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Abstract

We investigate orbits of certain representations of reductive groups and their parametriza-

tions of algebraic curves and vector bundles on those curves. Our results can be viewed as a

higher-dimensional analogue of Bhargava’s parametrizations of low rank rings and modules

over them by integral orbits of prehomogeneous vector spaces.

The first spaces we study are the standard representations of GL3 × GLn × GLn for

n ≥ 3, also called the spaces of 3×n×n boxes. The associated orbit space is shown to be a

moduli space for plane curves of degree n with specified line bundles, which is closely related

to work of Beauville, Cook-Thomas, and Ng. We also derive parametrizations for related

“symmetrized” representations, such as ternary cubic forms and triples of n-ary quadratic

forms. Specializing to small n gives theorems on unirationality of certain universal Picard

varieties, and for odd n ≥ 5, the symmetrized theorem reinterprets work of Reid and Tjurin

on intersections of quadrics.

We next examine the orbits of 2× 2×m×m boxes for m ≥ 2, which are shown to

correspond to bidegree (m,m) curves in P1 × P1 with extra data. Again, we also consider

the symmetrized orbit problem, for which there are additional conditions on the line bundles.

Exploiting the numerous symmetries for a box when m = 2 produces parametrizations of

many other spaces, including pairs of binary cubic forms and binary quartic forms. For

m = 3, linking two different geometric interpretations of symmetrized boxes explicitly

recovers a special case of the trigonal construction of Recillas.

Finally, we consider ternary quadratic forms taking values in a line bundle over an arbi-

trary base. The correspondence between ternary quadratic forms and quaternion algebras

in this generality was given recently by Gross-Lucianovic and Voight, and we relate each of

those categories to moduli spaces of vector bundles over genus zero curves.

As most of these orbit spaces are just affine spaces modulo fairly standard group actions,

we obtain some geometric consequences. For example, all the moduli spaces thus obtained

are unirational, and in cases where the invariant ring is free, even rational. Furthermore,

the constructions we detail are completely explicit, and these descriptions of the moduli

spaces lend themselves to computations.
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Chapter 1

Introduction

The underlying philosophy of this thesis is the investigation of links between moduli spaces

from representation theory, algebra, and geometry. In particular, we study orbits of repre-

sentations of reductive groups and their parametrizations of algebraic and geometric objects.

In 1801, Gauss gave the first example of such a parametrization in his celebrated Disqui-

sitiones Arithmeticae. He studied integral binary quadratic forms under a certain action of

the group GL2(Z). Although the space of binary quadratic forms is a prehomogeneous vec-

tor space, meaning that it has an open orbit over C, the integral orbits of binary quadratic

forms are in bijection with ideal classes in quadratic rings. One of the key concepts used

in understanding this correspondence is the discriminant of such a form, which is invariant

under the group action.

By the late 1800s, classical invariant theory became one of the most active and produc-

tive areas of mathematics. Although most of the focus was on the computation of invariants

of representations, which we will also use in our analyses, some orbit problems were also

considered. For example, for two vector spaces V1 and V2 over an algebraically closed field,

the product GL(V1) ×GL(V2) acting on the tensor product V1 ⊗ V2 of their standard rep-

resentations is a prehomogeneous vector space; the same is true for a threefold product if

one of the vector spaces has dimension one or two.

More recently, Bhargava, in a series of papers [Bha04a, Bha04b, Bha04c, Bha08], has

studied the orbit problems for essentially all prehomogeneous vector spaces. In these cases,

which are a generalization of Gauss’s theorem, he proves that the integral orbits parametrize
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objects such as low rank rings and ideal classes of such rings or modules over them. From

a geometric point of view, these objects generally correspond to zero-dimensional schemes

and vector bundles over them, and their moduli spaces—although nontrivial—essentially

have only one C-point.1

Not all products of reductive groups and their standard representations are prehomo-

geneous, however. In fact, if all the vector spaces have dimension greater than 3, threefold

products have continuous families of orbits even over an algebraically closed field, which of

course increases the difficulty of understanding the orbits over any base, including C. In

these cases, even the nullcone2 has infinitely many orbits. In this thesis, we primarily study

the orbits of certain threefold and fourfold products and determine the algebro-geometric

objects they parametrize. These representations have continuous families of orbits corre-

sponding to higher-dimensional schemes.

In particular, we will study a number of representations that parametrize curves and

vector bundles on these curves. For the most part (Chapters 2 to 5), the algebraic ob-

jects parametrized will visibly be equivalent to the geometric objects; that is, we could use

either the language of curves and vector bundles on them, or that of the corresponding

coordinate rings and modules over them. We will use the former, since we may then make

use of the theory of moduli of curves, especially Brill-Noether theory, to understand their

moduli spaces. In Chapter 6, however, the algebraic objects parametrized are noncommu-

tative rings, so we investigate the links between all three types of objects: orbits of the

representation, quaternion algebras, and vector bundles over genus zero curves.

In Chapters 2 to 5, the basic representations we consider are standard tensor products of

products of general linear groups. For any length k vector a = (a1, . . . , ak) ∈ Nk, let G(a) be

the reductive group GLa1×· · ·×GLak , and let V (a) be the tensor product V (a1)⊗· · ·⊗V (ak),

where V (ai) is the standard representation of GLai for 1 ≤ i ≤ k. We call the representation

V (a), with the action of G(a), the space of a1×· · ·×ak boxes. In our cases, the G(a)-orbits

of an open set of V (a) parametrize curves with line bundles. In general, it will be clear that

1To be precise, the definition of prehomogeneous vector space implies that a dense open substack of the
quotient stack, and hence the corresponding moduli stack given by Bhargava’s parametrizations, has only
one C-valued point.

2The nullcone of a representation is the set of the most “degenerate” elements, specifically those whose
orbits contain 0 in their closure.

2



the dimension of the orbit space V (a)/G(a) matches the dimension of the corresponding

moduli space of geometric objects. Also, since k− 1 copies of Gm lie in the stabilizer of the

action of G(a) on V (a), the projectivized orbit space P(V (a))/(PGLa1 × · · · × PGLak) has

the same coarse moduli space. For our purposes, however, the affine representation V (a)

with the action of G(a) is the more natural space to study.

We begin in Chapter 2 by examining the case of 3 × 3 × 3 boxes or, in other words,

the tensor product of three three-dimensional vector spaces with the standard action of

GL3
3. First studied in [Ng95], the orbits of this space of trilinear forms correspond to genus

one curves with degree 3 line bundles. Using the symmetry among the vector spaces, we

rewrite such geometric data as genus one curves and points on their Jacobians. Although

the bijection is initially proved over an algebraically closed field, we find that with the

right definitions, the parametrizations hold over an arbitrary base scheme. The bijection

then becomes an equivalence of moduli stacks. We also derive parametrizations for related

“symmetrized” spaces, including triples of ternary quadratic forms and ternary cubic forms.

In the appendix, we reinterpret the moduli space for 3× 3× 3 boxes in terms of torsors of

elliptic curves, which is closely related to unpublished work of Bhargava and O’Neil on this

moduli problem over Q

In Chapter 3, we study a fourfold tensor product of two-dimensional spaces, that is,

2×2×2×2 boxes or, more descriptively, hypercubes, which were also initially considered by

Bhargava and O’Neil. The orbits of hypercubes also parametrize genus one curves with line

bundles, this time of degree 2, as they naturally give rise to genus one curves embedded in

P1 × P1. In the same way as for 3× 3× 3 boxes, we may reformulate the geometric data in

several different ways, and the theorems extend to equivalences of the moduli stacks. Finally,

the process of symmetrization applied to hypercubes gives parametrizations of spaces such

as pairs of binary cubic forms and binary quartic forms, among others.

The analysis of 3 × 3 × 3 boxes depends heavily on understanding smooth genus one

curves as the zero locus of cubic forms in the projective plane. Ternary forms of degree n give

higher genus curves with embeddings in P2, and many others have studied determinantal

representations of plane curves [CT79, Bea00]. A related way to obtain such curves is from

3× n× n boxes.
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In Chapter 4, we investigate the orbits of 3 × n × n boxes using similar techniques to

those of Chapter 2. Each orbit of these boxes correspond to a genus 1
2(n− 1)(n− 2) curve

with certain line bundles, including a line bundle inducing a plane embedding of the curve.

Orbits of the symmetrized space of triples of n-ary quadratic forms are in bijection with the

same sorts of curves and line bundles, but with additional restrictions on the line bundles.

Specializing to n = 3 recovers the results of Chapter 2, and to n = 4 gives a description of

(an open subspace of) the universal degree 6 Picard variety over the moduli space M3 of

genus 3 curves. For n = 5, these theorems imply that there is a close relationship between

the space of plane quintics and the moduli space M5 of genus 5 curves. More generally, for

n ≥ 5 odd, the symmetrized 3 × n × n boxes also may be interpreted as nets of quadrics

in Pn−1; the bijection then exhibits the relationship, first proved in [Rei72] and [Tju75],

between a certain Prym variety associated to the degree n plane curve and the intermediate

Jacobian of the base locus of the net of quadrics.

Just as 3×n×n boxes are a generalization of 3×3×3 boxes, the space of 2× 2×m×m

boxes is one way to generalize hypercubes. In Chapter 5, using ideas from Chapters 3 and 4,

we examine the orbits of 2× 2×m×m boxes, which correspond to bidegree (m,m) curves

in P1 × P1 with some extra data. Again, we look at the symmetrized orbit problem, where

there are additional conditions on the line bundles. For m = 3, the symmetrized boxes also

correspond to plane quartics with a noncanonical degree 4 map to P1. Combining these two

interpretations of this space explicitly recovers a special case of the trigonal construction

of Recillas, relating degree 3 and degree 4 covers of P1 [Rec74]. Our methods give an easy

proof of the relationship between the space of Prym varieties of genus 4 curves and the

universal Jacobian over M3, previously studied in [Rec93].

Finally, in Chapter 6, we study the space of ternary quadratic forms, not only over an

arbitrary base, but also taking values in a line bundle. The realization that such forms

correspond to quaternion algebras over the integers goes back to [Lat37, Bra43, Pal46], and

an explicit correspondence over local rings and principal ideal domains is given in the recent

work of Gross and Lucianovic [GL09]. Voight gives the most general construction relating

ternary quadratic forms with their Clifford algebras [Voi09], and we relate each of those

spaces to genus zero curves. We find that the category of smooth genus zero curves and
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that of quaternion algebras are equivalent, and ternary quadratic forms are closely related

to both of those types of objects, along with a line bundle. The goal in this chapter is to

connect the geometric moduli space to both the algebraic objects and the orbit problem in

a consistent manner.

We should make a few disclaimers, however. Throughout the thesis, we work with

a “nondegenerate” open subset of the tensor spaces, or an open substack of the natural

quotient stacks, where the curves we obtain are smooth and irreducible. The condition

for nondegeneracy in each case turns out to be determined locally by the nonvanishing

of a certain polynomial that is invariant under the group action, which we will call the

discriminant. Also, except in Chapter 6, the group actions under consideration generally

give the standard representations. Changing this group action can significantly change the

moduli spaces that these orbits parametrize. For example, even in the case of ternary

cubics or binary quartics, a twisted action induces different parametrizations, as in [Fis06]

and [CF09], respectively.

In the end, we hope these parametrizations are not only worthwhile for their own sakes,

but also because they have useful applications to the study of curves. Because the orbit

spaces are just affine spaces modulo fairly standard group actions, their invariant theory is

often understood. As a result, we obtain geometric consequences; for example, all the moduli

spaces thus obtained are unirational, and in cases where the invariant ring is free, rational.

Furthermore, the constructions we detail are completely explicit, in that we can compute

the equations of the curves with given embeddings. We hope that these descriptions of the

moduli spaces will lend themselves to computations. In future work, we hope to carefully

study the integral orbits of these representations and apply counting techniques, such as

from [Bha05, Bha09], to obtain asymptotics for the geometric data with bounded invariants.

And now. . . let us step out into the night and
pursue that flighty temptress, adventure.

—Albus Dumbledore, in Harry Potter and
the Half-Blood Prince by J.K. Rowling
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We turn the Cube and it twists us.

—Erno Rubik

Chapter 2

Rubik’s Cubes and Curves of Genus One

In this chapter, we introduce the space of 3× 3× 3 boxes, which we also call Rubik’s cubes.

The relationship between this space of trilinear forms and genus one curves, introduced

in [Ng95], is our first example of the heuristic connecting certain orbits of representations

with geometric data. The spaces of “symmetrized” Rubik’s cubes also parametrize related

geometric information.

From a Rubik’s cube, one may naturally construct three ternary cubic forms. We first

discuss the orbit problem for ternary cubic forms as an example, and then follow a similar

method to understand orbits of Rubik’s cubes. In the Appendix, we relate the moduli

spaces of ternary cubic forms and Rubik’s cubes over more general base schemes to torsors

of elliptic curves.

Preliminaries. Throughout this chapter, let F be an algebraically closed field of character-

istic not 2 or 3. In this chapter, we use the convention that the projectivization of a vector

space parametrizes lines instead of hyperplanes. For example, a basepoint-free line bundle

L on a variety X over F induces a natural map φL : X → P(H0(X,L)∨). For this chapter,

unless stated otherwise, a genus 1 curve means a proper, smooth, geometrically connected

curve with arithmetic genus 1. An elliptic curve is such a genus one curve equipped with a

base point.
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2.1 Orbits of Ternary Cubic Forms

We first examine the orbits of ternary cubic forms over the field F . A ternary cubic form

over F is a three-dimensional vector space U , a basis B = {w1, w2, w3} for U , and an

element f of Sym3 U , represented as a polynomial

f(w1, w2, w3) = aw3
1 + bw3

2 + cw3
3 + a2w

2
1w2 + a3w

2
1w3 (2.1)

+ b1w1w
2
2 + b3w

2
2w3 + c1w1w

2
3 + c2w2w

2
3 +mw1w2w3.

Then there is a natural action of GL(U) = GL3(F ) on the space of all ternary cubic forms

by the standard action of GL(U) on U .1 We usually refer to the polynomial f as the

ternary cubic form, with the vector space U and its basis understood. The ring of SL3-

invariants of the space of ternary cubic forms is a polynomial ring generated by a degree

4 invariant S and a degree 6 invariant T , and they may be computed by classical formulas

(see [AKM+01, Sil92], for example). Thus, the space of orbits Sym3 U/SL(U) is birational

to the affine plane A2.

We claim that the “nondegenerate” locus of ternary cubic forms, up to linear transfor-

mations, parametrizes genus one curves with degree 3 line bundles, up to isomorphisms. In

particular, a ternary cubic form f defines a curve ι : C := {f = 0} →֒ P(U∨). We call f a

nondegenerate ternary cubic form if C is smooth, which occurs if and only if the degree 12

discriminant ∆(f) := S3− T 2 of f is nonzero. In this case, the curve C has genus one, and

the pullback ι∗OP(U∨)(1) is a degree 3 line bundle on C.

On the other hand, given a genus one curve C and a degree 3 line bundle L on C, the

embedding of C into P(H0(C,L)∨) = P2 gives rise to the exact sequence of sheaves

0 −→ IC −→ OP(H0(C,L)∨) −→ OC −→ 0

on P(H0(C,L)∨), where IC is the ideal defining the curve C. Tensoring the sequence with

1The choice of the Gm-action here is important. If we consider a twisted action of GL3 on the space of
ternary cubic forms, e.g., GL(U) acting on Sym3 U ⊗ (detU)k for some integer k, the orbits may be different
(see [Fis06] for the case m = −1).
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OP(H0(C,L)∨)(3) and taking cohomology produces

0 −→ F −→ H0(P(H0(C,L)∨),O(3)) −→ H0(C,L⊗3) −→ 0,

where the image of 1 ∈ F is an element of H0(P(H0(C,L)∨),O(3)) = Sym3(H0(C,L)), i.e.,

a ternary cubic form with U := H0(C,L). These two functors between ternary cubic forms

and pairs (C,L) are inverse to one another, as long as a basis for H0(C,L) is specified.

Therefore, there is a bijection





nondegenerate

ternary cubic

forms over F




←→





isomorphism classes of triples (C,L,B) where C is

a genus one curve, L is a degree 3 line bundle on

C, and B is a basis for H0(C,L)




. (2.2)

Here, triples (C,L,B) and (C ′, L′,B′) are isomorphic if there is an isomorphism σ : C → C ′

such that σ∗L′ = L and σ∗ : H0(C ′, L′)→ H0(C,L) is an isomorphism taking the basis B′

to the basis B.

The action of GL(U) on ternary cubic forms simply changes the basis for U , which via

the bijection, corresponds to changing the basis of H0(C,L) on the right side. Also, the

action of GL(U) preserves nondegeneracy of ternary cubic forms, since the condition is the

nonvanishing of a SL(U)-invariant. The bijection (2.2) thus descends to a bijection of the

quotient spaces





nondegenerate

GL(U)-equivalence

classes of Sym3 U




←→





isomorphism classes of pairs (C,L) where C

is a genus one curve and L is a degree 3 line

bundle on C




. (2.3)

The right side of this bijection (2.3), though, may be rewritten without the line bundle,

since there exists a translation σ : C → C such that the pullback of a degree 3 line bundle

L is any other degree 3 line bundle. In other words, the automorphism group of C, which

includes Pic0(C), acts transitively on the group of degree 3 line bundles Pic3(C). Forgetting

the bundle L, though, is dependent on working over the algebraically closed field F . More

generally, over a field k, such translations by P ∈ Pic0(C) shift L by 3P , so given the curve

C, the set of isomorphism classes of pairs (C,L) is visibly a quotient of Pic0(C)/3Pic0(C).
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We will analyze this phenomenon more carefully in Appendix 2.A when describing this

bijection over an arbitrary base scheme.

Also, as the nondegenerate subspaces of Sym3 U/GL(U) and P(Sym3 U)/PGL(U) are

the same, we may also think of the left side of the bijection (2.3) as ternary cubic forms up

to scaling and linear transformations, by separating the action of GL(U) into the actions of

Gm and PGL(U).

Remark 2.1. It is possible to generalize the notion of ternary cubic form over an arbitrary

base scheme and taking values in a line bundle over that scheme, similarly to the definition

of a ternary quadratic form in Chapter 6. That is, one may define a ternary cubic form

(W, LS , f) over a scheme S taking values in the line bundle LS over S as a vector bundle

W over S, a line bundle LS over S, and a section f of Sym3 W ⊗ LS . In Appendix 2.A.2,

we study ternary cubic forms over Z[16 ]-schemes S and relate them to elements of the fppf

cohomology group H1
f (S,E[3]) for elliptic curves E.

The bijection described above, between equivalence classes of ternary cubic forms over

F and genus one curves over F with a degree 3 line bundle, is classical, but it illustrates

some of the techniques we will use to obtain similar bijections between orbits of other

representations and geometric data.

2.2 Rubik’s Cubes

Let U1, U2, and U3 be three-dimensional vector spaces over F . Then the reductive group

G := GL(U1) × GL(U2) × GL(U3) acts on the tensor space U1 ⊗ U2 ⊗ U3 by the natural

action on each factor. With choices of bases for the vector spaces U1, U2, and U3, we may

represent an element of U1 ⊗ U2 ⊗ U3 as a 3× 3× 3 box or Rubik’s cube

A = (arst)1≤r,s,t≤3.

The group G acts by row, column, and “other direction” operations on the space of Rubik’s

cubes. In the sequel, we will refer to both the 3-dimensional array and the trilinear form as

the Rubik’s cube, with the vector spaces Ui and bases for each Ui understood.
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We use the notation A(·, ·, ·) to denote the trilinear form, where the dots may be replaced

by substituting elements of the respective U∨
i . For example, given an element w ∈ U∨

1 , the

notation A(w, ·, ·) will refer to the 3 × 3 matrix Ayw ∈ U2 ⊗ U3. By a slight abuse of

notation, we will also use this notation to specify whether A(w, ·, ·) vanishes for w ∈ P(U∨
1 ),

for example.

2.2.1 Genus One Curves and Degree 3 Line Bundles

Let A = (arst) ∈ U1 ⊗ U2 ⊗ U3 be a Rubik’s cube. Then the vanishing of the ternary cubic

form, if nonzero,

f1(w1, w2, w3) := detA(w, ·, ·) ∈ Sym3 U1

defines a degree 3 curve C1 ⊂ P(U∨
1 ) = P2. In other words, the curve C1 is a determinantal

variety, given by the determinant of a matrix of linear forms on P(U∨
1 ). We define analogous

ternary cubic forms f2 ∈ Sym3 U2 and f3 ∈ Sym3 U3, which (if nonzero) give rise to degree

3 curves C2 ⊂ P(U∨
2 ) and C3 ⊂ P(U∨

3 ). We show below that these curves are isomorphic

for a nondegenerate Rubik’s cube.

We call a Rubik’s cube A nondegenerate if the variety C1 (equivalently, C2 or C3) thus

defined is smooth and one-dimensional, which corresponds to the nonvanishing of a degree

36 polynomial in arst. This polynomial is called the discriminant of the Rubik’s cube A,

and it coincides with the usual degree 12 discriminant ∆(f1) of the ternary cubic form f1.
2

If A is nondegenerate, the degree 3 plane curve C1 is smooth of genus one. Then for all

points w† ∈ C1, we claim that the singular matrix A(w†, ·, ·) has exactly rank 2. If not, then

the 2× 2 minors of A(w, ·, ·) would vanish on w†, and so would all the partial derivatives

∂f

∂wi

∣∣∣∣
w=w†

=
∑

s,t

aistA
∗
ij(w

†)

where A∗
ij(w

†) is the (i, j)th 2× 2 minor of A(w†, ·, ·). Since C1 was assumed to be smooth,

however, the rank of the matrix A(w†, ·, ·) cannot drop by two. In the sequel, we will assume

A is nondegenerate.

2We will see later that the nonvanishing of the discriminants ∆(fi) for any of the ternary cubic forms fi,
1 ≤ i ≤ 3, are all equivalent conditions.
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Given a nondegenerate Rubik’s cube A, define the variety

C12 := {(w, x) ∈ P(U∨
1 )× P(U∨

2 ) : A(w, x, ·) = 0} ⊂ P(U∨
1 )× P(U∨

2 ).

Because A is a trilinear form and the locus on which it vanishes in U1 × U2 is invariant

under scaling, this is a well-defined locus in P(U∨
1 )× P(U∨

2 ). Since A is nondegenerate, the

projection

C12 −→ P(U∨
1 )

is an isomorphism onto C1. The inverse map takes a point w ∈ C1 ⊂ P(U∨
1 ) to the pair

(w, x) ∈ P(U∨
1 )× P(U∨

2 ), where x corresponds to the exactly one-dimensional kernel of the

linear map A(w, ·, ·) ∈ U2 ⊗ U3
∼= Hom(U∨

2 , U3). This map C1 → C12 is algebraic, as this

kernel is given as a regular map by the 2 × 2 minors of the matrix Ayw. Therefore, by

dimension considerations, the curve C12 is the complete intersection of 3 bidegree (1, 1)

forms on P(U∨
1 ) × P(U∨

2 ) = P2 × P2. Similarly, the projection from C12 to P(U∨
2 ) is an

isomorphism onto C2, which shows that C1 and C2 are isomorphic.

We may also consider the curve

C13 := {(w, y) ∈ P(U∨
1 )× P(U∨

3 ) : A(w, ·, y) = 0},

and the analogous maps between C1, C3, and C13 are also isomorphisms. Thus, all the curves

C1, C2, C3, C12, and C13 are isomorphic, and the nondegeneracy condition is equivalent to

the smoothness of any or all of these curves. The diagram

C12
π1
2

{{vv
vv
vv
vv
v π2

1

##H
HH

HH
HH

HH
C13

π3
1

{{vv
vv
vv
vv
v π1

3

##H
HH

HH
HH

HH

C2� _

ι2
��

τ12 // C1
τ21

oo
τ31 //

� _

ι1
��

C3
τ13

oo � _

ι3
��

P(U∨
2 ) P(U∨

1 ) P(U∨
3 )

summarizes the relationships between these curves. By construction, the maps τ ji and τ ij

are inverses to one another. These maps from the curve C1 to each projective space give
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the degree 3 line bundles

L1 := ι∗1OP(U∨
1 )(1)

L2 := (ι2 ◦ τ
2
1 )

∗OP(U∨
2 )(1)

L3 := (ι3 ◦ τ
3
1 )

∗OP(U∨
3 )(1)

on C1. For 1 ≤ i ≤ 3, all 3 dimensions of sections of the degree 3 bundle Li arise from

pulling back sections from OP(U∨
i )(1).

Lemma 2.2. The degree 3 line bundle L1 on C1 is not isomorphic to either of the line

bundles L2 or L3.

Proof. It suffices, without loss of generality, to show that L1 and L2 are not isomorphic line

bundles. If L1
∼= L2, then the curve C12 would lie on a diagonal of P2×P2 = P(U∨

1 )×P(U
∨
2 ),

and with an identification of the bases for U1 and U2, we have A(w,w, ·) = 0 for all w ∈ C1,

for example. Because C1 spans P(U∨
1 ), we must have that A(·, ·, y) is a skew-symmetric

3 × 3 matrix for any y ∈ P(U∨
3 ). Since odd-dimensional skew-symmetric matrices have

determinant zero, we would have C3 = P(U∨
3 ), which is a contradiction.

Of course, there also exists a curve C23 ⊂ P(U∨
2 )× P(U∨

3 ) and corresponding maps

C23
π3
2

}}{{
{{
{{
{{ π2

3

!!C
CC

CC
CC

C

C2

τ32 // C3
τ23

oo

so we have the diagram

C1

τ21

����
��
��
��
��
��
�

τ31

��3
33

33
33

33
33

33

C2

τ32 //

τ12

EE�������������
C3

τ23

oo

τ13

YY3333333333333

(2.4)
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relating the three plane cubics. Generically, the composition maps such as

α132 := τ12 ◦ τ
2
3 ◦ τ

3
1 : C1 −→ C1

are not the identity map. In particular, the following relation among the line bundles Li and

the symmetry of the constructions will show that the composition maps are automorphisms

of the curves given as translations by points on their Jacobians.

Lemma 2.3. The line bundles L1, L2, L3 on C1 defined above satisfy the relation

L1 ⊗ L1
∼= L2 ⊗ L3. (2.5)

Proof. For w ∈ C1 ⊂ P(U∨
1 ), each coordinate of τ21 (w) ∈ P(U∨

2 ) is given by the 2× 2 minors

A∗
ij(w) of A(w, ·, ·) for some fixed j where not all A∗

ij(w) vanish. Let D2 be an effective

degree 3 divisor on C1 such that O(D2) ∼= L2. Then the points of D2 are the preimage on C1

of the intersection of a hyperplane with the image of the curve C12 in P(U∨
2 ); in particular,

we may choose D2, without loss of generality, to be the divisor defined by the locus where a

particular minor, say A∗
11(w), vanishes on the curve C1 but at least one A∗

i1(w) is nonzero.

Similarly, we may choose a divisor D3 such that O(D3) ∼= L3 to be the points w ∈ C1 where

A∗
11(w) = 0 but not all other A∗

j1(w) vanish. Then the points of the degree 6 effective divisor

D2+D3 are exactly the intersection of the curve C1 and A
∗
11(w) = 0, and the corresponding

line bundle is isomorphic to the pullback of OP(U∨
1 )(2) to C1.

Because the construction of the curves C1, C2, and C3 are entirely symmetric, the line

bundle relation of Lemma 2.3 can be, without loss of generality, also applied to line bundles

M2 := ι∗2OP(U∨
2 )(1)

M1 := (ι1 ◦ τ
1
2 )

∗OP(U∨
1 )(1)

M3 := (ι3 ◦ τ
3
2 )

∗OP(U∨
3 )(1)

on C2. That is, the relation M2 ⊗M2
∼= M1 ⊗M3 holds, and pulling back these bundles
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through ι1 to C1 gives the relation

L2 ⊗ L2
∼= L1 ⊗ L

′
3,

where L′
3 := ι∗1M3. Similarly, if L′

1 := (ι1 ◦ τ
1
2 ◦ τ

2
3 ◦ τ

3
1 )

∗OP(U∨
1 )(1) = (ι1 ◦ α132)

∗OP(U∨
1 )(1),

then

L′
3 ⊗ L

′
3
∼= L2 ⊗ L

′
1.

A straightforward calculation shows that

L′
3 ⊗ L

−1
3
∼= L′

1 ⊗ L
−1
1
∼= (L1 ⊗ L

−1
2 )⊗3,

i.e., the automorphism α132 of C1 is given by the action of the point in Jac(C1) corresponding

to the line bundle P132 := L′
1 ⊗ L

−1
1 ∈ Pic0(C1). If Q12 := L1 ⊗ L

−1
2 in Pic0(C1), we have

P132 = (Q12)
⊗3.

All of the other composition maps αijk : Ci → Ci, for {i, j, k} = {1, 2, 3}, given by

following the appropriate maps around the diagram (2.4), are similarly given by translating

Ci by the corresponding line bundles Pijk of the degree 0 Picard group of Ci. Clearly

Pijk = −Pikj, since reversing the three-cycle in diagram (2.4) is the inverse map.

Recall that Pic0(C) and Jac(C) are naturally dual to one another for any curve C, and

the principal polarization on Jac(C) gives a natural isomorphism between the two. So the

degree 0 line bundles Qij and Pijk may also be thought of as points of the Jacobian Jac(C)

of C. Furthermore, note that the Jacobians of C1, C2, and C3 are canonically isomorphic,

and the induced diagram on Jacobians

Jac(C1)

τ21

����
��
��
��
��
��
��
�

τ31

��=
==

==
==

==
==

==
==

Jac(C2)
τ32 //

τ12

@@���������������
Jac(C3)

τ23

oo

τ13

^^===============

is commutative, so the composition map Jac(Ci)→ Jac(Ci) is the identity for 1 ≤ i ≤ 3.
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2.2.2 The Group Action

We saw in Section 2.2.1 that a Rubik’s cube A gives rise to a genus one curve, up to

isomorphism, and certain degree 3 line bundles. This data is, in fact, determined up to

isomorphism under the action of the group G on the space of Rubik’s cubes.

Let Q be the space of quadruples (C,L1, L2, L3), where C is a genus one curve and

L1, L2, and L3 are degree 3 line bundles on C. We call two quadruples (C,L1, L2, L3) and

(C ′, L′
1, L

′
2, L

′
3) equivalent if there exists an isomorphism σ : C → C ′ such that σ∗L′

i
∼= Li

for 1 ≤ i ≤ 3.

It is evident that we actually have a map from Rubik’s cubes to Q up to equivalence.

Note that scaling visibly does not change the curves in P(U∨
i ) for 1 ≤ i ≤ 3 defined by the

ternary cubic forms arising from a Rubik’s cubes, nor the maps between them, so this map

factors through P(U1 ⊗ U2 ⊗ U3). Those cubics in P2 and the maps between them give rise

to all the geometric data in the quadruple.

Lemma 2.4. The map Φ from the nondegenerate open subscheme of U1 ⊗ U2 ⊗ U3 to the

equivalence classes of Q is G-invariant.

Proof. We only need to show that this map is well-defined on nondegenerate G-orbits. First,

note that the G-action preserves the nondegeneracy of a Rubik’s cube. In fact, the degree

36 discriminant of a Rubik’s cube is an invariant of the action of SL(U1)×SL(U2)×SL(U3).

By the construction of the curve C1 ⊂ P(U∨
1 ), the condition for smoothness of C1 implies

that the nonvanishing of the discriminant is invariant under the action of GL(U2)×GL(U3),

and because the discriminant of the Rubik’s cube is the same as the discriminant of any of

the curves Ci ⊂ P(U∨
i ) for 1 ≤ i ≤ 3, its nonvanishing is invariant under the natural action

of GL(U1)×GL(U2)×GL(U3) on U1 ⊗ U2 ⊗ U3.

Moreover, given an element g = (g1, g2, g3) ∈ G, we show that the Rubik’s cubes A

and g(A) produce equivalent quadruples (C,L1, L2, L3) and (C ′, L′
1, L

′
2, L

′
3), respectively.

First, for 1 ≤ i ≤ 3, the ternary cubic forms fi and f ′i differ only by the change of basis

gi ∈ GL(Ui), so the curves Ci and C
′
i may be taken to one another via the image gi of gi in

PGL(Ui). Similarly, the curves Cij and C ′
ij also differ by the action of (gi, gj) on the bases
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of P(U∨
i ) and P(U∨

j ), so each of the squares

Ci
gi //

τ ji
��

C ′
i

(τ ji )
′

��
Cj

gj
// C ′

j

commutes, as desired.

Therefore, from a nondegenerate G-orbit of Rubik’s cubes, we have produced a genus

one curve with these three line bundles, which is the same data as the curve with three

embeddings into P2, with a relation among the bundles.

2.3 The Moduli Problem for Rubik’s Cubes

In fact, the geometric data as described in Section 2.2.1 is exactly enough to recover a

nondegenerate G-orbit of Rubik’s cubes. We will also show that Rubik’s cubes parametrize

a genus one curve with line bundles and bases for related vector spaces, up to the most

natural notion of isomorphism; when the action of the group G is taken into account, the

bases will disappear from this set of data. This parametrization holds not only over the

base field F but for families of Rubik’s cubes as well.

2.3.1 Preliminary Bijection

A version of the following theorem appears in [Ng95], but we include slightly modified

statements and proofs to set up subsequent generalizations.

Theorem 2.5. There exists a bijection





G-equivalence

classes of

nondegenerate

Rubik’s cubes





←→





equivalence classes of (C,L1, L2, L3) with C a

genus 1 curve and L1, L2, L3 degree 3 line bun-

dles on C with L1 ⊗ L1
∼= L2 ⊗ L3 and L1 not

isomorphic to L2 or L3





(2.6)

where the right arrow is given by Φ in Lemma 2.4.
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Proof. We have already shown that there is a well-defined map Φ from G-orbits of non-

degenerate Rubik’s cubes to the listed geometric data. In the other direction, given such

a quadruple (C,L1, L2, L3), we consider the multiplication map (i.e., the cup product on

cohomology)

µ12 : H
0(C,L1)⊗H

0(C,L2) −→ H0(C,L1 ⊗ L2). (2.7)

A simple case of a theorem of [Mum70] shows that µ is surjective. Thus, by Riemann-Roch,

the kernel of µ12 has dimension 9− 6 = 3. Now let U1 := H0(C,L1), U2 := H0(C,L2), and

U3 := (ker(µ12))
∨, and we obtain a Rubik’s cube by the injection

ker(µ12) →֒ H0(C,L1)⊗H
0(C,L2),

which is an element of Hom(ker(µ12),H
0(C,L1) ⊗H

0(C,L2)) ∼= H0(C,L1) ⊗H
0(C,L2)⊗

(ker(µ12))
∨. The actual 3×3×3 box requires a choice of basis for each of the vector spaces,

and here the box we recover as an element of H0(C,L1)⊗H
0(C,L2)⊗ (ker(µ12))

∨ is only

defined up to linear transformations of those vector spaces, so we have constructed a Rubik’s

cube up to G-equivalence. Note that with the choice of bases for each of the vector spaces

H0(C,L1),H
0(C,L2), and (ker(µ12))

∨, however, the Rubik’s cube is uniquely specified.

If the quadruples (C,L1, L2, L3) and (C ′, L′
1, L

′
2, L

′
3) are equivalent, then there exists an

isomorphism σ : C → C ′ such that σ∗L′
i
∼= Li for 1 ≤ i ≤ 3. The isomorphisms induced

on the spaces of sections, e.g., H0(C,L1)
∼=
−→ H0(C ′, L′

1), commute with the multiplication

maps, so the Rubik’s cubes constructed by their kernels differ only by choices of bases.

We check that the two functors between orbits of Rubik’s cubes and the equivalence

classes of quadruples are inverse to one another. Given a quadruple (C,L1, L2, L3) of the

appropriate type, define the images of the natural embeddings

C1 := φL1(C) ⊂ P(H0(C,L1)
∨)

C2 := φL2(C) ⊂ P(H0(C,L2)
∨)

C12 := (φL1 , φL2)(C) ⊂ P(H0(C,L1)
∨)× P(H0(C,L2)

∨).
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We construct the Rubik’s cube A ∈ H0(C,L1)⊗H
0(C,L2)⊗ (ker µ12)

∨ as above. Now let

D1 := {w ∈ P(H0(C,L1)
∨) : detA(w, ·, ·) = 0} ⊂ P(H0(C,L1)

∨)

D2 := {x ∈ P(H0(C,L2)
∨) : detA(·, x, ·) = 0} ⊂ P(H0(C,L2)

∨)

D12 := {(w, x) ∈ P(H0(C,L1)
∨)× P(H0(C,L2)

∨ ) : A(w, x, ·) = 0}

⊂ P(H0(C,L1)
∨)× P(H0(C,L2)

∨)

be the varieties cut out by the trilinear form A(·, ·, ·).

We claim that C1 = D1, C2 = D2, and C12 = D12 as sets and thus as varieties, which

implies that the curve D1 is isomorphic to C and that the line bundles on D1 defined as

pullbacks of O(1) on P(H0(C,L1)
∨) and P(H0(C,L2)

∨) are isomorphic to the pullbacks

of L1 and L2, respectively, via the isomorphism C
∼=
−→ D1. For all (w†, x†) ∈ C12, the

construction of the Rubik’s cube A as the kernel of µ12 implies that A(w†, x†, ·) = 0, so D12

contains C12 and also D1 ⊃ C1 and D2 ⊃ C2.

Now either the polynomial detA(w, ·, ·) or detA(·, x, ·) is not identically 0. If they both

were identically 0, then A(w, x, ·) = 0 for all (w, x) ∈ P(H0(C,L1)
∨) × P(H0(C,L2)

∨),

which contradicts the fact that A must have nonzero tensor rank by construction. Without

loss of generality, assume detA(w, ·, ·) is not identically zero. Then both D1 and C1 are

given by nonzero degree 3 polynomials and thus define the same variety, so D1 is a smooth

irreducible genus one curve in P2 = P(H0(C,L1)
∨). Because D1 is smooth, the Rubik’s

cube A is nondegenerate, and D12 is also smooth and irreducible, hence exactly the same

set of points as C12.

Note that the above argument shows that the Rubik’s cube constructed from a smooth

irreducible genus one curve C and two nonisomorphic line bundles L1 and L2 is nondegen-

erate.

It remains to show that the geometric data coming from a Rubik’s cube produces the

same cube again. Given a nondegenerate Rubik’s cube A ∈ U1 ⊗ U2 ⊗ U3, where Ui are

three-dimensional vector spaces for 1 ≤ i ≤ 3, we have described the associated quadruple

(C,L1, L2, L3) as the image of Φ. Then the vector spaces Ui and H
0(C,Li) are naturally

isomorphic for i = 1, 2, and U∨
3 can be identified with the kernel of the multiplication map
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µ12 as above. With these identifications, the Rubik’s cube constructed from this quadruple

is well-defined and G-equivalent to the original cube A. If we also identify the bases for

each of these vector spaces, then in fact, the Rubik’s cube obtained by this contruction will

be the same as A.

Remark 2.6. Note that the line bundle L3 is not used directly in the proof of Theorem 2.5.

The bundle L3 does not need to be included in the data on the right side of bijection (2.6),

since L3 and the condition that L1 6∼= L3 can be completely recovered from L1 and L2. It is

not a priori clear that the construction of (the G-orbit of) a Rubik’s cube from L1 and L2

gives the same orbit as the analogous construction from L1 and L3. Because the same proof

works if we switch the roles of L2 and L3 throughout, the bijection above shows that from

a quadruple (C,L1, L2, L3), either construction would produce G-equivalent Rubik’s cubes.

As a result, there exists a natural identification between the space of sections of the bundle

L1⊗L1⊗L
−1
2 on the curve C and the dual of kerµ12 (and, likewise, H0(C,L1 ⊗L1⊗L

−1
3 )

and the dual of ker µ13).

