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Preface

Traditional approaches to modeling focus on one scale. If our interest is the macroscale

behavior of a system in an engineering application, we model the effect of the smaller

scales by some constitutive relations. If our interest is on the detailed microscopic mech-

anism of a process, we assume that there is nothing interesting happening at the larger

scales, for example, the process is homogeneous at larger scales. Take the example of

solids. Engineers have long been interested in the macroscale behavior of solids. They

use continuum models and represent the atomistic effects by constitutive relations. Solid

state physicists, on the other hand, are more interested in the behavior of solids at the

atomic or electronic level, often working under the assumption that the relevant processes

are homogeneous at the macroscopic scale. As a result, engineers are able to design struc-

tures and bridges, without much understanding about the origin of the cohesion between

the atoms in the material. Solid state physicists can provide such an understanding at a

fundamental level. But they are often quite helpless when faced with a real engineering

problem.

The constitutive relations, which play a key role in modeling, are often obtained

empirically, based on very simple ideas such as linearization, Taylor expansion and sym-

metry. It is remarkable that such a rather simple-minded approach has had so much

success: Most of what we know in applied sciences and virtually all of what we know in

engineering are obtained using such an approach. Indeed the hallmark of deep physical

insight has been the ability to describe complex phenomena using simple ideas. When

successful, we hail such a work as “the strike of a genuis”, as we often say about Landau’s

work. A very good example is the constitutive relation for simple or Newtonian fluids,

which is obtained using only linearization and symmetry, and gives rise to the well-known

Navier-Stokes equations. It is quite amazing that such a linear constitutive relation can

describe almost all the phenomena of simple fluids, which are often very nonlinear, with

vii
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remarkable accuracy.

However, extending these simple empirical approaches to more complex systems has

proven to be a difficult task. A good example is complex fluids or non-Newtonian fluids –

fluids whose molecular structure has a non-trivial consequence on its macroscopic behav-

ior. After many years of efforts, the result of trying to obtain the constitutive relations

by guessing or fitting a small set of experimental data is quite mixed. In many cases,

either the functional form becomes too complicated or there are too many parameters to

fit. Overall, empirical approaches have had limited success for complex systems or small

scale systems for which the discrete or finite size effects are important.

The other extreme is to start from first principles. As was recognized by Dirac

immediately after the birth of quantum mechanics, almost all the physical processes that

arise in applied sciences and engineering can be modeled accurately using the principles

of quantum mechanics. Dirac also recognized the difficulty of such an approach, namely,

the mathematical complexity of the quantum mechanics principles is so great that it

is quite impossible to use them directly to study realistic chemistry, or more generally,

engineering problems. This is true not just for the true first principle, the quantum

many-body problem, but also for other microscopic models such as molecular dynamics.

This is where multiscale modeling comes in. By considering simultaneously models at

different scales, we hope to arrive at an approach that shares the efficiency of the macro-

scopic models as well as the accuracy of the microscopic models. This idea is far from

being new. After all, there has been considerable efforts in trying to understand the re-

lations between microscopic and macroscopic models, for example, computing transport

coefficients needed in continuum models from molecular dynamics models. There have

also been several classical success stories of combining physical models at different levels

of detail to efficiently and accurately model complex processes of interest. Two of the best

known examples are the QM-MM (quantum mechanics–molecular mechanics) approach

in chemistry and the Car-Parrinello molecular dynamics. The former is a procedure for

modeling chemical reactions involving large molecules, by combining quantum mechanics

models in the reaction region and classical models elsewhere. The latter is a way of per-

forming molecular dynamics simulations using forces that are calculated from electronic

structure models “on-the-fly”, instead of using empirical inter-atomic potentials. What

prompted the sudden increase of interest in recent years on multiscale modeling is the

recognition that such a philosophy is useful for all areas of science and engineering, not
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just chemistry or material science. Indeed, compared with the traditional approach of

focusing on one scale, looking at a problem simultaneously from several different scales

and different levels of detail is a much more mature way of doing modeling. This does

represent a fundamental change in the way we view modeling.

The multiscale, multi-physics viewpoint opens up unprecedented opportunities for

modeling. It opens up the opportunity to put engineering models on a solid footing.

It allows us to connect engineering applications with basic science. It offers a more

unified view to modeling, by focusing more on the different levels of physical laws and

the relations between them, with the specific applications as examples. In this way, we

find that our approaches to solids and fluids are very much parallel to each other, as we

will explain later in the book.

Despite the exciting opportunities offered by multiscale modeling, one thing we have

learned during the past decade is that we should not expect quick results. Many funda-

mental issues have to be addressed before its expected impact becomes a reality. These

issues include:

1. A detailed understanding of the relation between the different levels of physical

models.

2. Boundary conditions for atomistic models such as molecular dynamics.

3. Systematic and accurate procedures of coarse-graining.

Without properly addressing these and other fundamental issues, we run the risk of

replacing one set of ad hoc models by another, or by ad hoc numerical algorithms. This

is hardly a step forward.

This volume is intended to present a systematic discussion about the basic issues in

multiscale modeling. The emphasis is on the fundamental principles and common issues,

not on specific applications. Selecting the materials to be covered proves to be a very

difficult task, since the subject is so vast and at the same time, quickly evolving. When

deciding about what should be included in this volume, I have asked the question: What

are the basics that one has to know in order to get a global picture about multiscale

modeling? Since multiscale modeling touches upon almost every aspect of modeling in

almost every scientific discipline, it is inevitable that some of the discussions are very

terse and some important materials are neglected entirely. Nevertheless, we have tried

to make sure that the basic issues are indeed covered.
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The materials in this volume can be divided into two parts: background materials

and general topics to multiscale modeling. Background materials include:

1. Introduction to the fundamental physics models, ranging from continuum mechan-

ics to quantum mechanics (Chapter 4).

2. Basic analytical techniques for multiscale problems, such as averaging methods, ho-

mogenization methods, renormalization group methods, and matched asymptotics

(Chapter 2).

3. Classical numerical techniques that use multiscale ideas (Chapter 3).

For the second part, we have chosen the following topics:

1. Examples of multi-physics models. These are analytical models that use explic-

itly multi-physics coupling (Chapter 5). It is important to realize that multiscale

modeling is not just about developing algorithms, it is also about developing better

physical models.

2. Numerical methods for capturing the macroscopic behavior of complex systems with

the help of microscopic models, in the case when empirical macroscopic models are

inadequate (Chapter 6).

3. Numerical methods for coupling macroscopic and microscopic models locally in

order to better resolve localized singularities, defects or other events (Chapter 7).

We also include three more specific examples: Elliptic partial differential equations with

multiscale coefficients, problems with slow and fast dynamics and rare events. The first

is selected to illustrate the issues with spatial scales. The second and third are selected

to illustrate the issues with time scales.

Some of the background materials have been discussed in numerous textbooks. How-

ever, each one of these textbooks contains materials that are enough for a one-semester

course, and most students and researchers will not be able to afford the time to go through

them all. Therefore, we have decided to discuss these topics again in a simplified fashion,

to extract the most essential ideas that are necessary for a basic understanding of the

relevant issues.

The book is intended for scientists and engineers who are interested in modeling and

doing it right. I have tried to strike a balance between precision, which requires some
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amount of mathematics and detail, and accessibility, which requires glossing over some of

the details and making compromise on precision. For example, we will discuss asymptotic

analysis quite systematically, but we will not discuss the related theorems. We will always

try to use the simplest examples to illustrate the underlying ideas, rather than dwelling

on particular applications.

Many people helped to shape up my view on multiscale modeling. Björn Engquist

introduced me to the subject while I was a graduate student, at a time when multiscale

modeling was not exactly a fashionable area to work on. I have also benefitted a lot from

the other mentors I have had at different stages of my career, they include Alexdandre

Chorin, Bob Kohn, Andy Majda, Stan Osher, George Papanicolaou, and Tom Spencer.

I am very fortunate to have Eric Vanden-Eijnden as a close collaborator. Eric and I

discuss and argue about the issues discussed here so often that I am sure his views

and ideas are reflected in many parts of this volume. I would like to thank my other
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Chapter 1

Introduction

1.1 Examples of multiscale problems

Whether we explicitly recognize it or not, multiscale phenomena are part of our daily

lives. We organize our time in days, months and years, as a result of the multiscale

dynamics of the solar system. Our society is organized in a hierarchical structure, from

towns to states, countries and continents. Such a structure has its historical and political

origin, but it is also a reflection of the multiscale geographical structure of the earth.

Moving into the realm of modeling, an important tool for studying functions, signals

or geometrical shapes is to decompose them according to their components at different

scales, as is done in Fourier or wavelet expansion. From the viewpoint of physics, all ma-

terials at the microscale are made up of the nuclei and the electrons, whose structure and

dynamics are responsible for the macroscale behavior of the material, such as transport,

wave propagation, deformation and failure.

In fact, it is not an easy task to think of a situation that does not involve any multiscale

characters. Therefore, speaking broadly, it is not incorrect to say that multiscale modeling

encompasses almost every aspect of modeling. However, with such a broad view, it would

be impossible to carry out a serious discussion in any kind of depth. Therefore we will

adopt a narrower viewpoint and focus on a number of issues for which the multiscale

character is the dominating issue and is exploited explicitly in the modeling process.

This includes analytical and numerical techniques that exploit the disparity of scales, as

well as multi-physics problems. Here “multi-physics problems” is perhaps a misnomer,

what we have in mind are problems that involve physical laws at different levels of detail,

1
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such as quantum mechanics and continuum models. We will start with some simple

examples.

1.1.1 Multiscale data and their representation

A basic multiscale phenomenon comes from the fact that signals (functions, curves,

images) often contain components at disparate scales. One such example is shown in

Figure 1.1 which displays an image that contains large scale edges as well as textures

with small scale features. This observation motivated the decomposition of signals into

different components according to their scales. Classical examples of such decomposition

include the Fourier decomposition and wavelet decomposition [21].

Figure 1.1: An image with large scale edges and small scale textures (from TG Planimetric)

1.1.2 Differential equations with multiscale data

Propagation of wave packets

Consider the wave equation:

∂2
t u = ∆u (1.1.1)

This is a rather innocent looking differential equation that describes wave propagation.

Consider now the propagation of a wave packet, which is a solution of (1.1.1) with initial
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Figure 1.2: An example of a wave packet

condition of the form:

u(x, 0) = A(x)eiS(x)/ε (1.1.2)

where A, S are smooth functions. As always, we will assume that ε ≪ 1. There are

clearly two scales in this problem: The short wavelength ε and the scale of the envelop

of the wave packet, which is O(1). One can exploit this disparity between the two scales

to find simplified treatment of this problem, as is done in geometric optics. For a review

of the diffferent numerical algorithms for treating this kind of problems, we refer to [39].

Mechanics of the composite materials

The mechanical deformation of a material is described by the equations of elasticity

theory:

∇ · τ = 0

τ = λ(∇ · u)I + µ(∇u + (∇u)T ) (1.1.3)

where u is the displacement field, τ is the stress tensor. The first equation describes

force balance. The second equation is the constitutive relation, in which λ and µ are the

Lamé constants that characterize the material.

To model composite materials, we may simply take

λ(x) = λε(x), µ(x) = µε(x) (1.1.4)

where ε is some small parameter that measures the scale of the heterogeneity of the

material. For example, for a two-phase composite (see Figure 1.3), λ and µ take one set
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of values in one phase and another set of values in the other phase. If the microstructure

happens to be periodic, then we have

λε(x) = A
(x

ε

)
, µε(x) = B

(x

ε

)
(1.1.5)

where A and B are periodic functions. However, in most cases in practice, the microstruc-

ture tends to be random rather than periodic. A detailed account of such issues can be

found in [44].

Figure 1.3: An example of a two-phase composite material (courtesy of Sal Torquato).

1.1.3 Differential equations with small parameters

Consider the Navier-Stokes equation for incompressible flows at large Reynolds num-

ber:

ρ0(∂tu + (u · ∇)u) +∇p =
1

Re
∆u + f , (1.1.6)

∇ · u = 0. (1.1.7)

Here u is the velocity field, p is the pressure field, ρ0 is the (constant) density of the

fluid, and Re≫ 1 is the Reynolds number. In this example, the highest order derivative

in the differential equation has a small coefficient. This has some rather important

consequences, for example:
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1. The occurence of boundary layers

2. The occurence of turbulent flows with vortices over a large range of scales.

PDEs of this type, in which the highest order derivatives have small coefficients, are

examples of singular perturbation problems. In most cases, the solutions to such singular

perturbation problems contain features at disparate scales.

1.2 Multi-physics problems

1.2.1 Examples of scale-dependent phenomena

We will discuss some well-known examples in which the system response exhibits a

transition as a function of the scales involved.

Black-body radiation

Our first example is black-body radiation. Let eT (λ) be the energy density of the

radiation of a black body at temperature T and wavelength λ. Classical statistical

mechanics consideration leads to Rayleigh’s formula

eT (λ) =
8π

λ4
kBT, (1.2.1)

where kB is the Boltzmann constant. This result fits very well with the experimental

results at long wavelength, but fails drastically at short wavelength. The reason, as was

discovered by Planck, is that at short wavelength, quantum effects become important.

Planck postulated that the energy of a photon has to be an integer multiple of hν where

h is now known as the Planck constant and ν is the frequency of the photon. If quantum

effect is taken into consideration, one arrives at Planck’s formula

eT (λ) =
8πhc

λ5

1

ehc/kBTλ − 1
(1.2.2)

where c is the speed of light. This result agrees very well with experimental results at

all wavelength [34]. Note that Planck’s formula reduces to Rayleigh’s formula at long

wavelength.

Knudsen number dependence of the heat flux in channel flows
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Consider gas flow between two parallel plates, one is stationary and the other moves

with a constant speed. The two plates are held at uniform temperature T0 and T1

respectively. We are interested in the heat flux across the channel as a function of the

Knudsen number, which is the ratio between the mean free path (the average distance

that a gas particle travels before colliding with another gas particle) of the gas particles

and the channel width. What is interesting is that the dependence of the heat flux as

a function of the Knudsen number is non-monotonic: At small Knudsen number, the

heat flux increases as a function of the Knudsen number. At large Knudsen number, it

decreases as a function of the Knudsen number [42]. This phenomenon can be understood

as follows. When the Knudsen number is very small, there is little heat conduction since

the gas is very close to local equilibrium. In this regime, the dynamics of the gas is

very well described by Euler’s equations of gas dynamics. Heat conduction is a higher

order effect (see Section 4.3). If the Knudsen number is very large, then effectively the

gas particles undergo free streaming. There is little momentum exchange between the

particles since collisions are rare. Hence there is not much heat flux either. In this case,

the dynamics of the gas can be found by solving Boltzmann’s equation with the collision

term neglected (see Section 4.3). We see that the origin for the reduced heat conduction

in the two regimes is very different.

The reverse Hall-Petch effect

In the early 1950’s, Hall and Petch independently found that the yield strength of

a material increases as the size of the grains that make up the material decreases [30],

according to the equation:

σ = σ0 +
k√
d

where k is some strengthening coefficient characteristic to the material, d is the charac-

teristic grain size. Roughly speaking, this is due to the fact that grain boundaries impede

dislocation motion.

Recent experiments on many nanocrystalline materials demonstrate that if the grains

reach a critical size which is typically less than 100nm, the yield strength either remains

constant or decreases with decreasing grain size (see Figure 1.4) [20, 41]. This is called the

reverse Hall-Petch effect. The exact mechanism may depend on the specific material. For

example, in copper, it is suggested that the mechanical response changes from dislocation-

mediated plasticity to grain boundary sliding, as the grain size is decreased to about 10
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to 15 nanometers [41].

Figure 1.4: An illustration of the Hall-Petch and reverse Hall-Petch effects (from Wikipedia)

All three examples discussed above exhibit a change of behavior as the scales involved

change. The change of behavior is the result of the change of the dominating physical

effects in the system.

1.2.2 Deficiencies of the traditional approaches to modeling

Central to any kind of coarse-grained models is the constitutive relation which rep-

resents the effect of the microscopic processes at the macroscopic level. In engineering

applications, the constitutive relations are often modeled empirically based on very simple

considerations such as:

1. second law of thermodynamics;

2. symmetry and invariance properties;

3. linearization or Taylor expansion.
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These empirical models have been very successful in applications. However, in many

cases, they are inadequate, due either to the complexity of the system or the fact that

they lack crucial information about how the microstructure influences the macroscale

behavior of the system.

Take the incompressible fluid flow as an example. Conservation of mass and momen-

tum gives

ρ0(∂tu + (u · ∇)u) = ∇ · τ, (1.2.3)

∇ · u = 0. (1.2.4)

Here in order to write down the momentum conservation equation, we have to introduce

τ , the stress tensor. This is an object introduced at the continuum level to represent the

short range interaction between the molecules. Imagine a small piece of surface inside

the continuous medium, the stress τ represents the force due to the interaction between

the molecules on both sides of the surface. Ideally the value of τ should be obtained

from the information about the dynamics of the molecules that make up the fluid. This

would be a rather difficult task. Therefore in practice, τ is often modeled empirically,

through intelligent guesses and calibration with experimental data. For simple isotropic

fluids, say made up of spherical particles, isotropy and Galilaean invariance implies that

τ should not depend on u. Hence the simplest guess is that τ is a function of ∇u. In

the absence of further information on the behavior of the system, it is natural to start

with the simplest choice, namely that τ is a linear function of ∇u. In any case, every

function is approximately linear in appropriate regimes. Using isotropy, we arrive at the

constitutive relation for Newtonian fluids:

τ = −pI + µ(∇u + (∇u)T ) (1.2.5)

where p is the pressure. Substituting this constitutive relation into the conservation laws

leads to the well-known Navier-Stokes equation.

It is remarkable that such simple-minded consideration yields a model, the Navier-

Stokes equation, which has proven to be very accurate in describing the dynamics of

simple fluids under a very wide range of conditions. Partly for this reason, a lot of effort

has gone into extending such an approach to modeling complex fluids such as polymeric

fluids. However, the result there is rather mixed [12]. The accuracy of such constitutive

laws is often questionable. In many cases, the constitutive relations become quite compli-

cated. Too many parameters need to be fitted, the physical meaning of these parameters
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becomes obscure. Consequently the original appeal of simplicity and universality is lost.

In addition, there are no systematic ways of developing such empirical constitutive re-

lations. A constitutive relation obtained by calibrating against one set of experimental

data may not be useful in a different experimental setting. More importantly, such an ap-

proach does not contain any explicit information about the interaction between fluid flow

and the conformation of the molecules, which might be exactly the kind of information

that we are most interested in.

The situation described above is rather generic. Indeed empirical modeling of consti-

tutive relations is a very popular tool used in many areas, including:

1. Constitutive relations in elasticity and plasticity theory of solids

2. Empirical potentials in molecular dynamics

3. Empirical models of reaction kinetics

4. Hopping rates in kinetic Monte Carlo models

5. Collision cross section for the kinetic theory of gases

These constitutive relations are typically quite adequate for simple systems, such as small

deformation of solids, but fails for complex systems. When empirical models become

inadequate, we have to replace them by more accurate models that rely more on a

detailed description of the microscopic processes.

The other extreme is the quantum many-body theory which is the true first principle.

Assume that our system of interest hasM nuclei andN electrons. At the level of quantum

mechanics, this system is described by a wavefunction of the form (neglecting spins):

Ψ = Ψ(R1,R2, · · · ,RM , r1, r2, · · · , rN)

The Hamiltonian for this system is given by:

H = −
M∑

J=1

~
2

2MJ

∇2
RJ
−

N∑

k=1

~
2

2me

∇2
rk

+
∑

J<K

ZJZK
|RJ −RK |

−
∑

J,k

ZJ
|RJ − rk|

+
∑

i<j

1

|ri − rj|
(1.2.6)

where ZJ is the nuclear charge of the J-th nucleus. Here all we need in order to analyze a

given system is to input the atomic numbers for the atoms in the system and then solve the
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Schrödinger equation. There are no empirical parameters to fit! The difficulty, however,

lies in the complexity of its mathematics. This situation is very well summarized by the

following remark of Paul Dirac, made shortly after the discovery of quantum mechanics

[22]:

“The underlying physical laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known, and the difficulty is

only that the exact application of these laws leads to equations much too complicated to

be soluble.”

The mathematical complexity noted by Dirac is indeed quite daunting: The wave-

functions have as many (or, three times as many) independent variables as the number

of electrons and nuclei in the system. If the system has 1030 electrons, then the wave-

function has 3 × 1030 independent variables. Obtaining accurate information for such

a function is quite an impossible task. In addition, such a first principle model often

gives far too much information, most of which is not really of any interest. Getting the

relevant information from this vast amount of data can also be quite a challenge.

This dicotomy is the kind of situation that we encounter for many problems: Empiri-

cally obtained macroscale models are very efficient but are often not accurate enough, or

lack crucial microstructural information that we are interested in. Microscopic models,

on the other hand, may offer better accuracy, but they are often too expensive to be

used to model systems of real interest. It would be nice to have a strategy that combines

the efficiency of macroscale models and the accuracy of microscale models. This is a tall

order, but is precisely the motivation for multiscale modeling.

1.2.3 The multi-physics modeling hierarchy

Between the macroscale models and the quantum many-body problem lie a hierarchy

of other models, which are better suited at the appropriate scales. This is illustrated in

Figure 1.5. A more detailed description of this modeling hierarchy is shown in Table 1.5.

In traditional approaches to modeling, we tend to focus on one particular scale, the

effects of smaller scales are modeled through the constitutive relation, effects of larger

scales are neglected by assuming that the system is homogeneous at larger scales. The

philosophy of multiscale, multi-physics modeling is the opposite. It is based on the
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Figure 1.5: Commonly used models of physics at different scales

viewpoint that:

1. Any system of interest can always be described by a hierarchy of models of dif-

ferent complexity. This allows us to think about more detailed models when a

coarse-grained model is no longer adequate. It also gives us a basis for understand-

ing coarse-grained models from more detailed ones. In particular, when empiri-

cal coarse-grained models are inadequate, one might still be able to capture the

macroscale behavior of the system with the help of the microscale models.

2. In many situations, the system of interest can be described adequately by a coarse-

grained model, except in some small regions where more detailed models are needed.

These small regions may contain singularities, defects, chemical reactions, or some

other interesting events. In such cases, by coupling models of different complexity in

different regions, we may be able develop modeling strategies that have an efficiency

that is comparable to the coarse-grained models, as well as an accuracy that is

comparable to that of the more detailed models.

Such strategies have already been explored for quite some time. Two classical exam-

ples are the QM-MM (quantum mechanics-molecular mechanics) modeling of chemical

reactions involving macromolecules, initiated in the 1970’s by Warshel and Levitt [48],
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Gases, plasmas Liquids Solids

Gas dynamics Hydrodynamics Elasticity models

MHD (Navier-Stokes) Plasticity models

Dislocation dynamics

Kinetic theory Kinetic theory

Brownian dynamics Kinetic Monte Carlo

Particle models Molecular dynamics Molecular dynamics

Quantum mechanics Quantum mechanics Quantum mechanics

Table 1.1: The multi-physics hierarchy

and the first-principle-based molecular dynamics, initiated in the 1980’s by Car and Par-

rinello [16]. Both methods have been very successful and have become standard tools in

computational science. However, what triggered the wide-spread of interest on multiscale

modeling in recent years is the realization that such strategies are useful not just for a

few isolated problems, but for a very wide spectrum of problems in all areas of science

and engineering. This is indeed a conceptual breakthrough, and a much more mature

viewpoint on modeling.

To make this really useful, we need to understand the relation between the different

models and how to formulate coupled models. Much of the present volume is devoted to

these issues.

1.3 Analytical methods

We will begin with a discussion of the most important analytical techniques for mul-

tiscale problems. We will focus on asymptotic analysis tools since they tend to be most

effective. It should be emphasized that these asymptotic techniques are not blank checks.

To use them effectively, one often has to have some intuition about how the solutions be-

have. The asymptotic techniques can then be used as a systematic procedure for refining

that intuition and giving quantitatively accurate predictions.

Matched asymptotics

This is useful for problems whose solutions undergo rapid variations in localized re-



1.4. NUMERICAL METHODS 13

gions. These localized regions are called inner regions. Typical examples are problems

with boundary layers or internal layers. Matched asymptotics is a systematic way of

finding approximate solutions to such problems, by introducing stretched variables in

the inner region and matching the approximate solutions in the inner and outer regions.

As a result, we often find that the profile of the solution in the inner region is rather

rigid and is parametrized by a few parameters or functions which can be obtained from

the solutions in the outer region.

Averaging and homogenization methods

This is a systematic procedure based on the multiscale expansion [9, 32]. In the case

of ODEs, the objective is to find effective dynamical equations for the slow variables by

averaging out the fast variables. There is a natural extension of such techniques to PDEs,

for example, discussed in [10].

Scaling and renormalization group methods

Another important technique is scaling. In its simplest form, it is dimensional analy-

sis. A more systematic approach is the renormalization group analysis, which has become

a very powerful tool in analyzing complex systems.

1.4 Numerical methods

1.4.1 Linear scaling algorithms

We will distinguish two different classes of multiscale algorithms. The first class are

algorithms that aim at resolving efficiently the details of the solutions, including the de-

tailed small scale behavior. Multigrid method (MG), the fast multipole method (FMM),

and adaptive mesh refinement (AMR) are examples of this type. They all make heavy use

of the multiscale structure of the problem. We call these classical multiscale algorithms.

These are typically linear scaling algorithms, in the sense that their computational com-

plexity scales linearly with the number of degrees of freedom necessary to represent the

detailed microscale solution. We are also going to include the domain decomposition

method (DDM). Even though it relies less on the multiscale structure of the problem,

it does provide a platform on which multiscale methods can be constructed, particularly

for the kind of problems discussed in Chapter 7 for which the solutions behave very
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differently on different domains.

1.4.2 Sublinear scaling algorithms

Recent efforts on multiscale modeling have focused on sublinear scaling algorithms.

These are algorithms whose computational complexity scales sublinearly with the number

of degrees of freedom necessary to represent the detailed microscale solution:

Computational complexity

Number of degrees of freedom for the microscale model
≪ 1

This may seem too good to be true. Indeed it is only possible to construct such algorithms

1. if our aim is to resolve certain features of the microscale solution such as some

averaged quantities, not its detailed behavior; and

2. if the microscale model has some particular features that we can take advantage of.

A typical example of such particular features is scale separation.

Even though multiscale problems are typically quite complicated, one main objective of

multiscale modeling is to identify special classes of such problems for which it is possible

to develop simplified descriptions or algorithms. The efficiency of these algorithms relies

on these special features of the problem. Therefore they are less general than the linear

scaling algorithms discussed earlier. A good example for illustrating this difference is the

Fourier transform. The well-known fast Fourier transform (FFT) is almost linear scaling

and is completely general. However, if the Fourier coefficients are sparse, then one can

develop sublinear scaling algorithms, as was done in [28]. Of course it is understood

that the improved efficiency of such sublinear scaling algorithms can only be expected

for special situations, i.e. when the Fourier coefficients are sparse.

In practice there may not be a sharp division between linear and sublinear scaling

algorithms.

1.4.3 Type A and type B multiscale problems

It is helpful to distinguish two classes of multiscale problems. The first are problems

with local defects or singularities, such as dislocations, shocks and boundary layers, for

which a macroscale model is sufficient for most of the physical domain and the microscale
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model is only needed locally around the singularities or heterogeneities. The second class

of problems are those for which the microscale model is needed everywhere either as a

supplement to or as the replacement of the macroscale model. This occurs, for example,

when the microscale model is needed to supply the missing constutitive relation in the

macroscale model. We will call the former type A problems and the latter type B problems

[24]. The central issues and the main difficulties can be quite different for the two classes

of problems. The standard approach for type A problems is to use the microscale model

near defects or heterogeneities and the macroscale model elsewhere. The main question

is how to couple these models at the interface where the two models meet. The standard

approach for type B problems is to couple the macro and micro models everywhere in

the computational domain, as is done in the heterogeneous multiscale method (HMM)

[24]. Note that for type A problems, the macro-micro coupling is localized. For type B

problems, coupling is done over the whole computational domain.

1.4.4 Concurrent vs. sequential coupling

Historically, multiscale (multi-physics) modeling was first used in the form of sequen-

tial (or serial) coupling: The macroscopic model was determined first, except for some

parameters, or functions, which are then computed or tabulated using a microscopic

model. Function values that are not found in the table can be obtained using interpola-

tion. At the end of this procedure, one has a macroscopic model which can then be used

to analyze the macroscopic behavior of the system under different conditions. For obvious

reasons, this coupling procedure is also called precomputing, or microscopically-informed

modeling. A typical example is found in gas dynamics, where one often precomputes the

equation of state using kinetic theory and stores it as a look-up table. This information

is then used in Euler’s equations of gas dynamics to simulate gas flow under different

conditions. When modeling porous medium flows, a common form of upscaling is to pre-

compute the effective permeability tensor K(x) using the representative averaging volume

(RAV) technique [8]: One considers a domain of suitable size (i.e. the representative av-

eraging volume) around x, and solves the microscale model in that domain. The result

is then suitably averaged to give K(x) [23]. Finally, this effective permeability tensor is

used in Darcy’s law

v(x) = −K(x)∇p(x), ∇ · v(x) = 0
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to compute the pressure field on larger scale. More recently, such a sequential multiscale

modeling strategy has been used to study macroscopic properties of fluids and solids using

parameters that are obtained successively starting from models of quantum mechanics

[19, 46].

If the missing information is a function of many variables, then precomputing such

a function might be too costly. For this reason, sequential coupling has been limited

mainly to situations when the needed information is just a small number of parameter

values or functions of very few variables. Indeed, for this reason, sequential coupling is

often referred to as parameter passing.

An alternative approach is to obtain the missing information “on the fly” as the

computation proceeds. This is commonly referred to as the concurrent coupling approach

[1]. It is preferred when the missing information is a function of many variables. Assume

that we are solving a macroscopic model in d dimension, with mesh size ∆x, and we

need to obtain some data from a microscopic model at each grid point. The number of

data evaluation in a concurrent approach would be roughly O((∆x)−d). In a sequential

approach, assuming that the needed data is a function of m variables, then the number

of force evaluation in the precomputing stage would be O(h−m) if a uniform grid of size

h is used in the computation. Assuming that h ∼ ∆x, then the concurrent approach is

more efficient if m > d. This is certainly the case in Car-Parrinello molecular dynamics

(see Chapter 6) where the inter-atomic forces are functions of all atomic coordinates.

Hence m can easily be on the order of thousands.

However, as was pointed out in [27], the efficiency of precomputing can be im-

proved with more efficient look-up tables and interpolation techniques. For example,

if sparse grids are used and if the grid size is h, then the number of grid points needed

is O(| log(h)|m−1/h). This is significantly less than the cost on the uniform grid, making

precomputing quite feasible if m is below 8 or 10. Examples of the application of sparse

grids to sequential coupling can be found in [27].

The most appropriate approach for a particular problem depends a lot on how much

we know about the macroscale process. Take again the example of incompressible fluids.

We know that the macroscale model should be in the form of (1.2.3). The only issue is

the form or expression of τ . We can distinguish three cases.

1. A linear constitutive relation is sufficiently accurate. We only need to know the

value of the viscosity coefficient µ in (1.2.5).
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2. It is enough to assume that τ depends on (the symmetric part of) ∇u. We then

need to know the function τ = τ(∇u).

3. τ depends on many more variables than ∇u, e.g. τ may depend on some additional

order parameters.

In the first case, we may simply precompute the value of µ using the microscale model.

In the second case, τ is effectively a function of five variables. Precomputing such a

function is a lot harder, but might still be feasible using some advanced techniques such

as sparse grids [50, 15]. In the third case, most likely precomputing becomes practically

impossible, and we have to obtain τ “on the fly” as the computation proceeds.

Most current work on multiscale modeling focuses on concurrent coupling, so will

the present volume. We should note though that in many cases, the technical issues in

sequential and concurrent coupling are quite similar. For example, one main problem in

sequential coupling is how to set up the microscale model in order to compute the needed

constitutive relation. This is also a major problem in concurrent coupling.

1.5 What are the main challenges?

Even though there is little doubt that multiscale modeling will play a major role in

scientific modeling, the challenges are quite daunting in order to put multiscale modeling

on a solid foundation. Here is a brief summary of some of these challenges.

1. Basic understanding of the physical models at different scales. Before we start

coupling diffferent levels of physical models, we need to understand the basic formulation

and properties of each of these models. Although our understanding of macroscopic

models (say from continuum mechanics) has reached some degree of maturity, we can

not draw the same conclusion about our understanding of microscopic models such as

electronic structure or molecular dynamics models. One example is the issue of boundary

condition. Typically, it is only understood how to apply periodic or vaccum boundary

conditions for these models. Since we are limited to rather small systems when conducting

numerical calculations using these models, it is quite unsatisfactory that we have to waste

a large amount of computational resources just to make the system artificially periodic.

Just imagine what it would be like if we only know how to deal with periodic conditions for

continuum models! An example of what might happen when other boundary conditions
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are used is displayed in Figure 1.6. It shows the results of molecular dynamics simulation

of crack propagation using Dirichlet type of boundary conditions, i.e. the positions of

the atoms at the boundary are prescribed. As the simulation proceeds, phonons (lattice

waves) are generated and they quickly reach the boundary of the simulation domain and

are then reflected. The reflected phonons interfere with the dynamics of the crack. In

extreme situations, phonon reflection may cause the crystal to melt.

2. Understanding how models of different complexity are related to each other. Ide-

ally, we should be able to derive coarse-grained models from more detailed ones in the

appropriate limit. This would provide a link between the macroscopic and microscopic

models.

3. Understanding how models of different complexity can be coupled together smoothly,

without creating artifacts. When different models are coupled together, large errors often

occur at the interface where the two models meet, and sometimes these errors can pollute

a much larger part of the physical domain and even cause numerical instabilities.

4. Understanding how to formulate models at intermediate levels of complexity, or

“mesoscale models”. One example of such a kind of model is the Ginzburg-Landau model

for phase transition. It is at an intermediate level of detail between atomistic and hydro-

dynamic models. It is very convenient for many purposes since it is a continuum model.

This is why phase field models have become quite popular even though most of them

are quite empirical. Such mesoscopic models are needed particularly for heterogeneous

systems such as macromolecules.

1.6 Notes

It is very hard to do justice to the massive amount of work that has been done on

multiscale modeling. On the mathematical side, Fourier expansion is clearly a form of

multiscale representation. On the physical side, it is not a stretch to say that multiscale,

multi-physics ideas played a role in most of the major developments in theoretical physics.

As we explained earlier, Planck’s theory of black body radiation is a good example of

multi-physics modeling. Statistical physics has provided a microscopic foundation of

thermodynamics. Cauchy, for example, explored the connection between elasticity theory

and atomistic models of solids, and derived the celebrated Cauchy’s relation between the

elastic moduli of solids for certain class of atomistic models (see Chapter 4 for more
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Figure 1.6: Phonon reflection at the boundary in a molecular dynamics simulation of crack

propagation (from [31])

details). Cauchy’s work was continued by Born and others, and has led to a microscopic

foundation for the continuum theory of solids [13]. Multiscale ideas were certainly quite

central to the kinetic theory of gases developed by Boltzmann, Maxwell and others,

which has led to a microscopic foundation of gas dynamics [37]. In the 1950’s Tsien

pushed for a program, called “Physical Mechanics”, which is aimed at establishing a solid

microscopic foundation for continuum mechanics [45]. This tradition has been continued,

notably in the mathematical physics community through its work on understanding the

thermodynamic limit, kinetic limit, and hydrodynamic limit [38, 43].

In another direction, mesoscopic models such as phase-field models and lattice Boltz-

mann methods, which were initially developed as approximation methods to other exist-

ing macroscopic models motivated by microscopic considerations, now have a life of their

own, and are sometimes used as fundamental physical models [2, 17].

The development of analytical techniques for tackling multiscale problems also has a

long history. Boundary layer analysis, initiated by Prandtl more than a centrury ago, is

an example of this kind. Averaging methods for systematically removing secular terms

in ODEs with multiple time scales, are also early examples of such analytical techniques.

Another well-known classical example is the WKB method. These asymptotic analysis

techniques have now become standard tools used in many different areas. They have also

formed a subject of their own [9, 32]. Of particular importance for the modern develop-
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ment of multiscale modeling is the homogenization method, which can be considered as

an extension of the averaging technique for PDE problems [10, 36].

A very powerful tool in harmonic analysis, a subject of mathematics, is to (dyadically)

decompose functions or objects into components with different scales. Starting with the

work of Haar and Stromberg, this effort eventually led to the wavelet representation

which is now widely used [21]. Multiscale analysis has also been an important tool in

other branches of mathematics, such as mathematical physics, dynamical systems and

partial differential equations.

Another important tool for analyzing scales is scaling. It has its origin in the di-

mensional analysis techniques commonly used in engineering and science, as a quick way

to grasp the most important features of a problem. The most spectacular application

of scaling, to this day, is still the work of Kolmogorov on the small scale structure of

fully developed turbulent flows. A significant step was made by Wilson and others in the

development of the renormalization group method (see Chapter 2 for more details). This

is a systematic procedure for analyzing the scaling properties of rather complex systems.

An alternative viewpoint was put forward by Barenblatt [7].

Perhaps the most powerful idea in multiscale analysis is renormalization and renor-

malization group methods [49]. It has become an essential component in modern physics.

Yet from a mathematical viewpoint, it still remains to be quite mysterious. This is quite

disturbing, since in the end, these are mathematical techniques for taking infra-red or

ultraviolet limits, and finding effective models.

Also important is the work of Mori and Zwanzig which provides a general formalism

for eliminating degrees of freedom in a system [35, 51]. Its importance lies in its generality.

It may provide a general principle using which reduced models can be derived, as well as

a starting point for making systematic approximations of the original microscale model

[18, 33].

Turning now to algorithms, it is fair to say that multiscale ideas are behind some of the

most successful numerical algorithms used today, including the multi-grid method and

the fast multi-pole method [14, 29]. These algorithms are designed for general problems,

but they rely heavily on the ideas of multiscale decomposition. Adaptive methods, such

as adaptive mesh refinement or ODE solvers with adaptive step size control, have also

used multiscale thinking in one way or another. In particular, implicit schemes are rather

powerful multiscale techniques for a class of ODEs with multiple time scales: They allow
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us to capture the large scale features without resolving the small scale transients.

Ivo Babuska pioneered the study of numerical algorithms for PDEs with multiscale

data. Babuska’s focus was on finite element methods for elliptic equations with multiscale

coefficients. Among other things, Babuska discussed the inadequacies of the homogeniza-

tion theory and the necessity to include at least some small scale features [3, 4]. Babuska

and Osborn also proposed the generalized finite element method which lies at the heart

of modern multiscale finite element methods (see Chapter 8 for details) [6]. Engquist

considered hyperbolic problems with multiscale data and explored the possibility of cap-

turing the macroscale behavior of the solutions without resolving the small scale details

[26].

As mentioned earlier, there is a very long history of multi-physics modeling using

sequential coupling, i.e. precomputing crucial parameters or constitutive relations using

microscale models. The importance of concurrent coupling was emphasized in the work

of Car and Parrinello [16], as well as the earlier work of Warshel and Levitt [48] on QM-

MM methods (see also [47]). In recent years, we have seen a drastic explosion of activity

on this style of work. Indeed, one main purpose of the present volume is discuss the

foundation of this type of multiscale modeling.



22 CHAPTER 1. INTRODUCTION



Bibliography

[1] F.F. Abraham, J.Q. Broughton, N. Bernstein and E. Kaxiras, “Concurrent coupling

of length scales: methodology and application,” Phys. Rev. B, vol. 60, no. 4, pp.

2391–2402, 1999.

[2] D. Anderson, G. McFadden and A. Wheeler, “Diffuse-interface methods in fluid

mechanisms,” Ann. Rev. Fluid Mech. 30, pp. 139–165, 1998.

[3] I. Babuska, “Solution of interface by homogenization, I, II, III,” SIAM J. Math.

Anal., vol. 7, pp. 603–645, 1976; vol. 8, pp. 923–937, 1977.

[4] I. Babuska, “Homogenization and its applications, mathematical and computational

problems,” Numerical Solutions of Partial Differential Equations-III, B. Hubbard

ed., Academic Press, New York, pp. 89–116, 1976.

[5] I. Babuska, G. Caloz anf J. Osborn, “Special finite element methods for a class of

second order elliptic problems with rough coefficients,” SIAM J. Numer. Anal., vol.

31, pp. 945–981, 1994.

[6] I. Babuska and J. E. Osborn, “Generalized finite element methods: Their perfor-

mance and their relation to mixed methods,” SIAM J. Numer. Anal., vol. 20, no. 3,

pp. 510–536, 1983.

[7] G. I. Barenblatt, Scaling, Cambridge University Press, 2003.

[8] J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in

Porous Media, Kluwer Academic Publisher, London, 1990.

[9] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and

Engineers, McGraw-Hill Book Company, New York, 1978.

23



24 BIBLIOGRAPHY

[10] A. Bensoussan, J.L. Lions and G.C. Papanicolaou, Asymptotic Analysis for Periodic

Structures, North-Holland Pub. Co., Amsterdam, 1978.

[11] R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol.

1: Fluid Mechanics, John Wiley, New York, 1987.

[12] R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric

Liquids, Vol. 2: Kinetic Theory, John Wiley, New York, 1987.

[13] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University

Press, 1954.

[14] A. Brandt, “Multi-level adaptive solutions to boundary value problems,” Math.

Comp., vol. 31, no. 138, pp. 333–390, 1977.

[15] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numer., vol. 13, pp. 147-269,

2004.

[16] R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-

functional theory,” Phys. Rev. Lett., vol. 55, no. 22, pp. 2471–2474, 1985.

[17] S. Chen and G. D. Doolen, “Lattice boltzmann methods for fluid flows,” Ann. Rev.

Fluid Mech., vol. 30, pp. 329–364, 1998.

[18] A.J. Chorin, O. Hald and R. Kupferman, “Optimal prediction with memory,” Phys-

ica D, vol. 166, no. 3-4, pp. 239–257, 2002.

[19] E. Clementi and S. F. Reddaway “Global scientific and engineering simulations on

scalar, vector and parallel LCAP-type supercomputers,” Philos. Trans. R. Soc. Lon-

don, Ser. A 326, pp. 445–470, (1988).

[20] H. Conrad and J. Narayan, “On the grain size softening in nanocrystalline materi-

als,” Scripta Mater., vol. 42, no. 11, pp. 1025–1030, 2000.

[21] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[22] P. Dirac, “Quantum mechanics of many-electron systems,” Proc. Royal Soc. London,

vol. 123, no. 792, 714–733, 1929.



BIBLIOGRAPHY 25

[23] L.J. Durlofsky, “Numerical calculation of equivalent grid block permeability tensors

for heterogeneous poros-media,” Water. Resour. Res., vol. 27, pp. 699–708, 1991.

[24] W. E and B. Engquist, “The heterogeneous multi-scale methods,” Comm. Math.

Sci., vol. 1, pp. 87–133, 2003.

[25] W. E and B. Engquist, “Multiscale modeling and computation,” Notices of the

American Math. Soc., vol. 50, no. 9, pp. 1062–1070, 2003.

[26] B. Engquist, “Computation of oscillatory solutions to partial differential equations,”

Lecture Notes in Math., Springer-Verlag, vol. 1270, pp. 10–22, 1987.

[27] C. Garcia-Cervera, W. Ren, J. Lu and W. E, “Sequential multiscale modeling using

sparse representation,” Comm. Comput. Phys., vol. 4, pp. 1025–1033, 2008.

[28] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan and M. Strauss, “Near-optimal

sparse Fourier representations via sampling,” Proc. of the 2002 ACM Symposium on

Theory of Computing STOC, pp. 389–398, 2002.

[29] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput.

Phys., vol. 73, pp. 325–348, 1987.

[30] E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,”

Proc. Phys. Soc., vol. 64, pp. 747–753, 1951.

[31] B.L. Holian and R. Ravelo, “Fracture simulation using large-scale molecular dynam-

ics,” Phys. Rev. B., vol. 51, pp. 11275–11288, 1995.

[32] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics,

Springer-Verlag, New York, Berlin, 1981.

[33] X. Li and W. E “Variational boundary conditions for molecular dynamics simulation

of crystalline solids at finite temperature: Treatment of the thermal bath,” Phys.

Rev. B, vol. 76, no. 10, pp. 104107–104129, 2007.

[34] A. Messiah, Quantum Mechanics, Dover Publications, 1999.

[35] H. Mori, “Transport, collective motion, and Brownian motion,” Prog. Theor. Phys.,

vol. 33, pp. 423–455, 1965.



26 BIBLIOGRAPHY

[36] G. A. Pavliotis and A. M. Stuart, Multiscale Methods: Averaging and Homogeniza-

tion, Springer-Verlag, New York, 2008.

[37] L. E. Reichl, A Modern Course in Statistical Physics, University of Texas Press,

Austin, TX, 1980.

[38] D. Ruelle, Statistical Mechanics: Rigorous Results, W. A. Benjamin, New York,

1969.

[39] O. Runborg, “Mathematical models and numerical methods for high frequency

waves,” Comm. Comput. Phys., vol. 2, pp. 827–880, 2007.

[40] M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, VCH, Wein-

heim, Germany, 1995.

[41] J. Schiotz, F.D. Di Tolla and K.W. Jacobsen, “Softening of nanocrystalline metals

at very small grains,” Nature, vol. 391, pp. 561–563, 1998.

[42] Y. Sone, Molecular Gas Dynamics, Birkhäuser, Boston, Basel, Berlin, 2007.

[43] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, 1991.

[44] S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic

Properties, Springer-Verlag, New York, 2002.

[45] S. H. Tsien, Physical Mechanics (in Chinese), Science Press, 1962.

[46] C.-Y. Wang, S.-Y. Liu and L.-G. Han, “Electronic structure of impurity (oxygen)-

stacking-fault complex in nickel”, Phys. Rev. B, vol. 41, 1359-1367, 1990.

[47] A. Warshel, M. Karplus, “Calculation of ground and excited state potential surfaces

of conjugated molecules. I. Formulation and parametrization,” J. Am. Chem. Soc.

vol. 94, pp. 5612–5625, 1972.

[48] A. Warshel and M. Levitt, “Theoretical studies of enzymic reactions,” J. Mol. Biol.,

vol. 103, pp. 227–249, 1976.

[49] K.G. Wilson and J. Kogut, “The renormalization group and the ε expansion”, Phys.

Rep., vol. 12, pp. 75-200, 1974.



BIBLIOGRAPHY 27

[50] C. Zenger, “Sparse grids,” Parallel Algorithms for Partial Differential Equations,

Kiel, pp. 241–251, Vieweg, Braunschweig, 1991.

[51] R. Zwanzig, “Collision of a gas atom with a cold surface,” J. Chem. Phys., vol. 32,

pp. 1173–1177, 1960.



28 BIBLIOGRAPHY



Chapter 2

Analytical Methods

This chapter is a review of the major analytical techniques that have been developed

for addressing multiscale problems. Our objective is to illustrate the main ideas and to

put things into perspective. It is not our intention to give a thorough treatment of the

topics discussed. Nor is it our aim to provide a rigorous treatment, even though in many

cases rigorous results are indeed available.

It should be remarked that even though most attention on multiscale modeling has

been focused on developing numerical methods, one should not underestimate the use-

fulness of analytical techniques. These analytical techniques offer much needed insight

about the multiscale nature of the problem. In simple cases, they give rise to simplified

models. For more complicated problems, they give guidelines for designing and analyzing

numerical algorithms.

The problems that we consider below all have a small parameter that is responsible

for the multiscale behavior. To analyze such problems, our basic strategy is to introduce

additional variables such that in the new variables the scale of interest becomes O(1).

For example, in boundary layer analysis, we introduce an inner variable in which the

width of the boundary layer becomes O(1). We then make an ansatz for the leading

order profile of the multiscale solution, based on our intuition for the problem. If we

have the right intuition, we can use asymptotics to refine our intuition so that better

ansatz can be made. Eventually this process allows us to find the leading order behavior

of the multiscale solution. If our intuition is incorrect, the asymptotics will lead us to

nowhere.

29
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2.1 Matched asymptotics

Matched asymptotics is most useful for problems in which the solutions change

abruptly in a small, localized region, usually called the inner region. This small, lo-

calized region can either be boundary layers or internal layers, or vortices in fluids or

type-II superconductors. Matched asymptotics is a systematic procedure for obtaining

approximate solutions for such problems.

The main reason for distinguishing the inner and the outer regions is that the dom-

inant features in the two regions are different. To account for the rapid change of the

solution in the inner region, we introduce a stretched variable, also called the inner vari-

able so that in the new variable the scale of the inner region becomes O(1). The dominant

terms in the inner region can be found by transforming the model to the inner variables.

Together with the consideration that the inner solution should be matched smoothly to

the approximate solution in the outer region often allows us to find the leading order

behavior, or the effective models that control the leading order behavior of the solution

in both regions.

2.1.1 A simple advection-diffusion equation

Consider the following simple example:

∂tu
ε + ∂xu

ε = ε∂2
xu

ε (2.1.1)

for x ∈ [0, 1], with boundary condition:

uε(0, t) = u0(t), uε(1, t) = u1(t). (2.1.2)

Here as usual, ε is a small parameter. In this problem, the highest order derivative in

the differential equation has a small coefficient. If we neglect this term, we obtain:

∂tU + ∂xU = 0 (2.1.3)

This is an advection equation. Its solution is called the outer solution. One thing to notice

about the outer solution is that we are only allowed to impose a boundary condition at

x = 0. In general the boundary condition for uε at x = 1 will not be honored by

solutions of (2.1.3). This suggests that the solutions to (2.1.1) and (2.1.3) may behave
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quite differently near x = 1. Indeed, we will see that for the solution of the original

problem (2.1.1) a boundary layer exists at x = 1 which serves to connect the value of U

near x = 1 to the boundary condition of uε at x = 1.

To see this more clearly, let us change to a stretched variable at x = 1:

y =
x− 1

δ
(2.1.4)

where δ is the unknown boundary layer thickness. In the stretched variable, our original

PDE becomes:

∂tũ+
1

δ
∂yũ =

ε

δ2
∂2
y ũ (2.1.5)

It is easy to see that to be able to obtain some non-trivial balance between the terms in

(2.1.5), we must have δ ∼ ε. Without loss of generality, we will take δ = ε. We then

have, to leading order,

∂yũ = ∂2
y ũ (2.1.6)

Integrating once, we obtain

ũ = ∂yũ+ C1 (2.1.7)

To be able to match to the outer solution U as we come out of the boundary layer, i.e.

as y → −∞, we must have

lim
y→−∞

∂yũ = 0 (2.1.8)

Hence, we have

C1 = U(1, t) (2.1.9)

Another integration gives:

ũ(y, t) = U(1, t) + (u1(t)− U(1, t))ey (2.1.10)

or, in terms of the original variable,

ũε(x, t) = U(1, t) + (u1(t)− U(1, t))e
x−1

ε (2.1.11)

This gives the leading order behavior inside the boundary layer.

Here we started with the recognition that a boundary layer exists at x = 1. If we had

made the mistake of assuming that the boundary layer was located at x = 0, we would

have obtained the trivial solution ũ = u0(t) there, and we would see that the boundary

condition at x = 1 still presents a problem.
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To make this procedure more systematic, we should expand both the inner and outer

solutions ũ and U , and we should identify the matching region. See [?] for more detailed

discussion of this methodology.

2.1.2 Boundary layers in incompressible flows

Consider two-dimensional incompressible flow in the half plane Ω = {x = (x, y), y ≥
0}. We write the governing equation, the Navier-Stokes equation, as:

∂tu
ε + (uε · ∇)uε +∇pε = ε∆uε, (2.1.12)

∇ · uε = 0, (2.1.13)

with no slip boundary condition

uε(x) = 0, x ∈ ∂Ω (2.1.14)

Here uε = (uε, vε)T is the velocity field of the fluid, pε is the pressure field. Besides its

practical and theoretical importance, this problem is also historically important since

this was among the earliest major examples treated using boundary layer theory [?].

If we neglect the viscous term at the right hand side, we obtain Euler’s equation

∂tu + (u · ∇)u +∇p = 0, (2.1.15)

∇ · u = 0. (2.1.16)

In general, solutions to Euler’s equation can only accommodate the boundary condition

that there is no normal flow, i.e. v = 0. Our basic intuition is that when the viscosity ε

is small (ε≪ 1), the fluid behaves mostly as an inviscid fluid that obeys Euler’s equation

except in a small region next to the boundary in which the viscous effects are important.

Having guessed that a boundary layer exists at y = 0, let us now find out the structure

of the solutions inside the boundary layer. As before, we introduce the stretched variable

ỹ and perform a change of variable:

ỹ = y/δ, and x̃ = x (2.1.17)

The incompressibility condition ∇ · uε = 0 becomes (neglecting the superscript ε)

∂x̃u+
1

δ
∂ỹv = 0. (2.1.18)
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To balance the terms, the velocity in the y direction should also be of order δ. Therefore,

we use

ṽ = v/δ, ũ = u, and p̃ = p, (2.1.19)

as our new dependent variables. After this rescaling, (2.1.18) becomes

∂x̃u+ ∂ỹṽ = 0. (2.1.20)

(2.1.12) becomes

∂tũ+ ũ∂x̃ũ+ ṽ∂ỹũ+ ∂x̃p̃ = ε∂2
x̃ũ+

ε

δ2
∂2
ỹ ũ, (2.1.21)

∂tṽ + ũ∂x̃ṽ + ṽ∂ỹṽ +
1

δ2
∂ỹp̃ = ε∂2

x̃ṽ +
ε

δ2
∂2
ỹ ṽ. (2.1.22)

In the first equation, to balance the O(ε/δ2) term with the other terms, we should have

δ ∼ ε1/2. This means that the thickness of the boundary layer is O(ε1/2). We will take

δ = ε1/2. From the second equation, we obtain

∂ỹp = 0

This says that to leading order pressure does not change across the boundary layer (i.e.

in the y direction) and is given by the outer solution, the solution to the Euler’s equation.

This is the main simplification in the boundary layer.

Retaining only the leading order terms, we obtain Prandtl’s equation governing the

leading order behavior inside the boundary layer (omitting the primes):

∂tu+ u∂xu+ v∂yu+ ∂xP = ∂2
yu, (2.1.23)

∂xu+ ∂yv = 0, (2.1.24)

where the pressure P = P (x, t) is assumed to be given.

Prandtl’s boundary layer theory is derived under the assumption that the flow field

can be decomposed into an outer region where viscous effects can be neglected and

an inner region that lies close to the wall. This assumption is valid for laminar flows.

However, it is well-known that at high Reynolds number (in our setting, small ε), fluid

flow generally becomes turbulent. In that case, the assumption stated above no longer

holds and Prandtl’s theory ceases to be valid. This does not mean that Prandtl’s theory

is entirely useless. In fact, one most useful application of Prandtl’s equation is in the
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analysis of boundary layer separation, when the boundary layer detachs from the wall,

convecting the vorticity generated at the boundary to the interior of the flow domain, and

eventually causing the generation of turbulence. This is often attributed to singularity

formation in the solutions of Prandtl’s equation [?]. In addition, an analogous theory

has been developed for turbulent boundary layers [?].

2.1.3 Structure and dynamics of shocks

Viscous shock profile provides one of the simplest examples of an internal layer. For

simplicity, we will use the Burgers equation as a simplified model of compressible flow

∂tu
ε + ∂x

(
(uε)2

2

)
= ε∂2

xu
ε. (2.1.25)

As in the last example, the viscosity ε is assumed to be very small. If we set ε = 0, we

obtain the inviscid Burgers equation

∂tu+ ∂x

(
u2

2

)
= 0. (2.1.26)

As before, this controls the behavior in the outer region.

First let us consider a simple case with initial data

uε(x, 0) =





1 x < 0,

−1 x > 0,
(2.1.27)

The solution to (2.1.26) with the same initial data is a stationary shock

u(x, t) =





1 x < 0,

−1 x > 0.
(2.1.28)

Obviously, this is not a classical solution. The discontinuity at x = 0 is a manifestation

of the fact that we neglected viscous effects. Indeed if we restore the viscous term,

the discontinuity becomes a viscous shock inside which the solution changes rapidly but

remains smooth.

To get an understanding of the detailed structure of the shock, let us introduce the

stretched variable

x̃ = x/δ, (2.1.29)
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where δ is the width of the shock. In the new variable x̃, (2.1.25) becomes (neglecting

the superscript ε)

∂tu+
1

δ
∂x̃

(
u2

2

)
=

ε

δ2
∂2
x̃u (2.1.30)

To balance terms, we must have δ ∼ ε. We see that the width of the shock is much smaller

than the width of the boundary layer in incompressible flows (which is O(
√
ε)). This fact

has important implications to the numerical solution of compressible and incompressible

flows at high Reynolds number.

Let δ = ε. The leading order equation now becomes

∂x̃

(
u2

2

)
= ∂2

x̃u (2.1.31)

with the boundary condition u→ ±1 as x̃→ ∓∞. The solution is given by

u = − tanh(x̃/2) = − tanh(x/2ε). (2.1.32)

In the general case of a moving shock, assuming that the shock speed is s, and

introducing

x̃ = (x− st)/ε, (2.1.33)

the original PDE (2.1.25) becomes

∂tu−
s

ε
∂x̃u+

1

ε
∂x̃

(
u2

2

)
=

1

ε
∂2
x̃u. (2.1.34)

The leading order equation is then:

−s∂x̃u+ ∂x̃

(
u2

2

)
= ∂2

x̃u. (2.1.35)

Integrating once, we get

−su+
u2

2
= ∂x̃u+ C. (2.1.36)

Let u− and u+ be the values of the inviscid solution at the left and right side of the shock

respectively. In order to match to the inviscid solution, we need:

lim
x̃→±∞

u(x̃, t) = u± (2.1.37)

Therefore, we must have:

−su− +
u2
−
2

= −su+ +
u2

+

2
= C. (2.1.38)
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i.e.

s =
u− + u+

2
(2.1.39)

This equation determines the speed of the shock. Solving (2.1.36), we obtain the shock

profile:

u(x̃, t) =
u−e

x̃
2
u+ − u+e

x̃
2
u−

e
x̃
2
u+ − e x̃

2
u−

(2.1.40)

In other words, to leading order, the behavior of uε is given by

ũε =
u−e

x−st
2ε

u+ − u+e
x−st
2ε

u−

e
x−st
2ε

u+ − ex−st
2ε

u−
(2.1.41)

2.1.4 Transition layers in the Allen-Cahn equation

Next we consider the Allen-Cahn equation, say in two dimension:

∂tu
ε = ε∆uε − 1

ε
V ′(uε) (2.1.42)

where V , the free energy, is a double-well potential, with two local minima at u1, u2 (see

Figure 2.1.4). This equation describes the dynamics of a scalar order parameter during

first order phase transition [?].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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−1
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4
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Figure 2.1: A double well potential

An inspection of (2.1.42) suggests that the value of uε should be very close to u1 and

u2 so that V ′(uε) ∼ 0, in order for the last term to be balanced by the first two terms.
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Figure 2.2: Inverted double well potential that illustrates the solution of (2.1.45).

Numerous numerical results confirm that this is indeed the case. Basically, the solution

uε is very close to u1 and u2 except in thin layers in which transition between u1 and u2

takes place. To understand the dynamics of uε, we only have to understand the dynamics

of these layers. In particular, our outer solution is simply: U = u1, u2.

To understand the dynamics of these layers, we assume that they occupy a thin region

around a curve whose configuration at time t is denoted by Γt. Let ϕ(x, t) = dist(x,Γt),

the distance between x and Γt. We make the ansatz that

uε ∼ U0

(
ϕ(x, t)

ε

)
+ εU1

(
ϕ(x, t)

ε
,x, t

)
+ · · · (2.1.43)

Substituting this ansatz into (2.1.42) and balancing the leading order terms in powers of

ε, we get

∂tϕU
′
0(y) = U ′′

0 (y)− V ′(U0(y)) (2.1.44)

with the boundary condition: limy→±∞ U(y) = u1, u2. This is a nonlinear eigenvalue

problem, with λ = ∂tϕ as the eigenvalue. Let us write (2.1.44) as

λU ′
0(y) = U ′′

0 (y)− V ′(U0(y)) (2.1.45)

If we neglect the term on the left hand side of (2.1.44), we obtain Newton’s equation for

an inertial particle in the inverted potential −V (see Figure 2.1.4). Assume that u2 < u1.

Imagine that a particle comes down from u1 at y = −∞. Without friction it will pass
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through u2 at some point and go further down. This is prevented by the the presence

of the term λU ′
0 which is a friction term. The value of λ gives the just right amount of

friction so that the particle reaches u2 as y → +∞.

Multiplying (2.1.44) by U ′
0 on both sides and integrating, we obtain

∂tϕ

∫ ∞

−∞
(U ′

0(y))
2dy = V (u1)− V (u2) (2.1.46)

Since ∂tϕ = ∂tϕ/|∇ϕ| = vn, the normal velocity of Γt, we obtain:

vn =
V (u1)− V (u2)∫∞
−∞(U ′

0(y))
2dy

(2.1.47)

At this time scale (which is sometimes called the convective time scale, in contrast to

the diffusive time scale discussed below), the interface moves to the region of lower free

energy, with a constant normal velocity that depends on the difference in the free energy

of the two phases u1 and u2.

Next we consider the case when V (u1) = V (u2). To be specific, we will take V (u) =
1
4
(1 − u2)2. In this case, at the convective time scale, we have vn = 0, i.e. the interface

does not move. In order to see interesting dynamics for the interface, we should consider

longer time scale, namely, the diffusive time scale, i.e. we rescale the problem by replacing

t by tε and obtain

∂tu
ε = ∆uε +

1

ε2
uε(1− (uε)2) (2.1.48)

We make the same ansatz as in (2.1.43). The leading order and the next order equations

(in powers of ε) now become

U ′′
0 (y) + (1− U2

0 )U0 = 0 (2.1.49)

∂tϕU
′
0 = U ′′

1 |∇ϕ|2 + U ′
0∆ϕ+ U1(1− 3U2

0 ) (2.1.50)

The solution to (2.1.49) with the boundary condition limϕ→±∞ U(y) = ±1 is given by

U(y) = tanh

(
y√
2

)
(2.1.51)

Since |∇ϕ| = 1, (2.1.50) gives

∂tϕU
′
0 = U ′′

1 + U ′
0∆ϕ+ U1(1− 3U2

0 ) (2.1.52)
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Multiplying both sides by U ′
0 and integrating in y, we obtain (note that

∫∞
−∞ U ′

0{U ′′
1 +

U1(1− 3U2
0 )}dy = 0)

∂tϕ = ∆ϕ (2.1.53)

This can also be written as
∂tϕ

|∇ϕ| = ∇ ·
∇ϕ
|∇ϕ| (2.1.54)

In terms of Γt, this is the same as

vn = κ (2.1.55)

where κ is the mean curvature of Γt.

Examples of this type are discussed in [?].

2.2 The WKB method

To motivate the WKB method, let us look at the ODE

ε2d
2uε

dx2
− uε = 0, (2.2.1)

with boundary condition uε(0) = 0 and uε(1) = 1. It is straightforward to find the exact

solution to this problem:

uε = Aex/ε +Be−x/ε, (2.2.2)

where A and B are constants determined by the boundary conditions: A = e1/ε/(e2/ε−1)

and B = −e1/ε/(e2/ε−1). One thing we learn from this explicit solution is that it contains

factors with 1/ε in the exponent. Power series expansion in ε will not be able to capture

these terms.

Now consider the problem

ε2d
2uε

dx2
− V (x)uε = 0 (2.2.3)

We assume that V (x) > 0 (the case where V changes sign, known as the turning point

problem, is more difficult to deal with, see [?]). This equation can no longer be solved

explicitly. However, motivated by the form of the explicit solution to (2.2.1), we will look

for approximate solutions of the form

uε(x) ∼ e
1

ε
(S0(x)+εS1(x)+O(ε2)) (2.2.4)
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Since
d2uε

dx2
∼ (

1

ε
S ′′

0 + S ′′
1 )e

1

ε
S0+S1 + (

1

ε
S ′

0 + S ′
1)

2e
1

ε
S0+S1 +O(1) (2.2.5)

we have

(εS ′′
0 + ε2S ′′

1 ) + (S ′
0 + εS ′

1)
2 − V (x) = O(ε2). (2.2.6)

The solution to the leading order equation

(S ′
0(x))

2 − V (x) = 0 (2.2.7)

is given by

S0 = ±
∫ x√

V (y) dy. (2.2.8)

The next order equation

S ′′
0 + 2S ′

0S
′
1 = 0 (2.2.9)

gives

S1 = −1

2
log |S ′

0| = −
1

4
log(V ). (2.2.10)

Therefore, to O(ε), the solution must be a linear combination of the two obtained above

u(x) ∼ A1V (x)−1/4e
1

ε

R x
√
V (y) dy + A2V (x)−1/4e−

1

ε

R x
√
V (y) dy. (2.2.11)

where A1 and A2 are constants depending on the boundary condition and the starting

point of the integral in the exponent of (2.2.11).

As another example, consider the Schrödinger equation

iε∂tu
ε = −1

2
ε2∆uε + V (x)uε, (2.2.12)

with initial condition:

uε(x, 0) = A(x)eiS(x)/ε. (2.2.13)

We will look for approximate solutions in the form:

uε(x, t) ∼ Aε(x, t)eiS(x,t)/ε, (2.2.14)

where Aε(x, t) ∼ A0(x, t) + εA1(x, t) + · · · . Substituting into (2.2.12), we obtain the

leading and next order equations

∂tS +
1

2
|∇S|2 + V (x) = 0, (2.2.15)

∂tA0 +∇S · ∇A0 +
1

2
A0∆S = 0. (2.2.16)
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The first question above is the Eikonal equation, which happen to be the usual Hamilton-

Jacobi equation in classical mechanics:

∂tS +H(x,∇S) = 0, (2.2.17)

where H(x,p) = |p|2/2+V (x). The second equation is a transport equation for the lead-

ing order behavior of the amplitude function A0. This establishes a connection between

quantum and classical mechanics via the semi-classical limit ε→ 0.

This asymptotic analysis is valid as long as the solution to the Eikonal equation

remains smooth. However, singularities may form in the solutions of the Eikonal equation,

as is the case of caustics, and the asymptotic analysis has to be modified to deal with

such a situation [?].

2.3 Averaging methods

In many problems, the variables that describe the state of the system can be split

into a set of slow variables and a set of fast variables, and we are more interested in the

behavior of the slow variables. In situations like this, one can often obtain an effective

model for the slow variables by properly averaging the original model over the statistics

of the fast variables. We discuss such averaging methods in this section.

2.3.1 Oscillatory problems

Consider the following example:

dxε

dt
= −1

ε
yε + xε (2.3.1)

dyε

dt
=

1

ε
xε + yε (2.3.2)

From now on, for simplicity, we will sometimes neglect the superscript ε. If we replace

(x, y) by the polar coordinates (r, ϕ), we get

dϕ

dt
=

1

ε
(2.3.3)

dr

dt
= r (2.3.4)
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When ε≪ 1, the dynamics of the angle variable ϕ is much faster than that of the variable

r.

In general, we may use the action-angle variables and consider systems of the form:

dϕ

dt
=

1

ε
ω(I) + f(ϕ, I) (2.3.5)

dI

dt
= g(ϕ, I) (2.3.6)

Here f and g are assumed to be periodic with respect to the angle variable ϕ with period

[−π, π]. We also assume that ω does not vanish. In this example ϕ is the fast variable

and I is the slow variable. Our objective is to derive simplified effective equations for the

slow variable. For this purpose, we will make use of the multiscale expansion, which is a

very powerful technique that will be discussed in more detail in the next section.

We will look for approximate solutions of (2.3.1) and (2.3.2) in the form:

ϕ(t) ∼ ϕ0

(
t

ε

)
+ εϕ1

(
t

ε
, t

)
(2.3.7)

I(t) ∼ I0(t) + εI1

(
t

ε
, t

)
(2.3.8)

This says that ϕ and I are in principle functions with two scales, but to leading order I

is a function of only the slow scale. Let τ = t/ε. To guarantee that the terms ϕ0 and I0

in the above ansatz are indeed the leading order terms, we will assume that ϕ1(τ, t) and

I1(τ, t) grow sublinearly in τ :

ϕ1(τ, t)

τ
→ 0,

I1(τ, t)

τ
→ 0 (2.3.9)

as τ → ∞. Substituting the ansatz into (2.3.5), we obtain the following leading order

equations:

1

ε

(
dϕ0

dτ

(
t

ε

)
− ω(I0(t))

)
+O(1) = 0 (2.3.10)

dI0
dt

(t) +
∂I1
∂τ

(
t

ε
, t

)
− g

(
ϕ0

(
t

ε

)
, I0(t)

)
+O(ε) = 0 (2.3.11)

Our objective is to find ϕ0, I0, ϕ1, I1, · · · such that the equations above are satisfied to as
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high an order in ε as possible. The leading order equations are:

dϕ0

dτ

(
t

ε

)
= ω(I0(t)) (2.3.12)

dI0
dt

(t) +
∂I1
∂τ

(
t

ε
, t

)
= g

(
ϕ0

(
t

ε

)
, I0(t)

)
(2.3.13)

To guarantee that these equations hold, we require:

dϕ0

dτ
(τ) = ω(I0(t)) (2.3.14)

dI0
dt

(t) +
∂I1
∂τ

(τ, t) = g(ϕ0(τ), I0(t)) (2.3.15)

for all values of t and τ , even though the original problem only requires them to hold

when τ = t/ε.

The solution to the first equation is given by:

ϕ0(τ) = ω(I0)τ + ϕ̂0 (2.3.16)

Averaging the second equation in τ over a large interval [0, τ ], and letting τ → ∞, we

obtain, using the sublinear growth condition:

dI0
dt

= lim
τ→∞

1

τ

∫ τ

0

g(ϕ0(τ
′), I0)dτ

′ =
1

2π

∫

[−π,π]

g(θ, I0)dθ (2.3.17)

This gives rise to the averaged system:

dJ

dt
= G(J), G(J) =

1

2π

∫

[−π,π]

g(θ, J)dθ (2.3.18)

It is a simple matter to show that for any fixed time T , there exists a constant C such

that

|I(t)− J(t)| ≤ Cε

for 0 ≤ t ≤ T [?]. Therefore in this case, the dynamics of the slow variable is described

accurately by the averaged system.

The story becomes much more complicated when there are more than one degree of

freedom. Consider

dϕ

dt
=

1

ε
ω(I) + f(ϕ, I) (2.3.19)

dI

dt
= g(ϕ, I) (2.3.20)
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where ϕ = (ϕ1, · · · , ϕd), I = (I1, · · · , Id), f = (f1, · · · , fd) and g = (g1, · · · , gd). f and

g are periodic functions of ϕ with period [−π, π]d. Formally, the “averaging theorem”

states that for small values of ε, the behavior of the action variable is approximately

described by the averaged system:

dJ

dt
= G(J), (2.3.21)

where

G(J) =
1

(2π)d

∫

[−π,π]d
g(θ, J)dθ1 · · · dθd, θ = (θ1, · · · , θd) (2.3.22)

We put “averaging theorem” in quotation marks since this statement is not always valid

due to the occurence of resonance.

To see how (2.3.21) may arise, we again proceed to look for multiscale solutions of

the type (2.3.7) and (2.3.8), this leads us to

dI0
dt

= lim
τ→∞

1

τ

∫ τ

0

g(ϕ0(τ
′), I0)dτ

′, ϕ0(τ) = ω(I0)τ + ϕ̂0 (2.3.23)

Now, to evaluate the right hand side, we must distinguish two different cases:

1. When the components of ω(I0) are rationally dependent, i.e. the exists a vector q

with rational components, such that q · ω(I0) = 0. This is the resonant case.

2. When the components of ω(I0) are rationally independent. In this case, the flow

defined by (2.3.16) is ergodic on [−π, π]d (periodically extended).

In the second case, we obtain that

lim
τ→∞

1

τ

∫ τ

0

g(ϕ0(τ
′), I0)dτ

′ =
1

(2π)d

∫

[−π,π]d
g(ϕ, I0)dϕ1 · · · dϕd (2.3.24)

This gives us the averaged equation (2.3.21)-(2.3.22).

The averaged equation (2.3.21) neglects the resonant case. The rationale for doing so

is that there are many more rationally independent vectors than the rationally dependent

ones. Therefore, generically, the system will pass through resonances instead of being

locked in resonances. However, it is easy to see that if the system is indeed locked in a

resonance, then the “averaging theorem” may fail.
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As an example, consider the case when d = 2, ω(I) = (I1, I2), f1 = f2 = 0, g1 =

0, g2 = cos(ϕ1 − ϕ2) (see [?]). In this case, G1 = G2 = 0. Let the initial data be given

by:

I1(0) = I2(0) = 1, ϕ1(0) = ϕ2(0) = 0

For the original system, we have

I1(t) = 1, I2(t) = 1 + t.

However the solution of the averaged system with the same initial data is given by:

J1(t) = J2(t) = 1.

The deviation of I from J comes from the fact that for the original system (2.3.19),

(ϕ1(t), ϕ2(t)) stays on the diagonal in the (ϕ1, ϕ2) plane whereas the averaged system

assumes that (ϕ1(t), ϕ2(t)) is ergodic on the periodic cell [−π, π]2 in the ϕ plane.

It should be noted that the violation of the “averaging theorem” does not mean that

there is a flaw in the perturbation analysis. Indeed, it was clear from the perturbation

analysis that there would be a problem when resonance occurs.

A thorough discussion of this topic can be found in the classic book of Arnold [?].

2.3.2 Stochastic ordinary differential equations

First, a remark about notation. We will not follow standard practice in stochastic

analysis and uses Xt to denote the value of the stochastic process X at time t and ex-

presses stochastic ODEs in terms of stochastic differentials. Instead, we will use standard

notations for functions and derivatives.

Consider

dX

dt
= f(X,Y, t), X(0) = x (2.3.25)

dY

dt
= −1

ε
(Y −X) +

1√
ε
Ẇ , Y (0) = y. (2.3.26)

Here X is the slow variable and Y is the fast variable, Ẇ is the standard Gaussian white

noise. An example of the solution to this problem is shown in Figure 2.3 for the case

when f(x, y, t) = −y3 + sin(πt) + cos(
√

2πt).
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Figure 2.3: The solution of (2.3.25) with x = 2, y = 1, ε = 103, X(·) and Y (·) are shown

in blue and green respectively. Also shown in red is the solution of the limiting equation

(2.3.29) (courtesy of Eric Vanden-Eijnden).

The equation for Y at fixed X(t) = x defines an Ornstein-Uhlenbeck process whose

equilibrium density is

ρ∗(y;x) =
e−(y−x)2
√
π

. (2.3.27)

Intuitively, it is quite clear that when ε is small, the X variable in the second equation

does not change very much before Y reaches local equilibrium (set by the local value of

X) in a time scale of O(ε). This means that the dynamics of the fast variable Y is slaved

to that of the slow variable X. Its behavior can be found approximately by holding

the slow variable X fixed (at its instantaneous value) and compute the (conditional)

equilibrium distribution for Y . In addition, the effective dynamics for the slow variable

is obtained by averaging the right hand side of (2.3.25) with respect to the conditional
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equilibrium distribution of Y :

dX

dt
= F (X, t), F (x, t) =

∫

R

f(x, y, t)ρ∗(y;x)dy (2.3.28)

For the example given above, the limiting equation is easily computed explicitly:

dX

dt
= −X3 − 3

2
X + sin(πt) + cos(

√
2πt), X(0) = x. (2.3.29)

Here the new term −3
2
X, is due to the noise in (2.3.25). The solution of the limiting

equation is also shown in Figure 2.3.

The limiting system (2.3.28) can be derived using perturbation analysis on the back-

ward Kolmogorov equation. Let h = h(x, y) be a smooth function and let

u(x, y, t) = Eh(X(t), Y (t)) (2.3.30)

where x, y are the initial values of X and Y : X(0) = x, Y (0) = y. u satisfies the backward

Kolmogorov equation [?]

∂tu = L0u+
1

ε
L1u, (2.3.31)

with initial condition u(x, y, 0) = h(x, y), where

L0 = f(x, y, t)∂x, L1 = −(y − x)∂y +
1

2
∂2
y (2.3.32)

We look for solutions of (2.3.31) in the form:

u ∼ u0 + εu1 + ε2u2 + · · · (2.3.33)

Substituting this ansatz into (2.3.31) and collecting terms of equal orders in ε, we get

L1u0 = 0, (2.3.34)

L1u1 =
∂u0

∂t
− L0u0, (2.3.35)

L1u2 = · · · (2.3.36)

The first equation implies that u0 is a function of x and t only. The second equation

requires a solvability condition:
∫
ρ(y)(∂tu0 − L0u0)(y)dy = 0 (2.3.37)
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where ρ is any solution of the adjoint equation

L∗
1ρ = ∂y((y − x)ρ) +

1

2
∂2
yρ = 0 (2.3.38)

It is easy to see that solutions to this equation have the form

ρ(y;x) = Ce−(y−x)2 (2.3.39)

where C is a normalization constant. Therefore, u0(x, t) must satisfy

∂tu0 − L̄0u0 = 0 (2.3.40)

where

L̄ = F (x, t)∂x (2.3.41)

and F is given by (2.3.28). This is the backward equation for the dynamics described by

(2.3.28).

This analysis can be generalized to the case when the equation for the slow variable

also contains noise:

dX

dt
= f(X,Y, t) + σ(X,Y, t)Ẇ1, X(0) = x (2.3.42)

dY

dt
= −1

ε
(Y −X) +

1√
ε
Ẇ2, Y (0) = y. (2.3.43)

Here Ẇ1 and Ẇ2 are independent white noises. In this case, the limiting dynamics is

given by:
dX

dt
= F (X, t) + Σ(X, t)Ẇ , (2.3.44)

where F is given in (2.3.28) and Σ satisfies

Σ(x, t)2 =

∫

R

σ(x, y, t)2ρ∗(y;x)dy (2.3.45)

Results of this type have been obtained in many papers, including [?, ?, ?, ?].

It may happen that the effective dynamics of the slow variable is the trivial equation

dx/dt = 0. In this case, we should consider the dynamics at longer time scale, say

t = O(1/ε). To do this we introduce the new variable τ = tε, and proceed as before

using the new variable τ .
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Let us look at some simple examples (see [?]). Consider

dX

dt
= Y + Ẇ1, (2.3.46)

dY

dt
= −1

ε
Y +

1√
ε
Ẇ2, (2.3.47)

where Ẇ1 and Ẇ2 are independent white noises. Notice that in this case, the fast dynam-

ics is independent of the slow variable, and is actually a standard Ornstein-Uhlenbeck

process. Therefore, the invariant measure for the fast variable is N(0, 1/2), a normal

distribution with mean 0 and variance 1/2. Obviously, F = 0 in this case. Therefore the

effective dynamics for the slow variable X is given by

X̄(t) = W1(t) (2.3.48)

One can indeed show that E|X(t)− X̄(t)|2 ≤ Cε.

Next, consider

dX

dt
= Y Ẇ1 (2.3.49)

dX

dt
= −1

ε
Y +

1√
ε
Ẇ2. (2.3.50)

The fast dynamics is still the Ornstein-Uhlenbeck process. According to (2.3.44), the

effective dynamics for the slow variable is given by:

X̄(t) =
1√
2
W1(t). (2.3.51)

However, it is easy to see that

E|X(t)− X̄(t)|2 = E|
∫ t

0

(Y (s)− 1

2
)dW1(s)|2

= E

∫ t

0

|Y (s)− 1

2
|2ds = O(1).

In this situation, we see that the fast dynamics is ergodic but the strong version of the

“averaging theorem” fails. This is not a contradiction to the perturbation analysis since

the latter only suggests that weak convergence holds, i.e. only the averaged quantities

converge.
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In general, if we have a system of the type

dX

dt
= a(X,Y ) + σ1(X)Ẇ1, (2.3.52)

dY

dt
=

1

ε
b(X,Y ) +

1√
ε
σ2(X,Y )Ẇ2

i.e. if σ1 does not depend on Y , then one can show that the averaging theorem holds in

a strong sense, namely strong convergence can be established. See [?, ?, ?]. Otherwise,

one can only expect weak converegence.

2.3.3 Stochastic simulation algorithms

We start with a simple example [?, ?] (see also a related example in [?]). Consider

a system that contains multiple copies of a molecule in four different conformations,

denoted by S1, S2, S3, S4. The conformation changes are described by:

S1

a1

⇋
a2

S2 S2

a3

⇋
a4

S3, S3

a5

⇋
a6

S4 (2.3.53)

with transition rates a1, · · · , a6 which depend on the number of molecules in each con-

formation. The state of the system is described by a vector x = (x1, x2, x3, x4) where xi

denotes the number of molecules in the conformation Si. To be specific, let us assume:

a1 = 105x1, ν1 = (−1,+1, 0, 0),

a2 = 105x2, ν2 = (+1,−1, 0, 0),

a3 = x2, ν3 = ( 0,−1,+1, 0),

a4 = x3, ν4 = ( 0,+1,−1, 0),

a5 = 105x3, ν5 = ( 0, 0,−1,+1),

a6 = 105x4, ν6 = ( 0, 0,+1,−1).

(2.3.54)

The vectors {νj} are the stoichiometric vectors (also called the state change vectors):

After the j-th reaction, the state of the system changes from x to x + νj. For example,

if the first reaction happens, then one molecule in the S1 conformation changes to the S2

conformation. Hence x1 is decreased by 1, x2 is increased by 1, and x3 and x4 remain the

same. Each reaction is specified by two objects: the transition (reaction) rate function

and the stoichiometric vector:

Rj = (aj(x), νj) (2.3.55)
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If we start the system with roughly the same number of molecules in each conformation

and observe how the system evolves, we will see fast conformation changes between S1

and S2, and between S3 and S4, with occasional, much more rare conformation changes

between S2 and S3.

In many cases, we are not interested in the details of the fast processes, but only the

dynamics of the slow processes. We should be able to simplify the problem and obtain an

effective description for the slow processes only. To see this, let us partition the reactions

into two sets: the slow ones and the fast ones. The fast reactions Rf =
{
(af , νf )

}
are:

af1 = 105x1, νf1 = (−1,+1, 0, 0),

af2 = 105x2, νf2 = (+1,−1, 0, 0),

af5 = 105x3, νf5 = ( 0, 0,−1,+1),

af6 = 105x4, νf6 = ( 0, 0,+1,−1).

(2.3.56)

The slow reactions Rs = {(as, νs)} are

as3 = x2, νs3 = (0,−1,+1, 0),

as4 = x3, νs4 = (0,+1,−1, 0).
(2.3.57)

Observe that during the fast reactions, the variables

z1 = x1 + x2, z2 = x3 + x4 (2.3.58)

do not change. They are the slow variables. Intuitively, one can think of the whole

process as follows. In the fast time scale, z1 and z2 are almost fixed and there is fast

exchange between x1 and x2, and between x3 and x4. This process reaches equilibrium

during the fast time scale and the equilibrium is given by a Bernoulli distribution:

µz1,z2(x1, x2, x3, x4) =
z1! z2!

x1! x2! x3! x4!

(
1

2

)z1 (1

2

)z2
δx1+x2=z1δx3+x4=z2 . (2.3.59)

At the slow time scale, the values of z1 and z2 do change. The effective dynamics on

this time scale reduces to a dynamics on the space of z = (z1, z2) with effective reaction

channels given by:

ās3 = 〈x2〉 =
x1 + x2

2
=
z1

2
, ν̄s3 = (−1,+1),

ās4 = 〈x3〉 =
x3 + x4

2
=
z2

2
, ν̄s4 = (+1,−1).

(2.3.60)
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These expressions follow from the general theory that we describe now.

For the general case, let us assume that we have a total of N species of molecules,

denoted by S1, · · · , SN . The number of molecules of species Sk is denoted by xk. The

state vector is then given by x = (x1, · · · , xN). We will denote by X the state space where

x lives in. Assume that there are M reaction channels, each described by its reaction

rate and stoichiometric vector:

Rj = (aj, νj), R = {R1, . . . , RM}. (2.3.61)

Given the state x, the occurrence of the reactions on an infinitesimal time interval dt

is independent for different reactions and the probability for the reaction Rj to happen

during this time interval is given by aj(x)dt. After reaction Rj, the state of the system

changes to x + νj. In the chemistry and biology literature, this is often called the

stochastic simulation algorithm (SSA) or Gilliespie algorithm, named after an algorithm

that realizes this process exactly (see [?]).

Let X(t) be the state variable at time t, and denote by Ex the expectation conditional

on X(0) = x. Consider the observable u(x, t) = Exf(X(t)). u(x, t) satisfies the following

backward Kolmogorov equation [?]:

∂u(x, t)

∂t
=
∑

j

aj(x) (u(x + νj, t)− u(x, t)) = (Lu)(x, t). (2.3.62)

The operator L is the infinitesimal generator of the Markov process associated with the

chemical kinetic system we are considering.

Now we turn to chemical kinetic systems with two disparate time scales. Assume that

the rate functions have the following form

a(x) =

(
as(x),

1

ε
af (x)

)
, (2.3.63)

where ε ≪ 1 represents the ratio of the fast and slow time scales of the system. The

corresponding reactions and the associated stoichiometric vectors can be grouped accord-

ingly:

Rs = {(as, νs)}, Rf = {(1
ε
af , νf )}. (2.3.64)

We call Rs the slow reactions and Rf the fast reactions.

We now show how to derive the effective dynamics on the O(1) time scale, following

the perturbation theory developed in [?, ?]. For this purpose it is helpful to introduce
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an auxiliary process, called the virtual fast process [?]. This auxiliary process retains

the fast reactions only, all slow reactions are turned off, assuming, for simplicity that

the set of fast and slow reactions do not change over time. Intuitively, each realization

of the SSA consists of a sequence of realizations of the virtual fast process, punctuated

by occasional firing of the slow reactions. Due to the time scale separation, with high

probability, the virtual fast process has enough time to relax to equilibrium before another

slow reaction takes place. Therefore it is crucial to characterize the ergodic components

and the quasi-equilibrium distributions associated with these ergodic components for the

virtual fast process. In particular, it is of interest to consider parametrizations of these

ergodic components. A set of variables that parametrizes these ergodic components can

be regarded as the slow variables.

