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Abstract

We characterize the tails of the probability distribution functions
for the solution of Burgers’ equation with Gaussian initial data and
its derivatives akgf,; ) ,k = 0,1,2.... The tails are “stretched expo-
nentials” of the form P(f) o< exp (—(Re)"Pt960"), where Re is the
Reynolds number. The exponents p , ¢ and r depend on the initial
spectrum as well as on the order of differentiation, k. These exact
results are compared with those obtained using the mapping closure

technique.

1. Introduction

Burgers’ equation with a random initial data or a with a random stir-
ring force is often used to test various proposals of Turbulence Theory, such
as Kraichnan’s Direct Interaction Approximation [12], the Renormalization
Group [5] and the Mapping Closure [6], [7], [8]. Although the physics of
“Burgers Turbulence” and of fluid turbulence are rather different, compress-
ible turbulence is somewhat analogous to Burgers’ equation at small scales,
since both systems exhibit shock-wave precursors which dissipate energy.
Burgers’ equation with random initial data can be viewed as an extremely
simplified model for acoustic turbulence [11], [9].

In this paper, we study the one-point velocity statistics of solutions to
the Burgers’ equation with random initial data. Specifically, we characterize



the tails of the probability distribution functions (PDFs) for the velocity and
its higher-order derivatives. The systematic study of PDFs in turbulence
was initiated by Kraichnan [6] and Pope [7] to quantify the deviation from
Gaussianity arisng from nonlinear momentum transport. Their work and
various nunerical results [4] show a noticeable difference between the PDF
tails of the velocity and those of the velocity gradient, attributed to the
intermittency of the underlying vorticity field.

In the special case of Burgers’ equation, the PDFs of the velocity and its
gradient were studied using the mapping closure and numerical simulations
by [6] and [8]. Their results indicate that the PDF for the velocity derivative
has approximately exponential tails, at least for small Reynolds numbers (Re
~ 10).

We analyze here the PDF's of the velocity and its higher-order derivatives
from first principles, using its explicit quadrature via the Hopf-Cole transfor-
mation [3] We show that the PDF's of % have tails that can be fitted
to “stretched exponentials” of the form P(f) o exp (—(Re) Pt?6"), with
fractional values of p, ¢ and r depending on the initial velocity spectrum and
on the order of differentiation. We also give an estimate on the “range of va-
lidity” of these stretched exponential tails in terms of the Reynolds number.
Since these results are exact, they can be compared with other predictions on
the PDF tails. The first conclusion that emerges is that the shape of PDF
tails is highly non-universal: it depends sensitively on the initial velocity
spectrum. The second is that the Burgers velocity field will typically have
shorter-than-Gaussian tails due to strong energy dissipation through shocks.
The PDF tails of derivatives are generally fatter, and more so as the order of
differentiation increases. However, the tails for the PDF's of velocity deriva-
tives are shorter than those predicted by Gotoh and Kraichnan using the
mapping closure. A possible explanation for this is the a priori assumption
of Gaussian velocity statistics made in the mapping closure theory. Although
this assumption appears justifiable for incompressible turbulence, the Burg-
ers picture suggests that compressible turbulence has shorter tails due to the
stronger energy dissipation through shocks.

We consider solutions of the non-dimensional viscous Burgers equations

ov(z, t) ov(z, t) _ L@Qy(x, t)

ot + vl 1) ox Re 0«2 (1)



with
v(z, 0) = wo(z) (2)

being a a random stationary Gaussian field with mean zero and self-similar
spectrum
E(q) = Eolg/al®, —1 < e < +1, (3)

or with the “ultraviolet-regularized” spectrum
E(g) = Eolg/qol e, -1 <€ < 0. (4)

The range of € in (3) corresponds to self-similar velocity potentials ¢o(z) =
Jo vo(z') dz’ satisfying the coarseness condition

< (¢o(z) — do(y))? > x (z — 3/)2H> (5)

with Hurst exponent H = (1 — ¢) /2 in therange 0 < H < 1. The
spectra in (4) correspond to regularized velocities with potentials satisfying
(5) for [z —y| > 1,if =1 < e < +1, or with stationary potentials with

< (¢o(x))?* > = constant (6)

when € > 1. The critical value ¢ = 1 corresponds to logarithmic growth
of the potential mean-square differences *.