Remark 2.7. Like in the case of ternary cubic forms, as we are working over the alge-

braically closed field F , one of the line bundles on the genus one curve C that arises is super-

fluous under the notion of equivalence of (C,L1, L2, L3). The automorphism σ−P : C → C

given by translation by a point −P ∈ Pic0(C) will shift each of the line bundles Li on C

by 3P under the pullback, i.e., σ∗−PLi
∼= Li⊗ P

⊗3. So the line bundle L1, for example, can

be taken to be any degree 3 line bundle on C. The differences L1 ⊗ L
−1
2 and L1 ⊗ L

−1
3 are

not changed, however, by these translations. The only other automorphisms of a generic

genus one curve C are “flips” around a point x ∈ C, in which case the differences L1⊗L
−1
2

and L1 ⊗ L
−1
3 are taken to their duals under pullback. There are, of course, other ways for

quadruples to be equivalent.

There also is an algebraic proof of Theorem 2.5, which is detailed in more generality

(for 3× n× n boxes) in Section 4.2.3. Given a Rubik’s cube, computing the corresponding

ternary cubic forms is of course straightforward, but the algebraic proof gives a very explicit

method for computing the box, given a genus one curve and line bundles (or, as we will see,
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a point on the Jacobian of the curve). We will provide an example in the next section after

formulating the geometric data in a more easily presentable manner.

2.3.2 Reformulations

Theorem 2.5 may be restated or modified in several ways, such as by changing the categories

on either side to equivalent information or by rigidifying the data. In this section, we discuss

several of these reformulations.

An equivalent way to view a quadruple (C,L1, L2, L3) is via the points Qij or Pijk on

the Jacobian of C, as in Section 2.2.1. That is, from the data (C,L1, L2, L3), we obtain the

nonzero point Q12 ∈ Pic0(C), say, as the difference L1⊗L
−1
2 . From the genus one curve C,

a degree 3 line bundle L1, and a nonzero point Q12 ∈ Pic0(C) ∼= Jac(C), we may recover the

line bundles L2 = L1 ⊗ (Q12)
−1 and L3 = L1 ⊗ Q12. Putting together these observations,

we have a simpler way to state Theorem 2.5:

Corollary 2.8. There exists a bijection





G-equivalence classes of

nondegenerate Rubik’s

cubes over F




←→





equivalence classes of (C,L,Q) where C

is a genus one curve over F , L is a degree

3 line bundle on C, and 0 6= Q ∈ Jac(C)




. (2.8)

As mentioned in Section 2.1, over F there are automorphisms σ of C such that σ∗L

is any degree 3 line bundle, but if σ is a translation, it fixes any degree 0 line bundle.

Otherwise, σ is a “flip” that preserves L, which sends other line bundles to their negative,

and in this case, Q12 to −Q12. Consequently, over F , the geometric data corresponding to

G-orbits of nondegenerate Rubik’s cubes is just isomorphism classes of genus one curves

with a nonzero point Q ∈ Jac(C)/{±1}.

Example 2.9. As F is algebraically closed by assumption, a genus 1 curve C always has a

point over F , so without loss of generality, we may take C to be isomorphic to its Jacobian

Jac(C) =: E. If C ∼= E is given in Weierstrass form as

Y 2 = X3 + aX2 + bX + c
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and (x, y) is a point on the Jacobian E, then by Corollary 2.8, there is an associated

Rubik’s cube, up to G-equivalence. We may use the sections of the line bundles O(3 · O)

and O(2 · O + (x,±y)), where O is the identity point of E, to build a Rubik’s cube up to

G-equivalence. We write an element A of the G-orbit below as three 3 × 3 “slices” of A,

namely A((1, 0, 0), ·, ·),A((0, 1, 0), ·, ·), and A((0, 0, 1), ·, ·):




−a− 3x 0 −b− ax

0 −1 y

−b− ax −y −3c− bx







0 −1 −y

−1 0 x

y x 0







−b− ax y −3c− bx

−y x 0

−3c− bx 0 b2 − 4ac− 3cx




The three associated ternary cubic forms to A all can be written

(b2 − 4ac− 12cx− 6bx2 − 4ax3 − 3x4)(X3 + aX2Z − Y 2Z + bXZ2 + cZ3)

which clearly has Jacobian isomorphic to E.

We next rewrite Theorem 2.5 with bases for all the vector spaces in question. With these

bases, the proof shows what Rubik’s cubes, not just their G-orbits, exactly parametrize.

Recall that a Rubik’s cube by definition is not just an element of U1 ⊗ U2 ⊗ U3 but also

the information of bases for Ui for 1 ≤ i ≤ 3. On the other hand, let D be the data of

(C,L1, L2, L3), where C is a curve of genus one and each Li for 1 ≤ i ≤ 3 is a degree 3 line

bundle on C with L1⊗L1
∼= L2⊗L3 and L1 6∼= L2 and L1 6∼= L3, along with bases B1,B2,B3

for the spaces of sections H0(C,L1),H
0(C,L2),H

0(C,L3), respectively. Then two data D

and D′ are equivalent if there exists an isomorphism σ : C → C ′ such that for 1 ≤ i ≤ 3,

we have both σ∗L′
i
∼= Li and that σ∗ : H0(C ′, L′

i) → H0(C,Li) is an isomorphism taking

B′
i to Bi. Then each set of such data, up to equivalence, corresponds to a nondegenerate

Rubik’s cube. The proposition below follows directly from the proof of Theorem 2.5 and

the a posteriori identifications of bases for H0(C,L3) and (ker µ12)
∨ (and for H0(C,L2) and

(ker µ13)
∨) discussed in Remark 2.6.
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Proposition 2.10. There exists a bijection

{
nondegenerate

Rubik’s cubes

}
←→





equivalence classes of (C,L1, L2, L3,B1,B2,B3): C

a genus 1 curve; L1, L2, L3 degree 3 line bundles on

C with L1⊗L1
∼= L2⊗L3 and L1 not isomorphic to

L2 or L3; and Bi a basis for H0(C,Li) for 1 ≤ i ≤ 3





. (2.9)

There are no automorphisms of the data on either side of the bijection (2.9), since we

have rigidified the data completely. On the left side, there are clearly no automorphisms,

and on the right, an automorphism of (C,L1, L2, L3,B1,B2,B3) would be an automorphism

of the curve C that fixes all the other data. An automorphism σ of the curve C that fixes

all three line bundles must be a translation of the curve by a 3-torsion point of Pic0(C) ∼=

Jac(C). The image of the curve C into each P(H0(C,Li)
∨) via φLi

would be fixed setwise

but not pointwise under a nonzero σ, and the automorphism σ extends to a nontrivial linear

transformation of the projective space P(H0(C,Li)
∨). Thus, the bases B1,B2,B3 are not

fixed by σ, so there are no automorphisms on the right side of bijection (2.9).

However, both the bijections in the original Theorem 2.5 and Corollary 2.8 have nontriv-

ial automorphisms on both sides. In order for Theorem 2.5 to generalize to an equivalence

of moduli stacks, we determine what geometric data has the same automorphisms as those

of a nondegenerate Rubik’s cube, up to the action of G.

On the right side of bijection (2.6), the stabilizer of a quadruple (C,L1, L2, L3) also

includes copies of Gm: each of the three line bundles has automorphism group isomorphic

to Gm, and we may use the relation (2.5) to reduce those to two copies of Gm. That is,

if we include the actual isomorphism ϕ : L⊗2
1

∼=
−→ L2 ⊗ L3 with the other data, there are

only two copies of Gm (the kernel of Gm × Gm × Gm → Gm) in the automorphism group.

(Another way to reduce the number of copies of Gm would be to only include the data of

two line bundles, say L1 and L2.) There are also automorphisms of C that fix all three

line bundles, namely translations by 3-torsion points of Pic0(C). Since the action of these

3-torsion points of the elliptic curve Jac(C) ∼= Pic0(C) on the genus one curve C extends
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to a linear transformation of P(H0(C,Li)
∨) for 1 ≤ i ≤ 3, there is a natural map

Jac(C)[3] −→ PGL(H0(C,L1))× PGL(H0(C,L2))× PGL(H0(C,L3)).

Then the automorphism group of our data is an extension of Jac(C)[3] by G2
m, and it has

a natural map to GL(H0(C,L1))×GL(H0(C,L2))×GL(H0(C,L3)).

The stabilizer of the group G acting on a nondegenerate Rubik’s cube contains a group

of order 9 (see [Nur00]) as well as the product of two copies of Gm, which is the kernel of

the multiplication map

Gm ×Gm ×Gm −→ Gm

for the factors of Gm in each of the three copies of GL3. Given the equivariant action of GL3
3

on each side of bijection (2.9), these automorphism groups for G-orbits of nondegenerate

Rubik’s cubes and for equivalence classes of (C,L1, L2, L3, ϕ) are the same groups.

2.3.3 Families

In this section, we show that the bijections described in Theorem 2.5 and Proposition

2.10 are stronger, namely that they hold in families. We thus get an isomorphism of the

corresponding moduli stacks. All of the schemes in this section are defined over Z[16 ] (so

the moduli stacks are also over Z[16 ]). First, we describe each set of data over a scheme S.

Recall that specifying a Rubik’s cube over F is the same as giving three 3-dimensional

vector spaces U1, U2, U3 with bases along with an element of U1 ⊗ U2 ⊗ U3. As we define

a Rubik’s cube over a scheme, we will make a distinction between those with and those

without bases. In particular, we say that a based 3× 3× 3 box or based Rubik’s cube over a

scheme S consists of three free rank 3 OS-modules Ui with isomorphisms ψi : Ui
∼=
−→ O⊕3

S

for 1 ≤ i ≤ 3 and a section A of the rank 27 OS -algebra U1 ⊗ U2 ⊗ U3. An isomorphism

of based Rubik’s cubes (U1,U2,U3, ψ1, ψ2, ψ3,A) and (U′
1,U

′
2,U

′
3, ψ

′
1, ψ

′
2, ψ

′
3,A

′) consists of

isomorphisms σi : Ui
∼=
−→ U′

i with ψi = ψ′
i ◦ σi for 1 ≤ i ≤ 3 and taking A to A′. A based

Rubik’s cube is nondegenerate if it is locally nondegenerate.

In contrast, we define a 3 × 3 × 3 box or Rubik’s cube over S as three locally free
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rank 3 OS-modules U1,U2,U3 and a section A of U1 ⊗ U2 ⊗ U3. Two such Rubik’s cubes

(U1,U2,U3,A) and (U′
1,U

′
2,U

′
3,A

′) are isomorphic if there are isomorphisms σi : Ui
∼=
−→ U′

i

taking A to A′.

Next, we define the geometric data over S. A genus one curve C over S is a proper

smooth morphism π : C → S with relative dimension 1 such that R0π∗(OC) = OS and

R1π∗(OC) is a line bundle over S, i.e., the fibers are connected and have arithmetic genus

one. We define a rigidified tuple over S to be a genus one curve π : C → S and three degree

3 line bundles L1,L2,L3 on C with isomorphisms χi : R
0π∗(Li)

∼=
−→ O⊕3

S for 1 ≤ i ≤ 3.

Note that this definition forces the sections of Li to be free rank 3 vector bundles over S.

A balanced rigidified tuple also includes an isomorphism ϕ : L⊗2
1

∼=
−→ L2 ⊗ L3 ⊗ π

∗LS

for some line bundle LS on S. Such a quadruple is nondegenerate if R0π∗(L
∨
1 ⊗Li) = 0 for

i = 2 or 3; because the bundle L∨
1 ⊗Li has degree 0, this condition is equivalent to requiring

that fiberwise the line bundles are not isomorphic. An isomorphism of balanced rigidified

tuples is the usual notion, requiring an isomorphism of the curves that commutes with the

line bundles and isomorphisms.

Theorem 2.11. Over a scheme S, there is an equivalence between the category of nonde-

generate based Rubik’s cubes over S and the category of nondegenerate balanced rigidified

tuples (C,L1,L2,L3, ϕ) over S as defined above.

Proof. This relative version of Proposition 2.10 is essentially a direct consequence of that

proposition. The functors in both directions are as before. That is, given a nondegenerate

based Rubik’s cube (U1,U2,U3, ψ1, ψ2, ψ3,A) over S, we define the curves Ci →֒ P(U∨
i )

by the vanishing of the corresponding ternary cubic form3 over S, which is a section of

Sym3 Ui ⊗∧
3Uj ⊗∧

3Uk, for {i, j, k} = {1, 2, 3}. By the nondegeneracy assumption, locally

on S the curves Ci are genus one curves, so each Ci is a genus one curve. In addition,

there are isomorphisms τ ji : Ci → Cj, defined in the same way as before, either by taking

kernels of A evaluated on sections of Ci or by defining a curve Cij ∈ P(U∨
i ) × P(U∨

j ) with

each projection onto Ci and Cj . Finally, there exist line bundles on Ci from pulling back

O(1) on P(U∨
i ); pulling back the corresponding bundles via the identity map, τ21 , and τ31

3See Appendix 2.A for more about ternary cubic forms over a base scheme S.
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to C1 gives the bundles we call L1,L2, and L3, respectively. For 1 ≤ i ≤ 3, the space of

sections R0π∗(Li) is naturally isomorphic to Ui, so composing those with the isomorphisms

ψi give isomorphisms R0π∗(Li)
∼=
−→ O⊕3

S , where π : C1 → S. Also, the same argument as

Lemma 2.3 shows that L⊗2
1 and L2⊗L3 are the same element in the group Pic(C/S), which

induces an isomorphism ϕ : L⊗2
1 → L2⊗L3⊗π

∗LS for some line bundle LS on S. We have

produced a nondegenerate balanced rigidified tuple.

In the other direction, let π : C → S be a genus 1 curve over S and L1,L2,L3 degree

3 line bundles on C with isomorphisms χi : R0π∗(Li)
∼=
−→ O⊕3

S for 1 ≤ i ≤ 3 and an

isomorphism ϕ : L⊗2
1 → L2 ⊗ L3. The kernel of the surjective map

µ12 : R
0π∗(L1)⊗ R0π∗(L2) −→ R0π∗(L1 ⊗ L2)

is a free rank 3 OS-module. We find an unbased Rubik’s cube as a section of R0π∗(L1) ⊗

R0π∗(L2)⊗(ker µ12)
∨; we only need a trivialization for (ker µ12)

∨ to produce a based Rubik’s

cube. Just as Remark 2.6 is used to show Proposition 2.10, repeating the construction for

L3 in place of L2 and using the isomorphism ϕ shows that the trivialization χ3 induces a

trivialization for (ker µ12)
∨. Therefore, we have a nondegenerate based Rubik’s cube.

These two constructions are locally inverse to one another, as a result of Proposition

2.10, so they are inverse, and we are done.

In fact, the space of based Rubik’s cubes over S is simply the scheme A27 over S, since

there are no automorphisms of a based Rubik’s cube. We have thus shown that the moduli

space of nondegenerate balanced rigidified tuples over S is isomorphic to an open subscheme

of A27 over S; in other words, the stack of nondegenerate balanced rigidified quadruples is

equivalent to an open substack of A27.

There is a natural action of the group G = GL3
3 on the space of based Rubik’s cubes,

essentially by removing the choice of trivializations ψi : Ui
∼=
−→ O

⊕3
S , and this action pre-

serves nondegeneracy. On the other hand, the group G also acts on balanced rigidified

tuples by acting on the trivializations χi : R
0π∗(Li)

∼=
−→ O⊕3

S . By quotienting both sides of

the bijection in Theorem 2.11 by G, we find an equivalence of the corresponding quotient

stacks, since the functors of Theorem 2.11 are G-equivariant.
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Quotienting the stack of based Rubik’s cubes by G is simply the quotient stack [A27/G].

An S-point of this stack corresponds to what we have called an (unbased) Rubik’s cube,

i.e., three rank 3 vector bundles U1,U2,U3 over S and a section A of U1⊗U2⊗U3. Because

nondegeneracy is defined locally and preserved under the action of G, there is an open

substack of [A27/G] corresponding to the nondegenerate Rubik’s cubes.

On the other hand, quotienting the space of nondegenerate balanced rigidified tuples

by the action of the group G produces the stack Y333 whose S-points consist of tuples

(C,L1,L2,L3, ϕ), where π : C → S is a genus one curve over S, and L1,L2,L3 are degree 3

line bundles over S, with an isomorphism ϕ : L⊗2
1

∼=
−→ L2⊗L3⊗π

∗LS for some line bundle

LS on S, and with the condition that R0π∗(L
∨
1 ⊗ Li) = 0 for i = 2 or 3. Note that Y333

is a substack of the fiber product Pic31×M1
Pic31×M1

Pic31 of three copies of the degree 3

universal Picard stack Pic31 over the moduli space M1 of genus 1 curves.

Theorem 2.12. The nondegenerate open substack of [A27/GL3×GL3×GL3] is equivalent

to the stack Y333 of nondegenerate balanced tuples as defined above.

In Appendix 2.A.3, we provide another interpretation of the moduli stack of nondegen-

erate balanced tuples (C,L1,L2,L3, ϕ), by relating pairs (C,Li) to elements of the fppf

cohomology group H1
f (S, Jac(C)[3]).

2.4 Symmetrized Rubik’s Cubes

We may use the bijections for the space of Rubik’s cubes to analyze other related spaces,

what we call symmetrized Rubik’s cubes. We will produce similar bijections for these spaces,

with bases, as well as when quotiented by an appropriate group action.

For a vector space U over F , we use the notation SymnU to denote the subspace of

U⊗n given by symmetric tensors, which is isomorphic to (Symn(U∨))∨. We distinguish the

space SymnU from that of Symn U , which is naturally a quotient of U⊗n, although over any

field not of characteristic dividing n, the two are isomorphic. For example, for n = 2 and a

3-dimensional vector space U with dual basis x, y, z, the space Sym2 U may be thought of
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as ternary quadratic forms

ax2 + by2 + cz2 + uyz + vxz + wxy,

where a, b, c, u, v, w ∈ F . On the other hand, the space Sym2U ⊂ U ⊗U consists of ternary

quadratic forms of the form

ax2 + by2 + cz2 + 2uyz + 2vxz + 2wxy,

which may also be represented by a symmetric 3× 3 matrix




a w v

w b u

v u c



.

Over a ring, say Z, these are clearly different spaces, since the latter only has ternary

quadratic forms with even cross terms.

A doubly symmetrized Rubik’s cube is an element of the vector space U1 ⊗ Sym2U2, for

3-dimensional F -vector spaces U1 and U2 with a choice of bases. An element of this space

may be thought of as three symmetric matrices, for example, and there is an inclusion of

doubly symmetrized Rubik’s cubes into the space of Rubik’s cubes with two of the vector

spaces identified:

U1 ⊗ Sym2U2 →֒ U1 ⊗ U2 ⊗ U2. (2.10)

There is a natural action of GL(U1)×GL(U2) on the space of doubly symmetrized Rubik’s

cubes.

Likewise, we define a triply symmetrized Rubik’s cube as an element of Sym3U for a

3-dimensional F -vector space U with a choice of basis. To such a triply symmetric 3×3×3

box, one may also associate a ternary cubic of the form

ax3 + by3 + cz3 + 3a2x
2y + 3a3x

2z + 3b1xy
2 + 3b3y

2z + 3c1xz
2 + 3c2yz

2 + 6mxyz.
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Again, triply symmetrized Rubik’s cubes are also Rubik’s cubes by the injection

Sym3U →֒ U ⊗ U ⊗ U,

and the group GL(U) acts on triply symmetrized Rubik’s cubes.

Both of the spaces of symmetrized Rubik’s cubes lend themselves to moduli interpre-

tations. As they both are subspaces of the space of Rubik’s cubes, we may use the same

geometric constructions for their intersection with the nondegenerate locus of the space of

Rubik’s cubes. These symmetrized spaces will correspond to subsets of the space of tuples

(C,L1, L2, L3,B1,B2,B3) where C is a genus 1 curve; L1, L2, L3 are degree 3 line bundles

on C with L1 ⊗ L1
∼= L2 ⊗ L3, L1 6∼= L2, and L1 6∼= L3; and Bi is a basis for H0(C,Li)

for 1 ≤ i ≤ 3. In particular, the symmetry implies that some of the line bundles will be

isomorphic.

Proposition 2.13. The restriction of bijection (2.9) to doubly symmetrized Rubik’s cubes

gives the bijection





nondegenerate

doubly symmetrized

Rubik’s cubes




←→





equivalence classes of tuples (C,L1, L2,B1,B2)

where C is an irreducible genus 1 curve, L1 and

L2 are nonisomorphic degree 3 line bundles on

C such that L⊗2
1
∼= L⊗2

2 , and Bi are bases for

H0(C,Li) for i = 1, 2





.

Proof. If we think of a nondegenerate doubly symmetrized Rubik’s cube A ∈ U1 ⊗ Sym2U2

as a Rubik’s cube in U1 ⊗ U2 ⊗ U2 by the injection (2.10), then it is clear that the curves

C2 and C3 associated to A are identical curves in P(U∨
2 ). Not only are the curves given by

the same ternary cubic forms, but the isomorphisms τ21 : C1 → C2 and τ31 : C1 → C3 are

also the same maps. Thus, the line bundles that we call L2 and L3 (defined as pullbacks

of O(1) from P(U∨
2 ) to C1) are canonically isomorphic and their spaces of sections are, of

course, canonically isomorphic. Thus, A gives rise to the quadruple (C,L1, L2, L2) with the

relation L1 ⊗ L1
∼= L2 ⊗ L2; in other words, the bundles L1 and L2 differ by a 2-torsion

point of Pic0(C).
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In the reverse direction, we know how to build a Rubik’s cube from the ”symmetrized”

data (C,L1, L2, L3,B1,B2,B3) where L2 and L3 are the same line bundle, and the bases B2

and B3 are canonically identified. If B1 = {b1, b2, b3}, then the construction using L1 and

L2 gives a Rubik’s cube A = (A1,A2,A3), where for 1 ≤ i ≤ 3 we define Ai to be the 3× 3

matrix A(b∨i , ·, ·) in H0(C,L2) ⊗ (ker µ12)
∨. This latter vector space may be, as explained

in Remark 2.6, identified with H0(C,L2) ⊗ H
0(C,L3). The analogous construction using

L1 and L3 gives the Rubik’s cube A′ = (A′
1,A

′
2,A

′
3), with A′

i ∈ (ker µ13)
∨ ⊗ H0(C,L3) ∼=

H0(C,L2)⊗H
0(C,L3). But since L2 and L3 are the same, with the identifications between

H0(C,Lj) and (ker µ1j)
∨ the same for j = 2 or 3, we have Ai = (A′

i)
t for 1 ≤ i ≤ 3.

Therefore, each Ai is in fact a symmetric matrix, and the Rubik’s cube constructed lies in

the space H0(C,L1)⊗ Sym2(H
0(C,L2)).

If we take GL3 × GL3-equivalence classes of each side, we obtain a bijection between

nondegenerate elements of U1 ⊗ Sym2U2 (without a choice of bases for U1 or U2) and the

geometric data (C,L1, L2). In the same way as in Corollary 2.8, because of the relation

L⊗2
1
∼= L⊗2

2 , this geometric data is equivalent to just the curve C and the 2-torsion point

L1 ⊗ L
−1
2 on Pic0(C) ∼= Jac(C).

Corollary 2.14. The restriction of the bijection in Corollary 2.8 to doubly symmetrized

Rubik’s cubes produces the bijection





GL3×GL3-equivalence classes

of nondegenerate doubly sym-

metrized Rubik’s cubes over F




←→





equivalence classes of (C,L,Q) where C

is a genus 1 curve over F , L is a degree 3

line bundle on C, and 0 6= Q ∈ Jac(C)[2]




.

The same techniques applied to triply symmetrized Rubik’s cubes, as a subset of the

space of Rubik’s cubes, give similar bijections. Although it is tempting to guess that all

three line bundles L1, L2, L3 coming from a triply symmetrized Rubik’s cube are the same,

Lemma 2.2 shows that for any nondegenerate Rubik’s cube, the line bundle L1 cannot be

the same as the other two.

Let A ∈ Sym3U ⊂ U⊗U⊗U be a nondegenerate Rubik’s cube with a basis B of U , and

recall the geometric construction of Section 2.2.1. The three ternary cubics fi ∈ Sym3 U are

29



the same because of the symmetry of A, so the three cubic curves Ci ∈ P(U∨) are identical.

However, none of the maps τ ji between the curves Ci and Cj is the identity map.

Those maps may be computed by the difference L1 ⊗ L
−1
2 in the line bundles on C1.

Just as for a doubly symmetrized Rubik’s cube, the line bundles L2 and L3 are clearly

isomorphic, since the maps τ21 : C1 → C2 and τ31 : C1 → C3 are the same. Therefore,

L1 ⊗ L
−1
2 is again a nonzero 2-torsion point Q of Pic0(C), and the map τ21 : C1 → C2 is

an automorphism of the curve C1 ⊂ P(U∨) given by translation by Q. Similarly, each τ ji is

the same translation of the curve Ci ⊂ P(U∨), and the composition τ ji ◦ τ
i
k is the identity

map Ck → Cj as varieties in P(U∨). The triple composition α132 : τ12 ◦ τ
2
3 ◦ τ

3
1 is also just

translation by Q.

Since U may be identified with both H0(C1, L1) and H
0(C1, L2), the basis B of U gives

a basis for H0(C1, L1) and H0(C1, L2). Since the embeddings of the curve by φL1 and

by φL2 span the projective plane, we may recover a basis for H0(C1, L2) from a basis for

H0(C1, L1) by requiring that the ternary cubic forms are the same, via bijection (2.3).

Therefore, from a nondegenerate triply symmetrized Rubik’s cube, we have obtained a

genus 1 curve C, a degree 3 line bundle L1 on C, a nonzero 2-torsion point of Jac(C), and

a basis for H0(C,L1). This is exactly enough information to recover the cube itself.

Proposition 2.15. The restriction of bijection (2.9) to triply symmetrized Rubik’s cubes

gives the bijection





nondegenerate

triply

symmetrized

Rubik’s cubes





←→





equivalence classes of quadruples (C,L,Q,B) where

C is a genus 1 curve, L is a degree 3 line bundle on

C, Q is a nonzero 2-torsion point of Jac(C), and B

is a basis of H0(C,L)





. (2.11)

Proof. We have already shown that a nondegenerate triply symmetrized Rubik’s cube gives

the data (C,L,Q,B) as in the bijection above. On the other hand, given (C,L,Q,B), we

recover a tuple (C,L1, L2, L3,B1,B2,B3) where L1 := L,L2 := L ⊗ Q,L3 := L ⊗ Q, and

B1 = B. The basis B2 = B3 of H0(C,L2) ≡ H0(C,L3) is recovered from the basis for

H0(C,L1) by requiring that the corresponding ternary cubic forms (via bijection (2.3)) are

the same.

30



Let U = H0(C,L1), which is also naturally identified with the other spaces of sections.

Applying the argument in the proof of Proposition 2.13 shows that the Rubik’s cube A

constructed from this data lies in U ⊗ Sym2U ⊂ U ⊗ U ⊗ U , i.e., it is invariant under the

transposition (23) of the symmetric group S3 acting on the three copies of U . A similar

argument shows invariance under the transpositions (12) and (13); in other words, A lies in

the images of all three natural inclusions U⊗Sym2U →֒ U⊗U⊗U . Because S3 is generated

by transpositions, the cube A is invariant under all of S3 and thus lies in Sym3U .

There is a natural action of GL3 on each side of bijection (2.11). Quotienting each side

by this action gives a parametrization of the geometric data by the GL3-orbits of triply

symmetrized Rubik’s cubes. Recall that the degree 3 line bundle in the geometric data may

be “forgotten” over an algebraically closed field.

Corollary 2.16. The restriction of the bijection in Corollary 2.8 to triply symmetrized

Rubik’s cubes produces the bijection





GL3-equivalence classes of non-

degenerate triply symmetrized

Rubik’s cubes over F




←→





equivalence classes of (C,L,Q) where C

is a genus 1 curve over F , L is a degree 3

line bundle on C, and 0 6= Q ∈ Jac(C)[2]




.

Thus, doubly and triply symmetrized Rubik’s cubes, without bases for the corresponding

vector spaces, parametrize exactly the same geometric data: a genus one curve C, a degree

3 line bundle on C, and a nonzero 2-torsion point on Jac(C).

Remark 2.17. For a 3-dimensional vector space U over the field F of characteristic not 3,

the spaces Sym3 U and Sym3U are isomorphic. The GL3-orbits of the former, by bijection

(2.3), parametrizes genus one curves and a degree 3 line bundle, and the orbits of the latter

parametrize genus one curves with a degree 3 line bundle and a nonzero 2-torsion point on

the Jacobian. In other words, the orbits of Sym3U are naturally a degree 3 cover of the

orbits of Sym3 U . Note that even if a ternary cubic form can be interpreted as an element

of both Sym3 U and Sym3U , it gives rise to different genus one curves via the two moduli

interpretations. In particular, a ternary cubic form f of Sym3U is associated to the genus

one curve given by the Hessian of f .
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2.A Appendix: Torsors for Elliptic Curves and Line Bundles

In this appendix, we describe geometric data, such as genus one curves with line bundles,

in terms of torsors for elliptic curves. This viewpoint comes from ideas of [O’N02, CFO+08]

in the case of a base field k, and it has applications to descent on elliptic curves. We obtain

a generalization of bijection (2.3) for ternary cubic forms over a base scheme, as well as a

better understanding of the moduli spaces for Rubik’s cubes.

Preliminaries. Let k be a field not of characteristic 2 or 3, and let n ≥ 2 be an integer

invertible in k. We will specialize to the case of n = 3 for the applications of the theory.

Let S be a Z[ 1
6n ]-scheme, and denote the Brauer group of S by Br(S).

As before, a genus one curve C over S is a proper, smooth morphism π : C → S with

relative dimension 1 such that R0π∗(OC) = OS and R1π∗(OC) is a line bundle over S. An

elliptic curve over S is such a genus one curve over S equipped with a base point, i.e., a

section S → C.

Recall that we use the convention that P(V ) denotes the rank one subbundles, not the

quotients, of a vector bundle V over S.4

2.A.1 Torsors and Obstruction Maps

Let E be an elliptic curve over k, and let E[n] denote the n-torsion of E. Then as n is

invertible in k, the Kummer sequence

0 −→ E[n] −→ E
n
−→ E −→ 0

given by multiplication by n induces the sequence of Galois cohomology

0 −→ E(k)/nE(k) −→ H1(k,E[n])
α
−→ H1(k,E) (2.12)

Elements of the group H1(k,E), also known as the Weil-Châtelet group WC(E/k), may

be thought of as isomorphism classes of torsors for the elliptic curve E, namely genus one

4Warning: this convention is the opposite of the one used in Chapter 6.
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curves C over k with a specified isomorphism between E and the connected component

Aut0(C) of the automorphism group scheme of C. Two such torsors are isomorphic if there

exists an isomorphism between the curves that respects the action of E. This identification

of H1(k,E) with E-torsors C is an example of the phenomenon that H1(k,G) for any group

G parametrizes G-torsors.

On the other hand, the group H1(k,G) may be identified with Gal(k/k)-sets whose au-

tomorphism group is isomorphic to G. By this principle, elements of the group H1(k,E[n])

are in correspondence with twists of objects with automorphism group E[n]. As explained

in [CFO+08], there are many interpretations for these twists. For example, the pair (C, [D]),

where C is a torsor for E and [D] is a k-rational5 divisor class on C of degree n, is a twist

of (E, [n · O]) where O is the identity point of E. The group H1(k,E[n]) parametrizes

isomorphism classes of such pairs (C, [D]), where two such pairs (C, [D]) and (C ′, [D′]) are

isomorphic if there is an isomorphism σ : C → C ′ such that σ∗D′ is linearly equivalent

to D. Under this interpretation, the map α : H1(k,E[n]) → H1(k,E) from (2.12) simply

sends the pair (C, [D]) to the curve C.

Pairs (C, [D]) are equivalent to so-called Brauer-Severi diagrams [C → P], where P is

a dimension n − 1 Brauer-Severi variety. Given a pair (C, [D]), the k-rationality of the

divisor class [D] gives rise to a k-rational structure on the embedding of Ck := C ⊗k k

into P(H0(Ck,O(Dk))
∨). The resulting closed immersion [C → P] is the Brauer-Severi

diagram representing (C, [D]) in H1(k,E[n]). These Brauer-Severi diagrams are twists of

the diagram [E → Pn−1], and they are (up to isomorphism) another way to represent

elements of H1(k,E[n]).

There is an obstruction map (defined in [O’N02])

Ob : H1(k,E[n]) −→ Br(k)

that sends a Brauer-Severi diagram [C → P] to the Brauer class of P. The obstruction map

is not a group homomorphism in general; although the kernel is not a group, it contains the

identity of H1(k,E[n]) and is closed under inverses. For our purposes, the key point is that

5The divisor class [D] being k-rational means that D is linearly equivalent to all of its Galois conjugates;
the divisor D itself may not be k-rational.
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the kernel of the obstruction map consists of pairs (C, [D]) for which there actually exists

a k-rational divisor D representing the class [D] (equivalently, such that |D| is isomorphic

to Pn−1
k ).

The obstruction map may also be given in terms of natural cohomological maps coming

from the elliptic curve E, using a related group ΘE,n. If n = 3 and k is algebraically closed,

we have previously seen that the automorphism group of a genus one curve with a degree 3

divisor class is exactly the 3-torsion of E ∼= Jac(C), since the action of E[3] on C extends

to P2. In general, the action of E[n] on E by translation extends to a linear automorphism

of P(H0(E,n ·O)∨) = Pn−1, so there exists a map

E[n] −→ PGLn,

in other words, a projective representation of E[n]. The inverse image ΘE,n of E[n] in

GLn → PGLn is a central extension of E[n] by Gm:

0 −→ Gm −→ ΘE,n −→ E[n] −→ 0 (2.13)

with commutator given by the Weil pairing [Mum08]. As proved in [CFO+08], the obstruc-

tion map is just the coboundary map

Ob : H1(k,E[n]) −→ H2(k,Gm)

from taking non-abelian cohomology of the exact sequence (2.13). Thus, elements of ker(Ob)

may be identified with H1(C,ΘE,n) by the exact sequence of pointed sets

0 = H1(k,Gm) −→ H1(k,ΘE,n)
γ
−→ H1(k,E[n])

Ob
−→ H2(k,Gm).

The elements of H1(C,ΘE,n) may be viewed as isomorphism classes of torsors for ΘE,n,

namely pairs (C,L) where C is an E-torsor and L is a degree n line bundle on C. Two

pairs (C,L) and (C ′, L′) are isomorphic if there is an isomorphism σ : C
∼=
−→ C ′ such that

σ∗L′ ∼= L. The action of E[n] on C fixes the degree n line bundle L, and the line bundle
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L itself has automorphism group Gm. This viewpoint agrees with the interpretation of

ker(Ob) as pairs (C, [D]) where D is a k-rational degree n divisor on the E-torsor C, since

the divisor D (up to equivalence) gives rise to a line bundle O(D).

This theory of E[n]-torsors and obstruction maps may be extended from fields k to

schemes S (even without the assumption that n is invertible on S). Instead of Galois

cohomology groups, we work with the fppf cohomology groups H1
f (S,E) and H1

f (S,E[n])

for an elliptic curve E over S. That is, the group H1
f (S,E) still parametrizes fppf E-torsors,

which are genus one curves C over S with a specified isomorphism E
∼=
−→ Aut0(C). Likewise,

the groupH1
f (S,E[n]) parametrizes isomorphism classes of Brauer-Severi diagrams [C → P],

where C is a fppf E-torsor and P is a Brauer-Severi scheme over S. There is the usual

forgetful map

α : H1
f (S,E[n]) −→ H1

f (S,E)

induced by the Kummer sequence. Just as before, we may define an S-group scheme ΘE,n

as the automorphism group of the pair (E,O(n · O)), where O is the zero section S → E.

In other words, for an S-scheme T , the group of T -points of ΘE,n is AutT (ET ,OET
(n ·O)).

Then ΘE,n is a central extension of E[n] by Gm as in (2.13). The long exact sequence of

(fppf) cohomology of the sequence (2.13) gives

H1
f (S,Gm) −→ H1

f (S,ΘE,n)
γ
−→ H1

f (S,E[n])
Ob
−→ H2

f (S,Gm)

which defines the obstruction map Ob in this case. Now the kernel of Ob is identified with

a possibly nontrivial quotient of H1
f (S,ΘE,n), since H

1
f (S,Gm) ∼= Pic(S) may be nontrivial,

and ker(Ob) corresponds to isomorphism classes of Brauer-Severi diagrams [C → P] where

P is the projectivization of a rank n vector bundle on S, i.e., a split Brauer-Severi scheme.

The elements of H1
f (S,ΘE,n) correspond to isomorphism classes of pairs (C,L) where C is

a fppf E-torsor and L is a degree n line bundle on C.

Using these descriptions of the cohomology groups and the fact that they naturally corre-

spond to S-points of certain stacks, we may reinterpret our previous orbit space parametriza-

tions.
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2.A.2 Orbits of Ternary Cubic Forms Redux

A ternary cubic form (W, LS , f) over a scheme S is a rank 3 vector bundle W over S, a

line bundle LS on S, and a section f of Sym3W⊗ (∧3W)∨ ⊗ LS . This ternary cubic form

takes values in the line bundle (∧3W)∨ ⊗LS over S, since f “evaluated” on sections of W∨

produces a section of (∧3W)∨ ⊗LS. In this section, we show that the bijection (2.3), given

over the algebraically closed field F , generalizes to ternary cubic forms over S.

Remark 2.18. Throughout this section, if there exist no nontrivial vector bundles on S,

the theorems and constructions simplify considerably; most of the complications arise from

adding the action of Pic(S). These simplifications will occur, for example, when S = Spec R

for R a field or a local ring. In these cases, a ternary cubic form (W, LS , f) over S is the

usual notion of a ternary cubic form since W ∼= O
⊕3
S and LS

∼= OS . That is, we may

represent the form as the polynomial (2.1) with coefficients in R.

From a ternary cubic form (W, LS , f), let C be the zero set of the section f in P(W∨).

We call the ternary cubic nondegenerate if C is smooth. Locally, nondegeneracy corre-

sponds to the nonvanishing of the discriminant ∆ of the form f , and the ternary cubic f is

nondegenerate if it is locally so.

Given a nondegenerate ternary cubic form (W, LS , f), the variety C in P(W∨) has codi-

mension 1 and is a curve over S. Each fiber is a smooth proper curve of genus one, so by

cohomology and base change, the curve π : C → S is a genus one curve over S. Let L be the

pullback of the line bundle OP(W∨)(1) via ι : C → P(W∨). Then L is a degree 3 line bundle

on C. Two pairs (C,L) and (C ′, L′) are isomorphic if there is an isomorphism σ : C → C ′

such that σ∗L′ ∼= L.

Theorem 2.19. There is an equivalence of categories between nondegenerate ternary cubic

forms (W, LS , f) over S and pairs (C,L), where C is a genus one curve over S and L is

a degree 3 line bundle on C. The reverse functor takes the pair (C,L) to the ternary cubic

form (π∗L, π∗Ω
1
C/S, f).

Proof. We have already described the functor from ternary cubic forms to genus one curves

with degree 3 line bundles. On the other hand, given a genus one curve π : C → S and a
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degree 3 line bundle L on C, we obtain a ternary cubic form in the following manner. Let

W be the rank 3 vector bundle π∗L over S, with p : P(W∨)→ S, so that there is a natural

embedding ι : C → P((π∗L)
∨) = P(W∨). If IC is the ideal defining the curve C, there is an

exact sequence

0 −→ IC(3) −→ OP(W∨)(3) −→ OC(3) −→ 0

which gives the exact sequence of cohomology

0 −→ p∗IC(3) −→ p∗OP(W∨)(3) −→ p∗OC(3) −→ 0. (2.14)

Now IC(3) is a degree 0 line bundle on P(W∨), so p∗IC(3) is a line bundle on S. We thus

obtain, by tensoring (2.14) by (p∗IC(3))
∨, the sequence

0 −→ OS
f
−→ p∗OP(W∨)(3)⊗ (p∗IC(3))

∨ −→ p∗OC(3)⊗ (p∗IC(3))
∨ −→ 0

where the injection is a section f of

p∗OP(W∨)(3)⊗ (p∗IC(3))
∨ = Sym3 W⊗ (p∗IC(3))

∨,

in other words, a ternary cubic form taking values in (p∗IC(3))
∨. Using the vanishing of

R0π∗(IC ⊗ IC(3)) and R1π∗(IC ⊗ IC(3)), the adjunction sequence for ι, the Euler sequence

on P(W∨), and the projection formula, we compute

p∗IC(3) = p∗(OC ⊗ IC(3))

= π∗ι
∗IC(3)

= π∗(IC/I
2
C ⊗ L

⊗3)

= π∗

(
((L∨)⊗3 ⊗ π∗(∧3W)⊗ (Ω1

C/S)
∨)⊗ L⊗3

)

= ∧3W⊗ π∗((Ω
1
C/S)

∨) = ∧3W⊗ (π∗Ω
1
C/S)

∨.

