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Preface

These lecture notes were written for the course ACM 217: Advanced Topics in Stochas-

tic Analysis at Caltech; this year (2007), the topic of this course was stochastic calcu-

lus and stochastic control in continuous time. As this is an introductory course on the

subject, and as there are only so many weeks in a term, we will only consider stochas-

tic integration with respect to the Wiener process. This is sufficient do develop a large

class of interesting models, and to develop some stochastic control and filtering theory

in the most basic setting. Stochastic integration with respect to general semimartin-

gales, and many other fascinating (and useful) topics, are left for a more advanced

course. Similarly, the stochastic control portion of these notes concentrates on veri-

fication theorems, rather than the more technical existence and uniqueness questions.

I hope, however, that the interested reader will be encouraged to probe a little deeper

and ultimately to move on to one of several advanced textbooks.

I have no illusions about the state of these notes—they were written rather quickly,

sometimes at the rate of a chapter a week. I have no doubt that many errors remain

in the text; at the very least many of the proofs are extremely compact, and should be

made a little clearer as is befitting of a pedagogical (?) treatment. If I have another

opportunity to teach such a course, I will go over the notes again in detail and attempt

the necessary modifications. For the time being, however, the notes are available as-is.

If you have any comments at all about these notes—questions, suggestions, omis-

sions, general comments, and particularly mistakes—I would love to hear from you. I

can be contacted by e-mail at ramon@its.caltech.edu.

Required background. I assume that the reader has had a basic course in probabil-

ity theory at the level of, say, Grimmett and Stirzaker [GS01] or higher (ACM 116/216

should be sufficient). Some elementary background in analysis is very helpful.

Layout. The LATEX layout was a bit of an experiment, but appears to have been

positively received. The document is typeset using the memoir package and the

daleif1 chapter style, both of which are freely available on the web.
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Introduction

This course is about stochastic calculus and some of its applications. As the name

suggests, stochastic calculus provides a mathematical foundation for the treatment

of equations that involve noise. The various problems which we will be dealing with,

both mathematical and practical, are perhaps best illustrated by considering some sim-

ple applications in science and engineering. As we progress through the course, we

will tackle these and other examples using our newly developed tools.

Brownian motion, tracking, and finance

Brownian motion and the Wiener process

In 1827, the (then already) famous Scottish botanist Robert Brown observed a rather

curious phenomenon [Bro28]. Brown was interested in the tiny particles found inside

grains of pollen, which he studied by suspending them in water and observing them

under his microscope. Remarkably enough, it appeared that the particles were con-

stantly jittering around in the fluid. At first Brown thought that the particles were alive,

but he was able to rule out this hypothesis after he observed the same phenomenon

when using glass powder, and a large number of other inorganic substances, instead

of the pollen particles. A satisfactory explanation of Brown’s observation was not

provided until the publication of Einstein’s famous 1905 paper [Ein05].

Einstein’s argument relies on the fact that the fluid, in which the pollen parti-

cles are suspended, consists of a gigantic number of water molecules (though this is

now undisputed, the atomic hypothesis was highly controversial at the time). As the

fluid is at a finite temperature, kinetic theory suggests that the velocity of every water

molecule is randomly distributed with zero mean value (the latter must be the case, as

the total fluid has no net velocity) and is independent from the velocity of the other

water molecules. If we place a pollen particle in the fluid, then in every time inter-

val the particle will be bombarded by a large number of water molecules, giving it

a net random displacement. The resulting random walk of the particle in the fluid is

precisely what Brown observed under his microscope.

How should we go about modelling this phenomenon? The following procedure,

which is a somewhat modernized version of Einstein’s argument, is physically crude

but nonetheless quite effective. Suppose that the pollen particle is bombarded by N
water molecules per unit time, and that every water molecule contributes an indepen-

dent, identically distributed (i.i.d.) random displacement ξn to the particle (where ξn

1
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Figure 0.1. Randomly generated sample paths xt(N) for the Brownian motion model in the

text, with (from left to right) N = 20, 50, 500 collisions per unit time. The displacements ξn

are chosen to be random variables which take the values ±N−1/2 with equal probability.

has zero mean). Then at time t, the position xt(N) of the pollen particle is given by

xt(N) = x0 +

bNtc
∑

n=1

ξn.

We want to consider the limit where the number of bombardments N is very large,

but where every individual water molecule only contributes a tiny displacement to the

pollen particle—this is a reasonable assumption, as the pollen particle, while being

small, is extremely large compared to a single water molecule. To be concrete, let us

define a constant γ by var(ξn) = γN−1. Note that γ is precisely the mean-square

displacement of the pollen particle per unit time:

E(x1(N) − x0)
2 = var

(

N
∑

n=1

ξn

)

= N var(ξn) = γ.

The physical regime in which we are interested now corresponds to the limitN → ∞,

i.e., where the number of collisions N is large but the mean-square displacement per

unit time γ remains fixed. Writing suggestively

xt(N) = x0 +
√
γt

∑bNtc
n=1 Ξn√
Nt

,

where Ξn = ξn
√

N/γ are i.i.d. random variables with zero mean and unit variance,

we see that the limiting behavior of xt(N) asN → ∞ is described by the central limit

theorem: we find that the law of xt(N) converges to a Gaussian distribution with zero

mean and variance γt. This is indeed the result of Einstein’s analysis.

The limiting motion of the pollen particle as N → ∞ is known as Brownian mo-

tion. You can get some idea of what xt(N) looks like for increasingly large N by

having a look at figure 0.1. But now we come to our first significant mathematical

problem: does the limit of the stochastic process t 7→ xt(N) as N → ∞ even exist

in a suitable sense? This is not at all obvious (we have only shown convergence in
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distribution for fixed time t), nor is the resolution of this problem entirely straightfor-

ward. If we can make no sense of this limit, there would be no mathematical model of

Brownian motion (as we have defined it); and in this case, these lecture notes would

come to an end right about here. Fortunately we will be able to make mathematical

sense of Brownian motion (chapter 3), which was first done in the fundamental work

of Norbert Wiener [Wie23]. The limiting stochastic process xt (with γ = 1) is known

as the Wiener process, and plays a fundamental role in the remainder of these notes.

Tracking a diffusing particle

Using only the notion of a Wiener process, we can already formulate one of the sim-

plest stochastic control problems. Suppose that we, like Robert Brown, are trying to

study pollen particles. In order to study the particles in detail, we would like to zoom

in on one of the particles—i.e., we would like to increase the magnification of the

microscope until one pollen particle fills a large part of the field of view. When we do

this, however, the Brownian motion becomes a bit of a nuisance; the random motion

of the pollen particle causes it to rapidly leave our field of view. If we want to keep

looking at the pollen particle for a reasonable amount of time, we have to keep moving

around the cover slide in order to track the motion of the particle.

To deal with this problem, we attach an electric motor to the microscope slide

which allows us to move the slide around. Let us call the position of the slide relative

to the focus of the microscope zt; then we can write

dzt

dt
= αut,

where ut is the voltage applied to the motor and α > 0 is a gain constant. The position

of the pollen particle relative to the slide is modelled by a Wiener process xt, so that

the position of the particle relative to the microscope focus is given by xt + zt. We

would like to control the slide position to keep the particle in focus, i.e., it is our goal

to choose ut in order that xt + zt stays close to zero. To formalize this problem, we

could introduce the following cost functional:

JT [u] = pE

[

1

T

∫ T

0

(xt + zt)
2 dt

]

+ q E

[

1

T

∫ T

0

u2
t dt

]

,

where p and q are some positive constants. The first term in this expression is the

time-average (on some time interval [0, T ]) mean square distance of the particle from

the focus of the microscope: clearly we would like this to be small. The second term,

on the other hand, is the average power in the control signal, which should also not

be too large in any realistic application (our electric motor will only take so much).

The goal of the optimal control problem is to find the feedback strategy ut which

minimizes the cost JT [u]. Many variations on this problem are possible; for example,

if we are not interested in a particular time horizon [0, T ], we could try to minimize

J∞[u] = p lim sup
T→∞

E

[

1

T

∫ T

0

(xt + zt)
2 dt

]

+ q lim sup
T→∞

E

[

1

T

∫ T

0

u2
t dt

]

.
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The tradeoff between the conflicting goals of minimizing the distance of the particle

to the focus of the microscope and minimizing the feedback power can be selected by

modifying the constants p, q. The optimal control theory further allows us to study

this tradeoff explicitly: for example, we can calculate the quantity

C(U) = inf

{

lim sup
T→∞

E

[

1

T

∫ T

0

(xt + zt)
2 dt

]

: lim sup
T→∞

E

[

1

T

∫ T

0

u2
t dt

]

≤ U

}

,

i.e., C(U) is the smallest time-average tracking error that is achievable using con-

trols whose time-average power is at most U . This gives a fundamental limit on the

performance of our tracking system under power constraints. The solution of these

problems, in a much more general context, is the topic of chapter 6.

The stock market: how to invest your money

Though the theoretical ideas behind Brownian motion are often attributed to Einstein,

the same model was developed several years earlier in a completely different con-

text by the French mathematician Louis Bachelier [Bac00].1 Bachelier was interested

in speculation on rentes (French government bonds), and introduced the Brownian

motion to model the fluctuations in the bond prices. Bachelier’s work forms the foun-

dation for much of the modern theory of mathematical finance, though his work was

virtually unknown to economists for more than half a century. These days mathe-

matical finance is an important application area for stochastic analysis and stochastic

control, and provides a rich source of interesting problems.

We will only consider stock. Companies issue stock in order to finance their op-

erations; the money made from the sale of stock can then be used by the company to

finance production, special projects, etc. In return, a certain portion of the profit made

by the company is periodically paid out to the shareholders (people who own stock

in the company). Such payments are called dividends. If the company is doing well

(e.g., if sales are soaring), then owning stock in the company is likely to be profitable.

This is only the beginning of the story, however. Any individual who owns stock

in a company can decide to sell his stock on a stock market. As you can imagine,

the going rate for a particular stock depends on how well the company is doing (or is

expected to do in the future). When the company is doing well, many people would

like to own stock (after all, there is a prospect of large dividends) while few people

who own stock are willing to sell. This drives up the market price of the stock. When

the company is not doing well, however, it is likely that more shareholders are willing

to sell than there is demand for the stock, so that the market price of the stock is low.

Due to these “market forces”, the stock prices tend to fluctuate randomly in the course

of time; see, for example, figure 0.2. Even if we ignore dividends (which we will do

to simplify matters), we can still try to make money on the stock market by buying

stock when the price is low and selling when the price is high.

There are now many interesting and pertinent questions that we can ask. For

example, how should we invest our money in the stock market to maximize our profit?

1An excellent annotated translation has recently appeared in [DE06].
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McDonald’s Corporation (MCD) Stock Prices 1970-2007

Figure 0.2. Market price of McDonald’s stock on the New York Stock Exchange (NYSE) over

the period 1999–2007 (upper plot) and 1970–2007 (lower plot). The stock price data for this

figure was obtained from Yahoo! Finance at finance.yahoo.com.

This is essentially a stochastic control problem, which was tackled in a famous paper

by Merton [Mer71]. A different class of questions concerns the pricing of options—a

sort of “insurance” issued on stock—and similar financial derivatives. The modern

theory of option pricing has its origins in the pioneering work of Black and Scholes

[BS73] and is an important problem in practice. There are many variations on these

and other topics, but they have at least one thing in common: their solution requires a

healthy dose of stochastic analysis.

For the time being, let us consider how to build a mathematical model for the stock

prices—a first step for further developments. Bachelier used Brownian motion for this

purpose. The problem with that model is that the stock prices are not guaranteed to

be positive, which is unrealistic; after all, nobody pays money to dispose of his stock.

Another issue to take into account is that even though this is not as visible on shorter

time scales, stock prices tend to grow exponentially on the long run: see figure 0.2.

Often this exponential rate will be larger than the interest rate we can obtain by putting

our money in the bank, which is a good reason to invest in stock (investing in stock

is not the same as gambling at a casino!) This suggests the following model for stock

prices, which is widely used: the price St at time t of a single unit of stock is given by

St = S0 exp

{(

µ− σ2

2

)

t+ σWt

}

,

where Wt is a Wiener process, and S0 > 0 (the initial price), µ > 0 (the return

rate), and σ > 0 (the volatility) are constants. A stochastic process of this form is

called geometric Brownian motion. Note that St is always positive, and moreover

E(St) = S0e
µt (exercise: you should already be able to verify this!) Hence evidently,
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on average, the stock makes money at rate µ. In practice, however, the price may

fluctuate quite far away from the average price, as determined by magnitude of the

volatility σ. This means that there is a probability that we will make money at a

rate much faster than µ, but we can also make money slower or even lose money. In

essence, a stock with large volatility is a risky investment, whereas a stock with small

volatility is a relatively sure investment. When methods of mathematical finance are

applied to real-world trading, parameters such as µ and σ are often estimated from

real stock market data (like the data shown in figure 0.2).

Beside investing in the stock St, we will also suppose that we have the option of

putting our money in the bank. The bank offers a fixed interest rate r > 0 on our

money: that is, if we initially put R0 dollars in the bank, then at time t we will have

Rt = R0 exp(rt)

dollars in our bank account. Often it will be the case that r < µ; that is, investing in

the stock will make us more money, on average, than if we put our money in the bank.

On the other hand, investing in stock is risky: there is some finite probability that we

will make less money than if we had invested in the bank.

Now that we have a model for the stock prices and for the bank, we need to be

able to calculate how much money we make using a particular investment strategy.

Suppose that we start initially with a capital ofX0 dollars. We are going to invest some

fraction θ0 of this money in stock, and the rest in the bank (i.e., we put (1 − θ0)X0

dollars in the bank, and we buy θ0X0/S0 units of stock). Then at time t, our total

wealth Xt (in dollars) amounts to

Xt = θ0X0 e
(µ−σ2/2)t+σWt + (1 − θ0)X0e

rt.

Now suppose that at this time we decide to reinvest our capital; i.e., we now invest a

fraction θt of our newly accumulated wealth Xt in the stock (we might need to either

buy or sell some of our stock to ensure this), and put the remainder in the bank. Then

at some time t′ > t, our total wealth becomes

Xt′ = θtXt e
(µ−σ2/2)(t′−t)+σ(Wt′−Wt) + (1 − θt)Xte

r(t′−t).

Similarly, if we choose to reinvest at the times 0 = t0 < t1 < · · · < tN−1 < tN = t,
then we find that our wealth at time t is given by

Xt = X0

N
∏

n=1

[

θtn−1 e
(µ−σ2/2)(tn−tn−1)+σ(Wtn−Wtn−1

) + (1 − θtn−1)e
r(tn−tn−1)

]

.

In principle, however, we should be able to decide at any point in time what fraction

of our money to invest in stock; i.e., to allow for the most general trading strategies

we need to generalize these expressions to the case where θt can vary continuously in

time. At this point we are not equipped to do this: we are missing a key mathematical

ingredient, the stochastic calculus (chapters 4 and 5). Once we have developed the

latter, we can start to pursue the answers to some of our basic questions.
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White noise, corrupted signals, and noise-driven systems

White noise and the Wiener process

Despite the fact that its mathematical description is somewhat elusive, the notion of

white noise is used widely in science and engineering. Indeed, you have most likely

encountered this idea in some form or another in the past. We will revisit it now and

exhibit some of the associated difficulties.

Perhaps the simplest notion of white noise is the one used in discrete time. Sup-

pose that we have some discrete time message {an} which we would like to transmit

to a receiver. During the transmission, however, the message becomes corrupted: for

example, any signal transmitted through a wire is subject to thermal noise, whereas

signals sent through radio-frequency transmission are subject to all sorts of environ-

mental disturbances. Now it is very often the case that each letter an of the message is

essentially corrupted independently. For example, the atmospheric disturbances tend

to fluctuate much faster than the rate at which we transmit the letters in our message, so

by the time we transmit the next letter an+1 we see a completely different disturbance.

In this case, we would model the signal observed by the receiver by xn = an + ξn,

where {ξn} are i.i.d. random variables with zero mean. If, in addition, we assume that

every disturbance is itself generated by many independent small effects, then the cen-

tral limit theorem suggests that ξn should be Gaussian random variables. In this case,

we say that {ξn} is discrete time white noise, or AWGN (“additive white Gaussian

noise”) in the language of communications theory.

How should we generalize this to the continuous time case? A first idea would be

to attach to every time t ∈ R+ an i.i.d. zero mean Gaussian random variable ξt (with

unit variance, say), just like we did in the discrete time case. Evidently we would have

E(ξsξt) = 0 if s 6= t and E(ξ2t ) = 1. Even putting aside the issue of mathematical

well-posedness of this process, we can see immediately that it would not be of much

use. Let us, hypothetically, take our process ξt and pass it through a signal processing

device which calculates its time average Ξε over an arbitrarily small interval [0, ε]:

Ξε =
1

ε

∫ ε

0

ξt dt.

Then obviously E(Ξε) = 0, but also

var(Ξε) = E(Ξ2
ε) =

1

ε2

∫ ε

0

∫ ε

0

E(ξsξt) ds dt = 0.

Hence suppose we transmit a letter a0 of our message in white noise: xt = a0 + ξt.
Then after an arbitrarily small time ε (i.e. as soon as we have data, however little), we

would be able to know exactly what a0 was simply by calculating the time average of

xt. Clearly ξt does not qualify as noise, so we dump it in the stack of bad ideas.2

2 Mathematically, the process ξt suggested in this paragraph is a mess. One could, at least in principle,
construct such a process using a technique known as Kolmogorov’s extension theorem. However, it turns
out that there is no way to do this in such a way that the sample paths t 7→ ξt are even remotely well-
behaved: such paths can never be measurable [Kal80, Example 1.2.5]. In particular, this implies that there
is, even in principle, no way in which we could possibly make mathematical sense of the time average of
this process (integration requires measurability, the integral of a non-measurable function is meaningless).
This resolves our little paradox, but also highlights that this sort of construction is manifestly useless.
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How, then, should we define white noise ξt in a meaningful way? Having learned

our lesson from the previous example, we might try to insist that the time average of

ξt is well defined. Inspired by AWGN, where in unit time the corrupting noise is a

zero mean Gaussian random variable (with unit variance, say), we could require that

the average white noise in unit time Ξ1 is a zero mean Gaussian random variable with

unit variance. We also want to insist that ξt retains its independence property: ξt and

ξs are i.i.d. for t 6= s. This means, in particular, that

∫ 1/2

0

ξt dt and

∫ 1

1/2

ξt dt

must both be Gaussian random variables with mean zero and variance 1/2 (after all,

their sum equals Ξ1 and they must be i.i.d.), etc. Proceeding along these lines (con-

vince yourself of this!), it is not difficult to conclude that
∫ t

0

ξs ds = Wt must be a Wiener process.

Hence we conjecture that the correct “definition” of white noise is: ξt is the time

derivative dWt/dt of a Wiener process Wt. Unfortunately for us, the Wiener process

turns out to be non-differentiable for almost every time t. Though we cannot prove

it yet, this is easily made plausible. Recall that Wt is a Gaussian random variable

with variance t; to calculate dWt/dt at t = 0, for example, we consider Wt/t and

let t → 0. But Wt/t is a Gaussian random variable with variance t−1, so clearly

something diverges as t→ 0. Apparently, we are as stuck as before.

Let us explore a little bit further. First, note that the covariance of the Wiener

process is3 E(WsWt) = s ∧ t. To see this, it suffices to note that for s ≤ t, Wt −Ws

and Ws are independent (why?), so E(WsWt) = E(W 2
s ) + E(Ws(Wt −Ws)) = s.

Let us now formally compute the covariance of white noise:

E(ξsξt) =
d

dt

d

ds
E(WsWt) =

d

dt

d

ds

s+ t− |t− s|
2

=
d

dt

1 + sign(t− s)

2
= δ(t−s),

where δ(t) is the Dirac delta “function”. This is precisely the defining property of

white noise as it is used in the engineering literature and in physics. Of course, the

non-differentiability of the Wiener process is driven home to us again: as you well

know, the Dirac delta “function” is not actually a function, but a distribution (general-

ized function), an object that we could never get directly from the theory of stochastic

processes. So the bad news is that despite the widespread use of white noise,

a mathematical model for white noise does not exist,

at least within the theory of stochastic processes.4 Fortunately there is also some good

news: as we will see below and throughout this course,

3 The lattice-theoretic notation a ∧ b = min(a, b) and a ∨ b = max(a, b) is very common in the
probability literature. We will adopt it throughout this course.

4 We could generalize our notion of a stochastic process to include random objects whose “sample
paths” can be, for example, tempered distributions. In the class of generalized stochastic processes one can
make sense of white noise (see [Hid80, HØUZ96], or [Arn74, sec. 3.2] for a simple introduction). This is
not particularly helpful, however, in most applications, and we will not take this route.
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almost anything we would like to do with white noise, including its ap-

plications in science and engineering, can be made rigorous by working

directly with the Wiener process.

For example, consider the transmission of a continuous-time signal at through white

noise ξt: i.e., the corrupted signal is formally given by xt = at + ξt. This quantity is

not mathematically meaningful, but we can integrate both sides and obtain

Xt =

∫ t

0

xs ds =

∫ t

0

as ds+

∫ t

0

ξs ds =

∫ t

0

as ds+Wt.

The right-hand side of this expression is mathematically meaningful and does not

involve the notion of white noise. At least formally, the process Xt should contain

the same information as xt: after all, the latter is obtained from the former by formal

differentiation. If we want to estimate the signal at from the observationsxt, we might

as well solve the same problem using Xt instead—the difference being that the latter

is a mathematically well-posed problem.

Why do we insist on using white noise? Just like in mathematics, true white noise

does not exist in nature; any noise encountered in real life has fairly regular sample

paths, and as such has some residual correlations between the value of the process at

different times. In the majority of applications, however, the correlation time of the

noise is very short compared to the other time scales in the problem: for example,

the thermal fluctuations in an electric wire are much faster than the rate at which we

send data through the wire. Similar intuition holds when we consider a dynamical

system, described by a differential equation, which is driven by noise whose random

fluctuations are much faster than the characteristic timescales of the dynamics (we will

return to this below). In such situations, the idea that we can approximate the noise

by white noise is an extremely useful idealization, even if it requires us to scramble a

little to make the resulting models fit into a firm mathematical framework.

The fact that white noise is (formally) independent at different times has far-

reaching consequences; for example, dynamical systems driven by white noise have

the Markov property, which is not the case if we use noise with a finite correlation

time. Such properties put extremely powerful mathematical tools at our disposal, and

allow us to solve problems in the white noise framework which would be completely

intractable in models where the noise has residual correlations. This will become

increasingly evident as we develop and apply the necessary mathematical machinery.

Tracking revisited

Let us return for a moment to the problem of tracking a diffusing particle through a

microscope. Previously we tried to keep the particle in the field of view by modifying

the position of the microscope slide based on our knowledge of the location of the par-

ticle. In the choice of a feedback strategy, there was a tradeoff between the necessary

feedback power and the resulting tracking error.

The following is an interesting variation on this problem. In biophysics, it is of sig-

nificant interest to study the dynamical properties of individual biomolecules—such

as single proteins, strands of DNA or RNA—in solution. The dynamical properties
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Figure 0.3. Optimal feedback control strategies with full (left) and partial (right) information.

In the full information case, the control signal is a function of the state of the system. In the

partial information case, the observation process is first used to form an estimate of the state of

the system; the control signal is then a function of this estimate.

of these molecules provide some amount of insight into protein folding, DNA repli-

cation, etc. Usually, what one does is to attach one or several fluorescent dyes to the

molecules of interest. Using a suitably designed microscope, a laser beam is focused

on a dilute sample containing such molecules, and the fluorescent light is captured

and detected using a photodetector. The molecules perform Brownian motion in the

solution, and occasionally one of the molecules will randomly drift into the focus of

the laser beam. During the period of time that the molecule spends in the focus of the

beam, data can be collected which is subsequently analyzed to search for signatures of

the dynamical behavior of interest. The problem is that the molecules never stay in the

beam focus very long, so that not much data can be taken from any single molecule

at a time. One solution to this problem is to anchor the molecules to a surface so

that they cannot move around in solution. It is unclear, however, that this does not

significantly modify the dynamical properties of interest.

A different solution—you guessed it—is to try to follow the molecules around

in the solution by moving around the microscope slide (see [BM04] and references

therein). Compared to our previous discussion of this problem, however, there is now

an additional complication. Previously we assumed that we could see the position of

the particle under the microscope; this information determined how we should choose

the control signal. When we track a single molecule, however, we do not really “see”

the molecule; the only thing available to us is the fluorescence data from the laser,

which is inherently noisy (“shot noise”). Using a suitable modulation scheme [BM04],

we can engineer the system so that to good approximation the position data at our

disposal is given by yt = βxt + ξt, where ξt is white noise, xt is the distance of the

molecule to the center of the slide, and β is the signal-to-noise ratio. As usual, we

make this rigorous by considering the integrated observation signal

Yt =

∫ t

0

ys ds =

∫ t

0

βxs ds+Wt.

Our goal is now to minimize a cost function of the form J∞[u], for example, but with

an additional constraint: our feedback strategy ut is only allowed to depend on the
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Figure 0.4. Setup for the transmission of a message over a noisy channel. We get to choose the

encoder and the decoder; moreover, the encoder has access to the corrupted signal observed by

the decoder. How should we design the system to minimize the transmission error?

past observations, i.e., on the process Ys on the interval s ∈ [0, t]. Compared to our

previous discussion, where we were allowed to base our feedback strategy directly on

the particle position xs, we have apparently lost information, and this will additionally

limit the performance of our control strategy.

At first sight, one could expect that the optimal control strategy in the case of

observation-based feedback would be some complicated functional of the observation

history. Fortunately, it turns out that the optimal control has a very intuitive structure,

see figure 0.3. The controller splits naturally into two parts. First, the observations are

used to form an estimate of the state of the system (i.e., the position of the molecule).

Then the control signal is chosen as a function of this estimate. This structure is quite

universal, and is often referred to as the separation principle of stochastic control.

It also highlights the fact that filtering—the estimation of a stochastic process from

noisy observations—is intimately related with stochastic control. Filtering theory is

an interesting and important topic on its own right; it will be studied in detail in chapter

7, as well as the connection with control with partial observations.

Transmitting a message over a noisy channel

A somewhat nonstandard control problem appears in communications theory, see fig-

ure 0.4. We would like to transmit a message θt over a noisy channel. If we were to

send the message directly over the channel, the receiver would see the corrupted mes-

sage yt = θt + ξt where ξt is white noise; what remains is a filtering problem, where

the receiver attempts to form an estimate θ̂t of the message from the noisy signal.

We are free, however, to encode the message in any way we want at the transmit-

ter side: i.e., we transmit the encoded message At(θ) over the channel, so that the

receiver sees yt = At(θ) + ξt. We then have to design a decoder on the other end

to extract the encoded message appropriately from the noisy signal. The problem be-

comes even more interesting if the encoder can see the corrupted signal observed by

the receiver; in this case, the encoded message takes the form At(θ, y) (we speak of

a noisy channel with noiseless feedback). The questions are obvious: how should we

design the encoder-decoder pair to minimize the error between the true message θt

and the decoded message θ̂t, and what is the optimal performance? Note that just as

in the tracking example, we will have to impose some restriction on the signal power,
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for example, we could impose a constraint of the form

E

[

1

T

∫ T

0

At(θ, y)
2 dt

]

≤ U.

After all, if we do not do this then we could transmit an arbitrarily strong signal

through the channel, and an optimal solution would be to transmit the message θt

directly through the channel with an infinite signal-to-noise ratio. With a power con-

straint in place, however, there will be a fundamental limitation on the achievable

performance. We will see that these problems can be worked out in detail, for exam-

ple, if the message θt is modelled as a Gaussian process (see, e.g., [LS01b]).

Changepoint detection and hypothesis testing

Suppose we have a device which exhibits an abrupt change of behavior at a certain

random time. For example, imagine a production line in a factory where one of the

machines along the line breaks down; a computer network that suddenly gets attacked

by hackers; or an atom in a quantum optics laboratory which spontaneously emits a

photon. We would like to detect when the change occurs so that we can take appro-

priate measures; for example, if one of the machines in the factory breaks down, we

should fix it. Often, however, we cannot directly observe when the change occurs; all

we have available to us is noisy data. In the factory case, we would observe what per-

centage of the production is defective; in the network case we are trying to observe a

change in the network traffic; and in the case of an atom we are observing a photocur-

rent with the associated shot noise. In all these cases we are faced with the problem of

distinguishing an abnormal change from the normal fluctuations in the observed data.

In statistics this is known as the problem of changepoint detection.

To model the problem, suppose that the abrupt change occurs at a time τ , which

is randomly distributed according to a suitable law. The signal that we are allowed to

observe is of the form yt = α1t≥τ + ξt, where α > 0, ξt is white noise and 1t≥τ = 1
if t ≥ τ and 0 otherwise. Our goal is to find a time ϑ which depends only on the

observations yt and which is close to τ in an appropriate sense.

In choosing ϑ there are two conflicting considerations. First, we would like to

minimize the probability of ϑ < τ , i.e., of deciding to intervene before the change

has actually occured. Clearly trying to repair a machine which is operating perfectly

well is a waste of time and money. On the other hand, if ϑ ≥ τ , we do not want the

detection delay ϑ − τ to be too large; if we wait longer than necessary to repair the

machine, we will waste expensive material and produce a lot of defective merchandise.

To formalize these considerations, we could introduce a cost functional of the form

J [ϑ] = pP[ϑ < τ ] + q E[ϑ− τ |ϑ ≥ τ ] P[ϑ ≥ τ ].

The goal is then to choose ϑ that minimizes J [ϑ], and the choice of p and q determine

the relative importance of achieving a low false alarm rate or a short detection delay.

Alternatively, we could ask: given that we tolerate a fixed false alarm rate, how should

we choose ϑ is minimize the detection delay? Note that these considerations are

very similar to the ones we discussed in the tracking problem, where the tradeoff was
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between achieving good tracking performance and low feedback power. Indeed, in

many ways this type of problem is just like a control problem, except that the control

action in this case is the time at which we decide to intervene rather than the choice

of a feedback strategy. Similarly, the separation principle and filtering theory play an

important role in the solution of this problem (due to Shiryaev [Shi73]).

A related idea is the problem of hypothesis testing. Here we are given noisy data,

and our job is to decide whether there is a signal buried in the noise. To be more

precise, we have two hypotheses: under the null hypothesisH0, the observations have

the form yt = ξt where ξt is white noise; under the alternative hypothesis H1 there is

a given signal θt buried in the noise, i.e., yt = θt + ξt. Such a scenario occurs quite

often, for example, in surveillance and target detection, gravitational wave detection,

etc. It is our goal to determine whether the hypothesis H0 or H1 is correct after

observing yt some time ϑ. Once again we have conflicting interests; on the one hand,

we would like to make a pronouncement on the matter as soon as possible (ϑ should

be small), while on the other hand we would like to minimize the probability that we

obtain the wrong answer (we chooseH0 while H1 is true, and vice versa). The rest of

the story is much as before; for example, we can try to find the hypothesis test which

takes the least time ϑ under the constraint that we are willing to tolerate at most some

given probability α of selecting the wrong hypothesis.

Both these problems are examples of optimal stopping problems: control prob-

lems where the goal is to select a suitable stopping time ϑ. Optimal stopping theory

has important applications not only in statistics, but also in mathematical finance and

in several other fields. We can also combine these ideas with more traditional con-

trol theory as follows. Suppose that we wish to control a system (for example our

favorite tracking system) not by applying continuous feedback, but by applying feed-

back impulses at a set of discrete times. The question now becomes: at which times

can we best apply the control, and what control should we apply at those times? Such

problems are known as impulse control problems, and are closely related to optimal

stopping problems. Optimal stopping and impulse control are the topics of chapter 8.

Stochastic differential equations

In the previous sections we have discussed some applications of the Wiener process

and its use in white noise modelling. In each example, the Brownian motion or white

noise were used “as is”; in the tracking and finance examples the dynamics of interest

was itself a Wiener process, whereas in the remaining examples pure white noise was

used as a model for signal corruption. We have left for last what is perhaps the most

important (and widely used) form of stochastic modelling in continuous time: the use

of white noise as a driving force for differential equations. The theory of stochastic

differential equations is extremely flexible and emerges naturally in a wide range of

applications; it is thus not surprising that it is the basic tool in the modelling and

analysis of a large number of stochastic systems.

The basic idea is very simple: we would like to give meaning to the solution xt of

dxt

dt
= b(t, xt) + σ(t, xt) ξt,
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where b and σ are given (sufficiently smooth) functions and ξt is white noise. Such

an equation could be interesting for many reasons; in particular, one would expect to

obtain such an equation from any deterministic model

dxt

dt
= b(t, xt) + σ(t, xt)ut,

where ut is some input to the system, when the input signal is noisy (but we will see

that there are some subtleties here—see below). If σ = 0, our stochastic equation is

just an ordinary differential equation, and we can establish existence and uniqueness

of solutions using standard methods (notably Picard iteration for the existence ques-

tion). When σ 6= 0, however, the equation as written does not even make sense: that

infernal nuisance, the formal white noise ξt, requires proper interpretation.

Let us first consider the case where σ(t, x) = σ is a constant, i.e.,

dxt

dt
= b(t, xt) + σξt.

This additive noise model is quite common: for example, if we model a particle with

mass m in a potential V (x), experiencing a noisy force Ft = σξt (e.g., thermal noise)

and a friction coefficient k, then the particle’s position and momentum satisfy

dxt

dt
= m−1pt,

dpt

dt
= −dV

dx
(xt) − kpt + σξt.

How should we interpret such an equation? Let us begin by integrating both sides:

xt = x0 +

∫ t

0

b(s, xs) ds+ σWt,

where Wt is a Wiener process. Now this equation makes sense! We will say that the

stochastic differential equation

dxt = b(t, xt) dt+ σ dWt

has a unique solution, if there is a unique stochastic process xt that satisfies the associ-

ated integral equation. The differential notation dxt, etc., reminds us that we think of

this equation as a sort of differential equation, but it is important to realize that this is

just notation: stochastic differential equations are not actually differential equations,

but integral equations like the one above. We could never have a “real” stochastic

differential equation, because clearly xt cannot be differentiable!

For additive noise models, it is not difficult to establish existence and uniqueness

of solutions; in fact, one can more or less copy the proof in the deterministic case

(Picard iteration, etc.) However, even if we can give meaning to such an equation,

we are lacking some crucial analysis tools. In the deterministic theory, we have a key

tool at our disposal that allows us to manipulate differential equations: undergraduate

calculus, and in particular, that wonderful chain rule! Here, however, the chain rule

will get us in trouble; for example, let us naively calculate the equation for x2
t :

d

dt
x2

t
?
= 2xt

dxt

dt
= 2xt b(t, xt) + 2σxt ξt.
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This is no longer an additive noise model, and we are faced with the problem of giving

meaning to the rather puzzling object

∫ t

0

xs ξs ds = ??.

The resolution of this issue is key to almost all of the theory in this course! Once we

have a satisfactory definition of such an integral (chapter 4), we are in a position to

define general stochastic differential equations (chapter 5), and to develop a stochastic

calculus that allows us to manipulate stochastic differential equations as easily as

their deterministic counterparts. Here we are following in the footsteps of Kiyosi Itô

[Itô44], whose name we will encounter frequently throughout this course.

In chapter 4 we will define a new type of integral, the Itô integral

∫ t

0

xs dWs,

which will play the role of a white noise integral in our theory. We will see that this

integral has many nice properties; e.g., it has zero mean, and will actually turn out to

be a martingale. We will also find a change of variables formula for the Itô integral,

just like the chain rule in ordinary calculus. The Itô change of variables formula,

however, is not the same as the ordinary chain rule: for example, for any f ∈ C2

df(Wt) = f ′(Wt) dWt + 1
2f

′′(Wt) dt,

while the usual chain rule would only give the first term on the right. This is not

surprising, however, because the ordinary chain rule cannot be correct (at least if we

insist that our stochastic integral has zero mean). After all, if the chain rule were

correct, the variance of Wt could be calculated as

var(Wt) = E(W 2
t ) = E

[

2

∫ t

0

Ws dWs

]

= 0,

which is clearly untrue. The formula above, however, gives the correct answer

var(Wt) = E(W 2
t ) = E

[

2

∫ t

0

Ws dWs +

∫ t

0

ds

]

= t.

Evidently things work a little differently in the stochastic setting than we are used to;

but nonetheless our tools will be almost as powerful and easy to use as their determin-

istic counterparts—as long as we are careful!

The reader is probably left wondering at this point whether we did not get a little

carried away. We started from the intuitive idea of an ordinary differential equation

driven by noise. We then concluded that we can not make sense of this as a true

differential equation, but only as an integral equation. Next, we concluded that we

didn’t really know what this integral is supposed to be, so we proceeded to make one

up. Now we have finally reduced the notion of a stochastic differential equation to a

mathematically meaningful form, but it is unclear that the objects we have introduced

bear any resemblance to the intuitive picture of a noisy differential equation.
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To justify our models, let us consider a differential equation driven by a random

process ξε
t with (piecewise) continuous sample paths:

dxε
t

dt
= b(t, xε

t ) + σ(t, xε
t ) ξ

ε
t .

This is just a nonautonomous ordinary differential equation, and can be solved in

the usual way. The idea is now to assume that ξε
t fluctuates so fast, that it is well

approximated by white noise: to be more precise, we assume that ξε
t = dW ε

t /dt,
where W ε

t converges to a Wiener process in a suitable sense as ε→ 0. Obviously the

limit of ξε
t as ε → 0 cannot exist. Nonetheless the limit of xε

t as ε → 0 is usually

perfectly well defined (in a suitable sense), and xt = limε→0 x
ε
t can in fact be shown

to satisfy an Itô stochastic differential equation. Hence our use of the Itô theory is well

justified in hindsight: we can indeed use it to approximate differential equations driven

by rapidly fluctuating non-white noise. There are significant advantages to making the

white noise approximation, however: for one, the process xt turns out to be a Markov

process, whereas this is certainly not the case for xε
t . The Markov property is crucial

in the development of stochastic control and filtering theory—these and many other

developments would be completely intractable if we worked directly with xε
t .

What is perhaps surprising is that the limiting equation for xt is not the one we

expect. In fact, xt will satisfy the stochastic differential equation [WZ65]

dxt = b(t, xt) dt+ 1
2σ

′(t, xt)σ(t, xt) dt+ σ(t, xt) dWt,

where σ′(t, x) = dσ(t, x)/dx. The second term on the right is known as the Wong-

Zakai correction term, and our naive interpretation of stochastic differential equations

cannot account for it! Nonetheless it is not so strange that it is there. To convince

yourself of this, note that xε
t must satisfy the ordinary chain rule: for example,

dxε
t

dt
= Axε

t +Bxε
t ξ

ε
t ,

d(xε
t )

2

dt
= 2A(xε

t )
2 + 2B(xε

t )
2 ξε

t .

If we take the limit as ε→ 0, we get using the Wong-Zakai correction term

dxt = (A+ 1
2B

2)xt dt+Bxt dWt, d(xt)
2 = (2A+2B2)(xt)

2dt+2B(xt)
2dWt.

If the ordinary chain rule held for xt as well, then we would be in trouble: the latter

equation has an excess term B2(xt)
2dt. But the ordinary chain rule does not hold for

xt, and the additional term in the Itô change of variables formula gives precisely the

additional term B2(xt)
2dt. Some minor miracles may or may not have occured, but

at the end of the day everything is consistent—as long as we are sufficiently careful!

Regardless of how we arrive at our stochastic differential equation model—be it

through some limiting procedure, through an empirical modelling effort, or by some

other means—we can now take such an equation as our starting point and develop

stochastic control and filtering machinery in that context. Almost all the examples that

we have discussed require us to use stochastic differential equations at some point in

the analysis; it is difficult to do anything without these basic tools. If you must choose

to retain only one thing from this course, then it is this: remember how stochastic

calculus and differential equations work, because they are ubiquitous.
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An outline of this course

Now that you have a flavor of things to come, little remains but to dive in. This

introductory chapter has necessarily been a little vague at points; things will become

increasingly clear and precise as we make our way through the theory.

We will begin, in chapter 1, by reviewing the basic tools of mathematical prob-

ability theory. Perhaps the theory will be presented a little more formally than you

have seen in previous courses, but a measure-theoretic approach to probability will be

indispensible in the remaining chapters. Chapter 2 introduces some more of the basic

tools: conditional expectations, martingales, stochastic processes, and stopping times.

Chapters 1 and 2 together provide a crash course in the fundamentals of probability

theory; much of this material may be known to you already—the more the better!

In chapter 3 we will discuss the Wiener process. Mostly we will prove that it

actually exists—a nontrivial exercise!—and investigate some of its properties.

Chapters 4 and 5 are the most important chapters of this course. They introduce

the Itô integral and stochastic differential equations, respectively. We will also discuss

some of the most important theorems in stochastic analysis, Girsanov’s theorem and

the martingale representation theorem, that you absolutely cannot live without. On the

side we will learn some useful tricks, such as how to simulate stochastic differential

equations in MATLAB, and how Lyapunov function methods can be extended to the

stochastic case (which allows us to do some simple nonlinear stochastic control).

The remainder of the course centers around stochastic control and filtering. Chap-

ter 6 introduces the basic methods of optimal stochastic control, which will allow us to

solve problems such as the tracking example (with full observations) and some prob-

lems in finance. Chapter 7 develops filtering theory and its connection with control.

Finally, chapter 8 discusses optimal stopping and impulse control problems.
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Review of Probability Theory

This chapter is about basic probability theory: probability spaces, random variables,

limit theorems. Much of this material will already be known to you from a previous

probability course. Nonetheless it will be important to formalize some of the topics

that are often treated on a more intuitive level in introductory courses; particularly the

measure-theoretic apparatus, which forms the foundation for mathematical probabil-

ity theory, will be indispensible. If you already know this material, you can skip to

chapter 2; if not, this chapter should contain enough material to get you started.

Why do we need the abstraction provided by measure theory? In your undergrad-

uate probability course, you likely encountered mostly discrete or real-valued random

variables. In the former case, we can simply assign to every possible outcome of a

random variable a probability; taking expectations is then easy! In the latter case, you

probably worked with probability densities, i.e.,

Prob(X ∈ [a, b]) =

∫ b

a

pX(x) dx, E(X) =

∫ ∞

−∞

x pX (x) dx, (1.0.1)

where pX is the density of the real-valued random variable X . Though both of these

are special cases of the general measure-theoretic framework, one can often easily

make do without the general theory.

Unfortunately, this simple form of probability theory will simply not do for our

purposes. For example, consider the Wiener process Wt. The map t 7→ Wt is not a

random number, but a random sample path. If we wanted to describe the law of this

random path by a probability density, the latter would be a function on the space of

continuous paths. But how can we then make sense of expressions such as eq. (1.0.1)?

What does it mean to integrate a function over the space of continuous paths, or to take

limits of such functions? Such questions have to be resolved before we can move on.

18
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1.1 Probability spaces and events

To build a probability model, we need at least three ingredients. We need to know:

• What are all the things that could possibly happen?

• What sensible yes-no questions can we ask about these things?

• For any such question, what is the probability that the answer is yes?

The first point on the agenda is formalized by specifying a set Ω. Every element

ω ∈ Ω symbolizes one possible fate of the model.

Example 1.1.1. A coin flip could be modelled by Ω = {heads, tails}, a roll of a single

die by Ω = {1, 2, 3, 4, 5, 6}, a roll of two dice (or of the same die twice in a row!) by

Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}.

Example 1.1.2. The position of the particle in a fluid could be modelled by Ω = R3.

Example 1.1.3. The random motion of the particle in a fluid could be modelled using

Ω = C([0,∞[; R3), the space of R3-valued continuous functions of time [0,∞[.

Once we have specified Ω, any yes-no question is represented by the subset of Ω
consisting of those ω ∈ Ω for which the answer is yes.

Example 1.1.4. Suppose we throw a die, so Ω = {1, 2, 3, 4, 5, 6}. The question did

we throw a three? is represented by the subset {3}, did we throw a three or a six? by

{3, 6}, did we throw an even number? by {2, 4, 6}, etc. You get the picture.

We need to specify what yes-no questions make sense. We will collect all sensible

yes-no questions in a set F , i.e., F is a set of subsets of Ω. Not every such F qualifies,

however. Suppose that A,B ⊂ Ω are sensible. Then A and B? and A or B? should

also be sensible questions to ask.1 Convince yourself that A and B? is precisely the

question A ∩ B, and A or B? is the question A ∪ B. Similarly, if A ⊂ Ω is a

sensible question, its complement not A? should also make sense; the latter is clearly

equivalent to Ac ≡ Ω\A. Finally, the deep question Ω (is anything true?) should

always be allowed. Except for a small addition, we have grasped the right concept.

Definition 1.1.5. A σ-algebra F is a collection of subsets of Ω such that

1. If An ∈ F for countable n, then
⋃

nAn ∈ F .

2. If A ∈ F , then Ac ∈ F .

3. Ω ∈ F .

An element A ∈ F is called an (F-)measurable set or an event.

1 A curiosity: in quantum mechanics, this is not true—this is a major difference between quantum
probability and classical probability. Now that you have read this footnote, be sure to forget it.
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The second and third condition are exactly as discussed above. In the first condi-

tion, we have allowed not only A or B?, but also A1 or A2 or A3 or . . .?, as long as

the number of questions An are countable. This is desirable: suppose, for example,

that Ω = N, and that {n} ∈ F for any n ∈ N (is it three? is it six? . . .); then it would

be a little strange if we could not answer the question {2n : n ∈ N} (is it an even

number?). Note that the fact that F is closed under countable intersections (ands)

follows from the definition: after all,
⋂

nAn = (
⋃

nA
c
n)c.

Example 1.1.6. Let Ω be any set. Then the power set F = {A : A ⊂ Ω} (the

collection of all subsets of Ω) is a σ-algebra.

We can make more interesting σ-algebras as follows.

Definition 1.1.7. Let {Ai} be a (not necessarily countable) collection of subsets of

Ω. Then F = σ{Ai} denotes the smallest σ-algebra that contains every set Ai, and is

called the σ-algebra generated by {Ai}.

It is perhaps not entirely obvious that σ{Ai} exists or is uniquely defined. But

note that the power set contains all Ai ⊂ Ω, so that there exists at least one σ-algebra

that contains all Ai. For uniqueness, note that if {Fj} is a (not necessarily countable)

collection of σ-algebras, then
⋂

j Fj is also a σ-algebra (check this!) So σ{Ai} is

uniquely defined as the intersection of all σ-algebras that contain all Ai.

Example 1.1.8. Let Ω = {1, 2, 3, 4, 5, 6}. Then the σ-algebra generated by {1} and

{4} is σ{{1}, {4}} = {∅, {1}, {4}, {1}c, {4}c, {1, 4}, {1, 4}c,Ω}. Interpretation: if

I can answer the questions did we throw a one? and did we throw a four?, then I can

immediately answer all the questions in σ{{1}, {4}}. We think of σ{{1}, {4}} as

encoding the information contained in the observation of {1} and {4}.

This example demonstrates that even if our main σ-algebra is large—in the ex-

ample of throwing a die, one would normally choose the σ-algebra F of all sensible

questions to be the power set—it is natural to use subalgebras of F to specify what

(limited) information is actually available to us from making certain observations.

This idea is very important and will come back again and again.

Example 1.1.9. Let Ω be a topological space. Then σ{A ⊂ Ω : A is an open set} is

called the Borel σ-algebra on Ω, denoted as B(Ω).

When we work with continuous spaces, such as Ω = R or Ω = C([0,∞[; R3)
(with its natural topology of uniform convergence on compact sets), we will usually

choose the σ-algebra F of sensible events to be the Borel σ-algebra.

Remark 1.1.10. This brings up a point that has probably puzzled you a little. What

is all this fuss about “sensible” events (yes-no questions)? If we think of Ω as the

set of all possible fates of the system, then why should any event A ⊂ Ω fail to be

sensible? In particular, why not always choose F to be the power set? The answer

to this question might not be very satisfying. The fact of the matter is that, as was

learned the hard way, it is essentially impossible to build a consistent theory if F
contains too many sets. We will come back to this very briefly below and give a
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slightly more satisfying answer. This also provides an excuse for another potentially

puzzling aspect: why do we only allow countable unions in the definition of the σ-

algebra, not uncountable unions? Note that if F had to be closed under uncountable

unions, and contained all individual points of Ω (surely a desirable state of affairs),

then F would be the power set and we would be in trouble. If you are interested

in this sort of thing, you will find plenty written about this in the literature. We will

accept it as a fact of life, however, that the power set is too large; fortunately, the Borel

σ-algebra is an extremely rich object and is more than sufficient for most purposes.

It remains to complete the final point on our agenda: we need to assign a proba-

bility to every event in F . Of course, this has to be done in a consistent way. If A
and B are two mutually exclusive events (A ∩ B = ∅), then it must be the case that

the probability of A or B? is the sum of the individual probabilities. This leads to the

following definition, which should look very familiar.

Definition 1.1.11. A probability measure is a map P : F → [0, 1] such that

1. For countable {An} s.t. An ∩ Am = ∅ for n 6= m, P(
⋃

nAn) =
∑

n P(An).

2. P(∅) = 0, P(Ω) = 1.

The first property is known as countable additivity. It is fundamental to the inter-

pretation of the theory but also to its mathematical structure: this property will allow

us to take limits, and we will spend a lot of time taking limits in this course.

Definition 1.1.12. A probability space is a triple (Ω,F ,P).

The simplest examples are the point mass and a finite probability space.

Example 1.1.13. Let Ω be any set and F be any σ-algebra. Fix some ω̃ ∈ Ω. Define

P as follows: P(A) = 1 if ω̃ ∈ A, and P(A) = 0 otherwise. Then P is a probability

measure, called the point mass on ω̃. Intuitively, this corresponds to the situation

where the fate ω̃ always happens (P is a “deterministic” measure).

Example 1.1.14. Let Ω be a finite set, and F be the power set of Ω. Then any proba-

bility measure on Ω can be constructed as follows. First, specify for every pointω ∈ Ω
a probability P({ω}) ∈ [0, 1], such that

∑

ω∈Ω P({ω}) = 1. We can now extend this

map P to all of F by using the additivity property: after all, any subset of Ω is the dis-

joint union of a finite number of sets {ω}, so we must have P(A) =
∑

ω∈A P({ω}).

This example demonstrates a basic idea: in order to define P, it is not necessary

to go through the effort of specifying P(A) for every element A ∈ F ; it is usually

enough to specify the measure on a much smaller class of sets G ⊂ F , and if G is

large enough there will exist only one measure that is consistent with the information

provided. For example, if Ω is finite, then G = {{ω} : ω ∈ Ω} is a suitable class.

When Ω is continuous, however, specifying the probability of each point {ω} is

clearly not enough. Consider, for example, the uniform distribution on [0, 1]: the

probability of any isolated point {ω} should surely be zero! Nonetheless a similar

idea holds also in this case, but we have to choose G a little more carefully. For the
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case when Ω = R and F = B(R), the Borel σ-algebra on R, the appropriate result

is stated as the following theorem. The proof of this theorem is far beyond our scope,

though it is well worth the effort; see [Bil86, Theorem 12.4].

Theorem 1.1.15. Let P be a probability measure on (R,B(R)). Then the function

F (x) = P(]−∞, x]) is nondecreasing, right-continuous, andF (x) → 0 as x → −∞,

F (x) → 1 as x → ∞. Conversely, for any function F (x) with these properties, there

exists a unique probability measure P on (R,B(R)) such that F (x) = P(] −∞, x]).

You must have encountered the function F (x) in your introductory probability

course: this is the cumulative distribution function (CDF) for the measure P on R.

Theorem 1.1.15 forms a link between introductory probability, which centers around

objects such as F (x), and more advanced probability based on measure spaces.

In this course we will never need to construct probability measures directly on

more complicated spaces than R. As we will see, various techniques allow us to

construct more complicated probability spaces from simpler ones.

Example 1.1.16. The simple Gaussian probability space with mean µ ∈ R and vari-

ance σ > 0 is given by (Ω,F ,P) with Ω = R, F = B(R), and P is constructed

through Theorem 1.1.15 using F (x) = 1
2 + 1

2 erf((x− µ)/σ
√

2).

Remark 1.1.17. We can now say a little more about the discussion in remark 1.1.10.

Suppose we took Ω = R, say, and we took F to be the power set. What would go

wrong? It turns out that there do not exist any probability measures on the power set

of R such that P({x}) = 0 for all x ∈ R. This is shown by Banach and Kuratowski

[BK29]; for more information, see [Dud02, Appendix C] or [Bir67, sec. XI.7]. This

means that if we wanted to work with the power set, the probability mass could at best

concentrate only on a countable number of points; but then we might as well choose

Ω to be the set of those points, and discard the rest of R. The proof of Banach and

Kuratowski assumes the continuum hypothesis, so might be open to some mathemat-

ical bickering; but at the end of the day it seems pretty clear that we are not going to

be able to do anything useful with the power set. For us, the case is now closed.

1.2 Some elementary properties

Now that our basic definitions are in place, we can start pushing them around. The

following results are extremely simple and extremely useful; they are direct conse-

quences of our definitions and some set manipulation gymnastics! If you have never

seen these before, take a piece of scratch paper and try to prove them yourself.

Lemma 1.2.1. Let (Ω,F ,P) be a probability space.

1. A ∈ F =⇒ P(Ac) = 1 − P(A).

2. A,B ∈ F , A ⊂ B =⇒ P(A) ≤ P(B).

3. {An} ⊂ F countable =⇒ P(
⋃

nAn) ≤∑n P(An).

4. A1 ⊂ A2 ⊂ · · · ∈ F =⇒ limn→∞ P(An) = P(
⋃

nAn).
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5. A1 ⊃ A2 ⊃ · · · ∈ F =⇒ limn→∞ P(An) = P(
⋂

nAn).

Proof.

1. Ω = A ∪ Ac and A ∩Ac = ∅, so 1 = P(Ω) = P(A) + P(Ac).

2. B = A ∪ (B\A) and A ∩ (B\A) = ∅, so P(B) = P(A) + P(B\A) ≥ P(A).

3. Assume without loss of generality that n ∈ N ({An} is a sequence). We construct sets

{Bn} that are disjoint, i.e., Bn ∩ Bm = ∅ for m 6= n, but such that
⋃

k Ak =
⋃

k Bk:

choose B1 = A1, B2 = A2\A1, B3 = A3\(A1 ∪A2), . . . But note that Bk ⊂ Ak for

any k. Hence P(Bk) ≤ P(Ak), and we obtain

P

(⋃

k

Ak

)
= P

(⋃

k

Bk

)
=
∑

k

P(Bk) ≤
∑

k

P(Ak).

4. WriteB1 = A1,Bk = Ak\Ak−1, so P(Bk) = P(Ak)−P(Ak−1). The Bk are disjoint

and their union is the union of the Ak, so we obtain

P

(⋃

k

Ak

)
= P

(⋃

k

Bk

)
= P(A1) +

∞∑

k=2

{P(Ak) − P(Ak−1)} = lim
k→∞

P(Ak).

5. Use
⋂

n An = (
⋃

n A
c
n)c and the previous result.

The following simple corollary is worth emphasizing.

Corollary 1.2.2. Let (Ω,F ,P) be a probab. space, and let {An} ⊂ F be countable.

1. If P(An) = 0 for all n, then P(
⋃

nAn) = 0.

2. If P(An) = 1 for all n, then P(
⋂

nAn) = 1.

In words: if every event An has zero probability of happening, then with unit proba-

bility none of these events happen. If every event An happens with unit probability,

then the probability that all these events occur simultaneously is one.

Remark 1.2.3. This may seem a tautology, but it is nice to see that our intuition

is faithfully encoded in the mathematics. More importantly, however, note that the

statement is not true for uncountable families {An}. For example, under the uniform

distribution on [0, 1], any individual outcome {x} has zero probability of occuring.

However, the probability that one of these outcomes occurs is P([0, 1]) = 1!

Let us now introduce another useful concept. Suppose that {An} ⊂ F is a se-

quence of measurable sets. We would like to know: what is the set of points ω ∈ Ω
which are an element of infinitely many of the An? Sometimes this set is denoted as

{ω ∈ Ω : ω ∈ An i.o.}, where i.o. stands for infinitely often. We will find that this

concept is very useful in proving convergence of a sequence of random variables.

Let us characterize this set. For some ω ∈ Ω, clearly ω ∈ An infinitely often if

and only if for any n, there is an N(n, ω) ≥ n such that ω ∈ AN(n,ω). That is,

ω ∈ An i.o. ⇐⇒ ω ∈
⋃

k≥n

Ak ∀n ⇐⇒ ω ∈
⋂

n≥1

⋃

k≥n

Ak.
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The rightmost set is called lim supAk , in analogy with the limit superior of a sequence

of numbers. We have thus established:

{ω ∈ Ω : ω ∈ An i.o.} =
⋂

n≥1

⋃

k≥n

Ak = lim supAk.

This also proves measurability, i.e., {ω ∈ Ω : ω ∈ An i.o.} ∈ F (why?). This was

not entirely obvious to begin with!

We can now prove various results for this set; for example, you should prove that

P(lim supAk) ≥ lim sup P(Ak). The most useful result, however, is the following.

Lemma 1.2.4 (Borel-Cantelli). If
∑

n P(An) <∞, then P(lim supAn) = 0.

Proof. Simply use lemma 1.2.1:

P(lim supAn) = P


⋂

n≥1

⋃

k≥n

Ak


 = lim

n→∞
P


⋃

k≥n

Ak


 ≤ lim

n→∞

∑

k≥n

P(Ak) = 0,

where we have used that
⋃

k≥n Ak is a nonincreasing sequence of sets.

1.3 Random variables and expectation values

The next most important ingredient in probability theory is the random variable. If

(Ω,F ,P) describes all possible fates of the system as a whole and their probabilities,

then random variables describe concrete observations that we can make on the system.

That is, suppose that we have a measurement apparatus that returns an element in some

set S; for example, it could measure a real number (such as a measurement of distance

using a ruler), a point on the circle (measuring an angle), a point in a finite set, and

entire trajectory, . . . The outcome of such a measurement is described by specifying

what value it takes for every possible fate of the system ω ∈ Ω.

Definition 1.3.1. An (F-)measurable function is a map f : Ω → S from (Ω,F) to

(S,S) such that f−1(A) ≡ {ω ∈ Ω : f(ω) ∈ A} ∈ F for every A ∈ S. If (Ω,F ,P)
is a probability space and (S,S) is a measurable space, then a measurable function

f : Ω → S is called an S-valued random variable. A real-valued random variable

(S = R, S = B(R)) is often just called a random variable.

The notion of measurability is fundamental to our interpretation of the theory.

Suppose we have a measurement apparatus that returns a real number; this is described

by a random variable X : Ω → R. At the very least, our model should be able to

answer the question: if we perform such a measurement, what is the probability of

observing a measurement outcome in some set A ∈ B(R)? Clearly this probability is

precisely P(X−1(A)); for this expression to make sense, X has to be measurable.

Remark 1.3.2 (Common notational conventions). We will often overload notation

in obvious but aesthetically pleasing ways. For example, the probability that the ran-

dom variable X : Ω → S takes a value in A ∈ S could be denoted by P(X ∈ A);
technically, of course, we should write P({ω ∈ Ω : X(ω) ∈ A}). Similarly we will
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encounter notation such as P(X > 0), P(|Xn| > ε i.o.), etc. Such notation is very

intuitive, but keep in mind that this is actually short-hand notation for well-defined

mathematical objects: the probabilities of certain events in F .

We will take another notational liberty. If we make some statement, for example,

if we claim that X ∈ A (i.e., we claim to have proved that X ∈ A) or that |Xn| > ε
infinitely often, we generally mean that that statement is true with probability one,

e.g., P(X ∈ A) = 1 or P(|Xn| > ε i.o.) = 1. If we wanted to be precise, we would

say explicitly that the statement holds almost surely (abbreviated as a.s.). Though

sets of probability zero do not always play a negligible role (see section 2.4), we are

ultimately only interested in proving results with unit probability, so it is convenient

to interpret all intermediate statements as holding with probability one.

Now you might worry (as well you should!) that this sort of sloppiness could get

us in big trouble; but we claim that as long as we make only countably many almost

sure statements, we have nothing to worry about. You should revisit Corollary 1.2.2

at this point and convince yourself that this logic is air-tight.

It is not always entirely trivial to prove that a map is measurable. The following

simple facts are helpful and not difficult to prove; see, for example, [Wil91, Ch. 3].

Lemma 1.3.3. Let (Ω,F ,P) be a probability space and (S,S) be a measurable space.

1. If h : Ω → S and f : S → S ′ are measurable, then f ◦ h is measurable.

2. If {hn} is a sequence of measurable functions hn : Ω → S, then infn hn,

supn hn, lim infn hn, and lim supn hn are measurable.

3. If h1, h2 : Ω → R are measurable, then so are h1 + h2 and h1h2.

4. If Ω is a topological space with its Borel σ-algebra F = B(Ω), then any con-

tinuous function h : Ω → R is measurable.

The following idea is very important:

Definition 1.3.4. Let Ω be a set and (S,S) be a measurable space. Let {hi}i∈I be a

(not necessarily countable) collection of maps hi : Ω → S. Then σ{hi} denotes the

smallest σ-algebra on Ω with respect to which every hi is measurable, and is called

the σ-algebra generated by {hi}. Note that σ{hi} = σ{h−1
i (A) : A ∈ S, i ∈ I}.

One could use this as a method to generate a σ-algebra on Ω, if we did not have

one to begin with, starting from the given σ-algebra S. However, usually this concept

is used in a different way. We start with a probability space (Ω,F ,P) and consider

some collection {Xi} of random variables (which are already F-measurable). Then

σ{Xi} ⊂ F is the sub-σ-algebra of F which contains precisely those yes-no ques-

tions that can be answered by measuring the Xi. In this sense, σ{Xi} represents the

information that is obtained by measuring the random variables Xi.