Our results on the PDF tails are as follows: if =1 < € < +1 (0 <
H < 1) with initial spectra (3) or (4), then

Prob.{ |0F v(x, t)] > 0} ~ exp[—C(Re) P 116" ], (7)
for § > Max[(Re)™t, (Re)k], with

_ (3 + €k

— 1
RS . q + €, (8)

and

r= T (9)

For e > 1 and spectra (4), the PDFs have “stretched exponential” tails of

IThe class of initial velocities with spectra (3) and (4) span the full range of stationary
Gaussian functions with power-type infrared scaling.



the form (7) with

4k
= = 2 10
b k+r1o 0! ’ (10)
and 4
= — . 11
k+1 (11)
In the marginal case ¢ = 1, we obtain a logarithmic correction to (7):

—C (Re)™ 14 ¢r

k ~
PI’Ob.{ |8x U(.%’, t)‘ > (9} ~ eXp[ ln[Ql/(k“) (Re)_k/(k+1)t] ] ) (12)

where p, ¢ and r are given in (10) and (11). 2

For all spectra considered here, the extreme tails for the velocity PDF
are shorter than Gaussian. Notice that Gaussian tails are obtained formally
in the limit ¢ — —1, which is the threshold where the initial velocity ceases
to be statistically homogeneous. The exponent for the velocity derivative,
obtained by setting £k = 1 in (9) and (11), is r = Max[ (34 €)/2, 2 ].
Exponential tails (with exponent 1) are not achieved for stationary processes;
they correspond again to the limit ¢ — —1. Gaussian-type tails for the
derivative (r = 2) are obtained when the velocity potential is stationary
(e > 1; H = 0).

In the case of delta-correlated or short-range correlated initial velocities
(e = 0 or H = 1/2), we obtain from (7)

Prob. { 0% v(z, t)] > 0} ~ exp| —C (Re)3F/*+D) ¢ g3/(k+1) ] = (13)

for 0 > Max[(Re)™!, (Re)¥]. Thus, for white-noise initial data, the
velocity tails are the stretched exponentials exp [—~C't %] and the velocity
derivative tails are given by exp [ —C (Re)™'*t0°].

2. Hopf-Cole analysis

2The asymptotic relations (7) and (12) are logarithmically accurate, in the sense that
algebraic prefactors depending on Re , t and 6 are not included. Also, C represents a
constant depending on Fjy, gy and sometimes ¢;, which we do not calculate explicitly.



The shapes of the PDF tails can be derived from simple considerations
involving the Hopf-Cole formula [3]

T 19w ] gy
v(z t) = xft — == : (14)
T (55 )] g

If Re > 1, it is well-known that the Hopf-Cole formula can be analyzed by
the method of steepest descent. The potential

(x —y)?

O(z, y,t) = 5

+ ¢o(y) (15)
controls the shape of v(z ,t) . For each x, the main contribution to the
right-hand side of (14) comes from the points y at which ®(x, y ,t) achieves
its overall minimum value. Steep ramps, corresponding to shock precursors,
are formed at spatial locations x where this minimum is achieved at two or
more points. Large gradients develop only in the immediate neighborhood
of shock precursors. The strength of the shock is given by dy /¢, where dy is
the distance separating the two minimizers of (15). Moreover, the width of
the transition layer around such a shock is proportional to
t

w = Redy (16)

Returning to the case of finite Reynolds numbers, we observe that a similar
steepest descent argument can be made in a vicinity of a steep ramp provided
that the shock strength dy/t much larger than (Re)™'. This is done by
rewriting Burgers’ equation in scaled variables so that the velocity is of order
one in the vicinity of such a steep ramp. The resulting Hopf-Cole formula
exhibits then a large “effective” Reynolds number of order Redy. If we
assume without loss of generality that x = 0 , we obtain the asymptotic
expression

Re 6y x
41

) (17)

)
vz, t) ~ % + % - 2—gitanh(

valid for 6y > (Re)™'t and for |z| <
interval determined by the minima.

