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Abstract

This paper reviews the recent progress on stochastic PDEs arising from different as-
pects of the turbulence theory including the stochastic Navier-Stokes equation, stochas-
tic Burgers equation and stochastic passive scalar and passive vector equations. Issues
discussed include the existence of invariant measures, scaling of the structure functions,
asymptotic behavior of the probability density functions, dissipative anomaly, etc.

1 Introduction

The problem of hydrodynamic turbulence is a well-known notoriously difficult problem,
often viewed as the last unsolved problem in classical physics [2, 11, 27, 41]. The present
paper does not contain a solution to that problem. Worse than that, in spite of many
years of hard work with contributions from some of the best-known names in physics and
mathematics of this century, the Mountain Everest [3] stands as high as it was almost
sixty years ago at the time of Kolmogorov. The repeated experimental and numerical
confirmation of Kolmogorov’s predictions as well as Landau’s objections adds all the more
mystery to this old and resilient subject. In the meantime, Kolmogorov’s notion of cascade
has permeated through several different branches of science.

One thing people realized from this experience is that we should not view turbulence as
an isolated problem. Rather it is an example of a wide variety of non-equilibrium processes
exhibiting cascades, i.e. a non-trivial flux of energy across scales. Secondly it is important
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to build intermediate steps on simpler problems so that different aspects of the problem can
be understood separately. It is this philosophy that motivated the recent flourish of activity
on stochastic Burgers equation and stochastic passive scalar equation. It is also with this
philosophy that the present paper is written. The problems to be discussed are:

1. Stochastic Navier-Stokes equation

∂u

∂t
+ (u · ∇)u+ ∇p = ν∆u+ f ,

∇ · u = 0.
(1)

2. Stochastic Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ f.(2)

3. Stochastic passive scalar and passive vector equations

∂T

∂t
+ (u · ∇)T = κ∆T + f,(3)

∂B

∂t
+ (u · ∇)B − (B · ∇)u = κ∆B + f(4)

In (2) (3) f(x, t) is taken to be a zero-mean, Gaussian, statistically homogeneous, and
white-in-time random process with covariance

〈f(x, t)f(y, s)〉 = 2B(x− y)δ(t− s)(5)

where B is smooth function. f(x, t) is similarly defined. We will associate a scale L over
which B decays. L will be the integral scale in the problem. Another important scale is
the dissipation scale denoted by �d which is defined in terms of ν or κ. u in (3) and (4) is
a random velocity field whose statistics will be specified later in Section 4.

It should be emphasized that we are mostly interested in systems involving a dissipation
mechanism. Therefore energy has to be supplied (here through the forcing) to maintain
a statistical steady state. This excludes equilibrium states that can be constructed for
Hamiltonian systems such as the nonlinear Schrödinger [8] and the incompressible Euler
equations [13].

The second emphasis in this paper is on a new look at the issues in stochastic PDEs. A
large amount of work has been done in this subject. Much of it takes the point of view that
a stochastic PDE is a stochastic ODE in Banach space [16, 17]. A lot has been learned from
this viewpoint. However, the presence of infinitely many degrees of spatial freedom gives
rise to many important new phenomena that are unique to stochastic PDEs. Examples
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include space-time scaling, universality in local spatial structures, etc. Such characteristics
are of special interest in this paper. More precisely, on the physical side, we are interested
in the following issues:

(P1). Existence of an inertial range across which energy or some other quantity flows
but is not dissipated. If the flux is going toward the small scales, it is called a direct cascade.
If the flux is going toward the large scales, it is called an inverse cascade.

(P2). Effective behavior as well as fluctuations at large spatial and temporal scales. For
example a often asked question for the passive scalar convection is whether the process is
diffusive or super-diffusive at large scales.

(P3). Small scale characteristics. A standard way of measuring the small scale charac-
teristics in a field w is to consider the structure function:

Sp(r) = 〈|w(x+ r, t) −w(x, t)|p〉,(6)

where 〈·〉 denotes ensemble (statistical) average, r = |r|. The field w is going to be u in
(1), u in (2), T in (3) and B in (4). For small r, we typically have

Sp(r) ≈ Cpr
αp .(7)

αp measures the spatial regularity of the field w. For example, if the field w is smooth, we
have αp = p. For Wiener process, we have αp = 1

2p. These are examples of locally self-
similar processes for which αp is a linear function of p. In the case when αp is a nonlinear
function of p, we say that the field exhibits “anomalous scaling,” or “multi-fractal” behavior.
In such a case, w has a spectrum of singular behavior, or Hólder exponents.

(P4). A sometimes related but usually more refined question is the asymptotic behavior
of PDFs (probability density functions) of certain quantities such as u or ∂u/∂x in the
stochastic Burgers equation, or T and δT (r,x, t) = T (x + r, t) − T (x, t) in the stochastic
passive scalar problem.

On the mathematical side, we are interested in the following questions:
(M1). Existence, uniqueness of statistical steady state or the invariant measure, say µν

or µκ, and their convergence as ν → 0 or κ → 0. If µν or µκ does converge, say to µ0,
then the central object of interest in connection with the questions in (P1-P4) is µ0. These
invariant measures also define the ensemble averages used in (6).

(M2). Characterization of the regularity and singularity behavior of the sample paths
supported on the measure µ0. In particular, the scaling exponents αp defined in (7) are
consequences of the singular structures in the solutions.

In many cases the existence of an invariant measure is guaranteed by the well-known
Krylov-Bogoliubov Theorem which states that a dynamical system on a compact state space
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always admits an invariant measure. This applies also to PDEs whose solution operator
is compact. This is the case for many parabolic equations [17]. The disadvantage of this
approach is that it fails to reveal any insight on the behavior of the solutions supported on
the invariant measure and mechanisms for uniqueness or non-uniqueness of the invariant
measure.

