(Ω) spanned by the columns ωj = Ωδj of the period matrix Ω,
in analogy with (F.19), (F.20), (F.21), and the homology classes represented
by the skew-symmetric singular p-cycles [ωj1,...,jp ] are a basis for the homology
Hp

(
J(Ω),C

)
of the complex torus J(Ω) = Cg/ΩZ2g. The dual basis for the

deRham group Hp
(
J(M)

)
then consists of the differential forms φj1 ∧ · · · ∧ φjp

on the torus J(Ω) induced by the differential forms = dtj1 ∧ · · · ∧ dtjp on the
real torus T = R2g/Z2g, so by (F.14)

(F.24) φj(z) =

g∑
k=1

(πkjdzk + πkjdzk)

for 1-forms and the exterior products have the corresponding forms.
For another period matrix Λ ∈ Ch×2h describing a complex torus J(Λ) of

dimension h, a basis for the homology Hp

(
J(λ),C

)
is represented by the skew-

symmetric singular p-cycles [λj1,...,jp ] spanned by the columns λj = Λδj of the
matrix Λ, and a dual basis for the deRham group Hp

(
j(Λ)

)
consists of the

differential forms ψj1 ∧ · · · ∧ ψjp for 1 ≤ j1 < · · · < jp ≤ 2h where in analogy
with (F.24)

(F.25) ψj(w) =

h∑
k=1

(σkjdwk + σkjdwk)

in terms of the complex coordinates w1, . . . , wh in Ch and Σ = {σkj} is the
inverse period matrix to the period matrix Λ; the exterior products have the
corresponding forms. Both (F.24) and (F.25) can be rewritten conveniently in
matrix notation as

(F.26) φ(z) = Π dz + Π dz.

and

(F.27) ψ(w) = Σ dw + Σ dw.

where φ = {φj}, ψ = {ψj}, dz = {dzj} and dw = {dwj} are viewed as column
vectors of differential forms; and in view of (F.6) the inverse of (F.26) is

(F.28) dz = Ωφ(z) dz = Ωφ(z).

If f : J(Ω) −→ J(Λ) is a holomorphic mapping between these complex tori
described by a Hurwitz relation (A,Q) from the period matrix Ω to the period
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matrix Λ, so that the mapping f is induced by the linear mapping A : Cg −→ Ch
aside from a translation in the vector space Ch, then under this mapping the
differential forms dw on J(Λ) induce the differential forms f∗(dw) = Adz on
J(Ω) in matrix notation; and consequently the differential forms ψ on J(Λ)
induce the differential forms

f∗
(
ψ(w)

)
= f∗(Σdw + Σdw) = Σf∗(dw) + Σf∗(dw)

= ΣAdz + ΣAdz = ΣAΩφ+ ΣAΩφ = ΣΛQφ+ ΣΛQφ = Qφ

since AΩ = ΛQ and ΣΛ + ΣΛ = I, or more explicitly

(F.29) f∗
(
ψj(w)

)
=

g∑
k=1

qjkφk(z) for 1 ≤ j ≤ h.

The induced differential p-forms then are just the wedge products of the in-
duced differential 1-forms. Dually the mapping f takes the singular 1-cycle [ωl]
spanned by column l of the period matrix Ω for 1 ≤ l ≤ 2g to a linear combina-
tion f∗([ω

l]) =
∑2g
m=1 clm[λm] of the singular 1-cycles spanned by the columns

of the period matrix Λ, where

qjk =

2h∑
l=1

qjlδ
l
k =

2h∑
l=1

∫
[ωk]

qjlφl(z) =

∫
[ωk]

f∗
(
ψj(w)

)
=

∫
f∗([ωk])

ψj(w) =

2h∑
m=1

∫
ckm[λm]

ψj(w) = ckj

and consequently

(F.30) f∗([ω
k]) =

2g∑
m=1

qmk[λm];

thus the matrix Q describes the effect of the mapping f described by the Hur-
witz relation (A,Q) on the first homology groups of the two tori, the group
homomorphism f∗ : H1(J(Ω1)) −→ H1(J(Ω2)) induced by the mapping f ,
and that extends to the wedge products of the 1-cycles correspondingly. When
the mapping f is the biholomorphic mapping corresponding to a Hurwitz rela-
tion (A,Q) that is an equivalence of the period matrices defining the complex
tori, the induced homomorphism f∗ is the isomorphism described by the matrix
Q ∈ Gl(2g,Z). When the mapping f is merely an isogeny corresponding to a
Hurwitz relation (A,Q) that is a weak equivalence of the period matrices defin-
ing the complex tori, the mapping exhibits the torus J(Ω1) as an unbranched
covering of the torus J(Ω2); the induced homomorphism f∗ described by the
matrix Q determines this covering topologically, since the fundamental groups
of complex tori are abelian so coincide with the first homology groups.
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F.3 Riemann Matrices

A g × 2g period matrix Ω is called a Riemann matrix if there is a skew-
symmetric integral matrix P such that:
(i) ΩP tΩ = 0, and
(ii) the matrix H = iΩP tΩ is positive definite Hermitian;
the matrix P is called a principal matrix for the Riemann matrix Ω. If P is a
principal matrix for the Riemann matrix Ω then so is any positive scalar multi-
ple r P that is also an integral matrix; among these multiples there is a unique
one having relatively prime integral entries, called a primitive principal matrix
for the Riemann matrix Ω. There are Riemann matrices admitting principal
matrices not all of which are scalar multiples of one another, hence admitting
a number of distinct primitive principal matrices; these are called singular Rie-
mann matrices. The choice of a principal matrix up to arbitrary positive scalar
multiples, or equivalently the choice of a primitive principal matrix, is called
a polarization of the Riemann matrix Ω; and the pair consisting of a Riemann
matrix Ω and its polarization is called a polarized Riemann matrix. A polarized
Riemann matrix is denoted either by (Ω, P ), where P is a primitive principal
matrix for the Riemann matrix Ω, or (Ω, {P}), where P is any matrix a multiple
of which is a principal matrix for the Riemann matrix Ω. A polarized Riemann
matrix (Ω, J) where J is the basic skew-symmetric matrix

(F.31) J =

(
0 I
−I 0

)
is called a principally polarized Riemann matrix. Condition (i) in the definition
of a Riemann matrix, often called Riemann’s equality, can be rewritten in terms
of the associated full period matrix as

(F.32) i

(
Ω

Ω

)
P

t
(

Ω

Ω

)
= i

(
ΩP tΩ ΩP tΩ
ΩP tΩ ΩP tΩ

)
=

(
H 0
0 −H

)
where H = iΩP tΩ; and condition (ii) in the definition of a Riemann matrix,
often called Riemann’s inequality, is that the Hermitian matrix H is positive
definite. An immediate consequence of this expanded form of the Riemann
matrix conditions is the following auxiliary observation.

Theorem F.19 A Riemann matrix Ω is a nonsingular period matrix; and if P
is a principal matrix for the Riemann matrix Ω then P is a nonsingular matrix
and detP > 0.

Proof: Since the matrix H in (F.32) is positive definite the right-hand side of
that equation is a nonsingular matrix; consequently both the full period matrix(

Ω
Ω

)
and the principal matrix P must be nonsingular. Taking the determinant

in the identity (F.32) among 2g × 2g square matrices yields the result that

i2g
∣∣∣∣det

(
Ω

Ω

)∣∣∣∣2 detP = (−1)g |detH|2,
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hence that detP > 0, and that suffices for the proof.