—Ret 3y’ where ( is the center of the



This formula shows that the solution of Burgers equation satisfes, to
leading order, the scaling laws

OFv(x, t) oy
o A (T Y (Re)® |, k=0,1,2, ..., ete. (18)
Recalling that (17) holds whenever dy/t > (Re)™!, we conclude the range
of values of the velocity and its derivatives for which the statistics will be
determined by such “shock precursors” is

| oFv(z, t)
oz

The analysis of the tails of the distributions of the velocity and its deriva-
tives in the range (19) reduces to estimating the tails of the distribution of
dy. This problem was studied rigorously by the last two authors in [2] and [1]
(1994), for the case of white-noise initial data (¢ = 0). In his forthcoming
thesis, Ryan [10] obtained rigorous estimates for the tails of the PDF of Jy
over the entire range of €, as well as a mathematical proof for the scaling
argument presented here. The next paragraph contains the essence of this
argument.

| > (Re)™ (19)

3. Method of steepest descent
and the PDF of oy

We claim that, in general, the PDF of dy satisfies the scaling relations

exp[ —C L3/t ] if-1 < e <1
Prob{dy > L} =~ (20)
exp[ —C L*/t? ] ife > 1

for t fixed and L > t. It is easy to check that the characterization of
the PDF's for the velocity and its derivatives, (7), follows from these asymp-
totic formulas and the scaling relations, (18), derived in the previous section.
However, it is important to notice that the asymptotics for dy presented here
apply only for oy > ¢, which translates, using (18), into

OFv(x,t)

\W| > (Re)* . (21)



Together with (19), this condition gives the range of validity of the stretched
exponentials in (7), § > Max[(Re)™", (Re)*].
Let us make explicit the scaling relations in (20). The probability that

given realization of the velocity potential ¢y = ¢ occurs is proportional to
[~ S0)]. 56) = 5 [ 9P g d (22)
exp| — , = 5 OI° == dg .
2 E(q)

Here, S(¢) is the classical action associated with the the Gaussian field with

energy spectrum FE(q) given in (3) or (4) and ¢(g) denotes the Fourier trans-
form of the derivative of the path ¢ .3

The probability that 0y > L for L > 1 can be estimated by the method
of steepest descent, i.e. by finding the minimum action among the set of all
paths satisfying this condition. For this purpose, observe that if oy > L,
and if (without loss of generality) the interval between the two minimizers
contains the Lagrangian point y = 0, then the potential

2

(0, y, 1) = % + ¢o(y) (23)

must be negative for some |y| > L/2, whence

do(y) = —y?/2t for some |y| > L/2. (24)
A straightforward calculation shows that the minimum action over the set of
all paths paths satisfying ¢ = 0 and ¢(y) = —y?/2t is
4
1
g . = L . (25)

8¢t2 f sin q(gy/2) E(q) dq

Notice that the denominator in this last expression depends on y and behaves
differently according to whether ¢ < 1 or e > 1. Specifically, for y > 1,

y3+e 1

Smin 8t2 . sin’(¢/2)
| =3"= Eola/ql|dq

(26)

3Recall that ¢ is the integral of vy. Hence the derivative of ¢ appears in the integral
in (22).



if -1 < e < 1, whereas

y* 1

sz'n ~o
42 [ & By la/qolc e 1o/ dg

(27)

if e > 1. Optimizing over y > L/2, we deduce the asymptotic upper bounds

exp[ —C L3/t ] if -1 < e <1
Prob{dy > L} < (28)
exp[ —C' L*/t? ] ife > 1.

for L > 1.

Lower bounds are obtained by estimating the probability of a particular
realization ¢9 = ¢ such that the potential W(0 ,y, ¢) has two minima
separated by a distance of at least L. For instance, if —1 < € < 1, we take

0 ify < L2

do(y) ~ oly) = { —2(—L/2) ifL/2 <y <L (29)
—L2/2 ify > L.

Adding the term y?/2t to this function, we obtain a double-well potential
V(0 ,y, t) with minima at y = 0 and y = L. The action of the path ¢(y) in
(29) is easily computed since
. L
oy) = — 4 (H(y) — H(y—L/2), (30)
where H is the Heaviside function. Taking the Fourier transform, we obtain

— L1 — %
P(q) = _?Te' (31)

In the case of pure power-law spectra (3) we substitute (31) into (22) and
obtain

L

L? sin?( =) I3+e sin?(2)
— —€ d = / 2 € d . 2
S(¢) CToNE / " lq|~“ dg CYoNE 2 lg|~¢dq . (32)




Thus, the likelihood that ® has two minima separated by a distance L > tis
at least of order exp [ —C L37¢/t? ] | completing the proof of the asymptotic
relation (20) for this case. If the spectrum has a high-wavenumber , we should
mollify the function in (29) since otherwise the action diverges. This can be
done by convolving ¢(y) with a Gaussian pulse (27 A)~'/2 exp [~y?/2A] with
variance A larger than 2/¢?. The Fourier transform of this smoother function
is then »
_ Ll agp
oa) = — s :
It is clear that the use of the mollified version of (29) will not affect the
double-well structure of ® for L > 1. Furthermore, it is easy to verify that
the asymptotic behavior of the action for L > t is given by (32) to leading
order. This completes the proof of (20) for —1 < e < 1.