Let v be a function of the state variable x. We say that v(x) is a slow variable if it

does not change during the fast reactions, i.e. if for any x and any stoichiometric vector

νfj associated with a fast reaction

v(x + νfj ) = v(x). (2.3.65)

This is equivalent to saying that the slow variables are conserved quantities for the fast

reactions. It is easy to see that v(x) = b · x is a slow variable if and only if

b · νfj = 0 (2.3.66)

for all νfj . The set of such vectors form a linear subspace in RN . Let {b1,b2, . . . ,bJ} be

a set of basis vectors of this subspace, and let

zj = bj · x, for j = 1, . . . , J. (2.3.67)

Let

z = (z1, · · · , zJ) (2.3.68)

and denote by Z the space over which z is defined. The stochiometric vectors associated

with these slow variables are naturally defined as:

ν̄si = (b1 · νsi , · · · ,bJ · νsi ), i = 1, . . . , Ns. (2.3.69)

We now derive the effective dynamics on the slow time scale using singular pertur-

bation theory. We assume, for the moment that z is a complete set of slow variables,
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i.e. , for each fixed value of the slow variable z, the virtual fast process admits a unique

equilibrium distribution µz(x) on the state space X .

Define the projection operator P

(Pv)(z) =
∑

x∈X
µz(x)v(x). (2.3.70)

By this definition, for any v : X → R, Pv depends only on the slow variable z, i.e.

Pv : Z → R.

The backward Kolmogorov equation for the multiscale chemical kinetic system reads:

∂u

∂t
= L0u+

1

ε
L1u (2.3.71)

where L0 and L1 are the infinitesimal generators associated with the slow and fast reac-

tions, respectively: For any f : X → R,

(L0f)(x) =
Ms∑

j=1

asj(x)(f(x + νsj )− f(x)),

(L1f)(x) =

Mf∑

j=1

afj (x)(f(x + νfj )− f(x)),

(2.3.72)

where Ms is the number of slow reactions in Rs and Mf is the number of fast reactions

in Rf . We look for a solution of (2.3.71) in the form of

u ∼ u0 + εu1 + ε2u2 + · · · (2.3.73)

Inserting this into (2.3.71) and equating the coefficients of equal powers of ε, we arrive

at the hierarchy of equations:

L1u0 = 0, (2.3.74)

L1u1 =
∂u0

∂t
− L0u0, (2.3.75)

L1u2 = · · · (2.3.76)

The first equation implies that u0 belongs to the null-space of L1, which by the ergodicity

assumption of the fast process, is equivalent to saying that

u0(x, t) = Ū(b · x, t) ≡ Ū(z, t), (2.3.77)
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for some Ū yet to be determined. Inserting (2.3.77) into the second equation in (2.3.74)

gives (using the explicit expression for L0)

L1u1(x, t) =
∂Ū(b · x, t)

∂t
−

Ms∑

i=1

asi (x)
(
Ū(b · (x + νsi ), t)− Ū(b · x, t)

)

=
∂Ū(z, t)

∂t
−

Ms∑

i=1

asi (x)
(
Ū(z + ν̄si , t)− Ū(z, t)

)
(2.3.78)

This equation requires a solvability condition, namely that the right-hand side be orthog-

onal to the null-space of the adjoint operator of L1. By the ergodicity assumption of the

fast process, this amounts to requiring that

∂Ū

∂t
(z, t) =

Ms∑

i=1

āsi (z)
(
Ū(z + ν̄si , t)− Ū(z, t)

)
(2.3.79)

where

āsi (z) = (Pasi )(z) =
∑

x∈X
asi (x)µz(x). (2.3.80)

(2.3.79) is the effective rates on the slow time scale. The effective reaction kinetics on

this time scale are given in terms of the slow variable by

R̄ = (ās(z), ν̄s). (2.3.81)

It is important to note that the limiting dynamics described in (2.3.79) can be re-

formulated on the original state space X . Indeed, it is easy to check that (2.3.79) is

equivalent to

∂u0

∂t
(x, t) =

Ms∑

i=1

ãsi (x) (u0(x + νsi , t)− u0(x, t)) , (2.3.82)

where ãsi (x) = āsi (b · x), in the sense that if u0(x, t = 0) = f(b · x), then

u0(x, t) = Ū(b · x, t) (2.3.83)

where Ū(z, t) solves (2.3.79) with the initial condition Ū(z, 0) = f(z). This fact is useful

for developing numerical algorithms for this kind of problems [?, ?, ?]. In fact, (2.3.82)

provides an effective model that is more general than the setting considered above. Its

validity can be understood intuitively as follows [?]. To find the effective dynamics in
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which the fast reactions are averaged out, we ask what happens for the original SSA

during a time scale that is very short compared with the time scale for the slow reactions

but long compared with the time scale of the fast reactions. During this time scale,

the original SSA essentially functions like the virtual fast process. Therefore to obtain

the effective slow reaction rates, we need to average over the states of the virtual fast

process. However, during this time scale the virtual fast process has had sufficient time

to relax to its quasi-equilibrium. Hence the effective slow reaction rates can be obtained

by averaging the original slow reaction rates over the quasi-equilibrium distribution of

the virtual fast process. Note that all these can be formulated over the original state

space using the original variables. This is the main content of (2.3.82).

In the large volume limit when there are a large number of molecules in each species,

this stochastic, discrete model can be approximated by a deterministic, continuous model,

in the spirit of the law of large numbers [?]:

dxj
dt

=
∑

k

νjkak(x), j = 1, · · · , N (2.3.84)

The disparity in the rates results in the stiffness of this system of ODEs. Formally, we

can write (2.3.84) as

dx

dt
=

1

ε

Mf∑

j=1

afj (x)νfj +
Ms∑

j=1

asj(x)νsj . (2.3.85)

The averagining theorem suggests that, in the limit as ε → 0, the solution of (2.3.85)

converges to the solution of

dx̄

dt
=

Ms∑

j=1

āsj(b · x̄)νsj , (2.3.86)

Here

āsj(z) =

∫

Rn

asj(x)dµz(x), (2.3.87)

and dµz(x) is the equilibrium of the virtual fast process

dxf

dt
=

1

ε

Mf∑

j=1

afj (x
f
t )ν

f
j . (2.3.88)

For instance, in the large volume limit, the ODEs corresponding to the simple example
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treated in the begining of this subsection are

dx1

dt
= 105(−x1 + x2), (2.3.89)

dx2

dt
= 105(x1 − x2)− x2 + x3, (2.3.90)

dx3

dt
= 105(−x3 + x4)− x3 + x2, (2.3.91)

dx4

dt
= 105(x3 − x4). (2.3.92)

In this case, the slow variables are z1 = x1 + x2 and z2 = x3 + x4, and it is easy to see

that the fast process drives the variables toward the fixed point

xf1 = xf2 = z1/2, xf3 = xf4 = z2/2, (2.3.93)

meaning that dµz(x) is atomic:

dµz(x) = δ(x1 − z1/2)δ(x2 − z1/2)δ(x3 − z2/2)δ(x4 − z2/2)dx1dx2dx3dx4. (2.3.94)

Hence from (2.3.87), the limiting dynamics is

dz1

dt
= −x2 + x3 = (−z1 + z2)/2, (2.3.95)

dz2

dt
= −x3 + x2 = (z1 − z2)/2. (2.3.96)

which from (2.3.86), can also be written in terms of the original variables as

dx1

dt
= 0, (2.3.97)

dx2

dt
= −x2 + x3, (2.3.98)

dx3

dt
= x2 − x3, (2.3.99)

dx4

dt
= 0. (2.3.100)

A nice modern reference for the averaging methods is [?].

2.4 Multiscale expansions

We now turn into the techniques of multiscale expansion. This is perhaps the most

systematic approach for analyzing problems with disparate scales. We begin with simple

examples of ODEs, and then turn to PDEs and focus on the homogenization technique.
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2.4.1 Removing secular terms

Consider
d2y

dt2
+ y + εy = 0, (2.4.1)

where ε≪ 1, y(0) = 1 and y′(0) = 0. The solution to this problem is given by:

y(t) = cos(
√

1 + εt) = cos
(
(1 +

ε

2
+ · · · )t

)
(2.4.2)

If we omit the term εy, the solution would be y(t) = cos t. This is accurate on O(1) time

scale but gives O(1) error on the O(1/ε) time scale.

To analyze the behavior of the solutions over the O(1/ε) time scale, we use two

time-scale expansion. Let τ = εt be the slow time variable. Assume that

y(t) ∼ y0(t, εt) + εy1(t, εt) + ε2y2(t, εt). (2.4.3)

Substituting into (2.4.1) and letting τ = εt, we get

∂2y0

∂t2
+ y0 + ε

(
∂2y1

∂t2
+ y1 + 2

∂2y0

∂t∂τ
+ y0

)
+ · · · ∼ 0 (2.4.4)

Our objective is to choose functions y0, y1, · · · such that the above equation is valid to

as high an order as possible, when τ = εt. One basic idea of multiscale analysis is to

require that this equation holds for all values of τ , not just when τ = εt. The leading

order equation given by the O(1) terms in (2.4.4) is:

∂2y0

∂t2
(t, τ) + y0(t, τ) = 0. (2.4.5)

The solution to this equation can be expressed as y0(t, τ) = C1(τ) cos t+C2(τ) sin t. The

next order equation is
∂2y1

∂t2
+ y1 = −2

∂2y0

∂t∂τ
− y0. (2.4.6)

Substituting the expression for y0, we get

d2y1

dt2
+ y1 = (2C ′

1(τ)− C2(τ)) sin t− (2C ′
2(τ) + C1(τ)) cos t. (2.4.7)

If the coefficients in front of cos t and sin t do not vanish, then we will have terms that

behave like t cos t in y1, with linear dependence on the fast time t.
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However, when making an ansatz involving two time scales, we always assume that

the lower order terms grow sublinearly as a function of the fast time scale. This is the

minimum condition necessary in order to guarantee that the leading order terms remains

dominant over the time interval of interest. The effective equation for the leading order

terms is often found from this condition. Terms that grow linearly or faster are called

“secular terms”. One example was already shown in the last section when we derived

the averaged equation (2.3.21), as a consequence of the condition that I1(τ, t) grows

sublinearly as a function of τ .

Coming back to (2.4.7), we must require that the coefficients of terms at the right

hand side vanish:

2C ′
1(τ)− C2(τ) = 0,

2C ′
2(τ) + C1(τ) = 0.

These lead to

C1(τ) = A1 cos(τ/2) + A2 sin(τ/2) (2.4.8)

C2(τ) = −A1 sin(τ/2) + A2 cos(τ/2) (2.4.9)

Combined with the initial condition, one gets

ỹ(t) = cos

(
εt

2

)
cos t− sin

(
εt

2

)
sin t = cos

(
(1 +

ε

2
)t
)
. (2.4.10)

We see that ỹ approximates the original solution accurately over an O(1/ε) time interval.

If we are interested in longer time intervals, we have to extend the asymptotics to higher

order terms. This procedure is called the Poincaré-Lighthill-Kuo (PLK) method [?].

The problem treated here was a simple linear equation whose exact solution can be

written down quite easily. However, it is obvious that the methodology presented is quite

general and can be used for general nonlinear problems.

2.4.2 Homogenization of elliptic equations

Let us consider the problem:

−∇ · (aε(x)∇uε(x)) = f(x), x ∈ Ω (2.4.11)

with the boundary conditon: uε|∂Ω = 0. Here aε(x) = a(x,x/ε), a(x,y) is assumed to be

periodic with respect to y with period Γ = [0, 1]d. We will also assume that aε satisfies
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the ellipticity condition, uniform in ε, namely that there exists a constant α which is

independent of ε such that

aε(x) ≥ αI (2.4.12)

where I is the identity tensor.

(2.4.11) is a standard model for many different problems in physics and engineering,

including the mechanical properties of composite materials, heat conduction in hetero-

geneous media, flow in porous media, etc. It has also been used as a standard model

for illustrating some of the most important analytical techniques in multiscale analysis

such as homogenization theory. The standard reference for the material discussed in this

section is [?]. See also [?].

We begin with a formal multiscale analysis with the ansatz:

uε(x) ∼ u0

(
x,

x

ε

)
+ εu1

(
x,

x

ε

)
+ ε2u2

(
x,

x

ε

)
+ · · · (2.4.13)

Here the functions uj(x,y), j = 0, 1, 2, · · · are assumed to be periodic with period Γ.

Using
∂

∂x
u0

(
x,

x

ε

)
∼ ∇xu0

(
x,

x

ε

)
+

1

ε
∇yu0

(
x,

x

ε

)
+ · · · (2.4.14)

the original PDE (2.4.11) becomes:

1

ε2
∇y ·

(
a
(
x,

x

ε

)
∇yu0

(
x,

x

ε

))
(2.4.15)

+
1

ε

(
∇y ·

(
a
(
x,

x

ε

)
∇xu0

(
x,

x

ε

))
+∇x ·

(
a∇yu0

(
x,

x

ε

))
+∇y ·

(
a∇yu1

(
x,

x

ε

)))

+∇y ·
(
a
(
x,

x

ε

)
∇xu1

(
x,

x

ε

))
+∇x ·

(
a
(
x,

x

ε

)
∇yu1

(
x,

x

ε

))

+∇y ·
(
a
(
x,

x

ε

)
∇yu2

(
x,

x

ε

))
+∇x ·

(
a
(
x,

x

ε

)
∇xu0

(
x,

x

ε

))
+ · · · = −f(x)

To leading order, we have:

−∇y ·
(
a
(
x,

x

ε

)
∇yu0

(
x,

x

ε

))
= 0 (2.4.16)

This should hold for y = x/ε. We require that it holds for all values of x and y:

−∇y · (a(x,y)∇yu0(x,y)) = 0 (2.4.17)

From this, we conclude that

∇yu0 = 0, u0 = u0(x) (2.4.18)
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The next order equation is given by:

−∇y · (a(x,y)∇yu1(x,y)) = ∇y · (a(x,y)∇xu0(x)) (2.4.19)

This should be viewed as a PDE for u1, the term∇xu0 enters only as a constant coefficient.

To find solutions to this equation, it helps to introduce the cell problem:

−∇y · (a(x,y)∇yξj) = ∇y · (a(x,y) · ej) (2.4.20)

where ej is the standard j-th basis vector for the Euclidean space R
d. (2.4.20) is solved

with the periodic boundary condition. Clearly as the solution to this cell problem, ξj is

a function of y. But it also depends on x through the dependence of a on x. We can

then express u1 as

u1(x,y) = ξ(x,y) · ∇xu0(x) (2.4.21)

where ξ = (ξ1, . . . , ξd).

We now turn to the O(1) equation:

∇y · (a(x,y)∇yu2(x,y)) +∇y · (a(x,y)∇xu1(x,y)) (2.4.22)

+∇x · (a(x,y)∇yu1(x,y)) +∇x · (a(x,y)∇xu0(x)) = −f(x)

This is viewed as an equation for u2. To be able to find solutions which are periodic in

y, u0 and u1 must satisfy some solvability condition. To identify this condition, let us

define the averaging operator (with respect to the fast variable y):

〈f〉 =

∫

Γ=[0,1]d
f(y)dy = f̄ (2.4.23)

Applying this operator to both sides of (2.4.22), we obtain

∇x · (〈a(x,y)∇yu1(x,y)〉) +∇x · (〈a(x,y)〉∇xu0(x)) = −f(x) (2.4.24)

Since

a(x,y)∇yu1(x,y) = a(x,y)∇y(ξ(x,y)∇xu0(x)), (2.4.25)

we have

∇x · (〈a∇yξ + a〉∇xu0) = −f (2.4.26)

Define

A(x) = 〈a(x,y)(I +∇yξ(x,y))〉 (2.4.27)
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we arrive at the homogenized equation for u0:

−∇ · (A(x)∇u0(x)) = f(x) (2.4.28)

Let us look at a simple one-dimensional example. In this case, the cell problem

becomes:

−∂y (a(x, y)∂yξ) = ∂ya (2.4.29)

Integrating once, we get

a(x, y)(1 + ∂yξ) = C0 (2.4.30)

Dividing by a and applying the averaging operator on both sides, we get

1 =

〈
C0

a

〉
= C0

〈
1

a

〉
= C0

∫ 1

0

1

a(x, y)
dy (2.4.31)

Hence, we obtain

A(x) = C0 =

〈
1

a

〉−1

(2.4.32)

This is the well-known result that the coefficient for the homogenized problem is the

harmonic average rather than the arithmetic average of the original coefficient.

The same result can also be derived by applying multiscale test functions in a weak

formulation for the original PDE. This has the advantage that it can be easily made

rigorous. More importantly, it illustrates how we should think about multiscale problems

through test functions. The basic idea is to use multiscale test functions to probe the

behavior of the multiscale solutions at different scales. The basis of this procedure is the

following result of Nguetseng [?]. Early applications of this idea can be found in [?, ?].

Lemma 1. Let {uε} be a sequence of functions, uniformly bounded in L2(Ω), ‖uε‖L2 ≤ C

for some constant C. Then there exists a subsequence {uεj}, and a function u ∈ L2(Ω×
Γ),Γ = [0, 1]d, such that as εj → 0,

∫
uεj(x)ϕ

(
x,

x

ε

)
dx→

∫∫
u(x,y)ϕ(x,y)dxdy

for any function ϕ ∈ C(Ω× Γ) which is periodic in the second variable with period Γ.

To apply this result, we rewrite the PDE −∇ · (aε(x)∇uε(x)) = f(x) as

wε = ∇uε, −∇ · (aε(x)wε(x)) = f(x) (2.4.33)
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or in a weak form:
∫

Ω

aε(x)wε(x)∇ϕε(x)dx =

∫

Ω

f(x)ϕε(x)dx (2.4.34)

Applying test function of the form ϕε(x) = ϕ0(x) + εϕ1(x,x/ε), we obtain

∫
a
(
x,

x

ε

)
wε(x)

(
∇xϕ0(x) +∇yϕ1

(
x,

x

ε

)
+ ε∇xϕ1

(
x,

x

ε

))
dx (2.4.35)

=

∫
f(x)

(
ϕ0(x) + εϕ1

(
x,

x

ε

))
dx

Using the previous lemma, we conclude that there exists a function w ∈ L2(Ω×Γ), such

that
∫∫

a(x,y)w(x,y)(∇xϕ0(x) +∇yϕ1(x,y))dxdy =

∫
f(x)ϕ0(x)dx (2.4.36)

Set ϕ1 = 0 in this equation, we get

−∇x · 〈aw〉 = f (2.4.37)

If instead we let ϕ0 = 0, we obtain

−∇y · (aw) = 0 (2.4.38)

Since wε = ∇uε, we have

∫
wε(x)ϕε(x)dx = −

∫
uε(x)∇ · ϕε(x)dx (2.4.39)

Applying the same kind of test function as above, we conclude that there exists a function

u ∈ L2(Ω× Γ) such that

∫∫
w(x,y)ϕ0(x)dxdy = −

∫∫
u(x,y)(∇xϕ0(x) +∇yϕ1(x,y))dxdy (2.4.40)

Let ϕ0 = 0, we get ∫∫
u(x,y)∇yϕ1(x,y)dxdy = 0 (2.4.41)

for any ϕ1. Hence we have

∇yu = 0 (2.4.42)
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i.e. u(x,y) = u0(x). Let ϕ1 = 0 in (2.4.40), we get

〈w〉 = −∇x〈u〉 = −∇xu0 (2.4.43)

Applying the same argument to the equation ∇ × wε = 0, we conclude that there

exists a u1 ∈ H1(Ω× Γ), such that

w(x,y) = ∇yu1(x,y) +∇xu0(x) (2.4.44)

Substituting into (2.4.37) and (2.4.38), we obtain:




−∇y · (a(∇yu1 +∇xu0)) = 0

−∇x · 〈a(∇yu1 +∇xu0)〉 = f
(2.4.45)

It is easy to check that this is equivalent to the homogenized equation obtained earlier.

2.4.3 Homogenization of the Hamilton-Jacobi equations

Consider the following problem

∂tu
ε +H(

x

ε
,∇uε) = 0, (2.4.46)

where H(y,p) is assumed to be periodic in y with period Γ = [0, 1]d. Such a problem

arises, for example, as a model for interface propagation in heterogeneous media, where

uε is the level set function of the interface, H(x/ε,∇ϕ) = c(x/ε)|∇ϕ| and c(·) is the

given normal velocity.

Homogenization of (2.4.46) was considered in the pioneering, but unpublished paper

by Lions, Papanicolaou and Varadhan [?] (see also [?]). Here we will proceed to get a

quick understanding of the main features of this problem using formal asymptotics.

We begin with the ansatz

uε(x, t) ∼ u0(x, t) + εu1(x,x/ε, t) + · · ·

where u1(x,y, t) is periodic in y. The leading order asymptotic equation is given by

∂tu0 +H(y,∇xu0 +∇yu1) = 0 (2.4.47)

To understand this problem, we rewrite it as

H(y,∇xu0 +∇yu1) = −∂tu0 (2.4.48)
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This should be viewed as the cell problem for u1, with p = ∇xu0 as the parameter. Note

that the right-hand-side is independent of y. It should be viewed as a function of the

parameter ∇xu0. In fact, the following result asserts that it is a well-defined function of

∇xu0 [?]:

Lemma 2. Assume that H(x,p) → ∞ as |p| → ∞ uniformly in x. Then for any

p ∈ R
d, there exists a unique constant λ, such that the cell problem

H(y,p +∇yv) = λ (2.4.49)

has a periodic viscosity solution v.

We refer to [?] for the definition of viscosity solutions.

This unique value of λ will be denoted as H̄(p). H̄ is the effective Hamiltonian.

Going back to (2.4.48), we obtain the homogenized equation by letting p = ∇xu0:

H̄(∇xu0) = λ = −∂tu0 (2.4.50)

or

∂tu0 + H̄(∇xu0) = 0 (2.4.51)

As the first example, let us consider the one-dimensional Hamiltonian H(x, p) =

|p|2/2− V (x). (In classical mechanics, this would be called the Lagrangian. Here we are

following standard practice in the theory of Hamilton-Jacobi equations and called it the

Hamiltonian [?]). V is assumed to be periodic with period 1 and we normalize V such

that miny V (y) = 0. The effective Hamiltonian H̄(p) can be obtained by solving the cell

problem (2.4.49),
1

2
|p+ ∂yv|2 − V (y) = λ (2.4.52)

Obviously, λ ≥ 0. Let us first consider the case when (2.4.52) has a smooth solution.

Smooth solutions have to satisfy

p+ ∂yv(y) = ±
√

2
√
V (y) + λ (2.4.53)

Thus

p = ±
√

2

∫ 1

0

√
V (y) + λdy (2.4.54)



66 CHAPTER 2. ANALYTICAL METHODS

Therefore we can only expect to have smooth solutions when

|p| ≥
√

2

∫ 1

0

√
V (y)dy (2.4.55)

When

|p| ≤
√

2

∫ 1

0

√
V (y)dy (2.4.56)

the solution to the cell problem can not be smooth, i.e. it has to jump between the +

and − branches of (2.4.53). Being a viscosity solution means that u = ∂yv has to satisfy

the entropy condition, which in this case says that the limit of u from the left can not

be smaller than the limit of u from the right:

u(y0+) ≤ u(y0−) (2.4.57)

where y0 is any location where a jump occurs. In order to retain periodicity, the two

branches have to intersect. This implies that

λ = 0 (2.4.58)

Indeed, it can be easily verified that one can always choose appropriate jump locations

to find u such that

p+ u(y) = ±
√

2
√
V (y) (2.4.59)

and the entropy condition is satisfied.

In summary, we have

H̄(p) =





0, |p| ≤

√
2
∫ 1

0

√
V dy,

λ, |p| =
√

2
∫ 1

0

√
V + λ dy, λ ≥ 0.

(2.4.60)

Note that unlike H, the effective Hamiltonian H̄(p) is no longer quadratic in p.

As the second example, let us consider the case when H(y,p) = c(y)|p|. The homog-

enized Hamiltonian is then H̄(p) = c(y)|∇yv+p|, where v is a periodic viscosity solution

to the cell problem. In this case, the original Hamiltonian is a homogeneous function of

degree 1 in p. It is easy to see that the homogenized Hamiltonian inherits this property,

i.e. H̄(λp) = λH̄(p) for λ > 0. In fact, let vλ = λv, then λH̄(p) = c(y)|∇yvλ + λp| and

vλ is clearly periodic.
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In one dimension, if we assume that c never vanishes, we have

∂yv + p =
H̄(p)

c(y)
, (2.4.61)

since the right hand side does not change sign. Integrating both sides, we arrive at

H̄(p) =

(∫ 1

0

1

c(y)
dy

)−1

|p|. (2.4.62)

If c(y) vanishes at some point, then clearly H̄(p) = 0.

2.4.4 Flow in porous media

Next, we consider the homogenization of flows in a porous medium assuming that

the micro-structure of the medium is periodic. Let Ωε be the flow domain, and Ωc
ε be

the solid matrix. Ωε = ε ∪z∈Z (Ω + z), the union of the periodic extension of Ω rescaled

by a factor of ε. In principle, one should start with the Navier-Stokes equations in the

flow domain with no-slip boundary condition at ∂Ωε, and then study the asymptotics

as ε → 0. However, since the velocity is small, we can omit the dynamic terms in the

Navier-Stokes equation and use the Stokes equation

− ν∆uε +∇pε = 0 in Ωε, (2.4.63)

∇ · uε = 0 in Ωε, (2.4.64)

uε = 0 on ∂Ωε. (2.4.65)

To study the asymptotic behavior, we make the ansatz

uε(x) ∼ ε2u0(x,x/ε) + ε3u1(x,x/ε) + · · · ,
pε(x) ∼ p0(x,x/ε) + εp1(x,x/ε) + · · · .

The leading order equation is ∇yp0 = 0, hence p0 = p0(x) is independent of y. The next

order equation is

− ν∆yu0 +∇yp1 = −∇xp0 in Ω, (2.4.66)

∇yu0 = 0 in Ω, (2.4.67)

u0 = 0 on ∂Ω. (2.4.68)
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Let (χj, qj), j = 1, 2, be the solution of

− ν∆yχj +∇yqj = ej in Ω,

∇yχj = 0 in Ω,

χj = 0 on ∂Ω,

where e1 = (1, 0)T and e2 = (0, 1)T. Given ∇xp0, the solution to the next order equation

is given by u0(x,y) = −(χ1, χ2)∇xp0. The average velocity is

ū(x) = −
(∫

Ω

(χ1, χ2) dy

)
∇xp0(x). (2.4.69)

This is Darcy’s law for flows in porous medium. K =
∫

(χ1, χ2) dy is the effective

permeability tensor.

2.5 Scaling and self-similar solutions

So far we have focused on problems with disparate scales and we have discussed

techniques that can be used to eliminate the small scales and obtain simplified effective

models for the large scale behavior of the problem. Another class of problems for which

simplified models can be obtained are problems that exhibit self-similar behavior. We will

begin with a discussion of the self-similar solutions in this section. In the next section,

we turn into the renormalization group method which is a systematic way of extracting

effective models in systems that exhibit self-similar behavior at the small scales.

2.5.1 Dimensional analysis

Dimensional analysis is a very simple and elegant tool for getting a quick guess about

the important features of a problem. The most impressive example of dimensional analy-

sis is Kolmogorov’s prediction about the small scale structure in a fully developed turbu-

lent flow. The quantity of interest there is the (kinetic) energy density at wave number

k, denoted as E(k). E(k) behaves differently in three different regimes. In the large

scale regime, i.e., scales comparable to the size of the system, the behavior of E(k) is

non-universal and depends on how energy is supplied to the system, the geometry of the

system, etc. In the dissipation regime, viscous effects dominates. Between the large scale
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and the dissipation regimes lies the so-called inertial regime. In this regime, the con-

ventional picture is that energy is simply transported from large to small scales, without

been dissipated. It is widely expected and partly confirmed by experimental results [?, ?]

that the behavior of turbulent flows in this inertial range is universal and exhibits some

kind of self-similarity.

To find the self-similar behavior, Kolmogorov made the basic assumption that the

only important quantity for the inertial range is the mean energy dissipation rate:

ε̄ = ν
〈
|∇u|2

〉

where ν is the dynamic viscosity, the bracket denotes the ensemble average of the quantity

inside. To find the behavior of E(k), which is assumed to depend on k and ε̄ only, let us

look at the dimensions of the quantities E(k), k and ε̄. We will use L to denote length,

T to denote time, and [·] to denote the dimension of the quantity inside the bracket.

Obviously, [k] = 1/L. Since [
∫
E(k) dk] = L2/T 2, we have [E(k)]/L = L2/T 2. Hence

[E(k)] = L3/T 2. Also,

[ε̄] = [ν][∇u]2 = L2/T · (1/T )2 = L2/T 3.

Assume that E(k) = ε̄αkβ. It is easy to see that to be dimensionally consistent, we must

have α = 2/3 and β = −5/3. Therefore, we conclude that

E(k) ∝ ε̄2/3k−5/3.

Experimental results are remarkably close to the behavior predicted by this simple rela-

tion. However, as was pointed out by Landau, it is unlikely that this is the real story:

The dissipation field ν|∇u|2 is a very intermittent quantity. Its contribution to the flow

field is dominated by very intense events in very small part of the whole physical domain.

Therefore we do not expect the mean-field picture put forward by Kolmogorov to be

entirely accurate. Indeed there are evidences suggesting that the small scale structure in

a turbulent flow exhibits multi-fractal statistics:

〈|u(x + r)− u(x)|p〉 ∼ |r|ζp

where ζp is a nonlinear function of p. In contrast, Kolmogorov’s argument would give

ζp = 1
3
p. To this day, finding ζp still remains to be one of the main challenges of turbulence

theory. Many phenomenological models have been proposed, but first-principle-based (i.e.

Navier-Stokes equation) understanding is still lacking [?].



70 CHAPTER 2. ANALYTICAL METHODS

2.5.2 Self-similar solutions of PDEs

Consider the Barenblatt equation that arises from modeling gas flow in porous medium

[?]:

∂tu = ∂2
xu

2 (2.5.1)

with initial condition u(x, 0) = δ(x). We look for a self-similar solution that satisfies the

relation

u(x, t) = λαu(λx, λβt). (2.5.2)

for all λ > 0. At t = 0, we have

δ(x) = λαδ(λx).

Therefore α = 1. Substituting the ansatz (2.5.2) into the PDE (2.5.1), we obtain:

λβ+1∂tu = λ4∂2
xu

2.

Hence β = 3. This means that

u(x, t) = λu(λx, λ3t) =
1

t1/3
U
( x

t1/3

)
, (2.5.3)

where U(y) = u(y, 1) and we have used λ = 1/t1/3. The original PDE for u now becomes

an ODE for U :

t−4/3(U2)′′ = −1

3
t−4/3U − 1

3
t−5/3xU ′ (2.5.4)

or, if we denote y = x/t1/3,

(U2)′′ = −1

3
U − 1

3
yU ′. (2.5.5)

Integrating once, we get

(U2)′ = −1

3
yU + C. (2.5.6)

As y → ±∞, we expect U → 0. Hence C = 0. Integrating one more time, we get

U(y) =





U0 − y2

12
, U0 >

y2

12
;

0, otherwise.
(2.5.7)

The constant U0 can be determined by the conservation of mass:
∫
U(y) dy =

∫
u(y, 1) dy = 1. (2.5.8)
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Figure 2.4: The profile of the solution to the Barenblatt equation at t = 1.

This gives U0 = 31/3/4. The solution is shown in Figure 2.4. What is interesting about

this solution is that it has finite speed of propagation. This is possible due to the

degeneracy of the diffusion term, and is consistent with our intuition about gas flow in

porous medium.

Next, we study an example that models viscous rarefaction wave:

∂tu+ u2∂xu = ∂2
xu, (2.5.9)

with initial condition

u(x, 0) =





0, x ≤ 0

1 x > 0
(2.5.10)

It is impossible to find a self-similar solution to this problem. In fact, we will show that

the solution has three different regimes.

Let us first study the effect of the diffusion and convection terms seperately. Keeping

only the diffusion term, (2.5.9) becomes

∂tu = ∂2
xu. (2.5.11)

For this problem with the same initial condition (2.5.10), we can find a self-similar solu-

tion. Assume that

u(x, t) = λαu(λx, λβt).

Since the initial condition is invariant under scaling, α = 0. Substituting into (2.5.11)

gives β = 2. Therefore,

u(x, t) = u(λx, λ2t) = U
( x

t1/2

)
,
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where U(y) = u(y, 1). Moreover, U satisfies the ODE

U ′′ = −1

2
yU ′. (2.5.12)

The solution to this equation with the prescribed initial condition is given by

U(y) =
1

2
√
π

∫ y

−∞
e−z

2/4 dz. (2.5.13)

As shown in Figure 2.5, the effect of the diffusion term is to smear out the discontinuity

in the initial data.
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1

Figure 2.5: The profile of the solution to (2.5.11) at t = 1.

If we keep only the convection term, then (2.5.9) becomes

∂tu+ u2∂xu = 0. (2.5.14)

By the same argument as before, we find a self-similar solution that satisfies

u(x, t) = u(λx, λt) = U
(x
t

)
. (2.5.15)

U satisfies the equation

−yU ′ + U2U ′ = 0. (2.5.16)

The solution is

U =






0, y ≤ 0,
√
y, 0 ≤ y ≤ 1,

1, y ≥ 1

(2.5.17)
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Going back to the original problem, it is easy to see that for small t, diffusion dom-

inates, and for large t, convection dominates. This can also be shown by a scaling

argument. Assume

u(x, t) = u(λx, λβt)

Substituting into the original PDE, we get

λβ∂tu+ λu2∂xu = λ2∂xxu. (2.5.18)

When λ≪ 1, corresponding to large time, the term λu2ux is more important, hence the

convective behavior is dominant. When λ≫ 1, corresponding to small time, the viscous

behavior dominates.

What happens at the intermediate times? Using the ansatz:

u(x, t) = λαu(λx, λβt),

we get α = 1/2 and β = 2 by balancing both the convective and diffusive terms. Hence

u(x, t) ∼ 1

t1/4
U
( x

t1/2

)

As before, we obtain an equation for U

U ′′ = −1

4
U − 1

2
yU ′ + U2U ′. (2.5.19)

This can be solve numerically to give the behavior at intermediate times.

In summary, at early times, the dynamics of the solution is dominated by the smooth-

ing out of the discontinuity of the initial data. At large times, the dynamics is dominated

by the convective behavior induced by the different asymptotic behavior of the initial data

for large |x|. The self-similar profile at the intermediate times serves to connect these

two types of behavior.

2.6 Renormalization group analysis

Renormalization group method is a very powerful tool for analyzing the coarse-grained

behavior of complex systems. Its main idea is to define a flow in the space of models

or model parameters induced by a coarse-graining operator, in which the scale plays the

role of time, and to analyze the large scale behavior of the original model with the help

of this flow. The main components of the renormalization group analysis are:
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1. The renormalization transformation, i.e. a coarse-graining operator that acts on

the state variables.

2. The induced transformation on the model, or the model parameters. This defines

the renormalization group flow.

3. The analysis of the fixed points for this transformation, as well as the behavior near

the fixed points.

It is rarely the case that one can carry out step 2 described above exactly and ex-

plicitly. Very often we have to use drastic approximations, as we will see in the example

discussed below. The hope is that these approximations preserve the universality class

of the model that we started with. Unfortunately, there is no a prior guarantee that this

is indeed the case.

We will illustrate the main ideas of the renormalization group analysis using a classical

model in statistical physics, the Ising model.

2.6.1 The Ising model and critical exponents

Consider the 2D Ising model on a triangular lattice L (see for example the classical

textbook on statistical physics by Reichl [?]). Each site is assigned a spin variable s

which takes two possible values ±1. The state of the system is specified by the spin

configuration over the lattice. For each configuration {sj}, we associate a Hamiltonian:

H̃{sj} = −J
∑

〈i,j〉
sisj, (2.6.1)

where 〈i, j〉 means that i and j are nearest neighbors, J > 0 is the coupling constant.

We will denote K = J/(kBT ) which is the non-dimensionalized coupling strength. The

probability of a configuration is given by:

P{si} =
1

Z
e−H̃{si}/kBT (2.6.2)

where the partition function Z is defined to be

Z = Z(N,K) =
∑

{sj}
e−H/kBT (2.6.3)
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The sum is carried over all possible configurations. To simplify notations, we let H{si} =

K
∑

〈i,j〉 sisj,

P{si} = eH{si}/
∑

{si}
eH{si}

Statistical averages 〈·〉 are defined with respect to this probability density. The free

energy is given by the large volume limit

ζ(K) = −kBT lim
N→∞

1

N
lnZ(N,K). (2.6.4)

This is a standard model for ferromagnetic materials. The expectation of a single spin

〈s〉 measures the macroscopic magnetization of the system.

Strictly speaking we should consider finite lattices and take the thermodynamic limit

as the lattice goes to Z
d. It is well-known that this model has a phase transition in the

thermodynamic limit: There exists a critical temperature T ∗ such that if T ≥ T ∗, the

thermodynamic limit is unique, i.e. it does not depend on how we take the limit and

what boundary condition we use for the finite lattices. In addition, we have 〈s〉 = 0 in

the thermodynamic limit. However, if T < T ∗, the limit is no longer unique and does

depend on the boundary condition used for the finite lattices. In particular, 〈s〉 may

not vanish in the thermodynamic limit. Intuitively, from (2.6.1), the energy minimizing

configurations are configurations for which all the spins are aligned, i.e. sj = 1 for all j

or −1 for all j ∈ L. Therefore at low temperature, the spins prefer to be aligned giving

rise a non-zero average spin. At high temperature, the spins prefer to be random for

entropic considerations, giving rise to a zero average. However, the fact that there is a

sharp transition at some finite temperature is a rather non-trivial fact [?].

It is also of interest to consider the correlations between spins at different sites. There

are strong evidences that when T 6= T ∗,

〈sisj〉 − 〈si〉〈sj〉 ∼ e−r/ξ r = |i− j|

Here ξ is called the correlation length and it depends on T . It is an important intrinsic

length scale for the system. The critical point T ∗ is characterized by the divergence of ξ:

ξ →∞ (T → T ∗)

In fact, from various considerations, one expects that

ξ ∼ (T − T ∗)−ν
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where ν > 0 is called the critical exponent for the correlation length.

Heuristically, correlated spins tend to form clusters in which all spins have the same

sign, and ξ is of the order of the largest diameter of the finite volume clusters. This

is illustrated in Figure 2.6.1. What is most interesting is the situation at the critical

temperature T ∗ which exhibits self-similarity: The picture looks essentially the same

at different scales, or with different resolutions. This motivates looking for statistically

self-similar behavior at T = T ∗.

Given the background above, our goal is to compute T ∗ (or equivalently K∗) and

ν. The basic idea is to divide spins into blocks, and regard the blocks as coarse-grained

spins. This corresponds to looking at the problem from a coarser resolution. One way of

defining the spin of a block is a to use the majority rule:

sI = sgn(
∑

i∈I
si)

where I refers to the index of the blocks. Here we assume that the number of spins within

every block is odd. Denote the size of the block by L. Then each block has roughly Ld

spins, where d is the space dimension. Assume for simplicity that the Hamiltonian for

the coarse-grained problem is given approximately by

H{sI} = −JL
∑

|I−J |=1

sIsJ = −KL/kBT
∑

|I−J |=1

sIsJ

Then the coarse-graining operator for the spin configuration induces a transformation in

the space of model parameters:

KL = R(K)

This is the renormalization transformation.

The information we are looking for can be obtained from this transformation. In

particular, we have:

1. The critical temperature is given by the fixed point of this transformation: K∗ =

R(K∗).

2. It is easy to see that

ξ(R(K)) = L−1ξ(K)

Therefore at the fixed point of R, ξ =∞.
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Figure 2.6: Typical spin configurations for the two-dimensional Ising model at low, critical

and high temperatures (produced by Hao Shen).
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3. ν can be found via linearizing R at its fixed point. For |K −K∗| ≪ 1,

KL = R(K) = K∗ + λ(K −K∗) + · · ·

where λ = dR
dK

(K∗), therefore

1

L
=
ξ(KL)

ξ(K)
=
|TL − T ∗|−ν
|T − T ∗|−ν =

|K∗ −KL|−ν
|K∗ −K|−ν = λ−ν

This gives a prediction on the value of ν.

2.6.2 An illustration of the renormalization transformation

It is useful to first illustrate the basic ideas of renormalization group analysis using

the one-dimensional Ising model. Consider a one-dimensional lattice with N sites. At

the jth site, we assign a spin variable sj, which takes two possible values +1,−1. The

Hamiltonian of this model is given by

H = −J
∑

|i−j|=1

sisj. (2.6.5)

J > 0 so that neighboring spins tend to align with each other to lower the value of the

Hamiltonian.

Renormalization group analysis proceeds as follows. First, let us define a coarse-

graining operator, the renormalization group flow. For example, starting with a system

with N sites (N is assumed to be even), we integrate out the spin variables on the even

sites and take only the odd ones {s1, s3, . . . , sN−1} as the variables of our system.

Next we define the renormalization group flow. The transformation

{s1, s2, . . . , sN} → {s1, s3, . . . , sN−1}

induces a transformation in the space of the models (the Hamiltonians). After summing

over s2, s4, etc, the partition function becomes

Z(N,K) =
∑

{sj}
exp(K(s1s2 + s2s3 + . . .))

=
∑

s1s3...

(exp(K(s1 + s3)) + exp(−K(s1 + s3)))

× (exp(K(s3 + s5)) + exp(−K(s3 + s5))) · · ·
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We view this new form of the partition function as the partition function of a new

Hamiltonian on a lattice with N/2 sites. This means that we would like to find a constant

KL (L = 2) such that

Z(N,K) =
∑

s1s3...

exp(KL(s1s3 + s3s5 + . . .))f(K)N/2. (2.6.6)

Here the last term is a scaling factor that has to be introduced to compensate for the

reduction of the configuration space. For (2.6.6) to hold, it suffices to require

exp(K(s1 + s3)) + exp(−K(s1 + s3)) = f(K) exp(KLs1s3) (2.6.7)

for all choices of s1 and s3. The solution to these equations is given by

KL = ln cosh(2K)/2, f(K) = 2 cosh1/2(2K) (2.6.8)

The first equation defines the renormalization group flow in the space of the model

parameters, here the value of K. We then have

Z(N,K) = f(K)N/2Z(N/2, KL). (2.6.9)

The renormalized Hamiltonian is

HL = −JL
∑

|i−j|=2

sisj, (2.6.10)

where JL = kBTKL. From (2.6.9), we obtain

−ζ(K) =
1

2
ln f(K)− 1

2
ζ(KL). (2.6.11)

From (2.6.8), if we know the value of ζ at K, we can obtain the value of ζ at KL.

To analyze the dynamics of the renormalization group flow and the change of the free

energy along the flow, we may proceed as follows. When K = 0, the partition function

is simply Z(N, 0) = 2N . Therefore for some small value of K, say 0.01, we may set

Z(N, 0.01) ≈ 2N . We then use the renormalization transformation (2.6.8) iteratively to

find the free energy at other values of K. For the 1D Ising model, this approximation is

indeed quite good [?]. See Table 2.6.2 (from [?]).

Is a permission required in this case?
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ζ(K)

K Renormalization group Exact

0.01 ln 2 0.693 197

0.100 334 0.698 147 0.698 172

0.327 447 0.745 814 0.745 827

0.636 247 0.883 204 0.883 210

0.972 710 1.106 299 1.106 302

1.316 710 1.386 078 1.386 080

1.662 637 1.697 968 1.697 968

2.009 049 2.026 876 2.026 877

2.355 582 2.364 536 2.364 537

2.702 146 2.706 633 2.706 634

In this example, the renormalized Hamiltonian (2.6.10) is in exactly the same form

as the Hamiltonian we began with, i.e. we were able to find values of f(K) and KL

such that (2.6.7) is satified for all values of s1 and s3 and no approximations are needed.

This is rarely the case in general. Instead, one has to make approximations in order to

maintain some feasibility for the renormalization group analysis, as the next example

shows.

2.6.3 RG analysis of the two-dimensional Ising model

We now look at the Ising model on two-dimensional triangular lattice with lattice

constant a [?]. To coarse-grain the model, we divide the lattice into a triangular lattice

of triangular blocks indexed by I with three vertices inside each block, and define the

block spin SI = sgn(s1 + s2 + s3), where s1, s2, s3 are the spins on the vertices inside the

I-th block, ordered in some particular way. After coarse-graining, the lattice constant

changes from a to
√

3a. When SI = 1, we have four possible spin configurations for s1,

s2 and s3 that we will denote by σI = 1, 2, 3, 4: + +−, +−+, −+ + and + + +, where

we use + for spin up and − for spin down. These are the internal variables that we will

integrate over. To renormalize, note that we can write H as a function of the variables

{SI , σI}: H = H(K, {SI , σI}). Integrating out the variables {σI}, we can write Z(K,N)
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in the form of
∑

SI
exp(−H(KL, {SI})) by taking

H(KL, {SI}) = − log
∑

{σI}
exp(−H(K, {SI , σI})). (2.6.12)

It would be nice if H(KL, {SI}) has the same form as the original Hamiltonian, say

H = −JL
∑

〈I,J〉 SISJ for some new parameter JL. However, this is impossible unless we

make some approximations.

Figure 2.7: Coarse-graining the Ising model on triangular lattice.

Figure 2.8: Interaction between two block spins.
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The starting point is

P{SI} =
∑

{si|SI}
P{si} (2.6.13)

where
∑

{si|SI} means summing over all configurations {si} that give rise to {SI} after

coarse graining. For later use, we mention the obvious relation:

∑

{si}
=
∑

{SI}

∑

{si|SI}
(2.6.14)

and the elementary but useful factorization:

∑

x1

· · ·
∑

xn

f1(x1) · · · fn(xn) = (
∑

x1

f1(x1)) · · · (
∑

xn

fn(xn)) (2.6.15)

Rewriting (2.6.13), we have

eKL

P

SISJ

∑
{SI} e

KL

P

SISJ
=
∑

{si|SI}

eK
P

sisj

∑
{si} e

K
P

sisj
(2.6.16)

In the last equation, K
∑

|i−j|=1 sisj consists of two parts: the part that corresponds to

the internal block, including all terms for which si and sj are in the same block, and the

inter-block part that includes all terms for which si and sj are in two different blocks.

We denote them by H0 and H1 respectively.

Claim: For (2.6.16) to hold, it is sufficient that

eKL

P

SISJ =

∑
{si|SI} e

K
P

sisj

∑
{si|SI} e

−H0/(kBT )
(2.6.17)

Proof. Note that

∑

{si|SI}
e−H0/(kBT ) =

M∏

I=1

(
∑

σI

eK(S1
IS

2
I +S2

IS
3
I +S3

IS
1
I )

)
= (e3K + 3e−K)M (2.6.18)

where M is the number of blocks. Note also that the right hand side of (2.6.18) does not

depend on {SI}. Summing over {SI} on both sides of (2.6.17), we get

∑

{SI}
eKL

P

SISJ =

∑
{si} e

K
P

sisj

∑
{si|SI} e

−H0/(kBT )

where we used (2.6.14). The ratio of (2.6.17) and the last equation gives (2.6.16).
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Next define the weighted average:

〈A〉 =

∑
{si|SI} e

−H0/(kBT )A
∑

{si|SI} e
−H0/(kBT )

then (2.6.17) can be written as

eKL

P

SISJ = 〈e−H1/(kBT )〉 = e−〈H1〉/(kBT )− 1

2
(〈H2

1
〉−〈H1〉2)/(kBT ) + · · · (2.6.19)

We will make the approximation:

〈e−H1/(kBT )〉 ≈ e−〈H1〉/(kBT ) (2.6.20)

This is a drastic approximation. Now compare the exponents:

−KL

∑

|I−J |=1

SISJ = 〈H1〉/(kBT ) = −
∑

|I−J |=1

K
(
〈s1
Is

3
J〉+ 〈s2

Is
3
J〉
)

where siI , s
j
J are shown in Figure 2.6.3.

Using (2.6.15) again, we have

〈s1
Is

3
J〉 =

∑
{si|SI} e

−H0/(kBT )s1
Is

3
J∑

{si|SI} e
−H0/(kBT )

=

∑
σI
eK(s1Is

2
I+s2Is

3
I+s3Is

1
I)s1

I∑
σI
eK(s1

I
s2
I
+s2

I
s3
I
+s3

I
s1
I
)
·
∑

σJ
eK(s1Js

2
J+s2Js

3
J+s3Js

1
J )s3

J∑
σJ
eK(s1

J
s2
J
+s2

J
s3
J
+s3

J
s1
J
)

Similar to (2.6.18), we get
∑

σI

eK(s1Is
2
I+s2Is

3
I+s3Is

1
I)s1

I = SI(e
3K + e−K)

Therefore, we have

KL

∑

|I−J |=1

SISJ =
∑

|I−J |=1

2K(
e3K + e−K

e3K + 3e−K
)2SISJ

namely,

KL = R(K) = 2K(
e3K + e−K

e3K + 3e−K
)2

This is the renormalization group flow under the approximation (2.6.20).

The nontrivial fixed point of this map is K∗ = 1
4
ln(1 + 2

√
2) ≈ 0.3356, from which

we also obtain ν = lnL/ lnR′(K∗) ≈ 1.134. As a comparison, note that Onsager’s exact

solution for the 2D Ising model on triangular lattice gives K∗ = 1
4
ln 3 ≈ 0.2747 and

ν = 1.

In principle, we may try to improve upon the approximation (2.6.20). In practice,

this is not easy since the computation quickly becomes very involved.
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2.6.4 A PDE example

Consider the example 



∂tu1 = ∂2

xu1 − u1u
2
2

∂tu2 = D∂2
xu2 + u1u

2
2

(2.6.21)

with initial data that decays sufficiently fast at infinity. This example was analyzed in

[?]. Our interest here is to see how simple-minded renormalization group methods can

be used for this problem.

First let us define the renormalization transformation. Let L > 1 be fixed, and let

(u1, u2) be the solution of (2.6.21). Define





ũ1(x, t) = Lα1u1(Lx, L

2t)

ũ2(x, t) = Lα2u2(Lx, L
2t)

(2.6.22)

Next, we define the renormalization group flow, now in the space of nonlinear opera-

tors. It is easy to see that (ũ1, ũ2) satisfies





∂tũ1 = ∂2

xũ1 − L2(1−α2)ũ1ũ
2
2

∂tũ2 = D∂2
xũ2 + L2−(α1+α2)ũ1ũ

2
2

(2.6.23)

Therefore, under the renormalization transformation (2.6.22), the operator in the PDE

changes to (
∂2
xu1 − u1u

2
2

D∂2
xu2 + u1u2

2

)
−→

(
∂2
xu1 − L2(1−α2)u1u

2
2

D∂2
xu2 + L2−(α1+α2)u1u2

2

)
(2.6.24)

This suggests that we should consider the class of operators with the form

L
(
u1

u2

)
=

(
∂2
xu1 + c1u1u

2
2

D∂2
xu2 + c2u1u2

2

)
(2.6.25)

Indeed, under the same renormalization transformation, such an operator changes to

L̃
(
u1

u2

)
=

(
∂2
xu1 + c1L

2(1−α2)u1u
2
2

D∂2
xu2 + c2L2−(α1+α2)u1u2

2

)
(2.6.26)

which is still in the same class of operators. Therefore our renormalization group flow is

defined by:

c1 → c1L
2(1−α2), c2 → c2L

2−(α1+α2) (2.6.27)
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We are interested in the fixed points of the map (2.6.22) and (2.6.27). Fixed points

of (2.6.27) should satisfy

c∗1 = c∗1L
2(1−α2), c∗2 = c∗2L

2−(α1+α2) (2.6.28)

It is beyond our scope to carry out a complete analysis of all the fixed points. But one

interesting set of fixed points identified by Bricmont et al. is given by [?]

c∗1 = −1, c∗2 = 0, α2 = 1, α1 > 1 (2.6.29)

This fixed point corresponds to the PDE




∂tu1 = ∂2

xu1 − u1u
2
2

∂tu2 = D∂2
xu2

(2.6.30)

The final step is to study the linearization of the renormalization group flow (2.6.27)

around this fixed point. We refer to [?] for some details. Let us note that this fixed point

PDE has solutions that are fixed point of the map (2.6.22). The value of α1 can be found

by looking for solutions of (2.6.30) which are also fixed points of the renormalization

transformation (2.6.22). Such solutions must take the form

u1(x, t) = t−
α1
2 u1

(
x√
t

)
, u2(x, t) = t−

1

2u2

(
x√
t

)

It is easy to see that

u2(ξ) = Ae−
ξ2

4

and u1 satisfies

−d
2u1

dξ2
− 1

2
ξ
du1

dξ
− α1

2
u1 + u2

2u1 = 0

For small values of A, α1 can be calculated perturbatively, and it has the form [?]

α1 = 1 +
A2

4π
√

2D + 1
+O(A4).

2.7 The Mori-Zwanzig formalism

So far we have discussed two special situations in which simplified effective models

can be obtained using asymptotic analysis. The first is the case when the system has
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disparate scales. The second is when the system has self-similar behavior at different

scales. A natural question is: What happens in more general situations? To address this

question, we turn to the Mori-Zwanzig formalism.

The Mori-Zwanzig formalism is a strategy for integrating out a subset of variables

in a problem, which is precisely what we would like to do when performing coarse-

graining [?, ?]. What is remarkable about the Mori-Zwanzig formalism is its generality

– it applies to general nonlinear systems. However, at some level, it is also a tautology,

since what it does is simply to represent the solution for a subset of the variables (the

ones to be eliminated) as functionals of the other variables (the ones to be kept) and

then substitute back into the (projected form of the) original equation. In this way, some

variables are formally eliminated, but the remaining model is often far from being explicit.

Nevertheless, it is still a very good starting point for model reduction or coarse-graining

for the following reasons:

1. It is a general strategy.

2. It suggests the form of the reduced model. For example, if we start with the

equations in molecular dynamics, then the model obtained after elimination of

some variables can be viewed as a generalized Langevin equation, with noise and

memory terms.

3. It provides the starting point for making further approximations. From a practical

viewpoint, this is the most important application of the Mori-Zwanzig formalism.

For example, the abstract generalized Langevin equation that arises from the appli-

cation of the Mori-Zwanzig formalism to molecular dynamics models can sometimes

be approximated by a much simpler Langevin equation.

We start with a simple example to illustrate the basic idea. Consider a linear system

dp

dt
= A11p+ A12q, (2.7.1)

dq

dt
= A21p+ A22q. (2.7.2)

Our objective is to obtain a closed model for p, which is the quantity that we are really

interested in. To this end, we solve the second equation for q, viewing p as a parameter:

q(t) = eA22tq(0) +

∫ t

0

eA22(t−τ)A21p(τ) dτ.



2.7. THE MORI-ZWANZIG FORMALISM 87

Substituting this into the first equation, we obtain

dp

dt
= A11p+ A12

∫ t

0

eA22(t−τ)A21p(τ) dτ + A12e
A22tq(0)

= A11p+

∫ t

0

K(t− τ)p(τ) dτ + f(t),

where K(t) = A12e
A22tA21 is the memory kernel and f(t) = A12e

A22tq(0) is the so-called

noise term, if we think of q(0) as a random variable. Note that it does make sense to

think of q(0) as a random variable since we are not really interested in the details of q.

Our next example is the original model considered by Zwanzig [?]. Consider a system

with the Hamiltonian:

H(x, y,p,q) =
1

2
y2 + U(x) +

N∑

k=1

(
1

2
p2
k +

1

2
ω2
k(qk −

γk
ω2
k

x)2

)
.

One may think of (x, y) as the variables that describe the phase space of a distinguished

particle, while {(qk, pk)} describes other particles that provide the thermal bath. We will

use the Mori-Zwanzig formalism to integrate out the variables {(qk, pk)}. The Hamilton’s

equations are

ẋ = y, (2.7.3)

ẏ = −U ′(x) +
∑

k

γk(qk −
γk
ω2
k

x), (2.7.4)

q̇k = pk, (2.7.5)

ṗk = −ω2
kqk + γkx. (2.7.6)

Integrating the equations for qk and pk, we get

qk(t) = qk(0) cosωkt+
pk(0)

ωk
sinωkt−

γ2
k

ωk

∫ t

0

sin(ωk(t− τ))x(τ) dτ.

Therefore, the equations for x and y become

ẋ = y,

ẏ = −U ′(x)−
∑

k

γ2
k

ω2
k

∫ t

0

cos(ωk(t− τ))y(τ) dτ

+
∑

k

(
γk(qk(0)− γk

ω2
k

x(0)) cosωkt+
γkpk(0)

ωk
sinωkt

)
.
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Again, this has the form of a generalized Langevin equation with memory and noise

terms. Under suitable assumptions on the initial values qk(0) and pk(0), k = 1, · · · , N ,

the noise term will be Gaussian.

Our next example is a general procedure for eliminating variables in linear elliptic

equations. Consider a linear differential equation

Lu = f (2.7.7)

Here L is some nice operator, f is the forcing function. Let H be a Hilbert space which

contains both u and f , and let H0 be a closed subspace of H, containing only the coarse-

scale component of the functions in H. Let P be the projection operator to H0 and

Q = I − P : Functions in H can be decomposed into the form:

v = v0 + v′, v ∈ H, v0 ∈ H0, v
′ ∈ H⊥

0 (2.7.8)

Here H⊥
0 is the orthogonal complement of H0, v0 and v′ are respectively the coarse and

fine scale part of v.

v0 = Pv, v′ = Qv (2.7.9)

We can write (2.7.7) equivalently as:

PLPu+ PLQu = Pf (2.7.10)

QLPu+QLQu = Qf (2.7.11)

Assuming that QLQ is invertible on H⊥
0 , we can write abstractly an equation for u0 = Pu

[?]:

L̄u0 = L̄Pu = f̄ (2.7.12)

where

L̄ = PLP − PLQ(QLQ)−1QLP, f̄ = Pf − PLQ(QLQ)−1Qf (2.7.13)

This is an abstract upscaling procedure, and (2.7.12) is an abstract form of an upscaled

equation. Note that even if the original equation was local, say an elliptic differential

equation, (2.7.12) is in general nonlocal. Its effectiveness depends on how to choose

H0 and whether the operator L̄ can be simplified. We will return to this issue later

in Chapter 8 when we discuss upscaling of elliptic differential equations with multiscale

coefficients.

We now explain the general Mori-Zwanzig formalism. The main steps are as follows

[?]:
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1. Divide the variables into two sets: A set of retained variables and a set of variables

to be eliminated.

2. Given the time history of the retained variables and the initial condition for the

variables to be eliminated, one can find the solution for the variables to be elimi-

nated.

3. Substituting these solutions into the equation for the retained variables, one obtains

the generalized Langevin equation for the retained variables, if we regard the initial

condition for the eliminated variables as being random.

We now show how these steps can be implemented [?].

Consider a general nonlinear system

dx

dt
= f(x) (2.7.14)

Let ϕ0 be a function of x. Define the Liouville operator L:

(Lϕ0)(x) = (f · ∇ϕ0)(x) (2.7.15)

Let ϕ(t) = ϕ0(x(t)) where x(t) is the solution of (2.7.14) at time t. Using the semi-group

notation, we can write ϕ(t) as

ϕ(t) = etLϕ0 (2.7.16)

Now let x = (p,q) where q is the variable to be eliminated and p is the retained vari-

able (see for example [?]). We will put ourselves in a setting where the initial conditions

of q are random. Define the projection operator (as a conditional expectation):

Pg = E(g|q(0)) (2.7.17)

where g is a function of x, and let Q = I − P . Let ϕ be a function of p only, then

d

dt
ϕ(t) = etLLϕ(0) = etLPLϕ(0) + etLQLϕ(0) (2.7.18)

Using Dyson’s formula:

etL = etQL +

∫ t

0

e(t−s)LPLesQLds (2.7.19)
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we get
d

dt
ϕ(t) = etLPLϕ(0) +

∫ t

0

e(t−s)LK(s)ds+R(t) (2.7.20)

where

R(t) = etQLQLϕ(0), K(t) = PLR(t). (2.7.21)

This is the desired model for the retained variables. As one can see, this is not in the

form of an equation for p directly. Instead, it is an equation for any functions of p.

The term R(t) is usually regarded as a noise term since it is related to the initial

conditions of q which are random. The term involving K(t) is a memory term and is

often dissipative in nature, as can be seen from the examples discussed earlier. Therefore

(2.7.20) is often regarded as a generalized Langevin equation.

2.8 Notes

This chapter is a crash course in the analytical techniques used in multiscale problems.

Many textbooks have been written on some of the topics discussed here. Our treatment

is certainly not thorough, but we have attempted to cover the basic issues and ideas.

The techniques discussed here are largely considered to be understood, except for the

renormalization group method and the Mori-Zwanzig formalism. While many physicists

use renormalization group analysis at ease, mathematical understanding of this technique

is still at its infancy. This is quite a concern, since after all, the renormalization group

analysis is a mathematical technique. Our treatment of the two-dimensional Ising model

has largely followed that of [?]. One can clearly see that drastic approximations seem to

be necessary in order to obtain some numbers that can be compared with experiments,

or in this case, the exact solution of Onsager.

For some progress on the renormalization group analysis of one-dimensional models

and the Feigenbaum universality, we refer to [?].

The issue with the Mori-Zwanzig formalism is quite different. Here the question is:

What should we do with it? Mori-Zwanzig formalism is formally exact, but the resulting

model is often extremely complicated. Clearly we need to make approximations but

what is not so clear is how one should make approximation and how accurate these

approximations are. We will return to this issue at the end of the book.
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Chapter 3

Classical Multiscale Algorithms

In this chapter, we discuss some of the classical algorithms that have been developed

using multiscale ideas. Unlike the algorithms that we discuss in the second half of this

volume, the methods presented here are developed for the purpose of resolving the fine

scale details of the solutions. For this reason, the best we can hope for from the view-

point of computational complexity is linear scaling. This should be contrasted with the

sublinear scaling algorithms that we will discuss in the second half of this volume.

We have chosen the following examples:

1. The multigrid method.

2. The fast multi-pole method.

3. Domain decomposition methods.

4. Adaptive mesh refinement.

5. Multi-resolution representation.

A lot has been written on these topics, including some very nice monographs (see for

example, [1, 13, 37]). It is not our intention to discuss them in great detail. Our focus

will be on the main ideas and the general aspects that are relevant to the overall theme

of this volume.
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3.1 Multigrid method

Although its basic ideas were initiated in the 1960’s [22], multigrid method only

became a practical tool in the late 1970’s. Initially, multigrid method was developed

as a tool for solving the algebraic equations that arise from discretizing PDEs [11, 27].

Later, it was extended to other contexts such as the Monte Carlo methods and molecular

dynamics [12, 24]. In particular, Brandt proposed to extend the multigrid method as a

tool for capturing the macroscale behavior of multiscale or multi-physics problems [12],

a topic that we will take up in Chapter 6. Here we will focus on the classical multigrid

method.

Consider the following problem:

−△u(x) = f(x),x ∈ Ω (3.1.1)

with the boundary condition u|∂Ω = 0. The standard procedure for solving such a PDE

is:

1. First, discretize the PDE using, for example, finite difference or finite element

methods. This gives rise to a linear system of equations of the form:

Ahuh = bh (3.1.2)

where h is the typical grid size used in the discretization.

2. Solve the linear system (3.1.2) using some direct or iterative methods.

The rate of convergence of iterative methods depends on the condition number of the

matrix Ah, defined as κ(Ah) = ||Ah||2||A−1
h ||2. Here ||Ah||2 is the l2 norm of the matrix

Ah. In most cases the condition number of Ah scales as:

κ(Ah) ∼ h−2 (3.1.3)

This suggests that as h becomes smaller, the iterative methods also converge more slowly.

It is easy to understand why this has to be the case: The finite difference or finite element

operators are local, but the solution operator (the Green’s function for (3.1.1)) is global.

If one makes an error at one corner of the domain, it affects the solution at all other

places. If the iteration method is local as most iterative methods are, in order to remove
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such an error, one has to run the propagator, i.e. the iteration, at least O(1/h) times.

Of course, this argument would not work if the iterative procedure itself is global, which

is the case when global bases are used to represent the numerical solutions. Indeed, as

we discuss later in this chapter, it is possible to construct hierarchical bases for finite

element methods for which the condition number of Ah is drastically reduced [42].

An important observation is that the slow convergence is caused mostly by the error

in the large scale components of the solution. Such large scale components can also be

accurately represented on coarser grids. Since it is less costly to eliminate the errors on

coarser grids, we should be able to construct much more efficient iterative algorithms

by correcting the large scale components of the error on coarser grids. This is the main

intuition behind the multigrid method.

In order to turn this intuition into real algorithms, we have to know how to move the

numerical solutions across different grids and how to set up the iterations on different

grids. This is indeed the central issue of the multigrid method. Our presentation here

is very much influenced by the tutorial of Briggs et al. [13], which gives a very clear

introduction to this topic.

To illustrate the details of the algorithm, it is useful to consider the one-dimensional

case of (3.1.1). When Ω = [0, 1], (3.1.1) becomes

− d2u

dx2
= f(x), x ∈ [0, 1] (3.1.4)

u(0) = u(1) = 0.

We consider a finite difference discretization on a grid with grid points xj = jh, j =

1, · · · , n − 1, and h = 1/n. Using a standard second order finite difference formula, we

obtain from (3.1.4)

−uj+1 − 2uj + uj−1

h2
= f(xj), j = 1, · · · , n− 1

This can be written as

Ahuh = fh, (3.1.5)
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where

Ah =
1

h2





2 −1

−1 2 −1
. . . . . . . . .

. . . 2 −1

−1 2





is a (n−1)×(n−1) tri-diagonal matrix, uh = (u1, · · · , un−1)
T and fh = (f(x1), · · · , f(xn−1))

T .

What makes this example particularly useful is that the eigenvalues and eigenvectors

of Ah can be computed explicitly using discrete Fourier analysis. Here are the results:

1. The eigenvalues are

λk =
4

h2
sin2(kπh/2), k = 1, · · · , n− 1. (3.1.6)

2. The eigenvector whk corresponding to the eigenvalue λk is given by:

whk(j) = sin(πkxj) = sin(πkj/n) (3.1.7)

The condition number is:

κ(Ah) = max|λk|/min|λk| =
sin2 π(1−h)

2

sin2 πh
2

= O(h−2) (3.1.8)

We now look at what happens when iterative methods are used to solve the linear

system (3.1.5). The simplest iterative algorithms can be written in the form:

un+1 = Bun + g (3.1.9)

where B is the iteration matrix. Let u∗ be the exact solution of (3.1.5), and define the

error vector: en = un − u∗. If we express e0 as a linear combination of the eigenvectors

of B, {vk},
e0 =

∑

k

ckvk, (3.1.10)

then

en =
∑

k

ck (µk)
n vk (3.1.11)



3.1. MULTIGRID METHOD 99

where µk is the eigenvalue of B corresponding to the eigenvector vk. Hence

‖en‖
‖e0‖ ∼ (ρ(B))n (3.1.12)

where ρ(B) = max{|µk|} is the spectral radius of B. The convergence rate is determined

by the spectrum of B.

Let D be the diagonal part of Ah and L be the lower sub-diagonal part of −Ah. Then

the symmetric matrix Ah can be rewritten as Ah = D − L − LT . Some of the simplest

iterative algorithms are:

1. Jacobi iteration:

un+1 = D−1(L+ LT )un +D−1fh. (3.1.13)

The Jacobi iteration matrix is given by:

BJ = D−1(L+ LT ). (3.1.14)

Its eigenvectors are the same as those of Ah. Its eigenvalues are µJk = 1 −
2 sin2(πkh/2), k = 1, · · · , n− 1.

2. Gauss-Seidel iteration:

un+1 = (D − L)−1LTun + (D − L)−1fh. (3.1.15)

Thus, the Gauss-Seidel iteration matrix is

BGS = (D − L)−1LT . (3.1.16)

3. Relaxation methods: Starting with

un+1 = Bun + g, (3.1.17)

we can construct the relaxed iteration scheme:

un+1 = (1− ω)un + ω(Bun + g) (3.1.18)

The relaxed iteration matrix is given by:

Bω = (1− ω)I + ωB. (3.1.19)

One can choose the optimal value of ω in order to minimize the spectral radius

of Bω. The best known such relaxation method is the successive overrelaxation

method studied by David Young [41].
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For the simple one-dimensional example discussed earlier, the spectral radius of BJ

is

ρ(BJ) = µJ1 = 1− 2 sin2(πh/2) ∼ 1− π2h2/2 (3.1.20)

Hence

log ρ(BJ) ∼ π2h2/2 (3.1.21)

To reduce the size of the error en to a prescribed tolerance ε, the number of iterations

needed is roughly:

N ∼ log ε/ log ρ(BJ) ∼ O(h−2) (3.1.22)

For the Gauss-Seidel iteration (see [13]),

ρ(BGS) = cos2(πh) ∼ 1− π2h2 (3.1.23)

log ρ(BGS) ∼ π2h2 (3.1.24)

Compared with the Jacobi iteration, we have

log ρ(BGS) ∼ 2 log ρ(BJ) (3.1.25)

Therefore, Gauss-Seidel iteration is about twice as fast as the Jacobi iteration.

For the relaxed Jacobi iteration, the eigenvalues are µk(B
J
ω) = 1−2ω sin2(πkh/2) (see

Fig. 3.1). Take ω = 2/3, then µk(B
J
ω) < 1/2 for k > n/2, i.e., the damping factor for

the high frequencies is less than 1/2 for the relaxed iteration method with ω = 2/3. This

is better than the Jacobi iteration. But for the low frequency components, the damping

factor is still of the order 1−O(h2), which is comparable to that of the Jacobi iteration.

Note that the difficult components are the low frequency components. Indeed for this

reason, the iteration procedure is also called smoothing: The numerical solution becomes

smoother after a few iteration steps since the high frequency components are effectively

damped out. The low frequency components can be accurately represented on coarser

grids, on which the iterations converge faster. This is the key observation behind the

multigrid method. To turn this observation into an algorithm, we need to know the

following:

1. How do we transfer functions between different grids?

2. What are the iterative procedures on each different grid?
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Figure 3.1: The eigenvalues of Jacobi matrix and relaxed Jacobi matrix with ω = 2/3

(courtesy of Xiang Zhou).
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To see how things work, let us first consider the two-grid algorithm, on the grids Ωh

and Ω2h that correspond to grid sizes h and 2h, respectively. The iteration scheme on

each grid can either be the relaxation method, or the Gauss-Seidel method. To transfer

between functions defined on Ωh and Ω2h, we will make use of the so-called restriction (or

projection) operators, which map functions defined on fine grids to functions on coarser

grids,

I2h
h : Ωh → Ω2h.

and the interpolation (or the prolongation) operators, which map functions defined on

coarse grids to functions on finer grids,

Ih2h : Ω2h → Ωh.

With these operators, the two-grid algorithm can be expressed in the following form:

1. Run a few smoothing steps on Ωh using some simple iteration algorithms such as

the Gauss-Seidel or the relaxation method.

2. Calculate the residual: rh = Ahuh − fh

3. Project to coarse grid: r2h = I2h
h rh

4. Solve on coarse grid: A2he2h = r2h

5. Interpolate to fine grid: uh ← uh − Ih2he2h.

It remains to specify the intergrid operators I2h
h , Ih2h and the operator A2h on the

coarse grid. In principle, A2h should be the effective operator on Ω2h. In some situations,

e.g. problems of the type treated in Chapter 8 or molecular dynamics models, it can be

quite non-trivial to find a good A2h. However, for the problem considered here, one may

simply choose A2h to be the corresponding matrix obtained by discretizing (3.1.1) on the

coarse grid with mesh size 2h. One may also choose:

A2h = I2h
h AhI

h
2h.

To define I2h
h , let vh be any function defined on the grid Ωh. We may simply define

I2h
h vh as a function on Ω2h obtained by evaluating vh on Ω2h:

v2h(j) := I2h
h (vh) (j) = vh(2j), j = 1, 2, · · · , n/2− 1.
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In matrix form, we have




v2h(1)

v2h(2)
...

v2h(
n
2
− 1)

v2h(
n
2
)




=





0 1 0 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0
. . . . . .

0 0 0 0 0 · · · 0 1









vh(1)

vh(2)
...

vh(n− 1)

vh(n)




.

We may also define I2h
h vh through averaging over neighboring grid points. For example,

we can use averaging over the nearest neighbors with weights (1
4
, 1

2
, 1

4
),

v2h(j) := I2h
h (vh) (j) =

1

4
vh(2j − 1) +

1

2
vh(2j) +

1

4
vh(2j + 1).

In matrix form, this is




v2h(1)

v2h(2)
...

v2h(
n
2
− 1)

v2h(
n
2
)




=





1/4 1/2 1/4 0 0 · · · 0

0 0 1/4 1/2 1/4 0 · · · 0
. . . . . .

0 0 0 0 0 · · · 0 1









vh(1)

vh(2)
...

vh(n− 1)

vh(n)




.

(3.1.26)

For Ih2h, we may define it to be (a constant multiple of) the adjoint operator (or

transpose) of I2h
h . For example, if Ih2h is given by (3.1.26), we may define I2h

h as





vh(1)

vh(2)
...

vh(n− 1)

vh(n)




=





1
2

0 0 · · · 0

1 0 0 · · · 0
1
2

1
2

0 · · · 0

0 1 0 · · · 0

0 1
2

1
2
· · · 0
. . .

0 0 0 · · · 1









v2h(1)

v2h(2)
...

v2h(
n
2
− 1)

v2h(
n
2
)




. (3.1.27)

This simply means that on coarse grid points, vh = Ih2hv2h takes the same values as v2h.

On the remaining grid points, the value of vh is obtained through averaging the values

on the neighboring coarse grid points. In this case, I2h
h = 2(Ih2h)

T .

Instead of averaging, one can also use linear interpolation to obtain the values of vh

on the remaining grid points.
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To understand the convergence properties of such a procedure, note that we can write

the iteration matrix as

BMG = (I − Ih2hA−1
2h I

2h
h Ah)(BJ,ω)

m.

where BJ,ω = (1 − ω)I + ωBJ , m is the number of smoothing steps on Ωh. Here we

have assumed that the relaxed Jacobi method is used as the smoothing operator. Even

though the {wkh}’s defined in (3.1.7) are no longer the eigenvectors of BMG, the subspace

spanned by the pair (wkh, w
k′

h ), k′ = n−k is still an invariant subspace of the matrix BMG.

In fact, it is easy to see that if Ih2h and I2h
h are defined as in (3.1.26) and (3.1.27), then

we have

BMGw
k
h =

(
1− 2ω sin2 kπh

2

)m
sin2 kπh

2

(
wkh + wk

′

h

)
(3.1.28)

BMGw
k′

h =

(
1− 2ω sin2 k

′πh

2

)m
cos2 kπh

2

(
wkh + wk

′

h

)
(3.1.29)

k = 1, · · · , n/2. Take ω = 2/3. For the high frequency components corresponding to k′,

the damping factor is less than 1/2 as indicated above in Fig. 3.1. For the low frequency

components corresponding to k, the factor sin2(kπh/2), which is less than 1/2, helps to

reduce the damping factor to less than 1/2. Therefore, as long as m ≥ 1, the damping

factor is uniformly less than 1/2 for all frequencies.

This two-grid algorithm can be easily generalized so that more grids, Ω4h,Ω8h, · · · , are

used. Instead of solving the equation A2he2h = r2h exactly, we apply the same two-grid

algorithm again on this equation, and proceed recursively. In this case, it is important to

specify an overall strategy for moving from grid to grid. We may either follow a V -cycle

or a W -cycle. In a V -cycle, one starts from the fine grid Ωh and then move to coarser

and coarser grids until the coarsest grid is reached, and then reverse the procedure. In a

W -cycle, one may reverse the direction before the finest or the coarsest grid is reached

[13].

In this example, the mechanism responsible for the effectiveness of the multigrid

method lies in the smoothing effect of the iterative algorithms on each grid. One should

not get the impression that this is the only way that the multigrid method can be

effective. Multigrid method has been extended to many other situations such as steady

state calculations of transonic flows [14], and Monte Carlo sampling methods [24] (see

[12]). In these cases, the explanation given above is no longer sufficient. At the present
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Figure 3.2: The damping factors in (3.1.28) and (3.1.29). Dashed-line: low frequency

components k = 1, · · · , n/2; solid line: high frequency components k′ = n−k. The result

from the relaxed Jacobi iteration method (the dotted curve, the same as in Fig. 3.1) is

also shown for comparison (courtesy of Xiang Zhou).
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time, a unified general understanding of the mechanisms behind the effectiveness of the

multigrid method is still lacking.

3.2 Fast summation methods

We now turn to fast summation methods. The general problem treated by such fast

summation methods can be formulated as follows: Given a kernel K(x,y) and a set of

sources located at {xi} with weights {wj}, as well as a set of target locations {yk}, we

want to compute

uk =
N∑

j=1

wjK(xj,yk) (3.2.1)

for k = 1, · · · ,M . Let us assume that M and N are comparable in size. Some examples

of the kernels include:

1. The gravitational and Coulombic potential, K(x,y) = 1
|x−y|

2. The gravitational force, K(x,y) = x−y

|x−y|3

3. The heat kernel, K(x,y) = e−
|x−y|2

4T

We will focus on the analysis-based fast algorithms, of which the fast multi-pole method

(FMM) is the primary example. These algorithms are based on the analytical properties

of the kernels involved in the problem. They should be contrasted to the other class of

fast algorithms, such as the fast Fourier transform (FFT), which is based on the algebraic

properties of the summands.

If we calculate (3.2.1) by direct summation, the cost is O(N2). The tree code, which

was a prelude to FMM, brings the cost down to O(N logN). FMM brings the cost

down further to O(N) for arbitrary precision. However, it should be pointed out that

the importance of FMM is not just to remove the logarithmic factor in the cost, it

establishes a new framework for designing hierarchical algorithms based on analytical

approximations, making it possible to develop fast summation algorithms beyond the

use of multi-pole expansions.
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3.2.1 Low rank kernels

Assume that the kernel is in a tensor product form, say K(x,y) = K1(x)K2(y), then

to evaluate

uk =
N∑

j=1

wjK1(xj)K2(yk)

for a set of sources {xj} and targets {yk}, we may simply compute

A =
N∑

j=1

wjK1(xj)

and then use

uk = AK2(yk)

This requires only O(M +N) operations.

Tensor product kernels are rank-1 kernels. Kernels of practical interest are rarely

in the tensor product form. Fortunately, some important ones can be very accurately

approximated by the sum of a small number of kernels in tensor product form:

K(x,y) ≈
p∑

n=1

Kn,1(x)Kn,2(y) (3.2.2)

In this case, we can use

uk ≈
N∑

j=1

wj

p∑

n=1

Kn,1(xk)Kn,2(yj)

=

p∑

n=1

MnKn,1(xk)

where Mn =
∑N

j=1wjKn,2(yj) are called the moments. The cost for computing the

moments is O(Np). The additional cost for computing all the uk’s is O(Mp). Thus the

total computational cost is O(Mp+Np).

(3.2.2) means that the kernel K is very well approximated by a kernel whose rank is

no greater than p. The Gauss transform is one such example.

Consider the two-dimensional Gauss transform [26]

u(y) =
N∑

j=1

wje
−|y−xj |2/4T . (3.2.3)
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A key observation is the following Taylor series expansion for one-dimensional heat ker-

nels:

e−(x−x0)2 =
∞∑

n=0

xn0
n!
hn(x)

where hn(x) is the n-th order Hermite function,

hn(x) = (−1)n
dn

dxn

(
e−x

2
)
.

In two dimension, we have, for any c ∈ R
2,

e−|x−xi|2/4T =
∞∑

n1,n2=0

Φn1,n2
(x− c)Ψn1,n2

(xi − c) (3.2.4)

where (x = (x, y))

Φn1,n2
(x) = hn1

(
x√
4T

)
hn2

(
y√
4T

)
,

Ψn1,n2
(x) =

1

n1!n2!

(
x√
4T

)n1
(

y√
4T

)n2

.

More importantly, if ||xi − c|| ≤
√
T , then we have [26]

|e−|x−xi|2/4T −
p∑

n1,n2=0

Φn1,n2
(x− c)Ψn1,n2

(xi − c)| ≤
(

1

p!

)(
1

8

)p
(3.2.5)

The right hand side decays very fast as p increases. This means that the heat kernel is

very well approximated by low rank kernels.

Assume first that all the sources {xi} are located in a square centered at c with side√
T . Then

uk =
N∑

j=1

wje
−|yk−xj |2/4T

can be approximated by

uk ≈
N∑

j=1

wj

p∑

n1,n2=0

Φn1,n2
(yk − c)Ψn1,n2

(xj − c).

One can then use the ideas discussed earlier.

In the general case, let us cover all the sources and targets by a bounding box. If the

box has side length larger than
√
T , we divide the bounding box into smaller boxes of
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size
√
T . Due to the very fast exponential decay of the heat kernel, to calculate uk for

each target yk, we only need to sum over the contribution from the sources which lie in

the (2n+ 1)2 neighboring boxes, i.e.,

uk =
∑

j

wje
−|yk−xj |/4T =

∑

xj∈Nn
k

wje
−|yk−xj |/4T +O(e−n

2/4), (3.2.6)

Here n is a parameter that can be used to control the accuracy of the algorithm, N n
k is

the collection of the boxes within distance n
√
T from the box where the target yk lies

in (|N n
k | = (2n+ 1)2 in two dimension). Using (3.2.5), we can compute the moments for

each box B,

MB
n1,n2

=
∑

xj∈B
wjΨn1,n2

(xj − cB).

where cB is the center of the box B. The amount of work required for computing the

moments for all the small boxes is Np2. Since the moments are independent of the

targets, they can be precomputed. Now for each target yk, (3.2.6) can be calculated

approximately by:

uk ≈
∑

B∈Nn
k

p∑

n1,n2=0

MB
n1,n2

Φn1,n2
(yk − cB).

The computational cost for evaluating this sum is (2n + 1)2p2M . Thus the total cost is

proportional to M +N .

3.2.2 Hierarchical algorithms

We will restrict ourselves to two dimensions for simplicity, with the kernel given by

K(x,x0) = − log(‖x− x0‖) (3.2.7)

In this case, it is much more convenient to use complex variables. Identifying x = (x, y)

with the complex number z = x + yi, and x0 = (x0, y0) with the complex number

z0 = x0 + y0i, we can then write (3.2.7) as

K(x,x0) = Re(− log(z − z0)) (3.2.8)

We will view the analytic function log(z− z0) as the potential due to a unit point charge

located at z0.
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Consider now a point charge of strength q, located at z0. It is well-known that for

any z with |z| > |z0|,

log(z − z0) = log(z)−
∞∑

k=1

1

k

(z0

z

)k
(3.2.9)

This is the Taylor expansion in z0 or Laurent expansion in z. If there are m charges

of strengths {qi, i = 1, · · · ,m} located at the points {zi, i = 1, · · · ,m} respectively,

such that maxi|zi| < r, then according to (3.2.9), if |z| > r, the potential φ(z) =
∑

i qi log(z − zi) induced by the charges is given by,

φ(z) = Q log(z) +
∞∑

k=1

ak
zk

(3.2.10)

where

Q =
∑

i

qi, ak = −1

k

∑

i

qiz
k
i

This is called the multi-pole expansion of φ. The coefficients {ak} are generally referred

to as the moments. If we truncate this series after p terms, the error incurred is bounded

by [7, 25]:

|φ(z)−Q log(z)−
p∑

k=1

ak
zk
| ≤

(
A

p+ 1

)(
1

c− 1

)(
1

c

)p
(3.2.11)

where c = |z/r| and A =
∑

i|qi|. Note that the error bound depends on the target z

through the parameter c. If we choose c ≥ 2, then the error is bounded by A/2p. If we

want the error to be smaller than δ, we need to use p = − log2 δ terms in the expansion

(3.2.10).

This observation together with a hierarchical strategy is the basis for the “tree code”

developed by Appel [2], Barnes and Hut [6].

Suppose that the particles are distributed in a square and this square is divided into

2l × 2l boxes, see Figure 3.3 for l = 2. Two boxes are nearest neighbors if they share a

boundary point. Two boxes are said to be well separated if they are not nearest neighbors.

For example, the grey boxes in Figure 3.3 are nearest neighbors of the box X and the white

boxes are well separated from the box X. We want to evaluate φ(z) =
∑M

i=1 qi log(z−zi) ≈
at a location z which lies in, say the box X. Denote the collection of well separated boxes

from box X by W(z). For the zi’s that are in boxes belonging to W(z), the multi-pole
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expansion (3.2.10) gives

∑

zi∈W(z)

qi log(z − zi)
∑

B∈W(z)

∑

zi∈B

((
∑

i

qi

)
log(z − z0,B)−

p∑

k=1

qi(zi − z0,B)k

k(z − z0,B)k

)
(3.2.12)

where z0,B is the center of the box B. Let

Ak,B = −
∑

zi∈B

qi(zi − z0,B)k

k
, qB =

∑

{i:zi∈B}
qi.

Then the use of multi-pole expansion for contributions from well separated boxes W(z)

leads to the following,

φ(z) =
M∑

i=1

qi log(z − zi) (3.2.13)

≈
∑

B∈N (z)

∑

zi∈B
qi log(z − zi)

+
∑

B∈W(z)

(
qB log(z − z0,B)−

p∑

k=1

Ak,B
(z − z0,B)k

)

where N (z) is the collection of the nearest neighbor boxes of the box containing z. The

error made in these approximations can be estimated explicitly using (3.2.11).

Next, we apply the same idea to calculate the interaction between charges in the box

X and its nearest neighbors,

∑

B∈N (z)

∑

zi∈B
qi log(z − zi)

by subdividing each box into four smaller boxes. To do this systematically, we build a

tree of a hierarchy of boxes. This can be done inductively. At level 0, we have the entire

computational domain. The level l + 1 boxes are obtained recursively from the level l

boxes by subdividing each box into four equal parts. This yields a natural (quad-) tree

structure, where for each box, the four boxes obtained by subdividing it are considered

its children. If we assume that the particles are fairly homogeneously distributed, then

we need roughly log4N levels to obtain N boxes at the finest scale. On average, each

smallest box contains roughly one charge. We will denote by L the number of levels, i.e.,

l = L is the finest level.
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With each box X we associate an interaction list defined in the following way: De-

note the parent of X as X̃. Consider the children of the nearest neighbors of X̃. The

interaction list of X is defined as the subset of this collection of boxes which are not the

nearest neighbors of X. Obviously boxes in the interaction list of X are at the same level

as X. For example, in Figure 3.4, the white boxes are in the interaction list of the box

X. The multi-pole expansion is going to be used to calculate the potential inside the box

X due to the charges in the boxes belonging to the interaction list of X.