Two period matrices Ω and Ω̃ were defined to be equivalent in (F.1) if there
are matrices A ∈ Gl(g,C) and Q ∈ Gl(2g,Z) such that Ω̃ = AΩQ−1. If (Ω, P )
is a polarized Riemann matrix, so that ΩP tΩ = 0 and iΩP tΩ is positive definite
Hermitian, and if P̃ = QP tQ, so P̃ is a skew-symmetric matrix with relatively
prime integral entries, then

Ω̃P̃ tΩ̃ = AΩQ−1 ·QP tQ · tQ−1 tΩ tA = AΩP tΩ tA = 0

and the matrix

i Ω̃P̃ tΩ̃ = i AΩQ−1 ·QP tQ · tQ−1 tΩ tA = iAΩP tΩ tA

is positive definite Hermitian, so (Ω̃, P̃ ) also is a polarized Riemann matrix. The
two polarized Riemann matrices (Ω, P ) and (Ω̃, P̃ ) are called equivalent polarized
Riemann matrices, and the equivalence of these two polarized Riemann matrices
is denoted by (Ω, P ) ' (Ω̃, P̃ ). If the period matrices Ω and Ω̃ are just weakly
equivalent, so that it is only the case that Q ∈ Gl(2g,Q), then the matrix QP tQ
is only a rational matrix; but the other conditions for a polarized Riemann
matrix are satisfied, so if r is a positive rational number such that r QP tQ is an
integral matrix with relatively prime entries then the pair (AΩQ−1, r QP tQ)
is a polarized Riemann matrix. These two polarized Riemann matrices are
called weakly equivalent polarized Riemann matrices, and the weak equivalence
of these two polarized Riemann matrices is denoted by (Ω, P ) ∼ (Ω̃, P̃ ) or
(Ω, {P}) ∼ (Ω̃, {P̃}). Of course (AΩQ−1, {r QP tQ}) = (AΩQ−1, {QP tQ}),
so this is the more convenient notation when considering the weak equivalence
of polarized Riemann matrices. Both evidently are equivalence relations in the
customary sense. In summary, the equivalence of polarized Riemann matrices is
defined by

(F.33)

(Ω, P ) ' (AΩQ−1, QP tQ) or (Ω, {P}) ' (AΩQ−1, {QP tQ})

whenever A ∈ Gl(g,C) and Q ∈ Gl(2g,Z);

and the weak equivalence of polarized Riemann matrices is defined by

(F.34)

(Ω, P ) ∼ (AΩQ−1, r QP tQ) or (Ω, {P}) ∼ (AΩQ−1, {QP tQ})

whenever A ∈ Gl(g,C) and Q ∈ Gl(2g,Q)

where r is the unique positive rational number such that r QP tQ is an integral
matrix with relatively prime entries. An important case of this equivalence is
the following.
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Theorem F.20 If (Ω, P ) is a polarized Riemann matrix, r is a positive integer
such that N = r−1P−1 is an integral matrix with relatively prime entries and Π
is the inverse period matrix to Ω, then (Π, tN) is a polarized Riemann matrix
that is weakly equivalent to (Ω, P ); and if in addition detP = 1 then r = 1 and
the weak equivalence is actually an equivalence.

Proof: From Riemann’s equality ΩP tΩ = 0 and Theorem F.16 (ii) it follows
that P is part of the Hurwitz relation (A,P ) from the period matrix Π to the
period matrix Ω where A = ΩP tΩ. Thus AΠ = ΩP , and since the principal
matrix P is nonsingular by Theorem F.19, and consequently the matrix A also
is nonsingular by Lemma F.8, it follows that A ∈ Gl(g,C) and P ∈ Gl(2g,Q)
so this Hurwitz relation exhibits the weak equivalence of the period matrices Ω
and Π. In addition rP tN tP = P , so the polarized Riemann matrices (Π, tN)
and (Ω, P ) are weakly equivalent. Of course if detP = 1 then r = 1 and
P ∈ Gl(2g,Z) so (Π, tN) and (Ω, P ) are equivalent polarized Riemann matrices,
and that suffices to conclude the proof.

Corollary F.21 If (Ω, P ) is a polarized Riemann matrix and Π is the inverse
period matrix to Ω then (ΩP tΩ, P ) is a Hurwitz relation from the period matrix
Π to the period matrix Ω describing an isogeny from the complex torus J(Π)
to the complex torus J(Ω); and if detP = 1 this isogeny is a biholomorphic
mapping.

Proof: In the proof of the preceding theorem the weak equivalence of the
polarized Riemann matrices (Π, tN) and (Ω, P ) was exhibited by the Hurwitz
relation (A,P ) = (ΩP tΩ, P ) from the period matrix Π to the period matrix Ω,
and this Hurwitz relation exhibits an isogeny from the complex torus J(Π) to
the complex torus J(Ω). If detP = 1 the weak equivalence is an equivalence
and the isogeny is a biholomorphic mapping, and that suffices for the proof.

For some purposes it is convenient to have a more explicit statement of the
preceding observations. If (Ω, P ) is a polarized Riemann matrix, (F.32) is an
identity between invertible matrices and its inverse transpose is the equation

−i
t(Ω

Ω

)−1

P ∗
(

Ω
Ω

)−1

=

(
G 0
0 −G

)
or equivalently in terms of the inverse period matrix Π

−i
(

Π
Π

)
P ∗

t(Π
Π

)
=

(
G 0
0 −G

)
where P ∗ = tP−1 and G = tH−1 = H−1. This equation is equivalent to the
identities

(F.35) ΠP ∗ tΠ = 0 iΠP ∗ tΠ = G,
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which if rP ∗ is an integral matrix is the pair of conditions (i) and (ii) showing
that rP ∗ is a principal matrix for the Riemann matrix Π since the matrix G is
positive definite Hermitian.

Principally polarized Riemann matrices are of particular interest in the study
of compact Riemann surfaces, so it is worth examining that special case in
somewhat more detail.

Theorem F.22 (i) For any principally polarized Riemann matrix (Ω, J) there
is a unique nonsingular complex matrix A such that AΩ = (I Z), where I is
the identity matrix.
(ii) A period matrix of the form (I Z), where I is the identity matrix, is a
Riemann matrix with the principal matrix J if and only if the matrix block Z is
a complex symmetric matrix with positive definite imaginary part.

Proof: If (Ω, J) is a principally polarized Riemann matrix and the g×2g matrix
Ω is decomposed into g × g square blocks Ω = (Ω1 Ω2) Riemann’s equality is
that

(F.36) 0 = (Ω1 Ω2)

(
0 I
−I 0

)(
tΩ1
tΩ2

)
= Ω1

tΩ2 − Ω2
tΩ1

and Riemann’s inequality is that the g × g matrix

(F.37) H = i(Ω1 Ω2)

(
0 I
−I 0

)(
tΩ1
tΩ2

)
= i
(
Ω1

tΩ2 − Ω2
tΩ1

)
is positive definite Hermitian. If the square matrix Ω1 is singular there is a
nontrivial row vector c ∈ Cg such that cΩ1 = 0, and then cH tc = icΩ1 ·
t(cΩ2) − icΩ2 · t(cΩ1) = 0 which contradicts the condition that the matrix H
is positive definite Hermitian; therefore the matrix Ω1 is nonsingular, and if
A = Ω−1

1 it follows that AΩ = (I Z) for a g×g square complex matrix Z. The
principally polarized Riemann matrix

(
(I Z), J

)
thus is equivalent to (Ω, J),

and it must satisfy the analogues of (F.36) and (F.37). From the analogue to
(F.36) it follows that 0 = tZ − Z, so the matrix Z is symmetric; and from the
analogue to (F.37) it follows that the matrix H = i( tZ−Z) = i( tZ−Z) = 2=(Z)
is positive definite, where =(Z) is the imaginary part of the matrix Z. That
suffices to conclude the proof.

The set of complex symmetric g × g matrices Z = X + iY such that the
imaginary part =(Z) = Y is positive definite is called the Siegel upper half-space
of rank g and is denoted by Hg. In the special case g = 1 the space H1 is just the
ordinary upper half-plane; in general Hg is an open convex subspace of the vector
space Cg. A principally polarized Riemann matrix (Ω, J) for which Ω = (I Z)
for Z ∈ Hg is called a normalized principally polarized Riemann matrix. In these
terms one of the consequences of the preceding theorem is that any principally
polarized Riemann matrix is equivalent to a normalized principally polarized
Riemann matrix. However distinct normalized principally polarized Riemann
matrices still can be equivalent principally polarized Riemann matrices. The
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description of this situation involves the group Sp(2g,Z) of integral symplectic
matrices of rank 2g, the group consisting of those 2g × 2g integral matrices
Q such that QJ tQ = J for the basic skew-symmetric matrix J = ( 0 I

−I 0 , as
discussed in more detail in Appendix H.