To put the issue about an invariant measure in a different perspective, let us consider
the stochastic ODE

dx = b(x) dt + σ(x) dW,(8)

where W is the Wiener process, b and σ are smooth functions. Its invariant measure, if
exists, is a measure on R1 with density ρ(·) satisfying

1
2
∂2

∂x2

(
σ2(x)ρ

)
− ∂

∂x
(b(x)ρ) = 0,(9)

Take the example of the Ornstein-Ulenbeck process for which b(x) = −x, σ(x) = 1, we have
from (9)

ρ(x) =
e−x2/2

√
2π

.(10)

We see that finding the invariant measure for stochastic ODEs is equivalent to solving an
elliptic equation on Rn where n is the dimension of the state space for the stochastic ODE.
There is also a formal analogy of this elliptic equation for stochastic PDEs. It is loosely
referred to as the Hopf’s equation which is an equation satified by the functional PDF of
the random field described by the stochastic PDE. It is an (degenerate) elliptic equation in
function spaces. For (1)-(3), the Hopf’s equations are respectively:

∂

∂t
Z[u(·, t)] = −

∫
Rd

δ

δuα
((−uβ∇βuα + ν∆uα)Z[u(·, t)])ddx

+
∫
Rd×Rd

Bαβ(x− x′)
δ2

δuαδu′β
Z[u(·, t)]ddxddx′,

(11)

where uα = uα(x, t), u′α = uα(x′, t), α, β = 1, . . . , d, Z[u(·, t)] is the functional PDF of
u(·, t),

∂

∂t
Z[u(·, t)] = −

∫
R1

δ

δu
((−u∂u

∂x
+ ν

∂2u

∂x2
)Z[u(·, t)])dx

+
∫
R×R

B(x− x′)
δ2

δuδu′
Z[u(·, t)]dxdx′

(12)
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where u = u(x, t), u′ = u(x′, t), Z[u(·, t)] is the functional PDF of u(·, t),
∂

∂t
Z[T (·, t)] = −

∫
Rd

δ

δT
(κ∆T + Cαβ(0)∇α∇βT )Z[T (·, t)])ddx

+
∫
Rd×Rd

δ2

δTδT ′ ((Cαβ(x− x′)∇αT∇βT
′)Z[T (·, t)])ddxddx′

+
∫
Rd×Rd

Bαβ(x− x′)
δ2

δTδT ′Z[T (·, t)]ddxddx′

(13)

where T = T (x, t), T ′ = T (x′, t), Z[T (·, t)] is the functional PDF of T (·, t). Clearly the
amount of noise added to the system controls the strength of ellipticity in Hopf’s equations.

Before ending this introduction, we should emphasize the fact that (2-4) are of interest
to a wide variety of physical problems other than hydrodynamic turbulence. For instance,
(3) is often used to model flow in porous media, diffusion of tracer particles and pollutants,
etc [38]. (4) is also referred to as the kinematic dynamo problem [51]. (2) is one of the
canonical examples in non-equilibrium statistical physics. As such, it describes the statis-
tical mechanics of strings in a random potential. The string is assumed to be directed, i.e.
there exists a time axis such that the realizations of the string can be viewed as (random)
graphs over this time axis. Vortex lines in high temperature superconductors [7], charge
density waves [25], directed polymers and stochastic interfaces in 1 + 1 dimensional SOS
models [36] are all examples of such strings. To see this connection, define the partition
function for the configurations of the strings over the time interval [0, t] assuming that they
are pinned at time t at location x:

Z(x, t) =
〈

exp
(
−β

∫ t

0

(
1
2 |ξ̇(τ)|2 + V (ξ(τ), τ)

)
dτ

)∣∣∣∣ξ(t) = x

〉
,

where β = 1/kT , k is the Boltzmann constant, T is the temperature. The first term in the
exponent is the elastic energy and the second term is the potential energy with V being the
random potential. The associated free energy ϕ = kT logZ satisfies

∂ϕ

∂t
+ 1

2 |∇ϕ|2 = kT∆ϕ+ V.(14)

In one dimension, let u = ∂ϕ/∂x, then we have

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+
∂V

∂x
,

with ν = kT . (14) is the well-known KPZ equation [32]. In this context, the question of
interest is the effective large scale behavior in (14).
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2 Stochastic Navier-Stokes Equation

Concerning the problem of hydrodynamic turbulence, the most solid and important the-
oretical result in turbulence theory is still Kolmogorov’s 4/5 law stating that, under the
condition of homogeneity and isotropy, the third order structure function for the longitudi-
nal component of the velocity field u‖ satisfies

〈(u‖(x+ r, t) − u‖(x, t))3〉 ∼ − 4
5
ε̄ |r|(15)

for �d � |r| � L, where u‖(x, t) = u(x, t) · r/|r|, u‖(x + r, t) = u(x+ r, t) · r/|r|, and �d

is a dissipation length scale. ε̄ = 〈ν|∇u|2〉 is the average rate of energy dissipation. One of
the basic assumptions in turbulence theory is that under a fixed external condition such as
forcing or boundary condition, ε̄ stays finite in the limit ν → 0. Hence the limiting invariant
measure, if it exists, supports singular Euler flows. This was pointed out by Onsager [42]
in 1949. In fact Onsager conjectured that the solutions of the 3D incompressible Euler’s
equation conserve energy if they are spatially Hölder continuous with exponent larger than
1/3, and cease to conserve energy if the exponent is less than 1/3. The first half of this
statement was proved in [14] in its sharp form formulated in terms of Besov spaces. For
simplicity of presentation, we will assume periodic boundary condition on the domain D.

Theorem 2.1 [14]. Let u = (u1, u2, u3) ∈ L3([0, T ], Bα,∞
3 (D))∩ C([0, T ], L2(D)) be a

weak solution of the 3D incompressible Euler’s equation, i.e.