Therefore, the ternary cubic form associated to (C,L) is (π∗L, π∗Ω
1
C/S , f), as desired. These

functors are locally inverse, and are thus inverse.
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Note that the line bundle π∗Ω
1
C/S on S appearing in Theorem 2.19 is the Hodge bundle

of C over S. That is, a pair (C,L) corresponds to a ternary quadratic form taking values

in the Hodge bundle twisted by the determinant of the ambient vector bundle π∗L.

We may interpret the moduli space of pairs (C,L) in Theorem 2.19 in terms of the fppf

cohomology groups introduced in Section 2.A.1.

Example 2.20. If S = Spec k is a field, then the pairs (C,L) in the correspondence are

torsors for the elliptic curve Jac(C) and the standard degree 3 line bundle O(3 · O) where

O represents OC in Jac(C). In other words, given an elliptic curve E over k, the k-rational

pairs (C,L) with Aut0(C) ∼= E are exactly parametrized up to isomorphism by H1(k,ΘE,3)

(or the kernel of the obstruction map). It is more natural to think of the pair (C,L) as

corresponding to an element of H1(k,ΘE,3) since the automorphism group of (C,L) is ΘE,3.

Ranging over all possible elliptic curves as Jacobians shows that nondegenerate ternary

cubic forms over k correspond to k-points of the quotient stack [M1,1/ΘEuniv,3], where M1,1

is the moduli space of elliptic curves and ΘEuniv,3 is the theta group scheme for the universal

elliptic curve Euniv over M1,1.

The argument of Example 2.20 works in general for any Z[16 ] scheme S. For an elliptic

curve E over S, recall that isomorphism classes of the pairs (C,L), where C is a genus one

curve over S with an isomorphism Aut0(C)
∼=
−→ E and L is a degree 3 line bundle on S,

are in bijection with elements of H1
f (S,ΘE,3). Thus, the nondegenerate ternary cubic forms

over S correspond to S-points of the quotient stack [M1,1/ΘEuniv,3].

Corollary 2.21. The stack of nondegenerate ternary cubic forms is equivalent to the quo-

tient stack [M1,1/ΘEuniv,3].

Remark 2.22. Recall that the kernel of the obstruction map is a quotient of H1
f (S,ΘE,3).

Here, the elements of ker(Ob) correspond to nondegenerate ternary cubic forms (W, LS , f)

under the equivalence of forgetting the line bundle LS .

2.A.3 Rubik’s Cubes as Torsors

In this section, we reinterpret the moduli stack Y333 of Theorem 2.12 in terms of torsors

of elliptic curves. This moduli stack is equivalent to the nondegenerate substack of the
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quotient stack [A27/GL3
3] of Rubik’s cubes.

Recall that Y333(S) parametrizes quintuples (C,L1, L2, L3, ϕ), where π : C → S is

a genus one curve over S, and L1, L2, and L3 are degree 3 line bundles on C, with an

isomorphism ϕ : L⊗2
1

∼=
−→ L2 ⊗ L3 ⊗ π∗LS for some line bundle LS on S, and with the

condition that R0π∗(L
∨
1 ⊗ Li) = 0 for i = 2 or 3. Rewriting these restrictions in terms of

torsors in H1
f (S,ΘJac(C),3) will give more symmetric conditions.

We first describe Y333(k) for a field k. The general case is similar but requires recording

the action of Pic(S). Just as for ternary cubics, each pair (C,Li) may be viewed as an

element ofH1(k, Jac(C)[3]) for 1 ≤ i ≤ 3, and since Li is an actual line bundle on C (not just

a k-rational divisor class), the pair (C,Li) lies in ker(Ob) and is more naturally viewed as an

element ηi ∈ H
1(k,ΘJac(C),3). A quadruple (C,L1, L2, L3) gives rise to three such elements

(Ci, Li) of H
1(k,ΘJac(C),3), with the conditions that the curves Ci are all isomorphic to C.

In other words, for a specified elliptic curve E over k, all such quadruples (C,L1, L2, L3)

with Jac(C) ∼= E (and no other conditions) are parametrized up to isomorphism by the

preimage of the diagonal of H1(k,E)3 in the natural map

H1(k,ΘE,3)
3 (γ,γ,γ) // H1(k,E[3])3

(α,α,α) // H1(k,E)3.

The existence of an isomorphism such as ϕ for an element of Y333(k) is equivalent to the

requirement that the sum γ(η1) + γ(η2) + γ(η3) in H
1(k, Jac(C)[3]) is the identity. Finally,

the condition that the line bundles L∨
1 ⊗ L2 and L∨

1 ⊗ L3 have no sections (that is, are not

isomorphic to a pullback of a line bundle from S) translates into ηi 6= ηj in H1(k,ΘE,3) for

all 1 ≤ i 6= j ≤ 3, so that (η1, η2, η3) does not lie in the (big) diagonal of H1(k,ΘE,3)
3.

Therefore, by ranging over all elliptic curves E over k, we may describe Y333(k) as the

k-points of a substack of

[M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3] \∆

where ∆ denotes the diagonal. There is a natural addition map

[M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3] \∆ −→ [M1,1/E
univ[3]],
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and we are interested in the kernel substack Z, i.e., the fiber over the identity section

M1,1 → [M1,1/E
univ[3]].

More generally, over a Z[16 ]-scheme S, the quadruple (C,L1, L2, L3) again corresponds

to a triple (η1, η2, η3) ∈ H
1
f (S,ΘJac(C),3)

3, which is an S-point of

[M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3].

Note that in this case, the data of a pair (C,Li) is more than that of an element of the

kernel of the obstruction map, since the pairs (C,Li) and (C,Li⊗π
∗LS) for any line bundle

LS on S correspond to the same element of H1
f (S, Jac(C)[3]).

As before, the isomorphism ϕ translates into an isomorphism of γ(η1)+γ(η2)+γ(η3) with

the identity element of [S/ Jac(C)[3]](S). Also, the condition on the line bundles L∨
1⊗L2 and

L∨
1 ⊗L3 is again equivalent to not being an element of the big diagonal of H1

f (S,ΘJac(C),3)
3.

Thus, the quadruple (C,L1, L2, L3) corresponds to a triple (η1, η2, η3) ∈ H
1
f (S,ΘJac(C),3)

3,

with the symmetric conditions that the triple does not lie in the (big) diagonal, α(γ(ηi))

is the same for all 1 ≤ i ≤ 3, and
∑3

i=1 γ(ηi) = 0. Therefore, the S-points of Y333 are the

S-points of the stack Z described above.

Corollary 2.23. The stack of nondegenerate Rubik’s cubes is equivalent to the stack Y333,

which is equivalent to the kernel substack of the addition map

[M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3]×M1 [M1,1/ΘEuniv,3] \∆ −→ [M1,1/E
univ[3]].
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This place changes your perception about
what’s possible.

—Kate, in Cube 2: Hypercube

Chapter 3

Hypercubes and Curves of Genus One

In this chapter, we study the space of 2× 2× 2× 2 boxes, also called hypercubes. Similarly

to Chapter 2, the points of this space correspond to genus one curves with some extra

geometric data, and this correspondence is equivariant under the natural action of a related

reductive group, for which the space of hypercubes is a representation.

We will first introduce two ways to represent genus one curves, as binary quartics and

as bidegree (2, 2) forms in P1 × P1. A hypercube naturally gives rise to both of these types

of polynomials, as well as other geometric objects, and we will show exactly what geometric

data is needed to recover a hypercube or its orbit. Imposing various sorts of symmetry

conditions on hypercubes will restrict the geometric data obtained.

Preliminaries. Let F be an algebraically closed field, of characteristic not 2 or 3. As in

Chapter 2 we use the convention that the projectivization of a vector space parametrizes

lines instead of hyperplanes, so a basepoint-free line bundle L on a scheme X induces

φL : X → P(H0(X,L)∨). Unless stated otherwise, a genus 1 curve means a proper, smooth,

geometrically connected curve with arithmetic genus 1. In addition, the notation Symn V

for a vector space V will refer to the symmetric tensor space as a quotient of V ⊗n, while

SymnV
∼= (Symn(V ∨))∨ is the subspace of V ⊗n of symmetric tensors.
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3.1 Orbits of Binary Quartic Forms and (2, 2) Forms

In this section, we show that two types of polynomials, like ternary cubic forms in Section

2.1, give rise to genus one curves with certain types of line bundles. In both cases, a genus

one curve and the same data is also enough to recover the form. Both types of forms will

naturally arise in our analysis of hypercubes.

3.1.1 Binary Quartic Forms

Let k be a (not necessarily algebraically closed) field, not of characteristic 2 or 3. A binary

quartic form over k is a two-dimensional vector space V over k, a basis {w1, w2} for V , and

an element q of Sym4 V , which may be represented as a polynomial

q(w1, w2) = aw4
1 + bw3

1w2 + cw2
1w

2
2 + dw1w

3
2 + ew4

2 , (3.1)

for a, b, c, d, e ∈ k. The group GL(V ) acts on Sym4 V by acting on V in the standard way.

The ring of SL(V )-invariants of a binary quartic form q as in equation (3.1) is a polynomial

ring, generated by the two invariants

I(q) = 12ae− 3bd+ c2 and J(q) = 72ace + 9bcd− 27ad2 − 27eb2 − 2c3.

The naive orbit space Sym4 V/SL2(V ) is thus birational to the affine plane. There is also

a natural notion of the discriminant ∆(q) = 4I(q)3 − J(q)2 of a binary quartic. The

nonvanishing of the discriminant ∆(q) corresponds to q having four distinct roots over the

algebraic closure k of k; such binary quartic forms are called nondegenerate.

A nondegenerate binary quartic form q defines a (singular) genus one curve C in P2 by

the equation

t2w2
2 = q(w1, w2) = aw4

1 + bw3
1w2 + cw2

1w
2
2 + dw1w

3
2 + ew4

2,

as a degree 2 cover of P(V ∨). In particular, if k is algebraically closed, the four roots of the

binary quartic are the four points of P(V ∨) over which C ramifies. From a nondegenerate
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binary quartic, then, we naturally obtain a smooth irreducible genus one curve, i.e., the

normalization C̃ of C, as well as a degree 2 line bundle L on C̃, which is the pullback of

OP(V ∨)(1) to C̃. Then the space of sections H0(C̃, L) may be identified with the vector

space V .

On the other hand, given a smooth irreducible genus one curve C over k and a degree

2 line bundle L, the hyperelliptic map φL : C → P(H0(C,L)∨) is tamely ramified at four

points over k, by Riemann-Hurwitz. The ramification locus is a degree 4 subscheme of

P(H0(C,L)∨) defined over k, which recovers a binary quartic form over k.

3.1.2 Bidegree (2, 2) Curves in P1 × P1

Let V1 and V2 be two-dimensional vector spaces over F . A (2, 2) form f over F is an

element of Sym2 V1 ⊗ Sym2 V2, with a choice of basis for V1 and V2. Such a form f may be

represented as a polynomial

f(w1, w2, x1, x2) = a22w
2
1x

2
1 + a32w1w2x

2
1 + a42w

2
2x

2
1 + a23w

2
1x1x2 + a33w1w2x1x2

+ a43w
2
2x1x2 + a24w

2
1x

2
2 + a34w1w2x

2
2 + a44w

2
2x

2
2

for bases {w1, w2} and {x1, x2} of V1 and V2, respectively. The group GL(V1)×GL(V2) acts

on the space of (2, 2) forms by the standard action on each factor.

The (2, 2) form f cuts out a bidegree (2, 2) curve C in P(V ∨
1 )×P(V ∨

2 ). If the curve C is

smooth, then a standard computation shows that C has genus (2 − 1)(2 − 1) = 1. Pulling

back line bundles via the embedding ι : C →֒ P(V ∨
1 )×P(V ∨

2 ) gives two degree 2 line bundles

on C,

L1 := ι∗OP(V ∨
1 )×P(V ∨

2 )(1, 0) and L2 := ι∗OP(V ∨
1 )×P(V ∨

2 )(0, 1).

Each of the projection maps pri : C → P(V ∨
i ), for i = 1 or 2, is a degree 2 cover of P(V ∨

i ),

ramified at four points. A binary quartic q1 on V1 associated to the ramification locus in
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P(V ∨
1 ) may be computed by taking the discriminant of f as a quadratic polynomial on V2:

q1(w1, w2) := disc (f(x1, x2)) =(a23w
2
1 + a33w1w2 + a43w

2
2)

2

− (a22w
2
1 + a32w1w2 + a42w

2
2)(a24w

2
1 + a34w1w2 + a44w

2
2),

and similarly for q2(x1, x2) as a binary quartic form on V2. The smooth genus one curve

obtained from each of these binary quartics is isomorphic to the curve C. Moreover, the line

bundles L1 and L2 are essentially the degree 2 line bundles given by these binary quartics

on their associated genus one curves. (That is, for i = 1 or 2, the line bundle Li on C is

isomorphic to the pullback of that line bundle from qi, via the isomorphism sending C to

the smooth curve associated to qi.)

We call a (2, 2) form f or its associated curve C nondegenerate if both of the associated

binary quartics are nondegenerate, i.e., have four distinct roots over an algebraic closure. For

each of the binary quartics, this condition is given by the nonvanishing of the discriminant

∆(qi). As the binary quartic qi is invariant under the action of SL(Vj) on f , the discriminant

∆(qi) is a degree 12 SL(Vi) × SL(Vj)-invariant for f . Moreover, it is easy to check that

I(q1) = I(q2) and J(q1) = J(q2), so ∆(q1) = ∆(q2). Thus, the polynomials I(f) := I(qi) and

J(f) := J(qi) for i = 1 or 2 are degree 4 and 6 SL(V1)×SL(V2)-invariants, respectively. The

discriminant ∆(f) = ∆(qi) of the (2, 2) form f is a degree 12 invariant, and a nondegenerate

(2, 2) form is one with nonzero discriminant.1 The nonvanishing of this discriminant is also

equivalent to the condition that the curve C cut out by f be nonsingular.

Thus, from a nondegenerate (2, 2) form f , we have constructed a genus one curve in

P1 × P1. Conversely, given a genus one curve C and two degree 2 line bundles L1 and L2

on C, there are natural degree 2 maps φLi
: C → P(H0(C,Li)

∨) = P1 and the product map

(φL1 , φL2) : C
// P(H0(C,L1)

∨)× P(H0(C,L2)
∨) .

If L1
∼= L2, then (φL1 , φL2) is a degree 2 cover of a diagonal in P1 × P1, i.e., the image of

this map is isomorphic to P1. Otherwise, we claim that this map is a closed immersion.

1Note that the discriminant ∆(f) is not a generator for the ring of SL(V1)×SL(V2)-invariants of Sym
2 V1⊗

Sym2 V2. The invariant ring is a polynomial ring with generators in degrees 2, 3, and 4.
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Lemma 3.1. For a smooth irreducible genus one curve C and non-isomorphic degree 2 line

bundles L1 and L2 on C, the composition

κ : C
(φL1

,φL2
)

// P(H0(C,L1)
∨)× P(H0(C,L2)

∨)
� � Segre // P(H0(C,L1)

∨ ⊗H0(C,L2)
∨)

is a closed immersion.

Proof. By Riemann-Roch, the spaces of sections H0(C,L1),H
0(C,L2), and H

0(C,L1⊗L2)

have dimensions 2, 2, and 4, respectively. We claim that the multiplication map

µ12 : H
0(C,L1)⊗H

0(C,L2) −→ H0(C,L1 ⊗ L2)

is an isomorphism. Because of the assumption that L1 6∼= L2, this follows easily from

Castelnuovo’s basepoint-free pencil trick (see [ACGH85, p. 126] or [Eis95, Exercise 17.18]).

In particular, since h0(C,L1) = 2, we have the exact sequence

0 −→ L−1
1 −→ H0(C,L1)⊗ OC −→ L1 −→ 0, (3.2)

where the surjective map is the natural adjunction map associated to the map C → {pt}

and the sheaf L1. Tensoring (3.2) with L2 and taking cohomology gives the exact sequence

H0(C,L−1
1 ⊗ L2) −→ H0(C,L1)⊗H

0(C,L2)
µ12
−→ H0(C,L1 ⊗ L2) −→ H1(C,L−1

1 ⊗ L2).

Since L−1
1 ⊗ L2 is a degree 0 line bundle not isomorphic to OC , the middle map µ12 is an

isomorphism.

Since deg(L1⊗L2) = 4, the curve C is isomorphic to its image in P(H0(C,L1⊗L2)
∨) = P3

under the map φL1⊗L2 . The diagram

C
φL1⊗L2 //

κ

&&NN
NN

NN
NN

NN
NN

NN
NN

NN
NN

NN
NN

N P(H0(C,L1 ⊗ L2)
∨)

∼= P(µ∨
12)

��
P(H0(C,L1)

∨ ⊗H0(C,L2)
∨)
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commutes, by the definitions of the multiplication map µ12 and the maps given by linear

systems. Therefore, the desired map κ is a closed immersion.

The image C12 of the curve C in P(H0(C,L1)
∨)× P(H0(C,L2)

∨) is cut out by a (2, 2)

form, via the exact sequence defining C12. Tensoring with I−1
C12

, where IC12 is the ideal

defining C12, and taking cohomology gives the exact sequence

0 −→ F −→ H0(P(H0(C,L1)
∨)× P(H0(C,L2)

∨),O(2, 2)) −→ H0(C,L⊗2
1 ⊗ L

⊗2
2 ) −→ 0,

thereby defining a degree (2, 2) form in the middle term, which is naturally isomorphic to

Sym2(H0(C,L1))⊗ Sym2(H0(C,L2)).

Thus, a genus one curve and two nonisomorphic degree 2 line bundles L1 and L2,

along with bases Bi for the two-dimensional space H0(C,Li) for 1 ≤ i ≤ 2, give rise to

a (2, 2) form. Call (C,L1, L2,B1,B2) and (C ′, L′
1, L

′
2,B

′
1,B

′
2) equivalent if there exists an

isomorphism σ : C → C ′, such that σ∗L′
i
∼= Li and the induced map σ∗ : H0(C,L′

i) →

H0(C,Li) sends B
′
i to Bi for i = 1 and 2. Similarly, triples (C,L1, L2) and (C ′, L′

1, L
′
2) are

equivalent if there exists an isomorphism σ : C → C ′ with σ∗L′
i
∼= Li for 1 ≤ i ≤ 2.

Proposition 3.2. Over F , there exists a bijection between nondegenerate (2, 2) forms and

equivalence classes of triples (C,L1, L2,B1,B2), where C is a genus one curve, and L1 and

L2 are nonisomorphic degree 2 line bundles on C, and B1 and B2 are bases for H0(C,L1)

and H0(C,L2), respectively. The GL2 × GL2-orbits of nondegenerate (2, 2) forms, i.e.,

nondegenerate elements of Sym2 V1⊗Sym2 V2 for two-dimensional vector spaces V1 and V2,

are in bijection with equivalence classes of triples (C,L1, L2).

3.2 Hypercubes

Let V1, V2, V3, V4 be two-dimensional vector spaces over the field F . Then the reductive

group G := GL(V1)×GL(V2)×GL(V3)×GL(V4) has a natural action on the vector space

V1 ⊗ V2 ⊗ V3 ⊗ V4, the space of quadrilinear forms. With a choice of basis for the vector
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spaces V1, V2, V3, V4, say {e
(1)
i , e

(2)
i } for Vi, we may represent an element

2∑

r,s,t,u=1

arstue
(r)
1 ⊗ e

(s)
2 ⊗ e

(t)
3 ⊗ e

(u)
4 ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4

as a 2 × 2 × 2 × 2 box or hypercube H = (arstu)1≤r,s,t,u≤2. In the sequel, we will refer to

both the array and the quadrilinear form as the hypercube, with the vector spaces Vi and

their bases understood. The group G acts on the space of hypercubes by the analogue of

row and column operations.

As in Chapter 2, we also use the notation H(·, ·, ·, ·) to denote the quadrilinear form

associated to the hypercube, where the dots may be replaced by elements of the respective

V ∨
i . For example, for w ∈ V ∨

1 , x ∈ V
∨
2 , the notation H(w, x, ·, ·) refers to the 2× 2 matrix

Hy (w ⊗ x) ∈ V3 ⊗ V4. We will also use this notation for evaluating the hypercube H at

points in the projective spaces P(V ∨
i ), but only to say whether the tensor or a determinant

vanishes.

In this section, we will describe the geometric data that naturally arises from hypercubes

(in particular, nondegenerate hypercubes).

3.2.1 Varieties Associated to Hypercubes

Given a hypercube H = (arstu) ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4, we construct three types of varieties

associated to H. Throughout this section, let {i, j, k, l} = {1, 2, 3, 4}.

(i) Define the (2, 2) form

f12(w1, w2, x1, x2) = det(H(w, x, ·, ·)) ∈ Sym2 V1 ⊗ Sym2 V2.

The vanishing of f12 defines a variety in P(V ∨
1 )× P(V ∨

2 ), namely

C12 := {(w, x) ∈ P(V ∨
1 )× P(V ∨

2 ) : f12(w, x) = 0} ⊂ P(V ∨
1 )× P(V ∨

2 ) →֒ P(V ∨
1 ⊗ V

∨
2 )

where the last inclusion is given by the Segre embedding. Similarly, we define the

(2, 2) form fij ∈ Sym2 Vi ⊗ Sym2 Vj , and the varieties Cij ⊂ P(V ∨
i ) × P(V ∨

j ) as the
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vanishing of fij, for each pair i 6= j ∈ {1, 2, 3, 4}. (The symbols fij and fji, as well as

Cij and Cji, will refer to the same forms, and varieties.) By construction, the (2, 2)

form fij is invariant under the action of SL(Vk)× SL(Vl).

(ii) From a (2, 2) form, recall from Section 3.1.2 that we may naturally define two binary

quartics, corresponding to the ramification locus of each of the projection maps to

P1. Define the binary quartic q12(w1, w2) ∈ Sym4 V1 as the discriminant of the (2, 2)

form f12, considered as a quadratic polynomial in x1 and x2. We may similarly define

qij ∈ Sym4 Vi as the discriminant of the (2, 2) form fij as a quadratic form on Vj . Since

fij is invariant under the action of SL(Vk)× SL(Vl), the binary quartic qij ∈ Sym4 Vi

is invariant under the action of SL(Vj)× SL(Vk)× SL(Vl).

We claim that the binary quartic qij is independent of the choice of j, that is, qij =

qik for all j 6= k. Without loss of generality, we show this statement for i = 1.

The key is that the quartic q1j for j = 2, 3, or 4 is invariant under the action of

SL(V2)× SL(V3)× SL(V4) on the 2× 2× 2 cube H(w, ·, ·, ·) ∈ V2 ⊗ V3 ⊗ V4. The ring

of invariants of this prehomogeneous vector space of 2 × 2 × 2 cubes is generated by

one degree 4 invariant, called the discriminant. By symmetry or direct computation,

we see that each of these quartics is exactly the discriminant of the cube, so they are

all equal, and we may call qi := qij the quartic in Sym4 Vi coming from H.

As in Section 3.1.1, there is a natural curve associated to each binary quartic. Let

Ci denote the normalization of the variety associated to qi; for example, C1 is the

normalization of the curve t2w2
2 = q1(w1, w2) in P2. When the quartic qi has no

repeated roots, the variety Ci is a smooth irreducible genus one curve.

(iii) Finally, we define the variety

C123 : = {(w, x, y) ∈ P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) : H(w, x, y, ·) = 0} (3.3)

⊂ P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) →֒ P(V ∨

1 ⊗ V
∨
2 ⊗ V

∨
3 )

where the last inclusion is given by the Segre embedding, and the analogous varieties

Cijk in P(V ∨
i )× P(V ∨

j )× P(V ∨
k ) for {i, j, k} ∈ {1, 2, 3, 4}. (For a permutation σ ∈ S3,
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the notation Cijk and Cσ(i)σ(j)σ(k) will refer to the same variety, of course.) Let Hijk

denote the map in

Hom(V ∨
i ⊗ V

∨
j ⊗ V

∨
k , Vl)

∼= Vi ⊗ Vj ⊗ Vk ⊗ Vl

corresponding to the hypercube H. Then, as a set, we have

Cijk = P(kerHijk) ∩
(
P(V ∨

i )× P(V ∨
j )× P(V ∨

k )
)
.

These three types of varieties coming from a hypercube H are closely related. Since

the existence of a kernel for a 2 × 2 matrix is the same as its determinant vanishing, the

images of the projections πkij : Cijk → P(V ∨
i ) × P(V ∨

j ) are, by definition, the varieties Cij .

Furthermore, as fij is a bidegree (2, 2) form, if Cij is a smooth curve, then the projections

πji : Cij → P(V ∨
i ) and πij : Cij → P(V ∨

j ) are generically two-to-one with four ramification

points; the ramification loci of πji and πij correspond to the vanishing of the binary quartics

qi and qj, respectively.

3.2.2 Nondegenerate Hypercubes

In this section, we define the condition of nondegeneracy for a hypercube, and show that for

a nondegenerate hypercube, the varieties Cij and Cijk are isomorphic genus one curves for

any distinct i, j, k ∈ {1, 2, 3, 4}. We also describe the various maps between these curves and

their projections to each P1; we will show in Section 3.2.3 that these projections produce

natural line bundles on the curves.

As in Section 3.1.2, we call the (2, 2) form fij nondegenerate when both the projections

πji and πij have four distinct ramification points, that is, if the discriminants of qi and of

qj do not vanish. This condition also implies that fij is irreducible and the variety Cij is a

smooth curve. As shown in Section 3.1.2, for i 6= j, the nondegeneracy of fij corresponds

to the nonvanishing of ∆(fij), which is equal to ∆(qi) = ∆(qj). This condition, therefore,

is exactly the same for all i 6= j.

We can thus define the discriminant ∆(H) of a hypercube H to be the discriminant
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of any of the binary quartics qi or the discriminant of any of the (2, 2) forms fij, all of

which coincide. The discriminant ∆(H) has degree 24 and is invariant under the action

of SL(V1) × SL(V2) × SL(V3) × SL(V4) on H. We call a hypercube nondegenerate if its

discriminant ∆(H) is nonzero, so nondegeneracy is preserved under the action of the group

G.

Suppose H is a nondegenerate hypercube. Then each variety Cij is smooth and irre-

ducible, and it has a degree 2 map to P(V ∨
i ) with four distinct ramification points; thus,

Cij is a genus one curve. The smooth genus one curve Ci associated to the binary quartic

qi is isomorphic to Cij for all j. Therefore, all of the curves Cij, for all i 6= j, are isomorphic

to one another.

As remarked earlier, the image of πkij : Cijk → P(V ∨
i ) × P(V ∨

j ) is exactly Cij . On the

other hand, there exists an inverse map ρkij, which we define without loss of generality

for (i, j, k) = (1, 2, 3). The inverse map ρ312 will take a point (w, x) ∈ C12 to (w, x, y) ∈

P(V ∨
1 )×P(V ∨

2 )×P(V ∨
3 ), where y is the point in P(V ∨

3 ) representing the kernel of the singular

2 × 2 matrix H(w, x, ·, ·) ∈ V3 ⊗ V4. This kernel in V ∨
3 is exactly one-dimensional; if not,

then H(w, x, ·, ·) = 0, which is a contradiction because H was assumed to be nondegenerate

(so the zero locus of f12 is a smooth irreducible curve). Since the kernel of the singular

2× 2 matrix H(w, x, ·, ·) is given algebraically, the map ρ312 is clearly inverse to π312. Thus,

without loss of generality, the curves Cijk and Cij are isomorphic for all triples i, j, k.

Therefore, we have that all of the curves Cijk and Cij associated to a nondegenerate

hypercube H are isomorphic smooth irreducible genus one curves. We summarize their

relationships below, where the following diagram gives examples of all of these maps:

Cijk

τ jkl
ijk //_________

πk
ij

����
��
��
��
��
��
��

πi
jk

��7
77

77
77

77
77

77
7

Cjkl
τ ijk
jkl

oo_ _ _ _ _ _ _ _ _

πl
jk

����
��
��
��
��
��
��

Cij

ρkij

CC�������������� τ jkij //_________

πj
i||xx

xx
xx
xx

πi
j ""F

FF
FF

FF
F

Cjk

ρi
jk

[[77777777777777

ρl
jk

CC��������������

τ ij
jk

oo_ _ _ _ _ _ _ _ _

πk
j||xx

xx
xx
xx

πj
k ""F

FF
FF

FF
F

P(V ∨
i ) P(V ∨

j ) P(V ∨
k )

(3.4)
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The dotted arrows in (3.4) are isomorphisms, defined to make the diagram commute, e.g.,

τ jklijk := ρljk ◦ π
i
jk : Cijk −→ Cjkl and τ jkij := πijk ◦ ρ

k
ij : Cij −→ Cjk.

It is clear that τ jklijk and τ ijkjkl are inverse maps, as are τ jkij and τ ijjk. We will show later that,

although these maps τ jklijk and τ jkij are all isomorphisms, composing more than two such

maps in sequence will not always give identity maps on these curves. For three-cycles such

as the diagram

C12
τ1312

""D
DD

DD
DD

D

||zz
zz
zz
zz

C23

τ1223

<<zzzzzzzz
// C13

bbDDDDDDDD

τ2313

oo

(3.5)

each of the τ maps factors through C123, so the composition map

τ1223 ◦ τ
23
13 ◦ τ

13
12 = (π312 ◦ ρ

1
23) ◦ (π

1
23 ◦ ρ

2
13) ◦ (π

2
13 ◦ ρ

3
12) = π312 ◦ (ρ

1
23 ◦ π

1
23) ◦ (ρ

2
13 ◦ π

2
13) ◦ ρ

3
12

is the identity on C12. However, for three-cycles of the form

C12
τ1312

""D
DD

DD
DD

D

||zz
zz
zz
zz

C14

τ1214

<<zzzzzzzz
// C13

bbDDDDDDDD

τ1413

oo

(3.6)

the composition map α234 : τ1214 ◦ τ
14
13 ◦ τ

13
12 is not the identity map on C12.

2 Given a

point w ∈ P(V ∨
1 ) not in the ramification locus of the projection from C12, there are two

distinct points x, x′ ∈ P(V ∨
2 ) such that detH(w, x, ·, ·) = 0. Then H(w, x, y, ·) = 0 for

exactly one point y ∈ P(V ∨
3 ), and H(w, x′, y, z′) = 0 for some z′ ∈ P(V ∨

4 ). Then the linear

form H(w, ·, y, z′) vanishes when evaluated at both x and x′, so it is identically 0. So

τ1413 (w, y) = (w, z′). In other words, the composition map α234 is given by

α234 : C12

τ1312 // C13

τ1413 // C14

τ1214 // C12

(w, x) � // (w, y) � // (w, z′) � // (w, x′).

2This argument comes from an idea of John Cremona for 2× 2× 2 boxes [Cre].
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The analogous composition maps αijk for all three-cycles of this sort also flip the two sheets

of the double covers of P(V ∨
i ),P(V ∨

j ), and P(V ∨
k ).

Lemma 3.3. For any permutation {i, j, k, l} = {1, 2, 3, 4}, the composition map

αijk : Cli

τ lj
li // Clj

τ lk
lj // Clk

τ li
lk // Cli

is not the identity map. For w ∈ P(V ∨
l ), if x1 and x2 are the two (not necessarily distinct)

solutions for x ∈ P(V ∨
i ) such that Hy (w ⊗ x) = 0, then the points (w, x1) and (w, x2) lie

on Cli ⊂ P(V ∨
l )× P(V ∨

i ), and αijk(w, x1) = (w, x2).

We will show in the next section that four-cycles of maps τ jklijk are also not the identity.

3.2.3 Line Bundles and Relations

A nondegenerate hypercube and all the isomorphic curves associated to it also naturally give

rise to certain line bundles on those curves. Understanding the relations among them will

explain why the four-cycles of isomorphisms of these curves do not commute, for example.

These line bundles will also be part of the geometric data that hypercubes parametrize.

For simplicity of notation, choose one curve, say C12, to be the primary curve under

consideration. This choice matters in the definitions and constructions we will make in the

sequel, but all choices are equivalent. All the constructions for the rest of the chapter are

completely symmetric in the indices {1, 2, 3, 4}.

Define four line bundles Li on C12 by pulling back the line bundle O(1) from each P(V ∨
i ).

Of course, it is important through which maps we choose to pullback the bundle:

L1 := (π21)
∗OP(V ∨

1 )(1)

L2 := (π12)
∗OP(V ∨

2 )(1) (3.7)

L3 := (π23 ◦ π
1
23 ◦ ρ

3
12)

∗OP(V ∨
3 )(1)

L4 := (π24 ◦ π
1
24 ◦ ρ

4
12)

∗OP(V ∨
4 )(1).

That is, L1 and L2 are come directly from the maps C12 → P(V ∨
1 ) and C12 → P(V ∨

2 ), and
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L3 and L4 are pulled back via the simplest maps C12 → C12i → C2i → P(V ∨
i ) for i = 3

or 4. From the commutativity of diagrams like (3.5), the bundles L3 and L4 could also be

defined by going through the curve C1i instead of C2i for i = 3 and 4, respectively. Since

all the curves Cij are defined by bidegree (2, 2) equations, all of these line bundles on C12

have degree 2.

Moreover, by Lemma 3.1, the line bundles L1 and L2 are not isomorphic, since C12 is a

smooth irreducible genus one curve given by a nondegenerate (2, 2) form. Similarly, since

Cij is also a smooth irreducible genus one curve for i = 1 or 2 and j = 3 or 4, the line bundles

(τ12ij )
∗Li = (πji )

∗OP(V ∨
i )(1) and (τ12ij )

∗Lj = (πij)
∗OP(V ∨

j )(1) on Cij are not isomorphic, so Li

and Lj are not isomorphic bundles on C12. Thus, the four line bundles defined in (3.7) are

all pairwise nonisomorphic, except possibly L3 and L4.

Lemma 3.4. We have the relation

L1 ⊗ L2
∼= L3 ⊗ L4 (3.8)

on the line bundles on C12 defined above.

Proof. We will prove this lemma in the language of divisors and with explicit choices of

points for simplicity. With the choice of a basis for Vi, points of the projective spaces

P(V ∨
i ) may be represented as [a : b]. Let D(L) be the linear equivalence class of divisors

corresponding to a line bundle L. A representative D3 of D(L3) is (the sum of the points in)

the preimage of a fixed point, say [1 : 0], in P(V ∨
3 ), and similarly, we may choose a divisor

D4 in the class of D(L4) as the preimage of [1 : 0] ∈ P(V ∨
4 ). Let H(w, x, ·, ·) be denoted by

the matrix 

H11(w, x) H12(w, x)

H21(w, x) H22(w, x)


 ∈ V3 ⊗ V4.

Then D3 +D4 is the sum of the four points that are solutions (counted up to multiplicity)

of the system 



H11(w, x) = 0

detH(w, x, ·, ·) = 0




.
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Interpreted in another way, these four points of intersection are exactly the points of intersec-

tion of C12 and the bidegree (1, 1) curve given by H11 in P(V ∨
1 )×P(V ∨

2 ). Thus, the line bun-

dle corresponding to the sum of these four points is just the pullback of OP(V ∨
1 )×P(V ∨

2 )(1, 1)

to C12. In other words, O(D3 +D4) ∼= L1 ⊗ L2, which is the desired relation.

Similarly, for {i, j, k, l} = {1, 2, 3, 4}, if we define line bundles M1,M2,M3,M4 on the

curve Cij in the analogous way, these degree 2 line bundles would satisfy the relation

Mi ⊗Mj
∼=Mk ⊗Ml.

Using this relation among the line bundles, we will show that composition maps such as

α4123 := τ123124 ◦ τ
124
134 ◦ τ

134
234 ◦ τ

234
123 : C123 −→ C123

are nontrivial automorphisms; this one may be given as a translation by a point on the

Jacobian of C123. In other words, the four-cycle

C123

{{xx
xx
xx
xx τ234123

##G
GG

GG
GG

G

C124

τ123124

;;xxxxxxxx

##G
GG

GG
GG

G C234

ccGGGGGGGG

τ134234{{xx
xx
xx
xx

C134

τ124134

ccGGGGGGGG

;;xxxxxxxx

(3.9)

and the two others like it are not commutative.

Let L1, L2, L3, L4 be line bundles defined on C12 as in (3.7). We would like to compare

line bundles, pulled back from each Cijk, on the curve C12, to understand the composition

α4123. On each curve Cijk in the four-cycle (3.9), we may define three line bundles, attained

by pulling back O(1) from the natural projections to P(V ∨
i ),P(V ∨

j ), and P(V ∨
k ). Call these

line bundles Mi[Cijk]. We pull back each of these Mi[Cijk] to C12 via the labeled τ maps

in diagram (3.9) and the isomorphism ρ312 : C12 → C123. The diagram below shows the

different line bundles coming from each Cijk as well as the relations among them, due to
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the analogues of Lemma 3.4:

(L1, L2, L3)

C123 L2⊗L3
∼=L1⊗L′

4

((RR
RRR

RRR
R

(L′
1, L

′
2, L

′
4) C124

66lllllllll
C234

L3⊗L′
4
∼=L2⊗L′

1
vvlll

lll
lll

(L2, L3, L
′
4)

C134
L′
1⊗L′

4
∼=L3⊗L′

2

hhRRRRRRRRR

(L′
1, L3, L

′
4)

(3.10)

For instance, we have the line bundles

L2
∼= (ρ312 ◦ τ

234
123 )

∗M2[C234]

L3
∼= (ρ312 ◦ τ

234
123 )

∗M3[C234] ∼= (ρ312 ◦ τ
234
123 ◦ τ

134
234 )

∗M3[C134]

L′
4 := (ρ312 ◦ τ

234
123 )

∗M4[C234] ∼= (ρ312 ◦ τ
234
123 ◦ τ

134
234 )

∗M4[C134]

∼= (ρ312 ◦ τ
234
123 ◦ τ

134
234 ◦ τ

124
134 )

∗M4[C124].

Finally, pulling back the line bundles (M1[C123],M2[C123],M3[C123]) via the entire four-

cycle α4123 and then ρ312 gives the line bundles (L′
1, L

′
2, L

′
3) for some new line bundle L′

3 :=

(ρ312 ◦ α4123)
∗M3[C123], with the relation

L′
1 ⊗ L

′
2
∼= L′

3 ⊗ L
′
4. (3.11)

Using all the relations from diagram (3.10), along with (3.8) and (3.11), shows that

L′
1 ⊗ L

−1
1
∼= L′

2 ⊗ L
−1
2
∼= L′

3 ⊗ L
−1
3

∼= (L3 ⊗ L
−1
1 )⊗2 ∼= (L2 ⊗ L

−1
4 )⊗2.

In other words, the automorphism α4123 is essentially given by the differences in the line

bundles L′
i and Li for i = 1, 2, 3; this automorphism of C123 is given by translation by a

point

P4123 := (L3 ⊗ L
−1
1 )⊗2 ∈ Pic0(C12) ∼= Jac(C12) ∼= Jac(C123),
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where the two isomorphisms are entirely canonical, so P4123 can be thought of as a point

on Jac(C123). Note that the composition map α4321, by traversing diagram (3.9) in the

counterclockwise direction, is the inverse map to α4123 and is given by translation by P4321 :=

−P4123.