Example 1.3.5. Suppose we toss two coins, so we model Ω = {HH,HT, TH, TT},

F is the power set of Ω, and we have some measure P which is irrelevant for this

discussion. Suppose we only get to observe the outcome of the first coin flip, i.e., we
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see the random variable X(HH) = X(HT ) = 1, X(TH) = X(TT ) = 0. Then

σ{X} = {∅, {HH,HT}, {TH, TT},Ω} ⊂ F contains only those yes-no questions

which can be answered from our knowledge of the outcome of the first coin flip (e.g.,

the event {HH,HT} is did the first coin come up heads?).

The converse of this idea is equally important. Suppose that we are working on

(Ω,F ,P), and that G ⊂ F is some sub-σ-algebra representing a limited amount of

information. We ask: when is the knowledge of the information in G sufficient to

determine the outcome of some random variableX? It is easy to see that the answer to

every question we can ask about X can be determined from the available information

G if and only if X is G-measurable (why?) The following lemma, for a special case,

suggests how we could think intuitively about this idea.

Lemma 1.3.6. Let (Ω,F ,P) be a probability space and let X1, . . . , Xn and X be

real-valued random variables. Suppose that X is σ{X1, . . . , Xn}-measurable. Then

there exists a measurable map f : Rn → R such that X = f(X1, . . . , Xn).

Partial proof. Let us prove the result for the case where Ω is a finite set and F is the power set.

The general proof proceeds along the same lines, see [Bil86, Theorem 20.1].

When Ω is a finite set, X and X1, . . . , Xn can each only take a finite number of values; let

us write Ξ,Ξi ⊂ R for the possible values of X and Xi, respectively. We can now consider

X∗ = (X1, . . . , Xn) as an Ξ1 × · · · ×Ξn-valued random variable, and we would like to prove

that X = f(X∗) for some function f : Ξ1 × · · · × Ξn → Ξ.

AsX is σ{X1, . . . , Xn}-measurable, we haveX−1(x) ∈ σ{X1, . . . , Xn} for any x ∈ Ξ.

It is not difficult to convince yourself that σ{X1, . . . , Xn} consists of the empty set ∅ and

of all sets X−1
∗ (A) with A ⊂ Ξ1 × · · · × Ξn. Hence for every x, there is an Ax such that

X−1(x) = X−1
∗ (Ax), and we have Ax ∩ Ay = ∅ for x 6= y and

⋃
x Ax = Ξ1 × · · · × Ξn.

We can now define the function f uniquely by setting f(ξ) = x for all ξ ∈ Ax.

We will not need this lemma in the rest of this course; it is included here to help

you form an intuition about measurability and generated σ-algebras. The point is

that if {Xi} is a collection of random variables and X is σ{Xi}-measurable, then

you should think of X as being a function of the Xi. It is possible to prove analogs

of lemma 1.3.6 for most situations of interest (even when the collection {Xi} is not

finite), if one so desires, but there is rarely a need to do so.

The rest of this section is devoted to the concept of expectation. For a random

variable that takes a finite number of values, you know very well what this means: it

is the sum of the values of the random variable weighted by their probabilities.

Definition 1.3.7. Let (Ω,F ,P) be a probability space. A simple random variable

X : Ω → R is a random variable that takes only a finite number of values, i.e.,

X(Ω) = {x1, . . . , xn}. Its expectation is defined as E(X) =
∑n

k=1 xk P(X = xk).

Remark 1.3.8. Sometimes we will be interested in multiple probability measures on

the same σ-algebra F (P and Q, say). The notation E(X) can then be confusing: do

we mean
∑

k xk P(X = xk) or
∑

k xk Q(X = xk)? Whenever necessary, we will

denote the former by EP and the latter by EQ to avoid confusion. Usually, however, we

will be working on some fixed probability space and there will be only one measure

of interest P; in that case, it is customary to write E(X) to lighten the notation.
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We want to extend this definition to general random variables. The simplest ex-

tension is to the case where X does not take a finite number of values, but rather a

countable number of values. This appears completely trivial, but there is an issue here

of the elementary calculus type: suppose that X takes the values {xk}k∈N and we de-

fine E(X) =
∑∞

k=1 xk P(X = xk). It is not obvious that this sum is well behaved: if

xk is an alternating sequence, it could well be that the series
∑n

k=1 xk P(X = xk) is

not absolutely convergent and the expectation would thus depend on the order of sum-

mation! Clearly that sort of thing should not be allowed. To circumvent this problem

we introduce the following definition, which holds generally.

Definition 1.3.9. Let us define X+ = max(X, 0) and X− = −min(X, 0), so that

X = X+ − X−. The expectation E(X) is defined only if either E(X+) < ∞ or

E(X−) <∞. If this is the case, then by definition E(X) = E(X+) − E(X−).

As such, we should concentrate on defining E(X) for nonnegative X . We have

got this down for simple random variables and for random variables with countable

values; what about the general case? The idea here is very simple. For any nonnega-

tive random variable X , we can find a sequence Xn of simple random variables that

converges to X ; actually, it is most convenient to choose Xn to be a nondecreasing

sequence Xn ↗ X so that E(Xn) is guaranteed to have a limit (why?).

Definition 1.3.10. Let X by any nonnegative random variable. Then we define the

expectation E(X) = limn→∞ E(Xn), where Xn is any nondecreasing sequence of

simple random variables that converges to X .

It remains to prove (a) that we can find such a sequence Xn; and (b) that any

such sequence gives rise to the same value for E(X). Once these little details are

established, we will be convinced that the definition of E(X) makes sense. If you are

already convinced, read the following remark and then skip to the next section.

Remark 1.3.11. The idea of approximating a function by a piecewise constant func-

tion, then taking limits should look very familiar—remember the Riemann integral?

In fact, the expectation which we have constructed really is a type of integral, the

Lebesgue integral with respect to the measure P. It can be denoted in various ways:

E(X) ≡
∫

X(ω) P(dω) ≡
∫

X dP.

Unlike the Riemann integral we can use the Lebesgue integral to integrate functions

on very strange spaces: for example, as mentioned at the beginning of the chapter,

we can integrate functions on the space of continuous paths—provided that we can

construct a suitable measure P on this space.

When Ω = Rd, F = B(Rd) and with a suitable choice of measure µ (instead of

P), the Lebesgue integral can actually serve as a generalization of the Riemann inte-

gral (it is a generalization because the Riemann integral can only integrate continuous

functions, whereas the Lebesgue integral can integrate measurable functions). The

Lebesgue measure µ, however, is not a probability measure: it satisfies all the condi-

tions of Definition 1.1.11 except µ(Ω) = 1 (as µ(Rd) = ∞). This does not change

much, except that we can obviously not interpret µ probabilistically.
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Let us tie up the loose ends in our definition of the expectation.

Lemma 1.3.12. Let X be a nonnegative random variable. Then there exists a nonde-

creasing sequence of simple random variables Xn such that Xn ↗ X .

Proof. Define Xn as

Xn(ω) =





0 if X(ω) = 0,
(k − 1)2−n if (k − 1)2−n < X(ω) ≤ k2−n, k = 1, . . . , n2n,
n if X(ω) > n.

(Why is Xn measurable?) Clearly Xn ↗ X , and we are done.

Lemma 1.3.13. Let X ≥ 0, and let {Xn} and {X̃n} be two sequences of simple ran-

dom variables s.t.Xn ↗ X and X̃n ↗ X . Then limn→∞ E(Xn) = limn→∞ E(X̃n).

Proof. It suffices to prove that E(X̃k) ≤ limn→∞ E(Xn) for any k. After all, this implies

that limk→∞ E(X̃k) ≤ limn→∞ E(Xn), and inequality in the reverse direction follows by

reversing the roles of Xn and X̃n. To proceed, note that as X̃k is simple, it takes a finite

number of values x1, . . . , x` on the sets Ai = X̃−1
k (xi). Define

Bn
i = {ω ∈ Ai : Xn(ω) ≥ xi − ε}.

Note that Xn(ω) ↗ X(ω) and X̃k(ω) ≤ X(ω), so Bn
i ⊂ Bn+1

i ⊂ · · · and
⋃

n B
n
i = Ai.

By lemma 1.2.1, we have P(Bn
i ) ↗ P(Ai). But it is not difficult to see that

E(Xn) ≥
∑̀

i=1

(xi − ε)P(Bn
i ) =⇒ lim

n→∞
E(Xn) ≥ E(X̃k) − ε.

As this holds for any ε > 0, the statement follows.

1.4 Properties of the expectation and inequalities

Having defined the expectation, let us first investigate some of its simplest properties.

Most of these are trivial for simple random variables and will be well known to you;

but can you prove them in the general case?

Lemma 1.4.1. Let (Ω,F ,P) be a probability space,X,Y be random variables whose

expectations are assumed to be defined, and α, β ∈ R are constants.

1. If X = Y a.s., then E(X) = E(Y ).

2. If X ≤ Y a.s., then E(X) ≤ E(Y ).

3. E(αX + βY ) = αE(X) + βE(Y ) provided the right hand side is not ∞−∞.

4. |E(X)| ≤ E(|X |).

5. If E(X) is finite, then X is finite a.s.

6. If X ≥ 0 a.s. and E(X) = 0, then X = 0 a.s.
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Proof. The main idea is to prove that these results are true for simple random variables (this is

easily verified), then take appropriate limits.

1. First assume X,Y ≥ 0. Apply lemma 1.3.12 to X,Y ; this gives two sequences Xn, Yn

of simple functions with Xn ↗ X , Yn ↗ Y , and Xn = Yn a.s. for all n (why?). It is

immediate that E(Xn) = E(Yn) for all n, so the result follows by letting n→ ∞. Now

drop the assumption X,Y ≥ 0 by considering separately X+, Y + and X−, Y −.

2. Same idea.

3. Same idea.

4. Use −|f | ≤ f ≤ |f | and that X ≤ Y implies E(X) ≤ E(Y ).

5. Suppose X is not finite a.s.; then on some set A ∈ F with P(A) > 0 we have X = ∞
or −∞ (we can not have both, as then E(X) would not be defined). It follows from the

definition of the expectation that E(X+) = ∞ or E(X−) = ∞, respectively (why?).

6. Suppose that P(X > 0) > 0. We claim that there is a ε > 0 s.t. P(X > ε) > 0.

Indeed, the sets Aε = {ω ∈ Ω : X(ω) > ε} increase in size with decreasing ε, so

P(Aε) ↗ P(A0) = P(X > 0) > 0 (remember lemma 1.2.1?), and thus there must

exist a positive ε with P(Aε) > 0. But then E(X) ≥ E(εIAε) = εP(Aε) > 0 (here

IA(ω) = 1 if ω ∈ A, 0 otherwise) which contradicts the assumption.

Next, let us treat two elementary inequalities: Chebyshev’s inequality (often called

Markov’s inequality) and Jensen’s inequality. These inequalities are extremely useful:

do not leave home without them! In the following, we will often use the notation

IA(ω) =

{

1 if ω ∈ A,
0 otherwise,

A ∈ F .

The function IA is called the indicator or characteristic function on A.

Proposition 1.4.2. Let (Ω,F ,P) be a probability space andX be a random variable.

1. (Chebyshev/Markov) For any α > 0, we have

P(|X | ≥ α) ≤ E(|X |)
α

.

2. (Jensen) Let g(x) be a real-valued convex function (such a function is always

measurable) and let E(X) be finite. Then E(g(X)) ≥ g(E(X)).

Proof. To prove Chebyshev’s inequality, let us define A = {ω ∈ Ω : |X(ω)| ≥ α}. Clearly

|X(ω)| ≥ αIA(ω), so E(|X|) ≥ αE(IA) = αP(A).

For Jensen’s inequality, note that g(x) is continuous (by convexity), so it is measurable.

As g is convex, there is a line f(x) = ax + b such that f(E(X)) = g(E(X)) and f ≤ g
everywhere. Thus g(E(X)) = f(E(X)) = E(f(X)) ≤ E(g(X)).

Chebyshev’s inequality allows us to bound the tail of a random variable: it says

that if the expectation of a nonnegative random variableX is finite, thenX will rarely

take very large values. Though the bound is quite crude (in specific situations much

tighter bounds on the tails are possible), it is often very effective. Jensen’s inequality
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is quite fundamental; it says, for example, something that you know very well: the

variance var(X) = E(X2) − E(X)2 is always nonnegative (as x2 is convex).

Recall that the expectation of X is defined when E(X+) < ∞ or E(X−) < ∞.

The most useful case, however, is when both these quantities are finite: i.e., when

E(|X |) = E(X+) + E(X−) < ∞. In this case, X is said to be integrable. It is not

necessarily true, e.g., that an integrable random variable has a finite variance; we need

to require a little more for this. In fact, there is a hierarchy of regularity conditions.

Definition 1.4.3. For a random variable X and p ≥ 1, let ‖X‖p = (E(|X |p))1/p.

A random variable with ‖X‖1 < ∞ is called integrable, with ‖X‖2 < ∞ square

integrable. A random variable is called bounded if there exists K ∈ R such that

|X | ≤ K a.s.; the quantity ‖X‖∞ is by definition the smallest such K.

Remark 1.4.4. Almost all the material which we have discussed until this point has

had direct intuitive content, and it is important to understand the intuition and ideas be-

hind these concepts. Integrability conditions are a little less easy to visualize; though

they usually have significant implications in the theory (many theorems only hold

when the random variables involved satisfy ‖X‖p <∞ for some sufficiently large p),

they certainly belong more to the technical side of things. Such matters are unavoid-

able and, if you are a fan of analysis, can be interesting to deal with in themselves (or

a pain in the butt, if you will). As we progress through this course, try to make a dis-

tinction for yourself between the conceptual challenges and the technical challenges

that we will face (though sometimes these will turn out to be intertwined!)

The spaces Lp = Lp(Ω,F ,P) = {X : Ω → R; ‖X‖p <∞} play a fundamental

role in functional analysis; on Lp, ‖ · ‖p is almost a norm (it is not a norm, because

‖X‖p = 0 implies that X = 0 a.s., not X(ω) = 0 for all ω) and Lp is almost a

Banach space; similarly, L2 is almost a Hilbert space. Functional analytic arguments

would give an extra dimension to several of the topics in this course, but as they are

not prerequisite for the course we will leave these ideas for you to learn on your own

(if you do not already know them). Excellent references are [RS80] and [LL01]. Here

we will content ourselves by stating the most elementary results.

Proposition 1.4.5. Define Lp as the space of random variables X with ‖X‖p <∞.

1. Lp is linear: if α ∈ R and X,Y ∈ Lp, then X + Y ∈ Lp and αX ∈ Lp.

2. If X ∈ Lp and 1 ≤ q ≤ p, then ‖X‖q ≤ ‖X‖p (so Lp ⊂ Lq).

3. (Hölder’s inequality) Let p−1 + q−1 = 1. If X ∈ Lp and Y ∈ Lq , then

|E(XY )| ≤ ‖X‖p‖Y ‖q (so XY ∈ L1).

4. (Minkowski’s inequality) If X,Y ∈ Lp, then ‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Proof.

1. Linearity follows immediately from |x+ y|p ≤ (2 |x| ∨ |y|)p ≤ 2p(|a|p + |b|p).

2. We would like to prove E(|X|p) = ‖X‖p
p ≥ ‖X‖p

q = E(|X|q)p/q . But this follows

directly from convexity of xp/q on [0,∞[ and Jensen’s inequality.
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3. We can restrict ourselves to the case where X and Y are nonnegative and ‖X‖p > 0
(why?) For any A ∈ F , define Q(A) = E(IAX

p)/E(Xp). ThenQ is also a probability

measure on F (this idea is fundamental, and we will come back to it later on). Define

Z(ω) = Y (ω)/X(ω)p−1 wherever X(ω) > 0, and Z(ω) = 0 otherwise. But then

E(XY ) = E(Xp)EQ(Z) ≤ E(Xp) (EQ(Z
q))1/q =

(E(Xp))1−1/q (E(I{ω:X(ω)>0}Y
qX/X(q−1)(p−1)))1/q =

‖X‖p (E(Y qI{ω:X(ω)>0}))
1/q ≤ ‖X‖p‖Y ‖q ,

where we have used that p−1 + q−1 = 1 implies (q − 1)(p− 1) = 1.

4. Let q−1 = 1 − p−1. We claim that |X + Y |p−1 ∈ Lq . To see this, note that we can

write |X + Y |q(p−1) = |X + Y |p which is integrable by the linearity of Lp. Hence

E(|X + Y |p) ≤ E(|X| |X + Y |p−1) + E(|Y | |X + Y |p−1) ≤
(‖X‖p + ‖Y ‖p) ‖ |X + Y |p−1 ‖q = (‖X‖p + ‖Y ‖p)E(|X + Y |p)1/q,

using Hölder’s inequality, from which the result follows.

1.5 Limits of random variables

Suppose we have a sequence of random variables Xn. We often want to study limits

of such random variables: the sequence Xn converges to some random variable X .

We already encountered one such limit in the definition of the expectation, where we

meant Xn → X in the sense that Xn(ω) → X(ω) for every ω ∈ Ω. This is not the

only way to take limits, however; in fact, there is quite a number of limit concepts

for random variables, each of which with its own special properties. At first this may

seem like a pure technicality, but the conceptual differences between these limits are

very important. We will see, for example, that the selection of the appropriate type of

limit is crucial if we wish to define a meaningful stochastic integral (chapter 4). This

section introduces the most important concepts which we will need further on.

Definition 1.5.1. Let X be a random variable and {Xn} be a sequence of random

variables on the probability space (Ω,F ,P).

1. Xn → X a.s. if P({ω ∈ Ω : Xn(ω) → X(ω)}) = 1 (why is this event in F?).

2. Xn → X in probability if P(|Xn −X | > ε) → 0 as n→ ∞ for every ε > 0.

3. Xn → X in Lp if ‖Xn −X‖p → 0 as n→ ∞.

4. Xn → X in law (or in distribution, or weakly) if E(f(Xn)) → E(f(X)) for

every bounded continuous function f .

Take a moment to think about these definitions. All of them seem like reasonable

ways to characterize the limit of a sequence of random variables—right? Nonetheless

all these limit concepts are inequivalent! To give you some feeling for how these

concepts work, we will do two things. First, and most importantly, we will prove

which type of limit implies which other. Next, we will give illustrative examples of

sequences {Xn} that converge in one sense, but not in another.
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Figure 1.1. The sequence {Xn} of example 1.5.3. Shown is the path n 7→ Xn(ω) with ω = a1

(blue) and ω = a2 (red) for n = 1, . . . , 10. Both paths occur with equal probability.

Proposition 1.5.2. Let X be a random variable and {Xn} be a sequence of random

variables on the probability space (Ω,F ,P). The following implications hold:

1. Xn → X a.s. =⇒ Xn → X in probability.

2. Xn → X in Lp =⇒ Xn → X in probability.

3. Xn → X in Lp =⇒ Xn → X in Lq (q ≤ p).

4. Xn → X in probability =⇒ Xn → X in law.

Proof.

1. If Xn → X a.s. then with unit probability, there is for any ε > 0 an N(ω, ε) such that

|Xn(ω)−X(ω)| ≤ ε for all n ≥ N(ω, ε). Hence with unit probability, |Xn −X| > ε
only happens for finitely many n, so P(|Xn −X| > ε i.o.) = 0. It remains to note that

P(lim supAn) ≥ lim supP(An) (prove this!), so we obtain convergence in probability

lim supP(|Xn −X| > ε) ≤ P(|Xn −X| > ε i.o.) = 0.

2. Note that P(|Xn −X| > ε) = P(|Xn −X|p > εp). Now use Chebyshev.

3. Use ‖Xn −X‖q ≤ ‖Xn −X‖p.

4. f is bounded, i.e., |f(x)| ≤ K/2 for some K < ∞, and continuous, i.e., for any ε > 0
there is a δ > 0 such that |f(x) − f(y)| > ε implies |x− y| > δ. Note that

|E(f(Xn) − f(X))| ≤ E(|f(Xn) − f(X)|) =

E((I|f(Xn)−f(X)|>ε + I|f(Xn)−f(X)|≤ε) |f(Xn) − f(X)|).

Now E(I|f(Xn)−f(X)|≤ε|f(Xn) − f(X)|) ≤ ε, while by boundedness of f we obtain

E(I|f(Xn)−f(X)|>ε|f(Xn) − f(X)|) ≤ K E(I|f(Xn)−f(X)|>ε). Thus

|E(f(Xn) − f(X))| ≤ ε+K P(|f(Xn) − f(X)| > ε) ≤ ε+K P(|Xn −X| > δ)

where we have used continuity of f . The rightmost term converges to zero as Xn → X
in probability, so we find that lim sup |E(f(Xn) − f(X))| ≤ ε. But this holds for any

ε > 0, so evidently E(f(Xn)) → E(f(X)) and we are done.

These are the only implications that hold in general. Though this proposition is

very useful in practice, you will perhaps get the most intuition about these modes of

convergence by thinking about the following counterexamples.
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Figure 1.2. The random variables X1, X2, X4, X8 of example 1.5.4. The horizontal axis

represents Ω = [0, 1], the vertical axis the value of Xn(ω). Note that the probability that Xn is

nonzero shrinks to zero, but the value of Xn when it is nonzero becomes increasingly large.

Example 1.5.3 (Convergence in law but not in probability). It is easy to find coun-

terexamples for this case; here is one of the simplest. Let Ω = {a1, a2}, F is the

power set, and P is the uniform measure (P({a1}) = 1/2). Define the random vari-

able X(a1) = 1, X(a2) = −1, and consider the sequence Xn = (−1)nX . Ob-

viously this sequence can never converge in probability, a.s., or in Lp. However,

E(f(Xn)) = E(f(X)) for any f , so Xn → X in law (and also Xn → −X in law!)

Evidently this type of convergence has essentially no implication for the behavior of

the random process Xn; certainly it does not look anything like convergence if we

look at the paths n 7→ Xn(ω) for fixed ω! (See figure 1.1). On the other hand, this is

precisely the notion of convergence used in the central limit theorem.

The following three examples use the following probability space: Ω = [0, 1],
F = B([0, 1]), and P is the uniform measure on [0, 1] (under which P([a, b]) = b−a).

Example 1.5.4 (Convergence a.s. but not in Lp). Consider the sequence of random

variables Xn(ω) = n I]0,1/n](ω) (with ω ∈ Ω = [0, 1]). Then Xn → 0 a.s.: for any

ω, it is easy to see that I]0,1/n](ω) = 0 for n sufficiently large. However, ‖Xn‖1 =
nE(I]0,1/n]) = 1 for every n, so Xn 6→ 0 in L1. As convergence in Lp implies

convergence in L1 (for p ≥ 1), we see that Xn does not converge in Lp. What is

going on? Even though P(Xn 6= 0) shrinks to zero as n → ∞, the value of Xn on

those rare occasions thatXn 6= 0 grows so fast with n that we do not have convergence

in Lp, see figure 1.2 (compare with the intuition: a random variable that is zero with

very high probability can still have a very large mean, if the outliers are sufficiently

large). Note that asXn converges a.s., it also converges in probability, so this example

also shows that convergence in probability does not imply convergence in Lp.

Example 1.5.5 (Convergence in Lq but not in Lp). Let Xn(ω) = n1/p I]0,1/n](ω).
You can easily verify that Xn → 0 in Lq for all q < p, but not for q ≥ p. Intuitively,

Xn → X in Lq guarantees that the outliers of |Xn −X | do not grow “too fast.”

Example 1.5.6 (Convergence in Lp but not a.s.). This example is illustrated in figure

1.3; you might want to take a look at it first. DefineXn as follows. Write n as a binary

number, i.e., n =
∑∞

i=0 ni2
i where ni ∈ {0, 1}. Let k be the largest integer such that

nk = 1. Then we set Xn(ω) = I](n−2k)2−k,(n−2k+1)2−k](ω). It is not difficult to see
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Figure 1.3. The random variables Xn, n = 1, . . . , 14 of example 1.5.6. The horizontal axis

represents Ω = [0, 1], the vertical axis the value of Xn(ω). Note that the probability that Xn is

nonzero shrinks to zero, but lim supn→∞Xn(ω) = 1 for any ω > 0.

that Xn → 0 in Lp for any p: indeed, E(|Xn|p) = E(Xn) = 2−k → 0 as n → ∞.

However Xn(ω) 6→ 0 for any ω > 0; after all, for any n there is an N(ω) > n such

that XN(ω)(ω) = 1; hence Xn(ω) = 1 infinitely often for every ω > 0, and we

most certainly do not have a.s. convergence. The occurence of Xn(ω) = 1 becomes

increasingly rare, however, when n is large, so that nonetheless the probability that

Xn > 0 goes to zero (and as outliers are not an issue, the same holds in Lp).

Before you move on, take some time to make sure you understand the

various notions of convergence, their properties and their relations.

If you take a piece of paper, write on it all the modes of convergence which we

have discussed, and draw arrows in both directions between each pair of convergence

concepts, you will find that every one of these arrows is either implied by proposition

1.5.2 or ruled out, in general, by one of our counterexamples. However, if we impose

some additional conditions then we can often still obtain some of the opposite impli-

cations (needless to say, our examples above will have to violate these conditions).

An important related question is the following: if Xn → X in a certain sense, when

does this imply that E(Xn) → E(X)? The remainder of this section provides some

answers to these questions. We will not strive for generality, but concentrate on the

most widely used results (which we will have ample occasion to use).

Let us first tackle the question: when does convergence in probability imply a.s.

convergence? To get some intuition, we revisit example 1.5.6.

Example 1.5.7. The following is a generalization of example 1.5.6. We construct a

sequence of {0, 1}-valued random variables Xn such that P(Xn > 0) = `(n), where

`(n) is arbitrary (except that it is [0, 1]-valued). Set X1(ω) = I]0,`(1)](ω), then set

X2(ω) = I]`(1),`(1)+`(2)]mod [0,1](ω), etc., so that each Xn is the indicator on the

interval of length `(n) immediately adjacent to the right of the interval corresponding

to Xn−1, and we wrap around from 1 to 0 if necessary. Obviously Xn → 0 in

probability iff `(n) → 0 as n → ∞. We now ask: when does Xn → 0 a.s.? If this is
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not the case, then Xn must revisit every section of the interval [0, 1] infinitely many

times; this means that the total “distance” travelled must be infinite
∑

n `(n) = ∞.

On the other hand, if
∑

n `(n) <∞, then eventually the right endpoint of the interval

corresponding to Xn has to accumulate at some x∗ ∈ [0, 1], so that Xn → 0 a.s.

This example suggests that Xn → X in probability would imply Xn → X a.s.

if only the convergence in probability happens “fast enough”. This is generally true,

and gives a nice application of the Borel-Cantelli lemma.

Lemma 1.5.8. Let Xn, X be random variables on a probability space (Ω,F ,P) s.t.

Xn → X in probab. If
∑

n P(|Xn −X | > ε) <∞ for any ε > 0, then Xn → X a.s.

Proof. By the Borel-Cantelli lemma P(|Xn −X| > ε i.o.) = 0 for any ε > 0. Thus

P

(
for any k ∈ N, |Xn −X| > 1

k
for a finite number of n only

)
= 1 (why?).

Now use the usual calculus definition of convergence of a sequence Xn(ω).

The following corollary will sometimes be useful.

Corollary 1.5.9. Suppose that Xn → X in probability as n → ∞. Then there exists

a subsequence n(k) ↗ ∞ such that Xn(k) → X a.s. as k → ∞.

Proof. As P(|Xn −X| > ε) → 0 for ε > 0, there is for any ε > 0 and δ > 0 an N such that

P(|Xn −X| > ε) < δ for all n ≥ N . Choose n(1) such that P(|Xn(1) −X| > 1/2) < 1/2;

now let n(k) be such that P(|Xn(k)−X| > 2−k) < 2−k and n(k) > n(k−1). Then evidently

the sequence Xn(k) satisfies the condition of the previous result.

Our remaining goal is to find conditions under which convergence in probability

implies convergence in Lp. Before we can make progress in this direction, we need

to introduce two fundamental results about convergence of expectations which are by

themselves extremely useful and widely used.

Theorem 1.5.10 (Monotone convergence). Let {Xn} be a sequence of random vari-

ables such that 0 ≤ X1 ≤ X2 ≤ . . . a.s. Then E(Xn) ↗ E(limn→∞Xn).

For sequencesXn of simple functions the theorem is trivial: this is just the defini-

tion of the expectation! It only remains to extend the statement to general sequences.

Note that the theorem holds even if E(limn→∞Xn) = ∞.

Proof. We can assume that {Xn(ω)} is nondecreasing for all ω ∈ Ω by settingXn(ω) = 0 for

those ω where this is not the case; this will not change the expectations (and hence the statement

of the theorem), as by assumption the set of these ω has zero probability.

For everyXn, let {Xk
n}k∈N be the approximating sequence of simple functions as in lemma

1.3.12, and let {Xk} be the approximating sequence forX = limn→∞Xn (the latter exists by

monotonicity of Xn, though it may take the value ∞). By construction Xk
n ↗ Xn, Xk ↗ X

as k → ∞, and you can verify directly that Xk
n ↗ Xk as n → ∞. By the definition of the

expectation limk→∞ limn→∞ E(X
k
n) = E(X). But Xk

n ≤ Xn (as Xk
n is nondecreasing), so

E(X) ≤ limE(Xn). On the other hand Xn ≤ X , so limE(Xn) ≤ E(X).
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Lemma 1.5.11 (Fatou’s lemma). Let {Xn} be a sequence of a.s. nonnegative ran-

dom variables. Then E(lim inf Xn) ≤ lim inf E(Xn). In there exists a Y such that

Xn ≤ Y a.s. for all n and E(Y ) <∞, then E(lim supXn) ≥ lim supE(Xn).

This should really be a theorem, but as it is called “Fatou’s lemma” we will con-

form. The second half of the result is sometimes called the “reverse Fatou’s lemma”.

Proof. Define Zn = infk≥n Xk, so lim infn Xn = limn Zn. Note that Zn is nondecreasing,

so by monotone convergence E(lim infn Xn) = limn E(Zn). But E(Zn) ≤ infk≥n E(Xk)
(why?), so E(lim infn Xn) ≤ lim infn E(Xn). The second half of the result follows by apply-

ing the first half to the sequence X ′
n = Y −Xn.

We can now proceed to find a useful condition when convergence in probability

implies convergence in Lp. What sort of condition can we expect? Recall that intu-

itively, a sequence Xn → X in probability should converge in Lp if the outliers of

|Xn−X | do not grow too fast. A good way to control the outliers is to impose suitable

boundedness conditions on |Xn −X |, which is precisely what we will do.

Theorem 1.5.12 (Dominated convergence). Let Xn → X in probability, and sup-

pose there exists a nonnegative Y ∈ Lp, with p ≥ 1, such that |Xn| ≤ Y a.s. for all

n. Then X and Xn are in Lp for all n, Xn → X in Lp, and E(Xn) → E(X).

Proof. We begin by proving the theorem assuming that Xn → X a.s. At the end of the day,

we will weaken this to convergence in probability.

First, note that |Xn| ≤ Y implies that E(|Xn|p) ≤ E(Y p) < ∞, so Xn ∈ Lp for

all n. As Xn → X a.s., |X| ≤ Y as well, so X ∈ Lp. Next, note that |Xn − X|p ≤
(|Xn| + |X|)p ≤ (2Y )p, and the latter is integrable by assumption. Hence by Fatou’s lemma

lim supE(|Xn −X|p) ≤ E(lim sup |Xn −X|p) = 0, so Xn → X in Lp. But convergence

in Lp (p ≥ 1) implies convergence in L1, so that |E(Xn) − E(X)| ≤ E(|Xn −X|) → 0.

Now suppose that Xn → X in probability (rather than a.s.), but ‖Xn − X‖p does not

converge to zero. Then there is a subsequence n(k) ↗ ∞ such that ‖Xn(k) − X‖p → ε
for some ε > 0. But clearly Xn(k) → X in probability, so by corollary 1.5.9 there exists a

further subsequence n′(k) such thatXn′(k) → X a.s. But then by the a.s. version of dominated

convergence ‖Xn′(k) −X‖p → 0 as k → ∞, which contradicts ‖Xn′(k) −X‖p → ε.

A special case of the dominated convergence theorem is used particularly often:

if the sequence {Xn} is uniformly bounded, i.e., there is some K < ∞ such that

|Xn| ≤ K a.s. for all n, then Xn → X in probability (or a.s.) gives E(Xn) → E(X).
Let us finally discuss one convergence result of a somewhat different nature. Note

that all the convergence theorems above assume that we already know that our se-

quence converges to a particular random variable Xn → X ; they only allow us to

convert between one mode of convergence and another. However, we are often just

given a sequence Xn, and we still need to establish that Xn converges to something.

The following method allows us to establish that a sequence Xn has a limit, without

having to know in advance what that limit is. We will encounter another way to show

that a sequence converges in the next chapter (the martingale convergence theorem).

Definition 1.5.13. A sequence {Xn} of random variables in Lp, p ≥ 1 is called a

Cauchy sequence (in Lp) if supm,n≥N ‖Xm −Xn‖p → 0 as N → ∞.
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Proposition 1.5.14 (Completeness of Lp). LetXn be a Cauchy sequence in Lp. Then

there exists a random variable X∞ ∈ Lp such that Xn → X∞ in Lp.

Remark 1.5.15. As you know from your calculus course, Rn also has the property

that any Cauchy sequence converges: if supm,n≥N |xm − xn| → 0 as N → ∞ for a

sequence {xn} ⊂ Rn, then there is an x∞ ∈ Rn such that xn → x∞. In fact, many

(but not all) metric spaces have this property, so it is not shocking that it is true also

for Lp. A metric space in which every Cauchy sequence converges is called complete.

Proof of proposition 1.5.14. We need to do two things: first, we need to identify a candidate

X∞. Once we have constructed such an X∞, we need to show that Xn → X∞ in Lp.

Let M(N) ↗ ∞ be a subsequence such that supm,n≥M(N) ‖Xn −Xm‖p ≤ 2−N for all

N . As ‖·‖1 ≤ ‖·‖p (recall that we assume p ≥ 1), this implies supm,n≥M(N) E(|Xn−Xm|) ≤
2−N , and in particular E(|XM(N+1) −XM(N)|) ≤ 2−N . Hence

E

( ∞∑

n=1

|XM(n+1) −XM(n)|
)

=
∞∑

n=1

E
(
|XM(n+1) −XM(n)|

)
<∞,

where we have used the monotone convergence theorem to exchange the summation and the ex-

pectation. But then the seriesXM(n) = XM(1) +
∑n

k=2(XM(k)−XM(k−1)) is a.s. absolutely

convergent, so XM(n) converges a.s. to some random variable X∞. Moreover,

E(|XM(k) −X∞|p) = E
(
lim inf
n→∞

|XM(k) −Xn|p
)
≤ lim inf

n→∞
E(|XM(k) −Xn|p) ≤ 2−kp

using Fatou’s lemma, so we conclude that XM(k) → X∞ in Lp, and in particular X∞ ∈ Lp

itself (the latter follows as evidently XM(k) −X∞ ∈ Lp, XM(k) ∈ Lp by assumption, and Lp

is linear, so X∞ = XM(k) − (XM(k) −X∞) ∈ Lp).

It remains to show thatXn → X∞ in Lp (i.e., not necessarily for the subsequence M(n)).

To this end, note that ‖Xn −X∞‖p ≤ ‖Xn −XM(n)‖p + ‖XM(n) −X∞‖p; that the second

term converges to zero we have already seen, while that the first term converges to zero follows

directly from the fact that Xn is a Cauchy sequence. Thus we are done.

1.6 Induced measures, independence, and absolute continuity

We have seen that the construction of a useful probability space is not a trivial task.

It was, perhaps surprisingly, not straightforward to define a σ-algebra that is suffi-

ciently small to be useful; and constructing a suitable probability measure on such a

σ-algebra is something we swept under the carpet even in one of the simplest cases

(theorem 1.1.15). Fortunately we will not need to appeal to the precise details of these

constructions; once a probability space has been constructed, it is fairly easy to use.

Up to this point, however, we have not constructed any probability space that

is more complicated than Ω = R. The theme of this section is: given an existing

probability space (Ω,F ,P), how can we transform this space into a different (and

potentially more complicated or interesting) probability space? The techniques of this

section will be sufficient to last us throughout this course.
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Induced measures and laws

Let (Ω,F ,P) be a probability space, and let (S,S) be another space with a suitable σ-

algebra S. We want to construct a probability measure µ on S, but we do not wish to

go about this from scratch (having gone through all the trouble to construct P already!)

Fortunately there is an easy way to “inherit” µ from P.

Definition 1.6.1. If h : Ω → S is measurable, then the map µ : S → [0, 1] defined by

µ(A) = P(h−1(A)) is a probability measure (why?), called the induced measure.

If we interpret the map h as an S-valued random variable, then the induced mea-

sure µh on S is called the law of h or the distribution of h. This familiar concept is

often used to characterize random variables, for example, a (scalar) Gaussian random

variable is a random variable X whose law µX is a Gaussian measure on (R,B(R))
(in the sense of example 1.1.16). Given the law of X , the probability of observing

X ∈ A (for any A ∈ S) can always be calculated as µX (A).

Independence and product spaces

Let us begin by recalling the basic notions of independence. This should already be

very familiar to you, certainly on an intuitive level.

Definition 1.6.2. Let (Ω,F ,P) be a probability space.

1. A countable set of events {An}n∈I ⊂ F are independent if

P(Ak1 ∩ Ak2 ∩ · · · ∩Akn) = P(Ak1) P(Ak2) · · ·P(Akn),

for all finite (n <∞) subsets {k1, . . . , kn} of the index set I .

2. A countable set {Gn}n∈I of σ-algebras Gn ⊂ F are independent if any finite

set of events A1, . . . , An from distinct Gk are independent.

3. A countable set {Xn}n∈I of random variables are independent if the σ-algebras

generated by these random variables Xn = σ(Xn) are independent.

Example 1.6.3. We throw two dice. Thus Ω = {(1, 1), (1, 2), . . . , (6, 6)}, F is the

power set and P({(i, j)}) = 1/36 for all (i, j) ∈ Ω. Define the random variables

X1((i, j)) = i and X2((i, j)) = j, corresponding to the outcome of the first and

second die, respectively. Then P(X1 ∈ A and X2 ∈ B) = E(IA(X1)IB(X2)) =
∑

(i,j) P({(i, j)})IA(i)IB(j) = 1
6#A × 1

6#B = P(X1 ∈ A) P(X2 ∈ B) for any

sets A,B ⊂ {1, . . . , 6}. But σ(X1) consists of ∅ and all sets of the form X−1
1 (A),

and similarly for σ(X2). Hence X1 and X2 are independent.

Example 1.6.4. The last example suggests a way to construct probability spaces

that carry independent events. Suppose we start with two discrete probability spaces

(Ω1,F1,P1) and (Ω2,F2,P2), where F1 and F2 are the power sets. Now consider

the space (Ω,F ,P) where Ω = Ω1 × Ω2 = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}, F
is the power set, and P({(ω1, ω2)}) = P1({ω1}) P2({ω2}). The individual proba-

bility spaces are naturally embedded in (Ω,F ,P): if we define the projection maps
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ρ1 : (ω1, ω2) 7→ ω1 and ρ2 : (ω1, ω2) 7→ ω2, then P(ρ−1
1 (A)) = P1(A) and

P(ρ−1
2 (B)) = P2(B) for any A ∈ F1, B ∈ F2. You can now easily repeat the

previous example to conclude that ρ−1
1 (F1) and ρ−1

2 (F2) are independent under P.

We have just shown off the notion of a product space. A very similar idea holds

in the general case, except that there will be some unpleasantness in proving that the

product measure P = P1 × P2 is well defined (actually this is quite straightforward;

see, e.g., [Wil91, chapter 8] or [Bil86, sec. 18]). Let us just state the facts.

Definition 1.6.5. Given two measurable spaces (Ω1,F1) and (Ω2,F2), we define the

product space Ω1 × Ω2 ≡ {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2}. The product σ-algebra

on Ω1 × Ω2 is defined as F1 × F2 ≡ σ{ρ1, ρ2}, where ρi : Ω1 × Ω2 → Ωi are the

projection maps ρ1 : (ω1, ω2) 7→ ω1 and ρ2 : (ω1, ω2) 7→ ω2.

Theorem 1.6.6. Let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability spaces, and

denote by ρ1 : Ω1 × Ω2 → Ω1 and ρ2 : Ω1 × Ω2 → Ω2 the projection maps.

1. There exists a unique probability measure P1 × P2 on F1 × F2, called the

product measure, under which the law of ρ1 is P1, the law of ρ2 is P2, and ρ1

and ρ2 are independent Ω1- and Ω2-valued random variables, respectively.

2. The construction is in some sense unique: suppose that on some probability

space (Ω,F ,P) are defined an S-valued random variable X (with law µX )

and a T -valued random variable Y (with law µY ). Then the law of the S × T -

valued random variable (X,Y ) is the product measure µX × µY .

3. If f : Ω1 × Ω2 → R is F1 × F2-measurable, then f(ω1, ·) : Ω2 → R is

F2-measurable for all ω1, and f(·, ω2) : Ω1 → R is F1-measurable for all ω2.

4. (Tonelli) If f : Ω1 × Ω2 → R is F1 ×F2-measurable and f ≥ 0 a.s., then

EP1×P2(f) = EP2

[
∫

f(ω1, ω2) P1(dω1)

]

= EP1

[
∫

f(ω1, ω2) P2(dω2)

]

.

In particular, these expressions make sense (the inner integrals are measurable).

5. (Fubini) The previous statement still holds for random variables f that are not

necessarily nonnegative, provided that E(|f |) <∞.

The construction extends readily to products of a finite number of spaces. Start-

ing from, e.g., the simple probability space (R,B(R),PN) where PN is a Gaussian

measure (with mean zero and unit variance, say), which we have already constructed

in example 1.1.16, we can now construct a larger space (Ω,F ,P) that carries a finite

number d of independent copies of a Gaussian random variable: set Ω = R× · · · ×R

(d times), F = B(R) × · · · × B(R), and P = PN × · · · × PN . The independent

Gaussian random variables are then precisely the projection maps ρ1, . . . , ρd.

Remark 1.6.7. The Fubini and Tonelli theorems tell us that taking the expectation

with respect to the product measure can often be done more simply: if we consider

the product space random variable f : Ω1×Ω2 → R as an ω1-valued random variable
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f(ω1, ·) : Ω2 → R, then we may take the expectation of this random variable with

respect to P2. The resulting map can subsequently be interpreted as an ω1-valued

random variable, whose P1-expectation we can calculate. The Fubini and Tonelli

theorems tell us that (under mild regularity conditions) it does not matter whether we

apply EP1×P2 , or EP1 first and then EP2 , or vice versa.

We will more often encounter these results in a slightly different context. Suppose

we have a continuous time stochastic process, i.e., a collection of random variables

{Xt}t∈[0,T ] (see section 2.4 for more on this concept). Such a process is called mea-

surable if the map X· : [0, T ]× Ω → R is B([0, T ])×F-measurable. In this case,

Y (ω) =

∫ T

0

Xt(ω) dt

is a well defined random variable: you can interpret this as T times the expectation of

X·(ω) : [0, T ] → R with respect to the uniform measure on [0, T ] (this is the Lebesgue

measure of remark 1.3.11, restricted to [0, T ]). Suppose that we are interested in the

expectation of Y ; it is then often useful to know whether we can exchange the order

of integration and expectation, i.e., whether

E(Y ) = E

(

∫ T

0

Xt dt

)

=

∫ T

0

E(Xt) dt.

The Fubini and Tonelli theorems give sufficient conditions for this to be the case.

As you can tell from the preceding remark, product spaces play an important role

even in cases that have nothing to do with independence. Let us get back to the theme

of this section, however, which was to build more complicated probability spaces from

simpler ones. We have seen how to build a product probability space with a finite

number of independent random variables. In our construction of the Wiener process,

however, we will need an entire sequence of independent random variables. The con-

struction of the product space and σ-algebra extends trivially to this case (how?), but

the construction of an infinite product measure brings with it some additional difficul-

ties. Nonetheless this can always be done [Kal97, corollary 5.18]. For the purposes of

this course, however, the following theorem is all we will need.

Theorem 1.6.8. Let {Pn} be a sequence of probability measures on (R,B(R)). Then

there exists a probability measure P on (R×R×· · · ,B(R)×B(R)×· · · ) such that the

projection maps ρ1, ρ2, . . . are independent and have the law P1,P2, . . ., respectively.

The proof of this result is so much fun that it would be a shame not to include it.

However, the method of proof is quite peculiar and will not really help you in the rest

of this course. Feel free to skip it completely, unless you are curious.

Rather than construct the infinite product measure directly, the idea of the proof is to con-

struct a sequence of independent random variables {Xn} on the (surprisingly simple!) proba-

bility space ([0, 1],B([0, 1]), λ), where λ is the uniform measure, whose laws are P1,P2, . . .,
respectively. The theorem then follows trivially, as the law of the R × R× · · · -valued random

variable X = (X1, X2, . . .) is then precisely the desired product measure P.
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It may seem a little strange that we can construct all these independent random variables on

such a simple space as ([0, 1],B([0, 1]), λ)! After all, this would be the natural space on which

to construct a single random variable uniformly distributed on the interval. Strange things are

possible, however, because [0, 1] is continuous—we can cram a lot of information in there, if

we encode it correctly. The construction below works precisely in this way. We proceed in two

steps. First, we show that we can dissect and then reassemble the interval in such a way that

it gives an entire sequence of random variables uniformly distributed on the interval. It then

remains to find functions of these random variables that have the correct laws P1,P2, . . ..
The dissection and reassembly of the interval [0, 1] is based on the following lemma.

Lemma. Let ξ be a random variable that is uniformly distributed on [0, 1], and denote by

ξ =
∑∞

n=1 ξn2−n its binary expansion (i.e., ξn are {0, 1}-valued random variables). Then all

the ξn are independent and take the values 0 and 1 with equal probability. Conversely, if {ξn}
is any such sequence, then ξ =

∑∞
n=1 ξn2−n is uniformly distributed on [0, 1].

Proof. Consider the first k binary digits ξn, n ≤ k. If you write down all possible combinations

of k zeros and ones, and partition [0, 1] into sets whose first k digits coincide to each of these

combinations, you will find that [0, 1] is partitioned into 2k equally sized sets, each of which

has probability 2−k. As for every n ≤ k the set {ξn = 1} is the union of 2−k+1 sets in our

partition, we find that every such set has probability 2−1. But then clearly the ξn, n ≤ k must

be independent (why?) As this holds for any k < ∞, the first part of the lemma follows. The

second part of the lemma follows directly from the first part, as any random variable constructed

in this way must have the same law as the random variable ξ considered in the first part.

Corollary. There exists a sequence {Yn} of independent random variables on the probability

space ([0, 1],B([0, 1]), λ), each of which is uniformly distributed on the unit interval [0, 1].

Proof. Define ξ : [0, 1] → R, ξ(x) = x. Then ξ is uniformly distributed on [0, 1], so by the

previous lemma its sequence of binary digits {ξn} are independent and take the values {0, 1}
with equal probability. Let us now reorder {ξn}n∈N into a two-dimensional array {ξ̃mn}m,n∈N
(i.e., each ξ̃mn coincides with precisely one ξn). This is easily done, for example, as in the

usual proof that the rational numbers are countable. Define Yn =
∑∞

m=1 ξ̃mn2−m. By the

previous lemma, the sequence {Yn} has the desired properties.

Proof of theorem 1.6.8. We have constructed a sequence {Yn} of independent uniformly dis-

tributed random variables on [0, 1]. The last step of the proof consists of finding a sequence

of measurable functions fn : [0, 1] → R such that the law of Xn = fn(Yn) is Pn. Then we

are done, as {Xn} is a sequence of independent random variables with law P1,P2, . . ., and the

product measure P is then simply the law of (X1, X2, . . .) as discussed above.

To construct the functions fn, let Fn(x) = Pn(] −∞, x]) be the CDF of the measure Pn

(see theorem 1.1.15). Note thst Fn takes values in the interval [0, 1]. Now define fn(u) =
inf{x ∈ R : u ≤ Fn(x)}. Then λ(fn(Yn) ≤ y) = λ(Yn ≤ Fn(y)) = Fn(y), as Yn is

uniformly distributed. Hence fn(Yn) has the law Pn, and we are done.

Absolutely continuous measures and the Radon-Nikodym theorem

Let (Ω,F ,P) be a given probability space. It is often interesting to try to find other

measures on F with different properties. We may have gone through some trouble

to construct a measure P, but once we have such a measure, we can generate a large

family of related measures using a rather simple technique. This idea will come in

very handy in many situations; calculations which are difficult under one measure can
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often become very simple if we change to a suitably modified measure (for example, if

{Xn} is a collection of random variables with some complicated dependencies under

P, it may be advantageous to compute using a modified measure Q under which the

Xn are independent). Later on, the change of measure concept will form the basis for

one of the most basic tools in our stochastic toolbox, the Girsanov theorem.

The basic idea is as follows. Let f be a nonnegative random variable with unit

expectation E(f) = 1. For any set A ∈ F , define the quantity

Q(A) = EP(IAf) ≡
∫

A

f(ω) P(dω).

Then Q(A) is itself a probability measure (why?), and moreover

EQ(g) =

∫

g(ω) Q(dω) =

∫

g(ω) f(ω) P(dω) = EP(gf)

for any random variable g for which either side is well defined (why?).

Definition 1.6.9. A probability measure Q is said to have a density with respect to

a probability measure P if there exists a nonnegative random variable f such that

Q(A) = EP(IAf) for every measurable set A. The density f is denoted as dQ/dP.

Remark 1.6.10. In your introductory probability course, you likely encountered this

idea very frequently with a minor difference: the concept still works if P is not a

probability measure but, e.g., the Lebesgue measure of remark 1.3.11. We then define

Q(A) =

∫

A

f(x) dx, e.g., Q([a, b]) =

∫ b

a

f(x) dx,

where f is now the density of Q with respect to the Lebesgue measure. Not all

probability measures on R admit such a representation (consider example 1.1.13),

but many interesting examples can be constructed, including the Gaussian measure

(where f ∝ exp(−(x−µ)2/2σ)). Such expressions allow nice explicit computations

in the case where the underlying probability space is Rd, which is the reason that

most introductory courses are centered around such objects (rather than introducing

measure theory, which is needed for more complicated probability spaces).

Suppose that Q has a density f with respect to P. Then these measures must

satisfy an important consistency condition: if P(A) = 0 for some eventA, then Q(A)
must also be zero. To see this, note that IA(ω)f(ω) = 0 for ω ∈ Ac and P(Ac) = 1,

so IAf = 0 P-a.s. In other words, if Q has a density with respect to P, then any

event that never occurs under P certainly never occurs under Q. Similarly, any event

that happens with probability one under P must happen with probability one under

Q (why?). Evidently, the use of a density to transform a probability measure P into

another probability measure Q “respects” those events that happen for sure or never

happen at all. This intuitive notion is formalized by the following concept.

Definition 1.6.11. A measure Q is said to be absolutely continuous with respect to a

measure P, denoted as Q � P, if Q(A) = 0 for all events A such that P(A) = 0.
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We have seen that if Q has a density with respect to P, then Q � P. It turns out

that the converse is also true: if Q � P, then we can always find some density f
such that Q(A) = EP(IAf). Hence the existence of a density is completely equivalent

to absolute continuity of the measures. This is a deep result, known as the Radon-

Nikodym theorem. It also sheds considerable light on the concept of a density: the

intuitive meaning of the existence of a density is not immediately obvious, but the

conceptual idea behind absolute continuity is clear.

Theorem 1.6.12 (Radon-Nikodym). Suppose that Q � P are two probability mea-

sures on the space (Ω,F). Then there exists a nonnegative F-measurable function

f with EP(f) = 1, such that Q(A) = EP(IAf) for every A ∈ F . Moreover, f is

unique in the sense that if f ′ is another F-measurable function with this property,

then f ′ = f P-a.s. Hence it makes sense to speak of ‘the’ density, or Radon-Nikodym

derivative, of Q with respect to P, and this density is denoted as dQ/dP.

In the case that Ω is a finite set, this result is trivial to prove. You should do this

now: convince yourself that the equivalence between absolute continuity and the ex-

istence of a density is to be expected. The uniqueness part of the theorem also follows

easily (why?), but the existence part is not so trivial in the general case. The theorem

is often proved using functional analytic tools, notably the Riesz representation theo-

rem; see e.g. [GS96]. A more measure-theoretic proof can be found in [Bil86]. Most

beautiful is the probabilistic proof using martingale theory, see [Wil91, sec. 14.13].

We will follow this approach to prove the Radon-Nikodym theorem in section 2.2,

after we have developed some more of the necessary tools.

1.7 A technical tool: Dynkin’s π-system lemma

When developing the basic tools of probability there is an elementary technical re-

sult, known as Dynkin’s π-system lemma, which is very often employed to complete

certain proofs. Once the foundations have been laid and it comes to actually using

the theory, we will no longer have much use for this technique (unlike, for example,

the dominated convergence theorem, which we will use constantly); as such, we have

avoided introducing this tool up to this point (though it has already secretly been used:

for example, theorem 1.6.6 relies on this sort of reasoning!) Nonetheless we will need

the π-system lemma briefly in chapters 2 and 3, and it is good to know that it exists in

any case, so we will discuss the method briefly in this section.

The basic problem is as follows. Suppose we have defined, in one way or another,

two probability measures P and Q on some space (Ω,F). It could well be that P = Q,

but as these measures were constructed in different ways this may not be so easy to

prove. In particular, it would be rather tedious if we had to check P(A) = Q(A)
for every single set A ∈ F . Dynkin’s π-system lemma gives us a way to check the

equality of two measures in a simpler way: roughly speaking, if we have verified

P(A) = Q(A) for “enough” sets A ∈ F , then the measures must be equivalent.

Definition 1.7.1. Let Ω be a set. A π-system C is a collection of subsets of Ω that is

closed under finite intersections, i.e., A,B ∈ C impliesA∩B ∈ C. A λ-system D is a
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collection of subsets of Ω such that Ω ∈ D,A,B ∈ D withA ⊂ B impliesB\A ∈ D,

and for any sequence {An} in D with A1 ⊂ A2 ⊂ · · · , we have
⋃

nAn ∈ D.

One could define a σ-algebra as a collection of subsets of Ω that is both a π-system

and a λ-system (why?). Hence the following result should not come as a shock.

Lemma 1.7.2. Let C be a π-system on some set Ω, and let D = λ{C} be the smallest

λ-system on Ω such that C ⊂ D. Then D = σ{C}.

Proof. Note that the smallest λ-system that contains a (not necessarily countable) collection of

sets is well defined: this is simply the intersection of all such λ-systems. Hence we are done if

we can show that D is itself a π-system. After all, in that case it is a σ-algbera that contains C,

so σ{C} ⊂ D; on the other hand, σ{C} is a λ-system that contains C, so D ⊂ σ{C}.

It thus remains to show that A,B ∈ D implies A ∩ B ∈ D. We first claim that this is

true for A ∈ D and B ∈ C. To see this, simply note that for any fixed B ∈ C we have

D ⊂ {A ⊂ Ω : A ∩ B ∈ D}, as the latter is clearly a λ-system containing C. We can thus

conclude that for any fixed A ∈ D, the collection {B ⊂ Ω : A ∩ B ∈ D} contains C. But this

collection is again a λ-system, so must contain D. Hence D is a π-system.

Lemma 1.7.3 (Dynkin). Let (Ω,F) be a measurable space, and let C be a π-system

such that F = σ{C}. If two probability measures P and Q agree on C, i.e., if we have

P(A) = Q(A) for all A ∈ C, then P and Q are equal (P(A) = Q(A) for all A ∈ F).

Proof. Define D = {A ∈ F : P(A) = Q(A)}. You can verify directly that D is a λ-system,

and by assumption C ⊂ D. But then D = F by the previous lemma.

For sake of example, let us prove the uniqueness part of theorem 1.6.6. Recall

that ρi : Ω1 × Ω2 → Ωi are the projection maps, and F1 × F2 = σ{ρ1, ρ2}. Hence

F1 × F2 = σ{C} with C = {A × B : A ∈ F1, B ∈ F2}, which is clearly a π-

system. Now any measure P under which ρi has law Pi and under which ρ1 and ρ2

are independent must satisfy P(A × B) = P1(A) P2(B): this follows immediately

from the definition of independence. By the π-system lemma, any two such measures

must be equivalent. Hence the product measure P1 × P2 is uniquely defined.

1.8 Further reading

This chapter gives a minimal introduction to measure-theoretic probability. Though

this will be sufficient to get us through the course, this is no substitute for a good

course on rigorous probability theory. I strongly encourage you to take the time to

learn more about the foundations of this rich field.

There are many good books on probability theory; quite a few of them are very

good indeed. Some (somewhat arbitrarily) selected textbooks where you can find

many details on the topics of this chapter, and much more besides, are listed below.

It is hard to imagine a more lively introduction to probability theory than Williams’

little blue book [Wil91]. A thorough and lucid development of probability theory can

be found in the classic textbook by Billingsley [Bil86], while the textbook by Dudley

[Dud02] puts a stronger emphasis on the analytic side of things. Finally, Kallenberg’s

monograph [Kal97] takes an original point of view on many topics in probability

theory, but may be tough reading if you are learning the material for the first time.
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2
Conditioning, Martingales, and

Stochastic Processes

The notion of conditional expectation is, in some sense, where probability theory gets

interesting (and goes beyond pure measure theory). It allows us to introduce interest-

ing classes of stochastic processes—Markov processes and martingales—which play

a fundamental role in much of probability theory. Martingales in particular are ubiq-

uitous throughout almost every topic in probability, even though this might be hard to

imagine when you first encounter this topic.

We will take a slightly unusual route. Rather than introduce immediately the ab-

stract definition of conditional expectations, we will start with the familiar discrete

definition and build some of the key elements of the full theory in that context (par-

ticularly martingale convergence). This will be sufficient both to prove the Radon-

Nikodym theorem, and to define the general notion of conditional expectation in a

natural way. The usual abstract definition will follow from this approach, while you

will get a nice demonstration of the power of martingale theory along the way.

2.1 Conditional expectations and martingales: a trial run

Discrete conditional expectations

Let (Ω,F ,P) be a probability space (which we will fix until further notice), and

consider two events A,B ∈ F . You should be very comfortable with the notion

of conditional probability: the probability that A occurs, given that B occurs, is

P(A|B) = P(A ∩ B)/P(B). Intuitively, if we repeat the experiment many times,

but discard all of the runs where B did not occur, then P(A|B) is the fraction of the

remaining runs in which A occured. Similarly, let X be a random variable. Then

45
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0 1 0 1Probability space Ω = [0,1] Probability space Ω = [0,1]

Y

X

 (X | Y)

Y

Z

X

E (X | Y , Z)

Figure 2.1. Illustration of the discrete conditional expectation on ([0, 1],B([0, 1]),P), where P

is the uniform measure. A random variable X is conditioned with respect to a discrete random

variable Y (left) and with respect to two discrete random variables Y, Z (right). This amounts

to averaging X (w.r.t. P) over each bin in the partition generated by Y and Y, Z, respectively.

E(X |B) = E(XIB)/P(B) is the expectation of X , given that B occurs. Intuitively,

this is the mean value of our observations of X after we have discarded all runs of the

experiment where B did not occur.

Often we are not so much interested in the conditional expectation with respect

to an event, but rather with respect to some random variables which we have already

observed. Suppose X,Y are two random variables where Y takes a finite number of

values y1, . . . , yd. In our experiment we observe Y , and we would like to determine

the conditional mean of X as a function of our observation Y . For every possible

outcome of Y we can separately determine the conditional mean E(X |Y = yi), but it

makes more sense in this context to think of the conditional mean as a true function of

the observation: i.e., we should define the random variable E(X |Y ) = f(Y ), where

f(yi) = E(X |Y = yi). E(X |Y ) is called the conditional expectation of X given Y .

You can think of this, if you wish, as a sort of estimator: E(X |Y ) is a good estimate

of X given Y , in some sense. We will make this idea more precise later on.

It is easy to extend this idea to a finite number of discrete random variables

Y 1, . . . , Y n. Define the sets Ay1,...,yn = {ω ∈ Ω : Y 1(ω) = y1, . . . , Y n(ω) = yn}.

There are a finite number of these sets, as each of the Y i only take a finite number of

values; moreover, the sets are clearly disjoint and form a partition of Ω (in the sense

that the union of all these sets is Ω). We now define E(X |Y 1, . . . , Y n) by setting

E(X |Y 1, . . . , Y n)(ω) = E(X |Ay1,...,yn) for every ω ∈ Ay1,...,yn . This procedure is

illustrated in figure 2.1. Note that once again E(X |Y 1, . . . , Y n) = f(Y 1, . . . , Y n),
by construction, for some measurable function f .

We are now ready for a trivial but key insight. Our definition of the conditional

expectation E(X |Y 1, . . . , Y n) does not actually depend on the values taken by the

random variables Y 1, . . . , Y n; rather, it only depends on the partition Ay1,...,yn gen-

erated by these random variables. This partition encodes the maximal amount of
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information that can be extracted by measuring these random variables: any event

B ∈ σ{Y 1, . . . , Y n} can be written as a union of the sets Ay1,...,yn (why?) Hence

in reality we are not really conditioning on the random variables Y 1, . . . , Y n them-

selves, but on the information contained in these random variables (which is intuitively

precisely as it should be!) It should thus be sufficient, when we are calculating condi-

tional expectations, to specify the σ-algebra generated by our observations rather than

the observations themselves. This is what we will do from now on.

Definition 2.1.1. A σ-algebra F is said to be finite if it is generated by a finite number

of sets F = σ{A1, . . . , An}. Equivalently, F is finite if there is a finite partition of Ω
such that every event inF is a union of sets in the partition (why are these equivalent?).