Theorem F.23 Normalized principally polarized Riemann matrices
(
(I Z), J

)
and

(
(I Z̃), J

)
are equivalent polarized Riemann matrices if and only if

(F.38) Z̃ = (A+ ZC)−1(B + ZD)

for a symplectic matrix

Q =

(
A B
C D

)
∈ Sp(2g,Z).

Proof: By definition (F.33) two normalized principally polarized Riemann
matrices

(
Ω, J

)
and

(
Ω̃, J

)
are equivalent polarized Riemann matrices if and

only if Ω̃ = EΩQ and Q−1P tQ−1 = J for some matrices E ∈ Gl(g,C) and
Q ∈ Gl(2g,Z). It must therefore be the case that Q ∈ Sp(2g,Z), and when Q
is decomposed into g × g matrix blocks

(I Z̃) = E (I Z)Q = E (I Z)

(
A B
C D

)
= E (A+ ZC B + ZD);

thus E = (A + ZC)−1 and Z̃ = (A + ZC)−1(B + ZD), which suffices for the
proof.

For g = 1 equation (F.38) is just the familiar action of the classical modular
group Sl(2,Z) as a group of biholomorphic mappings of the upper half-plane H1

to itself, and the quotient space A1 = H1/Sl(2,Z) is the familiar space of moduli
of complex tori, that is, is a space of parameters for biholomorphic equivalence
classes of complex tori of dimension 1. By Theorem F.22 normalized principally
polarized Riemann matrices are of the form

(
(I Z), J

)
for arbitrary matrices

Z ∈ Hg, so (F.38) describes an action of the symplectic modular group as a group
of biholomorphic mappings of the Siegel upper half-space Hg of rank g to itself.
The quotient space Ag = Hg/Sp(2g,Z) then is a well defined topological space
with the natural structure of a holomorphic variety of dimension g(g − 1)/2,
the Siegel moduli space4. The holomorphic variety Ag can be considered as the
space of moduli or of parameters for the set of equivalence classes of principally
polarized Riemann matrices; in view of Theorem F.11 the variety Ag also can
be viewed as the space of moduli or of parameters for the set of biholomorphic
equivalence classes of complex tori J(Ω) described by period matrices Ω that
are Riemann matrices with principal matrix J.

4The Siegel upper half-space and its quotient under the symplectic modular group were
investigated extensively by C. L. Siegel; see for instance his papers “ Einführung in die Theorie
der Modulfunktionen n-ten Grades”, Math. Ann., vol 116 (1939), pp. 617 - 657; “Zur Theorie
der Modulfunktionen n-ten Grades”, Comm. Pure and Appl. Math., vol. 8 (1955), pp. 677-
681, and the discussion in his book Topics in Complex Function Theory, vol. III, (Wiley,
1989).
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F.4 Form Matrices

An alternative characterization and interpretation of polarized Riemann ma-
trices is quite useful for some purposes.

Theorem F.24 A g × 2g nonsingular period matrix Ω is a Riemann matrix if
and only if there is a positive definite Hermitian matrix G such that the matrix
N = 2=( tΩGΩ) is a rational matrix, where =(Z) denotes the imaginary part
of the complex matrix Z.

Proof: If Ω is a Riemann matrix then Ω is a nonsingular period matrix by the
preceding theorem; thus (F.32) is an identity among invertible matrices, and its
inverse readily is seen to be the identity

P−1 = i
t
(

Ω

Ω

)(
H−1 0

0 −H−1

)(
Ω

Ω

)
(F.39)

= i
(
tΩH−1 Ω− tΩH

−1
Ω
)

= 2=( tΩH
−1

Ω) = 2=( tΩ tH−1 Ω),

so P−1 = 2=( tΩ tH−1 Ω) is a rational matrix where tH−1 is positive definite
Hermitian. Conversely if Ω is a nonsingular period matrix and G is a positive
definite Hermitian matrix such that N = 2=

(
tΩGΩ

)
is a rational matrix then

the inverse of equation (F.39) is (F.32) in which H = tG−1 and P = N−1; the
matrix H is positive definite Hermitian and P is rational, so a suitable positive
multiple of P is integral and hence is a principal matrix for Ω, and consequently
Ω is a Riemann matrix. That suffices to conclude the proof.

If Ω is a Riemann matrix a positive definite Hermitian matrix G such that
N = 2=( tΩGΩ) is an integral matrix is called a form matrix for the Riemann
matrix Ω, and the matrix N is called the associated characteristic matrix. If G
is a form matrix for the Riemann matrix Ω then so is any positive scalar multiple
rG for which the associated characteristic matrix is an integral matrix; among
these multiples there is a unique one for which the associated characteristic
matrix is integral with relatively prime entries, called a primitive form matrix
for the Riemann matrix Ω.

Corollary F.25 (i) If Ω is a Riemann matrix with principal matrix P and
H = iΩP tΩ then G = r−1 tH−1 is a form matrix for the Riemann matrix Ω
with characteristic matrix N = r−1P−1 for any positive number r such that N
is integral.
(ii) If Ω is a Riemann matrix with form matrix G and associated characteristic
matrix N then P = r−1N−1 is a principal matrix for the Riemann matrix Ω
for any positive number r such that P is integral, and iΩP tΩ = r−1 tG−1.

Proof: In the proof of the preceding theorem it was demonstrated that (F.32)
is equivalent to the condition that N = 2=( tΩ, GΩ) where N = P−1 and G =
tH−1, from which the corollary follows. That suffices for the proof.



F.4. FORM MATRICES 545

It follows that a polarization of a Riemann matrix Ω also can be described
as the choice of a form matrix for Ω up to arbitrary positive scalar multiples,
or equivalently the choice of a primitive form matrix for Ω; in view of this a
polarized Riemann matrix also can be denoted either by [Ω, G], where G is a
primitive form matrix for the Riemann matrix Ω, or by [Ω, {G}], where G is
any positive definite Hermitian matrix a multiple of which is a form matrix for
the Riemann matrix Ω. Polarizations (Ω, P ) and [Ω, G] related as in the preced-
ing corollary are considered as describing the same polarization of a Riemann
matrix, so

(F.40) (Ω, {P}) = [Ω, {G}]

where tG−1 = iΩP tΩ or equivalently P−1 = 2=( tΩGΩ).

In view of this the characteristic matrix N of the form matrix G often is called
the characteristic matrix of the polarized Riemann matrix (Ω, P ). This alter-
native description of a polarized Riemann matrix is more convenient for some
purposes in that it exhibits the polarization of a Riemann matrix Ω as a natural
property of the complex torus J(Ω) determined by the period matrix Ω. In-
deed a positive definite g× g Hermitian matrix G can be viewed as describing a
constant, or equivalently a translation-invariant, Hermitian metric5 of the form∑g
j,k=1 gjkdwjdwk on the torus J(Ω), the complex form of a Riemannian met-

ric expressed in terms of the complex coordinates wj on the complex manifold
J(Ω). Associated to this Hermitian metric is the differential form

φ =
1

i

g∑
j,k=1

gjkdwj ∧ dwk

of type (1, 1) on the torus J(Ω). Since the matrix G is Hermitian it follows that
φ = φ, hence that φ is a real differential form; and since the coefficients of this
differential form are constant it is a closed differential form. A Hermitian metric
with the property that the associated differential form of type (1, 1) is closed is
called a Kähler metric.

Theorem F.26 A nonsingular period matrix Ω is a Riemann matrix if and
only if the complex torus J(Ω) admits a translation-invariant Kähler metric
such that the associated differential form has integral periods on all the two-
cycles of the torus; the coefficient matrix of the metric is a form matrix for
the Riemann matrix Ω, and the associated characteristic matrix describes the
periods of this differential form.