Given a target z, let Bl(z) be the level l box that contains z. Let N l(z) be the

collection of the nearest neighbor boxes of Bl(z) and let Ll(z) be the interaction list of

Bl(z). It is easy to see that
∑

B∈N l(z)

∑

zi∈B
qi log(z − zi) =

∑

B∈Ll+1(z)

∑

zi∈B
qi log(z − zi) +

∑

B∈N l+1(z)

∑

zi∈B
qi log(z − zi).

The calculation of the first term in the right hand side can be done using the multi-pole

expansion. For the second term, we can use (3.2.2) recursively with l replaced by l + 1.

These recursive steps can be continued until the finest level is reached. At that point,

one can use direct summation to compute the potential due to the charges in the nearest

neighbor boxes. In other words, we have, for all z
∑

i

qi log(z − zi) =
∑

l<L

∑

B∈Ll(z)

∑

zi∈B
qi log(z − zi) +

∑

B∈NL(z)

∑

zi∈B
qi log(z − zi).

Note that the coefficients in the multi-pole expansions are independent of the targets.

They can be precomputed. The total cost for pre-computing the moments for the boxes

in all O(logN) levels is approximately Np logN . For each target in a given box, 27p

operations are required to compute the interaction with the boxes in the interaction list

at each refinement level. A total of 27p logN operations are needed for each target. At

the finest level, there are on average one particle in each nearest neighbor box, therefore

8 operations are required for each target. Hence, the total cost is approximately

28Np logN + 8N.

3.2.3 The fast multi-pole method

In order to obtain a linear scaling algorithm, let us examine the origin of theO(N logN)

cost. First, the computation of the moments in order to build the multi-pole expansion
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Figure 3.3: The first step of the tree code. Interaction between particles in box X and

the while boxes can be computed via multi-pole expansions. Interaction with nearest

neighbor boxes (grey) are not computed.

for all boxes at all levels requires pN logN operations. This can be avoided if we know

how to efficiently build the multi-pole expansion for a box from the multi-pole expansion

of its four children. The main issue is that the multi-pole expansions for the four chil-

dren boxes are centered at the center of each of the children box, whereas the multi-pole

expansion for the parent box should be centered at the center of the parent box. The

following simple lemma tells us how to translate a multi-pole expansion with respect to

one center to a multi-pole expansion with respect to a different center.

Lemma 3 (Translation of multi-pole expansion). Suppose that

m∑

i=1

qi log(z − zi) = a0 log(z − z0) +
∞∑

k=1

ak
(z − z0)k

(3.2.14)

is a multi-pole expansion of the potential due to a set of m charges of strengths {qi, i =

1, · · · ,m} such that maxi|z0 − zi| < R. If z satisfies |z| < R + |z0|, p > 1, then

|
m∑

i=1

log(z − zi)− a0 log(z)−
p∑

l=1

bl
zl
| ≤

(
A

1− |c|

)
|c|p+1 (3.2.15)
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Figure 3.4: The second step of the tree code. After refinement, l = 3. Interaction

between particles in box X (note at current level box X is one of the children of the box

“X” in Fig. 3.3) and the light grey boxes has been calculated. The white boxes are well

separated with box X at level l = 3. Therefore these interactions can been calculated

using multi-pole expansion again. But the nearest neighbor interactions (dark grey) are

not computed at this level.
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where c = |z0|+R
z

, A =
∑m

i=1|qi| and

bl = −a0z
l
0

l
+

l∑

k=1

akz
l−k
0

(
l − 1

k − 1

)
. (3.2.16)

This lemma tells us how to convert a multi-pole expansion centered at z0 to a multi-

pole expansion centered at 0.

Using this lemma, we can develop an upward pass procedure to build the multi-pole

expansions for all the boxes, starting from the multi-pole expansion for the boxes at the

finest level. This reduces the cost of forming multi-pole expansions from O(N logN) to

O(pN + 4p2 logN).

The second source of the O(N logN) cost in the tree code comes from the fact that

the value of the potential is evaluated separately for each target, and the calculation for

each target costsO(logN) since the interaction list at all levels has to be visited and there

are O(logN) interaction lists for each target. The fast multi-pole method overcomes this

problem by introducing local expansions.

For any given box X at some refinement level, we will set up an expansion for the

potential at any position in box X due to all the sources located outside of the nearest

neighbors of X. This expansion is called the local expansion.

Lemma 4. Suppose that

m∑

i=1

log(z − zi) = a0 log(z − z0) +
∞∑

k=1

ak
(z − z0)k

is a multiple expansion of the potential due to a set of m charges of strengths {qi, i =

1, · · · ,m} such that maxi|z0−zi| < R and |z0| > (c+1)R. Then, if z is such that |z| < R

and if p > 1,

|
m∑

i=1

log(z − zi)−
p∑

l=0

blz
l| ≤ A(4e(p+ c)(c+ 1) + c2)

c(c− 1)

(
1

c

)p+1

where b0 = a0 log(−z0) +
∑∞

k=1
ak

zk
0

(−1)k and

bl = − a0

lzl0
+

1

zl0

∞∑

k=1

ak
zk0

(
l + k − 1

k − 1

)
(−1)k.
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This lemma allows us to convert multi-pole expansions into local expansions. Note

that contrary to the multi-pole expansions which are centered at the centers of the boxes

where the sources lie in, the local expansions are centered at the centers of the boxes

where the targets lie in.

Once we have the local expansions for all the boxes, the final step is to distribute

the contributions of the sources in each box to the targets in its interaction list. For

this purpose, we need to translate a local expansion with respect to one center to a local

expansion with respect to a different center, i.e. we need to convert an expansion of the

form
∑p

k=0 ak(z− z0)
k to a form

∑p
k=0 bkz

k. This can be done using the standard Horner

algorithm.

We are ready to describe the main steps in FMM.

1. Initialization : Build log4(N/s) levels of boxes so that there are, on average, s

particles per box at the finest level.

2. Upward Pass: Beginning at the finest level, create the multi-pole expansions of the

potential for each box due to the sources in this box. The expansions for all boxes

at coarser levels are then formed by the merging procedure described in Lemma 3.

The cost is O(Np+ p2N/s).

3. Downward Pass: Beginning at the coarsest level, convert the multi-pole expansion

of each box to a local expansion about the centers of the boxes in its interaction

list. These local expansions are shifted to their children’s level, using the Horner

algorithm described above. Therefore at each level, the local expansion for each

box receives contributions from two sources: The contribution inherited from the

parent box, and the contributions from sources in its interaction list.

At the finest level, we have local expansions for each finest scale box, which ac-

count for contributions from charges that lie outside the nearest neighors of each

box. These local expansions are then evaluated at each target. Contributions from

neighboring finest level boxes are computed directly.

The cost for pre-computing the local expansions is O(p2N/s). The cost for evaluating

the local expansions at the targets is O(pN/s). Thus the total cost in this step is

O(Np2/s). The cost for the direct summation over the nearest neighbors at the finest
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level is 9(N/s)s2 = 9Ns since s2 operations are required to calculate the interaction

between one box and its neighbors.

It should be noted that while the multi-pole expansion is oriented towards the sources,

the local expansion is oriented toward the targets. In addition, when performing the final

summation, the focus of the O(N logN) algorithm is on the targets: For a given target,

the contributions from the sources in its interaction list are summed up from scale to

scale. In FMM, however, the focus is on the sources. At each scale, for each box, one

asks what the contributions are for the sources in that box to the boxes in its interaction

list. Previously we were examining the interaction list of the targets. Now we examine

the interaction list of the sources. This dual viewpoint is very important for generalizing

analysis-based fast summation algorithms to other settings.

3.3 Adaptive mesh refinement

Adaptivity is a central issue in modeling and computation. There are different kinds

of adaptivity: Adaptively choosing the models, discretization methods, stopping criteria,

time step size, and the mesh. Well-known examples of adaptive numerical techniques

include:

1. Adaptive numerical quadrature in which new quadrature points are added based

on some local error indicators [15].

2. ODE solvers with adaptive time step size selection [15].

3. Adaptive mesh refinement for solving PDEs [1].

Here we will focus on adaptive mesh refinement for solving PDEs. This has been devel-

oped along two different lines:

1. Adaptive finite element methods pioneered by Babuska and Rheinboldt [3, 4], which

are based on rigorous a posteriori error estimates.

2. Adaptive finite difference or finite volume methods for nonlinear time-dependent

PDEs such as the ones that arise in gas dynamics, pioneered by Berger, Collela,

Oliger, et al. [8]. In this case, it is much harder to develop rigorous a posteriori

error estimates. Thus, quantities such as the gradients of the numerical solutions

are often used as the error indicators.
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Recently, both strategies have been extended to include the possibility of adaptively

selecting the physical models [1, 23], a topic that we will return to in Chapter 7.

3.3.1 A posteriori error estimates and local error indicators

The first thing we need for an adaptive mesh refinement scheme is some local error

indicators that are easily computable. This is the purpose of developing a posteriori

error estimates. In numerical analysis, we are usually more familiar with the a priori

error estimates, which are typically in the form:

‖u− uh‖1 ≤ Ch‖u‖2. (3.3.1)

Here ‖v‖1 and ‖v‖2 are the H1 and H2 norms of the function v respectively. (3.3.1) tells

us that the convergence rate is first order. But as a quantitative measure of the error, it

has limited value since we do not know the norm of u that appears at the right hand side

of (3.3.1). In addition, (3.3.1) gives an estimate of the global error, not the local error

around each element.

The purpose of a posteriori error estimates is to find easily computable quantities

{eK(uh)} that gives an estimate of the error near the element K:

‖u− uh‖1,K ∼ eK(uh) (3.3.2)

This kind of work was pioneered by Babuska and Rheinboldt [3, 4]. A rather compre-

hensive treatment of the subject is presented in [1].

To give a typical example of such a posteriori error estimates, let us consider the

second order elliptic equation in two dimension:

Lu(x) = −∇ · (a(x)∇u(x)) = f(x), x ∈ Ω

with Dirichlet boundary condition u(x) = 0,x ∈ ∂Ω. Consider a piecewise linear finite

element method on a regular mesh and denote by uh the finite element solution. For

each element K, define the residual: rh = Luh − f . For each edge Γ that is shared by a

pair of elements K and K ′, define JΓ(uh) to be the jump of n · (a∇uh) across that edge,

where n is the normal to the edge (the sign of n does not matter).

Define

ε(uh) =

(
∑

K

h2
K

∫

K

|rh|2dx +
∑

Γ

hΓ

∫

Γ

|JΓ(uh)|2ds
)1/2

(3.3.3)



3.3. ADAPTIVE MESH REFINEMENT 119

Figure 3.5: Refining the elements

Here the first sum is done over all elements, and hK is the diameter of the element K.

The second sum is over all interior edges and hΓ is the length of the edge Γ. It can be

shown [1, 21, 38] under various conditions that

C1ε(uh) ≤ ‖u− uh‖1 ≤ C2ε(uh) (3.3.4)

where C1 and C2 are constants. Moreover, each term inside the expression of ε(uh) is a

measure of the local error near that element. Therefore, these quantities can be used as

a criterion for mesh refinement.

Other types of a posteriori error estimators are discussed in [1] (see also [5, 43]).

In some cases, our interest is not on obtaining an accurate approximation of the

whole solution, but rather some quantities associated with the solution. For example,

when modeling flow past obstacles, we might be most interested in the total drag or lift

on the body. In this case, we might want to refine more in places, say near the body,
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where the accuracy of the approximate solution is more important for the quantities we

are interested in. The procedure outlined above has been extended to this case [1]. In

such a “goal-oriented adaptive mesh refinement scheme”, the error indicators are usually

obtained from solving an adjoint problem.

3.3.2 The moving mesh method

Next we discuss briefly an alternative procedure for adapting the mesh, the moving

mesh method. This is a way of redistributing the grid points, so that more computational

effort is directed at places where it is needed, e.g. places where the solution has large

gradients. The moving mesh method has its origin in the moving finite element method

[32, 17]. Current versions of the moving mesh method has largely followed the framework

proposed by Winslow, in which the mesh is regulated using a monitor function [39], which

is a carefully designed function of the numerical solution. The quality of the numerical

mesh is improved by minimizing the monitor function.

There are two slightly different ways of implementing the moving mesh method. One

is to introduce an auxiliary computational domain on which discretization is carried out,

usually on a regular grid. The computational domain and the physical domain are related

by a mapping, which is obtained adaptively using the monitor function. This approach

can be regarded as an adaptive (or dynamic) change of variable. One very elegant way

of implementing this is to formulate the original PDE in the computational domain, and

supplement the resulting PDE with an additional equation for the mesh [29, 33, 34].

Denote by α the variable in the computational domain and x the variable in the

physical domain. They are related by the function α = α(x). We look for the function

α such that a regular grid in the α domain is mapped to the desired grid in the physical

domain, with grid points clustered in the areas of interest. This can be done using a

variational formulation with the functional

E(α) =

∫
1

w(x)
|∇xα|2dx, (3.3.5)

Here w = w(x) is the monitor function. The Euler-Lagrange equation for the minimiza-

tion of this functional is:

∇ ·
(

1

w(x)
∇xα

)
= 0 (3.3.6)
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In one dimension, this reduces to

w(x)
dx

dα
= C. (3.3.7)

Assume that we have a uniform grid in the α domain, with αn = n∆α, n = 1, 2, · · · , N .

Let αn = α(xn). Integrating over [αn−1, αn] gives

∫ xn

xn−1

w(x)dx = C∆α (3.3.8)

i.e., ∆x · w(x) ≈
∫ xn

xn−1
w(x)dx is approximately a constant. The grid points are concen-

trated in the regions where the monitor function w is large.

The other approach is to work directly with the original physical domain, and changes

the mesh from time to time using the monitor function. At each step, one first minimizes

the functional (3.3.5) to find the new mesh. This is followed by an interpolation step to

provide the values of the numerical solution on the new mesh. This approach has been

explored extensively in [29] and subsequent works.

In cases when a truly high quality mesh is required, as is the case when the solution

is singular, an iterative procedure is used to improve the quality of the mesh [34].

The advantage of the first approach is that one works with a standard regular grid

on the computational domain. There are no complications coming from, for example,

numerical interpolation. The disadvantage is that by moving away from the physical

domain, the structure of the original PDE, such as conservation form, might be lost. The

second approach, on the other hand, is exactly complementary to the first.

Finding the right monitor function is a crucial component of the moving mesh method.

The commonly used monitor functions are in the form, for example,

w(x) =
√

1 + u(x)2 + |∇u(x)|2 (3.3.9)

where u is the numerical solution.

Compared with the adaptive mesh refinement strategies discussed earlier, the moving

mesh method has the advantage that it essentially works with a regular and smooth

mesh. Therefore it has the nice properties of a regular, smooth mesh, such as the super-

convergence properties. On the other hand, the moving mesh method is in general less

flexible, since its control of the mesh is rather indirect, through the monitor function.
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3.4 Domain decomposition methods

The intuitive ideas behind the domain decomposition method (DDM) is quite simple:

The computational domain is divided into smaller subdomains and a computational

strategy is established based on solving the given problem on each subdomain and making

sure that the solutions on different subdomains match. There are several advantages for

such a strategy:

1. It is very well suited for parallel computation.

2. DDM can be used as a localization strategy, as in electronic structure analysis [40].

3. According to the nature of the solution on the different subdomains, one may

use different models or different algorithms. For this reason, DDM has been used

extensively as a platform for developing algorithms with multi-physics models.

The main challenge in DDM is to make sure that the solutions on different subdomains

match with each other. To discuss how this is done, we will distinguish two different cases,

when the subdomains do or do not overlap. See Figure 3.6.

3.4.1 Non-overlapping domain decomposition methods

We first discuss the case when the subdomains do not overlap. We will use the

example: 



−△u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(3.4.1)

to illustrate the main issues.

After discretization on Ω, say using a finite difference method, we obtain a linear

system:

Au = b. (3.4.2)

To solve this linear problem, we divide the domain Ω into a union of two non-overlapping

subdomains Ω1 and Ω2, see Figure 3.6. We denote by u1 and u2 the solution in Ω1 and

Ω2 respectively, and by w the solution on the interface between Ω1 and Ω2. The width of



3.4. DOMAIN DECOMPOSITION METHODS 123

Ω1

Ω
w
1

w

Ω
w
2

Ω2

Overlapping domain decomposition

Nonoverlapping domain decomposition

Figure 3.6: Illustration of overlapping domain decomposition (courtesy of Xiang Zhou).

the interfacial region is chosen so that the components u1 and u2 do not interact directly,

i.e. if we let u = (u1, u2, w)T , then (3.4.2) can be written as



A11 0 A13

0 A22 A23

A31 A32 A33








u1

u2

w



 =




b1

b2

b3



 . (3.4.3)

Eliminating u1 and u2, we obtain

Cw = d (3.4.4)

where d = b3 − A31A
−1
11 b1 − A32A

−1
22 b2, C is the Schur complement of A33:

C = A33 − A31A
−1
11 A13 − A32A

−1
22 A23

C is usually a full matrix and computing C explicitly is costly. Fortunately there are

many numerical algorithms for solving (3.4.4) which only require evaluating the action

of C on a given vector, not C itself. One example of such algorithms is the the conjugate

gradient method. From (3.4.1), we see that evaluating Cv for a given vector v amounts

to solving the linear systems of equations on the subdomains Ω1 and Ω2:

Cv = A33v − A31v1 − A32v2 (3.4.5)

where v1 and v2 are solutions of

A11v1 = A13v, A22v2 = A23v (3.4.6)



124 CHAPTER 3. CLASSICAL MULTISCALE ALGORITHMS

These two equations can be solved independently, thereby decoupling the the solutions

on the two domains Ω1 and Ω2. The same can be said about evaluating d.

To understand the nature of C, it helps to introduce the Dirichlet to Neumann oper-

ator (DtN) for a domain Ω and a subset of the boundary ∂Ω, denotd by Γ. Consider the

problem

−△u(x) = f(x), x ∈ Ω (3.4.7)

u(x) = 0, x ∈ ∂Ω\Γ (3.4.8)

This is the same as (3.4.1), except that the boundary condition is specified only on ∂Ω\Γ,

therefore the problem is not fully determined. Now given a function w defined on Γ. We

can obtain a unique solution of (3.4.7) with the additional condition that u = w on Γ.

Denote this solution by Uw. The Dirichlet to Neumann operator acting on w is defined

as the normal derivative of Uw on Γ. Hence it is a map between functions defined on Γ.

Consider the special case when Ω = R
+ = {(x1, x2), x2 > 0} and Γ = ∂Ω = R

1. Given

w on ∂Ω = R
1, we can solve (3.4.7) with f = 0 and w as the boundary condition u = w

on ∂Ω using Fourier transform in the x1 direction:

Ûw(k1, x2) = e−|k1|x2ŵ(k1)

where k1 is the variable for the Fourier transform in the x1 direction, f̂ denotes the

Fourier transform of f . Hence, on the Fourier side, we have

∂

∂x2

Ûw(k1, x2)|x2=0 = |k1|ŵ(k1)

From this we see that the Fourier symbol of the Dirichlet to Neumann operator is |k1|.
This means in particular that it is effectively a first order operator.

Now we can understand the nature of C as follows. Given some candidate function

w, we can then solve for the corresponding u1 and u2, from the first two equations in

(3.4.3):

A11u1 = b1 − A13w (3.4.9)

A22u2 = b2 − A23w (3.4.10)

u1 and u2 have the same values at the interface, but their normal derivatives do not

necessarily match. To obtain a solution of the original problem over the whole domain
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Ω, we should require that u1 and u2 have the same normal derivative at the interface.

This is the equation (3.4.4) that w solves. Therefore C can be regarded as a discretization

of the difference of the Dirichlet to Neumann operator (DtN) on Ω1 and Ω2. Since the

DtN operator is a first order operator, the condition number of C should scale as O(h−1)

where h is the grid spacing. This is an improvement over the condition number of the

original problem (3.4.3) which is usually O(h−2).

3.4.2 Overlapping domain decomposition methods

Another option is to allow the subdomains to overlap, as indicated in Figure 3.6.

One can then set up an iterative procedure along the following lines: Starting with some

(arbitrary) boundary condition on ∂Ωw
1 , one solves for u1

1 (over Ω1). From u1
1, one can

obtain some boundary condition on ∂Ωw
2 and use it to solve for u1

2 (over Ω2). From u1
2,

one can obtain some boundary condition on ∂Ωw
1 and use it to solve for u2

1. From there

one goes on to solve for u2
2 as before. Continuing this procedure, one obtains u3

1, u
3
2, · · · .

This is the well-known Schwarz iteration.

The main issue is how to get the boundary conditions. The boundary conditions can

either be Dirichlet or Neumann type, or other boundary conditions. The original Schwarz

iteration uses a simple Dirichlet boundary condition. If the boundary conditions are not

chosen properly, such an iteration may not converge. The following is a simple example

that illustrates this point.

Consider the problem −u′′ = 0 with boundary condition u(0) = 1 and u(1) = 0. The

exact solution is u(x) = 1 − x. We define Ω1 = [0, b] and Ω2 = [a, 1] with the overlap

region [a, b], where 0 < a < b < 1. It is easy to see that if we use the Dirichlet boundary

condition at a and b, the algorithm converges. The convergence rate depends on the size

of the overlapping region (see Section 7.4)

r =
a

b

1− b
1− a

But if we use instead the Neumann boundary condition at a and b, it is easy to see that

{uk1, uk2} do not change and the procedure does not give the right solution. We will return

to this example in Chapter 7.
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Figure 3.7: The overlapping domain decomposition for one dimension problem u′′ = 0.

The dotted lines are the solutions of uk1,2 with Dirichlet condition for local problems; the

dash (initial flux u′ is zero) and dot-dash (initial flux u′ is −0.3) lines are the solutions

of local problems with Neumann condition (courtesy of Xiang Zhou).



3.5. MULTISCALE REPRESENTATION 127

3.5 Multiscale representation

To find the solution to any physical model, first we have to have a way of representing

the solution. Consider the three examples of functions shown in Figure 3.8. The first

example has a near discontinuity but the near discontinuity is isolated. The second

example shows a repetitive pattern which in this case happen to be periodic.

It is intuitively quite clear that localized bases such as wavelet bases are suited for

the first example; periodic bases such as the Fourier bases are suited for the second

example. It is not quite clear what to do about the third example. Clearly, if we restrict

ourselves to the Fourier and wavelet representations, then the relative efficiency of the

two depends on the amplitude of the large gradients and the frequency of the oscillations:

If we use a Fourier representation, then the number of Fourier coefficients needed in order

to achieve a particular accuracy depends strongly on the size of the large gradient, but

only weakly on the frequency. If we use a wavelet representation, then the number of

wavelet coefficients needed in order to achieve a particular accuracy depends linearly on

the frequency, but only weakly on the size of the gradient.

These simple examples illustrate the kind of multiscale behavior that we need to

consider. In particular, the repetitive pattern displayed in the second and third examples

is in some ways quite representative of the situation with scale separation, when the

macroscale of the system is much larger than the microscale. In this case, the local

microstructure is repetitive in some pointwise or statistical sense.

3.5.1 Hierarchical bases

Consider a partition of the unit interval Ω = [0, 1] into N = 2n subintervals of equal

length and consider the piecewise linear finite element space over this partition with

Dirichlet boundary condition:

Vh = {vh : vh is continuous, piecewise linear, and vh(0) = vh(1) = 0} (3.5.1)

Denote the nodes in this partition by {xj}, j = 1, · · · , N − 1, xj = jh, h = 1/N . In

standard finite element methods, we use the nodal basis to represent functions in the

space Vh. These are functions {φk} in Vh that satisfy:

φk(xj) = δjk, j, k = 1, 2, · · · , N − 1 (3.5.2)
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Figure 3.8: Three different kinds of multiscale functions
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This basis has the advantage that for any function vh in Vh, the coefficients in the

expansion of vh in terms of this nodal basis are simply the values of vh at the nodes:

vh(x) =
N−1∑

1

cjφj(x), cj = vh(xj) (3.5.3)

However, it also has the disadvantage that the condition number of the stiffness matrix

for the finite element method, defined as

Ah = (aij), aij =

∫ 1

0

φi(x)Lφj(x)dx (3.5.4)

for an operator L, is usually very large. Recall that the condition number of a matrix A is

defined as κ(A) = ‖A‖‖A−1‖ if the norm ‖·‖ is used to measure the vectors. For example,

if L is a second order elliptic differential operator L, then typically κ(Ah) ∼ O(h−2). This

is an important issue since the condition number controls the accuracy and efficiency of

the algorithms in numerical linear algebra [20] (see also Section 3.1).

0 1
 

x

φ

Figure 3.9: Illustration of hierarchical basis functions (courtesy of Xiang Zhou).

This bad scaling behavior of κ(Ah) is partly due to the locality of the nodal basis

functions. An alternative basis set, the hierachical basis, was suggested and analyzed by

Yserentant [42], and is shown schematically in Figure 3.9. One advantage of this basis is

that the condition number of the associated stiffness matrix is of O(1).

When hierachical basis are used to represent functions in the finite element space,

the coefficients are no longer simply the values at the nodes or vertices. However, due to

the hierachical nature of the basis, efficient hierachical algorithms can be constructed to

compute these coefficients [42].
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Hierachical basis can be constructed for finite element spaces in high dimensions [42].

The condition number of the stiffness matrix in high dimension is no longer of O(1).

For example, in two dimension, the condition number scales as O(| log h|2), which is still

much better than the O(h−2) scaling for the nodal basis.

3.5.2 Multi-resolution analysis and wavelet bases

In a multi-resolution analysis (MRA), we consider a sequence of nested subspaces

of the ambient space (say L2(R)), {Vj, j ∈ Z}, where roughly speaking, Vj contains

functions with components upto the j-th scale. The precise requirement for this ladder of

subspaces is formalized by S. Mallat [30, 31]. The sequence of subspaces {Vj}j∈Z ⊂ L2(R)

is an MRA if the following holds:

1. Vj ⊂ Vj+1, j ∈ Z;

2. Vj is the scaled version of V0: f(x) ∈ V0 if and only if f(2jx) ∈ Vj;

3.
⋂
j∈Z

Vj = {0}, ⋃j∈Z
Vj = L2(R);

4. There exists a function φ such that the integer translations {φ(· − n), n ∈ Z}
constitutes an orthonormal basis for V0.

Consequently, if we define φk,j by

φk,j(x) = 2j/2φ(2jx− k) (3.5.5)

then for each fixed j, the system {φk,j, k ∈ Z} is an orthonormal basis for Vj.

Since V0 ⊂ V1, we can express φ in terms of the basis functions of V1:

φ(x) =
∑

k

ak
√

2φ(2x− k) (3.5.6)

Functions satisfying (3.5.6) are called scaling or refinable functions and the sequence {ak}
is called the refinement mask.

Let W0 be the orthogonal complement of V0 in V1, i.e. V1 = V0⊕W0, V0 ⊥ W0. Define

a new function ψ by

ψ(x) =
∑

k

bk
√

2φ(2x− k), (3.5.7)
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where

bk = (−1)ka−k+1, k ∈ Z (3.5.8)

The sequence {bk} is called the wavelet mask. It can be shown that the system {ψ(· −
k), k ∈ Z} forms an orthonormal basis of W0 by using the fact that the system {φ(· −
k), k ∈ Z} forms an orthonormal basis of V0. The function ψ is called the wavelet function.

Now let Wj be the j-th dilation of W0: f(x) ∈ W0 if and only if f(2jx) ∈ Wj. Then

by the definition of W0 and MRA, Wj is also the orthogonal complement of Vj in Vj+1,

i.e.

Vj+1 = Vj ⊕Wj, Vj ⊥ Wj. (3.5.9)

Iterating this decomposition infinitely many times and letting j →∞, we obtain:

L2(R) = ⊕j∈ZWj = ⊕j∈ZWj. (3.5.10)

This states that L2(R) can be orthogonally decomposed into the sum of the spaces {Wj}.
Furthermore, if we define ψk,j by

ψk,j(x) = 2j/2ψ(2jx− k), (3.5.11)

then for each fixed j, the system {ψk,j, k ∈ Z} forms an orthonormal basis of Wj and

the whole system {ψk,j, j, k ∈ Z} forms an orthonormal basis of L2(R). It is clear from

the above discussion that the key point for constructing an orthonormal wavelet basis is

to construct the refinable function.

Examples

The first example is the Haar wavelet, obtained with the scaling function:

φ(x) =





1, 0 ≤ x < 1,

0, otherwise.
(3.5.12)

The function φ satisfies the following refinement relation

φ(x) = φ(2x) + φ(2x− 1) =
1√
2
(
√

2φ(2x) +
√

2φ(2x− 1)) (3.5.13)

with the refinement mask

a0 = a1 =
1√
2
, (3.5.14)
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and ak = 0, k 6= 0, 1. The Haar wavelet function is given by:

ψ(x) =






1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0, otherwise.

(3.5.15)

with the wavelet mask

b0 =
1√
2
, b1 = − 1√

2
, bk = 0, k 6= 0, 1. (3.5.16)

It is clear that

ψ(x) = φ(2x)− φ(2x− 1) (3.5.17)

The Haar wavelet is very localized, since it has the smallest support among all orthogo-

nal wavelets. However, it is not very smooth, which means that it decays slowly in Fourier

domain, and it has rather poor approximation properties. One can construct compactly

supported wavelets with better regularity and approximation properties, see the classic

text [16]. One way of systematically constructing such compactly supported wavelets

with better regularity and approximation property has been developed by Daubechies.

In her construction, the scaling functions are defined by directly by their refinement

masks, instead of giving an explicit analytical form.

Here, we give one example of 4-tap Daubechies’ wavelet and interested reader should

find more in [16]. The refinement mask of this example is defined as:

a0 =
1 +
√

3

4
√

2
, a1 =

3 +
√

3

4
√

2
, a2 =

3−
√

3

4
√

2
, a3 =

1−
√

3

4
√

2
, ak = 0, k 6= 0, 1, 2, 3.

(3.5.18)

The corresponding wavelet mask is

b−2 =
1−
√

3

4
√

2
, b−1 = −3−

√
3

4
√

2
, b0 =

3 +
√

3

4
√

2
, b1 = −1 +

√
3

4
√

2
, bk = 0, k 6= 0, 1, 2, 3.

(3.5.19)

See Figure 3.5.2.

Given a function f ∈ L2(R), it can be approximated by its orthogonal projections

into Vj for different j’s:

fj =
∑

k∈Z

〈f, φk,j〉φk,j. (3.5.20)
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Figure 3.10: The scaling and wavelet functions of an example of Daubechies wavelets.

The accuracy of this approximation depends on the choice of j, which in practice is

usually determined by the data we have. For a given value of j, the accuracy then

depends on the smoothness of f and approximation properties of φ, especially the order

of the Strang-Fix condition that φ satisfies [36]. Recall that a function φ satisfies the

Strang-Fix (SF) condition of order m if

φ̂(0) 6= 0, φ̂(j)(2πk) = 0, j = 0, 1, 2, ...,m− 1, k ∈ Z\{0}, (3.5.21)

where φ̂ is the Fourier transform of φ. Assume that the scaling function satisfies the

Strang-Fix conditin of order m, then the spaces {Vj} provides an order m approximation,

i.e. if f ∈ Wm
2 (R), then

‖f − fj‖ = O(2−jm). (3.5.22)

Here the Sobolev spaces Wm
2 (R), m ∈ Z+ are defined by

Wm
2 (R) := {f ∈ L2(R) : ‖f‖Wm

2
(R) :=

√
2π‖(1 + | · |)mf̂‖ <∞}. (3.5.23)

The details about the approximation order can be found in [18].
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The piecewise constant refinable function φ that leads to the Haar wavelet has ap-

proximation order 1. The scaling function of the 4-tap wavelet has approximation order

2. Scaling functions with higher approximation orders can be found in [16].

The decomposition and reconstruction algorithms

Given a function v in VJ where VJ represents the highest resolution we have, we would

like to express v as:

v = v0 +
J−1∑

k=0

wk (3.5.24)

where v0 ∈ V0, wj ∈ Wj, j = 0, · · · , J − 1. Mallat developed a very efficient hierarchical

algorithm for performing this decomposition [30]. The spirit of Mallat’s algorithm and

the hierarchical algorithm of Yserentant discussed earlier [42]. To see how this is done,

let us consider a simpler problem: Assume that vj ∈ Vj. We can write vj = vj−1 + wj−1

where vj−1 ∈ Vj−1, wj−1 ∈ Wj−1, and vj =
∑

k ck,jφk,j, vj−1 =
∑

k ck,j−1φk,j−1, wj−1 =
∑

k dk,j−1ψk,j−1. Note that from (3.5.6) and (3.5.7), we have

φk,j−1 =
∑

m

am−2kφm,j (3.5.25)

ψk,j−1 =
∑

m

bm−2kφm,j (3.5.26)

It is easy to see then

ck,j−1 = 〈vj, φk,j−1〉 (3.5.27)

= 〈vj,
∑

m

am−2kφm,j〉

=
∑

m

am−2k〈vj, φm,j〉

=
∑

m

am−2kcm,j

Similarly,

dk,j−1 =
∑

m

bm−2kcm,j (3.5.28)

Knowing {cm,j}, {cm,j−1, dm,j−1} can be computed very simply from the formulas above.

This procedure can then be repeated.
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Figure 3.11: An example of a piecewise smooth function.

The decomposition algorithm described above can also be used in the reverse direction

to reconstruct the fine scale coefficients in terms of the coefficients at the coarser scale,

since we have

ck,j = 〈vj, φk,j〉 (3.5.29)

=
∑

m

cm,j−1〈φm,j−1, φk,j〉+
∑

m

dm,j−1〈ψm,j−1, φk,j〉

=
∑

m

am−2kcm,j−1 +
∑

m

bm−2kbm,j−1

This gives a perfect reconstruction, in the sense decomposition followed by reconstruc-

tion leads to the identity transform. It is important to note that while scaling and

wavelet functions are used in analysis, only refinement and wavelet masks are used in

decomposition and reconstruction algorithms.

What makes wavelets useful is that for many class of signals (or functions), their

wavelet coefficients are approximately sparse, i.e. most wavelet coefficients are very

small. In addition, the set of sizable ones is localized in the wavelet transform space.

This is illustrated by the sequences of figures 3.5.2 to 3.5.2. 3.5.2 shows a piecewise

smooth function. 3.5.2 is the plot of the wavelet coefficients at various levels. As shown

clearly in 3.5.2, the wavelet coefficients are sparse.
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Figure 3.12: The wavelet coefficients at various levels for the function shown in the above

figure.
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In addition to sparsity and orthonormal wavelets, redundancy and the associated

concept of tight frames have also been studied (see, e.g. [35]). It has been discovered

that redundancy can often provide the needed flexibility in order to tune to the specific

features of the particular application that one has to deal with.

3.6 Notes

This chapter is admittedly very terse, for a good reason: A lot has been written on

the topics discussed here. Thorough discussions of the topics reviewed here can be found

in various textbooks and review articles listed at the end of the chapter. We find it

useful to include at least a brief discussion of the main ideas in these classical multiscale

algorithms for several reasons:

1. These ideas are the basic building blocks for multiscale algorithms.

2. This discussion makes it easier for us to see the difference between the philosophy

behind these classical algorithms and the new ones to be presented later.

There are many linear scaling, multiscale algorithms that we did not cover in this

chapter. Obvious examples include: the H-matrix techniques [10], other analysis-based

fast transforms, algorithms based on discrete symbol calculus [19], etc.



138 CHAPTER 3. CLASSICAL MULTISCALE ALGORITHMS



Bibliography

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element

Analysis, John Wiley, New York, 2000.

[2] A. W. Appel, “An efficient progam for many-body simulation,” SIAM. J. Sci. Stat.

Comput., vol. 6, pp. 85–103, 1985.

[3] I. Babuska and W. C. Rheinboldt, “Error estimates for adaptive finite element com-

putations,” SIAM J. Numer. Anal., vol. 18, pp. 736–754, 1978.

[4] I. Babuska and W. C. Rheinboldt, “A posteriori error estimates for the finite element

method,” Internat. J. Numer. Methods Engng., vol. 12, pp. 1597–1615, 1978.

[5] R. E. Bank and A. Weiser, “Some a posteriori error estimators for elliptic partial

differential equations,” Math. Comp., vol. 44, 283–301, 1985.

[6] J. Barnes and P. Hut, “A hierarchical O(N logN) force-calculation algorithm,” Na-

ture, vol. 324, pp. 446–449, 1986.

[7] R. Beatson and L. Greengard, “A short course on fast multipole methods,” Wavelets,

Multilevel Methods and Elliptic PDEs, (M. Ainsworth, J. Levesley, W. Light, and

M. Marletta, eds.), pp. 1-37, Oxford University Press, 1997.

[8] M. J. Berger, and P. Collela, “Local adaptive mesh refinement for shock hydrody-

namics,” Journal of Computational Physics, vol. 82, no. 1, pp. 64–84, 1989.

[9] G. Beylkin, R. Coifman and V. Rokhlin, “Fast wavelet transforms and numerical

analysis,” Comm. Pure Appl. Math., vol. 44, no. 2, pp. 141–183, 1991.
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Chapter 4

The Hierarchy of Physical Models

Given a physical system, we can model it at different levels of detail. This results in

a hierarchy of physical models, each of which is a refinement of the models at the higher

levels of the hierarchy (see Table 1.2.3). For example, if we want to model the dynamics

of gases, we have the following options to choose from:

1. Continuum mechanics, the Euler and Navier-Stokes equations.

2. Kinetic theory, the Boltzmann equation.

3. Molecular dynamics, the Newton’s equation.

4. Quantum mechanics, the Schrödinger equation.

Continuum mechanics models, such as the Euler’s equation and the Navier-Stokes equa-

tion, are the crudest in this hierarchy. They model only the macrosopic density, velocity

and temperature fields of the gas. Nevertheless, they are already quite sufficient in many

engineering applications. Quantum mechanics models are the most detailed ones. They

are required if we are interested in the details of the collision process between gas parti-

cles. Kinetic theory and molecular dynamics models are of the intermediate complexity,

capturing respectively the phase space probability distribution and the phase space dy-

namics of the gas particles.

Of course inside each level of this hierarchy, there are sub-hierarchies, i.e. models

of different complexity and detail. For example, at the level of the quantum mechanics

models for electronic structure analysis, we have:

143
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1. Orbital-free density functional theory, such as the Thomas-Fermi-von Weizsäcker

(TFW) model.

2. Kohn-Sham density functional theory.

3. The full quantum many-body problem.

The TFW model uses only the electron density to describe the electronic structure of the

system. Kohn-Sham density functional theory uses a set of (fictitious) one-body wave

functions. The full quantum many-body problem is the true first principle. It describes

an electronic system at the level of the many-body wave function.

Since they all describe the same physical system, the different models have to produce

consistent results. Understanding this analytically is one of the main tasks in multiscale

modeling. For example, one should be able to derive Euler’s equation of gas dynamics

from molecular dynamics models in the regime where Euler’s equation is supposed to be

valid. Among other things, this derivation should provide us a microscopic expression

for the constitutive relations in Euler’s equation.

In this chapter, we will discuss the essential components of these models. We will

start at the top of the hierarchy, the continuum mechanics models. This is followed by

the classical atomistic models in the form of molecular dynamics. We then introduce the

basic ingredients of kinetic theory, which at least for gases serves as the bridge between

the many-body molecular dynamics models and the continuum mechanics models. We

will end this chapter at the bottom of the hierarchy, the quantum mechanics models. This

chapter is certainly not going to be an exhaustive treatment of the different physical laws

used in modeling. But we hope to convey the basic ideas.

4.1 Continuum mechanics

In continuum mechanics, the system of interest is treated as a continuous media. The

basic objects that we study are in the form of fields, such as the velocity and density fields.

In this section, we will discuss the basic ideas needed in order to formulate continuum

models. We begin by introducing the basic concepts in kinematics, namely the concepts

of stress and strain or the rate of strain. We then discuss nonlinear elasticity models of

solids. Finally, we discuss dynamic models of solids and fluids.
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x y

Undeformed deformed

Figure 4.1: The Lagrangian and Eulerian coordinates of a continuous media: x represents

the Lagrangian coordinates, y represents the Eulerian coordinates.

To describe these fields, we need a coordinate system. The most commonly used

coordinate systems are the Lagrangian coordinates and the Eulerian coordinates. In

Lagrangian coordinates, a point in the system is described by its initial position, or the

position in a fixed reference frame which in solids is usually the undeformed configuration.

In Eulerian coordinates, a point in the system is described by its current position, after

the system has changed as a result of deformation or flow. In Figure 4.1, x denotes

the Lagrangian coordinates and y denotes the Eulerian coordinates. The mapping from

x to y is called the Lagrangian to Eulerian map. Its inverse is called the Eulerian to

Lagrangian map. One main difference between solid and fluid mechanics is that models

in solid mechanics such as elasticity theory typically use the Lagrangian coordinates,

whereas in fluid mechanics, we typically use the Eulerian coordinates. One reason is

that in fluids, the deformation can be so large that it does not make much sense to refer

back to the initial position of the material point. This difference creates some problems

when modeling systems whose behavior is intermediate between fluids and solids, such

as visco-elastic fluids or plastically deformed solids.

Continuum theory is often divided into two related parts: statics and dynamics. Mod-

els for statics are generally in the form of variational principles, asserting, for example,

that the static configuration of a material minimizes the total free energy of the system

taking into account the work done by external forces. Dynamic models are generally in

the form of dynamic conservation laws of mass, momentum and energy.

A central concept in treating the continuous media is the stress. It describes the

forces acting on (virtual) surfaces inside the medium. Imagine an infinitesimally small
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piece of surface placed inside a continuous medium. As a consequence of the short-ranged

molecular interaction, there is a force between the material on one side of the surface

and the material on the other side of the surface. This force is called the stress. It is

the macroscopic manifestation of the microscopic, short-range interaction between the

atoms on the two sides of the surface. The long-range interactions, such as the Coulomb

interaction, are usually represented as body force. It is easy to see that stress depends

linearly on the orientation of the surface. At each point of the medium, it is a mapping

between the orientation of the surface and the force that we just described. Therefore it

is a rank-2 tensor.

To obtain a closed model, we have to express stress in terms of the displacement

field, including its derivatives. This is the role played by the constitutive relation. The

following are some examples of constitutive relations:

1. Equation of state for gases.

2. Stored energy density for solids.

3. Stress-strain relation for solids.

4. Stress as a function of the rate of strain for fluids.

Constitutive relations are the macroscopic representation of the nature of the microscopic

constituents of the system, i.e., the atoms that make up the system. This is where

most of the empirical modeling in continuum theory comes in. For simple systems,

linear constitutive relations have been remarkably successful. In fact, in many cases,

constitutive modeling proceeds by [12]:

1. Writing down linear relations between the generalized forces and the generalized

fluxes.

2. Using symmetry properties to reduce the number of independent coefficients.

These coefficients, for example the elastic moduli or the viscosity coefficients, can then

be measured experimentally. From an abstract viewpoint, the only constraints on these

coefficients are the second law of thermodynamics and the symmetry of the system.

In fact, non-equilibrium thermodynamics, a subject that has had a lot of success after

the work of Onsager, Prigogine, etc, was created to treat general systems using these

principles [12].
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One main purpose of multiscale, multi-physics modeling is to establish a microscopic

foundation for the constitutive relations. This is not a new idea. There is a long history

of work along this line (see for example [4, 10]). Back in the 1950’s, Tsien initiated the

subject of Physical Mechanics with the objective of providing the microscopic foundation

for continuum mechanics [39]. The practical interest was to calculate material properties

and transport coefficients using principles of statistical and quantum mechanics, particu-

larly at extreme conditions. For various reasons, the subject did not become very popular

after its initial success. The interest on multiscale, multi-physics modeling has given it a

new impetus, and the right time seems to have come to try reviving the subject.

4.1.1 Stress and strain in solids

Given a solid material, denote by Ω the region it occupies in the absence of any

external loading. Our objective is to find its new configuration after some external load

is applied to the material. We will refer to the configuration of the material before and

after the loading is applied as the reference and deformed configurations respectively.

Let x be the position of a material point in the reference configuration, and y be

the position of the same material point in the deformed configuration. Obviously y is a

function of x : y = y(x). u(x) = y(x)− x is called the displacement field,

F = ∇u (4.1.1)

is called the deformation gradient tensor.

Let δx be a small change of x in the reference configuration and δy be the corre-

sponding change in the deformed configuration. To leading order, we have

δy = (I + F)δx, (4.1.2)

where I is the identity tensor,

‖δy‖2 − ‖δx‖2 = (δx)T
(
(I + F)T (I + F)− I

)
δx (4.1.3)

= 2(δx)TEδx.

The strain tensor E is defined as

E =
1

2

(
(I + F)T (I + F)− I

)
(4.1.4)

=
1

2
(FT + F) +

1

2
FTF.
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In component form, we have

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

∑

l

∂ul
∂xi

∂ul
∂xj

. (4.1.5)

The tensor E = (eij) characterizes the geometric change as a result of the deformation.

It is most relevant for solids since for fluids, the deformation is usually quite large and

therefore it is more convenient to discuss the rate of strain, which is defined as the

symmetric part of the gradient of the velocity field:

D =
1

2
(∇v + (∇v)T ) (4.1.6)

where v is the velocity field.

Imagine an infinitesimal surface with area ∆S at a point inside the material, with

normal vector n. Let g∆S be the force acting on one side of the surface (the side opposite

to n) by the other side (i.e. the side in the direction of n). It is easy to see that there is

a linear relation between n and g, which can be expressed as:

g = σn

σ is called the stress tensor.

There are two ways of defining the normal vector and the area of the infinitesimal

surface, depending on whether we use the Lagrangian or the Eulerian coordinate system.

When the Eulerian coordinate system is used, the resulting stress tensor is called the

Cauchy stress tensor. When the Lagrangian coordinate system is used, the resulting

stress tensor is called the Piola-Kirkhoff stress tensor. This distinction is very important

for solids, since the Lagrangian coordinate system is typically more convenient for solids,

but the Cauchy stress is easier to use and to think about. Fortunately, there is a simple

relation between the two notions.

Lemma 5. Let y = y(x) be a nondegenerate map on R
3, i.e. J(x) = det(∇xy(x)) 6= 0.

Denote by dS0 an infinitesimal surface element at x, and dS its image under the mapping

y(·). Let n0 and n be the normal to dS0 and dS respectively. Then

ndS = J(x)(∇xy(x))−Tn0dS0 (4.1.7)

For a proof of this lemma, see [29]. We will use σ to denote the Cauchy stress tensor,

and σ0 the Piola-Kirkhoff stress tensor.
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Let S0 be an arbitrary closed surface in the reference configuration and let S be its

image under the mapping y(·). From this lemma, we have:

∫

S

σ(y)n(y)dS(y) =

∫

S0

J(x)σ(y(x))(∇xy(x))−Tn0(x)dS0(x) (4.1.8)

Hence

σ0(x) = J(x)σ(y(x))(∇xy(x))−T (4.1.9)

Note that since σ0n0dS0 = σndS, the force vectors σ(y)n(y) and σ0n0(x) are colinear.

Their magnitude can be different as a result of the difference between dS0 and dS. They

are the same physical stress, i.e. the stress (force per area) in the deformed body at

y = y(x). Their difference is the result of the different ways that area is measured.

In fluids, due to the large deformation, one usually uses the Cauchy stress tensor.

4.1.2 Variational principles in elasticity theory

The static configuration of a deformed elastic body is often characterized by a varia-

tional principle of the type:

min

∫

Ω

(W ({u})− f · u) dx, (4.1.10)

where f is the external force density, and W ({u}) is called the stored energy density,

or elastic energy density. It is the potential energy or free energy of the material. The

dependence on {u} means W can depend on u,∇u, · · · . This function plays the role of

the constitutive relation for this type of models.

One of the simplest forms of the constitutive relation is obtained whenW only depends

on E, i.e.

W ({u}) = W0(E). (4.1.11)

This is often enough for the analysis of the elastic deformation of bulk materials.

In the absence of any additional information, we can always study first the case when

the deformation is small, small enough so that we can further assume that the material

response is linear, namely, W0(E) is a quadratic function of the strain tensor

W0(E) =
1

2

∑

i,j,k,l

Cijkleijekl, (4.1.12)
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where {eij} is defined by (4.1.5). The constant term is neglected and the linear term

should vanish since the undeformed state is at equilibrium (therefore has no residual

stress). The coefficients {Cαβγδ} are called the elastic constants. For a three dimensional

problem, C has 34 = 81 components. We can always require C to be symmetric, i.e.

Cijkl = Cklij. (4.1.13)

In addition, since E is a symmetric tensor, we have

Cijkl = Cijlk. (4.1.14)

These relations reduce the number of independent elastic constants to 21 [27].

In most cases, the material under consideration has additional symmetry which allows

us to reduce the number of independent parameters even further. Here we will discuss

two cases, isotropic materials and materials with cubic symmetry.

If a material has cubic symmetry, its elastic properties are invariant under the ex-

change of any two coordinates. Let T be such a transformation:

• T (1) = 2, T (2) = 1, T (3) = 3

• T (1) = 3, T (2) = 2, T (3) = 1

• T (1) = 1, T (2) = 3, T (3) = 2

then

CT (i)T (j)T (k)T (l) = Cijkl (4.1.15)

In addition, W also has inversion symmetry: Let I be any of the following transforma-

tions:

• I(x) = −x, I(y) = y, I(z) = z

• I(x) = x, I(y) = −y, I(z) = z

• I(x) = x, I(y) = y, I(z) = −z

then

eI(i)I(j) =





eij, if i = j;

−eij, if i 6= j.
(4.1.16)



4.1. CONTINUUM MECHANICS 151

This implies that all elastic constants with any subscript appearing an odd number of

times must vanish. For instance, C1112 has to be 0.

These symmetry considerations allow us to reduce the number of independent elastic

constants for a material with cubic symmetry to only 3. They are:

C1111 = C2222 = C3333

C1212 = C2323 = C3131

C1122 = C1133 = C2233

Using this information, we can write W0(E) as

W0(E) =
1

2
C1111

(
e211 + e222 + e233

)
+ C1122 (e11e22 + e11e33 + e22e33) (4.1.17)

+ 2C1212

(
e212 + e223 + e213

)
.

In solid state physics, we often adopt the Voigt notation:

e1 = e11, e2 = e22, e3 = e33, (4.1.18)

e4 = 2e23, e5 = 2e31, e6 = 2e12,

C11 = C1111, C12 = C1122, C44 = C1212.

For isotropic materials, we have the additional property that W is invariant under a

45o degree rotation around any coordinate axis. It is easy to verify that this implies the

following relation

C11 = C12 + 2C44 (4.1.19)

This reduces the number of independent elastic constants to 2:

λ = C12, µ = C44. (4.1.20)

They are called the Lamé constants. Now W0(E) can be written as

W0(E) =
1

2
λ

(
∑

j

ejj

)2

+ µ
∑

jk

e2jk. (4.1.21)

Let us now consider briefly nonlinear isotropic materials. We will limit ourselves to

the case of incompressible materials, i.e. materials for which volume is invariant during
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the deformation. Since W is invariant under rotation, it is only a function of the principal

values of the matrix C = (I + F)T (I + F) (recall that F = ∇u):

W = W (λ1, λ2, λ3) (4.1.22)

where λ1, λ2, λ3 are the eigenvalues of C. Examples of the empirical models of W include

1. The Neo-Hookean models

W = a(λ1 + λ2 + λ3 − 3) (4.1.23)

where a is a constant.

2. The Mooney-Rivlin models

W = a(λ1 + λ2 + λ3 − 3) + b(λ2λ3 + λ3λ1 + λ1λ2 − 3) (4.1.24)

where a and b are constants.

More examples can be found in [29].

So far we have considered the case when W depends only on ∇u. This is no longer

adequate, for example, for:

• small systems, for which the dependence on the strain gradient should be included;

• plates, sheets and rods, for which dependence on the curvature should be included.

Including the dependence on the strain gradient in W increases the complexity of the

models substantially. But in principle, the same kind of consideration still applies.

4.1.3 Conservation laws

We now turn to dynamics. The first step toward studying dynamics is to write down

the three universal conservation laws of mass, momentum and energy.

Conservation of mass. We will first discuss mass conservation in Lagrangian coor-

dinates. Let D0 be an arbitrary subdomain in the reference configuration, and D be its

image in the deformed configuration. The mass inside D must be the same as the mass
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inside D0. If we denote by ρ0 the density function in the reference configuration and ρ

the density function in the deformed configuration, then we have
∫

D0

ρ0(x)dx =

∫

D

ρ(y)dy (4.1.25)

Since

dy = J(x)dx (4.1.26)

we obtain

ρ0(x) = ρ(y(x))J(x) (4.1.27)

In a time-dependent setting, this can be written as:

ρ0(x) = ρ(y(x, t))J(x, t) (4.1.28)

We now turn to the Eulerian form of mass conservation which is more convenient for

fluids. Let D be an arbitrary subdomain in the deformed configuration, fixed in time.

The instantaneous change of the mass inside D is equal to the mass flux through the

boundary of D:
d

dt

∫

D

ρ(y, t)dy = −
∫

∂D

Jρ · ndS(y) (4.1.29)

Here n is the unit outward normal of ∂D, Jρ is the mass flux. It is easy to see that

Jρ = ρv (4.1.30)

where v is the velocity field. Using the divergence theorem, we get

d

dt

∫

D

(∂tρ(y, t) +∇ · (ρv))dy = 0 (4.1.31)

Since this is true for any domain D, we have

∂tρ+∇y · (ρv) = 0 (4.1.32)

For the next two conservation laws, we will first discuss the Eulerian formulation.

Their Lagrangian formulation will be discussed in the next sub-section.

Conservation of momentum. The rate of change of the total momentum in D is

the result of: (1) materials moving in and out of D due to convection and (2) the forces

acting on D. In general there are two kinds of forces acting on D: body force such as
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gravity and surface force acting on the boundary of D, i.e. the stress. We will neglect

body force since it can always be added back later. Putting these together, we have

d

dt

∫

D

ρ(y, t)v(y, t)dy = −
∫

∂D

ρv(v · n)dS(y) +

∫

∂D

σ · ndS(y) (4.1.33)

In a differential form, this gives

∂t(ρv) +∇y · (ρv ⊗ v − σ) = 0 (4.1.34)

We can also write this as

∂t(ρv) +∇y · Jm = 0 (4.1.35)

where Jm is the total momentum flux given by

Jm = ρv ⊗ v − σ (4.1.36)

Conservation of angular momentum. Similarly, the rate of change of the total

angular momentum in D is given by:

d

dt

∫

D

ρ(y, t)y × v(y, t)dy = −
∫

∂D

ρy × v(v · n)dS(y) +

∫

∂D

y × σ · ndS(y) (4.1.37)

This states that the rate of change of the angular momentum inside D is due to angular

momentum flux through ∂D and the torque generated by the stress on ∂D. The main

consequence of this is that

σ = σT (4.1.38)

i.e. the Cauchy stress tensor is symmetric. For a proof, see [29].

Conservation of energy. In the same way, we can write down the energy conser-

vation law. The total energy density E is the sum of the kinetic energy density and the

potential energy density:

E =
1

2
ρ|v|2 + ρe (4.1.39)

where e is the internal energy per unit mass. Given a volume D, the rate of change of

energy inside D is the result of energy been convected in and out of D, the work done

by the external force acting on D and the heat flux:

d

dt

∫

D

Edy = −
∫

∂D

E(v · n)dS(y) +

∫

∂D

v · (σ · n)dS(y) +

∫

∂D

q · ndS(y) (4.1.40)
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Here q is the heat flux. In a differential form, this gives:

∂tE +∇y · (vE − σv + q) = 0 (4.1.41)

or

∂tE +∇y · JE = 0 (4.1.42)

where

JE = vE − σv + q (4.1.43)

4.1.4 Dynamic theory of solids and thermoelasticity

Dynamic models of continuous media are derived from the following principles:

1. Conservation laws of mass, momentum and energy.

2. Second law of thermodynamics, the Clausius-Duhem inequality.

3. Linearization and symmetry. In the absence of additional information, a linear

constitutive relation is assumed and symmetry is used to reduce the number of

independent parameters.

In this and the next sub-section, we will demonstrate how such a program can be carried

out for simple fluids and solids.

As we remarked earlier, for solids, it is more convenient to use the Lagrangian coor-

dinate system. Therefore our first task is to express the conservation laws in Lagrangian

coordinates.

Let us begin with mass conservation. As was derived earlier, we have

ρ(y(x, t), t) =
1

det(I + F)
ρ0(x). (4.1.44)

Similar to mass conservation, momentum conservation requires for any subdomain in

the reference configuration D0,

d

dt

∫

D0

ρ0(x)∂ty(x, t)dx =

∫

∂Dt

σ(y, t)n̂(y, t)dS(y) =

∫

∂D0

σ0(x, t)n̂0(x, t)dS(x).

(4.1.45)

Here Dt is the image of D0 under the mapping x→ y(x, t) at time t, n̂(y, t) is the unit

outward normal vector of ∂Dt at y, n̂0(x) is the normal vector of ∂D0 at x, σ and σ0 are
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respectively the Cauchy and the Piola-Kirkhoff stress tensor. We have made use of the

relation (4.1.7). Applying Green’s formula to the right hand side of (4.1.45), we get

ρ0(x)∂2
t y(x, t) = ∇x · σ0(x, t). (4.1.46)

Similarly, energy conservation implies

d

dt

∫

D0

(
1

2
ρ0(x)|∂ty(x, t)|2 + ρ0(x)e(x, t)

)
dx (4.1.47)

=

∫

∂D0

∂ty(x, t) · σ0 · n̂0(x, t)dS(x)−
∫

∂D0

q(x, t) · n̂0(x, t)dS(x).

Applying Green’s formula again, we get

∂

∂t

(
1

2
ρ0(x)|∂ty(x, t)|2 + ρ0(x)e(x, t)

)
= ∇x ·(∂ty(x, t) · σ0(x, t))−∇x ·q(x, t), (4.1.48)

Taking (4.1.46) into consideration, this equation can be rewritten as

ρ0∂te = (∇x∂ty) : σ0 −∇x · q (4.1.49)

Here we have used the notation A : B to denote the scalar product of two matrices:

A : B =
∑

i,j aijbji, where A = (aij),B = (bij).

Additional information comes from the second law of thermodynamics. Denote by

s(x, t) the entropy per unit mass, T (x, t) the temperature of the system, the second law

states that the rate at which entropy increases can not be slower than the contribution

due to the exchange of heat with the environment:

d

dt

∫

D0

ρ0(x)s(x, t)dx ≥ −
∫

∂D0

q(x, t)

T (x, t)
· n̂0(x)dS(x). (4.1.50)

In a differential form, this gives

ρ0∂ts ≥ −∇x ·
(q

T

)
(4.1.51)

This is referred to as the Clausius-Duhem inequality.

Define the Helmholtz free energy per unit mass as

h(x, t) = e(x, t)− T (x, t)s(x, t). (4.1.52)



4.1. CONTINUUM MECHANICS 157

Assume that h is a function of the form:

h(x, t) = h0(F, T,x), (4.1.53)

then

∂th = ∇Fh0 : ∂tF +
∂h0

∂T
∂tT (4.1.54)

From (4.1.52), we also have

∂th = ∂te− s∂tT − T∂ts.

In terms of F, the energy conservation law (4.1.49) can be expressed as

ρ0∂te = ∂tF : σ0 −∇x · q (4.1.55)

Using the Clausius-Duhem inequality

ρ0∂ts ≥ −
1

T
∇x · q +

1

T 2
q · ∇xT (4.1.56)

we get

ρ0

(
∇Fh0 : ∂tF +

∂h0

∂T
∂tT

)
= ρ0∂th ≤ −ρ0s∂tT − q · ∇xT

T
+ ∂tF : σ0, (4.1.57)

or equivalently,

∂tF : (ρ0∇Fh0 − σ0) + ∂tT

(
ρ0
∂h0

∂T
+ ρ0s

)
+ q · ∇xT

T
≤ 0. (4.1.58)

Since F, T can take arbitrary values, the inequality (4.1.58) implies [23]

∂W

∂F
= σ0, (4.1.59)

s = − ∂h
∂T

,

q · ∇xT

T
≤ 0.

where W = ρ0h0. These are constraints on the possible constitutive relations.

In the absence of additional information, the simplest thing to do is to assume a linear

relation between the remaining flux q and the corresponding driving force ∇xT/T :

q = −k∇xT

T
. (4.1.60)

Here k, the thermal conductivity, must be positive. The other constitutive information

needed is an expression for W , the stored energy density, which was discussed earlier.
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4.1.5 Dynamics of fluids

Next we turn to fluids. As we said earlier, it is much more convenient to use the

Eulerian coordinates to describe fluids. We will focus on dynamic models of fluids. For

convenience, we now use u to denote the velocity field (instead of the displacement field

as was done earlier). In Eulerian coordinates, the basic principles take the form

• Conservation of mass:

∂tρ+∇ · Jρ = 0 (4.1.61)

• Conservation of momentum:

∂t (ρu) +∇ · Jm = 0 (4.1.62)

• Conservation of energy:

∂tE +∇ · JE = 0 (4.1.63)

• The Clausius-Duhem principle, namely, the second law of thermodynamics:

ρ (∂ts+ u · ∇s) +∇ ·
(q

T

)
≥ 0 (4.1.64)

where Jρ,Jm,JE are the mass, momentum and energy fluxes, respectively, given by

Jρ = ρu, (4.1.65)

Jm = ρu⊗ u− σ,
JE = Eu− σ · u + q

It is convenient to introduce the material derivative. For any function ϕ, its material

derivative is defined as

ϕ̇ = Dtϕ =
∂

∂t
ϕ+ u · ∇ϕ. (4.1.66)

Using material derivative, the conservation laws can be written as

ρ̇+ ρ∇ · u = 0, (4.1.67)

ρu̇ = ∇ · σ, (4.1.68)

ρė+∇ · q = Tr
(
σT∇u

)
, (4.1.69)

ρṡ+∇ · (q
T

) ≥ 0. (4.1.70)
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where Tr(A) denotes the trace of a matrix A. To obtain (4.1.69), multiply both sides of

(4.1.68) by u to get,

∂t

(ρ
2
|u|2
)

+∇ ·
(ρ

2
|u|2u− u · σ

)
= −Tr

(
σT∇u

)
(4.1.71)

Combining this equation and (4.1.63) gives (4.1.69).

Again, we define the Helmholtz free energy per unit mass as

h = e− Ts, (4.1.72)

where T is the temperature of the system. We assume that h is only a function of T and

ρ, h = h0(T, ρ), then

ρḣ = ρ
(
ė− Ṫ s− T ṡ

)
(4.1.73)

Using (4.1.69), we get

ρḣ = Tr
(
σT∇u

)
−∇ · q− ρsṪ − ρT ṡ. (4.1.74)

On the other hand, we also have

ρḣ = ρ
∂h0

∂T
Ṫ + ρ

∂h0

∂ρ
ρ̇ = ρ

∂h0

∂T
Ṫ − ρ2∂h0

∂ρ
(∇ · u) . (4.1.75)

Combining (4.1.73),(4.1.75), and (4.1.64), we get

Tr

((
σ +

∂h0

∂ρ
ρ2I

)T
∇u

)
− q · ∇T

T
− ρṪ

(
s+

∂h0

∂T

)
≥ 0. (4.1.76)

Since (4.1.76) should hold for any value of Ṫ , we must have

s = −∂h0

∂T
(4.1.77)

which is a well-known result in thermodynamics. Now (4.1.76) becomes

Tr

((
σ +

∂h0

∂ρ
ρ2I

)T
∇u

)
− q · ∇T

T
≥ 0 (4.1.78)

Let p = ∂h0

∂ρ
ρ2 be the thermodynamic pressure, and write

σ = −p̃I + σd (4.1.79)
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where p̃ =
1

3
Tr(σ), and Tr(σd) = 0. (4.1.78) becomes

(p− p̃)(∇ · u) + Tr
(
(σd)

T∇u
)
− q · ∇T

T
≥ 0. (4.1.80)

This is the constraint on the constitutive relation from thermodynamic consideration.

In the absence of additional information, we again resort to a linear relation between

the fluxes and the driving forces. This means that p − p̃, σd and q should all be linear

functions of∇·u,∇u and∇T/T . It is easy to see that for isotropic fluids, the constitutive

relation must be of the form:

p− p̃ = κ∇ · u, (4.1.81)

σd = µ

(∇u +∇uT

2
− (∇ · u)I

)
, (4.1.82)

q = −k∇T
T
, (4.1.83)

Presence of other cross terms at the right hand side would violate isotropy or invariance

under reflection. Here κ, µ, k are constants, representing respectively the bulk viscos-

ity, shear viscosity and heat conductivity. Together with the conservation laws (4.1.67)-

(4.1.69), we obtain the familiar compressible Navier-Stokes equation in fluid dynamics.

So far we have only discussed the simplest example of a fluid system. For more

complicated systems, the principles are the same as described above. As an example, let

us consider a two-component fluid system. Let C be the mass concentration of one of

the two components, then conservation of mass reads

ρĊ +∇ · JC = 0, (4.1.84)

where JC is the diffusive mass current for the corresponding component. Now besides

T and ρ, the free energy also depends on C, i.e. h = h0(T, ρ, C). The Clausius-Duhem

principle gives

(p− p̃)∇ · u + Tr
(
(σd)

T∇u
)
− q · ∇T

T
− JC · ∇µ̃ ≥ 0. (4.1.85)
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where µ̃ is the chemical potential µ̃ = ∂h
∂C

. In the linear response regime, the constitutive

relation in this case is

p− p̃ = κ∇ · u, (4.1.86)

σd = µ

(∇u +∇uT

2
− (∇ · u)I

)
, (4.1.87)

q = −A1∇µ̃− A2
∇T
T
, (4.1.88)

JC = −B1∇µ̃−B2
∇T
T
. (4.1.89)

This suggests that temperature gradient may drive mass diffusion, a phenomenon that

is commonly referred to as thermo-diffusion or the Soret effect [12]. The coefficients

A1, B1, A2, B2 have to satisfy the constraint that the left hand side of (4.1.85) as a

quadratic form of (∇u,∇µ̃,∇T/T ) is semi-positive definite. Further constraints may

come from Onsager’s reciprocity relation [12], which in this case states that A2 = B1.

To summarize, the basic steps for developing (dynamic) continuum models are as

follows:

1. Write down the conservation laws.

2. Find the constraints on the constitutive relations from the second law of thermo-

dynamics.

3. Find the constraints on the constitutive relations from symmetry considerations. In

most cases, as a first approximation, one can postulate linear constitutive relations.

Such a general approach has its merits: It gives a framework that allows us to explore

all the possible leading order physical effects, particularly cross effects such as thermo-

diffusion.

4.2 Molecular dynamics

Next we turn to the atomistic models in the form of classical molecular dynamics. In

this section, we discuss the basic ideas of molecular dynamics, including the empirical

inter-atomic potentials, the different ensembles, the continuum limits and the linear

response theory for computing transport coefficients using atomistic modeling.
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Consider a system of N atoms and denote by mj and yj the mass and position of the

j-th atom, respectively. Molecular dynamics models the evolution of this system using

Newton’s second law

mjÿj = Fj = −∇yj
V (y1, . . . ,yN), j = 1, · · · , N (4.2.1)

where V is the potential energy function of the system. This system of equations can

also be written in Hamilton’s form (pj = mjẏj):

dyj
dt

= ∇pj
H,

dpj
dt

= −∇yj
H, j = 1, · · · , N (4.2.2)

where the Hamiltonian H is given by

H =
∑

j

1

2mj

|pj|2 + V (y1, . . . ,yN). (4.2.3)

4.2.1 Empirical potentials

The first issue we have to address is: What is the function V ? As we will see later when

discussing quantum mechanics, in principle V can be obtained from electronic structure

models. In practice, however, this is a rather costly procedure, and most models of

molecular dynamics still use empirical potentials that are carefully designed for specific

purposes.

It should be emphasized that at this point, there are no systematic ways of finding

empirical inter-atomic potentials. Current practice is a combination of coming up with

a good guess for the functional form of the potential and calibrating the parameters by

experimental data as well as data from first principle-based calculations.

Empirical potentials for molecules

Potentials for molecules are usually in the following form:

V = Vbonded + Vnon-bonded = VI + VII (4.2.4)

where VI is the contribution due to the covalently bonded-interactions, and VII is the

contribution due to the non-bonded interactions. Bonded interactions include contribu-

tions from the changes in bond length, bond angle and torsion angle (also called dihedral

angle). In the example of propane (CH3 − CH2 − CH3, see Figure 4.2), there are 10
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bonds (2 C-C bonds, 8 C-H bonds), 18 angles (1 C-C-C angle, 10 C-C-H angle and 7

H-C-H angle), and 18 torsion angles (12 H-C-C-H angles and 6 H-C-C-C angles).

A typical form of VI is

VI =
∑

bonds

ki
2

(li − li,0)2 +
∑

angles

ξj
2

(θj − θj,0)2 +
∑

torsion
angles

Vn
2

(cosωn − cosωn,0)
2 (4.2.5)

The first term is the energy due to bond stretching, l is the bond length and l0 is the

equilibrium bond length. The second term is due to the change in bond angles which

causes bending, θj and θj,0 are respectively the j-th bond angle and its equilibrium

value. The third term is the contribution from the change in torsion angles which causes

twisting. ωn is a torsion angle between three consecutive bonds, ωn,0 is its equilibrium

value. Note that the functional form of the terms are rather simplistic, either quadratic

or simple cosines. The motivation is the same as before when we considered constitutive

relations for solids and fluids: We always choose the simplest form that is consistent

with what we already know. Secondly, the parameters in (4.2.5) can be computed from

quantum mechanical calculations. This has become a standard practice when developing

force fields [5].

In principle, one might also consider mixed terms such as bond angle and torsion

angle interactions. But these are only included when it is absolutely necessary to do so.

Figure 4.2: An illustration of Propane.

better pics needed

Next we discuss the non-bonded interaction. There are two main contributions: elec-
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Figure 4.3: An illustration of basic variables associated with covalent bonds.

trostatic and van der Waals interaction:

VII =
1

2

∑

i6=j
4εij

{(
σij
rij

)12

−
(
σij
rij

)6
}

+
1

2

∑

i6=j

qiqj
4πε0rij

(4.2.6)

Here ri,j = |yi − yj|, qi is the partial charge of the ith atom, ε0 is the permitivity

of vaccum. Their values need to be changed when solvent effects, which is often an

important factor when studying biomolecules, are taken into account.

Van der Waals interaction accounts for the effect of quantum fluctuations on the

dipole moments. Consider two atoms, of distance r apart, where r is much larger than

the size of the atoms. Even though the atoms may not have permanent dipoles, quantum

and thermal fluctuations will cause them to have temporary dipole moments. If one atom

acquires some temporary dipole moment, it induces a polarization on the other atom.

This induced polarization is of the order O(r−3) (see for example problem 3 in Chapter

11 of [32]). The energy for the dipole-dipole interaction is of the form

V (r) = −α1α2

r6
(4.2.7)

where α1 and α2 are the polarizability constants for the two atoms.

(4.2.7) is always negative, implying that the van der Waals interaction is attractive. At

short distance, it has to be compensated by a repulsive force that prevents the two atoms

from collapsing into each other. The repulsive force comes either from charge-charge

interaction, or Pauli’s exclusion principle which prevents two electrons from occupying

the same quantum state. Unfortunately, there is no analogous derivation for the form of

the repulsive force. As a matter of convenience, it is often modeled by a r−12 term. This

gives the Lennard-Jones form of the van der Waals interaction:

V (r) = 4ε

((σ
r

)12

−
(σ
r

)6
)

(4.2.8)
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The two parameters in the Lennard-Jones potential are: ε, which is a scale of interaction

energy, and σ, which is a scale of the length. When multiple species of atoms are

encountered, a mixing rule is often used for the parameter values in the Lennard-Jones

potential, e.g.

σAB =
1

2
(σAA + σBB), εAB =

√
εAAεBB (4.2.9)

Empirical potentials for solids

Solids can be classified into several different types according to the nature of the

bonding between the atoms in the solid. These are: Covalently bonded, ionic, metallic,

molecular and hydrogen-bonded [4]. The last type occurs mostly in biological systems.

We will not discuss it here.

1. Molecular crystals. These occur mainly for inert gas elements in the last column of

the periodic table, for which the atoms interact mainly through the van der Waals

effect, modeled by the Lennard-Jones potential.

2. Metallic systems. An important ingredient for modeling metallic systems is the

charge density, which is often defined through

ρi =
∑

j

ρ∗(rij) (4.2.10)

where ρ∗ is a fitting function. The most popular inter-atomic potential for metals

is the embedded atom model (EAM) [11]

V =
1

2

∑

i6=j
Φ(rij) +

∑

i

F (ρi) (4.2.11)

Here the functions Φ, F are also fitting functions. One special case is the Finnis-

Sinclair potential where F (ρ) = A
√
ρ.

3. Covalently-bonded systems. These are somewhat similar to the molecules discussed

earlier. Examples include the diamond structure of silicon and the graphene struc-

ture of carbon. Two most popular potentials are the Stillinger-Weber potential and

Tersoff potential. The Stillinger-Weber potential takes the form:

V =
1

2

∑
f(rij) +

∑
(h(rij, rik, θjik) + permutations) (4.2.12)
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where

h(r, r′, θ) = λe
γ

r−a
+ γ

r′−a

(
cos θ +

1

3

)2

(4.2.13)

This potential is similar to the potentials we discussed above for molecules. The first

term is the pair-wise interaction. The second three-body term is the contribution

of the bond angles.

Tersoff potential, on the other hand, is quite different. It takes the form:

V =
∑

i6=j
Ae−αrij − bijBe−βrij (4.2.14)

The interesting parameter here is bij, the local bond-order, which depends on the

coordination of the atoms and the bond strength [35].

4. Ionic crystals, such as rock salt. In these systems, the atoms interact mainly

through the ion-ion electrostatic interaction and the short range repulsion. Born

proposed the following inter-atomic potential [4]

V =
1

2

∑

i6=j

qiqj
4πε0rij

+
∑ A

rnij
(4.2.15)

where qi is the partial charge of the i-th ion, A and n are empirical parameters.

The difficulty with this potential and with modeling ionic systems in general is the

long range nature of the electrostatic interaction.

Empirical potentials for fluids

Fluids are rarely modeled at the level of atomic detail. They are often coarse-grained.

The choice of the empirical potential depends on how we coarse-grain the system. If

the coarse-grained particles are treated as spherically-shaped point particles, then the

Lennard-Jones potential is often used. If they are treated as ellipsoids or rods, then one

may use some anisotropic forms of the Lennard-Jones potential such as the Gay-Berne

potential [1]. If the coarse-grained particles are chains, i.e. beads connected by springs,

then bead-spring models are used. Such a model typically contains two components:

1. The beads interact through a Lennard-Jones potential.

2. Neighboring beads on the same chain interact via a spring force.

An example of this type is treated in Chapter 6. Coarse-grained models of fluids are

discussed more systematically in [40].
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4.2.2 Equilibrium states and ensembles

Consider the solutions of Hamilton’s equation (4.2.2) with random initial condition.

Denote by ρ(z1, · · · , zN , t) the probability density of the particles at time t, where zi =

(yi,pi). It is easy to see that ρ satisfies Liouville’s equation:

∂tρ+
N∑

i=1

∇zi
· (Viρ) = 0 (4.2.16)

where Vi = (∇pi
H,−∇yi

H),∇zi
= (∇yi

,∇pi
).

Given a system of interacting particles (atoms or molecules, etc), the first question

we should think about is their equilibirium states. These are stationary solutions of the

Liouville equation (4.2.16) that satisfy the condition of detailed balance:

∇zi
· (Viρ) = 0

for each i = 1, · · · , N . It is obivous that probability densities of the form:

ρ0 =
1

ZN
f(H)

are equilibrium states. Here f is a nonnegative function, and ZN is the normalization

constant, also called the partition function:

ZN =

∫

R6N

f(H)dz1 · · · dzN

Of particular importance are the following special cases:

1. The microcanonical ensemble: f(H) = δ(H −H0) for some constant H0.

2. The canonical ensemble: f(H) = e−βH where β = 1/kBT , kB is the Boltzmann

constant and T is the temperature.

The particular physical setting determines the particular equilibrium distribution that

is realized. In the context of molecular dynamics, the microcanonical ensemble is realized

through the NVE ensemble, in which the number of particles N , the volume V accessible

to the particles and the total energy is fixed. This models a closed system with no

exchange of mass, momentum or energy with the environment. Similarly, the canonical

ensemble is realized through the NVT ensemble in which instead of the total energy, the
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temperature of the system is fixed. Recall that temperature is defined as the average

kinetic energy per degree of freedom due to the fluctuating part of the particle velocity:

Assuming that the average velocity is zero:

1

N

〈
N∑

j=1

vj

〉
= 0 (4.2.17)

where vj = pj/mj, then

1

N

〈
N∑

j=1

1

2
mj|vj|2

〉
=

3

2
kBT (4.2.18)

The NVE ensemble is obtained when one solves directly the Hamilton’s equations

(4.2.2) in a box with, e.g. reflection boundary condition. The value of the Hamiltonian

is conserved in this case. However, to obtain the NVT ensemble in which temperature

rather than the total energy of the system is fixed, we need to modify Hamilton’s equation.

There are several empirical ways of doing this. The simplest idea is the isokinetic energy

trick (also called velocity rescaling). The idea is very straightforward for a discretized

form of (4.2.2): At each time step, one rescales the velocities vj simultaneously by a

factor such that, after rescaling,

1

N

N∑

j=1

1

2
mj|vj|2 =

3

2
kBT (4.2.19)

holds, where T is the desired temperature. This does give the right average temperature,

but it does not capture the temperature fluctuations correctly. Indeed in this case the

quantity T̃ = 1
3kBN

∑N
j=1

1
2
mj|vj|2 does not fluctuate. This is not the case for the true

canonical ensemble. In fact, one can show that [18]

〈(T̃ − T )2〉
〈T 〉2 =

2

3N
(4.2.20)

i.e. the fluctuation in T̃ is of the order N− 1

2 , which only vanishes in the limit when

N →∞.

Other popular ways of generating the NVT ensemble include:

1. The Anderson thermostat: At random times, a random particle is picked and its

velocity is changed to a random vector from the Maxwell-Boltzmann distribution:

ρ(v1,v2, · · · ,vN) ∼ e−β
P

j
1

2
mj |vj |2 (4.2.21)
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2. Replacing Hamilton’s equation by the Langevin equation

mj
d2yj

dt2
= − ∂V

∂yj
− γj

dyj
dt

+ σjẇj, j = 1, · · · , N, (4.2.22)

where γj is the friction coefficient for the j-th particle, σj is the noise amplitude:

σj =
√

2kBTγj (4.2.23)

{ẇ1, ẇ2, · · · , ẇN} are independent white noises.

3. The Nóse-Hoover thermostat. This is a way of producing the canonical ensemble by

adding an additional degree of freedom to the system. The effect of this additional

degree of freedom is to supply energy or take energy away from the system according

to the instantaneous thermal energy of the system [18].

In general, these thermostats produce correctly the equilibrium properties of the system.

But it is not clear that dynamic quantities are produced correctly [18].

4.2.3 The elastic continuum limit – the Cauchy-Born rule

From the viewpoint of multiscale, multi-physics modeling, it is natural to ask how

the atomistic models are related to the continuum models discussed in the last section.

We will address this question from three different but related angles. In this subsection,

we will discuss the elastic continuum limit at zero temperature. In the next subsection,

we will discuss the relation between the continuum models and the atomistic models at

the level of the conservation laws. Finally, we will discuss how to compute macroscopic

transport coefficients using atomistic models.

At zero temperature T = 0, the canonical ensemble becomes a degenerate distribution

that is concentrated at the minimizers of the total potential energy:

minV (y1, . . . ,yN). (4.2.24)

This special case is quite helpful for understanding many issues in solids.

It is well-known that at low temperature, solids are crystals whose atoms reside

on some lattices. Common lattice structures include body-centered cubic (BCC), face-

centered cubic (FCC), diamond lattice, hexagonal closed packed lattice (HCP), etc [32].

For example, at room temperature and atomspheric pressure, iron (Fe) exists in BCC
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lattice, aluminum (Al) exists in FCC lattice, and silicon (Si) exists in diamond lattice.

Lattices are divided into two types: simple lattices and complex lattices.

Simple lattices. Simple lattices are also called Bravais lattices. Their lattice points

take the form:

L({ei},o) = {x : x =
d∑

i=1

ν iei + o ν i, are integers}, (4.2.25)

where {ei}di=1 is a set of basis vectors, d is the dimension, and o is a particular lattice

site. Note that the basis vectors are not unique.

For the examples listed above, BCC and FCC are simple lattices. For the FCC lattice,

one set of basis vectors are

e1 =
a

2
(0, 1, 1), e2 =

a

2
(1, 0, 1), e3 =

a

2
(1, 1, 0).

For the BCC lattice, we may choose

e1 =
a

2
(−1, 1, 1), e2 =

a

2
(1,−1, 1), e3 =

a

2
(1, 1,−1).

as the basis vectors. Here and in what follows, we use a to denote the lattice constant.

Another example of a simple lattice is the two-dimensional triangular lattice. Its basis

vectors can be chosen as:

e1 = a(1, 0), e2 = a(1/2,
√

3/2).

A 1

A 2

p

Figure 4.4: The graphene sheet as an example of a complex lattice. The right panel

illustrates a unit cell (courtesy of Pingbing Ming).

Complex lattices. Crystal lattices that are not simple lattices are called complex

lattices. It can be shown that every complex lattice is a union of simple lattices, each of



4.2. MOLECULAR DYNAMICS 171

which is a shift of any other: i.e., the lattice points can be expressed in the form:

L = L({ei},o) ∪ L({ei},o + p1) ∪ · · · L({ei},o + pk)

Here p1, · · · ,pk are the shift vectors. For example, the two dimensional hexagonal lattice

with lattice constant a can be regarded as the union of two triangular lattices with shift

vector p1 = a(−1/2,−
√

3/6). The diamond lattice is made up of two interpenetrating

FCC lattices with shift vector p1 = a/4(1, 1, 1). The HCP lattice is obtained by stacking

two simple hexagonal lattices with the shift vector p1 = a(1/2,
√

3/6,
√

6/3). Some

solids consist of more than one species of atoms. Sodium-chloride (NaCl), for example,

has equal numbers of sodium and chloride ions placed at alternating sites of a simple

cubic lattice. This can be viewed as the union of two FCC lattices: one for the sodium

ions and one for the chloride ions.

The picture described above is only for single crystals and it neglects lattice defects

such as stacking faults, vacancies and dislocations. Most solids are polycrystals, i.e.

unions of single crystal grains with different orientations. Nevertheless, it is certainly

true that the basic building blocks of solids are crystal lattices.

Turning now to the physical models, we have discussed two approaches for analyzing

the deformation of solids: The continuum theory discussed in the last section and the

atomistic model. It is natural to ask how these two approaches are related to each

other. From the viewpoint of atomistic modeling, the relevant issue is the macroscopic

continuum limit of the atomistic models. From the viewpoint of the continuum theory,

the relevant issue is the microscopic foundation of the continuum models.

Recall that in continuum elasticity theory, the potential energy of an elastic solid is

given by ∫

Ω

W (∇u)dx (4.2.26)

where W is the stored energy density. In the last section, we discussed ways of obtaining

empirical expressions for W . We now ask: Can we derive W from an atomistic model?

This question was considered already by Cauchy, who derived atomistic expressions

for the elastic moduli. Cauchy’s work was extended by Born who also considered complex

lattices [4]. For crystalline solids, the Cauchy-Born rule establishes an expression for W

in terms of an atomistic model.

Let us consider first the case when the crystal is a simple lattice. In this case, given

a value of the deformation gradient A, consider a homogeneously deformed crystal with
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deformation gradient A, i.e. the positions of the atoms in the deformed configuration are

given by yj = xj + Axj for all j. Knowing the positions of the atoms in the deformed

crystal, we can compute the energy density of the deformed crystal using the atomistic

model. This gives the value of WCB(A).

 

Figure 4.5: Illustration of the Cauchy-Born rule: W (A) is equal to the energy density of

a homogeneously deformed crystal obtained through the relation y = x + Ax (courtesy

of Pingbing Ming).

Next consider the case when the crystal is a complex lattice. In this case, to define

the configuration of a homogeneously deformed crystal, we not only have to specify

the deformation gradient A, we also need to specify the shift vectors p1, · · · ,pk. Once

they are specified, we can compute the energy density (energy per unit cell) of the

homogeneously deformed crystal using the atomistic model. We denote this value by

w(A,p1, · · ·pk). We then define:

WCB(A) = min
p1,··· ,pk

w(A,p1, · · · ,pk) (4.2.27)

To see where the Cauchy-Born rule comes from, consider the case of a simple lattice

with atoms interacting via a two-body potential:

V =
1

2

∑

i6=j
V0 (|yi − yj|) . (4.2.28)

Cauchy’s idea is to assume that the deformation of the atoms follows a smooth displace-

ment vector field u, i.e. [16]

yj = xj + u(xj), (4.2.29)
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Then the total energy of the system is given by:

V =
1

2

∑

i6=j
V0(|(xj + u(xj))− (xi + u(xi))|), (4.2.30)

=
1

2

∑

i6=j
V0(|xj − xi +∇u(xi)(xj − xi) +O(|xj − xi|2)|).