Definition 2.1.2. Let X ∈ L1 be a random variable on (Ω,F ,P), and let G ⊂ F be a

finite σ-algebra generated by the partition {Ak}k=1,...,n. Then

E(X |G) ≡
n
∑

k=1

E(X |Ak) IAk
,

where E(X |A) = E(XIA)/P(A) if P(A) > 0 and we may define E(X |A) arbitrarily

if P(A) = 0. The conditional expectation thus defined is unique up to a.s. equivalence,

i.e., any two random variables Y, Ỹ that satisfy the definition obey Y = Ỹ a.s. (why?).

Remark 2.1.3. X ∈ L1 ensures that E(X |Ak) is well defined and finite.

The conditional expectation defined here should be a completely intuitive concept.

Unfortunately, extending it to σ-algebras which are not finite is not so straightforward.

For example, suppose we would like to condition X on a random variable Y that is

uniformly distributed on the unit interval. The quantity E(X |Y = y) is not well

defined, however: P(Y = y) = 0 for every y ∈ [0, 1]! In the finite case this was not

a problem; if some sets in the partition had zero probability we just ignore them, and

the resulting conditional expectation is still uniquely defined with probability one. In

the continuous case, however, our definition fails with probability one (the problem

being, of course, that there is an uncountable amount of trouble).

A look ahead

In laying the foundations of modern probability theory, one of the most important

insights of Kolmogorov (the father of modern probability) was that the conditional

expectation can be defined unambiguously even in the continuous case. Kolmogorov

noticed that the discrete definition could be rephrased abstractly without mention of

the finiteness of the σ-algebra, and that this abstract definition can serve as a mean-

ingful definition of the conditional expectation in the continuous case. We could in-

troduce this definition at this point and show that it reduces to the definition above

for finite σ-algebras. To prove that the general definition is well posed, however, we

need1 the Radon-Nikodym theorem which we have not yet proved. It may also not

1 This is not the only way to prove well posedness but, as we will see, there is a natural connec-
tion between the Radon-Nikodym theorem and the conditional expectation that makes this point of view
worthwhile. We will comment on the other method of proving well posedness later on.
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Figure 2.2. We would like to calculate E(X|Y ), where P is the uniform measure on the interval,

X : [0, 1] → R is some random variable and Y : [0, 1] → R is given by Y (x) = x for x ≤ 1
2

,

Y (x) = 1 − x for x ≥ 1
2

. Intuitively we should have E(X|Y )(x) = 1
2
X(x) + 1

2
X(1 − x),

but definition 2.1.2 does not allow us to conclude this. However, a sequence of approximations

covered by definition 2.1.2 appears to give rise to the expected result. But how to prove it?

be so appealing to just take for granted an abstracted definition, as it is not entirely

obvious that it really encodes the desired concept.

A more natural idea, see figure 2.2, might be to try something like this. Suppose

that we want to define E(X |Y ), where Y is not necessarily finite-valued. However,

we can easily find a sequence Yn of finite-valued random variables such that Yn → Y
(e.g., using lemma 1.3.12): this is how we defined the expectation itself! One would

thus think that we can define E(X |Y ) as the limit of E(X |Yn) as n → ∞. To go

down this path, we need to prove that this limit exists and is uniquely defined. Such

problems are solved using martingale theory, which we can develop already in the

simple framework of finite σ-algebras. This is what we will do in the remainder of

this section. This route serves a dual purpose: we can provide an appealing definition

of the conditional expectation, and on the way you can learn how martingales work

in practice. Moreover, almost the same technique will allow us to prove the Radon-

Nikodym theorem, thus tying all these topics together and showing how they relate.

At the end of the day, we will still introduce Kolmogorov’s definition of the con-

ditional expectation. This definition is much easier to use as it does not require taking

limits, and makes many of the properties of the conditional expectation easy to prove.

Hopefully, however, the intermediate story will help you get intuition for and practice

in using conditional expectations and martingales.

Elementary properties of the conditional expectation

Some important properties of the conditional expectation are listed in the following

lemma. These properties hold also for the general conditional expectation, but we will

prove them here for the finite case (where many of the properties are trivial!)

Lemma 2.1.4. Let X,Y ∈ L1 be random variables on (Ω,F ,P), let G,H ⊂ F be

finite σ-algebras, and let α, β ∈ R.

1. E(αX + βY |G) = αE(X) + β E(Y ) a.s.

2. If X ≥ 0 a.s., then E(X |G) ≥ 0 a.s.
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3. E(E(X |G)) = E(X).

4. Tower property: if H ⊂ G, then E(E(X |G)|H) = E(X |H) a.s.

5. If X is G-measurable, then E(X |G) = X a.s.

6. If X is G-measurable and XY ∈ L1, then E(XY |G) = X E(Y |G) a.s.

7. If H and σ{X,G} are independent, then E(X |σ{G,H}) = E(X |G) a.s.

8. If H and X are independent, then E(X |H) = E(X) a.s.

9. Monotone and dominated convergence, Fatou’s lemma, and Jensen’s inequality

all hold for conditional expectations also; e.g., if 0 ≤ X1 ≤ X2 ≤ · · · a.s.,

then E(Xn|G) ↗ E(limnXn|G) a.s. (monotone convergence).

Proof.

1. Trivial.

2. Trivial.

3. E(E(X|G)) =
∑

k E(X|Ak)P(Ak) =
∑

k E(XIAk ) = E(XI∪kAk ) = E(X).

4. Let {Ak} be the partition for G and {Bk} be the partition for H. Then

E(E(X|G)|H) =
∑

j

∑

k

E(X|Ak)P(Ak|Bj)IBj .

But H ⊂ G implies that every set Bj is the disjoint union of sets Ak, so P(Ak|Bj) =
E(IAkIBj )/P(Bj) = P(Ak)/P(Bj) if Ak ⊂ Bj , and zero otherwise. Hence

E(E(X|G)|H) =
∑

j

∑

k:Ak⊂Bj

E(XIAk )

P(Bj)
IBj =

∑

j

E(XIBj )

P(Bj)
IBj = E(X|H).

5. If X is G-measurable, then X−1(B) ∈ G for every B ∈ B(R). This implies that X
must be constant on every set Ai in the partition for G (why?), so X =

∑
i xiIAi for

some xi ∈ R. The result follows directly by plugging this into the definition.

6. As before, we may write X =
∑

i xiIAi . Then

E(XY |G) =
∑

k

∑

i

xi E(IAiY |Ak) IAk =
∑

k

xk E(Y |Ak) IAk = X E(Y |G),

where we have used (twice) that IAkIAi = IAk if k = i, and zero otherwise.

7. Let {Ak} be a partition for G and {Bk} for H. Then the sets {Ai ∩ Bj} are disjoint,

and hence form a partition for σ{G,H}. We can thus write

E(X|G,H) =
∑

i,j

E(XIAi∩Bj )

P(Ai ∩Bj)
IAi∩Bj =

∑

i,j

E(XIAi)P(Bj)

P(Ai)P(Bj)
IAiIBj = E(X|G)

(with the convention 0/0 = 0), where we have used the independence ofXIAi and IBj .

8. Use the previous result with G = {∅,Ω}.

9. Trivial.



2.1. Conditional expectations and martingales: a trial run 50

Discrete time stochastic processes and filtrations

A stochastic process is just a collection of random variables {Xt}, indexed by time t.
In later chapters we will most often work in continuous time t ∈ [0,∞[, but for the

time being we will concentrate on the discrete time case, i.e., t = 0, 1, 2, . . . In this

form, a stochastic process is nothing to get excited about. After all, a discrete time

stochastic process is just a sequence of random variables {Xn}—we have encountered

plenty such sequences already. What do we gain by interpreting the index n as “time”?

Stochastic processes start leading a life of their own once we build a notion of time

into our probability space. In our elementary space (Ω,F ,P), the σ-algebra F is the

set of all yes-no questions that could be asked (and answered) during the course of an

experiment. However, not all such questions can be answered by some fixed time. For

example, suppose we flip coins, whereXn is the outcome of the nth coin flip. Then at

time n, we know the answer to the question did the flips up to time n come up heads

more often than tails?, but not to the question will we flip more heads than tails before

time N > n? (we could calculate the probability of the latter event, but we can never

know its outcome at time n!) To build the notion of time into our probability space,

we need to specify which sub-σ-algebra of questions in F can be answered by time

n. If we label this σ-algebra by Fn, we obtain the following notion.

Definition 2.1.5. Let (Ω,F ,P) be a probability space. A (discrete time) filtration is

an increasing sequence {Fn} of σ-algebras F0 ⊂ F1 ⊂ · · · ⊂ F . The quadruple

(Ω,F , {Fn},P) is called a filtered probability space.

Note that the sequence Fn must be increasing—a question that can be answered

by time n can also be answered at any later time. We can now introduce a notion of

causality for stochastic processes.

Definition 2.1.6. Let (Ω,F , {Fn},P) be a filtered probability space. A stochastic

process {Xn} is called (Fn-) adapted if Xn is Fn-measurable for every n, and is

called (Fn-) predictable if Xn is Fn−1-measurable for every n.

Hence if {Xn} is adapted, then Xn represents a measurement of something in

the past or present (up to and including time n), while in the predictable case Xn

represents a measurement of something in the past (before time n). Note how the

notion of time is now deeply embedded in our probabilistic model—time is much

more than just an index in a sequence of random variables!

Conversely, if we have some probability space (Ω,F ,P) and a sequence of random

variables {Xn}, we can use this sequence to generate a filtration:

Definition 2.1.7. Let (Ω,F ,P) be a probability space and {Xn} be a stochastic pro-

cess. The filtration generated by {Xn} is defined as FX
n = σ{X0, . . . , Xn}, and the

process {Xn} is FX
n -adapted by construction.

In practice, filtrations are very often generated in this way. Once we have such

a filtration, we can use it as before to define a notion of time. It turns out that this

is a very fruitful point of view. Even if we are just dealing with a sequence {Xn},

where n has no relation to the physical notion of time (e.g., the sequence of approx-

imations E(X |Yn) that we wish to use to define E(X |Y )), it will pay off to think of
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this sequence as an adapted stochastic process. On the other hand, many stochastic

processes used to model random signals or natural phenomena do have an associated

physical notion of time, which is faithfully encoded using the concept of a filtration.

Martingales

A martingale is a very special type of stochastic process.

Definition 2.1.8. A stochastic process {Xn} is said to be an Fn-martingale if it is

Fn-adapted and satisfies E(Xn|Fm) = Xm a.s. for every m ≤ n. (If the filtration is

obvious, e.g., on a filtered probability space, we will just say thatXn is a martingale).

Remark 2.1.9. We have not yet defined the conditional expectation for anything but

finite σ-algebras. Thus until further notice, we assume that Fn is finite for every n.

In particular, this means that if Xn is Fn-adapted, then every Xn is a finite-valued

random variable. This will be sufficient machinery to develop the general theory.

How should you interpret a martingale? The basic idea (and the pretty name)

comes from gambling theory. Suppose we play a sequence of games at a casino, in

each of which we can win or lose a certain amount of money. Let us denote byXn our

total winnings after the nth game: i.e., X0 is our starting capital, X1 is our starting

capital plus our winnings in the first game, etc. We do not assume that the games

are independent. For example, we could construct some crazy scheme where we play

poker in the nth game if we have won an even number of times in the past, and we

play blackjack if we have won an odd number of times in the past. As poker and

blackjack give us differently distributed winnings, our winnings Xn − Xn−1 in the

nth game will then depend on all of the past winnings X0, . . . , Xn−1.

If the game is fair, however, then we should make no money on average in any of

the games, regardless of what the rules are. After all, if we make money on average

then the game is unfair to the casino, but if we lose money on average the game is

unfair towards us (most casinos operate in the latter mode). As such, suppose we

have made Xm dollars by time m. If the game is fair, then our expected winnings

at any time in the future, given the history of the games to date, should equal our

current capital: i.e., E(Xn|σ{X0, . . . , Xm}) = Xm for any n ≥ m. This is precisely

the definition of an (FX
n -) martingale. Hence we can interpret a martingale as the

winnings in a sequence of fair games (which may have arbitrarily complicated rules).

You might be surprised that such a concept has many far-reaching consequences.

Indeed, martingale techniques extend far beyond gambling, and pervade almost all as-

pects of modern probability theory. It was the incredible insight of J. L. Doob [Doo53]

that martingales play such a fundamental role. There are many reasons for this. First,

martingales have many special properties, some of which we will discuss in this chap-

ter. Second, martingales show up naturally in many situations which initially appear

to have little to do with martingale theory. The following simple result (which we will

not need during the rest of this course) gives a hint as to why this could be the case.

Lemma 2.1.10 (Doob decomposition). Let (Ω,F ,P) be a probability space, let Fn

be a (finite) filtration and let {Xn} be Fn-adapted with Xn ∈ L1 for every n. Then
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Xn = X0 + An + Mn a.s., where {An} is Fn-predictable and {Mn} is an Fn-

martingale with M0 = 0. Moreover, this decomposition is unique.

Proof. LetAn =
∑n

k=1 E(Xk−Xk−1|Fk−1);An is well defined (Xk ∈ L1) and predictable.

We claim that Mn = Xn −X0 −An is a martingale (clearly M0 = 0). But this follows from

Mn = Xn −X0 −An =

n∑

k=1

{Xk −Xk−1 − E(Xk −Xk−1|Fk−1)}

using lemma 2.1.4 (why?) To prove uniqueness, suppose that M̃n and Ãn were another mar-

tingale (with M̃0 = 0) and predictable process, respectively, such that Xn = X0 + Ãn + M̃n

a.s. Then evidently Ãn −An = Mn − M̃n a.s. But the left hand side is Fn−1-measurable, so

using the martingale property Ãn − An = E(Ãn − An|Fn−1) = E(Mn − M̃n|Fn−1) = 0
a.s. Hence An = Ãn a.s., and consequently Mn = M̃n a.s. as well.

Remark 2.1.11. Note that any discrete time stochastic process can be decomposed

into a martingale part and a predictable part (provided thatXn ∈ L1 for all n). This re-

sult still holds when the Fn are not finite, but is not true in continuous time. Nonethe-

less almost all processes of interest have such a decomposition. For example, we

will see in later chapters that the solution of a stochastic differential equation can be

written as the sum of a martingale and a process which is differentiable in time. For

similar reasons, martingales play an important role in the general theory of Markov

processes. As this is an introductory course, we will not attempt to lay down these

theories in such generality; the purpose of this interlude was to give you an idea of

how martingales can emerge in seemingly unrelated problems.

Many results about martingales are proved using the following device.

Definition 2.1.12. Let {Mn} be a martingale and {An} be a predictable process.

Then (A ·M)n =
∑n

k=1 Ak(Mk −Mk−1), the martingale transform of M by A, is

again a martingale, provided that An and (A ·M)n are in L1 for all n (why?).

Let us once again give a gambling interpretation. We play a sequence of games;

before every game, we may stake a certain amount of money. We now interpret the

martingale Mn not as our total winnings at time n, but as our total winnings if we

were to stake one dollar on each game. For example, if we stake A1 dollars on the

first game, then we actually win A1(M1 −M0) dollars. Consequently, if we stake

Ak dollars on the kth game, then our total winnings after the nth game are given by

Xn = X0 + (A ·M)n. Note that it is important for An to be predictable: we have to

place our bet before the game is played, so our decision on how much money to stake

can only depend on the past (obviously we could always make money, if we knew the

outcome of the game in advance!) Other than that, we are free to choose an arbitrarily

complicated gambling strategy An (our decision on how much to stake on the nth

game can depend arbitrarily on what happened in previous games). The fact that Xn

is again a martingale says something we know intuitively—there is no “reasonable”

gambling strategy that allows us to make money, on average, on a fair game.

We are now ready to prove of of the key results on martingales—the martingale

convergence theorem. With that bit of machinery in hand, we will be able to prove the

Radon-Nikodym theorem and to extend our definition of the conditional expectation.
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Figure 2.3. We stake bets on a martingale M as follows: we start betting (with a fixed stake

A = 1) when M is first below a, we stop betting (A = 0) when M next exceeds b, and repeat.

The periods when we are betting are shown in red and when we are not in blue. Our total

winnings X are in green. At the final time T , our winnings can evidently not exceed b − a
times the number of upcrossings (two) minus (a−MT )+. (Figure adapted from [Wil91].)

The martingale convergence theorem

Let us go to the casino. We join the roulette table, where a lone soul is betting his

money away. Our new friend has a simple strategy: he stakes one dollar on every

game. Having selected the only fair casino in the world, our friend makes no money

on average. We, on the other hand, think we can do better by playing the following

strategy. We do not stake any money until our friend’s capital sinks below a certain

amount of dollars a. We then stake one dollar per game until our friend’s capital

exceeds b > a dollars. At this point, we stop staking money until our friend’s capital

has dropped below a dollars again, and repeat. As long as our friend’s luck keeps

changing, we will repeatedly make b− a dollars and thus get very rich; or not?

Previously, we concluded that the winnings obtained through any gambling strat-

egy is again a martingale (the L1 condition is clearly satisfied here, as our gambling

strategy An is bounded). Hence at any time, we should have made no money on av-

erage even with our smart alec strategy. But how can this be? Suppose that at time n,

our friend has had k reversals of fortune, so we have made k(b−a) dollars by starting

to stake low and stopping to stake high. Somehow, this profit must be offset by a loss

so that our total winnings will average to zero. The only winnings that we have not

taken into account, however, are procured if our friend’s wealth has actually hit its low

point a for the (k + 1)th time, but has not yet hit the high point b for the (k + 1)th
time. Once we hit the level b again (in the future) we will have made another b − a
dollars, but we could actually make a significant loss before this time (see figure 2.3).

The only way that our winnings at time n can average to zero, is if the expected loss

incurred since the last time we started staking money in the game equals k(a− b).
Now suppose that our friend keeps having more and more reversals of fortune;

that is, we repeatedly make b − a dollars. The only way that this can happen is if

our intermediate losses get larger and larger (after all, everything must still average

to zero). If, on the other hand, we know that our friend’s winnings are bounded in

some sense—for example, the casino could refuse to let him play, if he is too much
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in debt—then the latter cannot happen. Hence there is only one logical conclusion in

this case: evidently our friend’s winnings can cross a and b only a finite number of

times; otherwise we could make money on average by playing a predictable gambling

strategy in a fair game. But this must be true for every value of a and b (these were

only used in our gambling strategy, they do not determine our friend’s winnings!),

so we come to a very interesting conclusion: if a martingale Mn is bounded, then it

cannot fluctuate forever; in other words, it must converge to some random variable

M∞. We have basically proved the martingale convergence theorem.

Let us now make these ideas precise.

Lemma 2.1.13 (Doob’s upcrossing lemma). Let {Mn} be a martingale, and denote

by Un(a, b) the number of upcrossings of a < b up to time n: that is, Un(a, b) is the

number of times thatMk crosses from below a to above b before time n. Then we have

E(Un(a, b)) ≤ E((a−Mn)+)/(b− a).

Proof. Define the following gambling strategy (see figure 2.3). Let A0 = 0, and set Ak = 1 if

either Ak−1 = 1 and Mk−1 < b, or if Ak−1 = 0 and Mk−1 ≤ a, and set Ak = 0 otherwise.

ClearlyAk is bounded and predictable, soXn = (A ·M)n is a martingale (this is the winnings

process of figure 2.3). We can evidently estimate Xn ≥ (b − a)Un(a, b) − (a −Mn)+; the

first term is the number of upcrossings times the winnings per upcrossing, while the second

term is a lower bound on the loss incurred after the last upcrossing before time n. As Xn is a

martingale, however, E(Xn) = X0 = 0, and the result follows directly.

Theorem 2.1.14 (Martingale convergence). Let {Mn} be an Fn-martingale such

that one of the following hold: (a) supn E(|Mn|) <∞; or (b) supn E((Mn)+) <∞;

or (c) supn E((Mn)−) < ∞. Then there exists an F∞-measurable random variable

M∞ ∈ L1, where F∞ = σ{Fn : n = 1, 2, . . .}, such that Mn →M∞ a.s.

Proof. We can assume without loss of generality that M0 = 0 (otherwise just consider the

martingale Nn = Mn −M0). Let us first show that the three conditions (a)–(c) are equivalent.

Note that 0 = E(Mn) = E((Mn)+) − E((Mn)−), so E((Mn)+) = E((Mn)−). Moreover

E(|Mn|) = E((Mn)+) + E((Mn)−), so clearly (a)–(c) are equivalent.

Next, note that (a −Mn)+ ≤ |a −Mn| ≤ |a| + |Mn|. Hence for any n, we can bound

E(Un(a, b)) ≤ (|a| + supn E(|Mn|))/(b − a) < ∞. But then letting n → ∞ and using

monotone convergence, we find that E(U∞(a, b)) < ∞. Thus apparently, Mn can only ever

have a finite number of upcrossings of a < b for fixed a and b.
Now there are three possibilities. EitherMn(ω) converges to some finite value as n → ∞;

orMn(ω) converges to +∞ or −∞; orMn(ω) does not have a limit (its limit superior and infe-

rior are different). In the latter case, there must be some rational numbers a < b that are crossed

by Mn(ω) infinitely many times (choose lim infn Mn(ω) < a < b < lim supMn(ω)). But

P(∃a, b ∈ Q, a < b s.t. Mn crosses a, b infinitely often)

≤
∑

a,b∈Q

P(Mn crosses a, b infinitely often) =
∑

a,b∈Q

P(U∞(a, b) = ∞) = 0.

Hence we have established that Mn converges a.s. to some M∞. But by Fatou’s lemma

E(|M∞|) ≤ lim infn E(|Mn|) < ∞, so M∞ must be a.s. finite and even in L1.
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Remark 2.1.15. Note that we are still in the setting where Fn is finite for all n.

However, nothing in the proofs of these results uses (or is hindered by) this fact, and

the proofs will carry over immediately to the general case.

Towards a general conditional expectation

Let X,Y be two random variables. We would like to give meaning to E(X |Y ), but

Y does not take a finite number of values (ultimately we wish to define E(X |G) for

general G, but we will go into this shortly). However, we can find a sequence of σ{Y }-

measurable discrete approximations Yn that converge to Y , as in lemma 1.3.12, and

for each n we can define Mn = E(X |Y1, . . . , Yn) using our existing theory. We now

claim that Mn converges a.s., so we may define E(X |Y ) ≡ limnMn.

Why is this true? The key point is that the sequence Mn is a martingale with

respect to the natural filtration Fn = σ{Y1, . . . , Yn}. To see this, note that Mn is

clearly adapted. Moreover E(Mn|Fm) = E(E(X |Fn)|Fm) = E(X |Fm) = Mm for

any m ≤ n by the tower property of the conditional expectation, so Mn is a martin-

gale. Finally, by Jensen’s inequality |Mn| ≤ E(|X | |Fn), so E(|Mn|) ≤ E(|X |) for

all n. Hence the boundedness condition for the martingale convergence theorem is

satisfied, and we conclude that Mn →M∞ ≡ E(X |Y ) a.s. (see figure 2.2).

Of course, we are not done yet: we still need to convince ourselves that our defi-

nition of E(X |Y ) does not depend on the choice of approximating sequence Yn. But

first, we will take a little detour into the proof of the Radon-Nikodym theorem.

2.2 The Radon-Nikodym theorem revisited

Separable σ-algebras

Let us briefly recap where we left off. We have a notion of conditional expectations

that works for finite σ-algebras; in this framework, we can define discrete martingales.

We would like to use martingale convergence to extend the discrete theory to the

continuous case. We thus need something like the following concept.

Definition 2.2.1. A σ-algebra F is called separable if there exists a filtration {Fn}
of discrete σ-algebras Fn ⊂ F such that F = σ{Fn : n = 1, 2, . . .}. Equivalently

(why?), F is separable if F = σ{An} for a countable collection of events An ∈ F .

Remark 2.2.2. In this course, we will never go beyond separable σ-algebras; we

will be content to prove, e.g., the Radon-Nikodym theorem, for separable σ-algebras

only. In fact, many results (such as the Radon-Nikodym theorem) can be extended

to the non-separable case by approximating a non-separable σ-algebra by separable

σ-algebras; see [Wil91, p. 147–149] for such an argument. This does not add any

intuition, however, so we will not bother to do this.

A large number of the σ-algebras encountered in practice—all the σ-algebras

which you will encounter in these notes fall in this category!—turn out to be sepa-

rable. There are certain cases where non-separable σ-algebras become important (if

you know about such things, think of the tail σ-algebra of a sequence of i.i.d. random

variables), but we will not run into them in this course.
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Example 2.2.3. Let Y be a random variable; then σ{Y } is separable: set F = σ{Fn :
n = 1, 2, . . .}, where Fn = σ{Y 1, . . . , Y n} with Y k as in lemma 1.3.12.

Example 2.2.4. If Xn is a sequence of random variables, then F = σ{Xn} is sepa-

rable: approximating every Xn by Xk
n , choose Fn = σ{Xk

m : m, k = 1, . . . , n}.

Example 2.2.5. Let {Xt}t∈[0,∞[ be a continuous time stochastic process such that

t 7→ Xt(ω) is continuous for every ω. Then F = σ{Xt : t ∈ [0,∞[} is separable.

To see this, note that by continuity t 7→ Xt is completely known if we know it for a

dense set of times (e.g., the dyadic rationals). Hence approximatingXt by a sequence

Xk
t for every t, we can use Fn = σ{Xk

t : k = 1, . . . , n, t = `2−n, ` = 0, . . . , n2n}.

Proof of the Radon-Nikodym theorem

We are finally going to prove the Radon-Nikodym theorem, albeit for separable σ-

algebras. You can easily guess what we are going to do: we will prove the theorem

for finite σ-algebras (trivial), then take a limit.

Lemma 2.2.6 (Finite Radon-Nikodym). Let F be a finite σ-algebra and let Q � P

be probability measures on F . Then there is an a.s. unique F-measurable random

variable f = dQ/dP such that Q(A) = EP(IAf) for every A ∈ F .

Proof. Let {An} be a partition of Ω that generates F . Define f(ω) = Q(Ak)/P(Ak) for all

ω ∈ Ak, where we may assign an arbitrary value if P(Ak) = 0. Clearly f is F-measurable,

Q(Ak) = EP(IAkf) when P(Ak) > 0, whereas both sides are zero when P(Ak) = 0 (note

that Q � P is crucial for this to hold!) As any set A ∈ F can be written as the union of Aks,

we find that Q(A) = EP(IAf) for any A ∈ F . This settles existence of dQ/dP.

Uniqueness is essentially trivial. Let f̃ be another F-measurable function; then f̃ must be

constant on all Ak. If f̃ 6= f on a set Ak with P(Ak) > 0, then EP(IAk f̃) 6= Q(A). So we

may only change f on a set Ak of measure zero; but then f = f̃ a.s.

A reminder:

Theorem 1.6.12 (Radon-Nikodym). Suppose Q � P are two probability measures

on the space (Ω,F). Then there exists a nonnegative F-measurable function f with

EP(f) = 1, such that Q(A) = EP(IAf) for everyA ∈ F , and f is unique in the sense

that if f ′ is another F-measurable function with this property, then f ′ = f P-a.s.

Assume F = σ{Fn : n = 1, 2, . . .}. Applying lemma 2.2.6 to the Fn, we obtain

a sequence fn of finite Radon-Nikodym derivatives. We now proceed in three steps.

1. We will find a candidate Radon-Nikodym derivative for F by taking the limit

f = limn fn. To this end we show that {fn} is an L1-bounded martingale, so

that convergence is guaranteed by the martingale convergence theorem.

2. We must show that f thus defined indeed satisfies Q(A) = EP(IAf) for every

A ∈ F . This requires some creative use of the limit theorems for random

variables, and the Dynkin π-system lemma 1.7.3.
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3. We must show uniqueness. It then follows that the limit limn fn is independent

of the choice of discretization {Fn} (which is not obvious from the outset!)

Let us get to work.

Proof. Throughout the proof, E denotes the expectation with respect to P.

1. Let fn be the Radon-Nikodym derivative obtained by applying lemma 2.2.6 to Fn. Then

fn is a discrete random variable (as Fn is finite). We claim that the sequence {fn} is

an Fn-martingale. To see this, let {Ak} be a partition that generates Fn and {Bj} be a

partition that generates Fm, m < n. Then every Bj is a union of sets Ak. Thus

E(fn|Bj) =
1

P(Bj)

∑

k:Ak⊂Bj

E(fnIAk ) =
1

P(Bj)

∑

k:Ak⊂Bj

Q(Ak) =
Q(Bj)

P(Bj)
.

Hence evidently E(fn|Fm) =
∑

j E(fn|Bj)IBj = fm. But note that fn is clearly

nonnegative for all n, so the boundedness condition of the martingale convergence theo-

rem holds trivially. Hence fn converges P-a.s., and we can define f = limn fn. But as

Q� P, we find that fn → f Q-a.s. as well. This will be crucial below.

2. The hardest part here is to show that E(f) = 1. Let us complete the argument assuming

that this is the case. Note that G =
⋃

n Fn is a π-system. We would like to show

that Q(A) = P(IAf) for all A ∈ F ; but as E(f) = 1, both sides are valid probability

measures and it suffices to check this forA ∈ G (by the π-system lemma 1.7.3). Now for

any A ∈ G, there exists by definition anm such thatA ∈ Fm. Hence P(IAfn) = Q(A)
for n ≥ m by lemma 2.2.6. Using Fatou’s lemma,

P(IAf) = P(lim inf
n

IAfn) ≤ lim inf
n
P(IAfn) = Q(A) ∀A ∈ G.

But we obtain the inequality in the reverse direction by applying this expression to Ac

and using E(f) = 1. Hence indeed f = dQ/dP, provided we can show that E(f) = 1.

To show E(f) = 1, we would usually employ the dominated convergence theorem (as

E(fn) = 1 for all n). Unfortunately, it is not obvious how to dominate {fn}. To

circumvent this, we rely on another useful trick: a truncation argument. Define

ϕn(x) =





1 x ≤ n,
n + 1 − x n ≤ x ≤ n+ 1,
0 x ≥ n+ 1.

The function ϕn is continuous for every n and ϕn ↗ 1. Moreover, fmϕn(fm) is

bounded by n + 1 for all m,n. But E(fmϕn(fm)) = EQ(ϕn(fm)) by lemma 2.2.6, as

ϕn(fm) is Fm-measurable. Letting m → ∞ using dominated convergence (which we

can apply now, having truncated the integrands to be bounded!), we find E(fϕn(f)) =
EQ(ϕn(f)). Note that it is crucial here that fn → f both P-a.s. and Q-a.s.! Finally, let

n → ∞ using monotone convergence; this gives E(f) = 1.

3. Suppose that f and f̃ are both F-measurable and satisfy E(IAf) = E(IAf̃ ) = Q(A)
for all A ∈ F . Define A+ = {ω : f(ω) > f̃(ω)} and A− = {ω : f̃(ω) > f(ω)}.

Then A+, A− ∈ F . But if P(A+) > 0, then we would have E(IA+(f − f̃)) > 0 which

is ruled out by assumption, so P(A+) = 0. Similarly P(A−) = 0, so f = f̃ a.s.
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Existence and uniqueness of the conditional expectation

Let us return to the seemingly unrelated issue of defining the conditional expectation.

Definition 2.2.7. Let F be a separable σ-algebra, i.e., F = σ{Fn : n = 1, 2, . . .}
with Fn finite. Let X ∈ L1. Then we define E(X |F) ≡ limn E(X |Fn).

You can easily convince yourself that the sequenceMn = E(X |Fn) is a (discrete)

Fn-martingale, and moreover supn E(|Mn|) ≤ E(|X |) as before. Hence the limit as

n→ ∞ does indeed exist, and is even in L1, by the martingale convergence theorem.

However, we are unsatisfied, because we might well get a different answer if we used

a different discretization sequence {Fn : n = 1, 2, . . .}.

Consider, however, the following idea. Choose for simplicity (we will see shortly

why!) an X such that X ≥ 0 a.s. and E(X) = 1. Then for every Fn, we can write

E(X |Fn) =
∑

k

E(X |Ak)IAk
=
∑

k

E(IAk
X)

P(Ak)
IAk

,

whereAk is a partition that generatedFn. But this is just a Radon-Nikodym derivative

in disguise: if we define the probability measure Q(A) = P(IAX), then

E(X |Fn) =
∑

k

Q(Ak)

P(Ak)
IAk

=
dQ|Fn

dP|Fn

,

where we write Q|Fn to signify that we have restricted the measure Q to Fn (i.e.,

apply lemma 2.2.6 with F = Fn), and similarly for P|Fn . In particular, if we let

n→ ∞, then our proof of the Radon-Nikodym theorem shows that

E(X |F) = lim
n

dQ|Fn

dP|Fn

=
dQ|F
dP|F

.

Thus apparently, there is a fundamental connection between the notion of a Radon-

Nikodym derivative and the notion of a conditional expectation! This immediately

resolves our uniqueness problem: as we have seen (this was not difficult at all) that

the Radon-Nikodym derivative does not depend on the discretization {Fn}, it is now

clear that neither does our definition the conditional expectation. We have thus finally

come to the conclusion that definition 2.2.7, which we have been hinting at (not so

subtly) for almost the entire chapter to date, really does make sense.

Remark 2.2.8. The choices X ≥ 0 a.s. and E(X) = 1 are in no way a restriction;

these merely make Q a probability measure, which was however not essential to the

argument. We can always rescaleX ∈ L1 so that it has unit expectation, while we can

always express any X as X+ −X−. As all the discrete conditional expectations are

linear and all the limits exist by martingale convergence, it is immediate that E(X |F)
is also linear with respect toX ; hence everything extends directly to arbitraryX ∈ L1.
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2.3 Conditional expectations and martingales for real

The Kolmogorov definition

As we saw in the last section, the conditional expectation E(X |F) can be defined as

the Radon-Nikodym derivative of the measure Q(A) = E(IAX) with respect to the

measure P (at least for X ≥ 0 such that E(X) = 1; then extend by linearity). By def-

inition of the Radon-Nikodym derivative, this means that E(IAX) = E(IAE(X |F))
for every A ∈ F , and moreover, by the Radon-Nikodym theorem, there is only one

F-measurable random variable E(X |F) that satisfies this relation. This is precisely

Kolmogorov’s definition of the conditional expectation.

Definition 2.3.1 (Kolmogorov). Let X ∈ L1 and let F be any σ-algebra. Then

E(X |F) is, by definition, the unique F-measurable random variable that satisfies the

relation E(IAX) = E(IAE(X |F)) for all events A ∈ F .

This is usually taken as the starting point in developing conditional expectations,

but with your knowledge of martingales it should now be evident that this is just the

limiting case of the familiar discrete conditional expectation, but in disguise. On the

other hand, this definition is often much easier to deal with: the definition itself does

not involve taking any limits (the limits are only involved in proving existence of an

object that satisfies the definition!)

Using the Kolmogorov definition of the conditional expectation, the following is

not hard to prove. We will leave it for you as an exercise.

Theorem 2.3.2 (Elementary properties). All statements of lemma 2.1.4 still hold in

the general case, i.e., when G and H are not necessarily finite.

The following property makes precise the idea that E(X |F) can be interpreted as

the best estimate of X given the information F . In other words, we give the condi-

tional expectation (a probabilistic concept) a statistical interpretation.

Proposition 2.3.3 (Least squares property). Let X ∈ L2. Then E(X |F) is the

least-mean-square estimate of X given F , i.e., E(X |F) is the unique F-measurable

random variable that satisfies E((X − E(X |F))2) = minY ∈L2(F) E((X − Y )2),
where L2(F) = {Y ∈ L2 : Y is F-measurable}.

Beside its statistical interpretation, you can also interpret this result geometrically:

the conditional expectation E(X |F) is the orthogonal projection of X ∈ L2 onto the

linear subspace L2(F) ⊂ L2 with respect to the inner product 〈X,Y 〉 = E(XY ).

Proof. First, note that E((X − Y )2) is finite for any Y ∈ L2(F) by Hölder’s inequality.

Clearly E((X − Y )2) = E((X − E(X|F) + E(X|F) − Y )2). But ∆ = E(X|F) − Y is F-

measurable by construction, so using the elementary properties of the conditional expectation

(and Hölder’s inequality to show that X∆ ∈ L1) we see that E(E(X|F)∆) = E(X∆). Thus

E((X − Y )2) = E((X − E(X|F)2) + E(∆2). [Recall the geometric intuition: ∆ ∈ L2(F)
and E(X|F) is the orthogonal projection of X onto L2(F), so H = X − E(X|F) ⊥ L2(F),

and thus 〈H,∆〉 = E(H∆) = 0.] The least squares property follows, as E(∆2) ≥ 0.

To prove that the minimum is unique, suppose that Y∗ is another F-measurable random

variable that minimizes E((X − Y )2). Then E((X − Y∗)
2) = E((X − E(X|F))2). But by
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the general formula above, E((X − Y∗)
2) = E((X − E(X|F))2) + E((E(X|F) − Y∗)

2). It

follows that we must have E((E(X|F) − Y∗)
2) = 0; this implies that E(X|F) = Y∗ a.s.

Let us briefly remark on the various definitions and constructions of the condi-

tional expectation. We then move on to martingales.

Remark 2.3.4. There are three approaches to defining the conditional expectation.

The first method is Kolmogorov’s abstract definition. It is the most difficult to

interpret directly, but is the cleanest and usually the easiest to use. Proving uniqueness

of the conditional expectation directly using Kolmogorov’s definition is easy (do it!),

but proving existence is hard—it requires the Radon-Nikodym theorem.

The second method is to define the conditional expectation as the least mean

square estimator. This is quite intuitive (certainly from a statistical point of view),

and proving existence and uniqueness of E(X |F) is not difficult provided one first

investigates in more detail the geometric properties of the space L2. However, this

definition only works (and is natural) for X ∈ L2, so that the conditional expectation

has to be extended to L1 at the end of the day (by approximation).

The third method is the one we used previously, i.e., defining the conditional ex-

pectation as a limit of discrete conditional expectations. This is perhaps most intuitive

from a probabilistic point of view, but it only seems natural for separable σ-algebras

(the extension to the non-separable case being somewhat abstract). Contrary to the

previous methods, it is existence that is easy to prove here (using the martingale con-

vergence theorem), but uniqueness is the difficult part.

Kolmogorov’s definition of conditional expectations is now universally accepted

in probability theory. However, all the techniques used above (including geometric

and martingale techniques) are very important and are used throughout the subject.

Martingales, supermartingales, submartingales

We have already discussed martingales, and though we have nominally only provided

proofs for the discrete case you can easily verify that none of the arguments depended

on this; to extend to the general case, just use theorem 2.3.2 instead of lemma 2.1.4.

In particular, the Doob decomposition, the fact that a martingale transform is again

a martingle (if it is L1), and the martingale convergence theorem all hold even if Fn

are not finite (or even separable). In this section, we will prove some other important

properties of martingales and related processes which we have not yet discussed.

First, let us introduce two related types of processes.

Definition 2.3.5. An Fn-adapted stochastic process {Xn} is said to be a super-

martingale if E(Xn|Fm) ≤ Xm a.s. for every m ≤ n, and a submartingale if

E(Xn|Fm) ≥ Xm a.s. for every m ≤ n. Hence a martingale is a process that is

both a supermartingale and a submartingale.

The terminology might be a little confusing at first: a supermartingale decreases

on average, while a submartingale increases on average. That’s how it is.

Example 2.3.6. The winnings in most casinos form a supermartingale.
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Example 2.3.7. The price of a stock in simple models of financial markets is often a

submartingale (we win on average—otherwise it would not be prudent to invest).

Remark 2.3.8. To prove that a process Xn is a supermartingale, it suffices to check

that E(Xn|Fn−1) ≤ Xn−1 a.s. for all n (why?); similarly, it suffices to check that

E(Xn|Fn−1) ≥ Xn−1 or E(Xn|Fn−1) = Xn−1 to demonstrate the submartingale

and the martingale property, respectively.

Here are some simple results about supermartingales. You should easily be able to

prove these yourself. Do this now. Note that it is often straightforward to extend such

results to submartingales by noting that if Xn is an Fn-submartingale, then K −Xn

is a supermartingale for any F0-measurable K.

Lemma 2.3.9. LetXn be a supermartingale. Then it can be written uniquely asXn =
X0 + An + Mn, where Mn is a martingale and An is a nonincreasing predictable

process (i.e., An ≤ An−1 a.s. for all n).

Lemma 2.3.10. Let Xn be a supermartingale such that supn E(|Xn|) < ∞. Then

there exists a random variable X∞ such that Xn → X∞ a.s.

Lemma 2.3.11. Let Xn be a supermartingale and let An ∈ L1 be a nonnegative

predictable process. Then (A ·X)n is a supermartingale, provided it is in L1.

Stopping times and optional stopping

A very important notion, in the context of any stochastic process, is a stopping time.

We will see many of these later on, and, in fact, and entire branch of stochastic control

(optimal stopping) is devoted to them! Roughly speaking, an Fn-stopping time is a

random time which is “observable” given Fn. In particular, if we know the answer to

every yes-no question in Fn, then we also know whether the stopping time has already

elapsed (and if so, when) or whether it has yet to happen.

Definition 2.3.12. An (Fn-) stopping time is a random time τ : Ω → {0, 1, . . . ,∞}
such that {ω ∈ Ω : τ(ω) ≤ n} ∈ Fn for every n.

Example 2.3.13. Let Xn be a stochastic process and Fn = σ{Xk : k = 1, . . . , n}.

Let τ = inf{k : Xk ≥ 17}. Then τ is a stopping time (why?). Note the intuition:

if we have observed the process X up to time n, then we can determine from this

whether τ ≤ n or τ > n (after all, if we have been observing the process, then we

know whether it has already exceeded 17 or not). In the former case, we also know

the value of τ (why? prove that {τ = k} ∈ Fn for k ≤ n), but not in the latter case.

Example 2.3.14. Here is an example of a random time that is not a stopping time.

Recally that a bounded martingale Mn has finitely many upcrossings of the interval

[a, b]. It would be interesting to study the random time τ at whichMn finishes its final

upcrossing (i.e., the last time that Mn exceeds b after having previously dipped below

a). However, τ is not a stopping time: to know that Mn has up-crossed for the last

time, we need to look into the future to determine that it will never up-cross again.
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Using the notion of a stopping time, we can define stopped processes.

Definition 2.3.15. Let {Xn} be a stochastic process and τ < ∞ be a stopping time.

ThenXτ denotes the random variableXτ(ω)(ω): i.e., this is the processXn evaluated

at τ . For any stopping time τ , the stochastic process X ′
n(ω) = Xn∧τ(ω)(ω) is called

the stopped process: i.e., X ′
n = Xn for n < τ , and X ′

n = Xτ for n ≥ τ .

You can consider the stopped process as yet another gambling strategy. Indeed, the

process In≤τ is predictable (as {ω : n ≤ τ(ω)} = Ω\{ω : τ(ω) ≤ n− 1} ∈ Fn−1),

and we can clearly write for any process Xn

Xn∧τ = X0 +

n
∑

k=1

Ik≤τ (Xk −Xk−1).

Note that this also proves that Xn∧τ is again Fn-measurable! (This would not be true

if τ were any old random time, rather than a stopping time.)

Speaking of measurability, you might wonder what σ-algebraXτ is naturally mea-

surable with respect to. This following definition clarifies this point.

Definition 2.3.16. Let Fn be a filtration and let τ be a stopping time. By definition,

Fτ = {A ∈ F∞ : A ∩ {τ ≤ n} ∈ Fn for all n} is the σ-algebra of events that occur

before time τ (recall that F∞ = σ{Fn : n = 1, 2, . . .}). If τ < ∞ a.s., then Xτ is

well defined and Fτ -measurable (why?).

Now suppose thatXn is a martingale (or a super- or submartingale). By the above

representation for the stopped process, it is immediately evident that even the stopped

process is a martingale (or super- or submartingale, respectively), confirming our in-

tuition that we can not make money on average using a predictable strategy.

Lemma 2.3.17. If Mn is a martingale (or super-, submartingale) and τ is a stopping

time, then Mn∧τ is again a martingale (or super-, submartingale, respectively).

In particular, it follows directly that E(Mn∧τ ) = M0 for any n. However, this

does not necessarily imply that E(Mτ ) = 0, even if τ < ∞ a.s.! To conclude the

latter, we need some additional constraints. We will see an example below; if this

seems abstract to you, skip ahead to the example.

Theorem 2.3.18 (Optional stopping). Let Mn be a martingale, and let τ < ∞ be a

stopping time. Then E(Mτ ) = E(M0) holds under any of the following conditions:

(a) τ < K a.s. for some K ∈ N; (b) |Mn| ≤ K for some K ∈ [0,∞[ and all n; (c)

|Mn −Mn−1| ≤ K a.s. for some K ∈ [0,∞[ and all n, and E(τ) < ∞. If Mn is a

supermartingale, then under the above conditions E(Mτ ) ≤ E(M0).

Remark 2.3.19. There are various extensions of this result; for example, if σ and τ
are stopping times and σ ≤ τ a.s., then (for example if τ ≤ K a.s.) E(Mτ |Fσ) = Mσ

a.s. We will not need such results, but proving this is good practice!



2.3. Conditional expectations and martingales for real 63

Proof. We prove the martingale case; the supermartingale result follows identically. To prove

(a), it suffices to note that E(Mτ ) = E(MK∧τ ) = E(M0). For (b), note that Mn∧τ → Mτ

a.s. as n→ ∞ (by τ <∞), so the result follows by dominated convergence. For (c), note that

|Xn∧τ | ≤ |X0| +
n∑

k=1

Ik≤τ |Xk −Xk−1| ≤ |X0| +K(n ∧ τ ) ≤ |X0| +Kτ,

where the right hand side is integrable by assumption. Now apply dominated convergence.

We now give an illuminating example. Make sure you understand this example,

and reevaluate what you know about martingales, gambling strategies and fair games.

Example 2.3.20. Let ξ1, ξ2, . . . be independent random variables which take the val-

ues ±1 with equal probability. Define Mn = M0 +
∑n

k=1 ξk. Mn are our winnings

in the following fair game: we repeatedly flip a coin; if it comes up heads we gain a

dollar, else we lose one. Proving that Mn is a martingale is a piece of cake (do it!)

First, we should note thatMn a.s. does not converge as n→ ∞. This is practically

a trivial observation. IfMn(ω) were to converge for some path ω, then for sufficiently

large N we should have |Mn(ω) −M∞(ω)| < 1
2 for all n ≥ N . But Mn takes only

integer values, so this would imply that Mn(ω) = K(ω) for some K(ω) ∈ Z and for

all n ≥ N . Such paths clearly have measure zero (as Mn always changes between

two time steps: |Mn −Mn−1| = 1 a.s.) Of course Mn does not satisfy the conditions

of the martingale convergence theorem, so we are not surprised.

Now introduce the following stopping time: τ = inf{n : Mn ≥ 2M0}. That is,

τ is the first time we have doubled our initial capital. Our strategy is to wait until this

happens, then to stop playing, and the question is: do we ever reach this point, i.e.,

is τ < ∞? Surprisingly, the answer is yes! Note that Mn∧τ is again a martingale,

but Mn∧τ ≤ 2M0 a.s. for all n. Hence this martingale satisfies the condition of the

martingale convergence theorem, and so Mn∧τ converges as n → ∞. But repeating

the argument above, the only way this can happen is if Mn∧τ “gets stuck” at 2M0—

i.e., if τ <∞ a.s. Apparently we always double our capital with this strategy!

We are now in a paradox, and there are several ways out, all of which you should

make sure you understand. First, note that Mτ = 2M0 by construction. Hence

E(Mτ ) 6= E(M0), as you would expect. Let us use the optional stopping theorem

in reverse. Clearly Mn is a martingale, τ < ∞, and |Mn −Mn−1| ≤ 1 for all n.

Nonetheless E(Mτ ) 6= E(M0), so evidently E(τ) = ∞—though we will eventually

double our profits, this will take arbitrarily long on average. Evidently you can make

money on average in a fair game—sometimes—but certainly not on any finite time

interval! But we already know this, because E(Mn∧τ ) = E(M0) for any finite n.

Second, note that Mn∧τ → Mτ a.s, but it is not the case that Mn∧τ → Mτ in

L1; after all, the latter would imply that E(Mn∧τ ) → E(Mτ ), which we have seen is

untrue. But recall when a process does not converge in L1, our intuition was that the

“outliers” of the process somehow grow very rapidly in time. In particular, we have

seen that we eventually double our profit, but in the intermediate period we may have

to incure huge losses in order to keep the game fair.

With the help of the optional sampling theorem, we can actually quantify this idea!

What we will do is impose also a lower bound on our winnings: once we sink below
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a certain value −R (we are R dollars in debt), we go bankrupt and can not continue

playing. Our new stopping time is κ = inf{n : Mn ≥ 2M0 or Mn ≤ −R} (κ is the

time at which we either reach our target profit, or go bankrupt). Now note that Mκ

does satisfy the conditions of the optional stopping theorem (as |Mn∧κ| ≤ R∨ 2M0),

so E(Mκ) = E(M0). But Mκ can only take one of two values −R and 2M0, so we

can explicitly calculate the probability of going bankrupt. For example, ifR = 0, then

we go bankrupt and double our capital with equal probability.

Evidently we can not circumvent our previous conclusion—that no money can be

made, on average, in a fair game—unless we allow ourselves to wait an arbitrarily

long time and to go arbitrarily far into debt. This is closely related to the gambling

origin of the word martingale. In 19th century France, various betting strategies were

directly based on the idea that if you play long enough, you will make a profit for sure.

Such strategies were called martingales, and were firmly believed in by some—until

they went bankrupt. In the contemporary words of W. M. Thackeray,

“You have not played as yet? Do not do so; above all avoid a martingale,

if you do. [. . .] I have calculated infallibly, and what has been the effect?

Gousset empty, tiroirs empty, necessaire parted for Strasbourg!”

— W. M. Thackeray, The Newcomes (1854).

Following the work of Doob we will not follow his advice, but this does not take away

from the fact that the original martingale is not recommended as a gambling strategy.

There is much more theory on exactly when martingales converge, and what con-

sequences this has, particularly surrounding the important notion of uniform integra-

bility. We will not cover this here (we want to actually make it to stochastic calculus

before the end of term!), but if you wish to do anything probabilistic a good under-

standing of these topics is indispensable and well worth the effort.

A supermartingale inequality

Let us discuss one more elementary application of martingales and stopping times,

which is useful in the study of stochastic stability.

Let Mn be a nonnegative supermartingale. By the martingale convergence theo-

rem, Mn → M∞ a.s. as n → ∞. Let us now set some threshold K > 0; for some

K, the limit M∞ will lie below K with nonzero probability. This does not mean,

however, that the sample paths of Mn do not exceed the threshold K before ulti-

mately converging to M∞, even for those paths where M∞ < K. We could thus ask

the question: what is the probability that the sample paths of Mn will never exceed

some threshold K? Armed with stopping times, martingale theory, and elementary

probability, we can proceed to say something about this question.

Lemma 2.3.21. Let Mn be an a.s. nonnegative supermartingale and K > 0. Then

P

(

sup
n
Mn ≥ K

)

≤ E(M0)

K
.

In particular, for any threshold K, the probability of ever exceeding K can be made

arbitrarily small by starting the martingale close to zero.
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Proof. Let us first consider a finite time interval, i.e., let us calculate P(supn≤N Mn ≥ K) for

N < ∞. The key is to note that {ω : supn≤N Mn(ω) ≥ K} = {ω : Mτ(ω)∧N (ω) ≥ K},

where τ is the stopping time τ = inf{n : Mn ≥ K}. After all, if supn≤N Mn ≥ K then

τ ≤ N , so Mτ∧N ≥ K. Conversely, if supn≤N Mn < K then τ > N , so Mτ∧N < K.

Using Chebyshev’s inequality and the supermartingale property, we have

P

(
sup
n≤N

Mn ≥ K

)
= P(Mτ∧N ≥ K) ≤ E(Mτ∧N )

K
≤ E(M0)

K
.

Now let N → ∞ using monotone convergence (why monotone?), and we are done.

Once again, this type of result can be generalized in various ways, and one can also

obtain bounds on the moments E(supn |Mn|p). You can try to prove these yourself,

or look them up in the literature if you need them.

2.4 Some subtleties of continuous time

Up to this point we have only dealt with stochastic processes in discrete time. This

course, however, is based on stochastic calculus, which operates exclusively in con-

tinuous time. Thus we eventually have to stray into the world of continuous time

stochastic processes, and that time has now come.

The theory of continuous time stochastic processes can be much more technical

than its discrete time counterpart. Doob’s book [Doo53] was one of the first places

where such problems were seriously investigated, and the theory was developed over

the next 30 or so years into its definitive form, by Doob and his coworkers and par-

ticularly by the French probability school of P.-A. Meyer. The ultimate form of the

theory—the so-called théorie générale des processus—is beautifully developed in the

classic books by Dellacherie and Meyer [DM78, DM82] (for a different approach, see

[Pro04]). We do not want to go this way! The technicalities of the general theory will

not be of much help at this level, and will only make our life difficult.

The good news is that we will almost always be able to avoid the problems of

continuous time by working with a very special class of continuous time stochastic

processes: those with continuous sample paths. You can imagine why this would sim-

plify matters: continuous paths are determined by their values on a countable dense

set of times (e.g., if we know the values of a continuous function for all rational num-

bers, then we know the entire function). Once we restrict our attention to countable

collections of random variables, many of the technicalities cease to be an issue. We

will generally not be too nitpicky about such issues in these notes; the goal of this

section is to give you a small glimpse at the issues in continuous time, and to convince

you that such issues are not too problematic when we have continuous sample paths.

Equivalent processes and measurability

We will often work with stochastic processes either on a finite time interval [0, T ], or

on the infinite interval [0,∞[. In either case, a stochastic process on the probability

space (Ω,F ,P) is simply a family {Xt} of measurable random variables, indexed by

time t. As usual, we are only interested in defining such processes with probability

one; but in continuous time, this is a little ambiguous.
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Definition 2.4.1. Let Xt and Yt be two (discrete or continuous time) stochastic pro-

cesses. Then Xt and Yt are said to be indistinguishable if P(Xt = Yt for all t) = 1,

and they are said to be modifications of each other if P(Xt = Yt) = 1 for all t.

Clearly if Xt and Yt are indistinguishable, then they are modifications (why?). In

discrete time, the converse is also true: after all,

P(Xn = Yn for all n) = P

(

⋂

n

{ω : Xn(ω) = Yn(ω)}
)

≥ 1 −
∑

n

P(Xn 6= Yn),

so ifXn and Yn are modifications, then they are indistinguishable. In continuous time,

however, the intersection in this expression is uncountable; in the absence of further

information (e.g., if we only know that Xt is a modification of Yt), we can not even

show that
⋂

t{ω : Xt(ω) = Yt(ω)} ∈ F , let alone that it has unit probability! This

requirement is implicit, however, in the definition of indistinguishability.2

Example 2.4.2. Let ξ be a Gaussian random variable (with zero mean and unit vari-

ance, say), and define the stochastic process Xt = It<ξ2 . Now define X ′
t = It≤ξ2 .

For fixed t > 0, note that P(Xt = X ′
t) = P(ξ2 6= t) = 1. However, P(Xt =

X ′
t for all t) = 0: after all, for every ω, we have Xt(ω) 6= X ′

t(ω) for t = ξ(ω)2.

Hence Xt and X ′
t are modifications, but they are not indistinguishable processes.

One could think that for most practical purposes, processes which are modifica-

tions could be considered to be essentially equivalent. Though this intuition is proba-

bly justified, we can get into serious trouble by making a modification. What follows

are two examples, the first of which is often dealt with by making some assumptions.

The second is more serious. Recall that a filtration is a family of σ-algebras Ft, in-

dexed by time, such that Fs ⊂ Ft for all s ≤ t.

Example 2.4.3. Let ξ be a Gaussian random variable, and consider the processes

Xt = 1 and X ′
t = It6=ξ2 . Then Xt and X ′

t are modifications. Now denote by Ft =
σ{Xs : s ≤ t} the filtration generated by Xt. Then Xt is Ft-adapted, but X ′

t is not!

Hence evidently modification need not preserve adaptedness.

Though the example is somewhat artificial, it shows that a modification of a

stochastic process does not always share all the desirable properties of the process.

This particular issue is often suppressed, however, by “augmenting” the σ-algebra F0

by adding to it all sets of measure zero; this clearly solves the problem, albeit in a way

that is arguably as artificial as the problem itself. More serious is the following issue.

Example 2.4.4. Let ξ be a Gaussian random variable, and define Xt = ξt, X ′
t =

XtI|Xt |6=1, and Ft = σ{Xs : s ≤ t}. Then Xt and X ′
t are both Ft-adapted and are

modifications. Now define the stopping times τ = inf{t : Xt ≥ 1}, and similarly

τ ′ = inf{t : X ′
t ≥ 1}. Note that τ = τ ′! Nonetheless Xτ = 1, while X ′

τ = 0.

2 It would also make sense to require that
⋂

t{ω : Xt(ω) = Yt(ω)} contains a set of measure one,
even if it is not itself measurable. Under certain hypotheses on the probability space (that it be complete),
this implies that the set is itself measurable. Such details are important if you want to have a full under-
standing of the mathematics. We will not put a strong emphasis on such issues in this course.
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Evidently modification may not preserve the value of the process at a stopping

time. This will be a real problem that we have to deal with in the theory of optimal

stopping with partial observations: more details will follow in chapter 8.

As already mentioned in remark 1.6.7, we often wish to be able to calculate the

time integral of a process Xt, and we still want its expectation to be well defined. To

this end, we need the process to be measurable not only with respect to the probability

space, but also with respect to time, in which case we can apply Fubini’s theorem.

Definition 2.4.5. Let Xt be a stochastic process on some filtered probability space

(Ω,F , {Ft},P) and time set T ⊂ [0,∞[ (e.g., T = [0, T ] or [0,∞[). Then Xt is

called adapted if Xt is Ft-measurable for all t, is called measurable if the random

variable X· : T × Ω → R is B(T) × F-measurable, and is called progressively

measurable if X· : [0, t] ∩ T × Ω → R is B([0, t] ∩ T) ×Ft-measurable for all t.

What do these definitions mean? Adapted you know; measurable means that

Yt =

∫ t

0

Xs ds is well defined and F-measurable,

and progressively measurable means that

Yt =

∫ t

0

Xs ds is well defined and Ft-measurable;

in particular, progressive measurability guarantees that the process Yt is adapted.3

Surely this must be true in any reasonable model! A result of Chung and Doob says

that every adapted, measurable process has a progressively measurable modification;

we will not need such heavy machinery, though.

Continuous processes

Life becomes much easier if Xt has continuous sample paths: i.e., when the function

t 7→ Xt(ω) is continuous for every ω. In this case most of the major issues are

no longer problematic, and we can basically manipulate such processes in a similar

manner as in the discrete time setting. Here is a typical argument.

Lemma 2.4.6. Let Xt be a stochastic process with continuous paths, and let Yt be

another such process. Then ifXt and Yt are modifications, then they are indistinguish-

able. If Xt is Ft-adapted and measurable, then it is Ft-progressively measurable.

Proof. As Xt and Yt have continuous paths, it suffices to compare them on a countable dense

set: i.e., P(Xt = Yt for all t) = P(Xt = Yt for all rational t). But the latter is unity whenever

Xt and Yt are modifications, by the same argument as in the discrete time case.

For the second part, construct a sequence of approximate processes Xk : [0, t] × Ω → R
such that Xk

t (ω) = Xt(ω) for all ω ∈ Ω and t = 0, 2−k, . . . , 2−kb2ktc, and such that the

sample paths of Xk are piecewise linear. Then Xk
s (ω) → Xs(ω) as k → ∞ for all ω and

s ∈ [0, t]. But it is easy to see that every Xk is B([0, t]) × Ft-measurable, and the limit of a

sequence of measurable maps is again measurable. The result follows.

3 For an example where Xt is adapted and measurable, but Yt is not adapted, see [Let88, example 2.2].
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A natural question to ask is whether the usual limit theorems hold even in con-

tinuous time. For example, is it true that if Xt ≥ 0 a.s. for all t ∈ [0,∞[, then

E(lim inf tXt) ≤ lim inft E(Xt) (Fatou’s lemma)? This could be a potentially tricky

question, as it is not clear that the random variable lim inf tXt is even measurable!

When we have continuous sample paths, however, we can establish that this is the

case. Once this is done, extending the basic convergence theorems is straightforward.

Lemma 2.4.7. Let the process Xt have continuous sample paths. Then the random

variables inftXt, suptXt, lim inft Xt and lim suptXt are measurable.

Proof. As the sample paths of Xt are continuous we have, for example, inft Xt = inft∈QXt

where Q are the rational numbers. As these are countable, measurability follows from the

countable result (lemma 1.3.3). The same holds for supt Xt, lim inftXt, and lim supt Xt.

We can now establish, for example, Fatou’s lemma in continuous time. The con-

tinuous time proofs of the monotone convergence theorem and the dominated conver-

gence theorem follow in the same way.

Lemma 2.4.8. LetXt be an a.s. nonnegative stochastic process with continuous sam-

ple paths. Then E(lim inf tXt) ≤ lim inft E(Xt). If there is a Y ∈ L1 such that

Xt ≤ Y a.s. for all t, then E(lim suptXt) ≥ lim supt E(Xt).

Proof. By the previous lemma, lim inft Xt is measurable so the statement makes sense. Now

suppose that the result does not hold, i.e., E(lim inf tXt) > lim inft E(Xt). Then there ex-

ists a sequence of times tn ↗ ∞ such that E(lim inft Xt) > lim infn E(Xtn). But note

that lim infn Xtn ≥ lim inft Xt by the definition of the inferior limit, so this would imply

E(lim infn Xtn) > lim infn E(Xtn). However, Xtn is a discrete time stochastic process, and

hence E(lim infn Xtn) ≤ lim infn E(Xtn) follows from the discrete time version of Fatou’s

lemma. Thus we have a contradiction. The second part of the result follows similarly.