Similarly, all other four-cycles of the curves Cijk are of the same form, and they also do

not commute. For example, consider the automorphisms α4312 and α4231 of C123 given by

the following two four-cycles:

C123

{{xx
xx
xx
xx τ124123

##G
GG

GG
GG

G C123

{{xx
xx
xx
xx τ134123

##G
GG

GG
GG

G

C134

τ123134

;;xxxxxxxx

##G
GG

GG
GG

G C124

ccGGGGGGGG

τ234124{{xx
xx
xx
xx

C234

τ123234

;;xxxxxxxx

##G
GG

GG
GG

G C134

ccGGGGGGGG

τ124134{{xx
xx
xx
xx

C234

τ134234

ccGGGGGGGG

;;xxxxxxxx
C124

τ234124

ccGGGGGGGG

;;xxxxxxxx

The points associated to each of these four-cycles may also be computed with the relations

among the line bundles, and we obtain

P4312 := (L2 ⊗ L
−1
3 )⊗2 P4231 := (L1 ⊗ L

−1
2 )⊗2,

where P4ijk is the point on Pic0(C12) ∼= Jac(C12) ∼= Jac(C123) by which the curve C123 is

translated via the automorphism α4ijk. Now the sum of the three points P4123, P4312, and

P4231 associated to the three four-cycles is

(L3 ⊗ L
−1
1 )⊗2 ⊗ (L2 ⊗ L

−1
3 )⊗2 ⊗ (L1 ⊗ L

−1
2 )⊗2 = O.

In other words, the composition of the three maps α4123, α4312, and α4231 (in any order)

is the identity on C123. We summarize these results, for any permutation of the indices,

below:

Proposition 3.5. Given a nondegenerate hypercube H and the associated curves and maps

as in diagram (3.4), we have the following statements, for any permutation of {i, j, k, l} =

{1, 2, 3, 4}:
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(i) The composition map

αijkl := τ jklijk ◦ τ
ijk
ijl ◦ τ

ijl
ikl ◦ τ

ikl
jkl : Cjkl −→ Cjkl

is the automorphism of Cjkl given by translation by the point

Pijkl := (Ml ⊗M
−1
j )⊗2 ∈ Pic0(Cjl) ∼= Jac(Cjl) ∼= Jac(Cjkl)

where Mj = (πlj)
∗OP(V ∨

j )(1) and Ml = (πjl )
∗OP(V ∨

l
)(1) are degree 2 line bundles on

Cjl.

(ii) We have Pijkl = −Pilkj, since αijkl ◦ αilkj is the identity map on Cjkl.

(iii) The points Pijkl, Piklj, and Piljk sum to 0 on the Jacobian of Cjkl, so the composition

of the automorphisms αijkl, αiklj, and αiljk in any order is the identity map on Cjkl.

Using the line bundles and relations also gives a better description of three-cycles like

(3.6). Let L1 = (π21)
∗OP(V ∨

1 ) and L2 = (π12)
∗OP(V ∨

2 ) be line bundles on C12. Then pulling

back L2 through the composition map α234 : C12 → C13 → C14 → C12 gives the line bundle

L′
2 := L⊗2

1 ⊗ L
−1
2 , and the bundle α∗

234L1 is just L1. So the automorphism α234 of C12 can

be described as a “flip” around L1, sending (L1, L2) to (L1, L
⊗2
1 ⊗ L

−1
2 ).

3.3 The Moduli Problem for Hypercubes

In this section, we describe the moduli problem for hypercubes. We will show that (the

GL4
2-orbits of) nondegenerate hypercubes correspond bijectively to some of the geometric

data given in Section 3.2. This geometric data may be formulated in several different ways,

and the constructions also work over arbitrary base schemes, leading to an equivalence of

moduli stacks.

3.3.1 Constructing Hypercubes

We have seen that a nondegenerate hypercube gives rise to a genus one curve up to iso-

morphism. In fact, we may construct a nondegenerate hypercube from such a curve, along
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with some line bundles. Let C be a genus one curve and let L1, L2, L3 be nonisomorphic

line bundles of degree 2 on C.

Lemma 3.6. Given a genus one curve C and three non-isomorphic degree 2 line bundles

L1, L2, L3 on C, the multiplication map (i.e., the cup product on cohomology)

µ123 : H
0(C,L1)⊗H

0(C,L2)⊗H
0(C,L3) −→ H0(C,L1 ⊗ L2 ⊗ L3)

is surjective, and its kernel may be naturally identified with the space of global sections

H0(C,L−1
i ⊗ Lj ⊗ Lk) for any permutation {i, j, k} of {1, 2, 3}.

Proof. Recall from the proof of Lemma 3.1 that the multiplication map

µij : H
0(C,Li)⊗H

0(C,Lj) −→ H0(C,Li ⊗ Lj)

for two such line bundles is an isomorphism, due to the basepoint-free pencil trick. We

apply the same trick again here: for any permutation {i, j, k} of {1, 2, 3}, we tensor the

sequence 0 → L−1
i → H0(C,Li) ⊗ OC → Li → 0 with Lj ⊗ Lk and take cohomology to

obtain the exact sequence

0→ H0(C,L−1
i ⊗ Lj ⊗ Lk)→ H0(C,Li)⊗H

0(C,Lj ⊗ Lk)→ H0(C,Li ⊗ Lj ⊗ Lk)

→ H1(C,L−1
i ⊗ Lj ⊗ Lk) = 0. (3.12)

As the map µ123 factors through the isomorphism

(id, µjk) : H
0(C,Li)⊗H

0(C,Lj ⊗ Lk)→ H0(C,Li ⊗ Lj ⊗ Lk),

the sequence (3.12) shows that µ123 is surjective and its kernel may be naturally identified

with H0(C,L−1
i ⊗ Lj ⊗ Lk).

From Riemann-Roch, each of the vector spaces H0(C,Li) for 1 ≤ i ≤ 3 has dimension

2, and H0(C,L1 ⊗ L2 ⊗ L3) has dimension 6. The kernel of µ123 has dimension 2, and we
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may use the inclusion of this kernel into the domain to specify a hypercube

H ∈ H0(C,L1)⊗H
0(C,L2)⊗H

0(C,L3)⊗ (ker µ123)
∨

∼= Hom(ker µ123,H
0(C,L1)⊗H

0(C,L2)⊗H
0(C,L3)).

Recall that our definition of hypercube also requires a choice of basis for each of the vector

spaces, so here to obtain a well-defined hypercube, we must also specify a basis for each of

the vector spaces H0(C,Li) for 1 ≤ i ≤ 3 and (ker µ123)
∨. In the remainder of this section,

we will show that the hypercube H thus constructed is nondegenerate.

Let C ′
ij be the image of the map φLi

× φLj
; by Lemma 3.1, C ′

ij is isomorphic to C since

Li 6∼= Lj . Let Cij be constructed from H as in Section 3.2.1, that is,

Cij := {(w, x) ∈ P(V ∨
i )× P(V ∨

j ) : det(Hy (w ⊗ x)) = 0} ⊂ P(V ∨
i )× P(V ∨

j ).

We will show that these two varieties are the same for all i 6= j, but first for some i 6= j.

Claim 3.7. For some 1 ≤ i 6= j ≤ 3, we have Cij = C ′
ij as sets.

Proof. For all i 6= j, the inclusion C ′
ij ⊆ Cij is easy: for 1 ≤ k ≤ 3, let {rk1, rk2} be the

basis for each H0(C,Lk). Then the definition of H implies that

Hy ([ri1(p) : ri2(p)]⊗ [rj1(p) : rj2(p)]⊗ [rk1(p) : rk2(p)]) = 0

for all points p ∈ C, so ([ri1(p) : ri2(p)], [rj1(p) : rj2(p)]) lies in Cij . Since Cij is defined by

a bidegree (2, 2) equation fij in P(V ∨
i )× P(V ∨

j ), if fij is nonzero and irreducible, then Cij

is a smooth irreducible genus one curve and thus Cij = C ′
ij.

An irreducible bidegree (d1, d2) equation in P1 × P1 defines a genus (d1 − 1)(d2 − 1)

curve. So if fij is nonzero and factors nontrivially, then no irreducible component can be

a smooth irreducible genus one curve. However, since Cij contains the smooth irreducible

genus one curve C ′
ij, the polynomial fij must be either zero or irreducible for each pair

i 6= j. If fij = 0 identically, then Cij is all of P(V ∗
i )× P(V ∗

j ).

59



We consider the variety

C123 := {(w, x, y) ∈ P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) : H(w, x, y, ·) = 0}.

The projection of C123 to any P(V ∨
i )×P(V ∨

j ) is exactly Cij by definition, and we will show

that at least one of these projections is not two-dimensional.

Let f and g be the two tridegree (1, 1, 1) equations defining C123. Because H is defined

by two linearly independent elements of ker µ123, we have that f and g are nonzero and

not multiples of one another. If gcd(f, g) = 1, then C123 is a complete intersection and

thus a one-dimensional variety. Otherwise, suppose without loss of generality that gcd(f, g)

has tridegree (1, 1, 0) or (1, 0, 0). In either case, the projection to P(V ∨
1 ) × P(V ∨

2 ) is still

one-dimensional. Therefore, there exists some i 6= j such that Cij is not two-dimensional,

and thus must be exactly C ′
ij.

Since fij cuts out a smooth irreducible genus one curve, we have disc fij 6= 0. Thus,

the hypercube H has nonzero discriminant and is nondegenerate.

As disc (H) 6= 0, the polynomials fkl do not vanish for any k 6= l, and the Ckl are

smooth irreducible genus one curves. It follows from the proof of Claim 3.7 that all of

the Ckl are in fact set-theoretically equal to C ′
kl. Moreover, C123 is set-theoretically equal

to the image C ′
123 of the embedding φL1 × φL2 × φL3 of C into the triple product space

P(H0(C,L1)
∨)×P(H0(C,L2)

∨)×P(H0(C,L3)
∨). Because there is a canonical isomorphism

C ′
123 → C123, the pullbacks of OP(H0(C,Li)∨)(1) to C123 and then to C are exactly the line

bundles L1, L2, and L3.

From a genus one curve and three nonisomorphic degree 2 line bundles on this curve,

we have constructed a nondegenerate hypercube. Call this functor Ψ. This hypercube, in

turn, produces—via the constructions of Section 3.2—an isomorphic curve and the same

line bundles.

This functor Ψ is a well-defined map to G-orbits of nondegenerate hypercubes, in that

Ψ sends isomorphic geometric data to the same orbit. Call two quadruples (C,L1, L2, L3)

and (C ′, L′
1, L

′
2, L

′
3) equivalent if there exists an isomorphism σ : C → C ′ with σ∗L′

i
∼= Li

for 1 ≤ i ≤ 3. Then the isomorphism σ gives an identification of H0(C,Li) and H
0(C ′, L′

i),
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which commutes with the corresponding multiplication maps µ123 and µ
′
123. The hypercubes

constructed will thus be the same, up to a change of bases for each vector space. That is,

equivalent quadruples gives rise to G-equivalent hypercubes. Therefore, we have

Lemma 3.8. There exists a well-defined map Ψ from equivalence classes of quadruples

(C,L1, L2, L3), where C is a genus one curve and L1, L2, L3 are pairwise nonisomorphic

degree 2 line bundles on C, to G-orbits of nondegenerate hypercubes.

3.3.2 Preliminary Bijection

We have described a natural way to construct a hypercube from a curve and line bundles,

and to construct a curve from a hypercube. By keeping track of the G-action on hypercubes

and isomorphisms between curves with line bundles, we obtain a bijection between these

two spaces.

Theorem 3.9. There exists a bijection





G-orbits of

nondegenerate

hypercubes





Φ //





equivalence classes of quadruples (C,M1,M2,M3)

with C a genus 1 curve and M1,M2,M3 pairwise

nonisomorphic degree 2 line bundles on C




.

Ψ
oo (3.13)

Proof. Lemma 3.8 shows that Ψ is well-defined. We need to show that Φ is also a well-

defined map, and that Φ and Ψ are inverse to one another.

First, let H ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4 be a nondegenerate hypercube. Then the curve

C123 ∈ P(V ∨
1 )×P(V ∨

2 )× P(V ∨
3 ) associated to H is a genus 1 curve. For {i, j, k} = {1, 2, 3},

we may define line bundles Mi := (πji ◦ π
k
ij)

∗OP(V ∨
i )(1) on C123. Note that the definition

of these line bundles does not depend on the permutation of {j, k}. So we need to show

that the G-action on nondegenerate hypercubes does not change the equivalence class of

the tuple (C123,M1,M2,M3) thus constructed.

The action of GL(V4) on H fixes the curve C123, and as the projections to P(V ∨
i ) for

i = 1, 2, 3 are the same under this action, the line bundlesMi are fixed (up to isomorphisms

of the curve). Therefore, the equivalence class of (C123,M1,M2,M3) is fixed under GL(V4).

For 1 ≤ i ≤ 3, let g ∈ GL(Vi) act on H, giving the tuple (C ′,M ′
1,M

′
2,M

′
3). Then C

′ differs
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from C123 in P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) only by the automorphism of P(V ∨

i ) induced by the

action of g on Vi. If π and π′ are the projections from C123 and C ′ to P(V ∨
i ), respectively,

there exists a map γ : C123 → C ′ such that the diagram

C123
γ //

π
��

C ′

π′

��
P(V ∨

i ) g
// P(V ∨

i )

commutes, and therefore, we compute

γ∗M ′
i = (π′ ◦ γ)∗OP(V ∨

i
)(1) = (g ◦ π)∗OP(V ∨

i
)(1) ∼= π∗OP(V ∨

i
)(1) =Mi.

The other two bundles are unchanged. Consequently, Φ is well-defined.

We have already shown, after Claim 3.7 in Section 3.3.1, that Φ ◦Ψ is the identity map,

i.e., that the hypercube constructed from (C,M1,M2,M3) returns an isomorphic curve and

line bundles that pull back to the Mi under the isomorphism. On the other hand, suppose

Φ sends a nondegenerate hypercube H ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4, with a choice of bases for

each two-dimensional vector space Vi for 1 ≤ i ≤ 4, to (C,M1,M2,M3). Then the vector

spaces Vi and H
0(C,Li) are naturally isomorphic for 1 ≤ i ≤ 3, and the space V4 may be

identified with (ker µ123)
∨. Thus, the hypercube constructed from (C,M1,M2,M3) will be

G-equivalent to H, and if we identify the bases of Vi with bases for the spaces H0(C,Li)

and (ker µ123)
∨, then this hypercube is H.

Remark 3.10. In the proof of Theorem 3.9, if a hypercube H is in V1 ⊗ V2 ⊗ V3 ⊗ V4, we

have chosen three of the vector spaces V1, V2, and V3 to construct the line bundles. The

theorem and proof are identical for any choice of these three, however, and in each case, the

curve constructed is the same (up to isomorphism). The line bundles, however, will not be

the same.
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3.3.3 Reformulations

In this section, we rewrite the bijection in Theorem 3.9 in several ways that are more useful

for understanding the data or for generalizing the theorem. We will, for example, rigidify

the data on each side, as well as slightly change the geometric data.

First, the right side of bijection (3.13) contains equivalence classes of curves with three

line bundles. In order to obtain the same automorphism groups on each side of the bijection,

it is more natural to consider genus 1 curves C with four line bundles L1, L2, L3, L4 with a

relation, say L1 ⊗ L2
∼= L3 ⊗ L4 as in Lemma 3.4. We also require that the Li are pairwise

nonisomorphic, except possibly L3 and L4. This set of four line bundles is more natural to

geometric data given by a nondegenerate hypercube, such as in (3.7). Note that there is

no obvious way to simultaneously and symmetrically define four line bundles on the curve

coming from a hypercube, due to the nontrivial automorphisms given by four-cycles like

(3.9). Therefore, we may rewrite Theorem 3.9 as

Proposition 3.11. There exists a bijection





G-orbits of

nondegenerate

hypercubes




←→





equivalence classes of quintuples (C,L1, L2, L3, L4)

with C a genus 1 curve and L1, L2, L3, L4 degree 2

line bundles on C such that L1 ⊗L2
∼= L3 ⊗L4 and

Li 6∼= Lj for distinct i ∈ {1, 2} and j ∈ {1, 2, 3, 4}





. (3.14)

Remark 3.12. Of course, in the proof of Theorem 3.9, only three of the line bundles

are used to construct the hypercube. With the formulation of Proposition 3.11, using

(L1, L2, L3) or (L1, L2, L4) to construct the hypercube—by identifying each space of sections

H0(C,Li) with Vi for 1 ≤ i ≤ 4—will give the same hypercube, up to the action of G. We

will call these two constructions Ψ123 and Ψ124, respectively.

Recall that Lemma 3.6 gives an identification of ker µ12i with the space of sections

H0(C,L1⊗L2⊗L
−1
i ) for i = 3 or 4. Therefore, with a choice of basis, we may identify a space

with its dual, so there is an identification of H0(C,L4) with (ker µ123)
∨, and of H0(C,L3)

with (ker µ124)
∨. Then, with these identifications and choices of bases, the functors Ψ123

and Ψ124 produce the same hypercube.
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We may also use the points on the Jacobian of the curve, as in Proposition 3.5 in-

stead of the line bundles to rewrite the geometric data of the bijection. Recall that the

line bundles on the curve C12 constructed from the hypercube H give rise to three points

P4123, P4312, P4231 on the Jacobian of C12 that sum to 0. If we instead take “half” of these

points, since they are defined as squares, the sum is still 0, not only a 2-torsion point. That

is, given a hypercube and the line bundles L1, L2, L3, L4 on C12 defined as in (3.7), let

Q4123 := L3 ⊗ L
−1
1 , Q4312 := L2 ⊗ L

−1
3 , and Q4231 := L1 ⊗ L

−1
2 on Pic0(C12) ∼= Jac(C12).

From one of these line bundles, say L1, and these three points, we may recover the other

line bundles L2, L3, L4.

Proposition 3.13. There exists a bijection between





G-orbits of

nondegenerate

hypercubes




←→





equivalence classes of (C,L,Q1, Q2, Q3) with C a

genus 1 curve, L a degree 2 line bundle on C, and

0 6= Qi ∈ Jac(C) for 1 ≤ i ≤ 3 with Q1+Q2+Q3 = 0




. (3.15)

As always, (C,L,Q1, Q2, Q3) and (C ′, L′, Q′
1, Q

′
2, Q

′
3) are equivalent if there exists an

isomorphism σ : C → C ′ such that the line bundles match under pullback, i.e., σ∗L′ ∼= L

and σ∗Q′
i
∼= Qi when viewed as line bundles in the degree 0 Picard variety for 1 ≤ i ≤ 3.

Over an algebraically closed field, there is always a translation of C such that L can be

taken to L′, since translating C by P ∈ Pic0(C) sends L to L⊗P⊗2. Such an automorphism

would also preserve the points Qi above, so it is not necessary to include the line bundle

L in bijection (3.15). Note that other automorphisms of C, such as so-called flips, will not

usually preserve all the points Qi.

Finally, we may add bases to each side of bijection (3.14) to obtain a rigidified theorem.

A hypercube H ∈ V1⊗V2⊗V3⊗V4 comes with a basis for the vector spaces Vi for 1 ≤ i ≤ 4.

On the other side, let D be the rigidified data (C,L1, L2, L3, L4) and bases Bi for H
0(C,Li)

for 1 ≤ i ≤ 4, with the conditions as in (3.14). Two such data D and D′ are equivalent if

there exists an isomorphism σ : C → C ′ such that for 1 ≤ i ≤ 4, we have σ∗L′
i
∼= Li and

that σ∗ : H0(C ′, L′
i) → H0(C,Li) is an isomorphism taking B′

i to Bi. Then the proof of

Theorem 3.9, along with the identification of (ker µ123)
∨ andH0(C,L4) discussed in Remark

3.12, gives the following theorem:
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Proposition 3.14. There exists a bijection between nondegenerate hypercubes and equiva-

lence classes of tuples (C,L1, L2, L3, L4,B1,B2,B3,B4), where C is a genus 1 curve; Li is a

degree 2 line bundle on C for 1 ≤ i ≤ 4, with Bi a basis for H0(C,Li); and L1⊗L2
∼= L3⊗L4

and Li 6∼= Lj for distinct i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.

3.3.4 Families

In this section, we work exclusively with schemes over Z[12 ]. We show that the bijections

described in Proposition 3.14 and Theorem 3.9 hold in families, which implies that there

are equivalences of the corresponding moduli stacks over Z[12 ]. We first generalize the data

on each side of the bijections to families over schemes S.

A based hypercube over a scheme S is four free rank 2 OS-modules Vi with isomorphisms

ψi : Vi
∼=
−→ O

⊕2
S for 1 ≤ i ≤ 4 and a section H of V1 ⊗ V2 ⊗ V3 ⊗ V4. An isomorphism

of based hypercubes (V1,V2,V3,V4, ψ1, ψ2, ψ3, ψ4,H) and (V′
1,V

′
2,V

′
3,V

′
4, ψ

′
1, ψ

′
2, ψ

′
3, ψ

′
4,H

′)

consists of isomorphisms σi : Vi
∼=
−→ V′

i with ψi = ψ′
i ◦ σi for 1 ≤ i ≤ 4 and taking H to H′.

A based hypercube is nondegenerate if it is locally nondegenerate.

On the other side, we defined in Section 2.3.3 a genus one curve C over S as a proper

smooth morphism π : C → S with relative dimension 1 such that R0π∗(OC) = OS and

R1π∗(OC) is a line bundle over S. Let the rigidified quintuple D over S consist of a genus

one curve π : C → S and four degree 2 line bundles L1,L2,L3,L4 on C, along with

isomorphisms χi : R
0π∗(Li)

∼=
−→ O⊕2

S for 1 ≤ i ≤ 4. A balanced rigidified quintuple includes

an isomorphism ϕ : L1 ⊗ L2
∼=
−→ L3 ⊗ L4 ⊗ π∗LS for some line bundle LS on S. A

nondegenerate balanced rigidified quintuple also satisfies R0π∗(L
∨
i ⊗Lj) = 0 for distinct i ∈

{1, 2} and j ∈ {1, 2, 3, 4}, which is equivalent to Li and Lj being fiberwise nonisomorphic.

Theorem 3.15. Over a scheme S, there is an equivalence between the category of non-

degenerate based hypercubes over S and the category of nondegenerate balanced rigidified

quintuples (C,L1,L2,L3,L4, ϕ) over S as defined above.

Proof. Just like in Chapter 2, this relative version of the based bijection follows in a very

straightforward manner from Proposition 3.14. The functors in both directions are the

relative analogues of the ones before:
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Suppose (V1,V2,V3,V4, ψ1, ψ2, ψ3, ψ4,H) is a nondegenerate based hypercube over S.

Then for {i, j, k, l} = {1, 2, 3, 4}, define curves Cij ∈ P(V∨
i )× P(V∨

j ) by the vanishing of the

corresponding bidegree (2, 2) form3 over S, which is an element of Sym2 Vi ⊗ Sym2 Vj ⊗

∧2Vk ⊗ ∧
2Vl. Locally on S, the curves Cij are smooth irreducible genus one curves by

assumption, so cohomology and base change implies that each Cij is a genus one curve

over S. We may similarly define the curves Cijk over S and all the maps between these

isomorphic curves. The pullback of O(1) on P(V∨
i ) to C12 in the most natural way, as in

(3.7), gives the four degree 2 line bundles L1,L2,L3,L4 on C12.

By an analogous argument to Lemma 3.4, these bundles locally satisfy L1⊗L2
∼= L3⊗L4,

that is, as elements of Pic(C12/S), and we thus have an isomorphism ϕ : L1 ⊗ L2
∼=

L3 ⊗ L4 ⊗ π
∗LS for some line bundle LS on S, where π : C12 → S. For 1 ≤ i ≤ 4, the

sections R0π∗(Li) are naturally isomorphic to Vi, so composing these isomorphisms with

the isomorphisms ψi gives isomorphisms R0π∗(Li)
∼=
−→ O⊕2

S . In other words, from the based

hypercube H, we have produced a nondegenerate balanced rigidified quintuple.

Conversely, suppose π : C → S is a genus one curve over S and L1,L2,L3,L4 are degree

2 line bundles on C with χi : R
0π∗(Li)

∼=
−→ O⊕2

S for 1 ≤ i ≤ 4. The map

µ123 : R
0π∗(L1)⊗ R0π∗(L2)⊗ R0π∗(L3) −→ R0π∗(L1 ⊗ L2 ⊗ L3)

is surjective, and the kernel is a rank 2 free OS-module. Because a trivialization χ4 of

R0π∗(L4) gives a trivialization of the dual of the kernel of µ123 (by the same reasoning as

Remark 3.12), we obtain a based hypercube in R0π∗(L1)⊗R
0π∗(L2)⊗R

0π∗(L3)⊗(ker µ123)
∨.

These two constructions are locally inverse by Proposition 3.14, so they are inverse.

Since there are no automorphisms of a based hypercube, the space of based hypercubes

is just the scheme A16. So the moduli space of nondegenerate balanced rigidified quintuples

over S is an open subscheme of A16 over S. Similarly to the case of Rubik’s cubes, the

equivalence above is equivariant for the action of G = GL4
2, which induces an equivalence

of the quotient stacks.

3We have not defined (2, 2) forms over an arbitrary base scheme and taking values in a line bundle, but
the theory is entirely analogous to that of other forms, e.g., for ternary cubic forms as in Appendix 2.A.2.
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A hypercube over S is four locally free rank 2 OS-modules V1,V2,V3,V4 and a section

H of the tensor product V1 ⊗ V2 ⊗ V3 ⊗ V4. Such a hypercube (up to the obvious notion

of isomorphism) is an S-point of the quotient stack [A16/GL4
2], and we are interested in its

nondegenerate open substack.

The geometric data may be described as before, without trivializations for the sections

of the line bundles. Let Y2222 be the stack whose S-points consists of (C,L1,L2,L3,L4, ϕ),

where π : C → S is a genus one curve over S; L1,L2,L3,L4 are degree 2 line bundles on

C; and ϕ : L1 ⊗ L2
∼=
−→ L3 ⊗ L4 ⊗ π

∗LS is an isomorphism for some line bundle LS on S,

with the condition that R0π∗(L
∨
i ⊗ Lj) = 0 for distinct i ∈ {1, 2} and j ∈ {1, 2, 3, 4}.

Theorem 3.16. The nondegenerate open substack of [A16/GL4
2] is equivalent to the stack

Y2222 of nondegenerate balanced quintuples as defined above.

The analysis of Appendix 2.A.3 applied to the moduli stack Y2222 gives an interpretation

in terms of torsors for elliptic curves and line bundles. For an elliptic curve E, recall that

the elements of H1
f (S,ΘE,2) are isomorphism classes of pairs (C,L) for a genus one curve C

over S with an isomorphism E
∼=
−→ Aut0(C) and L a degree 2 line bundle on C. A quintuple

(C,L1,L2,L3,L4) over S corresponds to four elements η1, η2, η3, η4 ∈ H
1
f (S,ΘJac(C),2) with

α(γ(ηi)) ∈ H
1
f (S, Jac(C)) the same element for all 1 ≤ i ≤ 4. In other words, the quintuple,

up to equivalence, is an S-point of the fiber product

X := [M1,1/ΘEuniv,2]×M1 [M1,1/ΘEuniv,2]×M1 [M1,1/ΘEuniv,2]×M1 [M1,1/ΘEuniv,2].

The isomorphism ϕ translates into requiring that
∑4

i=1 γ(ηi) = 0 in H1
f (S, Jac(C)[2]), and

the nondegeneracy condition is equivalent to requiring that ηi 6= ηj for 1 ≤ i 6= j ≤ 4.

Corollary 3.17. The stack Y2222, and by Theorem 3.16, the stack of nondegenerate hyper-

cubes, is equivalent to the kernel substack of the natural addition map

X \∆→ [M1,1/E
univ[2]],

i.e., the fiber over the identity section M1,1 → [M1,1/E
univ[2]], where ∆ denotes the big

diagonal of X.
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3.4 Symmetrized Hypercubes

The bijections for the space of hypercubes may be used to construct bijections for re-

lated spaces of symmetrized hypercubes. Just as in Section 2.4, these spaces analogously

parametrize curves and line bundles. The geometric data will include additional restric-

tions, especially on the line bundles, as the symmetrized spaces are naturally subsets of the

space of hypercubes.

The first example is the space of doubly symmetrized hypercubes, which is the vector

space V1 ⊗ V2 ⊗ Sym2V3 for 2-dimensional F -vector spaces V1, V2, and V3 with specified

bases. An element of this space may be thought of as a 2 × 2 matrix of binary quadratic

forms of the form ax2 + 2bxy + cy2, and the group GL(V1)×GL(V2)×GL(V3) acts in the

standard way on this space. Because there is an inclusion

V1 ⊗ V2 ⊗ Sym2V3 →֒ V1 ⊗ V2 ⊗ V3 ⊗ V3, (3.16)

nondegenerate doubly symmetrized hypercubes are in bijection with a subset of the space of

tuples (C,L1, L2, L3, L4,B1,B2,B3,B4) from Proposition 3.14. The additional condition

will be that the line bundles L3 and L4 are the same.

Proposition 3.18. The restriction of Proposition 3.14 to doubly symmetrized hypercubes

gives a bijection between nondegenerate doubly symmetrized hypercubes and equivalence

classes of tuples (C,L1, L2, L3,B1,B2,B3) where C is a genus one curve; Li is a degree 2

line bundle on C for 1 ≤ i ≤ 3, with Bi a basis for H0(C,Li); and L1 ⊗ L2
∼= L⊗2

3 and L3

is not isomorphic to L1 or L2.

Proof. A doubly symmetrized hypercube in V1⊗V2⊗Sym2V3 may be viewed as a hypercube

in V1⊗ V2⊗V3⊗V3 by the injection (3.16). Because the line bundles L3 and L4, defined in

(3.7) as pullbacks from P(V ∨
3 ) to the curve C12, are visibly the same, a doubly symmetrized

hypercube gives rise to the usual data (C,L1, L2, L3, L3), subject to the relation L1⊗L2
∼=

L3 ⊗ L3.

Starting with the “symmetrized” data (C,L1, L2, L3, L4,B1,B2,B3,B4), where L3 =

L4 and B3 = B4, we may construct a nondegenerate hypercube in two different ways,
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using either the line bundles (L1, L2, L3) or (L1, L2, L4). These two constructions Ψ123

and Ψ124 produce hypercubes H ∈ H0(C,L1) ⊗ H
0(C,L2) ⊗ H

0(C,L3) ⊗ (ker µ123)
∨ and

H ′ ∈ H0(C,L1) ⊗ H0(C,L2) ⊗ H0(C,L4) ⊗ (ker µ124)
∨, respectively. Since the spaces

H0(C,Li) and (ker µ12j)
∨ may be identified for {i, j} = {3, 4} by Remark 3.12, the 2 × 2

matrices H(w, x, ·, ·) and H ′(w, x, ·, ·) are transpose to one another.

These two matrices are also equal, since by assumption, the line bundles L3 and L4

are the same, with their bases identified. Therefore, all such matrices H(w, x, ·, ·) are sym-

metric matrices, i.e., the hypercube is doubly symmetrized and an element of H0(C,L1)⊗

H0(C,L2)⊗ Sym2H
0(C,L3).

Taking GL2 × GL2 × GL2-equivalence classes gives a bijection between nondegenerate

unbased hypercubes (elements of V1⊗V2⊗Sym2V3) and the geometric data (C,L1, L2, L3).

In terms of the points on the Jacobian, as in Proposition 3.13, the points Q4123 := L3⊗L
−1
1

and Q4312 := L2 ⊗ L
−1
3 are the same. So we have

Corollary 3.19. The restriction of bijection (3.15) to doubly symmetrized hypercubes pro-

duces the bijection





GL2×GL2×GL2-orbits

of nondegenerate doubly

symmetrized hypercubes




←→





equivalence classes of (C,L,Q1, Q2) with C a

genus 1 curve, L a degree 2 line bundle on C, and

0 6= Qi ∈ Jac(C) for 1 ≤ i ≤ 2 with Q1 + 2Q2 = 0




.

A similar analysis will show that other symmetrizations also parametrize the same sort

of curves and line bundles. A triply symmetrized hypercube is an element of V1 ⊗ Sym3V2,

where V1 and V2 are two-dimensional F -vector spaces with specified bases. Again, the space

of triply symmetrized hypercubes embeds into the space of hypercubes, so the geometric

data parametrized will be similar to that for hypercubes.

Proposition 3.20. Restricting Proposition 3.14 to triply symmetrized hypercubes gives a

bijection between nondegenerate triply symmetrized hypercubes and equivalence classes of

quintuples (C,L1, L2,B1,B2), where C is a genus one curve, Li is a degree 2 line bundle

on C with basis Bi for H
0(C,Li) for 1 ≤ i ≤ 2, and L1 ⊗ L

−1
2 is a nonzero 3-torsion line

bundle in Pic0(C).
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Proof. From a nondegenerate triply symmetrized hypercube

H ∈ V1 ⊗ Sym3V2 →֒ V1 ⊗ V2 ⊗ V2 ⊗ V2,

we obtain the usual curve C12 and line bundles L1, L2, L3, L4 on it as in (3.7). We think of

V3 and V4 as equal to V2. It is immediately clear that L3
∼= L4 and their spaces of sections

may be identified. We consider the line bundles and relations in the four-cycle (3.10). In

particular, we have the extra relation M3[C134] ∼=M2[C124] because of the symmetry of the

hypercube; this relation reflects the symmetry in pulling back O(1) from P(V ∨
3 ) and P(V ∨

2 ),

respectively, to C14 as directly as possible. This additional relation gives the isomorphism

L⊗2
1
∼= L2 ⊗ L3, which implies

L⊗3
1
∼= L⊗3

2
∼= L⊗3

3 .

Therefore, we have a genus one curve C12 with two line bundles L1 and L2 that differ by a

3-torsion point of Pic0(C12).

On the other hand, suppose we have (C,L1, L2,B1,B2) as in the proposition. By

Proposition 3.2, this data gives a (2, 2) form f ∈ Sym2(H0(C,L1))⊗Sym2(H0(C,L2)). Let

Li := L⊗2
1 ⊗ L

−1
2
∼= L⊗2

2 ⊗ L
−1
1 for i = 3 or 4. To obtain a natural basis for H0(C,L3), we

use the (2, 2) form f . Because L⊗2
1
∼= L2 ⊗ L3, there is an automorphism σ of C fixing L1

and sending L2 to L3 (we have called this automorphism a “flip” around L1). Thus, the

triple (C,L1, L3) corresponds to the GL2 × GL2-orbit of f , so there exists a basis B3 of

H0(C,L3) such that (C,L1, L3,B1,B3) gives the (2, 2) form f as well, with the identification

of H0(C,L2) and H
0(C,L3) via σ

∗. Then we may construct a hypercube H from the data

(C,L1, L2, L3, L4,B1,B2,B3,B4), where B3 = B4.

Let Vi := H0(C,Li) with the basis Bi, for 1 ≤ i ≤ 4. Then there is a natural identifica-

tion V3 = V4 that respects the bases, and by construction, σ induces an isomorphism of V2

with V3 and V4 such that the bases coincide. By the argument in the proof of Proposition

3.18, the hypercube

H ∈ V1 ⊗ V2 ⊗ V3 ⊗ V4 ∼= V1 ⊗ V2 ⊗ V2 ⊗ V2
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is doubly symmetrized; that is, H ∈ V1 ⊗ V2 ⊗ Sym2V2 is invariant under the transposition

(23) of S3 acting on the three factors of V2.

We may use a similar argument to show that H is invariant under the transpositions (12)

and (13) of S3 as well. The key idea is to construct other curves Cij ∈ P(V ∨
i )×P(V ∨

j ) from

the hypercube H, and recover the same hypercube by the functor Ψijk for some k 6= i, j.

Using the argument from Proposition 3.18 for bundles on C13 (resp., C14) instead of C12

shows that the hypercube H is doubly symmetrized with respect to V2 and V4 (resp., V3).

Therefore, the hypercube H is invariant under all of S3 acting on the three factors of V2, so

it is a triply symmetrized hypercube in V1 ⊗ Sym3V2.

Quotienting each side of the bijection in Proposition 3.20 by the natural action of GL2×

GL2 gives a bijection between nondegenerate triply symmetrized hypercubes, up to changes

of bases, and (C,L1, L2) with L1⊗L
−1
2 a nonzero 3-torsion point of Pic0(C) ∼= Jac(C). This

geometric data is also just (C,L1, Q) where Q := L1 ⊗ L
−1
2 . Note that each of the three

points on the Jacobian that sum to zero in Proposition 3.13 is the same 3-torsion point Q

here, since the line bundles arising from a triply symmetrized hypercube satisfy

L3 ⊗ L
−1
1
∼= L2 ⊗ L

−1
3
∼= L1 ⊗ L

−1
2 .

Corollary 3.21. The restriction of the bijection in Proposition 3.13 to triply symmetrized

hypercubes gives the bijection





GL2 ×GL2-orbits of

nondegenerate triply

symmetrized hypercubes




←→





equivalence classes of (C,L,Q) with C a

genus 1 curve, L a degree 2 line bundle

on C, and 0 6= Q ∈ Jac(C)[3]




.

Another obvious symmetrization is to consider the space Sym4V for a 2-dimensional

vector space V over F with basis {X,Y }. A quadruply symmetrized hypercube may be

represented as a binary quartic form of the form

aX4 + 4bX3Y + 6cX2Y 2 + 4dXY 3 + eY 4,
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with the obvious GL2 action on the basis of V . For such a hypercube, the (2, 2) forms

fij ∈ Sym2 V ⊗ Sym2 V are all identical, but the most direct maps between the curves Cij

are not the identity maps.

Example 3.22. LetH be the quadruply symmetrized hypercube represented by the quartic

h = aX4+4bX3Y +6cX2Y 2+4dXY 3+ eY 4. All the binary quartics qi coming from H are

(−3b2c2 + 4ac3 + 4b3d− 6abcd+ a2d2)X4

+ (−2bc3 + 6ac2d− 4abd2 + 4b3e− 6abce+ 2a2de)X3Y

+ (−3c4 + 6bc2d− 8b2d2 + 6acd2 + 6b2ce− 6ac2e− 2abde+ a2e2)X2Y 2

+ (−2c3d+ 4ad3 + 6bc2e− 4b2de− 6acde + 2abe2)XY 3

+ (−3c2d2 + 4bd3 + 4c3e− 6bcde + b2e2)XY 4,

which is a linear combination of the quartic h and the Hessian of h:

qi =
I(h)

12
Hessian(h) +

J(h)

432
h.

Moreover, since the invariants I(qi) and J(qi) of qi may be written in terms of the invariants

I(h) and J(h) of h, the discriminant of the hypercube H is a multiple of the discriminant

of q, specifically

∆(H) = ∆(qi) =
J(h)6∆(h)

224318
.

So the hypercube H is nondegenerate if and only if h has no repeated roots and J(h) 6= 0.

From the hypercube H, we may construct the usual (2, 2) forms fij and curves Cij ∈

P(V ∨
i ) × P(V ∨

j ). As noted earlier, the forms and the curves are all exactly the same, but

the maps between the curves will not be the identity. The same argument as for Lemma 3.3

shows, for example, if (w, x1) ∈ C12, then τ
13
12 sends (w, x1) to (w, x2), where x1 and x2 are

the solutions for x in f12(w, x) = f13(w, x) = 0. It is evident, then, that the line bundles

L2 := (π12)
∗OP(V ∨

2 )(1) and L3 := (π23 ◦ π
1
23 ◦ ρ

3
12)

∗OP(V ∨
3 )(1) on C12 will not be the same

bundles, despite the supposed symmetry. In particular, since the map between C12 and C13

flips the sheets covering P(V ∨
1 ), the line bundles L2 and L3 will be symmetric around L1,
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i.e., L⊗2
1
∼= L2⊗L3. (Since a quadruply symmetrized hypercube is triply symmetrized, this

relation is already known by the proof of Proposition 3.20.)