Proof: The integral of the differential form φ associated to the Kähler metric
described by a positive definite Hermitian matrix G on the 2-cycle [ωlm] defined

5The basic properties of Hermitian and Kähler metrics are discussed in most texts on
differential geometry that deal with complex as well as real manifolds; see for instance R. O.
Wells, Differential Geometry on Complex Manifolds, (Prentice-Hall, 1973).
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as on page 536 is

n
lm

=

∫ ωl,m

φ =
1

i

g∑
j,k=1

∫ 1

s=0

∫ 1

t=0

gjkdwj(s, t) ∧ dwk(s, t)

=
1

i

g∑
j,k=1

gjk

∫ 1

s=0

∫ 1

t=0

(ωjlds+ ωjmdt) ∧ (ωklds+ ωkmdt)

=
1

i

g∑
j,k=1

gjk

(
ωjlωkm − ωjmωkl

)∫ 1

s=0

∫ 1

t=0

ds ∧ dt

=
1

i

g∑
j,k=1

gjk

(
ωjlωkm − ωjmωkl

)
.

When these periods are viewed as forming a 2g × 2g matrix N = {n
lm
} the

preceding equation can be rewritten as the matrix identity

N =
1

i

(
tΩGΩ− tΩ tGΩ

)
=

1

i

(
tΩGΩ− tΩGΩ

)
= 2=( tΩGΩ ).

Consequently the condition that Ω is a Riemann matrix, expressed in terms of
the form matrix G, is just that the differential form φ associated to the matrix
G has integral periods on the basic cycles of the torus J(Ω); and these periods
form the characteristic matrix associated to the form matrix G, which concludes
the proof.

Since the integrated average over the torus J(Ω) of any differentiable Kähler
metric is a translation-invariant Kähler metric such that the closed differential
form of type (1, 1) associated to the averaged metric and that associated to
the initial metric have the same periods, the period matrix Ω of any complex
torus J(Ω) that admits a differentiable Kähler metric with integral periods is
a Riemann matrix; the coefficient matrix of the averaged Kähler metric is a
form matrix for Ω. A Kähler metric with integral periods is called a Hodge
metric. Although the topic will not be pursued further here, at least it should be
mentioned that the existence of a Hodge metric on a complex torus is equivalent
to the condition that the torus is an algebraic variety; that is traditionally
approached through the study of theta functions on the torus.6 Alternatively
and more generally, it was demonstrated by K. Kodaira7 that a compact complex
manifold is an algebraic variety if and only if it admits a Hodge metric.

The notions of equivalence and weak equivalence of polarized Riemann matri-
ces can be expressed alternatively in terms of the form matrix as well.If (Ω, P ) '

6See for instance the discussion in F. Conforto, Abelsche Funktionen und algebraische Ge-
ometrie, (Springer, 1956); D. Mumford, Abelian Varieties, (Oxford, 1970); or A. I. Markushe-
vich, Introduction to the Classical Theory of Abelian Functions, Translations of Mathematical
Monographs, vol. 96, (American Mathematical Society, 1992).

7K. Kodaira, On Kähler varieties of restricted type, Annals of Math. 60 (1954), pages
28-48.
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(Ω̃, P̃ ) and if the equivalence is described by matrices A = {aik} ∈ Gl(g,C)
and Q = {qik} ∈ Gl(2g,Z) as in (F.33) then the positive definite matrices

H = iΩP tΩ and H̃ = i Ω̃ P̃ tΩ̃ are related by H̃ = i AΩQ·Q−1P tQ−1 · tQ tΩ tA =
AH tA. The form matrix describing the same polarization of the Riemann ma-
trix Ω is G = r−1 tH−1 as in Corollary F.25, where r is the unique positive ratio-
nal number such that the matrix N = r−1 P−1 is an integral matrix with relative
prime entries; and since P̃−1 = tQP−1Q where Q ∈ Gl(2g,Z) it follows that
Ñ = r−1 tP̃−1 is also an integral matrix with relatively prime entries, so that
G̃ = r−1 tH̃−1 is the form matrix describing the same polarization of the Rie-
mann matrix Ω̃. These two form matrices thus are related by G̃ = tA−1GA−1,
and the associated characteristic matrices N = r−1 P−1 and Ñ = r−1 P̃−1 are
related by Ñ = tQN Q. In summary then, the equivalence of polarized Riemann
matrices described in terms of form matrices is defined by

(F.41)

[Ω, G] ' [AΩQ, tA−1GA
−1

] or [Ω, {G}] ' [AΩQ, {tA−1GA
−1}]

whenever A ∈ Gl(g,C) and Q ∈ Gl(2g,Z),

and the associated characteristic matrices are related by

(F.42) Ñ = tQN Q.

For weak equivalence the matrix Q is only a nonsingular rational matrix and the
form and characteristic matrices must be multiplied by that positive rational
number for which the characteristic matrix is integral with relatively prime
entries. This complication can be avoided by considering only the alternative
notation for polarized Riemann matrices in terms of form matrices, so that the
weak equivalence of polarized Riemann matrices described in terms of families
of form matrices is defined by

(F.43)

[Ω, {G}] ∼ [AΩQ, { tA−1GA
−1}]

whenever A ∈ Gl(g,C), and Q ∈ Gl(2g,Q).

The equivalence of polarized Riemann matrices has an interesting inter-
pretation in terms of the associated complex tori. If (Ω, P ) and (Ω̃, P̃ ) =
(AΩQ, Q−1 P tQ−1) are equivalent polarized Riemann matrices with form matri-

ces G and G̃ = tA−1GA
−1

then AΩ = Ω̃Q−1 so (A,Q−1) is a Hurwitz relation
from the period matrix Ω to the period matrix Ω̃; and since Q ∈ Gl(2g,Z) the
linear mapping A : Cg −→ Cg induces a biholomorphic mapping A : J(Ω) −→
J(Ω̃) between the complex tori described by these period matrices, as in Theo-
rem F.9. This biholomorphic mapping, viewed as a nonsingular linear change of
coordinates w̃j =

∑g
k=1 ajkwk, transforms the translation-invariant Hermitian



548 APPENDIX F. COMPLEX TORI

metric
∑g
jk=1 g̃jkdw̃jdw̃k on the torus J(Ω̃) described by the form matrix G̃ to

the metric

(F.44)

g∑
jk=1

g̃jkdw̃jdw̃k =

g∑
jklm=1

g̃jkajlakmdwldwm =

g∑
lm=1

glmdwldwm,

the translation-invariant Hermitian metric on the torus J(Ω) described by the
form matrix G = tAG̃A. Thus the equivalence of polarized Riemann matrices
amounts to the existence of a biholomorphic mapping between the complex tori
described by these period matrices that transforms the translation-invariant
metrics describing the polarizations into one another. To phrase this in another
way, a polarized complex torus is a complex torus together with a family of
translation-invariant Hermitian metrics, all of which are scalar multiples of one
another and some of which have integral periods; and in these terms the polarized
Riemann matrices in an equivalence class describe the same polarized complex
torus, with the various polarized Riemann matrices in the equivalence class
merely being descriptions of the same polarized torus in terms of other linear
coordinate systems on the torus. This provides an intrinsic interpretation of a
polarized Riemann matrix.

If the polarized Riemann matrices (Ω, P ) and (Ω̃, P̃ ) = (AΩQ, Q−1P tQ−1)
are just weakly equivalent the linear mapping A : Cg −→ Cg is nonsingular
and transforms the translation-invariant Hermitian metric on the torus J(Ω̃)
described by the form matrix G̃ locally to the translation-invariant Hermitian
metric on the torus J(Ω) described by the form matrix G as in equation (F.44);
but the induced mapping on complex tori is not well defined globally. However
for any positive rational number r for which r Q−1 is an integral matrix the pair
(r A, rQ−1) is a Hurwitz relation from the period matrix Ω to the period matrix
Ω̃, so the linear mapping r A : Cg −→ Cg defines an isogeny r A : J(Ω) −→ J(Ω̃)
and this isogeny transforms the family of translation-invariant Hermitian metrics
{G̃} defining the polarization of the torus J(Ω̃) to the family of translation-
invariant Hermitian metrics {G} defining the polarization of the torus J(Ω); that
the metrics are transformed locally to one another follows from (F.44), and since
the metrics are constant the same transformation arises at all points of J(Ω) that
have the same image in J(Ω̃) under this isogeny. Two polarized complex tori are
polarized-isogenous if there is an isogeny between the tori that transforms the
families of translation-invariant Hermitian metrics defining the polarizations to
one another; and in these terms all the polarized Riemann matrices in a weak
equivalence class describe polarized-isogenous polarized complex tori, with the
various polarized Riemann matrices in the weak equivalence class merely being
descriptions of the polarizations of isogenous tori in various linear coordinate
systems.