With a little more effort, we can also extend the martingale convergence theorem.

Theorem 2.4.9. Let Mt be martingale, i.e., E(Mt|Fs) = Ms a.s. for any s ≤ t, and

assume that Mt has continuous sample paths. If any of the following conditios hold:

(a) supt E(|Mt|) < ∞; or (b) supt E((Mt)
+) < ∞; or (c) supt E((Mt)

−) < ∞;

then there exists an F∞-measurable random variable M∞ ∈ L1 s.t. Mt →M∞ a.s.

Proof. We are done if we can extend Doob’s upcrossing lemma to the continuous time case;

the proof of the martingale convergence theorem then follows identically.

Let UT (a, b) denote the number of upcrossings of a < b by Mt in the interval t ∈ [0, T ].
Now consider the sequence of times tkn = n2−kT , and denote by Uk

T (a, b) the number of

upcrossings of a < b by the discrete time process Mtk
n

, n = 0, . . . , 2k. Note that Mtk
n

is a

discrete time martingale, so by the upcrossing lemma E(Uk
T (a, b)) ≤ E((a−MT )+)/(b− a).

We now claim that Uk
T (a, b) ↗ UT (a, b), from which the result follows immediately using

monotone convergence. To prove the claim, note that as Mt has continuous sample paths and

[0, T ] is compact, the sample paths of Mt are uniformly continuous on [0, T ]. Hence we must

have UT (a, b) <∞, and so UT (a, b)(ω) = Uk
T (a, b)(ω) for k(ω) sufficiently large.



2.5. Further reading 69

In addition to martingale convergence, the optional stopping theorem still holds

in the continuous case (you can prove this by approximating the stopping time by a

sequence of discrete stopping times), the process Mt∧τ is again a martingale and is

even progressively measurable if Mt is a martingale and τ is a stopping time, and the

supermartingale inequality has an immediate continuous counterpart.

Obviously much has been left unsaid, and the topic of continuous time stochastic

processes, even in its most elementary form, deserves at least its own chapter if not

an entire course. In the following chapters, however, we will move on to other topics.

Hopefully you now have a flavor of the difficulties in continuous time and some ways

in which these can be resolved. We will make a minimal fuss over such technical

issues in the chapters to come, but if you are ever in doubt you should certainly look

up the topic in one of the many textbooks on the subject.

2.5 Further reading

Most probability textbooks define the conditional expectation in the sense of Kol-

mogorov, and use the Radon-Nikodym theorem to prove its existence. For a devel-

opment through the orthogonal projection in L2, see Williams [Wil91] or Kallenberg

[Kal97]. The proof of the Radon-Nikodym theorem through martingales is originally

due to P.-A. Meyer, and we follow Williams [Wil91].

Martingales in discrete time are treated in any good textbook on probability. See

Williams [Wil91], for example, or the classic text by Neveu [Nev75]. The grave

omission from this chapter of the theory of uniformly integrable martingales should

be emphasized again (you want to study this on your own!) The ultimate reference

on martingales in continuous time remains Dellacherie and Meyer [DM82]; another

excellent reference is Liptser and Shiryaev [LS01a]. A lively introduction to both the

discrete and continuous theory can be found in Pollard [Pol02].

Finally, for the theory of stochastic processes in continuous time, including mar-

tingales and related processes, you may consult a variety of excellent textbooks; see

Dellacherie and Meyer [DM78, DM82], Rogers and Williams [RW00a], Karatzas and

Shreve [KS91], Elliott [Ell82], Protter [Pro04], or Bichteler [Bic02], for example.
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3
The Wiener Process

In the Introduction, we described Brownian motion as the limit of a random walk as

the time step and mean square displacement per time step converge to zero. The goal

of this chapter is to prove that this limit actually coincides with a well defined stochas-

tic process—the Wiener process—and we will study its most important properties. For

the reasons discussed in the Introduction, this process will play a fundamental role in

the rest of this course, both for its own merits and for its connection with white noise.

3.1 Basic properties and uniqueness

Recall that we think of the Wiener process as the limit as N → ∞, in a suitable sense,

of the random walk

xt(N) =

bNtc
∑

n=1

ξn√
N
,

where ξn are i.i.d. random variables with zero mean and unit variance. That there

exists a stochastic process that can be thought of as the limit of xt(N) is not obvious

at all: we will have to construct such a process explicitly, which we will do in section

3.2 (see section 3.4 for further comments). On the other hand, any process that can be

thought of as the limit of xt(N) must necessarily have certain elementary properties.

For the time being, let us see how much we can say without proving existence.

The guiding idea of the limit as N → ∞ was the central limit theorem. We could

never use this theorem to prove existence of the Wiener process: the central limit

theorem does not apply to an uncountable collection of random variables {xt(N) :
t ∈ [0, T ]}. On the other hand, the central limit theorem completely fixes the limiting

distribution at any finite number of times (xt1(N), . . . , xtn(N)).

70
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Lemma 3.1.1 (Finite dimensional distributions). For any finite set of times t1 <
t2 < · · · < tn, n < ∞, the n-dimensional random variable (xt1 (N), . . . , xtn(N))
converges in law as N → ∞ to an n-dimensional random variable (xt1 , . . . , xtn)
such that xt1 , xt2 −xt1 , . . . , xtn −xtn−1 are independent Gaussian random variables

with zero mean and variance t1, t2 − t1, . . . , tn − tn−1, respectively.

Proof. The increments xtk (N) − xtk−1(N), k = 1, . . . , n (choose t0 = 0) are independent

for any N , so we may consider the limit in law of each of these increments separately. The

result follows immediately from the central limit theorem.

A different aspect of the Wiener process is the regularity of its sample paths.

For increasingly large N , the random walk xt(N) has increasingly small increments.

Hence it is intuitively plausible that in the limit as N → ∞, the limiting process xt

will have continuous sample paths. In fact, this almost follows from lemma 3.1.1; to

be more precise, the following result holds.

Proposition 3.1.2. Suppose that we have constructed some stochastic process xt

whose finite dimensional distributions are those of lemma 3.1.1. Then there exists

a modification x̃t of xt such that t 7→ x̃t is continuous [Recall that the process x̃t is a

modification of the process xt whenever xt = x̃t a.s. for all t.]

The simplest proof of this result is an almost identical copy of the construction we

will use to prove existence of the Wiener process; let us thus postpone the proof of

proposition 3.1.2 until the next section.

We have now determined all the finite-dimensional distributions of the Wiener pro-

cess, and we have established that we may choose its sample paths to be continuous.

These are precisely the defining properties of the Wiener process.

Definition 3.1.3. A stochastic process Wt is called a Wiener process if

1. the finite dimensional distributions of Wt are those of lemma 3.1.1; and

2. the sample paths of Wt are continuous.

An Rn-valued process Wt = (W 1
t , . . . ,W

n
t ) is called an n-dimensional Wiener pro-

cess if W 1
t , . . . ,W

n
t are independent Wiener processes.

In order for this to make sense as a definition, we have to establish at least some

form of uniqueness—two processes Wt and W ′
t which both satisfy the definition

should have the same properties! Of course we could never require Wt = W ′
t a.s.,

for the same reason that X andX ′ being (zero mean, unit variance) Gaussian random

variables does not mean X = X ′ a.s. The appropriate sense of uniqueness is that if

Wt and W ′
t both satisfy the definition above, then they have the same law.

Proposition 3.1.4 (Uniqueness). If Wt and W ′
t are two Wiener processes, then the

C([0,∞[)-valued random variables W·,W
′
· : Ω → C([0,∞[) have the same law.

Remark 3.1.5 (C([0, ∞[)-valued random variables). A C([0,∞[)-valued random

variable on some probability space (Ω,F ,P) is, by definition, a measurable map from

Ω to C([0,∞[). But in order to speak of a measurable map, we have to specify a σ-

algebra C on C([0,∞[). There are two natural possibilities in this case:
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1. Any x ∈ C([0,∞[) represents an entire continuous path x = (xt : t ∈ [0,∞[).
Define for every time t the evaluation map πt : C([0,∞[) → R, πt(x) = xt. It

is then natural to set C = σ{πt : t ∈ [0,∞[}.

2. As you might know from a course on functional analysis, the natural topology

on C([0,∞[) is the topology of uniform convergence on compact intervals. We

could take C to be the Borel σ-algebra with respect to this topology.

It turns out that these two definitions for C coincide: see [RW00a, lemma II.82.3]. So

fortunately, what we mean by a C([0,∞[)-valued random variable is unambiguous.

Proof of proposition 3.1.4. Let us first establish that W· is in fact measurable, and hence a

random variable (this follows identically for W ′
· ). By assumption Wt is measurable for every

t (as {Wt} is assumed to be a stochastic process), so W−1
t (A) ∈ F for every A ∈ B(R).

But Wt = πt(W·), so W−1
· (B) ∈ F for every set B ∈ C of the form B = π−1

t (A). It

remains to note that C = σ{π−1
t (A) : A ∈ B(R), t ∈ [0,∞[} by construction, so we find that

W−1
· (C) = σ{W−1

t (A) : A ∈ B(R), t ∈ [0,∞[} ⊂ F . Hence W· is indeed a C([0,∞[)-

valued random variable, and the same holds for W ′
· .

It remains to show that W· and W ′
· have the same law, i.e., that they induce the same

probability measure on (C([0,∞[), C). The usual way to show that two measures coincide is

using Dynkin’s π-system lemma 1.7.3, and this is indeed what we will do! A cylinder set is a

setC ∈ C of the formC = π−1
t1

(A1)∩π−1
t2

(A2)∩· · ·∩π−1
tn

(An) for an arbitrary finite number

of times t1, . . . , tn ∈ [0,∞[ and Borel setsA1, . . . , An ∈ B(R). Denote by Ccyl the collection

of all cylinder sets, and note that Ccyl is a π-system and σ{Ccyl} = C. But the definition of the

Wiener process specifies completely all finite dimensional distributions, so the laws of any two

Wiener processes must coincide on Ccyl. Dynkin’s π-system lemma does the rest.

Given a Wiener process Wt, we can introduce its natural filtration FW
t = σ{Ws :

s ≤ t}. More generally, it is sometimes convenient to speak of an Ft-Wiener process.

Definition 3.1.6. Let Ft be a filtration. Then a stochastic process Wt is called an Ft-

Wiener process ifWt is a Wiener process, is Ft-adapted, andWt−Ws is independent

of Fs for any t > s. [Note that any Wiener process Wt is an FW
t -Wiener process.]

Lemma 3.1.7. An Ft-Wiener process Wt is an Ft-martingale.

Proof. We need to prove that E(Wt|Fs) = Ws for any t > s. But asWs is Fs-measurable (by

adaptedness) this is equivalent to E(Wt−Ws|Fs) = 0, and this is clearly true by the definition

of the Wiener process (as Wt −Ws has zero mean and is independent of Fs).

The Wiener process is also a Markov process. You know what this means in

discrete time from previous courses, but we have not yet introduced the continuous

time definition. Let us do this now.

Definition 3.1.8. An Ft-adapted process Xt is called an Ft-Markov process if we

have E(f(Xt)|Fs) = E(f(Xt)|Xs) for all t ≥ s and all bounded measurable func-

tions f . When the filtration is not specified, the natural filtration FX
t is implied.

Lemma 3.1.9. An Ft-Wiener process Wt is an Ft-Markov process.
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Proof. We have to prove that E(f(Wt)|Fs) = E(f(Wt)|Ws). Note that we can trivially write

f(Wt) = f((Wt−Ws)+Ws), whereWt−Ws is independent of Fs andWs isFs-measurable.

We claim that E(f(Wt)|Fs) = g(Ws) with g(x) = E(f(Wt−Ws+x)). As g(Ws) is σ(Ws)-

measurable, we can then write E(f(Wt)|Ws) = E(E(f(Wt)|Fs)|Ws) = E(g(Ws)|Ws) =
g(Ws), where we have used σ(Ws) ⊂ Fs. The result now follows.

It remains to prove E(f(Wt)|Fs) = g(Ws), or equivalently E(g(Ws)IA) = E(f(Wt)IA)
for all A ∈ Fs (by Kolmogorov’s definition of the conditional expectation). Consider the pair

of random variablesX = Wt−Ws and Y = (Ws, IA), and note thatX and Y are independent.

Hence by theorem 1.6.6, the law of (X,Y ) is a product measure µX × µY , and so

E(f(Wt)IA) =

∫
f(x+ w)aµX(dx) × µY (dw, da) =

∫ [∫
f(x+ w)µX(dx)

]
aµY (dw, da) =

∫
g(w)aµY (dw, da) = E(g(Ws)IA).

using Fubini’s theorem (which applies by the boundedness of f ). We are done.

To complete our discussion of the elementary properties of the Wiener process, let

us exhibit some odd properties of its sample paths. The sample paths of the Wiener

process are extremely irregular, and the study of their properties remains an active

topic to this day (see, e.g., [MP06]). We will only consider those properties which we

will need to make sense of later developments.

Lemma 3.1.10. With unit probability, the sample paths of a Wiener process Wt are

non-differentiable at any rational time t.

Proof. Suppose that Wt is differentiable at some point t. Then limh↘0(Wt+h −Wt)/h exists

and is finite, and in particular, there exists a constant M < ∞ (depending on ω) such that

|Wt+h−Wt|/h < M for sufficiently small h > 0. We will show that with unit probability this

cannot be true. Set h = n−1 where n is integer; then |Wt+h −Wt|/h < M for sufficiently

small h > 0 implies that supn≥1 n|Wt+n−1 (ω) −Wt(ω)| <∞. But we can write (why?)

{
ω : sup

n≥1
n|Wt+n−1(ω) −Wt(ω)| <∞

}
=
⋃

M≥1

⋂

n≥1

{ω : n|Wt+n−1(ω)−Wt(ω)| < M}.

Using simple set manipulations, we obtain

P

(
sup
n≥1

n|Wt+n−1 −Wt| <∞
)

≤ lim
M→∞

inf
n≥1
P(n|Wt+n−1 −Wt| < M).

But Wt+n−1 −Wt is a Gaussian random variable with zero mean and variance n−1, so

inf
n≥1
P(n|Wt+n−1 −Wt| < M) = inf

n≥1
P(|ξ| < Mn−1/2) = 0,

where ξ is a canonical Gaussian random variable with zero mean and unit variance. Hence we

find that P(limn−1↘0(Wt+n−1 −Wt)/n
−1 is finite) = 0, so Wt is a.s. not differentiable at t

for any fixed time t. But as the rational numbers are countable, the result follows.

Apparently the sample paths of Brownian motion are very rough; certainly the

derivative of the Wiener process cannot be a sensible stochastic process, once again

confirming the fact that white noise is not a stochastic process (compare with the
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discussion in the Introduction). With a little more work one can show that with unit

probability, the sample paths of the Wiener process are not differentiable at any time

t (this does not follow trivially from the previous result, as the set of all times t is not

countable); see [KS91, theorem 2.9.18] for a proof.

Another measure of the irregularity of the sample paths of the Wiener process is

their total variation. For any real-valued function f(t), the total variation of f on the

interval t ∈ [a, b] is defined as

TV(f, a, b) = sup
k≥0

sup
(ti)∈P (k,a,b)

k
∑

i=0

|f(ti+1) − f(ti)|,

where P (k, a, b) denotes the set of all partitions a = t0 < t1 < · · · < tk < tk+1 = b.
You can think of the total variation as follows: suppose that we are driving around in

a car, and f(t) denotes our position at time t. Then TV(f, a, b) is the total distance

which we have travelled in the time interval [a, b] (i.e., if our car were to go for a fixed

number of miles per gallon, then TV(f, a, b) would be the amount of fuel which we

used up between time a and time b). Note that even when supa≤s≤t≤b |f(t) − f(s)|
is small, we could still travel a significant total distance if we oscillate very rapidly in

the interval [a, b]. But the Wiener process, whose time derivative is infinite at every

(rational) time, must oscillate very rapidly indeed!

Lemma 3.1.11. With unit probability, TV(W·, a, b) = ∞ for any a < b. In other

words, the sample paths of the Wiener process are a.s. of infinite variation.

Proof. Denote by P (a, b) =
⋃

k≥0 P (k, a, b) the set of all finite partitions of [a, b]. We are

done if we can find a sequence of partitions πn ∈ P (a, b) such that

∑

ti∈πn

|Wti+1 −Wti |
n→∞−−−−→ ∞ a.s.

To this end, let us concentrate on a slightly different object. For any π ∈ P (a, b), we have

E
∑

ti∈π

(Wti+1 −Wti)
2 =

∑

ti∈π

(ti+1 − ti) = b− a.

Call Zi = (Wti+1 −Wti)
2 − (ti+1 − ti), and note that for different i, the random variables Zi

are independent and have the same law as (ξ2 − 1)(ti+1 − ti), where ξ is a Gaussian random

variable with zero mean and unit variance. Hence

E

[(∑

ti∈π

(Wti+1 −Wti)
2 − (b− a)

)2]
= E

[∑

ti∈π

Z2
i

]
= E((ξ2 − 1)2)

∑

ti∈π

(ti+1 − ti)
2.

Let us now choose a sequence πn such that supti∈πn
|ti+1 − ti| → 0. Then

E

[( ∑

ti∈πn

(Wti+1 −Wti)
2 − (b− a)

)2]
≤ (b−a)E((ξ2−1)2) sup

ti∈πn

|ti+1 − ti| n→∞−−−−→ 0.

In particular, we find that

Qn =
∑

ti∈πn

(Wti+1 −Wti)
2 n→∞−−−−→ b− a in L2,
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so Qn → b−a in probability also, and hence we can find a subsequence m(n) ↗ ∞ such that

Qm(n) → b− a a.s. But then TV(W·, a, b) <∞ with nonzero probability would imply

b− a ≤ lim
n→∞



{

sup
ti∈πm(n)

|Wti+1 −Wti |
} ∑

ti∈πm(n)

|Wti+1 −Wti |


 = 0

with nonzero probability (as supti∈πm(n)
|Wti+1 − Wti | → 0 by continuity of the sample

paths), which contradicts a < b. Hence TV(W·, a, b) = ∞ a.s. for fixed a < b. It remains

to note that it suffices to consider rational a < b; after all, if TV(W·, a, b) is finite for some

a < b, it must be finite for all subintervals of [a, b] with rational endpoints. As we have shown

that with unit probability this cannot happen, the proof is complete.

You might argue that the Wiener process is a very bad model for Brownian mo-

tion, as clearly no physical particle can travel an infinite distance in a finite time! But

as usual, the Wiener process should be interpreted as an extremely convenient math-

ematical idealization. Indeed, any physical particle in a fluid will have travelled a

humongous total distance, due to the constant bombardment by the fluid molecules,

in its diffusion between two (not necessarily distant) points. We have idealized mat-

ters by making the total distance truly infinite, but look what we have gained: the

martingale property, the Markov property, etc., etc., etc.

It is also the infinite variation property, however, that will get us in trouble when

we define stochastic integrals. Recall from the Introduction that we ultimately wish to

give meaning to formal integrals of the form
∫ t

0
fs ξs ds, where ξs is white noise, by

defining a suitable stochastic integral of the form
∫ t

0
fs dWs.

The usual way to define such objects is through the Stieltjes integral. Forgetting

about probability theory for the moment, recall that we write by definition

∫ t

0

f(s) dg(s) = lim
π

∑

ti∈π

f(si) (g(ti+1) − g(ti)),

where the limit is taken over a sequence of refining partitions π ∈ P (0, t) such that

max |ti+1 − ti| → 0, and si is an arbitrary point between ti+1 and ti. When does the

limit exist? Well, note that for πm ⊂ πn (πn is a finer partition than πm),

∑

ti∈πn

f(si) (g(ti+1) − g(ti)) −
∑

t′i∈πm

f(s′i) (g(t′i+1) − g(t′i))

=
∑

ti∈πn

(f(si) − f(s′′i )) (g(ti+1) − g(ti)),

where s′′i is chosen in the obvious way. But note that

∣

∣

∣

∣

∣

∑

ti∈πn

(f(si) − f(s′′i )) (g(ti+1) − g(ti))

∣

∣

∣

∣

∣

≤ TV(g, 0, t) max
i

|f(si) − f(s′′i )|.

Hence if f is continuous and g is of finite total variation, then the sequence of sums

obtained from a refining sequence of partitions πn is a Cauchy sequence and thus
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converges to a unique limit (which we call the Stieltjes integral). More disturbingly,

however, one can also prove the converse: if g is of infinite variation, then there

exists a continuous function f such that the Stieltjes integral does not exist. The proof

requires a little functional analysis, so we will not do it here; see [Pro04, section I.8].

The unfortunate conclusion of the story is that the integral
∫ t

0 fs dWs cannot be

defined in the usual way—at least not if we insist that we can integrate at least contin-

uous processes ft, which is surely desirable. With a little insight and some amount of

work, we will succeed in circumventing this problem. In fact, you can get a hint on

how to proceed from the proof of lemma 3.1.11: even though the total variation of the

Wiener process is a.s. infinite, the quadratic variation

lim
n→∞

∑

ti∈πm(n)

(Wti+1 −Wti)
2 = b− a a.s.

is finite. Maybe if we square things, things will get better? Indeed they will, though

we still need to introduce a crucial insight in order not to violate the impossibility of

defining the Stieltjes integral. But we will go into this extensively in the next chapter.

3.2 Existence: a multiscale construction

We are finally ready to construct a Wiener process. In principle, we will do this ex-

actly as one would think: by taking the limit of a sequence of random walks. It is not

so easy, however, to prove directly that any random walk of the form xt(N) defined

previously converges to a Wiener process; in what sense should the convergence even

be interpreted? Some comments on this matter can be found in section 3.4. Instead,

we will concentrate in this section on a particular random walk for which conver-

gence is particularly easy to prove. As long as we can verify that the limiting process

satisfies definition 3.1.3, we are then done—uniqueness guarantees that there are no

other Wiener processes, so to speak.

We will make two straightforward simplifications and one more inspired simpli-

fication to our canonical random walk model xt(N). First, note that we can restrict

ourselves to a fixed time interval, say, t ∈ [0, 1]. Once we have defined a stochastic

process which satisfies definition 3.1.3 for t ∈ [0, 1], we can easily extend it to all of

[0,∞[: recall that the increments of the Wiener process are independent!

Lemma 3.2.1. Let {Wt : t ∈ [0, 1]} be a stochastic process on the probability space

(Ω,F ,P) that satisfies definition 3.1.3. Then there exists a stochastic process {W ′
t :

t ∈ [0,∞[} on a probability space (Ω′,F ′,P′) that satisfies definition 3.1.3 for all t.

Proof. Set1 Ω′ = Ω × Ω × · · · , F ′ = F × F × · · · , and P′ = P × P × · · · . Then Ω′

carries an i.i.d. sequence of processes {W n
t , t ∈ [0, 1]}, n = 1, 2, . . .. You can easily verify

that W ′
t =

∑btc
k=1W

k
1 +W

btc+1

t−btc satisfies definition 3.1.3 for all t ∈ [0,∞[.

1 We are cheating a little, as we only defined the countable product space in Theorem 1.6.8 for Ω = R.
In fact, such a space always exists, see [Kal97, corollary 5.18], but for our purposes Theorem 1.6.8 will turn
out to be sufficient: every Ω will be itself a space that carries a sequence of independent random variables,
and, as in the proof of Theorem 1.6.8, we can always construct such a sequence on Ω = R.
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The second simplification is to make our random walks have continuous sample

paths, unlike xt(N) which has jumps. The reason for this is that there is a very

simple way to prove that a sequence of continuous functions converges to a continuous

function: this is always the case when the sequence converges uniformly. This is an

elementary result from calculus, but let us recall it to refresh your memory.

Lemma 3.2.2. Let fn(t), n = 1, 2, . . . be a sequence of continuous functions on t ∈
[0, 1] that converge uniformly to some function f(t), i.e., supt∈[0,1] |fn(t)−f(t)| → 0
as n→ ∞. Then f(t) must be a continuous function.

Proof. Clearly |f(x)−f(y)| ≤ |f(x)−fn(x)|+|fn(x)−fn(y)|+|fn(y)−f(y)| for any n and

x, y ∈ [0, 1]. Let ε > 0. Then we can choose n sufficiently large so that |fn(x)− f(x)| < ε/3
for any x, and then |f(x) − f(y)| ≤ 2ε/3 + |fn(x)− fn(y)| for all x, y ∈ [0, 1]. But as fn is

uniformly continuous (as [0, 1] is compact), there is a δ > 0 such that |fn(x) − fn(y)| < ε/3
for all |x− y| < δ. Hence f satisfies the (ε-δ) definition of continuity.

Here is another useful trick from the same chapter of your calculus textbook.

Lemma 3.2.3. Let fn(t), n = 1, 2, . . . be a sequence of continuous functions on

t ∈ [0, 1], such that
∑

n supt∈[0,1] |fn+1(t) − fn(t)| < ∞. Then fn(t) converge

uniformly to some continuous function f(t).

Proof. Note that fn(t) = f1(t) +
∑n−1

k=1 (fk+1(t) − fk(t)). By our assumption, the sum

is absolutely convergent so fn(t) → f(t) as n → ∞ for every t ∈ [0, 1]. It remains to

show that the convergence is uniform. But this follows from supt∈[0,1] |fm(t) − f(t)| =
supt∈[0,1] |

∑∞
k=m(fk+1(t) − fk(t))| ≤∑∞

k=m supt∈[0,1] |(fk+1(t) − fk(t))| → 0.

You are probably starting to get a picture of the strategy which we will follow:

we will define a sequence W n
t of random walks with continuous sample paths, and

attempt to prove that
∑

n supt∈[0,1] |Wn
t −Wn+1

t | <∞ a.s. We are then guaranteed

that Wn
t converges a.s. to some stochastic process Wt with continuous sample paths,

and all that remains is to verify the finite dimensional distributions of Wt. But the

finite dimensional distributions are the easy part—see, e.g., lemma 3.1.1!

It is at this point, however, that we need a little bit of real insight. Following our

intended strategy, it may seem initially that we could defineW n
t just like xt(n), except

that we make the sample paths piecewise linear rather than piecewise constant (e.g.,

set Wn
k/2n =

∑k
`=1 ξ`/2

n/2 for k = 0, . . . , 2n, and interpolate linearly in the time

intervals k/2n < t < (k + 1)/2n). However, this way W n
t can never converge a.s. as

n→ ∞. In going fromW n
t toWn+1

t , the processW n
t gets compressed to the interval

[0, 1
2 ], while the increments of W n+1

t on ] 12 , 1] are defined using a set of independent

random variables ξ2n+1, . . . , ξ2n+1 . This is illustrated in figure 3.1.

Remark 3.2.4. Of course, we do not necessarily expect our random walks to converge

almost surely; for example, lemma 3.1.1 was based on the central limit theorem, which

only gives convergence in law. The theory of weak convergence, which defines the

appropriate notion of convergence in law for stochastic processes, can indeed be used

to prove existence of the Wiener process; see [Bil99] or [KS91, section 2.4]. The

technicalities involved are a highly nontrivial, however, and we would have to spend
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Figure 3.1. Sample paths, given a single realization of {ξn}, of Wn
t for n = 5, 6, 7. When n

is increased by one, the previous sample path is compressed to the interval [0, 1/2], scaled by

2−1/2 , and the increments in ]1/2, 1] are generated from the next batch of independent ξns.

an entire chapter just introducing all the necessary machinery! Instead, we will use

a clever trick (due to P. Lévy and Z. Ciesielski) to define a very special sequence

of random walks W n
t which actually converges almost surely. Once we have a.s.

convergence, the proofs become much more elementary and intuitive.

The idea is illustrated in figure 3.2. The random walk W n
t consists 2n points

connected by straight lines. In going from W n
t to Wn+1

t , our previous strategy was

to concatenate another 2n points at the end of the path, and then to compress this new

path to fit in the interval [0, 1]. Rather than add points at the end of the path, however,

we will now add our new 2n points in between the existing nodes of the sample path.

This way the shape of the path remains fixed, and we just keep adding detail at finer

and finer scales. Then we would certainly expect the sample paths to converge almost

surely; the question is whether we can add points between the existing nodes in such

a way that the random walks W n
t have the desired statistics.

Let us work out how to do this. The random walk W n
t has nodes at t = k2−n,

k = 0, . . . , 2n, connected by straight lines. For any further Wm
t with m > n, we

want to only add nodes between the times k2−n, i.e., Wm
t = Wn

t for t = k2−n,

k = 0, . . . , 2n. Hence the points W n
k2−n must already be distributed according to the

corresponding finite dimensional distribution of lemma 3.1.1: Wn
k2−n must be a Gaus-

sian random variable with zero mean and variance k2−n, and W n
(k+1)2−n −Wn

k2−n

must be independent of W n
k2−n for any k. Suppose that we have constructed such a

Wn
t . We need to show how to generate W n+1

t from it, by adding points between the

existing nodes only, so that W n+1
t has the correct distribution.

Fix n and k, and assume we are given W n−1
t . Let us write

Y0 = Wn
k2−(n−1) = Wn−1

k2−(n−1) , Y1 = Wn
(k+1)2−(n−1) = Wn−1

(k+1)2−(n−1) .
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Figure 3.2. Rather than concatenate additional ξns at the end of the sample paths, we define

Wn
t for increasing n by adding new ξn in between the existing nodes of the sample path. This

way detail is added at increasingly fine scales, and the sample path will in fact converge a.s. The

procedure is illustrated on the right for W 0
t and W 1

t ; the first path is a line between W 0
0 = 0

and W 0
1 = ξ1, while for W 1

t another point is added at t = 1/2 (see text).

We wish to choose a new point X = W n
(2k+1)2−n between Y0 and Y1, such that

1. Y1 −X and X − Y0 are Gaussian with mean zero and variance 2−n,

2. Y1 −X , X − Y0 and Y0 are independent.

We already know the following properties of Y0 and Y1:

1. Y1 − Y0 is Gaussian with mean zero and variance 2−(n−1),

2. Y1 − Y0 and Y0 are independent.

We claim thatX = (Y0 +Y1)/2+2−(n+1)/2ξ, where ξ is a Gaussian random variable

with zero mean and unit variance independent of Y0 and Y1, satisfies the requirements.

Indeed, you can easily verify thatX−Y0 and Y1 −X have the correct mean and vari-

ance and are independent of Y0 (why?). It remains to show that Y1−X is independent

of X − Y0; but this follows immediately from the well known fact that if ξ1, ξ2 are

i.i.d. Gaussian, then ξ1 + ξ2 and ξ1 − ξ2 are also i.i.d. Gaussian.2

How then do we define all of W n
t from Wn−1

t ? As is illustrated in the right pane

of figure 3.2 for n = 1, we need to add to W n−1
t a collection of tent-shaped functions

(Schauder functions), centered between the nodes of W n−1
t and zero on those nodes,

that “lift” the points in between the nodes ofW n−1
t by independent random quantities

which are Gaussian distributed with zero mean and variance 2−(n+1). The best way to

see this is to have a good look at figure 3.2; once you have made sure you understand

what is going on, we can get down to business.

2 This follows from the fact that the distribution of an i.i.d. Gaussian random vector x with zero
mean is isotropic—it is invariant under orthogonal transformations, i.e., x has the same law as Ax for any
orthogonal matrix A. If you did not know this, now is a good time to prove it!
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Theorem 3.2.5. There exists a Wiener process Wt on some probab. space (Ω,F ,P).

Proof. Let us begin by introducing the Schauder (tent-shaped) functions. Note that the deriva-

tive of a Schauder function should be piecewise constant: it has a positive value on the increas-

ing slope, a negative value on the decreasing slope, and is zero elsewhere. Such functions are

called the Haar wavelets Hn,k(t) with n = 0, 1, . . . and k = 1, 3, 5, . . . , 2n − 1, defined as

H0,1(t) = 1, Hn,k(t) =





+2(n−1)/2 (k − 1)2−n < t ≤ k2−n,

−2(n−1)/2 k2−n < t ≤ (k + 1)2−n,
0 otherwise,

(n ≥ 1).

The Haar wavelets are localized on increasingly fine length scales for increasing n, while the

index k shifts the wavelet across the interval [0, 1]. We now define the Schauder functions

Sn,k(t) simply as indefinite integrals of the Haar wavelets:

Sn,k(t) =

∫ t

0

Hn,k(s) ds, n = 0, 1, . . . , k = 1, 3, 5, . . . , 2n − 1.

You can easily convince yourself that these are precisely the desired tent-shaped functions.

Let us now construct our random walks on [0, 1]. Let (Ω′,F ′,P′) be a probability space

that carries a double sequence {ξn,k : n = 0, 1, . . . , k = 1, 3, . . . , 2n − 1} of i.i.d. Gaussian

random variables with zero mean and unit variance (which exists by theorem 1.6.8). Figure 3.2

shows how to proceed: clearlyW 0
t = ξ0,1S0,1(t), whileW 1

t = ξ0,1S0,1(t)+ξ1,1S1,1(t) (note

the convenient normalization—the tent function Sn,k has height 2−(n+1)/2). Continuing in the

same manner, convince yourself that the N th random walk can be written as

WN
t =

N∑

n=0

∑

k=1,3,...,2n−1

ξn,kSn,k(t).

We now arrive in the second step of our program: we would like to show that the sequence

of processes WN
t converges uniformly with unit probability, in which case we can define a

stochastic process Wt = limN→∞WN
t with a.s. continuous sample paths.

We need some simple estimates. First, note that

P

(
sup

t∈[0,1]

|Wn
t −Wn−1

t | > εn

)
= P

(
sup

k=1,3,...,2n−1
|ξn,k| > 2(n+1)/2εn

)
,

as you can check directly. But note that we can estimate (why?)

P

(
sup

k=1,3,...,2n−1
|ξn,k| > 2(n+1)/2εn

)
≤

∑

k=1,3,...,2n−1

P(|ξn,k| > 2(n+1)/2εn),

so we can write (using the fact that ξn,k are i.i.d.)

P

(
sup

t∈[0,1]

|Wn
t −Wn−1

t | > εn

)
≤ 2n−1

P(|ξ0,1| > 2(n+1)/2εn).

We need to estimate the latter term, but (as will become evident shortly) a direct application of

Chebyshev’s inequality is too crude. Instead, let us apply the following trick, which is often

useful. Note that ξ1,0 is symmetrically distributed around zero, so we have P(|ξ0,1| > α) =
P(ξ0,1 > α) + P(ξ0,1 < −α) = 2P(ξ0,1 > α). Now use Chebyshev’s inequality as follows:

P(ξ0,1 > α) = P(eξ0,1 > eα) ≤ e−α
E(eξ0,1 ) = e1/2−α.
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We thus obtain

P

(
sup

t∈[0,1]

|Wn
t −Wn−1

t | > εn

)
≤ exp(n log 2 + 1/2 − 2(n+1)/2εn).

If we set εn = n−2, then evidently

∞∑

n=1

P

(
sup

t∈[0,1]

|Wn
t −Wn−1

t | > 1

n2

)
<∞

(this is why direct application of the Chebyshev inequality would have been too crude—we

would not have been able to obtain this conclusion!) But by the Borel-Cantelli lemma, we find

that this implies P(supt∈[0,1] |Wn
t −Wn−1

t | > n−2 i.o.) = 0, so we have

sup
t∈[0,1]

|Wn
t −Wn−1

t | ≤ 1

n2
for all n sufficiently large a.s.

In particular, this implies that

∞∑

n=1

sup
t∈[0,1]

|Wn
t −Wn−1

t | <∞ a.s.

But then we have a.s. uniform convergence by lemma 3.2.3, and so Wn
t → Wt as n → ∞

a.s., where the process Wt has a.s. continuous sample paths. Nothing changes if we set the

sample paths to zero in a null set which contains all discontinuous paths of Wt; this is an

indistinguishable change, and now Wt has continuous sample paths everywhere. It remains to

show that Wt has the correct finite dimensional distributions, and to extend to t ∈ [0,∞[.
To verify the finite dimensional distributions, it suffices to show that for any t > s > r, the

increment Wt −Ws is independent of Wr, and that these are Gaussian random variables with

mean zero and variance t−s and r, respectively (why do we not need to check explicitly higher

dimensional distributions?) The simplest way to check this is using characteristic functions: a

well known result, e.g., [Wil91, section 16.6,7], states that it is sufficient to show that

E(eiαWr+iβ(Wt−Ws)) = e−α2r/2−β2(t−s)/2.

But note that by construction, this holds for any t, s, r which are dyadic rationals (i.e., of the

form k2−n for some k and n). For arbitrary t, s, r, choose sequences rn ↗ r, sn ↘ s, and

tn ↘ t of dyadic rationals. ThenWtn−Wsn is independent ofWrn for any n, and in particular

we can calculate explicitly, using dominated convergence and continuity of Wt,

E(eiαWr+iβ(Wt−Ws)) = lim
n→∞

E(eiαWrn+iβ(Wtn−Wsn ))

= lim
n→∞

e−α2rn/2−β2(tn−sn)/2 = e−α2r/2−β2(t−s)/2.

Hence Wt has the correct finite dimensional distributions for all t ∈ [0, 1]. The extension to

t ∈ [0,∞[ was already done in lemma 3.2.1, and we finally have our Wiener process.

Now that we have done the hard work of constructing a Wiener process, it is not

difficult to prove proposition 3.1.2. Recall the statement of this result:

Proposition 3.1.2. Suppose that we have constructed some stochastic process xt

whose finite dimensional distributions are those of lemma 3.1.1. Then there exists

a modification x̃t of xt such that t 7→ x̃t is continuous.
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How would we go about proving this? Suppose that we have constructed a Wiener

processWt through theorem 3.2.5. It is an easy exercise to show that we can reproduce

the random variables ξn,k from Wt as follows:

ξ0,1 = W1, ξn,k = 2(n+1)/2(Wk2−n − 1
2W(k−1)2−n − 1

2W(k+1)2−n), n ≥ 1.

But the law of any finite number of ξn,k is only determined by the finite dimensional

distributions of Wt, so for any process xt with the same finite dimensional distribu-

tions it must also be the case that

χ0,1 = x1, χn,k = 2(n+1)/2(xk2−n − 1
2x(k−1)2−n − 1

2x(k+1)2−n), n ≥ 1,

are i.i.d. Gaussian random variables with mean zero and unit variance (recall that a

sequence of random variables is independent if any finite subcollection is independent,

so this notion only depends on the finite dimensional distributions). But then

x̃t =
∞
∑

n=0

∑

k=1,3,...,2n−1

χn,kSn,k(t)

has a.s. continuous paths—this follows from the proof of theorem 3.2.5—and xt = x̃t

for all dyadic rational times t by construction. We again set the discontinuous paths

to zero, and the only thing that remains to be shown is that x̃t is a modification of xt.

Proof of proposition 3.1.2. We need to show that x̃t = xt a.s. for fixed t ∈ [0, 1] (it suffices

to restrict to [0, 1], as we can repeat the procedure for every interval [n, n + 1] separately). As

with unit probability x̃t = xt for all dyadic rational t and x̃t has continuous sample paths, we

find x̃t = limn x̃tn = limn xtn a.s. for any sequence of dyadic rational times tn ↗ t. But

P(|xt − x̃t| > ε) ≤ ε−2
E((xt − x̃t)

2) = ε−2
E(lim inf(xt − xtn)2)

≤ ε−2 lim inf E((xt − xtn)2) = ε−2 lim inf(t− tn) = 0 for any ε > 0,

where we have used Chebyshev’s inequality and Fatou’s lemma. Thus xt = x̃t a.s.

3.3 White noise

In the Introduction, we argued that the notion of white noise, as it is colloquially

introduced in the science and engineering literature, can heuristically be thought of as

the time derivative of the Wiener process. As was already mentioned, the nonexistence

of white noise as a stochastic process will never be a problem, and we will happily

consider noisy observations in their integrated form in order to avoid mathematical

unpleasantness. Let us nonetheless take a moment now to look at white noise a little

more closely. As we are already on the topic of the Wiener process, we should briefly

investigate further the connection between the Wiener process and white noise.

In science and engineering, white noise is generally defined as follows: it is a

Gaussian “stochastic process” ξt with zero mean and covariance E(ξsξt) = δ(t − s),
where δ(·) is Dirac’s delta “function”. The latter, however, is not actually a function;
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it is a so-called distribution, or generalized function.3 Let us briefly recall how this

works. The delta function is defined by the relation
∫

f(s) δ(s) ds = f(0),

where f is an element in a suitable space of test functions. The simplest space of test

functions is the space C∞
0 of smooth functions of compact support. The mathematical

object δ(·) should then be seen not as a function, but as a linear functional on the

space C∞
0 : it is a linear map which associates to every test function a number, in this

case δ : f 7→ f(0). The integral expression above is just suggestive notation4 for δ
evaluated at f . The philosophy behind such a concept is that no physical measurement

can ever be infinitely sharp, even if the object which we are measuring is (which is

itself an idealization); hence we only need to make sense of measurements that are

smeared out in time by a suitable test function, and a generalized function is simply

an object that associates to every such measurement the corresponding outcome.

Let us return to white noise. Clearly ξt is not a stochastic process, as its covariance

is not a function. However, we could think of ξt as an object whose sample paths

are themselves generalized functions. To make sense of this, we have to define the

properties of white noise when integrated against a test function. So let us integrate

the defining properties of white noise against test functions: E(ξ(f)) = 0 and

E(ξ(f)ξ(g)) ≡ E

(

∫

R+

f(s) ξs ds

∫

R+

g(t) ξt dt

)

=

∫

R+×R+

f(s) g(t) δ(t− s) ds dt =

∫

R+

f(t) g(t) dt ≡ 〈f, g〉.

Moreover, the fact that ξt is a Gaussian “process” implies that ξ(f) should be a Gaus-

sian random variable for any test function f . So we can now define white noise as

a generalized stochastic process: it is a random linear functional ξ on C∞
0 such that

ξ(f) is Gaussian, E(ξ(f)) = 0 and E(ξ(f)ξ(g)) = 〈f, g〉 for every f, g ∈ C∞
0 .

What is the relation to the Wiener process? The point of this section is to show

that given a Wiener process Wt, the stochastic integral

ξ(f) =

∫ ∞

0

f(t) dWt, f ∈ C∞
0 ,

satisfies the definition of white noise as a generalized stochastic process. This justifies

to a large extent the intuition that stochastic integrals can be interpreted as integrals

over white noise. It also justifies the idea of using the integrated observations

Yt =

∫ t

0

as ds+Wt,

3We will prefer the name generalized function. The word distribution is often used in probability theory
to denote the law of a random variable, not in the generalized function sense of L. Schwartz!

4 The notation suggests that we can approximate δ(·) by a sequence of actual functions dn(·), such
that the true (Riemann) integral

∫
f(s) dn(s) ds converges to f(0) as n → ∞ for every test function

f ∈ C∞
0 . This is indeed the case (think of a sequence of increasingly narrow normalized Gaussians).
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rather than the engineering-style observations process yt = at + ξt, as a model for a

signal at corrupted by white noise; given Yt, we could always reproduce the effect of

a generalized function-style unsharp (smeared) measurement of yt by calculating

y(f) =

∫ ∞

0

f(t) dYt =

∫ ∞

0

f(t) at dt+

∫ ∞

0

f(t) dWt.

The nice thing about stochastic integrals, however, is that they completely dispose of

the need to work with generalized functions; the former live entirely within the do-

main of ordinary stochastic processes. As long as we are willing to accept that we

sometimes have to work with integrated observations, rather than using white noise

directly, what we gain is an extremely rich theory with very well developed analytical

techniques (stochastic calculus). At the end of the day, you can still interpret these

processes in white noise style (by smearing against a test function), without being

constrained along the way by the many restrictions of the theory of generalized func-

tions. Though white noise theory has its advocates—it is a matter of taste—it is fair to

say that stochastic integrals have turned out to be by far the most fruitful and widely

applicable. As such, you will not see another generalized function in this course.

To wrap up this section, it remains to show that the stochastic integral satisfies

the properties of white noise. We have not yet introduced the stochastic integral,

however; we previously broke off in desperation when we concluded that the infinite

variation property of the Wiener process precludes the use of the Stieltjes integral

for this purpose. Nonetheless we can rescue the Stieltjes integral for the purpose of

this section, so that we can postpone the definition of a real stochastic integral until

the next chapter. The reason that we do not get into trouble is that we only wish to

integrate test functions in C∞
0 —as these functions are necessarily of finite variation

(why?), we can define the stochastic integral through integration by parts. How does

this work? Note that we can write for any partition π of [0, T ]
∑

ti∈π

f(ti) (Wti+1 −Wti) = f(T )WT −
∑

ti∈π

Wti+1 (f(ti+1) − f(ti)),

which is simply a rearrangement of the terms in the summation. But the sum on the

right hand side limits to a Stieltjes integral: after all, f is a test function of finite

variation, while Wt has continuous sample paths. So we can simply define

∫ T

0

f(s) dWs = f(T )WT −
∫ T

0

Ws df(s),

where the integral on the right should be interpreted as a Stieltjes integral. In fact, as

f is smooth, we can even write

∫ T

0

f(s) dWs = f(T )WT −
∫ T

0

Ws
df(s)

ds
ds,

where we have used a well known property of the Stieltjes integral with respect to a

continuously differentiable function. Our goal is to show that this functional has the

properties of a white noise functional. Note that as f has compact support, we can

simply define the integral over [0,∞[ by choosing T to be sufficiently large.
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Lemma 3.3.1. The stochastic integral of f ∈ C∞
0 with respect to the Wiener process

Wt (as defined through integration by parts) is a white noise functional.

Proof. The integral is an a.s. limit (and hence a limit in distribution) of Gaussian random vari-

ables, so it must be itself a Gaussian random variable. It also has zero expectation: the only

difficulty here is the exchange of the expectation and the Stieltjes integral, which is however

immediately justified by Fubini’s theorem. It remains to demonstrate the covariance identity.

To this end, choose T to be sufficiently large so that the supports of both f and g are contained

in [0, T ]. Hence we can write (using f(T ) = g(T ) = 0)

E(ξ(f)ξ(g)) = E

(∫ T

0

Ws
df(s)

ds
ds

∫ T

0

Wt
dg(t)

dt
dt

)
.

Using Fubini’s theorem and the elementary property E(WsWt) = s ∧ t, we obtain

E(ξ(f)ξ(g)) =

∫ T

0

∫ T

0

(s ∧ t) df(s) dg(t).

The conclusion E(ξ(f)ξ(g)) = 〈f, g〉 is an exercise in integration by parts.

Unfortunately, this is about as far as the integration by parts trick will take us.

In principle we could extend from test functions in C∞
0 to test functions of finite

variation, and we can even allow for random finite variation integrands. However, one

of the main purposes of developing stochastic integrals is to have a stochastic calculus.

Even if we naively try to apply the chain rule to calculate something like, e.g.,W 2
t , we

would still get integrals of the form
∫ T

0
Wt dWt which can never be given meaning

through integration by parts. Hence we are really not going to be able to circumvent

the limitations of the Stieltjes integral; ultimately, a different idea is called for.

3.4 Further reading

The Wiener process is both a classical topic is probability theory, and an active re-

search topic to this day. It serves as the canonical example of a continuous time

martingale and of a Markov process, has many fundamental symmetries, and its sam-

ple paths do not cease to fascinate. The sample path properties of the Wiener process

are discussed, e.g., in the draft book by Mörters and Peres [MP06]. On the martingale

side, the books by Karatzas and Shreve [KS91] and of Revuz and Yor [RY99] take the

Wiener process as the starting point for the investigation of stochastic processes. The

treatment in this chapter was largely inspired by Rogers and Williams [RW00a].

In the literature, the Wiener process is commonly constructed in three different

ways. The first way is the most general-purpose, and is least specific to the properties

of the Wiener process. There is a canonical method, the Kolmogorov extention the-

orem, using which a stochastic process can be constructed, on a suitable probability

space, with specified finite dimensional distributions. The only requirement for this

method is that the finite dimensional distributions satisfy certain natural consistency

conditions. It is a priori unclear, however, whether such a process can be chosen

to have continuous sample paths. Another result, Kolmogorov’s continuity theorem,

needs to be invoked to show that this can indeed be done. The latter gives conditions
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on the finite dimensional distributions of a stochastic process under which a continu-

ous modification is guaranteed to exist. See, e.g., Karatzas and Shreve [KS91].

The second way is through convergence of probability measures, as detailed in the

classic text by Billingsley [Bil99]. This method begins with a sequence of random

walks wt(n) with piecewise linear sample paths, each of which induces a measure µn

on C([0, 1]). We would like to show that the measures µn converge, in some sense,

to a limiting measure µ on C([0, 1]), the Wiener measure (under which the canonical

process πt : x 7→ xt is a Wiener process). The appropriate notion of convergence

is that of weak convergence, which means that Eµn(f) → Eµ(f) for every bounded

function f : C([0, 1]) → R that is continuous in the topology of uniform convergence

(this is precisely the correct notion of convergence in law for the stochastic processes

w·(n)). To prove that the sequence of measures µn is actually weakly convergent, one

needs the important notion of tightness which is beyond our scope.

Finally, you know the third (Lévy-Ciesielski) way—it is the one we have used.

Incidentally, the method originally used by Wiener to construct his process is related,

though not identical, to the approach which we have used. Rather than use Schauder

functions with independent Gaussian coefficients, Wiener defined his process using a

Fourier series with independent Gaussian coefficients.

In some sense we have not come full circle to the beginning of this chapter. Recall

that we started with the idea that the Wiener process should be the limit of a sequence

of random walks xt(N), where ξn were arbitrarily distributed i.i.d. random variables

with zero mean and unit variance. In order to construct the Wiener process, however,

we specialized this model considerably: we chose the ξn to be Gaussian, made the

sample paths continuous, and constructed the walks very carefully. To make our story

consistent we should show, now that we have constructed a Wiener process, that the

more general random walks xt(N) still limit to a Wiener process. That this is indeed

the case is the statement of Donsker’s invariance principle:

Theorem 3.4.1 (Donsker). xt(N) converges in law to a Wiener process Wt.

As the random walks xt(N) do not have sample paths in C([0, 1]), however, it

is again unclear what we mean by convergence in law. In particular, we need to

introduce a suitable topology on a larger space of functions which are allowed to have

jumps, and show that for any bounded functional f that is continuous with respect to

that topology we have E(f(x·(n))) → E(f(W·)). The appropriate topology is the

Skorokhod topology, which is described in detail in [Bil99]. If we were to choose

our random walks to have piecewise linear sample paths, of course, then the compact

uniform topology on C([0, 1]) suffices and the result still holds.

As it will not be needed in the following, we do not prove Donsker’s theorem here.

There are two very different proofs of this theorem, for both of which you will find

excellent discussions in the literature. The first proof uses the central limit theorem to

prove weak convergence of the finite dimensional distributions (lemma 3.1.1), which

is extended to weak convergence of the entire process using some analytic arguments;

see [Bil99, theorems 7.5,8.2,14.1]. The second method uses the Skorokhod embedding

to express a random walk in terms of a Wiener process evaluated a sequence of stop-

ping times; see [Kal97, chapter 12]. The latter does not use the central limit theorem,

and in fact the central limit theorem follows from this technique as a corollary.
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4
The Itô Integral

The stage is finally set for introducing the solution to our stochastic integration prob-

lem: the Itô integral, and, of equal importance, the associated stochastic calculus

which allows us to manipulate such integrals.

4.1 What is wrong with the Stieltjes integral?

Before we define the Itô integral, let us take a little closer look at the Stieltjes integral.

We stated (without proof) in section 3.1 that if the integrator of a Stieltjes integral is

of infinite variation, then there is a continuous integrand for which the integral is not

defined. It is difficult, however, to construct an explicit example. Instead, we will take

a slightly different approach to the Stieltjes integral in this section, and show how it

gets us into trouble. If we can figure out precisely what goes wrong, this should give

an important hint as to what we need to do to resolve the integration problem.

Remark 4.1.1. This section attempts to explain why the Itô integral is defined the

way it is. You do not need to read this section in order to understand the Itô integral;

skip to the next section if you wish to get started right away!

The Stieltjes integral revisited

For sake of example, let f and g be continuous functions on the interval [0, 1]. How

should we define the Stieltjes integral of f with respect to g? In section 3.1 we did

this in “Riemann fashion” (i.e., as in the definition of the Riemann integral) by sam-

pling the function f on an increasingly fine partition. Let us be a little more general,

however, and define the Stieltjes integral in a manner closer to the definition of the

Lebesgue integral, i.e., by defining the integral first for simple functions and then ex-

87
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tending the definition by taking limits. To this end, let fn be a simple function, i.e.,

one that is piecewise constant and jumps at a finite number of times tni . Define

I(fn) =

∫ 1

0

fn(s) dg(s) =
∑

i

fn(tni ) (g(tni+1) − g(tni )),

where we have evaluated the integrand at tni for concreteness (any point in the interval

[tni , t
n
i+1] should work). Now choose the sequence of simple functions {fn} so that it

converges uniformly to f , i.e., supt∈[0,1] |fn(t) − f(t)| → 0 as n→ ∞. Then

I(f) =

∫ 1

0

f(s) dg(s) = lim
n→∞

I(fn) = lim
n→∞

∫ 1

0

fn(s) dg(s).

Does this definition make sense? We should verify two things. First, we need to show

that the limit exists. Second, we need to show that the limit is independent of how we

choose our simple approximations fn.

Lemma 4.1.2. Suppose that g has finite variation TV(g, 0, 1) < ∞ and that the

sequence of simple functions fn converges to f uniformly. Then the sequence I(fn)
converges, and its limit does not depend on the choice of the approximations fn.

Proof. First, choose some fixedm,n, and let ti be the sequence of times that includes the jump

times tmi and tni of both fm and fn, respectively. Then clearly

I(fn) − I(fm) =
∑

i

(fn(ti) − fm(ti)) (g(ti+1) − g(ti)),

so that in particular

|I(fn)−I(fm)| ≤
∑

i

|fn(ti)−fm(ti)| |g(ti+1)−g(ti)| ≤ sup
t

|fn(t)−fm(t)| TV(g, 0, 1).

As supt∈[0,1] |fn(t)− f(t)| → 0, we find that |I(fn)− I(fm)| → 0 asm,n → ∞. Evidently

I(fn) is a Cauchy sequence in R, and hence converges. It remains to show that the limit does

not depend on the choice of approximation. To this end, let hn be another sequence of simple

functions that converges uniformly to f . Then, by the same argument, |I(hn)− I(fn)| → 0 as

n → ∞, which establishes the claim.

Remark 4.1.3. The Riemann-type definition of section 3.1 and the current definition

coincide: the former corresponds to a particular choice of simple approximations.

We have seen nothing that we do not already know. The question is, what happens

when TV(g, 0, 1) = ∞, e.g., if g is a typical sample path of the Wiener process? The

main point is that in this case, the previous lemma fails miserably. Let us show this.

Lemma 4.1.4. Suppose that g has infinite variation TV(g, 0, 1) = ∞. Then there

exist simple functions fn which converge to f uniformly, such that I(fn) diverges.
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Proof. It suffices consider f = 0. After all, suppose that fn converges uniformly to f such that

I(fn) converges; if hn is a sequence of simple functions that converges to zero uniformly, such

that I(hn) diverges, then fn + hn also converges uniformly to f but I(fn + hn) diverges.

As g has infinite variation, there exists a sequence of partitions πn of [0, 1] such that

∑

ti∈πn

|g(ti+1) − g(ti)| → ∞ as n → ∞.

Define hn to be a simple function such that hn(ti) = sign(g(ti+1) − g(ti)) for all ti ∈ πn.

Evidently I(hn) → ∞, but certainly hn does not converge uniformly. However, define the

sequence of simple functions fn = (I(hn))−1/2hn. Then I(fn) = (I(hn))1/2 → ∞ as well,

but clearly supt |fn(t)| = (I(hn))−1/2 → 0, so fn converges uniformly to zero.

Apparently we cannot define the Stieltjes integral unambiguously if g has infinite

variation: the integral will depend on the choice of the approximating sequence! In

fact, beside making the integral diverge, we can make the integral converge to what-

ever we like if we use fn ∝ (I(hn))−1hn in the previous proof.

Maybe things are not as bad as they seem

When g is a Wiener process, however, the negative conclusion of the previous lemma

is not so threatening—at least not if we choose hn to be non-random. To see this,

let hn be any (deterministic) simple function that takes the values ±1 and switches at

the jump times ti. Then hn(ti) = sign(Wti+1 −Wti) only with probability one half:

after all, Wti+1 −Wti is Gaussian with mean zero and so has either sign with equal

probability. Moreover, you can easily see that

P(hn(ti) = sign(Wti+1 −Wti) ∀ i) = 2−#∆hn ,

where #∆hn is the number of jumps of hn (this follows from the fact that Wt has

independent increments). In fact, it follows from the Borel-Cantelli lemma in this

case that P(hn(ti) = sign(Wti+1 −Wti) ∀ i i.o.) = 0, regardless of how we choose

the sequence hn (provided #∆hn increases when n increases). Though this does

not prove anything in itself, it suggests that things might not be as bad as they seem:

lemma 4.1.4 shows that there are certain sample paths of Wt for which the integral of

fn diverges, but it seems quite likely that the set of all such sample paths is always of

probability zero! In that case (and this is indeed the case1) we are just fine—we only

care about defining stochastic integrals with probability one.

Unfortunately, we are not so much interested in integrating deterministic inte-

grands against a Wiener process: we would like to be able to integrate random pro-

cesses. In this case we are in trouble again, as we can apply lemma 4.1.4 for every

sample path separately2 to obtain a uniformly convergent sequence of stochastic pro-

cesses fn whose integral with respect to Wt diverges.

1 From the discussion below on the Wiener integral, it follows that the integral of fn converges to zero
in L2. Hence the integral can certainly not diverge with nonzero probability.

2 For every ω ∈ Ω separately, set g(t) = Wt(ω) apply lemma 4.1.4 to obtain fn(t, ω). There is a
technical issue here (is the stochastic process fn measurable?), but this can be resolved with some care.
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A way out

The proof of lemma 4.1.4 suggests a way out. The key to the proof of lemma 4.1.4

was that we could construct an offensive sequence fn by “looking into the future”: fn

is constructed so that its sign matches the sign of the future increment of g. By doing

this, we can express the total variation of g as a limit of simple integrals, so that the

integral diverges whenever g has infinite variation.

This cunning trick is foiled, however, if we make g a Wiener process but keep

fn non-random: in that case we can never look into the future, because fn(ti), being

non-random, cannot contain any information on the sign of Wti+1 −Wti . Even if fn

were allowed to be random, however, this would still be the case if we require fn(ti)
to be independent of Wti+1 −Wti ! Fortunately enough, there is a rich and important

class of stochastic processes with precisely this property.

Key idea 1. Let Wt be an Ft-Wiener process. Then we will only define stochastic

integrals with respect to Wt of stochastic processes which are Ft-adapted.

This key idea puts an end to the threat posed by lemma 4.1.4. But it is still not clear

how we should proceed to actually define the stochastic integral: after all, lemma 4.1.2

does not (and can not, by lemma 4.1.4) hold water in the infinite variation setting.

Things look nicer in mean square

The second key idea comes from the proof of lemma 3.1.11. There we saw that even

though the finite variation of the Wiener process is a.s. infinite, the quadradic variation

is finite: for any refining sequence of partitions πn of the interval [0, 1], we have
∑

ti∈πn

(Wti+1 −Wti)
2 → 1 in probability.

This suggests that we might be able to repeat the proof of lemma 4.1.2 using con-

vergence in L2 rather than a.s. convergence, exploiting the finiteness of the quadratic

variation rather than the total variation. In particular, we can try to prove that the

sequence of simple integrals I(fn) is a Cauchy sequence in L2, rather than proving

that I(fn)(ω) is a Cauchy sequence in R for almost every ω. This indeed turns out to

work, provided that we stick to adapted integrands as above.

Key idea 2. As the quadratic variation of the Wiener process is finite, we should

define the stochastic integrals as limits in L2.

Let us show that this actually works in the special case of non-random integrands.

If fn is a non-random simple function on [0, 1], then, as usual,

I(fn) =

∫ 1

0

fn(s) dWs =
∑

i

fn(tni ) (Wtn
i+1

−Wtn
i
),

where tni are the jump times of fn. Using the independence of the increments of the

Wiener process, we obtain immediately

E((I(fn))2) =
∑

i

(fn(tni ))2 (tni+1 − tni ) =

∫ 1

0

(fn(s))2 ds,
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and in particular we find that

E((I(fn) − I(fm))2) =

∫ 1

0

(fn(s) − fm(s))2 ds.

Now suppose that the functions fn converge to some function f in L2([0, 1]), i.e.,

∫ 1

0

(fn(s) − f(s))2 ds→ 0 as n→ ∞.

Then E((I(fn) − I(fm))2) → 0 as m,n→ ∞, i.e., the sequence I(fn) is Cauchy in

L2. Hence I(fn) converges in L2 to some random variable I(f). A simple argument

shows that the integral thus defined does not depend on the choice of approximations,

and thus we have defined a bona fide integral called the Wiener integral.

Remark 4.1.5. The Wiener integral is only defined for non-random integrands. Recall

that we previously encountered another such integral: see lemma 3.3.1. You can easily

verify that the latter is a special case of the Wiener integral, obtained by restricting the

class of integrands to be the smooth functions.

Remark 4.1.6. The finiteness of the quadratic variation is what makes this procedure

work. However, the quadratic variation is a little hidden in the above discussion, and

indeed we will not often see it appear explicitly in this chapter. It is possible, however,

to extend these ideas to the case where the integrator is an arbitrary martingale (rather

than a Wiener process). In that case the quadratic variation shows up very explicitly in

the construction. As this is an introductory course, we will not pursue this direction;

suggestions for further reading can be found in section 4.7.