−
∫ T

0

∫
D
uα(x, t)

∂

∂t
ψα(x, t)d3xdt−

∫
D
uα(x, 0)ψα(x, 0)d3x

−
∫ T

0

∫
D
uα(x, t)uβ(x, t)∇αψβ(x, t)d3xdt−

∫ T

0

∫
D
p(x, t)∇αψα(x, t)d3xdt = 0,

for every test function ψ = (ψ1, ψ2, ψ3) ∈ C∞(D × [0, T )) with compact support. If α > 1
3 ,

then ∫
D
|u(x, t)|2d3x =

∫
D
|u(x, 0)|2d3x, for t ∈ [0, T ).

Besov space is the natural setting for formulating this result since its definition closely
resembles the definition of structure functions except that the ensemble average is replaced
by the spatial average. In fact, in more physical terms, Theorem 2.1 states that if(∫

D
|u(x+ r, t) − u(x, t)|3d3x

)1/3

≤ C|r|α,(16)

for α > 1/3, then ε̄ = 0. This is the deterministic analog of Kolmogorov’s 4/5 law. It is
clear from this that Theorem 2.1 is sharp. Furthermore, Theorem 2.1 suggests that in the
inviscid limit, turbulent fields live in a space close to B

1/3,∞
3 .
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Next by assuming scale-independence for the skewness factor S3(r)/S2(r)3/2, Kolmogo-
rov obtained from (16) a prediction for S2(r):

S2(r) ∼ C2ε̄
2/3r2/3, �d � r � L.(17)

Translating to Fourier space, we obtain the better known 5/3 law:

E(k) = CK ε̄
2/3k−5/3(18)

where E(k) is the energy spectrum, E(k) = dE/dk, E(k) =
∫
|k|≤k

∫
R3〈û(k) · û(q)〉d3qd3k.

Kolmogorov’s theory was immediately challenged by Landau who remarked that due to
the intermittent nature of dissipation and the influence by the large scales, there cannot
be universal relations such as (18) for all turbulent flows. This ultimately led to the pro-
posal that turbulent fields are multi-fractal in the sense that the function αp should be a
highly nonlinear function. We refer to [27] for discussions on phenomenological multi-fractal
models.

An alternative picture for accommodating intermittency was put forward by Baren-
blatt and Chorin [3, 4, 12]. Noting that Kolmogorov’s picture was based on complete
self-similarity, they argue that typical systems in statistical mechanics exhibit complete
self-similarity only when they are well-described by the mean field theory. For problems
such as turbulent flows for which fluctuations are thought to be important, incomplete self-
similarity holds and they proceed to write down an ansatz for the structure functions based
on incomplete self-similarity. The Barenblatt-Chorin theory predicts that the classical Kol-
mogorov theory holds in the vanishing viscosity limit, but is corrected at finite Reynolds
numbers by terms depending on lnRe.

Turning to the mathematical issues, the existence and uniqueness of an invariant mea-
sure is only proved so far for two dimension under stringent assumptions on the forcing.
Assuming periodic boundary condition, if we write

f(x, t)dt =
∑
k

σke
ik·xdWk(t),(19)

where the {Wk(·)}’s are independent Wiener processes, Flandoli and and Maslowski [26]
proved the existence and uniqueness of the invariant measure under the assumption that
there exist constants c and C such that

c|k|−1/2 ≤ |σk| ≤ C|k|−3/8−ε(20)

for some ε > 0. Conditions of the type (20) are quite unnatural from a physical point of
view. Intensive research is now going on to remove this condition. Other interesting aspects
of the stochastic Navier-Stokes equation are discussed in [40].
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3 Stochastic Burgers equation

3.1 Invariant Measures

The existence of an invariant measure for (2) is only understood so far on finite domains.
Consider, for example, (2) on [0, 2π] with periodic boundary condition. We will sometime
identify the domain as S1, the unit circle. The forcing function can be expressed as:

f(x, t)dt =
∑
k

fk(x)dWk(t),(21)

where the {Wk(·)}’s are independent Wiener processes. We will assume that

fk(·) ∈ C3(S1), |∂fk
∂x

(x)| ≤ C

k2
,(22)

for all k. We will use (Ω,F , P ) to denote the probability space for the forcing functions f ,
and ω ∈ Ω to denote a typical realization of the force. Ft denotes the σ-algebra generated
by the forces up to time t.

When ν = 0, (2) is understood in the weak sense with solutions satisfying the entropy
condition. The precise definition for the random case is given in [19]. In this case, we write
(2) as

∂u

∂t
+

1
2
∂

∂x
(u2) = f.(23)

A natural phase space for (23) is the Skorohod space D on S1 which consists of functions
admitting only discontinuities of the first kind [6]. Let D be the Borel σ-algebra on D. (23)
can then be viewed as a Markov process on D with transition probability

Pt(u,A) =
∫
Ω
χA(u, ω)P (dω)(24)

where u ∈ D, A ∈ D, and

χA(u, ω) =

{
1 if Sω(t)u ∈ A

0 otherwise
(25)

Here Sω(t) denotes the solution operator of (23) at time t with forcing ω.

Definition. An invariant measure µ0(du) of the Markov process (23) is a measure on
(D,D) satisfying

µ0(A) =
∫
D
Pt(u,A)µ0(du)(26)

for any A ∈ D and any t > 0.
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Theorem 3.1 [19]. (23) admits a unique invariant measure on the space D.