Proposition 3.23. Restricting Proposition 3.14 to quadruply symmetrized hypercubes gives

a bijection between nondegenerate quadruply symmetrized hypercubes and equivalence classes

of quadruples (C,L,Q,B), where C is a genus one curve, L is a degree 2 line bundle on C,

Q is a nonzero 3-torsion point on Jac(C), and B is a basis for H0(C,L).

Proof. Because a quadruply symmetrized hypercube H is also triply symmetrized, Propo-

sition 3.20 shows that H gives rise to (C,L,Q,B). In particular, let L be the line bundle

we usually call L1 and Q correspond to L1 ⊗ L
−1
2 ∈ Pic0(C) ∼= Jac(C).

Conversely, given (C,L,Q,B), define the line bundles L1 := L,L2 := L ⊗ Q, and

L3 = L4 := L ⊗ Q−1, where Q is thought of as a degree 0 line bundle in Pic0(C). These

satisfy the conditions to construct a hypercube; we only need bases for each of the spaces

of sections. For the moment, choose any basis B′
3 for H0(C,L3). Then there exists a ba-

sis B2 for H0(C,L2) such that the (2, 2) form f13 (by Proposition 3.2, corresponding to

(C,L1, L3,B,B
′
3)) and the (2, 2) form f23 (from (C,L2, L3,B2,B

′
3)) are the same poly-

nomials. This follows from Proposition 3.2 and the existence of an automorphism of C

sending (L1, L3) to (L2, L3), namely translation by Q followed by a flip around the line

bundle L1. As in the proof of Proposition 3.20, we may apply an analogous argument to

obtain bases B3 and B4 for H0(C,L3) and H0(C,L4), respectively, such that the (2, 2)

forms f1i (corresponding to (C,L1, Li)) for 2 ≤ i ≤ 4 are all the same. The vector spaces

H0(C,Li) for 2 ≤ i ≤ 4 are all identified with these bases. Then the hypercube H con-

structed is triply symmetrized in the indices {2, 3, 4}, that is, it can be viewed as an element

of H0(C,L1)⊗ Sym3H
0(C,L2).

Since the roles of L1 and L2 may be switched in this construction by an automorphism

of C, there also exists an identification of H0(C,L1) with H
0(C,L3) that respects the bases

B and B3, such that the hypercube H constructed is triply symmetrized in the indices

{1, 3, 4}. We may thus identify all H0(C,Li) for 1 ≤ i ≤ 4 with respect to the chosen bases.

As the permutation group S4 is generated by two conjugate subgroups S3, the hypercube

H is actually quadruply symmetrized. In other words, for V = H0(C,L1) with basis B, the

73



hypercube H may be considered as an element of V ⊗ V ⊗ V ⊗ V that is invariant under

the symmetric group S4 acting on the four factors of V .

Quotienting by GL3 in Proposition 3.23 gives the following correspondence:

Corollary 3.24. The restriction of the bijection in Proposition 3.13 to quadruply sym-

metrized hypercubes gives the bijection





GL2-orbits of nondegener-

ate quadruply symmetrized

hypercubes




←→





equivalence classes of (C,L,Q) with C a

genus 1 curve, L a degree 2 line bundle

on C, and 0 6= Q ∈ Jac(C)[3]




.

Consequently, triply and quadruply symmetrized hypercubes, without bases for the

corresponding vector spaces, parametrize exactly the same geometric data: a genus one

curve C, a degree 2 line bundle L on C (which may be “forgotten” over an algebraically

closed field), and a nonzero 3-torsion point on Jac(C). So a triply symmetrized hypercube

may be taken to a quadruply symmetrized one by a change of basis!

Finally, we describe one more type of symmetrization. A (2, 2)-symmetrized hypercube

is an element of Sym2V1 ⊗ Sym2V3, where V1 and V3 are 2-dimensional vector spaces over

F with specified bases. These (2, 2)-symmetrized hypercubes may be seen as a subset of all

(2, 2) forms, specifically those polynomials of the form

f(w1, w2, x1, x2) = a22w
2
1x

2
1 + 2a32w1w2x

2
1 + a42w

2
2x

2
1

+ 2(a23w
2
1x1x2 + 2a33w1w2x1x2 + a43w

2
2x1x2)

+ a24w
2
1x

2
2 + 2a34w1w2x

2
2 + a44w

2
2x

2
2.

There is a natural action of GL(V1) × GL(V3) on these hypercubes, which are a subset of

hypercubes in V1 ⊗ V1 ⊗ V3 ⊗ V3.

Proposition 3.25. Restricting Proposition 3.14 to (2, 2)-symmetrized hypercubes gives a

bijection between nondegenerate (2, 2)-symmetrized hypercubes and equivalence classes of

quintuples (C,L1, L3,B1,B3) with C a genus one curve, L1 and L3 degree 2 line bundles

on C with L1 6∼= L3, and B1 and B3 bases for H0(C,L1) and H
0(C,L3), respectively.
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Proof. A (2, 2)-symmetrized hypercube is a doubly symmetrized hypercube, say in V1⊗V1⊗

Sym2V3. By Proposition 3.18, such a hypercube gives rise to the data (C,L1, L3,B1,B3).

On the other hand, suppose we have (C,L1, L3,B1,B3) as in the proposition. Then let

L2 := L⊗2
3 ⊗ L

−1
1 and L4 := L3, and let B4 be the same basis as B3. By Proposition 3.18,

with any choice of basis forH0(C,L2), we obtain a doubly symmetrized hypercube, invariant

with respect to switching the indices 3 and 4. To produce the other symmetry, choose a

basis B2 for H0(C,L2) by requiring that (C,L1, L3,B1,B3) and (C,L2, L3,B2,B3) give

the same (2, 2) forms f13 and f23 via Proposition 3.2. In other words, because there is

an automorphism of C taking L1 to L2 and fixing L3, the data (C,L1, L3) and (C,L2, L3)

corresponds to the same (2, 2)-form up to a change of basis. The spaces of sectionsH0(C,L1)

and H0(C,L2) may be identified with respect to the bases B1 and B2. Swapping the roles

of L1 and L2 in the construction of the hypercube also gives the same hypercube, so it

is invariant under switching the indices 1 and 2. Thus, we have constructed a hypercube

invariant under the subgroup 〈(12), (34)〉 of S4, which is a (2, 2)-symmetrized hypercube.

Without choices of bases, the nondegenerate (2, 2)-symmetrized hypercubes correspond

to the same data as doubly symmetrized hypercubes.

Corollary 3.26. The restriction of bijection 3.15 to (2, 2)-symmetrized hypercubes gives a

bijection





GL2×GL2-orbits of nonde-

generate (2, 2)-symmetrized

hypercubes




←→





equivalence classes of (C,L,Q1, Q2) with C a

genus 1 curve, L a degree 2 line bundle on C, and

0 6= Qi ∈ Jac(C) for 1 ≤ i ≤ 2 with Q1+2Q2 = 0




.

In this section, we investigated the moduli problems corresponding to hypercubes in-

variant under certain subgroups of the permutation group S4 acting on the four factors of

V ⊗4 for a 2-dimensional vector space V over F . In particular, the subgroups in this section

are all conjugates of the subgroups S2, S3, S4, and Z/2Z × Z/2Z in S4. Invariance under

other subgroups of S4 gives rise to reducible representations. While their moduli problems

can be considered a product of those already considered and trivial ones, we plan to treat

other aspects of these sorts of symmetrized hypercubes in future work.
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A box without hinges, key, or lid,
Yet golden treasure inside is hid.

—Bilbo Baggins, in The Hobbit
by J.R.R. Tolkein

Chapter 4

Moduli of Plane Curves

To describe the moduli problem for Rubik’s cubes in Chapter 2, we study the three ternary

cubic forms arising from each such 3× 3× 3 box. More generally, a 3×n×n box naturally

produces a ternary degree n form, whose locus in P2 is a genus 1
2(n − 1)(n − 2) curve, if

smooth. In this chapter, we show that generically the space of 3 × n × n boxes over F ,

up to linear transformations, parametrizes plane curves with certain types of line bundles.

Although 3 × n × n boxes are closely related to determinantal representations of plane

curves, which have been studied classically (see [CT79, Bea00] for more recent work), our

geometric techniques are different and generalize to curves in P1×P1 in the next chapter. In

addition, all of these results generalize to families of curves as well as to the corresponding

moduli stacks. We also obtain a parametrization of certain curves and line bundles by the

space of symmetrized 3× n× n boxes. For n ≥ 5 odd, the bijection for symmetrized boxes

is related to the isomorphism, studied in [Tju75, Rei72], between the Prym variety of a

certain étale double cover of the degree n plane curve and the intermediate Jacobian of a

related (n− 4)-dimensional variety.

Preliminaries. Let n ≥ 3 be an integer. Let F be an algebraically closed field of charac-

teristic not 3 and not dividing n or n − 1. In this chapter, we use the convention that the

projectivization of a vector bundle parametrizes lines, not hyperplanes, and for a basepoint-

free line bundle L on a scheme X, the map φL : X → P(H0(X,L)∨) is the natural map

given by the complete linear system |L|. Also, unless stated otherwise, a genus g curve

means a proper, smooth, geometrically connected curve with arithmetic genus g.
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4.1 Trilinear Forms and Associated Curves

Let U1, U2, and U3 be vector spaces over F of dimensions 3, n, and n, respectively. The

reductive group G := GL(U1)×GL(U2)×GL(U3) acts on the tensor product U1⊗U2⊗U3,

the space of trilinear forms, by the natural action on each factor.

With choices of bases for the vector spaces U1, U2, U3, we may represent an element of

U1 ⊗ U2 ⊗ U3 as a 3 × n × n box A = (arst)1≤r≤3,1≤s,t≤n for arst ∈ F . The box A is like

a three-dimensional matrix, and the group G acts by row, column, and “other direction”

operations on the space of boxes. In the sequel, we will refer to both the array and the

trilinear form as the box, with the vector spaces Ui and their bases understood.

We use the notation A(·, ·, ·) to denote the trilinear form, where the dots may be replaced

by substituting elements of the respective U∨
i . For example, given an element w ∈ U∨

1 , the

notation A(w, ·, ·) will refer to the n × n matrix Ayw ∈ U2 ⊗ U3. The notation A(w, x, ·)

for x ∈ U∨
2 refers to the vector Ay (w⊗x) ∈ U3. We also, by a slight abuse of notation, will

use conditions such as whether A(w, ·, ·) vanishes or not for w ∈ P(V ∨
1 ).

Let A = (arst) be a 3× n× n box. Then the vanishing of the degree n polynomial

f(w1, w2, w3) := detA(w, ·, ·) ∈ Symn U1

defines a variety C1 ⊂ P(U∨
1 ) = P2. In other words, the variety C1 is a determinantal

variety, given by the determinant of a matrix of linear forms on U∨
1 . By definition, the zero

locus of f (and thus the curve C1) is fixed under the action of GL(U2) ×GL(U3), and the

group GL(U1) acts as linear transformations on P(U∨
1 ) by the standard action on U1.

We call a 3 × n × n box A nondegenerate if the variety C1 thus defined is smooth and

one-dimensional. Note that the nondegeneracy of the box is a single algebraic condition

on the entries arst, which we will call the discriminant, and degenerate boxes form a codi-

mension one subvariety given by the vanishing of this discriminant. For n = 3, this notion

of nondegeneracy coincides with that for Rubik’s cubes defined in Section 2.2.1, i.e., the

discriminant here is the degree 36 discriminant of a Rubik’s cube. In the sequel, we will

only consider nondegenerate boxes.
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If A is nondegenerate, the degree n curve C1 is smooth of genus g = 1
2(n − 1)(n − 2).

For all points w† ∈ C1, we claim that the singular matrix A(w†, ·, ·) has exactly rank n− 1.

If not, then the (n− 1)× (n− 1) minors of A(w, ·, ·) would vanish on w†, and so would all

the partial derivatives

∂f

∂wi

∣∣∣∣
w=w†

=
∑

s,t

aistA
∗
ij(w

†)

where A∗
ij(w

†) is the (i, j)th (n− 1)× (n− 1) minor of A(w†, ·, ·). Since C1 was assumed to

be smooth, however, the rank of the matrix A(w†, ·, ·) cannot drop by two.

Define the variety

C12 := {(w, x) ∈ P(U∨
1 )× P(U∨

2 ) : A(w, x, ·) = 0}.

The nondegeneracy of A implies that the projection

C12 −→ P(U∨
1 )

is an isomorphism onto C1. The inverse map takes a point w ∈ C1 ⊂ P(U∨
1 ) to the pair

(w, x) ∈ P(U∨
1 ) × P(U∨

2 ), where x corresponds to the exactly one-dimensional kernel of

the linear map A(w, ·, ·) ∈ U2 ⊗ U3
∼= Hom(U∨

2 , U3). This map C1 → C12 is algebraic,

as the kernel is given by the minors of the matrix A(w, ·, ·). Therefore, by dimension

considerations, the curve C12 is the complete intersection of n bidegree (1, 1) forms on

P(U∨
1 )× P(U∨

2 ) = P2 × Pn−1.

We may similarly define

C13 := {(w, y) ∈ P(U∨
1 )× P(U∨

3 ) : A(w, ·, y) = 0},

and the analogous maps between C13 and C1 are also isomorphisms. The diagram

C12

π2

{{ww
ww
ww
ww

##G
GG

GG
GG

G
C1∼=

α2oo
∼=

α3 //
� _

π1

��

C13

π3

##G
GG

GG
GG

G

{{ww
ww
ww
ww

P(U∨
2 ) P(U∨

1 ) P(U∨
3 )
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summarizes the relationships between these curves. These maps from the curve C1 to each

projective space give the line bundles

L1 := π∗1OP(U∨
1 )(1)

L2 := (π2 ◦ α2)
∗OP(U∨

2 )(1) (4.1)

L3 := (π3 ◦ α3)
∗OP(U∨

3 )(1)

on C1. The line bundle L1 clearly has degree n, and L2 and L3 have degree 1
2n(n − 1).

For 1 ≤ i ≤ 3, we claim that all the sections of the bundle Li arise from pulling back

sections from P(U∨
i ). This is a small generalization of the idea that a complete intersection

in projective space is linearly normal; here, the curve C1i for i = 2 or 3 is a complete

intersection in the product of two projective spaces, and the image of projection to either

of those is linearly normal.

Lemma 4.1. Let A be a 3×n×n box and L1, L2, and L3 the line bundles on the curve C1

defined in (4.1). Then

(i) h0(C1, L1) = 3,

(ii) h0(C1, Li) = n and h1(C1, Li) = 0 for i = 2 or 3,

(iii) h1(C1, L1 ⊗ Li) = 0 for i = 2 or 3, and

(iv) h1(C1, L
−1
1 ⊗ Li) = 0 for i = 2 or 3.

Proof. The first part (i) follows directly from taking cohomology of the sequence

0 −→ OP(U∨
1 )(−C1)(1) −→ OP(U1)∨(1) −→ OC1(1) −→ 0,

since Hp(P2,OP2(1− n)) = 0 for p = 0, 1.

For i = 2 or 3, because the box is nondegenerate, recall that the curve C1i is a complete

intersection in P := P(U∨
1 )⊗P(U∨

i ), and we will prove the vanishing of H1 for the pullback

of the line bundles OP(0, 1), OP(1, 1), and OP(−1, 1) to C1i.
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Let H1, . . . ,Hn be n hypersurfaces of bidegree (1, 1) in P that exactly cut out C1i (the

polynomials defining the Hj come directly from the box, viewed as n bilinear forms). For

1 ≤ d ≤ n, let Yd := ∩
n−d+1
j=1 Hj, which has dimension d, so that there exists a flag

C1i = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn = H1 ⊂ P.

For 1 ≤ d ≤ n− 1, the sequence

0 −→ OP(−1,−1) −→ OP −→ OHn−d+1
−→ 0

is exact, and tensoring with OYd+1
gives the exact sequence

OYd+1
(−1,−1) −→ OYd+1

−→ OYd
−→ 0.

The first map, given by the polynomial defining Hn−d+1, is injective, because that poly-

nomial is a regular element of the coordinate ring, by assumption. Now tensoring with

OP(m1,m2) for m1,m2 ∈ Z and taking cohomology gives the exact sequence

Hp(Yd+1,OYd+1
(m1,m2)) −→ Hp(Yd,OYd

(m1,m2)) −→ Hp+1(Yd+1,OYd+1
(m1 − 1,m2 − 1))

(4.2)

for p ≥ 0. By the Kunneth formula, if k1 ≥ −1 and k2 ≥ 1 are integers, then the cohomology

group Hp(P,OP(k1−p+1, k2−p+1)) vanishes for 1 ≤ p ≤ n+1. Applying (4.2) inductively

implies that for 1 ≤ p ≤ d ≤ n,

Hp(Yd,OYd
(k1 − p+ 1, k2 − p+ 1)) = 0.

Thus, the case p = 1 and d = 1 implies the desired result: H1(C1i,OC1i(k1, k2)) = 0 for

k1 ≥ −1 and k2 ≥ 1.

By Riemann-Roch, a non-exceptional line bundle of degree 1
2n(n−1) on a curve of genus

g = 1
2(n−1)(n−2) is such a bundle with exactly n linearly independent sections, so Lemma

4.1 implies that L2 and L3 are non-exceptional. Moreover, there exists a nontrivial relation
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among these line bundles, which is crucial in the parametrization of the orbits of 3× n× n

boxes. This relation is a generalization of Lemma 2.3 for Rubik’s cubes.

Lemma 4.2. On the curve C1, we have the relation

L2 ⊗ L3
∼= π∗1OP(U∨

1 )(n − 1) ∼= L
⊗(n−1)
1 .

Proof. We prove this lemma in the language of divisors. For w ∈ C1 ⊂ P(U∨
1 ), each

coordinate of π2(α2(w)) ∈ P(U∨
2 ) is given by the (n−1)× (n−1) minors A∗

ij(w) of A(w, ·, ·)

for some fixed j where not all A∗
ij(w) vanish. Let D2 be an effective degree 1

2n(n − 1)

divisor on C1 such that O(D2) ∼= L2. Then the points of D2 are the preimage on C1 of the

intersection of a hyperplane with the image of the curve C12 in P(U∨
2 ); in particular, we

may choose D2, without loss of generality, to be the divisor defined by the locus where a

particular minor, say A∗
11(w), vanishes on the curve C1 but at least one A∗

i1(w) is nonzero.

Similarly, we may choose a divisor D3 such that O(D3) ∼= L3 to be the sum of the points

w ∈ C1 where A∗
11(w) = 0 but not all other A∗

j1(w) vanish. Then the points of the degree

n(n−1) effective divisorD2+D3 are exactly the intersection of the curve C1 and A
∗
11(w) = 0,

which is linearly equivalent to the pullback of OP(U∨
1 )(n− 1) to C1.

Also, for the curve C1, we can relate its canonical bundle to the embedding into P(U∨
1 ).

In particular, the following lemma will show that

ωC1
∼= π∗1OP(U∨

1 )(n− 3),

where ωC1 is the canonical line bundle on C1.

Lemma 4.3. Let ι : X →֒ P(V ) be a smooth hypersurface of degree n, where V is a

N -dimensional vector space. Then if ωX denotes the canonical bundle of X, we have

ωX
∼= ι∗OP(V )(n −N).
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Proof. Adjunction produces the exact sequence

0 −→ ι∗IX −→ ι∗Ω1
P(V ) −→ Ω1

X −→ 0

where IX ∼= OP(V )(−n) is the ideal defining X in P(V ). Then taking determinants gives

ωX = det(Ω1
X)

= det(ι∗IX)−1 ⊗ det(ι∗Ω1
P(V ))

= ι∗OP(V )(n)⊗ ι
∗OP(V )(−N) = ι∗OP(V )(n−N).

Recall that the group G = GL(U1)×GL(U2)×GL(U3) acts on the space of 3×n×n boxes

by the standard action on each factor. These transformations do not affect the isomorphism

class of the curve, as remarked earlier, or of the line bundles arising from the box.

4.2 The Moduli Problem for 3× n× n Boxes

From a nondegenerate 3 × n × n box A, we obtain a genus 1
2(n − 1)(n − 2) curve C1 with

an embedding π1 into P2, along with two “balanced” degree 1
2n(n− 1) line bundles L2 and

L3 such that L2 ⊗ L3
∼= π∗1OP2(n − 1). In fact, this geometric data is essentially enough

to recover the box, up to G-equivalence, as well. We show that the G-orbits of 3 × n × n

boxes parametrize the data (C1, L1, L2, L3), up to equivalence. This bijection of sets may

be rewritten in several stronger ways, including as an equivalence of moduli stacks.

4.2.1 A Bijection

In this section, we describe the bijection between orbits of 3×n×n boxes and degree n plane

curves with line bundles. The reverse functor, from the geometric data to the boxes, is given

geometrically first. The geometric data under consideration are quadruples (C,L1, L2, L3),

subject to the following conditions:

(a) C is a smooth irreducible genus 1
2(n− 1)(n− 2) curve, L1 is a degree 3 line bundle on

C, and L2 and L3 are degree 1
2n(n− 1) line bundles on C.
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(b) h0(C,L1) = 3.

(4.3)
(c) h0(C,Li) = n and h0(C,L−1

1 ⊗ Li) = 0 for i = 2 or 3.

(d) L
⊗(n−1)
1

∼= L2 ⊗ L3.

Condition (b) implies that |L1| ∈ Ŵ 2
n(C), where Ŵ r

d (C) denotes the open subscheme

parametrizing complete linear series on the curve C with degree d and dimension r, i.e.,

degree d line bundles with exactly r + 1 independent sections.1 Likewise, the first part of

condition (c) says that |L2| , |L3| ∈ Ŵ
n−1
n(n−1)/2(C). The conditions (4.3) are quite strong, as

we will see in the next lemmas.

Lemma 4.4. Let (C,L1, L2, L3) be a quadruple satisfying conditions (a), (b), and (d) of

(4.3). Then condition (c) for i = 2 only is equivalent to condition (c) for i = 3 only.

Proof. By Serre duality, Lemma 4.3, condition (d), and Riemann-Roch, we have

h0(C,L−1
1 ⊗ L3) = h1(C,ωC ⊗ L1 ⊗ L

−1
3 )

= h1(C, (L
⊗(n−3)
1 )⊗ L1 ⊗ L

−1
3 )

= h1(C,L−1
1 ⊗ L2)

= h0(C,L−1
1 ⊗ L2).

Similarly, if h0(C,L2) = n, we have

h1(C,L3) = h0(C,ωC ⊗ L
−1
3 ) = h0(L2 ⊗ L

−2
1 ),

and taking cohomology of the exact sequence

0 −→ OC(−L1) −→ OC −→ OL1 −→ 0

tensored with L2⊗L
−1
1 shows that h0(L2⊗L

−2
1 ) vanishes. By Riemann-Roch, the vanishing

of h1(C,L3) implies that h0(C,L3) = n.

1With respect to the standard notation W r
d (C) parametrizing complete linear series with degree d and

dimension at least r, we have Ŵ r
d (C) = W r

d (C) \W r+1
d (C).
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Lemma 4.5. Given a quadruple (C,L1, L2, L3) satisfying (4.3), the multiplication map

µ1i : H
0(C,L1)⊗H

0(C,Li) −→ H0(C,L1 ⊗ Li), (4.4)

which is the cup product on cohomology, is surjective for i = 2 or 3.

Proof. This lemma is an application of the basepoint-free pencil trick [Eis95, Exercise

17.18]). Let V be a basepoint-free pencil of H0(C,L1), in other words, a two-dimensional

subspace of the three-dimensional space H0(C,L1) such that for every point x ∈ C, there

exists a section in V that is nonzero on x. Almost all pencils of H0(C,L1) will be basepoint-

free, since choosing V is equivalent to choosing a point in P(H0(C,L1)
∨) from which to

project the image of the curve C to a P1. There is a surjective map

V ⊗ OC
// // L1 ,

and the kernel is the sheaf L−1
1 . Tensoring this exact sequence with Li and taking coho-

mology gives the exact sequence

H0(C,L−1
1 ⊗ Li) −→ V ⊗H0(C,Li) −→ H0(C,L1 ⊗ Li) −→ H1(C,L−1

1 ⊗ Li).

By condition (4.3)(c) and Riemann-Roch, bothH0(C,L−1
1 ⊗Li) andH

1(C,L−1
1 ⊗Li) vanish.

So this sequence gives an isomorphism between V ⊗H0(C,Li) and H
0(C,L1⊗Li), both of

which are vector spaces of dimension 2n by Riemann-Roch. Thus, µ1i is surjective.

Note that all the conditions (4.3) are satisfied by quadruples arising from nondegenerate

3 × n × n boxes. We say that two such quadruples (C,L1, L2, L3) and (C ′, L′
1, L

′
2, L

′
3) are

equivalent if there exists an isomorphism λ : C → C ′ such that λ∗L′
i
∼= Li for 1 ≤ i ≤ 3.

Theorem 4.6. Let n ≥ 3 be an integer. There exists a bijection

{
G-equivalence classes of

nondegenerate 3× n× n boxes

}
←→

{
equivalence classes of quadruples

(C,L1, L2, L3) satisfying (4.3)

}
. (4.5)

Proof. Given a nondegenerate 3×n×n box, we have in Section 4.1 constructed the geometric
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data on the right side of the bijection and have shown that the G-action on the box preserves

the equivalence class of this data.

Now let C be an irreducible curve of genus 1
2 (n− 1)(n− 2) with line bundles L1, L2, L3

satisfying (4.3). The main idea of the proof is to identify the spaces of sections H0(C,Li)

with the vector spaces Ui associated to the box.

By Lemma 4.5, the multiplication map µ12 : H
0(C,L1)⊗H

0(C,L2)→ H0(C,L1 ⊗ L2)

is surjective. We are interested in the inclusion of the kernel kerµ12 into H0(C,L1) ⊗

H0(C,L2). The line bundle L1 ⊗ L2 has degree n+ 1
2n(n− 1) = 1

2n(n+ 1). Tensoring the

exact sequence

0 −→ OC(−L1) −→ OC −→ OL1 −→ 0

by L1⊗L2 and taking cohomology shows that H1(C,L1⊗L2) = 0. Therefore, by Riemann-

Roch, the dimension of H0(C,L1⊗L2) is 2n, and as µ12 is surjective, the kernel is a vector

space of dimension n. Define the 3× n× n box

A ∈ H0(C,L1)⊗H
0(C,L2)⊗ (ker µ12)

∨ ∼= Hom(ker µ12,H
0(C,L1)⊗H

0(C,L2))

as the inclusion of ker µ12 into the domain of µ12. Note that that the box, as a 3 × n × n

array, is defined up to a choice of basis for each of these vector spaces.

If (C ′, L′
1, L

′
2, L

′
3) is another equivalent quadruple, then the spaces of global sections are

isomorphic, and the isomorphisms commute with the corresponding multiplication maps

µ12 and µ′12. The box constructed can differ only by changes of bases for H0(C,L1) ∼=

H0(C ′, L′
1),H

0(C,L2) ∼= H0(C ′, L′
2), and ker µ12 ∼= kerµ′12, in other words, by an element

of the group G.

It remains to check that these constructions are inverse to one another. Given a

quadruple (C,L1, L2, L3), we construct the box A ∈ H0(C,L1) ⊗ H
0(C,L2) ⊗ (ker µ12)

∨

as above. Let C1 and C12 be the natural images of the curve C in P(H0(C,L1)
∨) and

in P(H0(C,L1)
∨) × P(H0(C,L2)

∨) via φL1 and (φL1 , φL2). Now let C ′
1 be the variety cut

out by the degree n polynomial f(w) := detA(w, ·, ·) and let C ′
12 be the variety defined as

{(w, x) ∈ P(H0(C,L1)
∨)× P(H0(C,L2)

∨) : A(w, x, ·) = 0}.
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It suffices to show that C1 = C ′
1 and C12 = C ′

12. For all (w†, x†) ∈ C12, we have

A(w†, x†, ·) = 0 by the construction of A, and thus detA(w†, ·, ·) = 0. Thus, the curve

C ′
1 contains C1 as a variety in P(H0(C,L1)

∨) = P2; since both are given by degree n

polynomials, they must in fact be equal as varieties, so C ′
1 is a smooth irreducible genus

1
2(n − 1)(n − 2) plane curve. We also have that C12 ⊆ C ′

12, and as both are irreducible

curves, they must be equal. Note that this also implies that the box A constructed from

(C,L1, L2, L3) is nondegenerate.

That the geometric data coming from a box produce the same box again is clear. If

A ∈ U1 ⊗ U2 ⊗ U3 is a 3× n× n is a nondegenerate projective box, and (C,L1, L2, L3) the

associated quadruple, then the vector spaces Ui and H
0(C,Li) are naturally isomorphic for

i = 1, 2, and U∨
3 can be identified with kerµ12. The 3 × n × n box constructed from the

geometric data is thus the same as the original box A, up to a change in bases for each of

the vector spaces, so it is G-equivalent to A.

Remark 4.7. The proof only uses one of the line bundles L2 and L3, and from Lemma

4.4, the hypotheses in (4.3) for L2 are equivalent to those for L3. The line bundles L2 and

L3 may be interchanged for the construction of the box from the quadruple (C,L1, L2, L3)

satisfying (4.3). Using either constructs the same box, since the boxes from L2 and from L3

both recover the full quadruple (C,L1, L2, L3). Thus, there is a posteriori an identification

of H0(C,L3) with the dual of the kernel of the multiplication map µ12 : H0(C,L1) ⊗

H0(C,L2)→ H0(C,L1 ⊗ L2) (and respectively, H0(C,L2) with (ker µ13)
∨).

Theorem 4.6 specifies the conditions for the line bundles involved, but as noted before,

for n ≥ 3, every non-exceptional divisor of degree 1
2n(n − 1) has a space of sections of

dimension n and Remark 4.7 implies that only one degree 1
2n(n − 1) line bundle needs to

be specified. In addition, it is well-known [ACGH85, p. 56] that for a curve of degree ≥ 4,

any g2d is unique. In other words, for such a curve, there exists only one line bundle that

gives a plane embedding. The theorem can thus be rewritten as
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Proposition 4.8. Let n ≥ 4 be an integer and g = 1
2(n−1)(n−2). There exists a bijection





G-equivalence

classes of

nondegenerate

3× n× n boxes





←→





equivalence classes of triples (C,L), where C is a

genus g curve with a degree n plane embedding ι,

and L is a degree 1
2n(n− 1) non-exceptional line

bundle on C with L⊗ ι∗OP2(−1) non-exceptional





.

In the proposition, the triple (C,L) is equivalent to (C ′, L′) if there exists an isomorphism

σ : C → C ′ such that σ∗L′ ∼= L. For n ≥ 4 and g = 1
2 (n−1)(n−2), this bijection shows that

as the coarse moduli space of the degree 1
2n(n−1) Picard stack Pic

n(n−1)/2
g over the moduli

space M
plane
g of plane genus g curves is birational to the orbit space A3n2

/GL3×GLn×GLn

of 3× n× n boxes.

Another related theorem involves rigidifying the data on each side of bijection (4.5) to

use 3 × n × n boxes, not their orbits, to parametrize curves and line bundles. Recall that

the definition of a 3× n× n box A ∈ U1 ⊗U2 ⊗U3 includes the bases for the vector spaces

U1, U2, and U3. On the other hand, let D be the data of (C,L1, L2, L3) satisfying conditions

(4.3) along with bases Bi for H
0(C,Li) for 1 ≤ i ≤ 3. Then two such rigidified quadruples

D and D′ are equivalent if there exists an isomorphism σ : C → C ′ such that for 1 ≤ i ≤ 3,

we have both σ∗L′
i
∼= Li and that σ∗ : H0(C ′, L′

i)→ H0(C,Li) is an isomorphism taking B′
i

to Bi. The proposition below follows from the proof of Theorem 4.6 and the identification

of H0(C,L3) and (ker µ12)
∨ (and of H0(C,L2) and (ker µ13)

∨) by Remark 4.7:

Proposition 4.9. There exists a bijection

{
nondegenerate

3× n× n boxes

}
←→





equivalence classes of (C,L1, L2, L3,B1,B2,B3)

where (C,L1, L2, L3) satisfies conditions (4.3)

and Bi is a basis for H0(C,Li) for 1 ≤ i ≤ 3




, (4.6)

and quotienting each side by GL3 ×GLn ×GLn recovers Theorem 4.6.

4.2.2 Moduli Stack Formulation

In this section, we work exclusively with Z[ 1N ]-schemes S, where N = 3n(n − 1). We now

prove that the results hold in families, and thus the bijections become equivalences of moduli
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stacks over Z[ 1N ]. We first reformulate the data on each side of the correspondences.

Just as for Rubik’s cubes and hypercubes, we distinguish between 3×n×n boxes with or

without bases over a Z[ 1N ]-scheme S. A based 3×n×n box over S consists of a free rank 3 OS-

module U1 with an isomorphism ψ1 : U1
∼=
−→ O

⊕3
S ; for i = 2 and 3, a free rank n OS-module

Ui with isomorphisms ψi : Ui
∼=
−→ O⊕n

S ; and a section A of U1 ⊗ U2 ⊗ U3. An isomorphism

of based 3 × n × n boxes (U1,U2,U3, ψ1, ψ2, ψ3,A) and (U′
1,U

′
2,U

′
3, ψ

′
1, ψ

′
2, ψ

′
3,A

′) consists

of isomorphisms σi : Ui
∼=
−→ U′

i with ψi = ψ′
i ◦ σi for 1 ≤ i ≤ 3 and taking A to A′. A based

3× n× n box is nondegenerate if it is locally nondegenerate.

In contrast, a 3× n× n box over S is a section A of U1 ⊗U2 ⊗U3, where U1,U2,U3 are

locally free OS -modules of rank 3, n, n, respectively. An isomorphism of 3 × n × n boxes

(U1,U2,U3,A) and (U′
1,U

′
2,U

′
3,A

′) consists of isomorphisms σi : Ui
∼=
−→ U′

i of OS-modules

for 1 ≤ i ≤ 3 that send A to A′.

To describe the geometric data over S, define a genus g curve C over S as a proper

smooth morphism π : C → S with relative dimension 1 such that R0π∗(OC) = OS and

R1π∗(OC) is a rank g vector bundle over S. Define the rigidified degree n quadruple D over

S to consist of a genus 1
2(n − 1)(n − 2) curve π : C → S; a degree n line bundle L1 on C

with an isomorphism χ1 : R0π∗(L1)
∼=
−→ O

⊕3
S ; and two degree 1

2n(n − 1) line bundles L2

and L3 on C with isomorphisms χi : R
0π∗(Li)

∼=
−→ O⊕n

S for i = 2 or 3. A balanced rigidified

degree n quadruple also includes an isomorphism ϕ : L
⊗(n−1)
1

∼=
−→ L2⊗L3⊗ π

∗LS for some

line bundle LS on S. Such a quadruple is nondegenerate if R0π∗(L
∨
1 ⊗Li) = 0 for i = 2 and

3. Note that this last condition is equivalent to requiring that fiberwise H0(Cs, (L
∨
1 ⊗Li)s)

vanishes for all points s→ S, because the Euler characteristic of L∨
1 ⊗ Li is 0.

Theorem 4.10. Over a scheme S, there is an equivalence between the category of nonde-

generate based 3× n× n boxes over S and the category of nondegenerate balanced rigidified

degree n quadruples (C,L1,L2,L3, ϕ) over S as defined above.

Proof. The functors in each direction essentially come from those functors defined for S =

Spec F . As Ui is free for 1 ≤ i ≤ 3, the construction of the corresponding curves over S

and line bundles are as before. (These constructions are entirely analogous to those given

in the proof of Theorem 2.11.)
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On the other hand, suppose we have a nondegenerate balanced rigidified degree n

quadruple, i.e., a genus 1
2(n − 1)(n − 2) curve π : C → S and invertible sheaves L1,L2,L3

on C with the appropriate isomorphisms χi and ϕ. Then the kernel of the surjective mul-

tiplication map

µ12 : R
0π∗(L1)⊗ R0π∗(L2) −→ R0π∗(L1 ⊗ L2)

is a rank n free OS-module. Just as before, we recover a 3 × n × n box over S as the

corresponding section in the sheaf R0π∗(L1) ⊗ R0π∗(L2) ⊗ (ker µ12)
∨. In order to produce

a based 3 × n × n box, though, we require a trivialization of (ker µ12)
∨; by Remark 4.7,

repeating the construction for L3 in place of L2 gives the same (unbased) box, hence the

map χ3 gives a trivialization of (ker µ12)
∨. Thus, we have constructed a nondegenerate

based 3× n× n box.

These functors are locally inverse, as shown in Theorem 4.6, and thus are inverse.

Since the space of based 3×n×n boxes is just the scheme A3n2
, we have shown that the

moduli space of nondegenerate balanced rigidified degree n quadruples over S is an open

subscheme of A3n2
over S. That is, the stack of these quadruples is equivalent to an open

substack of A3n2
.

If we consider unbased boxes, we find that the stack of (unbased) 3 × n × n boxes is

equivalent to the quotient stack [A3n2
/GL3 × GLn × GLn], and we are interested in the

nondegenerate open substack of [A3n2
/GL3 × GLn × GLn], which is given locally by the

nonvanishing of the discriminant.

Unrigidifying the geometric data is straightforward: let π : C → S be a genus 1
2(n −

1)(n − 2) curve over S. Let L1 be a degree 3 line bundle on C such that R0π∗(Li) has

rank 3, and let L2 and L3 be degree 1
2n(n− 1) line bundles on C such that R0π∗(L2) and

R0π∗(L3) have rank n. If we also have an isomorphism ϕ : L
⊗(n−1)
1

∼=
−→ L2⊗L3⊗ π

∗LS for

some line bundle LS on S, and the condition that R0π∗(L
∨
1 ⊗ Li) = 0 for i = 2 and 3, we

call (C,L1,L2,L3, ϕ) a nondegenerate balanced degree n quadruple.

Because the isomorphism of Theorem 4.10 is GL3 ×GLn ×GLn-equivariant, we obtain

an equivalence of the respective quotient stacks. The nondegenerate balanced degree n

quadruples form the quotient stack for such rigidified quadruples.
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Corollary 4.11. For n ≥ 3, the nondegenerate open substack of [A3n2
/GL3 ×GLn ×GLn]

is equivalent to the stack of nondegenerate balanced degree n quadruples.

Note that the stack of nondegenerate balanced degree n quadruples is visibly a substack

of the fiber product

Picng ×Mg
Picn(n−1)/2

g ×Mg
Picn(n−1)/2

g ,

where g = 1
2(n − 1)(n − 2) and Picdg denotes the universal degree d Picard stack over the

moduli space Mg of genus g curves.

4.2.3 Explicit Algebraic Construction

Given a smooth irreducible degree n plane curve ι : C → P2 (i.e., a genus 1
2 (n − 1)(n − 2)

curve and a degree n line bundle L1 with h0(C,L1) = 3) and degree 1
2n(n− 1) line bundles

L2 and L3 such that L2⊗L3
∼= L

⊗(n−1)
1 , there is also an algebraic construction of the related

3×n×n box (see [Dix02], for example, for the main ideas in the symmetric case). We sketch

the construction below, since it makes the construction very explicit and computable.

Suppose f is the degree n polynomial in S := F [w1, w2, w3] defining the plane curve

C, and let R := S/(f) be the graded ring corresponding to the curve C itself. Let Si and

Ri denote the ith graded pieces of S and R, respectively. Let D2 be a degree 1
2n(n − 1)

effective divisor on C such that O(D2) ∼= L2 (in other words, D2 is the divisor of some

nonzero holomorphic section of L2). We will also, by a slight abuse of notation, refer to the

subscheme associated to the divisor by the same symbol. Tensoring the exact sequence

0 −→ L−1
2 −→ OC −→ OD2 −→ 0

with ι∗OP2(n− 1) gives the exact sequence

0 −→ L3 −→ ι∗OP2(n− 1) −→ OD2 ⊗ ι
∗OP2(n− 1) −→ 0. (4.7)

By taking cohomology, we view sections of L3 as degree n− 1 polynomials on P2, which

all vanish on the divisor D2. A dimension count shows that these sections are all the

degree n − 1 polynomials that vanish on the degree 1
2n(n − 1) divisor D2. Choose a basis
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s1 =: q, . . . , sn of H0(C,L3), where each si ∈ S
n−1. Now the variety defined by {q = 0}

intersects the curve C in D2 + D3, where D3 is an effective divisor of degree 1
2n(n − 1).