You might worry that the limit in L2 clashes with the interpretation of the stochas-

tic integral in real-world applications. For example, when we define stochastic differ-

ential equations in the next chapter, we will think of these as idealizations of ordinary

differential equations driven by rapidly fluctuating noise. In every run of an experi-

ment, however, only one sample path of the noise occurs, and the system represented

by the differential equation is really driven by that particular sample path in that run

of the experiment. On the other hand, the limit in L2 suggests that we cannot think

of every sample path of the noise individually—ostensibly we can only think of all

of them together in some average sense, as though the sample paths of the noise that

do not occur in the current realization can somehow influence what is currently hap-

pening. In other words, it is not clear that we can actually compute the value of the

integral I(f), given only the sample path Wt(ω) that is realized in the current run of

the experiment, without involving the other sample paths Wt(ω
′) in the matter.

This is not really an issue, however; in fact, it is mostly a matter of definition. If

we wish, we can still define the Wiener integral as an a.s. limit rather than a limit in

L2: all we have to do is require that our sequence of simple functions fn obeys

∞
∑

n=1

∫ 1

0

(fn(s) − f(s))2 ds <∞,
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i.e., that it converges to fn fast enough. (The arguments that lead to a.s. convergence

should be very familiar to you by now!) This way we really obtain the integral for

every sample path of the noise separately, and the conceptual issues are resolved.

Exactly the same holds for the Itô integral, to be defined in the next section. Note that

this does not change the nature of the stochastic integrals—they are still fundamentally

limits in L2, as can be seen by the requirement that fn → f in L2([0, 1]). The point

is merely that this does not preclude the pathwise computation of the integral (as is

most natural from a conceptual point of view). In the following we will thus not worry

about this issue, and define integrals as limits in L2 without further comment.

What can happen if we do not take fn → f fast enough? You can indeed construct ex-

amples where fn → 0 in L2([0, 1]), but the Wiener integral I(fn) does not converge a.s.

(of course, it does converge to zero in L2). Consider, for example, the simple functions

fn = Hn,1/αn, where Hn,1 is the Haar wavelet constructed in theorem 3.2.5, and αn > 0
is chosen such that P(|ξ| > αn) = n−1 where ξ is a Gaussian random variable with zero

mean and unit variance. Then αn → ∞ as n → ∞, so fn → 0 in L2([0, 1]). On the other

hand, I(Hn,k) are i.i.d. Gaussian random variables with zero mean and unit variance (see the

discussion after the proof of theorem 3.2.5), so some set manipulation gives (how?)

P(|I(fn)| > 1 i.o.) = 1− lim
m→∞

∏

n≥m

(1−P(|I(Hn,1)| > αn)) ≤ 1− lim
m→∞

e−
∑

n≥m n−1

= 1

where we have used the estimate 1 − x ≤ e−x. Hence I(fn) certainly cannot converge a.s.

The behavior of the integral in this case is equivalent to that of example 1.5.6, i.e., there is

an occasional excursion of I(fn) away from zero which becomes increasingly rare as n gets

large (otherwise I(fn) would not converge in L2). This need not pose any conceptual problem;

you may simply consider it an artefact of a poor choice of approximating sequence.

4.2 The Itô integral

Throughout this section, let us fix a filtered probability space (Ω,F , {Ft}t∈[0,∞[,P)
and an Ft-Wiener processWt. We are going to define stochastic integrals with respect

to Wt. The clues that we obtained from the previous section are

1. we should consider only Ft-adapted integrands; and

2. we should try to take limits in L2.

We will construct the integral in two passes. First, we will develop a minimal con-

struction of the integral which emphasizes the basic ideas. In the second pass, we will

add some bells and whistles that make the Itô integral the truly powerful tool that it is.

A bare-bones construction

Let {Xn
t }t∈[0,T ] be a simple, square-integrable, Ft-adapted stochastic process. What

does this mean? In principle we could allow every sample pathXn
t (ω) to have its own

jump times ti(ω), but for our purposes it will suffice to assume that the jump times
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ti are non-random.3 So we assume that Xn
t is a constant, Fti-measurable random

variable in L2 (i.e., square-integrable) for ti ≤ t < ti+1, where ti, i = 0, . . . , N + 1
is a finite set of non-random jump times (with our usual convention that t0 = 0 and

tN+1 = T ). For such simple integrands, we define the stochastic integral

I(Xn
· ) =

∫ T

0

Xn
t dWt =

N
∑

i=0

Xn
ti

(Wti+1 −Wti),

and our goal is to extend this definition to a more general class of integrands by taking

limits. To this end, we will need the following Itô isometry:

E





(

∫ T

0

Xn
t dWt

)2


 =

N
∑

i=0

E((Xn
ti

)2) (ti+1 − ti) = E

[

∫ T

0

(Xn
t )2 dt

]

.

Note that it is crucial that Xn
t is Ft-adapted: because of this Xn

ti
is Fti-measurable,

so is independent ofWti+1 −Wti , and this is absolutely necessary for the Itô isometry

to hold! The requirement that Xn
t ∈ L2 is also necessary at this point, as otherwise

E((Xn
t )2) would not be finite and we would run into trouble.

Let us look a little more closely at the various objects in the expressions above.

The Itô integral I(Xn
· ) is a random variable in L2(P). It is fruitful to think of the

stochastic process Xn
t as a measurable map Xn

· : [0, T ] × Ω → R. If we consider

the product measure µT × P on [0, T ] × Ω, where µT is the Lebesgue measure on

[0, T ] (i.e., T times the uniform probability measure), then the right-hand side of the

Itô isometry is precisely EµT ×P((Xn
· )2). In particular, the Itô isometry reads

‖I(Xn
· )‖2,P = ‖Xn

· ‖2,µT ×P,

where ‖ · ‖2,P is the L2-norm on Ω and ‖ · ‖2,µT×P is the L2-norm on [0, T ]×Ω. This

is precisely the reason for the name isometry—the mapping I : L2(µT ×P) → L2(P)
preserves the L2-distance (i.e., ‖I(Xn

· ) − I(Y n
· )‖2,P = ‖Xn

· − Y n
· ‖2,µT ×P), at least

when applied to Ft-adapted simple integrands. This fact can now be used to extend

the definition of the Itô integral to a larger class of integrands in L2(µT × P).

Lemma 4.2.1. Let X· ∈ L2(µT × P), and suppose there exists a sequence of Ft-

adapted simple processes Xn
· ∈ L2(µT × P) such that

‖Xn
· −X·‖2

2,µT×P = E

[

∫ T

0

(Xn
t −Xt)

2 dt

]

n→∞−−−−→ 0.

Then I(X·) can be defined as the limit in L2(P) of the simple integrals I(Xn
· ), and

the definition does not depend on the choice of simple approximations Xn
· .

3 In a more general theory, where we can integrate against arbitrary martingales instead of the Wiener
process, the sample paths of the integrator could have jumps. In that case, it can become necessary to make
the jump times ti of the simple integrands random, and we have to be more careful about whether the
integrand and integrator are left- or right-continuous at the jumps (see [Pro04]). This is not an issue for us.
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Proof. As ‖Xn
· −X·‖2,µT ×P → 0 as n→ ∞, we find that

‖Xn
· −Xm

· ‖2,µT ×P ≤ ‖Xn
· −X·‖2,µT ×P + ‖Xm

· −X·‖2,µT ×P → 0 as m,n → ∞.

But all Xn are adapted, so the Itô isometry gives ‖I(Xn
· ) − I(Xm

· )‖2,P → 0 as m,n → ∞.

Hence I(Xn
· ) is a Cauchy sequence in L2(P), and we denote by I(X·) its limit in L2(P). To

prove uniqueness, let Y n
· ∈ L2(µT × P) be another sequence of Ft-adapted simple processes

such that ‖Y n
· −X·‖2,µT ×P → 0, and denote by I(Y·) the limit in L2(P) of I(Y n

· ). Then

‖I(Y·)− I(X·)‖2,P ≤ ‖I(Y·)− I(Y n
· )‖2,P + ‖I(Y n

· )− I(Xn
· )‖2,P + ‖I(Xn

· )− I(X·)‖2,P,

where the first and last terms on the right converge to zero by definition, while the fact that the

second term converges to zero follows easily from the Itô isometry. Hence I(Y·) = I(X·) a.s.,

so the integral does not depend on the approximating sequence.

The question thus becomes, which stochastic processes X· ∈ L2(µT × P) can

actually be approximated by simple, Ft-adapted processes? It turns out that this is the

case for any Ft-adapted X· ∈ L2(µT × P).

Lemma 4.2.2. Let X· ∈ L2(µT × P) be Ft-adapted. Then there exists a sequence of

Ft-adapted simple processes Xn
· ∈ L2(µT × P) such that ‖Xn

· −X·‖2,µT×P → 0.

Proof. Suppose that X· has continuous and bounded sample paths. Then the simple functions

Xn
t = Xk2−nT , k2−nT ≤ t < (k + 1)2−nT, k = 0, . . . , 2n − 1,

converge toXt for every sample path separately; after all, as [0, T ] is compact, the sample paths

are uniformly continuous, so supt∈[0,T ] |Xn
t −Xt| ≤ supt sups∈[0,2−nT ] |Xt −Xt+s| → 0

as n → ∞. But as the sample paths are uniformly bounded, it follows that Xn
· → X· in

L2(µT × P) by the dominated convergence theorem.

Now suppose that X· is just bounded and progressively measurable. Define the process

Xε
t =

1

ε

∫ t

t−ε

Xs∨0 ds.

Then Xε
· has bounded, continuous sample paths, is Ft-adapted (by the progressive measurabil-

ity of X·), and Xε
t → Xt as ε → 0 for every sample path separately. For any ε > 0, we can

thus approximate Xε
t by simple adapted processes Xn,ε

t , so by dominated convergence

lim
ε→0

lim
n→∞

E

[∫ T

0

(Xn,ε
t −Xt)

2 dt

]
= 0.

As such, we can find a subsequence εn ↘ 0 such that Xn,εn
· → X· in L2(µT × P).

Next, suppose that X· is just progressively measurable. Then the process XtI|Xt|≤M is

progressively measurable and bounded, and, moreover,

lim
M→∞

E

[∫ T

0

(XtI|Xt|≤M −Xt)
2 dt

]
= lim

M→∞
E

[∫ T

0

(Xt)
2I|Xt|>M dt

]
= 0

by the dominated convergence theorem. As before, we can find a sequence of simple adapted

processes Xn,M
t that approximate XtI|Xt|≤M as n → ∞, and hence there is a subsequence

Mn ↗ ∞ such that Xn,Mn
· → X· in L2(µT × P), as desired.

The result can be exteded further even to the case that X· is not progressively measurable.

Such generality is not of much interest to us, however; see [KS91, lemma 3.2.4].
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We have now constructed the Itô integral in its most basic form. To be completely

explicit, let us state what we have learned as a definition.

Definition 4.2.3 (Elementary Itô integral). Let Xt be any Ft-adapted process in

L2(µT × P). Then the Itô integral I(X·), defined as the limit in L2(P) of simple

integrals I(Xn
· ), exists and is unique (i.e., is independent of the choice of Xn

t ).

Before we move on, let us calculate a simple example “by hand.” (This example

will become completely trivial once we have the Itô calculus!)

Example 4.2.4. We would like to calculate the integral of Wt with respect to itself.

As Wt has continuous sample paths, we find that

∫ T

0

Wt dWt = L2-lim
n→∞

2n−1
∑

k=0

Wk2−nT (W(k+1)2−nT −Wk2−nT ).

But note that we can rearrange the sum as

2

2n−1
∑

k=0

Wk2−nT (W(k+1)2−nT −Wk2−nT ) = W 2
T −

2n−1
∑

k=0

(W(k+1)2−nT −Wk2−nT )2,

and the second term on the right converges in L2 to T (recall that this is precisely the

quadratic variation of Wt). So we find that

W 2
T = 2

∫ T

0

Wt dWt + T.

Certainly this would not be the case if the Itô integral were a Stieltjes integral; the

ordinary chain rule suggests that d(Wt)
2/dt = 2Wt dWt/dt!

The full-blown Itô integral

We have now constructed the Itô integral; what more is there to do? We have two

issues to take care of in this section which are well worth the effort.

First, in the previous discussion we had fixed a terminal time T , and defined the

integral over the interval [0, T ]. However, we are usually interested in considering the

Itô integral as a stochastic process: i.e., we would like to consider the process

t 7→
∫ t

0

Xs dWs, t ∈ [0,∞[.

We will show in this section that we can choose the Itô integral so that it has contin-

uous sample paths, a task which is reminiscent of our efforts in defining the Wiener

process. Continuity is usually included, implicitly or explicitly, in the definition of the

Itô integral—we will always assume it throughout this course.

The second issue is that the class of processes which we can integrate using the el-

ementary Itô integral—theFt-adapted processes in L2(µT×P)—is actually a little too

restrictive. This may seem on the whiny side; surely this is a huge class of stochastic
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processes? But here is the problem. We will shortly be setting up a stochastic calcu-

lus, which will allow us to express functions of Itô integrals as new Itô integrals. For

example, given two Itô integrals I(X·) and I(Y·), we will obtain a rule which allows

us to express the product I(X·)I(Y·) as the sum of a single Itô integral I(Z·) of some

process Z· and a time integral. Even if X· and Y· are in L2(µT × P), however, this

does not guarantee that the appropriate process Z· will be in L2(µT × P). By extend-

ing the class of integrable processes, we will make sure that the the product of two Itô

integrals can always be expressed as another Itô integral. This ultimately makes the

theory easier to use, as you do not have to think, every time you wish to manipulate

an Itô integral, whether that particular manipulation is actually allowed.

We proceed as follows. We first prove that for adapted integrands in L2(µT × P),
we can define the Itô integral as a stochastic process on [0, T ] with continuous sample

paths. Next, we define the Itô integral as a stochastic process on [0,∞[ with contin-

uous paths, by extending our previous construction through a simple process called

localization. By modifying the localization trick just a little bit, we will subsequently

be able to extend the Itô integral to a much larger class of integrands.

Continuous sample paths

How to define the Itô integral with continuous sample paths? We will try to apply our

standard trick which served us so well in constructing the Wiener process. First we

define the simple integrals so that they have continuous sample paths; then we prove

that there exists a subsequence of the simple integrals that converges uniformly a.s.

The limiting sample paths are then automatically continuous.

Let Xn
t be an Ft-adapted simple process in L2(µT × P) with jump times ti. For

any time t ≤ T , we define the simple integral

It(X
n
· ) =

∫ t

0

Xn
s dWs =

∫ T

0

Xn
s Is≤t dWs =

N
∑

i=0

Xn
ti

(Wti+1∧t −Wti∧t).

The stochastic process It(X
n
· ) has continuous sample paths; this follows immediately

from the fact that the Wiener process has continuous sample paths. The simple integral

has another very important property, however—it is an Ft-martingale.

Lemma 4.2.5. It(X
n
· ) is an Ft-martingale.

Proof. If r ≤ ti < t, then

E(Xn
ti

(Wti+1∧t −Wti∧t)|Fr) = E(Xn
ti
E(Wti+1∧t −Wti∧t|Fti )|Fr) = 0,

as Wti+1∧t −Wti∧t is independent of Fti . If ti < r < ti+1 ∧ t, then

E(Xn
ti

(Wti+1∧t −Wti∧t)|Fr) = Xn
ti
E(Wti+1∧t −Wti∧t|Fr) = Xn

ti
(Wr −Wti),

whereas for r ≥ ti+1 ∧ t clearly E(Xn
ti

(Wti+1∧t −Wti∧t)|Fr) = Xn
ti

(Wti+1∧t −Wti∧t).

Hence for any r < t, E(It(X
n
· )|Fr) can be calculated as

N∑

i=0

E(Xn
ti

(Wti+1∧t −Wti∧t)|Fr) =
N∑

i=0

Xn
ti

(Wti+1∧r −Wti∧r) = Ir(X
n
· ),

which is the martingale property. Hence we are done.
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Remark 4.2.6. The fact the the simple integral is a martingale should not come as

a surprise—the discrete time process Iti(X
n
· ) is a martingale transform! We can

interpret the Itô integral as a continuous time martingale transform, albeit for a very

specific martingale: the Wiener process. (The more general theory, where you can

integrate against any martingale, makes this interpretation even more convincing.)

The martingale property is extremely helpful in constructing continuous sample

paths. To accomplish the latter, we will copy almost literally the argument used in

the proof of theorem 3.2.5 to construct the Wiener process with continuous sample

paths. That argument, however, relied on an estimate which, in the current context,

corresponds to a bound on P(supt∈[0,T ] |It(Xn
· )| > εn). The martingale property

provides an ideal tool to obtain such bounds: we can simply copy the argument that

led to the proof of the supermartingale inequality, lemma 2.3.21.

Lemma 4.2.7. Let Xt be an Ft-adapted process in L2(µT ×P). Then the Itô integral

It(X·), t ∈ [0, T ] can be chosen to have continuous sample paths.4

Proof. As usual, we choose a sequence of simple approximations Xn
t . Then It(X

n
· ) is a

martingale with continuous sample paths, and so is Mn
t = It(X

n
· ) − It(X

n−1
· ). By Jensen’s

inequality E((Mn
t )2|Fs) ≥ (E(Mn

t |Fs))
2 = (Mn

s )2 for s ≤ t, so (Mn
t )2 is a submartingale.

Define the stopping time τ = inf{t ∈ [0, T ] : |Mn
t | ≥ ε}. Then

P

(
sup

t∈[0,T ]

|Mn
t | > ε

)
≤ P

(
(Mn

τ )2 ≥ ε2
)
≤ ε−2

E
(
(Mn

τ )2
)
≤ ε−2

E
(
(Mn

T )2
)
,

where we have used continuity of the sample paths, Chebyshev’s inequality, and the submartin-

gale property. In particular, we obtain the estimate

P

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(Xn
s −Xn−1

s ) dWs

∣∣∣∣ >
1

n2

)
≤ n4

E

[∫ T

0

(Xn
s −Xn−1

s )2 ds

]
.

But we may assume that ‖Xn
· −Xn−1

· ‖2,µT ×P ≤ 2−n; if this is not the case, we can always

choose a subsequence m(n) ↗ ∞ such that ‖Xm(n)
· − X

m(n−1)
· ‖2,µT ×P ≤ 2−n. Thus we

find, proceding with a suitable subsequence if necessary, that

∞∑

n=2

P

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

(Xn
s −Xn−1

s ) dWs

∣∣∣∣ >
1

n2

)
<∞.

But then it follows, using the Borel-Cantelli lemma, that

∞∑

n=2

sup
t∈[0,T ]

∣∣∣∣
∫ t

0

(Xn
s −Xn−1

s ) dWs

∣∣∣∣ <∞ a.s.,

and hence It(X
n
· ) a.s. converges uniformly to some process Ht with continuous sample paths.

As the discontinuous paths live in a null set, we may set them to zero without inflicting any

harm. It remains to show that for every t ∈ [0, T ], the random variable Ht is the limit in L2(P)
of It(X

n
· ), i.e., that Ht coincides with the definition of the elementary Itô integral for every

time t. But as It(X
n
· ) → It(X·) in L2(P) and It(X

n
· ) → Ht a.s., we find that

E((Ht−It(X·))
2) = E

(
lim inf
n→∞

(It(X
n
· ) − It(X·))

2
)
≤ lim inf

n→∞
E((It(X

n
· )−It(X·))

2) = 0

where we have used Fatou’s lemma. Hence Ht = It(X·) a.s., and we are done.

4 An immediate consequence is that any version of the Itô integral has a continuous modification.
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Localization

We would like to define the Itô integral as a continuous process on the entire interval

[0,∞[. Which integrands can we do this for? The most straightforward idea would

be to require the integrands to be Ft-adapted processes in L2(µ × P), where µ is the

Lebesgue measure on [0,∞[. This would indeed be necessary if we wish to define

I∞(X·) =

∫ ∞

0

Xt dWt,

but this is not our goal: we only wish to define the integral as a stochastic process

It(X·) for every finite time t ∈ [0,∞[, and we do not necessarily care whether I∞(X·)
actually exists. Hence the condition X· ∈ L2(µ× P) seems excessively restrictive.

To weaken this condition, we use a trick called localization. This is not a very

deep idea. To define It(X·) on [0,∞[, it suffices that we can define it on every interval

[0, T ]: after all, to compute Xt for fixed t, we can simply choose T ≥ t and proceed

with the construction in the previous sections. Hence it should suffice to require that

X[0,T ] ∈ L2(µT × P) for every T < ∞, i.e., that X· ∈ ⋂

T<∞ L2(µT × P), a

much weaker condition than X· ∈ L2(µ × P)! This is called localization, because

we have taken a global construction on [0, T ]—in the previous section we defined the

sample paths of It(X·) on all of [0, T ] simultaneously—and applied it locally to every

subinterval [0, T ] ⊂ [0,∞[. The advantage is that the integrands need not be square

integrable on [0,∞[×Ω; they only need to be locally square integrable, i.e., square

integrable when restricted to any bounded set of times [0, T ].
It is not immediately obvious that this procedure is consistent, however. We have

to verify that our definition of It(X·) does not depend on which T > t we choose for

its construction; if the definition does depend on T , then our localization procedure is

ambiguous! Fortunately, the local property of the Itô integral is easy to verify.

Lemma 4.2.8. For any Ft-adapted process X· ∈
⋂

T<∞ L2(µT × P), we can define

uniquely the Itô integral It(X·) as an Ft-adapted stochastic process on [0,∞[ with

continuous sample paths.

Proof. For any finite time T , we can construct the Itô integral of X[0,T ] as a stochastic process

on [0, T ] with continuous sample paths (by lemma 4.2.7), and it is clear from the construction

that XT
t (X·) is Ft-adapted. Let us call the process thus constructed IT

t (X·). We would like

to prove that for fixed T , P(It
s(X·) = IT

s (X·) for all s ≤ t ≤ T ) = 1. But this is immediate

from the definition when X· is a simple integrand, and follows for the general case by choosing

the same approximating sequence Xn
t , defined on [0, T ], to define both It

s(X·) and IT
s (X·).

Finally, as this holds for any T ∈ N, we find P(It
s(X·) = IT

s (X·) for all s ≤ t ≤ T < ∞) =
1, so that It(X·) is unambiguously defined by setting It(X·) = IT

t (X·) for any T ≥ t.

Somewhat surprisingly, the simple concept of localization can be used to extend

the class of integrable processes even beyond the locally square integrable processes.

To see this, we first need to investigate how the Itô integral behaves under stopping.

Lemma 4.2.9. Let Xt be an Ft-adapted process in
⋂

T<∞ L2(µT × P), and let τ be

an Ft-stopping time. Then It∧τ (X·) = It(X·I·<τ ).
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Proof. As τ is a stopping time, It<τ is Ft-adapted, and hence XtIt<τ is Ft-adapted and in⋂
T<∞ L2(µT × P). Hence the integral in the statement of the lemma exists. To prove the

result, fix some interval [0, T ] and choose a sequence Xn
t of simple processes on [0, T ] that

converge to Xt fast enough. Let us suppose additionally that τ ≤ T a.s. Define the random

time τn to be the value of τ rounded upwards to the earliest jump time of Xn
t that is larger or

equal to τ . The times τn are still stopping times, and thusXn
t It<τn is a sequence of Ft-adapted

simple approximations that converges to XtIt≤τ . But for the simple integrands, you can verify

immediately that IT (Xn
· I·<τn) = Iτn(Xn

· ), and hence we find that IT (X·I·<τ ) = Iτ (X·)
by letting n → ∞ and using continuity of the sample paths. When τ is not bounded by

T , we simply apply the above procedure to the bounded stopping time τ ∧ T . Finally, we

have only proved the statement for every T separately, so you might worry that the processes

IT∧τ (X·) and IT (X·I·<τ ) are only modificiations of each other. But both these processes have

continuous sample paths, and modifications with continuous paths are indistinguishable.

We would like to weaken the requirementX· ∈
⋂

T<∞ L2(µT × P), i.e.,

E

[

∫ T

0

X2
t dt

]

<∞ for all T <∞.

Recall that in this case, localization consisted of defining It(X·) as IT
t (X·) (the in-

tegral constructed in L2(µT × P)) for T large enough, and lemma 4.2.8 guarantees

that the definition does not depend on the particular choice of T . Now suppose that

instead of the above condition, we are in a situation where

E

[
∫ τn

0

X2
t dt

]

<∞ for all n ∈ N,

where τn ↗ ∞ is some sequence of Ft-stopping times. Then {τn} is called a lo-

calizing sequence for Xt. Even though Xt need not be in L2(µT × P) for any T , it

is clear from this definition that the process XtIt<τn is in
⋂

T<∞ L2(µT × P), and

hence It(X·I·<τn) is well defined by our earlier efforts. In view of lemma 4.2.9, we

should thus consider defining the Itô integral It(X·) = It(X·I·<τn) for all t ≤ τn,

and as τn ↗ ∞ we can always choose n large enough so that this definition makes

sense. This is precisely the same idea as our previous exercise in localization, except

that we are now allowing our localization intervals [0, τn] to be random.

Once again, the big question is whether the definition of It(X·) depends on the

choice of n, or indeed on the choice of localizing sequence {τn} (as for any integrand

Xt, there could be many localizing sequences that work!)

Lemma 4.2.10. LetXt be an Ft-adapted process which admits a localizing sequence

τn. Then It(X·) is uniquely defined as an Ft-adapted stochastic process on [0,∞[
with continuous sample paths and is independent of the choice of localizing sequence.

Proof. First, we claim that for every m > n, we have It(X·I·<τn) = It(X·I·<τm) for all

t < τn. But as τm ≥ τn by assumption, clearly It<τnIt<τm = It<τn , so by lemma 4.2.9

we find that It(X·I·<τn) = It∧τn(X·I·<τm) which establishes the claim. Hence we can

unambiguously define It(X·) as It(X·I·<τn) for all t < τn. Moreover, the integral thus

defined is clearly Ft-adapted and has continuous sample paths.
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It remains to show that the definition thus obtained does not depend on the choice of lo-

calizing sequence. To see this, let τ ′
n be another localizing sequence for Xt, and denote by

I ′t(X·) the Itô integral constructed using this sequence. Introduce also the stopping times

σn = τn ∧ τ ′n, and note that this forms another localizing sequence. Denote by Jt(X·) the

Itô integral constructed using σn. But then, by the same argument as above, Jt(X·) = It(X·)
and Jt(X·) = I ′t(X·) for all t ≤ σn, and hence I ′t(X·) = It(X·) for all t.

How does this help us? There is a natural class of integrands—much larger than
⋂

T<∞ L2(µT × P)—whose elements admit a localizing sequence. We only need to

require that the integrandXt is Ft-adapted and satisfies

AT (X·) =

∫ T

0

X2
t dt <∞ a.s. for all T <∞.

To exhibit a localizing sequence, consider the stopping times τn = inf{t ≤ n :
At(X·) ≥ n}. Then the condition on our integrand guarantees that τn ↗ ∞ a.s., and

∫ τn

0

X2
t dt ≤ n a.s. for all n ∈ N.

Taking the expectation, we see that evidently τn is a localizing sequence of Xt. Let

us finally summarize what we have learned.

Definition 4.2.11 (Itô integral). Let Xt be any Ft-adapted stochastic process with

P

[

∫ T

0

X2
t dt <∞

]

= 1 for all T <∞.

Then the Itô integral

It(X·) =

∫ t

0

Xs dWs

is uniquely defined, by localization and the choice of a continuous modification, as an

Ft-adapted stochastic process on [0,∞[ with continuous sample paths.

Remark 4.2.12. There is another approach to this definition. We can prove an in prob-

ability version of the Itô isometry to replace the L2 version used in the construction of

the elementary integral, see [Fri75, lemma 4.2.3] or [LS01a, lemma 4.6]. Using this

weaker result, we can then prove that for any integrand which satisfies the condition

in the definition, we can define the Itô integral as the limit in probability of a sequence

of simple integrals. The integral thus defined coincides with our definition through

localization, but provides a complementary view on its construction.

Remark 4.2.13. The generalization to the class of integrands in definition 4.2.11 will

make the stochastic calculus much more transparent. If you care about generality for

its own sake, however, you might be interested to know that the current conditions can

not be reasonably relaxed; see [McK69, section 2.5, problem 1].
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4.3 Some elementary properties

We have done some heavy work in constructing a solid Itô integral; we will pick the

fruits of this labor throughout the rest of this course. Before we move on, let us spend

a few relaxing moments proving some of the simplest properties of the Itô integral.

Lemma 4.3.1 (Linearity). Let Xt and Yt be Itô integrable processes, and let α, β ∈
R. Then It(αX· + βY·) = α It(X·) + β It(Y·).

Proof. This clearly holds for simple integrands in L2(µT × P), and hence follows for any

locally square integrable integrand by taking limits. It remains to note that we can choose a

common localizing sequence for Xt and Yt: choosing a localizing sequence σn and τn for Xt

and Yt, respectively, the sequence σn ∧ τn is localizing for both. Hence we can directly extend

to any admissible integrands Xt and Yt by localization with respect to σn ∧ τn.

Lemma 4.3.2. Let Xt be Itô integrable and let τ be an Ft-stopping time. Then

∫ t∧τ

0

Xs dWs =

∫ t

0

Xs Is<τ dWs.

Proof. For integrands in
⋂

T<∞ L2(µT × P), this follows from lemma 4.2.9. For the general

case, let σn be a localizing sequence. Then by definition, It∧τ(X·) = It∧τ (X·I·<σn) for

t < σn, and using lemma 4.2.9 we find It∧τ (X·I·<σn) = It(X·I·<τI·<σn). But σn is clearly

also a localizing sequence for XtIt<τ , so the result follows by localization.

When the integrand is in
⋂

T<∞ L2(µT × P), the Itô integral inherits the elemen-

tary properties of the simple integrals. This is very convenient in computations.

Lemma 4.3.3. Let X· ∈
⋂

T<∞ L2(µT × P). Then for any T <∞

E

[

∫ T

0

Xt dWt

]

= 0, E





(

∫ T

0

Xt dWt

)2


 = E

[

∫ T

0

X2
t dt

]

,

and moreover It(X·) is an Ft-martingale.

Proof. All the statements of this lemma hold when Xt is a simple integrand in L2(µT ×P), as

we have seen in the construction of the integral. The result follows directly, as Yn → Y in L2

implies that E(Yn) → E(Y ), E(Yn|F) → E(Y |F) in L2, and E(Y 2
n ) → E(Y 2) (why?).

As an immediate corollary, we find that if a sequence of integrands converges in

L2(µT × P), then so do their Itô integrals. We already used this property for simple

integrands, but the fact that this holds generally is often useful. This should be more

or less trivial by now, so there is no need to provide a proof.

Corollary 4.3.4. If Xn
· → X· in L2(µT × P), then It(X

n
· ) → It(X·) in L2(P).

Moreover, if the convergence is fast enough, then It(X
n
· ) → It(X·) a.s.
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In the general case, i.e., when X· 6∈
⋂

T<∞ L2(µT × P), the nice properties of

lemma 4.3.3 are unfortunately not guaranteed. In fact, in the general case Xt may not

even be in L1(P), in which case its expectation need not be defined and the martingale

property need not even make sense. However, there is a weakening of the martingale

property that is especially suitable for stochastic integration.

Definition 4.3.5. An Ft-measurable process Xt is called an Ft-local martingale if

there exists a sequence of Ft-stopping times τn ↗ ∞ such that Xt∧τn is a martingale

for every n. The sequence τn is called a reducing sequence for Xt.

Lemma 4.3.6. Any Itô integral It(X·) is a local martingale.

Proof. Any localizing sequence for Xt is a reducing sequence for It(X·).

Remark 4.3.7. The local martingale property is fundamental in the general theory of

stochastic integration, and is intimately related with the notion of localization. How-

ever, lemma 4.3.3 shows that the integrands in
⋂

T<∞ L2(µT ×P) behave much nicer

in computations, at least where expectations are involved, than their more general

localized counterparts. When applying the Itô calculus, to be developed next, local-

ization will allow us to manipulate the stochastic integrals very easily; but at the end

of the day we will still need to prove separately that the resulting integrands are in
⋂

T<∞ L2(µT × P) if we wish to calculate the expectation.

4.4 The Itô calculus

Perhaps the most important topic in stochastic integration is the associated calculus,

which gives us transparent tools to manipulate Itô integrals and stochastic differential

equations. You know the deterministic counterpart of this idea very well. For example,

if f is C2 (twice continuously differentiable), then

X(t) = X(0) +

∫ t

0

Y (t) dt =⇒ f(X(t)) = f(X(0)) +

∫ t

0

df

dx
(Xt)Y (t) dt.

This in itself is not a trivial result; it requires some amount of analytic machinery to

prove! However, after the analysis has been done once, we no longer need to do any

work to apply the result; all we have to remember is a simple rule on how integrals

and derivatives transform, and every time we apply this rule a whole bunch of analysis

goes on under the hood. The rule is so simple, in fact, that it can be taught to high

school students with no background in analysis whatsoever! Our goal here is to find a

similar rule for the Itô integral—a different one than the usual rule, but just as easy to

apply—which pushes almost all of the difficult analysis out of view.

We will work in a rather general setup, in view of applications to (multidimen-

sional) stochastic differential equations. Let us work on a filtered probability space

(Ω,F , {Ft}t∈[0,∞[,P) on which we have defined an m-dimensional Ft-Wiener pro-

cess Wt = (W 1
t , . . . ,W

m
t ) (i.e., W i

t are independent Ft-Wiener processes). We

consider Ft-adapted processes X1, . . . , Xn of the form

X i
t = X i

0 +

∫ t

0

F i
s ds+

m
∑

j=1

∫ t

0

Gij
s dW j

s ,
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where F i
s , Gij

s are Ft-progressively measurable processes that satisfy

∫ t

0

|F i
s | ds <∞,

∫ t

0

(Gij
s )2 ds <∞ a.s. ∀ t <∞, ∀ i, j.

We call Xt = (X1
t , . . . , X

n
t ) an n-dimensional Itô process.

Definition 4.4.1 (Itô process). A process Xt = (X1
t , . . . , X

n
t ) satisfying the above

conditions is called an n-dimensional Itô process. It is also denoted as

Xt = X0 +

∫ t

0

Fs ds+

∫ t

0

Gs dWs.

The goal of this section is to prove the following theorem.

Theorem 4.4.2 (Itô rule). Let u : [0,∞[×Rn → R, be a function such that u(t, x) is

C1 with respect to t and C2 with respect to x. Then u(t,Xt) is an Itô process itself:

u(t,Xt) = u(0, X0) +

n
∑

i=1

m
∑

k=1

∫ t

0

ui(s,Xs)G
ik
s dW k

s

+

∫ t

0

{

u′(s,Xs) +

n
∑

i=1

ui(s,Xs)F
i
s +

1

2

n
∑

i,j=1

m
∑

k=1

uij(s,Xs)G
ik
s Gjk

s

}

ds,

where we have written u′(t, x) = ∂u(t, x)/∂t and ui(t, x) = ∂u(t, x)/∂xi.

Remark 4.4.3 (Itô differentials). We will often use another notation for the Itô pro-

cess, particularly when dealing with stochastic differential equations:

dXt = Ft dt+Gt dWt.

Though this expression is reminiscent of derivatives in ordinary calculus, this is just

suggestive notation for the expression forXt in integrated form, as in definition 4.4.1.

However, it takes up much less room, and allows for very quick symbolic computa-

tions. To see how, let us rewrite the Itô rule in symbolic form:

du(t,Xt) = u′(t,Xt) dt+ ∂u(t,Xt) dXt +
1

2
Tr[∂2u(t,Xt) dXt(dXt)

∗],

where ∂u(t, x) denotes the row vector with elements ui(t, x), ∂
2u(t, x) is the matrix

with entries uij(t, x), and dX i
t dX

j
t is calculated according to the following Itô table:

dt dW j
t

dt 0 0
dW i

t 0 δij dt

For example, if (in one dimension) dXt = Ft dt+G
1
t dW

1
t +G2

t dW
2
t , then (dXt)

2 =
{(G1

t )
2 + (G2

t )
2} dt. You should inspect the symbolic expression of the Itô rule care-

fully and convince yourself that it does indeed coincide with theorem 4.4.2.
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You can now easily see how extraordinarily simple Itô’s rule really is. If we write

our processes in terms of the “differentials” dXt, dW
i
t , etc., then Itô’s rule reduces

to applying some easy to remember multiplication rules to the differentials. This is

highly reminiscent of the chain rule in ordinary calculus—the first two terms of the

Itô rule are the ordinary chain rule, and Itô’s rule does indeed reduce to the chain rule

whenGij
t = 0 (as it should!) When stochastic integrals are present, we evidently need

to take a second-order term into account as well. Once you get used to pushing around

the various symbols in the right way, applying Itô’s rule will be no more difficult than

calculating derivatives in your high school calculus class.

Important example 4.4.4. Let X1
t , X

2
t be two one-dimensional Itô processes, and

consider the function u(t, x1, x2) = x1x2. Then u ∈ C2, and so by Itô’s rule

X1
t X

2
t = X1

0X
2
0 +

m
∑

k=1

∫ t

0

{X1
sG

2k
s +X2

sG
1k
s } dW k

s

+

∫ t

0

{

X1
sF

2
s +X2

sF
1
s +

m
∑

k=1

G1k
s G2k

s

}

ds.

In differential form, we find the product rule d(X1
t X

2
t ) = X1

t dX
2
t + X2

t dX
1
t +

dX1
t dX

2
t . In particular, we see that the class of Itô processes is closed under multi-

plication. Moreover, the class of Itô processes is trivially closed under the formation

of linear combinations, so apparently the Itô processes form an algebra.5

Let us now proceed to the proof of Itô’s rule. The proof goes a little fast at times;

if we would work out every minor point in the goriest detail, the proof would be many

pages longer. You can fill in the details yourself without too much effort, or look them

up in one of the references mentioned in section 4.7.

Proof of theorem 4.4.2. Until further notice, we consider the case where the integrands F i
t and

Gij
t are bounded, simple, and Ft-adapted. We also assume that u(t, x) is independent of t and

that all first and second derivatives of u are uniformly bounded. Once we have proved the Itô

rule for this special case, we will generalize to obtain the full Itô rule.

The key, of course, is Taylor’s formula [Apo69, theorem 9.4]:

u(x) = u(x0) + ∂u(x0) (x− x0) +
1

2
(x− x0)

∗ ∂2u(x0) (x− x0) + ‖x− x0‖2E(x, x0),

where E(x, x0) is uniformly bounded and E(x, x0) → 0 as ‖x − x0‖ → 0. As F i
t and Gij

t

are simple integrands, we may assume that they all have the same jump times tk, k = 1, . . . , N
(otherwise we can join all the jump times into one sequence, and proceed with that). Write

u(Xt) = u(X0) +

N∑

k=0

(u(Xtk+1) − u(Xtk )),

where we use the convention t0 = 0 and tN+1 = t. We are going to deal with every term of

this sum separately. Let us thus fix some k, and define sp
` = tk + `2−p(tk+1 − tk). Then

u(Xtk+1 ) − u(Xtk ) =
2p∑

`=1

(u(Xs
p
`
) − u(Xs

p
`−1

))

5This would not be true without localization.
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for any p ∈ N. Note that as Ft and Gt are constant in the interval tk+1 − tk, we have

Xs
p
`
−Xs

p
`−1

= Ftk 2−p∆ +Gtk (Ws
p
`
−Ws

p
`−1

).

Thus applying Taylor’s formula to u(Xs
p
`
) − u(Xs

p
`−1

), we get

u(Xtk+1 ) − u(Xtk ) =

2p∑

`=1

∂u(Xs
p
`−1

) (Ftk 2−p∆ +Gtk (Ws
p
`
−Ws

p
`−1

) (4.4.1)

+
1

2

2p∑

`=1

(Gtk (Ws
p
`
−Ws

p
`−1

))∗ ∂2u(Xs
p
`−1

) (Gtk (Ws
p
`
−Ws

p
`−1

)) (4.4.2)

+
1

2
(Ftk 2−p∆)∗

2p∑

`=1

∂2u(Xs
p
`−1

) (Ftk 2−p∆) (4.4.3)

+ (Ftk 2−p∆)∗
2p∑

`=1

∂2u(Xs
p
`−1

) (Gtk (Ws
p
`
−Ws

p
`−1

)) (4.4.4)

+
2p∑

`=1

‖Ftk 2−p∆ +Gtk (Ws
p
`
−Ws

p
`−1

)‖2E(Xs
p
`
, Xs

p
`−1

). (4.4.5)

We now let p→ ∞ and look whether the various terms on the right converge in L2(P).

Consider first the terms (4.4.3) and (4.4.4). As ∂2u(Xs) is bounded and has continuous

sample paths, the sums in (4.4.3) and (4.4.4) converge in L2(P) to a time integral and an Itô

integral, respectively. But both terms are premultiplied by 2−p, so we conclude that these terms

converge to zero. Next, note that the term (4.4.5) can be estimated as

sup
`

|E(Xs
p
`
, Xs

p
`−1

)|
{

∆2‖Ftk‖2 + ‖Gtk‖2
2p∑

`=1

‖Ws
p
`
−Ws

p
`−1

‖2

}
.

But the sum converges in L2(P) to the quadratic variation m∆, while the supremum term

is uniformly bounded and converges a.s. to zero. Hence the entire term converges to zero in

L2(P). Next, note that the term (4.4.1) converges in L2(P) to

∫ tk+1

tk

∂u(Xr)Ftk dr +

∫ tk+1

tk

∂u(Xr)Gtk dWr.

It remains to investigate the term (4.4.2). We claim that this term converges in L2(P) to

1

2

∫ tk+1

tk

Tr[∂2u(Xr)Gtk (Gtk )∗] dr.

But this calculation is almost identical to the calculation of the quadratic variation of the Wiener

process in the proof of lemma 3.1.11, so we will leave it as an exercise.

Finally, summing over all k, we find that Itô’s rule is indeed satisfied in the case that F i
t and

Gij
t are Ft-adapted bounded simple integrands, u(t, x) is independent of t and has uniformly

bounded first and second derivatives. We now need to generalize this statement.

First, suppose that Gik
t ∈ L2(µT × P) for all i, k, and that Ft satisfies the general condi-

tion of the theorem. Then we can find a sequence of simple approximations to Ft, Gt which
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converges fast enough, so that the simple Itô processes converge a.s. to Xt. Moreover, the Itô

rule holds for each of these simple approximations. But as we have assumed that the derivatives

of u are bounded and continuous, it is easy to see that the integrands obtained by applying the

Itô rule to the simple approximations converge sufficiently fast to the integrands in the Itô rule

applied to Xt. Taking the a.s. limit, we can conclude using corollary 4.3.4 that the Itô rule still

holds when Gik
t ∈ L2(µT × P) and Ft satisfies the general condition of the theorem.

Our next job is to add time to the picture (but u is still bounded). If u(t, x) is required to

be C2 in all variables, then this is trivial: Xi
t = t is an Itô process, so we can always extend the

dimension of our Itô process by one to include time in the picture. To allow u to be only C1

in time, we can always find (e.g., by convolution) a sequence un of C2 approximations to u so

that un, un
i , un

ij and (un)′ converge uniformly on compact sets fast enough. The result follows

by taking the limit. (Actually, if it happens to be the case for some i that Gim = 0 for all m,

then we could similarly only require u to be C1 in the variable xi.)

It remains to weaken the requirement that Gt is square-integrable and that u has bounded

derivatives. But we can solve both these problems simultaneously by localization. Indeed,

choose a localizing sequence τn for Xt, and choose another sequence of stopping times σn ↗
∞ such that ui(t,Xt), uij(t,Xt) and u′(t,Xt) are bounded by n for all t < σn. Then τn∧σn

is another localizing sequence, and we can apply Itô’s rule to Xt∧τn∧σn . We are done.

Remark 4.4.5. Suppose that for all times t, the Itô process Xt a.s. takes values in

some open set U . Then, using another localization trick, it suffices for Itô’s theorem

that u(t, x) isC1 in t andC2 for x ∈ U . Proving this is a good exercise in localization.

For example, we will sometimes encounter an Itô process such that Xt > 0 a.s.

for all t. We can then apply Itô’s rule with u(t, x) =
√
x or even u(t, x) = x−1, even

though these functions are not C2 on all of R (but they are C2 on ]0,∞[).

4.5 Girsanov’s theorem

In this and the next section, we will discuss two fundamental theorems of stochastic

analysis. In this section we discuss Girsanov’s theorem, which tells us what happens

to the Wiener process under a change of measure. This theorem has a huge number of

applications, some of which we will encounter later on in this course. In order to lead

up to the result, however, let us first consider a pair of illustrative discrete examples.

Example 4.5.1. Let (Ω,F ,P) be a probability space on which is defined a Gaussian

random variable ξ with zero mean and unit variance, and let a ∈ R be an arbitrary

(non-random) constant. We would like to find a new measure Q under which ξ ′ =
a+ξ is a Gaussian random variable with zero mean and unit variance. In other words,

we would like the law of ξ′ under Q to equal the law of ξ under P.

Of course, this is only possible if the laws µξ and µξ′ (under P) of ξ and ξ′,
respectively, are absolutely continuous. But indeed this is the case: note that

µξ(A) =

∫

A

e−x2/2

√
2π

dx, µξ′(A) =

∫

A

e−(x−a)2/2

√
2π

dx,

so evidently
dµξ

dµξ′

(x) = e(x−a)2/2−x2/2 = e−ax+a2/2.
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It follows immediately that if we define Q by

dQ

dP
= e−aξ′+a2/2 = e−aξ−a2/2,

then the measure Q has the desired property.

Example 4.5.2. Now let (Ω,F ,P) carry a collection ξ1, . . . , ξn of i.i.d. Gaussian

random variables with zero mean and unit variance, and define the filtration Fk =
σ{ξ1, . . . , ξk}. Let a1, . . . , an be a predictable process, i.e., ak is anFk−1-measurable

random variable. We would like to find a measure Q under which ξ ′k = ak + ξk are

i.i.d. Gaussian random variables with zero mean and unit variance. In other words, we

would like the law of the process ξ′ under Q to equal the law of the process ξ under P.

Let f(x1, . . . , xn) be any bounded measurable function. Under P,

EP(f(ξ′1, . . . , ξ
′
n)) =

∫

Rn

f(x1 + a1, . . . , xn + an(x1, . . . , xn−1))
e−(x2

1+···+x2
n)/2

(2π)n/2
dx1 · · · dxn,

where we have explicitly introduced the predictablity assumption by setting ak =
ak(ξ1, . . . , ξk−1). Under Q, on the other hand, we would like to have

EQ(f(ξ′1, . . . , ξ
′
n)) =

∫

Rn

f(x′1, . . . , x
′
n)
e−((x′

1)
2+···+(x′

n)2)/2

(2π)n/2
dx′1 · · · dx′n

=

∫

Rn

f(x1 + a1, . . . , xn + an(x1, . . . , xn−1))

× e−((x1+a1)
2+···+(xn+an(x1,...,xn−1))

2)/2

(2π)n/2
dx1 · · · dxn,

where we have made a change of variables.6 Thus evidently we should set

dQ

dP
=
e−((ξ1+a1)

2+···+(ξn+an)2)/2

e−(ξ2
1+···+ξ2

n)/2
= exp

[

n
∑

k=1

(

−akξk − 1

2
a2

k

)

]

,

which is almost the same as in the previous example. (You should verify that this does

not give the right answer if ak is not assumed to be predictable!)

Apparently we can “add” to a sequence of i.i.d. Gaussian random variables an ar-

bitrary predictable process simply by changing to an absolutely continuous probability

measure. This can be very convenient. Many problems, random and non-random, can

be simplified by making a suitable change of coordinates (using, e.g., Itô’s rule). But

here we have another tool at our disposal which is purely probabilistic in nature: we

can try to simplify our problem by changing to a more convenient probability measure.

We will see this idea in action, for example, when we discuss filtering.

6 If you are unconvinced, assume first that f and a1, . . . , an are smooth functions of x1, . . . , xn, ap-
ply the usual change of variables formula, and then extend to arbitrary f and a1, . . . , an by approximation.
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With this bit of discrete time intuition under our belt, the Girsanov theorem should

come as no great surprise. Indeed, it is simply the appropriate extension of the previ-

ous example, with a Wiener process replacing the i.i.d. sequence ξk.

Theorem 4.5.3 (Girsanov). Let Wt be an m-dimensional Ft-Wiener process on the

probability space (Ω,F , {Ft}t∈[0,T ],P), and let Xt be an Itô process of the form

Xt =

∫ t

0

Fs ds+Wt, t ∈ [0, T ].

Suppose furthermore that Ft is Itô integrable, and define

Λ = exp

[

−
∫ T

0

(Fs)
∗dWs −

1

2

∫ T

0

‖Fs‖2 ds

]

((Fs)
∗dWs = F 1

s dW
1
s + · · · + Fn

s dW
n
s ). If Novikov’s condition

EP

[

exp

(

1

2

∫ T

0

‖Fs‖2 ds

)]

<∞

is satisfied, then {Xt}t∈[0,T ] is an Ft-Wiener process under Q(A) = EP(ΛIA).

Remark 4.5.4. Instead of Novikov’s condition, the weaker condition EP(Λ) = 1
(which is implied by Novikov’s condition, see theorem 4.5.8 below) is sufficient for

the Girsanov theorem to hold; see, e.g., [Fri75, chapter 7]. Clearly this condition is

necessary for Λ to be a Radon-Nikodym derivative—ifFt is too wild a process, we are

in trouble! The Girsanov theorem says that the condition is also sufficient. However,

this condition is often not so easy to check; Novikov’s condition is by far the most

useful sufficient condition in practice, and is relatively easy to verify in many cases.

Let us prove the Girsanov theorem. Some supporting lemmas of a technical nature

are postponed until after the main portion of the proof.

Proof. Define the Ft-adapted process

Λt = exp

[
−
∫ t

0

(Fs)
∗dWs −

1

2

∫ t

0

‖Fs‖2 ds

]
, Λt = 1 −

∫ t

0

Λs (Fs)
∗dWs,

where we have applied Itô’s rule to obtain the expression on the right. Hence Λt is a local

martingale. In fact, Novikov’s condition implies that Λt is a true martingale: see theorem 4.5.8.

Let us assume until further notice that Ft is bounded; we will generalize later. We wish

to prove that Xt is an m-dimensional Ft-Wiener process under Q. Clearly Xt has continuous

sample paths, so it suffices to verify its finite dimensional distributions. In fact, by a simple

induction argument, it suffices to prove that for any Fs-measurable bounded random variable

Z, the increment Xt − Xs (t > s) is an m-dimensional Gaussian random variable with zero

mean and covariance matrix (t − s)I (I is the identity matrix), independent of Z. We will do

this as in the proof of theorem 3.2.5 by calculating the characteristic function. Given α ∈ Rm
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and β ∈ R, let us perform the following sequence of simple manipulations:7

EQ(e
iα∗(Xt−Xs)+iβZ) = EP(ΛT e

iα∗(Xt−Xs)+iβZ) = EP(EP(ΛT |Ft) e
iα∗(Xt−Xs)+iβZ)

= EP(Λte
iα∗(Xt−Xs)+iβZ) = EP(Λse

∫ t
s (iα−Fr)∗ dWr+

∫ t
s (iα−Fr/2)∗Fr dr+iβZ)

= e−‖α‖2(t−s)/2
EP(Λse

iβZe
∫ t

s (iα−Fr)∗ dWr− 1
2

∫ t
s ‖iα−Fr‖2 dr).

The essential claim is now that

EP(e
∫ t
s (iα−Fr)∗ dWr− 1

2

∫ t
s ‖iα−Fr‖2 dr|Fs) = 1,

or, equivalently (why?), that the complex-valued stochastic process

Mα
t = exp

[∫ t

0

(iα − Fr)
∗ dWr − 1

2

∫ t

0

‖iα − Fr‖2 dr

]

is a martingale. But by Itô’s rule, we find that

Mα
t = 1 +

∫ t

0

Mα
s (iα − Fs)

∗ dWs,

and applying lemma 4.5.6 (use the boundedness of Ft) we find that the real and imaginary parts

of (iα − F i
s)Mα

s are all in L2(µT × P). Hence Mα
t is indeed a martingale. But then

EQ(e
iα∗(Xt−Xs)+iβZ)

= e−‖α‖2(t−s)/2
EP(Λse

iβZ
EP(e

∫ t
s (iα−Fr)∗ dWr− 1

2

∫ t
s ‖iα−Fr‖2 dr|Fs))

= e−‖α‖2(t−s)/2
EP(EP(ΛT e

iβZ|Fs)) = e−‖α‖2(t−s)/2
EQ(e

iβZ).

As the characteristic function factorizes into the characteristic function of Z and the character-

istic function of an m-dimensional Gaussian random variable with mean zero and covariance

(t− s)I , we find that Xt −Xs is independent of Z and has the desired distribution. Hence we

have proved the theorem for the case that Ft is bounded.

Let us now tackle the general case where Ft is not necessarily bounded. Define the pro-

cesses Gn
t = FtI‖Ft‖≤n; then Gn

t is bounded for any n. Moreover,

exp

(
EP

[
1

2

∫ T

0

‖Ft‖2 dt

])
≤ EP

[
exp

(
1

2

∫ T

0

‖Ft‖2 dt

)]
<∞

using Jensen’s inequality and Novikov’s condition, so we obtain

EP

[∫ T

0

‖Gn
t − Ft‖2 dt

]
= EP

[∫ T

0

‖Ft‖2 I‖Ft‖>n dt

]
n→∞−−−−→ 0

where we have used dominated convergence. In particular, we can choose a subsequence

m(n) ↗ ∞ so that the stochastic integral It(G
n
· ) converges a.s. to It(F·).

7 Abuse of notation alert: here x∗ means the transpose of the vector x, not the conjugate transpose; in
particular, α∗ = α for all α ∈ C. Similarly, ‖x‖2 denotes

∑
i(xi)2. We have not defined complex Itô

integrals, but you may set
∫ t
0 (as+ibs) dWs ≡

∫ t
0 as dWs+i

∫ t
0 bs dWs when as and bs are real-valued,

i.e., the complex integral is the linear extension of the real integral. As this is the only place, other than in
theorem 3.2.5, where we will use complex numbers, we will put up with our lousy notation just this once.
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Let us continue with this subsequence, i.e., we define F n
t = G

m(n)
t . For any n, define Xn

t ,

Λn
t , Λn = Λn

T andQn by replacing Ft by Fn
t in their definitions. ThenXn

t is a Wiener process

under Qn for any n <∞. In particular, for any n and t > s,

EP(Λ
n eiα∗(Xn

t −Xn
s )+iβZ) = e−‖α‖2(t−s)/2

EP(Λ
n eiβZ)

where Z is some Fs-measurable random variable. We claim that8

Λneiα∗(Xn
t −Xn

s )+iβZ → Λ eiα∗(Xt−Xs)+iβZ
and ΛneiβZ → Λ eiβZ

in L1(P).

Once this has been established, we are done: taking the limit as n → ∞, we find that

EQ(e
iα∗(Xt−Xs)+iβZ) = e−‖α‖2(t−s)/2EQ(e

iβZ) which is precisely what we want to show.

To proceed, let us first show that Λn → Λ in L1(P). Note that Λn → Λ a.s., and using

theorem 4.5.8 we find that EP(Λn) = EP(Λ) = 1. As (Λn − Λ)− ≤ Λ and Λn → Λ a.s., we

find that EP((Λn −Λ)−) → 0. Similarly, EP((Λn −Λ)+) = EP(Λn −Λ+(Λn −Λ)−) → 0.

Hence EP(|Λn − Λ|) = EP((Λn − Λ)+ + (Λn − Λ)−) → 0, and we have determined that

Λn → Λ in L1(P). (The previous argument is also known as Scheffé’s lemma.)

The remaining work is easy. Clearly ΛneiβZ → ΛeiβZ in L1(P), as eiβZ is independent

of n and has bounded real and imaginary parts. To deal with Λneiα∗(Xn
t −Xn

s )+iβZ , note that

its real and imaginary parts are of the form αnβn where αn is bounded and converges a.s. to α,

while βn converges to β in L1(P). But then the following expression converges to zero:

EP(|αnβn−αβ|) ≤ EP(|αn−α| |β|)+EP(|αn| |βn−β|) ≤ EP(|αn−α| |β|)+K EP(|βn−β|)

using dominated convergence for the first term on the right and L1(P) convergence for the

second. Hence Λneiα∗(Xn
t −Xn

s )+iβZ → Λ eiα∗(Xt−Xs)+iβZ in L1(P), and we are done.

The technical lemmas are next.

Lemma 4.5.5. Let Mt, t ∈ [0, T ] be a nonnegative local martingale. Then Mt is a

supermartingale. In particular, if E(MT ) = E(M0), then Mt is a martingale.

Proof. Let τn be a reducing sequence for Mt. Then using Fatou’s lemma (note that Mt ≥ 0),

we obtain9 for T ≥ t ≥ s ≥ 0

E(Mt|Fs) = E
(

lim inf
n→∞

Mt∧τn

∣∣∣Fs

)
≤ lim inf

n→∞
E(Mt∧τn |Fs) = lim inf

n→∞
Ms∧τn = Ms.

In particular, Mt is a supermartingale. But a supermartingale which is not a martingale must

have P(E(Mt|Fs) < Ms) > 0 for some t > s. Hence if Mt is not a martingale, then

E(MT ) ≤ E(Mt) < E(Ms) ≤ E(M0). But we have assumed that E(MT ) = E(M0).

Lemma 4.5.6. Let Ft be Itô integrable and let Wt be a Wiener process. Then

E

[

exp

(

1

2

∫ t

0

Fs dWs

)]

≤
√

E

[

exp

(

1

2

∫ t

0

(Fs)2 ds

)]

.

8 By convergence in L1(P), we mean that the real and imaginary parts converge in L1(P).
9 To be precise, we should first check that Mt ∈ L1(P), otherwise the conditional expectation is not

defined. But an identical application of Fatou’s lemma shows that E(Mt) ≤ E(M0), so Mt ∈ L1(P).
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Proof. As exp( 1
2

∫ t

0
FsdWs) = exp( 1

2

∫ t

0
FsdWs − 1

4

∫ t

0
(Fs)

2ds) exp( 1
4

∫ t

0
(Fs)

2ds),

E

[
exp

(
1

2

∫ t

0

Fs dWs

)]
≤
√
E

[
exp

(
1

2

∫ t

0

(Fs)2 ds

)]
E

[
e
∫

t
0 Fs dWs−

1
2

∫
t
0 (Fs)2 ds

]

using Hölder’s inequality. But using Itô’s rule, we find that

e
∫ t
0 Fs dWs−

1
2

∫ t
0 (Fs)2 ds ≡Mt = 1 +

∫ t

0

Ms Fs dWs,

so evidently Mt is a local martingale. Hence Mt is a supermartingale by lemma 4.5.5, and this

implies in particular E(Mt) ≤ 1. The result follows immediately.

It remains to prove Novikov’s theorem, i.e., that the Novikov condition implies

that Λt is a martingale; this was key for the Girsanov theorem to hold. Evidently it

suffices to prove that EP(ΛT ) = 1 (lemma 4.5.5). To show this, let us introduce the

following supporting lemma; the proof of Novikov’s theorem then essentially amounts

to reducing the Novikov condition to this lemma.

Lemma 4.5.7. Let Mt be a nonnegative local martingale and let τn be a reducing

sequence. If supn ‖MT∧τn‖p <∞ for some p > 1, then {Mt}t∈[0,T ] is a martingale.

Proof. We begin by writing

E(|MT −MT∧τn |) ≤ E(MT −r∧MT )+E(|r∧MT −r∧MT∧τn |)+E(MT∧τn−r∧MT∧τn).

We claim that if we take the limit as n → ∞ and as r → ∞, in that order, then the right-hand

side vanishes. This is clear for the first two terms, using dominated convergence and the fact

that E(MT ) ≤ E(M0) <∞ by the supermartingale property. To tackle the last term, note that

E(MT∧τn − r ∧MT∧τn) = E(MT∧τnIMT∧τn >r) − r P(MT∧τn > r).

Using Chebyshev’s inequality,

r P(MT∧τn > r) ≤ rE((MT∧τn)p)

rp
≤ supn E((MT∧τn)p

rp−1
,

so as n → ∞ and r → ∞ this term vanishes. Now let 0 < r ≤ x; then we have the trivial

estimate x ≤ r1−pxp for p > 1. Hence

E(MT∧τnIMT∧τn >r) ≤ r1−p
E((MT∧τn)pIMT∧τn >r) ≤ r1−p sup

n
E((MT∧τn)p),

so this term also vanishes in the limit. Hence E(|MT −MT∧τn |) → 0 as n → ∞. But then

E(MT ) = limn→∞ E(MT∧τn) = E(M0), so Mt is a martingale by lemma 4.5.5.

Theorem 4.5.8 (Novikov). For Itô integrable Ft, define the local martingale

Et(F·) = exp

[
∫ t

0

(Fs)
∗dWs −

1

2

∫ t

0

‖Fs‖2 ds

]

.

Suppose furthermore that the following condition is satisfied:

E

[

exp

(

1

2

∫ T

0

‖Fs‖2 ds

)]

= K <∞.

Then {Et(F·)}t∈[0,T ] is in fact a martingale.



4.6. The martingale representation theorem 112

Proof. We are going to show below that Et(F·
√
α) is a martingale for all 0 < α < 1. Let us

first argue that the result follows from this. By inspection, we easily find that

Et(F·
√
α) = (Et(F·))

αe
√

α(1−√
α)
∫ t
0 (Fs)∗dWs .

Applying Hölder’s inequality with p = α−1 and q = (1 − α)−1, we obtain

1 = E(ET (F·
√
α)) ≤ (E(ET (F·)))

α(E(e
√

α(1+
√

α)−1 ∫ T
0 (Fs)∗dWs))1−α.

But as x(1+
√

α)/2
√

α is a convex function for all 0 < α < 1, we find

1 ≤ (E(ET (F·)))
α(E(e

1
2

∫ T
0 (Fs)∗dWs))2

√
α(1−√

α) ≤ (E(ET (F·)))
αK

√
α(1−√

α),

where we have used lemma 4.5.6. Letting α↗ 1, we find that E(ET (F·)) ≥ 1. But we already

know that E(ET (F·)) ≤ 1 by lemma 4.5.5, so the result follows.