Appendix G

Theta Series

The classical theta function in one variable plays a significant role in the
study of elliptic functions, which are just meromorphic functions on compact
Riemann surfaces of genus g = 1; the theta function in several variables plays
an equally significant role in the study of meromorphic functions on complex
tori of higher dimensions. Although a detailed discussion of function theory on
complex tori in higher dimensions would lead far too far afield1, at least some
of the basic properties of theta functions in several variables required in the
discussion in this book will be reviewed here. The classical theta function is
defined by the series

(G.1) θ(t; z) =
∑
n∈Z

exp 2πi
(

1
2zn

2 + tn
)
,

where t ∈ C and z = x + iy ∈ C with y > 0. It is no doubt quite familiar that
this is a nontrivial entire function of the complex variable t and a holomorphic
function of the complex variable z in the upper half-plane. The theta function
in g variables is defined by the analogous series

(G.2) Θ(t;Z) =
∑
n∈Zg

exp 2πi
(

1
2
tnZn+ tnt

)
for a complex vector t ∈ Cg and a g×g complex matrix Z ∈ Hg, where Hg is the
Siegel upper half-space of rank g consisting of complex symmetric g×g matrices
Z = X + iY with positive definite imaginary part Y , as discussed on page 543.
Since Y is positive definite tnY n ≥ ε||n||2 for some ε > 0 and all n ∈ Zg, so

| tn(Y n− 2 i t)| ≥ ε||n||2 − 2| tnt| ≥ ε||n||2 − 2||n|| · ||t|| ≥ ε

2
||n||2

1For a general discussion of complex tori from an analytic point of view see for instance
F. Conforto, Abelsche Funktionen und algebraische Geometrie, (Springer, 1956), A. I. Marku-
shevich Introduction to the Classical Theory of Abelian Functions, (American Mathematical
Society, 1992), or C. Birkenhake and H. Lange, Complex Abelian Varieties, (Springer-Verlag,
1992); and from an algebraic as well as an analytic point of view see D. Mumford Abelian
Varieties, (Oxford, 1970), or more extensively his Tata Lectures on Theta, volumes I, II, III,
(Birkhäuser 1983, 1984, 1991).
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whenever ||n|| ≥ 4
ε ||t||, where as usual ||t||2 =

∑
i |ti|2; consequently∣∣ exp 2πi tn

(
1
2Zn+ t

)∣∣ =
∣∣ exp 2πi tn

(
1
2 iY n+ t

)∣∣
=

∣∣ exp−π tn (Y n− 2 i t)
∣∣ ≤ exp− 1

2πε||n||
2

whenever ||n|| ≥ 4
ε ||t||, so the series (G.2) is locally uniformly convergent for

(t, Z) ∈ Cg ×Hg and hence it represents a holomorphic function on the product
manifold Cg ×Hg. For any fixed point Z ∈ Hg this function is nontrivial in the
variable t ∈ Cg, since (G.2) is a Fourier series with nonzero coefficients.

The parameter of summation n ∈ Zg in the series (G.2) can be replaced by
−n, so that

(G.3) Θ(t;Z) =
∑
n∈Zg

exp 2πi
(

1
2
tnZn− tnt

)
= Θ(−t;Z).

Thus the theta function is an even function of the variable t ∈ Cg; and it can
be described by either of the series expansions (G.2) or (G.3), so the sign of the
term tnt in the series expansion can be chosen arbitrarily as convenient. It is
clear from (G.2) or(G.3) that

(G.4) Θ(t+ µ;Z) = Θ(t;Z) for µ ∈ Zg,

since exp 2π i tnµ = 1. On the other for any ν ∈ Zg the parameter of summation
n ∈ Zg in (G.2) can be replaced by n+ ν, and since Z is a symmetric matrix it
follows that

Θ(t;Z) =
∑
n∈Zg

exp 2πi t(n+ ν)
(

1
2Z(n+ ν) + t

)
=

∑
n∈Zg

exp 2πi

(
tn
(

1
2Zn+ Zν + t

)
+ tν

(
1
2Zν + t

))
= Θ(t+ Zν;Z) · exp 2πi

(
1
2
tνZν + tν t

)
;

consequently

(G.5) Θ(t+ Zν;Z) = Θ(t;Z) · exp−2πi
(

1
2
tνZν + tν t

)
for ν ∈ Zg.

Equations (G.4) and (G.5) determine the behaviour of the function Θ(t;Z) when
the variable t ∈ Cg is translated by any vector λ in the lattice subgroup L(Ω) =
ΩZ2g ⊂ Cg spanned by the columns of the g × 2g period matrix Ω = (I Z).
These equations taken together can be written as the condition that

(G.6) Θ(t+ λ;Z) = ΞZ(λ, t) ·Θ(t;Z) for all λ = µ+ Zν ∈ L(Ω)

where

(G.7) ΞZ(µ+ Zν, t) = exp−2πi
(

1
2
tνZν + tν t

)
for all µ, ν ∈ Zg.

That is just the condition that the theta function Θ(t;Z) associated to a point
Z ∈ Hg, viewed as a function of the complex variable t ∈ Cg, is a holomorphic
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relatively automorphic function for the factor of automorphy ΞZ(λ, t) for the
action of the lattice subgroup L(Ω) on the space Cg; this factor of automorphy
consequently is called the theta factor of automorphy. Of course in view of (G.3)
the function Θ(t;Z) can be viewed as a relatively automorphic function for the
larger group that arises by adjoining to the lattice group L(Ω) the additional
mapping ι : t −→ −t, and extending the factor of automorphy (G.7) to the
larger group by setting ΞZ(ι, t) = 1; however it is usually more convenient to
view the theta function as a symmetric relatively automorphic function for the
factor of automorphy ΞZ(λ; t) for the lattice subgroup L(Ω) itself. Slightly more
generally, it is also possible to replace the parameter of summation n ∈ Zg in
the series (G.2) by Qn for any matrix Q ∈ Gl(g,Z); it then follows from a
straightforward calculation that

(G.8) Θ(t;Z) = Θ( tQt; tQZQ) for any Q ∈ Gl(g,Z),

hence Θ( tQt;Z) = Θ(t;Z) for all matrices Q in the subgroup

(G.9) F(Z) =
{
Q ∈ Gl(g,Z)

∣∣∣ tQZ Q = Z
}
,

which for some matrices Z ∈ Hg can be properly larger than the subgroup
consisting merely of ±I. The theta factor of automorphy ΞZ(λ, t) describes a
holomorphic line bundle ΞZ over the complex torus J(Ω) = Cg/L(Ω), called the
theta bundle over J(Ω); and the theta function Θ(t;Z) describes a holomorphic
cross-section of that line bundle. The vector space of holomorphic cross-sections
of this line bundle is denoted by Γ(J(Ω),O(ΞZ)), paralleling the notation for
the space of holomorphic cross-sections of a holomorphic line bundle over a
compact Riemann surface; and correspondingly the dimension of this vector
space is denoted by γ(ΞZ) = dim Γ(J(Ω),O(ΞZ)).

Theorem G.1 The space of holomorphic cross-sections of the line bundle ΞZ
over the complex torus J(Ω) associated to the period matrix Ω =

(
I Z

)
for any

matrix Z ∈ Hg is one-dimensional, that is, γ(ΞZ) = 1.