For e > 1, a different “trial path” is required due to the non-integrability
of 1/E(q) for small momenta. For 1 < e < 3, we consider realizations such
that

(33)

0 ify < L—-1
Ly-L+1) fL-1<y<L

By—-L-1) L <y<L+1

0 ify > L4+1.

Notice that the associated potential & has minima at y = 0 and y = L,
with a deep well at the latter point. However, due to the presence of the
ultraviolet energy cutoff, the piecewise linear function in (34) has infinite
action. This is remedied as before by convolving the piecewise linear function
with the Gaussian pulse with variance A > 2/q;, at the expense of a
minor modification of ®. An explicit calculation then shows that the Fourier
transform of the mollified function is

— L2 ) (1 . eiq)Q )
- _ i(L—1)q -Ag* /2 35

which vanishes at ¢ = 0 together with its first derivative. The action corre-



sponding to this path is

L4 31114(%) 2\ 2
—e o= (A=2/a1)a" g, 36
QEOtQ/ lq|* q (36)

Notice that the integral converges at low momenta for 1 < e < 3. This
shows that for € between 1 and 3, the probability of interest is at least
exp [~CL*/t?] for L >> Y2 and completes the proof of (20) for this range
of e.

The treatment of higher values of € is analogous. Realizations with Fourier
transform vanishing to any order at ¢ = 0, and which correspond to a a
double-well potential & with minima separated by a distance L, can be con-
structed as piecewise linear functions of the form

N
Z a] y - ﬂ] ) (37)

J=1

where X = 0if X < 0Oand XT = X if X > 0. The function in (34) has
this form with N =3, ay = —L?/2t, ap = L*/t a3 = —L?/2t 3 =
L—1,0 = Land 35 = L+ 1. In general, the function in (37) should
have coefficients

N! L?

o= ()t
o= 0 SN T ™

B =L—-247j, (38)
for1 < j < N with N large enough. This concludes the proof of the scaling
relations in (20) for all ¢ # 1. The critical case € = 1, which corresponds
to logarithmic corrections (12), is left to the interested reader.

4. Discussion

The method used to characterize the PDF' tails hinged on two observa-
tions: first, for finite Reynolds numbers the extreme values of the velocity
and its gradients can be obtained from the steep ramps corresponding to
shock precursors. Mathematically, this follows from a steepest descent ar-
gument applied to the Hopf-Cole formula. The second observation is that
the statistics for the occurrence of extreme events for Gaussian processes can

10



be calculated by minimizing the appropriate action, 7.e. by the method of
steepest descent in function space.

To conclude, it is interesting to discuss the overall shape of the PDF's and
the range of validity of these “stretched exponential” tails. This can be done
by considering first the cases of very small or very large Reynolds numbers.
If the Reynolds number is very small, we have Re* > (Re)™! and hence the
tails of the distributions of v , % etc, will be stretched exponentials for values
of 6 such that > (Re)™!. In the intermediate range, 1 < 6 < (Re)™!,
we expect Gaussian-like profiles since viscous damping is the dominant effect.

On the other hand, in the case of large Reynolds numbers, we have
(Re)™ < (Re)*. Thus, the stretched exponentials will be observable
only for 6 > (Re)*. The “intermediate range”, (Re)™' < 6 < (Re)",
makes sense for the PDF of the derivatives of v (when (k # 0). This range
is interesting because even though condition (19) is satisfied, and thus shock
precursors dominate viscous damping, # is not sufficiently large to guarantee
that the stretched exponential law for dy in (20) holds. For such values of 6,
we do not expect the PDFs to correspond either to a stretched exponential
or a Gaussian. It seems plausible that that in that range the PDFs could be
fitted to a power-law, associated with the probability of occurrence of small
shocks in the inviscid Burgers equation. Such analysis, however, is beyond
the scope of this paper. This analysis shows that the stretched exponential
tails for the valocity should be numerically observable over a wide range of fs
if the Reynolds number is not too small. On the other hand, stretched expo-
nential tails for the PDF of the derivatives should be observable numerically
only if the Reynolds number is neither large nor small.

We note finally that the method of this paper can also be applied to study
the PDF tails for 2D and 3D Burgers equations with random, irrotational
initial data.
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