The proof of Theorem 3.1 was based on the following variational characterization of
weak solutions of (23) satisfying the entropy condition. Let ξ : [t1, t2] → R1 be a Lipschitz
continuous curve. Define the action functional

At1,t2(ξ) =
∫ t2

t1

(
1
2(ξ̇(s))2 −

∑
k

fk(ξ(s))ξ̇(s)(Wk(s) −Wk(t1))
)
ds

+
∑
k

fk(ξ(t2))(Wk(t2) −Wk(t1))
(27)

Then we have for τ < t,

u(x, t) =
∂

∂x
inf

ξ(t)=x

{
Aτ,t(ξ) +

∫ ξ(τ)

0
u(z, τ)dz

}
(28)

Minimizers of the functional in (27) satisfy the following Euler-Lagrange equation:

dγ(s) = v(s)ds, dv(s) =
∞∑
k=1

fk(γ(s))dWk(s)(29)

From (28) one can easily verify the following recipe for constructing solutions of (23).
Fix t. For values of x such that the minimizer to the functional (27) is unique, say ξ(·),
then u(·, t) is continuous at x, and u(x, t) = ξ̇(t). On the other hand, for values of x such
that the minimizers to the variational problem are not unique, then u(·, t) is discontinuous
at x with u(x+, t) = infα{ξ̇α(t)} and u(x−, t) = supα{ξ̇α(t)} where {ξα} denotes the family
of minimizers of (27).

This construction is just a reformulation of the method of characteristics for weak so-
lutions. It is a variational formulation of the backward characteristics defined in [15]. In
particular, the Euler-Lagrange equation (29) is nothing but the equation for the character-
istics of (23).

The variational formulation of the method of characteristics allows us to make a connec-
tion between weak solutions of the forced Burgers equation and the non-smooth invariant
sets constructed in the Aubry-Mather theory [1, 39]. This is an extension to weak solutions
of the classical Hamilton-Jacobi theory which establishes a connection between smooth so-
lutions of the Hamilton-Jacobi equation and the smooth invariant tori for the corresponding
Hamiltonian system [18, 31, 46].

Of particular interest to the construction of the invariant measure is a special class of
minimizers called the one-sided minimizers (OSM).

Definition. A piecewise C1-curve ξ : (−∞, 0] → S1 is a one-sided minimizer if for any
Lipschitz continuous ξ̃ : (−∞, 0] → S1 such that ξ̃(0) = ξ(0) and ξ̃ = ξ on (−∞, τ ] for some
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τ < 0, we have
As,0(ξ) ≤ As,0(ξ̃),(30)

for all s ≤ τ . Similarly, we define one-sided minimizers on (−∞, t], for t ∈ R1.

Next we ask the following question: Given (x, t), how many OSMs ξ exist such that
ξ(t) = x? This question is answered by studying the intersection properties of OSMs. As
a general fact in the calculus of variations, two different OSMs cannot intersect more than
once. In other words, if ξ1, ξ2 are two OSMs such that there exist t1, t2 ∈ R1, t1 �= t2, such
that ξ1(t1) = ξ2(t1), ξ1(t2) = ξ2(t2), then ξ1 ≡ ξ2 on their common domain of definition
[39]. However more is true for the random case. If ξ1 and ξ2 are two different OSMs, such
that ξ1(s) = ξ2(s) for some s, then neither ξ1 nor ξ2 can be extended as an OSM beyond
the interval (−∞, s]. This is because that in the random case, two OSMs always have an
effective intersection at t = −∞. The precise formulation of this property is given in [19].

These intersection properties have far-reaching consequences. Let us fix t = 0. By
considering the image of all OSMs at t = −1, it is easy to see that the set

Iω = {x ∈ S1 : there exist more than one OSM ξ such that ξ(0) = x},

can at most be a countable set for almost all ω ∈ Ω. Therefore we can define:

uω(x, 0) = ξ̇(0),(31)

where ξ is the OSM such that ξ(0) = x. uω(·, 0) is a well-defined function in L∞(S1) for
almost all ω.

Similar construction can be carried out for any t ∈ R1 which defines uω(·, t). Further-
more it is easy to conclude from the variational principle (28) that

uω(·, t) = Sω(t)uω(·, 0),(32)

for t > 0. In other words, uω is a solution of (23). From this it is straightforward to check
that the distribution of the mapping:

Φ0 : ω → uω(·, 0),(33)

is an invariant measure for (23). If we define

Φt : ω → uω(·, t),(34)

then {Φt} satisfies the invariance principle:

Φt(ω) = Sω(t)Φ0(ω)(35)
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Therefore we have

Theorem 3.2 [19]. There exists a family of invariant mappings {Φt} : Ω → D satisfying
(35). Furthermore the invariant measure µ0 is the distribution of Φ0.

Theorem 3.2 states that the solutions supported by the invariant measure are functionals
of the forcing. Uniqueness of the invariant measure follows from the fact that the OSMs
are largely unique.

It is shown in [44] that for ν > 0, (2) also admits a unique invariant mapping Φν
0 whose

distribution is the unique invariant measure for (2), denoted by µν . We have

Theorem 3.3 [19].
Φν

0(ω) → Φ0(ω),(36)

in L1(S1) for almost every ω ∈ Ω. Consequently

µν → µ0,(37)

weakly.

We remark that (36), (37) are a different kind of statement from standard theorems on
inviscid limits of (2) studied in the PDE literature [45, 47]. There we are given a sequence of
initial data that converge in the inviscid limit, and we ask whether convergence still holds at
later times. Here we are not given any initial data, and we proceed to establish convergence
with the only information that the solutions are defined for all t ∈ R1 in a special way using
the OSMs. Consequently the techniques used to prove Theorem 3.3 are very different from
the ones used in the PDE literature to study inviscid limits. See [19].

Our next task is to characterize the solutions supported on the invariant measure. This
requires a non-degeneracy condition to the effect that the process (29) starting at any x ∈ S1

is transitive on S1. This condition is generically satisfied. However it is violated if the sum
in (21) contains only one term. We refer to [19] for a detailed formulation and examination
of this condition. Under this non-degeneracy condition, we have

Theorem 3.4 [19]. For almost all ω, uω satisfies the following:
(1). There exists a unique two-sided minimizer (TSM, defined below) yω : R1 → S1

which is a characteristic of (23) associated with the solution uω.
(2). There exists a unique so-called main shock γω : R1 → S1, which is a continuous

shock curve defined for all t ∈ R1.
(3). The TSM is a hyperbolic trajectory for the dynamical systems (29).
(4). For any t ∈ R1, there exist global stable and unstable manifolds associated with yω

at time t, denoted by W s
ω(t) and W u

ω (t) respectively, on the phase space S1 ×R1.
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(5). The graph of uω(·, t) is a subset of W u
ω (t).