To leading order, we have

V ≈ 1

2

∑

i6=j
V0(|(I +∇u(xi))(xj − xi)|) =

∑

j

W (∇u(xj))Va ≈
∫
W (∇u(x))dx (4.2.31)

where

W (A) =
1

2Va

∑

i6=0

V0(|(I + A)(xi)|)

and Va is the volume of the unit cell of the undeformed lattice. This is nothing but the

Cauchy-Born rule. In one dimension with xk = ka, (4.2.31) becomes

V =
1

2

∑

i

(
∑

k

V0

((
1 +

du

dx
(xi)

)
ka

))
(4.2.32)

=
∑

i

W

(
du

dx
(xi)

)
a (4.2.33)

≈
∫
W

(
du

dx
(x)

)
dx,

where

W (A) =
1

2a

∑

k

V0((1 + A)ka) (4.2.34)

Calculations of this type have been carried out for very general cases in [3]. In

essence, such a calculation demonstrates that to leading order, the atomistic model can

be regarded as the Riemann sum of the nonlinear elasticity model where the stored energy

density is given by the Cauchy-Born rule. The validity of the Cauchy-Born rule at zero

temperature has been studied in great detail in [14] for the static case and in [15] for the

dynamic case. The essence of this analysis is to find out under what conditions, Cauchy’s

assumption that the atoms follow a smooth displacement field, is valid. These conditions

are shown be in the form of stability conditions for the phonons as well as the elastic

stiffness tensor. These conclusions seem to be sharp and quite general.
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We will refer to the nonlinear elasticity model in whichW = WCB as the Cauchy-Born

elasticity model.

So far we have only discussed the highly idealized situation when the temperature

is zero. The extension of the Cauchy-Born construction to finite temperature is still

somewhat of an open problem.

4.2.4 Non-equilibrium theory

From a statistical viewpoint, the basic object for the non-equilibrium theory is Liou-

ville’s equation. It contains all the statistical information we need. However, Liouville’s

equation is a very complicated object since it describes the dynamics of a function, the

probability density, of many variables. In the following, we will try to make a more

direct link with non-equilibrium continuum theory. We will do so by deriving, from the

equations of molecular dynamics, conservation laws similar to the ones in continuum the-

ory. We will restrict ourselves to the case when the inter-atomic potential is a two-body

potential:

V (y1, . . . ,yN) =
1

2

∑

i6=j
V0(|yi − yj|) (4.2.35)

Given the output from molecular dynamics, {(yj(t),vj(t)), j = 1, · · · , N}, we define

the empirical mass, momentum and energy densities as follows:

ρ̃(y, t) =
∑

j

mjδ (y − yj(t)) , (4.2.36)

m̃(y, t) =
∑

j

mjvj(t)δ (y − yj(t)) , (4.2.37)

Ẽ(y, t) =
∑

j

1

2
mj|vj(t)|2δ (y − yj(t)) (4.2.38)

+
1

2

∑

j

(
∑

i6=j
V0(|yj(t)− yi(t)|)

)
δ (y − yj(t)) .

Here δ(·) is the Delta function. Let fij = −∇yi
V0(|yi − yj|), we can define the analog of
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the stress tensor and energy flux:

σ̃ =
∑

i

mivi(t)⊗ vi(t)δ(y − yi(t)) (4.2.39)

+
1

2

∑

i

∑

j 6=i
(yi(t)− yj(t))⊗ fij(t)

∫ 1

0

δ (y − (yj(t) + λ(yi(t)− yj(t)))) dλ,

J̃ =
∑

i

vi(t)

(
1

2
mivi(t)

2 +
1

2

∑

j 6=i
V0(|yi(t)− yj(t)|)

)
δ (y − yi(t)) (4.2.40)

+
1

4

∑

j 6=i
(vj(t) + vi(t)) · fij(t)⊗ (yi(t)− yj(t))

∫ 1

0

δ (y − (yj(t) + λ(yi(t)− yj(t)))) dλ.

(4.2.39) is the well-known Irving-Kirkwood formula [22]. It is a straightforward but

tedious calculation to show that the following equations hold as a consequence of the

MD equation (4.2.1):

∂tρ̃+∇y · m̃ = 0, (4.2.41)

∂tm̃ +∇y · σ̃ = 0, (4.2.42)

∂tẼ +∇y · J̃ = 0 (4.2.43)

These are the analog of the conservation laws in continuum theory.

Even though molecular dynamics naturally uses the Eulerian coordinates, these for-

mulas also have their analogs in Lagrangian coordinates. Denote x0
j = xj(0), which can

be thought of as being the Lagrangian coordinate of the j-th atom, and let [30]:

ρ̃(x, t) =
∑

j

mjδ(x− x0
j), (4.2.44)

m̃(x, t) =
∑

j

mjvj(t)δ(x− x0
j), (4.2.45)

Ẽ(x, t) =
∑

j

1

2
mj|vj(t)|2δ(x− x0

j) +
1

2

∑

j

(
∑

i6=j
V0(|x0

j − x0
i |)
)
δ
(
x− x0

j

)
. (4.2.46)

σ̃ =
1

2

∑

i

∑

j 6=i
(x0

i − x0
j)⊗ fij(t)

∫ 1

0

δ
(
x−

(
x0
j + λ(x0

i − x0
j)
))
dλ, (4.2.47)
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J̃ =
1

4

∑

j 6=i
(vj(t) + vi(t)) · fij(t)⊗ (x0

i − x0
j)

∫ 1

0

δ
(
x−

(
x0
j + λ(x0

i − x0
j)
))
dλ (4.2.48)

we then have [30, 41]

∂tm̃ +∇x · σ̃ = 0, (4.2.49)

∂tẼ +∇x · J̃ = 0 (4.2.50)

In principle, one way of deriving the continuum models is to perform averaging on the

conservation laws we just discussed. In practice, we face the closure problem: In order

to calculate the averaged fluxes, we need to know many-particle probability density of

the atoms. We get a closed form model if this probability density can be expressed in

terms of the averaged conserved quantities (the mass density, averaged momentum and

energy densities). However, this is usually not the case. Therefore approximations have

to be made in order to solve the closure problem. This point will be made more clearly

in the next section.

4.2.5 Linear response theory and the Green-Kubo formula

The connection between the continuum and atomistic models established above is

quite general but it may not be explicit enough to offer significant physical insight. Here

we consider the linear response regime and establish a connection between the transport

coefficients, such as diffusion constants and viscosity coefficients, in terms of microscopic

quantities. We can always put a system into the linear response regime by limiting the

size of the external driving force.

First, let us consider the diffusion of a tagged particle in a fluid. We assume that its

probability distribution ρ satisfies the diffusion equation:

∂tρ(x, t) = D∆ρ(x, t) (4.2.51)

Assume that the particle is at the origin initially. Since 〈|x(t)|2〉 =
∫
|x|2ρ(x, t)dx, we
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have

∂

∂t

∫
|x|2ρ(x, t)dx =D

∫
|x|2ρ(x, t)dx (4.2.52)

=D

∫
∇ · (|x|2∇ρ)dx−D

∫
(∇|x|2) · ∇ρdx (4.2.53)

=− 2D

∫
x · ∇ρdx (4.2.54)

=2D

∫
(∇ · x)ρdx (4.2.55)

=6D (4.2.56)

in three dimension.

So far the discussion is limited to the macroscopic model (4.2.51). Now consider the

dynamics of a diffusing particle. Using y(t) =
∫ t

0
v(t1)dt1, we have

〈|y|2(t)〉 = 〈
∫ t

0

∫ t

0

v(t1)v(t2)dt1dt2〉 (4.2.57)

=

∫ t

0

∫ t

0

〈v(t1 − t2)v(0)〉dt1dt2 (4.2.58)

d

dt
〈|y|2(t)〉 →

∫ ∞

0

〈v(t)v(0)〉dt (4.2.59)

as t→∞. Hence we have:

D =
1

6

∫ ∞

0

〈v(t)v(0)〉dt (4.2.60)

This equation relates a transport coefficient D to the integral of an autocorrelation

function for the microscopic system, here the velocity autocorrelation function g(t) =

〈v(t)v(0)〉 of the diffusing particle. The function g(·) can be calculated using microscopic

simulations such as molecular dynamics. Similar expressions can be found for viscosity,

heat conductivity, etc. Such relationships are known as the Green-Kubo formulas [9].

4.3 Kinetic theory

Kinetic theory serves as a nice bridge between continuum and atomistic models. It can

either be viewed as an approximation to the hierarchy of equations for the many-particle

probability densities obtained from molecular dynamics, or as a microscopic model for
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the phase-space probability distribution of a particle, from which continuum models can

be derived.

The basic object of interest in kinetic theory is the one-particle distribution function.

In the classical kinetic theory of gases, a particle is described by its coordinates in the

phase space, i.e. position and momentum. Therefore classical kinetic theory describes

the behavior of the one-particle phase space distribution function [8]. Kinetic theory

has been extended in many different directions. One interesting extension is the kinetic

models of complex fluids, such as liquid crystals made up of rod-like molecules [13], in

which additional variables are introduced to describe the conformation of the molecules.

For example, for rod-like molecules, it is important to include the orientation of the

molecules as part of the description.

The main difficulty in formulating models of kinetic theory is in the modeling of

particle-particle interaction. Indeed for this reason, kinetic theory is mostly used when

particle-particle interaction is weak, e.g. for gases and dilute plasmas. Another case

where kinetic theory is used is when particle-particle interaction can be modeled accu-

rately by a mean field approximation.

In this section, we will briefly summarize the main features of kinetic theory for simple

systems, i.e. particles without internal degrees of freedom.

4.3.1 The BBGKY hierarchy

At a fundamental level, kinetic equation can be viewed as an approximation to the

hierarchy of equations for the many-particle distribution functions for interacting par-

ticle systems. This hierarchy of equations is called the BBGKY hierarchy, named after

Bogoliubov, Born, Green, Kirkwood, and Yvon [36].

We will only consider a system of N identical particles interacting with a two-body

potential. In this case, the Hamiltonian is given by:

H =
∑

i

1

2m
|pi|2 +

1

2

∑

j 6=i
V0(|xi − xj|). (4.3.1)

Let zi = (pi,xi), and let ρN(z1, . . . , zN , t) be the probability density function of this

interacting particle system in the R
6N dimensional phase space at time t. Liouville’s

equation (4.2.16) can be written as [36]

∂ρN
∂t

+HNρN = 0 (4.3.2)
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where

HN =
N∑

i=1

1

m
(pi · ∇xi

)−
∑

i<j

L̂ij. (4.3.3)

and

L̂ij =
1

2

(
−(fij · ∇pi

)− (fji · ∇pj
)
)
, fij = −∇xi

V0(|xi − xj|) (4.3.4)

Define the 1-particle probability density as

ρ1(z1, t) =

∫
· · ·
∫
ρN(z1, . . . , zN , t)dz2 · · · dzN . (4.3.5)

Similarly, we define the k-particle probability density:

ρk(z1, . . . , zk, t) =

∫
· · ·
∫
ρN(z1, . . . , zN , t)dzk+1 · · · dzN . (4.3.6)

Since the particles are identical, it makes sense to limit our attention to the case when

the distribution functions {ρk}, k = 1, · · · , N, are symmetric functions. Let

Hk =
k∑

i=1

1

m
(pi · ∇xi

)−
∑

i<j≤k
L̂ij. (4.3.7)

Integrating over the variables zk+1, . . . , zN , we get from (4.3.2)

∂ρk
∂t

+Hkρk =

∫
· · ·
∫
dzk+1 · · · dzN

{
−

N∑

i=k+1

1

m
(pi · ∇zi

) (4.3.8)

+
∑

k+1≤i<j
L̂ij +

∑

i≤k,j≥k+1

L̂ij

}
ρN(z1, . . . , zN , t).

Assuming that ρN decays to 0 sufficiently fast as ‖zi‖ goes to ∞, both the first and

second terms on the right hand side vanish after the integration. For the third term,

using the fact that the ρk’s are symmetric functions, we have for each j ≥ k + 1,

∫
· · ·
∫
dzk+1 · · · dzN L̂ijρN(z1, . . . , zN , t) (4.3.9)

=

∫
· · ·
∫
dzk+1 · · · dzN L̂i,k+1ρN(z1, . . . , zN , t)

=

∫
dzk+1L̂i,k+1ρk+1(z1, . . . , zk+1)
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Therefore, we have

∂ρk
∂t

+Hkρk =(N − k)
∑

i≤k

∫
dzk+1L̂i,k+1ρk+1(z1, . . . , zk+1).

In particular, the equation for ρ1 reads:

∂ρ1

∂t
+

1

m
(p1 · ∇x1

)ρ1 = (N − 1)

∫
dz2L̂12ρ2(z1, z2, t) (4.3.10)

The equations just derived form a hierarchy of equations for all the k-particle dis-

tribution functions. Note that the equation of ρ1 depends on ρ2, and the equation of

ρ2 depends on ρ3. . . , and so on. This is a familiar situation that we see repeatedly in

modeling: To obtain a closed system with a small number of equations and unknowns, we

must place some assumptions on this hierarchy of distribution functions. In particular,

to obtain a closed equation for ρ1, we must make closure assumptions that express ρ2 in

terms of ρ1 only. The resulting equation for ρ1 is called the kinetic equation.

4.3.2 The Boltzmann equation

Consider now a dilute system of particles in the gas phase. We will model the particle-

particle interaction by collision, i.e. particles do not interact unless two gas particles

collide, and we will model the collision process probablistically. This allows us to derive

a closed model in terms of ρ1 only. In doing so, we have neglected the details of the

interaction process. We will present an intuitive way of deriving the kinetic equation,

the Boltzmann equation, by studying directly the collision process. Our presentation is

to a large extend influenced by the treatment in [29].

From this point on, we will write ρ1(z1, t) = f(x,v, t), where x and v are the position

and velocity coordinates respectively. We will consider elastic collisions only, i.e. the

total energy of the particles is conserved during the collision process.

Let P1 and P2 be two particles with velocities v1,v2 before collision and v′
1,v

′
2 after

collision. Since their total momentum and energy are conserved during the collision

process, we must have

v1 + v2 = v′
1 + v′

2, (4.3.11)

|v1|2 + |v2|2 = |v′
1|2 + |v′

2|2. (4.3.12)
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Define

v =
1

2
(v1 + v2), v′ =

1

2
(v′

1 + v′
2), (4.3.13)

u = v1 − v2, u′ = v′
1 − v′

2,

the conservation laws (4.3.11) and (4.3.12) imply

v = v′, (4.3.14)

|u| = |u′|.

The second identity states that u′ can be obtained by rotating u by some solid angle ω:

u′ = Rωu, (4.3.15)

Here ω ∈ S
2 (the unit sphere in R

3) is called the scattering angle, Rω is the rotation

operator by the angle ω. Knowing ω, we can relate (v′
1,v

′
2) uniquely with (v1,v2):

v′
1 =

1

2
(v′ + u′) =

1

2
(v +Rωu) (4.3.16)

v′
2 =

1

2
(v′ − u′) =

1

2
(v −Rωu)

and vice versa.

The outcome of the collision process is determined uniquely by the scattering angle

ω. In kinetic theory, ω is considered to be a random variable, whose (unnormalized)

probability density σ(ω) is called the scattering cross section. The total scattering cross

section:

σtot =

∫

S2

σ(ω)dω (4.3.17)

which has the dimension of area, can be roughly thought of as being the area (say, normal

to v1 − v2) available for the particles to collide. Outside of this area, particles pass by

each other without collision. One should note that σ(ω) depends on v1 and v2. In

principle, σ(ω) = σ((v1,v2) → (v′
1,v

′
2)) can be obtained from a more detailed model

for the collision process, such as a quantum mechanics model. In practice, it is often

modeled empirically.

However, independent of the details of σ(ω), it is intuitively quite clear that the

following properties hold for the collision process for simple spherical particles:
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1. σ(ω) is invariant under rotation and reflection transformation of the velocity (or

momentum) space.

2. σ(ω) is reversible, i.e.

σ((v1,v2)→ (v′
1,v

′
2)) = σ((v′

1,v
′
2)→ (v1,v2)). (4.3.18)

The rate of change of f is given by:

∂f

∂t
+ (v · ∇x)f = J+ − J− (4.3.19)

where J− is the loss term due to the collision of the particles having velocity v with

other particles, and J+ is a gain term due to the creation of particles with velocity v as

a result of the collision process. To derive expressions for J+ and J−, let us fix v and the

center of collision x. Consider the collision of particles with velocity v and particles with

velocity w. Their relative velocity is v−w. The current of such colliding particles (that

pass through the plane normal to v − w at the center of collision x) with velocity in a

neighborhood of w with size dw is equal to I = |v−w|f(x,w, t)dw. The rate at which

particles scatter with a solid angle ω after the collision process is Iσ(ω). Therefore the

loss term is equal to

J− = f(x,v, t)

∫

R3

σtot|v −w|f(x,w, t)dw (4.3.20)

=

∫

R3

∫

S2

f(x,v, t)f(x,w, t)σ(ω)|v −w|dωdw

= f(x,v, t)

∫

S2

σ(ω)dω

∫

R3

f(x,w, t)|v −w|dw

Similarly, to compute the gain term, we consider collision processes of the type:

(v′,w′)→ (v,w) (4.3.21)

Since v is fixed, we can parametrize such collision processes by w and ω. Therefore we

have

J+ =

∫

R3

∫

S2

f(x,v′, t)f(x,w′, t)|v′ −w′|σ((v′,w′)→ (v,w))dωdw (4.3.22)

=

∫

R3

∫

S2

f(x,v′, t)f(x,w′, t)|v′ −w′|dωdw

=

∫

R3

∫

S2

f(x,v′, t)f(x,w′, t)σ(ω)|v −w|dωdw
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Putting these together, we obtain the Boltzmann equation

∂f

∂t
+ (v · ∇x)f = B(f, f), (4.3.23)

where

B(f, f) =

∫

R3

∫

S2

σ(ω)|w − v| (f(v′)f(w′)− f(v)f(w)) dωdw. (4.3.24)

Here we have used the short-hand notation: f(v) = f(x,v, t). A more detailed derivation

can be found in [29].

4.3.3 The equilibrium states

Next we consider homogeneous equilibrium states such that f(x,v, t) = f0(v). From

(4.3.23) we see that we must have

B(f0, f0) ≡ 0. (4.3.25)

(4.3.25) is an integral constraint, stating that the net gain is equal to the net loss, summed

over all collisions. The following lemma gives a much stronger statement: The gain and

loss terms are equal for each individual pairwise collisions.

Lemma 6. Assume that σ(ω) > 0, for all ω ∈ S
2. Then for any equilibrium states f0,

the following holds:

f0(v
′)f0(w

′) = f0(v)f0(w). (4.3.26)

where v′,w′ and v,w are related by the conservation laws of momentum and energy, i.e.

(v′,w′) is a possible outcome after the collision of a pair of particles with velocities v and

w respectively.

Proof. Let

H(f) =

∫∫
f ln fdxdv, (4.3.27)

then

dH

dt
=

∫∫
(ln f + 1)

∂f

∂t
dxdv (4.3.28)

=

∫∫
(ln f + 1)B(f, f)dxdv

=

∫∫∫
σ(ω)|v −w|(f ′

1f
′
2 − f1f2)(1 + ln f1)dωdwdxdv.
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Here and in what follows, we use the short-hand notation: f1 = f0(v), f2 = f0(w), f ′
1 =

f0(v
′), f ′

2 = f0(w
′). Now we will make use of the symmetry properties of our system.

First, if we exchange v and w, the result should not change, i.e.

dH

dt
=

∫∫∫
σ(ω)|v −w|(f ′

1f
′
2 − f1f2)(1 + ln f2)dωdwdxdv. (4.3.29)

Hence, we have

dH

dt
=

1

2

∫∫∫
σ(ω)|v −w|(f ′

1f
′
2 − f1f2)(2 + ln(f1f2))dωdwdxdv. (4.3.30)

Secondly, because of (4.3.18), if we exchange the pairs (v,w) and (v′,w′), the result

should not change either:

dH

dt
=

1

2

∫∫∫
σ(ω)|v −w|(f1f2 − f ′

1f
′
2)(2 + ln(f ′

1f
′
2))dωdwdxdv. (4.3.31)

Hence,

dH

dt
=

1

4

∫∫∫
σ(ω)|v −w|(f ′

1f
′
2 − f1f2) (ln(f1f2)− ln(f ′

1f
′
2)) dωdwdxdv. (4.3.32)

Using the fact that for any a, b > 0,

(b− a)(ln b− ln a) ≥ 0, (4.3.33)

we conclude that
dH

dt
≤ 0. (4.3.34)

In addition, if
dH

dt
≡ 0, we must have

f0(v
′)f0(w

′) = f0(v)f0(w) (4.3.35)

for all ω,v and w, since the equality in (4.3.33) holds only when a = b.

(4.3.26) is referred to as the relation of detailed balance.

Equally important is the statement in (4.3.34) which holds for any solutions of the

Boltzmann equation. This statement is referred to as Boltzmann’s H-theorem. One

consequence of the H-theorem is the irreversibility of the Boltzmann equation. This is an

intriguing statement, since the collision process, upon which Boltzmann’s equation was

derived, is reversible.
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Using the detailed balance condition, we can derive the general form of the equi-

librium states f0(v). For this purpose, let us examine further the quantities that are

conserved during the collision process. We have known from (4.3.11) and (4.3.12) that

1,v, |v|2/2 are conserved during collision. We can show that if the collision cross section

is non-degenerate, i.e. if σ(ω) is strictly positive, then there are no additional conserved

quantities. In fact, assume to the contrary that there is such an conserved quantity, say

η, then

η(v) + η(w) = η(v′) + η(w′) (4.3.36)

for all v,w, ω. Fix (v,w), then v′,w′ are uniquely determined by ω. An additional

conserved quantity also means an additional constraint on the possible values of ω, i.e. ω

can only take values on a low-dimensional subset of S
2. This contradicts with the strict

positivity of σ, which guarantees that ω can take any value on S
2.

We now write the relation of detailed balance as

ln f ′
1 + ln f ′

2 = ln f1 + ln f2. (4.3.37)

This means that ln f is also a conserved quantity. Thus, ln f must be a linear combination

of 1,v,
|v|2
2

, namely

f = exp

(
C1 + C2 · v + C3

|v|2
2

)
, (4.3.38)

or equivalently

f = A exp(−C3(v − v0)
2). (4.3.39)

To determine the constants A and C3, define the number density

n ≡
∫
fdv = A exp

(
−C3(v − v0)

2
)

= A

(
π

C3

)3/2

, (4.3.40)

then ∫
vfdv = nv0. (4.3.41)

In addition, it is easy to compute the internal energy of the system:

∫
m

2
|v − v0|2fdv =

3ρ

4C3

. (4.3.42)
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where m is the mass of the particles and ρ = nm. Define temperature as the thermal

energy per degree of freedom, i.e.
∫

m
2
|v − v0|2fdv∫

fdv
=

3

2
kBT, (4.3.43)

then we obtain

C3 =
m

2kBT
. (4.3.44)

Together with (4.3.40), we obtain the well-known Maxwell-Boltzmann distribution

f0(v) = n

(
m

2πkBT

)3/2

exp

(
−m|v − v0|

2kBT

)
. (4.3.45)

4.3.4 Macroscopic conservation laws

We are interested in conserved quantities of the form

I(x, t) =

∫
η(v)f(t,x,v)dv. (4.3.46)

Using the Boltzmann equation (4.3.23), we have
∫
η(v)

(
∂f

∂t
+ v · ∇xf

)
dv =

∫
η(v)B(f, f)dv. (4.3.47)

If η satisfies ∫
η(v)B(f, f)dv = 0, (4.3.48)

then I must be a conserved quantity. In addition, let J(x, t) =
∫
η(v)vfdv, then we

obtain a conservation law in local form:

∂I

∂t
+∇x · J = 0. (4.3.49)

J is the corresponding flux. In the following, we will write ∇x = ∇.

We have already seen that η(v) = 1,v,
|v|2
2

satisfy the condition (4.3.48). They

give rise to the conservation laws of mass, momentum and energy respectively. We now

examine these conservation laws in some detail.

Define the averaging operator:

〈η〉 =

∫
ηfdv∫
fdv

(4.3.50)
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First we let η(v) = 1. Then I = n = ρ/m, J = nu where u = 〈v〉 is the mean velocity.

Mass conservation becomes:
∂ρ

∂t
+∇ · (ρu) = 0. (4.3.51)

For what follows, it is convenient to split the velocity as the sum of its mean and

fluctuation:

v = u + v′, (4.3.52)

where v′ has mean 0. Let η(v) = v, then

I =

∫
vfdv = nu =

1

m
ρu, (4.3.53)

and the momentum flux becomes

J =

∫
v ⊗ vfdv =

∫
(u + v′)⊗ (u + v′)fdv′ (4.3.54)

= nu⊗ u +

∫
v′ ⊗ v′fdv′.

Let us define the tensor τ as

τ =
1

m

∫
v′ ⊗ v′fdv′, (4.3.55)

then conservation of momentum reads

∂(ρu)

∂t
+∇(ρu⊗ u) +∇ · τ = 0. (4.3.56)

Finally, let η(v) =
|v|2
2

, then

I =

∫ |v|2
2
fdv =

∫ |u + v′|2
2

fdv′ (4.3.57)

=
|u|2
2
n+

∫ |v′|2
2
fdv′.

Now define the internal energy density and temperature using the following relation

e =
3

2
kBT = 〈 |v

′|2
2
〉, (4.3.58)

we have

I =
1

m

(
ρ
|u|2
2

+ ρe

)
=

1

m
E (4.3.59)
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The energy flux is

J =

∫ |v|2
2

vfdv (4.3.60)

=
1

m

(
ρ
|u|2
2

u + τ · u + eρu

)
+

∫ |v′|2
2

v′fdv′.

Let

q =
1

m

∫ |v′|2
2

v′fdv′, (4.3.61)

we have

∂tE +∇ · (Eu + τ · u) +∇ · q = 0. (4.3.62)

4.3.5 The hydrodynamic regime

The Knudsen number

The most important parameter in kinetic theory is the Knudsen number, defined as

the ratio between the mean free path of the particles λ and the system size L:

Kn =
λ

L

Here by “the system size”, we mean the scale over which averaged quantities such as

density, momentum and energy change. In typical dense gas, λ is of the order 10−7 −
10−8m, while the system size is, say O(1m). Hence the Knudsen number is very small. As

we will see below, in this case, hydrodynamic approximations are very accurate. However,

there are exceptions, for example:

1. at shocks, the relevant system size becomes the width of the shock, which can be

very small;

2. at the boundary, the relevant system size becomes the boundary layer width;

3. when modeling high frequency waves, in which case the time scale of interest is

specified by the frequency of the waves and the Knudsen number is the ratio between

the frequency of the waves and the collision frequency;

4. when the gas is dilute, then the mean free path becomes large.
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In these cases, the full Boltzmann equation is needed to model the dynamics of the gas.

If we nondimensionalize the Boltzmann equation, using x = Lx′, f = f ′/λ3v3,v =

vv′,w = vw′, t = t′L/v, σ = λ2σ′ and omitting the primes, we obtain

∂f

∂t
+ v · ∇xf =

1

ε
B(f, f), (4.3.63)

where ε = Kn is the Knudsen number.

The local equilibrium approximation

We now turn to the asymptotic analysis of (4.3.63). When ε≪ 1, we have, to leading

order:

B(f, f) = 0

Therefore, as discussed above, f must be of the form:

f(x,v, t) =
ρ(x, t)

(2πT (x, t))3/2
exp

(
−m|v − u(x, t)|2

2kBT (x, t)

)
. (4.3.64)

This is called the local equilibrium approximation.

It is straightforward to calculate that under the local equilibrium approximation, we

have

τ = pI, q = 0

where

p = ρkBT

Together with the conservation laws, this gives the Euler’s equation for ideal gas:

∂tρ+∇ · (ρu) = 0 (4.3.65)

∂t(ρu) +∇(ρu⊗ u) +∇p = 0 (4.3.66)

∂tE +∇ · ((E + p)u) = 0 (4.3.67)

The Chapman-Enskog expansion

The leading order result does not include any dissipative effects such as the viscous

effects or thermal conduction. To see these, we have to go to the next order. The standard

way of doing this is the Chapman-Enskog expansion. Here we give a brief summary of

this procedure. More details can be found, for example, in [29].
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We look for approximate solutions of the Boltzmann equation in the form:

f = f0(1 + εϕ1 + ε2ϕ2 + · · · ). (4.3.68)

To leading order, we have

B(f0, f0) = 0, (4.3.69)

∂f0

∂t
+ v · ∇f0 = B(f0, f0ϕ1) +B(f0ϕ1, f0) ≡ −

ρ

m
f0J(ϕ1). (4.3.70)

The last equality also serves as the definition of the operator J . Equation (4.3.69) shows

that f0 actually follows the Maxwell-Boltzmann distribution. For simplicity, we write

ϕ = ϕ1. The left hand side of (4.3.70) can be calculated using the local equilibrium

approximation and the Euler’s equation for ideal gas, and this gives:

J(ϕ) = − m

ρkBρT 2

(
m

2
|v − u|2 − 5

2
kBT

)
(v − u) · ∇T (4.3.71)

− m

ρkBT

(
(v − u)⊗ (v − u)− 1

3
|v − u|2I

)
: D, (4.3.72)

where D ≡ 1

2

(
∇u + (∇u)T

)
is the strain rate.

Using linearity, we can write ϕ as a linear combination of ∂T
∂xi

and Dij:

ϕ = − m

ρkBT 2

∑

i

ai
∂T

∂xi
− m

ρkBT

∑

ij

bijDij (4.3.73)

where {ai}, {bij} satisfy

J(ai) = ãi =

(
1

2
|v − u|2 − 5

2
kBT

)
(vi − ui), (4.3.74)

J(bij) = b̃ij = (vi − ui)(vj − uj)−
1

3
|v − u|2δij.

It can be concluded by symmetry considerations that the solutions to these equations

should be of the form:

ai = α(T, |v − u|2)ãi, (4.3.75)

bij = β(T, |v − u|2)b̃ij
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for some functions α and β. From this we get

q = −κ∇T, τ = ρkBT I + 2µD (4.3.76)

where I is the identity tensor,

κ =
ε

2ρkBT 2

∫
f0|v′|4α(T, |v′|2)

(
1

2
|v′|2 − 5

2
kBT

)
dv′ (4.3.77)

µ = − ε

2ρkBT

∫
f0β(T, |v′|2)(v′ ⊗ v′) : (v′ ⊗ v′ − 1

3
|v′|2I)dv′ (4.3.78)

Remark: Note that the viscous and heat conduction terms are of O(ε) compared

with the terms obtained under the local equilibrium approximation.

There are two general approaches for obtaining more accurate approximations:

1. The first is to include higher order moments. Grad’s 13-moment model is a pri-

marily example of this kind [20, 38].

2. The second is to include higher order derivatives. The Burnett equation is a typical

example of this class of models [17].

4.3.6 Other kinetic models

A much simplified model in kinetic theory is the BGK model, which approximates the

collision term by a simple relaxation form [2]:

∂f

∂t
+ (v · ∇x)f = Mf − f, (4.3.79)

where Mf is local Maxwell-Boltzmann distribution

Mf (x,v, t) = n(x, t)

(
m

2πkBT (x, t)

)3/2

exp

(
−m|v − u(x, t)|2

2kBT (x, t)

)
, (4.3.80)

n,u, T are obtained from f through

n(x, t) =

∫
fdv, n(x, t)u(x, t) =

∫
vf(x,v, t)dv, (4.3.81)

3

2
kBT (x, t)n(x, t) =

∫
m

2
|v − u(x, t)|2f(x,v, t)dv (4.3.82)

Note that this model is still quite nonlocal and nonlinear, due to the termMf . However, it

is certainly much simpler than the original Boltzmann equation. For some problems, this

simple model gives fairly accurate results compared to the original Boltzmann equation.
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4.4 Electronic structure models

Strictly speaking, none of the models we have discussed so far can be regarded as

being the true first principle. They all contain aspects of empirical modeling. Models in

molecular dynamics use empirical inter-atomic potentials. Kinetic theory models rely on

the empirical scattering cross section σ. In continuum theory, the constitutive relations

are empirical in nature. For the true first principle, we need quantum mechanics and we

should consider the quantum many-body problem. As we discuss below, this quantum

many-body problem contains no empirical parameters. The difficulty, however, lies in

the complexity of its mathematics. For this reason, approximate models have been

developed which describe the electronic structure of matter at various levels of detail.

These approximate models include:

1. The Hartree-Fock model, in which the many-body electronic wave function is lim-

ited to the form of a single Slater determinant [34].

2. Kohn-Sham density functional theory, a form of the density functional theory

(DFT) that uses the fictitious orbitals. DFT can in principle be made exact by

using the right functionals. But in practice, approximations have to be made for

the exchange-correlation functional [34].

3. Orbital-free density functional theory. Thomas-Fermi model is the simplest ex-

ample of this type. These models do not involve any wave functions. They use

the electron density as the only variable. They are in general less accurate than

Kohn-Sham DFT, but are much easier to handle [7].

4. Tight-binding models. These are much simplified electronic structure models in

which the electronic wave functions are expressed as linear combinations of a mini-

mal set of atomic orbitals. Electron-electron interaction is usually neglected except

that Pauli exclusion principle is imposed.

In the following sections, we will first discuss the quantum many-body problem. We

will then discuss the approximate models. We will focus on the zero temperature case

and neglect the consideration of the spins.



4.4. ELECTRONIC STRUCTURE MODELS 193

4.4.1 The quantum many-body problem

Quantum mechanics is built upon two fundamental principles:

1. The form of the Hamiltonian operator and the Schrödinger equation.

2. The Pauli exclusion principle.

Consider a system consists of Nnuc nuclei and N electrons. It is described by a

Hamiltonian which, in atomic units, is given by

H =
Nnuc∑

I=1

P2
I

2MI

+
N∑

i=1

1

2
p2
i + V (R1, . . . ,RNnuc

,x1, . . . ,xN). (4.4.1)

Here MI is the mass of the I-th nucleus – the mass of an electron is 1 in the atomic units;

RI is the position coordinate for the I-th nucleus, (x1, · · · ,xN) are the spatial coordinates

for the N -electron system; PI , pi are the corresponding momentum operators: pi =

−i∇xi
, PI = −i∇RI

. V is the interaction potential between the nuclei as well as the

electrons, given by

V (R1, . . . ,RNnuc
,x1, . . . ,xN) =

1

2

∑

I 6=J

ZIZJ
|RI −RJ |

+
1

2

∑

i6=j

1

|xi − xj|
−
∑

i,I

ZI
|xi −RI |

,

(4.4.2)

where ZI is the charge that the I-th nucleus carries. We can write the Hamiltonian as

H = −
Nnuc∑

I=1

1

2MI

∆RI
−

N∑

i=1

∆xi
+ V (R1, . . . ,RNnuc

,x1, . . . ,xN), (4.4.3)

The ground state of a system of electrons and nuclei can be found by solving the

Schrödinger equation

HΨ = EΨ, Ψ = Ψ(R1, . . . ,RNnuc
;x1, . . . ,xN) (4.4.4)

subject to the symmetry constraints determined by the statistics of the particles (nuclei or

electrons). For example, since the electrons are fermians, Ψ is an antisymmetric function

in (x1, · · · ,xN), i.e., Ψ changes sign if any pair of coordinates xi and xj are interchanged.

Ψ(R1, . . . ,RNnuc
;x1, . . . ,xi, . . . ,xj, . . . ,xN)

= −Ψ(R1, . . . ,RNnuc
;x1, . . . ,xj, . . . ,xi, . . . ,xN), 1 ≤ i < j ≤ N. (4.4.5)
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This quantum many-body problem contains no empirical parameters. One only has to

enter the mass {MI} and charge {ZI} of the participating nuclei, then the description is

complete.

Born-Oppenheimer approximation. The time scales of the nuclei and electronic

degrees of freedom are determined by their respective masses. Since MI is usually on

the scale of 103 or larger, the electrons relax at a much faster pace than the nuclei. This

suggests making the approximation that the electronic structure is always at the ground

state given by the state of the nuclei. Under this approximation, the electronic state

is slaved by the state of the nuclei. This is the Born-Oppenheimer approximation, also

referred to as the adiabatic approximation. In addition, in many cases, it is accurate

enough to treat the nuclei classically.

The Born-Oppenheimer approximation allows us to solve the coupled nuclei-electron

problem in two steps:

1. Given the positions of the nuclei, we can find the ground state of the electrons by

solving

HeΨe = EeΨe, (4.4.6)

where Ψe is the antisymmetric wave function for the electronic degrees of freedom,

He = −
∑

i

1

2
∆xi

+ V (R1, . . . ,RNnuc
,x1, . . . ,xN) (4.4.7)

2. Find the state of the nuclei using the classical Hamiltonian:

H =
∑

I

P 2
I

2MI

+ Ee(R1, . . . ,RNnuc
) (4.4.8)

where Ee = 〈Ψe|He|Ψe〉 is the effective potential due to the electrons.

We often write the Hamiltonian He as:

He = −
∑

i

1

2
∆xi

+
∑

i

Vext(xi) + Vee(x1, . . . ,xN) + Vnn(R1, . . . ,RNnuc
) (4.4.9)

where

Vext(x) = −
∑

I

ZI
|x−RI |

, Vee(x1, . . . ,xN) =
1

2

∑

i6=j

1

|xi − xj|

Vnn(R1, . . . ,RNnuc
) =

1

2

∑

I 6=J

ZIZJ
|RI −RJ |

(4.4.10)
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The term Vnn is an important contribution in Ee. However, in the Schrödinger equation

(4.4.6), the positions of nuclei are fixed, Vnn is just a constant potential. Therefore, we

often use

He = −
∑

i

1

2
∆xi

+
∑

i

Vext(xi) + Vee(x1, . . . ,xN), (4.4.11)

with a slight abuse of notation. It is understood that the Vnn term should be added back

in the Bohn-Oppenheimer surface energy Ee.

It is well-known that the Schrödinger equation admits an equivalent variational for-

mulation. For example, corresponding to (4.4.6), we can define the functional

I(Ψe) = 〈Ψe|He|Ψe〉 =

∫ N∑

i=1

(
1

2
|∇xi

Ψe|2 + V |Ψe|2
)

dx1 · · · dxN (4.4.12)

We then have

Ee = inf
Ψe

I(Ψe) (4.4.13)

subject to the normalization and antisymmetry constraints.

First principle-based inter-atomic potential. (4.4.8) gives the effective inter-

atomic potential Ee(R1, . . . ,RNnuc
) derived from the first principle. It gives a rigorous

starting point for thinking about inter-atomic potentials. However, it is very hard to use

this in practice. The wave function is a function of many variables. Even for a nano-sized

system, the wave function depends on so many variables that it is practically impossible

to solve for such wave functions. Therefore further approximations have to be made. We

now proceed to discuss some of these approximations.

4.4.2 Hartree and Hartree-Fock approximation

The simplest approximation is the Hartree approximation, which assumes that the

N -electron wave function takes the form of a product of single-electron wave functions:

Ψe(x1, . . . ,xN) = ψ1(x1) . . . ψN(xN), (4.4.14)

with the normalization constraints
∫
|ψi(x)|2 dx = 1, j = 1, 2, · · · , N. (4.4.15)
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Putting this ansatz into the variational principle, we get

IH({ψi}) =

∫

R3

N∑

i=1

1

2
|∇ψi|2 + Vext

N∑

i=1

|ψi|2 dx +
1

2

∫∫

R3×R3

∑

i6=j

|ψi(x)|2|ψj(y)|2
|x− y| dx dy.

(4.4.16)

The corresponding Euler-Lagrange equations become
(
−1

2
∆ + Vext(x) +

∑

j 6=i

∫

R3

|ψj(y)|2
|x− y| dy

)
ψi(x) = εiψi(x), , i = 1, · · · , N (4.4.17)

where εi is the Lagrange multiplier corresponding to the normalization constraint.

Hartree’s approximation has a simple interpretation, namely that each electron feels

a mean-field potential given by the other electrons in the system, via the Coulomb inter-

action.

Hartree’s approximation violates the Pauli exclusion principle. This problem is fixed

in the Hartree-Fock approximation. In the Hartree-Fock approximation, the wavefunction

Ψe is assumed to be in the form of a single Slater determinant:

Ψe(x1, . . . ,xN) =
1√
N !

det




ψ1(x1) . . . ψ1(xN)

...
. . .

...

ψN(x1) . . . ψN(xN)



 . (4.4.18)

Here {ψ1, . . . , ψN} is a set of orthonormal (one-particle) wave functions:
∫

R3

ψ∗
i (x)ψj(x) dx = δij. (4.4.19)

The Hartree-Fock functional is obtained from the functional (4.4.12) using the Hartree-

Fock approximation (4.4.18):

IHF({ψi}) =
N∑

i=1

∫

R3

1

2
|∇ψi(x)|2 + Vext(x)|ψi(x)|2 dx

+
1

2

N∑

i,j=1

∫∫
ψ∗
i (x)ψi(x)ψ∗

j (y)ψj(y)

|x− y| dx dy

− 1

2

N∑

i,j=1

∫∫
ψ∗
i (x)ψi(y)ψ∗

j (y)ψj(x)

|x− y| dx dy

(4.4.20)
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The Hartree-Fock approximation is the solution to the variational problem:

inf
{ψi}

IHF ({ψi}) (4.4.21)

subject to the orthonormality constraint (4.4.19). Obviously, the Hartree-Fock approxi-

mation gives an upper bound of the energy of the many-body system.

The Euler-Lagrange equations of (4.4.20) can be written as

Hψi(x)−
∑

j

∫

R3

ψj(x)ψi(y)ψ∗
j (y)

|x− y| dy = εiψi(x), , i = 1, · · · , N (4.4.22)

where

H = −1

2
∆ + Vext(x) +

∫

R3

ρ(y)

|x− y| dy, (4.4.23)

with the density ρ defined as

ρ(x) =
N∑

i=1

|ψi(x)|2. (4.4.24)

The term ∑

j

∫

R3

ψj(x)ψi(y)ψ∗
j (y)

|x− y| dy (4.4.25)

is called the exchange term, since it comes from the antisymmetry of the wave function.

For a mathematical introduction of the Hartree-Fock model, we refer the readers to [31].

4.4.3 Density functional theory

Density functional theory is an alternative approach for describing the electronic

structure of matter [21, 26, 34]. Its original motivation is to use only the density of

the electrons, rather than the wave functions, as the basic object for describing the

electronic structure of matter (at its ground state). Given the N -body wave function Ψe,

the electron density is defined by:

ρ(x) = N

∫
|Ψe(x,x2, . . . ,xN)|2 dx2 . . . dxN (4.4.26)

which is the probability of finding an electron at point x. At a first sight, it seems

quite impossible to describe the electronic structure of an arbitrary system just by the

electron density, since ρ seems to contain much less information than the many-body
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wave function. However, we should note that both the wave function and the density are

very much constrained by the fact that they are associated with the ground state of some

Hamiltonian operator. In fact, Hohenberg and Kohn showed that there is a one-to-one

correspondence between the external potential of an electronic system and the electron

density of its ground state [21], provided that the ground state is nondegenerate. Since

the external potential determines the entire system, the ground state wave function

and hence the ground state energy is uniquely determined by the ground state electron

density. Indeed, not only the total energy, all the energy terms, such as the kinetic energy

and Coulomb interaction energy, are uniquely determined by the ground state electron

density. They can be expressed as universal functionals of the ground state electron

density.

Instead of discussing the details of the Hohenberg-Kohn theorem, it is more convenient

for us to introduce the formulation of the Levy-Lieb constrained variational problem.

Imagine solving the variational problem (4.4.13) in two steps: First we fix a density

function ρ and minimize the functional I over all wave functions whose density is ρ, and

we then minimize over all ρ. More precisely, define the functional

F (ρ) = inf
Ψ 7→ρ
〈Ψ|He|Ψ〉 = 〈Ψ| −

∑

i

1

2
∆xi

+ Vee|Ψ〉, (4.4.27)

where the constraint Ψ 7→ ρ means that ρ is equal to the density given by Ψ using

(4.4.26). Ψ is also assumed to be anti-symmetric.

The ground energy of the system can now be expressed as:

E = inf
ρ

(F (ρ) +

∫
Vextρ dx). (4.4.28)

The functional F contains the kinetic energy of the electrons and Coulomb interaction

between the electrons. F is a universal functional, in the sense that it does not depend

on the external potential Vext. However, the explicit form of F is not known, and further

approximations are necessary in order to make this formulation useful in practice.

Kohn-Sham density functional theory

The first step, made by Kohn and Sham [26], is to restrict Ψ in (4.4.27) to the form

of a Slater determinant (4.4.18), where the the one-body wave functions {ψ1, . . . , ψN}
satisfy the orthonormality constraints (4.4.19). This is similar in appearance to the

Hartree-Fock approximation, but the underlying philosophy is quite different. In the
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Hartree-Fock approximation, we aim at obtaining an upper bound of the energy by

restricting the form of the many-body wave function. Here we are mapping the system

to a virtual system of non-interacting electrons (i.e. whose wave function is given by a

Slater determinant), with an effective potential carefully chosen so that the density of

the electrons is the same as the density of the system we are interested in. The question

reduces to the choice of this effective potential. To see this, we first compute the energy

of a system of non-interacting electrons. Since

〈Ψ| −
∑

i

1

2
∆xi

+ Vee|Ψ〉 =
N∑

i=1

∫

R3

1

2
|∇ψi(x)|2 +

1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy

− 1

2

N∑

i,j=1

∫∫

R3×R3

ψ∗
i (x)ψi(y)ψ∗

j (y)ψj(x)

|x− y| dx dy, (4.4.29)

the error made by neglecting electron-electron interaction is given by:

Ec(ρ) = F (ρ)− inf
{ψi}7→ρ

( N∑

i=1

∫

R3

1

2
|∇ψi(x)|2 dx +

1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy

− 1

2

N∑

i,j=1

∫∫

R3×R3

ψ∗
i (x)ψi(y)ψ∗

j (y)ψj(x)

|x− y| dx dy

)
. (4.4.30)

Here {ψi} 7→ ρ means that ρ(x) =
∑

i|ψi(x)|2. This is called the correlation energy. Note

that it is a functional of ρ.

The last term on the right hand side of (4.4.30) will give a nonlocal potential in the

Euler-Lagrange equation as we have discussed in the Hartree-Fock approximation. This

is sometimes unpleasant, and one replaces it by an explicit functional of ρ, called the

exchange energy:

Ex(ρ) =F (ρ)− inf
{ψi}7→ρ

N∑

i=1

∫

R3

1

2
|∇ψi(x)|2 dx− Ec(ρ)−

1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy.

(4.4.31)

Ex is also a functional of ρ. Define the exchange-correlation energy,

Exc(ρ) = Ex(ρ) + Ec(ρ), (4.4.32)

we can write

F (ρ) = T (ρ) +
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy + Exc(ρ). (4.4.33)
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Here T (ρ) is the new kinetic energy functional

T (ρ) = inf
{ψi}7→ρ

N∑

i=1

∫

R3

1

2
|∇ψi(x)|2 dx (4.4.34)

Notice that up to this point, what we have done is just a reformulation of the original

many-body problem – no approximations have been made. We still do not know the form

of Ex(ρ) and Ec(ρ), which account for the error made by approximating the many-body

wave function using a single Slater determinant, and approximating the electron-electron

Coulomb interaction by the Hartree energy

EH(ρ) =
1

2

∫∫

R3×R3

ρ(x)ρ(y)

|x− y| dx dy (4.4.35)

The main insight of Kohn and Sham [26] is that by approximating the kinetic energy

using the one-body wave functions, one takes care of a large portion of the kinetic energy.

The remaining contribution is small and can be approximated with acceptable accuracy

using simple ideas, such as the local density approximation (LDA):

Exc(ρ) =

∫
ǫxc(ρ(x)) dx, (4.4.36)

where ǫxc(ρ) is a local function (rather than a functional) of ρ, to be modeled. For

example, for homogeneous free electron gas, its exchange energy can be easily calculated

and is given by [34]:

Ex = −CDV ρ4/3, (4.4.37)

where V is the volume CD is some universal constant. Based on this, it is assumed that

for systems close to homogeneous electron gas, the exchange energy can be approximated

as

Ex(ρ) = −CD
∫
ρ(x)4/3 dx (4.4.38)

in the spirit of the local density approximation. One can also put in local density gradients

in order to get better accuracy:

Exc(ρ) =

∫
ǫxc(ρ(x),∇ρ(x)) dx (4.4.39)

under the name of generalized gradient approximation (GGA) [33].
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These approximate exchange-correlation functionals can often give satisfactory re-

sults in practical computations. However, in general, it is difficult to make systematic

corrections to improve the accuracy.

Under the approximations for the exchange-correlation energy, the Kohn-Sham energy

functional is given by

IKS(ρ) = T (ρ) +

∫
Vextρ dx + Exc(ρ) +

1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy (4.4.40)

where

1. T (ρ) is the universal kinetic energy functional for noninteracting electron gas.

2. Vext is the external potential, particularly, for the nuclei-electron system:

Vext(x) = −
∑

I

ZI
|x−RI |

.

3. Exc is the exchange-correlation energy, we will assume LDA or GGA approximations

so that it is an explicit functional of ρ.

4. The last term on the right hand side is called the Hartree energy.

Notice that we may also consider the energy functional defined in terms of the one-

body wave functions:

IKS({ψi}) =
∑

i

∫
1

2
|∇ψi|2 dx +

∫
Vextρ dx + Exc(ρ) +

1

2

∫∫
ρ(x)ρ(y)

|x− y| dx dy (4.4.41)

The formulation presented above treats every electron in the system in an equal foot-

ing. In practice, one often associates the core electrons with the nucleus and treats only

the valence electrons. This has a tremendous practical advantage, since the wave func-

tions associated with the core electrons typically have rapid variations and are therefore

difficult to compute numerically. In addition, they usually do not participate in binding

between atoms or chemical reactions. However, in doing so, we also have to represent

the effect of the nuclei differently, by introducing some effective potential, often called

the pseudo-potential [33]. We can then rewrite the Kohn-Sham functional as

IKS(ρ) = T (ρ) + J(ρ) + Exc(ρ) (4.4.42)
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where

J(ρ) =
1

2

∫∫
(ρ(x)−m(x))(ρ(y)−m(y))

|x− y| dx dy (4.4.43)

m(x) is the background charge distribution due to the nuclei and the core electrons. It

usually takes the form

m(x) =
∑

I

ma,I(x−RI)

where ma,I is the contribution from the I-th nucleus with its core-electrons and RI is

its position. Note that in the new form (4.4.42), the effect of the nuclei-nuclei Coulomb

interaction is included in the functional.

Thomas-Fermi and orbital-free density functional theory

In Thomas-Fermi theory, we model T [ρ] by considering the kinetic energy of a homo-

geneous free (i.e. non-interacting) electron gas. This gives rise to [34]

TTF [ρ] = CF

∫
ρ5/3(x)dx, (4.4.44)

where CF is an universal constant. This result is the consequence of a simple scaling

argument. Since we are considering homogeneous free electron gas, the end result can

only depend on the pointwise value of ρ (not on, for example, the gradient of ρ). Obviously

on dimensional grounds, we have [Ψ]2 = [ρ], [ρ] = 1/L3 where L denotes the dimension

of length. Therefore we have

[|∇Ψ|2] = [ρ]/L2 = [ρ]5/3

and this gives (4.4.44).

The simplicity of the Thomas-Fermi theory comes with a big price: The Thomas-

Fermi model does not allow binding between atoms. Indeed the well-known Teller’s

theorem states that if we divide a neutral electronic system (i.e. total charge vanishes)

into two disjoint neutral subsystems, then within the Thomas-Fermi theory, the total

energy is a decreasing function of the distance between the two subsystems [34].

Many ideas have been proposed to remedy this problem. One well-known example is

the Thomas-Fermi-von Weizsäcker (TFW) model

TTFW [ρ] = TTF [ρ] + λ

∫ |∇ρ|2
ρ

dx. (4.4.45)

where λ is some parameter. The TFW model does allow binding between atoms.
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The second idea is to add integral terms. The most well-known example of such a

functional is the Wang-Teter functional [7]

TWT [ρ] = TTFW [ρ] +

∫ ∫
ρ5/6(x)KWT (x,y)ρ5/6(y)dxdy. (4.4.46)

Here KWT is a kernel function, constructed in order to reproduce accurately the linear

response of a homogeneous free electron gas, given by the Lindhard function [7].

4.4.4 Tight-binding models

Tight-binding models (TBM) are the simplest electronic structure models with explicit

wave functions. They are the minimalist type of models, based on

1. representing the wave functions using a minimum basis set, often in the form of

atomic orbitals which are the ground and excited states for the electron in the

hydrogen atom, and

2. neglecting electron-electron interaction except that the Pauli exclusion principle is

still imposed.

Under these approximations, the state space becomes finite and the Hamiltonian operator

becomes a matrix. This makes it possible to carry out explicit analytical calculations

as well as efficient numerical computations. Even though TBM is quite crude, it is very

useful as a theoretical and practical tool. Its accuracy can be improved to some extend

by calibrating the matrix elements of the Hamiltonian against results from more accurate

models.

Let us start with the example of a hydrogen ion H+
2 . To set up the coordinates, we

put the two atoms on the real axis, see Figure 4.6. The wave function Ψ is expressed as

a linear combination of a minimal set of atomic orbitals:

Ψ = c1ϕ1 + c2ϕ2 (4.4.47)

where ϕ1 is the 1s orbital of atom 1, and ϕ2 is the 1s orbital of atom 2 (see [24]). The

Hamiltonian operator is of the form:

H = T + V1 + V2 (4.4.48)
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where T is the kinetic energy operator, V1 and V2 are the Coulomb potential associated

with atoms 1 and 2 respectively. We will discuss the explicit form of H later. Our

problem is then reduced to the eigenvalue problem

HΨ = εΨ (4.4.49)

for finding c1, c2 and ε.

Figure 4.6: Setup of the tight-binding model for the analysis of the binding of two atoms.

Taking inner product of (4.4.49) with respect to ϕ1 and ϕ2 respectively, we get

(ϕ1, HΨ) = ε(ϕ1,Ψ) (4.4.50)

(ϕ2, HΨ) = ε(ϕ2,Ψ)

We can express this equation in a matrix form:

H

(
c1
c2

)
= εS

(
c1
c2

)
(4.4.51)

where

H =

(
H11 H12

H21 H22

)
=

(
(ϕ1, Hϕ1), (ϕ1, Hϕ2)

(ϕ2, Hϕ1), (ϕ2, Hϕ2)

)
(4.4.52)

S =

(
S11 S12

S21 S22

)
=

(
(ϕ1, ϕ1), (ϕ1, ϕ2)

(ϕ2, ϕ1), (ϕ2, ϕ2)

)

are the Hamiltonian and mass matrices respectively.

Next we discuss how the elements of these two matrices can be approximated. In

orthorgonal TBM, the overlapping integral between the different atomic orbitals are ne-

glected: (ϕ1, ϕ2) ∼ 0, and S is approximated by the identity matrix. For the Hamiltonian
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matrix,

H11 = 〈ϕ1|T + V1 + V2|ϕ1〉 (4.4.53)

= 〈ϕ1|T + V1|ϕ1〉+ 〈ϕ1|V2|ϕ1〉 (4.4.54)

= ε0
1s + ∆ (4.4.55)

= εs (4.4.56)

εs is called the on-site energy. ε0
1s = 〈ϕ1|T + V1|ϕ1〉 is the energy of the 1s state of the

hydrogen atom.

H12 = 〈ϕ1|T + V1 + V2|ϕ2〉 (4.4.57)

= 〈ϕ1|T + V1|ϕ2〉+ 〈ϕ1|V2|ϕ2〉
= ε0

1s(ϕ1, ϕ2) + 〈ϕ1|V2|ϕ2〉
≈ 〈ϕ1|V2|ϕ2〉 = −t < 0

The last equation defines the parameter t. Since ϕ1 and ϕ2 are positive, V2 is negative,

t is positive. The values of εs and t depend on the distance between the two ions. Their

expression can be obtained empirically with input from results of more accurate models.

To summarize, we can write H as

H =

(
εs −t
−t εs

)
(4.4.58)

The eigenvalues for this matrix are

ε+ = εs − t < εs (4.4.59)

ε− = εs + t

with the corresponding eigenvectors:

Ψ+ =
1√
2
(ϕ1 + ϕ2) (4.4.60)

Ψ− =
1√
2
(ϕ1 − ϕ2)

Ψ+ is the bonding state: an electron in this state has a higher probability to be found

between the two nuclei. Ψ− is the anti-bonding state, see Figure 4.7.
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If we take into account the overlap, then Ψ+ and Ψ− are still the eigenvectors, but

the eigenvalues change to:

ε+ =
〈Ψ+|H|Ψ+〉
〈Ψ+|Ψ+〉

= εs + Vssσ − 〈ϕ1|ϕ2〉Vssσ (4.4.61)

ε− =
〈Ψ−|H|Ψ−〉
〈Ψ−|Ψ−〉

= εs − Vssσ − 〈ϕ1|ϕ2〉Vssσ (4.4.62)

where

Vssσ =
H12 − 〈ϕ1|ϕ2〉εs

1− 〈ϕ1|ϕ2〉2
=
〈ϕ1|V2|ϕ2〉

1− 〈ϕ1|ϕ2〉2
< 0 (4.4.63)

The first term at the right hand side of (4.4.61) is the on-site energy. The second term

is negative, corresponding to an attractive interaction. The third term is only important

when there is significant overlap, i.e. at short distance. This is a repulsive term.

Figure 4.7:

Figure 4.8: Bonding (left) and anti-bonding (right) states

Next we consider the problem of a one-dimensional chain of N lithium atoms. We

will use the periodic boundary condition. We denote by xj the position of the j-th

atom, xj = ja where a is the distance between neighboring atoms. The wave function is

represented as a linear combination of the 1s orbitals of the atoms:

Ψ =
N∑

j=1

cjϕj (4.4.64)

where ϕj is the 1s orbital of the j-th atom. Again for simplicity, we will use the orthorg-

onal TBM. For the Hamiltonian matrix we will use the nearest neighbor approximation.
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In this case the Hamiltonian matrix has only two parameters: εs, the on-site energy and

t, the hopping element:

H =





εs −t −t
−t εs −t 0

−t εs ·
· · ·

0 · · ·
· · −t

−t −t εs





(4.4.65)

The eigenvalues and eigenvectors for this matrix can be found by discrete Fourier trans-

form:

εk = εs − 2t cos(ka) (4.4.66)

Ψk =
1√
N

N/2∑

l=−N/2
eikxlϕl (4.4.67)

where l runs over all the integers between −N/2 and N/2, l and k are related to each

other by

k =
2πl

Na
(4.4.68)

k runs over the so-called first Brillouin zone:

−π
a
< k ≤ π

a
(4.4.69)

The ranges of l and k can be shifted by periods of N and 2π/a respectively, corresponding

to a reordering of the eigenvalues and eigenvectors.

Since each state can accommodate two electrons, one with an up spin and one with a

down spin, only half of the states are filled in the ground state of the system. In addition,

when N is large, the energy gap between the occupied states and the unoccupied states

is very small. Therefore the system behaves like a metal.

4.5 Notes

The main objective of this chapter is to give an overview of how the physical models

at the different levels of detail are like and how they are related to each other. These
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physical models are the main ingredients used in multiscale, multi-physics modeling. This

chapter is also very terse but we hope we have conveyed the main ideas.

From a mathematical viewpoint, a huge amount of work has been done on continuum

models such as models in elasticity theory and fluid dynamics. Some work has been done

on kinetic theory. Much less is done on atomistic and electronic structure models. As we

will see below, this relative lack of understanding for atomistic and electronic structure

models is an essential obstacle for building the foundation of multiscale, multi-physics

modeling.

Understanding the connection between the different models is also a very important

component of multiscale modeling. Here we have illustrated how continuum models of

nonlinear elasticity can be linked to atomistic models through the Cauchy-Born rule,

and how hydrodynamic equations of gas dynamics can be derived from the Boltzmann

equation. An important topic that we did not discuss is the hydrodynamic limit of

interacting particle systems. We refer the interested reader to [25, 37].
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Chapter 5

Examples of Multi-physics Models

The next several chapters will be devoted to numerical algorithms for multiscale

problems. However, before launching into a discussion about numerics, we would like

to make the point that developing better physical models based on multiscale, multi-

physics considerations is as least as important, if not more. After all, the ultimate goal

of modeling is to get a better understanding of the physical problem and obtaining better

models is a very important way of getting better understanding. In addition, there is a

very close relation between multiscale algorithms and multiscale models.

Speaking in broad terms, there has been a long history of multiscale, multi-physics

models. One class of such models is associated with the resolution of singularities (shocks,

interfaces and vortices) by introducing additional regularizing terms that often represent

more detailed physics. In Ginzburg-Landau theory, for example, we add gradient terms

to the Landau expansion of the free energy to account for the contribution due to the

spatial variation of the order parameter. This allows us to resolve the internal structure

of the interface between different phases or the internal structure of the vortices, both

are at the micro-scale. Adding viscous and heat conduction terms to equations of gas

dynamics has a similar effect, namely, it allows us to resolve the internal structure of the

shocks.

Another class of examples are those that explicitly involve the coupling of models

at different levels of physics. Car-Parrinello molecular dynamics or first-principle-based

molecular dynamics is one such example (see the next chapter). Other examples include

coupled Brownian dynamics and hydrodynamics models for polymer fluids, coupled atom-

istic and continuum models for solids, etc.

213
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We will discuss three examples in this chapter. In the first example, we describe how

one may use kinetic theory, or Brownian dynamics to supply the constitutive relation

for the stress in polymer fluids. The final result is a coupled Brownian dynamics - hy-

drodynamics model. In the second example, we describe how one may derive continuum

nonlinear elasticity models for nano-structures using atomistic models. The last exam-

ple is the moving contact line problem where better boundary conditions are needed at

the contact line in order to resolve the singularity that arises in the classical continuum

theory.

When water is poured in or drained out of a cup, the three different phases, the

air, the water and the cup, intersect at a line called the contact line. The dynamics of

the contact line is often regarded as being one of the few remaining unsolved problems

in classical fluid dynamics. It is well-known that if we use the classical Navier-Stokes

equation with no-slip boundary condition to describe the problem, we obtain a singularity

at the moving contact line with an infinite rate of energy dissipation [21]. Even though

this singularity is unavoidable at the macroscopic scale, many proposals have been made

to remove this singularity at smaller scales, by changing either the governing PDE or the

boundary condition. While these proposals do succeed in removing the singularity, it is

far from being clear whether they reflect the actual physics going on near the contact

line. One can also use molecular dynamics, or coupled atomistic-continuum models such

as the oned discussed in Chapter 7. These approaches are very useful for discovering new

microscopic physical phenomena, such as the existence of the slip region, but they are

inconvenient as analytical tools. We will describe an approach that has been advocated

in [35] in which thermodynamic considerations are used to suggest the form of the right

continuum model, e.g. the form of the boundary condition, and microscopic simulations

are then used to measure the detailed functional dependence of the constitutive relations.

This kind of multiscale modeling should be useful for many other problems of this type,

such as crack propagation, triple junction dynamics, etc.
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5.1 Brownian dynamics models of polymer fluids

As we have seen before, the hydyrodynamic equations for incompressible fluids can

always be written in the form:

ρ0(∂tu + (u · ∇)u) +∇p = ∇ · τ,
∇ · u = 0,

(5.1.1)

where u is the velocity field, p is the pressure, and τ is the viscous stress. Consider

polymers in a solvent. Then τ can be written as τ = τs + τp where τs is the stress due

to the solvent, τp is the polymer contribution to the stress. In general we can model τs

by a simple linear constitutive relation τs = ηsD,D = 1/2(∇u +∇uT ), where ηs is the

viscosity of the solvent. The difficulty is in the modeling of τp.

The traditional approach is to model τp via some empirical constitutive relations

[4]. These constitutive relations are extensions of the constitutive relation for Newtonian

fluids discussed in the previous chapter. Examples of such empirical constitutive relations

include:

1. Generalized Newtonian models:

τp = η(D)D (5.1.2)

i.e. the viscosity coefficient may depend on the strain rate.

2. Maxwell models (for visco-elastic fluids):

τp(x, t) =

∫ t

−∞

ηs
λ

exp

(
−t− s

λ

)
D(x, s)ds, (5.1.3)

where ηs/λ exp(−(t − s)/λ) is the relaxation modulus representing the memory

effect in the visco-elastic fluid.

3. Oldroyd models:

λ
∇
τ p +τp + f(τp,D) = ηD, (5.1.4)

where
∇
τp=

∂τp
∂t

+ (u · ∇)τp −∇u · τp − τp · (∇u)T (5.1.5)

is the upper convective derivative [4], λ is a relaxation time parameter. Well-known

examples include the Oldroyd-B model for which f(τp,D) = 0, and the Johnson-

Segalman model for which f(τp,D) = αλ(τp ·D + D · τp).
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The other extreme is of course the full atomistic model. This is possible but at the

present time, it is not very productive if one wants to study rheological behavior. A more

efficient approach is to coarse-grain the atomistic model, for example, by putting atoms

into groups to form beads. Typical coarse-grained models include:

1. beads and spring models;

2. dumbbell models;

3. rigid-rod models.

Such coarse-grained models have been very useful [3, 42].

In general, the inertial force for the polymer is much smaller than the friction force

against the solvent. Therefore, it is a common practice to neglect the inertial effects and

consider the so-called Brownian dynamics models.

Flexible Rigid Semiflexible

Random flight

Additional angle potential

Figure 5.1: Illustration of flexible, semi-flexible and rigid polymers (courtesy of Tiejun

Li).

There are two important length scales in these systems. One is the bending persistence

length of a polymer lp, which is defined to be the correlation length for the tangent

vectors at different positions along the polymer. The other is the length of the polymer,

l. According to the relative size of l and lp, polymers are classified as

flexible semi-flexible rigid

l≫ lp l ∼ O(lp) l≪ lp
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We will consider the dumbbell model in the dilute limit of polymer solutions and we

will neglect polymer-polymer interaction. A dumbbell consists of two-beads connected

by a spring. For simplicity, we will assume that the two beads have the same mass and

friction coefficient, denoted by m and ζ respectively. The forces acting on the dumbbells

are:

1. Inertial force mr̈i, i = 1, 2, where the dot denotes time derivative. As mentioned

above, this is neglected in general.

2. Frictional force −ζ
(
ṙi − u(ri)

)
, i = 1, 2.

3. Spring force Fi = −∇ri
Ψ(r1, r2), i = 1, 2, where Ψ is the potential energy for the

spring. The choice of the potential Ψ will be discussed later. In general, we should

have F1 + F2 = 0.

4. Brownian force ηi = σẇi, i = 1, 2, where ẇ1 and ẇ2 are independent white noises,

σ =
√

2kBTζ by the fluctuation-dissipation theorem.

Force balance gives:

ζ(ṙ1 − u(r1)) = F1 + σẇ1, (5.1.6)

ζ(ṙ2 − u(r2)) = F2 + σẇ2 (5.1.7)

where σ =
√

2kBTζ. If we add and subtract the two equations, we obtain the equations

for the center of resistance rc = 1
2
(r1 + r2) and the conformation vector Q = r2 − r1;

ṙc = u(rc) +

√
2kBT

ζ

ẇ1 + ẇ2

2
(5.1.8)

Q̇ = ∇u(rc)Q−
2

ζ
F1 +

√
2kBT

ζ
(ẇ2 − ẇ1). (5.1.9)

Here we have made the approximation: 1
2
(u(r1) + u(r2)) ∼ u(rc) and u(r2) − u(r1) ∼

∇u(rc)Q. Since 1√
2
(w2 − w1) and 1√

2
(w2 + w1) are independent standard Wiener pro-

cesses, we canb rewrite the two equations above as

ṙc = u(rc) +

√
kBT

ζ
ẇc, (5.1.10)

Q̇ = ∇u(rc)Q−
2

ζ
F(Q) +

√
4kBT

ζ
ẇa. (5.1.11)
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where ẇc and ẇa are standard independent white noises.

We now turn to the potential of the spring force. Two most commonly used models

are:

1. Hookean spring: The spring force is HQ and the potential is given by 1
2
H|Q|2 .

Here H is the spring constant.

2. FENE (Finitely Extensible Nonlinear Elastic) spring: The spring force is HQ

1−(|Q|/Q0)2

and the potential is given by −1
2
H|Q|20 ln

(
1− (|Q|/Q0)

2
)
. Here Q0 is the maximal

extension of the FENE spring.

The probability density function (pdf) ψ(x,Q, t) of the dumbbells satisfies the Fokker-

Planck equation, also known as the Smoluchowski equation [18, 28, 29]

∂tψ +∇ · (uψ) +∇Q ·
(
(∇u)Q− 2

ζ
F)ψ

)
=

2kBT

ζ
∆Qψ +

kBT

2ζ
∆ψ (5.1.12)

So far we have discussed how to model the dynamics of the dumbbells in the solvent.

Next, we will discuss how the dumbbells influence the dynamics of the solvent. To this

end, we need an expression for the polymer component of the stress, τp. Imagine a plane

immersed inside the polymer fluid. There are two kinds of contributions that we need to

consider [3]:

1. The spring force due to the dumbbells that straddle the plane. This part will be

denoted as τ
(c)
p .

2. Momentum transfer caused by the crossing of the dumbbells through the plane.

This part will be denoted as τ
(b)
p .

We first discuss τ
(c)
p . Denote by n the number density of the polymer. Let us consider

a cube of volume 1/n. Given a dumbbell with orientation Q in this region, the probability

that it will cut the shaded plane is (Q · n)/(1/n)1/3, where n is the unit normal vector

of the plane. The force in the spring is F(Q). Averaging over Q, we obtain
∫

R3

Q · n
(1/n)1/3

F(Q)ψ(x,Q, t)dQ. (5.1.13)

The area of the plane within the cube is n−2/3. Therefore the force per area is n〈(Q ·
n)F(Q)〉 = n · τ (c)

p . Hence this part of the contribution to the stress is

τ (c)
p = n〈Q⊗ F(Q)〉, (5.1.14)
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Figure 5.2: Illustration of the derivation of the formula

for the stress τ
(c)
p – contributions coming from the con-

nectors Q that intersect with the control surface (cour-

tesy of Tiejun Li).

where 〈·〉 denotes ensemble averaging in Q space.

Next, we turn to τ
(b)
p . Consider a moving plane with velocity u. Each dumbbell has

two beads, which we label as 1 and 2 respectively. The number of bead 1 with velocity ṙ1

that crosses the surface with area S per unit time will be −n(ṙ1 − u) · nS. The amount

of momentum transported as a result is

−n((ṙ1 − u) · nS)m(ṙ1 − u). (5.1.15)

There is a similar expression for bead 2. The total momentum transported will be

−
∫ ∫ 2∑

i=1

n((ṙi − u) · nS)m(ṙi − u)Ψ(ṙ1, ṙ2)dṙ1dṙ2. (5.1.16)

Assuming a Maxwellian distribution for the velocity of the beads Ψ(ṙ1, ṙ2):

Ψ(ṙ1, ṙ2) =
1

Z
exp

(
−
(
m(ṙ1 − u)2 +m(ṙ2 − u)2

)
/2kBT

)
(5.1.17)

where Z =
∫ ∫

exp(−(m(ṙ1 − u)2 +m(ṙ2 − u)2)/2kBT )dṙ1dṙ2, we can easily show that

the mean momentum transported is equal to −2nkBT I · nS = Sn · τ (b)
p . Hence

τ (b)
p = −2nkBT I (5.1.18)
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Figure 5.3: Illustration of the derivation of the formula

for the stress τ
(b)
p – contributions from the transportation

of the momentum by the dumbbells (courtesy of Tiejun

Li).

Out of this, −nkBT I is the contribution to the pressure. The remaining part gives

τ (b)
p = −nkBT I. (5.1.19)

Combining (5.1.14) and (5.1.19), we obtain Kramers’ expression for the polymeric

stress in the dumbbell model:

τp = −nkBT I + n〈F(Q)⊗Q〉. (5.1.20)

It is a standard practice to drop the term −nkBT I since it can be lumped into the

pressure.

To non-dimensionalize the model, we use:

x→ L0x,Q→ l0Q,u→ U0u, t→ t, p→ P0p (5.1.21)

where L0 and U0 are typical length and velocity scales for the fluid flow respectively, and

l0 =

√
kBT

H
, T0 = L0/U0, P0 = ρ0U

2
0 (5.1.22)
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In addition, define

De =
Tr
T0

, Re =
ρ0U0L0

η
, ε =

l0
L0

, γ =
ηs
η
, (5.1.23)

where Tr = ζ/(4H) is the relaxation time scale of the spring, ρ0 is the density and η

is the total viscosity of the fluid. De is called the Deborah number. Re and γ are the

Reynolds number and viscosity ratio, respectively. A standard non-dimensionalization

procedure gives:

∂tu + (u · ∇)u +∇p =
γ

Re
∆u +

1− γ
ReDe

∇ · τp, (5.1.24)

∇ · u = 0, (5.1.25)

τp = 〈F(Q)⊗Q〉, (5.1.26)

dx

dt
= u(x) +

ε

2
√
De

Ẇ1(t), (5.1.27)

dQ

dt
= ∇u ·Q− 1

2De
F(Q) +

1√
De

Ẇ2(t). (5.1.28)

Here the ensemble average in (5.1.26) is defined with respect to the realizations of the

white noises in (5.1.27) and (5.1.28). To simulate this model numerically, one needs to

start with an ensemble of Brownian particles, whose dynamics are governed by (5.1.27)

and (5.1.28). One obtains a set of quantities {(xj,Qj)} for the ensemble. The polymer

stress τp can be computed by averaging the quantity in (5.1.26). Since ε in general is

very small, it is customary to neglect the Brownian force in (5.1.27). A more precise

derivation of these equations can be found in [2].

(5.1.24) - (5.1.28) is a model for the dynamics of dilute polymer solution. One can see

that the polymers are modeled by non-interacting Brownian particles. Their influence

to each other is only felt through the flow. In addition, particles initiated at the same

location will always stay at the same location. In this case, instead of tracking the position

and conformation (x,Q) of each particle, one can model the stochastic dynamics of the

conformation by the dynamics of a conformation field Q(x, t): Q(x, t) is the conformation

of a Brownian particle at location x and time t [41]. Combining (5.1.27) and (5.1.28)

gives [41]

∂tQ + (u · ∇)Q = ∇u ·Q− 1

2De
F(Q) +

1√
De

Ẇ(t). (5.1.29)

Note that in this model, the noise term is independent of the space variable x. The



222 CHAPTER 5. EXAMPLES OF MULTI-PHYSICS MODELS

corresponding Smoluchowski equation is:

∂tψ +∇ · (uψ) +∇Q ·
(
(∇u ·Q− 1

2De
F(Q))ψ

)
=

1

2De
∆Qψ. (5.1.30)

(5.1.30) can be regarded as the Fokker-Planck equation for the Brownian configuration

fields. It can also be regarded as the kinetic equation for the Brownian particles in the

(x,Q) space. The dependence on velocity or momentum variables is absent, since we

have assumed that it is Maxwellian (see (5.1.17)).

The model we just arrived at is an example of the coupled macro-micro models: The

macroscale Navier-Stokes-like system (5.1.24) - (5.1.25) for the velocity field is coupled

with the microscale Brownian dynamics model (5.1.27)-(5.1.28) for the conformation

dynamics of the polymers.

5.2 Extensions of the Cauchy-Born rule

In Section 4.2, we discussed how one can derive continuum nonlinear elasticity models

from the atomistic models using the Cauchy-Born rule. The discussion was limited to

bulk crystals whose elastic energy takes the form:

E({u}) =

∫

Ω

W (∇u)dx (5.2.1)

In this section, we will discuss the extension to situations when higher order effects, such

as the effects of strain gradients, are important

E({u}) =

∫

Ω

W (∇u,∇2u, · · · )dx. (5.2.2)

This is the case when the crystal is small, or at least one of the dimensions of the crystal

is small, as is the case for rods, sheets, or thin films.

The essence of the Cauchy-Born rule is that locally, one can approximate the dis-

placement field by a homogeneous deformation, i.e. linear approximation:

u(x) ≈ ũi(x) = u(xi) + (∇u)(xi)(x− xi), ỹj = xj + ũi(xj) (5.2.3)

for each xi, where xj is close to xi (say in the interaction range of xi. This expression is

then used in the atomistic energy to give a continuum energy density that depends only

on ∇u.
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5.2.1 High order, exponential and local Cauchy-Born rules

(5.2.3) uses only the leading order approximation in the Taylor expansion. A straight-

forward extension is to use higher order approximation:

u(x) ≈ ũi(x) =u(xi) + (∇u)(xi)(x− xi) (5.2.4)

+
1

2
(∇2u)(xi) : (x− xi)⊗ (x− xi) (5.2.5)

If we proceed in the same way as before with this new approximation, we obtain a stored

energy density that depends on both ∇u and ∇2u [7, 22]:

W = WHCB(∇u(x),∇2u(x)) (5.2.6)

This is an example of the high order Cauchy-Born rule.

When curvature effects are important, as is the case for rods, thin films and sheets,

these Cauchy-Born rules should be modified accordingly. One approach is to use the ex-

ponential map which maps curved objects, such as surfaces, to their tangent spaces. The

other approach is to make use of the local Taylor expansion. The resulting Cauchy-Born

approximations are called the exponential Cauchy-Born rule [1] and the local Cauchy-

Born rule [46] respectively. As before, their main ingredient is a kinematic approximation

to the positions of the atoms in the neighborhood of a given atom. Instead of describing

the abstract procedure, we will illustrate these ideas using some simple examples.

5.2.2 An example of a one-dimensional chain

Consider a one-dimensional chain of atoms on the plane. Before deformation, the

atoms are on a straight line, with positions {xj}, xj = ja. To be specific, we will assume

that the energy of the system takes the form:

V =
∑

i,j,k

V (yi,yj,yk) =
∑

i

Vi (5.2.7)

where

Vi =
∑

j,k

V (yi,yj,yk) (5.2.8)

We will first discuss the exponential Cauchy-Born rule. Assume that the chain is

deformed to a smooth curve on the plane. Assume that the local deformation gradient
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(here the stretching or compression ratio) at xi is F and the curvature after deformation

is κ. In order to find the approximate position of neighboring atoms after the chain is

deformed, we consider the effects of stretching /compression and curvature separately.

After stretching /compression, the atom at xj is mapped to

ỹj = xi + (1 + F )(xj − xi) (5.2.9)

On the other hand, curvature alone will map xj to

ỹj =

(
xi + sin(κ(xj − xi))/κ
(1− cos(κ(xj − xi)))/κ

)
,

The composition of the two maps gives us:

ỹj =

(
xi + sin((1 + F )κ(xj − xi))/κ
(1− cos((1 + F )κ(xj − xi)))/κ

)
. (5.2.10)

Substituting into (5.2.7), we obtain the energy density as a function of F and κ:

W (F, κ)(xi) =
1

a

∑

j,k

V (ỹi, ỹj, ỹk) (5.2.11)

where ỹi = (xi, 0)T , ỹj and ỹk are given by (5.2.10).

Next we consider the local Cauchy-Born rule. The displacement is now specified by

the vector field u = (u(x), v(x))T . At xi, we approximate the deformed position of the

neighboring atoms by:

ỹj = (xi, 0)T + u(xi) +
du

dx
(xi)(xj − xi) +

1

2

d2u

dx2
(xi)(xj − xi)2. (5.2.12)

Substituting into (5.2.7), we obtain the energy density as a function of du
dx

(xi) and d2u
dx2 (xi)

W

(
du

dx
(xi),

d2u

dx2
(xi)

)
=

1

a

∑

j,k

V (ỹi, ỹj, ỹk) (5.2.13)

where again ỹi = (xi, 0)T , ỹj and ỹk are given by (5.2.12).

We can relate these two results using the simple relation:

F = |e1 +
du

dx
| − 1, (5.2.14)

κ =

∣∣∣(e1 + du
dx

)× d2u
dx2

∣∣∣
∣∣e1 + du

dx

∣∣3 (5.2.15)

where e1 = (1, 0)T .
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5.2.3 Sheets and nanotubes

Sheets are two-dimensional surfaces. Examples of sheet-like structures include the

grapheen sheet and the carbon nanotube. These structures can sustain very large elastic

deformation. To model such large deformation, we have to have an accurate nonlinear

elasticity model. Naturally, one way of getting such a model is to derive it from an

accurate atomistic model.

For simplicity, we will assume that the reference configuration is a flat sheet that

occupies the x1 − x2 plane. After deformation, atoms on the sheet are mapped to:



x1

x2

0



→




y1

y2

y3



 =




x1

x2

0



+




u1(x1, x2)

u2(x1, x2)

u3(x1, x2)



 . (5.2.16)

For nanotubes, the reference configuration should be a cylinder. However, this does not

change much the discussion that follows.

As before, we start with an accurate atomistic model, which for simplicity will be

expressed as a three-body potential. We will look for a set of kinematic approximations

that will convert the atomistic model to a continuum model.

The exponential Cauchy-Born rule

As before, to apply the exponential Cauchy-Born rule [1], we proceed in two steps:

1. Step 1: Deforming the tangent plane.

2. Step 2: Using the exponential map to take into account the curvature effect.

In practice, the exponential map is approximated by a combination of two consecutive

deformations along the two principal curvature directions. The two principal curvatures

κ1, κ2 can be calculated by diagonalizing the curvature tensor κ. Without loss of gener-

ality, we can assume that κ takes a simple diagonal form κ = diag{κ1, κ2}. In this way,

the kinematic approximation can be expressed using a three-step procedure:

1. Deform the tangent plane using the 2D deformation gradient tensor F = ∇u as in

the standard Cauchy-Born rule

w =

(
w1

w2

)
= (I + F) · x = (I + F) ·

(
x1

x2

)
(5.2.17)
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2. Roll the plane into a cylinder with curvature κ1 along the first principal curvature

direction to obtain the first curvature correction

∆w1 =




sin(κ1w1)/κ1 − w1

0

(1− cos(κ1w1))/κ1





3. Roll the plane into a cylinder with curvature κ2 along the second principal curvature

direction to obtain the second curvature correction

∆w2 =




0

sin(κ2w2)/κ2 − w2

(1− cos(κ2w2))/κ2





The deformed position of y is then given by:

y = w + ∆w1 + ∆w2

=




w1η(κ1w1)

w2η(κ2w2)

κ1w
2
1η

2(κ1w1/2)/2 + κ2w
2
2η

2(κ2w2/2)/2



 (5.2.18)

where η(x) = sin(x)/x, the two dimensional vector w = (w1, w2) is identified with the

three dimensional vector w = (w1, w2, 0).

The exponential Cauchy-Born rule has been used extensively by Arroyo and Be-

lytschko to study the mechanical deformation of both single- and multi-walled nanotubes

(see [1]). An example of their results is shown in Figure 5.2.3.

The local Cauchy-Born rule

At each point xi = (xi,1, xi,2) on the sheet, we approximate the displaced position of
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neighboring atoms via Taylor expansion:




yj,1

yj,2

yj,3



 =




xj,1

xj,2

0



+




u1(xj,1, xj,2)

u2(xj,1, xj,2)

u3(xj,1, xj,2)



 ≈




ỹj,1

ỹj,2

ỹj,3





= xi + u(xi,1, xi,2) +
∂u(xi,1, xi,2)

∂x1

(xj,1 − xi,1)

+
∂u(xi,1, xi,2)

∂x2

(xj,2 − xi,2) +
1

2

∂2u(xi,1, xi,2)

∂x2
1

(xj,1 − xi,1)2

+
∂2u(xi,1, xi,2)

∂x1∂x2

(xj,1 − xi,1)(xj,2 − xi,2)

+
1

2

∂2u(xi,1, xi,2)

∂x2
2

(xj,2 − xi,2)2 (5.2.19)

where u = (u1, u2, u3)
T is the displacement field, xi = (xi,1, xi,2) is the reference position

of the i-th atom. Substituting this into the atomistic model, we obtain the stored energy

density at xi:

WLCB(∇u,∇2u) =
1

D0

∑

j,k

V (ỹi, ỹj, ỹk) (5.2.20)

where D0 is the area of a unit cell, ỹi = (xi,1, xi,2, 0)T .

Note that this procedure can be used for both simple and complex lattices.

As an example, let us consider the grapheen sheet which is a two dimensional complex

lattice obtained from the union of two triangular lattices. In equilibrium, one set of basis

vectors for the triangular lattice is given by:

A1 = a(1, 0), A2 = a

(
1

2
,

√
3

2

)
(5.2.21)

where a is the lattice constant, the shift vector is:

p = a

(
1

2
,

√
3

6

)
. (5.2.22)

This example is treated in [1] and [46] using the Tersoff potential as the atomistic model.

Figure 5.2.3 shows the results of a twisted nanotube, modeled using the atomistic model

as well as the continuum model obtained using the exponential Cauchy-Born rule. Figure

5.2.3 shows the results of the nanotube under compression, modeled using the atomistic
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model and the continuum model obtained using the local Cauchy-Born rule. Very good

agreement is found in both cases. This demonstrates that mechanical deformation of

nanotubes can be very well described by continuum theories in this regime. The value of

such a viewpoint has also been demonstrated using much simplified continuum models

[45].

60

220

300
o

o

o

Figure 5.4: Comparison of the results of the MD simulation and the continuum model for

twisted nano-tube using the exponential Cauchy-Born rule. Dots represent the results of

the MD simulation. The grey background is computed from the exponential Cauchy-Born

rule ([1], courtesy of Ted Belytschko).

5.3 The moving contact line problem

When water or other liquid drops are placed on a solid surface, a contact line forms

at the intersection between the liquid, the air and the solid. More generally, the same

situation arises when considering the dynamics of immiscible fluids in a channel [12, 14],

as in the case of secondary oil recovery when oil is drained out of the pores y some other

liquid. Like the problem of crack propagation, contact line dynamics has often been used

as an example to illustrate the need for formulating coupled continuum-atomistic models,

since it has been realized for some time that classical continuum models are inadequate

near the contact line and atomistic models should give a more accurate representation [20,

33]. While developing coupled atomistic-continuum models is certainly a very important

avenue of research, we will illustrate in this section that multiscale ideas can also be used

in a different way, to help formulating better continuum models.
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Figure 5.5: Comparison of the results of the MD simulation (left) and the continuum

model (right) for compressed nano-tube using the local Cauchy-Born rule (from Yang

and E [46]).

5.3.1 Classical continuum theory

The setup is shown in Figure 5.3. The three phases are separated by three interfaces

Γ1,Γ2 and Γ3 respectively. We denote the surface tension coefficient of Γi by γi, i = 1, 2, 3.