Because of the condition on the line bundles L2 and L3, we have that L3
∼= O(D3). A

similar argument as above shows that the sections of L2 can also be viewed as degree n− 1

polynomials on P2, and they are exactly all such polynomials that vanish on D3. Choose a

basis r1 = q, r2, . . . , rn of degree n− 1 polynomials for H0(C,L2).
2

Now the ideal sheaf ID2
∼= O(−D2) is generated by the images of s1, . . . , sn in R, and

similarly, the ideal sheaf ID3 is generated by the images of r1, . . . , rn. Since ID2ID3 = ID2+D3

is generated as an ideal of R by the image of q, we have, for 1 ≤ i, j ≤ n,

risj = bijq + cijf (4.8)

for some bij ∈ S
n−1 and cij ∈ S

n−2. For example, we have b1j = sj and bi1 = ri. Since each

(n − 1) × (n − 1) minor b∗ij of the n × n matrix B = (bij) is divisible by fn−2, there exist

akij ∈ F for 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ n such that

b∗ij/f
n−2 = a1ijw1 + a2ijw2 + a3ijw3, (4.9)

which defines the 3× n × n box A = (akij). We omit the computations showing that A is

G-equivalent to the box given by the geometric construction in the proof of Theorem 4.6.

4.3 Symmetrizations

Just as for Rubik’s cubes and hypercubes, there are related subspaces to which bijection

4.5 may be restricted. In this section, we consider symmetrized 3 × n × n boxes, which

are elements of U1 ⊗ Sym2U2, where U1 and U2 are vector spaces of dimension 3 and n,

respectively, with specified bases. Recall that Sym2U2 is the subspace of symmetric tensors

of U2⊗U2, so symmetrized 3×n×n boxes form a subspace of 3×n×n boxes in U1⊗U2⊗U2.

2The bundle L3 does not have any base points on C, and a basis of H0(C,L3) is actually given by
{1, s2/q, . . . , sn/q}, i.e., meromorphic functions on C with at worst poles at the divisor (s1) − D2 = D3.
Similarly, a basis for H0(C,L2) is {1, r2/q, . . . , rn/q}, which generates the space of meromorphic functions
on C with at worst poles at the divisor D2.
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There is a natural action of GL(U1) × GL(U2) on the space of symmetrized boxes, and a

symmetrized box may be thought of as a triple of quadratic forms in n variables.

From a nondegenerate symmetrized 3× n× n box, we may obtain in exactly the same

way a smooth plane curve of genus 1
2(n − 1)(n − 2) with degree 1

2n(n− 1) line bundles L2

and L3 on the curve. Because of the symmetry of the box, however, it is clear that L2
∼= L3,

and thus L⊗2
2 must be isomorphic to the pullback of OP2(n− 1) to the curve.

On the other hand, if ι : C → P2 is a closed immersion of a genus 1
2(n− 1)(n− 2) curve

C and L2 is a degree 1
2n(n−1) line bundle on C satisfying (4.3)(c) with L⊗2

2
∼= ι∗OP2(n−1),

then slightly modifying the algebraic construction in Section 4.2.3 produces a symmetrized

3× n× n projective box [Dix02]. Taking L2
∼= L3 and D2 = D3, while identifying sections

ri = si for 1 ≤ i ≤ n, gives a 3× n× n box with akij = akji for 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ n.

To prove the bijection for symmetrized boxes, however, we modify the geometric con-

struction. We consider triples (C,L1, L2) where C is a genus 1
2(n− 1)(n− 2) curve, L1 is a

degree 3 line bundle on C with h0(C,L1) = 3, and L2 is a degree 1
2n(n− 1) line bundle on

C with h0(C,L2) = 0, satisfying the conditions h0(C,L−1
1 ⊗ L2) = 0 and L

⊗(n−1)
1

∼= L⊗2
2 .

We sometimes include bases Bi for H
0(C,Li) for i = 1 or 2. Then, two such triples are

equivalent if there is an isomorphism of the curves preserving the line bundles (and bases).

Theorem 4.12. For n ≥ 3, the restriction of Proposition 4.9 to symmetrized 3 × n × n

boxes induces a bijection of the rigidified data

{
nondegenerate symmetrized

3× n× n boxes

}
←→

{
equivalence classes of quintuples

(C,L1, L2,B1,B2) as above

}
, (4.10)

and restricting Theorem 4.6 to symmetrized boxes gives a bijection of the quotients

{
GL3×GLn-equivalence classes of non-

degenerate symmetrized 3×n×n boxes

}
←→

{
equivalence classes of

triples (C,L1, L2) as above

}
. (4.11)

Proof. Given a nondegenerate symmetrized 3 × n × n box A ∈ U1 ⊗ Sym2U2, Proposition

4.9 gives the data (C,L1, L2, L3,B1,B2,B3). Because of the symmetry, the isomorphisms

from C1 := {det(A(w, ·, ·)) = 0} ⊂ P(U∨
1 ) to the curves C12 ⊂ P(U∨

1 ) × P(U∨
2 ) and C13 ⊂

P(U∨
1 ) × P(U∨

2 ) are the same. Thus, the line bundles L2 and L3 are naturally isomorphic,
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and the bases B2 and B3 may be identified. The box A thus gives rise to (C,L1, L2,B1,B2)

with the appropriate cohomological conditions and the relation L
⊗(n−1)
1

∼= L2 ⊗ L2.

On the other hand, given (C,L1, L2,B1,B2) with the relevant conditions, Proposi-

tion 4.9 produces a 3 × n × n box from the symmetrized data (C,L1, L2, L3,B1,B2,B3),

where L3 := L2 and B2 and B3 are identified by the canonical isomorphism H0(C,L2) ∼=

H0(C,L2). Suppose the construction of the box, using L1 and L2, gives the box A, and the

analogous construction using L1 and L3 gives A′. With the identification of the basis B3

for H0(C,L3) with a basis for (ker µ12)
∨, and of B2 with a basis for (ker µ13)

∨, we have that

A(w, ·, ·) and A′(w, ·, ·) are transposes of one another for any w ∈ U∨
1 . Since they are also

equal, for all w ∈ U∨
1 , the n × n matrix A(w, ·, ·) ∈ H0(C,L2) ⊗H

0(C,L2) is a symmetric

matrix, so the 3× n× n box A lies in H0(C,L1)⊗ Sym2(H
0(C,L2)).

4.4 Special Cases

For low values of n, the theorems simplify and lead to corollaries concerning universal

Picard varieties. Clearly for n = 3, we recover Theorem 2.5. If n = 4 or 5, line bundles of

degree 1
2n(n− 1) are almost all non-exceptional, so Theorem 4.6 can be written even more

succinctly. Moreover, for n = 5, the space of symmetrized boxes is related to the moduli

space M5 of genus 5 curves.

When n = 4, the curve C has genus 3 and is nonhyperelliptic, in which case there

exists exactly one line bundle L with degree n = 4 and h0(C,L) = 3, namely the canonical

bundle ωC . Furthermore, as there are no nonexceptional degree 6 line bundles, the bijection

becomes the following:

Corollary 4.13. There exists a bijection between orbits of nondegenerate 3×4×4 projective

boxes and isomorphism class of pairs (C,L) with C a nonhyperelliptic smooth genus 3 curve

and L a degree 6 line bundle on C with h0(C,L⊗ ω−1
C ) = 0.

Because the condition that h0(C,L ⊗ ω−1
C ) holds for a general degree 6 line bundle L,

we have the following corollary, which implies that the coarse moduli space of the universal

Picard stack Pic63, parametrizing degree 6 line bundles over the moduli space M3 of genus

3 curves, is unirational.
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Corollary 4.14. There is an equivalence between the nondegenerate open substack of the

quotient stack [A48/GL3×GL4×GL4] and an open substack of Pic63 over the nonhyperelliptic

substack of M3.

For n = 5, Theorem 4.6 and Lemma 4.3 imply that GL3×GL5×GL5-orbits of 3× 5× 5

nondegenerate boxes correspond exactly to smooth plane quintics C with any two degree 10

line bundles L2, L3, such that L2⊗L3 is isomorphic to ω⊗2
C ; L2 and L3 are not isomorphic to

ωC ; and h
0(C,L2⊗L

−1
1 ) and h0(C,L3⊗L

−1
1 ) vanish. As a smooth plane quintic has exactly

one g25 (see [ACGH85, p. 209]), this geometric data is equivalent to giving a smooth plane

quintic ι : C → P2 and a point P on its Jacobian Jac(C) (corresponding to, without loss of

generality, the degree 0 line bundle L2⊗ω
−1
C
∼= L−1

3 ⊗ωC) such that the bundle ι∗OP2(1)⊗P

has no sections. This last condition holds for a general point P , since a general degree 5

line bundle has no sections.

Corollary 4.15. The space of GL3×GL5×GL5-orbits of nondegenerate 3× 5× 5 boxes is

isomorphic to an open subspace of the universal Jacobian Jac6 over M
plane
6 , where M

plane
6

is the moduli space of genus 6 curves with a closed immersion into P2.

For symmetrized 3×5×5 boxes, since the two degree 10 line bundles are isomorphic, the

point P must be a 2-torsion point on Jac(C). We also require that h0(C, ι∗OP2(1)⊗P ) = 0,

where P is thought of as a degree 0 line bundle in Pic0(C) ∼= Jac(C). In addition, the

GL3×GL5-orbit of a nondegenerate symmetrized 3×5×5 box corresponds to the complete

intersection of three quadrics in P4, which is a canonically embedded genus 5 curve in P4. It

is easy to check that nondegeneracy implies that the three quinary quadratic forms arising

from a nondegenerate symmetric 3×5×5 box give hypersurfaces that intersect transversally.

On the other hand, any three quinary quadratic forms that intersect transversally are

given by a symmetrized 3 × 5 × 5 box, not necessarily nondegenerate. Nondegeneracy

imposes an extra open condition, which we will specify in the next section. Since the

canonical embeddings of all nonhyperelliptic and non-trigonal genus 5 curves can be given

as the complete intersection of three quadrics in P4, nondegenerate symmetrized 3× 5× 5

boxes exactly correspond to genus 5 curves that are nonhyperelliptic, non-trigonal, and have

this extra condition. We thus have the following corollary:
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Corollary 4.16. An open subspace of the moduli space of nonhyperelliptic, non-trigonal

genus 5 curves is isomorphic to the moduli space of pairs (C,P ) where ι : C → P2 is a smooth

plane quintic and P is a nonzero 2-torsion point on Jac(C) with h0(C, ι∗OP2(1)⊗ P ) = 0.

In the next section, we improve this corollary by describing both the domain and the

image of this map more precisely. This comparison between genus 5 curves, as the intersec-

tion of three quadrics in P4, and plane quintics with a 2-torsion point on the Jacobian may

also be extended to higher dimensions. Symmetrized 3× n× n boxes, where n is odd, give

a way to relate the intersection of three quadrics in Pn−1 and degree n plane curves.

4.4.1 Symmetrized Boxes and Nets of Quadrics

In this section, we show how results of [Tju75] and [Rei72] on the intersection of quadrics

relate to symmetrized 3 × n × n boxes, for n ≥ 5 odd. In particular, three quadrics in

Pn−1 generally intersect in a (n−4)-dimensional variety, and Reid shows in [Rei72] that the

intermediate Jacobian of this intersection is isomorphic to a certain Prym variety, which we

obtain from rewriting Theorem 4.12.

For the rest of the section, let n ≥ 5 be an odd integer. Then the GL3 × GLn-orbit

of a nondegenerate symmetrized 3 × n × n box, by Theorem 4.12, gives rise to a genus

g = 1
2 (n − 1)(n − 2) curve C, with a degree n line bundle L1 and a degree 1

2n(n − 1) line

bundle L2, such that h0(C,L1) = 3, the bundles L2 and L2⊗L
−1
1 are non-exceptional, and

L
⊗(n−1)
1

∼= L⊗2
2 . By Lemma 4.3, this last relation implies that

(L2 ⊗ L
−1
1 )⊗2 ∼= L

⊗(n−3)
1

∼= ωC ,

so κ := L2 ⊗ L
−1
1 ∈ Picg−1(C) is a theta-characteristic of C. Furthermore, since n is odd,

P := κ⊗ L
⊗( 3−n

2
)

1
∼= L2 ⊗ L

⊗( 1−n
2

)
1 ∈ Pic0(C) ∼= Jac(C) (4.12)

is a 2-torsion line bundle on C and can be thought of as a point in Jac(C)[2]. Then the

2-torsion point P naturally produces a degree 2 étale cover C̃ of C. By Riemann-Hurwitz,

the curve C̃ has genus 2g− 1, so the associated Prym variety (the connected component of
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the kernel of the induced map Jac(C̃)→ Jac(C)) has dimension g − 1.

Of course, as in the case of n = 5, we do not obtain all 2-torsion points of Jac(C) in

this way, since the symmetrized box produces exactly those theta-characteristics κ such that

h0(C, κ) = 0. By definition, this condition implies that κ is an even theta-characteristic, but

we may express this condition completely in other ways. For example, by Riemann’s singu-

larity theorem [BL04, chap. 11], the vanishing of h0(C, κ) is equivalent to the nonvanishing

of the theta-constant associated to κ.3

Note that from the line bundle L1 and the theta-characteristic κ = L2 ⊗ L−1
1 with

nonvanishing theta-constant, we recover L2 = κ ⊗ L1 and the condition that h1(C,L2) =

0. Therefore, orbits of nondegenerate symmetrized 3 × n × n boxes are in bijection with

(C,L1, κ) such that h0(C,L1) = 3 and the theta-constant of κ is nonzero.

Example 4.17. For n = 5, the genus 6 curve C is embedded by L1 as a smooth plane

quintic. We claim that even theta-characteristics κ on C have no nonzero sections. By

Clifford’s Theorem, it suffices to check that h0(C, κ) 6= 2. It is not hard to show (see

[ACGH85, p. 211]) that any g15 on a plane quintic C is of the form |L1(p− q)| where p and

q are distinct points on C. But O(p− q) on C is not 2-torsion; if it were, then the triviality

of O(2p − 2q) implies that there exists a function f from C to P1 with a double pole at ∞

and a double zero at 0. Then this degree 2 map to P1 implies that C is a hyperelliptic curve,

but no smooth plane quintic is hyperelliptic. Thus, on the curve C, no theta-characteristic

κ has h0(C, κ) = 2, as desired.

Thus, the orbits of nondegenerate symmetrized 3× 5× 5 boxes are exactly in bijection

with plane quintics with an even theta-characteristic.

Another interpretation for symmetrized 3×n×n boxes involves nets of quadrics, which

are studied extensively in [Tju75]. If A ∈ V1 ⊗ Sym2V2 is a symmetrized 3 × n × n box,

then we may view A as a triple of symmetric n× n matrices, which corresponds to a triple

(q1, q2, q3) of quadratic forms4 on V ∨
2 . For 1 ≤ i ≤ 3, each quadratic form qi defines a

3The theta-constants of odd theta-characteristics are all zero, so the requirement that the theta-constant
does not vanish implies that κ is even.

4Because we are working over an algebraically closed field not of characteristic 2, the spaces Sym2V2 and
Sym2 V2 are canonically isomorphic and we will not for the moment distinguish between the quadratic forms
in each space.
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quadric hypersurface in P(V ∨
2 ) = Pn−1, and their intersection XA is generically a (n − 4)-

dimensional variety. Note that GL(V1) acting on the box does not change the variety XA,

and GL(V2) acts as linear transformations on P(V ∨
2 ). In fact, the GL(V1)-orbit of the box

A produces a well-defined “net” of quadrics, spanned by these qi, whose base locus is XA.

This net is a projective plane P2 in the space of all projective quadrics P(Sym2V2) on V
∨
2 ;

in the language of boxes, the net is just the projectivization of the inclusion V ∨
1 →֒ Sym2V2

given by the box A.

From such a net of quadrics, [Tju75] defines the Hesse curve H to be the singular

quadrics in the net. This Hesse curve exactly corresponds to the curve we have called C1

in P(V ∨
1 ), and the nondegeneracy of the box (i.e., the smoothness of C1) is exactly the

condition of regularity of a net. For a regular net, the Steiner embedding of the Hesse curve

H into P(V ∨
2 ) sends a quadric q to its singular point; this Steiner embedding is the same as

our map to P(V ∨
2 ) given by taking the kernel of A(w, ·, ·) for a point w ∈ C1.

Reid proves in [Rei72] that for such a regular net of quadrics, the intermediate Jacobian

of XA is exactly the Prym variety associated to the double cover of C1 given by the 2-torsion

point P ∈ Jac(C1) as in (4.12). Therefore, from bijection (4.11) and the fact that the line

bundle L1 is the unique g2d on the plane curve C1, we have

Corollary 4.18. For odd n ≥ 5 and g = 1
2(n− 1)(n − 2), there exists a bijection





GL3 × GLn-orbits of non-

degenerate symmetrized 3×

n× n boxes A




←→





equivalence classes of pairs (C,P ), where C is

a genus g curve with a plane embedding ι and

0 6= P ∈ Jac(C)[2] with h0(C, ι∗O(n−3
2 )⊗P ) = 0




.

If XA ⊂ Pn−1 is the base locus of the net of quadrics associated to the box A, then the

intermediate Jacobian of X is the Prym variety of the étale double cover of C given by P .

Recall that the points P above are exactly those associated to the theta-characteristics

κ = ι∗O(n−3
2 )⊗ P with nonvanishing theta-constants.

Example 4.19. For n = 5, the variety X is the intersection of three quadrics in P(V ∨
2 ) = P4.

As mentioned in Section 4.4, such a variety X is a genus 5 curve that is nonhyperelliptic

and nontrigonal. If we also require that the box is nondegenerate, then the theta-constants
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of X must vanish at most of order 1. This follows from the fact that singularities of C1

correspond to quadrics in P4 of rank 3 containing X, which exist if and only if there exist

theta-characteristics κX on X with h0(X,κX ) ≥ 2. Thus, specializing Corollary 4.18 to

n = 5 and using Example 4.17 shows that the following sets are in bijection:

(i) GL3 ×GL5-orbits of nondegenerate symmetrized 3× 5× 5 boxes A

(ii) pairs (C, κ), for ι : C → P2 a smooth plane quintic and κ an even theta-characteristic

of C

(iii) nonhyperelliptic, non-trigonal genus 5 curves X such that h0(X,κX ) ≤ 1 for all theta-

characteristics κX on X

Moreover, if C̃ is the degree 2 étale cover of C given by the 2-torsion line bundle κ ⊗

ι∗OP2(−1), then C̃ is a genus 11 curve. Via this bijection, the Prym variety of C̃ → C is

isomorphic to the Jacobian of X.

We will see in Section 5.4.1 that a special case of symmetrized 2× 2×m×m boxes also

describes the Prym variety arising naturally from a box as the Jacobian of a related curve.
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You know my methods. Apply them, and it
will be instructive to compare results.

—Sherlock Holmes, in The Sign of Four
by Arthur Conan Doyle

Chapter 5

Moduli of Curves in P1 × P1

In this chapter, we use similar techniques to prove statements about the moduli of curves

in P1 × P1. In particular, we study curves of bidegree (m,m) in P1 × P1, which may

be represented as the complete intersection of a degree m hypersurface with the Segre

quadric in P3. These curves, along with certain line bundles, will be parametrized by the

orbits of 2× 2×m×m boxes. As before, these bijections will give isomorphisms of the

corresponding coarse moduli spaces as well as the moduli stacks.

We also explore the space of symmetrized 2× 2×m×m boxes, the orbits of which also

parametrize bidegree (m,m) curves in P1 × P1 with more restrictive line bundle data. For

the case m = 3, our bijections will give an explicit method for a construction of Recillas

[Rec74], which relates genus 4 curves C with an étale double cover C̃ and genus 3 curves

X with degree 4 line bundles, where the Jacobian of X is isomorphic to the Prym variety

of the cover C̃ → C.

Preliminaries. Let m ≥ 2 be an integer. Let F be an algebraically closed field of character-

istic not dividing m or m− 1. In this chapter, we continue to use the convention that the

projectivization of a vector bundle parametrizes lines, not hyperplanes, and for a basepoint-

free line bundle L on a scheme X, the map φL : X → P(H0(X,L)∨) is the natural map

given by the complete linear system |L|.. Also, unless stated otherwise, a genus g curve

means a proper, smooth, geometrically connected curve with arithmetic genus g.
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5.1 Quadrilinear Forms and Associated Curves

In Chapter 4, we constructed geometric information from the moduli space of certain trilin-

ear forms, up to a natural group action. Each trilinear form gives rise to a degree n curve

in P2. Here, we study a space of quadrilinear forms, where each form gives rise to a curve

in P1 × P1.

Let m ≥ 2 be an integer. Let V1 and V2 be vector spaces of dimension 2 over F , and

V3 and V4 vector spaces of dimension m over F . There is a natural action of the group

G = GL(V1)×GL(V2)×GL(V3)×GL(V4) on the tensor product V1⊗ V2⊗V3⊗V4, a space

of quadrilinear forms. For 1 ≤ i ≤ 4, each GL(Vi) acts in the standard way on the factor Vi.

As before, with choices of bases for the vector spaces V1, V2, V3, and V4, we may represent

an element of V1 ⊗ V2 ⊗ V3 ⊗ V4 as a 2× 2×m×m box B = (bqrst)1≤q,r≤2,1≤s,t≤m.

The notation will be analogous to that of previous chapters, where B(·, ·, ·, ·) denotes

the quadrilinear form in V1 ⊗ V2 ⊗ V3 ⊗ V4, and the dots may be replaced with elements

of the appropriate V ∨
i . That is, if w ∈ V ∨

1 and x ∈ V ∨
2 , then B(w, x, ·, ·) ∈ V3 ⊗ V4 is the

m×m matrix By (w ⊗ x).

Let B = (brstu) be a 2× 2×m×m box. Then the polynomial

f(w1, w2, x1, x2) := detB(w, x, ·, ·) ∈ Symm V1 ⊗ Symm V2

is a bidegree (m,m) form. The vanishing of f defines a bidegree (m,m) variety C12 ⊂

P(V ∨
1 ) × P(V ∨

2 ) = P1 × P1. We call a box B nondegenerate if this variety C12 is a smooth

irreducible curve. The condition is entirely algebraic, since it simply requires that the partial

derivatives do not all vanish at a point on the curve, which translates into the nonvanishing

of a single polynomial in the entries of the box. Thus, the nondegenerate 2× 2×m×m

boxes form an open subset of the affine space of all 2× 2×m×m boxes, and the smooth

curves C12 arising from nondegenerate 2× 2×m×m boxes have genus (m− 1)2.

If B is a nondegenerate box, then for a point (w†, x†) ∈ C12, the matrix B(w†, x†, ·, ·) ∈

V3 ⊗ V4 has exactly rank m − 1. Otherwise, if the rank were strictly smaller than m − 1,

then all of the (m− 1)× (m− 1) minors of B(w†, x†, ·, ·) would vanish. If B∗
ij(w

†, x†) is the
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(i, j)th (m− 1)× (m− 1) minor of B(w†, x†, ·, ·), then we may write the partial derivatives

as

∂f

∂wi

∣∣∣∣
(w,x)=(w†,x†)

=
∑

r,s,t

birstxrB
∗
st(w

†, x†) and

∂f

∂xi

∣∣∣∣
(w,x)=(w†,x†)

=
∑

q,s,t

bqistwqB
∗
st(w

†, x†).

If all the minors vanish, then these partials would also vanish, contradicting the nondegen-

eracy assumption.

Hence, for a nondegenerate box B, the m × m matrix B(w, x, ·, ·) as an element of

Hom(V ∨
3 , V4)

∼= V3 ⊗ V4 has a one-dimensional kernel, which corresponds to a point y ∈

P(V ∨
3 ). Note that this y ∈ P(V ∨

3 ) is given by an algebraic map; given bases for the vector

spaces Vi, the coordinates of the element y are given by minors of the matrix B(w, x, ·, ·).

We thus obtain a rational map

C12 −→ P(V ∨
3 ).

The corresponding graph is given by the curve

C123 :=
{
(w, x, y) ∈ P(V ∨

1 )× P(V ∨
2 )× P(V ∨

3 ) : B(w, x, y, ·) = 0
}
.

By dimension considerations, the variety C123 is the complete intersection of m tridegree

(1, 1, 1) equations on P(V ∨
1 )× P(V ∨

2 )× P(V ∨
3 ) = P1 × P1 × Pm−1, and thus C123 is a curve.

Clearly the projection onto the first two factors

π312 : C123 −→ P(V ∨
1 )× P(V ∨

2 )

is an isomorphism onto C12. We may similarly define the curve C124 ⊂ P(V ∨
1 ) × P(V ∨

2 ) ×

P(V ∨
4 ), with an isomorphic projection π412 : C124 → C12 as well.

Then for 1 ≤ i ≤ 4, there exist natural maps ρi : C12 → P(V ∨
i ), e.g., for i = 1 or

2, the map ρi is just the projection from C12 onto P(V ∨
i ). For i = 3 or 4, the map ρi is

the composition of the isomorphism C12 → C12i and the natural projection C12i → P(V ∨
i ).
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Clearly ρ1 and ρ2 are degree m covers of P1. Let

Mi := ρ∗iOP(V ∨
i )(1)

be line bundles defined on the curve C12; then M1 and M2 have degree m and M3 and M4

have degree m(m− 1). For all Mi, all of the global sections arise from pulling back sections

from P(V ∨
i ), just like in Lemma 4.1.

Lemma 5.1. Let B be a 2× 2×m×m box and M1,M2,M3, and M4 the line bundles

defined above. For i = 3 or 4, we have

(i) h0(C12,M1) = 2 and h0(C12,M2) = 2,

(ii) h0(C12,Mi) = m and h1(C12,Mi) = 0, and

(iii) h1(C12,M
⊗k1
1 ⊗M⊗k2

2 ⊗Mi) = 0 for (k1, k2) = (±1, 0), (0,±1), (−1, 1), (1,−1).

Proof. It suffices to prove part (i) for M1, which follows from tensoring the exact sequence

0 −→ OP(V ∨
1 )×P(V ∨

2 )(−C12) −→ OP(V ∨
1 )×P(V ∨

2 ) −→ OC12 −→ 0

with OP(V ∨
1 )×P(V ∨

2 )(1, 0) and taking cohomology. Using the Kunneth formula to compute

the cohomology of OP1×P1(ℓ1, ℓ2) shows that

H0(P(V ∨
1 )× P(V ∨

2 ),OP(V ∨
1 )×P(V ∨

2 )(1, 0)) ∼= H0(C12,OC12(1, 0))

has dimension 2, as desired.

For the other parts, the proof is similar to Lemma 4.1. Recall that nondegeneracy implies

that C123 is a complete intersection in P := P(V ∨
1 ) × P(V ∨

2 ) × P(V ∨
i ), and without loss of

generality, it suffices to show that the first cohomology group vanishes for the pullback of

OP(k1, k2, 1) to C12i for the appropriate pairs (k1, k2). Let H1, . . . ,Hm be hypersurfaces of

tridegree (1, 1, 1) given by the m trilinear forms in the box B representing a basis of V4. In

other words, the locus of these Hj is the curve C12i in P. For 1 ≤ d ≤ m, the intersection
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Yd := ∩
m−d+1
j=1 Hj has dimension d and we have the flag

C12i = Y1 ⊂ Y2 ⊂ · · · ⊂ Ym = H1 ⊂ P.

Tensoring the exact sequence defining Hm−d+1 with OYd+1
produces the exact sequence

OYd+1
(−1,−1,−1) −→ OYd+1

−→ OYd
−→ 0,

where the first map is injective by the nondegeneracy assumption. Taking cohomology of

the sequence tensored with OP(ℓ1, ℓ2, ℓ3) gives the exact sequence

Hp(Yd+1,OYd+1
(ℓ1, ℓ2, ℓ3)) −→ Hp(Yd,OYd

(ℓ1, ℓ2, ℓ3)) (5.1)

−→ Hp+1(Yd+1,OYd+1
(ℓ1 − 1, ℓ2 − 1, ℓ3 − 1)).

If k1, k2 ≥ 0 and k3 ≥ 1, or if (k1, k2, k3) = (−1, 0, 1), (0,−1, 1), (−1, 1, 1), (1,−1, 1), we find

that Hp(P,OP(k1− p+1, k2− p+1, k3− p+1)) vanishes for 1 ≤ p ≤ m+1 by the Kunneth

formula, so applying (5.1) inductively shows that

Hp(Yd,OYd
(k1 − p+ 1, k2 − p+ 1, k3 − p+ 1)) = 0

for 1 ≤ p ≤ d ≤ m. Therefore, H1(C12i,OC12i(k1, k2, k3)) vanishes if k1, k2 ≥ 0 and k3 ≥ 1,

or if (k1, k2, k3) = (−1, 0, 1), (0,−1, 1), (−1, 1, 1), (1,−1, 1).

By Riemann-Roch, a non-exceptional line bundle of degree m(m−1) on a curve of genus

(m−1)2 is one that has exactly m linearly independent sections, so Lemma 5.1 implies that

the line bundles L3 and L4 on the curve C12 are non-exceptional. In addition, the line

bundles arising from the box B satisfy a nontrivial relation, analogous to Lemma 4.2 for

3× n× n boxes and generalizing Lemma 3.4 for hypercubes.

Lemma 5.2. On the curve C12, the following relation holds:

M3 ⊗M4
∼= (M1 ⊗M2)

⊗(m−1).
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Proof. The proof, similar to that of Lemma 4.2, exploits the definition of the maps ρ3 and

ρ4 as minors of a matrix. Choose a basis for each of the vector spaces V3 and V4. Then for

a point (w, x) ∈ C12 ⊂ P(V ∨
1 ) × P(V ∨

2 ), each coordinate of ρ3((w, x)) ∈ P(V ∨
3 ) is given by

the (n− 1)× (n− 1) minors B∗
ij(w, x) of B(w, x, ·, ·), for some fixed j where there exists at

least one i for which B∗
ij(w, x) is nonzero. Let D3 be an effective degree m(m−1) divisor on

C12 such that O(D3) ∼= L3; without loss of generality, we may choose D3 to be the sum of

the points (w, x) ∈ C12 where a particular minor, say B∗
11(w, x), vanishes but not all other

Bi1 vanish. We may also choose an effective divisor D3 with O(D3) ∼= L3 whose points are

given by the vanishing of B∗
11 and the nonvanishing of at least one B∗

1j . Then D3 +D4 is

an effective degree m(m − 1) divisor given by the intersection of B∗
11 = 0 and C12, and is

thus linearly equivalent to the pullback of OP(V ∨
1 )×P(V ∨

2 )(m− 1,m− 1) to the curve C12.

Like in Lemma 4.3 for hypersurfaces in projective spaces, the canonical bundle of a

hypersurface in the product of projective spaces is the pullback of a line bundle from the

ambient space:

Lemma 5.3. Let ι : X →֒ P(U)× P(V ) be a smooth hypersurface of bidegree (m,n), where

U and V are vector spaces of dimension M and N , respectively. Then

ωX
∼= ι∗OP(U)×P(V )(m−M,n−N).

Proof. If IX ∼= OP(U)×P(V )(−m,−n) denotes the ideal defining X in P(U) × P(V ), the

adjunction exact sequence for ι is

0 −→ ι∗IX −→ ι∗Ω1
P(U)×P(V ) −→ Ω1

X −→ 0.

Taking determinants, we compute

ωX = det(Ω1
X)

= det(ι∗IX)−1 ⊗ det(ι∗Ω1
P(U)×P(V ))

= ι∗OP(U)×P(V )(m,n)⊗ ι
∗OP(U)×P(V )(−M,−N) = ι∗OP(U)×P(V )(m−M,n−N).
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Thus, on the curve C12, we have that

ωC12
∼= (M1 ⊗M2)

⊗(m−2).

Composing the maps ρ1 and ρ2 to P(V
∨
1 ) and P(V ∨

2 ) with the Segre embedding of P1×P1

into P3 gives an embedding of the curve C12 into P(V ∨
1 ⊗ V

∨
2 ) = P3, and the line bundle

M1 ⊗M2 is isomorphic to the pullback of OP3(1) to the curve.

The group G = GL(V1)×GL(V2)×GL(V3)×GL(V4) acts on the space of 2× 2×m×m

boxes by the standard action on each factor. By definition, the curve C12 is fixed by the

action of GL(V3) × GL(V4) and is transformed linearly by GL(V1) × GL(V2). Thus, the

isomorphism classes of the curve and the line bundles Mi for 1 ≤ i ≤ 4 coming from the

box B are fixed by the action of the group G. Each factor GL(Vi) of G acts on the basis

for H0(C12,Mi) for 1 ≤ i ≤ 4.

5.2 The Moduli Problem for 2× 2×m×m Boxes

Just like for 3 × n × n boxes, the curve and line bundles arising from a nondegenerate

2× 2×m×m box essentially specify the box. In this section, we show that the G-orbits of

2× 2×m×m boxes parametrize the data of a genus (m− 1)2 curve with four line bundles

subject to certain conditions, up to equivalence.

5.2.1 A Bijection

In order to recover a 2× 2×m×m box from the data of curves and line bundles, we first

study quintuples (C,M1,M2,M3,M4) subject to the following conditions:

(a) C is a smooth irreducible genus (m− 1)2 curve.

(b) M1 and M2 are nonisomorphic degree m line bundles on C, with h0(C,M1) = 2 and

h0(C,M2) = 2, such that (φM1 , φM2) : C → P(H0(C,M1)
∨) × P(H0(C,M2)

∨) is a

closed immersion.

(c) M3 and M4 are degree m(m − 1) line bundles on C, with h0(C,M3) = m and

h0(C,M4) = m.
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(d) h0(C,M−1
i ⊗Mj) = 0 for i = 1 or 2 and j = 3 or 4.

(5.2)

(e) M3 ⊗M4
∼= (M1 ⊗M2)

⊗(m−1).

Conditions (b) and (c) imply that |M1| , |M2| ∈ Ŵ 1
m(C) and |M3| , |M4| ∈ Ŵm−1

m(m−1)(C),

where Ŵ r
d (C) parametrizes r-dimensional complete linear systems of degree d on the curve

C. Also, in condition (d), note that hypotheses on only one of M3 or M4 suffice, since by

Serre duality and Riemann-Roch, the vanishing of H0(C,M−1
i ⊗M3) for i = 1 and 2 is

equivalent to the vanishing of H0(C,M−1
i ⊗M4) for i = 1 and 2.

We say two such quintuples (C,M1,M2,M3,M4) and (C ′,M ′
1,M

′
2,M

′
3,M

′
4) are equiva-

lent if there exists an isomorphism σ : C → C ′ such that σ∗M ′
i
∼=Mi for 1 ≤ i ≤ 4.

Theorem 5.4. Let m ≥ 2 be an integer. There exists a bijection

{
G-equivalence classes of non-

degenerate 2× 2×m×m boxes

}
←→

{
equivalence classes of quintuples

(C,M1,M2,M3,M4) satisfying (5.2)

}
. (5.3)

Proof. Given a nondegenerate 2× 2×m×m box, we described in Section 5.1 how to pro-

duce a smooth genus (m − 1)2 curve in P1 × P1 and the corresponding four line bundles,

and the G-action on the box preserves the equivalence class of this data. Lemma 5.1 shows

that the quintuple thus constructed will satisfy conditions (5.2).

We claim that for (C,M1,M2,M3,M4) satisfying (5.2), the multiplication map

µ123 : H
0(C,M1)⊗H

0(C,M2)⊗H
0(C,M3)

µ23 // H0(C,M1)⊗H
0(C,M2 ⊗M3)

��
H0(C,M1 ⊗M2 ⊗M3)

is surjective. In fact, the first map µ23 is an isomorphism, from the basepoint-free pencil

trick and the fact that H0(M−1
2 ⊗M3) and H1(M−1

2 ⊗M3) both vanish, from condition

(5.2)(d). Applying the basepoint-free pencil trick again reduces the problem to showing that

H1(M−1
1 ⊗M2⊗M3) = 0, which follows easily from the assumption that H1(M−1

1 ⊗M3) = 0.

We will construct the box by looking at the kernel of the map µ123. First, we calculate
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the dimension of the image. Tensoring the exact sequence

0 −→ OC(−M1 −M2) −→ OC −→ OM1⊗M2 −→ 0

by M1 ⊗M2 ⊗M3 and then taking cohomology shows that H1(C,M1 ⊗M2 ⊗M3) = 0, so

H0(C,M1 ⊗M2 ⊗M3) = 3m by Riemann-Roch. Therefore, the kernel of µ123 is a vector

space of dimension m, whose inclusion into the domain of µ123 gives the 2× 2×m×m box

B ∈ Hom(ker µ123,H
0(C,M1)⊗H

0(C,M2)⊗H
0(C,M3))

∼= H0(C,M1)⊗H
0(C,M2)⊗H

0(C,M3)⊗ (ker µ123)
∨.

The box is well-defined up to changes of bases for H0(C,M1),H
0(C,M2),H

0(C,M3), and

ker µ123. Furthermore, another isomorphic tuple will produce the same box, up to linear

transformations in G, since all the vector spaces involved are naturally isomorphic and the

multiplication maps commute with the isomorphisms.

It remains to check that the two constructions are inverse to one another. Given

(C,M1,M2,M3,M4) satisfying (5.2), we obtain a box

B ∈ H0(C,M1)⊗H
0(C,M2)⊗H

0(C,M3)⊗ (kerµ123)
∨

up to choices of bases for each of those vector spaces. Let C12 and C123 be the natural images

of C given by the products of linear systems (φM1 , φM2) and (φM1 , φM2 , φM3), respectively.

Let C ′
12 be the variety in P(H0(C,M1)

∨)× P(H0(C,M2)
∨) defined by the bidegree (m,m)

polynomial equation

detB(w, x, ·, ·) = 0

and let C ′
123 in P(H0(C,M1)

∨)× P(H0(C,M2)
∨)× P(H0(C,M3)

∨
) be defined by

B(w, x, y, ·) = 0

where w ∈ P(H0(C,M1)
∨), x ∈ P(H0(C,M2)

∨), and y ∈ P(H0(C,M3)
∨). It suffices to
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show, without loss of generality, that C12 = C ′
12 and C123 = C ′

123 as varieties. For all

(w†, x†, y†) ∈ C123, the construction of B implies that B(w†, x†, y†, ·) = 0. So C12 ⊂ C ′
12,

but since both are given by bidegree (m,m) equations in P1×P1, they are equal. Similarly,

we have C123 ⊂ C
′
123, and their equality follows from their irreducibility.

On the other hand, a box B ∈ V1⊗V2⊗V3⊗V4 produces (C,M1,M2,M3,M4) satisfying

(5.2). Then for 1 ≤ i ≤ 3, the vector spaces Vi and H0(C,Mi) are naturally isomorphic,

and V ∨
4 may be identified with kerµ123; hence the box constructed from the quintuple via

the inclusion of kerµ123 into H0(C,M1)⊗H
0(C,M2)⊗H

0(C,M3) is G-equivalent to B.

Remark 5.5. As in Remark 4.7, the proof only uses one of the line bundles M3 and M4,

and they may be interchanged. We may naturally identify H0(C,M4), for example, with

the dual of the kernel of the full multiplication map µ123, which by the basepoint-free pencil

trick, is isomorphic to bothH0(C,M−1
1 ⊗M2⊗M3) andH

0(C,M1⊗M
−1
2 ⊗M3). We need not

include the bundleM4 in the geometric data, as the assumptions on M1,M2, and M3 imply

that the bundle (M1⊗M2)
⊗(m−1)⊗M−1

3 has the correct degree and number of sections, and

satisfies the cohomological conditions required. Likewise, H0(C,M3) may be identified with

the dual of the kernel of µ124 : H
0(C,M1)⊗H

0(C,M2)⊗H
0(C,M4)→ H0(C,M1⊗M2⊗M4).