It remains to show that Et(F·
√
α) is a martingale for any 0 < α < 1. Fix α. As Et(F·

√
α)

is a local martingale, we can choose a localizing sequence τn. By lemma 4.5.7, it suffices to

prove that supn E((ET∧τn(F·
√
α))u) <∞ for some u > 1. But exactly as above, we find

(Et(F·
√
α))u = (Et(F·))

uαeu
√

α(1−√
α)
∫ t
0 (Fs)∗dWs .

Applying Hölder’s inequality with p = (uα)−1 and q = (1 − uα)−1, we obtain

E((ET∧τn(F·
√
α))u) ≤ (E(ET∧τn(F·)))

uα(E(eu
√

α(1−√
α)(1−uα)−1 ∫T∧τn

0 (Fs)∗dWs))1−uα.

We should choose a suitable u > 1. Let us try

u
√
α(1 −√

α)

1 − uα
=

1

2
=⇒ u =

1

2
√
α(1 −√

α) + α
=

1

(2 −√
α)

√
α
.

But this actually works, because 0 < (2−x)x < 1 for 0 < x < 1, so u > 1 for any 0 < α < 1.

Hence, choosing this particular u, we find that

E((ET∧τn(F·
√
α))u) ≤ (E(e

1
2

∫T∧τn
0 (Fs)∗dWs))1−uα ≤ K(1−uα)/2,

where we have used that Et(F·) is a supermartingale and that lemma 4.5.6 still holds when t is

replaced by t∧τn (just replace Fs by FsIs<τn , then apply lemma 4.5.6). Taking the supremum

over n, we obtain what we set out to demonstrate. The proof is complete.

4.6 The martingale representation theorem

We have one more fundamental result to take care of in this chapter. It is the martin-

gale representation theorem—an altogether remarkable result. You know that the Itô

integral of any integrand in L2(µT ×P) is a martingale which is in L2(P) at every time

t. In essence, the martingale representation theorem states precisely the converse: ev-

ery martingale {Mt}t∈[0,T ] with MT ∈ L2(P) can be represented as the Itô integral

of a unique process in L2(µT ×P)! Beside its fundamental interest, this idea plays an

important role in mathematical finance; it also forms the basis for one approach to the

filtering problem, though we will follow an alternative route in chapter 7.

We have to be a little bit careful by what we mean by a martingale: after all,

we have not yet specified a filtration. For this particular result, we have to restrict
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ourselves to a more limited setting than in the rest of the chapter. We will work on a

probability space (Ω,F ,P) on which is defined a Wiener process Wt (we will take it

to be one-dimensional, though you can easily extend the result to higher dimensions).

The restriction will come in due to the fact that we only consider the natural filtration

FW
t = σ{Ws : s ≤ t}, unlike in the rest of the chapter where we could work with a

larger filtration Ft. The statement of the theorem is then as follows.

Theorem 4.6.1 (Martingale representation). Let Mt be an FW
t -martingale such

thatMT ∈ L2(P). Then for a uniqueFW
t -adapted process {Ht}t∈[0,T ] in L2(µT ×P)

Mt = M0 +

∫ t

0

Hs dWs a.s. for all t ∈ [0, T ],

where the uniqueness of Ht is meant up to a µT × P-null set.

Actually, the theorem is a trivial corollary of the following result.

Theorem 4.6.2 (Itô representation). Let X be an FW
T -measurable random variable

in L2(P). Then for a unique FW
t -adapted process {Ht}t∈[0,T ] in L2(µT × P)

X = E(X) +

∫ T

0

Hs dWs a.s.,

where the uniqueness of Ht is meant up to a µT × P-null set.

We will prove this theorem below. Let us first show, however, how the martingale

representation theorem follows from the Itô representation theorem.

Proof of theorem 4.6.1. By theorem 4.6.2, we can write

MT = E(MT ) +

∫ T

0

Hs dWs a.s.

for a unique FW
t -adapted process {Ht}t∈[0,T ] in L2(µT ×P). It remains to note that E(MT ) =

M0 (as FW
0 is the trivial filtration, M0 must be non-random) and that the martingale represen-

tation result follows from the Itô representation of MT using Mt = E(MT |FW
t ).

How should we go about proving the Itô representation theorem? We begin by

proving an “approximate” version of the theorem: rather than showing that any FW
T -

measurable random variable X ∈ L2(P) can be represented as an Itô integral, we

will show that any such X can be approximated arbitrarily well by an Itô integral, in

the following sense: for arbitrarily small ε > 0, we can find an FW
t -adapted process

Hε
t in L2(µT × P) such that ‖X − IT (Hε

· )‖2 < ε. Once we have established this

approximate version of the result, we are almost done: making the theorem exact

rather than approximate is then simply a matter of taking limits.

The proof of the approximate Itô representation proceeds in two parts. First, we

identify a class of random variables which can approximate any FW
T -measurableX ∈

L2(P) arbitrarily well. Next, we show that any random variable in this class can be

represented as the Itô integral of some FW
t -adapted process Ht in L2(µT × P).
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Lemma 4.6.3. Introduce the following class of FW
T -measurable random variables:

S = {f(Wt1 , . . . ,Wtn) : n <∞, t1, . . . , tn ∈ [0, T ], f ∈ C∞
0 }

(recall that C∞
0 is the class of smooth functions with compact support). Then for any

ε > 0 and FW
T -measurableX ∈ L2(P), there is a Y ∈ S such that ‖X − Y ‖2 < ε.

Proof. First, we claim that the statement holds if f is just assumed to be Borel-measurable

rather than C∞
0 . To show this, introduce the filtration Gn = σ{Wk2−nT : k = 0, . . . , 2n},

and note that FW
T = σ{Gn : n = 1, 2, . . .}. Fix some FW

T -measurable X ∈ L2(P), and

define the sequence Xn = E(X|Gn). Then Xn → X in L2(P) by lemma 4.6.4 below. But

Xn = f(W2−nT , . . . ,WT ) for some Borel function f (as it is Gn-measurable), so X can be

approximated arbitrarily closely by Borel functions of the Wiener process at a finite number

of times. Note that we may also restrict ourselves to bounded Borel functions: after all, the

sequence Xn ∧ n of bounded random variables converges to X as well.

We now claim that any bounded Borel function f can be approximated arbitrarily well

by functions fn ∈ C∞. But this is well known: the approximations fn can be found, e.g.,

by convolving f with a smooth function of compact support, and fn(W2−nT , . . . ,WT ) →
f(W2−nT , . . . ,WT ) in L2(P) by dominated convergence. It remains to note that we can re-

strict ourselves to functions inC∞
0 , as we can always multiply fn by gn, where gn is a sequence

of [0, 1]-valued functions with compact support such that gn ↗ 1 pointwise, and dominated

convergence still gives the desired result. We are done.

In the previous proof we used the following fundamental result.

Lemma 4.6.4 (Lévy’s upward theorem). Let X ∈ L2(P) be G-measurable, and let

Gn be a filtration such that G = σ{Gn}. Then E(X |Gn) → X a.s. and in L2(P).

Proof. Let us write Xn = E(X|Gn). Using Jensen’s inequality is it easy to see that ‖Xn‖2 ≤
‖X‖2 <∞, soXn ∈ L2 for all n. In particular, asXn is a martingale and supn ‖Xn‖1 <∞,

it follow from the martingale convergence theorem thatXn → X∞ a.s. We would like to prove

that X∞ = X and that the convergence is in L2(P) as well.

Let us first prove that X → X∞ in L2(P). Note that using the martingale property,

E((Xn − Xm)2) = E((Xn)2) − E((Xm)2) for n ≥ m. But then E((Xn − Xm)2) =∑n−1
k=m E((X

k+1 − Xk)2). However, we know that the sum must converge as n → ∞, as

supn ‖Xn‖2 <∞. Hence Xn is Cauchy in L2(P), so we have Xn → X∞ in L2(P) also.

It remains to prove X∞ = X . Assume without loss of generality that X ≥ 0 and

that E(X) = 1. Then Q(A) = P(XIA) is another probability measure, and we claim that

Q(A) = P(X∞IA) as well for all A ∈ G. This would establish the claim by the unique-

ness of the Radon-Nikodym derivative. But note that
⋃

n Gn is a π-system that generates G,

so it suffices to check the condition for A in this π-system. But for any such A we have

E(XIA) = E(XnIA) for sufficiently large n, and as Xn → X∞ in L2(P) we find that

E(X∞IA) = limn→∞ E(X
nIA) = E(XIA). The proof is complete.

We now come to the point of this exercise.

Lemma 4.6.5 (Approximate Itô representation). For any Y ∈ S, there is an FW
t -

adapted process Ht in L2(µT × P) such that

Y = E(Y ) +

∫ T

0

Hs dWs.
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In particular, this implies that any FW
T -measurable random variable X ∈ L2(P) can

be approximated arbitrarily closely in L2(P) by an Itô integral.

Proof. Let us first consider the simplest case Y = f(Wt), where f ∈ C∞
0 and t ∈ [0, T ]. Note

that for any function g(s, x) which is sufficiently smooth, we have by Itô’s rule

g(t,Wt) = g(0, 0) +

∫ t

0

[
∂g

∂s
+

1

2

∂2g

∂x2

]
(s,Ws) ds+

∫ t

0

∂g

∂x
(s,Ws) dWs.

The trick is to choose the function g(s, x) precisely so that

∂g

∂s
+

1

2

∂2g

∂x2
= 0, g(t, x) = f(x).

But such a function exists and is even sufficiently smooth: explicitly,

g(s, x) =
1√

2π(t− s)

∫ ∞

−∞
f(y) e−(x−y)2/2(t−s) dy, s < t.

Hence the integrand Hs = (∂g/∂x)(s,Ws) gets the job done, and is clearly FW
t -adapted. It

is also in L2(µT × P) as f is of compact support, so ∂g/∂x is of compact support as well (and

in particular bounded). Hence in the very simplest case, we are done.

Let us now consider the next most difficult case: Y = f(Wr,Wt) with r < t. Introduce

g(s, x, z), and apply Itô’s rule to g(s,Ws∧r,Ws). We find that

g(t,Wr,Wt) = g(r,Wr,Wr)+

∫ t

r

[
∂g

∂s
+

1

2

∂2g

∂z2

]
(s,Wr,Ws) ds+

∫ t

r

∂g

∂z
(s,Wr,Ws) dWs.

But for some function g′(s, x), applying Itô’s rule to g′(s,Ws) gives

g′(r,Wr) = g′(0, 0) +

∫ r

0

[
∂g′

∂s
+

1

2

∂2g′

∂x2

]
(s,Ws) ds+

∫ r

0

∂g′

∂x
(s,Ws) dWs.

Thus evidently we wish to solve the partial differential equations

∂g

∂s
+

1

2

∂2g

∂z2
= 0, g(t, x, z) = f(x, z),

∂g′

∂s
+

1

2

∂2g′

∂x2
= 0, g′(r, x) = g(r, x, x).

This can be done exactly as before, and we set

Ht =
∂g′

∂x
(s,Ws) for 0 ≤ s ≤ r, Ht =

∂g

∂z
(s,Wr,Ws) for r ≤ s ≤ t.

Proceeding in the same manner, we find by induction that the result holds for any Y ∈ S .

We can now complete the proof of the Itô representation theorem.

Proof of theorem 4.6.2. LetX be FW
T -measurable and in L2(P), and choose a sequence Xn ∈

S such that ‖X −Xn‖2 → 0. We may assume without loss of generality that E(X) = 0 and

E(Xn) = 0 for all n. By the previous lemma, every Xn can be represented as the Itô integral

of an FW
t -adapted process Hn

t in L2(µT × P). In particular, we find that

E((Xn −Xm)2) = E

[∫ T

0

(Hn
s −Hm

s )2 ds

]
.
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But as Xn → X in L2(P), it must be the case that E((Xn − Xm)2) → 0 as m,n → ∞.

Hence Hn
· is a Cauchy sequence in L2(µT ×P), and so has a limit process H· in L2(µT ×P).

Moreover, as each Hn
t is adapted, so is Ht. Using the Itô isometry, it is easy to verify that

X =

∫ T

0

Hs dWs a.s.

Hence we conclude that X is representable as an Itô integral, as promised.

It only remains to prove uniqueness. Suppose that Hs and H ′
s both fit the bill. Then

E

[∫ T

0

(Hs −H ′
s)

2 ds

]
= 0

by the Itô isometry. But this can only be the case if H· = H ′
· µT × P-a.s.

4.7 Further reading

As a general introductory textbook on stochastic calculus and its applications, the

widely used book by Øksendal [Øks03] is an excellent, very readable introduction

and is highly recommended. A slightly older but still excellent introductory text is the

book by Arnold [Arn74] (now unfortunately out of print).

The discussion in the first section is inspired to some extent by a brief discussion

of a similar nature in the book by Bichteler [Bic02]. Protter [Pro04] also has a brief

discussion on the matter, but from a slightly different point of view.

There are many excellent advanced textbooks on stochastic calculus; however,

most of these start directly with the general integration theory, where one can inte-

grate against almost any martingale rather than just a Wiener process. See, for ex-

ample, Rogers and Williams [RW00b], Karatzas and Shreve [KS91], Elliott [Ell82],

Revuz and Yor [RY99], or Dellacherie and Meyer [DM82]. Perhaps the most natural

approach to the general theory can be found in Protter [Pro04], who simply defines

stochastic integrals against anything that makes sense, and then proceeds to show

which processes indeed do. Bichteler [Bic02] follows a similar route.

The theory for the Wiener process was historically first [Itô44], and is still the

most widely used (though the generalization to martingales began not so long after

that—like many things in probability theory, this goes all the way back to [Doo53]).

It is good to understand the “classical” Itô integral, which we have discussed in this

chapter, before moving on to more advanced theory. Books which treat stochastic in-

tegration with respect to the Wiener process in significant detail are Friedman [Fri75]

and Liptser and Shiryaev [LS01a]. The notion of localization, which is very funda-

mental in general stochastic integration, does not play a large role in those references;

a nice discussion of localization in the Wiener process setting can be found in [Ste01].

The discussion of Girsanov’s theorem is inspired by Friedman [Fri75]. In the

modern stochastic integration theory, the Girsanov theorem has a much wider scope

and indeed characterizes almost any change of measure; see, e.g., [Pro04].

Finally, our discussion of the martingale representation theorem follows Øksendal

[Øks03], using an approach that is originally due to Davis [Dav80].
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5
Stochastic Differential Equations

Now that we have Itô integrals, we can introduce stochastic differential equations—

one of the major reasons to set up the Itô theory in the first place. After dealing with

issues of existence and uniqueness, we will exhibit an important property of stochastic

differential equations: the solutions of such equations obey the Markov property. A

particular consequence is the connection with the classic PDE methods for studying

diffusions, the Kolmogorov forward (Fokker-Planck) and backward equations.

We would like to think of stochastic differential equations (SDE) as ordinary dif-

ferential equations (ODE) driven by white noise. Unfortunately, this connection is not

entirely clear; after all, we have only justified the connection between the Itô integral

and white noise in the case of non-random integrands (interpreted as test functions).

We will show that if we take a sequence of ODEs, driven by approximations to white

noise, then these do indeed limit to an SDE—though not entirely the expected one.

This issue is particularly important in the stochastic modelling of physical systems. A

related issue is the simulation of SDE on a computer, which we will briefly discuss.

Finally, the chapter concludes with a brief discussion of some more advanced

topics in stochastic differential equations.

5.1 Stochastic differential equations: existence and uniqueness

One often encounters stochastic differential equations written in the form

dXt = b(t,Xt) dt+ σ(t,Xt) dWt, X0 = x,

which looks almost like an ordinary differential equation. However, as usual, the “Itô

differentials” are not sensible mathematical objects in themselves; rather, we should

117
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see this expression as suggestive notation for the Itô process

Xt = x+

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs.

If there exists a stochastic process Xt that satisfies this equation, we say that it solves

the stochastic differential equation. The main goal of this section is to find conditions

on the coefficients b an σ that guarantee the existence and uniqueness of solutions.

Example 5.1.1 (Linear SDE). Let Wt be an m-dimensional Wiener process, let A
be an n× n matrix and let B be an n×m matrix. Then the n-dimensional equation

dXt = AXt dt+B dWt, X0 = x,

is called a linear stochastic differential equation. Such equations always have a solu-

tion; in fact, the solution can be given explicitly by

Xt = eAtx+

∫ t

0

eA(t−s)B dWs,

as you can verify directly by applying Itô’s rule. The solution is also unique. To see

this, let Yt be another solution with the same initial condition. Then

Xt −Yt =

∫ t

0

A(Xs −Ys) ds =⇒ d

dt
(Xt −Yt) = A(Xt −Yt), X0 −Y0 = 0,

and it is a standard fact that the unique solution of this equation is Xt − Yt = 0.

For nonlinear b and σ one can rarely write down the solution in explicit form, so

we have to resort to a less explicit proof of existence. The same problem appears

in the theory of ordinary differential equations where it is often resolved by imposing

Lipschitz conditions, whereupon existence can be proved by Picard iteration (see, e.g.,

[Apo69, theorem 7.19]). It turns out that this technique works almost identically in

the current setting. Let us work out the details. Recall what it means to be Lipschitz:

Definition 5.1.2. A function f : Rn → Rm is called Lipschitz continuous (or just

Lipschitz) if there exists a constant K < ∞ such that ‖f(x) − f(y)‖ ≤ K‖x − y‖
for all x, y ∈ Rn. A function g : S × Rn → Rm is Lipschitz uniformly in S if

‖g(s, x) − g(s, y)‖ ≤ K‖x− y‖ for a constant K <∞ which does not depend on s.

We work in the following setting, where we restrict ourselves to a finite time hori-

zon [0, T ] for simplicity. Consider a filtered probability space (Ω,F , {Ft}t∈[0,T ],P)
on which is defined an m-dimensional Ft-Wiener process Wt. We now choose X0

to be an F0-measurable n-dimensional random variable (it is often chosen to be non-

random, but this is not necessary), and we seek a solution to the equation

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs.

Here b : [0, T ]× Rn → Rn and σ : [0, T ]× Rn → Rn×m are at least measurable.



5.1. Stochastic differential equations: existence and uniqueness 119

Theorem 5.1.3 (Existence). Suppose that

1. X0 ∈ L2(P); and

2. b, σ are Lipschitz continuous uniformly on [0, T ]; and

3. ‖b(t, 0)‖ and ‖σ(t, 0)‖ are bounded on t ∈ [0, T ].

Then there exists a solution Xt to the associated stochastic differential equation, and

moreover for this solution Xt, b(t,Xt), and σ(t,Xt) are in L2(µT × P).

Proof. For any Ft-adapted Y· ∈ L2(µT × P), introduce the following (nonlinear) map:

(P(Y·))t = X0 +

∫ t

0

b(s, Ys) ds+

∫ t

0

σ(s, Ys) dWs.

We claim that under the conditions which we have imposed, P(Y·) is again an Ft-adapted

process in L2(µT × P) (we will show this shortly). Our goal is to find a fixed point of the

operator P: i.e., we wish to find an Ft-adapted process X· ∈ L2(µT × P) such that P(X·) =
X·. Such an X· is then, by definition, a solution of our stochastic differential equation.

We begin by showing that P does indeed map to an Ft-adapted process in L2(µT × P).

Note that ‖b(t, x)‖ ≤ ‖b(t, x) − b(t, 0)‖ + ‖b(t, 0)‖ ≤ K‖x‖ + K ′ ≤ C(1 + ‖x‖) where

K,K′, C < ∞ are constants that do not depend on t. We say that b satisfies a linear growth

condition. Clearly the same argument holds for σ, and to make our notation lighter we will

choose our constant C such that ‖σ(t, x)‖ ≤ C(1 + ‖x‖) as well. We can now estimate

‖P(Y·)‖2,µT ×P ≤ ‖X0‖2,µT ×P +

∥∥∥∥
∫ ·

0

b(s, Ys) ds

∥∥∥∥
2,µT ×P

+

∥∥∥∥
∫ ·

0

σ(s, Ys) dWs

∥∥∥∥
2,µT ×P

.

The first term gives ‖X0‖2,µT ×P =
√
T ‖X0‖2,P <∞ by assumption. Next,

∥∥∥∥
∫ ·

0

b(s, Ys) ds

∥∥∥∥
2

2,µT ×P
≤ T 2 ‖b(·, Y·)‖2

2,µT ×P ≤ T 2C2 ‖(1 + ‖Y·‖)‖2
2,µT ×P <∞,

where we have used (t−1
∫ t

0
as ds)

2 ≤ t−1
∫ t

0
a2

s ds (Jensen’s inequality), the linear growth

condition, and Y· ∈ L2(µT × P). Finally, let us estimate the stochastic integral term:

∥∥∥∥
∫ ·

0

σ(s, Ys) dWs

∥∥∥∥
2

2,µT ×P
≤ T ‖σ(·, Y·)‖2

2,µT ×P ≤ TC2 ‖(1 + ‖Y·‖)‖2
2,µT ×P <∞,

where we have used the Itô isometry. Hence ‖P(Y·)‖2,µT ×P < ∞ for Ft-adapted Y· ∈
L2(µT × P), and clearly P(Y·) is Ft-adapted, so the claim is established.

Our next claim is thatP is a continuous map; i.e., we claim that if ‖Y n
· −Y·‖2,µT ×P → 0,

then ‖P(Y n
· ) −P(Y·)‖2,µT ×P → 0 as well. But proceeding exactly as before, we find that

‖P(Y n
· )−P(Y·)‖2,µT ×P ≤ T ‖b(·, Y n

· )−b(·, Y·)‖2,µT ×P+
√
T ‖σ(·, Y n

· )−σ(·, Y·)‖2,µT ×P.

In particular, using the Lipschitz condition, we find that

‖P(Y n
· ) −P(Y·)‖2,µT ×P ≤ K

√
T (

√
T + 1) ‖Y n

· − Y·‖2,µT ×P,

where K is a Lipschitz constant for both b and σ. This establishes the claim.
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With these preliminary issues out of the way, we now come to the heart of the proof.

Starting from an arbitrary Ft-adapted process Y 0
t in L2(µT × P), consider the sequence

Y 1
· = P(Y 0

· ), Y 2
· = P(Y 1

· ) = P2(Y 0
· ), etc. This is called Picard iteration. We will

show below that Y n
· is a Cauchy sequence in L2(µT × P); hence it converges to some Ft-

adapted process Yt in L2(µT × P). But then Y· is necessarily a fixed point of P: after all,

P(Y n
· ) → P(Y·) by the continuity of P, whereas P(Y n

· ) = Y n+1
· → Y·. Thus P(Y·) = Y·,

and we have found a solution of our stochastic differential equation with the desired properties.

It only remains to show that Y n
· is a Cauchy sequence in L2(µT × P). This follows from

a slightly refined version of the argument that we used to prove continuity of P. Note that

‖(P(Z·))t − (P(Y·))t‖2,P ≤
√
t ‖b(·, Z·) − b(·, Y·)‖2,µt×P + ‖σ(·, Z·) − σ(·, Y·)‖2,µt×P,

which follows exactly as above. In particular, using the Lipschitz property, we find

‖(P(Z·))t − (P(Y·))t‖2,P ≤ K(
√
T + 1) ‖Z· − Y·‖2,µt×P.

Set L = K(
√
T + 1). Iterating this bound, we obtain

‖Pn(Z·) −Pn(Y·)‖2
2,µT ×P =

∫ T

0

‖(Pn(Z·))t − (Pn(Y·))t‖2
2,P dt ≤ L2

∫ T

0

‖Pn−1(Z·) −Pn−1(Y·)‖2
2,µt1×P dt1

≤ · · · ≤ L2n

∫ T

0

∫ t1

0

· · ·
∫ tn−1

0

‖Z· − Y·‖2
2,µtn×P dtn · · · dt1

≤ L2nTn

n!
‖Z· − Y·‖2

2,µT ×P.

In particular, this implies that

∞∑

n=0

‖Pn+1(Y 0
· ) −Pn(Y 0

· )‖2,µT ×P ≤ ‖P(Y 0
· ) − Y 0

· ‖2,µT ×P

∞∑

n=0

√
L2nTn

n!
<∞,

which establishes that Pn(Y 0
· ) is a Cauchy sequence in L2(µT × P). We are done.

Remark 5.1.4. The condition X0 ∈ L2(P) can be relaxed through localization, see

[GS96, theorem VIII.3.1]; we then have a solution of the SDE for any initial condi-

tion, but we need no longer have Xt, b(t,Xt), and σ(t,Xt) in L2(µT × P). More

interesting, perhaps, is that if X0 ∈ Lp(P) (p ≥ 2), then we can prove with a little

more work thatXt, b(t,Xt), and σ(t,Xt) will actually be in Lp(µT ×P) (see [LS01a,

sec. 4.4] or [Arn74, theorem 7.1.2]). Hence the integrability of the initial condition

really determines the integrability of the solution in the Lipschitz setting.

It remains to prove uniqueness of the solution found in theorem 5.1.3.

Theorem 5.1.5 (Uniqueness). The solution of theorem 5.1.3 is unique P-a.s.

Proof. Let X· be the solution of theorem 5.1.3, and let Y· be any other solution. It suffices to

show that X· = Y· µT × P-a.s.; after all, both Xt and Yt must have continuous sample paths,

so X· = Y· µT × P-a.s. implies that they are P-a.s. indistinguishable (lemma 2.4.6).

Let us first suppose that Y· ∈ L2(µT × P) as well; then Pn(Y·) = Y· and Pn(X·) = X·.
Using the estimate in the proof of theorem 5.1.3, we find that

‖Y· −X·‖2
2,µT ×P = ‖Pn(Y·) −Pn(X·)‖2

2,µT ×P ≤
L2nTn

n!
‖Y· −X·‖2

2,µT ×P.
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Letting n → ∞, we find that ‖Y· −X·‖2,µT ×P = 0, so X· = Y· µT × P-a.s.

We now claim that any solution Yt with Y0 = X0 ∈ L2(P) must necessarily be an element

of L2(µT × P); once this is established, the proof is complete. Let us write, using Itô’s rule,

‖Yt‖2 = ‖X0‖2 +

∫ t

0

(2(Ys)
∗b(s, Ys) + ‖σ(s, Ys)‖2) ds+

∫ t

0

2(Ys)
∗σ(s, Ys) dWs.

Now let τn = inf{t : ‖Yt‖ ≥ n}, and note that this sequence of stopping times is a localizing

sequence for the stochastic integral; in particular,

E(‖Yt∧τn‖2) = E(‖X0‖2) + E

[∫ t∧τn

0

(2(Ys)
∗b(s, Ys) + ‖σ(s, Ys)‖2) ds

]
.

Using the linear growth condition, we can now estimate

E(‖Yt∧τn‖2) ≤ E(‖X0‖2) + E

[∫ t∧τn

0

(2C‖Ys‖(1 + ‖Ys‖) + C2(1 + ‖Ys‖)2) ds
]
.

Using Fatou’s lemma on the left and monotone convergence on the right to let n → ∞, applying

Tonelli’s theorem, and using the simple estimate (a+ b)2 ≤ 2(a2 + b2), we obtain

E(1 + ‖Yt‖2) ≤ E(1 + ‖X0‖2) + 2C(2 + C)

∫ t

0

E(1 + ‖Ys‖2) ds.

But then we find that E(1+‖Yt‖2) ≤ E(1+‖X0‖2) e2C(2+C)t using Gronwall’s lemma, from

which the claim follows easily. Hence the proof is complete.

5.2 The Markov property and Kolmogorov’s equations

One of the most important properties of stochastic differential equations is that their

solutions satisfy the Markov property. This means that a large class of Markov pro-

cesses with continuous sample paths—these are important both from a fundamental

and from an applied perspective—can be obtained as the solution of an appropriate

SDE. Conversely, this means that methods from the theory of Markov processes can

be used to study the properties of stochastic differential equations; in particular, the

Komogorov equations (the forward, or Fokker-Planck, equation, and the backward

equation) can be obtained in the SDE setting, and can be used to express expectations

of functions of an SDE in terms of certain non-random PDEs.

Remark 5.2.1. The intricate theory of Markov processes in continuous time, like

martingale theory, can easily fill an entire course on its own. It has deep connections

with semigroup theory on the one hand, and probabilistic theory (at the level of sample

paths) on the other hand. A development at this level would be way beyond the scope

of these notes. We will content ourselves with proving the Markov property, and then

developing the Kolmogorov equations in the simplest possible way (without invoking

any theorems from the theory of Markov processes). If you are interested in the bigger

picture, you might want to consult some of the references in section 5.7.

Let us begin by proving the Markov property.
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Theorem 5.2.2 (Markov property). Suppose that the conditions of theorem 5.1.3

hold. Then the unique solutionXt of the corresponding SDE is anFt-Markov process.

Proof. Let us begin by rewriting the SDE in the following form:

Xt = Xs +

∫ t

s

b(r,Xr) dr +

∫ t

s

σ(r,Xr) dWr,

which follows easily by calculating Xt − Xs. As Xs is Fs-measurable and {Wr+s −Ws :
r ≥ 0} is a Wiener process independent of Fs, we can identically write this equation as

Yt−s = Y0 +

∫ t−s

0

b̃(r, Yr) dr +

∫ t−s

0

σ̃(r, Yr) dW̃r,

where Yr = Xr+s, b̃(r, x) = b(r+ s, x), σ̃(r, x) = σ(r+ s, x), and W̃r = Wr+s −Ws. But

this equation for Yt is again an SDE that satisfies the conditions of theorems 5.1.3 and 5.1.5 in

the interval r ∈ [0, T−s], and in particular, it follows that Yr is σ{Y0, W̃s : s ≤ r}-measurable.

Identically, we find that Xt is σ{Xs,Wr −Ws : r ∈ [s, t]}-measurable, and can hence be

written as a measurable functional Xt = F (Xs,W·+s −Ws). Now using Fubini’s theorem

exactly as in lemma 3.1.9, we find that E(g(Xt)|Fs) = E(g(F (x,W·+s−Ws)))|x=Xs for any

bounded measurable function g, so in particular E(g(Xt)|Fs) = E(g(Xt)|Xs) by the tower

property of the conditional expectation. But this is the Markov property, so we are done.

Remark 5.2.3 (Strong Markov property). The solutions of Lipschitz stochastic dif-

ferential equations, and in particular the Wiener process itself, actually satisfy a much

stronger variant of the Markov property. Let τ be an a.s. finite stopping time; then it

turns out that E(g(Xτ+r)|Fτ ) = E(g(Xτ+r)|Xτ ). This is called the strong Markov

property, which extends the Markov property even to random times. This fact is often

very useful, but we will not prove it here; see, e.g., [Fri75, theorem 5.3.4].

The Markov property implies that for any bounded and measurable f , we have

E(f(Xt)|Fs) = gt,s(Xs) for some (non-random) measurable function gt,s. For the

rest of this section, let us assume for simplicity that b(t, x) and σ(t, x) are independent

of t (this is not essential, but will make the notation a little lighter); then you can read

off from the previous proof that in fact E(f(Xt)|Fs) = gt−s(Xs) for some function

gt−s. We say that the Markov process is time-homogeneous in this case.

Rather than studying the random process Xt, we can now study how the non-

random function gt varies with t. This is a standard idea in the theory of Markov

processes. Note that if E(f(Xt)|Fs) = gt−s(Xs) and E(f ′(Xt)|Fs) = g′t−s(Xs),
then E(αf(Xt)+βf

′(Xt)|Fs) = αgt−s(Xs)+βg
′
t−s(Xs); i.e., the map Pt : f 7→ gt

is linear. Moreover, using the tower property of the conditional expectation, you can

easily convince yourself that Ptgs = gt+s. Hence PtPs = Pt+s, so the family {Pt}
forms a semigroup. This suggests1 that we can write something like

d

dt
Ptf = LPtf, P0f = f,

where L is a suitable linear operator. If such an equation holds for a sufficiently large

class of functions f , then L is called the infinitesimal generator of the semigroup Pt.

1 Think of a finite-dimensional semigroup Ptx = eAtx, where A is a square matrix and x is a vector.
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Making these ideas mathematically sound is well beyond our scope; but let us show

that under certain conditions, we can indeed obtain an equation of this form for Ptf .

Proposition 5.2.4 (Kolmogorov backward equation). For g ∈ C2, define

L g(x) =

n
∑

i=1

bi(x)
∂g

∂xi
(x) +

1

2

n
∑

i,j=1

m
∑

k=1

σik(x)σjk(x)
∂2g

∂xi ∂xj
(x).

Suppose that there is a bounded function u(t, x) which is C1 in t and C2 in x, and a

bounded function f(x) in C2, such that the following PDE is satisfied:

∂

∂t
u(t, x) = L u(t, x), u(0, x) = f(x).

Then E(f(Xt)|Fs) = u(t− s,Xs) a.s. for all 0 ≤ s ≤ t ≤ T , i.e., u(t, x) = Ptf(x).

Remark 5.2.5. The operator L should look extremely familiar—this is precisely the

expression that shows up in Itô’s rule! Not surprisingly, this is the key to the proof.

L will show up frequently in the rest of the course.

Remark 5.2.6. You might wonder why the above PDE is called the backward equa-

tion. In fact, we can just as easily write the equation backwards in time: setting

v(t, x) = u(T − t, x) and using the chain rule, we obtain

∂

∂t
v(t, x) + L v(t, x) = 0, v(T, x) = f(x),

which has a terminal condition (at t = T ) rather than an initial condition (at t =
0). For time-nonhomogeneous Markov processes, the latter (backward) form is the

appropriate one, so it is in some sense more fundamental. As we have assumed time-

homogeneity, however, the two forms are completely equivalent in our case.

Remark 5.2.7. The choice to present proposition 5.2.4 in this way raises a dilemma.

In principle the result is “the wrong way around”: we would like to use the expression

E(f(Xt)|Fs) = u(t− s,Xs) to define u(t, x), and then prove that u(t, x) must con-

sequently satisfy the PDE. This is indeed possible in many cases, see [Fri75, theorem

5.6.1]; it is a more technical exercise, however, as we would have to prove that u(t, x)
is sufficiently smooth rather than postulating it. More generally, one could prove that

this PDE almost always makes sense, in a suitable weak sense, even when u(t, x) is

not sufficiently differentiable. Though this is theoretically interesting, it is not obvious

how to use such a result in applications (are there numerical methods for solving such

equations?). We will face this dilemma again when we study optimal control.

After all the remarks, the proof is a bit of an anti-climax.

Proof. Set v(r, x) = u(t− r, x), and apply Itô’s rule to Yr = v(r,Xr). Then we obtain

v(t,Xt) = v(0, X0) +

∫ t

0

[
v′(r,Xr) + L v(r,Xr)

]
dr + local martingale.
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The time integral vanishes by the Kolmogorov backward equation, so v(t,Xt) is a local mar-

tingale. Introducing a localizing sequence τn ↗ ∞, we find using the martingale property

E(v(t ∧ τn, Xt∧τn)|Fs) = v(s ∧ τn, Xs∧τn).

But as we have assumed that v is bounded, we obtain using dominated convergence for condi-

tional expectations that E(f(Xt)|Fs) = E(v(t,Xt)|Fs) = v(s,Xs) = u(t− s,Xs).

Let us now investigate the Kolmogorov forward equation, which is in essence the

dual of the backward equation. The idea is as follows. For a fixed time t, the random

variable Xt is just an Rn-valued random variable. If we are in luck, then the law of

this random variable is absolutely continuous with respect to the Lebesgue measure,

and, in particular, we can write undergraduate-style

E(f(Xt)) =

∫

Rn

f(y) pt(y) dy

with some probability density pt(y). More generally, we could try to find a transition

density pt(x, y) that satisfies for all sufficiently nice f

E(f(Xt)|Fs) =

∫

Rn

f(y) pt−s(Xs, y) dy.

The existence of such densities is a nontrivial matter; in fact, there are many reason-

able models for which they do not exist. On the other hand, if they were to exist, one

can ask whether pt(y) or pt(x, y) can again be obtained as the solution of a PDE.

Let us consider, in particular, the (unconditional) density pt(y). Note that the

tower property of the conditional expectation implies that
∫

Rn

f(y) pt(y) dy = E(f(Xt)) = E(E(f(Xt)|X0)) =

∫

Rn

Ptf(y) p0(y) dy,

where p0(y) is the probability density of X0 (provided it exists). This explains in

what sense the Kolmogorov forward equation is the dual of the Kolmogorov backward

equation. To prove the forward equation, however, we revert to using Itô’s rule.

Proposition 5.2.8 (Kolmogorov forward equation). Assume that, in addition to the

conditions of theorem 5.1.3, b(x) is C1 and σ(x) is C2. For ρ ∈ C2, define

L
∗ρ(x) = −

n
∑

i=1

∂

∂xi
(bi(x)ρ(x)) +

1

2

n
∑

i,j=1

m
∑

k=1

∂2

∂xi ∂xj
(σik(x)σjk(x)ρ(x)).

Suppose that the density pt(x) exists and is C1 in t, C2 in x. Then

∂

∂t
pt(x) = L

∗pt(x), t ∈ [0, T ],

i.e., the density pt(x) of Xt must satisfy the Kolmogorov forward equation.

Remark 5.2.9. The Kolmogorov forward equation is sometimes referred to as the

Fokker-Planck equation, particularly in the natural sciences.



5.3. The Wong-Zakai theorem 125

Proof. Fix an f ∈ C2
0 (in C2 and with compact support). By Itô’s rule, we obtain

f(Xt) = f(X0) +

∫ t

0

L f(Xs) ds+ martingale

(the last term is a martingale as f , and hence its derivatives, have compact support, and thus the

integrand is bounded). Taking the expectation and using Fubini’s theorem, we obtain

E(f(Xt)) = E(f(X0)) +

∫ t

0

E(L f(Xs)) ds.

Substituting the definition of pt(y), integrating by parts, and using Fubini’s theorem again,

∫

Rn

f(y) pt(y) dy =

∫

Rn

f(y) p0(y) dy +

∫

Rn

f(y)

∫ t

0

L
∗ps(y) ds dy.

Now note that this expression holds for any f ∈ C2
0 , so we can conclude that

α(y) = pt(y) − p0(y) −
∫ t

0

L
∗ps(y) ds = 0

for all y, except possibly on some subset with measure zero with respect to the Lebesgue mea-

sure. To see this, let κ ∈ C∞
0 be a nonnegative function such that κ(y) = 1 for for ‖y‖ ≤ K.

As
∫
α(y)f(y)dy = 0 for any f ∈ C2

0 , we find in particular that

∫

‖y‖≤K

|α(y)|2 dy ≤
∫

Rn

κ(y)|α(y)|2 dy = 0

by setting f(y) = κ(y)α(y). But then evidently the set {y : ‖y‖ ≤ K, α(y) 6= 0} has

measure zero, and as this is the case for any K the claim is established. But α(y) must then be

zero everywhere, as it is a continuous in y (this follows by dominated convergence, as L
∗pt(y)

is continuous in (t, y), and hence locally bounded). It remains to take the time derivative.

Remark 5.2.10. As stated, these theorems are not too useful; the backward equa-

tion requires us to show the existence of a sufficiently smooth solution to the back-

ward PDE, while for the forward equation we somehow need to establish that the

density of Xt exists and is sufficiently smooth. As a rule of thumb, the backward

equation is very well behaved, and will often have a solution provided only that f
is sufficiently smooth; the forward equation is much less well behaved and requires

stronger conditions on the coefficients b and σ. This is why the backward equa-

tion is often more useful as a mathematical tool. Of course, this is only a rule of

thumb; a good source for actual results is the book by Friedman [Fri75]. A typical

condition for the existence of a smooth density is the uniform ellipticity requirement
∑

i,j,k v
iσik(x)σjk(x)vj ≥ ε‖v‖2 for all x, v ∈ Rn and some ε > 0.

5.3 The Wong-Zakai theorem

Even though we have defined stochastic differential equations, and proved the exis-

tence and uniqueness of solution, it is not entirely obvious that these mathematical

objects really behave like ordinary differential equations. In particular, we would like

to think of stochastic differential equations as ordinary differential equations driven
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by white noise; but does this actually make sense? The resolution of this problem is

important if we want to use SDE to model noise-driven physical systems.

To study this problem, let us start with ordinary differential equations that are

driven by rapidly fluctuating—but not white—noise. In particular, define Xn
t to be

the solution of the ordinary differential equation

d

dt
Xn

t = b(Xn
t ) + σ(Xn

t ) ξn
t , Xn

0 = X0,

where b and σ are Lipschitz continuous as usual,X0 is a random variable independent

of ξn
t , and ξn

t is some “nice” m-dimensional random process which “approximates”

white noise. What does this mean? By “nice”, we mean that it is sufficiently smooth

that the above equation has a unique solution in the usual ODE sense; to be precise, we

will assume that every sample path of ξn
t is piecewise continuous. By “approximates

white noise”, we mean that there is an m-dimensional Wiener process Wt such that

sup
t∈[0,T ]

‖Wt −Wn
t ‖ n→∞−−−−→ 0 a.s., W n

t =

∫ t

0

ξn
s ds.

In other words, the time integral of ξn
t approximates (uniformly) the Wiener process

Wt, which conforms to our intuition of white noise as the derivative of a Wiener

process. You can now think of the processes Xn
t as being physically realistic models;

on the other hand, these models are almost certainly not Markov, for example. The

question is whether when n is very large, Xn
t is well approximated by the solution of

a suitable SDE. That SDE is then the corresponding idealized model, which, formally,

corresponds to replacing ξn
t by white noise.

Can we implement these ideas? Let us first consider the simplest case.

Proposition 5.3.1. Suppose that σ(x) = σ does not depend on x, and consider the

SDE dXt = b(Xt) dt+ σ dWt. Then supt∈[0,T ] ‖Xn
t −Xt‖ → 0 a.s.

Proof. Note that in this case, we can write

Xn
t −Xt =

∫ t

0

(b(Xn
s ) − b(Xs)) ds+ σ (W n

t −Wt).

Hence we obtain using the triangle inequality and the Lipschitz property

‖Xn
t −Xt‖ ≤ K

∫ t

0

‖Xn
s −Xs‖ ds+ ‖σ‖ sup

t∈[0,T ]

‖Wn
t −Wt‖.

Thus, by Grownwall’s lemma, we can write

sup
t∈[0,T ]

‖Xn
t −Xt‖ ≤ eKT ‖σ‖ sup

s∈[0,T ]

‖Wn
s −Ws‖ n→∞−−−−→ 0 a.s.

Thus the proof is complete.

Apparently the processes Xn
t limit to the solution of an SDE, which is precisely

the equation that we naively expect, when σ is constant. When σ(x) does depend on

x, however, we are in for a surprise. For sake of demonstration we will develop this
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case only in the very simplest setting, following in the footsteps of Wong and Zakai

[WZ65]. This is sufficient to see what is going on and avoids excesssive pain and

suffering; a more general result is quoted at the end of the section.

Let us make the following assumptions (even simpler than those in [WZ65]).

1. Xn
t and ξn

t are scalar processes (we work in one dimension);

2. b and σ are Lipschitz continuous and bounded;

3. σ is C1 and σ(x) dσ(x)/dx is Lipschitz continuous; and

4. σ(x) ≥ β for all x and some β > 0.

The claim is that the solutions of the ODEs

d

dt
Xn

t = b(Xn
t ) + σ(Xn

t ) ξn
t , Xn

0 = X0,

converge, as n→ ∞, to the solution of the following SDE:

dXt =

[

b(Xt) +
1

2
σ(Xt)

dσ

dx
(Xt)

]

dt+ σ(Xt) dWt.

By our assumptions, the latter equation still has Lipschitz coefficients and thus has

a unique solution. The question is, of course, why the additional term in the time

integral (the Itô correction term) has suddenly appeared out of nowhere.

Remark 5.3.2. Let us give a heuristic argument for why we expect the Itô correction

to be there. Let f : R → R be a diffeomorphism (a smooth bijection with smooth

inverse). Then setting Y n
t = f(Xn

t ) and using the chain rule gives another ODE

d

dt
Y n

t =
df

dx
(f−1(Y n

t )) b(f−1(Y n
t )) +

df

dx
(f−1(Y n

t ))σ(f−1(Y n
t )) ξn

t .

The only thing that has happened here is a (smooth) change of variables. If our limit

as n → ∞ is consistent, then it should commute with such a change of variables,

i.e., it should not matter whether we first perform a change of variables and then take

the white noise limit, or whether we first take the white noise limit and then make

a change of variables (after all, we have not changed anything about our system, we

have only reparametrized it!). Let us verify that this is indeed the case.

We presume that the limit as n → ∞ works the way we claim it does. Then to

obtain the limiting SDE for Y n
t , we need to calculate the corresponding Itô correction

term. This is a slightly gory computation, but some calculus gives

Itô corr. =
1

2
σ(f−1(x))

df

dx
(f−1(x))

dσ

dx
(f−1(x)) +

1

2
(σ(f−1(x)))2

d2f

dx2
(f−1(x)).

In particular, we expect that Y n
t limits to the solution Yt of the SDE

dYt =
df

dx
(f−1(Yt)) b(f

−1(Yt)) dt+
df

dx
(f−1(Yt))σ(f−1(Yt)) dWt +

1

2

[

σ(f−1(Yt))
df

dx
(f−1(Yt))

dσ

dx
(f−1(Yt)) + (σ(f−1(Yt)))

2 d
2f

dx2
(f−1(Yt))

]

dt.
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But this is precisely the same expression as we would obtain by applying Itô’s rule

to Yt = f(Xt)! Hence we do indeed find that our limit is invariant under change of

variables, precisely as it should be. On the other hand, if we were to neglect to add the

Itô correction term, then you can easily verify that this would no longer be the case.

In some sense, the Itô correction term “corrects” for the fact that integrals

∫ t

0

· · · dWs and

∫ t

0

· · · ξn
s ds

do not obey the same calculus rules. The additional term in the Itô rule as compared

to the ordinary chain rule is magically cancelled by the Itô correction term, thus pre-

venting us from ending up with an unsettling paradox.

That the Itô correction term should cancel the additional term in the Itô rule does

not only guide our intuition; this idea is implicitly present in the proof. Notice what

happens below when we calculate Φ(Xt) and Φ(Xn
t )!

Theorem 5.3.3 (Wong-Zakai). supt∈[0,T ] |Xn
t −Xt| → 0 a.s. (assuming 1–4 above).

Proof. Consider the function Φ(x) =
∫ x

0
(σ(y))−1dy, which is well defined and C2 by the

assumption that σ is C1 and σ(y) ≥ β > 0. Then we obtain

d

dt
Φ(Xn

t ) =
b(Xn

t )

σ(Xn
t )

+ ξn
t , dΦ(Xt) =

b(Xt)

σ(Xt)
dt+ dWt,

using the chain rule and the Itô rule, respectively. In particular, can estimate

|Φ(Xn
t ) − Φ(Xt)| ≤

∫ t

0

∣∣∣∣
b(Xn

s )

σ(Xn
s )

− b(Xs)

σ(Xs)

∣∣∣∣ ds+ sup
t∈[0,T ]

|Wn
t −Wt|.

But note that we can write, using the boundedness of σ,

|Φ(x) − Φ(z)| =

∣∣∣∣
∫ z

x

1

σ(y)
dy

∣∣∣∣ ≥
1

C1
|x− z|,

while using that b is Lipschitz and bounded and that σ is Lipschitz and bounded from below,

∣∣∣∣
b(x)

σ(x)
− b(z)

σ(z)

∣∣∣∣ ≤
|b(x) − b(z)|

|σ(x)| +
|b(z)|

|σ(x)σ(z)| |σ(z) − σ(x)| ≤ C2 |x− z|.

Hence we obtain the estimate

|Xn
t −Xt| ≤ C1C2

∫ t

0

|Xn
s −Xs| ds+C1 sup

t∈[0,T ]

|Wn
t −Wt|.

Applying Gronwall’s lemma and taking the limit as n → ∞ completes the proof.

The result that we have just proved is too restrictive to be of much practical use;

however, the lesson learned is an important one. Similar results can be obtained in

higher dimensions, with multiple driving noises, unbounded coefficients, etc., at the

expense of a large number of gory calculations. To provide a result that is sufficiently

general to be of practical interest, let us quote the following theorem from [IW89,

theorem VI.7.2] (modulo some natural, but technical, conditions).
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Theorem 5.3.4. Let ξn
t be a sequence of approximations to m-dimensional white

noise, which are assumed to satisfy a set of conditions [IW89, definition VI.7.1] of a

technical nature. Let b : Rn → Rn and σ : Rn → Rn×m be C1 and C2, respectively,

and assume that all their derivatives are bounded. Finally, assume that the initial

condition X0 ∈ Rn is non-random. Denote by Xn
t the solutions of

d

dt
Xn

t = b(Xn
t ) + σ(Xn

t ) ξn
t , Xn

0 = X0,

and by Xt the solution of dXt = b̃(Xt) dt+ σ(Xt) dWt with the Itô-corrected drift

b̃i(x) = bi(x) +
1

2

n
∑

j=1

m
∑

k=1

∂σik(x)

∂xj
σjk(x).

Then E

[

supt∈[0,T ] |Xn
t −Xt|2

]

n→∞−−−−→ 0 for any T <∞.

You have all the tools you need to prove this theorem, provided you have a reliable

supply of scratch paper and a pen which is not about to run out of ink. A brief glance

at the proof in [IW89] will convince you why it is omitted here.

Remark 5.3.5 (Fisk-Stratonovich integrals). As mentioned previously, the reason

for the Itô correction term is essentially that the Itô integral does not obey the ordinary

chain rule. This is by no means a conceptual problem; you should simply see the

definition of the Itô integral as a mathematical construction, while the theorems in this

section justify the modelling of physical phenomena within this framework (and tell

us how this should be done properly). However, we have an alternative choice at our

disposal: we can choose a different definition for the stochastic integral which does

obey the chain rule, as was done by Fisk and Stratonovich. When expressed in terms

of the Fisk-Stratonovich (FS-)integral, it is precisely the Itô correction which vanishes

and we are left with an SDE which looks identical to the ODEs we started with.

There are many problems with the FS-integral, however. First of all, the inte-

gral is not a martingale, and its expectation consequently rarely vanishes. This means

that this integral is extremely inconvenient in computations that involve expectations.

Second, the FS-integral is much less general than the Itô integral, in the sense that

the class of stochastic processes which are integrable is significantly smaller than the

Itô integrable processes. In fact, the most mathematically sound way to define the

FS-integral is as the sum of an Itô integral and a correction term (involving quadratic

variations of the integrand and the Wiener process), see [Pro04]. Hence very little is

won by using the FS-integral, except a whole bunch of completely avoidable inconve-

nience. What you win is that the ordinary chain rule holds for the FS-integral, but the

Itô rule is just as easy to remember as the chain rule once you know what it is!

For these reasons, we will avoid discussing FS-integrals any further in this course.

That being said, however, there is one important case where FS-integrals make more

sense than Itô integrals. If we are working on a manifold rather than in Rn, the FS-

integral can be given an intrinsic (coordinate-free) meaning, whereas this is not true

for the Itô integral. This makes the FS-integral the tool of choice for studying stochas-

tic calculus in manifolds (see, e.g., [Bis81]). Itô integrals can also be defined in this

setting, but one needs some additional structure: a Riemannian connection.
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5.4 The Euler-Maruyama method

Stochastic differential equations, like their non-random counterparts, rarely admit an-

alytical solution. For this reason, it is important to have numerical methods to simulate

such equations on a computer. In the SDE case, we are seeking a numerical method

that can simulate (approximate) sample paths of the SDE with (approximately) the

correct distribution. We will discuss here the simplest of these methods, which is

nonetheless one of the most widely used in practice—the Euler-Maruyama method.

The method is in fact very close to the classical Euler method for discretization of

ODEs. Consider our usual SDE, and let us discretize the interval [0, T ] into time steps

of length T/p; i.e., we introduce the discrete grid tk = kT/p, k = 0, . . . , p. Then

Xtn = Xtn−1 +

∫ tn

tn−1

b(Xs) ds+

∫ tn

tn−1

σ(Xs) dWs.

This expression can not be used as a numerical method, as Xtn depends not only on

Xtn−1 but on all Xs in the interval s ∈ [tn−1, tn]. As Xs has continuous sample

paths, however, it seems plausible that Xs ≈ Xtn−1 for s ∈ [tn−1, tn], provided that

p is sufficiently large. Then we can try to approximate

Xtn ≈ Xtn−1 +

∫ tn

tn−1

b(Xtn−1) ds+

∫ tn

tn−1

σ(Xtn−1) dWs,

or, equivalently,

Xtn ≈ Xtn−1 + b(Xtn−1) (tn − tn−1) + σ(Xtn−1) (Wtn −Wtn−1).

This simple recursion is easily implemented on a computer, where we can obtain a

suitable sequenceWtn −Wtn−1 by generating i.i.d. m-dimensional Gaussian random

variables with mean zero and covariance (T/p)I using a (pseudo-)random number

generator. The question that we wish to answer is whether this algorithm really does

approximate the solution of the full SDE when p is sufficiently large.

The remainder of this section is devoted to proving convergence of the Euler-

Mayurama method. Before we proceed to the proof of that result, we need a simple

estimate on the increments of the solution of an SDE.

Lemma 5.4.1. Under the assumptions of theorem 5.1.3, we can estimate

‖Xt −Xs‖2,P ≤ L
√
t− s, 0 ≤ s ≤ t ≤ T,

where the constant L depends only on T , X0, b and σ.

Proof. The arguments are similar to those used in the proof of theorem 5.1.3. Write

E(‖Xt −Xs‖2) ≤ 2E

(∥∥∥∥
∫ t

s

b(Xr) dr

∥∥∥∥
2
)

+ 2E

(∥∥∥∥
∫ t

s

σ(Xr) dWr

∥∥∥∥
2
)
,

where we have used the identity (a+ b)2 ≤ 2(a2 + b2). But

E

(∥∥∥∥
∫ t

s

b(Xr) dr

∥∥∥∥
2
)

≤ (t− s)

∫ t

s

E(‖b(Xr)‖2) dr ≤ 2CT

∫ t

s

E(1 + ‖Xr‖2) dr,
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using the linear growth condition and the same identity for (a+ b)2. Similarly,

E

(∥∥∥∥
∫ t

s

σ(Xr) dWr

∥∥∥∥
2
)

=

∫ t

s

E(‖σ(Xr)‖2) dr ≤ 2C

∫ t

s

E(1 + ‖Xr‖2) dr,

using the Itô isometry. But it was established in the proof of theorem 5.1.5 that E(1 + ‖Xr‖2)
is bounded by a constant that only depends on X0, T and C. Hence the result follows.

We will also need a discrete version of Gronwall’s lemma.

Lemma 5.4.2 (Discrete Gronwall). Let A,B > 0 and let αn ≥ 0, n = 0, . . . , N . If

αn ≤ A+B

n
∑

k=1

αk−1, n = 0, . . . , N,

then it must be the case that αn ≤ AeBn for all 0 ≤ n ≤ N .

Proof. Suppose that we have established that αk ≤ AeBk for all 0 ≤ k ≤ n − 1. Then

αn ≤ A+AB

n∑

k=1

eB(k−1) = A+AB
eBn − 1

eB − 1
≤ AeBn,

where we have used eB ≥ 1+B. But α0 ≤ A = AeB·0, so the result follows by induction.

Let us now complete the proof of convergence of the Euler-Maruyama scheme as

p→ ∞. The approximate solution is defined recursively as

Ytn = Ytn−1 + b(Ytn−1) (tn − tn−1) + σ(Ytn−1) (Wtn −Wtn−1),

and we wish to prove that Ytn is close to Xtn in a suitable sense.

Theorem 5.4.3 (Order 0.5 convergence of the Euler-Maruyama method). Assume,

in addition to the assumptions of theorem 5.1.3, that Y0 is chosen in such a way that

‖X0 − Y0‖2,P ≤ C1p
−1/2 for some constant C1 <∞. Then

max
0≤n≤p

‖Xtn − Ytn‖2,P ≤ C2p
−1/2,

where C2 <∞ is a constant that depends only on T , X0, C1, b and σ.

Proof. Define the process Yt = Ytk−1 for t ∈ [tk−1, tk[. Then

Xtn − Ytn = X0 − Y0 +

∫ tn

0

(b(Xs) − b(Ys)) ds+

∫ tn

0

(σ(Xs) − σ(Ys)) dWs.

Hence we obtain, using the triangle inequality and (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

‖Xtn − Ytn‖2 ≤ 3 ‖X0 − Y0‖2+

3

∥∥∥∥
∫ tn

0

(b(Xs) − b(Ys)) ds

∥∥∥∥
2

+ 3

∥∥∥∥
∫ tn

0

(σ(Xs) − σ(Ys)) dWs

∥∥∥∥
2

.
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Taking the expectation and proceeding as in the proof of theorem 5.1.3, we can estimate

E(‖Xtn − Ytn‖2) ≤ 3E(‖X0 − Y0‖2)+

3 tn

∫ tn

0

E(‖b(Xs) − b(Ys)‖2) ds+ 3

∫ tn

0

E(‖σ(Xs) − σ(Ys)‖2) ds.

Now use the Lipschitz continuity of b and σ: this gives

E(‖Xtn − Ytn‖2) ≤ 3E(‖X0 − Y0‖2) + 3K2(T + 1)

∫ tn

0

E(‖Xs − Ys‖2) ds.

At this point we need to estimate E(‖Xs − Ys‖2). Suppose that s ∈ [tk−1, tk[; then

‖Xs − Ys‖2,P = ‖Xs − Ytk−1‖2,P ≤ ‖Xs −Xtk−1‖2,P + ‖Xtk−1 − Ytk−1‖2,P.

Using the lemma 5.4.1 and s− tk−1 ≤ T/p, we obtain

E(‖Xs − Ys‖2) ≤ 2L2T

p
+ 2E(‖Xtk−1 − Ytk−1‖2).

Thus we can now write, using the definition of C1,

E(‖Xtn −Ytn‖2) ≤ 3C2
1 + 6K2L2T 2(T + 1)

p
+

6K2T (T + 1)

p

n∑

k=1

E(‖Xtk−1 −Ytk−1‖2).

If we set Jn = max0≤i≤n E(‖Xti − Yti‖2), then we can evidently write

Jn ≤ C3

p
+
C4T

p

n∑

k=1

Jk−1,

where we have replaced some of the unsightly expressions by friendly-looking symbols. But

we can now apply the discrete Gronwall lemma 5.4.2 to obtain Jn ≤ (C3/p) exp(C4Tn/p).

Hence the result follows if we define C2 =
√
C3 exp(C4T/2).

5.5 Stochastic stability

In non-random nonlinear systems and control theory, the notions of Lyapunov stability

and Lyapunov functions play an important role (see, e.g., [Kha02]). Let us briefly

recall the most basic concepts in this theory. The starting point is an ODE of the form

dX(t)

dt
= b(X(t)), X(0) ∈ Rn,

where b(x) vanishes at some point x∗ ∈ Rn. The point x∗ is called an equilibrium of

the ODE, because if we start at X(0) = x∗, then X(t) = x∗ for all t (note that there

may be multiple equilibria). The question is, if we start close to x∗ rather than on x∗,

whether we will always remain close, or, better even, whether we will converge to x∗

as t→ ∞. It is this type of question that is addressed by the Lyapunov theory.

The formal definitions are as follows. The equilibrium position x∗ is said to be

• stable if for any ε > 0, there is a δ > 0 such that ‖X(t)−x∗‖ < ε for all t ≥ 0
whenever ‖X(0)− x∗‖ < δ;
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• asymptotically stable if it is stable and there is a κ > 0 such that X(t) → x∗

as t→ ∞ whenever ‖X(0)− x∗‖ < κ; and

• globally stable if it is stable and X(t) → x∗ as t→ ∞ for any X(0) ∈ Rn.

In other words, the equilibrium x∗ is stable if we are guaranteed to remain close to

x∗ forever provided that we start sufficiently close, is asymptotically stable if we are

additionally guaranteed to converge to x∗ if we start sufficiently close, and is globally

stable if we always converge to x∗ no matter where we started.

Can we study such problems in the stochastic case? There are various interesting

questions that we can ask, but they depend on the form of the SDE. For example, a

common way to add stochastic perturbations to an ODE is through additive noise:

dXt = b(Xt) dt+ ε dWt, X0 = X(0).

Even if b(x∗) = 0, the process Xt will not remain at x∗ even if we start there: the

noise will kick us away from the deterministic equilibrium. However, one of the

justifications for studying deterministic stability is that an asymptotically stable equi-

librium point should be robust against perturbations. Thus we expect that if we add a

small perturbing noise—i.e., ε � 1—then, even though we will not remain at x∗, we

will be very likely to find ourselves close to x∗ at any time in the future.2 There is a

simple type of result that can help quantify this idea. [Note that we have only chosen

σ(x) = ε for sake of demonstration; the following result holds for arbitrary σ(x).]

Proposition 5.5.1. Assume that the conditions of theorem 5.1.3 hold, and define L

as in proposition 5.2.4. Suppose that there exists a function V : Rn → [0,∞[ which

is C2 and satisfies L V (x) ≤ −αV (x) + β for all x ∈ Rn and some α, β > 0. Then

E(V (Xt)) ≤ e−αt E(V (X0)) +
β

α
, ∀ t ≥ 0,

provided that E(V (X0)) <∞.

Remark 5.5.2. Suppose, for example, that we choose the function V (x) such that

V (x) ≥ ‖x − x∗‖p for some p > 0. Then V (x) is a measure of the distance to the

equilibrium point, and this result bounds the expected distance from the equilibrium

point uniformly in time. In particular, using Chebyshev’s inequality, you can obtain a

bound on the probability of being far from equilibrium at any fixed time.

Proof. Using Itô’s rule, we obtain immediately

V (Xt) e
αt = V (X0) +

∫ t

0

eαs(L V (Xs) + αV (Xs)) ds+ local martingale.