The equilibrium problem and the static configuration of the contact line was under-

stood a long time ago in the work of Laplace, Young and Gauss [11]. At equilibrium, the

total energy of the system is the sum of the interfacial energies

E =
∑

i=1,2,3

γi |Γi| (5.3.1)

We will only consider the case of partial wetting, i.e.

|γ1 − γ2| < γ3 (5.3.2)

In this case, the Euler-Lagrange equation of the functional (5.3.1) is given by:

γ1 − γ2 + γ3 cos θ0 = 0. (5.3.3)
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ΓxCLΓ

Γ

Ω
Ω

1
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3

12

Θ0

Figure 5.6: A two-phase (in Ω1 and Ω2 respectively) fluid on the substrate. xCL is the

contact line (here a point) and Γi (i = 1, 2, 3) are the interfaces. θ0 is the contact angle

(courtesy of Weiqing Ren).

This is Young’s relation for the case of partial wetting, and it defines the static contact

angle θ0.

Now let us turn to the dynamic problem. To be specific, let us consider the situation

of two immiscible fluids in a channel separated by an interface. To model the dynamics

of such a system, the most obvious approach is to use the Navier-Stokes equation in the

fluid phases:

ρi (∂tu + u · ∇u) = −∇p+ µi∆u, in Ωi

∇ · u = 0, (5.3.4)

together with the no-slip boundary condition on the solid surface:

u = uw. (5.3.5)

Here ρi and µi, i = 1, 2 are the density and viscosity of the two fluid phases respectively,

uw is the velocity of the wall. At the fluid-fluid interface, we use the standard Laplace-

Young interfacial condition:

γ3κ = n · [τ ] · n, t · [τ ] · n = 0 (5.3.6)

where t and n denote the unit tangent and normal vectors to the interface respectively, τ

denotes the total stress (viscous stress and pressure) in the fluids, κ is the mean curvature

of the fluid-fluid interface, [·] denotes the jump of the quantity inside the bracket across

the interface.
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It was discovered long ago that in the case of partial wetting, this model predicts a

singularity at the contact line [21], known as the Huh-Scriven singularity. This is most

clearly seen in two dimension. Let (r, φ) be the polar coordinates centered at the contact

line. Then a simple Taylor expansion at the contact line gives, for r ≪ 1,

ψ ∼ r ((Cφ+D) cosφ+ (Eφ+ F ) sinφ) (5.3.7)

for the streamfunction ψ, where C,D,E, F are some constants. The velocity is given in

terms of the stream function via u = (−∂yψ, ∂xψ). Therefore we obtain

∇u ∼ 1

r
,

∫
|∇u|2dx = +∞ (5.3.8)

For this reason, questions have been raised on the validity of the conventional hydrody-

namics formalism, the Navier-Stokes equation with no-slip boundary condition, for this

problem. Many proposals have been made to remove this singularity (for a review, see

[33]). While they have all succeeded in doing so, it is not clear whether any of them has

a solid physical foundation.

Detailed molecular dynamics studies have revealed the fact that near the contact line,

there is a slip region in which the no-slip boundary condition is violated [24, 38]. The

existence of such a slip region is not surprising. In fact in a Couette flow setting (i.e.

channel flow driven by walls moving in the opposite direction), if the system reaches a

steady state, then the contact line has to experience complete slip, i.e. the relative slip

velocity between the fluids and the solid surface should be equal to the velocity of the

solid surface. What is more important is that these molecular dynamics studies have

opened up the door to a detailed analysis of what is going on near the contact line at the

atomistic level.

Even though molecular dynamics is able to offer much needed details about the con-

tact line problem, it is not very attractive as a theoretical tool, compared with the

continuum models. It is much harder for us to think about the behavior of the individual

molecules instead of the continuum fields. Therefore, from a theoretical viewpoint, it is

still of interest to develop better continuum models. We will demonstrate that multiscale

ideas are indeed quite useful in this respect.
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5.3.2 Improved continuum models

The strategy that we will discuss consists of two steps. The first step is to find

the simplest form of the constitutive relations including the boundary conditions, from

thermodynamic considerations. The second step is to measure the detailed functional

dependence of the constitutive relation using molecular dynamics. Such a strategy was

pursued in [35].

There are three constitutive relations that we need:

1. The constitutive relation in the bulk, which describes the response of the fluid in

the bulk. It has been argued that even for simple fluids, the linear constitutive

relation that is usually quite accurate for bulk fluids, may not be accurate enough

near the contact line, due to the presence of large velocity gradients there [38, 40].

The careful molecular dynamics studies carried out by Qian et al. do not support

this argument [31]. Instead, it is found that, at least for simple fluids, the linear

constitutive relation holds quite well right around the contact line. In other words,

even though the velocity gradient is quite large, it is not large enough to induce

significant nonlinear effects in the bulk response. We will assume for simplicity that

linear constitutive relations are sufficient in the bulk.

2. The constitutive relation at the fluid-solid interface. It has been observed that the

standard no-slip boundary condition no longer holds in a region near the contact

line [24, 25, 31, 32, 33, 38, 40]. This region is the slip region. Linear friction law at

the surface gives rise to the Navier boundary condition. However, nonlinear effects

might be important there.

3. The constitutive relation at the contact line, which determines the relationship

between the contact angle and the contact line velocity. One obvious possibility

is to set the dynamic contact angle to be the same as the equilibrium contact

angle. However, this effectively suppresses energy dissipation at the contact line.

Dissipative processes at the contact line can be quite important [5]. Therefore in

general, one has to allow the deviation of the dynamic contact from its equilibrium

value.

To derive the needed constitutive relation, we follow the principles discussed in Chap-

ter 4 and ask the following question: What are the simplest forms of boundary conditions
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that are consistent with the second law of thermodynamics?

For simplicity, we will focus on the case of two-dimensional flows. The total (free)-

energy of the system is given by

E =
∑

i=1,2

1

2

∫

Ωi

ρi |u|2 dx +
∑

i=1,2,3

γi |Γi| . (5.3.9)

A straightforward calculation gives

dE

dt
= −

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx +
∑

i=1,2

∫

Γi

u · τ · n dS + γ3 (cos θd − cos θ0)uCL, (5.3.10)

where θd is the dynamic contact angle, θ0 is the static contact angle defined in (5.3.3),

uCL is the velocity of the contact line, n is the unit normal vector of the solid surface.

Let us and τs be the slip velocity and the shear stress respectively,

us = (u− uw) · t, τs = t · τ · n. (5.3.11)

Let

τY = γ3 (cos θd − cos θ0) . (5.3.12)

τY is the so-called unbalanced or uncompensated Young’s stress [5, 12, 32, 33]. It represents

the force on the contact line that arises from the deviation of the fluid interface from its

equilibrium configuration. With these notations, we can rewrite (5.3.10) as

dE

dt
= −

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx +
∑

i=1,2

∫

Γi

usτsdS + uCLτY (5.3.13)

According to the second law of thermodynamics, the rate of energy dissipation dE/dt

is necessarily non-positive for arbitrary realizations of u. It follows easily that each of

the three contributions has to be non-positive. We now examine the implication of this

basic requirement and the constraints it places on the form of the constitutive relations.

First, we look at the fluid-solid interfaces Γ1 and Γ2. There we must have

u · n = 0 (5.3.14)

This implies that the shear stress should depend only on us. Assuming that this depen-

dence is local, then τs is a function of the local values of us and its derivatives. To the

lowest order, we simply have:

τs = f(us) (5.3.15)
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Since
∫

Γi
usτs dS 6 0 (i = 1, 2) for an arbitrary realization of u, the function f must

satisfy wf(w) ≤ 0

Next, we turn to the contact line. From thermodynamic consideration, τY is neces-

sarily a functional of the contact line velocity uCL. The simplest assumption is that it is

a local function of uCL:

τY = fCL(uCL) (5.3.16)

The function fCL has to satisfy ufCL(u) ≤ 0.

The Navier-Stokes equation together with the boundary conditions (5.3.6), (5.3.14),

(5.3.15) and (5.3.16) constitute our continuum model for the moving contact line problem.

The constitutive relations in (5.3.15) and (5.3.16) are not yet fully specified. The exact

functional dependence of f and fCL has to be obtained through other means. For this

continuum model, the energy dissipation relation has a very clean form:

dE

dt
= −

∑

i=1,2

∫

Ωi

ηi |∇u|2 dx +
∑

i=1,2

∫

Γi

usf(us) dS + uCLfCL(uCL) (5.3.17)

The three terms at the right hand side represent the energy dissipated in the bulk fluids,

the solid surface and the contact line, respectively.

So far, we have followed the standard procedure in generalized thermodynamics or

non-equilibrium thermodynamics [13, 30]. At this point, we have two options. One is to

continue following the standard procedure and write down linear relations between the

generalized fluxes (here the us and uCL) and the generalized forces (here the τs and τCL).

The other is to use microscopic models to measure f and fCL directly.

If we continue to follow the standard procedure in non-equilibrium thermodynamics,

then the next step is to propose linear constitutive relations of the form (see Section 4.1):

τs = −βius, i = 1, 2 (5.3.18)

and

γ3 (cos θd − cos θ0) = −βCLuCL (5.3.19)

βi, i = 1, 2 and βCL are the friction coefficient at the solid surface for the two fluid phases

and the contact line, respectively. Equation (5.3.18) is the well-known Navier boundary

condition. Putting things together, we obtain the following continuum model for the

moving contact line problem:
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1. In the bulk, we have





ρi (∂tu + (u · ∇)u) = −∇p+ µi∇2u + f

∇ · u = 0
(5.3.20)

2. The fluid interface Γ is advected by the velocity field, and

n · [τ ]n = γ3κ

t · [τ ]n = 0
(5.3.21)

where τ = −pI + µ(∇u +∇uT ) is the stress tensor; κ is the mean curvature of the

interface.

3. On the solid surface, we have

βius = t · τn, u · n = 0 (5.3.22)

4. At the contact line, we have

βCLuCL = −γ3 (cos θd − cos θ0) . (5.3.23)

This is the model put forward by Ren and E [33].

Some remarks about the physical significance of the parameter βCL are in order:

1. It is a three-phase friction coefficient.

2. It has the dimension of viscosity. This should be contrasted to βi which has

the dimension of viscosity/length and this length has to be a microscopic length.

Conequently, the Navier slip boundary condition is only significant in a slip region

of microscopic size. In comparison, βCL should be of macroscopic significance.

3. It also arises in the sharp interface limit of the diffusive interface model proposed

in [23, 31, 32], as was demonstrated in [44].

One can write (5.3.23) as

cos θd − cos θ0 = −(βCL/γ3)uCL (5.3.24)
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This can be viewed as a kinetic correction to the condition

θd = θ0 (5.3.25)

(5.3.25) states that the dynamic contact angle is equal to the equilibrium contact angle.

This is the analog of the Gibbs-Thomson condition in the theory of crystal growth [19]. In

this regard, (5.3.24) is the analog of the corrected Gibbs-Thomson relation with kinetic

effects taken into account [19].

It is interesting to note that if the condition (5.3.25) is used together with the Navier

boundary condition, then the Huh-Scriven singularity is removed, but there is still a weak

singularity [37]. Naturally one expects that if we use (5.3.24) instead of (5.3.25), then

this weak singularity is also removed. This is still an open question.

Since any function is approximately linear in a small enough interval, these linear

constitutive relations will be adequate in appropriate regimes. What is important is how

big these regimes are and what happens outside of them. To answer these questions, we

resort to microscopic models.

5.3.3 Measuring the boundary conditions using molecular dy-

namics

Thermodynamic consideration tells us what the boundary conditions should depend

on, but not the detailed functional dependence. This latter information should be ob-

tained from experiments, or, as we explain now, numerical experiments using microscopic

simulations, such as molecular dynamics.

The results of the previous section tell us that f and fCL depend on the slip velocity.

Therefore, we need to set up an MD system such that, at the statistical steady state, it

has a constant slip velocity. This can be done using a MD system in the Couette flow

geometry, shown in Figure 5.7, where the fluid particles are confined between two solid

walls, and the walls move in opposite directions at a constant speed U [24, 31, 33, 38, 39].

A standard way of modeling immisible fluids is to use a modified form of the Lennard-

Jones (LJ) potential:

V LJ(r) = 4ε

((σ
r

)12

− ζ
(σ
r

)6
)

(5.3.26)

and use ζ = 1 for particles of the same species and ζ = −1 for particles of different species.

Different values of ε can be used to model the fluid-fluid and fluid-solid interaction
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Figure 5.7: An instantaneous configuration of a two-phase fluid system obtained from

molecular dynamics simulation. The system is driven by the motion of the two confining

walls in opposite directions along the x axis.

strength. The simplest way to model the solid walls is to use a few layers of atoms

in a close-packed structure, i.e. the face-centered cubic lattice in the [111] direction,

with some number density ρw. For the purpose of illustration, we will consider only the

particular case when the two fluid phases have the same density and the same interaction

strength with the solid wall. In this case, we have γ1 = γ2 and θ0 = 90o.

Standard techniques of molecular dynamics can be used to bring the system to a

statistical steady state. The friction force along the wall between the fluid and solid

particles can be computed at different values of U . A typical profile of the friction force

along the wall is shown in Figure 5.8. Notice that the friction force drops sharply in

the fluid-fluid interfacial region. This region is defined as the contact line region. The

average friction force in this region is recorded as the friction force at the contact line,

and is plotted as a function of U in Figure 5.8. Here εwf denotes the value of ε in the

LJ potential for the interaction between the fluid and solid particles. The corresponding

values for the fluid-fluid and solid-solid interaction are equal, and are denoted by ε.

From these results, one can see that the friction law is linear at small values of U ,

and becomes nonlinear at large values. The friction force reaches a maximum at certain

critical contact line speed (relative to the wall), then decreases as the speed further

increases. The friction force is smaller for systems with larger solid number densities.

We also see that the critical contact line speed at which the friction force starts to decrease

also becomes smaller for systems with larger solid densities.

The combination of the macroscopic thermodynamic consideration and molecular
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Figure 5.8: Upper panel: a typical profile of the friction force along the solid wall. Lower

panel: friction force in the contact line region versus the slip velocity at the contact

line for different fluid and solid densities as well as different interaction parameters,

ρw = 8ρf , 12ρf for the dashed curve and solid curve respectively; εwf = 0.2ε (diamonds),

εwf = 0.3ε (squares) and εwf = 0.5ε (circles). Here ρw and ρf are the density of particles

in the wall and liquid phases respectively.
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dynamics studies allows us to establish a fairly complete and fairly solid continuum model

for this problem. However, it should also be noted that the accuracy of such a procedure

relies on the accuracy of the microscopic model. From a quantitative viewpoint, we have

only considered a rather simplistic situation here. For systems of practical interest, it is

usually quite non-trivial to come up with accurate microscopic models.

5.4 Notes

This chapter discusses how multiscale ideas can be used to develop better models,

not just numerical algorithms. The material discussed in the section on polymer fluids

is quite standard and can be found in [3], for example. Our presentation follows that of

the review article by Li and Zhang [26]. We only touched upon the situation of dilute

polymer solutions. For more general introduction to polymer structure and dynamics,

we refere to [4, 3, 10, 29].

Clearly the philosophy of coupling the macroscopic model with some description of the

microscopic constituents can be applied to a large variety of problems. We have already

mentioned the example of Car-Parrinello molecular dynamics in which the dynamics of

the nuclei is coupled with a description of the electronic structure. Another interesting

example is the analysis of material failure by coupling a macroscopic model with some

description of the dynamics of the micro damages [43].

Developing continuum elasticity models from atomistic models has also been a subject

of intensive research. We refer to [1, 7, 17] for more discussions. Using continuum

concepts to study the mechanics of nano-tubes has also attracted a great deal of attention,

see for example [45].

As remarked earlier, the moving contact line problem has often been used to illustrate

the need to develop coupled atomistic-continuum simulation strategies [27, 20, 36]. The

viewpoint adopted here is different: Instead of coupling continuum and atomistic models

on the fly, we demonstrated a sequential coupling strategy in which the needed boundary

conditions were measured beforehand using molecular dynamics. This is possible since

we limited the form of the boundary conditions to some particular class of functions

that depend on very few variables (friction force depends only on the local slip velocity).

The advantage of this approach is that we now have a complete continuum model with

which we can do analysis, not just simulation. It also reveals some physically interesting
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quantities such as the three-phase friction coefficient. The disadvantage is that it is

limited to the special forms of constitutive relations we considered. Therefore in some

situations, it may not be adequate. This is an example of the top-down approach, in the

spirit of the heterogeneous multiscale method (HMM) to be discussed in more detail in

the next chapter.

An alternative is the bottom-up approach: One performs extensive MD simulations

and tries to extract the effective continuum model by mining the MD data. In the

context of the moving contact line problem, very careful work on measuring the boundary

condition at the contact line region from MD data was reported in [32]. Note that the

generality of this approach is also limited by the setup of the MD. Since the MD performed

by Qian et al. also uses a Couette flow geometry, their boundary conditions are limited

to the form considered here.

Finally, a word about the Huh-Scriven singularity. Although the slip boundary con-

dition helps to remove this singularity, it should be noted that the no-slip boundary

condition is recovered in the effective macroscopic models at length scales comparable

to the system size [34]. Therefore at the macroscopic scale, the Huh-Scriven singularity

seems to be unavoidable.
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Chapter 6

Capturing the Macroscale Behavior

In many areas of science and engineering, we often face the following dilemma: We

are interested in the macroscale behavior of a system, but the empirical macroscale

models we have at our disposal are inadequate for various reasons; on the other hand, the

microscopic models are far from being practical, either computationally or analytically.

Most well-known examples include:

1. In molecular dynamics, the accuracy of the empirical force fields is often limited.

To improve accuracy, we need to make use of the electronic structure models such

as the ones in density functional theory.

2. When modeling the dynamics of real gases, empirical equations of state or other

constitutive relations are often too crude. Microscopic models such as kinetic mod-

els can be made more accurate but they are also harder to deal with.

3. Continuum models of non-Newtonian fluids using empirical constitutive relations

have had limited successes [3]. On the other hand, it is practically impossible to

use microscopic models such as molecular dynamics to analyze large scale flows of

engineering interest.

In the language of Chapter 1, these are type-B problems, or problems that require ex-

tended coupling between the macro and micro-scale models.

Traditionally, these problems are treated using sequential multiscale modeling. How-

ever, as we remarked in Chapter 1, sequential multiscale modeling is not feasible if the

247
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unknown components of the macroscale model depend on many variables. A good ex-

ample is molecular dynamics. The inter-atomic forces should in principle depend on the

position of all the atoms in the system. It is impractical to precompute the inter-atomic

forces as functions of the atomic positions involved if the system has more than ten

atoms. Therefore in this chapter, we will focus on concurrent coupling techniques.

Many different numerical methods have been developed to deal with these problems.

Most well-known examples include the Car-Parrinello molecular dynamics (for the first

problem listed above) [8], kinetic schemes for studying gas dynamics (which partly address

the second problem) [16], and the quasi-continuum method for studying the deformation

of solids [52, 71]. All these methods share the following features:

1. They allow us to model the macroscale quantities of interest by making use of the

appropriate microscale models instead of ad hoc macroscale models.

2. Computational complexity is reduced by exploring the disparity between the macro

and micro scales in the problem. In the Car-Parrinello method, this is done by

modifying the value of the fictitious mass parameter for the Kohn-Sham orbitals

in the formulation. In the Knap-Ortiz version of the quasi-continuum method [52],

this is done by calculating the energies using only small clusters of atoms instead

of all the atoms. In kinetic schemes, this is done by solving the kinetic equation

locally near the cell boundaries.

These successes and the success of more traditional multiscale algorithms such as the

multi-grid method has given impetus to establishing general frameworks for such multi-

scale methods [5, 18, 20, 51]. The hope is that as was the case of finite difference and

finite element methods for solving differential equations, a general framework might lead

to general designing principles and general guidelines for carrying out error analysis. In

[5], Achi Brandt reviewed a general strategy for extending the multi-grid method and

the renormalization group analysis to general multi-physics problems. The new strategy

in principle allows the use of atomistic models such as Monte Carlo models or molec-

ular dynamics at the finest level of a multi-grid hierarchy. It does not require explicit

macroscale models to begin with. In fact, Brandt remarked that one might be able to

construct the effective macroscale model from the data accumulated during the compu-

tation. In addition, one can exploit scale separation by restricting the microscopic model

to small windows and consequently a few sweeps might be enough to equilibrate the mi-
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croscopic model in the interior of the windows. As in traditional multi-grid methods, the

extended multi-grid method follows an “interpolation-equilibration-restriction” strategy,

except that the simulations done at the macro and micro levels can be of very different

nature, for example, continuum simulations at the macro level and atomistic simulations

at the micro level.

In the heterogeneous multiscale method (HMM) [18, 20], one assumes that one knows

roughly the form of the macroscale model, but some of the details of the model are

missing. Based on this information, one selects a suitable macroscale solver. Due to the

fact that the macro model is not explicitly known, the microscale model is used during

the computation to supply whatever data that are needed in the macro-solver but are

missing from the macro model. Scale separation is exploited by observing that when

estimating the missing data using the microscale model, the computational domain is

totally decoupled from the physical domain for the macroscale solver, and it only has to

be large enough to guarantee the required accuracy for the data. For the same reason,

there is no direct communication between the different microscopic simulations that are

carried out for estimating data at different locations in the macroscopic computational

domain. All communications are done through the macro-solver.

The general philosophy of the equation-free approach is also very similar to that

of the extended multi-grid method and HMM. Its basic strategy for implementing this

philosophy is to link together simulations of the microscopic models on small spatio-

temporal domains in order to mimic the behavior of a system at large scale. This is done

through interpolation in space and extrapolation in time of ensemble-averaged macroscale

variables obtained from the microscopic simulations.

There are obvious similarities between these approaches. One most important sim-

ilarity is that they all use a “multi-grid” style of coupling, namely at each macro time

step or macro iteration step, the microscale solver needs to be reinitialized. This can

be a rather difficult task, particularly when the macroscale model is a continuum model

and the microscale model is discrete. The seamless strategy introduced by E, Ren and

Vanden-Eijnden [29] bypasses such a requirement. The basic idea is to artificially mod-

ify the time scale of the microscale problem, and solve the macroscale model and the

modified microscale model simultaneously.
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6.1 Some classical examples

6.1.1 The Car-Parrinello molecular dynamics

In the Car-Parrinello molecular dynamics (CPMD) [8], the macroscale quantities of

interest are the positions and velocities of the atoms (or nuclei), which obey Newton’s

second law

MIR̈I = −∇RI
V (6.1.1)

Here MI and RI are respectively the mass and position of the I-th atom. The unknown

component of the model is the inter-atomic potential V or the force field −∇RI
V . We

assume that we have at our disposal a sufficiently accurate electronic structure model,

such as a density functional theory model. Since the atoms interact via Coulomb forces,

we should be able to compute the force on the atoms once we know the electronic struc-

ture. Car and Parrinello devised a very elegant way of doing this, by coupling molecular

dynamics with electronic structure models “on-the-fly” [8].

We begin with some remarks about the electronic structure model. In principle, we

could start with the quantum many-body problem which would be the true first principle.

In practice, one often uses various approximate models, such as the Kohn-Sham density

functional theory (see Section 4.4). We will rewrite the Kohn-Sham functional for a

system of N orthornormal wave functions {ψn}Nn=1 as (using atomic units)

IKS {ψn;RI} =
N∑

n=1

∫
1

2
|∇ψn(x)|2dx + J [ρ] + Exc[ρ] (6.1.2)

where, as before, ρ(x) is the electron density,

J [ρ] =
1

2

∫ ∫
(ρ(x)−m(x))(ρ(y)−m(y))

|x− y| dxdy (6.1.3)

Exc is the exchange-correlation energy. The variables {RI} enter through the pseudo-

potential m:

m(x) =
∑

I

ma
I(x−RI) (6.1.4)

where ma
I is the pseudo-potential for the I-th atom.

Since the nuclei are much heavier than the electrons, one often makes the adiabatic

approximaton that the electrons are in the ground state given by the nuclei. Under this
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approximation, the electronic structure is slaved by the state of the nuclei. Denote by

{ψ∗
n} the set of wave functions that minimize IKS. Obviously {ψ∗

n} depends on {RI}.
Let

EKS{RI} = IKS{ψ∗
n;RI} (6.1.5)

The Hellman-Feynman theorem states that [59]

∇RI
EKS{RI} = ∇RI

IKS{ψ∗
n;RI} (6.1.6)

i.e. when calculating ∇RI
EKS, one can ignore the dependence of {ψ∗

n} on {RI}. This is a

tremendous technical simplification, and it follows from a simple observation in calculus:

Let f(x, y) be a smooth function. For each fixed value of x (which plays the role of {RI}),
denote by y∗(x) the minimizer of g(y) = f(x, y). Then ∂

∂y
f(x, y∗(x)) = 0. Therefore, we

have

d

dx
f(x, y∗(x)) =

∂

∂x
f(x, y∗(x)) +

∂

∂y
f(x, y∗(x))

d

dx
y∗(x) =

∂

∂x
f(x, y∗(x)) (6.1.7)

Under the adiabatic approximation, one can define the Born-Oppenheimer dynamics:

MIR̈I = −∇RI
IKS {ψ∗

n;RI} (6.1.8)

{ψ∗
n, n = 1, 2, · · · , N} is the set of minimizers of IKS (6.1.9)

To implement such a Born-Oppenheimer dynamics, one may proceed as follows:

1. Select an integrator for the molecular dynamics equation (6.1.8), for example, the

Verlet scheme [36].

2. Calculate the forces on the nuclei by solving the electronic structure problem (6.1.9)

using an iterative method.

This procedure requires solving the electronic structure problem accurately at each time

step.

Instead of following strictly the Born-Oppenheimer dynamics, Car and Parrinello

developed a much more seamless approach. They worked with the extended phase space

for both the nuclear positions and the Kohn-Sham wave functions, and introduced the

extended Lagrangian:

L
{
RI , ψn, ṘI , ψ̇n

}
=

1

2

∑

I

MI |ṘI |2 +
1

2

∑

n

µ

∫
|ψ̇n(x)|2dx− IKS {RI , ψn} (6.1.10)



252 CHAPTER 6. CAPTURING THE MACROSCALE BEHAVIOR

where µ is the “mass” for the Kohn-Sham wave functions. Car-Parrinello molecular

dynamics (CPMD) is obtained by following standard procedures in classical mechanics

for this extended Lagrangian, subject to the constraint that {ψn} is a orthonormal set

of wave functions:

MIR̈I = −∇RI
IKS (6.1.11)

µψ̈n = − δE
δψn

+
∑

m

Λnmψm

Here the Λm,n’s are the Lagrange multipliers for the orthonormality constraint for the

wave functions. This formulation has the advantage that the electrons and nuclei are

treated on an equal footing. Standard CPMD may also contain dissipative terms. Here

we have neglected those terms.

So far we have only considered the multi-physics aspect of CPMD. There is also a

multi-scale aspect, and that is associated with the disparity between the time scales for

the nuclei and the electrons, caused by the disparity between their masses. The natural

choice for the value of the parameter µ should be the value of the electron mass, which

is at least three orders of magnitude smaller than the nuclear mass. However, since we

are only interested in the dynamics of the nuclei, we may use other value of µ as long

as we still obtain an accurate enough approximation for the dynamics of the nuclei. The

Born-Oppenheimer approximation is obtained in this context when µ is set to be 0. Car

and Parrinello adopted an opposite strategy, which is often more convenient in practice,

namely to set µ to be some fictitious value much larger than the electron mass. The

actual value used is determined by the accuracy requirement.

6.1.2 The quasi-continuum method

Our next example is the (local) quasi-continuum (QC) method [52, 71]. In this exam-

ple our interest is on the macroscale deformation of solids. As was discussed in Chapter

4, in a continuum approach, this is done by solving a variational problem for the displace-

ment field u,Ω→ R3, where Ω is the domain that defines the undeformed configuration

of the solid:

min

∫

Ω

(W (∇u(x))− f(x) · u(x)) dx (6.1.12)

f is the applied force. This requires knowing W , the stored energy density. Traditionally

W is obtained from empirical considerations. The main purpose of QC is to bypass such
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empirical strategies, and instead use a sufficiently accurate atomistic model.

To begin with, local QC is a piecewise linear finite element method on a coarse mesh.

The mesh is generated by selecting a set of representative atoms (rep-atom), denoted by

{xα}, and then forming a triangulation using these rep-atoms. Once the displacement

of the rep-atoms is known, the displacement of the rest of the atoms is determined

by linear interpolation. Obviously there is a one-to-one correspondence between the

displacement of the rep-atoms and the trial functions in the finite element space over the

triangulation. The key question is how to compute the energy of a trial function. Two

different approaches have been proposed to deal with this problem.

The first is to use the Cauchy-Born rule (see Section 4.2). Given any trial function u

in the finite element space, since the deformation gradient A = ∇u is uniform within each

element, one may approximate the energy on each element using the energy density of

an infinite crystal which is uniformly deformed with the deformation gradient A on that

element. Denote by E(A) the strain energy density obtained this way. The approximate

total energy is then given by

Etot(u) =
∑

K

E(A|K)|K| (6.1.13)

where the sum is done over all elements, |K| denotes the volume of the element K and

A|K is the deformation gradient of u on K.

The second approach is to compute the energy associated with each representative

atom by performing direct summation of the inter-atomic potential over a small cluster

of atoms around the rep-atom [52]. The position of the atoms in the cluster is given

by the trial function u via: y = x + u(x), where x is the position of the atom in the

equilibrium configuration. Knowing all the positions of the atoms, the total energy in the

cluster can be computed using the atomistic model. Denote by Eα the average energy of

an atom in the cluster around the rep-atom indexed by α. The total energy is computed

approximately using:

Etot(u) =

Nrep∑

α=1

nαEα (6.1.14)

where {nα} is a set of suitably chosen weights. Roughly speaking, if the mesh itself is

smoothly varying, then nα should be the number of atoms that the rep-atom at xα is

supposed to represent. In general, one might have to use different weights for different
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sectors of the clusters (a sector is the intersection of a cluster with an element):

Etot(u) =
∑

α,j

nα,jEα,j (6.1.15)

where Eα,j is the energy density for the j-th sector of the α-th rep-atom.

Once we have an expression for the total energy of any trial function, the displace-

ment field can be found by minimizing this energy functional, subject to the appropriate

boundary conditions.

Figure 6.1: Schematic illustration of the cluster summation rule in QC. Only atoms in

the small cluster need to be visited during the computation. Courtesy of M. Ortiz.

We have only discussed one component of QC. Another important component of QC

is to use adaptive mesh refinement to resolve the atomistic features near defects (type A

problems). This will be discussed in the next chapter.

6.1.3 The kinetic scheme

Our next example is a class of numerical schemes for gas-dynamics simulation that

uses only the kinetic model. Such schemes are called kinetic schemes (see for example

[16, 60, 61, 68, 76], see also the related work on lattice Boltzmann methods [9, 69]). Here

the macroscopic quantities of interest are the density, pressure and velocity fields of the

gas. The starting point is a kinetic model, such as the Boltzmann equation (see Section

4.3):

∂tf + (v · ∇)f =
1

ε
C(f) (6.1.16)
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where f = f(x,v, t) is the one-particle phase-space distribution function, which is also

our microscale state variable; C(f) is the collision term; ε is the Knudsen number. The

macroscale state variables U are the usual hydrodynamic variables of mass, momentum

and energy densities, which are related to the microscale state variable f by:

ρ =

∫
f(v)dv, ρu =

∫
f(v)vdv, E =

∫
f(v)

|v|2
2
dv. (6.1.17)

From the Boltzmann equation, we have:

∂t




ρ

ρu

E



+∇ · F = 0 (6.1.18)

where

F =

∫

R3

f




v

v ⊗ v
1
2
|v|2v



 dv (6.1.19)

When ε≪ 1, the distribution function f is close to the local equilibrium states (or local

Maxwellians), defined as:

M(x,v, t) =
ρ(x, t)

(2πkBT (x, t))3/2
exp

(
−|v − u(x, t)|2

2kBT (x, t)

)
(6.1.20)

with T being the absolute temperature.

For simplicity, we will focus on the one-dimensional case. We first divide the com-

putational domain in the physical space into cells of size ∆x. We will denote by xj the

center of the j-th cell, and xj+1/2 the cell boundary between the j-th and (j+1)-th cells.

For a first order method, we represent the solution as piece-wise constants, i.e.

Uj = (ρj, ρjuj, Ej), x ∈ (xj−1/2, xj+1/2]

A finite volume scheme takes the form:





ρn+1
j − ρnj +

∆t

∆x

(
F

(1)
j+1/2 − F

(1)
j−1/2

)
= 0,

(ρu)n+1
j − (ρu)nj +

∆t

∆x

(
F

(2)
j+1/2 − F

(2)
j−1/2

)
= 0,

En+1
j − En

j +
∆t

∆x

(
F

(3)
j+1/2 − F

(3)
j−1/2

)
= 0

(6.1.21)
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where Fj+1/2 = (F
(1)
j+1/2, F

(2)
j+1/2, F

(3)
j+1/2)

T is the numerical flux at the cell boundary xj+1/2.

The fluxes Fj+1/2 will be computed by solving the kinetic equation using the following

three-step procedure:

1. Initialize the kinetic equation using the local Maxwellian with parameters (ρ, u, T )

given by Uj.

2. Solve the kinetic equation locally around cell boundaries where the values of the

fluxes are needed. The kinetic equation is solved by splitting: One first solves the

transport equation, which gives, f(x, v, t) = f(x− v(t− tn), v, tn). Then one takes

into account the collision term, by projecting the solution onto local Maxwellians.

3. Use (6.1.19) to compute the numerical fluxes.

Omitting the details, we arrive at the following expression for the numerical fluxes [16]:

Fj+1/2 = F+(Uj) + F−(Uj+1), (6.1.22)

with

F±(U) =





ρuA±(S)± ρ√
2πβ

B(S)

(p+ ρu2)A±(S)± ρu√
2πβ

B(S)

(pu+ ρue)A±(S)± ρ√
2πβ

(
p

2ρ
+ e)B(S)




(6.1.23)

where β = 1/kBT ,

S =
u√

2kBT
, A±(S) =

1± erf(S)

2
, B(S) = e−S

2

, p = ρkBT, e =
1

2
u2 + kBT

erf is the error function. This is the simplest kinetic scheme. The schematic is shown in

Figure 6.2.

In this particular example, the end product of the whole process may seem to be very

much similar to standard finite volume methods. Nevertheless, the philosophy embodied

in this process is quite significant and is useful for situations when the kinetic model or

the local equilibrium distributions are more complicated.
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Figure 6.2: Schematics for the derivation of kinetic schemes: A finite volume method is

imposed in the x−t domain, and the kinetic equation is solved (e.g. analytically) over the

shaded region to give the fluxes needed in the finite volume method. The v axis indicates

the extra velocity variable in the kinetic model, which represents the microstructure for

the present problem.
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6.1.4 Cloud-resolving convection parametrization

Cloud-resolving convection parametrization (CRCP), or super-parametrization, is a

technique introduced by Grabowski and Smolarkiewicz [42] in which the large scale trop-

ical dynamics of the atmosphere is captured by embedding cloud scale models at each

grid point of a large scale model. The macroscale model is a large eddy simulation model.

However, in contrast to standard large eddy simulation, the effects of the sub-grid scales

are modeled not by empirical models, but rather through the introduction of explicit

cloud scale models. We will omit the details here and refer the interested reader to the

original article [42]. For more recent development on this subject, see [75].

6.2 Multi-grid and the equation-free approach

Given the success of these different multiscale methods, it is natural to ask whether

we can formulate a general framework. In the case of solving differential equations,

such general strategies have proven to be very useful. A good example is the finite

element method which has provided not only a general designing principle for numerical

algorithms but also general guidelines for error analysis. In recent years, several attempts

have been made to construct general strategies for multiscale methods. In the following,

we will discuss three examples of such general strategies, the extended multi-grid method,

the heterogeneous multiscale method, and the equation-free approach.

6.2.1 Extended multi-grid method

One of the first attempts to construct a general framework for multiscale modeling

was the extension of the multi-grid method by Achi Brandt. In its original form [4, 44],

the multi-grid method is an efficient way of solving the algebraic equations obtained from

discretizing PDEs (see Section 3.1). The objective was to find accurate solutions of the

PDE. Since the 1990’s, Brandt and others have discussed the possibility of extending the

traditional multi-grid method in a number of directions [5]:

1. The models used at the different scales can be quite general and quite different in

nature. For example, one may use Monte Carlo methods or molecular dynamics at

the small scale, and traditional continuum models at the large scale.
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2. The traditional multi-grid method is an efficient solver for the fine scale details of

the problem. In the extended version, one might be only interested in capturing

the macroscale behavior using macroscale models. This is particularly useful in

cases when closed-form macroscale models are not available, and it is desirable to

have numerical algorithms that are capable of capturing the macroscale behavior

directly. In this case, one might even be able to reconstruct the effective macroscale

model at the end of the computation. To quote from [5]: “At sufficient coarse level,

this entire algorithm effectively produces macroscopic ‘equations’ for the simulated

system .... This can yield a macroscopic numerical description for the fluid even for

those cases where the traditional derivation of closed-form differential equations is

inapplicable.”

3. One may limit the microscopic simulation at the fine levels to small spatial-temporal

domains. As was remarked by Brandt: “few sweeps are enough, due to the fast

CMC (conditional Monte Carlo) equilibration. This fast equilibration also implies

that the interpolation can be done just over a restricted subdomain, serving as

window: In the window interior fine-level equilibration is reached.”

4. Renormalization group ideas are integrated into the new multi-grid method.

The general procedure is quite similar to standard multi-grid methods. At each cycle,

one repeats the following steps at the different levels of grids [5]:

1. Interpolation: The current values of the state variables on the coarse level are used

to initialize or constraint the (micro) model at the fine level.

2. Equilibration: Run the fine-level model (on small windows) for a number of steps.

3. Restriction (projection): Project the variables at the fine level back to the coarse

level.

This is a two-level procedure. Generalization to multiple levels is straightforward. Unlike

in traditional multi-grid methods in which the successive coarse and fine levels are simply

nested finite difference or finite element grids, here the coarse and fine levels can be very

different and very far apart.



260 CHAPTER 6. CAPTURING THE MACROSCALE BEHAVIOR

Brandt also described applications to many different areas, including electronic struc-

ture analysis, solving integro-differential equations, modeling high frequency wave prop-

agation, Monte Carlo methods in statistical mechanics, complex fluids and image pro-

cessing [5].

Brandt’s picture is very broad and very appealing. However, at an algorithmic level,

it is quite unclear to the present author how one can carry out such a program in practice,

even though a lot has been written on the subject (see, for example, [5] and the references

therein). We will return to this discussion later in the chapter.

6.2.2 The equation-free approach

The equation-free approach is another framework for addressing the same kind of

questions based on a similar philosophy. It consists of a set of techniques including

coarse bifurcation analysis, projective integrators, the gap-tooth scheme and the patch

dynamics [51]. At an abstract level, equation-free is built on a three-stage “lift-evolve-

restrict” coarse time-stepper procedure [51]. Given a macroscopic state, U(t), at some

time t, the coarse time-stepper consists of the following basic elements [51]:

1. Lift: Transform the macroscale initial data to one or more consistent microscopic

realizations.

2. Evolve: Use the microscopic simulator (the detailed time-stepper) to evolve these

realizations for the desired short macroscopic time τ , generating the value(s) u(τ, t).

3. Restrict: Obtain the restriction of u and define the coarse time-stepper solution as

T τc U(t) =Mu(τ, t).

Here M is the restriction operator that maps micro-state variables to macro-state vari-

ables.

So far this is very similar to a two-level “interpolate-equilibrate-restrict” multi-grid

procedure. The additional component of the equation-free approach is to exploit scale

separation in the problem using interpolation (in space) and extrapolation (in time)

techniques.

Coarse projective integration
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In coarse projective integrators, one generates an ensemble of microscopic solutions

for short times, by running the microscopic solver with an ensemble of initial data that are

consistent with the current macro-state. One evaluates the average values of the coarse

variables over this ensemble. The time derivatives for the coarse variables are computed

using these averaged values and these coarse time derivatives are used to extrapolate the

coarse variables over a much larger time step.

Consider the example





ẋε = f(xε,yε, t), xε(0) = x

ẏε =
1

ε
g(xε,yε, t), yε(0) = y

(6.2.1)

where (x,y) ∈ R
n×R

m. Here the macroscale variable of interest is x. For this problem,

the projective integrator proceeds in two steps:

1. Relaxation step: In the simplest case of a forward Euler scheme with micro time

step δt, we have




x̂n,m+1 = x̂n,m + δtf(x̂n,m, ŷn,m, tn +mδt)

ŷn,m+1 = ŷn,m + δt
ε
g(x̂n,m, ŷn,m, tn +mδt)

(6.2.2)

with some initial data x̂n,0 and ŷn,0, m = 0, 1, · · · ,M − 1.

2. Extrapolation step: Compute the approximate value of ẋn and then extrapolate:

ẋn =
xn,M − xn,M−1

δt
(6.2.3)

xn+1 = xn + ∆tẋn

If one wants to construct higher order schemes, one uses higher order extrapolation:

ẍn =
xn,M − 2xn,M−1 + xn,M−2

(δt)2
(6.2.4)

xn+1 = xn + ∆tẋn +
1

2
(∆t)2ẍn

and so on.

A main advantage of the projective integrators is that they are relatively simple in

the cases when they apply.
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Dealing with the space variable

Brandt noticed that due to the fast equilibration of the microscopic model, it might

be enough to conduct the microscopic simulations on “small windows”. The “gap-tooth

scheme” builds on a similar intuition.

The basic idea of the gap-tooth scheme is to “use the microscopic rules themselves,

in smaller parts of the domain and, through computational averaging within the sub-

domains, followed by interpolation, to (we) evaluate the coarse field U(t, x), the time-

stepper, and the time derivative field over the entire domain” [51].

“Given a finite dimensional representation
{
UN
j

}
of the coarse solution (e.g. nodal

values, cell averages, spectral coefficients, coefficients for finite elements or empirical basis

functions) the steps of the gap-tooth scheme are the following.

1. Boundary conditions. Construct boundary conditions for each small box based on

the coarse representation
{
UN
j

}
.

2. Lift. Use lifting to map the coarse representation
{
UN
j

}
to initial data for each

small box.

3. Evolve. Solve the detailed equation (the microscale model) for time t ∈ [0, τ ] in

each small box y ∈ [0, h] ≡ [xj − h/2, xj + h/2] with the boundary conditions and

initial data given by steps (1) and (2).

4. Restrict. Define the representation of the coarse solution at the next time level by

restricting the solutions of the detailed equation in the boxes at t = τ” [51].

One interesting application of the gap-tooth scheme is presented in [38] in which

a particle model was used to capture the macroscale dynamics of the viscous Burgers

equation. The microscale model is a one-dimensional Brownian dynamics model:

ẋj(t) = uδj(t) + ẇj(t), (6.2.5)

where xj(t) is the position of the j-th particle at time t, the {ẇj}’s are independent

white noises, uδj(t) is the drift velocity, which is defined to be the density of particles

over an interval of length δ centered at xj(t). To apply the gap-tooth scheme, microscale

simulation boxes of size δ are put uniformly on the real axis. Particle simulations of

(6.2.5) are carried out inside the boxes. At each macroscopic time step n, particles are

initialized according to the known local (macroscopic) density at that time step. The
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boundary condition for the particle simulation is imposed as follows. For the k-th box,

there is an outgoing flux (number of particles that exit the box per unit time) and

there is an incoming flux at the left and right side of the box. These are denoted by

jℓ,+k , jℓ,−k , jr,+k , jr,−k respectively. The outgoing fluxes jr,+k , and jℓ,−k can be measured from

the simulation. The incoming fluxes jℓ,+k , jr,−k will have to be prescribed. One possibility

is to set

jℓ,+k = αjr,+k−1 + (1− α)jr,+k (6.2.6)

jr,−k = αjℓ,−k+1 + (1− α)jℓ,−k (6.2.7)

where α = δ/∆x, δ is the size of the box, ∆x is the distance between the centers of

adjacent boxes. To implement this boundary condition, particles that come out of a box

are either “tele-transported” to the next box, or put back into the same box from the

other side, according to a probability distribution specified by the boundary condition

shown above. The above corresponds to a linear interpolation. Quadratic interpolations

are also discussed in [38].

To update the particle density at the next time step tn+1 = (n + 1)∆t, the particle

densities at that instant of time inside the boxes are computed, and interpolated in space

to give the macroscopic density profile at the new time step.

Patch dynamics

Patch dynamics is a combination of the projective integrators and the gap-tooth

scheme. It consists of the following [51]:

1. Short time steps. Repeat the gap-tooth time stepper a few times, i.e. compute patch

boundary conditions, lift to patches, evolve microscopically and then restrict.

2. Extrapolate. Advance coarse fields for a long time step into the future through

projective integration. This first involves estimation of the time-derivatives for the

coarse field variables, using the successively reported coarse fields followed by a

large projective step.

An example of patch dynamics will be presented in Section 6.7.
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6.3 The heterogeneous multiscale method

6.3.1 The main components of HMM

We now turn to the framework of the heterogeneous multiscale method (HMM). The

general setup is as follows. At the macroscopic level, we have an incomplete macroscale

model:

∂tU = L(U ;D) (6.3.1)

where D denotes the data needed in order for the macroscale model to be complete. For

example, for complex fluids, U might be the macroscopic velocity field and D might be

the stress tensor. In addition, we also have a microscopic model:

∂tu = L(u;U). (6.3.2)

Here the macroscale variable U may enter the system as constraint. We may also write

the macro and micro models abstractly as:

F (U,D) = 0 (6.3.3)

f(u, d) = 0, d = d(U)

d is the data needed in order to set up the microscale model. For example, if the mi-

croscale model is the NV T ensemble of molecular dynamics, d might be the temperature.

(6.3.1) or (6.3.3) represent the knowledge we have about the possible form of the

effective macroscale model.

The general philosophy of HMM is to solve the incomplete macroscale model by

extracting the needed data from the microscale model. The coupling between the macro

and micro models are done in such a way that the macro-state provides the constraints

for setting up the micro model and the micro model provides the needed constitutive

data D for the macro model. The two main components of HMM are:

1. A macroscopic solver. Based on whatever knowledge that is available on the

macroscale behavior of the system, we make an assumption about the form of

the macroscale model, from which we select a suitable macroscale solver. For ex-

ample, if we are dealing with a variational problem, we may use a finite element

method as the macroscale solver.
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Figure 6.3: Schematics of the HMM framework

2. A procedure for estimating the missing macroscale data D using the microscale

model. This is typically done in two steps:

(a) Constrained microscale simulation: At each point where some macroscale data

is needed, perform a series of microscopic simulations which are constrained

so that they are consistent with the local value of the macro variable.

(b) Data processing: Use the results from the microscopic simulations to extract

the macroscale data needed in the macroscale solver.

Consider for example the case when the microscale model is an elliptic equation with

multiscale coefficients:

−∇ · (aε(x)∇)uε(x) = f(x) (6.3.4)

Assume that the macroscale model is of the form

−∇ · (A(x)∇)U(x) = f(x) (6.3.5)

Naturally, as the macroscale solver, we choose standard finite element methods, e.g. the

piecewise linear finite element method, over a coarse mesh. The data that need to be

estimated is the stiffness matrix for the finite element method. If A = A(x) were known,

we would simply follow standard practice and use numerical quadrature to compute the

elements in the stiffness matrix. Since A is not known, we set up a microscale simulation

around each quadrature point in order to estimate the needed function value at that

quadrature point. The details of this procedure will be discussed in Chapter 8.
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As a second example, consider incompressible polymeric fluid flows for which the

macroscale model is a continuum model for the macroscale velocity field U in the form:

ρ0(∂tU + (U · ∇)U) = ∇ · σ

∇ ·U = 0

These are simply statements of the conservation of momentum and mass, for a fluid of

constant density ρ0. The unknown data is the stress σ: D = σ.

Let us assume that the micro model is a molecular dynamics model for the particles

that make up the fluid:

mj
d2yj

dt2
= fj, j = 1, 2, · · · , N (6.3.6)

Here mj,yj are respectively the mass and position of the j-th particle, fj is the force

acting on the j-th particle.

Given that the macroscale model is in the form of an incompressible flow equation, it is

natural to select the projection method as the macro-solver [11]. In the implementation of

the projection method, we will need the values of σ at the appropriate grid points. These

are the data that need to be estimated. At this point, we have to make an assumption

about what σ depends on, this enters in the constraints that we put on the microscale

model. Let us assume that

σ = σ(∇U) (6.3.7)

We will constrain the molecular dynamics in such a way that the average strain rate

is given by the value of ∇U at the relevant grid point. In general, implementing such

constraints is the most difficult step in HMM. For the present example, one possible

strategy is discussed in [63].

From the results of molecular dynamics, we need to extract the values of the needed

components of the stress. For this purpose, we need a formula that expresses stress in

terms of the output of the molecular dynamics. This can be obtained by modifying the

Irving-Kirkwood formula [49]. These details will be explained in Section 6.6.

In summary, three main ingredients are required in HMM:

1. a macro-solver, here the projection method;

2. a micro-solver, here the constrained molecular dynamics;

3. a data estimator, here the modified Irving-Kirkwood formula.
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We can write down the HMM procedure formally as follows. At each macro time

step:

1. Given the current state of the macro variables Un, reinitialize the micro-variables:

un,0 = RUn (6.3.8)

2. Evolve the micro variables for some micro time steps:

un,m+1 = Sδt(un,m;Un), m = 0, · · · ,M − 1; (6.3.9)

3. Estimate D:

Dn = DM(un,0, un,1, · · · , un,M); (6.3.10)

4. Evolve the macro-variables for one macro time step using the macro-solver:

Un+1 = S∆t(U
n;Dn) (6.3.11)

Here R is some reconstruction operator which plays the same role as the interpolation

or prolongation operators in the multi-grid method, Sδt is the micro solver, which also

depends on Un through the constraints, as indicated. DM is some data processing oper-

ator which in general involves spatial/temporal/ensemble averaging. This is sometimes

referred to as the data estimator. Finally S∆t is the macro solver.

For dynamic problems, there are two important time scales that we need to consider.

The first, denoted by tM , is the time scale for the dynamics of the macro-variables. The

second, denoted by τε, is the relaxation time for the microscopic model. We will need to

distinguish two different cases. The first is when the two time scales are comparable, i.e.

τε ∼ tM . In this case, from the viewpoint of numerical efficiency, there is not much room

to play with as far as time scales are concerned. We just have to evolve the microscale

model along with the macroscale model. The second case is when τε ≪ tM . This is the

case we will focus on. The general guideline in this case is:

1. Choose ∆t to accurately resolve the tM time scale.

2. Choose M such that Mδt covers sufficiently the τε time scale to allow equilibration

to take place in the micro model.

Next we consider an example in some detail.
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6.3.2 Simulating gas dynamics using molecular dynamics

Instead of using kinetic theory as in kinetic schemes, we will discuss how to perform

gas dynamics simulation using molecular dynamics models. It is not clear at this point

how relevant this is in real applications. We will simply use it as an example to illustrate

HMM.

The microscale model is molecular dynamics, which we will write as

dxj
dt

= vj, mj
dvj
dt

=
∑

k

fjk (6.3.12)

Here fjk = −∇xj
V0(|xj − xk|) is the force on the j-th atom from the k-th atom. For

simplicity, we have assumed that there is only two-body interaction. First of all, recall

that if we define

ρ̃(x, t) =
∑

j

mjδ(x− xj(t)), (6.3.13)

m̃(x, t) =
∑

j

mjvj(t)δ(x− xj(t)),

Ẽ(x, t) =
∑

j

1

2
mj|vj(t)|2δ(x− xj(t))

+
1

2

∑

j

(
∑

i6=j
V0(|xj(t)− xi(t)|))δ(x− xj(t)) (6.3.14)

then we have

∂tρ̃+∇x · m̃ = 0, (6.3.15)

∂tm̃ +∇x · σ̃ = 0,

∂tẼ +∇x · J̃ = 0

where σ̃ and J̃b are defined in terms of {xj,vj} (see Section 4.2). These are the analog

of the conservation laws used in deriving the continuum models of gas dynamics, and is

our starting point for coupling the macroscale and microscale models.

Since the macroscale model is a system of conservation laws, it is natural to use

the finite volume method as the macro solver. There are many different versions of the

finite volume methods (see for example [55]). We will choose the one that uses the least

amount of information about the details of the model, since we do not know much about
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the details of the model. For example, central type of schemes such as the Lax-Friedrichs

scheme are preferred over schemes that rely on characteristic decomposition such as the

Roe scheme. We will pick the Lax-Friedrichs scheme as the macro solver:

Un+1
j+1/2 =

Un
j + Un

j+1

2
− ∆t

∆x

(
F n
j+1 − F n

j

)
. (6.3.16)

The data to be estimated are the fluxes. This is done by performing MD simulation at

places where the numerical fluxes are needed.

The Lax-Friedrichs scheme has another feature that helps to simplify the data esti-

mation step – it is defined on a staggered grid. Consequently, in order to estimate F n
j ,

we need to set up an MD with the constraints that the average mass, momentum and

energy densities be equal to Un
j . This can be achieved simply by initializing the MD with

such a constraint and then using the periodic boundary condition. Note that they are

conserved quantities of the MD.

As the MD proceeds, we extract the needed data, namely σ̃ and J̃b by performing

statistical averaging using the Irving-Kirkwood type of formulas discussed in Section 4.2.

Some typical results are shown in Figure 6.3.2. One can see that after a limited number

of steps, the estimated values of σ̃ and J̃b have already reached reasonable accuracy,

independent of how large the macroscale system is.

Shown in Figure 6.3.2 is an example of the numerical results produced using the HMM

just described, for a slightly different application, namely one dimensional thermoelas-

ticity. This is a Riemann problem mimicking the setup of a shock tube problem, i.e. the

macroscale initial condition is piecewise constant, U0 = Ul in the left half of the domain

and U0 = Ur in the right half of the domain. If we neglect viscous and thermal dissipa-

tion, then the macroscale solution should be self-similar. This fact is used in the figure:

The MD results are computed for a small system and for a short time and then rescaled

in space and time in order to be compared with HMM results which were computed for

much larger systems and much longer time.

6.3.3 The classical examples from the HMM viewpoint

Let us now reexamine the examples in Section 6.1 from an HMM perspective.

The Born-Oppenheimer dynamics can be viewed as a special case of HMM in which

the macro solver is the molecular dynamics algorithm chosen for (6.1.8), the data to
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xj xj+1

Uj

Uj

Uj+1

F(Uj )

F(Uj )
F(Uj+1 )

Uj+1/2

MD

Figure 6.4: Illustration of the HMM procedure for capturing the macroscopic behavior

of gas dynamics using molecular dynamics. This setup takes advantage of the staggered

grid used in the macroscale solver. Courtesy of Xiantao Li.

be estimated is the force acting on the nuclei, and data estimation is done through an

iterative algorithm for the electronic structure model. For the local QC, the macro solver

is the linear finite element method, the data to be estimated is the energy associated

with the trial function or the forces on the representative atoms. Data estimation can be

done either using the Cauchy-Born rule or the cluster-summation rule. For the kinetic

scheme, the macro solver is the finite volume method. The data to be estimated are the

numerical fluxes. Data estimation is done by solving the kinetic equation locally around

the point of interest.

Considering the fact that these algorithms are proposed for drastically different ap-

plications, this unified view is quite interesting. It also offers some substances:

1. As will be discussed below (see Section 6.7), the HMM framework provides a general

strategy for analyzing the stability and accuracy of multiscale methods. This can be

used to analyze the algorithms discussed in Section 6.1. One example, the analysis

of the local QC, is carried out in [27] using this viewpoint.

2. HMM provides an alternative perspective on how to improve these existing meth-

ods. For example, if we are interested in developing high order kinetic schemes, we
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Figure 6.5: Comparison of the numerical solutions obtained using HMM and direct MD. Solid

line: computed solution; dashed line: full atom simulation (one realization). Top: strain;

middle: velocity; bottom: displacement.



272 CHAPTER 6. CAPTURING THE MACROSCALE BEHAVIOR

might start with a high order macro solver and solve the kinetic model to high or-

der accuracy. This may not be that different from what experts in kinetic schemes

would do anyway. But it does make the ideas a bit more systematic.

There is one very notable exception though, and that is the Car-Parrinello molecular

dynamics (CPMD). It is of a rather different flavor from that of the HMM we have

discussed so far. The coupling used in CPMD is much more seamless than the “multi-

grid” style of coupling used in HMM, which requires going back and forth explicitly

between the macro and micro states. We will return to this issue later when we discuss

seamless coupling strategies (see Section 6.5).

6.3.4 Modifying traditional algorithms to handle multiscale prob-

lems

HMM can also be viewed as a principle for modifying traditional numerical algorithms

for the purpose of handling efficiently multiscale problems. To illustrate this point, we will

discuss how to modify the fast multipole method to handle multiscale charge distribution.

As was discussed in Section 3.2, the fast multipole method (FMM) is among the most

efficient algorithms for evaluating the Coulomb potential due to a distribution of charges

[43]. Consider the following problem:

φε(x) =

∫

Ω

qε(y)

|x− y|dy (6.3.17)

where qε(y) = q(y,y/ε) and q is a smooth function which is periodic in the second

variable with period I = [0, 1]3 and ε ≪ 1. Problems of this type arise in electronic

structure analysis of crystalline materials [25]. Applying FMM directly to the evaluation

of φε will require a cost of O(ε−3), since the smallest boxes used in FMM should resolve

the smallest scale of qε, which is of O(ε). A much more efficient approach is to combine

FMM with HMM [46].

In the spirit of HMM, we select FMM as the macroscale solver, the size of the smallest

boxes in FMM is decided by the size needed to resolve the large scale features of the

charge distribution, not the small scale features. The data that are needed in FMM are

the coefficients of the multi-pole expansion:

Mp
k,j =

∫

Ck,j

q(y,
y

ε
)(y − xk,j)

pdy
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where (Ck,j,xk,j) =j-th (box, box-center) at the k-th level. These integrals can be ap-

proximately evaluated using, for example:

Mp
k,j ≃

∫

Ck,j

∫

I

q(y, z)(y − xk,j)
pdydz

The total cost of this approach is O(1).

6.4 Some general remarks

6.4.1 Similarities and differences

There are obvious similarities between the extended multi-grid method, HMM and

the equation-free approach.

1. They all have the same objective, namely, developing algorithms that capture

the macroscale behavior of complex systems with the help of the microscopic models,

bypassing empirical macroscopic models, and hopefully, without the need to resolve all

microscopic details.

2. They all use a “multi-grid style of coupling”, namely, the macro and micro variables

are converted back and forth at each macro time step or macro iteration step, even though

somewhat different terminologies are used (see Table 6.4.1).

3. They all explore the possibility of restricting the simulation of the microscale model

to small domains (boxes, windows) for short times (or few sweeps).

Moreover, as was mentioned earlier, the basic structure for the extended multi-grid

method is remarkably close to that of the equation-free approach, as can be seen in Table

6.4.1. Note in particular that the purpose of the “evolution” step in the equation-free

approach is to equilibrate.

Publisher, could you fix these tables including the references to the tables

in the text?

Macro to micro micro to Macro

Extended multi-grid interpolation restriction (projection)

HMM reconstruction compression

Equation-free lifting restriction
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Caption: A comparison between the terminologies used in the extended multi-grid

method, HMM and the equation-free approach.

Extended multi-grid “Equation-free”

Interpolation Lifting

Equilibration Evolution (equilibration)

Restriction (projection) Restriction

Extrapolation

Caption: A comparison between the basic structure of the extended multi-grid method

and the equation-free approach.

There are also some differences. As was pointed out already, compared with the

multi-grid approach, equation-free uses extrapolation as a way of exploring time scale

separation. Between HMM and equation-free, it is quite clear that at a philosophical level,

HMM is a “top-down” approach, it is more of an “equation-based ” technique, although

the “equation”, i.e., the preconceived form of the macroscale model, is incomplete. In

contrast, equation-free seems to be more of a “bottom-up” strategy. Its purpose was to

set up microscopic simulations on small windows to mimic a simulation over the whole

macroscopic physical domain. One clear example is the gap-tooth scheme in [38] discussed

earlier. The main thrust there was to couple the different microscopic simulations on

small boxes in order to mimic a microscopic simulation performed over the entire physical

domain, using basically the smoothness of the macro variables.

At a technical level, if we write the effective macroscale model in the form:

∂tU = F ({U}) (6.4.1)

the difference between HMM and the equation-free approach is that equation-free focuses

on the left hand side and HMM focuses on the right hand side. Here we write F ({U})
instead of F (U) to emphasize that the right hand side can depend on more variables than

the pointwise value of U : For example, it may depend on the gradients of U . Equation-

free can be viewed as a strategy in which the microscale models are used to compute the

approximate value of ∂tU , and this value is used to advance U over macro time steps. In

HMM, however, the first question one asks is: What can we say about the structure of

F ({U})? This information is then used to select a macro-solver. For example, in the case
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when the effective macroscale model is a stochastic differential equation, then F ({U}) is

a sum of two terms, a drift term and a noise term. HMM treats the two terms separately

[73].

If we do not know anything about the structure of F ({U}), then evaluating F ({U})
is the same as evaluating ∂tU directly. In this case, HMM still provides the flexibility of

selecting a suitable macro solver.

6.4.2 Difficulties with the three approaches

Difficulties with the multi-grid method

While its general philosophy is very attractive, the algorithmic details for the extended

multi-grid method are sparse. In particular, it is not clear whether Brandt aims at con-

structing linear or sublinear scaling algorithms. The discussions about “small windows”

and “few sweeps” suggest that the goal is to construct sublinear scaling algorithms. But

his insistance on complete generality raises some doubts: Clearly it is not possible to

construct sublinear scaling algorithms that work for general problems.

Difficulties with HMM

The most significant shortcoming of HMM is that it is based on a preconceived

macroscale model. If the form of the macroscale model is chosen incorrectly, one cannot

expect the resulting HMM procedure to produce accurate results. For example, if the

effective macroscale model should be a stochastic ODE, but one makes the assumption

that it is a deterministic ODE, then the stochastic component of the macroscale solution

will not be captured correctly by an HMM based on such an assumption.

There is a important reason for starting with the macro-solver: Even for problems for

which we do have a sufficiently accurate macroscale model, finding an effective numerical

algorithm for that macroscale model may still be a significant task. Indeed this has been

the focus of the computational mathematics community for more than 50 years. One

example is Euler’s equation in gas dynamics whose solutions typically contain shocks,

i.e. discontinuities [55]. In this case, the numerical algorithms have to satisfy certain

constraints in order to be able to solve Euler’s equation accurately. Obviously this should

also be a concern for multiscale methods.

For practical problems of interest, we often have accumulated some knowledge about

what the macroscale model should be like. Such information can be used when making
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assumptions about the macroscale model used in HMM. In cases when one makes a wrong

assumption, one can still argue that HMM produces an “optimal approximation” for the

macroscale behavior of the solution in the class of the models considered. In this sense,

HMM is a way of addressing the following question: What is the best one can do given

the knowledge we have about the problem at all scales?

Difficulties with the equation-free approach

There is still some confusion about the basics, namely, the basic philosophy of the

equation-free approach. For this reason, we have carefully followed the original papers in

our presentation above about the equation-free approach. To give an example about the

kind of confusion we are concerned with, let us consider the example of analyzing the free

energy profile of a complex system by computing the probability density of some coarse-

grained variables (see for example [33]). The probability density f = f(q) is assumed to

satisfy a Fokker-Planck equation of the form:

∂q(∂q[D(q)f(q)]− V (q)f(q)) = 0 (6.4.2)

Here q is some coarse-grained variable. Microscopic models are used to precompute the

coefficients D and V . (6.4.2) is then used to find the free energy density or for other

purposes. This is a very useful approach, as was demonstrated in [33, 47] and numerous

other examples. It also extends the standard free energy analysis by allowing a more

general form of the diffusion coefficient D. However, from the viewpoint of multiscale

modeling, it is anything but “equation-free”: It is a typical example of the precomputing

(or sequential coupling, see Chapter 1), equation-based technique. It has the standard

merits and difficulties of all precomputing techniques. For example, it becomes unfeasible

when the dimension of q is large.

In addition, as we will see later, the original patch dynamics may suffer from issues

of numerical instability. To overcome these problems, a new version of the patch dy-

namics has been proposed in which a preconceived macroscale model and a macroscale

solver is used to construct the lifting operator (see Section 6.7). The original appeal of

the equation-free approach, namely that it does not require knowing much about the

macroscale model, seems to be lost in this modified version.

In summary, finding a robust bottom-up approach that does not require making a

priori assumptions on the form of the macroscale model is still an open problem. It is

not clear at this stage whether it is possible to have a general approach of this kind and
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how useful it will be.

6.5 Seamless coupling

With the exception of CPMD, the approaches discussed above all require converting

back and forth between the macro- and micro-states of the system. This can become

rather difficult in actual implementations, particularly when constructing discrete micro-

states (needed for example in molecular dynamics) from continuous macroscale variables.

The seamless strategy proposed in [29] is intended to bypass this difficult step.

To motivate the seamless algorithm, let us consider the trivial example of a stiff ODE:






dx

dt
= f(x, y)

dy

dt
= −1

ε
(y − ϕ(x)).

(6.5.1)

Using the notations of earlier sections, we have U = x, u = (x, y). If we want an efficient

algorithm for capturing the behavior of x without resolving the detailed behavior of y,

we can simply change the small parameter ε to a bigger value ε′, the size of which is

determined by the accuracy requirement (the issue of how the value of ε′ affects the

accuracy will be discussed later):






dx

dt
= f(x, y)

dy

dt
= − 1

ε′
(y − ϕ(x)).

(6.5.2)

This is then solved using standard ODE solvers. We will refer to this as “boosting”.

We can look at this differently. Instead of changing the value of ε, we may change the

clock for the microscale model, i.e. if we use τ = tε/ε′ in the second equation in (6.5.2),

then (6.5.2) can be written as:






dx

dt
= f(x, y)

dy

dτ
= −1

ε
(y − ϕ(x)).

(6.5.3)

If we discretize this equation using standard ODE solvers but with different time step
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sizes for the first and second equations in (6.5.3), we obtain the following algorithm:

yn+1 = yn − δτ

ε
(yn − ϕ(xn)) (6.5.4)

Dn+1 = yn+1 (6.5.5)

xn+1 = xn + ∆̃tf(xn, Dn+1). (6.5.6)

Here yn ∼ y(nδτ) and xn ∼ x(n∆̃t). The value of δτ is the time step size we would use if

we attempt to solve (6.5.1) accurately. If (6.5.1) were the molecular dynamics equations,

then δτ would be the standard femtosecond time step size. ∆̃t is the time step one would

use for (6.5.2). It satifies

∆̃t

ε′
=
δτ

ε
(6.5.7)

In general, ∆̃t should be chosen such that one not only resolves the macro time scale, but

also allows the micro state to sufficiently relax, i.e. to adjust to the changing macroscale

environment. For example, if ∆t is the time step size required for accurately resolving

the macroscale dynamics and if τε is the relaxation time of the microscopic model, then

we should choose ∆̃t = ∆t/M where M ≫ τε/δτ .

The advantage of this second viewpoint is that it is quite general, and it does not

require tuning parameters in the microscopic model. In a nutshell, the basic idea is as

follows.

1. Run the (constrained) micro solver using its own time step δτ .

2. Run the macro solver at a pace that is slower than a standard macro model: ∆̃t =

∆t/M .

3. Exchange data between the micro- and macro-solvers at every step.

Intuitively, what one does is to force the microscale model to accommodate the changes

in the macroscale environment (here the change in x) at a much faster pace. For example,

assume that the characteristic macro time scale is 1 second and the micro time scale is

1 femtosecond (= 10−15 second). In a brute force calculation, the micro model will run

1015 steps before the macroscale environment changes appreciably. HMM makes use of

the separation of the time scales by running the micro model only until it is sufficiently

relaxed, which requires much fewer (say M) than 1015 steps, and then extracting the
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data needed in order to evolve the macro system over a macro time step of 1 second.

Thus, in effect, HMM skips 1015−M micro steps of calculation for the microscale model.

It exchanges data between the macro and micro solvers after every 1015 micro time step

interval. The price one has to pay is that one has to reinitialize the microscale solver

at each macro time step, due to the temporal gap created by skipping 1015 −M micro

steps. One can take a different viewpoint. If we define

ỹ(k∆̃t+ tn) = yn,k, k = 1, · · · ,M (6.5.8)

where ∆̃t = ∆t/M and yn,k is the k-th step solution to the microscale model at the

n-th macro step in HMM, the variable ỹ is defined uniformly in the new rescaled time

axis. By doing so, we change the clock for the micro model (by a factor of ∆̃t/δt), but

we no longer need to reinitialize the micro model every macro time step, since the gap

mentioned above no longer exists. Because the cost of the macro solver is typically very

small compared with the cost of the micro solver, we may as well run the macro solver

using a smaller time step (i.e. 1/M second) and exchange data every time step. In this

way the data exchanged tend to be more smooth. It turns out that this has the added

advantage that it also reduces the statistical error (see the numerical results presented

in the next section). This is illustrated in Figure 6.6.

Figure 6.6: Illustration of HMM (upper panel) and the seamless algorithm (lower panel).

Middle panel: rescaling the micro time scale.
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Now we turn to the general form of the seamless algorithm proposed in [29] (see also

earlier related work in [35, 62]). Using the setup in Section 6.3, we can write the seamless

algorithm as follows:

1. Given the current state of the micro variables u(τ) and the macro variables U(t),

evolve the micro variables for one time step

u(τ + δτ) = Sδτ (u(τ);U(t)); (6.5.9)

2. Estimate D:

D = D(u(τ + δτ)); (6.5.10)

3. Evolve the macro variables

U(t+ ∆̃t) = S∆̃t(U(t);D). (6.5.11)

In this algorithm, we alternate between the macro- and micro-solvers, each running with

its own time step (therefore the micro- and macro-solvers use different clocks). At every

step, the needed macroscale data is estimated from the results of the micro-model (at that

step) and is supplied to the macro-solver. The new values of the macro-state variables

are then used to constrain the micro-solver.

Remarks:

1. The seamless algorithm incurs an additional cost due to the fact that we now

evolve the macro variables using much smaller time steps. However, in most cases, this

additional cost is insignificant since the cost of the micro-solver is still much bigger than

the cost of the macro-solver.

2. In HMM, we normally use time averaging to process the needed data. We may

still do that in the new algorithm. However, it is not clear that this indeed improves the

accuracy. We will return to this issue later.

From the consideration of time scales alone, the computational savings in the seamless

algorithm come from the fact that effectively the system evolves on the time step ∆̃t. In

the case when the time-scales are disparate, ∆̃t can be much larger than δτ . Therefore

one can define the savings factor:

CS =
∆̃t

δτ
=

∆t

Mδτ
(6.5.12)
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As an example, let us consider the case when the microscopic model is molecular dynam-

ics, and the time step size is femtoseconds (δτ = 10−15 seconds). If one wants to simulate

one second of physical time, then one needs to compute for 1015 steps. On the other

hand, assume that the relaxation time is on the order of picoseconds (10−12 seconds)

which is about 103 micro time steps, then M = 105 is a reasonable choice. Simulating

one second of physical time using the seamless algorithm requires 105 steps. This is a

factor of 1010 savings. The price to pay is that we no longer obtain accurate information

at the level of the microscopic details – we can only hope to get accurate information for

the macro-state variables.

Example 1: SDEs with multiple time scales

Consider the stochastic ODE:






dx

dt
= f(x, y)

dy

dt
= −1

ε
(y − ϕ(x)) +

√
2

ε
ẇ

(6.5.13)

where ẇ(t) is the standard white noise. The averaging theorems suggest that the effective

macroscale equation should be of the form of an ODE:

dx

dt
= F (x). (6.5.14)

HMM with forward Euler as the macro-solver proceeds as follows:

1. Initialize the micro-solver, e.g. yn,0 = yn−1,M ;

2. Apply the micro-solver for M micro steps:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)) +

√
δt

ε
ξn,m (6.5.15)

m = 0, 1, · · · ,M − 1. Here the {ξn,m}’s are independent normal random variables

with mean 0 and variance 1;

3. Estimate F (x):

F n =
1

M

M∑

m=1

f(xn, yn,m); (6.5.16)
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4. Apply the macro-solver:

xn+1 = xn + ∆t F n. (6.5.17)

In contrast, the seamless algorithm with forward Euler scheme is simply:

yn+1 = yn − δτ

ε
(yn − φ(xn)) +

√
δτ

ε
ξn (6.5.18)

xn+1 = xn + ∆̃t f(xn, yn+1) (6.5.19)

where the {ξn}’s are independent normal random variables with mean 0 and variance

1. Note that for HMM, we have xn ∼ x(n∆t), but for the seamless algorithm, we have

xn ∼ x(n∆̃t) = x(n∆t/M).

Example 2: The parabolic homogenization problem

Consider

∂tu
ε = ∂x · (a(x,

x

ε
, t)∂xu

ε) (6.5.20)

where a(x, y, t) is a smooth function and is periodic in y, say with period 1. The

macroscale model is of the form

∂tU = ∂x ·D (6.5.21)

D = 〈a(x, x
ε
, t)∂xu

ε〉 (6.5.22)

where 〈·〉 means taking spatial averages.

As in HMM, if we choose a finite volume method as the macro-solver, then D needs

to be evaluated at the cell boundaries [1]. We will make the assumption that the flux

D depends on the local values of U and ∂xU only. Consequently for the micro model,

we will impose the boundary condition that uε(x, t) − Ax is periodic where A = ∂xU is

evaluated at the location of interest.

Denote the micro-solver as:

un+1 = Sδτ,δx(un;A) (6.5.23)

In HMM, assuming that we have the numerical approximation {Un
j } (where tn = n∆t, Un

j ∼
U(n∆t, j∆x)) at the n-th macro time step, we obtain the numerical approximation at

the next macro time step by:

1. For each j, let Anj = (Un
j − Un

j−1)/∆x.
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2. Reinitialize the micro-solver, such that u0
j(x)− Anj x is periodic for each j.

3. Apply the micro-solver M steps:

un,m+1
j = Sδτ,δx(un,mj ;Anj )

with m = 0, 1, · · · ,M − 1.

4. Compute

Dn+1
j−1/2 = 〈a(x, x

ε
, tn)∂xu

n,M
j 〉 (6.5.24)

5. Evolve the macro-state variables using

Un+1
j = Un

j + ∆t
Dn+1
j+1/2 −Dn+1

j−1/2

∆x
(6.5.25)

In comparison, given {Un
j }, where Un

j denotes the numerical approximation at time

tn = n∆̃t inside the j-th cell, the seamless strategy works as follows:

1. For each j, let Anj = (Un
j − Un

j−1)/∆x.

2. Evolve the micro-state variable for one micro-time step:

un+1
j = Sδτ,δx(unj ;Anj ) (6.5.26)

3. Compute

Dn+1
j−1/2 = 〈a(x, x

ε
, tn)∂xu

n+1
j 〉 (6.5.27)

averaged over one period for the fast variable.

4. Advance the macro-state for one reduced macro-time-step:

Un+1
j = Un

j + ∆̃t
Dn+1
j+1/2 −Dn+1

j−1/2

∆x
(6.5.28)

It should be noted that as in HMM, the seamless algorithm is also a top-down strategy

based on a preselected macro-scale solver. In this sense, it can be regarded as a seamless

version of HMM.
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6.6 Application to fluids

The examples discussed above are all rather simplistic. As a more realistic example,

we discuss how HMM and the seamless algorithm can be used to model the macroscopic

fluid dynamics of complex molecules, under the assumption that the stress depends only

on the rate of strain.

The basic formulation. The microscopic model we will use is a molecular dynamics

model for chain molecules. Assume that we have N molecules, each molecule consists of

L beads connected by springs. Each bead moves according to Newton’s equation:

m
d2xj

dτ 2
= − ∂V

∂xj
(6.6.1)

where j = 1, . . . , LN accounts for all the beads. The interaction potential consists of two

parts:

1. All beads interact via the Lennard-Jones (LJ) potential:

V LJ(r) = 4ε0

((σ
r

)12

−
(σ
r

)6
)

(6.6.2)

where r is the distance between the beads, ε0 and σ are some energy and length

parameters, respectively.

2. There is an additional interaction between neighboring beads in each molecule via

a spring force, modeled by the FENE potential (see Section 5.1):

V FENE(r) =






1

2
kr2

0 ln

(
1−

(
r

r0

)2
)

if r < r0,

∞ if r ≥ r0.

(6.6.3)

In principle, we should work with a set of compressible flow equations at the macro

level, and an NVE ensemble at the micro level, as was discussed earlier in Section 6.3,

using (6.3.15) as the starting point for linking between the macro and micro models.

In practice, we will make two approximations for the sake of convenience: First, we will

assume that the flow is incompressible at the macroscale. Secondly, we will work with the

NVT ensemble in molecular dynamics, i.e. we will impose constant temperature in the
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MD [36] (see Section 4.2). The constant temperature constraint is imposed by using vari-

ous kinds of thermostats [36]. After making these two assumptions, the conservation laws

(6.3.15) with σ defined by the Irving-Kirkwood formula are no longer exact. However, we

will continue to use the Irving-Kirkwood formula as the basis for extracting macroscopic

stress from the MD data. This should be an acceptable approximation but its accuracy

remains to be carefully validated. For simplicity only, we will also limit ourselves to the

situation when the macroscale flow is a two dimensional flow. The molecular dynamics,

however, is done in three dimensions, and simple periodic boundary condition is used in

the third direction.

The macroscale model and the macro-solver. We will assume that the macro-

scopic density is a constant ρ0. Under this assumption, the macroscopic model should

be of the form:




ρ0 (∂tU +∇ · (U⊗U))−∇ · σs = 0, x ∈ Ω

∇ ·U = 0
(6.6.4)

where U is the macroscopic velocity field, σs is the stress tensor. The data that needs to

be supplied from the micro model is the stress: D = σs. We will make the assumption

that it depends only on ∇U. As we remarked earlier (Section 6.3), since the macroscale

model is in the form of the equations for incompressible flows, it is natural to use the

projection method as the macro solver [11]. Let us denote the time step by ∆t (or ∆̃t

in the seamless method), and the numerical solution at time tn = n∆t by Un. In the

projection method, we discretize the time derivative in the momentum equation using

the forward Euler scheme:

ρ0
Ũn+1 −Un

∆t
+∇ · (ρ0U

n ⊗Un − σns ) = 0. (6.6.5)

For the moment, pressure as well as the incompressibility condition are neglected. Next,

the velocity field Un+1 at the new time step tn+1 = (n + 1)∆t is obtained by projecting

Ũn+1 onto the divergence-free subspace:

ρ0
Un+1 − Ũn+1

∆t
+∇P n+1 = 0, (6.6.6)

where P n+1 is determined by the incompressibility condition:

∇ ·Un+1 = 0 (6.6.7)
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In terms of the pressure field, this becomes:

∆P n+1 =
ρ0

∆t
∇ · Ũn+1 (6.6.8)

with a Neumann type of boundary condition.

The spatial derivatives in the equations above are discretized using a staggered grid

as shown in Fig. 6.7. We denote the two components of the velocity field by U and

V . In the staggered grid, U is defined at {(xi, yj+ 1

2

)}, V is defined at {(xi+ 1

2

, yj)}, and

P is defined at the center of each cell {(xi+ 1

2

, yj+ 1

2

)}. The diagonal components of σs

are defined at {(xi+ 1

2

, yj+ 1

2

)}, and the off-diagonal terms are defined at {(xi, yj)}. The

operators∇ and ∆ in the equations (6.6.5), (6.6.6) and (6.6.8) are discretized by standard

central difference and the five-point formulas respectively.

Figure 6.7: A staggered grid for the discretization of the spatial derivatives in the macro

model of incompressible fluid dynamics. U = (U, V ). U is defined at the mid-point of

the vertical edges, V is defined at the mid-point of the horizontal edges, P is defined at

the centers of the cell. The diagonal components of the momentum flux are computed at

the cell centers indicated by the circles, and the off-diagonal components are computed

at the grid points indicated by the squares.

The HMM algorithm. Given an initial value U0 for the macro model, we set n = 0

and proceed as follows.

1. Compute the velocity gradient An = ∇Un at each grid point where the stress is

needed.

2. Initialize an MD at each grid point.
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3. Evolve each of the MD systems for M steps with a micro time step δτ . Each MD

is constrained by the local velocity gradient An through the boundary condition.

More details about this constrained MD will be discussed later.

4. Compute the stress σns from the MD results. This is done using the Irving-Kirkwood

formula after sufficient number of relaxation steps. The stress is averaged over each

MD box as in (6.6.14) (see below) and also over time to reduce statistical error.

More details will be given later.

5. Evolve the macro model for one macro step to obtain Un+1 ∼ U((n+ 1)∆t). This

is done using the projection method (6.6.5), (6.6.6), (6.6.8) with a macro time step

∆t and the stress computed from MD.

6. Set n := n+ 1, and go to step 1.

The seamless algorithm. The seamless algorithm, on the other hand, works as

follows. At each step, we

1. Compute the velocity gradient An = ∇Un at each grid point.

2. Evolve each MD system and the equation for the MD box (6.6.10) for one micro

time step δτ . For the MD, one uses a periodic boundary condition with respect to

an evolving box. The details of that are discussed next.

3. Compute the stress σns from the MD results. Similar to HMM, the stress is averaged

over the MD box.

4. Update the macro solution for one macro step ∆̃t to obtain Un+1 ∼ U((n+ 1)∆̃t).

This is done using the scheme in (6.6.5), (6.6.6), and (6.6.8) but with ∆t replaced

by the (smaller) time step ∆̃t.

5. Set n := n+ 1, and go to step 1.

Compared with HMM, the main difference is that the micro solver (here the MD) runs

continuously without reinitialization at each time step. MD communicates with the

macro solver at every time step - the constraint (i.e. the velocity gradient) imposed on

the MD changes at each MD step while the instantaneous stress computed from MD step
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is used to evolve the macro velocity field. The simplest version of this algorithm for shear

flows was introduced in [62].

Constrained MD and stress estimation. Next we discuss how to set up the

molecular dynamics in such a way to ensure that its average velocity field coincides with

the local macroscale velocity field. We have assumed that the stress is only a function

of the rate of strain. Therefore, associated with each macro grid point where stress is

needed, we make the approximation that the macroscale velocity field is a linear function:

U = U0 + Ax (6.6.9)

where A is the rate of strain tensor at the given macroscale grid point. According to

our assumption, σs depends only on A. Therefore, without loss of generality, we can

set U0 = 0. We will set up a molecular dynamics system which is constrained in such

a way that its average strain rate coincides with A. This constraint is imposed by

using a periodic boundary condition for particle positions with respect to an evolving

computational box. The vertices of the MD box move according to the dynamics:

dX

dτ
= AX(τ) (6.6.10)

When a particle goes outside the simulation box, it is inserted back from the opposite

side of the box and at the same time, its velocity is modified according to the imposed

velocity gradient: v̄i = vi + A(x̄i − xi). This is a generalization of the Lees-Edwards

boundary condition for shear flows [2]. See [63] for more details.

From the results of the molecular dynamics, we then compute the local stress using

a modification of the Irving-Kirkwood formula. We split the particle velocity into two

parts:

vi = v′
i + U(xi, τ) (6.6.11)

where v′
i is the fluctuating part of the velocity and U(x) = 〈∑i viδ(x− xi)〉 is the mean

velocity. Since the MD is constrained in such a way that the average velocity field is

U = Ax, the fluctuating part of the velocity of the particles in (6.6.13) is simply given

by v′
i = vi −Axi. The average momentum flux σ̃ can then be written as:

〈σ̃〉 = 〈ρ̃〉U⊗U− 〈σ̃s〉 (6.6.12)
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where σ̃s is given by

σ̃s =−
∑

i

mv′
i(τ)⊗ v′

i(τ)δ(x− xi(τ))

− 1

2

∑

i

∑

j 6=i
(xi(τ)− xj(τ))⊗ fij(τ)

∫ 1

0

δ (x− (1− λ)xj(τ)− λxi(τ)) dλ.
(6.6.13)

The ensemble average in (6.6.12) can be replaced or supplemented by spatial average (or

spatial-temporal average, as is done in HMM):

σs(n∆̃t) =
1

|ω|

∫

ω

σ̃s(x, nδτ)dx. (6.6.14)

Here ω is the (time-dependent) MD simulation box, |ω| is the volume of ω.

There is a basic difference between HMM and the seamless algorithm on how stress

is obtained from MD. In HMM, at each macro time step, a constrained MD is performed

and the stress is then computed following the dynamics. During the MD simulation,

the matrix A in (6.6.10) is fixed at the value given by the macro state at that macro

time step. Usually, the above formula is also averaged over time to reduce the statistical

fluctuations. In the seamless algorithm, however, (6.6.10) as well as the MD equations

are solved simultaneously with the macro model, and the data are exchanged at every

time step. Thus the matrix A changes at every step. But this change is very slow, due

to the fact that ∆̃t is smaller by a factor of M than the time step ∆t used in HMM.

Example: The driven cavity flow. Next we present some results of the seamless

algorithm for the driven cavity flow. These results are taken from [29]. Results for

HMM are quite similar. We will pay special attention to the effects of the fluctuations

that are intrinsic to this type of algorithms. We consider two types of fluids: The first

is composed of simple particles interacting via the Lennard-Jones (LJ) potential. The

second is a polymer fluid which at the microscale is modeled by the bead-spring model

described earlier. Under normal conditions, the LJ fluid is approximately Newtonian

(i.e. the stress and the rate of strain have a linear relationship) and the macro flow

behavior can be accurately described by the Navier-Stokes (NS) equation. Therefore, we

will regard the solution of the Navier-Stokes equation as the exact solution and use it as

a benchmark for the multiscale method. The details of the numerical parameters can be

found in [29].

The numerical results for the LJ fluid are shown in Fig. 6.8. The first column of the

figure shows the instantaneous streamlines obtained from the seamless multiscale method
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at several times. As a comparison, in the second column we show the numerical results of

the Navier-Stokes equation at the same times. The parameters used in the Navier-Stokes

equation are measured from separate MD simulations of the LJ fluid at the same density

and temperature (ρ = 0.81, µ = 2.0 in atomic units). From the figure we see that the

results of the multiscale method agree very well with the solution of the Navier-Stokes

equation.