Proof: The theta function Θ(t;Z) for a matrix Z ∈ Hg describes a nontrivial
holomorphic cross-section of the bundle ΞZ so γ(ΞZ) ≥ 1. On the other hand
if f(t) ∈ Γ(J(Ω),O(ΞZ)) then f(t) satisfies (G.4) so that f(t+ µ) = f(t) for all
µ ∈ Zg; hence f(t) must have a holomorphic Fourier expansion

(G.10) f(t) =
∑
n∈Zg

an exp 2πi tn · t

for some constants an. Since f(t) also satisfies (G.5), that result for the special
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case that ν = δj , where δj are the basis vectors in Rg, shows that

f(t+ Zδj) = f(t) · exp−2πi
(
tj + 1

2zjj
)

=

(∑
n∈Zg

an exp 2πi tn · t

)
· exp−2πi

(
tj + 1

2zjj
)

=
∑
n∈Zg

an exp 2πi
(
t(n− δj) · t− 1

2zjj
)

=
∑
n∈Zg

an+δj exp 2πi
(
tn · t− 1

2zjj
)
,

where the last equality follows by replacing the parameter of summation n in
the preceding line by n+δj . However a direct substitution in (G.10) shows that

f(t+ Zδj) =
∑
n∈Zg

an exp 2πi tn · (t+ Zδj).

Comparing the Fourier coefficients in the two preceding expansions of f(t+Zδj)
shows that

an+δj · exp−πizjj = an exp 2πi tnZδj for all n;

and since this recurrence relation determines all the coefficients an in terms of
a0 it follows that the space of holomorphic cross-sections of the bundle ΞZ has
dimension at most one, which suffices to conclude the proof.

It follows from the preceding result that the theta function in several vari-
ables viewed as a holomorphic function of the variable t ∈ Cg can be described
uniquely up to a constant factor as a holomorphic relatively automorphic func-
tion for the factor of automorphy ΞZ(λ, t) for the action of the lattice subgroup
L(Ω) on the vector space Cg, where Ω =

(
I Z

)
. The explicit formulas for the

theta function and its factor of automorphy are for period matrices that are
principally polarized Riemann matrices in the normal form Ω =

(
I Z

)
where

Z ∈ Hg. If Λ is a nonsingular period matrix describing a complex torus J(Λ) of
dimension h for which there is a holomorphic mapping

(G.11) φ : J(Λ) −→ J(Ω),

the theta function associated to the torus J(Ω) induces a holomorphic function
associated to the torus J(Λ) that can be viewed as a generalized theta function.
Explicitly, if the mapping φ is described by a Hurwitz relation (A,N) from
the period matrix Λ to the period matrix Ω as in Theorem F.9, for a complex
matrix A ∈ Cg×h and an integral matrix N ∈ Z2g×2h, then A · Λ = Ω ·N and
the holomorphic function f(t) = Θ(At; Z) of the variable t ∈ Ch satisfies

f(t+ Λν) = Θ(At+AΛν;Z) = Θ(At+ Ω ·Nν;Z)

= ΞZ(Ω ·Nν,At) ·Θ(At; z) = ΞZ(ΩNν,At) · f(t)
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for ν ∈ Z2h. If N =

(
N1

N2

)
where N1, N2 ∈ Zg×2h, so that Ω·Nν = N1ν+ZN2ν,

the factor of automorphy ΞZ(Ω·Nν,At) can be written out explicitly as in (G.7)
and the preceding equation takes the form

(G.12) f(t+ Λν) = f(t) exp−2πi
(

1
2
tν tN2ZN2ν + tν tN2At

)
for ν ∈ Z2h.

Of course the function f(t) may vanish identically if the image of the mapping
(G.11) is contained in the zero locus of the theta function Θ(t;Z). On the
other hand if the mapping (G.11) is a biholomorphic mapping then the function
f(t) is a nontrivial relatively automorphic function for the induced factor of
automorphy, and is determined uniquely up to a constant factor by (G.12).

The zero locus of the theta function Θ(t) is a proper holomorphic subvariety

ṼΘ ⊂ Cg of dimension g− 1 that is invariant under translation by any vector in
the lattice subgroup L(Ω) ⊂ Cg spanned by the columns of the period matrix
Ω, as a consequence of (G.6). This subvariety thus represents a holomorphic

subvariety VΘ = ṼΘ/L(Ω) of dimension g − 1 in the quotient torus J(Ω) =
Cg/L(Ω), sometimes called the theta locus in J(Ω). Since the theta function is
an even function by (G.3) it follows that

(G.13) VΘ = −VΘ ⊂ J(Ω);

more generally VΘ = tQVΘ for any matrix Q ∈ F(Z) where F(Z) ⊂ Gl(g,Z)
is the subgroup defined by (G.9), as an immediate consequence of (G.8). A
particularly interesting finite set of points on the complex torus J(Ω), actually
a finite subgroup of that complex torus, is the set of half-periods, the set of
22g points δi ∈ J(Ω) such that 2δi ∈ J(M) is the point of the torus repre-
sented by the origin in Cg; alternatively this is the subset 1

2ΩZ2g/ΩZ2g ⊂ J(Ω).
The subset of real half-periods for the period matrix Ω =

(
I Z

)
is the subset

1
2Z

g/ΩZ2g ⊂ J(Ω) consisting of 2g of the half-periods. Frequently points of C2g

representing the half-periods of the torus C2g/L(Ω) also are called half-periods;
that is essentially an equivalent definition, so the identification of the terms
should not cause any confusion.

For any integer r > 0 it follows from (G.6) that the function f(t) = Θ(t;Z)r

is a holomorphic relatively automorphic function for the factor of automorphy
ΞZ(λ, t)r in terms of the period matrix Ω =

(
I Z

)
, the r-the power of the

theta factor of automorphy for that period matrix, so that for any µ, ν ∈ Zg

(G.14) f(t+ µ+ Zν;Z) = f(t) · exp−2πi r
(

1
2
tνZν + tνt

)
.

The holomorphic relatively automorphic functions for this factor of automorphy
are called theta functions of order r for the period matrix Ω =

(
I Z

)
, and

describe holomorphic cross-sections of the r-th power ΞrZ of the theta bundle
over M ; as before, the dimension of the vector space of theta functions of order
r is denoted by γ(ΞrZ).

Theorem G.2 The vector space of theta functions of order r > 0 for the period
matrix Ω =

(
I Z

)
has dimension rg, that is, γ(ΞrZ) = rg.
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Proof: The holomorphic relatively automorphic functions for the theta factor
of automorphy ΞZ(µ + Zν)r are holomorphic functions f(t) of the variables
t ∈ Cg satisfying (G.14). As in the proof of Theorerm G.1, for ν = 0 it follows
that the function f(t) is invariant under translation through integer vectors, so
it has a complex Fourier expansion

(G.15) f(t) =
∑
n∈Zg

cn exp 2πi tn · t

for some cn ∈ C. Then for µ = 0 it follows from (G.14) that

f(t+ Zν) = f(t) · exp−2πir
(

1
2
tνZν + tνt

)
(G.16)

=

(∑
n∈Zg

cn exp 2πi tn · t

)
· exp−2πir

(
1
2
tνZν + tνt

)
=
∑
n∈Zg

cn exp 2πi
(
t(n− rν) · t− r

2
tνZν

)
=
∑
n∈Zg

cn+rν exp 2πi
(
tn · t− r

2
tνZν

)
where the last equality follows by replacing the parameter of summation n in
the preceding line by n+ rν; on the other hand replacing t in (G.15) by t+Zν
shows that

(G.17) f(t+ Zν) =
∑
n∈Zg

cn exp 2πi tn · (t+ Zν).

Upon comparing the Fourier coefficients in the Fourier expansions (G.16) and
(G.17) it follows that

(G.18) cn+rν = cn exp 2πi
(
tnZν + r

2
tνZν

)
for all n ∈ Zg.

Since every vector n ∈ Zg can be written uniquely as n = δ + rν for some
δ = (δ1, . . . , δg) ∈ Zg for which 0 ≤ δi < r and some ν ∈ Zg it follows that
all the coefficients cn of the Fourier expansion (G.15) are determined by the rg

coefficients cδ through the recurrence relation (G.18), where these coefficients
cδ can be chosen arbitrarily; hence γ(ΞrZ) = rg, which suffices for the proof.