As a corollary, we have that almost surely, uω is a piecewise smooth function.

Definition. A piecewise C1-curve ξ : (−∞,+∞) → S1 is a two-sided minimizer if for
any Lipschitz continuous ξ̃ : (−∞,+∞) → S1 such that ξ̃ = ξ away from a compact set, we
have

A−s,s(ξ) ≤ A−s,s(ξ̃),(38)

for large enough s.

The possibility of establishing hyperbolicity of TSMs in the random case comes from
the following:

Basic Collision Lemma. Assuming the non-degeneracy condition. Then there exists
a constant p0, depending only on the {fk}’s, with the following property: Given an arbitrary
pair of points (x1, x2) ∈ [0, 1]2 at t = 0 whose positions are F0-measurable,

P{x1, x2 merge before t = 1} > p0.(39)

Heuristically two points merge before t = 1 if the forward characteristics emanating from
them intersect before t = 1. This of course depends on the forces as well as the solution at
t = 0. The lemma states that independent of the solution at t = 0, one can always find a
set of forces with positive measure under which the two points merge.

The proof of the Basic Collision Lemma relies on PDE techniques and is given in the
Appendix D of [19].

The Basic Collision Lemma provides the mechanism for the origin of the hyperbolicity.
In particular, the uniqueness of the TSM and the main shock is a simple consequenc of the
Basic Collision Lemma.

The regularity and structural properties described here are used in [20, 21, 22] to study
the statistical behavior of the Burgers equation. A summary of these results is given below.

3.2 Statistical Theory

We now address the questions frequently asked in the physics literature regarding (2),
building on the regularity results described in Section 3.1. Since we have established the
existence of µ0 which is the statistical steady state at the inviscid limit, we can restrict our
attention to this case.
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3.2.1 Structure functions

The fact that uω is piecewise smooth implies easily that

Sp(r) =

 rp〈|ξ|p〉 + o(rp) if 0 ≤ p < 1,

rρ〈|s|p〉 + o(r) if 1 < p,
(40)

where ρ is the number density of the shocks, which is finite from the results described
earlier, s is the jump across the shocks, ξ is the regular part of the velocity gradient:

∂

∂x
u(x, t) = ξ(x, t) +

∑
j

s(yj , t)δ(x− yj),(41)

with ξ(·, t) ∈ L1(S1).
From (40), αp is a linear function in p followed by a constant function. This is a

reflection of the fact that as far as regularity is concerned, almost everywhere the solution
is either Lipschitz continuous or discontinuous. The linear part in the graph of αp probes
the Lipschitz continuous part of the solution. The flat part probes the discontinuous part
of the solution. Such a situation is sometimes referred to as a “bifractal”.

3.2.2 Velocity gradient PDF

More difficult are the questions of PDFs for quantities such as u, ∂u/∂x and δu(x, t) =
u(x + y, t) − u(y, t). In particular, the PDF of ξ = ∂u/∂x (suitably defined), Q(ξ), has
attracted a lot of attention in recent years. In the inviscid limit, it is agreed that Q(ξ) has
the behavior

Q(ξ) ∼
 C−|ξ|−α as ξ → −∞,

C+ξ
βe−ξ3/(3B1) as ξ → +∞.

(42)

where C−, C+ are constants, B1 = −Bxx(0). But many different values of α and β have
been proposed (see [22, 33] for a review).

A priori, there is even an issue how to define Q. One can define for the inviscid limit
the PDF for the velocity divided difference (u(x+ y, t)− u(y, t))/x, Qδ(ξ, x) and then take
x → 0. An alternative is to first define the PDF of ∂u/∂x for the viscous problem, call it
Qν(ξ), and then take the limit as ν → 0:

Q(ξ) = lim
ν→0

Qν(ξ), Q(ξ) = lim
δ→0

Qδ(ξ, x).(43)

While a fully rigorous proof was not constructed, [22] presented strong evidence that for
the case studied here,

Q = Q.(44)
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Below we will concentrate on Q.
Using calculus for functions of bounded variation [49], we can derive an equation for Q

∂Q

∂t
= ξQ +

∂

∂ξ
(ξ2Q) + B1

∂2Q

∂ξ2
+ F (ξ, t),(45)

where
F (ξ, t) = ρ

∫ 0

−∞
sV (s, ξ, t)ds ≤ 0.(46)

Here V (s, ξ, t) = V+(s, ξ, t) + V−(s, ξ, t), V±(s, ξ±, t) are the PDFs of (s(y, t), ξ±(y, t) =
∂u(y±, t)/∂x) conditional on y being a shock position. This equation should be compared
with the equation for Qν :

∂Qν

∂t
= ξQν +

∂

∂ξ
(ξ2Qν) + B1

∂2Qν

∂ξ2
− ν

∂

∂ξ

(〈∂2ξ

∂x2

∣∣∣ξ〉Qν
)
,(47)

where 〈∂2ξ/∂x2|ξ〉 is the ensemble-average of ∂2ξ/∂x2 conditional on ξ. We see that

F (ξ, t) = − lim
ν→0

ν
∂

∂ξ

(〈∂2ξ

∂x2

∣∣∣ξ〉Qν
)
,

Even though we are primarily interested in statistical steady states, we have written down
the master equations for the more general case including transients.