To further assess the performance of the seamless method, we show in Fig. 6.9 the

x-component of the velocity as a function of time at two locations. The dashed curves

are the solution of the seamless method. As a comparison, we also plot the solution

of the Navier-Stokes equation (smooth solid curves). From the figures we see that the

major difference of the two results is the fluctuation in the solution of the multiscale

method. This is to be expected and is due to the statistical fluctuations in the stress

tensor computed from MD. This is indeed a major difficulty for such multiscale methods.

It can be improved in various ways, e.g. by employing ensemble average (i.e. many

MD replica associated with each grid point), using larger MD system (consequently the

instantaneous stress will be averaged over larger space, see (6.6.14)), or by reducing the

macro time step (see the next example). Apart from the fluctuations, the multiscale

result follows closely the solution of the Navier-Stokes equation.

Next we consider polymer fluids. The MD system at each grid point contains 1000

polymers; each polymer has 12 beads. The density of the beads is 0.81; the MD time

step is 0.002 (in atomic units). All the other parameters are the same as in the previous

example for the LJ fluid. The numerical results are shown in Fig. 6.10. In this example,

two different macro time steps are used: ∆̃t = 0.5 and ∆̃t = 0.25. The results are

shown in the two columns respectively. Comparing the two solutions we see that their

overall behavior agrees very well. We also see that the solution obtained using the smaller

macro time step (the right column) has less fluctuations. We can understand this in the

following way. In the seamless method, the stress tensor is implicitly averaged over time.

Given a macro time T , the MD simulation in the seamless algorithm is carried out for a

period of Tδτ/∆̃t in the clock of the macro-solver; therefore reducing the macro time step

∆̃t while keeping the micro time step δτ fixed yields a longer MD simulation. Hence the

numerical result has less statistical error. This is similar to HMM in which the statistical

error can be reduced by increasing the value of the parameter M , the number of MD

steps in one macro time step. This example shows that in the seamless algorithm, the
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same effect can also be achieved by reducing the macro time step. The difference is that

in HMM, time average is done explicitly whereas in the seamless method, this is done

implicitly.
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Figure 6.8: Streamlines of a Lennard-Jones fluid in the driven cavity flow at different

times: t = 7.5 × 103, 1.0 × 104, 1.25 × 104, 2.25 × 104 (in atomic units, see text) from

top to bottom. The left column is the result of the seamless multiscale method, and the

right column is the numerical solution of the Navier-Stokes equation.

6.7 Stability, accuracy and efficiency

Error control for multiscale methods presents a new challenge to numerical analysis,

particularly for problems involving multi-physics. Since multiscale methods are relatively

new, and their errors typically involve several different contributions, error analysis is very

much needed for understanding basic issues such as stability, accuracy and efficiency.
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Figure 6.9: The x-component of the velocity at the location (1000, 1600) (upper panel)

and (1500, 500) (lower panel) as a function of time. The smooth solid curves are the

solution of the Navier-Stokes equation; the dashed curves are the solution of the seamless

multiscale method.
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Figure 6.10: Streamlines of a polymer fluid in the driven cavity flow at different times:

t = 7.5×103, 1.0×104, 1.25×104, 2.0×104 from top to bottom. The left column is the

result of the seamless multiscale method with the macro time step ∆′t = 0.5; the right

column is the result of the multiscale method with a smaller macro time step ∆′t = 0.25.
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To begin with, what should we take as the exact or reference solution, to be com-

pared with the numerical solution of a multiscale method? In general, we should not take

the detailed solution of the microscopic problem as the reference solution, since approx-

imating that would require solving the full microscopic problem, and therefore defeat

the whole purpose. For type B problems, since we are only interested in the macroscale

behavior of the solutions, we can take Quε as the reference solution, where uε is the

solution to the microscopic model, and Q is the compression (or projection) operator

that maps a microscopic state to a macroscopic state. In practice, in order to get explicit

analytical results about the behavior of the error, we have to limit ourselves to situations

where we have explicit control of Quε. These are situations for which limit theorems are

available. These limit theorems allow us to approximate Quε by Ū , the solution to an

effective macroscale model.

6.7.1 The heterogeneous multiscale method

The basic idea, as was explained in [18], is to compare the HMM solution with the

solution of the selected macroscale solver for the effective macroscale model. Their dif-

ference is caused by an additional error in the HMM solution due to the error in the data

estimation process. This new error term is called the HMM error, denoted by e(HMM).

We will assume that both the HMM and the macro-solver for the effective macroscale

model can be expressed in the form

Un+1
HMM

= Un
HMM

+ ∆tF ε(Un
HMM

, Un−1
HMM

, · · · ) (6.7.1)

Ūn+1
H = Ūn

H + ∆tF̄ (Ūn
H , Ū

n−1
H , · · · ) (6.7.2)

Note that

||Quε − UHMM|| ≤ ||Quε − Ū ||+ ||ŪH − Ū ||+ ||UHMM − ŪH || (6.7.3)

where Ū is the solution of the macroscale model, ŪH is the numerical solution to the

effective macroscale model computed using (6.7.2), Uhmm is the HMM solution. The first

term on the right hand side of (6.7.3) is due to the error of the effective model; the second

term is due to the error in the macroscale solver; the third term is the HMM error, due

to the error in the estimated data. Normally we expect that estimates of the following
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type hold:

||Quε − Ū || ≤ Cεα (6.7.4)

||Ū − ŪH || ≤ C(∆t)k (6.7.5)

where k is the order of accuracy of the macro-solver. In addition, define

e(HMM) = max
U
‖F̄ (Un, Un−1, · · · )− F ε(Un, Un−1, · · · )‖ (6.7.6)

Then under general stability conditions, one can show that [18]:

||UHMM − ŪH || ≤ Ce(HMM) (6.7.7)

for some constant C. Therefore, we have

||Quε − UHMM|| ≤ C(εα + (∆t)k + e(HMM)) (6.7.8)

The key in getting concrete error estimates and thereby giving guidelines to designing

multiscale methods lies in the estimation of e(HMM). This is specific to each problem.

Let us illustrate this general strategy using the example (6.5.1). Note that in the

limit as ε → 0, one expects y to be close to ϕ(x), and hence the effective dynamics for

the slow variable x is given by

dx̄

dt
= f(x̄, ϕ(x̄)) = F (x̄) (6.7.9)

In fact it can be easily shown that if we denote by (xε, yε) the solution of (6.5.1) and if

xε(0) = x̄(0), then for any fixed T > 0, there is a constant C1 independent of ε, such

that

|xε(t)− x̄(t)| ≤ C1ε. (6.7.10)

if t ≤ T . This is (6.7.4) for the present example.

Next, let us pick the forward Euler as the macro solver. If we use it to solve the

effective model with time step size ∆t and if we denote the numerical solution by {x̄n},
then we have

|x̄(tn)− x̄n| ≤ C2∆t (6.7.11)

if tn ≤ T . This is (6.7.5) for the present example.
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The last component is to estimate the HMM error. We can express HMM as:

xn+1 = xn + ∆tf̃(xn) (6.7.12)

for some function f̃ depending on the details of the HMM procedure. Let us assume that

the microscale problem is solved using forward Euler with time step δt for M steps and

the last value is used as the estimated force for the macro solver, i.e. f̃(xn) = f(xn, yn,M),

then it is a simple matter to prove [17]:

e(HMM) = |f̃(xn)− F (xn)| ≤ C|yn,M − ϕ(xn)| ≤ C3

(∣∣∣∣1−
δt

ε

∣∣∣∣
M

+
δt

ε

)
(6.7.13)

Here the first term on the right hand side accounts for the relaxation error for the fast

variable, the second term accounts for the error in the micro-solver.

Putting all three components together, we have, for tn ≤ T ,

|xε(tn)− xn| ≤ C

(
ε+ ∆t+

∣∣∣∣1−
δt

ε

∣∣∣∣
M

+
δt

ε

)
(6.7.14)

In the general case when k-th order stable macro and micro solvers are used, we have

[17]:

|xε(tn)− xn| ≤ C

(
ε+ ∆tk +

∣∣∣∣A
(
δt

ε

)∣∣∣∣
M

+

(
δt

ε

)ℓ)
(6.7.15)

where k and ℓ are the order of accuracy for the macro and micro solvers respectively.

A(λδt) is the amplification factor of the microscale solver for the ODE ẏ = −λy.
This is what we get if we follow the standard procedure for analyzing HMM, and they

hold as long as {yn,0} are bounded. However, if we take yn,0 = yn−1,M , then (6.7.13) can

be improved to [20]

e(HMM) ≤ C

(
ε∆t

Mδt
+ ∆t

∣∣∣∣1−
δt

ε

∣∣∣∣
M

+
δt

ε

)
. (6.7.16)

and similar results can be obtained when higher order macro and micro solvers are used.

In the same fashion, for stochastic ODEs (6.5.13), one can show that

sup
t≤T

E|xε(t)− x̄(t)| ≤ C
√
ε
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where x̄ is the solution to the limiting equation discussed in Section 6.5. If we use the

reinitialization yn,0 = yn−1,M in HMM, we have, under suitable conditions [22, 20]:

e(HMM) ≤ C

(√
ε∆t

Mδτ
+

(
δτ

ε

)ℓ)
. (6.7.17)

sup
t≤T

E|xHMM(t)− xε(t)| ≤ C

(
√
ε+

√
ε∆t

Mδτ
+

(
δτ

ε

)ℓ
+ ∆tk

)
. (6.7.18)

Here k and ℓ are the (strong) order of the macro and micro-solvers, respectively.

Error analysis of this type has also been carried out for the finite element HMM

applied to elliptic homogenization problems [28]. The structure of the error is very similar

to what we just discussed. The parabolic homogenization problem has been analyzed in

[1, 58]. Error analysis and careful numerical studies for the hyperbolic homogenization

problem were presented in [10].

Error analysis of HMM for the case when the effective macroscale model is stochastic

has been considered in [40, 39, 57].

Examples with discrete microscale models were considered in [21]. The microscopic

models can either be molecular dynamics or kinetic Monte Carlo methods. The macroscale

model considered in [21] was gas dynamics or general nonlinear conservation laws. It was

proven in [21] that e(HMM) consists of three parts: the relaxation error, the error due

to the finite size of the simulation box for the microscale model, and the sampling error.

Clearly as the system size increases, the finite size effect decreases but the relaxation

error increases. Therefore this result gives some suggestions on how to choose the size of

the domain and the duration for the microscale simulation. Unfortunately there are very

few explicit results on the dependence of these errors on the box size. All known results

are proved for lattice models. We refer to [21] for a discussion of this issue.

These examples are admittedly simple, compared with the real problems we would

like to handle. However, they do provide crucial insight into the structure of the error,

and they give suggestions on the magnitude of each contribution.

6.7.2 The boosting algorithm

In principle, we should be able to develop a similar framework for the error analysis of

the seamless algorithm. However, this program has not yet been implemented. Therefore
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as in [29], we will focus on the simple examples of ODEs and SDEs discussed in Section

6.5. Denote by xh the numerical solution for the macro variable x and x̄ the solution to

the limiting equation (as ε → 0). For these simple examples, the error for the seamless

algorithm can be understood very simply using the observation mentioned earlier when

we introduced the seamless algorithm: Instead of viewing the micro- and macro-solvers

with different clocks, we can think of them as being running on the same clock, but with

a different value of ε that satisfies
δτ

ε
=

∆̃t

ε′
(6.7.19)

or

ε′ =
∆̃t

δτ
ε (6.7.20)

The seamless algorithm can be viewed as a standard algorithm applied to the modified

problem with a modified parameter value. The error consists of two parts: The error due

to boosting the parameter value from ε to ε′ and the error due to the numerical solution

of the boosted model. For the stiff ODE (6.2.1), we obtain the following: For any T > 0,

there exists constant C such that, for t ≤ T ,

|xh(t)− x̄(t)| ≤ C



ε′ +
(

∆̃t

ε′

)ℓ

+ ∆̃tk





= C

(
∆̃t

δτ
ε+

(
δτ

ε

)ℓ
+ ∆̃tk

) (6.7.21)

In terms of the parameters entering the HMM algorithm, (6.7.21) can be written as

|xh(t)− xε(t)| ≤ C

(
ε+

∆t

M

ε

δτ
+

(
δτ

ε

)ℓ
+

(
∆t

M

)k)
(6.7.22)

This is to be compared with the error for the HMM algorithm given in (6.7.15) and

(6.7.16). We see that the accuracy is comparable.

Let us now consider the SDE (6.5.13). Using δτ/ε = ∆̃t/ε′, we see that (6.5.18) and

(6.5.19) can be rewritten as:

yn+1 = yn − ∆̃t

ε′
(yn − ϕ(xn)) +

√
∆̃t

ε′
ξn (6.7.23)

xn+1 = xn + ∆̃tf(xn, yn+1) (6.7.24)
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which can be considered as a standard discretization of (6.5.13) with the parameter value

of ε boosted to ε′. Therefore, the error for the seamless algorithm is controlled by [22]:

sup
t≤T

E|xh(t)− x̄(t)| ≤ C



√ε′ +
(

∆̃t

ε′

)ℓ

+ (∆t)k





= C

(√
ε∆t

Mδτ
+

(
δτ

ε

)ℓ
+ (∆t)k

)
.

(6.7.25)

sup
t≤T

E|xh(t)− xε(t)| ≤ C

(
√
ε+

√
ε∆t

Mδτ
+

(
δτ

ε

)ℓ
+ (∆t)k

)
. (6.7.26)

Compared with (6.7.18), we see that the errors are comparable for this case also.

6.7.3 The equation-free approach

We begin with the stability of the projective integrators for stiff ODEs. This has been

analyzed in [37]. The essence of this analysis is very nicely illustrated by the following

simple calculation presented in [34] in which ideas similar to that of the projective in-

tegrators were also proposed. For the sake of clarity, we will follow the presentation of

[34].

Consider the ODE 




dy

dt
= −1

ε
y

y(0) = 1

(6.7.27)

where ε ≪ 1. Consider a composite scheme which consists of m steps of forward Euler

with step size δt followed by one step of forward Euler with step size ∆t, where δt ≪
ε,∆t≫ ε.

After one composite step, the numerical solution is given by y1 = Rmy
0 where the

amplification factor Rm is given by

Rm =

(
1− δt

ε

)m(
1− ∆t

ε

)
(6.7.28)

In order for the method to be stable, i.e. |Rm| ≤ 1, we simply need

m > − log
(

∆t
ε
− 1
)

log
(
1− δt

ε

) ∼ ε

δt
log

(
∆t

ε

)
(6.7.29)
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The value of ∆t and δt/ε is set by the error tolerance. Therefore as ε→ 0, the total cost

for advancing the system over O(1) time interval is O(log(1/ε)), compared with O(1/ε)

if we use forward Euler with the same step sizes. This calculation illustrates nicely the

effectiveness of solving stiff ODEs using both big and small time steps.

Turning to the issue of spatial discretization in the equation-free approach. We will

focus on patch dynamics since it contains features of both the projective integrators and

the gap-tooth scheme. We will restrict our attention to a one dimensional problem and

denote by {xj = j∆x} the macro grid points. Around each grid point, there is a domain

of size H over which the microscopic model is simulated, and there is another domain of

size h on which the microscale variables are averaged to yield the macroscale variables.

Naturally, h ≤ H. Given the values of the macro variables at the grid points, {Un
j }, the

lifted state is given by [51]

ũ0(xj) =
d∑

k=0

1

k!
Dk,j(x− xj)k (6.7.30)

where Dk,j is some approximations to the derivatives of the macroscale profile at xj, for

example:

D2,j =
Un
j+1 − 2Un

j + Un
j−1

∆x2
, D1,j =

Un
j+1 − Un

j−1

2∆x
, D0,j = Un

j −
1

24
h2D2,j (6.7.31)

Below we will consider the case when d = 2.

Consider the case when the microscale model is the heat equation [51]:

∂tu = ∂2
xu (6.7.32)

The effective macroscale equation is also a heat equation: ∂tU − ∂2
xU . Without loss of

generality let j = 0 and let ũ0 = D0,0 +D1,0x+ 1
2
D2,0x

2. The solution to the microscale

model after time δt is

Sδtũ0(x) = D0,0 +D1,0x+D2,0(
1

2
x2 + δt) (6.7.33)

Denote by Ah the averaging operator over the small domain (of size h), we have

Ũn
δt = AhSδtũ0(x) = D0,0 +D2,0δt+

1

24
D2,0h

2 = Un +D2,0δt (6.7.34)

Simple first order extrapolation gives the familiar scheme:

Un+1
0 = Un

0 + ∆tD2,0 (6.7.35)
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as was shown in [51]. This is both stable and consistent with the heat equation, which

is the right effective model at the macroscale.

Now let us turn to the case when the microscale model is the advection equation

∂tu+ ∂xu = 0 (6.7.36)

In this case, we have

Sδtũ0(x) = D0,0 +D1,0(x− δt) +
1

2
D2,0(x− δt)2 (6.7.37)

Hence,

Ũn
δt = AhSδtũ0(x) = D0,0−D1,0δt+

1

2
D0,0δt

2+
1

24
D0,0h

2 = Un−D1,0δt+
1

2
D0,0δt

2 (6.7.38)

Simple first order extrapolation yields:

Un+1
0 = Un

0 + ∆t(−D1,0 +
1

2
δtD2,0) (6.7.39)

Since δt ≪ ∆t, the last term is much smaller than the other terms, and we are left

essentially with the Richardson scheme:

Un+1
0 = Un

0 −∆tD1,0 (6.7.40)

This is unstable under the standard time step size condition that ∆t ∼ ∆x, due to the

central character of D1,0.

There is also a problem of consistency. Assuming that the effective macroscale model

is a 4th order PDE. Without knowing this explicitly, the lifting operator may stop short

of using any information on the 4th order derivatives, which leads to an inconsistent

scheme. These issues are discussed in [31].

These examples are very simple but they illustrate a central difficulty with the bottom-

up approach for multiscale modeling: Since the microscale model is only solved on small

domains for short times, it does not have enough influence on the overall scheme to bring

out the characters of the macroscopic process. Therefore the overall scheme does not

encode enough information about the nature of the macroscale behavior. In particular,

there is no guarantee of stability or consistency for such an approach.

These problems are fixed in a subsequent version of patch dynamics proposed in [66].

In this version, one assumes a macro model of the form

∂tU = F (U, ∂xU, · · · , ∂dxU, t) (6.7.41)
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to begin with, and selects a stable “method-of-lines discretization” of this macro model:

∂tUi = F (Ui, D
1
i (U), · · · , Dd

i (U), t) (6.7.42)

Here Dk(U) is some suitable finite difference discretization of ∂kxU . For example, for

advection equation, one should use some one-sided discretization. The operator Dk is

then used in the lifting operator:

ūiε(x, t
n) =

d∑

k=0

Dk
i (Ū

n)
(x− xi)k

k!
, x ∈ [xi −

H

2
, xi +

H

2
] (6.7.43)

The idea here is to use a stable macro-solver to guide the construction of the lifting

operator. This version of the patch dynamics does overcome the difficulties discussed

above. However, it has also lost its original appeal as an approach that does not require

a preconceived form of the macroscale model. It now has the shortcomings of HMM, but

unlike HMM, it uses the macro-solver indirectly, through the lifting step. This adds to

the complexity of the lifting operator, without any obvious benefits in return. Indeed in

this new version, the reinitialization process not only has to take into account consistency

with the local values of the macro variables (which is the only requirement in HMM),

but also some charateristics of the unknown macroscale model, such as the order of the

effective macroscale PDE, the direction of the characteristic fields if the macroscale model

happens to be a first order PDE. The most unsettling aspect is that we do not know what

else needs to be taken into account. This seems to be an issue for any kind of general

bottom-up strategy.

6.8 Notes

Memory effects and time scale separation

Much of the present chapter assumes that there is a separation between the time scale

for the coarse-grained variables and the time scale for the rest of the degrees of freedom.

In many situations, particularly when analyzing the dynamics of macromolecules, it is

unlikely that such a time scale separation exists, yet it is still very desirable to consider

a coarse-grained description. In this case, the dynamics of the coarse-grained variables

should in general have memory effects, as suggested by the Mori-Zwanzig formalism. How

to handle such memory effects in practice is an issue that should receive more attention.
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Top-down vs. bottom-up strategies

An ideal multiscale method is one that relies solely on the microscale model, without

the need to make a priori assumptions about the form of the macroscale model. Clearly

such a strategy has to be a bottom-up strategy. Unfortunaltey, until now, there are no

such reliable, ideal strategies that are of general interest. Several candidates have been

proposed. The equation-free approach is one possibility. Another possible approach is

the renormalization group methods proposed by Ceder and Curtarolo [14]. There the

idea is to perform systematic coarse-graining to find the effective Hamiltonian at large

scales. This is certainly an attractive strategy. But it is not clear how widely applicable

this is. For example, it is not clear how to take into account dissipative processes such

as heat conduction and viscous dissipation.

As we explained earlier, HMM is an example of a top-down strategy. As such, it

does represent a compromise between idealism and practicality. In some sense, it is the

most straightforward way of extending the sequential multiscale strategy to a concurrent

setting.

The fiber bundle structure

The philosophy used in HMM and the seamless algorithm can be better appreciated

if we formulate the multiscale problems using a fiber bundle structure, in which the local

microstructure is represented by the fibers. The relevance of the concept of fiber bundles

was noted in [18, 20]. The systematic treatment was presented in [26]. It is not clear

that there is any real substance in such a viewpoint. But it is sometimes a convenient

way to think about this class of multiscale problems. In addition, it gives rise to some

interesting models (see [26]).

We start with a simple example. Consider the nonlinear homogenization problem:

∂tu
ε = ∇ · (a(uε,x, x

ε
)∇uε) (6.8.1)

Here a(u,x, z) is a smooth and uniformly positive definite tensor function, which is

periodic in z with period Γ. For this problem, the homogenized equation takes the form:

∂tU = ∇ · (A(U,x)∇U), (6.8.2)

where

A(U,x) =
1

|Γ|

∫

Γ

a(U,x, z)(∇zχ(z;U,x) + I) dz. (6.8.3)
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Here I is the identity matrix and χ(z;U,x) is the solution of

∇z · (a(U,x, z)(∇zχ+ I)) = 0 in Γ (6.8.4)

with periodic boundary condition.

Intuitively, we can describe the behavior of the solution as follows. At each point x,

uε(x) is approximated closely by the value of U(x), the microstructure of uε is locally

described by χ, the solution to the cell problem (6.8.4). χ is parametrized by (U,x) and

is a function over Γ. We can think of χ as being the fiber over x that describes the local

microstructure.

Another example is the Cauchy-Born rule discussed in Chapter 5. Here the macroscale

behavior is the large scale deformation of the material, the microstructure is the local

behavior of the crystal lattice at each point. It is more interesting to look at the case

of complex lattices. Roughly speaking, Cauchy-Born rule suggests the following picture

about the deformation of the material: The underlying Bravais lattice undergoes smooth

deformation, described by the Cauchy-Born nonlinear elasticity model. The shift vectors

(p1,p2, · · · ,ps), which describe the local microstructure (within each unit cell), minimize

the function W (A,p1,p2, · · · ,ps) where A is given by the deformation gradient for the

Bravais lattice at the point of interest. Here the microstructure is parametrized by A

and is a function of the indicies for the shift vectors. The position of the shift vectors

can undergo bifurcations, as is the case for structural phase transformation.

This last example becomes more interesting when the atomistic model is an electronic

structure model, with the electronic structure playing the role of the internal structure

(the shift vectors). In this case, the problem becomes very similar to the homogenization

problem discussed in the first example, with the local electronic structure being the fiber

that describes the local microstructure.

To explore the fiber bundle structure further, let us note that there are two fiber

bundles involved (see Figure 6.11): The first is a fiber bundle in the space of indepen-

dent variables, for which the macroscale space-time domain of interest is the underlying

base manifold, called the domain base manifold, and the domains for the additional fast

variable z which describes the local microstructure are the fibers. The second is a fiber

bundle that parametrizes the microstructure. The base manifold, the state base manifold,

is the space of the parameters for the microstructure (e.g. the cell problem). The fibers

are the space of functions over the fibers in the first fiber bundle.

A fiber bundle model generally consists of the following three components:
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Figure 6.11: Fiber bundle structure.

1. A macroscale model

L(U ;D(U)) = 0. (6.8.5)

Here U = U(x) is a mapping from the domain base manifold Ω to the state base

manifold S. D is the data that depends on the microstructure.

2. The cell problem, which is a microstructure model over the fibers for any x ∈ Ω:

L(u;U(x)) = 0. (6.8.6)

Here U(x) enters as parameters (or constraints) for the microscale model.

3. A relation that specifies the missing input to the macroscale model in terms of the

solutions to the microstructure model:

D(U) = D(U, u(·;U)). (6.8.7)

This complex language simply says that the cell problems are parametrized by U and

the solutions to the cell problems give the missing data in the macro model.

For the homogenization example, the first component is given by (6.8.2). The second

component is given by (6.8.4). The third component is given by (6.8.3).

This structure is useful in at least two ways. The first is that it gives us a way of

thinking about the underlying mathematical structure for the problems handled by HMM
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and the seamless algorithm. The second is that it yields very interesting models. For

example, in the fiber bundle models, the microstructure is usually slaved by the macro

state of the system. This is analogous to the Born-Oppenheimer model in ab initio

molecular dynamics. One can also formulate the analog of the Car-Parrinello model by

introducing relaxational dynamics for the fibers. This yields interesting models when

applied to the examples discussed above. We refer to [26] for details and additional

examples.
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Chapter 7

Resolving Local Events or

Singularities

We now turn to type A problems. These are problems for which a macroscopic model

is sufficiently accurate except in isolated regions where some important events take place

and a microscale model is needed to resolve the details of these local events. Examples

of such events include chemical reactions, interfaces, shocks, boundary layers, cracks,

contact lines, triple junctions, and dislocations. Conventional macroscale models fail

to resolve the important details of these events. Yet other than these local events, a

full microscopic description is unnecessary. Therefore, a coupled macro-micro modeling

approach is preferred in order to capture both the macroscale behavior of the system and

the important details of such local events or singularities.

One earliest and most well-known example of this type of approach is the coupled

quantum mechanics and molecular mechanics (QM-MM) method proposed by Warshel

and Levitt during the 1970’s for modeling chemical reactions of biomolecules [51] (see also

[50]). In this approach, quantum mechanics models are used in regions where the chemical

reaction takes places, and classical molecular mechanics models are used elsewhere. Such

a combined QM-MM approach has now become a standard tool in chemistry and biology.

This kind of philosophy has been applied to a variety of problems in different disciplines.

In the general setting, a locally coupled macro-micro modeling strategy involves the

following major components:

1. A coupling strategy. As we discuss below, there are several choices: The domain

315



316 CHAPTER 7. RESOLVING LOCAL EVENTS OR SINGULARITIES

decomposition method, adaptive model refinement or adaptive model reduction,

and the heterogeneous multiscale method (HMM).

2. The data, usually in the form of boundary conditions, to be passed between the

macro and micro models.

3. The implementation of the boundary conditions for the macro and micro models.

The second and third components constitute the macro-micro interface conditions. This

is the main issue for type A problems, namely, how should we formulate the interface

conditions such that the overall macro-micro algorithm is stable and accurate? Of par-

ticular interest is the consistency between the different models at the interface where the

two models meet.

Since the nature of the different models can be quite different, linking them together

consistently can be a very non-trivial task. For example, quantum mechanics models

describe explicitly the charge density due to the electrons. This information is lost in

classical models. Consequently charge balance is a very serious issue in coupled QM-

MM formulations. As another example, temperature is treated as a continuous field in

continuum mechanics. However, in molecular dynamics, temperature is a measure of the

magnitude of the velocity fluctuations of the atoms. These are drastically different repre-

sentations of the same physical quantity. For this reason, coupling continuum mechanics

and molecular dynamics at finite temperature is a highly non-trivial task.

In what follows, we will first discuss general coupling strategies. We will then discuss

how to assess the performance of these coupling strategies in terms of stability and

consistency, two most important notions in classical numerical analysis. As expected,

these classical notions take on a new dimension in the current context, due to the different

nature of the physical models involved.

7.1 Domain decomposition method

This is a rather popular strategy. The QM-MM method, for example, uses such a

strategy. The basic idea is very similar to that of the standard domain decomposition

method (see Chapter 3), except that different models are used on different domains.

The places where interesting local events occur are covered by domains on which the

microscale models are used. The size of the domain is chosen based on considerations of
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accuracy and efficiency. The domains may or may not overlap. They may change as the

computation proceeds.

Specifically, let Ω be the physical domain of interest, and assume that Ω is decomposed

into the union of two domains Ω1 and Ω2: Ω = Ω1 ∪ Ω2. Different models will be used

on Ω1 and Ω2. Our task is to formulate a model for the whole domain Ω.

According to whether Ω1 and Ω2 overlap with each other, we may have several different

situations:

1. Ω1 and Ω2 overlap with each other.

2. Ω1 and Ω2 do not overlap, but they are appended with buffer regions in order to

deal with the issue of boundary conditions for the subsystems on Ω1 and Ω2.

3. Ω1 and Ω2 intersect only along an interface, and no buffer regions are used.

7.1.1 Energy-based formulation

If both models are in the form of variational principles (which usually amounts to

minimizing some energy or free energy), then it is natural to look for a variational for-

mulation for the full problem on Ω. The starting point of the energy-based formulation

is a total energy in the form:

Etot = E1 + E2 + Eint (7.1.1)

where Etot is the total energy of the system, E1 and E2 are the energies associated with

Ω1 and Ω2 respectively, Eint is the energy due to the interaction between the subsystems

on Ω1 and Ω2.

The QM-MM method

The most well-known example of this class of models is the QM-MM method. In

QM-MM models of macromolecules, one uses a QM model on one part of the molecule,

say Ω1, and an MM model on the rest of the molecule Ω2. (7.1.1) becomes:

Htot = H1 +H2 +Hint (7.1.2)

where H1 is the quantum mechanical Hamiltonian on Ω1, H2 is the contribution from Ω2

computed using a classical mechanics model, Hint is the contribution to the energy due

to the interaction between the subsystems on Ω1 and Ω2.
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There are two important issues for this model. The first is how to compute Hint. The

second is how to impose boundary conditions for the quantum mechanical component of

the system. In particular, how should we terminate covalent bonds?

Regarding the first issue, the simplest strategy is to use a classical empirical potential

to treat the long range interaction, i.e. the electrostatic and van der Waals interaction

[51]:

Hint = Helec +HvdW (7.1.3)

For example, for the van der Waals interaction, one may use:

HvdW =
∑

I,j

4εI,j

((
σI,j

|xI − xj|

)12

−
(

σI,j
|xI − xj|

)6
)

(7.1.4)

where the subscripts I and j denote atoms in the QM and MM regions respectively.

εI,j and σI,j are empirical parameters that are obtained from standard optimization

procedures. The electro-static interaction is often modeled in the form:

Helec = −
∑

j

∫

Ω1

Qjρ(r)

|r− xj|
dr +

∑

I,j

ZIQj

|xI − xj|
(7.1.5)

where ZI is the nuclei charge of the I-th atom in the QM region, Qj is the partial charge

of the j-th atom in the MM region, ρ(·) is the electron density in the QM region.

We now turn to the second issue. When a covalent bond cuts across the interface

between the QM and MM regions, the electron that contributes to the covalent bond

is explicitly represented on the QM side, but not on the MM side. This gives rise to

some difficulties, such as the stablization of the covalent bonds, and charge balance. In

addition, the bond, bond angle and dihedral angle terms in the MM potential need a

partner in the QM region to act on.

Numerous proposals have been made to deal with this issue. Some of the representa-

tive ones are:

1. The use of “link atoms” [46]: An atom, usually hydrogen, is added to the QM-MM

bond. This link atom satisfies the valence of the QM region. Depending on the

formulation, it may or may not interact with the atoms in the MM region.

2. The use of hybrid orbitals [51, 20]: An orbital is added to the QM-MM bond.

Depending on the formulation, it may or may not enter into the self-consistent

iteration for the whole system.
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3. The pseudo-bond approach [54]: The boundary atom in the MM region is replaced

by an atom with one valence electron and an effective core potential. It then forms

a pseudo-bond with the boundary atom in the QM region. This pseudo-bond is

taken into account only in the QM part of the energy.

At this point, the QM-MM method is still somewhat of an art. For a thorough review

of the subject, we refer to [19].

For crystalline solids, similar strategies were used in [1] to construct coupled tight-

binding and molecular dynamics models for the simulation of crack propagation in silicon

which is a covalently-bonded crystal. The extension to metallic systems has been consid-

ered in [5], in which methods that couple orbital-free DFT and empirical EAM models

were proposed.

The Arlequin method

One strategy for coupling different models is to blend them together using a transition

function. One of the earliest examples of this type is the Arlequin method which is based

on blending together the energies of the different models in the overlap region using a

transition function, and enforcing the consistency between the macro and micro states

by explicit constraints [8]. Take for example the case when the macroscale model on Ω1

is in the form:

E1(U) =

∫

Ω1

W (∇U(x))dx (7.1.6)

and the microscale model on Ω2 is an atomistic model in the form:

E2(u) =
∑

xj∈Ω2

Vj (7.1.7)

where Vj is the energy associated with the j-th atom. Let S = Ω1 ∩ Ω2, then the total

energy for the coupled system has the form:

Etot =

∫

Ω1

α(x)W (∇U(x))dx +
∑

xj∈Ω2

β(xj)Vj + C(λ,U, {uj}) (7.1.8)

where the transition functions α and β satisfy the conditions:

α+ β = 1, on Ω (7.1.9)

α = 1, on Ω1 \ S (7.1.10)

β = 1, on Ω2 \ S (7.1.11)
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The last term in (7.1.8) is a Lagrange multiplier term to enforce the constraints that the

macro and micro states are consistent with each other on S.

Other strategies that use similar ideas can be found in [3, 2]. See also [6] for an

example of blending different differential equations using a transition function.

7.1.2 Dynamic atomistic and continuum methods for solids

We now turn to methods for modeling dynamics. We first discuss the example of

modeling solids with defects. Many proposals have been made on constructing coupled

atomistic and continuum models for simulating the dynamics of solids. We will briefly

mention a few representative ideas.

Energy-based formulation

One first constructs a total energy for the coupled system. Dynamics is then modeled

simply by Hamilton’s equation associated with the total energy. This is the strategy

followed in [1, 42]. This idea is appealing for its simplicity. However, it has two notable

shortcomings: It is very difficult to take into account thermal effects, particularly the

effect of thermal gradients, in this setting. Secondly, it is also difficult to improve coupling

conditions along the interface between the atomistic and continuum models.

Force-based formulation

So far, this is limited to the case of zero temperature. The continuum model is

elasto-dynamics. The atomistic model is molecular dynamics. To ensure the consis-

tency between the two models, the continuum elasto-dynamics model is derived from the

Cauchy-Born rule applied to the atomic model (see Section 4.2). The main issue is how

to ensure the consistency between the two models at the atomistic-continuum interface.

This is a rather complex issue. We will discuss this issue for static problems later in the

chapter. But much remains to be done for dynamic problems.

Examples of such an approach can be found in [2, 12, 38].

As we will explain in the notes, this approach allows us to improve the coupling

condition at the interface. However, it is still limited to the zero temperature setting.

Taking into account thermal effects is rather difficult in this setting.

Conservation-law based formulation

The most general formulation is to use conservation laws. As we explained in Chapter
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4, one can formulate conservation laws of mass, momentum and energy, for both the

continuum and atomistic models. This provides a natural starting point for formulating

coupled models. The most notable example is [26]. We will return to this in Section 7.3.

7.1.3 Coupled atomistic and continuum methods for fluids

There is a similar story for fluids. The literature on this topic is equally vast, see

for example [35, 23, 22, 24, 25, 34, 52, 16, 7, 40]. We will not attempt to review the

literature. Instead, we will examine the simplest situation of flow between parallel plates

to illustrate the main ideas. Our presentation follows closely the setup in [39].

The channel is defined by {(x, y, z) ∈ R
3,−∞ < x, z < ∞,−L ≤ y ≤ L}. We will

consider the simplest situation when the macroscopic flow is a shear flow, i.e., if we denote

the velocity field by U = (U, V,W ), then U = U(t, y), V = 0,W = 0.

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

y=L

y=b

y=a

y=0

c−region

p−region 

Figure 7.1: Illustration of the domain decomposition method for coupled atomistic-

continuum simulation. The shaded region is the overlap region between the c- and

p-regions (courtesy of Weiqing Ren). Due to symmetry, only half of the computational

domain is shown.

The continuum equation in this case reduces to

ρ∂tU − ∂yσ12 = 0 (7.1.12)

where ρ is the density of the fluid, σ12 is the shear stress. We will consider Lennard-Jones

fluids for which σ12 is very accurately modeled by a linear constitutive relation for the
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kind of shear rates considered here:

σ12 = µ∂yU (7.1.13)

where µ is the viscosity of the fluid. Its value can be obtained from a MD simulation of

shear flows, as the ratio between the measured shear stress and the imposed shear rate.

Combining (7.1.12) and (7.1.13), we obtain:

ρ∂tU = µ∂2
yU (7.1.14)

At the boundary y = ±L, we will use the no-slip boundary condition U = 0.

At the microscopic level, the system is made up of particles interacting with the

Lennard-Jones potential (see section 4.2). Their dynamics obey Newton’s equation. A

thermostat is applied to maintain the system at the desired temperature T .

For the coupled scheme, we define the atomistic region by: −b ≤ y ≤ b. The two

continuum regions are defined by −L ≤ y ≤ −a and a ≤ y ≤ L respectively. Here

0 < a < b. The two regions defined by −b ≤ y ≤ −a and a ≤ y ≤ b are the overlapping

regions. In general, we should have L ≫ b, i.e. the continuum regions are much larger

than the atomistic regions. Following [39], we will call the continuum and atomistic

regions c-regions and p-regions respectively.

The dynamics in the c-region and p-region are coupled through the exchange of veloc-

ity or shear stress in the overlapping region in the form of boundary conditions. Boundary

conditions are required for the continuum model at y = ±a, and for the atomistic model

at y = ±b. The required quantities in these boundary conditions are measured from the

other model. We have two natural choices: We can impose velocity boundary conditions,

e.g. we measure velocity from MD and use the resulting value in the continuum model.

Alternatively, we can impose flux boundary conditions, e.g. we measure the momentum

flux, here the shear stress, from MD and use the resulting value in the continuum model.

This gives us four different combinations (see [39]):

1. velocity-velocity (VV=VpVc);

2. flux-velocity (FV=FpVc);

3. velocity-flux (VF=VpFc);

4. flux-flux (FF=FpFc).
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Here the notation FV (=FpVc) means that the momentum flux (shear stress) obtained

from the continuum model is imposed on the particle dynamics (this is the meaning

of F=Fp), and the mean velocity measured from the particle dynamics is imposed as

the boundary condition for the continuum model (this is the meaning of V=Vc). The

meanings for the other three notations are similar.

Next we discuss some details of the coupled scheme. In the c-region, say from y = a to

y = L, we define the grid points {yi = a+ i∆y, i = 0, 1, · · · , N}, where ∆y = (L− a)/N .

The velocity U is defined at yi+1/2, the center of each cell. The shear stress σ12 is defined

at the grid points yi and calculated using central difference:

(σ12)i = µ
Ui+1/2 − Ui−1/2

∆y
. (7.1.15)

A simple way of discretizing (7.1.12) is as follows:

ρ
Un+1
i+1/2 − Un

i+1/2

∆t
− (σ12)

n
i+1 − (σ12)

n
i

∆y
= 0. (7.1.16)

The no-slip boundary condition at y = L is imposed by setting: 1/2(Un
N−1/2+U

n
N+1/2) = 0,

and similarly for the boundary condition at y = −L. The boundary condition at y = a is

provided by the particle dynamics in the p-region: Depending on the coupling scheme we

choose, either the velocity Un
1/2 at y = y1/2 or the shear stress (σ12)0 at y = y0 is calculated

from MD. Specifically, Un
1/2 is calculated by averaging the particle velocities between

y = y0 and y = y1 over some time interval Tc. The shear stress (σ12)0 is calculated using

the modified Irving-Kirkwood formula discussed in Section 4.2 and Section 6.6, (6.6.13).

This formula is averaged over the region between y = y0−∆y/2 and y = y0 + ∆y/2 and

also over some time interval Tc.

The imposition of boundary conditions for the MD is a much more difficult issue.

Since the dynamics is homogeneous in the x and z directions, straightforward periodic

boundary conditions can be used in these two directions. The boundary condition in the

y direction for the MD is much harder to deal with. At the present time, this is still

quite unsatisfactory and all existing implementations contain some ad hoc components.

There are no quantitative ways of accessing the accuracy of these algorithms, other than

performing numerical tests. Obviously accuracy has to be understood in a statistical

sense. But at the present time, a systematic statistical theory for atomistic models

of fluids with boundary conditions is yet to be established. We refer to [39, 52] for

discussions of these issues.
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Now the overall procedure is a generalization of the alternating Schwarz iteration in

the domain decomposition method [49]. Starting from some initial condition, the contin-

uum equation and the MD are alternatively solved in the c− and p−regions, with time

steps ∆t and δt respectively, for a time interval of Tc, using some provisional bound-

ary conditons in the overlapping region. The results are used to update the boundary

conditions in the overlapping region, and the process is then repeated.

7.2 Adaptive model refinement or model reduction

Adaptive model refinement is a modification of the well-known procedure of adaptive

mesh refinement, in which not only the mesh, but also the physical models are chosen

adaptively. One of the earliest examples of adaptive model refinement is presented in

[17], where the authors developed algorithms for gas dynamics simulations using adaptive

mesh refinement, but locally around the shocks, direct simulation Monte Carlo (DSMC)

instead of the equations of gas dynamics is used on the finest mesh. The nonlocal

quasicontinuum method can also be viewed as an adaptive model refinement strategy

[48]. Ideas of adaptive model refinement have also been proposed in [36] and applied to

the modeling of stress distribution in a composite material. Averaged equations are used

over most of the computational domain, except at places of stress concentration where

the original microscale model is used instead.

One important issue in adaptive model refinement is that the different levels of models

used have to be consistent with each other, i.e. away from defects, both models should

apply and they should produce approximately the same results. This is guaranteed when

the macroscopic model is the reduction of the microscopic model in the macroscopic limit.

For example, the equations of gas dynamics are often the reduction of the kinetic equation

under the local equilibrium approximation. The nonlinear elasticity model obtained using

the Cauchy-Born rule is the reduction of the atomistic model for the situation when the

displacement of the atoms follows a smooth vector field.

In such a circumstance, instead of thinking about adaptively refining the macroscopic

model, one can also think about adaptively simplifying or coarsening the microscopic

model. The former is more of a top-down strategy. The latter is more of a bottom-up

strategy. Of course they may produce the same results.
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7.2.1 The nonlocal quasicontinuum method

The local quasicontinuum method has already been discussed in Chapter 6. Its main

purpose was to model elastic deformation of crystalline solids using atomistic models

instead of empirical continuum models. The nonlocal quasicontinuum method has the

additional feature that it can handle crystal defects with atomistic accuracy. This is done

by creating a nonlocal region around each defect and using the atomistic model in these

nonlocal regions. The main algorithmic components are therefore:

1. The definition of the local and nonlocal regions.

2. A summation rule for computing the energy or forces for a given trial function or

trial configuration.

For the first component, QC uses a finite element setting. The vertices in the finite

element triangulation are the representative atoms (rep-atoms). The rep-atoms are chosen

adaptively based on an estimated size of the local deformation gradient which serves as

the local error indicator: Regions with smaller deformation gradients contain a lower

density of rep-atoms. In the nonlocal region, every atom becomes a rep-atom.

Like local QC, the displaced positions of the atoms are represented by continuous,

piecewise linear trial functions, and they define the finite element space. To compute the

energy or forces associated with a given trial function, we separate the atoms into three

different classes:

1. Atoms in the local region.

2. Atoms in the nonlocal region.

3. Atoms at the interface between the local and nonlocal regions

In the local region, one may use the Cauchy-Born rule, as in local QC. In the non-local

region, one uses the full atom model. Atoms at the interface are basically treated in the

same way as the atoms in the nonlocal region.

The treatment of the local region can be equivalently thought of as being a finite

element discretization of the nonlinear continuum elasticity model in which the stored

energy density is obtained from the Cauchy-Born rule. Therefore effectively, the local

region plays the role of the continuum region.
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Figure 7.2: Illustration of the nonlocal quasicontiuum method. The top is the local

region. The bottom is the nonlocal region. Courtesy of Pingbing Ming.

To illustrate the details of the treatment at the interface and to prepare for the dis-

cussion in Section 7.5 on errors in QC, we consider the following example which provides

the simplest non-trivial setting [33].

We will consider an infinite one-dimensional chain of atoms, interacting with a two-

body potential V that depends on the distance between the atoms. We will write V (y) =

V0(y/ε) where ε is the lattice constant, and define G(y) = ∂yV (y). We will only consider

the case of next nearest neighbor interaction. The equilibrium positions of the atoms are

given by:

xj = jε, j = · · · − 2,−1, 0, 1, 2, · · · (7.2.1)

We will use the more compact notation: j̄ = −j to number the indicies.

Since the main source of error at the local-nonlocal interface comes from the transition

between the Cauchy-Born rule which is naturally an element-based summation rule in

the local region and an atom-based summation rule in the nonlocal region, the change of

the element size (or the density of the rep-atoms) is less of an issue even though this is

crucial for the efficiency of QC. Therefore we will focus on the case when every atom is

a rep-atom.
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Given the external force f = (· · · , f2̄, f1̄, f0, f1, f2, · · · ), the total energy of the atom-

istic model can be written as:

Etot =
∑

j

Ej −
∑

j

fjuj

where uj = yj − xj and

Ej =
1

2
(V (yj − yj−1) + V (yj+1 − yj) + V (yj − yj−2) + V (yj+2 − yj)) (7.2.2)

=
1

2
(V (rj−1,j) + V (rj,j+1) + V (rj−2,j) + V (rj,j+2))

Here and in what follows, we use the notation: rj,k = yk − yj.
There is an obvious problem here: For an infinite system, this energy is usually

infinite. In reality, the system of interest is always finite and we should supplement the

problem with some boundary conditions. However, we will simply ignore this problem

since our main interest is really the forces acting on the atoms, not the total energy.

The Euler-Lagrange equation for the minimization of Etot is given by:

−(G(yǫj − yǫj−1) +G(yǫj − yǫj−2) +G(yǫj − yǫj+1) +G(yǫj − yǫj+2)) = fj (7.2.3)

or

−1

ε

(
∂yV0

(yǫj − yǫj−1

ε

)
+ ∂yV0

(yǫj − yǫj−2

ε

)
+ ∂yV0

(yǫj − yǫj+1

ε

)
+ ∂yV0

(yǫj − yǫj+2

ε

))
= fj

(7.2.4)

for j = · · · , 2̄, 1̄, 0, 1, 2, · · · . We will write this in a compact form:

Lǫatom(yε) = f (7.2.5)

For the nonlocal QC, we assume that the local region consists of atoms indexed by

the integers j ≥ 0, the nonlocal region consists of atoms indexed by negative integers.

The region with x ≥ 0 will be treated using a piecewise linear finite element method,

with each atom being a vertex. We will denote the j-th element [xj, xj+1] by Ij. The

total energy of the system can be written as:

Eqc = Elocal + Enonlocal + Eint −
∑

j

fjuj
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where Enonlocal is the total potential energy due to the atoms in the nonlocal region,

summed over the atoms:

Enonlocal =
∑

j<0

Ej

Elocal is the contribution from the local region, which is a sum over all the elements

Elocal =
∑

j≥0

ej

ej is the contribution of the potential energy from the element Ij, computed using the

Cauchy-Born rule:

ej = V (rj,j+1) + V (2rj,j+1) (7.2.6)

Eint is the additional contribution from the local-nonlocal interface, i.e. the atom with

index 0. Since the interaction between this atom with the atoms in the local region

is already taken into account by the Cauchy-Born rule, we only have to consider the

interaction with the atoms in the nonlocal region. This gives

Eint =
1

2
(V (r1̄,0) + V (r2̄,0))

The interfacial region can be larger, depending on the range of the inter-atomic potential

and the details of the QC algorithm.

We can also rewrite the total energy as a sum over contributions from each atom:

Eqc =
∑

j

Ẽj −
∑

j

fjuj

where

Ẽj̄ = Ej̄, Ẽj =
1

2
(ej−1 + ej) (7.2.7)
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for j > 0, and Ẽ0 = 1
2
e0 + Eint. For example:

Ẽ3̄ =
1

2

(
V (r5̄,3̄) + V (r4̄,3̄) + V (r3̄,2̄) + V (r3̄,1̄)

)
, (7.2.8)

Ẽ2̄ =
1

2

(
V (r4̄,2̄) + V (r3̄,2̄) + V (r2̄,1̄) + V (r2̄,0)

)
,

Ẽ1̄ =
1

2

(
V (r3̄,1̄) + V (r2̄,1̄) + V (r1̄,0) + V (r1̄,1)

)
,

Ẽ0 =
1

2

(
V (r2̄,0) + V (r1̄,0) + V (r0,1) + V (2r0,1)

)
,

Ẽ1 =
1

2
(V (2r0,1) + V (r0,1) + V (r1,2) + V (2r1,2)) ,

Ẽ2 =
1

2
(V (2r1,2) + V (r1,2) + V (r2,3) + V (2r2,3)) . (7.2.9)

The Euler-Lagrange equations are the same as (7.2.4) for j ≤ −1. For j ≥ 2, we have

Lǫcb(y)j = fj,

where

Lǫcb(y)j = −(G(rj,j−1) +G(rj,j+1) + 2G(2rj,j−1) + 2G(2rj,j+1)) (7.2.10)

For j = −1̄, 0, 1, we have

− (G(r1̄,3̄) +G(r1̄,2̄) +G(r1̄,0 +
1

2
G(r1̄,1)) = f1̄,

− (G(r0,2̄) +G(r0,1̄) +G(r0,1) +G(2r0,1)) = f0,

− (
1

2
G(r1,1̄) +G(r1,0) +G(r1,2) + 2G(2r1,0) + 2G(2r1,2)) = f1

As before, we will write these equations in a compact form as

Lǫqc(y) = f . (7.2.11)

It is quite obvious that nonlocal QC can be thought of both as an adaptive model

refinement procedure and as an adaptive model reduction or coarsening procedure. As an

adaptive model refinement procedure, one starts with an adaptive finite element method

for a Cauchy-Born-based continuum model. Near defects, the mesh should be refined to

the atomic level and at the same time, one replaces the Cauchy-Born rule by the full

atom model. As an adaptive model reduction procedure, one starts with a full atomic
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model and coarsens the full atom representation to a rep-atom representation. Away

from the interface, one also makes the approximation that the deformation is locally

homogeneous, i.e. one approximates the full atom summation by the Cauchy-Born rule.

Compared with the example of fluids discussed in the last subsection, QC is much

simpler due to the absence of statistical fluctuations. However, consistency errors still

exist at the interface. The simplest and most well-known form of the consistency error

is the “ghost force”, i.e. forces that act on the atoms when they are in the equilibrium

position. These forces are the result of numerical error. We will come back to this

problem later in this chapter.

7.2.2 Coupled gas dynamic-kinetic models

Our next example is continuum gas dynamics locally corrected near shocks by the

kinetic model. The macroscopic model is the gas dynamics equation, say the Euler’s

equation. The microscopic model is a kinetic equation such as the Boltzmann equation

or the BGK model (see Chapter 4). We will assume that the Euler and the kinetic

equations are consistent in the sense that Euler’s equation is obtained from the kinetic

equation under the local equilibrium approximation. As the macroscale solver, it is

natural to choose the kinetic scheme for Euler’s equation (see Chapter 6). Recall that

this is a finite volume scheme with numerical fluxes computed using (6.1.19). This will

help to guarantee consistency between the Euler’s equation and the kinetic equation even

at the numerical level.

Near the shocks the numerical fluxes are computed by solving directly the kinetic

model using micro time steps. Consider a one-dimensional example. Assume that the

interface is located at xk+1/2, with Euler’s equation solved on the left side of xk+1/2 and

the kinetic equation solved on the right side of xk+1/2. For the kinetic equation, we need

a boundary condition when v > 0. It is natural to choose

f(x, v, t) = M(x−k+1/2, v, t), v > 0 (7.2.12)

where the right hand side is the local Maxwellian corresponding to the macroscopic state

at xk+1/2, where superscript “−” means that left limit is taken. The numerical flux at
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Figure 7.3: Schematics for the coupled kinetic-gas dynamics simulation: A finite volume

method is imposed everywhere in the x− t domain. The numerical fluxes are computed using

the kinetic scheme away from the shocks, and directly from the solutions of the kinetic equations

around the shocks. The shaded regions indicate where the kinetic equation needs to be solved.

The left panel illustrates the case when there is no scale separation between the relaxation time

scale inside the shock and the hydrodynamic time scale. The right panel shows the case when

there is time scale separation [11].

xk+1/2 is computed using:

Fk+1/2 =
1

∆t

∫ tn+1

tn
dt
{∫

R+

M(x−k+1/2, v, t)




v

v2

1
2
v3



 dv

+

∫

R−

f(x+
k+1/2, v, t)




v

v2

1
2
v3



 dv
}
.

(7.2.13)

The final component of the method is a criterion for locating the kinetic region. In

principle, we would like to have something like the a posteriori error estimators discussed

in Chapter 3 to help locating kinetic regions. At the present time, little has been done in

this direction. As a working scheme, one may simply use the size of the local gradients

as the local error indicator. If it is above certain threshold, we make it a shock region or

kinetic region.

An example of numerical results computed using this method is shown in Figure 7.4

[11]. Here the result from the kinetic equation is taken as the exact solution. Note that
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Figure 7.4: Numerical results for the shock tube problem: solid line – results of the kinetic

equation; ‘o’ – results of the coupled kinetic/gas dynamics simulation; ‘+’ – results of the gas

dynamics equation. Note that the coupled approach gives shock profiles that are more accurate

than that of the gas dynamics equation (courtesy of Xiantao Li).
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the coupled kinetic-Euler equation gives more accurate shock profiles than the Euler’s

equation.

For this one dimensional example, one may solve the kinetic equation using finite

difference or other deterministic grid-based methods. For high dimensional problems, it

might be advantageous to use discrete simulation Monte Carlo methods [4], as was done

in [17].

Again we may regard the strategy discussed above either as an adaptive model re-

finement strategy, or as an adaptive model reduction strategy. Indeed, the macroscopic

model used in the region away from the shocks can be regarded as the simplification of

the kinetic equation under the local equilibrium approximation.

7.3 The heterogeneous multiscale method

In some cases, we are only interested in getting the right macroscale behavior, not so

much about the microscopic details near the defects or singularities. In this situation,

HMM might be a good choice. One starts with a macro-solver that covers the whole

computational domain. The information needed about the structure or dynamics of the

defects in order to understand the macroscale behavior is extracted from microscopic

simulations near the defects. Such a strategy has been applied to several examples,

including the dynamics of the moving contact line [40] and the interaction of elastic

waves with crack dynamics [27] (see also [26] for a description of the main ideas in the

algorithm).

In the moving contact line problem, the macroscale behavior of interest is the dynam-

ics of the two-phase flow, modeled by equations of the form:






ρ(∂tu +∇ · (u⊗ u)) +∇p = µ∆u +∇ · σ + f

∇ · u = 0

vn = u · n̂

(7.3.1)

where

σ = −γ(I − n̂⊗ n̂)δΓ (7.3.2)

models surface tension force along the fluid-fluid interface Γ, γ is the surface tension

coefficient, n̂ is the unit normal vector along Γ, δΓ is the surface delta function associated
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Figure 7.5: Schematic of the multiscale method for the contact line problem. Macro grid

used in the computation is represented by dotted lines in the left panel. MD is carried

out in a local region around the contact line. The dynamics in the shaded strips GD, DC

and CH are constrained by continuum velocity field. The shear stress and the position

of the contact point are computed in the strip along GH. From [40].

with Γ. f is some external forcing. The last equation of (7.3.1) says that the fluid-fluid

interface is advected by the velocity field of the fluid, vn is the normal velocity.

The data that need to be estimated from microscopic models such as MD are:

1. shear stress near the contact line,

2. velocity of the contact line, which provides the boundary condition for the dynamics

of Γ.

The schematics is shown in Figure 7.3. See [40] for details.

Compared with adaptive model refinement, HMM might provide a more effective way

of handling the case when the relaxation time of the local defects τε is much smaller than

the time scale for interesting dynamics in the local region, tM . This is possible, even

for type A problems, since τε is governed by microscopic processes whereas tM depends

on external driving force. In this case, HMM provides a natural setting for capturing

the correct local structure around the defects, without the need to follow exactly the

microscopic dynamics.

In the same spirit, one can also extend the seamless strategy discussed in the last

chapter to this case.



7.4. STABILITY ISSUES 335

Once a general strategy is chosen, the questions to be addressed next are: Which data

are going to be exchanged between the macro and micro models and how the exchanged

data are used? The most important concern when addressing these questions is the

consistency between the macro and micro models at the interface where the two models

meet. The coupling scheme should not create significant artifacts or numerical errors at

the interface. However, this is not the only concern. As we see below, numerical stability

might also be an issue.

7.4 Stability issues

We will focus on the domain decomposition strategy, since this is the simplest coupling

strategy. We have seen in Chapter 3 that the domain decomposition method may not

converge if we do not exchange data between the different domains in the right way, since

some components of the error are not damped during the iteration. This has important

consequences in a multiscale, multi-physics context.

To illustrate this point, we will discuss the work of Ren [39] who considered coupled

atomistic-continuum models of fluids based on the domain decomposition method. Using

a very simple example, Ren demonstrated that the performance of the coupled scheme

depends very much on how data are exchanged between the atomistic and continuum

models. Some coupling schemes lead to numerical instabilities.

The general setup of the domain decomposition-based coupling strategy was intro-

duced already in Section 7.1. Our focus is the four coupling schemes discussed: The VV,

VF, FV and FF schemes.

To begin with, let us note that the domain decomposition method considered here is

different from the domain decomposition method discussed in Chapter 3 in at least two

aspects:

1. The p-region is usually much smaller than the c-region. This means that L≫ b.

2. One can not avoid statistical error.

We will see later that these differences have important consequences.

Let us first consider the simplest case when:

1. The system of interest is in equilibrium. Therefore the mean velocity should be

zero. Of course the velocities of the individual particles in the p-region will not be
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zero, neither will the averaged velocity obtained from simulations, due to statistical

fluctuations.

2. We assume reflection symmetry with respect to the (x, z)-plane for the coupled

scheme. Therefore the mean velocity on the (x, z)-plane vanishes.

3. Tc =∞. This means that we only exchange data after the results of each simulation

(the continuum model or the MD) have reached (statistical) steady state.

4. We will also assume that the (spatio-temporal) averaged velocity ũ in the p-region

is linear in y plus some random fluctuations. Similarly we will assume that the

averaged shear stress in the p-region is constant plus random fluctuations. This is

the case if the effective constitutive relation is linear. As we said earlier, this is a

very good approximation in the regime we are considering.

Admittedly, this is a very idealized case. But as we will see below, the results obtained

are already quite instructive.

Lemma 7. [39]. Under these assumptions, the numerical solutions of the coupled scheme

have the following form:

un(y) =

(
n∑

i=1

kn−iξi

)
g(y) (7.4.1)

where un(·) is the velocity at the n-th iteration in the c-region. ξi is the statistical er-

ror introduced in the boundary condition at the i-th iteration. k, the amplification (or

damping) factor, is given for the different coupling schemes by:

kV V =
a

b

L− b
L− a, (7.4.2)

kFV =
a

a− L, (7.4.3)

kV F =
b− L
b

, (7.4.4)

kFF = 1. (7.4.5)

The function g(·) is given by:

gV V (y) = gFV (y) =
L− y
L− a, (7.4.6)

gV F (y) = gFF (y) = y − L. (7.4.7)
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This lemma can be proved by induction. It is enough to consider the upper half

channel due to the symmetry assumption. Consider the VV coupling scheme for example.

In the first iteration, one starts with an equilibrium MD in the p-region. The average

velocity at y = a is denoted by ξ1, and is used as the Dirichlet boundary condition for the

continuum model in the c-region. The steady state solution of the continuum equation

(7.1.12) with the boundary condition u(L) = 0 and u(a) = ξ1 is given by

u1(y) = ξ1
L− y
L− a = ξ1gV V (y) (7.4.8)

This proves (7.4.1) for n = 1. Assume that (7.4.1) is valid for the n-th iteration. In

the (n+ 1)-th iteration, the MD in the p-region is constrained so that the mean particle

velocity at y = b is equal to un(b) =
∑n

i=1 k
n−i
V V ξig(b). Therefore the average velocity in

the p-region in the (n+ 1)-th iteration is given by

ũn+1(y) = un(b)
y

b
+ ηn(y)

where ηn(y) denotes the random fluctuations in the averaged velocity. Therefore, if we

let ξn+1 = ηn(a), we have

un+1(a) = un(a)
a

b
+ ξn+1 =

a

b
g(a)

n∑

i=1

kn−iV V ξi + ξn+1 =
n+1∑

i=1

kn+1−i
V V ξi (7.4.9)

The solution to the continuum equation with boundary condition u(a) = un+1(a), u(L) =

0 is then given by

un+1(y) = un+1(a)gV V (y) =

(
n+1∑

i=1

kn+1−i
V V ξi

)
gV V (y). (7.4.10)

This proves (7.4.1) for the (n+ 1)-th iteration.

Following a similar procedure, one can prove the lemma for the other three coupling

schemes.

Note that the amplification factors can also be computed using a much simpler pro-

cedure, by replacing the MD by the continuum model, which in this case becomes:

∂2
yu = 0 (7.4.11)

For example, for the VV coupling scheme, this results in the following deteriministic

domain decomposition method: At the n-th iteration,
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1. one first solves the continuum equation (7.4.11) in the c-region with boundary

condition un(a) = ũn−1(a), un(L) = 0 to obtain un, and

2. one then solves the continuum equation (7.4.11) in the p-region with the boundary

condition ũn(b) = un(b), ũn(0) = 0 to obtain ũn.

To find the amplification factor for such an iterative process, we look for solutions of this

problem in the form:

un(y) = knU(y), ũn(y) = knŨ(y)

It is easy to see that U and Ũ must be of the form:

U(y) = C
y

b
, Ũ(y) = C̃

L− y
L− a

From the boundary conditions at y = a, b, we get

k =
a

b

L− b
L− a, C̃ =

b

a
kC

Similarly, one can compute the amplification factors for the VF, FV, and FF schemes.

Let us try to understand what these analytical results tell us. First note that according

to the size of the amplification factor, we can put the four coupling schemes into three

categories:

1. The FF scheme. In this case, we have kFF = 1. If we assume that the {ξi}’s are

independent, then we have

〈un(y)2〉1/2 ∼ √nσ|g(y)|

where σ = 〈ξ2
i 〉1/2. The important fact is that the error grows like

√
n due to the

random fluctuations.

2. The VV and FV scheme. Since |kV V |, |kFV | < 1, in both cases, we have

〈un(y)2〉1/2 ≤ Cσ|g(y)|

i.e. the error is bounded. This is the best situation as far as stability is concerned.

3. The VF scheme, for which the amplification factor satisfies |kV F | > 1. We will show

later that this is an artifact of using Tc = ∞. For practical values of Tc, |kV F | is
usually less than 1. Therefore this case should be combined with the second case.
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Now we consider the case when Tc is finite. We can also define the amplification

factor. For example, for the VV coupling scheme, one simply has to replace the continuum

equation (7.4.11) by a time-dependent version:

ρ∂tu = µ∂2
yu

and the boundary conditions by:

un(a, t) = ũn−1(a, Tc), ũn(b, t) = un(b, Tc).

To compute the amplification factor, we look for solutions that satisfy:

un(y, Tc) = knU(y), ũn(y, Tc) = knŨ(y).

In this case, it is much simpler to compute k numerically (we refer to [39] for the details

on how to compute k), and the results are shown in Figure 7.6 for all four coupling

schemes:
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Figure 7.6: The amplification factor k versus Tc/∆t for the four schemes: VV (squares),

FV (diamonds), VF (triangles) and FF (circles) (courtesy of Weiqing Ren).
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In general, we are interested in the case when Tc ∼ ∆t, i.e. when we exchange data

after a small number of macro time steps. In this case, the results in Figure 7.6 agree

with the ones discussed earlier when Tc = ∞, except for the VF coupling scheme: If Tc

is not too large, the VF coupling scheme is quite stable.

These predictions are very well confirmed by the numerical results presented in [39]

for more general situations. In particular, it was found that the FF coupling scheme does

lead to large error. Consider an impulsively started shear flow with constant pressure

gradient. A term of the form ρf with f = 2 × 10−3 (in atomic units) is added to the

right hand side of the continuum equation. In the MD region, besides the inter-molecular

forces, the fluid particles also feel the external force f = (f, 0, 0). The numerical results

for the case when Tc = ∆t and t = 1500 obtained using the FV and FF coupling schemes

are shown in Fig. 7.7. We see from the bottom panel that the error eventually grows

roughly linearly, and the mean velocity profile becomes discontinuous, as shown in the

middle panel. Note that the setup is changed slightly: The particle regions are at the

boundary and the continuum region is now in the middle.

7.5 Consistency issues illustrated using QC

In general, the issue of consistency in a coupled multi-physics algorithm should be

examined at two different levels:

1. Consistency between the different physical models when they are used separately for

systems for which they are all supposed to be adequate. For example, a continuum

elasticity model and an atomistic model should produce approximately the same

result, when they are used for analyzing the mechanical response of an elastically

deformed single crystal material.

2. Consistency at the interface where the different physical models are coupled to-

gether. In general it is inevitable that coupling introduces extra error. One main

task for formulating good coupling schemes is to minimize this error.

An example of such coupling error is the ghost force in the nonlocal quasicontinuum

method (QC). In what follows, we will use this example to illustrate the origin of the

coupling error, what their consequences are and how to reduce this error.
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Figure 7.7: Upper and middle panel: Numerical solutions of the channel flow driven by

the pressure gradient at t = 1500, obtained using the FV scheme (upper panel) and the

FF scheme (middle panel) respectively. The dashed curve is the reference solution. The

oscillatory curves at the two ends are the numerical solution in the p-region; the smooth

curve in the middle is the numerical solution in the c-region. Lower panel: The error of

the numerical solution versus time. The two curves correspond to the FV scheme (lower

curve) and the FF scheme (upper curve) respectively. From [39].
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Figure 7.8: Error in deformation gradient for the original QC with next nearest neigh-

borhood quadratic interaction potential. From [33].

A very important question is how to quantify this error. We will see that in the

case of QC, we can use a simple generalization of the notion of local truncation error to

quantify the error due to the mismatch between the different models at the interface.

To best illustrate the heart of the matter, we will focus on the one dimensional model

problem discussed in Section 7.2. We assume that there exists a smooth function f(x)

such that

f(xj) = fj, j = · · · 2̄, 1̄, 0, 1, 2, · · · (7.5.1)

where fj is the external force acting on the j-th atom.

7.5.1 The appearance of the ghost force

First, let us consider the simplest case when there are no external forces, f = 0.

The exact solution should be given by: yj = xj for all j, i.e. the atoms should be in

their equilibrium positions. Obviously this solution does satisfy the equations (7.2.4).

However, this is no longer true for QC. Indeed, it is easy to see that if we substitute

yj = xj (for all j) into the QC equations (7.2.11), we have

Lǫqc(x)1̄ = −G(2)

2ε
, Lǫqc(x)0 =

G(2)

ε
, Lǫqc(x)1 = −G(2)

2ε
.

The force that appears at the right hand side is called the ghost-force [48]: They are

entirely the artifact of the numerical method.
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The origin of this ghost force is intuitively quite clear: The influence between atoms

in the local and nonlocal regions is unsymmetric. For the example discussed here, y1

influences the energy associated with the atom indexed by 1̄, but not the other way

around.

The error induced by the ghost force can be analyzed explicitly in the case when the

interaction potential is harmonic, as was done in [33] (see also [9] for a more streamlined

argument). This explicit calculation tells us several things:

1. The deformation gradient has O(1) error at the interface.

2. The influence of the ghost force decays exponentially fast away from the interface.

3. Away from an interfacial region of width O(ε| log(ε)|), the error in the deformation

gradient is of O(ε).

The large error at the interface is a concern [33, 31]. In realistic situations, it is

conceivable that artificial defects may appear as a result of the ghost force. In any case,

it is of interest to design modifications of QC in order to eliminate or reduce the ghost

force.

7.5.2 Removing the ghost force

Force-based ghost force removal

The simplest idea for removing the ghost force is a force-based approach [44]. In this

approach, one defines

(Lǫfqc(y))j =





(Lǫatom(y))j if j ≤ 0

(Lǫcb(y))j if j ≥ 1

The deformed positions of the atoms are found by solving:

Lǫfqc(y) = f (7.5.2)

Quasi-nonlocal QC

The force-based approach discussed above does not admit a variational formulation,

i.e. there is no underlying energy. Shimokawa et al [45] introduced the concept of
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quasi-nonlocal atoms, which are interfacial atoms. When computing the energy, a quasi-

nonlocal atom acts like a nonlocal atom on the nonlocal side of the interface, and like

a local atom on the local side of the interface. As we will see below, if the inter-atomic

interaction is limited to the next nearest neighbors as in the case we are considering, the

quasi-nonlocal treatment of the interfacial atoms is sufficient for removing the ghost-force.

For the simple example considered here, the quasi-nonlocal atoms are the atoms

indexed by 1̄ and 0, whose energies are computed using

E1̄ =
1

2
(V (r1̄,2̄) + V (r1̄,0) + V (r1̄,3̄) + V (2r1̄,0)) (7.5.3)

E0 =
1

2
(V (r1,1̄) + V (r1,0) + V (r1,2) + V (2r1,2)) (7.5.4)

The energies for the other atoms are calculated in the same way as before for QC (see

(7.2.7)). Similarly, the Euler-Lagrange equations are the same as before for the original

QC, except for atoms indexed by 1̄, 0:

−1

ε
(G(r1̄,3̄) +G(r1̄,2̄) +G(r1̄,0) +G(2r1̄,0)) = f1̄, (7.5.5)

−1

ε
(G(r0,1̄) +G(r0,2̄)G(2r0,1̄) +G(r0,1) + 2G(2r0,1)) = f0

Again following [33], we will write them in a compact form as:

Lǫqqc(y) = f (7.5.6)

It is straightforward to check that there are no ghost forces, i.e. when f = 0, the

Euler-Lagrange equations are satisfied with y = x.

Introducing quasi-nonlocal atoms is only sufficient when the inter-atomic interaction is

limited to the next nearest neighbors. For the general case, E, Lu and Yang introduced the

notion of geometrically consistent schemes, which contain the quasi-nonlocal construction

as a special case [14].

7.5.3 Truncation error analysis

In classical numerical analysis, the standard way of analyzing the errors in a dis-

cretization scheme for a differential equation is to study the truncation error of the

scheme, which is defined as the error obtained when an exact solution of the differential
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equation is substituted into the discretization scheme. If in addition the scheme is stable,

then we may conclude that the error in the numerical solution is of the same order as

the truncation error [41].

In general, it is unclear how to extend this analysis to multi-physics problems, as

remarked earlier. However, QC provides an example for which the classical truncation

error analysis is just as effective. The main reason is that the models used in the local

and nonlocal regions can both be considered as consistent numerical discretizations of

the same continuum model, the elasticity model obtained using the Cauchy-Born rule.

The fact that this holds for the local region is obvious. The fact that this holds for

the atomistic model in the nonlocal region requires some work, and this was carried out

in [15]. For this reason, we will focus on the truncation error at the interfacial region

between the local and nonlocal regions. Note that the ghost force is the truncation error

for the special case when f = 0.

Definition. Let yε be the solution of the atomistic model (7.2.5). We define the

truncation error F = (· · · , F2̄, F1̄, F0, F1, F2, · · · ) as

Fk = (Lǫatom − Lε)(y)k, k = · · · , 2̄, 1̄, 0, 1, 2, · · · (7.5.7)

where Lε stands for the Euler-Lagrange operator for the different versions of QC.

It is now a simple matter to compute the truncation error for the various QC schemes

that we have discussed. The results are as follows [33].

Truncation error of the original QC

Let F = (Lǫatom − Lǫqc)(y
ε). Then we have

Fk = 0, k ≤ 2̄,

F1̄ = 2ε−1G(2D̂yε0),

F0 = ε−1(G(2D̂yε1)− 2G(2D+yε0)),

F1 = ε−1(−1

2
G(2D̂yε0) +G(2D̂yε2) + 2G(2D−yε1)− 2G(2D+yε1)),

Fk = (Lǫatom − Lǫcb)k
= ε−1(G(2D̂yεk+1)−G(2D̂yεk−1)− 2G(2D+yεk) + 2G(2D−yεk)), k ≥ 2.

where D̂,D− and D+ are the central divided difference, backward divided difference

and forward divided difference operators respectively. Straightforward Taylor expansion
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gives:

Fk =






0, k ≤ 2̄,

O(1/ε), k = 1̄, 0, 1

O(ε2) k ≥ 2.

(7.5.8)

Truncation error of the force-based QC

Let F = (Lǫatom − Lǫfqc)(y
ε). Then

Fk = 0, k < 0,

Fk = (Lǫatom − Lǫcb)k, k ≥ 0.

For k ≥ 0, we can write Fk as

Fk =





0, k ≤ 1̄

D+Qk, k ≥ 0

where

Qk = G(2D̂yεk) +G(2D̂yεk−1)− 2G(2D+yεk−1).

Using Taylor expansion, we have

Qk = ε

[∫ 1

0

V
′′(

(1 + t)D+yǫk−1 + (1− t)D+yǫk
)
δt

]
(D+)2yǫk−1

− ε
[∫ 1

0

V
′′(

(1 + t)D+yǫk−1 + (1− t)D+yǫk−2

)
δt

]
(D+)2yǫk−2

= ε2

[∫ 1

0

V
′′(

(1 + t)D+yǫk−1 + (1− t)D+yǫk
)
δt

]
(D+)3yǫk−2

− ε2

[∫ 1

0

∫ 1

0

V
′′′(

(1 + t)D+yǫk−1 + (1− t)D+(syǫk + (1− s)yǫk−2)
)
dsδt

]

× (D+)2(yǫk−2 + yǫk−1)(D
+)2yǫk−2. (7.5.9)

This gives Q = O(ε2). Furthermore, we also have D+Qk = O(ε2). Therefore, we have

F = O(ε2). (7.5.10)

Truncation error of the quasi-nonlocal method
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Let F = (Lǫatom − Lǫqqc)(y
ε). Then

Fk = 0, k ≤ 2̄,

F1̄ = ε−1(G(2D̂yε0)−G(2D+yε1̄)),

F0 = ε−1(G(2D̂yε1) +G(2D−yε0)− 2G(2D+yε0)),

Fk = (Lǫatom − Lǫcb)k, k ≥ 1.

(7.5.11)

Taylor expansion gives:

Fk =






0, k ≤ 2̄,

O(1), k = 1̄, 0

O(ε2), k ≥ 1.

(7.5.12)

We see that the truncation error is small, except at the interface where it is O(1). Using

this fact, one can show under sharp stability conditions that the maximum error in the

deformation gradient is of O(ε). The details can be found in [33].

As we said earlier, what makes this kind of analysis possible is that the models used

in both the local and the nonlocal region can be regarded as consistent approximations to

the same continuum model. Extension of this kind of analysis to the case when statistical

errors are involved is still an open problem.

7.6 Notes

This is the most difficult chapter to write, and perhaps many readers will not find

the materials they expected to see. The difficulty is the following. On one hand, the

idea of developing hybrid formulations or hybrid algorithms that couple different levels

of physical models together is extremely popular in many disciplines nowadays. On the

other hand, a lot of the existing work involves some ad hoc components in one way or

another. Except for very few cases, it is not clear how one can assess the accuracy of

these hybrid schemes. Consequently, a description of these methodologies will inevitably

become a set of receipes rather than a coherent set of ideas with a solid foundation.

For this reason, we opt to discuss the general principles rather than the latest exciting

examples. Our selection of the general principles also reflect the desire to put things on

a solid foundation: After discussing the general coupling strategies, we chose to focus on

two classical issues in numerical analysis, namely, stability and accuracy.
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The most unsatisfactory aspect of all this is the lack of understanding of the effect

of noise or fluctuations. We have seen from Ren’s work that the accumulation of noise

can lead to numerical instabilities. But what about accuracy? There are examples which

demonstrate that the amplitude of the fluctuations is reduced when kinetic Monte Carlo

models are replaced in part of the computational domain by deterministic continuum

equations [17, 43]. This suggests that instead of deterministic continuum models, one

should use stochastic continuum models when developing coupled atomistic-continuum

simulation methods [17, 43]. Doing this consistently is still a challenge.

Figure 7.6 is an image taken from [10] for the adiabatic piston problem. A long

quasi one-dimensional box with adiabatic walls is divided in two halves by a thermally-

insulating piston of mass M that can move along the length of the box without friction.

The two halves of the box is filled with fluid particles of mass m (m ≪ M). Pressure

difference on both sides of the piston drives the piston to mechanical equilibrium, in

which the pressure difference vanishes. More interestingly, it has been understood that

the mechanical asymmetric fluctuations of the piston due to its thermal motion eventually

drives the system to thermal equilibrium, in which the temperature difference of the two

sides also vanishes. This process can in principle be simulated using molecular dynamics

or fluctuating hydrodynamics. However, classical (deterministic) hydrodynamics fails to

predict the eventual full thermal equilibrium. The consequence of this is that the hybrid

method with deterministic hydrodynamics fails to predict the long term behavior of the

system accurately.

There is another difficulty. Take for example QM-MM methods at zero temperature.

In this case, we do not have to worry about noise. However, we still do not know how

to systematically quantify the error in QM-MM methods since we do not have a natural

small parameter to measure the size of the error. In classical numerical analysis, we

measure the numerical error in terms of the size of the grid. In homogenization theory,

we measure the error of the homogenized model in terms of the small parameter ε (see

Section 2.3). Here, there is no such a small parameter, not an obvious one at least.
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Figure 7.9: Relaxation of a massive rigid piston (M/m = 4000) which is initially not in

mechanical equilibrium. Shown in the figure is the position of the piston as a function

of time. Mechanical equilibrium is established through rapid oscillations. Both the

hybrid method with fluctuating hydrodynamics and the direct particle simulation are

able to predict the very slow relaxation to the thermal equilibrium. The hybrid method

with deterministic hydrodynamics fails to do so or at least under-predicts the relaxation

rate. The inset highlights the initial oscillations and shows that in the regime where the

fluctuations do not matter the deterministic and stochastic hybrid methods agree well

(from [10], courtesy of John Bell.)
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Chapter 8

Elliptic Equations with Multiscale

Coefficients

So far our discussions have been rather general. We have emphasized the issues that

are common to different multiscale, or multi-physics problems. In this and the next

two chapters, we will be a bit more concrete and focus on two representative classes of

multiscale problems. In this chapter, we will discuss a typical class of problems with

multiple spatial scales – elliptic equations with multiscale solutions. In the next two

chapters, we will discuss two typical classes of problems with multiple time scales – rare

events and systems with slow and fast dynamics.

We have in mind two kinds of elliptic equations with multiscale solutions:

−∇ · (aε(x)∇)uε(x) = f(x) (8.0.1)

∆uω(x) + ω2uω(x) = f(x), ω ≫ 1 (8.0.2)

Here aε is a multiscale coefficient tensor. For (8.0.1), the multiscale nature may come in a

variety of ways: The coefficients may have discontinuities or other types of singularities;

or they may have oscillations at disparate scales. Similar ideas have been developed for

these two kinds of problems. Therefore we will discuss them in the same footing, and we

will use (8.0.1) as our primary example.

Another closely related example is:

−ε∆u(x) + (b(x) · ∇)u(x) = f(x) (8.0.3)

357
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As we have seen in Section 2.1, in general, solutions to this problem have large gradients,

which is also a type of multiscale behavior. Some of the techniques discussed below, such

as the residual-free bubble finite element methods, can also be applied to this class of

problems.

The behavior of solutions to (8.0.1) and (8.0.2) was analyzed in Chapter 2 for various

special cases. Roughly speaking, in the case when aε is oscillatory, say aε(x) = a(x,x/ε),

one expects the solutions to (8.0.1) to behave like: uε(x) ∼ u0(x) + εu1(x,x/ε) + · · · .
Consequently, to leading order, uε does not have small scale oscillations. Note however

that ∇uε(x) is not accurately approximated by ∇u0(x).

In the case of (8.0.2), one expects the solutions to be oscillatory with frequencies

O(ω). This is easy to see from the one dimensional examples discussed in Section 2.2.

From a numerical viewpoint, multiscale methods have been developed in the setting

of finite element, finite difference and finite volume methods. Again, the central issues

in these different settings are quite similar. Therefore we will focus on finite element

methods.

Babuska pioneered the study of finite element methods for elliptic equations with

multiscale coefficients. He recognized, back in the 1970’s, the importance of developing

numerical algorithms that specifically target this class of problems, rather than using

traditional numerical algorithms or relying solely on analytical homogenization theory.

Among other things, Babuska made the following observations [7]:

1. Traditional finite element methods have to resolve the small scales. Otherwise the

numerical solution may converge to the wrong solution.

2. Analytical homogenization theory may not be accurate enough, or it might be

difficult to use the analytical theory due either to the complexity of the multiscale

structure in the coefficients, or the complications from the boundary condition, or

the fact that the small parameters in the problem may not be sufficiently small.

In 1983, Babuska and Osborn developed the so-called generalized finite element method

for problems with rough coefficients, including discontinuous coefficients as well as co-

efficients with multiple scales [13]. The main idea is to modify the finite element space

in order to take into account explicitly the microstructure of the problem. Although the

generalized finite element method has since evolved quite a lot [10], the original idea of
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modifying the finite element space to include functions with the right microstructure has

been further developed by many people, in two main directions:

1. Adding functions with the right microstructure to the finite element space. The

residual-free bubble method is a primary example of this kind [19, 18, 17].

2. Modifying the finite element basis functions [37, 42, 36].

The variational multiscale method (VMS) developed by Hughes and his co-workers is

based on a somewhat different idea. Its starting point is a decomposition of the finite ele-

ment space into the sum of coarse and fine scale components [40, 41]. Hughes recognized

explicitly the importance of localization in dealing with the small scale components [41].

Indeed, as we have seen before and will see again below, localization is a central issue in

developing multiscale methods.

These methods are all fine scale solvers: Their purpose is to resolve efficiently the

details, i.e. components at all scales, of the solution. In many cases, we are only interested

in obtaining an effective macroscale model. Homogenization theory is very effective

when it applies, but it is also very restrictive. To deal with more general problems,

various algorithms have been developed to compute numerically the effective macroscopic

model. This procedure is generally referred to as upscaling. The simplest example of

an upscaling procedure is the technique that uses the representative averaging volume

(RAV), discussed in Chapter 1. We will discuss another systematic upscaling procedure

based on successively eliminating the small scale components.

The algorithms discussed above are all linear scaling algorithms at best: Their com-

plexity scales linearly or worse with respect to the number of degrees of freedom needed

to represent the fine scale details of the problem. In many cases it is desirable to have

sublinear scaling algorithms. The heterogeneous multiscale method (HMM) provides a

framework for developing such algorithms. Unlike the linear scaling algorithms which

probe the microstructure over the entire physical domain, HMM probes the microstruc-

ture in subsets of the physical domain. The idea is to capture the macroscale behavior

of the solution by locally sampling the microstructure of the problem.

In this chapter we will make use of some standard function spaces such as L2 and

H1. The reader may consult standard textbooks such as [21] for the definitions of these

spaces.
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8.1 Multiscale finite element methods

8.1.1 The generalized finite element method

We will start our discussion with the generalized finite element method (GFEM)

proposed in 1983 by Babuska and Osborn [13]. This work focused on one dimensional

examples, but it put forward the important idea of adapting the finite element space to

the particular small scale features of the problem. Traces of such ideas can be found

before, for example in the context of enriching the finite element space using special

functions that better resolve the corner singularities [53]. However, the setup of Babuska

and Osborn is more general and it has led to many other subsequent developments.

Consider the one dimensional example

(Lu)(x) ≡ −∂x(a(x)∂xu(x)) + b(x)∂xu(x) + c(x)u(x) = f(x), 0 < x < 1 (8.1.1)

with the boundary condition

u(0) = u(1) = 0 (8.1.2)

Define the bilinear form:

B(u, v) =

∫ 1

0

(a(x)∂xu(x)∂xv(x) + b(x)∂xu(x)v(x) + c(x)u(x)v(x))dx (8.1.3)

for u, v ∈ H1(I), I = [0, 1]. We will also use the standard inner product for L2 functions

defined on [0, 1]:

(f, g) =

∫ 1

0

f(x)g(x)dx (8.1.4)

With these notations, we can write down the weak form of the differential equation (8.1.1)

with the boundary condition (8.1.2) as follows: Find u ∈ H1
0 (I), such that

B(u, v) = (f, v) (8.1.5)

for every v ∈ H1
0 (I).

The key to the generalized finite element method proposed in [13] is to replace the

standard finite element spaces of piecewise polynomial functions by a more general finite

element space over a macro mesh. Denote by TH such a mesh with mesh size H: TH =

{Ij, j = 1, · · · , n}. The standard finite element space takes the form

V k
H = {v ∈ H1

0 (I) : v|Ij ∈ Pk(Ij), j = 1, · · · , n} (8.1.6)



8.1. MULTISCALE FINITE ELEMENT METHODS 361

where Pk(Ij) denotes the space of polynomials of degree k on Ij. It is instructive to write

V k
H = V 1

H ⊕ V̂ k
H (8.1.7)

where V̂ k
H is the subspace of functions in V k

H which vanish at the nodes. One can then

regard V̂ k
H as the space of internal degrees of freedom (or bubble space, to make an

analogy with what will be discussed below). However, we do not have to use polynomials

to represent the internal degrees of freedom. Other functions can also be used, and this

is the main idea proposed by Babuska and Osborn.