The special case of second order theta functions is particularly interesting.
The preceding theorem shows that the space of second-order theta functions has
dimension 2g. For notational convenience identify Zg2 with the set of g-tuples of
integers δ = (δ1, . . . , δg) where δi = 0 or 1, or equivalently, with the set of real
half-periods for the period matrix Ω; in these terms, every vector n ∈ Zg can
be written uniquely as n = δ + rν for some δ ∈ Zg2 and some ν ∈ Zg. Then by
using the recurrence relation (G.18) for the Fourier coefficients of second-order
theta functions and the symmetry tZ = Z, any second-order theta function f(t)
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can be written

f(t) =
∑
δ∈Zg2
ν∈Zg

cδ+2ν exp 2πi t(δ + 2ν)t(G.19)

=
∑
δ∈Zg2
ν∈Zg

cδ exp 2πi
(
tδZν + tνZν + t(δ + 2ν)t

)
=
∑
δ∈Zg2

cδ exp 2πi tδt ·
∑
ν∈Zg

exp 2πi
(
tνZν + tν(2t+ Zδ)

)
=
∑
δ∈Zg2

cδ exp 2πi tδt ·Θ(2t+ Zδ; 2Z)

in view of (G.2), or equivalently

(G.20) f(t) =
∑
δ∈Zg2

cδ Θ2,δ(t;Z)

where

(G.21) Θ2,δ(t;Z) = exp 2πi tδt ·Θ(2t+ Zδ; 2Z).

It follows from (G.6) and (G.7) that for any µ, ν ∈ Zg

Θ2,δ(t+ µ+ Zν;Z) = exp 2πi tδ(t+ µ+ Zν) ·Θ(2t+ 2µ+ 2Zν + Zδ; 2Z)

= exp 2πi tδ(t+ µ+ Zν)·
· exp−2πi

(
tνZν + tν(2t+ Zδ)

)
·Θ(2t+ Zδ; 2Z)

= exp 2πi tδt · exp−2πi
(
tνZν + 2 tνt

)
·Θ(2t+ Zδ; 2Z)

= exp−2πi · ( tνZν + 2 tνt)Θ2,δ(t;Z),

so in view of (G.14) each of the functions Θ2,δ(t;Z) is a second-order theta func-
tion and (G.20) is an expansion of an arbitrary second-order theta function as a
linear combination of the 2gfunctions Θδ(t;Z), which consequently are a basis
for the vector space of second-order theta functions. The Fourier expansions of
these basic second-order theta functions also can be read directly from (G.19),
since it is clear from the second line of that formula that

(G.22) Θ2,δ(t;Z) =
∑
ν∈Zg

exp 2πi tνZ(ν + δ) · exp 2πi t(δ + 2ν)t.

Thus the basic second-order theta function Θ2,δ(t;Z) has nonzero Fourier co-
effcients only for indices δ + 2ν ≡ δ (mod 2), and all these Fourier coefficients
are nonzero; in particular for ν = 0 the Fourier expansion includes the term
1 · exp 2πi tδt, so the functions Θ2,δ(t;Z) are in a natural sense the standard
basis for the set of second-order theta functions.



556 APPENDIX G. THETA SERIES

For any integral vectors δ, µ, ν ∈ Zg it follows from (G.6) and (G.7) that

Θ(t+ 1
2δ + µ+ Zν;Z) = exp−2πi

(
1
2
tνZν + tν(t+ 1

2δ)
)
·Θ(t+ 1

2δ;Z)

= (−1)
tν·δ exp−2πi

(
1
2
tνZν + tνt

)
·Θ(t+ 1

2δ;Z)

and consequently that

(G.23) Θ(t+ 1
2δ + µ+ Zν;Z)2 = exp−4πi

(
1
2
tνZν + tνt

)
·Θ(t+ 1

2δ;Z)2;

so in view of (G.14) the squares Θ(t + 1
2δ;Z)2 for all parameter values δ ∈ Zg2

are 2g second-order theta functions.

Theorem G.3 The second-order theta functions functions Θ(t + 1
2δ;Z)2 for

real half-periods δ ∈ Zg2 can be written in terms of the basic second-order theta
functions Θ2,δ(t;Z) as

(G.24) Θ(t+ 1
2δ;Z)2 =

∑
ε∈Zg2

(−1)
tε·δeπi

tεZεΘ(Zε; 2Z) ·Θ2,ε(t;Z);

consequently Θ(Zε; 2Z) 6= 0 for at least some ε ∈ Zg2, and the dimension of the
space of second-order theta functions spanned by the squares Θ(t + 1

2δ;Z)2 is
equal to the number of real half-periods ε ∈ Zg2 such that Θ(Zε; 2Z) 6= 0.

Proof: By the definition (G.2) of the theta function

Θ(t+ 1
2δ;Z) =

∑
n∈Zg (−1)

tn·δ exp 2πi
(

1
2
tnZn+ tnt

)
so

Θ(t+ 1
2δ;Z)2 =

∑
m,n∈Zg (−1)

t(m+n)·δ exp 2πi
(

1
2
tnZn+ 1

2
tmZm+ t(m+ n)t

)
,

and setting m = ν − n this can be rewritten

Θ(t+ 1
2δ;Z)2 =

∑
ν,n∈Zg

(−1)
tν·δ exp 2πi

(
1
2
tnZn+ 1

2
t(ν − n)Z(ν − n) + tνt

)
=
∑
ν∈Zg

(−1)
tν·δ exp 2πi

(
1
2

t
νZν + tνt

)
·
∑
n∈Zg

exp 2πi
(
tnZn− tnZν

)
=
∑
ν∈Zg

(−1)
tν·δ exp 2πi

(
1
2

t
νZν + tνt

)
·Θ(Zν; 2Z);

thus the Fourier series expansion of Θ(t+ 1
2δ;Z)2 is

(G.25) Θ(t+ 1
2δ;Z)2 =

∑
ν∈Zg (−1)

tν·δ aν e
2πi tνt

where

(G.26) aν = expπi
(
tνZν

)
·Θ(Zν; 2Z).
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This function can be written as a linear combination

Θ(t+ 1
2δ;Z)2 =

∑
ε∈Zg2

bεΘ2,ε(t;Z)

of the basis Θ2,ε(t;Z) for the space of second-order theta functions, and compar-
ing the Fourier coefficients of exp 2πi tεt for these second-order theta functions
shows that

bε = (−1)
tε·δaε,

which yields (G.24). The final conclusion of the theorem is an immediate conse-
quence, since the squares Θ(t+ 1

2δ;Z)2 are nontrivial second-order theta func-
tions, and that suffices for the proof.

Corollary G.4 The translates Θ(t + 1
2δ;Z) of the theta function satisfy the

quadratic equations

(G.27)
∑
δ∈Zg2

(−1)
tγ·δΘ(t+ 1

2δ;Z)2 = 0

for all γ ∈ Zg2 such that Θ(Zγ; 2Z) = 0.

Proof: It is clear that for any ε, γ ∈ Zg2∑
δ∈Zg2

(−1)
t(ε−γ)·δ =

{
2g if γ = ε,
0 if γ 6= ε

From this and (G.24) it follows that∑
δ∈Zg2

(−1)
t(ε−γ) cot δΘ(2 + 1

2δ;Z)2 =
∑
δ,ε∈Zg2

(−1)
t(ε−γ)·δeπi

tεZεΘ(Zε; 2Z) ·Θ2,ε(t;Z)

= 2geπi
tγZγΘ(Zγ; 2Z) ·Θ2,γ(t;Z).

In particular then ∑
δ∈Zg2

(−1)
t(ε−γ) cot δΘ(2 + 1

2δ;Z)2 = 0

whenever γ ∈ Zg2 is a real half-period for which Θ(Zγ; 2Z) = 0, and that suffices
for the proof.