Integrating (45), we get

d

dt

∫
R1
Q(ξ, t)dξ = 〈ξ〉 + ρ〈s〉 = 0.(48)

Consequently
lim
ν→0

∫
R1
ξQν(ξ)dξ �=

∫
R1
ξQ(ξ)dξ,(49)

since the left hand side vanishes due to homogeneity.
Even though (45) is not a closed equation since the form of F is unknown, we can

already obtain from it non-trivial information. As an example, we have

Theorem 3.5 [21, 22].
lim

|ξ|→+∞
|ξ|3Q(ξ, t) = 0,(50)

i.e. Q decays faster than |ξ|−3 as ξ → −∞.

This result rules out all the proposed value of α except that of [20] which gives α = 7/2.
Theorem 3.5 is obtained by combining (45) together with the following:
(1). Take the first moment of (45) gives

d

dt
〈ξ〉 = [ξ3Q]+∞

−∞ +
ρ

2
(〈sξ−〉 + 〈sξ+〉) .

14



(2). Along the shock, we have

d

dt
(ρ〈s〉) = −ρ

2
(〈sξ−〉 + 〈sξ+〉),

which is a consequence of the equations for the dynamics of the shocks. Since formally∫
R1
ξF (ξ, t)dξ =

ρ

2
(〈sξ−〉 + 〈sξ+〉) ,

the process of proving (3.2.2) also proves that ξF (ξ, t) is absolutely integrable on R1 for all
t.

3.2.3 Asymptotics for the statistical stationary state

In statistical steady state, (45) becomes

ξQ +
d

dξ
(ξ2Q) + B1

d2Q

dξ2
+ F (ξ) = 0.(51)

This is a second order ODE with an inhomogeneous term F . We can write the general
solutions of (51) as

Q = Qs + C1Q1 + C2Q2,(52)

where Q1 and Q2 are two linearly independent solutions of the homogeneous equation, and
Qs is a particular solution. For example, we can take:

Q1(ξ) = ξe−Λ,(53)

Q2(ξ) = 1 − ξe−Λ

B1

∫ ξ

−∞
ξ′eΛ′

dξ′,(54)

Qs(ξ) =
1
B1

∫ ξ

−∞
ξ′F (ξ′)dξ′ − ξe−Λ

B1

∫ ξ

−∞
eΛ′

G(ξ′)dξ′,(55)

where

Λ =
ξ3

3B1
G(ξ) = F (ξ) +

ξ

B1

∫ ξ

−∞
dξ′ ξ′F (ξ′).(56)

3.2.4 Bounds from realizability constraints

Using the realizability constraint Q ∈ L1(R1), Q ≥ 0, we can show that

Q = Qs,(57)

and
lim

ξ→+∞
ξ−2eΛF (ξ) = 0.(58)
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Indeed, starting from Q = Qs + C1Q1 +C2Q2, we have:
(1). Qs ∈ L1(R1), Q2 ∈ L1(R1), but Q1 �∈ L1(R1). Therefore C1 must be zero.
(2). As |ξ| → +∞, |Q2| > |Qs|, but Q2 > 0 as ξ → −∞, and Q2 < 0 as ξ → +∞. There-

fore C2 must be zero.
(3). As ξ → +∞, Qs ≥ 0, iff (58) holds.
These statements can be established by evaluating Q2, Qs using Laplace’s method. We

arrive at:

Q(ξ) ∼
 |ξ|−3

∫ ξ

−∞
ξ′F (ξ′)dξ′ as ξ → −∞,

C+ξe−Λ as ξ → +∞.

(59)

Once again, we obtain (50). Furthermore we get β = 1 in (42).

3.2.5 The exponent 7/2

Let W (s, ξ+, ξ−, x, t) be the PDF of

(u(y + x, t) − u(y − x, t), ξ(y + x, t), ξ(y − x, t)),

conditional on y being a shock location. Then

V±(s, ξ±, t) =
∫
R1
W (s, ξ+, ξ−, 0, t)dξ∓.(60)

W satisfies an equation of the form [22]

∂W

∂t
= OW + S,(61)

where O is a differential operator in x, s, ξ±, S is a source term accounting for shock creation
and collision. Information on the source term S can be obtained using local analysis around
shock creation and collision points. Upon using this information in (60), we get:

F (ξ) ∼ C|ξ|−5/2 as ξ → −∞,(62)

Therefore
Q(ξ) ∼ |ξ|−3

∫ ξ

−∞
ξ′F (ξ′)dξ′ = C−|ξ|−7/2 as ξ → −∞.(63)

which confirms the prediction of [20].
The analysis in [22] that accomplishes this last step is quite involved. The result of

that is a confirmation of the geometric picture proposed in [20], namely the leading order
contribution to the left tail of Q comes from the boundary of the set of the shocks, here
the points of shock creation. This geometric picture may have interesting consequences
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in higher dimension. The analysis in [22] is also a success in working with the master
equation without making closure assumptions. In a sense closure in [22] is achieved through
dimension reduction. The PDF of ξ is first expressed in terms of the lower dimensional
dissipative structures, here the shocks. The PDF for the shocks and the shock environment
is further expressed in terms of the singular structures on the shocks, namely the points
of shock creation and collision, which are then amenable to local analysis. Clearly this
approach should be applicable to high dimensions and should yield more interesting results.

4 Stochastic Passive Scalar and Passive Vector Equations

4.1 The stochastic passive scalar equation

Turning now to (3). There are two main questions that have been studied in the literature.
The first is the effective behavior at large scales, particularly when u contains energy at
large scales. We will not discuss this problem here. Instead we refer to the extensive
review article [38]. For issues with regard to the behavior for the average of temperature,
including for the case of white-in-time velocity fields, we refer to [38]. Here we will be
mainly interested in higher order statistics.