One choice suggested by Babuska and Osborn is to use

V̂ k
H = {v ∈ H1

0 (I) : L0v|Ij ∈ Pk−2(Ij), j = 1, · · · , n}, k ≥ 2 (8.1.8)

where L0v(x) = −∂x(a(x)∂xv(x)). When k = 1, this is replaced by

V̂ 1
H = {v ∈ H1

0 (I) : L0v|Ij = 0, j = 1, · · · , n} (8.1.9)

The purpose of choosing this finite element space is to select functions that have the

same small scale structure as the expected solution of the differential equation (8.0.1).

Babuska and Osborn proved that if the problem is uniformly elliptic, i.e. if there exist

constants α and β such that

0 < α ≤ a(x) ≤ β <∞ (8.1.10)

then the error of the finite element solution depends on the size of H and the regularity

of f , not on the regularity of a, e.g.

‖u− uH‖H1(I) ≤ CH‖f‖L2(I) (8.1.11)

where C depends only on α and β, u and uH are respectively the exact solution to

the original PDE (8.1.1) and the numerical solution using the generalized finite element

method. Note that the right hand side of (8.1.11) depends only on f , not u.

The generalization of this idea to higher dimensions is a non-trivial matter, and

different strategies have been proposed. We will discuss a few representative ideas.

8.1.2 Residual-free bubbles

For simplicity, we will consider only PDEs in the form of (8.0.1). Let TH be a regular

triangulation of Ω: Ω̄ =
⋃
K∈TH

K. As before, we use H instead of h to denote the mesh
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size in order to emphasize the fact that the mesh TH should be regarded as a macro

mesh. Let Vp ⊂ H1
0 (Ω) be the standard conforming piecewise linear finite element space

on TH . Define the bubble space by

Vb = {v ∈ H1
0 (Ω), v|∂K = 0, for any K ∈ TH} (8.1.12)

and let VH = Vp⊕Vb. The residual-free bubble (RFB) finite element method proposed by

Brezzi and co-workers can be formulated as follows [19, 18, 17]: Find uH = up+ub ∈ VH ,

such that

a(uH , vH) ≡
∫

Ω

aε(x)∇uH(x)·∇vH(x)dx = (f, vH), for all vH = vp+vb ∈ VH . (8.1.13)

This scheme can be split naturally into two parts: the coarse scale part

a(up + ub, vp) = (f, vp), for all vp ∈ Vp, (8.1.14)

and the fine scale part

a(ub, vb) = (f − Lup, vb), for all vb ∈ Vb. (8.1.15)

where L is the differential operator defined by the left hand side of (8.0.1).

The RFB finite element method can also be regarded as an upscaling procedure for

computing the coarse-scale part up [51]: We just have to solve the fine scale equation

(8.1.15) for the bubble component ub, and substitute it into the coarse scale equation

(8.1.14). The remaining problem for up is the upscaled problem.

An important feature is that the bubble components are localized to each element:

For every K ∈ TH , the fine scale equation (8.1.15) is the following local problem for ub:

L(up + ub) = f, in K, (8.1.16)

ub = 0, on ∂K, (8.1.17)

Hence uH = up + ub is residual-free inside each element: LuH − f = 0 on K for all K for

all K.

Consider the one-dimensional example:

−∂x(aε(x)∂xu(x)) = f(x), 0 < x < 1 (8.1.18)

with the boundary condition u(0) = u(1) = 0. Let VH be the standard piecewise linear

finite element space, and let up be a function in VH over the partition TH . Let Ij =
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[xj, xj+1] be an element in TH . Then on Ij, the RFB function ub that corresponds to up

is given by the solution to the following problem:

−∂x(aε(x)∂xub(x)) = f(x) + cj∂xa
ε(x), xj < x < xj+1 (8.1.19)

with the boundary condition ub(xj) = ub(xj+1) = 0, where cj is the value of ∂xup(x) on

Ij.

To gain some insight into the performance of the RFB method for multiscale problems,

let us look at the case of (8.0.1). The following result was proved in [51]

Theorem. Let aε(x) = a(x/ε) where a is a smooth periodic function with period

I = [0, 1]d. Denote by uε the exact solution of (8.0.1) and uH the numerical solution

with grid size H. Then there exists constant C, independent of ε and H, such that

‖uε − uH‖H1(Ω) ≤ C

(
ε+H +

√
ε

H

)
‖f‖L2(Ω) (8.1.20)

8.1.3 Variational multiscale methods

The variational multiscale method (VMS), proposed by Hughes and co-workers [40,

41], is another general framework for designing multiscale methods in a variational set-

ting. The basic idea of VMS is to decompose the numerical solution into a sum of coarse

and fine-scale parts

u = U + ũ (8.1.21)

and use a coarse mesh to compute the coarse scale part U and a nested fine mesh (or

higher order polynomials as in the p-version finite element method or spectral methods)

to compute the fine scale part ũ. The key to VMS is to apply various localization

procedures for the computation of ũ. One can also think of VMS as an approach for

sub-grid modeling, and ũ as the sub-grid component. In this regard, VMS can be viewed

as an upscaling procedure.

In the context of finite element methods, the computational domain Ω is triangulated

into a macro finite element mesh with mesh size H. The coarse-scale component of the

finite element solution is sought in a standard finite element space, say the space of

piecewise linear functions over this triangulation TH . We will denote this coarse-scale

finite element space by VH . Each element in TH is further triangulated into a fine scale

mesh. The union of these fine scale meshes constitutes a fine scale mesh over the whole

domain Ω. We denote this fine scale mesh as Th.
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Let Vh be the standard piecewise linear finite element space over Th and let

Ṽh = {vh ∈ Vh, such that vh vanishes at the nodes of TH} (8.1.22)

Then

Vh = VH ⊕ Ṽh (8.1.23)

Let {Φj} be the standard nodal basis of VH , and {ϕk} be the standard nodal basis of Ṽh.

We can express any function in Vh in the form

uh =
∑

j

UjΦj +
∑

k

ukϕk. (8.1.24)

Let U = (U1, U2, . . . , Un)
T , u = (u1, . . . , uN)T , then the finite element solution in Vh

satisfies a linear system of equations of the form
(
A11 A12

A21 A22

)(
U

u

)
=

(
B

b

)
. (8.1.25)

Eliminating u, we obtain

(A11 − A12A
−1
22 A21)U = B − A12A

−1
22 b. (8.1.26)

The term −A12A
−1
22 A12 expresses the effect of the fine scale components on the coarse

scale ones.

In general A−1
22 is a nonlocal operator. In order to obtain an efficient algorithm, [41]

proposes to localize this operator. The simplest localization procedure is to decouple

the fine scale component over the different macro elements. One way of realizing this

is to simply set the boundary value of ũ over each macro element to 0. This eliminates

the degrees of freedom of uh over the edges of the macro elements, and decouples the

microscale component on different macro elements. Other localization procedures are

discussed in [49].

The assumption that the fine scale components vanish at the macro element bound-

aries is a strong assumption. Nolen et al. [46] has explored the possibility of extending

the over-sampling technique proposed in [37] (also discussed below) to this setting.

As was pointed out in [40, 41], the fine scale component over each macro element is

closely related to the bubble functions in the RFB method [19]. In fact, for the one-

dimensional example discussed at the end of the last subsection, the bubble functions

and the finite scale components are the same. This is true in high dimensions as long as

we require that the fine scale components vanish at the macro element boundaries.
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8.1.4 Multiscale basis functions

The idea of RFB and VMS is to add fine scale components to a coarse finite element

solution. An alternative idea is to modify the basis functions so that they contain the

same fine scale components as the solution to the microscale problem. This was pursued in

[36, 42] in the context of solving the Helmholtz equation (8.0.2) and in [37] in the context

of solving elliptic equations with multiscale coefficients (8.0.1). As usual, the difficulty is

in the boundary condition for the modified basis functions. There is a major difference

between one dimension and higher dimensions. In one dimension, one simply replaces

the standard nodal basis functions by functions which satisfy the homogeneous equation

over each element, with the same values at the nodes as the nodal basis functions. The

situation is not as simple in high dimensions. Below we will discuss the approach proposed

by Hou and Wu [37] for handling this problem, in the context of (8.0.1).

Let TH be a triangulation of the domain Ω with mesh size H. For any given element

K ∈ TH , denote by {xK,j, j = 1, · · · , d} the vertices of K. We will construct basis

functions {φK,j, j = 1, · · · , d} such that

φK,j(xK,i) = δij (8.1.27)

This way of indexing the basis functions introduces some redundancy: Neighboring ele-

ments may share vertices and therefore basis functions. Nevertheless, there is not going

to be any inconsistency since we will focus on a single element.

As in the one-dimensional case, φK,j will be required to solve the homogeneous version

of the original microscale problem:

(LφK,j)(x) = −∇(aε(x) · ∇)φK,j(x) = 0, x ∈ K (8.1.28)

The main question is how to impose the boundary condition on ∂K. The simplest

proposal is to require:

φK,j|∂K = ϕK,j|∂K (8.1.29)

where ϕK,j is the nodal basis function associated with the j-th vertex of the element K.

We will see later that the basis functions resulted from this choice of boundary condition

is very closely related to the RFB method: φK,j is equal to ϕK,j plus its RFB correction.

Of course there is no guarantee that such a procedure captures the right microstruc-

ture at the boundaries of the elements, and this can also affect the accuracy in the interior
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of the elements. Motivated by the fact that when the microscale is much smaller than

the macroscale, the influence of the boundary condition is sometimes limited to a thin

boundary layer, [37] proposed to extended the domain on which (8.1.28) is solved, and

then forming the basis functions from linear combinations of the extended functions, re-

stricted to the original elements. The intuition is that the precise boundary condition

will have less effect on the domain of interest. Specifically, one may proceed as follows.

1. Solve (8.1.28) on a domain S which contains K as a subdomain. S should be a few

times larger than K. The boundary condition at ∂S can be quite arbitrary. The

minimum requirement is that the matrix Ψ defined below be non-singular. Denote

these temporary basis functions as {ψK,j}.

2. Let

φK,i =
∑

j,K

cijKψK,j (8.1.30)

where the coefficients {cijK} are chosen such that the condition (8.1.27) is satisfied

by {φK,i}. Let Ψ = (ψK,i(xK,j)) and C = (cijK). It is easy to see that C = Ψ−1 if

they are ordered consistently.

This procedure allows us to construct basis functions for each element K. The overall

basis functions are constructed by patching together the basis functions on each elements.

The basis functions constructed this way are in general non-conforming, due to the dis-

continuity across the element boundaries. However, as we see below, convergence can

still be established in some interesting cases. We will denote this numerical solution by

ũH . This version of the multiscale finite element method is often denoted as MsFEM.

This procedure is called “over-sampling”, even though “over-lapping” might be a more

suitable term. It has been observed numerically that this change improves the accuracy

of the algorithm [37]. Analytical results for homogenization problems also support this

numerical observation [27].

For the case when aε(x) = a(x,x/ε) where a is a smooth periodic function, the

following error estimates have been proved [38] when linear boundary conditions are

used at the element boundaries to construct basis functions:

‖uε − ũH‖H1(Ω) ≤ C1H‖f‖L2(Ω) + C2

√
ε

H
(8.1.31)
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where C1 and C2 are constants independent of ε and H. When the over-sampling tech-

nique is used, (8.1.31) can be improved to [27]:

‖uε − ũH‖H1(Ω) ≤ C1H‖f‖L2(Ω) + C2
ε

H
+ C3

√
ε (8.1.32)

8.1.5 Relations between the various methods

It is quite obvious that the RFB finite element method is closely related to VMS: As

was pointed out already in [40, 41], the RFB finite element method can be viewed as a

special case of VMS in which the bubble functions represent the fine scale component of

the solution.

The relation between the RFB finite element method and MsFEM has also been in-

vestigated [18, 51, 55]. The most thorough discussion is found in [55]. We now summarize

its main conclusions.

We split the bubble component into two parts ub = M0(up) + M(f), such that

M0(up),M(f) ∈ Vb, and

a(up +M0(up), v) = 0, for all v ∈ Vb (8.1.33)

a(M(f), v) = (f, v), for all v ∈ Vb. (8.1.34)

Roughly speaking M0(up) is the intrinsic part of the bubble component due to the mul-

tiscale structure of the coefficients in the PDE (8.0.1), M(f) is the part of the bubble

component due to the forcing term.

Let K ∈ TH . In (8.1.16), let f = 0, up = ϕK,j. Then ub = M0(ϕK,j). (8.1.16) becomes

L(ϕK,j +M0(ϕK,j)) = 0, onK (8.1.35)

with the boundary condition M0(ϕK,j) = 0 on ∂K. Compared with (8.1.28), we see that

if φK,j satisfies the boundary condition (8.1.29), then we must have

φK,j = ϕK,j +M0(ϕK,j) (8.1.36)

A similar statement also holds for the numerical solutions, namely

ũH = up +M0(up) (8.1.37)

if the bilinear form a is symmetric. Here up, ũH are respectively the coarse component

of the numerical solution of the RFB method and the solution of MsFEM. This can be



368 CHAPTER 8. ELLIPTIC EQUATIONS WITH MULTISCALE COEFFICIENTS

seen as follows. With the notations defined above, we can reformulate the RFB finite

element method as

a(up +M0(up) +M(f), vp) = (f, vp), for all vp ∈ Vp,
a(up +M0(up) +M(f), vb) = (f, vb), for all vb ∈ Vb.

Letting vb = M0(vp) in the second equation and adding the two equations, we obtain

a(up +M0(up) +M(f), vp +M0(vp)) = (f, vp +M0(vp)), for all vp ∈ Vp (8.1.38)

If the bilinear form a(·, ·) is symmetric, then from (8.1.33),

a(M(f), vp +M0(vp)) = a(vp +M0(vp),M(f)) = 0 (8.1.39)

Therefore

a(up +M0(up), vp +M0(vp)) = (f, vp +M0(vp)), for all vp ∈ Vp. (8.1.40)

Together with (8.1.36), we obtain (8.1.37).

It should be noted that both the RFB finite element method and MsFEM have been

extended to situations when a(·, ·) is unsymmetric. In that case, (8.1.37) may not hold.

For a discussion on the connection between variational multiscale method and Ms-

FEM, please see [6].

8.2 Upscaling via successive elimination of small scale

components

In many situations, we are interested in finding an effective model for the large scale

component of the solution. In some cases, such models can be obtained analytically, using,

for example, the techniques discussed in Chapter 2. However, analytical approaches are

often quite limited. They rely on very special features such as periodicity of the small

scale structure of the problem. Therefore, it is of interest to develop numerical techniques

for deriving such effective models, i.e., for the purpose of upscaling. The objective then is

to eliminate the small scale components. At an abstract level, such a procedure has been

discussed at the end of Chapter 2. However, many practical issues have to be resolved

in order to implement this procedure efficiently.
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To begin with, we can either eliminate the small scales in one step or do it successively.

Using the notation in Chapter 3, if we write

u =
N∑

k=1

uk

and choose to keep only the components with k ≤ K0, we can use one of the following

two approaches:

1. Eliminate the components
∑N

k=K0+1 uk in one step. Using the notation of Chapter

2, this can be done by choosing H0 to be the space that contains the components

we would like to keep, and perform the procedure discussed at the end of Chapter

2.

2. Eliminate the small scale components successively, i.e. we first eliminate uN , then

uN−1, uN−2, and so on.

Our experience with the renormalization group analysis suggests that the second ap-

proach is more preferrable in general. The main reason is that with the second approach,

each step is a perturbation of the previous step. Therefore it is more likely that the

effective operator only changes slightly at each step. This is important when making

approximations on the effective operators. For this reason, we will focus on the second

approach, which was initially suggested by Beylkin and Brewster [15], and has been pur-

sued systematically by Dorobantu, Engquist, Runborg, et al. [23, 4]. A nice review can

be found in [29].

The basic idea is to implement the scale elimination procedure outlined at the end

of Chapter 2 in a multi-resolution framework. For this purpose, we need a sequence of

multi-resolution subspaces of L2, as discussed in Chapter 3. The sequence of subspaces

generated by wavelets is a natural choice, even though other choices are also possible. In

renormalization group analysis, for example, one often chooses the Fourier spaces.

Recall the basic setup for multi-resolution analysis:

L2 =
⋃

j

Vj, (8.2.1)

where

Vj+1 = Vj ⊕Wj, Wj = V ⊥
j (8.2.2)
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To start the upscaling procedure, one first chooses a Vj0 and discretize the original

problem (8.0.1) in Vj0 . Vj0 should be large enough to resolve the fine scale details of the

solution of (8.0.1). After discretization, one obtains a linear system of equations:

Ahuh = fh (8.2.3)

Let uj0 = uh, Aj0 = Ah, fj0 = fh. In Vj0 , define Pj0 as the projection operator to the

subspace Vj0−1, andQj0 = I−Pj0 . Write uj0 = uj0−1+wj0−1 where uj0−1 = Pj0uj0 , wj0−1 =

Qj0uj0 . Using the basis functions in Vj0−1 and Wj0−1, one can rewrite (8.2.3) as:
(
A11
j0

A12
j0

A21
j0

A22
j0

)(
uj0−1

wj0−1

)
=

(
f 1
j0

f 2
j0

)
(8.2.4)

Eliminating wj0−1, one obtains:

(A11
j0
− A12

j0
(A22

j0
)−1A21

j0
)uj0−1 = f 1

j0
− A12

j0
(A22

j0
)−1f 2

j0
(8.2.5)

Let Aj0−1 = A11
j0
− A12

j0
(A22

j0
)−1A21

j0
, fj0−1 = f 1

j0
− A12

j0
(A22

j0
)−1f 2

j0
, one can then repeat the

above procedure.

One obvious problem with the procedure described so far is the following. Our original

operator was a differential operator and therefore one expects the matrix Ah obtained

from finite difference or finite element discretizations to be sparse. This property is

lost after the elimination step, since (A22
j0

)−1 is in general a full matrix and so is Aj0−1.

Fortunately, even though Aj0−1 is full, many of its components are very close to zero,

due to their fast decay property, as shown in Figure 8.1. The decay rate in the wavelet

representation was analyzed systematically in [16]. See also [29]. Therefore one should be

able to approximate the matrix Aj0−1 by a sparse matrix and still retain good accuracy.

Two ways of approximating the matrix Aj0−1 have been proposed and tested. The first

is a direct truncation to banded or block-banded matrix. For one dimensional problems,

this is done as follows. Given a matrix A, define a new banded matrix trunc(A, ν) of

bandwidth ν by:

trunc (A, ν)ij =





Aij, if 2|i− j| ≤ ν − 1

0, otherwise
(8.2.6)

For higher dimensional problems, one should consider block-banded matrices (see [29]).

The second approach is to project the matrix Aj0−1 to the space of banded (or block-

banded) matrices, with the constraint that the action of the original matrix and the
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Figure 8.1: The structure of the matrices obtained during the elimination process (cour-

tesy of Olof Runborg).

projected matrix be the same on some special subspaces, e.g. subspaces representing

smooth functions. This is called band projection.

In principle, there is a third possibility, namely, thresholding: If a matrix element is

less than a prescribed threshold value, it is set to 0. This is less practical, since one does

not have a priori control of the sparsity pattern in such an approach.

An example of the numerical solutions obtained using this successive scale elimination

procedure is shown in Figure 8.2.

The procedure described above is an example of the numerical homogenization tech-

niques. It has been applied to several different classes of problems, including elliptic

equations with multiscale coefficients, Helmholtz equations, as well as some hyperbolic

and nonlinear problems (see [29]). It has a close resemblance to the renormalization

group procedure. Its main advantage is its generality: There are no special requirements

on either the PDE or the multiscale structure. Nevertheless, it requires starting from

a fully resolved numerical discretization. Therefore, the best one can hope for is a lin-

ear scaling algorithm. In addition, information about the small scale components of the

solution is lost during the process. For example, in the context of stress analysis of com-

posite materials, special efforts have to be made to recover information about the stress

distribution.
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Figure 8.2: An example of the numerical solutions of the Helmholtz equation obtained

after successively eliminating the smalls scales, see [29]
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8.3 Sublinear scaling algorithms

The approaches discussed above are all linear or super-linear scaling algorithms. Take

the example of the homogenization problem with periodic coefficients (8.0.1): aε(x) =

a(x,x/ε). In their current formulation, the overhead for forming the finite element spaces

in GFEM, RFB finite element, VMS and MsFEM all scales as 1/εd or more, where d is

the spatial dimension of the problem. The cost for forming the fine scale discretization

operator in the numerical homogenization procedure that we just discussed also scales as

1/εd. In some applications, algorithms with such a cost are not feasible and one has to

look for more efficient techniques, i.e. sublinear scaling algorithms.

As we explained in the first chapter, we can not expect to have sublinear scaling

algorithms for completely general situations. We have to rely on special features of the

problem, such as separation of scales, or similarity relations between different scales. In

other words, the problem has to have a special structure in the space of scales. This

special structure allows us to make predictions on larger scales based on information

gathered from small scale simulations, therefore achieving sublinear scaling. For the

problems treated here, the heterogeneous multiscale method (HMM) discussed in Chapter

6 provides a possible framework for developing such algorithms. We will discuss two

situations for which sublinear scaling algorithms can be developed. The first is the case

with scale separation. The second, discussed in the notes, is the case when the small

scale features exhibit statistical self-similarity.

There is another reason for designing algorithms such as HMM which focus on small

windows: For practical problems, we often do not have the full information about the

coefficients everywhere in the physical domain of interest. In the context of sub-surface

porous medium modeling, for example, we often have rather precise information locally

near the wells, and some coarse and indirect information away from the wells. The per-

meability and porosity fields used in porous medium simulations are obtained through

geostatistical modeling. This is also a source of significant error. Therefore it might be

of interest to consider the reversed approach: Instead of first performing geostatistical

modeling on the coefficients and solving the resulting PDE, one may develop algorithms

for predicting the solution by using only the data that are obtained directly from mea-

surements. HMM can be viewed as an example of such a procedure.
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8.3.1 Finite element HMM

To setup HMM, we need to have some idea about how the macroscale model looks

like. In the case of (8.0.1), abstract homogenization theory tells us that the macroscale

component of the solution satisfies an effective equation of the form [14]:

−∇ · (A(x)∇U(x)) = f(x), x ∈ D (8.3.1)

where A(x) is the effective coefficient at the macroscale. These coefficients are not ex-

plicitly known. It is possible to precompute them. But if we are interested in a strategy

that works equally effectively for more complicated situations such as nonlinear or time-

dependent problems, we should compute them “on-the-fly”.

As the macro-solver, it is natural to use the standard finite element method. The

simplest choice is the standard C0 piecewise linear element, on a triangulation TH where

H denotes the element size. We will denote by VH the finite element space. The size of

the elements should resolve the macroscale computational domain D, but they do not

have to resolve the small scales.

The needed data is the stiffness matrix for the finite element method:

A = (Aij) (8.3.2)

where

Aij =

∫

D

(∇Φi(x))TA(x)∇Φj(x) dx (8.3.3)

and A(x) is the effective coefficient (say, the conductivity) at the scale H, {Φi(x)} are

the standard nodal basis functions of VH . Had we known A(x), we could evaluate (Aij)

by numerical quadrature. Let fij(x) = (∇Φi(x))TA(x) · ∇Φj(x), then

Aij =

∫

D

fij(x)dx ≃
∑

K∈TH

|K|
∑

xℓ∈K
wℓfij(xℓ) (8.3.4)

where {xℓ} and {wℓ} are the quadrature points and weights respectively, |K| is the volume

of the element K. Therefore the data that we need to estimate are the values of {fij(xℓ)}.
This will be done by solving the original microscopic model, properly reformulated, locally

around each quadrature point {xℓ} on the domain Iδ(xℓ), as shown in Figure 8.3.1.

The key component of this method is the boundary condition for the microscale

problem (8.0.1) on Iδ(xℓ). This will be discussed in the next subsection.
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K

Figure 8.3: Illustration of HMM for solving (8.0.1). The dots are the quadrature points. The

little squares are the microcell Iδ(xℓ).

From the solution to the microscale problem, we estimate the needed data fij(xℓ) by

fij(xℓ) ≃
1

δd

∫

Iδ(xℓ)

(∇ϕεi (x))Taε(x)∇ϕεj(x) dx (8.3.5)

where ϕεj is the solution to the microscale problems on Iδ(xℓ) that correpond to Φj (more

precise formulation will be discussed below)

−∇(aε(x) · ∇)ϕεj(x) = 0 (8.3.6)

〈∇ϕεj〉Iδ = ∇Φj(xℓ) (8.3.7)

and similarly for ϕεi . Knowing {fij(xℓ)}, we obtain the stiffness matrix A by (8.3.4).

8.3.2 The local microscale problem

We now come to the boundary conditions for the local microscale problem. Ideally,

one would like to formulate the boundary conditions in such a way as if the boundary

was not present, i.e. we would like to capture exactly the microscale solution on Iδ (see

Chapter 7), which is the solution of the microscale problem over the whole macroscale

domain restricted to Iδ. This is not possible, due to the intrinsic nonlocality of the

elliptic equations. Still, we would like to minimize the error due to the artificial boundary

conditions.
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To formulate the local microscale problem on Iδ, we ask the question: If the average

gradient is G, what is the corresponding microscale behavior? To answer this question,

we solve the microscale problem (8.3.6) subject to the constraint

〈∇ϕε〉Iδ = G (8.3.8)

We will denote the solution to the microscale problem with the constraint (8.3.8) by ϕεG.

This problem was investigated in [56]. Below is a summary of the findings in [56]. Three

different types of boundary conditions were considered.

Dirichlet formulation

In this case, Dirichlet boundary condition is used for the local microscale problem




−∇ · (aε(x)∇ϕ) = 0, in Iδ,

ϕ(x) = G · x, on ∂Iδ.
(8.3.9)

One can check easily that

〈∇ϕ(x)〉 ≡
∫
−
Iδ

∇ϕ(x)dx ≡ 1

|Iδ|

∫

Iδ

∇ϕ(x)dx = G. (8.3.10)

In the Dirichlet formulation the effective conductivity tensor A∗
D is defined by the relation

〈aε(x)∇ϕ〉 = A∗
D〈∇ϕ〉 = A∗

DG. (8.3.11)

Periodic formulation

In this case, the microscale problem is given by:




−∇ · (aε(x)∇)ϕ = 0, in Iδ,

ϕ(x)−G · x is periodic with period Iδ.
(8.3.12)

It can be easily checked that the constraint (8.3.8) is satisfied. The effective conductivity

tensor A∗
P is defined through

〈aε(x)∇ϕ〉 = A∗
P 〈∇ϕ〉 = A∗

PG. (8.3.13)

It is obvious that when the micro-structure of aε is periodic, A∗
P will be the same as

the homogenized coefficient tensor obtained in the homogenization theory ([57], see also

Section 2.4) if Iδ is chosen to be an integer multiple of the period.
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Neumann formulation

In this case, the microscale problem is formulated as





−∇ · (aε(x)∇)ϕ = 0, in Iδ,

aε(x)∇ϕ(x) · n = λ · n, on ∂Iδ,
(8.3.14)

where the constant vector λ ∈ R
d is the Lagrange multiplier for the constraints

〈∇ϕ〉 = G. (8.3.15)

The effective conductivity tensor is then given by

〈aε(x)∇ϕ〉 = A∗
N〈∇ϕ〉 = A∗

NG. (8.3.16)

For example when d = 2, to solve problem (8.3.14) with the constraint (8.3.15), we

first solve for ϕ1 and ϕ2 from





−∇ · (aε(x)∇ϕi) = 0, in Iδ,

aε(x)∇ϕi(x) · n = µi · n, on ∂Iδ,
(8.3.17)

for i = 1, 2, where µ1 = (1, 0)T , µ2 = (0, 1)T . Given an arbitrary G, the Lagrange

multiplier λ = (λ1, λ2)
T is determined by the linear equation

λ1〈∇ϕ1〉+ λ2〈∇ϕ2〉 = G (8.3.18)

and the solution of (8.3.14)-(8.3.15) is given by ϕ = λ1ϕ1 + λ2ϕ2.

It is easy to see that for the 1-dimensional case, the three quantities A∗
D, A

∗
P , A

∗
N are

equal. In high dimensions, we have ([56])

Theorem 8.

A∗
N ≤ A∗

P ≤ A∗
D. (8.3.19)

To see the influence of the cell size and the particular boundary condition on the

accuracy of the effective coefficient tensor, [56] performed a systematic numerical study

on various examples. In particular, the two dimensional random checker-board problem

was used as a test case. This is a random two-phase composite material: The plane is

covered by a square lattice, and each square is randomly assigned one of the two phases
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with equal probability. Both phases are assumed to be isotropic. The interest on this

problem stems from the fact that the effective conductivity for this case can be computed

analytically using some duality relations, and is found to be the geometric mean of the

conductivities of the two phases [54]. The main conclusions of this study were:

1. Periodic boundary condition performs better for both the random and periodic

problems tested.

2. In general the Neumann formulation underestimates the effective conductivity ten-

sor and the Dirichlet formulation overestimates the effective conductivity tensor,

consistent with the theorem mentioned earlier.

3. When computing the effective tensor by averaging over the cell, the accuracy can

be improved if weighted or truncated averaging is used. In general, the results of

the weighted averaging, with smaller weights near the boundary, is more robust.

4. The variance of the estimated effective conductivity tensor behaves as σ2 ∼ L−2

for the random checker-board problem.

Table 8.1 gives a sample of the results for the random checker-board problem. The

exact effective conductivity is 4.

8.3.3 Error estimates

To get an idea about how the method works, we follow the framework discussed in

Chapter 6 for the error analysis of HMM. Define

e(HMM) = max
xℓ∈K,K∈TH

‖A(xℓ)− Ã(xℓ)‖,

where Ã(xℓ) is the estimated coefficient at xℓ using (8.3.4) and (8.3.5), A(xℓ) is the

coefficient of the effective model. Following the general strategies discussed for HMM in

Chapter 6, one can prove the following [25]:

Theorem 1. Assume that (8.0.1) and (8.3.1) are uniformly elliptic. Denote by U0

and UHMM the solution of (8.3.1) and the HMM solution, respectively. If U0 is sufficiently

smooth, then there exists a constant C independent of ε, δ and H, such that

‖U0 − UHMM‖1 ≤ C (H + e(HMM)) , (8.3.20)

‖U0 − UHMM‖0 ≤ C
(
H2 + e(HMM)

)
. (8.3.21)
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Cell size 4 6 8 10 16

Number of realizations 1000 800 800 400 100

K̄∗
D 4.354 4.253 4.182 4.164 4.109

K̄∗
P 4.105 4.061 4.044 4.021 4.016

K̄∗
N 3.790 3.838 3.848 3.883 3.925

σ2
D 0.619 0.295 0.153 0.090 0.035

σ2
P 0.645 0.267 0.153 0.093 0.038

σ2
N 0.502 0.204 0.134 0.080 0.030

Table 8.1: Random checker-board: Ensemble averaged effective conductivities computed

using different boundary conditions. Also shown are the results of sample variance.

This result is completely general. However, to estimate e(HMM) quantitatively, we

do need to make specific assumptions on the structure of the coefficients in (8.0.1). In

general, if we assume that aε(x) is of the form a(x,x/ε), then we have

|e(HMM)| ≤ C
(ε
δ

)α
(8.3.22)

where δ is the size of the computational domain for the microscale problem. The value

of the exponent α depends on the rate of convergence of the relevant homogenization

problem as well as the boundary conditions used in the microscopic problem. Some

interesting results are obtained in [34].

Error analysis of the full discretization including the effect of discretization of the

microscale problem is considered in [2].

8.3.4 Information about the gradients

There is another important point to be made. So far in this section, we have empha-

sized capturing the macroscale behavior of the system. We paid little attention to what
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happens at the microscale. In fact, we tried to get away with knowing as little as possible

about the microscale behavior, so long as we are able to capture the macroscale behav-

ior. For some applications involving (8.0.1), this is not what is needed. For example,

in the context of composite materials, we are often interested in the stress distribution

which is not captured by the effective macroscale model, or the homogenized equation:

Information about stress (or the gradients) is part of the microscale details that we did

not pay much attention to. The same is true in the context of modeling multi-phase

flow in porous medium. There we are also interested in the velocity field for the purpose

of modeling the transport, and information about the velocity field is also part of the

microscale details that we have not paid attention to.

It is possible to recover some information about the gradients from the HMM solu-

tions. Let uH be the HMM solution. Clearly, ∇uH is not going to be close to ∇uε, where

uε is the solution to the original microscale problem (8.0.1), since uH contains only the

macroscopic component. To recover information about the gradients, note that on each

element K ∈ TH , ∇uH is a constant vector GK = ∇uH |K . On K, we expect ∇φεGK

to contain some information about ∇uε. For example, we expect that their probability

distribution functions are close. At this point though, this remains to be speculative

since no systematic quantitative study has been carried out on how much information

can be recovered about ∇uε from this procedure.

For the general case, having uH , one can also obtain locally the microstructural in-

formation using an idea in [47]. Assume that we are interested in recovering uε and ∇uε
only in the subdomain D ⊂ Ω. Let Dη be a domain with the property D ⊂ Dη ⊂ Ω and

dist(∂D, ∂Dη) = η. Consider the following auxiliary problem:

−∇ · (aε(x)∇)ũ(x) = f(x) x ∈ Dη, (8.3.23)

ũ(x) = uH(x) x ∈ ∂Dη, (8.3.24)

We then have [25]

( 1

|D|

∫

D

|∇(uε − ũ)|2dx
)1/2

≤ C

η
‖uε − uH‖L∞(Dη). (8.3.25)

See [1] for a review of other relevant issues on finite elment HMM.
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8.4 Notes

Other approaches

There are many other related contributions that we should have included but could

not due to the lack of space. Some of these include:

• Efficient use of the homogenization approach [22, 52]. In particular, Schwab and

co-workers have studied the use of sparse representation to solve efficiently the

homogenized models.

• Mixed formulation, see the work of [5, 20]. This is preferred in some applications

since it tends to have better conservation property.

Adaptivity

This is obviously an important issue. See [3, 47] for some initial results in this

direction. We will come back to this point at the end of the book.

Generality vs. efficiency

The main issue is still the conflict between generality and efficiency. Here by gener-

ality, we mean the class of problems that can be handled. The most general methods

are methods such as the classical multi-grid solver for the original microscale problem.

However, they are still too costly for many practical problems. The most efficient algo-

rithms are HMM or approaches that are based on precomputing the effective homogenized

equation, such as the RAV approach.

A central issue is whether one can make the former class of methods more efficient

by taking into account the special features that the problem might have, and whether

we can make HMM type of algorithms more general.

It should be noted that when the coefficients have multiscale features, then the simple

version of the multi-grid algorithm discussed in Chapter 3 is no longer adequate, since

the choice of the coarse-grid operator discussed there does not necessarily reflect the

effective properties on the coarse scale. How one should choose the effective operators in

this case is still somewhat of an open question for general elliptic PDEs with multiscale

coefficients. Some work has been reported in [28, 45].

We have discussed the case of spatial scale separation in which sublinear scaling

algorithms can be constructed. Other situations can also be contemplated. For example,
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if we are solving a dynamic problem and the microstructure is frozen in time, or more

generally when the microstructure changes much more slowly than the macro dynamics

of interest, then the kind of algorithms discussed in Section 8.1 such as RFB finite

element method and MsFEM might also be made sublinear, since the overhead involved

in formulating the finite element space (such as finding the basis functions) can be greatly

reduced. Yet another case for which sublinear scaling algorithms can be constructed is

discussed next.

Exploring statistical self-similarity

In the example discussed above, sublinear scaling was possible due to the disparity

between the macro and micro scales. Another situation for which it is possible to de-

velop sublinear scaling algorithms, and use sampling of the microscale behavior on small

domains to predict the behavior on larger scales was explored in [26]. This is the case

when the small scale components at different scales are statistically self-similar. This

work is still quite far from being mature. Nevertheless, we will summarize it here since it

gives some interesting suggestions on how one may develop sublinear scaling algorithms

for problems without scale separation.

General strategy for data estimation. In the problems discused above and in

Section 6.3, scale separation was very important for the efficiency of HMM: It allows us to

work with small simulation boxes for the microscale problem and still retain reasonable

accuracy for the estimated data. Working with larger simulation boxes gives roughly the

same estimates for the data. In other words, if we denote the value of the estimated

data on a box of size L as f = f(L), then when L is above some critical size, f is

approximately independent of L:

f(L) ≈ Const (8.4.1)

Here the critical size is determined by the characteristic scale of the microscopic model,

which might just be the correlation length. This idea can be generalized in an obvious

way. As long as the scale dependence of f = f(L) is of a simple form with a few

parameters, we can make use of this simple relationship by performing a few (not just

one as was done for problems with scale separation) small scale simulations and use the

results to establish an accurate approximation for the dependence of f on L. Once we

have f = f(L), we can use it to predict f at a much larger scale.

One example of such a situation is when the system exhibits local self-similarity. In
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this case the dependence in (8.4.1) is of the form f(L) = C0L
β with only two parameters

C0 and β. Therefore we can use results of microscopic simulations at two different values

of L to predict the result at a much larger scale, namely size of the macroscale mesh H.

Transport on a percolation network at criticality. This idea was demonstrated

in [26] on the example of effective transport on a two-dimensional bond percolation

network at the percolation threshold.

In the standard two dimensional bond percolation model with parameter p, 0 ≤ p ≤ 1,

we start with a square lattice, each bond of the lattice is either kept with probability

p or deleted with probability 1 − p. Of particular interest is the size of the percolation

clusters formed by the remaining bonds in the network (see Figure 8.4 for a sample of

bond percolation). The critical value for this model is p = p∗ = 0.5. For an infinite

Figure 8.4: Bond percolation network on a square lattice at p = 0.5 (courtesy of Xingye

Yue)

lattice, if p < p∗, the probability of having infinite size clusters is zero. For p > p∗, the

probability of having infinite size clusters is 1. Given the parameter value p, the network

has a characteristic length scale – the correlation length, denoted by ξp. As p → p∗, ξp

diverges as

ξp ∼ |p− p∗|α, (8.4.2)

where α = −4/3 (see [50]). At p = p∗, ξp =∞. In this case, the system has a continuum

distribution of scales, i.e. it has clusters of all sizes. In the following we will consider the

case when p = p∗.
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We are interested in the macroscopic transport on such a network. To study transport,

say of some pollutants whose concentration density will be denoted by c, we embed this

percolation model into a domain Ω ∈ R
2. We denote by ε the bond length of the

percolation network, and L the size of Ω. We will consider the case when ε/L is very

small.

The basic microscopic model is that of mass conservation. Denote by Si,j, i, j =

1, · · · , N the (i, j)-th site of the percolation network, and ci,j the concentration at that

site. Define the fluxes

• The flux from the right: f ri,j = Bx
i,j(ci+1,j − ci,j)

• The flux from the left: f li,j = Bx
i−1,j(ci−1,j − ci,j)

• The flux from the top: f ti,j = By
i,j(ci,j+1 − ci,j)

• The flux from the bottom: f bi,j = By
i,j−1(ci,j−1 − ci,j)

Here the various B’s are the bond conductivities for the specified bonds. The bond

conductivity is zero if the corresponding bond is deleted, and 1 if the bond is kept. At

each site Si,j, from mass conservation, we have

f ti,j + f bi,j + f ri,j + f li,j = 0, (8.4.3)

i.e. the total flux to this site is zero. This is our microscale model. It can be viewed as

a discrete analog of (8.0.1).

In the HMM framework, it is natural to choose a finite volume scheme over a macroscale

grid ΩH where H is the size of the finite volume cell. The data that we need to estimate

from the microscale model, here the percolation model, are the fluxes at the mid-points

of the boundaries of the finite volume cells. Since the present problem is linear, we only

need to estimate the effective conductivity for a network of size H. We note that at

p = p∗, the effective conductivity is strongly size-dependent. In fact there are strong

evidences suggesting that [39]:

κ(L) ∼ C0L
β (8.4.4)

for some values of β, where κ(L) is the mean effective conductivity at size L.

Assuming that (8.4.4) holds, we will numerically estimate the values of β and C0. For

this purpose, we perform a series of microscopic simulations on systems of sizes L1 and
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L2, where ε≪ L1ε < L2ε≪ H. From the results we estimate κ(L1) and κ(L2). We then

use these results to estimate the parameter values C0, β in (8.4.4). Once we have these

parameter values, we can use (8.4.4) to predict κ(H).

One interesting question is the effect of statistical fluctuations. To see this we plot

in Figure 8.6 the actual and predicted (using self-similarity) values of the conductivity

on a lattice of size L = 128 for a number of realizations of the percolation network. The

predicted values are computed using the simulated values from lattices of size L = 16

and L = 32. We see that the predicted values have larger fluctuations than the actual

values, suggesting that the fluctuations are amplified in the process of predicting the mean

values. Nevertheless the mean values are predicted with reasonable accuracy, considering

the relatively small size of the network.
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Figure 8.5: Effective conductivity at different scale L = (16, 32, 64, 128, 256)ε for a real-

ization of the percolation network with p = p∗ = 0.5 (courtesy of Xingye Yue).

For more details, see [26].

The general case. In the general case when there are no special features that can

be made use of, one possibility is to use the viewpoint of model reduction, i.e. given

the operator L = −∇ · (aε(x)∇) or its discretization on a fine grid, AN (where N is the

number of grid points), and given a number M (M ≪ N), one asks: What is its best

M ×M approximation ĀM in the sense that the solutions to the equations ANu = f and

ĀMuM = f are the closest for a general right hand side f among all M ×M matrices?

We will return to this problem in Chapter 11.
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[8] I. Babuška, “Solution of interface by homogenization I, II, III,” SIAM J. Math.

Anal., vol. 7, pp. 603–634, 635–645,1976; vol. 8, pp. 923–937, 1977.

387



388 BIBLIOGRAPHY
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Chapter 9

Problems with Multiple Time Scales

The last chapter was devoted to an example with disparate spatial scales. In this and

the next chapters, we will focus on problems with disparate time scales. This chapter

is concerned with problems which are “stiff” in a broad sense, i.e. problems for which

the fast processes relax in a short time scale and the slow processes obey an effective

dynamics obtained by averaging the slow component of the original dynamics over the

quasi-equilibrium distribution of the fast processes. Classical stiff ODEs will be consid-

ered as a special case. The next chapter is concerned with the other important class of

problems with disparate time scales, namely, the rare events.

9.1 ODEs with disparate time scales

9.1.1 General setup for limit theorems

Consider the differential equation

ẋ = f(x, ε) (9.1.1)

We have used an explicit dependence on ε to indicate that the system has disparate time

scales. For example, f may take the form

f(x, ε) = f0(x) +
1

ε
f1(x) (9.1.2)

or more generally

f(x, ε) = f0(x, ε) +
1

ε
f1(x, ε) (9.1.3)
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where f0 and f1 are bounded in ε. Roughly speaking, we have in mind the following

picture: The fast component of the dynamics brings the system to some local equilibrium

states and this relaxation process is faster than the time scale on which the slow variables

change. These local equilibrium states are often called quasi-equilibrium. They are

parametrized by the local values of the slow variables and they influence the dynamics

of the slow variables. We are interested in capturing the dynamics of the slow variables

without resolving the details of the fast component of the dynamics in (9.1.1).

Let z = ϕ(x). If f takes the form of (9.1.3), then

ż = ∇ϕ · ẋ = ∇ϕ ·
(
f0 +

1

ε
f1

)
(9.1.4)

Therefore, to be a slow variable, ϕ should satisfy

∇ϕ · f1 = 0 (9.1.5)

In other words, if we define the “virtual fast dynamics”, as in [7]:

ẏ =
1

ε
f1(y, ε) (9.1.6)

then the slow variables are conserved quantities for the virtual fast dynamics. Assume

that z = (z1, z2, · · · , zJ) is a complete set of slow variables, i.e. the ergodic components

for the virtual fast dynamics (9.1.6) are parametrized completely by the values of z.

Denote by µz̄(dx) the equilibrium distribution of the virtual fast dynamics, when the

slow variable z is fixed at the value z̄. Since

ż = ∇ϕ(x) · f0(x, ε) (9.1.7)

The averaging principle discussed in Chapter 2 suggests that the effective dynamics for

the slow variable z should be described by:

˙̄z =

∫
∇ϕ(x) · f0(x, ε)µz̄(dx) (9.1.8)

We note that the set of slow variables have to be sufficiently large such that the

quasi-equilibrium distribution of the fast dynamics is completely parametrized by z. See

[17] for a more thorough discussion of this and related issues.
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Example 1.

dx

dt
= f(x, y) (9.1.9)

dy

dt
= −1

ε
(y − φ(x)) (9.1.10)

In this case, x is a slow variable. Fix x, the quasi-equilibrium distribution for the fast

variable y is given by a delta function µx(dy) = δ(y − φ(x))dy. The effective equation

for the slow variable x is given by:

dx

dt
=

∫
f(x, y)µx(dy) = f(x, φ(x)) (9.1.11)

Example 2.

dx

dt
= 1 + y (9.1.12)

dy

dt
=

1

ε
z (9.1.13)

dz

dt
= −1

ε
y (9.1.14)

It is easy to see that the dynamics of y and z exhibit fast oscillations. One choice of

slow variables is (x, r =
√
y2 + z2). Given the variables (x, r), the quasi-equilibrium

distribution is a uniform distribution concentrated on the circle of radius r in the y − z
plane, centered at the origin. The effective equation for the slow variables is simply:

dx

dt
= 1 (9.1.15)

dr

dt
= 0 (9.1.16)

Example 3.

dx

dt
= f(x, y) (9.1.17)

dy

dt
= −1

ε
(y − φ(x)) +

√
2

ε
ẇ (9.1.18)

where ẇ is a standard Gaussian white noise. Again, x is one possible choice of the slow

variable. Given the value of x, the quasi-equilibrium distribution is a normal distribution

in y with mean φ(x) and variance 1. The effective dynamics for x is obtained by averaging

f(x, y) with respect to a standard normal distribution in y.
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9.1.2 Implicit methods

For a problem of the type (9.1.9), a standard explicit scheme such as the forward

Euler method would require a time step size of O(ε). However, if we are only interested in

capturing accurately the dynamics of the slow variable, not the details of the relaxation

process for the fast variable, as is often the case in applications, then there are more

efficient approaches. The most well-known examples are the implicit methods.

It is more convenient to consider the more general problem of

dz

dt
= F (z, ε) (9.1.19)

The simplest implicit method is the backward Euler scheme:

zn+1 − zn
∆t

= F (zn+1, ε) (9.1.20)

The reason that this is better than the forward Euler scheme

zn+1 − zn
∆t

= F (zn, ε) (9.1.21)

is that backward Euler has much better stability properties. In order to see this difference,

let us introduce the notion of stability region [21].

Given an ODE solver, consider its application to the following linear problem

dy

dt
= λy (9.1.22)

where λ is a complex constant. The stability region of the ODE solver is defined as the

subset of complex numbers z = λ∆t such that the numerical solution {yn} produced by

the ODE solver is bounded in n, i.e. there exists constant C which is independent of n

such that

|yn| ≤ C (9.1.23)

When the forward Euler method is applied to (9.1.22), we have yn+1 = (1 + z)yn.

Hence (9.1.23) is satisfied if

|1 + z| ≤ 1 (9.1.24)

This is a unit disk of radius 1 on the complex z-plane centered at z = −1. For backward

Euler, we have yn+1 = (1− z)−1yn. Hence (9.1.24) is satisfied when

|1− z| ≥ 1 (9.1.25)
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This is the complement of the unit disk centered at z = 1.

Note that the stability region for the backward Euler method contains the negative

real axis. This is an important feature since the fast component of the dynamics in (9.1.9)

is of the form of (9.1.22) with λ = −1/ε. This is not just a feature of the simple model

problem such as (9.1.9), it is rather common for ODE systems that arise from chemical

kinetic models, discretization of dissipative PDEs, etc.

So far we have only discussed the simplest implicit scheme, the backward Euler

method. There are other implicit methods such as the Adams-Moulton methods and

the bacward differentiation formula. We refer to standard ODE textbooks such as [21]

for details.

From a practical viewpoint, one disadvantage of the implicit schemes is that they are

implicit: At every time step, one has to solve a system of algebraic equations in order to

obtain the numerical solution at that time step. These algebraic equations are usually

solved by some iterative methods. While there are very efficient techniques available

for solving these algebraic equations, this does represent one additional complication

compared with the explicit methods.

It is quite remarkable that one can capture the large scale behavior of solutions to stiff

ODEs without the need to resolve the small scale transients, even though we are so used to

this and we tend to take it for granted. In fact, this seems to be special to systems whose

quasi-equilibrium distributions are delta functions. The same kind of philosophy does

not work for other systems for which the quasi-equilirbium distributions are non-trivial

(i.e. not delta functions), for example stochastic ODEs or highly oscillatory systems [31],

and it is unclear how useful implicit methods are for these kind of problems.

9.1.3 Stablized Runge-Kutta methods

Now we turn to explicit methods. As we said earlier, simple explicit schemes such

the forward Euler method are not very effective for the kind of problems discussed here.

However, composite schemes, which are sometimes formed as a composition of a large

number of forward Euler steps with different stepsizes, can be quite effective. Here we

will show how one can design such schemes in the framework of explicit Runge-Kutta

methods.
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Consider the mid-point rule for the ODE ẋ = f(x):

xn+ 1

2 = xn +
∆t

2
f(xn) (9.1.26)

xn+1 = xn + ∆tf(xn+ 1

2 )

When this is applied to (9.1.22), we have

xn+1 = R(z)xn (9.1.27)

where z = λ∆t

R(z) = 1 + z +
z2

2
(9.1.28)

R is the stability polynomial of the mid-point rule. Since the exact solution of (9.1.22)

satisfies x(tn+1) = eλzx(tn) and since

eλz −R(z) = O(z3) (9.1.29)

we see that the local error is O(∆t3) and the global error is O(∆t2). Similarly for the

classical 4th order Runge-Kutta method, its stability polynomial is

R(z) = 1 + z +
z2

2
+
z3

3!
+
z4

4!
(9.1.30)

The local error is O(∆t5) and the global error is O(∆t4).

The two examples given above are examples of Runge-Kutta methods that have opti-

mal accuracy, in the sense that their order of accuracy is the maximally achievable given

the number of stages (which is the same as the number of function evaluation). The

stability region for these methods is however, quite limited.

It is possible to design Runge-Kutta methods with less accuracy but much larger

stability region. This class of methods are generally referred to as “stabilized Runge-

Kutta methods”. We will discuss a particularly interesting class of stabilized Runge-Kutta

methods, the Chebychev methods [29].

Consider an s-stage Runge-Kutta method. For consistency, its stability polynomial

has to take the form

Rs(z) = 1 + z +
s∑

k=2

Ckz
k (9.1.31)

i.e. the first two terms have to match the Taylor series for ez. We would like to choose the

coefficients {Ck} in order to maximize the stability region of the corresponding Runge-

Kutta method. Note that our interest is mainly in the case when the spectrum of the
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Figure 9.1: Stability region of the Chebychev method with s = 10 (courtesy of Assyr

Abdulle).

linearized ODE is located near the negative part of the real axis. Therefore our problem

can be formulated as:

Maximize ls, subject to the condition that

(−ls, 0) ⊂ {z : |Rs(z)| < 1} . (9.1.32)

It is easy to see that the solution to this problem is given by

Rs(z) = Ts

(
1 +

z

s2

)
(9.1.33)

where Ts is the Chebyshev polynomial of degree s. In this case, we have

ls = 2s2 (9.1.34)

How do we turn this into a Runge-Kutta method? There are two ways to proceed.

The first is to write

Rs(z) =
s∏

j=1

(1 + cjz) (9.1.35)
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Figure 9.2: Stability region of the improved Chebychev method with s = 10, q = 0.9

(courtesy of Assyr Abdulle).
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where the {−1/cj}’s are the roots of Rs(z) which are all real and negative. Given xn, we

then form

xn,0 = xn

xn,1 = xn,0 + ∆tc1f(xn,0)

xn,2 = xn,1 + ∆tc2f(xn,1)

. . . . . .

xn,s = xn,s−1 + ∆tcsf(xn,s−1)

xn+1 = xn,s

(9.1.36)

It is easy to see that the stability polynomial of this Runge-Kutta method is given by

(9.1.33). In fact the stability polynomial up to the k-th stage is

Rs,k(z) =
k∏

j=1

(1 + cjz) (9.1.37)

This algorithm can be thought of as being a composition of forward Euler methods with

different step sizes {cj∆t}. As such it can be regarded as a special case of the variable

time step methods. However, we prefer not to do so, partly due to the fact that when

formulated this way, the Chebyshev methods may suffer from the problem with internal

instabilities. Even if |Rs(z)| < 1, there is no guarantee that |Rs,k(z)| < 1 for all k. For

large s, the numerical errors might be amplified a lot in the intermediate stages before

they have a chance to be damped out eventually. This problem of internal instabilities

can be alleviated by ordering {cj} in a better way [30].

An easy way to avoid such internal instabilities is to make use of the three-term

recurrence relation for Chebyshev polynomials

Tn+1(x) = 2xTn(x)− Tn−1(x) (9.1.38)

Using this, we reformulate (9.1.36) as

xn,0 = xn

xn,1 = xn,0 +
∆t

s2
f(xn,0)

. . . . . .

xn,j+1 = 2xn,j − xn,j−1 +
2∆t

s2
f(xn,j)

xn+1 = xn,s

(9.1.39)



402 CHAPTER 9. PROBLEMS WITH MULTIPLE TIME SCALES

It is easy to check that if f(x) = λx, z = λ∆t, then

xn,j = T̃j(z)x
n (9.1.40)

where T̃j(z) = Tj (1 + z/s2), and Tj is the Chebyshev polynomial of degree j. This

ensures stability for the intermediate stages, even though the scheme is no longer in the

form of a composition of forward Euler steps [24, 45].

Another point to be noted is that the width of the stability region vanishes at the

points where Ts = ±1. This is an undesirable feature. It can be avoided by replacing the

domain of consideration from {z : |Rs(z)| < 1} to {z : |Rs(z)| < q} where q is a positive

number less than 1. In this case Rs is replaced by

R̃s(z) =
1

Ts(ω0)
Ts(ω0 + ω1z) (9.1.41)

where

ω0 = 1 +
q

s2
, ω1 =

Ts(ω0)

T ′
s(ω0)

(9.1.42)

The stability domain is shown in Figure 9.1.3. ls is no longer equal to 2s2. But it is still

O(s2).

So far, we have only discussed first order methods. For higher order Chebyshev

methods we refer to [5, 2]. For extension to stochastic ODEs, we refer to [3, 4]. For

obvious reasons, these methods are referred to as the Chebychev methods.

Returning to the system (9.1.9) discussed earlier, we have |λ| ∼ 1/ε. If we want

∆t|λ| ≤ O(s2),

then we must have

∆t ≤ O(s2ε)

Since the cost per step is O(s), the total cost required to advance to O(1) time is

Cost = O
( s

s2ε

)
= O(

1

sε
)

The cost is O(1/ε) if we choose s to be O(1), and O(1) if we choose s to be O(1/ε).

In the latter case, however, the accuracy also deteriorates. Therefore the optimal choice

depends on considerations of both accuracy and efficiency.

If the spectrum of the problem has a different structure, one can design stabilized

Runge-Kutta methods accordingly. For example, if the spectrum is clustered in two
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regions separated by a gap, one can design Runge-Kutta methods whose stability regions

cover these clusters [21, 29]. It can be shown that such stabilized Runge-Kutta methods

can be considered as compositions of forward Euler steps whose step sizes cluster into

two regions [1, 29]. In other words, they are compositions of forward Euler with small

and large time steps.

9.1.4 HMM

To illustrate the idea, let us consider the simple example (6.2.1). Here the macroscale

variable of interest is x. We will assume that its dynamics is approximated accurately

by an ODE, which can be written abstractly as:

˙̄x = F (x̄, ε), x̄(0) = x0 (9.1.43)

with unknown right hand side,

Since the macroscale equation takes the form of an ODE, we will select stable ODE

solvers as the macro-solver. This suggests an HMM that consists of the following:

1. The macro-solver, say forward Euler:

x̂n+1 = x̂n + F̂n∆t, x̂
0 = x0 (9.1.44)

where ∆t is the macro time step, and F̂n denotes the approximate value of F (x̂n, ε)

that needs to be estimated at each macro time step.

2. The micro-solver: In this case, the constrained microscale model is simply the

second equation in (6.2.1) with x = xn. In the simplest case of a forward Euler

scheme with micro time step δt, we have:

ẑn,m+1 = ẑn,m +
1

ε
g(x̂n, ẑn,m, tn +mδt)δt (9.1.45)

m = 0, 1, · · · .

3. A force estimator: For example, we may use a simple time-averaging to extract F̂n

F̂n =
1

M

M−1∑

m=0

f(x̂n, ẑn,m, tn +mδt) (9.1.46)
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The macroscale solver can be quite general. For example, we may also choose higher

order Runge-Kutta methods or linear multi-step methods. If we use the mid-point rule

as the macro solver, we have

x̂n+1/2 =x̂n +
∆t

2
F̂n (9.1.47)

x̂n+1 =x̂n + ∆tF̂n+1/2 (9.1.48)

(9.1.49)

Here both F̂n and F̂n+1/2 are unknown forces that have to be estimated from the mi-

croscale model.

One should distinguish this kind of methods from multi-time-step methods [42]. In

multi-time-step methods, different time step sizes are used for different terms in the

forcing. However, the detailed behavior of the model is computed accurately over the

whole time interval of interest. An illstrative example is as follows. Consider

ẋ = f1(x) + f2(x) (9.1.50)

Assume that for some reason, we believe f1 varies more slowly than f2. Then one might

use a multi-time-step integrator of the tyep:

xn,0 =xn + ∆tf1(x
n) (9.1.51)

xn,m+1 =xn,m + δtf2(x
n,m), m = 0, 1, · · · ,M − 1 (9.1.52)

xn+1 =xn,M (9.1.53)

with M = ∆t/δt. In contrast, in HMM (or projective integrators for that matter), M is

determined by the relaxation time of the fast component of the dynamics.

If the ODE has a stochastic component, then the macroscale model might be in the

form of stochastic ODEs. In this case, one should use a stochastic ODE solver as the

macro-solver in HMM. The simplest example is the Euler-Maruyama scheme:

xn+1 = xn + ∆tB̂n + σ̂n
√

∆twn (9.1.54)

Now both B̂n and σ̂n need to be estimated. This can be done in a similar way as described

above. The details can be found in [11].

In the same spirit, seamless HMM can also be applied to this class of problems.



9.2. APPLICATION OF HMM TO STOCHASTIC SIMULATION ALGORITHMS405

9.2 Application of HMM to stochastic simulation al-

gorithms

First, let us review briefly the standard stochastic simulation algorithm (SSA) for

chemical kinetic systems proposed in [20, 19], also known as the Gillespie algorithm.

This is closely related to the BKL algorithm in statistical physics [6]. The general set up

for the stochastic chemical kinetic system was discussed in section 2.3.3. Suppose we are

given a chemical kinetic system with reaction channels Rj = (aj, νj), j = 1, 2, · · · ,MR.

Let

a(x) =

MR∑

j=1

aj(x). (9.2.1)

Assume that the current time is tn, and the system is at state Xn. We perform the

following steps:

1. Generate independent random numbers r1 and r2 with uniform distribution on the

unit interval (0, 1]. Let

δtn+1 = − ln r1
a(Xn)

, (9.2.2)

and let kn+1 be the natural number such that

1

a(Xn)

kn+1−1∑

j=0

aj(Xn) < r2 ≤
1

a(Xn)

kn+1∑

j=0

aj(Xn), (9.2.3)

where a0 = 0 by convention.

2. Update the time and the state of the system by

tn+1 = tn + δtn+1, Xn+1 = Xn + νkn+1
. (9.2.4)

Then repeat.

In this algorithm, r1 is used to update the clock and r2 is used to select the particular

reaction to be executed.

As we explained in section 2.3.3, in practice, the reaction rates often have very dis-

parate magnitudes. This can be appreciated from the reaction rate formula from tran-

sition state theory (see next chapter): The rates depend exponentially on the energy

barrier. Therefore a small difference in the energy barrier can result in a large difference
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in the rate. In such a case, we are often interested more in the slow reactions since

they the bottlenecks for the overall dynamics. A theory for the effective dynamics was

described in section 2.3.3. However, it might be quite difficult to compute the effective

reaction rates in the effective dynamics either analytically or by precomputing. There-

fore various strategies have been proposed to capture the effective dynamics of the slow

variables “on-the-fly”. We will discuss an algorithm proposed in [12] which is a simple

modification of the original SSA, by adding a nested structure according to the time scale

of the rates. The process at each level of the time scale is simulated with an SSA with

some effective rates. Results from simulations on fast time scales are used to compute

the rates for the SSA at slower time scales. For simple systems with only two time scales,

the nested SSA consists of two SSAs organized with one nested in the other: An outer

SSA for the slow reactions only, but with modified slow rates which are computed in an

inner SSA modeling fast reactions only.

Let tn, Xn be the current time and state of the system respectively. The two-level

nested SSA proceeds as follows:

1. Inner SSA: Pick an integer N . Run N independent replicas of SSA with the

fast reactions Rf = {(ε−1af , νf})} only, for a time interval of T0 + Tf . During this

calculation, compute the modified slow rates for j = 1, · · · ,Ms

ãsj =
1

N

N∑

k=1

1

Tf

∫ Tf+T0

T0

asj(X
k
τ )dτ, (9.2.5)

where Xk
τ is the result of the k-th replica of this auxiliary virtual fast process at

virtual time τ whose initial value is Xk
t=0 = Xn, and T0 is a parameter we choose

in order to minimize the effect of the transients to the equilibrium in the virtual

fast process.

2. Outer SSA: Run one step of SSA for the modified slow reactions R̃s = (ãs, νs)

to generate (tn+1,Xn+1) from (tn,Xn).

Then repeat.

In the HMM language, the macro-scale solver is the outer SSA, the data that need

to be estimated is the effective rates for the slow reactions. These data are obtained by

simulating the virtual fast process which plays the role of the micro-scale solvers here.



9.2. APPLICATION OF HMM TO STOCHASTIC SIMULATION ALGORITHMS407

However, unlike standard examples of HMM, here we do not need to know what the

slow and fast variables are, in order to carry out the computation. The algorithm is

formulated in terms of the original variables. This is to be expected, since the effective

dynamics can also be formulated in terms of the original variables (see section 2.3.3).

Convergence and efficiency of the nested SSA

The original SSA is an exact realization of the stochastic chemical kinetic system.

The nested SSA, on the other hand, is an approximation. The errors in the nested SSA

can be analyzed using the general strategy for analyzing HMM (see section 6.7). The

details can be found in [13].

Assume as in section 2.3.3 that there is a complete set of slow variables of the form

{zj = bj · x, j = 1, · · · , J}, where {bj, j = 1, · · · , J} is a set of basis vectors in the

subspace of vectors that are orthogonal to all the vectors {νfk }. Let f be a smooth

function. Denote by X̃t the solution of the nested SSA. Consider the observable v(x, t) =

Exf(b · X̃t) where the expectation is taken with respect to the randomness in the outer

SSA only. Let u(x, t) be the solution of the effective equation (2.3.82) with u(x, 0) =

f(b · x). The following result is proved in [12, 13]:

Theorem. For any T > 0, there exist constants C and α independent of (N, T0, Tf ) such

that,

sup
0≤t≤T,x∈X

E |v(x, t)− u(x, t)| ≤ C

(
ε+

e−αT0/ε

1 + Tf/ε
+

1√
N(1 + Tf/ε)

)
. (9.2.6)

This result can be used to analyze the efficiency of the nested SSA. Given a chemical

kinetic system with R = {(aj, νj)}, we assume that the total rate a(x) =
∑
aj(x) does

not fluctuate a lot in time: a(x) ∼ O(ε−1). Given an error tolerance λ, we choose the

parameters in the nested SSA such that each term in (9.2.6) is less than O(λ). One

possible choice of the parameters is

T0 = 0, N = 1 + ε−1Tf =
1

λ
. (9.2.7)

The total cost for the nested SSA over a time interval of O(1) is

Cost = O(N(1 + T0/ε+ Tf/ε)) = O
(

1

λ2

)
. (9.2.8)

In comparison, the cost for the direct SSA is

Cost = O
(

1

ε

)
. (9.2.9)
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since the time step size is of order ε. When ε≪ λ2, the nested SSA is much more efficient

than the direct SSA.

Next we discuss the influence of the other numerical parameters on the efficiency. The

parameter T0 which plays the role of numerical relaxation time does not influence much

the efficiency. Given the same error tolerance λ, for the last term in the error estimate

(9.2.6) to be less than O(λ), we need to have

N

(
1 +

ε

Tf

)
≥ O

(
1

λ2

)
. (9.2.10)

Therefore

Cost ≥ O(N

(
1 +

ε−1

Tf

)
) = O

(
1

λ2

)
. (9.2.11)

which is the same as (9.2.9) regardless the value of T0. The above argument also implies

that the optimal cost for the nested SSA is O
(

1
λ2

)
to achieve an error tolerance of λ.

Turning now to the effect of parameter N , the number of realizations for inner SSA,

let us see what happens when we take N = 1. For the error estimate (9.2.6) to satisfy

the same error tolerance λ, we have to choose

1 +
ε

Tf
=

1

λ2
. (9.2.12)

The cost of the nested SSA is given by

Cost = O(N

(
1 +

ε

Tf

)
) = O

(
1

λ2

)
, (9.2.13)

which is the same as the cost if we use multiple realizations. This means that using

multiple realizations in the inner SSA does not increase the efficiency of the overall

scheme either. Obviously, using multiple realizations is advantageous for implementation

on parallel computers .

Other versions of the nested SSA are discussed in [40, 39]. Although they appear to

be quite different, it can be shown that they are essentially the same as the nested SSA

discuss here.

A numerical example: A virus infection model

As a concrete example, we discuss a virus infection model studied in [12, 22]. The

model was originally proposed in [41] as an example of the failure of modeling react-

ing networks with deterministic dynamics. The reactions considered in this model are
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nucleotides
a1=1.×template−−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome−−−−−−−−−−−−−−−−−−−−−−−→ template

nucleotides + aminoacids
a3=1000×template−−−−−−−−−−−−−−−−−−−−−−−−→ struct ∗

template
a4=.25×template−−−−−−−−−−−−−−−−−−−−−−−→ degraded

struct
a5=1.9985×struct−−−−−−−−−−−−−−−−−−−−−−−→ degraded/secreted ∗

genome + struct
a6=7.5d−6×genome×struct−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Table 9.1: Reaction channels of the virus infection model

listed in Table 9.1 with MR = 6. The species that need to be modeled are genome,

struct, template and virus (Ns = 4). Genome is the vehicle of the viral genetic infor-

mation which can take the form of DNA, positive-strand RNA, negative-strand RNA, or

some other variants. Struct represents the structural proteins that make up the virus.

Template refers to the form of the nucleic acid that is transcribed and involved in catalyt-

ically synthesizing every viral component. The nucleotides and amino acids are assumed

to be available at constant concentrations.

When template > 0, the production and degradation of struct, which are the third

and fifth reactions marked with ∗ in table 9.1, are faster than the others. From the

reaction rates, we can see that the ratio of time scales is about ε = 10−3. In a system

that consists of only the fast reactions, struct has an equilibrium distribution which is

Poisson with parameter λ = 500× template such that

Ptemplate(struct = n) =
(500× template)n

n!
exp(−500× template). (9.2.14)

Notice that struct only shows up in the last slow reaction. The reduced dynamics in

the form of the slow reactions (a1,2,4,6) with the rates averaged with respect to the quasi-

equilibrium of the fast reactions (a3,5) can be given as a system with 4 reactions, shown

in table 9.2. The initial condition is chosen to be:

(struct, genome, template, virus) = (0, 0, 10, 0). (9.2.15)
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The mean value and the variance of template at time T = 20 are used as benchmark.

A computation of these values by a direct SSA using N0 = 106 realizations led to

template = 3.7170± 0.005, var(template) = 4.9777± 0.005. (9.2.16)

For the nested SSA, we make a series of simulations in which we choose the size of the

ensemble and the simulation time of the inner SSA according to

(N, T0, T/ε) = (1, 0, 22k), (9.2.17)

for different values of k = 0, 1, 2, 3, . . .. The error estimate in (9.2.6) then implies that

the error δ should decay with the rate:

δ = O(2−k). (9.2.18)

which is consistent with the results in Figure 9.3. Table 9.3 gives the total CPU time

and the obtained values of template and var(template) with the parameters of inner SSA

chosen according to (9.2.17) and using N0 = 106 realizations of the outer SSA (same as

in the direct SSA).

9.3 Coarse-grained molecular dynamics

Coarse-grained molecular dynamics (CGMD) is a concept that has been around,

maybe implicitly, for a long time. When we develop bead-spring models of polymer

dynamics, we have in mind not a full atom model, but rather a coarse-grained model,

even though we do not necessarily call it as such. In the last decade or so, this notion

has attracted more attention and has been used quite extensively in several contexts:

nucleotides
a1=1.×template−−−−−−−−−−−−−−−−−−−−−−→ genome

nucleotides + genome
a2=.025×genome−−−−−−−−−−−−−−−−−−−−−−−→ template

template
a4=.25×template−−−−−−−−−−−−−−−−−−−−−−−→ degraded

genome + struct
a6=3.75d−3×genome2×struct−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ virus

Table 9.2: The reduced virus infection model
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Figure 9.3: Relative errors of template using the nested SSA for the virus infection model

(courtesy of Di Liu)

Tf/ε 1 4 16 64 “exact′′

CPU 154.8 461.3 2068.2 9190.9 34806.4

template 4.027 3.947 3.796 3.757 3.717± 0.005

var(template) 5.401 5.254 5.007 4.882 4.978± 0.005

Table 9.3: Efficiency of the nested SSA for the virus infection model

1. Multiscale simulations in material science, in which CGMD is used as a bridge

between full atomistic simulations and finite element methods based on continuum

models [37].

2. Coarse-grained models of macromolecules. This is an extension of the bead-spring

type of models for polymers, but with more attention on getting quantitatively cor-

rect effective potential for the coarse-grained model. Techniques such as Boltzmann

inversion has been used to extract such potentials from long time trajectories of

full MD simulation [46].

3. Free energy exploration for macromolecules. Free energy is an old concept. It is de-

fined as a function of a set of coarse-grained variables. Until recently it was limited
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to a very small number of such variables. Recent techniques such as metadynamics

and temperature-accelerated molecular dynamics have made it possible to explore

the space of many coarse-grained variables [28, 34].

4. The application of the Mori-Zwanzig formalism to molecular dynamics [9, 32].

To begin with, what would be a good choice of the coarse-grained variables? Well,

the answer depends on the purpose of the simulation. If the purpose is to understand

the mechanism of some chemical reaction, then the coarse-grained variables should be

able to serve as reaction coordinates. This issue will be discussed in Chapter 10. If

the interest is the macroscopic behavior of the system, then the coarse-grained variables

should be a complete set of the slow variables of the system, since in that case, the

time scale separation between the coarse-grained (slow) variables and the variables that

are eliminated allows us to make satisfactory approximations without the need to keep

memory terms. If the interest is the behavior of a specific set of variables, such as the

variables that describe the dynamics around a local defect, then we have no choice but

to include these variables in the set of coarse-grained variables and model the memory

effects (see for example [32]).

As an example, we will discuss the version of the CGMD proposed by Rudd and

Broughton [37]. Starting with a Hamiltonian dynamics:

dxj
dt

= ∇pj
H,

dpj
dt

= −∇xj
H (9.3.1)

where j = 1, 2, · · · , N ,

H =
N∑

j=1

1

2m
|pj|2 + V (x1,x2, · · · ,xN) (9.3.2)

we define a set of coarse-grained variables:

Xα =
∑

j

fα,jxj, Pα =
∑

j

fα,jpj (9.3.3)

for some choices of {fα,j}, where α = 1, · · · , K. In the Rudd-Broughton version of the

CGMD, the coarse-grained variables obey Hamiltonian dynamics

dXα

dt
= ∇Pα

H, dPα

dt
= −∇Xα

H (9.3.4)
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with the coarse-grained Hamiltonian:

H(X1, · · · ,XK ;P1, · · · ,PK) (9.3.5)

=
1

Z

∫ ∫
He−βHΠαδ(Xα −

∑

j

fα,jxj)δ(Pα −
∑

j

fα,jpj)Π
N
j=1dxjdpj

where β = 1/kBT , Z is the partition function: Z =
∫ ∫

e−βHΠN
j=1dxjdpj. (9.3.5) is

the equilibrium distribution projected to the submanifold defined by the coarse-grained

variables.

When V is a quadratic function:

V (x1, · · · ,xN) =
1

2

∑

j,k

xTj Djkxk (9.3.6)

then a direct computation gives

H =
1

2

∑

α,β

(Mα,βẊα · Ẋβ + XT
αBα,βXβ + 3(N −K)kBT (9.3.7)

where

Mα,β = m

(
∑

k

fα,kfβ,k

)−1

(9.3.8)

Bα,β =

(
∑

j,k

fα,jD
−1
j,kfβ,k

)−1

{Ẋα} and {Pα} are related by

Pα =
∑

β

Mα,βẊβ (9.3.9)

This formalism can obviously be generalized to the case when the coarse-grained

variables are defined by nonlinear functions. However, there are two main difficulties

with this approach.

1. The first is whether Hamiltonian dynamics with (9.3.5) as the Hamiltonian is a good

approximation to the dynamics of the coarse-grained variables. (9.3.4) and (9.3.5)

assumes that there is a separation of the time scales between the dynamics for the

coarse-grained variables and the relaxation dynamics of the remaining degrees of

freedom. The accuracy of the approximation depends on the difference between

these two time scales.



414 CHAPTER 9. PROBLEMS WITH MULTIPLE TIME SCALES

2. On the practical side, it is not easy to evaluate the coarse-grained Hamiltonian H
and its derivatives. Analytical evaluation seems only feasible for the case when V

is quadratic. Adding cubic terms to V makes the calculation much harder [38].

To illustrate the importance of the first issue, let us consider the following example

[23]:

H =
1

2
(x2

1 + x2
2 + x2

1x
2
2 + p2

1 + p2
2) (9.3.10)

The Hamilton’s equations are:

dx1

dt
= p1,

dp1

dt
= −x1 − x1x

2
2 (9.3.11)

dx2

dt
= p2,

dp2

dt
= −x2 − x2x

2
1

If we regard (x2, p2) as variables for some thermal bath and use CGMD to eliminate

(x2, p2), we obtain a system for the remaining variables (x1, p1):

dx1

dt
= p1,

dp1

dt
= −x1 − x1E(x2

2|p1, x1) (9.3.12)

where the conditional expectation is given by

E(x2
2|p1, x1) =

∫
x2

2e
−Hdx2dp2∫

e−Hdx2dp2

=
1

1 + x2
1

(9.3.13)

Therefore the CGMD system is:

dq1
dt

= p1,
dp1

dt
= −q1 −

q1
1 + q2

1

(9.3.14)

However, the behavior of this system is quite different from the behavior of the original

system, even after averaging over different initial conditions of x2 and p2 (using the

equilibrium distribution, conditioned on (x1, p1) been fixed), as can be seen from Figure

9.4. In particular, the dissipative effect in the original system, due to the fact that energy

in (x1, p1) is transferred to the bath variables (x2, p2), is lost in the new system (9.3.14).

As was pointed out in [23], this error is caused by the drastic approximation used

in (9.3.5), which becomes quite inaccurate in non-equilibrium situations. To reduce this

kind of error, one has to take into account the memory and noise effect, as can be seen

in the Mori-Zwanzig formalism (see Section 2.7). This is a general issue, which we will

return to in Chapter 11.
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Figure 9.4: Comparison of the ensemble-averaged solution (solid line) of the original

Hamiltonian system and the coarse-grained Hamiltonian system for the model problem

(9.3.10) (courtesy of Alexandre Chorin) [10]. The dashed line is the solution to the coarse-

grained molecular dynamics. The dotted line is the solution to the truncated system in

which the unresolved component is simply set to 0. The quality of the two solutions are

just about equally bad.
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We now turn to the second difficulty. One way of overcoming this difficulty is to

formulate CGMD using the extended Lagrangian formulation [35]. This was done by

Iannuzzi, Laio and Parrinello [25]. The idea is to extend the phase-space to include the

coarse-grained variables as additional dynamic variables. For simplicity, we will follow

[14] and consider the case of overdamped dynamics:

ẋ = −∇V (x) +
√

2β−1ẇ (9.3.15)

in the configuration space instead of MD in the phase space.

Assume that the coarse-grained variables are defined by

X = q(x) = (Q1(x), Q2(x), · · · , QK(x)) (9.3.16)

The equilibrium density for X is given by

ρ̄(X) = Z̃−1

∫

R3N

e−βV (x)δ(X− q(x))dx (9.3.17)

The question is how to compute this function efficiently.

The idea in [25] is to consider the energy in the extended space of variables (x,X):

V (x,X) = V (x) +
1

2
µ|X− q(x)|2, (9.3.18)

where µ > 0 is a parameter to be prescribed later. Introducing another friction parameter

γ, we can formulate the overdamped dynamics associated with (9.3.18):





γẋ = −∇V (x) + µ(X− q(x))∇q(x) +

√
2γβ−1 ẇ,

Ẋ = −µ(X− q(x)) +
√

2β−1 Ẇ
(9.3.19)

where ẇ,Ẇ are independent white-noises.

For all γ > 0, the equilibrium density for (9.3.19) is

ρµ(x,X) = Z−1e−βV (x)− 1

2
µβ|X−q(x)|2 , (9.3.20)

where Z is a normalization factor such that the total integral of ρµ is 1. The corresponding

marginal density of X is

ρ̄µ(X) = Z−1

∫

R3N

e−βV (x)− 1

2
µβ|X−q(x)|2dx (9.3.21)
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As µ→∞,

ρ̄µ → ρ̄. (9.3.22)

To capture the marginal density of X, we create an artificial separation of the time

scales associated with x and X by making γ small. In this case, the variables X(·) evolves

much more slowly than x(·) and only feel the average effect of the latter. This puts us

in a situation for which averaging theorems for stochastic ODEs can be applied (see the

beginning of this chapter or Section 2.3). The effective equation governing the dynamics

of X is obtained by averaging the right hand-side of the second equation in (9.3.19) with

respect to the conditional probability density:

ρµ(x|X) = Z−1
µ (X)e−βV (x)− 1

2
µβ|X−q(x)|2 , (9.3.23)

where

Zµ(X) =

∫

R3N

e−βV (x)− 1

2
µβ|X−q(x)|2dx, (9.3.24)

is a normalization factor. Since

− Z−1
µ (X)

∫

Rn

µ(X− q(x))e−βV (x)− 1

2
µβ|X−q(x)|2dx

= β−1Z−1
µ (X)∇XZµ(X)

= β−1∇X logZµ(X),

(9.3.25)

the limiting equations for X(·) (9.3.19) as γ → 0 can be written as

Ẋ = −∇XFµ +
√

2β−1 Ẇ, (9.3.26)

where

Fµ(X) = −β−1 logZµ(X). (9.3.27)

From (9.3.24) and (9.3.27), we have, upto a constant,

Fµ(X)→ F (X) = −β−1 log ρ̄(X) (9.3.28)

as µ→∞. Therefore the limiting equation for X(t) as γ → 0 and then µ→∞ is

Ẋ = −∇XF +
√

2β−1 Ẇ, (9.3.29)

This shows that (9.3.19) can be used in this parameter regime to capture the desired free

energy density for X.
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A similar argument shows that (9.3.21) is also the reduced density for the extended

Hamiltonian system




mẍ = −∇V (x) + µ(X− q(x))∇q(x)

MẌ = −µ(X− q(x)),
(9.3.30)

corresponding to the extended Lagrangian

L(x,X) =
1

2
m|ẋ|2 − V (x) +

1

2
M |Ẋ|2 − 1

2
µ|X− q(x)|2. (9.3.31)

Here M is an artificial mass parameter associated with the variable X. Therefore the

extended Hamiltonian system (9.3.30) can also be used to compute the free energy asso-

ciated with X. This approach is often called the extended Lagrangian method.

As one can see, the justification given here is only for the equilibrium situation.

Therefore at this point, it is only safe to use these techniques as sampling techniques

for the equilibrium distribution, even though the formulation might also contain useful

information for dynamics.

9.4 Notes

Numerous relevant topics have been omitted here. Some, such as boosting and pro-

jective integration, were discussed in Chapter 6 and are not repeated here. An interesting

perspective on HMM, seamless HMM, boosting and projective integrators was presented

in [43]. Also relevant are the exponential integrators, the techniques of using integrating

factors based on Duhammel’s principle, integrators with adaptive time step selection,

and so on. These topics have already been covered in many excellent textbooks or review

articles.

We have focused on coarse-grained molecular dynamics, but there is also a parallel

issue and parallel development in Monte Carlo algorithms. In particular, coarse-grained

Monte Carlo methods have been proposed in [26]. We refer to the review article [27] for

details and more recent development. The basic philosophy is quite similar to that of

CGMD. For this reason, it is also expected to have the same problems discussed above,

namely that the memory effects may not be accurately modeled. These difficulties can

in principle be overcome using more sophisticated renormalization group techniques in

the Mori-Zwanzig formalism [8].
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Another interesting idea is the “parareal” algorithm [33]. This was introduced as a

strategy for applying domain decomposition methods in time. Obviously the domain

decomposition structure is naturally suited for developing multiscale integrators.
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Chapter 10

Rare Events

We have already discussed various examples of problems with multiple time scales.

In this chapter, we will turn to another important class of such problems: Rare events.

These are the kind of events that happen rarely, compared with the relaxation time scale

of the system, but when they do happen, they happen rather quickly and they have

important consequences. Typically, a small amount of noise is present in the system,

and these rare events are driven by this small amount of noise. In order for the event to

happen, the system has to wait for the different components of the noise to work together

to bring the system over some energy barrier, or to go through a sequence of correlated

changes. Chemical reactions, conformation changes of bio-molecules, nucleation events,

and in some cases extreme events that lead to material failure or system failure, are all

examples of rare events.

It should be emphasized that in a way, the rare events we are interested in are not

really rare. For example, conformation changes of biomolecules are rare on the time scale

of molecular vibration (which is typically on the order of femto-seconds, 10−15s), but

they are not rare on the time scale of our daily lives, which is often measured in minutes,

hours or days. After all, all biologoical processes are driven by such events.

An important concept is that of metastability. Roughly speaking, metastable systems

are systems which are stable over a very long time scale compared with the relaxation

time scale of the system, but ultimately they undergo some noise-induced transition.

It is helpful to distinguish several different situations:

1. Gradient and non-gradient systems. A gradient system has an underlying potential

energy and an associated energy landscape. The different stable states are the

427
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Figure 10.1: Time series from molecular dynamics simulation for the conformation

changes of alanie dipeptide. Shown here is the time series of a dihedral angle.

local minima of the energy. They are separated by some barriers or sequence of

barriers as well as other intermediate stable states. For this reason, transition events

between these locally stable states are also referred to as barrier-crossing events.

The dynamics of the system is such that it spends most of its time vibrating around

different local energy minima, with occasional transitions between the different local

minima. For a given transition, we call the local minimum before the transition the

initial state and the local minimum after the transition the final state or the end

state.

The mechanism of transition in non-gradient systems can be very different from

that of the gradient system. Here we will limit ourselves to gradient systems.

2. Energetic barriers and entropic barriers. Entropic barriers refer to the cases where

the energy landscape is rather flat, but the system has to wonder through a very

large set of configurations in order to reach the final state. Picture this: You are

in a very large room with no lights, and you are supposed to find the small exit

which is the only way of getting out of the room.

3. Systems with simple or complex energy landscapes. This notion is only a relative

one. There are two important factors to consider. One is the length scale over which

the energy landscape varies. The second is the size of the barriers compared with
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thermal noise. If the energy landscape is rather smooth and the individual barriers

are much larger than the typical amplitude of the noise (which is characterized

by kBT in physical systems), we refer to it as a system with simple or smooth

energy landscape, or simply a simple system. This is the case when the system has

a few large barriers. As we will discuss below, in this case, the relevant objects

for the transition events are the saddle points which serve as the transition states,

and minimum energy paths (MEP) which are the most probable paths. The other

extreme is the case when the landscape is rugged with many saddle points and

barriers, and most barriers are of comparable size to the thermal noise. We refer

to this class of systems as systems with complex or rough energy landscapes. In

this situation, the individual saddle points are sometimes not enough to act as the

obstacle for the transition. The real obstacle to the transition is caused by the

combined effect of many individual barriers. There may not be a well-defined most

probable path. Instead, many paths in the transition path ensemble contribute to

the transition.

Figure 10.2: An example of a rough energy landscape and one particular transition path

between the two metastable states.

Figure 10.2 illustrates the situation with rough energy landscapes in a temperature

regime where the thermal energy is comparable to the small scale energy fluctuations in
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the landscape. The two big blue regions are the metastable sets. One expects that tran-

sition between the two regions should proceed by wondering in the light blue/yellowish

region, i.e. most transition paths between the two metastable sets are restricted to a thin

tube in the light blue/yellowish region. One thing that we will do in this chapter is to

make such statements more precise.

Below we will first discuss the theoretical background for describing transition between

metastable states. We will then discuss numerical algorithms that have been developed

to compute the relevant objects, e.g. transition states, transition pathways and transition

tubes, for such transitions. These algorithms require knowing something about the final

states of the transition. Finally, we discuss some examples of techniques that have been

proposed for directly accelerating the dynamics. These techniques do not require knowing

anything about the final states.

The setup is as follows. We are given two metastable states of the system, which are

respectively the initial and final states of the transition. For a system with a smooth

energy landscape, these metastable states are the local minima of the potential energy,

or sometimes the free energy. In chemistry, one typically refers the initial state as the

reactant state, and the final state as the product state. For the same reason, transition

events are also referred to as reactions.

Next, we introduce the kind of dynamics that we will consider, following [18]. From

a physical viewpoint, it is of interest to study

1. The Hamiltonian dynamics, with no explicit noise





ẋ = M−1p

ṗ = −∇U
(10.0.1)

where M is the mass matrix. Here we have used U (instead of V ) to denote the

potential energy of the system. In this case, the role of noise is played by the

chaotic dynamics of the system. For example, integrable system does not belong

to the class of systems that we are interested in.