The conditions (5.2)(c) on the line bundles M3 and M4 translate into requiring that

they are non-exceptional; condition (d) is equivalent to M−1
i ⊗Mj being non-exceptional

for i = 1 and 2 and j = 3 and 4. By Remark 5.5, we also only need to record one of the

line bundles M3 and M4 in the geometric data, so Theorem 5.4 simplifies to

Proposition 5.6. Let m ≥ 2 be an integer. There is a bijection





G-equivalence

classes of

nondegenerate

2× 2×m×m

boxes





←→





equivalence classes of triples (C, ι,M), with C a genus

(m − 1)2 curve, ι a bidegree (m,m) embedding of

C into P1 × P1 and M a degree m(m − 1) non-

exceptional line bundle on C with M⊗ι∗O(−1, 0) and

M ⊗ ι∗O(0,−1) non-exceptional





. (5.4)

The triples (C, ι,M) and (C ′, ι′,M ′) are equivalent, as usual, if there exists an isomor-

phism σ : C → C ′ with ι′σ = ι and σ∗M ′ =M .
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We may also rigidify each side of the bijection in Theorem 5.4 to obtain a parametrization

of curves and line bundles by 2× 2×m×m boxes, not just their G-orbits. A 2× 2×m×m

box includes not just an element B ∈ V1⊗V2⊗V3⊗V4 but also specified bases for each vector

space Vi for 1 ≤ i ≤ 4. For the curve and line bundles (C,M1,M2,M3,M4) satisfying (5.2),

let Bi be a basis for H
0(C,Mi) for 1 ≤ i ≤ 4. Two such rigidified quintuples (C, (Mi,Bi)

4
i=1)

and (C ′, (M ′
i ,B

′
i)
4
i=1) are equivalent if there exists an isomorphism σ : C → C ′ such that

σ∗M ′
i
∼=Mi and the isomorphism σ∗ : H0(C ′,M ′

i)→ H0(C,Mi) takes B
′
i to Bi for 1 ≤ i ≤

4. Because of the identifications H0(C,M4) ∼= (ker µ123)
∨ and H0(C,M3) ∼= (ker µ124)

∨ by

Remark 5.5, the proposition below follows from the proof of Theorem 5.4:

Proposition 5.7. There exists a bijection





nondegenerate

2× 2×m×m

boxes




←→





equivalence classes of (C,M1,M2,M3,M4,B1,B2,B3,B4)

where (C,M1,M2,M3,M4) satisfies conditions (5.2) and

Bi is a basis for H0(C,Mi) for 1 ≤ i ≤ 4




,

and quotienting each side by GL2 ×GL2 ×GLm ×GLm recovers Theorem 5.4.

5.2.2 Moduli Stack Formulation

Like in Section 4.2.2, we prove that the constructions for 2× 2×m×m boxes work in

families over arbitrary Z[ 1N ]-schemes, where N = m(m − 1). Proposition 5.7 can then be

rewritten as an equivalence of moduli stacks (in fact, schemes), and taking quotients by the

natural GL2 ×GL2 ×GLm ×GLm-action gives an equivalence of the quotient stacks. The

proofs are essentially formal once the relative data is defined. We work exclusively with

Z[ 1N ]-schemes in this section, so the moduli stacks are also defined over Z[ 1N ].

A based 2× 2×m×m box over a scheme S consists of the following: for i = 1 and 2, a

free rank 2 OS-module Vi with an isomorphism ψi : Vi → O⊕2
S ; for j = 3 and 4, a free rank

m OS-module Vj with an isomorphism ψj : Vj → O⊕m
S ; and a section B of V1⊗V2⊗V3⊗V4.

An isomorphism of based 2× 2×m×m boxes ((Vi, ψi)
4
i=1,B) and ((V′

i, ψ
′
i)
4
i=1,B

′) consists

of isomorphisms σi : Vi
∼=
−→ V′

i with ψi = ψ′
i ◦ σi for 1 ≤ i ≤ 4 and taking B to B′. A based

2× 2×m×m box is nondegenerate if it is locally nondegenerate.

Without bases, a 2× 2×m×m box over S is a section B of V1 ⊗ V2 ⊗ V3 ⊗ V4, where
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V1,V2,V3,V4 are locally free OS-modules of rank 2, 2,m,m, respectively. An isomorphism

of boxes (V1,V2,V3,V4,B) and (V′
1,V

′
2,V

′
3,V

′
4,B

′) consists of isomorphisms σi : Vi
∼=
−→ V′

i

of OS-modules for 1 ≤ i ≤ 4 that take B to B′.

On the other hand, let the rigidified degree m quintuple D over S be a genus (m − 1)2

curve π : C → S; for i = 1 and 2, a degree m line bundle Mi on C with an isomorphism

χi : R
0π∗(Mi)

∼=
−→ O⊕2

S ; and for j = 3 and 4, a degree m(m− 1) line bundle Mj on C with

an isomorphism χj : R0π∗(Mj)
∼=
−→ O

⊕m
S . A balanced rigidified degree m quintuple also

includes an isomorphism ϕ : M
⊗(m−1)
1 ⊗M

⊗(m−1)
2

∼=
−→M3⊗M4⊗π

∗LS for some line bundle

LS on S. Such a quintuple is nondegenerate if M1 and M2 are not isomorphic fiberwise

and if R0π∗(M
∨
i ⊗Mj) = 0 for i = 1 and 2 and j = 3 and 4. This latter nondegeneracy

condition is equivalent to the analogous fiberwise statement, since the Euler characteristic

of M∨
i ⊗Mj is 0.

Theorem 5.8. Over a scheme S, there is an equivalence between the category of non-

degenerate based 2× 2×m×m boxes over S and the category of nondegenerate balanced

rigidified degree m quintuples (C,M1,M2,M3,M4, ϕ) over S.

Proof. Both the functors are essentially the same as those over Spec F . As Vi is free for

1 ≤ i ≤ 4, we construct the curve and line bundles much as in Theorem 5.4. (See the proof

of Theorem 3.15 for details on how to generalize the construction over S.)

Given a curve π : C → S and invertible sheaves M1,M2,M3,M4 with the maps χi

and ϕ, forming a nondegenerate balanced rigidified degree m quintuple, the kernel of the

surjective multiplication map

µ123 : R
0π∗(M1)⊗ R0π∗(M2)⊗ R0π∗(M3) −→ R0π∗(M1 ⊗M2 ⊗M3)

is a rank m free OS -module. The dual of this kernel can be identified with R0π∗(M4) by

Remark 5.5, which gives a trivialization (ker µ123)
∨

∼=
−→ O⊕m

S . Thus, we have a recovered a

based 2× 2×m×m box as a section in R0π∗(M1)⊗ R0π∗(M2)⊗ R0π∗(M3)⊗ (ker µ123)
∨

with trivializations for each of these vector bundles.

Because these two functors are locally inverse from Theorem 5.4, they are inverse.
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The space of based 2× 2×m×m boxes is just the affine space A4m2
, so the moduli

space of nondegenerate balanced rigidified degree m quintuples over S is an open subscheme

of A4m2
over S.

For 2× 2×m×m boxes without bases, the corresponding stack is equivalent to the

quotient stack [A4m2
/GL2×GL2×GLm×GLm], where we have described the group action

as linear transformations in each direction of the 2× 2×m×m box. We are interested in

the nondegenerate open substack of this quotient stack, given locally by the nonvanishing

of the discriminant.

To unrigidify the geometric data, we consider genus (m−1)2 curves π : C → S with line

bundles M1,M2,M3, and M4 of degrees m,m,m(m− 1), and m(m− 1), respectively, such

that R0π∗(M1) and R0π∗(M2) have rank 2 and R0π∗(M3) and R0π∗(M4) have rankm. With

an isomorphism ϕ : M
⊗(m−1)
1 ⊗M

⊗(m−1)
2

∼=
−→M3⊗M4⊗π

∗LS for some line bundle LS on S,

and the conditions that M1 and M2 are nonisomorphic fiberwise and R0π∗(M
∨
i ⊗Mj) = 0

for i ∈ {1, 2} and j ∈ {3, 4}, we call (C,M1,M2,M3,M4, ϕ) a nondegenerate balanced degree

m quintuple.

The bijection of Proposition 5.7 is GL2 × GL2 × GLm × GLm-equivariant, giving the

bijection (5.3). In the same way, the functors in Theorem 5.8 are also GL2×GL2×GLm×

GLm-equivariant, so we obtain an equivalence of the respective quotient stacks over Z[ 1N ].

Corollary 5.9. For m ≥ 2, the nondegenerate substack of [A4m2
/GL2×GL2×GLm×GLm]

is equivalent to the stack of nondegenerate balanced degree m quintuples.

Note that the stack of nondegenerate balanced degree m quintuples is visibly a substack

of the fiber product

Picmg ×Mg
Picmg ×Mg

Picm(m−1)
g ×Mg

Picm(m−1)
g ,

where g = (m − 1)2 and Picdg denotes the universal degree d Picard stack over the moduli

space Mg of genus g curves.
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5.2.3 Explicit Algebraic Construction

Given the geometric data of a bidegree (m,m) embedding ι of a smooth projective genus

(m− 1)2 curve C into P1 × P1 and degree m(m− 1) non-exceptional line bundles M3 and

M4 with M3 ⊗M4
∼= ι∗OP1×P1(m − 1,m − 1) and the usual cohomological conditions, we

may also construct the box using the explicit method of Section 4.2.3.

Suppose f is the bidegree (m,m) polynomial in the bigraded ring S := F [w1, w2, x1, x2]

defining the curve C in P1 × P1, and let R := S/(f) be the coordinate ring of the curve

C. Let Si,j and Ri,j denote the (i, j)th graded pieces of S and R, respectively. Let D3

be an effective degree m(m− 1) divisor on C such that O(D3) ∼= M3. Tensoring the exact

sequence 0→M−1
3 → OC → OD3 → 0 with ι∗OP1×P1(m− 1,m− 1) produces

0 −→M4 −→ ι∗OP1×P1(m− 1,m− 1) −→ OD3 ⊗ ι
∗OP1×P1(m− 1,m− 1) −→ 0.

Global sections of M4 can be viewed as bidegree (m − 1,m − 1) polynomials, all of which

vanish on the points of the divisor D3; in fact, the sections of M4 are exactly the bide-

gree (m − 1,m − 1) polynomials that vanish on D3. Let s1 =: q, s2, . . . , sm be a basis

for H0(C,M4), where each si ∈ Sm−1,m−1. The variety {q = 0} intersects the curve in

2m(m− 1) points (with multiplicity); that is, it determines the divisor D3 +D4, where D4

is an effective degree m(m − 1) divisor with M4
∼= O(D4) from the relation M3 ⊗M4

∼=

ι∗OP1×P1(m − 1,m − 1). Let r1 = q, r2, . . . , rm be a basis for H0(C,M3), where each

ri ∈ S
m−1,m−1 is viewed as a bidegree (m− 1,m− 1) polynomial.1

The ideal sheaf ID3
∼= O(−D3) is generated by the images of s1, . . . , sm in R, and

similarly, the ideal sheaf ID4 is generated by the images of r1, . . . , rm. Since ID3ID4 =

ID3+D4 is generated as an ideal of R by the image of q, we may write, for 1 ≤ i, j ≤ m,

risj = dijq + cijf (5.5)

for some dij ∈ S
m−1,m−1 and cij ∈ S

m−2,m−2. We have, for example, d1j = sj and di1 = ri.

1The bases for H0(C,M3) and H0(C,M4) are actually given by {1, r2/q, . . . , rm/q} and
{1, s2/q, . . . , sm/q}, respectively.
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Since each (m− 1)× (m− 1) minor d∗ij of the m×m matrix D = (dij) is divisible by f
m−2,

there exist bklij ∈ F for 1 ≤ k ≤ 3 and 1 ≤ i, j ≤ n such that

d∗ij/f
m−2 = b11ijw1x1 + b12ijw1x2 + b21ijw2x1 + b22ijw2x2, (5.6)

which determines the 2× 2×m×m box B = (bklij). It is easy to check algebraically that

this box B is G-equivalent to the box constructed geometrically in the proof of Theorem

5.4.

5.3 Symmetrizations

Just as for all other boxes studied, the moduli problem for 2× 2×m×m boxes may be

modified to apply to symmetrized 2× 2×m×m boxes, specifically GL(V1) × GL(V2) ×

GL(V3)-orbits of V1⊗V2⊗Sym2V3, where V1, V2, and V3 are vector spaces of dimension 2,2,

and m, respectively. By interpreting an element of the space

V1 ⊗ V2 ⊗ Sym2V3 →֒ V1 ⊗ V2 ⊗ V3 ⊗ V3

as a 2× 2×m×m box B = (bklij) with bklij = bklji for 1 ≤ k, l ≤ 2 and 1 ≤ i, j ≤ m, we

see that a symmetrized box produces a smooth genus (m − 1)2 curve in P1 × P1, and the

symmetry implies that the two resulting degree m(m− 1) bundles L3 and L4 on the curve

are isomorphic.

Suppose C
ι
→֒ P1 × P1 is a genus (m − 1)2 curve. Let M3 be a degree m(m − 1)

line bundle on C with M⊗2
3
∼= ι∗O(m − 1,m − 1) such that all three of the line bundles

M3,M3 ⊗ ι∗O(−1, 0), and M3 ⊗ ι∗O(0,−1) are non-exceptional. Then the explicit alge-

braic construction in Section 5.2.3 produces a 2× 2×m×m box in H0(C, ι∗OP1×P1(1, 0))⊗

H0(C, ι∗OP1×P1(0, 1)) ⊗ Sym2H0(C,M3). In particular, taking M3
∼= M4 and D3 = D4 in

the construction allows the identification of sections ri = si for 1 ≤ i ≤ m. Because dij = dji

for 1 ≤ i, j ≤ m, the box constructed will be symmetric, that is, bklij = bklji for 1 ≤ k, l ≤ 2

and 1 ≤ i, j ≤ m.

More specifically, we may describe both symmetrized 2× 2×m×m boxes as well as
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their orbits in terms of geometric data, where equivalence of such data is the usual notion.

As the proof of the following theorem is almost identical to that of Theorem 4.12, we omit

the details.

Theorem 5.10. Let m ≥ 2 be an integer. Then the restriction of Proposition 5.7 to

symmetrized 2× 2×m×m boxes induces a bijection of the rigidified data

{
nondegenerate symmetrized

2× 2×m×m boxes

}
←→

{
equivalence classes of

(C,M1,M2,M3,B1,B2,B3)

}
(5.7)

and restricting Theorem 5.4 to symmetrized boxes gives a bijection of the quotients

{
GL2 ×GL2 ×GLm-equivalence classes of non-

degenerate symmetrized 2× 2×m×m boxes

}
←→

{
equivalence classes of

(C,M1,M2,M3)

}

where C is a genus (m − 1)2 curve; M1 and M2 are nonisomorphic degree m line bundles

on C with h0(C,M1) = 2 and h0(C,M2) = 2; and M3 is a non-exceptional degree m(m− 1)

line bundle on C such that (M1 ⊗M2)
⊗(m−1) ∼= M⊗2

3 and both M3 ⊗M
−1
1 and M3 ⊗M

−1
2

are non-exceptional line bundles. In bijection (5.7), the symbol Bi for 1 ≤ i ≤ 3 denotes a

basis for H0(C,Mi).

5.4 Special Cases

For small values of m, the theorems on 2× 2×m×m boxes specialize to simpler state-

ments. If m = 2, many of the hypotheses are unnecessary, and the degeneracy condition

is very simple. In particular, what we have called a nondegenerate 2 × 2 × 2 × 2 box here

coincides with the notion of a nondegenerate hypercube as in Section 3.2. The specialization

of Theorem 5.4 to m = 2 is exactly Proposition 3.11.

For m = 3, recall that the canonical embedding of a nonhyperelliptic genus 4 curve C

lies on a unique quadric surface, either smooth or singular; if the quadric is smooth, we call

the genus 4 curve of Type I. For a genus 4 curve C arising from a 2 × 2 × 3 × 3 box, it is

of Type I since it lies on the quadric P1 × P1 →֒ P3 by construction. In this case, there are

exactly two g13’s on the curve C, corresponding to the two rulings of the quadric [ACGH85,

p. 206]. Let L and L′ denote the degree 3 line bundles corresponding to these g13’s. Then
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there are exactly two pairs of line bundles that we call (M1,M2), that is, either (L,L′) or

(L′, L), and clearly L⊗ L′ ∼= ωC .

In contrast, if a nonhyperelliptic genus 4 curve lies on a singular quadric surface in P3,

then it has exactly one g13. In this case, the square of the corresponding degree 3 line bundle

is the canonical bundle. Thus, the condition that a nonhyperelliptic genus 4 curve C is of

Type I is equivalent to C not having a theta-characteristic κ with h0(C, κ) = 2, that is, C

not having a vanishing even theta-constant. It is well-known that the general genus 4 curve

is of Type I, since the hyperelliptic locus of the moduli space M4 of genus 4 curves has

dimension 7 and the locus of curves in M4 whose canonical embedding lies on a singular

quadric has dimension 8.

Any noncanonical degree 6 line bundle M on C is non-exceptional, and the degree 6

bundles M3 and M4 naturally arising from the box satisfy the relation M3⊗M4
∼= ω⊗2

C . So

giving a nonzero point, say, P = M3 ⊗ ω
−1
C in the Jacobian Jac(C) ∼= Pic0(C) of C is the

same as giving M3 and M4, up to isomorphism, and Theorem 5.4 simplifies.

Corollary 5.11. There exists a bijection





GL2 × GL2 × GL3 × GL3-

equivalence classes of non-

degenerate 2×2×3×3 boxes




←→





isomorphism classes of (C,M1, P ) where C is a

Type I genus 4 curve,M1 is a degree 3 line bundle

on C with h0(C,M1) = 2, and 0 6= P ∈ Jac(C)

such that M1⊗P and M1⊗P
−1 have no nonzero

sections





.

Each side is an étale double cover of the set of isomorphism classes of (C,P ) satisfying the

conditions on the right hand side of the bijection.

Note that the conditions that the degree 3 line bundles M1 ⊗ P and M1 ⊗ P
−1 have

no nonzero sections are necessary, since there exist degree 3 line bundles L on C with

h0(C,L) = 1 and h0(C,ωC ⊗L
−1) = 1, e.g., odd theta-characteristics L. The general point

P on Jac(C), however, will satisfy these conditions.

For the symmetrized 2 × 2 × 3 × 3 box, the point on the Jacobian is 2-torsion, since

M3
∼= M4 implies that (M3 ⊗ ω

−1
C )⊗2 ∼= OC . One direction of the following bijection was

known classically by Wirtinger in another form [Wir85, Cat83]:
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Corollary 5.12. There exists a bijection





GL2×GL2×GL3-orbits

of nondegenerate sym-

metrized 2 × 2 × 3 × 3

boxes





←→





isomorphism classes of (C,M1, P ) with C a

Type I genus 4 curve, M1 a degree 3 line bun-

dle on C with h0(C,M1) = 2, and 0 6= P ∈

Jac(C)[2] with h0(C,M1 ⊗ P ) = 0





. (5.8)

Each side is an étale double cover of the set of isomorphism classes (C,P ) satisfying the

conditions on the right hand side of the bijection.

5.4.1 Recillas’ Trigonal Construction and Pryms

For m = 3, another interpretation of the GL(V1) × GL(V2) × GL(V3)-orbits of the space

V1 ⊗ V2 ⊗ Sym2V3 of symmetrized boxes recovers a construction of Recillas [Rec74].

By a slight abuse of notation, we will use B(·, ·, ·) ∈ V1 ⊗ V2 ⊗ Sym2V3 to denote the

tridegree (1, 1, 2) form B, which may be evaluated on (w, x, y) ∈ V ∨
1 ×V

∨
2 ×V

∨
3 . By viewing

a nondegenerate element B ∈ V1⊗V2⊗Sym2V3 as a 2×2 matrixMB of ternary quadratics,2

we see that there is a SL(V1)× SL(V2)-invariant and SL(V3)-equivariant map

V1 ⊗ V2 ⊗ Sym2V3 −→ Sym4 V3

B 7→ QB := detMB

by taking the determinant of the 2 × 2 matrix MB. In other words, this ternary quartic

form QB is a covariant of the action of SL(V1) × SL(V2) × SL(V3) on the representation

V1 ⊗ V2 ⊗ Sym2V3.

We will further restrict ourselves to boxes B where the locus X of the ternary quartic QB

is a smooth plane quartic, that is, when the degree 27 discriminant of QB is nonzero. Call

such boxes smooth. Furthermore, smoothness of B implies that the genus 3 nonhyperelliptic

curve X also has natural maps to P(V ∨
1 ) and P(V ∨

2 ), sending y ∈ X ⊂ P(V ∨
3 ) to the kernels

of the matrixMB(y), viewed as an element of Hom(V ∨
1 , V2) and of Hom(V ∨

2 , V1). The graph

2Recall that Sym2V3 and Sym2 V3 are canonically isomorphic over any Z[ 1
2
]-scheme. Although over a ring

like Z the ternary quadratics in Sym2V3 must have even cross terms, here there is no such restriction.
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of this map for P(V ∨
1 ) is the curve

X13 := {(w, y) ∈ P(V ∨
1 )× P(V ∨

3 ) : B(w, ·, y) = 0}

cut out by two bidegree (1, 2) equations in P1 × P2. Then X13 is isomorphic to the genus 3

curve X via the projection to P(V ∨
3 ), and the projection to P(V1)

∨ is a degree 4 covering.

The pullback of OP(V ∨
1 ) to the curve X13 is a degree 4 noncanonical line bundle.

Similarly, we may define X23 in P(V ∨
2 ) × P(V ∨

3 ), and a line bundle as the pullback of

OP(V ∨
2 )(1) to X23. Pulling back these two degree 4 line bundles to bundles L1 and L2 on X,

we obtain the relation

L1 ⊗ L2
∼= ω⊗2

X , (5.9)

of line bundles on X, where ωX denotes the canonical bundle on X. Note that since X is

a smooth plane quartic, the pullback of O(1) from P(V ∨
3 ) to X is isomorphic to ωX . The

isomorphism (5.9) follows from an analogous argument to the proof of Lemma 5.2, namely

by showing that the locus of any entry of MB on X sums to the divisor associated both to

the pullback of O(2) from P(V ∨
3 ) and to the tensor product of L1 and L2. Also, the relation

(5.9) implies that the data of the nonzero point L1⊗ω
−1
X on the Jacobian of X is equivalent

to the data of the line bundles L1 and L2.

The genus 3 curve X and the line bundles L1 and L2 together recover the symmetric

projective box B, up to the action of the group GL2 ×GL2 × GL3. In particular, the box

will be given by the kernel of the multiplication map

µ : H0(X,L1)⊗ Sym2H0(X,ωX ) −→ H0(X,L1 ⊗ ω
⊗2
X ).

Max Noether’s theorem ([ACGH85, chap. III]) and dimension considerations imply that the

natural map Sym2H0(X,ωX) −→ H0(X,ω⊗2
X ) is an isomorphism in this case, and applying

the basepoint-free pencil trick gives the surjection

H0(X,L1)⊗H
0(X,ω⊗2

X ) −→ H0(X,L1 ⊗ ω
⊗2
X )
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where the kernel may be identified with H0(X,L−1
1 ⊗ω

⊗2
X ), which by (5.9), is also naturally

isomorphic toH0(X,L2). The kernel of the composition µ has dimension 2, and the inclusion

of the kernel into H0(X,L1)⊗ Sym2H0(X,ωX) is the desired box.

Including bases for each of the vector spaces, we obtain a rigidified bijection between

boxes and the appropriate data of curves and line bundles; quotienting each side by the

natural group action gives a parametrization of nonhyperelliptic genus 3 curves with nonzero

points on their Jacobians by orbits of smooth boxes. In the proposition below, the notion

of equivalence on the tuples is the natural one, where two equivalent tuples differ by an

isomorphism of the curve that preserves the line bundles and bases. The proof is similar to

that of previous such bijections, e.g., Theorem 5.4.

Proposition 5.13. There exists a bijection





smooth

symmetrized

2× 2× 3× 3

boxes





←→





equivalence classes of (X,L1, L2, L3,B1,B2,B3), with X a

nonhyperelliptic genus 3 curve, L1 and L2 noncanonical degree

4 line bundles on X with L1 ⊗ L2
∼= ω⊗2

X , L3 a degree 4 line

bundle on X with L3
∼= ωX, and Bi is a basis for H0(X,Li)

for 1 ≤ i ≤ 3





.

Quotienting each side by the natural action of GL2 ×GL2 ×GL3 gives the correspondence





GL2×GL2×GL3-orbits

of smooth symmetrized

2× 2× 3× 3 boxes




←→





isomorphism classes of (X,L) where X is a

nonhyperelliptic genus 3 curve with a non-

canonical degree 4 line bundle L on X




. (5.10)

Proof. Note that the constructions described above in each direction are equivariant for the

action of the group G = GL2 ×GL2 ×GL3. In particular, if g = (g1, g2, g3) ∈ G acts on a

box B, then the ternary quartic Qg(B) differs from QB by exactly the element g3 of GL3,

and the points on their respective Jacobians are identified by the isomorphism. In the other

direction, the box is constructed exactly up to choices of bases for each of the vector spaces

H0(X,L1),H
0(X,ωX), and ker µ, where a basis for ker µ is given by a basis for H0(C,L2).

Now we only need to show that the constructions above are inverse to one another. Let

X be a smooth nonhyperelliptic genus 3 curve and L a noncanonical degree 4 line bundle on
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X. We construct a symmetrized box B ∈ (ker µ)∨⊗H0(X,L)⊗Sym2H0(X,ω⊗2
X ) as above.

Let X3 be the image of X in P(H0(X,ωX)∨) and X13 the image of X in P(H0(X,L)∨) ×

P(H0(X,ω∨
X). On the other hand, let X ′

3 := {y ∈ P(H0(X,ωX)∨) : detB(·, ·, y) = 0} and

X ′
13 := {(w, y) ∈ P(H0(X,L)∨) × P(H0(X,ωX)∨) : B(w, ·, y) = 0}. Then for (w, y) ∈ X13,

we have B(x, ·, y) = 0, so X13 ⊂ X ′
13 and X3 ⊂ X ′

3. On the other hand, the variety

X ′
3 is given by a degree 4 equation in P2, and since X3 is the canonical embedding of a

smooth nonhyperelliptic genus 3 curve, we must have X ′
3 ⊂ X3. Thus, these curves are all

isomorphic as varieties and the corresponding line bundles commute with the isomorphisms.

In the other direction, a box B ∈ V1×V2×Sym2 V3 produces the pair (X,L); identifying

the bases for the vector spaces V1, V2, and V3 with H0(X,L), (ker µ)∨, and H0(X,ωX),

respectively, reconstructs the box B.

Combining Corollary 5.12 and Proposition 5.13 gives a relation between genus 3 and

genus 4 curves. In fact, we will show below that our setup satisfies the relationship of

[Rec74]: the Jacobian of the genus 3 curve X is naturally isomorphic to the Prym of the

étale double cover of the genus 4 curve C given by the 2-torsion point P .

First, we briefly recall the trigonal construction of Recillas, which gives a more general

correspondence between connected simply branched degree 4 covers of P1 and connected

unramified double covers of connected simply branched degree 3 covers of P1 (see [BL04,

chap. 12] for an exposition).

Let X be a genus g curve with a degree 4 map ρ : X → P1. The basic idea is that

the four sheets of X over P1, labeled {1, 2, 3, 4}, may be used to construct three sheets,

labeled {(12)(34), (13)(24), (14)(23)}, that form a degree 3 cover C over P1. More precisely,

there is a pencil of planes {P2
t : t ∈ P1} intersecting the canonical embedding X →֒ Pg−1 in

exactly the linear series given by ρ, that is, the points of P2
t ∩X are exactly the preimage

of t ∈ P1 under ρ. For any given t ∈ P1, these four points p1, p2, p3, p4 determine three

points q(12)(34), q(13)(24), q(14)(23) as the intersection of the pairs of diagonals, as in Figure

5.4.1. These three points, over P1, form a trigonal curve C of genus g+1, and the diagonals

give an unramified double cover of C. The Prym variety of this étale double cover of C is

isomorphic to the Jacobian of X.

119



Figure 5.1: Four noncollinear points in P2 determine three pairs of diagonals and their
intersection points.

p4

q(13)(24)

q(14)(23)

p1

p2

p3

q(12)(34)

Corollary 5.14. The bijection





isomorphism classes of (C,M,P ) where

C is a Type I genus 4 curve, M a degree 3

line bundle on C with h0(C,M) = 2, and

0 6= P ∈ Jac(C)[2] with h0(C,M⊗P ) = 0





←→





isomorphism classes of

(X,L) with X a nonhyper-

elliptic genus 3 curve with a

degree 4 line bundle L 6∼= ωX





(5.11)

is given by Recillas’ trigonal construction and factors through the bijections (5.8) and (5.10)

of each side with orbits of smooth nondegenerate symmetrized 2× 2× 3× 3 boxes.

Proof. Corollary 5.12 and Proposition 5.13 show that the two moduli spaces of the theorem

and the nondegenerate GL2 × GL2 × GL3-orbits of symmetric 2 × 2 × 3 × 3 boxes can all

be identified. We only need to show that the relationship is given by Recillas’ construction.

Using the two interpretations of the symmetric projective box B ∈ V1 ⊗ V2 ⊗ Sym2 V3, we

may relate the genus 3 curve X and the genus 4 curve C of the theorem as degree 4 and

degree 3 covers, respectively, of P(V ∨
1 ).

For the moment, we work over a particular point w ∈ P(V ∨
1 ) away from the ramification

points of X. Let Bw = B(w, ·, ·) be the bidegree (1, 2) form on V ∨
2 ×V

∨
3 . The form Bw gives
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rise to a pencil of ternary quadratics, which intersect in a set of four points p1, p2, p3, p4 in

P(V ∨
3 ) = P2. These are the points of the curve X as a degree 4 cover of P(V ∨

1 ), and L is

the line bundle associated to this g14 on X.

On the other hand, this rational conic fibration in P(V ∨
2 ) × P(V ∨

3 ) defined by Bw = 0

has three degenerate fibers, which correspond to those points x ∈ P(V ∨
2 ) for which the cubic

detBw(x, ·) = detB(w, x, ·, ·) vanishes. Over all of P(V ∨
1 ), they comprise the bidegree (3, 3)

curve C in P(V ∨
1 )× P(V ∨

2 ). Each degenerate fiber consists of two lines passing through all

four points, and for x ∈ P(V ∨
2 ) giving a degenerate fiber, the kernel of Bw(x, ·) in P(V ∨

3 ) is

exactly the point of intersection of those two lines.

In other words, we are thus far in the situation of Recillas’ construction. Above any

w ∈ P(V ∨
1 ) that is not a ramification point of X, the fiber of the curve X consists of four

points; the three intersection points of the pairs of diagonals through those four points form

the fiber of C over P(V ∨
1 ). Furthermore, the ramification loci of P(V ∨

1 ) for the two curves

are the same.

Moreover, for each point of (w, x) ∈ C ⊂ P(V ∨
1 )×P(V ∨

2 ), the lines of the degenerate conic

in P(V ∨
3 ) correspond to two points in P(V3). The set of these points in P(V ∨

1 )×P(V ∨
2 )×P(V3)

gives an étale double cover C̃ of C. Then the cover r : C̃ → C defines a two-torsion point η

of the Jacobian Jac(C) of C as the nonzero element of the kernel of r∗ : Jac(C)→ Jac(C̃).

Recall that given a nondegenerate symmetrized 2×2×3×3 box B, the two-torsion point

P is obtained as P =M3⊗ω
−1
C , where the degree 6 line bundle M3 gives the embedding of

the curve C into P(V ∨
3 ), that is, sending a point (w, x) ∈ C to the intersection of the two

lines of the degenerate conic. By a construction of [Cob82], this so-called Steiner embedding

of the curve C is given exactly by the linear series |ωC ⊗ η|, so the points η and P are the

same points on Jac(C).

Thus, the pair (C,P ) is related to (X,L) by the trigonal construction.

In bijection (5.11), recall that the right side is equivalent to isomorphism classes of

(X,λ), where λ := L⊗ ω−1
X is a nonzero point of Jac(X). Also, each side is an étale double

cover of the space of pairs (C,P ), since for each curve C, there are exactly two choices for

the line bundle M . Given a choice of M , the other choice of M corresponds to switching

121



the vector spaces V1 and V2 for symmetrized 2× 2× 3× 3 boxes in V1 ⊗ V2 ⊗ Sym2V3. For

the genus 3 curve X and the noncanonical degree 4 line bundle L on X, switching V1 and

V2 is equivalent to changing L to ω⊗2
X ⊗ L

−1, that is, sending λ to −λ on Jac(X). In other

words, modulo this Z/2Z action, bijection (5.11) becomes





pairs (C,P ) where C is a Type I genus

4 curve and 0 6= P ∈ Jac(C)[2] with

h0(C,M ⊗ P ) = 0 for M a g13 on C




←→





pairs (X,λ) where X is a non-

hyperelliptic genus 3 curve and

0 6= λ ∈ Jac(X)/±1





where each side is up to isomorphism of the curves.

Remark 5.15. After this work was completed, it was brought to our attention that this

explicit correspondence is also used in [Rec93] to show the rationality of certain moduli

spaces, but the techniques and proofs are slightly different, as are the statement of the

conditions for each side of the bijections.

These correspondences are entirely explicit; given a smooth ternary quartic with a non-

canonical degree 4 bundle, we may write down equations for the corresponding genus 4

curve, and even for the appropriate étale double cover (and vice versa). We expect that

similar explicit constructions for other cases of the trigonal construction should hold using

higher degree 2× 2×m×m boxes.
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What’s in a name? That which we call a rose
By any other name would smell as sweet.

—Juliet, in Romeo and Juliet
by William Shakespeare

Chapter 6

Curves of Genus Zero

In this chapter, we relate curves of genus zero and quaternion algebras over a base scheme S

via a geometric construction. Each of these categories, with some additional geometric data,

can also be parametrized by ternary quadratic forms taking values in a line bundle on S; for

example, the correspondence between ternary quadratic forms and quaternion algebras has

recently been explained in [GL09], or more generally, in [Voi09]. The functors between the

three categories commute. In particular, we will show that a ternary quadratic form gives

rise to a curve and a line bundle on it, which in turn—via the geometric construction—will

determine a quaternion algebra and a line bundle on S matching those constructed directly

from the ternary quadratic form by [Voi09].

In the simplest case, where the base scheme S = Spec k for an algebraically closed field

k, the correspondences between each pair of these categories is clear. Because all vector

bundles over k are trivial, there will be no extra line bundle data, and each of the three

categories under consideration has just one object:

• The projective line P1
k
is the only smooth curve of genus zero, up to isomorphism,

over k, and there is only one degree 2 line bundle on P1
k
.

• The algebra Mat2,2(k) of 2× 2 matrices is the only nondegenerate quaternion algebra

over k, as the Brauer group of k is trivial.

• Any two nondegenerate ternary quadratic forms (i.e., irreducible elements of Sym2 V ,

where V is a 2-dimensional vector space over k) are GL3(k)-equivalent.
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The curve P1
k
is the Brauer-Severi variety corresponding to the algebra Mat2,2(k). Both

P1
k
and Mat2,2(k) have the same automorphism group PGL2(k), which is the units modulo

the center of the algebra Mat2,2(k). Also, the curve in P2
k
defined by the locus of any

nondegenerate ternary quadratic form is isomorphic to P1
k
.

Slightly more generally, if S = Spec k for a field k, not all of these categories will have

only one point; the correspondences are still well known, however, especially as there are

still no nontrivial vector bundles on S. The smooth curves of genus zero are twisted forms

of P1, and they correspond to the k-valued points of the stack [·/PGL2]. This stack also

parametrizes twisted forms of the algebra Mat2,2(k) of 2×2 matrices, that is, nondegenerate

quaternion algebras, as [·/PGL2](k) up to isomorphism is the 2-torsion of the Brauer group

of k. The automorphism groups of twisted forms of P1 and of these quaternion algebras are

the corresponding twisted forms of PGL2. Finally, nondegenerate ternary quadratic forms

over k cut out smooth curves of genus zero in P2
k.

Preliminaries. In this chapter, we assume that the base scheme S is a Z[12 ]-scheme, i.e.,

the points of S have characteristic not equal to 2. Also, throughout this chapter, we

use Grothendieck’s definition of a vector bundle’s underlying scheme and related objects,

such as projective bundles: to a vector bundle V, we associate the scheme Spec(SymV∨).

For example, given a very ample line bundle L on a scheme X, here we have a natural

embedding of X into P(H0(X,L)), instead of P(H0(X,L)∨). (This convention is used only

in this chapter, not in the rest of this thesis.)

6.1 Genus Zero Curves and Quaternion Algebras

In order to relate genus zero curves and quaternion algebras via a geometric construction,

we first describe each category over the base scheme S. A smooth genus zero curve C over

S is a proper smooth morphism f : C → S with relative dimension 1 and R0f∗(OC) = OS

and R1f∗(OC) = 0, i.e., the fibers are connected and have arithmetic genus 0. On the other

hand, a quaternion algebra D over S is a rank 4 Azumaya algebra over S, i.e., a rank 4

vector bundle over S with an algebra structure such that étale locally on S the algebra D

is isomorphic to a matrix algebra. Such algebras D up to Morita equivalence are classified
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by the two-torsion of the Brauer group of S. Note that because D is isomorphic to Dop,

there is an anti-involution on D.

From a smooth genus zero curve C over S, we construct a quaternion algebra D as

follows. Let L be a degree 2 line bundle on C. Such a line bundle L always exists because

the relative tangent bundle TC/S of C over S has degree 2. If S is a point, then TC/S is the

only degree 2 line bundle, and in general, all degree 2 line bundles on C may be obtained

by twisting TC/S by the pullback of a line bundle on S. For this section, the choice of the

line bundle L will not be relevant, since any such L will give the same quaternion algebra

under the following construction.1

Now we define a rank 2 vector bundle E = E(C) on C. The line bundle L gives an

embedding of the curve C into P(f∗L):

C
� � ι //

f ��>
>>

>>
>>

> P(f∗L)

p
||xx
xx
xx
xx
x

S

and the restriction map

ι∗ : Ext1(OP(f∗L),Ω
1
P(f∗L)

) −→ Ext1(OC ,Ω
1
C)

gives a rank 2 bundle on C, by applying ι∗ to the standard generator. We now explictly

construct the vector bundle E. Twisting the Euler sequence on P(f∗L) by OP(f∗L)(−1) gives

the sequence of sheaves

0 −→ Ω1
P(f∗L)

−→ OP(f∗L)(−1)⊗ p
∗(f∗L) −→ OP(f∗L) −→ 0 (6.1)

on P(f∗L). We also have the adjunction sequence of C in P(f∗L):

0 −→ N∨
C/P(f∗L)

−→ ι∗Ω1
P(f∗L)/S

α
−→ Ω1

C/S −→ 0.

1When we relate the geometric constructions of this section with ternary quadratic forms in Section 6.2,
the choice of the line bundle L will be important.
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We restrict the sequence (6.1) to C and pushout along the map α to define the vector bundle

E as below:

0 // ι∗Ω1
P(f∗L)/S

//

α

��

ι∗OP(f∗L)(−1)⊗ p
∗(f∗L)

��

// OC
// 0

0 // Ω1
C/S

// E // OC
// 0.

(6.2)

In the sequel, we will repeatedly use the fact that E satisfies the exact sequence

0 −→ Ω1
C/S −→ E −→ O −→ 0 (6.3)

but is not split. Then End(E) is a rank 4 vector bundle over C that locally looks like

a matrix algebra, and we can define D = D(C) to be its pushforward f∗(End(E)) to S.