The second question concerns the local characteristics in the temperature field T , such as
the scaling of the structure functions. In this context, the most thoroughly studied problem
is the so-called Kraichnan’s model [34, 35] in which u is a Gaussian random process with
zero-mean and covariance

〈uα(x, t)uβ(y, s)〉 = 2Cαβ(x− y)δ(t − s),(64)

The white-in-time nature of the velocity field allows us to significantly simplify the ana-
lytical treatment, but is sometimes a poor approximation to the physical situation. For
incompressible velocity fields, the tensor C is assumed to satisfy

∇ · C = 0.(65)

Following [2, 41], we will take

Cαβ(x) = F (r)δαβ + ∇α∇βG(r),(66)

where r = |x|,
F (r) = D0

∫
Rd

eik·x(k2
0 + k2)−(d+ξ)/2 ddk

(2π)d
,(67)
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and −∆G = F . Here d is the dimension, ξ ∈ (0, 2) is a parameter, D0 is a constant, k0 is
an infrared cut-off parameter.

Writing Cαβ(x) = Cαβ(0) − cαβ(x), it can be easily seen that Cαβ(0) = D̄k−ξ
0 δαβ for

some D̄ ∝ D0 independent of k0 (thus Cαβ(0) is divergent as k0 → 0), and

cαβ(x) = D

(
(d + ξ − 1)δαβ − ξ

xαxβ
r2

)
rξ + O(r2k2

0),(68)

for some D ∝ D0 independent of k0. Thus ξ is a measure the smoothness of the velocity
field: Roughly speaking, when ξ = 0 the velocity field is spatially independent; when
ξ = 2 the velocity field is spatially Lipschitz continuous. Note that, since Cαβ(x) ∼ 0 for
r � �0 = k−1

0 , we have
cαβ(x) ∼ D̄ �ξ0 δαβ , r � �0.(69)

However, in the sequel we will be mostly interested in the range r � �0.
Existence of an invariant measure for κ ≥ 0 and the convergence as κ → 0 are estab-

lished in [23]. Below we will study the statistical properties associated with these invariant
measures.

4.1.1 Master equation and the dissipative anomaly

Assume that the initial temperature profile, T0(x) = T (x, 0) is statistically isotropic. Define
θ(x,x′, t) = T (x, t)−T (x′, t) and let Zκ(θ, |x−x′|, t) be the PDF of θ(x,x′, t) (Zκ depends
on |x− x′| only by isotropy). Then Zκ satisfies [9]

∂Zκ

∂t
=

2
rd−1

∂

∂r

(
rd−1η

∂Zκ

∂r

)
+ 2b(r)

∂2Zκ

∂θ2
− ∂

∂θ
(HκZκ),(70)

where b(r) = B(0) −B(r), η(r) = D(d− 1)rξ, and

Hκ(θ, r, t) = κ〈(∆ − ∆′)θ(x,x′, t)|θ〉.(71)

This is the analog of (47) for the Burgers equation. We are interested in the limit

Z(θ, r, t) = lim
κ→0

Zκ(θ, r, t).(72)

In particular, we are interested in the limit of the dissipation term: ∂(HκZκ)/∂θ. This
term does not vanish in the limit as κ → 0, giving rise to the dissipative anomaly [23]. In
contrast, it can be shown that the κ term in the equations for the correlation functions can
be neglected in this limit [24].
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4.1.2 Equations for the correlation functions

Instead of working with (70), recent progress hinges on the fact that a closed set of equations
for the single time correlation functions can be derived for Kraichnan’s passive scalar model.

Consider
Fn(x1, · · · ,xn, t) = 〈T (x1, t) · · · T (xn, t)〉(73)

F2n+1 = 0 by symmetry. F2n satisfies

∂

∂t
F2n(x1, · · · ,x2n, t) =

2n∑
j,k=1

Cαβ(xj − xk)∇j
α∇k

βF2n(x1, · · · ,x2n, t)

+ 2
2n∑

j,k=1
j<k

B(xj − xk)F2n−2(x1 · · ·x2n

ĵ k̂

, t).
(74)

At statistical steady state, these equations reduces to

2n∑
j,k=1

Cαβ(xj − xk)∇j
α∇k

βF2n(x1, · · · ,x2n) = −2
2n∑

j,k=1
j<k

B(xj − xk)F2n−2(x1 · · ·x2n

ĵ k̂

).(75)

Evaluation of the structures functions S2n(r) = 〈(T (x+ r, t) − T (x, t))2n〉 can in principle
be carried out once the solution of (75) is known. However, solving these equations is a very
difficult task and so far only perturbative methods have been successful in some regimes.

A simple dimensional argument or balancing (u∇)T with f suggests that a Kolmogorov-
like theory would predict normal scaling exponents αp = 2−ξ

2 p. We will see below that this
is not true for p > 2.

4.1.3 Zero modes

Our next task is to analyze the behavior of F2n for small |xj−xk|. We will restrict ourselves
to translation invariant solutions.

From (75), F2n has contributions from the inhomogeneous part F2n−2, and the homo-
geneous part, which at small distances are solutions of

Msc
2nF̃2n =

2n∑
j,k=1

dαβ(xj − xk)∇j
α∇k

βF̃2n = 0(76)

where
dαβ(x) = D

(
(d + ξ − 1)δαβ − ξ

xαxβ
r2

)
rξ(77)
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(76) is obtained as the scaling limit of the homogeneous equation associated with (75).
The solutions of (76) are called zero modes [10, 29]. This is an important concept that
characterizes the origin of the anomalous scaling.

As an example, let us study the behavior of the 2-point function at d = 3. F2 satisfies

− 2
r2

∂

∂r

(
Dr2+ξ ∂F2

∂r

)
= B(r).(78)

It is easy to obtain from this equation that

F2(r) = C0 − C1r
2−ξ + · · ·(79)

where C0, C1 are constants depending on B and the neglected terms are of higher order.
Hence we have for S2

S2(r) = C2r
2−ξ + · · ·(80)

This implies that S2 obeys normal scaling. Note that the constant C2 is in general non-
universal.