2. Langevin dynamics





ẋ = M−1p

ṗ = −∇U − γp +
√

2γkBTM
1/2ẇ

(10.0.2)
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where γ is a friction coefficient, which can also be a tensor although we will only

consider the case when it is a scalar; ẇ is the standard Gaussian white noise.

3. Overdamped dynamics:

γẋ = −∇V +
√

2γkBT ẇ (10.0.3)

All three examples can be cast into the form:

ż = −K∇V (z) +
√

2εσẇ(t) (10.0.4)

where K ∈ R
n × R

n and σ ∈ R
n × R

m are matrices related by

1
2
(K +KT ) = σσT = a (10.0.5)

For the Hamiltonian dynamics, we have z = (x,p)T , V (z) = 1
2
〈p,M−1p〉+ U(x), σ = 0,

and

K =

(
0 −I
I 0

)
(10.0.6)

For the Langevin dynamics, we have

K =

(
0 −I
I γM

)
σ =

(
0 0

0 (γM)1/2

)
, (10.0.7)

For the overdamped dynamics, we have z = x, K = γ−1I , and σ = γ−1/2I. In all three

cases, we have ε = kBT . In the following, we will focus on (10.0.4). We will assume that

the potential energy function V is a Morse function, namely, V is twice differentiable and

has non-degenerate critical points

det Hj 6= 0 (10.0.8)

where Hj = ∇∇V (zj) is the Hessian of V at the critical point zj. It is relatively

straightforward to check that the distribution given by

dµs(z) = Z−1e−V (z)/εdz where Z =

∫

Ω

e−V (z)/εdz (10.0.9)

is invariant under the dynamics defined by (10.0.4). We will also assume that the dy-

namics is ergodic, i.e. the invariant distribution is unique.
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10.1 Theoretical background

10.1.1 Metastable states and reduction to Markov chains

In the following, we will speak about metastable states or metastable sets. These are

sets of configurations that are stable during a certain time scale, often some relaxation

time scale. If initiated in that set, the system will remain in it during the specified time

scale. This time scale can be the relaxation time scale of a potential well, or a set of

neighboring wells. The important point is that the notion of metastability is a relative

one, relative to certain reference time scales.

In a simple system, each local minimum of the potential is a metastable set, if the

reference time scale is taken to be the relaxation time scale of the potential well for that

local minimum. The potential well, or the basin of attraction is the set of points in

the configuration space that are attracted to this particular local minimum under the

gradient flow:
dx

dt
= −∇V (x) (10.1.1)

where V is the potential of the system. The different basins of attraction are separated by

the separatrices. The separatrices themselves make up an invariant set for the gradient-

flow dynamics (10.1.1). The stable equilibrium points on this invariant set are the saddle

points of V .

For complex systems, metastable sets are less well-defined since we must deal with a

set of wells. But their intuitive meaning is quite clear. In practice, they can be defined

with the help of some coarse-grained variables or order parameters. For example, for a

molecule, we can define the metastable sets by restricting the values of a set of torsion

angles.

More precise definition of the metastable sets can be found using the spectral theory

of the transfer operators or the generators associated with the underlying stochastic dy-

namics. See for example [42, 36]. Roughly speaking, metastability can be related to gaps

in the spectrum of the relevant generators of the Markov process and metastable sets can

be defined through the eigenfunctions associated with the leading eigenvalues. Indeed,

it can be shown that these eigenfunctions are approximately piecewise constant, and the

subsets on which the eigenfunctions are approximately constant are the metastable sets.

Going back to the global picture, our objective is not to keep track of the detailed

dynamics of the system, but rather to capture statistically the sequence of hops or tran-
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sitions between different local minima or metastable states. This means that effectively,

the dynamics of the system is modeled by a Markov chain: the local minima or the

metastable states are the states of the chain and the hopping rates are the transition

rates between different metastable states. This idea has been used in two different ways:

1. It has been used as the basis for accelerating molecular dynamics. One example is

the hyperdynamics to be discussed below. Its purpose is not to capture the detailed

dynamics but only the effective dynamics of the Markov chain.

2. It can be used to design more accurate kinetic Monte Carlo schemes. In stan-

dard kinetic Monte Carlo methods, the possible states and the transition rates are

pre-determined, often empirically. This can be avoided by finding the states and

transition rates “on-the-fly” from a more detailed model. See for example [60].

10.1.2 Transition state theory

The classical theory that describes barrier-crossing events in gradient systems is the

transition state theory (TST), developed by Eyring, Polanyi, Wigner, Kramers, et al

[31]. There are two main components in the transition state theory, the notion of transi-

tion states and an expression for the transition rate. Transition states are the dynamic

bottlenecks for the transition. They are important for the following reasons:

1. With very high probability, transition paths have to pass through a very small

neighborbood of the transition states. Exceptional paths have exponentially small

relative probability.

2. Once the transition state is passed, the system can relax to the new stable state

via its own intrinsic dynamics, on the relaxation time scale.

For simple systems, given two neighboring local minima, the transition state is nothing

but the saddle point that separates the two minima.

The transition rate, i.e. the average number of transitions per unit time interval, can

be computed from the probability flux of particles that pass through the neighborhood

of the transition state. As an example, let us consider the canonical ensemble of a

Hamiltonian system. For simplicity, we will focus on an example of a one-dimensional

system [31]. Let V be a one-dimensional potential with one local minimum at x = −1 and
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another at x = 1 separated by a saddle point at x = 0. We are interested in computing

the transition rate from the local minimum at x = −1 to the local minimum at x = 1 in

a canonical ensemble with temperature T . According to the transition state theory, the

transition rate is given by the ratio of two quantities: The first is the flux of particles

that tranverse the transition state region from the side of the negative real axis to the

side of the positive real axis. The second is the equilibrium distribution of particles on

the side of the negative real axis, which is the basin of attraction of the initial state at

x = −1. This second quantity is given by:

ZA =
1

Z

∫

x<0

e−βH(x,p)dxdp (10.1.2)

where H(x, p) = 1
2m
p2 + V (x) is the Hamiltonian of the system, Z =

∫
R2 e

−βH(x,p)dxdp is

the normalization constant, β = (kBT )−1. The first quantity is given by

ZAB =
1

Zm

∫

x=0

pθ(p)e−βH(x,p)dp (10.1.3)

where θ is the Heaviside function: θ(z) = 1 if z > 0 and θ(z) = 0 if z < 0. To leading

order, we have

ZAB ∼
1

Zβ
e−βV (0) (10.1.4)

If we approximate V further by a quadratic function centered at x = −1, V (x) ∼
V (−1) + 1/2V ′′(−1)(x+ 1)2, we obtain:

ZA ∼
1

Z

2π

β

√
m

V ′′(−1)
e−βV (−1) (10.1.5)

The ratio of the two quantities gives the rate we are interested in:

νR =
1

2π

√
V ′′(−1)

m
e−βδE (10.1.6)

where δE = V (0)− V (−1) is the energy barrier.

Note that this rate depends on the mass of the particle and the second derivative of

the potential at the initial state, but it does not depend on the second derivative of the

potential at the saddle point.

(10.1.6) can obviously be extended to high dimension [31].

TST has been extended in a number of directions. The most important generalization

is to replace the region near the saddle point by a dividing surface, see for example [63].
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In this case, one can still compute the probability flux through the surface and use it

as an estimate for the transition rate. Obviously this is only an upper bound for the

transition rate, since it does not take into account the fact that particles can recross the

dividing surface and return to the reactant state. The correct rate is only obtained when

the success rate, often called the transmission coefficient, is taken into account [26]. This

is conceptually appealing. But in practice, it is often difficult to obtain the transmission

coefficient.

Some of more mathematically oriented issues on transition state theory are discussed

in [54].

10.1.3 Large deviation theory

Large deviation theory is a rigorous mathematical theory for characterizing rare events

in general Markov processes [57, 27]. The special case for random perturbations of

dynamical systems was considered by Freidlin and Wentzell [27]. This theory is often

referred to as the Wentzell-Freidlin theory.

Consider the stochastically perturbed dynamical system:

ẋ = b(x) +
√
εẇ, x ∈ R

d (10.1.7)

Fix two points A and B in R
d and a time parameter T > 0. Let φ : [−T, T ] → R

d be

a continuous and differentiable path such that φ(−T ) = A, φ(T ) = B. The Wentzell-

Freidlin theory asserts roughly that

Prob.{x stays in a neighborhood ofφ over the interval [−T, T ]} ∼ e−S(φ)/ε (10.1.8)

where the action functional S is defined by:

ST (φ) =
1

2

∫ T

−T
|φ̇(t)− b(φ(t))|2dt (10.1.9)

The precise statement and its proof can be found in [27]. For our purpose, it is

more instructive to understand intuitively (and formally) the origin of this result. From

(10.1.7), we have

ẇ = (ẋ− b(x))/
√
ε (10.1.10)

Roughly speaking, the probability density for the white noise is e−
1

2

R

|ẇ|2dt. This gives

(10.1.8) and (10.1.9).
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With (10.1.8), finding the path with maximum probability is turned into the problem

of finding the path with minimum action:

inf
T

inf
φ
ST (φ) (10.1.11)

subject to the constraint that φ(−T ) = A, φ(T ) = B. Consider the case when b(x) =

−∇V (x). Assume that A and B are two neighboring local minima of V separated by

the saddle point C. Then we have:

Lemma (Wentzell-Freidlin [27]):

1. The minimum of (10.1.11) is given by:

S∗ = 2(V (C)− V (A)) (10.1.12)

2. Consider the paths

φ̇1(s) = ∇V (φ1(s)), φ1(−∞) = A, φ1(∞) = C (10.1.13)

φ̇2(s) = −∇V (φ2(s)), φ2(−∞) = C, φ2(∞) = B (10.1.14)

then

S∗ = S∞(φ1) + S∞(φ2) = S∞(φ1) (10.1.15)

The most probable transition path is then the combination of φ1 and φ2: φ1 goes

against the original dynamics and therefore requires the action of the noise. φ2 simply

follows the original dynamics and therefore does not require the help from the noise.

It is not difficult to convince oneself that the minimum in T in (10.1.11) is attained

when T = ∞. To see why the minimization problem in (10.1.11) is solved by the path

defined above, note that

S∞[φ1] = 2(V (C)− V (A)), S∞[φ2] = 0. (10.1.16)

In addition, for any path φ connecting A and a point on the separatrix that separates
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the basins of attraction of A and B, we have

S∞[φ] =
1

2

∫

R

〈φ̇−∇V, (φ̇−∇V )〉dt+ 2

∫

R

φ̇ · ∇V dt

≥ 2

∫

R

φ̇ · ∇V dt

= 2

∫

R

V̇ dt

≥ 2(V (C)− V (A))

since C is the minimum of V on the separatrix.

This result can also be generalized to the case when there are intermediate stable

states between A and B. In that case the most probable transition path is a combination

of paths that satisfy:

φ̇(s) = ±∇V (φ(s)) (10.1.17)

Paths that satisfy this equation are called the minimum energy path (MEP). One can

write (10.1.17) as:

∇V (φ(s))⊥ = 0 (10.1.18)

where ∇V (φ(s))⊥ denotes the component of ∇V (φ(s)) normal to the curve described by

φ.

An alternative characterization of MEP is as follows. Given a path γ, let z be an

arbitrary point on γ, and Pz be the hyperplane that contains z and is normal to γ. γ is

a MEP if for any point z on γ, z is a local minimum of V restricted to Pz. As we will

see later in this section, this characterization is more directly linked with the transition

tubes or principal curves obtained from the transition path theory.

Example: A frequently used example is the Mueller potential:

V (x, y) =
4∑

i=1

Ai exp(ai(x− xi)2 + bi(x− xi)(y − yi) + ci(y − yi)2), (10.1.19)

where the parameters are

A = (−200,−100,−170, 15), a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6), c = (−10,−10,−6.5, 0.7),

x = (1, 0,−0.5,−1), y = (0, 0.5, 1.5, 1).
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There are three local minima in this example. Shown in Figure 10.3 is the minimum

energy path that connects two of the local minima. This minimum energy path passes

through the third local minimum. In other words, the third local minimum is an inter-

mediate state in the transition between the two end points.

Figure 10.3: Mueller potential and a minimum energy path that connects two local

minima.

Turning now to the case of more general dynamics, the main conclusions are as follows.

Consider (10.0.4). Define the optimal exit path to be a path φ⋆ that satisfies:

∇V (φ⋆)− (∇V (φ⋆) · ŝ)ŝ = 0 (10.1.20)

where

ŝ = K−T t̂⋆/|K−T t̂⋆| (10.1.21)

and t̂⋆ is the unit tangent vector along the curve φ⋆. Then

S∞[φ⋆] = inf
φ
S∞[φ] (10.1.22)

where the infimum is taken over all paths that satisfy

lim
t→−∞

φ(t) = z0, lim
t→+∞

φ(t) ∈ S (10.1.23)
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In addition, we have

τ ∼ eS∞[φ⋆]/ε (10.1.24)

This also gives us the transition rate: νR = τ−1.

Similar to the optimal exit path, we can also define the optimal switching path. Let

z1 and z2 be two neighboring local minima of V , with basins of attraction B1 and B2

respectively. The optimal switching path that goes from z1 to z2 satisfies (10.1.20) with

ŝ = K−T t̂⋆/|K−T t̂⋆| in B1

ŝ = K−1t̂⋆/|K−1t̂⋆| in B2.
(10.1.25)

Note that the optimal switching path coincides with the minimum energy path in the

case of overdamped dynamics. But in general, they are different. In particular, the

optimal switching path from z1 to z2 and the one from z2 to z1 are in general different.

In addition, the optimal switching paths are usually not smooth: They have corners at

the saddle points as a result of the change of the definition of ŝ after the separatrix is

crossed.

These results can be found in [18].

10.1.4 First exit times

An alternative viewpoint is to consider the Kolmogorov type of equation for the mean

first exit time of a domain, say the basin of attraction of a local minimum.

Fix a local minimum of V , z0. Denote by B its basin of attraction, and by S the

boundary of B. Let τ(z) be the mean exit time of B of a trajectory initiated at z ∈ B

τ(z) = E min{t : z(0) = z, z(t) ∈ S, z(s) ∈ B if s < t} (10.1.26)

τ satisfies the backward Kolmogorov equation [29]:

−K∇V · ∇τ + εa : ∇∇τ = −1 (10.1.27)

where a was defined in (10.0.5), with the boundary conditions

τ |S = 0, n̂ · ∇τ |∂B\S = 0 (10.1.28)

where n̂ is the unit outward normal to ∂B. We will be interested in the asymptotic

behavior of τ as ε→ 0.
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Before discussing the general case, let us consider overdamped dynamics (10.0.3) in

the one-dimensional case, say with the same potential as we discussed in Section 10.1.2.

We are interested in the mean first passage time from x = −1 to x = δ, where δ is a

fixed but small positive number.

For y ≤ δ, let τ(y) be the mean first passage time from y to x = δ. τ satisfies the

differential equation:

−V ′(y)τ ′(y) + ετ ′′(y) = −1 (10.1.29)

with the boundary condition: τ(δ) = 0, τ(−∞) = ∞. The solution to this problem is

given simply by:

τ(y) =
1

ε

∫ δ

y

eV (z)/εdz

∫ z

−∞
e−V (w)/εdw (10.1.30)

This can be approximated by

τ(y) ∼ 1

ε

∫ δ

y

eV (z)/εdz

∫ 0

−∞
e−V (w)/εdw (10.1.31)

The main contribution to the first integral comes from the region near x = 0 and it can

be evaluated asymptotically by Taylor expanding V near x = 0. This gives:

∫ δ

y

eV (z)/εdz ∼
√

2πε

−V ′′(0)
eV (0)/ε (10.1.32)

The main contribution to the second integral comes from the region near x = −1 and it

can be evaluated by Taylor expanding V around x = −1. This gives:

∫ 0

−∞
e−V (w)/εdw ∼

√
2πε

V ′′(−1)
e−V (−1)/ε (10.1.33)

Therefore, we have:

τ(y) ∼ 2π√
|V ′′(0)|V ′′(−1)

e(V (0)−V (−1))/ε (10.1.34)

The transition rate in this case is found to be

νR =
1

2π
(|V ′′(0)||V ′′(−1)|)1/2e−δE/ε (10.1.35)

where δE = V (0)−V (−1). Note that in this overdamped limit, the second derivative at

the saddle point comes into play (see (10.1.6)).
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We now come to the high dimensional case and we will derive similar results using

matched asymptotics on the Kolmogorov equation (10.1.27). (10.1.24) suggests trying

an ansatz of the form:

τ(z) = eδV/ετ̄(z) (10.1.36)

where τ̄(z) depends on ε only algebraically. Inserting (10.1.36) into (10.1.27), we arrive

at

−e−δV/ε = −K∇V · ∇τ̄ + εa : ∇∇τ̄ , (10.1.37)

subject to the boundary conditions

τ̄ |S = 0, n̂ · ∇τ̄ |∂B\S = 0 (10.1.38)

Outer expansion. Let

τ̄(z) = τ̄0(z) + ετ̄1(z) + · · · . (10.1.39)

Substituting into (10.1.37), we obtain, to leading order:

−K∇V · ∇τ̄0 = 0 (10.1.40)

This equation says that τ̄0(z) is constant along the flow lines ofK∇V which, by definition,

all lead to z0 in B. This means that τ̄0(z) is constant in B, i.e.

τ̄0(z) = C (10.1.41)

for all z ∈ B, where C > 0 is a constant to be determined.

Inner expansion. (10.1.41) is inconsistent with the first boundary condition in (10.1.38),

since C should not vanish. Therefore, there should be a boundary layer near S.

Near S we introduce a local coordinate system (ζ, η) where ζ is a set of curvilinear

coordinates of S and

η =
dist(ζ, S)√

ε
. (10.1.42)

is the stretched coordinate inside the boundary layer (in the direction normal to S).

Without loss of generality, we can assume that (η, ζ) = (0, 0) corresponds to the location

of the saddle point zs on S. Assume that inside the boundary layer,

τ̄(z) = τ̂0(η, ζ) + ετ̂1(η, ζ) + · · · (10.1.43)
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Substituting into (10.1.37), we obtain, to leading order:

b(ζ)η
∂τ̂0
∂η

+ â(ζ)
∂2τ̂0
∂η2
− c(ζ) · ∇ζ τ̂0 = 0 (10.1.44)

Here c(ζ) is equal to K∇V evaluated at (ζ, 0), and

b(ζ) = −〈n̂(ζ), KH̄(ζ)n̂(ζ)〉
â(ζ) = 〈n̂(ζ), an̂(ζ)〉 > 0,

(10.1.45)

n̂(ζ) is the unit normal to S at ζ, and H̄(ζ) is the Hessian of V evaluated at (ζ, 0).

From (10.1.38), (10.1.44) must be solved with the boundary condition

τ̂0(0, ζ) = 0. (10.1.46)

In addition, the matching condition with (10.1.42) requires that

lim
η→∞

τ̂0(η, ζ) = C. (10.1.47)

We will look for a solution of (10.1.44) in the form of

τ̂0(η, ζ) = g(ηd(ζ)) (10.1.48)

for some functions g and d, d(ζ) > 0, to be determined later. Letting u = ηd(ζ), (10.1.44)

implies that

b̄(ζ)u
dg

du
+ â(ζ)d2(ζ)

d2g

du2
= 0 (10.1.49)

where

b̄(ζ) = b(ζ)− c(ζ) · ∇ζd(ζ) (10.1.50)

(10.1.49) can be solved provided that b̄(ζ) = â(ζ)d2(ζ) which, from (10.1.50), leads to

the following equation for d(ζ):

b(ζ)− c(ζ) · ∇ζd(ζ) = â(ζ)d2(ζ). (10.1.51)

We only need information about d(ζ) near ζ = 0. Since K∇V = 0 at the saddle point

zs, c(0) = 0, from (10.1.51) it follows that

d(0) =
√
b(0)/â(0). (10.1.52)
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In addition, g must satisfy the following boundary conditions:

g(0) = 0, lim
u→∞

g(u) = C, (10.1.53)

Therefore we have

g(u) =
2C√
π

∫ u

0

e−u
′2

du′. (10.1.54)

In terms of τ̂0, this is

τ̂0(η, ζ) =
2Cd(ζ)√

π

∫ η

0

e−(d(ζ)η′)2dη′ (10.1.55)

Solvability condition. It remains to determine C in the expressions (10.1.41)

and (10.1.55). We do so using the following solvability condition obtained by integrating

both sides of (10.1.37) against the equilibrium distribution (10.0.9) in B:

− e−δV/ε
∫

B

e−V (z)/εdz

=

∫

B

(−K∇V · ∇τ̄ + εa : ∇∇τ̄)e−V (z)/εdz

= ε

∫

B

∇ ·
(
KT∇τ̄ e−V (z)/ε

)
dz

= −ε
∫

S

n̂(z) ·KT∇τ̄ e−V (z)/εdS

(10.1.56)

where n̂(z) is the inward unit normal to S. The rest of ∂B makes no contribution because

of the second boundary condition in (10.1.38). Let us evaluate the various integrals

in (10.1.56) in the limit as ε→ 0. First we have

∫

B

e−V (z)/εdz = e−V (z)/ε
(
(2πε)n/2(det H)−1/2 + o(1)

)
(10.1.57)

where H is the Hessian of V evaluated at z0. Next, using (10.1.55), we have

ε

∫

S

n̂(z) ·KT∇τ̄ e−V (z)/εdS

=
√
ε

∫

S

(
â(ζ)

∂τ̂0(0, ζ)

∂η
+ o(1)

)
e−V̂ (0,ζ)/εdζ

=
√
ε

∫

S

(2Câ(ζ)d(ζ)√
π

+ o(1)
)
e−V̂ (ζ)/εdζ

(10.1.58)
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where V̂ (ζ) denotes the potential evaluated on S and expressed in the variable ζ. The

last integral in (10.1.58) can be evaluated by Laplace method, and since V̂ (ζ) attains its

minimum at ζ = 0 (corresponding to z = zs), this gives

√
ε

∫

S

(2Câ(ζ)d(ζ)√
π

+ o(1)
)
e−V̂ (ζ)/εdζ

= e−V (zs)/ε
(√2

π
(2πε)n/2Câ(0)d(0)D−1/2 + o(1)

) (10.1.59)

where D is the determinant of the Hessian of V evaluated at zs after it is restricted to

S: If {ê1, . . . ên−1} is an orthonormal basis spanning the hyperplane tangent to S at zs,

and P is the (n− 1)× n tensor whose rows are the êj’s, then

D = det(PHsP
T ) (10.1.60)

whereHs is the Hessian of V evaluated at zs. Inserting (10.1.57) and (10.1.59) in (10.1.56)

gives an equation for C whose solution is

C = π
(
det HD−1

)−1/2
(â(0)d(0))−1

= π
(
det HD−1

)−1/2
(|〈n̂(0), KHsn̂(0)〉|〈n̂(0), an̂(0)〉)−1/2

(10.1.61)

where, to get the second equality, we used (10.1.45) and (10.1.52). This also means that,

as ε→ 0,

τ = eδV/ε (C + o(1)) (10.1.62)

In the special case of overdamped dynamics, we have K = a = γ−1. Therefore,

(10.1.62) becomes

τ = eδV/ε
(
πγ
(
det HD−1

)−1/2
(|〈n̂(0), Hsn̂(0)〉|〈n̂(0), n̂(0)〉)−1/2 + o(1)

)
(10.1.63)

When d = 1, H = V ′′(A), D = 1, Hs = V ′′(C), we recover (10.1.35).

10.1.5 Transition path theory

The previous discussions are suited for the situation when the system has a smooth

energy landscape. We have used the ratio between the amplitude of the noise and the

barrier height as a small parameter to carry out the asymptotic analysis. Next we will

turn to the situation when the energy landscape has a multiscale structure, i.e. systems

with rough energy landscapes (see Figure 10.2). In particular, we have in mind the

following situations:
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1. The potential of the system V has a large number of local minima and saddle points,

but most of the associated barrier heights δV are comparable to the amplitude of

the noise kBT and therefore individually, these saddle points do not act as barriers.

The real barrier comes from the collective effect of many such saddle points. In

this case, the notion of transition states has to be replaced, since the bottleneck to

the transition is no longer associated with a few isolated saddle points of V .

2. For the same reason, it no longer makes sense to discuss the most probable path

since it is not well-defined. Instead one should think about an ensemble of transition

paths.

3. Entropic effects become important. Imagine a situation in which the transition path

ensemble is concentrated in two thin tubes connecting the initial and final states,

one with a smaller barrier but narrower passage, another with a bigger barrier but

wider passage. One can imagine that at lower temperature, the first scenario should

be preferred. At a higher temperature, the second scenario is preferred. There are

also situations where the barrier is of entirely an entropic nature as we mentioned

before.

From an analytical viewpoint, the main difficulty is the lack of a small parameter that

can be used to carry out the asymptotics. Therefore we will proceed in two steps. The

first is to formulate an exact theory for the general case in which we define the relevant

objects and derive the relevant formulas for the quantities we are interested in. This is

the purpose of the transition path theory (TPT), which has been developed to provide

an analytical characterization of the transition path ensemble [23]. This theory is quite

general and it applies also to non-gradient systems. The second step is to find alternative

small parameters with which we can perform asymptotics. As we see below, the small

parameter we will work with is the non-dimensionalized width of the effective transition

tube.

We will summarize the main results in [23]. Details of the derivations can be found in

[23, 22, 55, 24]. Some illustrative examples are presented in [43]. Extensions to discrete

Markov processes can be found in [44]. See also the review article [24].

The general setup is as follows. Consider the stochastic process described by the

differential equation:

ẋ = b(x) +
√

2σ(x)ẇ (10.1.64)
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where ẇ is the standard Gaussian white noise. The generator of this process is given by

[29]

L = b(x) · ∇+ a(x) : ∇∇ =
∑

j

bj(x)
∂

∂xj
+
∑

j,k

aj,k(x)
∂2

∂xj∂xk
(10.1.65)

where

a(x) = σ(x)σT (x) (10.1.66)

The operator L and its adjoint defines the backward and forward Kolmogorov equations

associated with the process (10.1.64). We will assume that the stochastic process defined

by (10.1.64) has a unique invariant distribution, i.e. the process is ergodic. We will

denote this invariant distribution by µ(dx) = m(x)dx where m is the density of µ.

Given two metastable sets for the stochastic process, A and B, we are interested in

the transition paths from A to B. These are paths that are initiated in A and arrive at

B without going back to A in between. One way of defining this ensemble of paths is

to consider an infinitely long trajectory x(·) : (−∞,+∞) → R
n, and cut out from this

trajectory the pieces that satisfy the condition stated above, namely the pieces that leave

the boundary of A and arrive at B without going back to A in between. Such a piece

is called a reactive trajectory from A to B, or A − B reactive path, or a transition path

from A to B. We will call this set of transition paths, the transition path ensemble from

A to B. Given the trajectory x(·), we will denote by R the subset of times in which x(·)
belongs to an A−B reactive path.

For this transition path ensemble, we ask the following questions:

1. Where do these paths spend their time? In the setup described above, we are

looking for a density mR such that

lim
T→∞

1

2T

∫

[−T,T ]

δ(x− x(t))1{t ∈ R}dt = mR(x) (10.1.67)

The presence of the factor 1{t ∈ R} indicates that we are only interested in reactive

trajectories. Note that if we consider the whole trajectory x(·) (not just the reactive

pieces) and ask the same question, then the probability density at the right hand

side should be give by the density for the invariant distribution m(x):

lim
T→∞

1

2T

∫

[−T,T ]

δ(x− x(t))dt = m(x) (10.1.68)
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Note also that mR(x) is not normalized: In fact, the total integral of mR gives the

probability of being A−B reactive.

2. What is the current associated with these reactive trajectories? The current asso-

ciated with the reactive paths is a vector field JR : Ω 7→ R
n,Ω = R

n\(A ∪B) such

that the following holds:

lim
T→∞

1

2T

∫

[−T,T ]

ẋ(t)δ(x− x(t))1{t ∈ R}dt = JR(x) (10.1.69)

Note that if we consider the whole trajectory x(·) (not just the reactive pieces),

then we have

lim
T→∞

1

2T

∫

[−T,T ]

ẋ(t)δ(x− x(t))dt = J(x) (10.1.70)

where J(x) = (J1(x), . . . , Jn(x))T ∈ R
n is the “equilibrium current” (or more

precisely the steady state current) with

Ji(x) = bi(x)m(x)−
n∑

j=1

∂

∂xj
(aij(x)m(x)) (10.1.71)

This is obtained from the forward Kolmogorov equation, which can be written as

∂tρ(x, t) +∇ · (b(x)ρ(x, t)−∇(a(x)ρ(x, t))) = 0 (10.1.72)

J is divergence-free. But it does not necessarily vanish for non-gradient systems,

since the detailed balance condition may not hold.

3. Transition rate: If NT is the number of A − B reactive trajectories of the given

trajectory x(·) in [−T, T ], what is the limit of NT/(2T ) as T →∞?

kAB = lim
T→∞

NT

2T
(10.1.73)

To answer these questions, we need the notion of committor functions [15], also re-

ferred to as the capacitance functions in the mathematics literature.

Let q+ : Ω 7→ [0, 1] be the solution of

Lq+ := b · ∇q+ + a : ∇∇q+ = 0, q+|∂A = 0, q+|∂B = 1 (10.1.74)
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q+ is called the forward committor function for the transition process from A to B. In

a similar fashion, we can define the backward committor function q− : Ω 7→ [0, 1] as the

solution of

L+q− := −b·∇q−+
2

m
div(am)·∇q−+a : ∇∇q− = 0, q−|∂A = 1, q−|∂B = 0 (10.1.75)

q+ and q− have a very simple interpretation: q+(x) is the probability that a trajectory

initiated at x will reach B before it hits A, q−(x) is the probability that a trajectory

arriving at x came from A, i.e. it did not hit B in between. The level sets of these

functions are called the isocommittor surfaces [15]. The level set {q+ = 1/2} is of

particular interest: Points on this surface have an equal probability of first reaching A

and B. This is the dividing surface that separates the reactant states from the product

states.

For gradient systems

ẋ = −∇V (x) +
√

2 ẇ (10.1.76)

we have q+ = 1− q− and q+ satisfies the equation:

∆q+ −∇V · ∇q+ = 0 (10.1.77)

Consider the simple example of a two-dimensional gradient system with potential

V (x1, x2) =
5

2
(1− x2

1)
2 + 5x2

2 (10.1.78)

and let us take A = {x1 < −0.8}, B = {x1 > 0.8}. It is easy to see that in this case the

solution of (10.1.77) is only a function of x1: q+(x1, x2) = 1− q−(x1, x2) ≡ q(x1) where

q(x1) =

∫ x1

−0.8
e

5

2
(1−z2)2dz

∫ 0.8

−0.8
e

5

2
(1−z2)2dz

(10.1.79)

The questions raised above can all be answered in terms of the quantities just defined.

We will simply summarize the results. Details of the calculation can be found in [23].

1. Probability density of reactive trajectories.

We have mR(x) = q+(x)q−(x)m(x)

lim
T→∞

1

2T

∫

[−T,T ]∩R
φ(x(t))1{t ∈ R}dt =

∫

Ω

q+(x)q−(x)m(x)φ(x)dx (10.1.80)
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If we limit ourselves to the ensemble of reactive trajectories and ask what the probability

density of finding them at x is, we have

m̂R(x) =
1

ZR
q+(x)q−(x)m(x) (10.1.81)

where the normalization factor

ZR =

∫

Ω

q+(x)q−(x)m(x)dx (10.1.82)

is the probability to be reactive.

As an illustration, consider the simple example of the gradient system discussed above.

Shown in Figure 10.1.5 are the equilibrium probability density m and the probability

density for the A−B reactive trajectories mR. Notice that m peaks at the local minima,

whereas mR peaks at the saddle point, due to the fact that the reactive trajectories are

slowed down at the saddle point (hence it has to spend more time there) where the drift

term vanishes in the stochastic dynamics.

2. The current of A−B reactive trajectories.

This is given by

JR = q+q−J +mq−a∇q+ −mq+a∇q− (10.1.83)

where J was given in (10.1.71). Note that divJR = 0 in Ω. Note also that

n̂∂A(x) · JR(x) = m(x)
n∑

i,j=1

n̂∂A,i(x)aij(x)
∂q+(x)

∂xj

= m(x)|∇q+(x)|−1

n∑

i,j=1

aij(x)
∂q+(x)

∂xi

∂q+(x)

∂xj
≥ 0.

(10.1.84)

where n̂∂A(x) is the unit outward normal of ∂A which can also be defined as ∇q+/|∇q+|.
Similarly, one can show that

n̂∂B(x) · JR(x) ≤ 0 (10.1.85)

where n̂∂B is the unit outward normal of ∂B.

3. The transition rate.

Let S be a dividing surface, i.e. a hypersurface in Ω that separates A and B, then

νR = lim
T→∞

NT

2T
=

∫

S

n̂S(x) · JR(x)dS (10.1.86)
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Figure 10.4: Equilibrium density and density of reactive trajectories for the example

(10.1.78), from [23]. The top figure shows the equilibrium density for the whole system.

The bottom figure shows the equilibrium density for the reactive trajectories. It is clear

that the equilibrium density for the whole system concentrates on the wells whereas the

equilibrium density for the reactive trajectories concentrates at the saddle point.
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Since JR is divergence-free, divJR = 0, it is easy to see that the integral over S defined

above is actually independent of S. In fact, one can show that [23]

νR =

∫

Ω

〈a∇q+,∇q+〉m(x)dx =

∫

Ω

∑

j,k

aj,k(x)∂jq+(x)∂kq+(x)m(x)dx (10.1.87)

For the setting considered in (10.0.3), we have

JR(x) = Z−1
ε e−V (x)/ε∇q+(x) (10.1.88)

where Zε =
∫

Ω
e−V (x)/εdx. The transition rate is given by:

νR =
ε

Zε

∫

Ω\(A∪B)

e−V (x)/ε|∇q+(x)|2dx (10.1.89)

In fact, it is easy to see that the transition rate admits a variational formulation: Define

I(q) =

∫

Ω

e−V (x)/ε|∇q(x)|2dx (10.1.90)

then

νR =
ε

Zε
min
q
I(q) (10.1.91)

subject to the boundary condition that q = 0, 1 at ∂A and ∂B respectively.

4. Streamlines of the reactive current.

Given the vector field JR, we can define the dynamics:

dx(τ)

dτ
= JR(x(τ)) (10.1.92)

where τ is an artificial time parameter, which should not be confused with the physical

time of the original trajectory x(·). Solutions to this equation define the streamlines for

the reactive current JR. They are useful for defining the transition tube.

5. The transition tube.

So far our statements are exact. Next we will define the analogous object of the

minimum energy path (or the most probable paths) for complex systems. For this to

make any sense, the system must be such that the reactive trajectories are localized in

the configuration or phase space. This is not the case, for example, when the barrier is

mainly entropic in nature (an example is discussed below). Here we will limit ourselves
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to the situation when the reactive trajectories are indeed localized, in the sense to be

made more precise below.

Suppose that we identify a (localized) region on ∂A, say SA ⊂ ∂A, which contains a

(1− δ) portion of the reactive current that goes out of A
∫

SA

n̂∂A(x) · JAB(x)dS = (1− δ)
∫

∂A

n̂∂A(x) · JAB(x)dS = (1− δ)νR (10.1.93)

Let S(τ) be the image of SA under the flow map defined by (10.1.92) at (the artificial)

time τ . Using the divergence theorem, we have
∫

SA

n̂∂A(x) · JR(x)dS =

∫

S(τ)

n̂S(τ)(x) · JR(x)dS. (10.1.94)

We define the union of the S(τ)’s as the transition tube that carries 1− δ portion of the

probability flux of reactive trajectories.

When discussing the transition tube, we have implicitly made the localization as-

sumption, i.e. the diameter of the sets S(τ) is much smaller than the radius of curvature

of the centerline curve of the tube. As was shown in [22], it is possible to establish an

approximate characterization of the transition tube using the ratio of the tube width and

the radius of curvature of the centerline as the small parameter to develop the asymp-

totics. Given a curve γ that connects A and B, let z be an arbitrary point along γ, let Pz

be the hyperplane normal to γ and denote by µz(dS) the restriction of the equilibrium

distribution µ(dx) to Pz. It was shown in [22] that under the localization assumption,

the centerline of the transition tube γ⋆ is approximately a principal curve with respect to

the family of distributions {µz}: For every point z along the centerline γ⋆, if C(z) is the

center of mass of the distribution µz on Pz, then C(z) coincides with z, upto an error of

size ε:

C(z) = 〈x〉µz
= z +O(ε) (10.1.95)

This characterization is the basis for the finite temperature string method, to be discussed

in the next section. Once the centerline curve is found, one can determine the width of

the transition tube by identifying the standard deviation of the distribution µz on Pz.

In the zero temperature limit, C(z) becomes a local minimizer of V restricted to Pz.

Therefore the principal curve becomes the MEP.

The employment of the hyperplanes is not necessary in this characterization. Other

objects, such as the iso-committor surfaces or the sets {S(τ)}, can also be used.
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Figure 10.5: Probability density of reactive trajectories (upper) and the the committor

function (lower panel) for the example with an entropic barrier. From [43].

One may ask: How realistic is the localization assumption? Well, if it is violated,

it means that the transition paths are very diffusive. This is the case when entropic

barriers are dominant. To characterize the transition path ensemble in this situation,

one has to find some coarse-grained variables to represent the entropic factors. At the

present time, there is no systematic way of doing this. Nevertheless, it should be noted

that transition path theory is equally valid in this case, even though the localization

assumption is violated.

6. Transition state ensemble. In the TPT language, the transition state ensemble

is simply the distribution µR(dx) = mR(x)dx. For simple systems, this distribution is

sharply peaked at the transition states, the saddle points of the energy. Therefore, one

may replace the notion of the transition state ensemble by that of the transition state.

For complex systems, this is not necessarily the case. In fact, when entropic barrier

dominates, the transition state ensemble can be a rather flat distribution, as we will

see later. When energy barrier dominates, the transition state ensemble should still be
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Figure 10.6: A typical reactive trajectory for the example with an entropic barrier. From

[43].

peaked. The region that contains most of the masses of µR is the bottleneck for the

transition, and should be considered as the analog of the transition states in TST.

7. Reaction coordinates. The notion of reaction coordinates has been used widely,

often incorrectly. Reaction coordinates are variables that fully characterize the progress of

the reaction. There is an obvious reaction coordinate, namely the committor function q+.

The family of iso-committor surfaces give a geometric characterization of the progress of

the reaction. Given a set of functions r = (r1, r2, · · · , rm) where rj = rj(x), r can be used

as reaction coordinates if and only if it distinguishes the different iso-committor surfaces,

i.e. for any two points x1 and x2 in Ω, r(x1) = r(x2) implies that q+(x1) = q+(x2).

We should distinguish the notion of reaction coordinates with that of the slow vari-

ables. The following example illustrates this point (see also [24]). Consider a two-

dimensional configuration space with the energy function

V (x, y) =
1

ε2
(1− x2)2 +

1

2
y2 (10.1.96)

where as usual ε ≪ 1. This is a bi-stable system with local minima (−1, 0) and (1, 0).

The slow variable in this problem is y, but the reaction coordinate for the transition

between the two local minima is x.

An example with entropic barrier [43]. Consider diffusion in the S-shaped re-

gion shown in Figure 10.5. We define the sets A and B to be the little squares at the

upper-right and bottom-left corners respectively. In this example, there are no potential
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barriers, in fact, V = 0. However, there is an entropic barrier: Transition paths have to

find their way between the two obstacles. Suppose we start the dynamics in A. The closer

the trajectory gets to the region enclosed by the obstacles the higher the probability that

the trajectory will finally reach the lower-left corner before returning to A because the

probability to end up in B depends roughly on the distance between the current position

and the set B. Figure 10.5 shows the probability density for the reactive trajectories

and the committor function q(x, y) for this example. In Figure 10.6 we depict a typical

reactive trajectory. One can see that the trajectory spends most of its time between

the obstacles. This is consistent with the behavior of the probability density function

of reactive trajectories. Although not shown here, the probability current of reactive

trajectories is as expected: Basically, the streamlines follow the S-shape (see [43]).

10.2 Numerical algorithms

In this section, we will discuss numerical algorithms that have been developed for

computing the transition states, minimum energy paths and transition tubes. We will

restrict our attention to gradient systems.

10.2.1 Finding transition states

In the simplest case when the energy landscape is smooth, the most important objects

for the transition between the locally stable states are the transition states, which are

the saddle points separating the stable states. These saddle points are special critical

points for the potential V . They satisfy the equation:

∇V (x) = 0 (10.2.1)

If we have a rather good guess about the location of the particular saddle point, we

can use Newton’s method to solve (10.2.1) and find the relevant saddle point. This is

quite efficient but requires knowing a very good initial guess.

A more general approach is the dimer method [33]. This is an iterative procedure

that involves a dimer, which consists of two images of the system connected by a short

line segment, say of length δ. The energy of the dimer is the sum of the energies of the

two images. The dynamics of the dimer is determined by the translation of the mid-point
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of the line segment and the rotation of the line segment. Each iteration consists of two

steps:

1. Rotating the dimer. The best orientation of the dimer is found by minimizing the

energy of the dimer with the mid-point fixed. This can be done using, for example,

Newton’s method. The energy difference for the different orientations of the dimer

is related to the curvature in different directions. The minimum energy orientation

is given by the lowest curvature direction.

2. Translating the dimer. First we define the force on the dimer: F = (F1 + F2)/2,

where F1 and F2 are the forces acting on the first and second images respectively. If

we use this force to move the dimer, the dimer will end up near the local minimum

state for the potential. In order to reach the saddle point, one idea is to reverse

the force in the direction of the dimer, i.e. let

F∗ = F− 2F|| (10.2.2)

where F|| is the component of F in the direction of the dimer. The dimer is then

parallelly translated by moving its mid-point by ∆tF∗ where ∆t is some appropriate

time step size.

The dimer method is fairly effective, but it is not fool-proof either. There is no

guarantee that it will reach the relevant saddle point for the transition we are interested

in, since no information about the final state of the transition is used.

Besides the two discussed above, there are many other methods (see for example,

[35]) for computing saddle points. The nudged elastic band method discussed below,

particularly the climbing image nudged elastic band method (CI-NEB), is also targeted

toward computing saddle points.

10.2.2 Finding the minimal energy path

If the stable states we are interested in are separated by multiple saddle points and

intermediate stable states, then it becomes quite difficult to use direct saddle point

searching methods to find the sequence of relevant saddle points. In this case, we really

should look for the minimum energy path (MEP).



10.2. NUMERICAL ALGORITHMS 457

There are many different ways of finding the MEP. We will discuss two representa-

tive ideas: The elastic band method and in particular the nudged elastic band method,

and the string method. The former is a representative of the so-called “chain-of-states”

approach. The latter is a representative of the class of methods based on evolving curves

in configuration space. Even though after discretization, the string method also has the

appearance of a chain-of-states method, there are still important differences in whether

the continuous character is used in an essential way. The elastic band methods adjust

the distance between the states on the chain using an artificial spring force between the

states. The string method, on the other hand, redefines the configurations continuously

using interpolation, which amounts to reparametrizing the string. The continuous char-

acter becomes even more essential for the finite temperature string method for finding

transition tubes in complex systems, to be discussed later.

Elastic band method

The basic idea is to connect the two stable states A and B by a chain of states

(replicas or images), and evolve this chain of states. In an early attempt, Pratt proposed

to use Monte Carlo methods to sample chains of states between the initial and final

states in order to find the transition state region. Pratt’s idea has been developed in

two directions. One is Monte Carlo algorithms for sampling true dynamical trajectories

between the initial and final states. This is the well-known transition path sampling

algorithm developed by Bolhuis, Chandler, Dellago and Geissler. The second is a class

of optimization algorithms for finding the MEP using a chain of states. The elastic band

method is an example of this type of algorithms.

Denote by A and B the initial and final states for the MEP respectively. Given a

chain of states {x0,x1, · · · ,xN}, where x0 = A,xN = B. Let us define an energy for the

chain:

E = E(x0,x1, · · · ,xN) =
∑

j

V (xj) +
k∆s

2

N∑

j=1

|xj − xj−1

∆s
|2 (10.2.3)

where ∆s is some numerical parameter that is comparable to the distance between neigh-

boring images on the chain. Alternative energy functions have been proposed by Elber

and Karplus [25]. See also [13, 51].

In the elastic band method (also called plain elastic band method, to be contrasted

with the nudged elastic band method discussed below [38]), the idea is to move the chain
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of states according to the gradient flow of the energy E [30]:

ẋj = − ∂E
∂xj

== −∇V (xj) + k∆s
xj+1 − 2xj + xj−1

∆s2
, j = 1, 2, · · · , N − 1. (10.2.4)

The first term at the right hand side is the potential force, the second term is the spring

force. Note how the scaling in the coefficient of the second term is chosen: Because of

that, if we use an explicit ODE solver to evolve (10.2.4), the allowed time step size is

∆t ∼ ∆s in order to guarantee numerical stability. However, in this scaling, the second

term drops out in the continuum limit as ∆s→ 0.

The elastic band method is extremely simple and intuitive. However, it has been

noticed that this method may fail to converge to the MEP [30]. The most common

problem is corner-cutting (see [38]).

To overcome this problem, Jónsson et al. introduced the nudged elastic band method

(NEB) [38]. This is a very simple modification of the elastic band method, but one that

made the method truly useful. Instead of using the total potential force and spring force

to move the chain, one uses only the normal component of the potential force and the

tangential component of the spring force:

ẋj = −∇V (xj)
⊥ + (Fs

j , τ̂j)τ̂j, j = 1, 2, · · · , N − 1. (10.2.5)

where Fs
j = k(xj+1 − 2xj + xj−1)/∆s, τ̂j denotes the tangent vector along the elastic

band at xj, F⊥ denotes the normal component of the vector F: F⊥ = F− (F, τ̂j)τ̂j.

It is easy to see that if the chain converges to a steady state, it should be a good

approximation of MEP. In fact, from (10.2.5), we see that if the left hand side vanishes,

then

−∇V (xj)
⊥ + (Fs

j , τ̂j)τ̂j = 0, j = 1, 2, · · · , N − 1. (10.2.6)

Since the two terms in this equation are normal to each other. Each has to vanish. In

particular, we have

−∇V (xj)
⊥ = 0, j = 1, 2, · · · , N − 1. (10.2.7)

The choice of the elastic constant k affects the performance of NEB. If k is too large,

then the elastic band is too stiff and one has to use very small time steps to solve the

set of ODEs in (10.2.5). If k is too small, then there is not enough force to prevent the

states on the chain from moving away from the saddle point; hence the accuracy of the

saddle point will be reduced.



10.2. NUMERICAL ALGORITHMS 459

String method

One main motivation for the string method is to formulate a strategy using the

intrinsic dynamics of curves connecting the stable states A and B. Dynamics of the curves

are determined by the normal velocity at each point along the curve. The tangential

component only affects the parametrization of the curve. Therefore, fixing a particular

parametrization also fixes the tangential component of the dynamics. The simplest choice

of parametrization is the equal-arclength parametrization. One can also add an energy-

dependent weight function along the curve in order to enhance the accuracy near the

saddle points [20]. This kind of ideas has been used quite extensively since the 1980’s,

for example, in the work of Brower et al. on geometric models of interface evolution [9].

Let γ be a curve that connects A and B. We look for solutions of

− (∇V )⊥ (γ) = 0, (10.2.8)

where (∇V )⊥ is the component of ∇V normal to γ:

(∇V )⊥ (γ) = ∇V (ϕ)− (∇V (ϕ), τ̂)τ̂ (10.2.9)

Here τ̂ denotes the unit tangent vector of the curve γ, and (·, ·) denotes the Euclidean

inner product. The basic idea of the string method is to find the MEP by evolving

curves in configuration spaces that connect A and B, under the potential force field.

The simplest dynamics for the evolution of such curves is given abstractly by

vn = − (∇V )⊥ (10.2.10)

where vn denotes the normal velocity of the curve. This formulation guarantees that

it is gauge invariant, i.e. it is invariant under the change of the parametrization of the

curve. To translate (10.2.10) to a form that can be readily used in numerical compu-

tations, we assume that we have picked a particular parametrization of the curve γ:

γ = {ϕ(α) : α ∈ [0, 1]}. Then we have τ̂(α) = ∂αϕ/|∂αϕ|. If we choose the equal-

arclength parametrization, then α is a constant multiple of the arclength from A to the

point ϕ(α). In this case, we also have |∂αϕ| = constant (the value of the constant may

depend on time, it is the length of the curve γ).

Two slightly different forms of the string method have been suggested [20, 19]. The

simplest form is to solve:

ϕ̇ = −∇V (ϕ) + µτ̂ , (10.2.11)
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where ϕ̇ denotes the time derivative of ϕ, µτ̂ is a Lagrange multiplier term for the purpose

of enforcing the particular parametrization of the string, such as the equal-arclength

parametrization.

In actual computations, the string is discretized into a number of images {ϕi(t), i =

0, 1, · · · , N}. The images along the string are evolved by iterating upon the following

two-step procedure.

1. Evolution step: The images on the string are evolved over some time-interval ∆t

according to the potential force at that point:

ϕ̇i = −∇V (ϕi) (10.2.12)

Equation (10.2.12) can be integrated in time by any stable ODE solver, e.g. the

forward Euler method or Runge-Kutta methods. The time step should be chosen

such that neighboring images do not cross each other:

|∇V (ϕj+1)−∇V (ϕj)|∆t < ∆s (10.2.13)

This gives condition that

|∇2V |∆t < 1 (10.2.14)

2. Reparametrization step: The points (images) are redistributed along the string

using a simple interpolation procedure (see [19]). Take the example of equal-

arclength parametrization. Then this reparametrization step again involves two

steps. The first step is to compute the total arclength of the string, by summing

up the distances between neighboring images. This allows us to compute the new

parametrization, the values of {αj, j = 0, 1, 2, · · · , N} which make up an equal-

distance parametrization. The second step is to compute the images at these new

parameter values using standard piecewise polynomial interpolation.

It is not necessary to invoke the reparametrization procedure at every time step. One

can reparametrize after a number of evolution steps.

One problem with this approach is that even after the string has converged to a steady

state, the images on the string may still move back and forth along the string. To avoid

this, we may modify (10.2.11) and consider

ϕ̇ = −∇V (ϕ)⊥ + λτ̂ (10.2.15)
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By projecting out the tangential component of the potential force, one eliminates the

tendency for the images to move back and forth along the string.

There is a subtle point associated with the discretization of (10.2.15). This was first

noted in [38, 20] in connection with NEB. To see this more clearly, let us write (10.2.15)

as

ϕ̇ = −∇V (ϕ) + (∇V (ϕ), ∂αϕ)
∂αϕ

|∂αϕ|2
+ λτ̂ (10.2.16)

This has the form of a hyperbolic partial differential equation – the second term at the

right hand side is a convection term. Therefore one should be careful when discretizing

that term in order to avoid numerical instability. The simplest idea is to use one-sided

differencing. The coefficient of the convection term is given by ∂αV (ϕ(α)), upto a positive

factor. This means that when V increases, one should use backward differencing; when

V decreases, one should use forward differencing [34, 47]:

∂αϕj =






ϕj+1−ϕj

∆α
, ifV (ϕj+1) > V (ϕj) > V (ϕj−1)

ϕj−ϕj−1

∆α
, ifV (ϕj+1) < V (ϕj) < V (ϕj−1)

(10.2.17)

Or, to put it differently, one should not use divided difference across the saddle point.

For this reason, it is harder to design uniformly high order accurate string method in this

form [47].

It is natural to ask whether the elastic band method can also be formulated in terms

of evolution of continuous curves. As we remarked earlier, if we use the original scaling

of the spring constant, then the term that represents the elastic force disappears in the

continuum limit (which suggests that the elastic term in (10.2.4) may not be strong

enough to prevent the clustering of the states near the local minima as ∆s → 0). In

order to retain the spring term, one has to replace the spring constant k∆s by k. In that

case, we can take the continuum limit of the (nudged) elastic band method and obtain:

ϕ̇ = −∇V (ϕ)⊥ + k(ϕαα, τ̂)τ̂ (10.2.18)

However, to evolve this dynamics, one has to use much smaller time steps: ∆t ∼ (∆s)2

and it will take many more iterations in order for the dynamics to converge to MEP.

Another way of designing the string method is to use the alternative characterization

for MEP discussed at the end of Section 10.1.3, namely every point along the MEP is

the local minimum of the potential energy V restricted to the hyperplane normal to the
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MEP. Using this, we can formulate a string method as follows. At each iteration, one

finds the local minima of V on the hyperplanes normal to the current configuration of the

string. Naively, one might simply use this set of local minima as the new configuration

of the string – resulting in an unstable numerical algorithm. Numerical instability can

be avoided if a relaxation procedure is used. This idea can be combined with different

optimization techniques in order to improve efficiency [50]. It is closely related to the

finite temperature string method discussed below.

10.2.3 Finding the transition path ensemble or the transition

tubes

Transition path sampling

Transition path sampling (TPS) is the first systematic numerical approach for study-

ing transition between metastable states in systems with complex energy landscapes. It

is a Monte Carlo algorithm for sampling the transition path ensemble [14, 7]. In addition

to being a numerical tool, it also helped to clarify some of the most important conceptual

issues for understanding rare events in systems with complex energy landscapes. Indeed

the significance of the committor functions and iso-committor surfaces, which have now

become basic concepts in transition path theory, was first realized in TPS.

TPS is a two-step procedure, sampling the transition path and analyzing the path

ensemble.

Sampling the path: The idea is as follows. Fix a time parameter T > 0. We start

with an initial reactive trajectory over a time interval of length T . One then generates a

sequence of reactive trajectories using a standard procedure in the Metropolis algorithm:

1. Proposal step: Generate a new trajectory over the same time interval using some

Monte Carlo moves.

2. Acceptance/rejection step: Decide whether the new trajectory should be accepted.

Next we explain some of the details.

The first question is how to choose the parameter T . To understand this, we note

that there are three time scales of interest: The relaxation time Tr, the commitment

time Tc and the transition time Th. They are related by: Tr < Tc < Th. It is obvious

what Tr and Th are. The commitment time is the time that a reactive trajectory needs
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in order to finish the reaction after it finds the transition state region, i.e. time needed

for the system to be committed to the product state. For simple systems, this is simply

the time that a reactive trajectory needs in order to cross the saddle point, once it comes

near the saddle point. For complex systems, particularly for diffusive transitions, the

commitment time can be much longer than molecular vibration times. But it is usually

much shorter than the average time between the transitions. T should be much larger

than the commitment time Tc but much smaller than the transition time Th.

Now let us distinguish two different transition state ensembles, the canonical ensemble

and the microcanonical ensemble. Denote by A and B the initial and final states respec-

tively. Typically A and B are some regions in the configuration space. If the original

dynamics is described by a deterministic Hamiltonian system, then the corresponding

transition path ensemble should be a microcanonical transition path ensemble. In this

case a trajectory is rejected if it does not have the right value of the Hamiltonian or if it

fails to be reactive, i.e. it does not connect A and B. All acceptable reactive trajectories

have equal weights. For the canonical ensemble, one prescribes some Gibbs weight for the

reactive trajectories. For example, if the dynamics is Langevin, then the (unnormalized)

probability weight associated with a path x(·) is given by

exp
(
−1

4
βγ−1

∫ T

0

|M ẍ + γẋ +∇V |2dt
)
. (10.2.19)

For the microcanonical ensemble, it might be non-trivial to find the initial reactive

trajectory. One strategy is to fix two points in A and B respectively, say x1 and x2 and

solve a two-point boundary value problem that satisfies:

x(0) = x1, x(T ) = x2

New trajectories can be obtained by solving the deterministic differential equations

(Hamilton’s equation) with initial data that are obtained from perturbations of the old

trajectory. For example, one can randomize the velocity and position at t = T/2 and

use the randomized data as initial condition to launch trajectories for both t < T/2 and

t > T/2. Such a trajectory is guaranteed to be a true trajectory over the whole time

interval [0, T ] since both the position and the velocity are continuous at t = T/2. How-

ever, it is not guaranteed to be reactive, i.e. its position at t = 0 is not necessarily in A

and its position at t = T is not necessarily in B. If it is reactive, then the constructed
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trajectory will be accepted. If it is not reactive, it will be abandoned and the process

will be repeated.

For the canonical ensemble, we may start with any path that connects A and B.

To generate new trajectories, one can use standard Monte Carlo strategies for sampling

polymer paths. For example, one can put the trajectories on a lattice and move the

different segments on the lattice. Other more efficient ways of generating Monte Carlo

moves are discussed in [14]. Once a trial trajectory is constructed, it is either accepted or

rejected according to a standard Metropolis procedure. If we denote the old trajectory

by xo and the new trajectory by xn, then the acceptance probability is given by

Pa = min

(
1,
W (xn)Pg(xn → xo)

W (xo)Pg(xo → xn)

)
(10.2.20)

where W (xo) is the statistical weight for xo and Pg(xo → xn) is the probability of

generating xn from xo in the Monte Carlo move, and so on.

Analyzing the path ensemble: After the ensemble of the reactive trajectories is

generated, one still has to perform statistical analysis on this ensemble in order to extract

objects of interest. One such object of interest is the transition state ensemble. For TPS,

this is defined as the collection of points obtained from the intersection of the trajectories

harvested with the iso-committor surface {q+ = 1/2}, with the same statistical weight

as that of the trajectory itself. These intersection points are found using the following

procedure. Take a trajectory from the ensemble of reactive trajectories we have harvested.

At each point of the trajectory, compute the value of q+ by launching dynamic trajectories

from that point and counting the number of trajectories that reach A and B. The value

of q+ at that point is given by the percentage of trajectories that first reach B. This is

a monotonic function along the trajectory. There is a unique point along the trajectory

where q+ has value 1/2. That point belongs to the transition state ensemble with the

statistical weight of the trajectory itself. Another object of interest is the transition rate.

The calculation of this quantity is quite involved and we will simply refer the reader to

[15].

TPS has the advantage that it makes no assumption on the mechanism of transition.

However, analyzing the data provided by TPS to extract information about reaction

mechanism or rates can be a highly non-trivial matter, even after one has gone through

the steps of generating the paths.

The finite temperature string method
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The objective of the finite temperature string method is to find the transition tube

for the case when the transition path ensemble is localized. This is done by finding

the centerline curve, the string, of the transition tube, and identifying the equilibrium

distribution restricted to the hyperplanes normal to the centerlines curve. So in fact one

is looking for a curve and a family of probability distributions on the hyperplanes normal

to the curve. As we noted earlier, the centerline curve is a principal curve. Therefore

it is not surprising that the finite temperature string method is similar in spirit to the

expectation-maximization (EM) algorithm used in statistics for finding principal curves,

see [32].

In the current setting the maximization step is replaced by a relaxation step. Given

the current configuation of the string, the new configuration is found through the follow-

ing steps:

1. Expectation step: Sample on the hyperplanes normal to the current configuation

of the string. The constraint that the sampling is limited to the hyperplane can be

realized either as a hard constraint (for example, using Lagrange multipliers), or as

a soft constraint by adding penalty terms to the energy.

2. Relaxation step: Compute the empirical center of mass on each hyperplane and

move the string to a new configuration according to:

zn+1 = zn + ∆tC(zn) (10.2.21)

where zn denotes the current configuration of the string and C(zn) denotes the

center of mass on the hyperplanes, ∆t is a step size. Reparametrize the string if

necessary.

In practice, the strings are discretized, and therefore (10.2.21) is done for each con-

figuration on the string. In addition, for really rough potentials, it is useful to add local

smoothing to the new configuration of the string, before the next cycle starts (see Figure

10.2.3).

For more details and numerical examples, see [17, 49].

Figure 10.2.3 shows the kind of numerical results obtained using the finite temperature

string method. Shown in red is the centerline of the transition tube computed using the

string method. The green curves are obtained by looking at the standard deviation of

the equilibrium distribution restricted to the hyperplanes normal to the centerline. The
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Figure 10.7: Illustration of the finite temperature string method: Top panel: The new

configuration of the string is obtained by moving on the hyperplane according to (10.2.21).

Bottom panel: Local smoothing is added in order to improve the regularity of the new

string.
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Figure 10.8: Results of the finite temperature string method applied to the rough poten-

tial shown in Figure 10.2. The green curves bound the transition tube. The red curve is

the centerline of the tube. The blue curve displays an example of a true reactive sample

path.
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Figure 10.9: Results of the finite temperature string method based on Voronoi cells, for a

perturbed Mueller potential. Black dots show the string – the centerline of the transition

tube. The cloud of white dots show the samples in each Voronoi cell computed in the

sampling (or expectation) step. Courtesy of Eric Vanden-Eijnden.
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region bounded by the green curves should be regarded as the transition tube. The blue

curve is a sample of the reactive trajectory. One can see that it lies mostly within the

transition tube.

An interesting recent development is to replace the hyperplanes in the finite tempera-

ture string method by Voronoi cells [56]. The Voronoi cells have the advantage that they

are more regular than the hyperplanes and therefore it is easier to perform constraint

sampling with the Voronoi cells. An illustration of the finite temperature string method

based on Voronoi cells is shown in Figure 10.2.3.

String method has been extended in a number of ways:

1. The growing string method: the ends of the string are allowed to grow to find the

metastable states [45].

2. The quadratic string method: Convergence can be accelerated using quasi-Newton

iteration algorithms [10], see also [48].

3. Combination with metadynamics in order to search more globally in configuration

space [8].

4. String method using collective variables [40].

10.3 Accelerated dynamics and sampling methods

The techniques just presented require knowing beforehand the initial and final states

of the transition. It is natural to ask whether we can accelerate the original dynamics

in such a way that it still captures the right kinetics of the system statistically. We will

discuss very briefly one example of this kind: hyperdynamics [58]. We then discuss some

examples of improved sampling strategies for computing the free energy: metadynamics

[39] and temperature-accelerated molecular dynamics [41].

10.3.1 TST-based acceleration techniques

Hyperdynamics is an example of the approaches, developed mainly by A. F. Voter,

for accelerating molecular dynamics using the transition state theory. The objective

of these approaches is not to reproduce accurately the individual trajectories of the
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molecular dynamics, but rather the Markov chain obtained as a result of the transition

between different stable states (local minima of the potential energy V ). This requires

approximating accurately in a statistical sense the sequence of stable states obtained in

the MD simulation, as well as the transition rates (or transition time) between the stable

states. Other examples of the approaches developed by Voter under the same umbrella

include the temperature accelerated dynamics (TAD) and the parallel replica dynamics,

except that the parallel replica method does not rely on TST [60].

The basic idea of hyperdynamics is to add a biased potential ∆V to the original

potential V . The biased potential should satisfy the following requirements:

1. It raises the potential wells without modifying the behavior around the transition

states. By raising the potential wells, it speeds up the process of escaping the wells.

2. Transition state theory still applies. In other words, it does not introduce additional

correlated events near the transition states.

Constructing such a biased potential is in general a rather non-trivial task. Some exam-

ples are discussed in [60].

The addition of the biased potential does change the time it takes for the system to

move between different stable states. To recover the the statistics for the original system,

we rescale time, using the formula obtained from TST [58, 59]. Denote by x(tn) the state

of the modified system at the n-th time step, and ∆t the MD time step for the modified

system. The time it takes for the original system to reach x(tn) is given by

tn =
n∑

1

∆t exp(∆V (x(tj))/kBT ) (10.3.1)

Clearly, (10.3.1) is only valid in a statistical sense.

10.3.2 Metadynamics

While the hyperdynamics works with the original variables and potential energy land-

scape of the system, other coarse-grained molecular dynamics methods have been de-

veloped for exploring the dynamics of some coarse-grained variables in the free energy

landscape, and acceleration methods have also been developed to speed up free energy

exploration. Here we will discuss some examples of this type.
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In Section 9.3, we showed that by simulating (9.3.19) at small γ and large µ, and

monitoring the evolution of x(t) one can indeed sample the free energy landscape in the

variables q(x). There is still one difficulty though: the dynamics described by (9.3.19)

still encounter barriers just as the original dynamics, and this reduces the efficiency of the

entire approach. To deal with this problem in metadynamics, Iannuzzi, Laio, and Par-

rinello suggested further modifying the dynamics to include in (9.3.19) (or rather (9.3.30)

in the original paper) an additional non-Markovian term which discourages the trajec-

tory from going back to regions that it has already visited. For instance, one may replace

(9.3.19) by 




γẋ = −∇V (x) + µ(X− q(x))∇q(x) +
√

2β−1γ ẇ,

Ẋ = −µ(X− q(x)) +
√

2β−1 Ẇ

+A

∫ t

0

(X(t)−X(t′))e−|X(t)−X(t′)|2/∆q2dt′

(10.3.2)

where A and ∆q are adjustable parameters. Proceeding as before, it is easy to see that

the limiting equation for X as γ → 0 and µ→∞ is

Ẋ = −∇XF + A

∫ t

0

(X(t)−X(t′))e−|X(t)−X(t′)|2/∆q2dt′ +
√

2β−1 Ẇ, (10.3.3)

The memory term added in (10.3.2) is a term that fills up the potential well that the

trajectory has already visited. In particular, if we let

U(X, t) = 1
2
A∆q2

∫ t

0

e−|X−X(t′)|2∆q2dt′, (10.3.4)

then, as t → ∞, U(X, t) − U(X′, t) converges to an estimate of F (X′) − F (X) when

γ−1 ≫ µ ≫ 1. The parameters A and ∆q control the accuracy for the resolution of the

free energy: as they are decreased, the resolution improves, but the convergence rate in

time deteriorates. Given some accuracy requirement, estimating the optimal choice of

the parameters γ, µ, A, and ∆q in a metadynamics calculation is a nontrivial question

which we will leave aside.

10.3.3 Temperature-accelerated molecular dynamics

Another interesting development is the temperature-accelerated molecular dynamics

(TAMD), see for example [1, 41]. Here for simplicity, we will focus on the case with
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overdamped dynamics. The extension to molecular dynamics is quite straightforward.

The main idea is a simple modification of (9.3.19) in Section 9.3:





γẋ = −∇V (x) + µ(X− q(x))∇q(x) +

√
2γβ−1 ẇ,

Ẋ = −µ(X− q(x)) +

√
2β̃−1 Ẇ

(10.3.5)

Here β̃ = 1/(kBT̃ ) and T̃ > T . As in Section 9.3, γ is small, so we are in the setting for

applying the averaging theorems for stochastic ODEs. In addition, µ is large, therefore

the effective dynamics for the coarse-grained variables is a gradient flow for the free

energy of the coarse-grained variables.

The advantage of using an elevated temperature for the coarse-grained variables is

that it accelerates the exploration of the free energy landscape for those variables. At the

same time, it does not affect sampling the constrained dynamics for the original system,

i.e. it does not affect the accuracy for the gradient of the free energy. See [1] for some

very interesting applications of TAMD.

TAMD should be contrasted to TAD, developed by Voter et al. [52]. The former

is a technique for accelerating the free energy calculation. The latter is a technique for

accelerating the dynamics (kinetics) of the original system based on TST.

10.4 Notes

Transition pathways of coarse-grained systems

The ideas discussed in this chapter can be comnbined with those discussed in Chapter

6. For example, one can combine HMM and the string method, this gives rise to the

string method in collective variables (see for example [40]). The macroscale solver is the

string method in a set of coarse-grained variables. The data needed in the string method

can be estimated using constrained microscale solver, which is usually some constrained

molecular dynamics. In particular, the seamless method discussed in Chapter 6 can be

applied in this context, resulting in an algorithm in which the string moves simultaneously

with the microscopic configurations at each point along the string.

However, it should be emphasized that the notion of slow variables and reaction

coordinates are not necessarily the same, as we discussed in Section 10.1.5.

Non-gradient systems
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We have mostly focused our discussion on gradient systems. Noise-induced transition

in non-gradient systems can behave quite differently. For one thing, besides critical

points, non-gradient systems can have other invariant sets such as limit cycles or even

strange attractors. More importantly, the boundaries between the basins of attraction

of different invariant sets can be very complex. The implication of these complications

to the mechanism of noise-induced transition in non-gradient systems has not been fully

investigated and we refer to [64] for a summary of the initial work done in this direction.

Quantum tunneling

Quantum tunneling is in many aspects very similar to the noise-induced transition

that we have discussed in this chapter. For example, one can formulate the transition

state theory in the quantum context. However, the mathematical issues associated with

quantum tunneling appear to be much more complex. We refer to [62] for a discussion

of some of these issues.

Application to kinetic Monte Carlo methods

The ideas discussed in this chapter can be used to design more accurate kinetic Monte

Carlo schemes. In standard kinetic Monte Carlo methods, the possible states and the

transition rates are pre-determined, often empirically. This can be avoided by finding

the states and transition rates “on-the-fly” from a more detailed model. See for example

[60].
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Chapter 11

Some Perspectives

Despite the explosive growth of activities on multiscale modeling in recent years, this

is still a largely open territory. Many important issues are not clearly understood. Let

us mention a few problems that are of general interest.

1. Better understanding of the renormalization group analysis. The renormalization

group method is one of the most popular analytical techniques in physics for han-

dling multiscale problems. However, at a more rigorous level, it is largely a mystery.

Since the renormalization group analysis carried out in the physics literature typi-

cally involves drastic truncations, it is very desirable to have a better understanding

of the nature of the error caused by these truncations.

2. Systematic analysis of the memory effects using the Mori-Zwanzig formalism. As

we discussed in Chapter 2, the Mori-Zwanzig formalism is a systematic way of

eliminating variables in a system. However, it often leads to very complicated

models with memory terms. Therefore it is natural to ask: How do we make

systematic approximations for the memory effects? We will discuss one example

below for the case when the interaction involving the eliminated variables is linear.

However, it would be very useful to develop more general strategies. In particular,

it would be of interest to use this kind of approximation techniques to assess the

accuracy of memory-dependent hydrodynamic models of polymeric fluids such as

the Maxwell models [3].

3. Numerical analysis for the effect of noise. It was possible to carry out the kind of

analysis of the quasi-continuum method presented in Chapter 7 because the effect of

481
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noise can be ignored. This is not the case for most multiscale problems. Indeed, as

we indicated in the notes in Chapter 7, one major question in formulating coupled

atomistic-continuum models is whether we should add noise terms to the continuum

models. Therefore, it is very important to develop a better framework for assessing

the numerical error in the presence of noise.

4. Systematic analysis of the error in QM-MM. From a numerical analysis viewpoint,

one major difficulty is associated with the fact that we do not have an obvious

small parameter (such as grid size, or ratio of time scales) with which we can speak

about the order of accuracy, or assess the accuracy asymptotically.

5. Adaptive algorithms. Adaptivity is crucial for the success of multi-scale algorithms.

In fact, multiscale, multi-physics modeling introduces another dimension for adap-

tivity: Besides traditional issues such as adaptively selecting the grid sizes and

algorithms, one also has the issue of adaptively selecting the models, the coarse-

grained variables, and the partition of the set of slow and fast components of the

dynamics.

Most of these problems are geared toward a better or more rigorous understanding

of things. This is natural since as we said in the beginning, one main motivation for

multiscale modeling is to put more rogor into modeling.

There are many other problems, of course. Instead of going through more problems,

we will provide some personal perspective on problems without scale separation.

We have seen throughout this book that scale separation is a key property that one

can use in order to derive reduced models or develop sublinear scaling algorithms. Unfor-

tunately many multiscale problems we encounter in practice do not have this property.

A most well-known example is fully developed turbulent flows [20].

The first thing one should ask for this kind of problems is whether there are other

special features that one can take advantage of. We have discussed the case when the

problem has (statistically) self-similar behavior. In this case, one can either use the

renormalization group method discussed in Section 2.6, or HMM as we illustrated in the

notes of Chapter 6. This allows us to obtain reduced models or develop sublinear scaling

algorithms.

Fully developed turbulent flows are expected to be approximately self-similar in a

statistical sense, but due to intermittency, one does not expect self-similarity to hold
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exactly. Characterizing the kind of more sophisticated scaling behavior in turbulent

flows is still among the most important grand challenges in classical physics [20].

This brings us to the inevitable question: What if the problem does not have any

special features that we can take advantage of? One answer to this question is simply

that there is not much one can do and one just has to solve the original microscale

problem by brute force. There are no alternatives even if one is only interested in the

macroscale behavior of the solution.

However, it is often more productive to formulate a different question: What is the

best appproximate solution one can get, given the maximum cost one can afford? The

answer to this question goes under the general umbrella of variational model reduction.

This is consistent with the philosophy of optimal prediction advocated by Chorin et al.

[4, 5] and can indeed be regarded as being a poorman’s version of optimal prediction.

We will discuss some general guidelines for this kind of problems. A theoretical

guideline is the Mori-Zwanzig formalism. As was explained in Section 2.7, this is a

universal tool for eliminating degrees of freedom for any kind of problems. However, the

complexity of the problem is not substantially reduced unless we make approximations.

Therefore in practice, the task is to find the best approximation within a specified class

of models.

11.0.1 Variational model reduction

There are two main ingredients in variational model reduction [12]:

1. The class of models in which the reduced model lies, including the choice of the

reduced (or coarse-grained) variables.

2. An objective function with which we can discuss optimality.

The class of models can be:

1. Some specific form of models, as in the case of HMM (see Section 6.8). For example,

if the microscale model is the Boltzmann equation, we may consider the class of

models that are nonlinear conservation laws for the 0th, 1st, 2nd and 3rd order

moments, with fluxes depending only on the local values of these moments.
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2. Models of limited complexity. For example, if the microscale model is given by

a large N × N matrix A, we may consider the class of rank-M matrices, where

M ≪ N .

The objective function is usually some measurement of the error for a class of solutions

to the original microscale model. Obviously the quality of the reduced model crucially

depends on these two factors.

After these ingredients are specified, we still have the practical problem of how to

obtain the reduced model. We will illustrate these practical issues using the example of

operator compression [10]: Given a large N × N symmetric positive definite matrix A,

and a number M which is much smaller than N , we would like to find the rank-M matrix

that best approximates A, in the sense that

I(B) = ‖A−1 −B∗‖2 (11.0.1)

is minimized. Here B is a N × N matrix whose rank is no more than M , B∗ is its

pseudo-inverse.

It is well known that if A has the diagonalized form:

A = OTΛO (11.0.2)

where O is an N ×N orthogonal matrix, Λ = diag(λ1, λ2, · · · , λN), and λ1 ≤ λ2 ≤ · · · ≤
λN , then the optimal approximation is given by

AM = OTΛMO (11.0.3)

where ΛM = diag(λ1, λ2, · · · , λM , 0, · · · , 0). AM can also be regarded as the projection of

A onto its eigen-subspace that corresponds to its M smallest eigenvalues. We will denote

this subspace by VM .

To find AM , the most obvious approach is to diagonalize A. This is a general solution.

However, its computational complexity scales as N3 or at least M2N [14, 8].

In many cases, A comes from the discretization of some differential operator which

is local, or it is the generator of some Markov chain whose dynamics is mostly local. In

this case, it might be possible to develop much more efficient algorithms, as was shown

in [10]. The key idea is to choose a localized basis for VM in order to represent AM . This

is possible in many situations of practical interest.
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Let us first look at a simple example, the one-dimensional Laplace operator with

periodic boundary condition with period 2π. Let M = 2n + 1, where n is an integer.

The eigen-subspace of interest is

VM = span
{
e−inx, e−i(n−1)x, · · · , einx

}
(11.0.4)

This expression also provides a basis for VM . Obviously, these basis functions are non-

local.

One can also choose other basis sets. For example, if we let

uj(x) =
n∑

k=−n
eik(x−xj), j = −n,−n+ 1, · · · , n (11.0.5)

where xj = 2jπ/(2n + 1), then {uj} forms a basis of VM . This is called the Dirichlet

basis since they correspond to the Dirichlet kernel in Fourier series. One feature of this

basis set is that the basis functions decay away from their centers. Therefore we should

be able to obtain a set of approximate basis functions by truncating the functions {uj}
away from the centers.

However, the Dirichlet kernel does not decay very fast – it has a slowly decaying

oscillatory tail. To understand this, we can view the Dirichlet kernel as the projection

of δ-function, which is the most localized function, to the subspace VM : Let δ(x) =
∑∞

k=−∞ eikx, its projection to VM is

δn(x) = Dn(x) =
n∑

k=−n
eikx =

sin(n+ 1
2
)x

sin x
2

, −π ≤ x ≤ π

which is the Dirichlet kernel. The slow decay of the oscillatory tail of Dn is a result of

the Gibbs phenomenon caused by the lack of smoothness of δ(x). An obvious idea for

obtaining basis functions with better decay properties is to use filtering [15]. We define

δσn(x) =
n∑

k=−n
σ
(k
n

)
eikx, (11.0.6)

where σ(·) is a filter. It is well-known that the decay properties of δσn depends on the

smoothness of the filter σ. The smoother the filter, the faster the decay of δσn. See [15]

or [10] for the precise formulation of these statements.
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This discussion only applies to the particular example we just discussed. In the

general case, one obvious way of getting basis functions with fast decay properties is to

solve the optimization problem:

min
ψ∈VM , ψ 6=0

B[ψ] =

∫
w(x)|ψ(x)|2dx∫
|ψ(x)|2dx , (11.0.7)

where w(·) is an even, nonnegative weight function. By centering w at various locations,

one obtains a set of basis functions that decay away from the centers. The rate of decay

depends on the choice of w. Such ideas have been explored in [19] for electronic structure

analysis where w(x) = x2 is used. Other examples of weight functions include:

1. w(x) = x2p where p is an integer [10].

2. w(x) = 1− ξ[−1,1](x) where ξ[−1,1] is the indicator function of the set [−1, 1] [13].

It is natural to ask how w determines the decay property of the basis functions selected

this way. This question was addressed in [10] for the example discussed above. It is shown

that the decay rate of the basis function is determined by how fast w(x) approaches 0 as

x→ 0.

Lemma. Assume that w is smooth in (−π, π). If w(2l)(0) is the first nonzero term in

{w(2m)(0) | m ∈ N}, then

|ψ(x)| ≤ Cn

|nx|l+1
, x ∈ (−π, π), x 6= 0, (11.0.8)

where C is a constant independent of n and x.

This lemma suggests that if we take w(x) = x2p, then the larger the value of p, the

faster the basis functions decay. However, choosing large values of p is bad for numerical

stability and accuracy, since the condition number of the problem (11.0.7) increases very

fast as a function of p [10]. Therefore, the best weight function has to be a compromise

between the decay rate and numerical stability. Numerical results suggest that the weight

functions x6 and x8 are good choices.

Qualitatively similar results are expected to hold for more general cases, such as the

case when VM is a high dimensional eigen-subspace of some elliptic differential operator.

But this has not been investigated.

The standard numerical technique for finding eigen-subspaces is the subspace itera-

tion method [14, 21]. This is a generalization of the power method for computing leading



487

0.5 1 1.5 2 2.5 3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

lo
ca

liz
ed

 b
as

is
 ψ

(x
)

 

 

weight x2

weight x4

weight x6

Dirichlet kernel

Figure 11.1: The localized bases produced by the weight functions x2 (red dashed curve),

x4 (blue dotted curve) and x6 (black solid curve) and the Dirichlet kernel with n = 16

(black dot-dashed curve). Here the best localization is obtained with the weight function

x6.



488 CHAPTER 11. SOME PERSPECTIVES

eigenvalues and eigenvectors of a matrix. Subspace iteration consists of two main steps:

Multiplication of a set of approximate basis vectors by the matrix A, followed by orthog-

onalization [14, 21]. The cost of this algorithm is at least O(NM2). [10] proposed a

localized version of the subspace iteration algorithm, the localized subspace iteration or

LSI, in which the orthogonalization step is replaced by a localization step. The resulting

algorithm has a complexity of O(N).

Consider for example the operator

A = −∇ · (aε(x)∇) (11.0.9)

When aε has the form aε(x) = a(x/ε), one can apply the homogenization theory to

reduce the complexity of this operator. In the most general case, one can ask: Given

an integer M , what is the M ×M matrix that best approximates this operator? LSI

can be used to find this matrix and the associated eigen-subspaces of A. See [10] for

details. In the case when aε has scale separation, the generalized finite element method,

residual-free bubble element and MsFEM can all be regarded as other ways of finding

approximately this optimal subspace (see Chapter 8).

Another example, the optimal reduction of Markov chains, has been discussed in [11].

In many cases, this kind of poorman’s optimal prediction procedure can produce

very poor results. For example, CGMD discussed in section 9.3 can be regarded as a

variational model reduction technique applied to molecular dynamics. As indicated there,

the results of CGMD can be qualitatively incorrect, since it neglects entirely the memory

effect.

11.0.2 Modeling memory effects

From a theoretical viewpoint, one can always eliminate degrees and obtain a “reduced

system” using the Mori-Zwanzig procedure, as was explained in Section 2.7. Here we put

“reduced system” in quotation marks since the complexity of the models obtained from

the Mori-Zwanzig procedure is not necessarily reduced: It contains the same amount of

information as the orginal model, except that the initial data for the eliminated degrees

of freedom is replaced by a random process. The complexity coming from the extra

degrees of freedom in the original model is replaced by the complexity from the memory

kernels in the Mori-Zwanzig formalism. Therefore unless we make approximations for

the memory kernels, these “reduced models” may just be as complicated as the models



489

we begin with. This does not mean that the Mori-Zwanzig formalism is useless. In fact,

it provides a natural starting point for making approximations to the memory kernels.

From the viewpoint of the Mori-Zwanzig formalism, when the time scales for the

eliminated degrees of freedom are much shorter than the time scales for the variables

retained, the memory terms are very small and can be neglected. We have already seen

many examples of this kind.

In the other extreme when the memory kernels are long-ranged and slowly varying,

one can make a different kind of approximation, as was done in [6, 16] to obtain the

t-model.

In between these two extreme cases we find the most difficult situation. Consider the

simplest example of this kind – a one-dimensional chain of atoms with nearest neighbor

interaction [1]

mẍj = φ′(xj+1 − xj)− φ′(xj − xj−1), −∞ < j <∞ (11.0.10)

say with the Lennard-Jones potential:

φ(r) = 4ε
(
(σ/r)12 − (σ/r)6

)
(11.0.11)

The lattice parameter for this system is a0 = 6
√

2 σ, and the displacement is defined as

uj = xj − ja0. The phonon dispersion relation for this system is given by:

ω(k)2 =
κ2

m

(
2− 2 cos(ka0)

)
, k ∈

[
− π

a0

,
π

a0

]
(11.0.12)

where κ2 = φ′′(a0).

We split the chain of atoms into two groups, one group consists of atoms whose

dynamics is what we are interested in and another consists of atoms that play the role of

heat bath. We define the heat bath as the set of atoms with j 6 0. After adopting the

harmonic approximation for the heat bath atoms, we obtain the following Hamiltonian

for the whole system:

H =
∑

j60

κ2

2

(
uj+1 − uj

)2
+
∑

j>0

φ(xj+1 − xj) +
∑

j

1

2
mv2

j .

Here vj is the velocity for the j-th atom. If we apply the Mori-Zwanzig formalism to

eliminate the heat bath atoms, we obtain the generalized Langevin equation (GLE) for
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the retained atoms (see [1]):

mü1 = φ′(x2 − x1)−
∫ t

0

θ(t− s)u̇1(s)ds+ F (t),

müj = φ′(xj+1 − xj)− φ′(xj − xj−1), j > 1 (11.0.13)

where

θ(t) =

√
m κ

t
J1

(
2κt√
m

)
, (11.0.14)

F (t) =
∑

j60

cj(t)
(
uj+1(0)− uj(0)

)
+ sj(t)vj(0).

Here J1 is a Bessel function of the first kind. The coefficients cj(t) and sj(t) are governed

by

ṡj = cj−1 − cj,
mċj = κ2(sj − sj+1),

s0(t) = 0, sj(0) = 0, c−1(0) = −κ2, cj(0) = 0, j ≤ −2

The term F (·) is often treated as a noise term. More examples of this kind of analysis

can be found in [17].

The GLE is still quite complicated due to the presence of the long range kernels. For

high dimensional models, these long range kernels also have a spatial component that

couple all the boundary atoms together. Modeling such memory-dependent dynamics is

still a highly demanding task. Therefore it is desirable to make approximations [9]. A

systematic approach for making such approximations has been proposed in [18], based

on the following principles:

1. Efficiency: The kernels should be as local as possible.

2. Accuracy: Given the size of the time interval and the set of neighboring atoms that

the kernels depend on, we are interested in finding the most accurate approximation

to the original dynamics.

3. Stability: The approximate GLEs should be stable. This will constrain the approx-

imate kernels to be positive definite.

4. The noise term should be approximated accordingly. For example, when applicable,

the fluctuation-dissipation theorem should be preserved.
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One interesting observation made in [18] is that one can “use space to buy time”,

i.e. by increasing the set of neighboring atoms that the memory kernels depend on, one

can increase the rate of decay of the memory kernels. For this reason, it is of interest to

increase the spatial dependence of the memory kernels since this is often more convenient

than dealing with long range memory terms. More details can be found in [9] and [18].

The work in [9, 18] is an interesting start, but it is limited to the situation when

the interaction involving the eliminated degrees of freedom is approximately linear. The

problem is basically open for the more general cases.
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Figure 11.2: The homogenization problem: The localized bases produced by the weight

functions x2 (blue solid curve), x6 (black solid curve), 1− χ[−1,1] (red dashed curve) and

1−χ[−2,2] (magenta dot-dashed curve). The bottom inset shows the tail region; while the

top inset shows the oscillatory behavior of the basis functions in more detail. Courtesy

of Jianfeng Lu.



493

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

12 12.5 13
−0.1

0

0.1

0.2

0.3

Figure 11.3: The homogenization problem: The localized bases produced by the weight

functions x6 (black solid curve) and 1−χ[−2,2] (magenta dot-dashed curve) compared with

the basis function of the generalized finite element method (or MsFEM) with support

size 2 (red dashed curve) and 4 (blue solid curve). The inset shows the detail of these

basis functions two coarse grids away from the center. Courtesy of Jianfeng Lu.
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Figure 11.4: An illustration of the eliminated and retained degrees of freedom. The

degrees of freedom associated with the filled circles are kept. Others are eliminated.
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Figure 11.5: A typical memory kernel (solid line) and local approximations (dashed lines).
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