Therefore, D is an Azumaya algebra over S. One can check that the choice of a line bundle

L does not change the isomorphism class of the quaternion algebra D.

Example 6.1. In the simplest case, if S = Spec k for an algebraically closed field k, then

C is a genus zero curve in the classical sense, and in fact, isomorphic to P1. Then the vector

bundle E(C) is isomorphic to O(−1)⊕O(−1), and the corresponding division algebra D(C)

is just the ring of global sections of End(E(C)), i.e., the algebra Mat2,2(k) of 2× 2 matrices.

Example 6.2. If S = Spec k where k is not necessarily algebraically closed, then C is again

a genus zero curve, but not necessarily isomorphic to P1. Then the k-algebra H0(Spec k,D)

associated to the OS -algebra D(C) is simply a quaternion algebra over k in the usual sense.

This algebra will be split—that is, isomorphic to a matrix algebra—if and only if C has a

point over k.

Example 6.3. If S = Spec k[ǫ], then D is isomorphic to D0⊗k k[ǫ], where D0 is the special

fiber D ⊗k[ǫ] k. In other words, the quaternion algebras D that arise in this way do not

admit deformations.

Given a quaternion algebra D over S, it is straightforward to obtain a smooth genus zero

curve over S (first done for an arbitrary base scheme in [Gro68]; see also [Ser79]). Consider
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the space C ′ = C ′(D) of rank 2 left ideals of D as a subscheme of the Grassmannian Gr(2,D)

over S. In other words, each rank 2 left ideal of D is a 2-dimensional subbundle of D and

thus corresponds to a point in the Grassmannian. The set C ′ is a closed subset of Gr(2,D),

as being an ideal is a closed condition on a subspace of D, and C ′ has a natural scheme

structure arising from the moduli problem. Furthermore, C ′ is in fact a smooth genus zero

curve over S; in the case D is a matrix algebra, the rank 2 left ideals of D can be identified

with points of P1 (see Example 6.5 below for details), and the general case follows by étale

localization.

Theorem 6.4. For a scheme S, there is an equivalence of categories, functorial in S,

{smooth genus zero curves over S}
D // {quaternion algebras over S}
C

oo ,

where for a smooth genus zero curve C, the functor D takes C to the quaternion algebra

D(C) = f∗End(E) as described above, and C takes a quaternion algebra D to the space

C(D) of rank 2 left ideals of D.

The equivalence of categories exists for formal reasons, as both sides may be identified

with the S-points of [·/PGL2] (see [Art82], for example), but we have given an explicit

construction of the functors in each direction. The rest of the section is dedicated to

showing that these functors are inverse to one another.

Example 6.5. In the case where S = Spec k, it is easy to see that these constructions are

inverse to one another. As in Example 6.1, we will be relating P1
k
with ideals of Mat2,2(k).

More precisely, let f : C = P(V)→ Spec k be the projectivization of a trivial rank 2 vector

bundle V = Ok ⊕ Ok. Then the vector bundle E = E(C) over C is the rank 2 vector bundle

f∗V⊗ OC(−1) = OC(−1)⊕ OC(−1). Then End(E) is the rank 4 vector bundle

End(f∗V) = f∗End(V) = f∗Mat2,2(Ok) = Mat2,2(OC)

over C, and the associated quaternion algebra D is simply Mat2,2(Ok). Now the rank 2

left ideals C ′ = C ′(D) of D can be naturally identified with C = P(V): a point x ∈ C(T )

for an arbitrary scheme T over k corresponds to a line ℓ in VT , which then gives the rank
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2 left ideal of matrices in End(VT ) = Mat2,2(OT ) that annihilates ℓ. Both C and C ′ are

isomorphic to P1
k
, and this map C → C ′ just described is an isomorphism, with the inverse

map taking a rank 2 left ideal I of End(VT ) = Mat2,2(OT ) to the one-dimensional subbundle

VT [I] of VT annihilated by I.

On the other hand, we now have C and C ′ are isomorphic and it is easy to show that E

and E′ = E(C ′) are the same bundle, which then implies D and D′ = D(C ′) are isomorphic.

In particular, because the only degree 2 line bundle on C ′ ∼= P(V) is OC′(2), the vector

bundle E′ = E(C ′) on C ′ is OC′(−1)⊕OC′(−1) = f∗V⊗OC′(−1). Then we have, as desired,

D′ := f∗End(E
′) = f∗End(f

∗V) = f∗f
∗End(V) = End(V), (6.4)

where the last equality follows from the projection formula.

Example 6.6. Slightly more generally, we now consider the split case, i.e., when C = P(V)

is the projectivization of a (not necessarily trivial) rank 2 vector bundle over a base scheme

S. The argument in Example 6.5 to show that the two constructions are inverse essentially

holds. The desired vector bundle E(C) is isomorphic to f∗V⊗OC(−1), and the quaternion

algebra is D(C) := f∗End(E) = f∗f
∗End(V) = End(V). As before, given a point in C(T ) for

any S-scheme T , the annihilator in End(VT ) of the associated line in VT is a rank 2 left ideal.

This map is an isomorphism from C to the rank 2 left ideals C ′ of D(C). Furthermore,

the nonsplit extension of OC′ by a degree −2 line bundle on C ′ is the rank 2 vector bundle

E′ := E(C ′) = f∗V⊗OC′(−1), and equation (6.4) shows that the quaternion algebra D(C ′)

constructed from C ′ is exactly D.

We now check that these constructions are always inverse to one another; the main ideas

of the proof are contained in Example 6.5. Let f : C → S be a smooth genus curve over S,

E = E(C) the rank 2 vector bundle over C as defined above, andD = D(C) := R0f∗(End(E))

the corresponding quaternion algebra over S. Let C ′ = C ′(D) be the rank 2 left ideals of

D. For any S-scheme T , from a T -valued point x of C, we wish to naturally define a point

of C ′, that is, a rank 2 left ideal of the Azumaya algebra D. The fiber Ex of E at x is

a 2-dimensional vector bundle over T , and the algebra D naturally acts on Ex. The map

D → End(Ex) is an isomorphism because it is true when D is a matrix algebra. Pulling
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back the exact sequence (6.3) by x gives

0 −→ x∗(Ω1
C/S) −→ x∗(E) = Ex −→ x∗(OC) = OT −→ 0

as bundles over T . Now D ∼= End(Ex) acts on the middle term Ex, and the annihilator of

x∗(Ω1
C/T ) is a rank 2 left ideal in DT . We have thus constructed a map from C to C ′ over

T . This map is an isomorphism: it is an isomorphism in the split case and it suffices to

check that it is an isomorphism étale locally.

On the other hand, let D be a quaternion algebra over S. Let f : C ′ = C ′(D) → S be

the space of rank 2 left ideals of D, let E′ = E(C ′) be the rank 2 vector bundle that is a

nonsplit extension of OC′ by Ω1
C′/S , and let D′ = D(C ′) := R0f∗(End(E

′)) be the rank 4

Azumaya algebra associated to C. We want to show that D and D′ are isomorphic.

The curve C ′ is the moduli space of rank 2 left ideals of D; let I be the universal left

ideal over C ′ given by the pullback of the universal rank 2 vector bundle over Gr(2,D) to

C ′. That is, I is a left ideal of f∗D. In fact, as we prove below in Lemma 6.7, the vector

bundles E′ and I over C ′ are isomorphic.

Now given an element d ∈ D, there is an obvious action of d on a left ideal of D given

by multiplication, so f∗D acts on I. In particular, there is a map f∗D→ End(I) ∼= End(E),

and pushing forward to S gives the map D = f∗f
∗D→ f∗(End(E)), where the first equality

follows from the projection formula and the definition of a smooth genus 0 curve over S.

This map is an isomorphism because checking the split case, where it is an isomorphism,

suffices. Thus, modulo showing E′ ∼= I, we have D ∼= D′.

Lemma 6.7. The vector bundles E′ and I over C ′ are isomorphic.

Proof. To prove this statement, we use a different moduli interpretation for C ′. We define

the scheme PD by letting PD(T ) be the category of triples (V, ϕ, ν) where V is a rank 2

vector bundle on T , ϕ : End(V) ∼= DT is an isomorphism of algebras, and ν : V → OT is a

surjection. To see that PD is a scheme, note that forgetting ν realizes PD as the complement

of the zero section of the universal bundle V over the Gm-gerbe XD parametrizing pairs

(V, ϕ) as above. In fact, if (VPD
, νPD

) gives the map PD → XD, then the aforementioned
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description of PD identifies the kernel of νPD
with Ω1

PD
to give an exact sequence

0 −→ Ω1
PD
−→ VPD

ν
−→ OPD

→ 0. (6.5)

A splitting of D gives an identification of PD with P1, under which the sequence (6.5)

coincides with the Euler sequence. In particular, the bundle VPD
is a nonsplit extension of

OPD
by Ω1

PD
.

We now show that PD and C ′(D) are isomorphic. Given a point (V, ϕ, ν) ∈ PD(T ), we

may define a rank 2 left ideal in End(V) as the annihilator of the kernel of ν : V → O.

Under the isomorphism ϕ, we have a rank 2 left ideal of DT , which corresponds to a point

of C ′(D)(T ). Thus, we have given a map a : PD→ C ′(D).

Conversely, given a rank 2 left ideal I ⊂ DT , the ideal structure of I defines a natural

isomorphism ϕI : End(I)
∼=
−→ DT , and composing the trace map DT → OT with the

inclusion I ⊂ DT gives a surjection νI : I → OT . In particular, the triple (I, ϕI , νI) defines

a point of PD(T ), which produces the promised map b : C ′(D)→ PD.

We may check that a and b are mutually inverse isomorphisms in the split case, which

suffices to show that this moduli space PD is isomorphic to our original curve C ′(D).

Under these isomorphisms, the universal left ideal I ⊂ DC′(D) corresponds to the uni-

versal bundle VPD
on PD by construction. The latter, as shown in the sequence (6.5), is the

unique (up to non-unique isomorphism) non-split extension of OPD
by Ω1

PD
. Thus, the uni-

versal left ideal I may be identified with the unique non-split extension of OC′(D) by Ω1
C′(D).

Since the the bundle E′ has the same property, the bundles E′ and I are isomorphic.

Remark 6.8. The bijection between genus zero curves and quaternion algebras described

in this section may be generalized to higher dimensions, giving an equivalence of categories

between dimension n − 1 Brauer-Severi varieties and rank n2 Azumaya algebras. As both

categories are equivalent to [·/PGLn], the equivalence exists formally. The geometric con-

structions detailed in this section describe the functors: given a rank n2 Azumaya algebraD,

the rank n left ideals form a (n− 1)-dimensional Brauer-Severi variety in Gr(n,D) [Gro68],

and given a (n−1)-dimensional Brauer-Severi variety X, an analogous rank n vector bundle

E on X has endomorphism algebra isomorphic to the desired Azumaya algebra.
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6.2 Ternary Quadratic Forms

In this section, we show that ternary quadratic forms are closely related to both geomet-

ric and algebraic objects. In Section 6.2.1, we relate ternary quadratics and genus zero

curves with degree 2 line bundles, and Section 6.2.2 connects ternary quadratic forms and

quaternion algebras with a line bundle on the base.

A ternary quadratic form (W, LS , Q) over a Z[12 ]-scheme S is a rank 3 vector bundle

W over S, a line bundle LS on S, and a section Q of the vector bundle Q = Sym2(W∨) ⊗

∧3W⊗LS . Corresponding to the usual notion of a quadratic form as a polynomial, we may

“evaluate” the quadratic form Q on sections of W to obtain a section of ∧3W ⊗ LS , or

evaluate the bilinear form 〈·, ·〉Q corresponding to Q on sections of W⊗W.

6.2.1 Ternary Quadratic Forms and Genus Zero Curves

To a ternary quadratic form (W, LS , Q) over S, we may associate geometric objects, namely

a curve over S and a line bundle on that curve. We will only be considering nondegenerate

ternary quadratic forms, however.

For some intuition, let us first consider the simplest case, where S = Spec k for an

algebraically closed field k. Then the vector bundles W and LS are trivial, and a ternary

quadratic form defines a curve C in the projective plane P(W∨) = P2. Suppose the poly-

nomial representing the section Q is irreducible; then the curve has genus zero and, since

the base field is algebraically closed, it is isomorphic to P1. Pulling back OP(W∨)(1) to the

curve C gives a degree 2 line bundle L on C, and in this case, the bundle L is isomorphic

to O(2) on C ∼= P1.

On the other hand, given a smooth irreducible genus zero curve and a degree 2 line

bundle L on it, the sections of L give an embedding of the curve into the projective plane

P(H0(C,L)). Because dimH0(C,L⊗2)) = 5 and dimSym2H0(C,L) = 6, the sections of L

satisfy a quadratic relation, which gives a quadratic polynomial in the sections of L, i.e.,

a ternary quadratic form over S = Spec k. However, this quadratic polynomial is only

defined up to scaling via this method; to fix this ambiguity, we will find a more functorial

relationship between ternary quadratic forms and genus zero curves.
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For any base scheme S, given a ternary quadratic form (W, LS , Q), let C be the zero set

of the section Q in P(W∨). We will only consider such ternary quadratic forms that give

rise to smooth curves C; we will call these nondegenerate ternary quadratic forms. Over

a field, for example, these correspond to irreducible polynomials Q. More generally, one

may define a discriminant ∆(W, LS , Q) as a OS-submodule of S for the ternary quadratic

form (W, LS , Q), and the nondegeneracy condition corresponds to requiring that we stay

away from the vanishing locus of ∆(W, LS , Q) in S. In the case of Example 6.10, the

(half-)discriminant ∆(Q) can be written as the polynomial

∆(Q) = 4abc+ uvw − au2 − bv2 − cw2,

and then the discriminant ∆(W, LS , Q) of (W, LS , Q) is the ideal of OS generated by

∆(Q |N ) for all free rank 3 subsheaves of W. Then the nondegeneracy condition is the

requirement that the ∆(W, LS , Q) is in fact an invertible ideal, i.e., a line bundle on S.

The restriction to nondegenerate ternary quadratic forms is an open condition, since

locally it is given by the nonvanishing of the discriminant. In the sequel, instead of working

with the entire stack of ternary quadratic forms, we will be considering the open substack of

nondegenerate ternary quadratic forms. The other space we will be using—smooth curves

of genus zero with line bundle data—is also an open substack of the stack of all genus zero

curves with the same data.

If C is smooth over S, then C has codimension 1 in P(W∨) and is a curve; by cohomology

and base change, the relative curve C has genus zero since each fiber does. Define the line

bundle L to be the pullback of OP(W∨)(1) to C. Note that L is a degree 2 line bundle on C.

Given a ternary quadratic form (W, LS , Q), there exists a moduli interpretation of the

curve C thus constructed. In particular, for an S-scheme T , the T -valued points of C

exactly correspond to the Q-isotropic subbundles of WT .

Conversely, suppose we have a pair (C,L) over S, where f : C → S is a smooth

genus zero curve and L is a degree 2 line bundle on C. Then there is a natural embedding

ι : C →֒ P(f∗L), and we will define the vector bundleW := (f∗L)
∨ → S with p : P(W∨)→ S.
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If IC is the ideal defining the curve C, then we have an exact sequence

0 −→ IC(2) −→ OP(W∨)(2) −→ OC(2) −→ 0

and taking cohomology gives

0 −→ p∗IC(2) −→ p∗OP(W∨)(2) −→ p∗OC(2) −→ 0. (6.6)

Because IC(2) is a degree 0 line bundle on P(W∨), it is the pullback of a line bundle M on

S and p∗IC(2) =M . Tensoring the sequence (6.6) with M∨ gives a ternary quadratic form

via the sequence

0 // OS
// p∗OP(W∨)(2) ⊗M

∨ // p∗OC(2) ⊗M
∨ // 0.

Sym2 W∨ ⊗M∨

(6.7)

The first inclusion in the sequence (6.7) is a section Q of Sym2 W∨ ⊗M∨, so we now have

produced a ternary quadratic form (W,M∨ ⊗ (∧3W)∨, Q).

We would like to compare the line bundle LS = M∨ ⊗ (∧3W)∨ on S and the original

bundle L on C. The vanishing of the cohomology R0p∗(IC ⊗ IC(2)) and R1p∗(IC ⊗ IC(2))

gives the first equality below:

M := p∗IC(2) = p∗(OC ⊗ IC(2)) = f∗ι
∗IC(2)

= f∗(ι
∗IC ⊗ ι

∗OP(W∨)(2)) = f∗(IC/I
2
C ⊗ L

⊗2).

Using the adjunction sequence for ι : C → P(W∨), we compute

det(ι∗Ω1
P(W∨)/S) = det(Ω1

C/S)⊗ det(IC/I
2
C) = Ω1

C/S ⊗ IC/I
2
C .

On the other hand, twisting the Euler sequence on P(W∨) by OP(W∨)(−1), pulling back to
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C, and taking determinants implies

det(ι∗(Ω1
P(W∨)/S)) = det(ι∗(OP(W∨)(−1)⊗ p

∗W∨))

= det(L∨ ⊗ ι∗p∗W∨) = (L∨)⊗3 ⊗ f∗(∧3(W)∨).

Finally, with the aid of the projection formula, we have

M = f∗(IC/I
2
C ⊗ L

⊗2) = f∗(det(ι
∗Ω1

P(W∨)/S)⊗ (Ω1
C/S)

∨ ⊗ L⊗2)

= f∗((L
∨)⊗3 ⊗ f∗(∧3(W)∨)⊗ (Ω1

C/S)
∨ ⊗ L⊗2)

= f∗(f
∗(∧3(W)∨)⊗ L∨ ⊗ (Ω1

C/S)
∨)

= ∧3(W)∨ ⊗ f∗(L
∨ ⊗ (Ω1

C/S)
∨).

Again using the fact that a degree 0 line bundle on C (this time, L⊗Ω1
C/S) is the pullback

of a line bundle on S, we find that

LS =M∨ ⊗ (∧3W)∨ = f∗(L⊗ Ω1
C/S). (6.8)

As a sanity check, when S = Spec k and hence all the vector bundles on S are trivial, the

only degree 2 line bundle L on a genus 0 curve is the tangent bundle TC/S , which gives

LS = OS , as in Example 6.10.

The functors between nondegenerate ternary quadratic forms and genus zero curves with

a degree 2 line bundle are inverse to one another. It suffices to check that the functors are

inverse locally, e.g., over a local ring, where the result is straightforward using the moduli

interpretation of the curve.

Proposition 6.9. There is an equivalence of categories between nondegenerate ternary

quadratic forms (W, LS , Q) over S and pairs (C,L), where C is a smooth genus zero curve

over S and L is a degree 2 line bundle on C.

Note that the data of a degree 2 line bundle L on C is the same data as a line bundle

LS over S because C has genus zero. In the bijection, as we have shown, we have the
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relationships

L = f∗LS ⊗ TC/S and LS = f∗(L⊗ Ω1
C/S).

The bundle LS on the base S simply records the difference between L and the tangent

bundle. If there are no nontrivial line bundles on S, for example, if S is a point, then

the only degree 2 line bundle on the curve will be the tangent bundle. Because of this

feature, the category of pairs (C,L) as defined above is equivalent to the category of pairs

(C,LS) where C is a smooth genus zero curve over S, and LS is a line bundle on S. Thus,

the moduli problem under consideration is simply the product [./PGL2]× [./Gm]: the first

factor records the curve C, while the second factor records the line bundle LS .

6.2.2 Clifford Algebras

From a ternary quadratic form over S, one can construct a quaternion algebra over S. In

the case where the quadratic form is untwisted, i.e., W and LS are both trivial, [GL09] have

a clever algebraic construction of the associated quaternion algebra. More generally, the

even part of the Clifford algebra of a ternary quadratic form will be a quaternion algebra.

Example 6.10. Assume that S = Spec R where R is a principal ideal domain or a local

ring.2 In this case, all vector bundles over S are trivial, and thus it is enough to say that a

ternary quadratic form is just a section Q of the vector bundle Q = Sym2(W∨)⊗∧3W⊗LS ,

where W is a trivial rank 3 bundle on S and LS = OS . The bundle Q is also trivial and

can be identified with the usual notion of ternary quadratic form, i.e., a section Q can be

represented by

Q = ax2 + by2 + cz2 + uyz + vxz + wxy (6.9)

where a, b, c, u, v, w ∈ R and x, y, z form a basis for W∨. We only need to be careful that

the group Aut(W) acts on Q not by the usual GL3-action on such a polynomial, but by a

twisted action:

g ·Q(x, y, z) = (det g)Q(x′, y′, z′)

2Proving the statements in this section for local rings will in fact suffice to extend the results to any base
scheme S, as we will see later.

135



where (x′, y′, z′) = g−1 · (x, y, z)t for g ∈ Aut(W). This twisted action arises exactly because

the vector bundle Q is not just Sym2(W∨) but has a twist by detW = ∧3W. From the

ternary quadratic form Q, Gross and Lucianovic construct a quaternion algebra A = A(Q)

over R with basis 1, i, j, k satisfying the following relations:

i2 = ui− bc jk = ai kj = −vw + ai+ wj + vk

j2 = vj − ac ki = bj ik = −uw +wi + bj + uk (6.10)

k2 = wk − ab ij = ck ji = −uv + vi+ uj + ck

where d indicates the conjugate of any d ∈ A under the anti-involution on A. Call a

quaternion algebra that has a basis (with any values of a, b, c, u, v, w ∈ R) a free quaternion

ring (after [Voi09]); then these exactly correspond to ternary quadratic forms:

Proposition 6.11 ([GL09]). For S = Spec R where R is a local ring or a principal ideal

domain, there is a discriminant-preserving bijection between the set of orbits of Aut(W) ∼=

GL3(R) × S acting on Q and the set of isomorphism classes of free quaternion rings over

S.

As observed in [Voi09], the Gross-Lucianovic construction of a quaternion algebra in

Example 6.10 in fact works for a ternary quadratic form (W, LS , Q) over Spec R for any

commutative ring R, provided that LS = OS .

The quaternion algebra A(Q) of Example 6.10 corresponding to Q can also be con-

structed via the Clifford algebra of Q, and this construction works for more general base

S to produce a quaternion algebra A(W, LS , Q) from a ternary quadratic form (W, LS , Q)

over S. More precisely, the Clifford algebra Cliff(W, LS , Q) of the ternary quadratic form

(W, LS , Q) is an associative algebra with unit, and in fact, a rank 8 OS-algebra. It has a nat-

ural Z/2Z-grading, and the even part C+(W, LS , Q) is the desired central simple OS -algebra

of rank 4 over S.

Example 6.12. If W = O⊕3
S and LS = OS are trivial, then Cliff(O⊕3

S ,OS , Q) can be

constructed as the quotient of the tensor algebra of W by the two-sided ideal a generated

by elements of the form ξ⊗ξ−Q(ξ) for all sections ξ ∈ p∗(O
⊕3
S ). Such elements are clearly in
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the tensor algebra, as Q takes values in ∧3(O⊕3
S ) = OS . All elements s, t ∈ Cliff(O⊕3

S ,OS , Q)

satisfy the relation

s · t+ t · s = 2〈s, t〉Q,

where 〈s, t〉Q = Q(s + t) − Q(s) − Q(t) is the R-bilinear form associated to Q. The even

part C+(O⊕3
S ,OS , Q) can be written

C+(O⊕3
S ,OS , Q) ∼=

R⊕ (W⊗W)

a
.

Furthemore, as explained in [Voi09], the quaternion algebra A(Q) with relations (6.10) on

the basis 1, i, j, k is isomorphic to C+(O⊕3
S ,OS , Q). If W has sections ξ1, ξ2, ξ3, then the

isomorphism is given by

A(Q)
∼=
−→ C+(O⊕3

S ,OS , Q) = OS ⊕ OSξ2ξ3 ⊕ OSξ3ξ1⊕ OSξ1ξ2

i, j, k 7−→ ξ2ξ3, ξ3ξ1, ξ1ξ2.

When W and LS are not necessarily trivial bundles on S, the section Q takes values in

sections of the line bundle ∧3W⊗LS , so constructing the Clifford algebra requires replacing

the tensor algebra of W in Example 6.12 with an algebra involving this line bundle. In

general, however, the Clifford algebra is not defined over S but instead over the Gm-torsor

associated to the line bundle in which the quadratic form takes values. More explicitly, one

may naturally define the even Clifford algebra C+, as well as the odd part C− as a bimodule

over C+, over S. In the general case, the direct sum C(Q) = C+⊕C− does not have a natural

algebra structure. However, the choice of a trivialization OS
∼= ∧3W⊗ LS would give C(Q)

an algebra structure in the usual way. As the formation of C(Q) commutes with base change

on S, it follows that Cliff(W, LS , Q) = C(Q)⊗OS
OS′ has a natural algebra structure, where

S′ =
(
SpecSym((∧3W⊗ LS)

∨)
)
\ Z(S) is the complement of the zero section Z(S) in the

total space of the line bundle ∧3W ⊗ LS . In the case S = Spec R is affine, the R-algebra

OS′ is often called the Rees or the Laurent algebra of the invertible R-module (∧3W⊗LS)
∨.

Note that Cliff(W, LS , Q) is a rank 8 sheaf over S′, not S, and it is the “classical” Clifford

algebra associated to the ternary quadratic form (W⊗ OS′ ,OS′ , Q⊗ 1).
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Following [BK94], we define the Clifford algebra Cliff(W, LS , Q) as a quotient of the

tensor algebra T(W) of W and the algebra OS′ . Let a be the ideal of T(W)⊗OS′ generated

by elements of the form ξ ⊗ ξ ⊗ 1− 1⊗Q(ξ) for all ξ ∈ p∗W. Then let

Cliff(W, LS , Q) =
T(W)⊗ OS′

a
.

This algebra is Z-graded, and the degree 0 piece is a subalgebra classically considered the

even Clifford algebra C+(W, LS , Q), which has rank 4 as an OS-module. We have

C+(W, LS , Q) ∼=
OS ⊕ (W⊗W⊗ (∧3W⊗ LS)

∨)

a′

where a′ is generated by elements of the form ξ⊗ξ⊗λ−λ(Q(ξ)) for ξ ∈ p∗W and λ a section

of (∧3W⊗LS)
∨. Furthermore, the first graded piece of Cliff(W, LS , Q) is isomorphic to the

usual odd Clifford algebra, and is a bimodule over C+(W, LS , Q).

Call two ternary quadratic forms (W, LS , Q) and (W′, L′
S , Q

′) isomorphic if there are

isomorphisms α : W
∼=
−→ W′ and β : LS

∼=
−→ L′

S such that Q′(α(ξ)) = β(Q(ξ)) for any

section ξ ∈ p∗W. It is clear that nondegeneracy is preserved under isomorphism.

In [Voi09], Voight proves that in fact, this functor from ternary quadratic forms to the

even part of their Clifford algebras is a bijection on isomorphism classes. It is necessary to

keep track of what he calls a parity factorization; for us, a parity factorization is equivalent

to the data of the line bundle LS on S. Here, we slightly modify Voight’s theorem also by

restricting to nondegenerate ternary quadratic forms:

Proposition 6.13. Over a base scheme S, there is a bijection





isomorphism classes of

nondegenerate ternary quadratic

forms (W, LS , Q) over S




←→





isomorphism classes of quaternion

algebras A over S and line bundles

LS over S





where the right arrow takes a ternary quadratic form (W, LS , Q) to the even Clifford algebra

C+(W, LS , Q) and the line bundle LS.

Note that our definition of quaternion algebra is more restrictive than that in [Voi09].
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For example, we do not include what [Voi09] calls free exceptional quaternion algebras; they

would be considered degenerate, so they do not appear in the above proposition.

Remark 6.14. On the right side of the bijection in Proposition 6.13, the line bundle on

S is completely unrelated to the quaternion algebra. Instead of carrying the data of this

line bundle LS on S, it may be more natural to include other equivalent data, such as

a representation of the quaternion algebra. Such a representation, for example, naturally

arises when constructing the quaternion algebra from a genus zero curve with a degree 2

line bundle.

6.3 A Composition of Functors

Now we show that the constructions of Sections 6.1, 6.2.1, and 6.2.2 commute, in the sense

that the following heuristic diagram commutes:

nondegenerate ternary
quadratic forms88

§6.2.1

xxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq

ee

§6.2.2

%%KK
KK

KK
KK

KK
KK

KK
KK

KK
KK

K

smooth genus zero curves
with degree 2 line bundles

oo
§6.1

// quaternion algebras
with line bundles

(6.11)

We already know that each of these arrows is essentially an equivalence of categories,

and we will show that starting with a ternary quadratic, the natural genus zero curve and

degree 2 line bundle give rise to (via the geometric construction of Section 6.1) the same

quaternion algebra as that of Section 6.2.2, the even part of the Clifford algebra associated

to the ternary quadratic form. Our general strategy is to match the unit groups of the two

quaternion algebras thus constructed, which then will show that the two algebras give rise

to the same Brauer class and thus are isomorphic.

Remark 6.15. In the case where W and LS are trivial for a ternary quadratic form, it

may also be enlightening to construct an explicit basis for the quaternion algebra given in

Section 6.1 and show that the relations in [GL09] hold; we will see, in our proof, that it
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is at least possible to find an explicit basis for a three-dimensional quotient of this algebra

and verify the corresponding relations.

To begin, we will work over a local ring. Let (W,OS , Q) be a ternary quadratic form

over S = Spec R for R a local ring, with Q represented by equation (6.9) and W a trivial

vector bundle. Let f : C = C(Q)→ S be the genus zero curve in p : P(W∨)→ S cut out by

Q. We would like to describe D = D(C(Q)) := R0f∗(End(E)) (and its algebra structure)

for the vector bundle E, defined by the diagram (6.2) and satisfying the sequence

0 −→ Ω1
C/S −→ E −→ OC −→ 0 (6.12)

of locally free sheaves on C. Applying Hom(·,E) to the exact sequence (6.12) and taking

cohomology gives the exact sequence

0 = R0f∗(E) −→ R0f∗(End(E))
∼= // R0f∗(E⊗ TC/S) −→ R1f∗(E) = 0,

which reduces the question to understanding R0f∗(E ⊗ TC/S). Then cohomology of the

sequence (6.12) tensored with TC/S gives the exact sequence

0 −→ R0f∗(OC) −→ R0f∗(E⊗ TC/S) −→ R0f∗(TC/S) −→ R1f∗(OC) = 0, (6.13)

where R1f∗(OC) vanishes because C has genus 0. Now R0f∗(OC) has rank one and can be

viewed as the scalars in R0f∗(E ⊗ TC/S); we would like to find a basis for the rank three

quotient bundle R0f∗(TC/S). Taking the cohomology of the adjunction sequence realizes

this rank three bundle as a subbundle of R0f∗(TP(W∨)/S |C):

0 −→ R0f∗(TC/S) −→ R0f∗(TP(W∨)/S |C)
πQ // R0f∗(NC/P(W∨)) −→ R1f∗(TC/S) = 0.

(6.14)

Tensoring the sequence defining the curve C with TP(W∨)/S and taking cohomology shows

that R0f∗(TP(W∨)/S |C) can be identified with R0p∗(TP(W∨)/S). This last space is, by the
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Euler sequence on P(W∨), a rank 8 quotient bundle of End(W):

0 −→ R0p∗(OP(W∨)) −→ R0p∗((p
∗(W∨))∨ ⊗ OP(W∨)(1)) −→ R0p∗(TP(W∨)/S) −→ 0

where the middle term is just p∗((p
∗(W∨))∨⊗O(1)) ∼= W⊗W∨ ∼= End(W) via the projection

formula. Thus, locally the rank nine bundle R0p∗((p
∗(W∨))∨ ⊗ OP(W∨)(1)) can be thought

of as 3 × 3 matrices, and the quotient R0p∗(TP(W∨)/S) as traceless 3 × 3 matrices. Note

that End(E) has an algebra structure; although the rank 8 quotient, which is isomorphic

to R0f∗(TP(W∨)/S |C), does not have an algebra structure, it does have a well defined Lie

bracket and can be thought of as sl3.

Furthermore, the image R0f∗(NC/P(W∨)) of the map πQ in (6.14) can be thought of as

quadratic forms on P(W∨) with Q vanishing. With these local identifications, the map πQ

simply sends a traceless 3×3 matrixM toMQ+QM t, where (by a slight abuse of notation)

here Q is the 3× 3 symmetric matrix associated to the bilinear form of the quadratic form

ax2 + by2 + cz2 + uyz + vxz + wxy. The kernel of πQ can be identified with so(Q) ⊂ sl3

and has a natural Lie algebra structure.

In summary, to write down the algebra structure on R0f∗(End(E)), we would like to

first understand R0f∗(TC/S). By the sequence (6.14), the rank three bundle R0f∗(TC/S)

corresponds to traceless endomorphisms M of W that fix the ternary quadratic Q (in the

sense that MQ+QM t = 0), namely so(Q).

Example 6.16. If Q is the standard ternary quadratic form x2 + y2 + z2 and its matrix

is the 3 × 3 identity matrix, then we can think of the rank three bundle R0f∗(TC/S) as

the standard so(3) in sl(3), that is, the skew-symmetric matrices. The quaternion algebra

corresponding to this Q has a “good basis” 1, i, j, k and the relations (6.10) become

i2 = −1 jk = −i kj = i

j2 = −1 ki = −j ik = j (6.15)

k2 = −1 ij = −k ji = k.

This associative algebra gives rise to the standard Lie algebra with brackets [r, s] = rs− sr,
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and the Lie algebra relations derived from (6.15) include

[j, k] = −2i [k, i] = −2j [i, j] = −2k.

It is easy to verify that the standard basis for 3 × 3 skew-symmetric matrices satisfies

these Lie algebra relations. More generally, for any ternary quadratic form Q, one can

computationally find a basis for so(Q) that satisfies the corresponding Lie algebra relations;

note that these relations need to be checked in the three-dimensional quotient sending

scalars to zero.

Now recall that using the isomorphism R0f∗(End(E)) ∼= R0f∗(E⊗TC/S) and the sequence

(6.13), we have the exact sequence

0 −→ OS −→ D −→ R0f∗(TC/S) −→ 0,

describing our quaternion algebra D, where the last term has been identified with so(Q).

Because the Lie algebra so(3) is self-dual (i.e., the adjoint representation is self-dual), du-

alizing this sequence gives

0 −→ so(Q)∨ −→ D∨ −→ OS −→ 0,

where the last map is just the trace map. Note furthermore that D∨ = Dop is actually

isomorphic to D, since D gives rise to a two-torsion element of the Brauer group of S.

Another way to see this duality is by the definition of D, since End(E) is self-dual:

D = f∗(f
∗(D)) = f∗(End(E)) = f∗(End(E)

∨) = f∗(f
∗(Dop)) = Dop.

We thus have the exact sequence

0 // so(Q)
τ // D

Tr // OS
// 0 (6.16)

where τ is a map of Lie algebras and Tr is the trace map. We may identify so(Q) with the
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Lie algebra Lie(Spin(Q)) of the group Spin(Q) and D with the tangent space Lie(D∗) of its

units D∗. Using these identifications, the fact that Spin(Q) is simply connected, and the

exponential map, we obtain a map τ̃ : Spin(Q)→ D∗ such that Lie(τ̃) = τ . Étale localizing

on S shows that this map induces an isomorphism of Spin(Q) with the group GD of norm

1 units.

On the other hand, a nondegenerate ternary quadratic form Q gives rise, via Proposition

6.13, to the Azumaya algebra isomorphic to the even part C+(Q) of the Clifford algebra

Cliff(Q) to Q. The group Spin(Q) is, by definition, a subgroup of C+(Q)∗, and for dimension

reasons, Spin(Q) coincides with the group GC+(Q) of norm 1 units in C+(Q).

Over a base scheme S, the Brauer-Severi variety underlying an Azumaya algebra A of

dimension 4 can be recovered from its group GA of norm 1 units as the space B(GA) of Borel

subgroups of GA. Hence, the group GA determines the Brauer-Severi variety associated to

A and thus the Brauer class of A. Because two algebras with the same dimension and same

Brauer class are isomorphic, two central simple algebras of dimension 4 with the same group

of norm 1 units are isomorphic.

In the case at hand, we have, from a nondegenerate ternary quadratic form Q, con-

structed two quaternion algebras–one geometrically as f∗(End(E)) and one as the even part

of the Clifford algebra associated to Q—and their groups of norm 1 units are isomorphic.

Therefore, we have the following proposition:

Proposition 6.17. Let R be a local ring and S = Spec R. Given an irreducible ternary

quadratic form (W,OS , Q) over S, the quaternion algebras D(C(Q)) and C+(Q) are iso-

morphic.

Despite the initial assumption on the base scheme, the result holds more generally. In

particular, we have shown that there are morphisms between every pair of the three stacks

in diagram (6.11), and locally the diagram commutes. Therefore, because each vertex of the

diagram (6.11) is a stack, we find that the morphisms commute globally.
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Theorem 6.18. The stacks below are all equivalent:

{
nondegenerate ternary

quadratic forms

}

88

§6.2.1

xxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q ee

§6.2.2

%%K
KK

KK
KK

KK
KK

KK
KK

KK
KK

KK

{smooth genus zero curves}
×

{line bundles}

oo
§6.1

//
{quaternion algebras}

×
{line bundles}

and the diagram commutes.
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Chapter 7

The Way Ahead

In this final chapter, we suggest a few natural generalizations and applications of the orbit

parametrizations discussed in this thesis.

We have described, in Chapters 2 to 5, moduli spaces of geometric objects corresponding

to orbits of representations of 3×n×n and 2× 2×m×m boxes. Orbit problems of other

representations of reductive groups may be described as geometric moduli spaces using

the same techniques. Boxes of other dimensions and sizes also naturally correspond to

moduli problems, e.g., orbits of d× n× n boxes give rise to degree d hypersurfaces in Pn−1

and line bundles, with certain cohomological conditions. Of course, we need not restrict

ourselves to standard tensor representations of products of general linear groups. Not only

may we change the action of the groups on these tensor spaces, but we also may consider

other reductive groups. In fact, the space of 2× 2×m×m boxes is closely related to

the standard tensor representation of SO4 ×GLm ×GLm. More generally, representations

involving orthogonal, symplectic, or even exceptional groups will produce geometric objects

with additional structure.

In our parametrizations, we have not needed to use much of the invariant theory of

each of these spaces. Fully understanding the invariant ring of each representation, e.g.,

the invariants under the action of the product of special linear groups, would produce

explicit equations for the moduli spaces. Also, the invariants in each case have geometric

interpretations, which is much clearer—and perhaps more interesting—in the cases related

to genus one curves. We plan to describe these interpretations in future work.
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Certain cases of the orbit problems, studied in Sections 4.4.1 and 5.4.1, use parametriza-

tions by boxes to exhibit an isomorphism between two geometric moduli spaces. In fact,

both the Reid-Tjurin correspondence between nets of quadrics and plane curves as well as

the trigonal construction of Recillas are special cases of Beauville’s theorem on subvari-

eties of Pryms [Bea82]. It would be worthwhile to investigate whether some more general

parametrizations would recover other similar relationships between moduli spaces of geo-

metric objects, or even better, give new ones.

In Chapter 6, we studied the pairwise relationships between ternary quadratic forms,

genus zero curves, and quaternion algebras. In Bhargava’s classification of integral orbits

of prehomogeneous vector spaces, there are several other representations related to ternary

quadratic forms and quaternion algebras. In future work, we plan to consider these equiv-

alences over arbitrary base schemes and describe the equivalent geometric objects.

Finally, throughout this thesis, we have avoided the so-called degenerate loci of the

representations. A careful analysis of the degenerate orbits, which others have treated in

sporadic cases, would have applications such as compactifying the moduli spaces, thereby

giving a generalization of the moduli problems to bad characteristic and, in fact, the inte-

gers. Fully understanding the integral orbits of these representations will have numerous

arithmetic applications, including improving any potential counting results.

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

—Bilbo Baggins, in The Lord of the Rings
by J.R.R. Tolkein
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terprétations diverses. In Dix Exposés sur la Cohomologie des Schémas, pages
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