Let τn ↗ ∞ be a localizing sequence. Then we have

E(V (Xt∧τn) eα t∧τn) = E(V (X0)) + E

[∫ t∧τn

0

eαs(L V (Xs) + αV (Xs)) ds

]
.

2 For the particular case of small noise, there is a powerful theory to study the asymptotic properties of
SDEs as ε → 0: the Freidlin-Wentzell theory of large deviations [FW98]. Unfortunately, we will not have
the time to explore this interesting subject. The theorems in this section are fundamentally different; they
are not asymptotic in nature, and work for any SDE (provided a suitable function V can be found!).
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Now use L V (x) + αV (x) ≤ β to obtain

E(V (Xt) e
αt) ≤ E(V (X0)) + β

∫ t

0

eαs ds,

where we have used Fatou’s lemma and monotone convergence to take the limit as n → ∞ on

the left- and right-hand sides, respectively. The conclusion of the result is straightforward.

A very different situation is one where for the SDE with non-randomX0

dXt = b(Xt) dt+ σ(Xt) dWt, X0 = x,

both b(x) and σ(x) vanish simultaneously at x = x∗. Then Xt = x∗ for all t ≥ 0 is

certainly a solution of the SDE, so x∗ is a true equilibrium point of the system. One

can now develop a true counterpart of the Lyapunov theory for this case. However,

expecting that if we start close enough to x∗, we will (for example) converge to x∗

with probability one, is often too much to ask: even though the noise vanishes at

x∗, the noise is non-negligible outside x∗ and might well kick us far away from x∗

with some very small probability. It is more fruitful to ask whether we can make Xt

converge to x∗ with probability close to one, if we start with X0 sufficiently close to

x∗. These considerations motivate the following definitions. The equilibrium x∗ is

• stable if for any ε > 0 and α ∈ ]0, 1[, there exists a δ > 0 such that we have

P(supt≥0 ‖Xt − x∗‖ < ε) > α whenever ‖X0 − x∗‖ < δ;

• asymptotically stable if it is stable and for every α ∈ ]0, 1[, there exists a κ > 0
such that P(Xt → x∗ as t→ ∞) > α whenever ‖X0 − x∗‖ < κ; and

• globally stable if it is stable and Xt → x∗ a.s. as t→ ∞ for any X0.

Remark 5.5.3. It is important to understand the distinction between a statement such

as P(supt≥0 ‖Xt − x∗‖ ≥ ε) ≤ 1 − α, compared to the much weaker statement

supt≥0 P(‖Xt − x∗‖ ≥ ε) ≤ 1 − α which can be obtained from proposition 5.5.1

using Chebyshev’s inequality. The former expresses the fact that the probability that

our sample paths will ever venture farther away from x∗ than a distance ε is very

small. The latter, however, expresses the fact that at any fixed time t, the fraction of

the sample paths that are farther away from x∗ than a distance ε is small. In the latter

case, it is quite likely that every sample path ventures very far away from x∗ at some

point in time; they just do not all do so at the same time.

Let us find some simple conditions for the stability of x∗. We always work under

the assumptions of theorem 5.1.3 and with the non-random initial conditionX0.

Proposition 5.5.4. Suppose that there exists a function V : Rn → [0,∞[ which is C2

and satisfies V (x∗) = 0, V (x) > 0 if x 6= x∗, and L V (x) ≤ 0, for all x in some

neighborhoodU of x∗. Then x∗ is a stable equilibrium for Xt.

Proof. We wish to prove that we can make P(supt≥0 ‖Xt − x∗‖ ≥ ε) arbitrarily small if we

choose X0 sufficiently close to x∗. Note that it suffices to prove this for sufficiently small ε;

after all, if the statement holds for any ε ≤ ε∗, then for ε > ε∗ we can use the trivial inequality
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P(supt≥0 ‖Xt − x∗‖ ≥ ε) ≤ P(supt≥0 ‖Xt − x∗‖ ≥ ε∗) to conclude the result. Note that it

also suffices to assume that X0 ∈ U , as this is always the case for X0 sufficiently close to x∗.

Moreover, we can assume that U has compact closure U , and that V (x) > 0 for x ∈ U\{x∗};

otherwise we can always find an U ′ ⊂ U for which this is the case, and proceed with that.

Define τ = inf{t : Xt 6∈ U}. Using Itô’s rule, we obtain

V (Xt∧τ ) = V (X0) +

∫ t∧τ

0

L V (Xs) ds+ martingale

(the stochastic integral stopped at τ is a martingale, as the integrand is bounded for Xs ∈ U ).

But as L V (x) ≤ 0 for x ∈ U , the time integral is nonincreasing with t. Hence V (Xt∧τ ) is a

supermartingale, and we get using the supermartingale inequality

P

[
sup
t≥0

V (Xt∧τ ) ≥ α

]
≤ V (X0)

α
.

We now claim that for every ε > 0, there exists an α > 0 such that ‖x − x∗‖ ≥ ε implies

V (x) ≥ α (for x ∈ U ); indeed, just choose α to be the minimum of V (x) over the compact

set {x ∈ U : ‖x−x∗‖ ≥ ε} (which is nonempty for sufficiently small ε), and this minimum is

strictly positive by our assumptions on V . Hence for any ε > 0, there is an α > 0 such that

P

[
sup
t≥0

‖Xt∧τ − x∗‖ ≥ ε

]
≤ V (X0)

α
,

and term on the right can be made arbitrarily small by choosing X0 sufficiently close to x∗.

Finally, it remains to note that supt≥0 ‖Xt − x∗‖ ≥ ε implies supt≥0 ‖Xt∧τ − x∗‖ ≥ ε if ε
is sufficiently small that ‖x− x∗‖ ≤ ε implies that x ∈ U .

With almost the same condition, we obtain asymptotic stability.

Proposition 5.5.5. Suppose that there exists a function V : Rn → [0,∞[ which is C2

and satisfies V (x∗) = 0, V (x) > 0 if x 6= x∗, and L V (x) < 0 if x 6= x∗, for all x in

some neighborhoodU of x∗. Then x∗ is asymptotically stable.

Proof. The current proof is a continuation of the previous proof. Note that

E

[∫ t∧τ

0

(−L V )(Xs) ds

]
= V (X0) − E(V (Xt∧τ )) ≤ V (X0) <∞.

But the term on the left is nonnegative and nondecreasing by our assumptions, so we obtain

E

[∫ τ

0

(−L V )(Xs) ds

]
≤ V (X0) <∞

by monotone convergence. In particular, we find that

∫ τ

0

(−L V )(Xs) ds <∞ a.s.

If τ = ∞ for some sample path ω, then we conclude that at least lim infs→∞(−L V )(Xs) = 0
for that sample path (except possibly in a set of measure zero). But by our assumption that

L V (x) < 0 for x 6= x∗, an entirely parallell argument to the one used in the previous proof

establishes that τ = ∞ implies lim infs→∞ ‖Xs−x∗‖ = 0 and even lim infs→∞ V (Xs) = 0.
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On the other hand, as V (Xt∧τ ) is a nonnegative supermartingale, the martingale conver-

gence theorem holds and we find that V (Xt∧τ ) → Y a.s. as t→ ∞ for some random variable

Y . But then we conclude that for those sample paths (modulo a null set) where τ = ∞, it must

be the case that Y = 0. In other words, we have established that almost every sample path that

stays in U forever must converge to x∗. It remains to note that by the fact that x∗ is also stable

(which follows by the previous result), we can make the probability that Xt stays in U forever

arbitrarily large by starting sufficiently close to x∗. Hence asymptotic stability follows.

Finally, let us obtain a condition for global stability. The strategy should look a

little predictable by now, and indeed there is nothing new here; we only need to assume

that our function V is radially unbounded to be able to conclude that V (Xt) → 0
implies Xt → x∗ (as we are no longer working in a bounded neighborhood).

Proposition 5.5.6. Suppose there exists V : Rn → [0,∞[ which is C2 and satisfies

V (x∗) = 0, V (x) > 0 and L V (x) < 0 for any x ∈ Rn such that x 6= x∗. Moreover,

suppose V (x) → ∞ and |L V (x)| → ∞ as ‖x‖ → ∞. Then x∗ is globally stable.

Proof. Using Itô’s rule we obtain, by choosing a suitable localizing sequence τn ↗ ∞,

E

[∫ t∧τn

0

(−L V )(Xs) ds

]
= V (X0) − E(V (Xt∧τn)) ≤ V (X0) <∞,

Using monotone convergence, we can send t→ ∞ and n→ ∞ to conclude that
∫ ∞

0

(−L V )(Xs) ds <∞ a.s.

But using the fact that |L V (x)| → ∞ as ‖x‖ → ∞, we find that lim infs→∞ V (Xs) = 0
a.s. On the other hand, by Itô’s rule, we find that V (Xt) is the sum of a nonincreasing process

and a nonnegative local martingale. But then V (Xt) is a nonnegative supermartingle, and the

martingale convergence theorem applies. Thus V (Xt) → 0 a.s. It remains to note that we can

conclude that Xt → x∗ a.s. using the fact that V (x) → ∞ as ‖x‖ → ∞.

Example 5.5.7. Consider the controlled linear stochastic differential equation

dXt = AXt dt+But dt+

k
∑

i=1

CiXt dW
i
t , X0 ∈ Rn,

whereA is an n×nmatrix,B is an n×k matrix,C i are n×nmatrices (i = 1, . . . ,m),

ut is a k-dimensional control input and Wt is an m-dimensional Wiener process. We

would like to find a linear feedback control strategy ut = DXt (D is a k × n matrix)

such that the equilibrium point x = 0 is globally stable.

Let us try a Lyapunov function of the form VR(x) = x∗Rx, where R is a positive

definite n × n matrix. Then VR(x) = 0 for x = 0, VR(x) > 0 for x 6= 0, and

VR(x) → ∞ and ‖x‖ → ∞. We can now calculate

L VR(x) = x∗

[

R(A+BD) + (A+BD)∗R+

k
∑

i=1

(Ci)∗RCi

]

x ≡ −x∗V [D,R]x.

Evidently a sufficient condition for D to be a stabilizing controller is the existence of

a positive definite matrix R such that the matrix V [D,R] is positive definite.

Much more can be said about stochastic stability; see section 5.7 for references.
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5.6 Is there life beyond the Lipschitz condition?

The Lipschitz condition has played an important role throughout this chapter; but is

it truly necessary? The answer is no, but if we are not careful either existence or

uniqueness may fail. This is even the case for ordinary differential equations, as the

following illuminating examples (from [Øks03]) demonstrate. Consider the ODE

d

dt
X(t) = 3 (X(t))2/3, X(0) = 0.

ThenX(t) = (t−a)3 ∨0 is a perfectly respectable solution for any a > 0. Evidently,

this equation has many solutions for the same initial condition, so uniqueness fails!

On the other hand, consider the ODE

d

dt
X(t) = (X(t))2, X(0) = 1.

This equation is satisfied only by X(t) = (1 − t)−1 for t < 1, but the solution blows

up at t = 1. Hence a solution does not exist if we are interested, for example, in the

interval t ∈ [0, 2]. Note that neither of these examples satisfy the Lipschitz condition.

There is a crucial difference between these two examples, however. In the first

example, the Lipschitz property fails at x = 0. On the other hand, in the second

example the Lipschitz property fails as x → ∞, but in any compact set the Lipschitz

property still holds. Such a function is called locally Lipschitz continuous.

Definition 5.6.1. f : Rn → Rm is called locally Lipschitz continuous if for any

r <∞, there is aKr <∞ such that ‖f(x)−f(y)‖ ≤ Kr‖x−y‖ for all ‖x‖, ‖y‖ ≤ r.

For locally Lipschitz coefficents, we have the following result.

Theorem 5.6.2. Suppose that b and σ are locally Lipschitz continuous. Then the SDE

Xt = X0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs,

has a unique solution in the time interval [0, ζ[, where the stopping time ζ is called

the explosion time (ζ may be ∞ with positive probability).

Remark 5.6.3. A similar result holds with time-dependent coefficients; we restrict

ourselves to the time-homogeneous case for notational simplicity only.

Proof. For any r < ∞, we can find functions br(x) and σr(x) which are (globally) Lipschitz

and such that b(x) = br(x) and σ(x) = σr(x) for all ‖x‖ ≤ r. For the SDE with coefficients

br and σr and the initial condition X0(r) = X0I‖X0‖≤r, we can find a unique solution Xt(r)
for all t ∈ [0,∞[ using theorem 5.1.3 (and by trivial localization). Now denote by τr =
I‖X0‖≤r inf{t : Xt(r) ≥ r}, and note that this is a stopping time. Moreover, the process

Xt∧τr (r) evidently satisfies the SDE in the statement of the theorem for t < τr. Hence we

obtain a unique solution for our SDE in the interval [0, τr]. But we can do this for any r < ∞,

so letting r → ∞ we obtain a unique solution in the interval [0, ζ[ with ζ = limr→∞ τr .
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The proof of this result is rather telling; in going from global Lipschitz coefficients

to local Lipschitz coefficients, we proceed as we have done so often by introducing a

localizing sequence of stopping time and constructing the solution up to every stop-

ping time. Unlike in the case of the Itô integral, however, these stopping times may

accumulate—and we end up with an explosion at the accumulation point.

All is not lost, however: there are many SDEs whose coefficients are only locally

Lipschitz, but which nonetheless do not explode! Here is one possible condition.

Proposition 5.6.4. If ‖X0‖2,P < ∞, b and σ are locally Lipschitz continuous and

satisfy a linear growth condition, then the explosion time ζ = ∞ a.s.

Recally that for Lipschitz coefficients, the linear growth condition follows (see the

proof of theorem 5.1.3). In the local Lipschitz setting this is not the case, however,

and we must impose it as an additional condition (evidently with desirable results!)

Proof. Proceeding as in the proof of theorem 5.1.5, we find that E(‖Xt∧ζ‖2) < ∞ for all

t <∞. But thenXt∧ζ <∞ a.s. for all t <∞, so ζ = ∞ a.s. (asXζ = ∞ by definition!).

Remark 5.6.5. All of the conditions which we have discussed for the existence and

uniqueness of solutions are only sufficient, but not necessary. Even an SDE with very

strange coefficients may have a unique, non-exploding solution; but if it does not fall

under any of the standard categories, it might take some specialized work to prove

that this is indeed the case. An example of a useful SDE that is not covered by our

theorems is the Cox-Ingersoll-Ross equation for the modelling of interest rates:

dXt = (a− bXt) dt+ σ
√

|Xt| dWt, X0 > 0,

with a, b, σ > 0. Fortunately, however, many (if not most) SDEs which are encoun-

tered in applications have at least locally Lipschitz coefficients.

There is an entirely different concept of what it means to obtain a solution of

a stochastic differential equation, which we will now discuss very briefly. Let us

consider the simplest example: we wish to find a solution of the SDE

Xt =

∫ t

0

b(Xs) ds+Wt,

where b is some bounded measurable function. Previously, we consideredWt as being

a given Wiener process, and we sought to find the solution Xt with respect to this

particular Wiener process. This is called a strong solution. We can, however, ask a

different question: if we do not start from a fixed Wiener process, can we construct (on

some probability space) both a Wiener process Wt and a process Xt simultaneously

such that the above equation holds? If we can do this, then the solution is called a weak

solution. Surprisingly, we can always find a weak solution of the above equation—

despite the fact that we have imposed almost no structure on b!
Let us perform this miracle. We start with some probability space (Ω,F ,P), on

which is defined a Wiener process Xt. Note that Xt is now the Wiener process! Next,

we perform a cunning trick. We introduce a new measure Q as follows:

dQ

dP
= exp

(
∫ t

0

b(Xt) dXt −
1

2

∫ t

0

(b(Xt))
2 dt

)

.
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This is a Girsanov transformation (and Novikov’s condition is satisfied as we have

assumed that b is bounded), so we find that the process

Wt = Xt −
∫ t

0

b(Xs) ds

is a Wiener process under Q. But now we are done: we have constructed a processXt

and a Wiener process Wt on the space (Ω,F ,Q), so that the desired SDE is satisfied!

You might well be regarding this story with some amount of suspicion—where is

the catch? If we fix in hindsight the Wiener process which we have just constructed,

and ask for a solution with respect to that Wiener process, then can we not regard

Xt as a strong solution with respect to Wt? There is a subtle but very important

reason why this is not the case. When we constructed strong solutions, we found

that the solution Xt was a functional of the driving noise: a strong solution Xt is

FW
t = σ{Ws : s ≤ t} measurable. This is precisely what you would expect from

the point of view of causality: the noise drives a physical system, and thus the state of

the physical system is a functional of the realization of the noise. On the other hand,

if you look carefully at the construction of our weak solution, you will find precisely

the opposite conclusion: that the noise Wt is FX
t = σ{Xs : s ≤ t} measurable.

Evidently, for a weak solution the noise is a functional of the solution of the SDE.

Thus it appears that causality is reversed in the weak solution case.

For this reason, you might want to think twice before using weak solutions in

modelling applications; the concept of a weak solution is much more probabilistic in

nature, while stong solutions are much closer to the classical notion of a differential

equation (as our existence and uniqueness proofs, the Wong-Zakai theorem, and the

Euler-Maruyama method abundantly demonstrate). Nonetheless weak solutions are

an extremely valuable technical tool, both for mathematical purposes and in appli-

cations where the existence of solutions in a strong sense may be too restrictive or

difficult to verify. Of course, many weak solutions are also strong solutions, so the

dilemma only appears if it turns out that a strong solution does not exist.

5.7 Further reading

The recommended texts on stochastic differential equations are, once again, the usual

suspects: Øksendal [Øks03] and Arnold [Arn74] for an accessible introduction, and

the books by Rogers and Williams [RW00b], Karatzas and Shreve [KS91], Friedman

[Fri75], Liptser and Shiryaev [LS01a], or Protter [Pro04] for the Real Thing. Our

treatment of existence and uniqueness is inspired by the treatment in Gikhman and

Skorokhod [GS96] and to a lesser extent by Ikeda and Watanabe [IW89].

For the general theory of Markov processes, you might want to look in Rogers

and Williams [RW00a, chapter III] for a friendly introduction. The classic reference

remains Dynkin [Dyn06], and a modern tome is the book by Ethier and Kurtz [EK86].

Friedman [Fri75] is an excellent source on the relation between SDEs and PDEs.

The Wong-Zakai theorem has its origins in Wong and Zakai [WZ65] and was

subsequently investigated by various authors (notably the support theorem of Stroock

and Varadhan [SV72]). A nice review article is the one by Twardowska [Twa96].
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The ultimate bible on numerical methods for stochastic differential equations is

the book by Kloeden and Platen [KP92]; there you will find almost any variant of

numerical approximation for SDE known to man, at least at the time of publication

of that work. Needless to say you can do better than the Euler-Maruyama method

(but nonetheless, that simple method is often not too bad!) Our treatment was loosely

inspired by lecture notes of Stig Larsson [Lar05]. An intriguing and entirely different

way to simulate sample paths of an SDE was recently proposed by Beskos and Roberts

[BR05]; they see the solution of an SDE as a path-valued random variable, and use

Monte Carlo sampling techniques to sample from its distribution. This is much closer

to the weak solution concept than to strong solutions.

Excellent sources for stochastic stability theory are the textbooks by Has’minskii

[Has80] and by Kushner [Kus67]. An article by Kushner [Kus72] develops a coun-

terpart of the LaSalle invariance principle in the stochastic setting. The theory of

stochastic stability has its origins, in discrete time, in the work of Bucy, see [BJ87],

and see also [Kus71] for more discrete time stability theory. Some recent work (also

in connection with control) can be found in Deng, Krstić and Williams [DKW01].

Beside the Wentzell-Freidlin large deviations theory [FW98], an omission from

this chapter is a study of the dependence of the solution of an SDE on the initial con-

dition. In particular, it is well known that non-random ODEs generate much more than

an individual solution for each initial condition: they generate a flow, i.e., an entire

diffeomorphism of the state space which corresponds to the solution with a particu-

lar initial condition at every point. A parallel theory exists for stochastic differential

equations, as is detailed, e.g., in the book by Kunita [Kun90]. The most accessible

place to start reading are Kunita’s lecture notes [Kun84].
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6
Optimal Control

Stochastic optimal control is a highly technical subject, much of which centers around

mathematical issues of existence and regularity and is not directly relevant from an

engineering perspective. Nonetheless the theory has a large number of applications,

many (but not all) of which revolve around the important linear case. In this course

we will avoid almost all of the technicalities by focusing on the so-called “verification

theorems”, which we will encounter shortly, instead of on the more mathematical

aspects of the theory. Hopefully this will make the theory both accessible and useful;

in any case, it should give you enough ideas to get started.

6.1 Stochastic control problems and dynamic programming

Controlled stochastic differential equations

As usual, we work on (Ω,F , {Ft},P) with an m-dimensional Ft-Wiener process

Wt. The basic object of interest in stochastic control theory is a stochastic differential

equation with a control input: i.e., the state of the controlled system is described by

dXu
t = b(t,Xu

t , ut) dt+ σ(t,Xu
t , ut) dWt, X0 = x,

where the superscript u denotes that we are considering the system state with the

control strategy u in operation. Here b and σ are functions b : [0,∞[×Rn ×U → Rn

and σ : [0,∞[ × Rn × U → Rn×m, where U is the control set (the set of values that

the control input can take). Often we will choose U = Rq, but this is not necessary.

Definition 6.1.1. The control strategy u = {ut} is called an admissible strategy if

1. ut is an Ft-adapted stochastic process; and

141
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2. ut(ω) ∈ U for every (ω, t); and

3. the equation for Xu
t has a unique solution.

Remark 6.1.2. We will always consider the Wiener process Wt to be fixed, and re-

quire that Xu
t has a strong solution for admissible u. In a more general theory, it is

often not clear whether strong solutions exist (e.g., for bang-bang controls), and such

a definition may be too restrictive; it is not uncommon to require admissible u only to

define a weak solution. (See chapter 5 for comments on weak vs. strong solutions).

There is a special type of control strategy that will be particularly important.

Definition 6.1.3. An admissible strategy u is called a Markov strategy if it is of the

form ut = α(t,Xu
t ) for some function α : [0,∞[ × Rn → U.

The reason for this terminology is clear: for a Markov strategy, the system state

Xu
t is a Markov process (this is not true in general, where the control ut may depend

on the entire past history—it is only required to be Ft-measurable!) Such strategies

are important for two reasons: first, a Markov strategy is much easier to implement in

practice than an arbitrary control functional; and second, we will find that the methods

developed in this chapter automatically give rise to Markov strategies.

The goal of a control engineer is to design an admissible control strategy u to

achieve a particular purpose. The design process, methods and machinery will obvi-

ously depend heavily on how we formulate the control goal. We already encountered

one type of control goal in example 5.5.7: the goal was to find a controller ut which

would make an equilibrium point of the controlled SDE globally stable. The control

goals which we will consider in this chapter and in the following chapters are of a

rather different type; we are concerned here with optimal control. To this end, we will

introduce a suitable cost functional that attaches to each admissible control strategy u
a cost J [u]; the idea is to penalize undesirable behavior by giving it a large cost, while

desirable behavior is encouraged by attaching to it a low cost. The goal is then to find,

if possible, an optimal strategy u∗ which minimizes this cost functional.

In this chapter we will investigate three common types of cost functionals:

1. For optimal control on the finite time horizon [0, T ], we introduce

J [u] = E

[

∫ T

0

w(s,Xu
s , us) ds+ z(Xu

T )

]

,

where w : [0, T ] × Rn × U → R (the running cost) and z : Rn → R (the

terminal cost) are measurable functions and T <∞ is the terminal time.

2. On an indefinite time horizon, we set

J [u] = E

[

∫ τu

0

w(Xu
s , us) ds+ z(Xu

τu)

]

,

where w : S × U → R and z : ∂S → R are measurable functions and the

stopping time τu is the first exit time of Xu
t from S ⊂ Rn (with boundary ∂S).
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3. On an infinite time horizon, we use either the discounted cost criterion

Jλ[u] = E

[
∫ ∞

0

e−λs w(Xu
s , us) ds

]

,

or we can use a time-average cost criterion of the form

J [u] = lim sup
T→∞

E

[

1

T

∫ T

0

w(Xu
s , us) ds

]

,

where w : Rn × U → R is measurable.

The various types of cost functionals are not so dissimilar; once we figure out how to

solve one of them, we can develop the other ones without too much trouble.

Remark 6.1.4. These are the most common types of cost functionals found in ap-

plications; we have seen some examples in the Introduction, and we will encounter

more examples throughout this chapter. Others control costs have been considered as

well, however (particularly the risk-sensitive cost criteria); see, e.g., [Bor05] for an

overview of the various cost structures considered in the literature.

To motivate the development in the following sections, let us perform an illumi-

nating but heuristic calculation; in particular, we will introduce nontrivial assumptions

left and right and throw caution to the wind for the time being. What we will gain from

this is a good intuition on the structure of the problem, armed with which we can pro-

ceed to obtain some genuinely useful results in the following sections.

The dynamic programming principle

In the remainder of this section, we will concentrate on the finite time horizon case,

and we simplify life by restricting attention to Markov controls only. Fix the control

problem (choose b, σ, w, z, T ), and note that for any admissible Markov strategy u

E

[

∫ T

t

w(s,Xu
s , us) ds+ z(Xu

T )

∣

∣

∣

∣

∣

Ft

]

=

E

[

∫ T

t

w(s,Xu
s , us) ds+ z(Xu

T )

∣

∣

∣

∣

∣

Xu
t

]

≡ Ju
t (Xu

t ),

for t ∈ [0, T ], where we have used the Markov property of Xu
t (as u is a Markov

strategy). The measurable function Ju
t (x) is called the cost-to-go of the strategy u.

You can interpret Ju
t (x) as the portion of the total cost of the strategy u incurred in

the time interval [t, T ], given that the control strategy in operation on the time interval

[0, t] has left us in the state Xu
t = x. In particular, Ju

0 (x) is the total cost of the

strategy u if we start our system in the non-random state X0 = x.

Remark 6.1.5. As we have defined a Markov process as a process Xt that satisfies

E(f(Xt)|Fs) = E(f(Xt)|Xs) for bounded measurable f , the equality above may not

be entirely obvious. The expression does follow from the following fundamental fact.
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Lemma 6.1.6. If Xt is an Ft-Markov process, then E(F |Fs) = E(F |Xs) for any

σ{Xt : t ∈ [s,∞[}-measurable random variable F .

Proof. First, note that for t > r ≥ s and bounded measurable f, g, E(f(Xt)g(Xr)|Fs) =
E(E(f(Xt)|Fr)g(Xr)|Fs) = E(E(f(Xt)|Xr)g(Xr)|Fs) = E(E(f(Xt)|Xr)g(Xr)|Xs),

using the Markov property and the fact that E(f(Xt)|Xr)g(Xr) is a bounded measurable func-

tion ofXr . By induction, E(f1(Xt1 ) · · · fn(Xtn)|Fs) = E(f1(Xt1) · · · fn(Xtn)|Xs) for any

n <∞, bounded measurable f1, . . . , fn, and times t1, . . . , tn ≥ s.

Next, using the classical Stone-Weierstrass theorem, we find that any continuous func-

tion of n variables with compact support can be approximated uniformly by linear combina-

tions of functions of the form f1(x1) · · · fn(xn), where fi are continuous functions with com-

pact support. Hence using dominated convergence, we find that E(f(Xt1 , . . . , Xtn)|Fs) =
E(f(Xt1 , . . . , Xtn)|Xs) for any continuous f with compact support.

Finally, successive approximation establishes the claim for every σ{Xt : t ∈ [s,∞[}-

measurable random variable F . This follows exactly as in the proof of lemma 4.6.3.

We would like to find an optimal control strategy u∗. Throughout this section we

will assume that such a strategy exists, at least within the class of Markov strategies. In

fact, for the purpose of this section, let us make a more daring assumption: we assume

that there exists an admissible Markov strategy u∗ which satisfies Ju∗

t (x) ≤ Ju
t (x) for

every admissible Markov strategy u, for all t ∈ [0, T ] and for all x. This is certainly

not always justified! However, let us go with it for the time being. Given the existence

of this strategy u∗, we would like to find a way to actually compute what the strategy

is. It is not at all obvious how to do this: minimizing directly over all admissible

Markov strategies is hardly a feasible technique, even when significant computational

resources are available! Instead, we will attempt to simplify matters by splitting up

the optimization problem into a collection of smaller optimization problems.

The idea behind the methods in this chapter is the well known dynamic program-

ming principle due to Bellman. The premise of this method is that it is not necessary

to optimize the control strategy u over the entire time interval [0, T ] at once: we can

divide the time interval into smaller chunks, and optimize over each individually. To

this end, let us introduce the value function Vt(x) = Ju∗

t (x); this is the optimal cost-

to-go over the interval [t, T ]. We claim that Vt(x) satisfies the recursion

Vr(X
u
r ) = min

u′
E

[
∫ t

r

w(s,Xu′

s , u′s) ds+ Vt(X
u′

t )

∣

∣

∣

∣

Xu′

r

]

, 0 ≤ r ≤ t ≤ T,

where the minimum is taken over all admissible Markov strategies u′ that coincide

with u on the interval [0, r[, and that this minimum is attained by the strategy which

coincides with the optimal strategy u∗ on the inteval [r, t]. Before we establish this

claim, let us see why this is useful. Split the interval [0, T ] up into chunks [0, t1],
[t1, t2], . . . , [tn, T ]. Clearly VT (x) = z(x). We can now obtain Vtn(x) by computing

the minimum above with r = tn and t = T , and this immediately gives us the

optimal strategy on the interval [tn, T ]. Next, we can compute the optimal strategy on

the previous interval [tn−1, tn] by minimizing the above expression with r = tn−1,

t = tn (as we now know Vtn(x) from the previous minimization), and iterating this

procedure gives the optimal strategy u∗ on the entire interval [0, T ]. We will see

below that this idea becomes particularly powerful if we let the partition size go to
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zero: the calculation of the optimal control then becomes a pointwise minimization

(i.e., separately for every time t), which is particularly straightforward to compute!

Let us now justify the dynamic programming principle. We begin by establishing

a recursion for the cost-to-go: for any admissible Markov strategy u, we have

Ju
r (Xu

r ) = E

[
∫ t

r

w(s,Xu
s , us) ds+ Ju

t (Xu
t )

∣

∣

∣

∣

Xu
r

]

, 0 ≤ r ≤ t ≤ T.

This follows immediately from the definition of Ju
r (x), using the Markov property

and the tower property of the conditional expectation. Now choose u′ to be a strategy

that coincides with u on the interval [0, t[, and with u∗ on the interval [t, T ]. Then

Vr(X
u
r ) ≤ Ju′

r (Xu′

r ) = E

[
∫ t

r

w(s,Xu′

s , u′s) ds+ Vt(X
u′

t )

∣

∣

∣

∣

Xu′

r

]

,

where we have used that Vr(x) ≤ Ju
r (x) for any admissible Markov strategy u (by

assumption), that Xu
s only depends on the strategy u in the time interval [0, s[, and

that Ju
s (x) only depends on u in the interval [s, T ] (use the Markov property). On the

other hand, if we choose u′ such that it coincides with u∗ in the interval [r, T ], then

we obtain this expression with equality rather than inequality using precisely the same

reasoning. The dynamic programming recursion follows directly.

Remark 6.1.7 (Martingale dynamic programming principle). There is an equiv-

alent, but more probabilistic, point of view on the dynamic programming principle

which is worth mentioning (it will not be used in the following). Define the process

Mu
t =

∫ t

0

w(s,Xu
s , us) ds+ Vt(X

u
t )

for every admissible Markov strategy u. You can easily establish (using the Markov

property) that the dynamic programming principle is equivalent to the following state-

ment: Mu
t is always a submartingale, while it is a martingale for u = u∗.

The Bellman equation

To turn the dynamic programming principle into a useful method, let us introduce

some more assumptions (just go along with this for the time being!). Suppose that

Vt(x) is C1 in t and C2 in x; then, using Itô’s rule,

Vt(X
u
t ) = Vr(X

u
r ) +

∫ t

r

{

∂Vs

∂s
(Xu

s ) + L
u
s Vs(X

u
s )

}

ds+ local martingale,

where L is the generator of the stochastic differential equation with the admissible

Markov control u in operation, defined as in proposition 5.2.4 (note that it may depend

on time in the current setting). If we additionally assume that the local martingale is

in fact a martingale, then we obtain after some rearranging

Vr(X
u
r ) = E

[
∫ t

r

{

−∂Vs

∂s
(Xu

s ) − L
u
s Vs(X

u
s )

}

ds+ Vt(X
u
t )

∣

∣

∣

∣

Xu
r

]

.
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But then we conclude, using the dynamic programming principle, that

E

[
∫ t

r

{

∂Vs

∂s
(Xu

s ) + L
u
s Vs(X

u
s ) + w(s,Xu

s , us)

}

ds

∣

∣

∣

∣

Xu
r

]

≥ 0

for every 0 ≤ r ≤ t ≤ T , and moreover the inequality becomes an equality if u
coincides with u∗ on the interval [r, T ]. Thus, at the very least formally (evaluate the

derivative with respect to t at t = r), we obtain the equation

min
u

{

∂Vs

∂s
(Xu

s ) + L
u
s Vs(X

u
s ) + w(s,Xu

s , us)

}

= 0,

or, using the pathwise nature of this equation,

min
α∈U

{

∂Vs(x)

∂s
+ L

α
s Vs(x) + w(s, x, α)

}

= 0.

This is called the Bellman equation, and is “merely” an (extremely) nonlinear PDE.

Remark 6.1.8. To write the equation in more conventional PDE notation, note that

we can write L α
s Vs(x) + w(s, x, α) as a function H ′ of α, s, x and the first and

second derivatives of Vs(x). Hence the minimum ofH ′ over α is simply some (highly

nonlinear) function H(s, x, ∂Vs(x), ∂
2Vs(x)), and the Bellman equation reads

∂Vs(x)

∂s
+H(s, x, ∂Vs(x), ∂

2Vs(x)) = 0.

We will encounter specific examples later on where this PDE can be solved explicitly.

If we can find a solution to the Bellman equation (with the terminal condition

VT (x) = z(x)) then we should be done: after all, the minimum overα (which depends

both on s and x) must coincide with the optimal Markov control u∗
t = α(t,Xu∗

t ).
Note that what we have done here is precisely the limit of the recursive procedure

described above when the partition size goes to zero: we have reduced the computation

to a pointwise optimization for every time s separately; indeed, the minimum above is

merely over the set U, not over the set of U-valued control strategies on [0, T ]. This

makes finding optimal control strategies, if not easy, at least computationally feasible.

How to proceed?

The previous discussion is only intended as motivation. We have made various en-

tirely unfounded assumptions, which you should immediately discard from this point

onward. Let us take a moment for orientation; where can one proceed from here?

One direction in which we could go is the development of the story we have just

told “for real”, replacing all our assumptions by actual mathematical arguments. The

assumption that an optimal control strategy exists and the obsession with Markov

strategies can be dropped: in fact, one can show that the dynamic programming

principle always holds (under suitable technical conditions, of course), regardless of

whether an optimal strategy exists, provided we replace all the minima by infima! In
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other words, the infimum of the cost-to-go always satisfies a recursion in the form en-

countered above. Moreover, we can drop the assumption that the value function is suf-

ficiently smooth, and the Bellman equation will still hold under surprisingly general

conditions—provided that we introduce an appropriate theory of weak solutions. The

highly fine-tuned theory of viscosity solutions is designed especially for this purpose,

and provides “just the right stuff” to build the foundations of a complete mathemati-

cal theory of optimal stochastic control. This direction is highly technical, however,

while the practical payoff is not great: though there are applications of this theory, in

particular in the analysis of numerical algorithms and in the search for near-optimal

controls (which might be the only recourse if optimal controls do not exist), the main

results of this theory are much more fundamental than practical in nature.

We will take the perpendicular direction by turning the story above upside down.

Rather than starting with the optimal control problem, and showing that the Bellman

equation follows, we will start with the Bellman equation (regarded simply as a non-

linear PDE) and suppose that we have found a solution. We will then show that this

solution does indeed coincide with the value function of an optimal control problem,

and that the control strategy obtained from the minimum in the Bellman equation is in-

deed optimal. This procedure is called verification, and is extremely practical: it says

that if we can actually find a nice solution to the Bellman equation, then that solution

gives an optimal control, which is what we care about in practice. This will allow us

to solve a variety of control problems, while avoiding almost all technicalities.

Note that we previously encountered a similar tradeoff between the direct ap-

proach and verification: our discussion of the Kolmogorov backward equation is of

the verification type. See remark 5.2.7 for further discussion on this matter.

Remark 6.1.9. It should be noted that stochastic optimal control problems are much

better behaved, in general, than their deterministic counterparts. In particular, hardly

any deterministic optimal control problem admits a “nice” solution to the Bellman

equation, so that the approach of this chapter would be very restrictive in the deter-

ministic case; however, the noise in our equations actually regularizes the Bellman

equation somewhat, so that sufficiently smooth solutions are not uncommon (results

in this direction usually follow from the theory of parabolic PDEs, and need not have

much probabilistic content). Such regularity issues are beyond our scope, but see

[FR75, section VI.6] and [FS06, section IV.4] for some details and further references.

Before we move on, let us give a simple example where the optimal control does

not exist. This is very common, particularly if one is not careful in selecting a suitable

cost functional, and it is important to realize the cause of such a problem.

Example 6.1.10. Consider the one-dimensional control system dXu
t = ut dt+ dWt,

where our goal is to bring Xu
t as close as possible to zero by some terminal time T .

It seems reasonable, then, to use a cost functional which only has a terminal cost: for

example, consider the functional J [u] = E((Xu
T )2). Using the Itô rule, we obtain

E((Xu
T )2) = E((X0)

2) +

∫ T

0

E(2usX
u
s + 1) ds.
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Now consider admissible Markov strategies of the form ut = −cXu
t , where c > 0 is

some gain constant. Substituting into the previous expression, we find explicitly

E((Xu
T )2) =

1

2c
− e−2cT 1 − 2cE((X0)

2)

2c
.

Evidently we can make the cost J [u] arbitrarily close to zero by choosing a sufficiently

large gain c. But ut = −∞Xu
t is obviously not an admissible control strategy, and

you can easily convince yourself that no admissible control strategy can achieve zero

cost (as this would require the control to instantaneously set Xu
t to zero and keep it

there). Hence an optimal control does not exist in this case. Similarly, the Bellman

equation also fails to work here: we would like to write

min
α∈R

{

∂Vs(x)

∂s
+

1

2

∂2Vs(x)

∂x2
+ α

∂Vs(x)

∂x

}

= 0,

but a minimum is clearly not attained (set α = −c ∂Vs(x)/∂x with c arbitrarily large).

The problem is that we have not included a control-dependent term in the cost

functional; the control is “free”, and so we can apply an arbitrarily large gain without

any negative consequences. In order to obtain a control problem which does have an

optimal solution, we need to attach a large cost to control strategies that take large

values. The easiest way to do this is to introduce a cost of the form

J [u] = E

[

C

∫ T

0

(us)
2 ds+ (Xu

T )2

]

,

where the constant C > 0 adjusts the tradeoff between the magnitude of the control

and the distance of the terminal state Xu
T from the origin. In this case, the Bellman

equation does make sense: we obtain the Hamilton-Jacobi PDE

0 = min
α∈R

{

∂Vs(x)

∂s
+

1

2

∂2Vs(x)

∂x2
+ α

∂Vs(x)

∂x
+ Cα2

}

=
∂Vs(x)

∂s
+

1

2

∂2Vs(x)

∂x2
− 1

4C

(

∂Vs(x)

∂x

)2

,

which has a smooth solution. The verification theorem in the next section then allows

us to compute explicitly an optimal control strategy.

6.2 Verification: finite time horizon

Armed with our newly built intuition, we can start cranking out verification theorems.

Compared to the somewhat complicated dynamic programming theory, the proofs of

these simple results should seem particularly elegant!

In the current section, we work on a finite time horizon. Let us therefore fix

J [u] = E

[

∫ T

0

w(s,Xu
s , us) ds+ z(Xu

T )

]

.
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We consider a controlled stochastic differential equation of the form

dXu
t = b(t,Xu

t , ut) dt+ σ(t,Xu
t , ut) dWt,

and define the generator L α
t , α ∈ U as

L
α
t g(x) =

n
∑

i=1

bi(t, x, α)
∂g

∂xi
(x) +

1

2

n
∑

i,j=1

m
∑

k=1

σik(t, x, α)σjk(t, x, α)
∂2g

∂xi ∂xj
(x).

We now have the following result.

Proposition 6.2.1. Suppose there is a Vt(x), which is C1 in t and C2 in x, such that

∂Vt(x)

∂t
+ min

α∈U
{L α

t Vt(x) + w(t, x, α)} = 0, VT (x) = z(x),

and |E(V0(X0))| <∞, and choose a minimum (which we implicitly assume to exist)

α∗(t, x) ∈ argmin
α∈U

{L α
t Vt(x) + w(t, x, α)} .

Denote by K the class of admissible strategies u such that

n
∑

i=1

m
∑

k=1

∫ t

0

∂Vs

∂xi
(Xu

s )σik(s,Xu
s , us) dW

k
s

is a martingale (rather than a local martingale), and suppose that the control u∗
t =

α∗(t,Xu∗

t ) defines an admissible Markov strategy which is in K. Then J [u∗] ≤ J [u]
for any u ∈ K, and Vt(x) = Ju∗

t (x) is the value function for the control problem.

Remark 6.2.2. Note that J [u∗] ≤ J [u] for any u ∈ K, i.e., u is not necessarily

Markov (though the optimal strategy is always necessarily Markov if it is obtaind from

a Bellman equation). On the other hand, we are restricted to admissible strategies

which are sufficiently integrable to be in K; this is inevitable without some further

hypotheses. It should be noted that such an integrability condition is often added to

the definition of an admissible control strategy, i.e., we could interpret K as the class

of ‘truly’ admissible strategies. In applications, this is rarely restrictive.

Proof. For any u ∈ K, we obtain using Itô’s rule and the martingale assumption

E(V0(X0)) = E

[∫ T

0

{
−∂Vs

∂s
(Xu

s ) − L
us
s Vs(X

u
s ) + VT (Xu

T )

}
ds

]
.

But using VT (x) = z(x) and the Bellman equation, we find that

E(V0(X0)) ≤ E
[∫ T

0

w(s,Xu
s , us) ds+ z(Xu

T )

]
= J [u].

On the other hand, if we set u = u∗, then we obtain E(V0(X0)) = J [u∗] following exactly the

same steps. Hence J [u∗] ≤ J [u] for all u ∈ K. The fact that Vt(x) = Ju∗

t (x) follows easily in

a similar manner (use Itô’s rule and the martingale assumption), and the proof is complete.
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Let us show off this result with some interesting examples.

Example 6.2.3 (Tracking a particle under a microscope). In the Introduction, we

discussed the example the problem of tracking a particle under a microscope in several

different settings. We are finally in a position to start solving this problem. We proceed

here in the simplest setting, and will return to this problem several times in this chapter

and in the next chapter. Recall the the system was described by the pair of equations

dzt

dt
= βut, xt = x0 + σWt,

where zt is the position of the slide relative to the focus of the microscope, xt is the

position of the particle we wish to view under the microscope relative to the center of

the slide, β ∈ R is the gain in our servo loop and σ > 0 is the diffusion constant of

the particle. We would like to keep the particle in focus, i.e., we would like to keep

xt + zt as close to zero as possible. However, we have to introduce a power constraint

on the control as well, as we cannot drive the servo motor with arbitrarily large input

powers. We thus introduce the control cost (see the Introduction)

J [u] = E

[

p

T

∫ T

0

(xt + zt)
2 dt+

q

T

∫ T

0

(ut)
2 dt

]

,

where p, q > 0 allow us to select the tradeoff between good tracking and low feedback

power. To get rid of the pesky T−1 terms, let us define P = p/T and Q = q/T .

As the control cost only depends on xt + zt, it is more convenient to proceed

directly with this quantity. That is, define et = xt + zt, and note that

det = βut dt+ σ dWt, J [u] = E

[

P

∫ T

0

(et)
2 dt+Q

∫ T

0

(ut)
2 dt

]

.

We obtain the Bellman equation

0 =
∂Vt(x)

∂t
+ min

α∈R

{

σ2

2

∂2Vt(x)

∂x2
+ βα

∂Vt(x)

∂x
+ Px2 +Qα2

}

=
∂Vt(x)

∂t
+
σ2

2

∂2Vt(x)

∂x2
− β2

4Q

(

∂Vt(x)

∂x

)2

+ Px2

with VT (x) = 0 (as there is no terminal cost), and moreover

α∗(t, x) = argmin
α∈R

{

βα
∂Vt(x)

∂x
+Qα2

}

= − β

2Q

∂Vt(x)

∂x
.

We need to solve the Bellman equation. To this end, plug the following ansatz into

the equation: Vt(x) = atx
2 + bt. This gives, using VT (x) = 0,

dat

dt
+ P − β2

Q
a2

t = 0, aT = 0,
dbt
dt

+ σ2at = 0, bT = 0.
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With a little work, we can solve these equations explicitly:

at =

√
PQ

β
tanh

(

β

√

P

Q
(T − t)

)

, bt =
Qσ2

β2
log

(

cosh

(

β

√

P

Q
(T − t)

))

.

Now note that Vt(x) is smooth in x and t and that α∗(t, x) is uniformly Lipschitz on

[0, T ]. Hence if we assume that E((x0 + z0)
2) <∞ (surely a reasonable requirement

in this application!), then by theorem 5.1.3 we find that the feedback control

u∗t = α∗(t, et) = −
√

P

Q
tanh

(

β

√

P

Q
(T − t)

)

(xt + zt)

satisfies u∗t ∈ K. Thus, by proposition 6.2.1, u∗t is an optimal control strategy.

Example 6.2.4 (Optimal portfolio selection). The following example comes from

finance. We consider a single stock with average return µ > 0 and volatility σ > 0,

and a bank account with interest rate r > 0. This means that if we invest one dollar

in stock or in the bank, respectively, at time zero, then at any later time t our bank

account will contain Rt dollars and we will own St dollars worth of stock, where

dSt = µSt dt+ σSt dWt, S0 = 1, dRt = rRt dt, R0 = 1.

We now assume that we can modify our investment at any point in time. However, we

only consider self-financing investment strategies: i.e., we begin with some starting

capital X0 > 0 (to be divided between the bank account and the stock), and we

subsequently only transfer money between the bank account and the stock (without

adding in any new money from the outside). Denote by Xt our total wealth at time t,
and by ut the fraction of our wealth that is invested in stock at time t (the remaining

fraction 1 − ut being in the bank). Then the self-financing condition implies that

dXt = {µut + r(1 − ut)}Xt dt+ σutXt dWt.

This can be justified as a limit of discrete time self-financing strategies; you have seen

how this works in one of the homeworks, so we will not elaborate further.

Our goal is (obviously) to make money. Let us thus fix a terminal time T , and try to

choose a strategy ut that maximizes a suitable functional U of our total wealth at time

T ; in other words, we choose the cost functional J [u] = E(−U(Xu
T )) (the minus sign

appears as we have chosen, as a convention, to minimize our cost functionals). How

to choose the utility function U is a bit of an art; the obvious choice U(x) = x turns

out not to admit an optimal control if we set U = R, while if we set U = [0, 1] (we do

not allow borrowing money or selling short) then we get a rather boring answer: we

should always put all our money in stock if µ > r, while if µ ≤ r we should put all

our money in the bank (verify this using proposition 6.2.1!)

Other utility functions, however, can be used to encode our risk preferences. For

example, suppose that U is nondecreasing and concave, e.g., U(x) = log(x) (the

Kelly criterion). Then the relative penalty for ending up with a low total wealth is

much heavier than for U(x) = x, so that the resulting strategy will be less risky
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(concave utility functions lead to risk-averse strategies, while the utility U(x) = x
is called risk-neutral). As such, we would expect the Kelly criterion to tell us to put

some money in the bank to reduce our risk! Let us see whether this is the case.1

The Bellman equation for the Kelly criterion reads (with U = R)

0 =
∂Vt(x)

∂t
+ min

α∈R

{

σ2α2x2

2

∂2Vt(x)

∂x2
+ (µα+ r(1 − α))x

∂Vt(x)

∂x

}

=
∂Vt(x)

∂t
+ rx

∂Vt(x)

∂x
− (µ− r)2

2σ2

(∂Vt(x)/∂x)
2

∂2Vt(x)/∂x2

where VT (x) = − log(x), and moreover

α∗(t, x) = −µ− r

σ2

∂Vt(x)/∂x

x ∂2Vt(x)/∂x2
,

provided that ∂2Vt(x)/∂x
2 > 0 for all x > 0 (otherwise a minimum does not exist!).

Once we have solved for Vt(x), we must remember to check this assumption.

These unsightly expressions seem more hopeless than they actually are. Fill in the

ansatz Vt(x) = − log(x) + bt; then we obtain the simple ODE

dbt
dt

− C = 0, bT = 0, C = r +
(µ− r)2

2σ2
.

Thus evidently Vt(x) = − log(x)−C(T − t) solves the Bellman equation, and more-

over this function is smooth on x > 0 and ∂2Vt(x)/∂x
2 > 0 as required. Furthermore,

the corresponding control is α∗(t, x) = (µ− r)/σ2, which is as regular as it gets. By

theorem 5.1.3 (and by the fact that our starting capital X0 > 0 is non-random), the

conditions of propostion 6.2.1 are met and we find that ut = (µ − r)/σ2 is indeed

the optimal control. Evidently the Kelly criterion tells us to put money in the bank,

provided that µ − r < σ2. On the other hand, if µ − r is large, it is advantageous to

borrow money from the bank to invest in stock (this is possible in the current setting

as we have chosen U = R, rather than restricting to U = [0, 1]).

6.3 Verification: indefinite time horizon

In this section and the next, we restrict ourselves to time-homogeneous control sys-

tems, i.e., we will let b and σ be independent of time t. This is not a restriction: if

we wish to add time dependence, we can simply increase the dimension of the state

space by one and consider time to be one of the states of the system. However, our

results will look a little cleaner without the explicit time dependence. As we will see,

the resulting control strategies conveniently do not depend on time either.

We thus proceed with the control system

dXu
t = b(Xu

t , ut) dt+ σ(Xu
t , ut) dWt,

1 Note that log(x) is not C2 on R; however, as a self-financed wealth process is always positive,
everything goes through as usual through localization (see the remark after the proof of Itô’s rule).
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and consider minimizing the cost functional

J [u] = E

[

∫ τu

0

w(Xu
s , us) ds+ z(Xu

τu)

]

.

Here τu = inf{t : Xu
t 6∈ S} where S ⊂ Rn is some bounded domain, and w :

S × U → R and z : ∂S → R are the running and terminal costs, respectively.

For example, an interesting class of such problems is obtained if we set w = 1 and

z = 0; then the cost is simply J [u] = E(τu), and the corresponding control problem

seeks to minimize the mean exit time from the domain S. If w = −1, on the other

hand, then we seek to postpone exiting the domain as long as possible (on average).

Proposition 6.3.1. Assume that S has compact closure S and X0 ∈ S a.s. Suppose

there is a function V : S → R that is C2 on S and satisfies (∂S is the boundary of S)

min
α∈U

{L αV (x) + w(x, α)} = 0, x ∈ S, V (x) = z(x), x ∈ ∂S.

Choose a minimum (which we have implicitly assumed to exist)

α∗(x) ∈ argmin
α∈U

{L αV (x) + w(x, α)} .

Denote by K the class of admissible strategies u such that τu <∞ a.s. and

E

[

n
∑

i=1

m
∑

k=1

∫ τu

0

∂V

∂xi
(Xu

s )σik(Xu
s , us) dW

k
s

]

= 0.

If u∗t = α∗(Xu∗

t ) defines an admissible Markov strategy in K, then J [u∗] ≤ J [u] for

any u ∈ K, and the optimal cost can be expressed as E(V (X0)) = J [u∗].

Proof. Using a simple localization argument and the assumption on u ∈ K, Itô’s rule gives

E(V (Xu
τu)) = E(V (X0)) + E

[∫ τu

0

L
usV (Xu

s ) ds

]
.

Using the Bellman equation and Xu
τu ∈ ∂S, we obtain

E(V (X0)) ≤ E
[∫ τu

0

w(Xu
s , us) ds+ z(Xu

τu)

]
= J [u].

On the other hand, we obtain equality if u = u∗, so we are done.

Example 6.3.2 (Tracking under a microscope II). We consider again the problem

of tracking a particle under a microscope, but with a slightly different premise. Most

microscopes have a field of view whose shape is a disc of some radius r around the

focal point of the microscope. In other words, we will see the particle if it is within a

distance r of the focus of the microscope, but we will have no idea where the particle

is if it is outside the field of view. Given that we begin with the particle inside the

field of view, our goal should thus be to keep the particle in the field of view as long
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as possible by moving around the slide; once we lose the particle, we might as well

give up. On the other hand, as before, we do not allow arbitrary controls: we have to

impose some sort of power constraint to keep the feedback signal sane.

Let us study the following cost. Set S = {x : |x| < r}, let τu = inf{t : eu
t 6∈ S}

(recall that et = xt + zt is the position of the particle relative to the focus), and define

J [u] = E

[

p

∫ τu

0

(us)
2 ds− q τu

]

= E

[

∫ τu

0

{p (us)
2 − q} ds

]

where p > 0 and q > 0 are constants. We assume that e0 ∈ S a.s. A control strategy

that minimizes J [u] then attempts to make τu large (i.e., the time until we lose the

particle is large), while keeping the total feedback power relatively small; the tradeoff

between these conflicting goals can be selected by playing around with p and q.

To find the optimal strategy, we try to solve the Bellman equation as usual:

0 = min
α∈R

{

σ2

2

∂2V (x)

∂x2
+ βα

∂V (x)

∂x
+ pα2 − q

}

=
σ2

2

∂2V (x)

∂x2
− q − β2

4p

(

∂V (x)

∂x

)2

with the boundary conditions V (r) = V (−r) = 0, and a minimum is attained at

α∗(x) = − β

2p

∂V (x)

∂x
.

But we can now solve the Bellman equation explicitly: it evidently reduces to a one-

dimensional ODE for ∂V (x)/∂x. Some work gives the solution

V (x) =
2pσ2

β2

[

log

(

cos

(

rβ
√
q

σ2√p

))

− log

(

cos

(

xβ
√
q

σ2√p

))]

,

while the minimum is attained at

α∗(x) = −
√

q

p
tan

(

xβ
√
q

σ2√p

)

,

provided that rβ
√
q/σ2√p is sufficiently small; in fact, we clearly need to require

2rβ
√
q < πσ2√p, as only in this case are V (x) and α∗(x) in C2 on [−r, r]. Ap-

parently this magic inequality, which balances the various parameters in our control

problem, determines whether an optimal control exists; you would have probably had

a difficult time guessing this fact without performing the calculation!

It remains to verify the technical conditions of proposition 6.3.1, i.e., that the

control strategyu∗t = α∗(et) satisfies τu∗

<∞ a.s. and the condition on the stochastic

integral (clearly u∗t is admissible, as α∗(x) is Lipschitz continuous on [−r, r]). The

finiteness of E(τu∗

) follows from lemma 6.3.3 below, while the stochastic integral

condition follows from lemma 6.3.4 below. Hence u∗t is indeed an optimal strategy.

The technical conditions of proposition 6.3.1 are not entirely trivial to check; the

following two lemmas are often helpful in this regard, and can save a lot of effort.
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Lemma 6.3.3. Let Xt be the solution of the SDE dXt = b(Xt) dt + σ(Xt) dWt,

where b and σ are assumed to be Lipschitz as usual, and suppose that X0 ∈ S a.s. for

some bounded domain S ⊂ Rn. If σ satisfies the nondegeneracy condition on S

n
∑

i,j=1

m
∑

k=1

viσik(x)σjk(x)vj ≥ γ ‖v‖2 ∀ v ∈ Rm, x ∈ S,

for some constant γ > 0, then τS = inf{t : Xt 6∈ S} satisfies E(τS) <∞.

Proof. Define the function W (x) = k − (x1 + β)2n, and calculate

LW (x) = −2n b1(x) (x1 + β)2n−1 − n(2n − 1) (x1 + β)2n−2
m∑

k=1

(σ1k(x))2.

Here k, β and n are suitable constants which we will currently choose. As S is bounded, we

can choose β ∈ R such that 0 < c1 < |x1 + β| < c2 < ∞ for all x ∈ S. Next, note that as b
is continuous on Rn it must be bounded on S; in particular, |b1(x)| < b0 for some b0 ∈ R and

all x ∈ S. Hence we can estimate, using the nondegeneracy condition,

LW (x) < {2nb0c2 − n(2n − 1)γ/2}(x1 + β)2n−2 ∀x ∈ S.

Clearly we can choose n sufficiently large so that the prefactor is bounded from above by −c3
for some c3 > 0; then we obtain LW (x) < −c3 c2n−2

1 < 0 for all x ∈ S. Finally, we can

choose k sufficiently large so that W (x) is nonnegative.

It remains to show that the existence of W implies E(τS) <∞. To this end, write

W (Xt∧τS) = W (X0) =

∫ t∧τS

0

LW (Xr) dr + martingale,

where the stochastic integral is a martingale (rather than a local martingale) as the integrand is

bounded on S. Taking the expectation and using LW (x) ≤ −c4 (c4 > 0) for x ∈ S, we find

E(W (Xt∧τS)) ≤ E(W (X0)) − c4 E(t ∧ τS).

But W is bounded on S, so we have established that E(t∧ τS) ≤ K for some K <∞ and for

all t. Letting t→ ∞ and using monotone convergence establishes the result.

Lemma 6.3.4. Let τ be a stopping time such that E(τ) <∞, and let ut be an adapted

process that satisfies |ut| ≤ K for all t ≤ τ and a K <∞. Then E[
∫ τ

0 us dWs] = 0.

Proof. Define the stochastic process

Mt =

∫ t∧τ

0

us dWs.

As τ < ∞ a.s., Mt → M∞ as t → ∞. We need to show that E(M∞) = 0. To this end,

note first that Mt is a martingale (not a local martingale), as us is bounded for s ≤ τ . Hence

E(Mt) = 0 for all t < ∞. We will show that Mn → M∞ in L2(P) (where n ∈ N), from

which the claim follows directly. To establish convergence in L2(P), compute

E((Mn −Mm)2) = E((Mn)2)−E((Mm)2) = E

[∫ n∧τ

m∧τ

(ur)
2dr

]
≤ K2

E(n∧τ −m∧τ ),

which converges to zero asm,n → ∞ by dominated convergence (use that E(τ ) <∞). Hence

Mn is a Cauchy sequence in L2(P), and thus converges in L2(P). We are done.
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6.4 Verification: infinite time horizon

We now proceed to the infinite time horizon. Little changes here, except that we have

to be careful to define a meaningful cost functional. For example, in our tracking

example on a finite time horizon, we cannot simply set the terminal time T = ∞; if

we do that, then any control strategy will have infinite cost (why?). We can avoid this

problem by adding a discounting term in the cost functional, as follows:

Jλ[u] = E

[
∫ ∞

0

e−λs w(Xu
s , us) ds

]

.

Here λ > 0 is the discounting factor. Such a cost often makes sense in economic

applications, where discounting is a natural thing to do (inflation will make one dollar

at time t be worth much less than one dollar at time zero). Now if w is bounded, or if

Xu
s does not grow too fast, then this cost is guaranteed to be finite and we can attempt

to find optimal controls as usual. Alternatively, we can average over time by setting

J [u] = lim sup
T→∞

E

[

1

T

∫ T

0

w(Xu
s , us) ds

]

,

which might make more sense in applications which ought to perform well uniformly

in time. Once again, if w does not grow too fast, this cost will be bounded.

Remark 6.4.1. It should be emphasized that these cost functionals, as well as those

discussed in the previous sections, certainly do not exhaust the possibilities! There are

many variations on this theme, and with your current intuition you should not have too

much trouble obtaining related verification theorems. For example, try to work out a

verification theorem for a discounted version of the indefinite time interval problem.

Let us now develop appropriate verification theorems for the costs Jλ[u] and J [u].

Proposition 6.4.2 (Discounted case). Assume that w(x, α) is either bounded from

below or from above. Suppose there is a V (x) in C2 such that |E(V (X0))| <∞ and

min
α∈U

{L αV (x) − λV (x) + w(x, α)} = 0,

and choose a minimum (which we implicitly assume to exist)

α∗(x) ∈ argmin
α∈U

{L αV (x) − λV (x) + w(x, α)} .

Denote by K the admissible strategies u such that e−λt E(V (Xu
t ))

t→∞−−−→ 0 and

n
∑

i=1

m
∑

k=1

∫ t

0

e−λs ∂V

∂xi
(Xu

s )σik(Xu
s , us) dW

k
s

is a martingale (rather than a local martingale), and suppose that the control u∗
t =

α∗(Xu∗

t ) defines an admissible Markov strategy which is in K. Then Jλ[u∗] ≤ Jλ[u]
for any u ∈ K, and the optimal cost can be written as E(V (X0)) = Jλ[u∗].
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Proof. Applying Itô’s rule to V (Xu
t ) e−λt and using the assumptions on u ∈ K,

E(V (X0)) − e−λt
E(V (Xu

t )) = E

[∫ t

0

e−λs{−L
usV (Xu

s ) + λV (Xu
s )} ds

]
.

Using the Bellman equation, we find that

E(V (X0)) − e−λt
E(V (Xu

t )) ≤ E
[∫ t

0

e−λsw(Xu
s , us) ds

]
.

We may assume without loss of generality thatw is either nonnegative or nonpositive; otherwise

this is easily arranged by shifting the cost. Letting t→ ∞ using monotone convergence,

E(V (X0)) ≤ E
[∫ ∞

0

e−λsw(Xu
s , us) ds

]
= Jλ[u].

But we obtain equality if we use u = u∗, so we are done.