Let us now look at the 4-point function F4(x1,x2,x3,x4) and let xjk = xj − xk, j, k =
1, · · · 4. F4 has contributions from the “Gaussian” part:

F2(x12)F2(x34) + F2(x13)F2(x24) + F2(x14)F2(x23),(81)

which give rise to normal scaling, as well as the contribution from the zero modes which
may be the dominant contribution to S4. To find the precise form of the zero modes is a
very difficult task. Both [29] and [10] resorted to perturbation technique in either ξ or 1/d.
Here we follow [29] and write

F̃ = E0 + ξG0 + O(ξ2),(82)

where E0 is the zero mode for the case when ξ = 0. Using the notations ∇12 = ∇x12 , etc,
we can write down an equation for E0:

−(∆12 + ∆23 + ∆34 −∇12 · ∇23 −∇23 · ∇34)E0 = 0.(83)

Substituting (83) to (76), we obtain an equation for G0:

−∆4G0 + LE0 = 0

where

∆4 = ∆x1 + · · · + ∆x4 , L =
∑
j 
=k

(
δαβ − 1

2
xαjkx

β
jk

|xjk|2
)
∇α

j ∇β
k − 1

2
∆4
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The precise form of G0 is quite complicated. We refer to [5, 29] for details of this calculation
from which one obtains that F̃ must be homogeneous of degree

α4 = 4 − 14
5
ξ + O(ξ2) = 2α2 − ρ2,(84)

where ρ2 = 4
5ξ + O(ξ2) is the anomalous exponent. Numerical results of Frisch et.al. [27]

has found very good agreement with (84).

4.2 Passive vector equation: The kinematic dynamo problem

Under the same assumptions on the velocity field, the passively advected magnetic fields
described by (4) can also be analyzed using similar methods. The general form of the
covariance of B is given by [41]

〈Bα(x+ r, t)Bβ(x, t)〉 = G1(r, t)δαβ + G2(r, t)
rαrβ
r2

,(85)

where r = |r| and the functions G1 and G2 are related by

∂G1

∂r
= − 1

r2

∂

∂r
(G2r

2)(86)

Following [48], it is convenient to work with the trace of the correlation function tensor:

H(r, t) = 3G1(r, t) + G2(r, t).(87)

G1 and G2 can then be found through

G1(r, t) =
H(r, t)

2
− 1

2r3

∫ r

0
H(s, t)s2ds,(88)

G2(r, t) = −H(r, t)
2

+
3

2r3

∫ r

0
H(s, t)s2ds.(89)

In analogy with (78), a closed equation can be derived for H:

∂H

∂t
=

2
r2

∂

∂r

(
(κr2 + Dr2+ξ)

∂H

∂r

)
+ BL(r)

+ 2Dξrξ−2
(
(1 + 2ξ)H + r

∂H

∂r
+
ξ(ξ − 2)

r3

∫ r

0
H(s, t)s2ds

)(90)

where BL(r) =
∫ 〈f(x, t) ·f (0, 0)〉dt. (90) admits a steady state solution in the regime ξ < 1

when the dynamo effects are not present. To analyze this steady state solution in the limit
of infinite Peclet number, it is convenient to introduce

ψ(r) =

√
Drξ

r

∫ r

0
H(s)s2ds.(91)
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Then ψ satisfies
d2ψ

dr2
−m(r)U(r)ψ = −m(r)

√
Drξ

r

∫ r

0
BL(s)s2ds,(92)

for r � �0, where

m(r) =
1

2Drξ
, U(r) =

D2r2ξ(4 − 3ξ − 3
2ξ

2)
Dr2+ξ

.(93)

The zero modes for this problem can be found by solving the homogeneous equation. They
are:

F̃1(r) = rs1, F̃2(r) = rs2,(94)

where

s1,2 =
1
2
± 3

2

√
1 − 1

3
ξ(ξ + 2)(95)

The general solutions of (92) is given by:

ψ = aF̃1 + bF̃2 − rs1

2
√
D

∫ r

0
ρ−2s1

∫ ρ

0
ρ
−s2− ξ

2
1

∫ ρ1

0
ρ2
2BL(ρ2)dρ2dρ1dρ.(96)

Clearly b must be zero in order to avoid having a F̃2-type of singularity at small r. Matching
with large scales, we get:

a =
rs1

2
√
D

∫ ∞

0
ρ−2s1

∫ ρ

0
ρ
−s2− ξ

2
1

∫ ρ1

0
ρ2
2BL(ρ2)dρ2dρ1dρ(97)

Going back to H we find that the dominant contribution for r � �0 comes from

H(r) ∼ rγ

2D
L4−s1− ξ

2

s1 − s2

s1 + 1 − ξ
2

s1 − 1 − ξ
2

∫ ∞

0
ρ3−s1− ξ

2BL(ρ)dρ(98)

where

γ = −3 + ξ

2
+

3
2

√
1 − 1

3
ξ(ξ + 2) ∼ −ξ − ξ2

3
+ O(ξ3)(99)

Note in this case the second order correlation function does not obey the normal scaling.

5 Conclusion

In summary, we conclude that the study of stochastic PDEs in the style described in this
paper is a very new, challenging and fruitful area of research. It is at the frontier of several
different areas in mathematics as well as physics, ranging from PDE, large deviation theory,
stochastic dynamical systems, to quantum field theory. It is at the foundation of many
important areas in science and engineering. Fundamental understanding of these questions
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will likely come from and contribute to our understanding of analysis in infinite dimensional
spaces, a recurring theme in this subject.

While a solution to the problem of hydrodynamic turbulence does not seem to be in sight,
recent work on related problems of Burgers turbulence, stochastic passive scalar convection
and 2D turbulence [50] gives renewed hope that definitive progress are being made.
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