More generally the complex tori J(Ω) are homogeneous spaces under ar-
bitrary translations, and these translations have a fairly simple effect on theta
functions. Indeed if Θ(t; s, Z) = Θ(s+t;Z) is the translate of the theta function
Θ(t; z) through s it follows from (G.4), (G.5) and (G.7) that

Θ(t+ µ+ Zν; s, Z) = Θ(s+ t+ µ+ Zν;Z)(G.28)

= Θ(s+ t;Z) · exp−2πi
(

1
2
tνZν + tν(t+ s)

)
= exp−2πi tν s · ΞZ(µ+ Zν, t) ·Θ(t; s, Z);
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thus Θ(t; s, Z) is a relatively automorphic function for the product of the flat
factor of automorphy

(G.29) σs(µ+ Zν) = exp−2πi tν s

and the theta factor of automorphy ΞZ(µ+Zν, t). It is clear from its definition
that the flat factor of automorphy σs(µ + Zν) is trivial if and only if s ∈ Zg;
and it is easy to see that it is analytically trivial if and only if s ∈ L(Ω). Indeed
by definition this factor of automorphy is analytically trivial if and only if there
is a nowhere vanishing holomorphic function φ(t) in Cg such that φ(t + µ +
Zν) = σs(µ + Zν)φ(t) for all µ, ν ∈ Zg. Any such function can be written as
φ(t) = exp 2πih(t) for some holomorphic function h(t) on Cg, and in terms of
this function the flat factor of automorphy σs is analytically trivial if and only
if

(G.30) h(t+ µ+ Zν) = h(t)− tν s−m(µ, ν) for some m(µ, ν) ∈ Z.

If there is such a function h(t) then ∂jh(t) is invariant under translations through
the lattice vectors in L(Ω) for any index 1 ≤ j ≤ g, so ∂jh(t) is a bounded holo-
morphic function in Cg hence it must be constant; the function h(t) consequently
must be a linear function h(t) = tαt for some α ∈ Cg. In that case (G.30) re-
duces to the condition that tα(µ + Zν) = − tνs − m(µ, ν) for all µ, ν ∈ Z2g.
In particular for ν = 0 it follows that tα · ν ∈ Z for all µ ∈ Z2g, hence that
α ∈ Z2g, and therefore tνs ∈ L(Ω) for all ν ∈ Z2g so that s ∈ L(Ω). Con-
versely if s ∈ L(Ω) so that s = m+ Zn for m,n ∈ Z2g, and if h(t) = − tnt then
h(t+µ+Zν)−h(t)− tν(m+Zn) = −tn(µ+Zν)− tν(m+Zn) = − tnµ+ tνm ∈ Z
so σs(µ + Zν) is analytically trivial. In general, if s ∈ 1

rZ
g for an inte-

ger r it is clear from (G.29) that σs(µ + Zν)r = 1 for all µ, ν, hence that
Θ(t+µ+Zν; s, Z)r = ξZ(µ+Zν)rΘ(t; s, Z)r; thus the r-th power of the trans-
late θ(t; s, Z) for any such a value s is also a relatively automorphic function for
the r-power of the theta factor of automorphy, so

(G.31) Θ(t; s, Z)r ∈ Γ(M,ΞrZ) whenever s ∈ 1
rZ

g.

Classically translates of the theta function were handled by writing a vector
s ∈ C2g as the sum

(G.32) s = Zα+ β for some α, β ∈ Cg,

since the columms of the matrix Ω =
(
I Z

)
are a basis for the vector space

C2g. The translate Θ(t; s, Z) = Θ(s+ t;Z) of the theta series through a vector s
of the form (G.32) was expressed2 in terms of a theta series with characteristic
[α|β], defined by

(G.33) Θ[α|β](t;Z) =
∑
n∈Zg

exp 2πi
(

1
2
t(n+ α)Z(n+ α) + t(n+ α)(t+ β)

)
.

2The classical notatation is Θ

[
α
β

]
(t;Z), which has been used quite persistently despite its

rather ungainly form; in the present book a modified notation is used, for purely aesthetic
reasons.
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Since

1
2
t(n+α)Z(n+α)+ t(n+α)(t+β) = 1

2
tnZn+ tn(t+Zα+β)+ 1

2
tαZα+ tα(t+β)

the series (G.33) can be written

(G.34) Θ[α|β](t;Z) = Θ(t+ Zα+ β;Z) · exp 2πi
(

1
2
tαZα+ tα(t+ β)

)
,

so the theta function with characteristic [α, β] is the product of the exponential
of a simple linear function and the translate Θ(t; s, Z) of the theta function
Θ(t;Z) through the vector s = Zα+β. It then follows from (G.28) that for any
µ, ν ∈ Zg

Θ[α|β](t+ µ+ Zν;Z) = Θ(t+ µ+ Zν + Zα+ β;Z)·
(G.35)

· exp 2πi
(

1
2
tαZα+ tα(t+ µ+ Zν + β)

)
= Θ(t+ Zα+ β;Z) exp−2πi

(
1
2
tνZν + tν(t+ Zα+ β)

)
·

· exp 2πi
(

1
2
tαZα+ tα(t+ µ+ Zν + β)

)
= Θ[α|β](t;Z) exp−2πi

(
1
2
tνZν − tµα+ tν(t+ β)

)
,

which can be rewritten

(G.36) Θ[α|β](t+ µ+ Zν;Z) = σ[α|β](µ+ Zν) · ΞZ(µ+ Zν, t) ·Θ[α|β](t;Z)

for the flat factor of automorphy σ[α|β] ∈ Hom(L(Ω),C∗) for which

(G.37) σ[α|β](µ+ Zν) = exp 2πi
(
tµα− tνβ

)
.

The theta function with characteristic [α, β] consequently is a relatively auto-
morphic function for the product of the flat factor of automorphy σ[α|β](µ+Zν)
and the theta factor of automorphy ΞZ(µ+ Zν, t).

Theta functions with rational characteristics are particularly interesting. For
example, if α and β are half-integer vectors then Zα + β is a half-period for
the period matrix Ω =

(
I Z

)
, while if α = 0 and β is a half-integer vector

then Zα+ β is a real half-period. In general a theta function Θ[α|β](t;Z) with
half-integral characteristic is either an odd or an even function of t. Of course
Θ(t;Z) = Θ[0|0](t;Z) is an even function, as noted in (G.3), and it follows from
the definition (G.33) upon replacing the index of summation n by m where
n+ α = −(m+ α), so m ranges through Zg as n does, that

Θ[α|β](−t;Z) =
∑
n∈Zg

exp 2πi
(

1
2
t(n+ α)Z(n+ α) + t(n+ α)(−t+ β)

)
=
∑
m∈Zg

exp 2πi
(

1
2
t(m+ α)Z(m+ α)− t(m+ α)(−t+ β)

)
=
∑
m∈Zg

exp 2πi
(

1
2
t(m+ α)Z(m+ α) + t(m+ α)(t+ β)− 2 tαβ

)
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since 2β ∈ Zg hence exp 4πi tmβ = 1; consequently

(G.38) Θ[α|β](−t;Z) = exp−4πi tαβ ·Θ[α|β](t;Z).

The half-integral characteristic [α|β] is said to be even if 4 tαβ ∈ Z is an even
integer and odd if 4 tαβ ∈ Z is an odd integer, so that

(G.39) exp−4πi[α|β] =

 1 if [α|β] is even,

−1 if [α|β] is odd .

Consequently the theta function Θ[α|β](t;Z) with an odd half-integral charac-
teristic is an odd function so has a zero of odd order at the origin; and by (G.34)
the zero of the function Θ[α|β](t;Z) at the origin has the same order as that of
the zero of the theta function Θ(t;Z) at the point Zα+β, so the theta function
Θ(t;Z) has a zero of odd order at any half-integral point Zα+β for which [α|β]
is an odd characteristic. Similarly the theta function Θ[α|β](t;Z) with an even
half-integral characteristic is an even function so is either nonzero or has a zero
of even order at the origin; and by (G.34) the zero of the function Θ[α|β](t;Z)
at the origin has the same order as that of the zero of the theta function Θ(t;Z)
at the point Zα + β, so the theta function Θ(t;Z) is either nonzero or has a
zero of even order at any half-integral point Zα + β for which [α|β] is an even
characteristic. There are 2g−1(2g + 1) even half-periods and 2g−1(2g − 1) odd
half-periods, which is essentially demonstrated in Corollary ?? in Chapter ??.