The time-average problem has a new ingredient: the function V (x) no longer

determines the optimal cost (note that on the infinite time horizon, the optimal cost is

independent of X0; on the other hand, the control must depend on x!). We need to

introduce another free parameter for the Bellman equation to admit a solution.

Proposition 6.4.3 (Time-average case). Suppose that V (x) in C2 and η ∈ R satisfy

min
α∈U

{L αV (x) + w(x, α) − η} = 0,

and choose a minimum (which we implicitly assume to exist)

α∗(x) ∈ argmin
α∈U

{L αV (x) + w(x, α) − η} .

Denote by K the class of admissible strategies u such that

lim sup
T→∞

E(V (X0) − V (Xu
T ))

T
= 0,

and such that additionally

n
∑

i=1

m
∑

k=1

∫ t

0

∂V

∂xi
(Xu

s )σik(Xu
s , us) dW

k
s

is a martingale (rather than a local martingale), and suppose that the control u∗
t =

α∗(Xu∗

t ) defines an admissible Markov strategy which is in K. Then J [u∗] ≤ J [u] for

any u ∈ K, and the optimal cost is given by η = J [u∗].

Proof. Applying Itô’s rule to V (Xu
t ) and using the assumptions on u ∈ K, we obtain

E(V (X0) − V (Xu
T ))

T
+η = E

[
1

T

∫ T

0

{η − L
usV (Xu

s )} ds
]
≤ E

[
1

T

∫ T

0

w(Xu
s , us) ds

]
,

where we have already used the Bellman equation. Taking the limit gives

η ≤ lim sup
T→∞

E

[
1

T

∫ T

0

w(Xu
s , us) ds

]
= J [u].

But we obtain equality if we use u = u∗, so we are done.
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Some examples are in order.

Example 6.4.4 (Tracking under a microscope III). The goal is to repeat example

6.2.3 using discounted and time-average cost criteria. In particular, we consider

Jλ[u] = E

[

p

∫ ∞

0

e−λt (xt + zt)
2 dt+ q

∫ ∞

0

e−λt (ut)
2 dt

]

for the discounted cost, and we consider the time-average cost

J [u] = lim sup
T→∞

E

[

p

T

∫ T

0

(xt + zt)
2 dt+

q

T

∫ T

0

(ut)
2 dt

]

.

Let us begin by investigating the discounted cost. The Bellman equation becomes

0 = min
α∈R

{

σ2

2

∂2V (x)

∂x2
+ βα

∂V (x)

∂x
− λV (x) + px2 + qα2

}

=
σ2

2

∂2V (x)

∂x2
− β2

4q

(

∂V (x)

∂x

)2

− λV (x) + px2,

and, moreover, the minimal α is attained at

α∗(x) = − β

2q

∂V (x)

∂x
.

To solve the Bellman equation, substitute the ansatz V (x) = ax2 + b. We obtain

b =
σ2a

λ
, p− λa− β2a2

q
= 0 =⇒ a = −qλ±

√

q2λ2 + 4pqβ2

2β2
.

There are multiple solutions! Now what? The key is that every solution to the Bell-

man equation yields a candidate control α∗(x), but only one of these will satisfy the

technical conditions in the verification. Let us check this. The candidate strategies are

α∗
1(x) =

λ+
√

λ2 + 4pβ2/q

2β
x, α∗

2(x) =
λ−

√

λ2 + 4pβ2/q

2β
x.

Note that α∗
1(x) = c1x with βc1 > λ, while α∗

2(x) = −c2x with βc2 > 0 (assuming

p > 0; the case p = 0 is trivial, as then the optimal control is clearly ut = 0). But

det = βc et dt+ σdWt =⇒ d

dt
E(V (et)) = 2βcE(V (et)) − 2βbc+ aσ2.

Hence provided that E((e0)
2) < ∞, the quantity E(V (et)) grows exponentially at a

rate faster than λ for the control α∗
1, whereas E(V (et)) is bounded for the control α∗

2.

Hence α∗
2 is the only remaining candidate control. It remains to check the martingale

condition, but this follows immediately from theorem 5.1.3. Hence we conclude that

u∗t = α∗
2(et) is an optimal control for the discounted problem.
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Let us now consider the time-average problem. The Bellman equation is

0 = min
α∈R

{

σ2

2

∂2V (x)

∂x2
+ βα

∂V (x)

∂x
+ px2 + qα2 − η

}

=
σ2

2

∂2V (x)

∂x2
− β2

4q

(

∂V (x)

∂x

)2

+ px2 − η,

with the same minimal α as before. To solve the Bellman equation, substitute the

ansatz V (x) = ax2. We find that η = σ2a, while a2 = pq/β2. Once again there

are two solutions, but repeating exactly the same arguments as in the discounted case

shows that the only solution that is a viable candidate for being an optimal strategy is

α∗(x) = −
√

p

q
x.

Indeed, provided that E((e0)
2) <∞, all the conditions are satisfied and we conclude

that u∗t = α∗(et) is an optimal time-average control strategy.

Remark 6.4.5. Note that the time-average optimal control strategy coincides with the

limit of the finite time horizon optimal control as the terminal time T → ∞, as well as

with the limit of the discounted cost optimal control as the discounting factor λ → 0.

Heuristically, this is precisely what you would expect!

Remark 6.4.6. The previous example highlights that the solution to the Bellman

equation need not be unique—if there are multiple solutions, the technical conditions

of the verification theorem may tell us which one to choose! We will see this even

more dramatically in the context of optimal stopping. On the other hand, you should

realize that the optimal control strategy need not be unique; it is possible for there to

be multiple optimal strategies, though they would have to have the same cost. There

can also be no optimal strategies: we have seen plenty of examples of this already.

Example 6.4.7 (Tracking under a microscope III, cont.). In the Introduction, we

considered studying the fundamental limitations of our tracking control system. In

this context, it is of significant interest to compute the quantity

C(U) = min
u

{

lim sup
T→∞

E

[

1

T

∫ T

0

(eu
t )2 dt

]

: lim sup
T→∞

E

[

1

T

∫ T

0

u2
t dt

]

≤ U

}

,

which quantifies the best possible effectiveness of a tracking controller given a hard

constraint on the average power in the feedback signal. Note that if we define

K(U) = min
u

{

lim sup
T→∞

E

[

1

T

∫ T

0

(eu
t )2 dt

]

: lim sup
T→∞

E

[

1

T

∫ T

0

u2
t dt

]

= U

}

,

then C(U) = minU ′≤U K(U ′). Hence it suffices to compute the functionK(U).
How does one solve such a problem? The trick is to use the constant q in our

previous cost functional as a Lagrange multiplier (we can set p = 1), i.e., we consider

Jq,U [u] = lim sup
T→∞

E

[

1

T

∫ T

0

(eu
t )2 dt+

q

T

∫ T

0

u2
t dt− qU

]

.
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Then we have minu Jq,U [u] ≤ K(U) for all q > 0 (why?). Hence if we can find a

q > 0 such that this inequality becomes an equality, then we have determinedK(U).
Let us work out the details. We already established above that

min
u
Jq,U [u] =

σ2√q
β

− qU, argmin
u

Jq,U [u] = u∗ with u∗t = − et√
q
.

In particular, we can calculate explicitly (how?)

lim sup
T→∞

E

[

1

T

∫ T

0

(eu∗

t )2 dt

]

= q lim sup
T→∞

E

[

1

T

∫ T

0

(u∗t )
2 dt

]

=
σ2√q
2β

.

Hence if we set q = σ4/4β2U2, then

lim sup
T→∞

E

[

1

T

∫ T

0

(u∗t )
2 dt

]

= U, lim sup
T→∞

E

[

1

T

∫ T

0

(eu∗

t )2 dt

]

=
σ4

4β2U
,

but also minu Jq,U [u] = σ4/4β2U . Thus apparently

C(U) = min
U ′≤U

K(U ′) = min
U ′≤U

σ4

4β2U ′
=

σ4

4β2U
.

As expected, we can track better when we increase the gain β or the feedback power

U , while we track worse if the particle has a larger diffusion constant σ.

6.5 The linear regulator

One of the most important classes of stochastic optimal control problems that admit

explicit solution is the linear regulator problem. We have already seen a special case

of this theory: two of the three tracking examples in the previous sections are sim-

ple examples of a linear regulator. The linear regulator is particularly important for

applications in engineering and in the physical sciences (as opposed to financial appli-

cations which usually involve a somewhat different type of control problem; compare

with the portfolio optimization example), and is remarkably ubiquitous. These results

will become even more powerful in the next chapter, where they are combined with

filtering theory, but for the time being we will set up this problem in a general setting

under the assumption of complete observations (i.e., the control strategy is allowed to

be an arbitrary admissible functional of the system state).

The linear regulator problem aims to control the stochastic differential equation

dXu
t = A(t)Xu

t dt+B(t)ut dt+ C(t) dWt,

where A(t), B(t) and C(t) are time-dependent (but non-random) matrices of dimen-

sions n × n, n × k, and n ×m, respectively, Xu
t is the n-dimensional system state

(under the control strategy u), Wt is an m-dimensional Wiener process, and ut is the

k-dimensional control input. We consider the finite time horizon cost

J [u] = E

[

∫ T

0

{(Xu
t )∗P (t)Xu

t + (ut)
∗Q(t)ut} dt+ (Xu

T )∗R(Xu
T )

]

,
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where T < ∞ is the terminal time, P (t) and Q(t) are time-dependent (but non-

random) n × n and k × k matrices that determine the state and control running cost,

respectively, and R is a fixed (non-random) n×n matrix which determines the termi-

nal cost. Let us make the following additional assumptions.

1. E(‖X0‖2) <∞;

2. A(t), B(t), C(t), P (t), Q(t) are continuous on t ∈ [0, T ];

3. P (t), Q(t) and R are symmetric matrices (they can always be symmetrized);

4. P (t) and R are positive semidefinite for all t ∈ [0, T ];

5. Q(t) is positive definite on t ∈ [0, T ].

Our goal is to find a control strategy that minimizes J [u].

Theorem 6.5.1 (Linear regulator, finite time). Denote by {F (t)}t∈[0,T ] the unique

solution, with terminal condition F (T ) = R, of the matrix Riccati equation

d

dt
F (t) +A(t)∗F (t) + F (t)A(t) − F (t)B(t)Q(t)−1B(t)∗F (t) + P (t) = 0.

Then u∗t = −Q(t)−1B(t)∗F (t)Xu
t is an optimal control for the cost J [u].

Proof. We need to solve the Bellman equation. In the current setting, this is

0 =
∂Vt(x)

∂t
+

min
α∈Rk

{
(A(t)x+B(t)α)∗∇Vt(x) +

1

2
∇∗C(t)C(t)∗∇Vt(x) + x∗P (t)x+ α∗Q(t)α

}
,

where we set VT (x) = x∗Rx. As Q(t) is positive definite, the minimum is attained at

α∗(t, x) = −1

2
Q(t)−1B(t)∗∇Vt(x),

so the Bellman equation can be written as

0 =
∂Vt(x)

∂t
+

1

2
∇∗C(t)C(t)∗∇Vt(x)

+ x∗A(t)∗∇Vt(x) − 1

4
‖Q(t)−1/2B(t)∗∇Vt(x)‖2 + x∗P (t)x.

Let us try a value function of the form Vt(x) = x∗F (t)x+g(t), where F (t) is a time-dependent

n × n symmetric matrix and g(t) is a scalar function. Straightforward computation gives

d

dt
F (t) +A(t)∗F (t) + F (t)A(t)− F (t)B(t)Q(t)−1B(t)∗F (t) + P (t) = 0,

d

dt
g(t) + Tr[C(t)∗F (t)C(t)] = 0,

with the terminal conditions F (T ) = R and g(T ) = 0, and the associated candidate policy

α∗(t, x) = −Q(t)−1B(t)∗F (t)x.
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By well known properties of the matrix Riccati equation, see [Won68a, theorem 2.1], and our

assumptions on the various matrices that appear in the problem, the equation for F (t) has

a unique C1 solution on [0, T ]. Hence the coefficients of the controlled equation for Xu∗

t ,

with u∗
t = α∗(t,Xu∗

t ), are uniformly Lipschitz continuous, and thus by proposition 6.2.1 and

theorem 5.1.3 all the requirements for verification are satisfied. Thus we are done.

We can also investigate the linear regulator on the infinite time horizon. Let us

investigate the time-average cost (the discounted problem can also be solved, but this

is less common in applications). To this end, we consider the time-homogeneous case,

dXu
t = AXu

t dt+But dt+ C dWt,

with the associated time-average cost functional

J∞[u] = lim sup
T→∞

E

[

1

T

∫ T

0

{(Xu
t )∗PXu

t + (ut)
∗Qut} dt

]

.

Let us make the following additional assumptions.

1. E(‖X0‖2) <∞;

2. P and Q are symmetric matrices (they can always be symmetrized);

3. P is positive semidefinite and Q is positive definite;

4. (A,B) and (A∗,
√
P ) are stabilizable.

Recall that a pair of matrices (A,B) is called stabilizable if there exists a matrix K
(with the appropriate dimensions) such that all the eigenvalues of the matrixA−BK
have negative real parts. Conditions for this to be the case can be found in any good

book on linear systems theory, see, e.g., [KS72].

Our goal is to find a control strategy that minimizes J∞[u].

Theorem 6.5.2 (Linear regulator, time-average cost). Let F be a positive semidefi-

nite solution of the algebraic Riccati equationA∗F + FA− FBQ−1B∗F + P = 0.

Then u∗t = −Q−1B∗FXu
t is an optimal control for the cost J∞[u].

Proof. The Bellman equation in the time-average setting becomes

0 = min
α∈Rk

{
(Ax+Bα)∗∇V (x) +

1

2
∇∗CC∗∇V (x) + x∗Px+ α∗Qα− η

}
,

As Q is positive definite, the minimum is attained at

α∗(x) = −1

2
Q−1B∗∇V (x),

so the Bellman equation can be written as

0 =
1

2
∇∗CC∗∇V (x) + x∗A∗∇V (x) − 1

4
‖Q−1/2B∗∇V (x)‖2 + x∗Px− η.
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Let us try a function of the form V (x) = x∗Fx, where F is an n× n symmetric matrix. Then

A∗F + FA− FBQ−1B∗F + P = 0, η = Tr[C∗FC],

and the associated candidate policy becomes α∗(x) = −Q−1B∗Fx. We now invoke the

properties of the algebraic Riccati equation, see [Won68a, theorem 4.1]. By the stabilizability

assumption, there is at least one positive semidefinite solution F , such that A − BQ−1B∗F
is a stable matrix. Using the latter and the controlled equation for Xu∗

t with u∗
t = α∗(Xu∗

t ),

you can verify by explicit computation that E(V (Xu∗

t )) is bounded in time. Thus the asymp-

totic condition for verification is satisfied, while the martingale condition is clearly satisfied by

theorem 5.1.3. Thus we find that u∗
t is indeed an optimal control.

6.6 Markov chain approximation

Just like most stochastic differential equations do not admit analytic solution, most

stochastic control problems can not be solved analytically either. It is thus of interest

to develop numerical methods that can be used to solve such problems; otherwise

we are essentially restricted to the linear regulator (which is, however, widely used

in applications) and a small selection of other special cases. One could argue that

the numerical solution of stochastic control problems essentially boils down to the

numerical solution of a highly nonlinear PDE, the Bellman equation. This is indeed

one way of looking at the problem, but there is a much more probabilistic approach

that one can take as well. The goal of this section is to outline the latter method

through a couple of simple examples. A proof of convergence will unfortunately be

beyond our scope, but ample discussion of this can be found in the literature.

Remark 6.6.1. Stochastic optimal control problems suffer from the curse of dimen-

sionality, as do most problems that require the numerical computation of a function

on a high-dimensional state space. In low dimensions (e.g., one through three are

often doable) one can numerically evaluate the function on a suitably selected grid

(for finite-difference type schemes) or mesh (as in finite element methods), but the

complexity of such a discretization will grow exponentially with the dimension of the

state space. As such these methods quickly become intractable in higher dimensions,

unless some additional structure can be taken into account to simplify the problem.

Let us reexamine the indefinite time tracking problem of example 6.3.2. For sake

of demonstration, we will develop a numerical method to solve this problem; as we

have already solved the problem analytically, we will be able to check the precision of

the numerical method. Recall that the Bellman equation for this problem is given by

0 = min
α∈U

{

σ2

2

∂2V (x)

∂x2
+ βα

∂V (x)

∂x
+ pα2 − q

}

,

with the boundary conditions V (r) = V (−r) = 0. To approximate this equation, let

us discretize the interval [−r, r] into a grid Sδ = {kr/N : k = −N, . . . , N} for some

N ∈ N. For notational simplicity, we denote by δ = r/N the spacing between the

grid points. We now introduce the following finite-difference approximations:

∂2V (x)

∂x2
≈ V (x+ δ) − 2V (x) + V (x − δ)

δ2
,

∂V (x)

∂x
≈ V (x+ δ) − V (x− δ)

2δ
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for x ∈ S′
δ = Sδ\{−r, r} (the interior of Sδ). This particular choice for the dis-

cretization of the differential operators is not arbitrary: we will shortly see that the

careful choice of discretization results in a particularly sensible approximation.

Let us call the approximate value function Vδ(x). Then

0 = min
α∈Uδ

{

σ2

2

Vδ(x+ δ) − 2Vδ(x) + Vδ(x − δ)

δ2

+ βα
Vδ(x+ δ) − Vδ(x− δ)

2δ
+ pα2 − q

}

, x ∈ S′
δ,

which becomes after a little rearranging

Vδ(x) = min
α∈Uδ

{

1

2
(Vδ(x+ δ) + Vδ(x− δ))

+
βαδ

2σ2
(Vδ(x + δ) − Vδ(x − δ)) +

pα2δ2

σ2
− qδ2

σ2

}

, x ∈ S′
δ,

where for x 6∈ S′
δ we obviously choose the boundary conditions Vδ(r) = Vδ(−r) = 0.

Let us now define the (2N − 1) × (2N − 1)-dimensional matrix P α with entries

Pα
i,i+1 =

1

2
+
βαδ

2σ2
, Pα

i,i−1 =
1

2
− βαδ

2σ2
, Pα

i,j = 0 for j 6= i+ 1, i− 1.

Provided that we choose our approximate control set Uδ ⊂ [−σ2/βδ, σ2/βδ], we see

that the entries of Pα are nonnegative and
∑

j P
α
i,j = 1 for j 6= 1, 2N − 1. Evidently,

Pα is the transition probability matrix for a discrete time Markov chain xα
n with val-

ues in Sδ and with absorbing boundaries. But there is more: as we show next, our

approximation to the Bellman equation is itself the dynamic programming equation

for an optimal control problem for the Markov chain xα
n! Hence our finite-difference

approximation is much more than an approximation to a PDE: it approximates our

entire control problem by a new (discretized) optimal control problem.

Proposition 6.6.2. Denote by xu
n the controlled Markov chain on Sδ with

P(xu
n = (k ± 1)δ|xu

n−1 = kδ) =
1

2
± βδ

2σ2
α(n, kδ), k = −N + 1, . . . , N − 1,

P(xu
n = ±r|xu

n−1 = ±r) = 1, P(x0 ∈ S′
δ) = 1,

where the feedback control strategy u is assumed to be of the Markov type un =
α(n, xu

n−1). Denote by σu = min{n : xu
n = ±r}, and introduce the cost functional

K[u] = E

[

σu
∑

n=1

(p (un)2 − q)
δ2

σ2

]

.

Denote by Vδ(x) the solution to the equation above, byα∗(x) the associated minimum,

and u∗n = α∗(xu∗

n−1). If E(σu∗

) < ∞, then K[u∗] ≤ K[u] for any Markov control u
with values in Uδ such that E(σu) <∞. Moreover, we can writeK[u∗] = E(Vδ(x0)).
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The proof should look vaguely familiar!

Proof. For x ∈ S′
δ , note that we can write

E(Vδ(x
u
n)|xu

n−1 = x) =
1

2
(Vδ(x+ δ)+Vδ(x− δ))+

βδ

2σ2
α(n, x) (Vδ(x+ δ)−Vδ(x− δ)).

Hence we obtain, using the equation for Vδ(x) on x ∈ S′
δ ,

E(Vδ(x
u
n−1) − Vδ(x

u
n)|xu

n−1 = x) ≤ (p(α(n, x))2 − q)
δ2

σ2
.

Multiplying both sides by Ix∈S′
δ
, setting x = xu

n−1 and taking the expectation, we find that

E

(
(Vδ(x

u
n−1) − Vδ(x

u
n)) Ixu

n−1
∈S′

δ

)
≤ E

[
Ixu

n−1
∈S′

δ
(p(un)2 − q)

δ2

σ2

]
.

Summing over n up to some T ∈ N, we find that

E

(
T∑

n=1

(Vδ(x
u
n−1) − Vδ(x

u
n)) Ixu

n−1∈S′
δ

)
≤ E

[
T∑

n=1

Ixu
n−1∈S′

δ
(p(un)2 − q)

δ2

σ2

]
,

or, rewriting this expression in a familiar form,

E(Vδ(x0)) ≤ E
[
Vδ(x

u
T∧σu) +

T∧σu∑

n=1

(p(un)2 − q)
δ2

σ2

]
.

As Uδ is bounded and as E(σu) < ∞, we can now let T → ∞ by dominated conver-

gence to obtain E(Vδ(x0)) ≤ K[u]. But repeating the same arguments with u∗, we find that

E(Vδ(x0)) = K[u∗]. Thus u∗ is indeed an optimal strategy, and the proof is complete.

Now that we have discretized our control problem, how do we solve the discrete

problem? There are various ways of doing this, many of which are detailed in the

books [Kus71, KD01]. One of the simplest is the Jacobi method, which works as

follows. Start with an arbitrary choice for V 0
δ (x). Now define, for any n ∈ N,

V n
δ (x) = min

α∈Uδ

{

1

2
(V n−1

δ (x+ δ) + V n−1
δ (x− δ))

+
βαδ

2σ2
(V n−1

δ (x+ δ) − V n−1
δ (x − δ)) +

pα2δ2

σ2
− qδ2

σ2

}

, x ∈ S′
δ,

where we impose the boundary conditions V n−1
δ (±r) = 0 for every n. The minimum

in this iteration is easily seen to be attained at (setting Uδ = [−σ2/βδ, σ2/βδ])

α∗
δ,n(x) =

(

− β

4pδ
(V n−1

δ (x+ δ) − V n−1
δ (x− δ))

)

∨
(

−σ
2

βδ

)

∧ σ2

βδ
.

It is not difficult to prove that the iteration for V n
δ (x) will converge to some function

Vδ(x) as n→ ∞, see [Kus71, theorem 4.4], and this limit is indeed the value function

for our approximate optimal control problem, while the limit of α∗
δ,n(x) as n → ∞

is the optimal control for our approximate optimal control problem. Other methods
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Figure 6.1. Numerical solution of example 6.3.2 with r = .5, β = .7, p = q = 1, and σ = .5.

From left to right, the interval was discretized into 6, 11, 21 and 51 points. The top plots show

Vδ(x) (dashed line) and the analytic solution for V (x) (solid line). The bottom plots show the

discrete optimal strategy α∗
δ (x) (dashed line) and the analytic solution for α∗(x) (solid line).

The dotted horizontal lines are the upper and lower bounds on the discrete control set Uδ .

often converge faster (e.g., the Gauss-Seidel method [Kus71, theorem 4.6]) and are

not much more difficult to implement, but the Jacobi method will do for our purposes.

The result of implementing this procedure on a computer is shown in figure 6.1, to-

gether then the analytical solution obtained in example 6.3.2, for a particular choice of

parameters. For all but the coarsest discretization, both the discretized value function

and the optimal control are quite close to their analytic solutions; in fact, it appears

that not too fine a grid already gives excellent performance!

Remark 6.6.3. We will not give a proof of convergence here, but you can imagine

why some form of Markov chain approximation would be a good thing to do. The

convergence proof for this procedure does not rely at all on showing that the solution

Vδ(x) converges to the solution V (x) of the continuous Bellman equation. Instead,

one proceeds by showing that the Markov chain xu
n converges as δ → 0, in a suitable

sense, to the controlled diffusion Xu
t . One can then show that the optimal control

policy for xu
n also converges, in a suitable sense, to an optimal control policy for the

diffusion Xu
t , without invoking directly the continuous time verification theorems.

The fact that all the objects in these approximations are probabilistic—and that every

discretized problem is itself an optimal control problem—is thus a key (and quite

nontrivial) idea. For detailed references on this topic, see section 6.7.

Remark 6.6.4. The finite-difference method is only a tool to obtain a suitable Markov

chain approximation for the original problem. The fact that this approximation has its

origins in a finite-difference method is not used in the convergence proofs; in fact, any

Markov chain that satisfies a set of “local consistency” conditions suffices, though

some approximations will converge faster (as δ → 0) than others. Even the finite-
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difference scheme is not unique: there are many such schemes that give rise to Markov

chain approximations (though there are also many which do not!). In particular, one

can obtain an approximation without the constraint on Uδ by using one-sided differ-

ences for the derivatives, provided their sign is chosen correctly; on the other hand,

the central difference approximation that we have used is known to converge faster in

most cases (see [KD01, chapter 5] for details).

To demonstrate the method further, let us discuss another very simple example.

Example 6.6.5 (Inverted pendulum). Consider a simple pendulum in one dimen-

sion, which experiences random forcing and is heavily damped. We use the model

dθu
t = c1 sin(θu

t ) dt− c2 cos(θu
t )ut dt+ σ dWt,

where θt is the angle relative to the up position (θ = 0), c1, c2, σ > 0 are constants,

and we have allowed for a control input ut of the “pendulum on a cart” type (the

control is ineffective when the pendulum is horizontal). Starting in the down posi-

tion (θ = π), we would like to flip the pendulum to the up position as quickly as

possible—with an angular precision ε > 0, say—while minimizing the total control

power necessary to achieve this task. We thus introduce the stopping time and cost

τu = inf{t : θu
t ≤ ε or θu

t ≥ 2π − ε}, J [u] = E

[

∫ τu

0

{p (us)
2 + q} ds

]

,

where p, q > 0 are constants that determine the tradeoff between minimizing the

inversion time and minimizing the necessary power. The Bellman equation becomes

0 = min
α∈U

{

σ2

2

∂2V (x)

∂x2
+ (c1 sin(x) − c2 cos(x)α)

∂V (x)

∂x
+ pα2 + q

}

for x ∈ ]ε, 2π − ε[, with the boundary conditions V (ε) = V (2π − ε) = 0.

We proceed to approximate the Bellman equation using the same finite-difference

approximation used in the previous example. This gives, after some manipulation,

Vδ(x) = min
α∈Uδ

{

1

2
(Vδ(x+ δ) + Vδ(x− δ)) +

pα2δ2

σ2
+
qδ2

σ2

+
δ

2σ2
(c1 sin(x) − c2 cos(x)α)(Vδ(x+ δ) − Vδ(x− δ))

}

, x ∈ S′
δ,

where we have set δ = (π− ε)/N , Sδ = {π+ k(π− ε)/N : k = −N, . . . , N}, S ′
δ =

Sδ\{ε, 2π−ε}, and we impose the boundary conditions Vδ(ε) = Vδ(2π−ε) = 0. We

now need to choose the control interval Uδ so that the coefficients in the approximate

Bellman equation are transition probabilities, i.e., we need to make sure that

δ

2σ2
|c1 sin(x) − c2 cos(x)α| ≤ 1

2
∀α ∈ Uδ .

For example, we can set Uδ = [−G,G] with G = σ2/c2δ − c1/c2, provided that we

require δ to be sufficiently small that the constant G is positive.
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Figure 6.2. Numerical solution of example 6.6.5 with ε = .25, c1 = c2 = .5, p = q = 1, and

σ = .5. The interval was discretized into 201 points (N = 100). The left plot shows the value

function V (x); the right plot shows the optimal control α∗(x).

Next, we define the Jacobi iterations, starting from any V 0
δ (x), by

V n
δ (x) = min

α∈Uδ

{

1

2
(V n−1

δ (x+ δ) + V n−1
δ (x− δ)) +

pα2δ2

σ2
+
qδ2

σ2

+
δ

2σ2
(c1 sin(x) − c2 cos(x)α)(V n−1

δ (x + δ) − V n−1
δ (x − δ))

}

,

and note that the minimum is in fact attained at

α∗
δ,n(x) =

(

c2
4pδ

cos(x) (V n−1
δ (x+ δ) − V n−1

δ (x− δ))

)

∨ (−G) ∧G.

Little remains but to implement the method, the result of which is shown in figure 6.2.

Remark 6.6.6. We have only discussed approximation of the indefinite time control

problems in one dimension. The method extends readily to multiple dimensions, pro-

vided (as always) that sufficient care is taken to choose appropriate finite differences,

and that sufficient computational power is available. This type of method is also ex-

tremely flexible in that it extends to a wide variety of control problems, and is certainly

not restricted to the indefinite time problem. However, the latter has the nice property

that it is naturally restricted to a bounded domain. For other costs this need not be the

case, so that one has to take care to truncate the state space appropriately. Of course,

any grid-based numerical method will suffer from the same problem.

6.7 Further reading

There are several good textbooks on stochastic optimal control in continuous time.

For detailed treatments of the subject, check out the books by Fleming and Rishel
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[FR75], Fleming and Soner [FS06], Yong and Zhou [YZ99] or Krylov [Kry80]. A

recent review article with many further references is Borkar [Bor05]. A nice recent

book with a strong emphasis on verification theorems is Øksendal and Sulem [ØS05].

Finally, Hanson [Han07] gives a non-mathematical introduction to the subject with an

emphasis on applications and computational methods.

Readers familiar with optimal control in the deterministic setting would likely be

quick to point out that dynamic programming is not the only way to go; in fact, meth-

ods based on Pontryagin’s maximum principle are often preferable in the deterministic

setting. Such methods also exist in the stochastic case; see Yong and Zhou [YZ99] for

an extensive discussion and for further references. To date, the dynamic programming

approach has been more successful in the stochastic case than the maximum principle

approach, if only for technical reasons. The maximum principle requires the solution

of an SDE with a terminal condition rather than an initial condition, but whose solu-

tion is nonetheless adapted—a feat that our SDE theory certainly cannot accomplish!

On the other hand, the dynamic programming approach requires little more than the

basic tools of the trade, at least in the simplest setting (as we have seen).

The martingale dynamic programming principle gives a rather attractive proba-

bilistic spin to the dynamic programming method; it is also useful in cases where

there is insufficient regularity (the value function is not “nice enough”) for the usual

approach to work. A lucid discussion of the martingale approach can be found in the

book by Elliott [Ell82]; an overview is given by Davis in [Dav79].

Lemma 6.3.3, which guarantees that the exit time from a bounded set has finite

expectation (under a nondegeneracy condition), is taken from [Has80, section III.7].

Robin [Rob83] gives a nice overview of stochastic optimal control problems with

time-average cost. The book by Davis [Dav77] gives an excellent introduction to

linear stochastic control theory (i.e., the linear regulator and its relatives).

Markov chain approximations in stochastic control are developed extensively in

the books by Kushner [Kus77] and by Kushner and Dupuis [KD01]. A nice overview

can be found in Kushner [Kus90]. In this context, it is important to understand the

optimal control of discrete time, discrete state space Markov chains; this is treated in

detail in Kushner [Kus71] and in Kumar and Varaiya [KV86]. Kushner and Dupuis

[KD01] and Kushner [Kus71] detail various algorithms for the solution of discrete

stochastic optimal control problems, including the simple by effective Jacobi and

Gauss-Seidel methods. The convergence proofs for the Markov chain approximation

itself rely heavily on the theory of weak convergence, see the classic book by Billings-

ley [Bil99], Ethier and Kurtz [EK86], and yet another book by Kushner [Kus84].

A different approach to numerical methods for stochastic optimal control prob-

lems in continuous time is direct approximation of the Bellman PDE. Once a suitable

numerical method has been obtained, one can then attempt to prove that its solution

converges in some sense to a solution (in the viscosity sense) of the continuous Bell-

man equation. See, for example, the last chapter of Fleming and Soner [FS06].

One of the most intriguing aspects of optimal stochastic control theory is that it

can sometimes be applied to obtain results in other, seemingly unrelated, areas of

mathematics. Some selected applications can be found in Borell [Bor00] (geometric

analysis), Sheu [She91] (heat kernel estimates), Dupuis and Ellis [DE97] and Boué

and Dupuis [BD98] (large deviations), Fleming and Soner [FS06] (singular perturba-



6.7. Further reading 170

tion methods), and in Fleming and Mitter [FM83] and Mitter and Newton [MN03]

(nonlinear filtering). Dupuis and Oliensis [DO94] discuss an interesting application

to three-dimensional surface reconstruction from a two-dimensional image.

To date, the most important areas of application for optimal stochastic control

are mathematical finance and engineering. An excellent reference for financial appli-

cations is the well-known book by Karatzas and Shreve [KS98]. In engineering, the

most important part of the theory remains (due to the fact that it is tractable) stochastic

control of linear systems. However, this theory goes far beyond the linear regulator;

for one example of this, see the recent article by Petersen [Pet06].
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7
Filtering Theory

Filtering theory is concerned with the following problem. Suppose we have some

signal process—a stochastic process Xt—which we cannot observe directly. Instead,

we are given an observation process Yt which is correlated with Xt; we will restrict

ourselves to the important special case of “signal plus white noise” type observations

dYt = h(Xt) dt + σ dWt, where Wt is a Wiener process. Given that by time t
we can only observe {Ys : s ≤ t}, it becomes necessary to estimate Xt from the

observations Ys≤t. For any function f , we have already seen that the best estimate, in

the mean square sense, of f(Xt) given Ys≤t, is given by the conditional expectation

πt(f) ≡ E(f(Xt)|FY
t ), where FY

t = σ{Ys : s ≤ t} (see proposition 2.3.3).

The goal of the filtering problem is to find an explicit expression for πt(f) in terms

of Ys≤t; in particular, we will seek to express πt(f) as the solution of a stochastic dif-

ferential equation driven by Yt. This is interesting in itself: it leads to algorithms that

allow us to optimally estimate a signal in white noise, which is important in many ap-

plications. In addition, we will see that filtering also forms an integral part of stochas-

tic optimal control in the case where the feedback signal in only allowed to depend on

noisy observations (which is the case in many applications), rather than assuming that

we can precisely observe the state of the system (which we have done throughout the

previous chapter). Before we can tackle any of these problems, however, we need to

take a closer look at some of the properties of the conditional expectation.

7.1 The Bayes formula

In your undergraduate probability course, you likely encountered two types of condi-

tioning. The first type is the calculation of conditional expectations for finite-valued

random variables; this idea was developed in section 2.1, and we have seen that it is

a special case of the general definition of the conditional expectation. The second ap-

171
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proach is for continuous random variables with probability densities; as we have not

yet discussed conditional expectations in this setting, let us take a moment to show

how this idea relates to the general definition of the conditional expectation.

Example 7.1.1 (Conditioning with densities). Consider two random variablesX,Y
on some probability space (Ω,F ,P), such that X and Y both take values in the inter-

val [0, 1]. We will assume that X and Y possess as joint density p(x, y); by this we

mean that for any bounded measurable function f : [0, 1]× [0, 1] → R, we can write

E(f(X,Y )) =

∫ 1

0

∫ 1

0

f(x, y) p(x, y) dx dy.

In your undergraduate course, you likely learned that the “conditional expectation” of

f(X,Y ), given Y = y (y ∈ [0, 1]), is given by

E(f(X,Y )|Y = y) =

∫ 1

0 f(x, y) p(x, y) dx
∫ 1

0
p(x, y) dx

.

This is often justified by analogy with the discrete case: if X,Y take discrete values

x1, . . . , xm and y1, . . . , yn, rather than continuous values x, y ∈ [0, 1], then (why?)

E(f(X,Y )|Y = yj) =

∑m
i=1 f(xi, yj) pij
∑m

i=1 pij
, pij = P(X = xi and Y = yj).

On the other hand, it is not at all clear that the quantity E(f(X,Y )|Y = y) is even

meaningful in the continuous case—after all, P(Y = y) = 0 for any y ∈ [0, 1]! (This

is necessarily true as, by our assumption that p(x, y) exists, the law of Y is absolutely

continuous with respect to the uniform measure on [0, 1].)
To make mathematical sense of this construction, consider the more meaningful

expression (which is similarly the natural analog of the discrete case)

E(f(X,Y )|Y ) =

∫ 1

0 f(x, Y ) p(x, Y ) dx
∫ 1

0
p(x, Y ) dx

≡Mf (Y ).

We claim that the random variable Mf (Y ), defined in this way, does indeed satisfy

the Kolmogorov definition of the conditional expectation. To verify this, it suffices to

show that E(E(f(X,Y )|Y )u(Y )) = E(f(X,Y )u(Y )) for any bounded measurable

u (after all, the indicator function IA is of this form for any A ∈ σ{Y }). But

E(Mf (Y )u(Y )) =

∫ 1

0

∫ 1

0

Mf (y)u(y) p(x, y) dx dy

=

∫ 1

0

∫ 1

0
f(x, y) p(x, y) dx
∫ 1

0 p(x, y) dx
u(y)

[
∫ 1

0

p(x, y) dx

]

dy = E(f(X,Y )u(Y )),

which is precisely what we set out to show.
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A trivial but particularly interesting case of this construction occurs for the density

p(x, y) = p(x)q(y), i.e., when X and Y are independent, X has density p(x) and Y
has density q(y). In this case, we find that the conditional expectation is given by

E(f(X,Y )|Y ) =

∫ 1

0

f(x, Y ) p(x) dx.

Evidently, when two random variables are independent, conditioning on one of the

random variables simply corresponds to averaging over the other. You should con-

vince yourself that intuitively, this makes perfect sense! In fact, we have already used

this idea in disguise: have another look at the proof of lemma 3.1.9.

The conclusion of the previous example provides a good excuse for introductory

courses not to introduce measure theory as the cornerstone of probability. However,

the fundamental idea that underlies this example becomes much more powerful (and

conceptually clear!) when interpreted in a measure-theoretic framework. Let us thus

repeat the previous example, but from a measure-theoretic point of view.

Example 7.1.2 (Conditioning with densities II). Consider the space Ω = [0, 1] ×
[0, 1], endowed with its Borel σ-algebra F = B([0, 1])×B([0, 1]) and some probabil-

ity measure P. Denote by Y : Ω → [0, 1] the canonical random variable Y (x, y) = y,

and let Z be any integrable random variable on Ω. Beside P, we introduce also the

product measure Q = µ0 × µ0, where µ0 is the uniform measure on [0, 1].
Now suppose that the measure P is absolutely continuous with respect to Q. Then

EP(Z) = EQ

(

Z
dP

dQ

)

=

∫ 1

0

∫ 1

0

Z(x, y)
dP

dQ
(x, y) dx dy,

where we have expressed the uniform measure in the usual calculus notation. Clearly

dP/dQ is the density p(x, y) of the previous example, and (by the Radon-Nikodym

theorem) the existence of p(x, y) is precisely the requirement that P � Q.

We now have two probability measures P and Q. Ultimately, we are interested in

computing the conditional expectation EP(Z|Y ). It is not immediately obvious how

to do this! On the other hand, under the measure Q, the computation of the conditional

expectation EQ(Z|Y ) is particularly simple. Let us consider this problem first. We

claim that for any integrable random variable Z (i.e., EQ(|Z|) <∞), we can write

EQ(Z|Y )(x, y) =

∫

[0,1]

Z(x, y)µ0(dx) =

∫ 1

0

Z(x, y) dx.

To be precise, we should first verify that this random variable is in fact measurable—

this is indeed the case by Fubini’s theorem. Let us now check Kolmogorov’s definition

of the conditional expectation. First, note that σ{Y } = {Y −1(A) : A ∈ B([0, 1])} =
{[0, 1] × A : A ∈ B([0, 1])}. Hence for any S ∈ σ{Y }, the indicator function
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IS(x, y) = IS(y) is only a function of y. Therefore, we find that for any S ∈ σ{Y },

EQ(IS EQ(Z|Y )) =

∫

Ω

{

IS(y)

∫

[0,1]

Z(x, y)µ0(dx)

}

Q(dx, dy) =

∫

[0,1]

{

IS(y)

∫

[0,1]

Z(x, y)µ0(dx)

}

µ0(dy) = EQ(IS Z),

where we have used Fubini’s theorem to write the repeated integral as a product inte-

gral. But this is precisely the Kolmogorov definition—so the claim is established.

Apparently the computation of EQ(Z|Y ) is more or less trivial. If only we were

interested in the measure Q! Unfortunately, in real life we are interested in the mea-

sure P, which could be much more complicated than Q (and is most likely not a

product measure). Now, however, we have a cunning idea. As P � Q, we know

that one can express expectations under P as expectations under Q by inserting the

Radon-Nikodym derivative: EP(Z) = EQ(Z dP/dQ). Perhaps we can do the same

with conditional expectations? In other words, we can try to express conditional ex-

pectations under P in terms of conditional expectations under Q, which, one would

think, should come down to dropping in Radon-Nikodym derivatives in the appropri-

ate places. If we can make this work, then we can enjoy all the benefits of Q: in

particular, the simple formula for EQ(Z|Y ) would apply, which is precisely the idea.

The question is thus: how do conditional expectations transform under a change

of measure? Let us briefly interrupt our example develop the relevant result.

Lemma 7.1.3 (Bayes formula). Let (Ω,F ,P) be a probability space, and P � Q for

some probability measure Q. Then for any σ-algebra G ⊂ F and for any integrable

random variable X (i.e., we require EP(|X |) <∞), the Bayes formula holds:

EP(X |G) =
EQ(X dP/dQ | G)

EQ(dP/dQ | G)
P-a.s.

This expression is well-defined, as P(EQ(dP/dQ | G) = 0) = 0.

Remark 7.1.4. Recall that the conditional expectation EP(X |G) is only defined up

to P-a.s. equivalence—hence we can never ask for a stronger result than one which

holds P-a.s. This is a more fundamental issue than a mere technicality. Note that

P � Q only states that Q(A) = 0 implies P(A) = 0, not necessarily the other way

around. There could thus be two versions of EP(X |G) which are distinct with positive

probability under the measure Q! Evidently it is important to specify, when we deal

with conditional expectations with respect to different measures, under which mea-

sure we are “almost sure” (a.s.) of our statements. Fortunately, in many applications

(including the ones in this chapter) Q � P as well, so that this is no longer an issue.

Proof. First, let us verify that the conditional expectations are defined, i.e., we need to check in-

tegrability. EP(|X|) <∞ by assumption, while EQ(|dP/dQ|) = 1 (as dP/dQ is nonnegative).

Finally, EQ(|X dP/dQ|) = EP(|X|) <∞, so all the quantities at least make sense.
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The rest is essentially an exercise in using the elementary properties of the conditional

expectation: you should verify that you understand all the steps! Let S ∈ G be arbitrary, and

note that EQ(IS EQ(X dP/dQ | G)) = EQ(IS X dP/dQ) = EP(IS X) = EP(IS EP(X|G)) =
EQ(IS dP/dQEP(X|G)) = EQ(IS EQ(dP/dQ | G)EP(X|G)). But this holds for any S ∈ G,

so we find that EQ(X dP/dQ | G) = EQ(dP/dQ | G)EP(X|G) Q-a.s. (why?).

We would like to divide both sides by EQ(dP/dQ | G), so we must verify that this quantity

is nonzero (it is clearly nonnegative). Define the set S = {ω : EQ(dP/dQ | G)(ω) = 0},

and note that S ∈ G as the conditional expectation is G-measurable by definition. Then 0 =
EQ(IS EQ(dP/dQ | G)) = EQ(IS dP/dQ) = P(S). Hence we can go ahead with our division

on the set Sc, which has unit probability under P. The result follows directly.

We can now complete our example. Using the Bayes formula, we find that P-a.s.

EP(Z|Y )(x, y) =
EQ(Z dP/dQ |Y )(x, y)

EQ(dP/dQ |Y )(x, y)
=

∫

[0,1] Z(x, y) dP
dQ

(x, y)µ0(dx)
∫

[0,1]
dP
dQ

(x, y)µ0(dx)
,

where we have substituted in our simple expression for EQ(Z|Y ). But this is pre-

cisely the density expression for the conditional expectation! When viewed in this

light, there is nothing particularly fundamental about the textbook example 7.1.1: it

is simply a particular example of the behavior of the conditional expectation under

an absolutely continuous change of measure. The new measure µ0 × µ0, called the

reference measure, is chosen for convenience; under the latter, the computation of the

conditional expectations reduces to straightforward integration.

The generalization of example 7.1.1 to the measure-theoretic setting will pay off

handsomely in the solution of the filtering problem. What is the benefit of abstraction?

In general, we wish to calculate EP(X |G), where G need not be generated by a simple

random variable—for example, in the filtering problem G = σ{Ys : s ≤ t} is gener-

ated by an entire continuous path. On the space of continuous paths, the concept of a

“density” in the sense of example 7.1.1 does not make sense; there is no such thing as

the uniform measure (or even a Lebesgue measure) on the space of continuous paths!

However, in our more abstract setup, we are free to choose any reference measure we

wish; the important insight is that what really simplified example 7.1.1 was not the

representation of the densities with respect to the uniform measure per se, but that

under the uniform measure X and Y were independent (which allowed us to reduce

conditioning under the reference measure to simple integration). In the general case,

we can still seek a reference measure under whichX and G are independent—we even

already have the perfect tool for this purpose, the Girsanov theorem, in our toolbox

waiting to be used! The abstract theory then allows us to proceed just like in example

7.1.1, even though we are no longer operating within its (restrictive) setting.

Example 7.1.5. Before developing a more general theory, let us demonstrate these

ideas in the simplest filtering example: the estimation of a constant in white noise.

We work on the space (Ω,F , {Ft},P), on which are defined a (one-dimensional)

Ft-Wiener process Wt and an F0-measurable random variable X0 (which is thus by

definition independent of Wt). We consider a situation in which we cannot observe

X0 directly: we only have access to noisy observations of the form yt = X0 + κ ξt,
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where ξt is white noise. As usual, we will work in practice with the integrated form

of the observations to obtain a sensible mathematical model (see the Introduction and

section 3.3 for discussion); i.e., we set Yt = X0t + κWt. The goal of the filtering

problem is to compute πt(f) ≡ EP(f(X0)|FY
t ), where FY

t = σ{Ys : s ≤ t} is the

observation filtration, for a sufficiently large class of functions f ; then πt(f) is the

optimal (least mean square) estimate of f(X0), given the observations up to time t.
To tackle this problem, we will essentially repeat example 7.1.1 in this setting. As

we are conditioning on entire observation paths, we do not have a uniform measure

available to us; nonetheless, we can find a reference measure Q under which X0 and

Yt are independent, at least on finite time intervals! This is just Girsanov’s theorem.

Lemma 7.1.6. Suppose Λ−1
T below satisfies EP(Λ−1

T ) = 1, and define QT � P by

dQT

dP
= exp

(

−κ−1X0WT − 1

2
κ−2(X0)

2T

)

≡ Λ−1
T .

Then under QT the random variableX0 has the same law as under P, and the process

{κ−1Yt}t∈[0,T ] is an Ft-Wiener process independent of X0. Moreover, P � QT with

dP

dQT
= exp

(

κ−2X0YT − 1

2
κ−2(X0)

2T

)

= ΛT .

Proof. By Girsanov’s theorem (see also remark 4.5.4), {κ−1Yt}t∈[0,T ] is an Ft-Wiener process

under QT . But X0 is F0-measurable, so {κ−1Yt}t∈[0,T ] must be independent of X0 under

QT . To show that X0 has the same law under QT , note that Λ−1
t is a martingale under P (as

it is a nonnegative local martingale, and thus a supermartingale, with constant expectation);

hence EQT (f(X0)) = EP(f(X0)Λ
−1
T ) = EP(f(X0)EP(Λ

−1
T |F0)) = EP(f(X0)) for every

bounded measurable f , which establishes the claim. Finally, to show that P � QT , note that

ΛT is (trivially) the corresponding Radon-Nikodym derivative. We are done.

The following corollary follows trivially from the Bayes formula.

Corollary 7.1.7. If EP(|f(X0)|) <∞, then the filtered estimate is given by

πt(f) ≡ EP(f(X0)|FY
t ) =

EQt (f(X0)Λt|FY
t )

EQt (Λt|FY
t )

.

As Yt and X0 are independent under Qt, one would expect that conditional ex-

pectations under Qt can again be replaced by straightforward integration. The corre-

sponding argument is essentially identical to the one used previously.

Lemma 7.1.8. If EP(|f(X0)|) <∞, then

σt(f) ≡ EQt (f(X0)Λt|FY
t ) =

∫

R

f(x) exp

(

κ−2xYt −
1

2
κ−2x2 t

)

µX0(dx),

where µX0 is the law of the random variable X0, and πt(f) = σt(f)/σt(1).

Proof. It suffices to check that EQt(IA EQt(f(X0)Λt|FY
t )) = EQt(IAf(X0)Λt) for every

A ∈ FY
t . But this follows by an argument identical to the one employed in lemma 3.1.9.
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This is all we need to treat some specific examples!

Example 7.1.9 (Finite state case). Suppose that X0 takes the values x1, . . . , xn with

probabilities p1, . . . , pn. Then we can write, for any function f ,

πt(f) =

∑n
i=1 pi f(xi) exp(κ−2xiYt − 1

2κ
−2x2

i t)
∑n

i=1 pi exp(κ−2xiYt − 1
2κ

−2x2
i t)

.

Example 7.1.10 (Gaussian case). For Gaussian X0 with mean µ and variance σ2,

σt(f) =
1

σ
√

2π

∫ ∞

−∞

f(x) eκ−2xYt−κ−2x2t/2e−(x−µ)2/2σ2

dx.

This expression can be evaluated explicitly for f(x) = x and f(x) = x2, for example.

The calculation is a little tedious, but gives the following answer:

EP(X0|FY
t ) =

κ2µ+ σ2Yt

κ2 + σ2t
, EP((X0)

2|FY
t ) − (EP(X0|FY

t ))2 =
κ2σ2

κ2 + σ2t
.

Remark 7.1.11. Evidently, in the current setting (regardless of the law of X0), the

optimal estimate πt(f) depends on the observation history only through the random

variable Yt and in an explicitly computable fashion. This is an artefact, however, of

this particularly simple model; in most cases the optimal estimate has a complicated

dependence on the observation history, so that working directly with the Bayes for-

mula, as we have done here, is not as fruitful (in general the Bayes formula does not

lend itself to explicit computation). Instead, we will use the Bayes formula to obtain

a stochatic differential equation for πt(f), which can subsequently be implemented

recursively using, e.g., an Euler-Maruyama type method (at least in theory).

7.2 Nonlinear filtering for stochastic differential equations

The filtering problem

We work on (Ω,F , {Ft},P). Consider a signal process of the form

Xt = X0 +

∫ t

0

b(s,Xs, us) ds+

∫ t

0

σ(s,Xs, us) dWs,

i.e., the signal which we would like to observe is the solution of a (possibly con-

trolled) n-dimensional stochastic differential equation driven by the m-dimensional

Ft-Wiener process Wt. However, we do not have direct access to this signal; instead,

we can only see the measurements taken by a noisy sensor, whose output is given by

Yt =

∫ t

0

h(s,Xs, us) ds+

∫ t

0

K(s) dBs,

where Bt is a p-dimensional Ft-Wiener process independent of Wt. This model is of

the “signal plus white noise” type: we observe essentially yt = h(t, ut, Xt)+K(t) ξt,
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where ξt is white noise, but we work with the integrated form to obtain a sensible

mathematical model (see the Introduction and section 3.3 for further discussion). In

the equations above b : [0,∞[ × Rn × U → Rn, σ : [0,∞[ × Rn × U → Rn×m,

h : [0,∞[ × Rn × U → Rp, and K : [0,∞[ → Rp×p are measurable maps, U ⊂ Rq ,

and ut is presumed to be adapted to the observation filtration FY
t = σ{Ys : s ≤ t}.

Remark 7.2.1. This is a rather general model; one often does not need this full-blown

scenario! On the other hand, we are anticipating applications in control, so we have

already included a control input. Note, however, that the control may only depend

(causally) on the observation process; we can no longer use the state of the systemXt

to determineut! This rules out the control strategies developed in the previous chapter,

and we must reconsider our control problems in this more complicated setting.

The goal of the filtering problem is to compute, on the basis of the observations

{Ys : s ≤ t}, the (least mean square) optimal estimates πt(f) ≡ EP(f(Xt)|FY
t ), at

least for a sufficiently large class of functions f . To keep matters as simple as possible

we will be content to operate under rather stringent technical conditions:

1. The equation for (Xt, Yt) has a unique Ft-adapted solution;

2. K(t) is invertible for all t and K(t),K(t)−1 are locally bounded;

3. b, σ, h are bounded functions.

The last condition is particularly restrictive, and can be weakened significantly (see

section 7.7 for detailed references). This tends to become a rather technical exercise.

By restricting ourselves to bounded coefficients, we will be able to concentrate on the

essential ideas without being bogged down by a large number of technicalities.

Unfortunately, one of the most important examples of the theory, the Kalman-

Bucy filter, does not satisfy condition 3. We will circumvent the technicalities by

treating this case separately, using a different approach, in the next section.

The Kallianpur-Striebel formula

Our first order of business is essentially to repeat example 7.1.1 in the current setting;

that is, we will find an explicit representation of the filtered estimates πt(f) in terms of

a particularly convenient reference measure Q. How should we choose this measure?

The discussion in the previous section suggests that we should try to choose Q such

that Xt and FY
t are independent under Q. The presence of the control ut makes this

difficult, but fortunately it will suffice to make X0, Wt and Yt independent.

Lemma 7.2.2. Define the measure QT � P by setting

dQT

dP
= exp

[

−
∫ T

0

(K(t)−1h(t,Xt, ut))
∗dBt −

1

2

∫ T

0

‖K(t)−1h(t,Xt, ut)‖2dt

]

.

Then under QT , the process (Wt, Ȳt)t∈[0,T ] is an (m + p)-dimensional Ft-Wiener

process (so, in particular, independent of X0), where

Ȳt =

∫ t

0

K(s)−1h(s,Xs, us) ds+Bt =

∫ t

0

K(s)−1 dYs.
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Moreover, P � QT with

dP

dQT
= exp

[

∫ T

0

(K(t)−1h(t,Xt, ut))
∗dȲt −

1

2

∫ T

0

‖K(t)−1h(t,Xt, ut)‖2 dt

]

.

Remark 7.2.3. In filtering theory, we will regularly encounter stochastic intergrals

with respect to processes such as Yt, Ȳt. As Ȳt is a Wiener process under QT , we can

construct these integrals under QT by our usual approach. We then indeed find, e.g.,

∫ t

0

F ∗
s dȲs =

∫ t

0

F ∗
s K(s)−1h(s,Xs, us) ds+

∫ t

0

F ∗
s dBs,

as one would naively think, by virtue of the fact that QT and P are mutually absolutely

continuous; this is easily verified when Ft is simple and bounded, and can be extended

to any integrable Ft through the usual process of taking limits and localization. Al-

ternatively, one can set up a more general integration theory that is not restricted to

Wiener process integrands, so that these integrals can be constructed under both mea-

sures. As this is an introductory course, we will not dwell on these technical issues;

we will be content to accept the fact that stochastic integrals are well-behaved under

absolutely continuous changes of measure (see, e.g., [Pro04] or [RY99]).

Proof. By conditions 2 and 3, Novikov’s condition is satisfied. We can thus apply Girsanov’s

theorem to the (m+p)-dimensional process (dWt, dȲt) = dYt = Ht dt+dWt, where Wt =
(Wt, Bt) and Ht = (0, K(t)−1(t,Xt, ut)). We find that under QT , the process {Yt}t∈[0,T ]

is an Ft-Wiener process; in particular, Wt and Ȳt are independent Wiener processes and both

are independent of X0 (as X0 is F0-measurable, and these are Ft-Wiener processes).

Now note that P� QT follows immediately from the fact that dQT /dP is strictly positive,

where dP/dQT = (dQT /dP)
−1 (which is precisely the expression in the statement of the

lemma). After all, EQT
(Z (dQT /dP)

−1) = EP(Z dQT /dP (dQT /dP)
−1) = EP(Z).

Applying the Bayes formula is now straightforward. We will frequently write

Λt = exp

[

∫ T

0

(K(t)−1h(t,Xt, ut))
∗dȲt −

1

2

∫ T

0

‖K(t)−1h(t,Xt, ut)‖2 dt

]

,

which is a martingale under QT for t ≤ T (Novikov). The Bayes formula now gives:

Corollary 7.2.4. If EP(|f(Xt)|) <∞, the filtered estimate πt(f) is given by

πt(f) = EP(f(Xt)|FY
t ) =

EQt(f(Xt)Λt|FY
t )

EQt(Λt|FY
t )

=
σt(f)

σt(1)
,

where we have defined the unnormalized estimate σt(f) = EQt(f(Xt)Λt|FY
t ).

This expression is called the Kallianpur-Striebel formula. In fact, Kallianpur and

Striebel went a little further: they actually expressed the unnormalized conditional

expectation σt(f) as an integral over a part of the probability space, just like we did

in the previous section, thus making the analogy complete (see, e.g., [LS01a, section

7.9], for the relevant argument). However, we will find is just as easy to work directly

with the conditional expectations, so we will not bother to make this extra step.
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Remark 7.2.5. Note that Girsanov’s theorem implies Qt(A) = QT (A) for any A ∈
Ft; in particular, EQt(f(Xt)Λt|FY

t ) = EQT (f(Xt)Λt|FY
t ) = EQT (f(Xt)ΛT |FY

t )
(why?). We will occasionally use this, e.g., in the proof proposition 7.2.6 below.

What progress have we made? Quite a lot, as a matter of fact, though it is not

immediately visible. What we have gained by representing πt(f) in this way is that

the filtering problem is now expressed in terms of a particularly convenient measure.

To proceed, we can turn the crank on our standard machinery: the Itô rule et al.

The Zakai equation

For the time being, we will concentrate not on πt(f), but on its unnormalized counter-

part σt(f). Our next order of business is to find an explicit expression for σt(f). This

is not too difficult; we simply apply Itô’s rule to the process f(Xt)Λt, then try to com-

pute the conditional expectation of this expression (making use of the independence

properties under Qt). Once we have accomplished this, the remainder is easy: another

application of the Itô rule gives an expression for the normalized quantity πt(f).

Proposition 7.2.6 (Zakai equation). Let f be C2 and suppose that f and all its

derivatives are bounded. Then we can write

σt(f) = σ0(f) +

∫ t

0

σs(L
u
s f) ds+

∫ t

0

σs(K(s)−1hu
sf)∗dȲs,

where σ0(f) = EP(f(X0)) and (hu
s f)(x) = h(s, x, us)f(x).

Proof. Using Itô’s rule, we find that

f(Xt)Λt = f(X0) +

∫ t

0

Λs L
u
s f(Xs) ds+

∫ t

0

Λs (∇f(Xs))
∗σ(s,Xs, us) dWs

+

∫ t

0

Λs f(Xs) (K(s)−1h(s,Xs, us))
∗dȲs.

By our boundedness assumptions, all the integrands are in L2(µt×Qt). Hence we can compute

EQt (f(Xt)Λt|FY
t ) = EQt (f(X0)|FY

t ) +

∫ t

0

EQt(Λs L
u
s f(Xs)|FY

s ) ds

+

∫ t

0

EQt(Λs K(s)−1h(s,Xs, us) f(Xs)|FY
s )∗dȲs,

where we have used lemma 7.2.7 below. It remains to note that X0 and FY
t are independent

under Qt, so EQt(f(X0)|FY
t ) = EQt(f(X0)) = EP(f(X0)).

We have used the following elementary result.

Lemma 7.2.7. Let Wt, Vt be independent Ft-Wiener processes, let F· ∈ L2(µt × P)
be Ft-adapted, and define the sub-filtration FW

t = σ{Ws : s ≤ t} ⊂ Ft. Then

E

[
∫ t

0

Fs dWs

∣

∣

∣

∣

FW
t

]

=

∫ t

0

E(Fs|FW
s ) dWs, E

[
∫ t

0

Fs dVs

∣

∣

∣

∣

FW
t

]

= 0.
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Moreover, a similar result holds for the time integral:

E

[
∫ t

0

Fs ds

∣

∣

∣

∣

FW
t

]

=

∫ t

0

E(Fs|FW
s ) ds.

Proof. Choose any A ∈ FW
t , and note that by the Itô representation theorem

IA = P(A) +

∫ t

0

Hs dWs

for some FW
t -adapted process H· ∈ L2(µt × P). Let us now apply the polarization identity

2E(It(H)It(F )) = E((It(H) + It(F ))2) − E(It(H)2) − E(It(F )2) and the Itô isometry:

E

[
IA

∫ t

0

Fs dWs

]
= E

[∫ t

0

Fs Hs ds

]
= E

[∫ t

0

E(Fs|FW
s )Hs ds

]
,

where we have used Fubini’s theorem and the tower property of the conditional exepctation in

the last step. But by applying the same steps with Fs replaced by E(Fs|FW
s ), we find that

E

[
IA

∫ t

0

Fs dWs

]
= E

[
IA

∫ t

0

E(Fs|FW
s ) dWs

]
for all A ∈ FW

t .

Hence the first statement follows by the Kolmogorov definition of the conditional expectation.

The second statement follows in the same way. To establish the last statmement, note that

E

[
IA

∫ t

0

Fs ds

]
= E

[
IA

∫ t

0

E(Fs|FW
t ) ds

]
= E

[
IA

∫ t

0

E(Fs|FW
s ) ds

]

for A ∈ FW
t , where the first equality follows by using Fubini’s theorem and the tower property

of the conditional expectation, and the second equality follows as Fs, being Fs-measurable, is

independent of FW
t,s = σ{Wr −Ws : s ≤ r ≤ t}, and FW

t = σ{FW
s ,FW

t,s}.

The Kushner-Stratonovich equation and the innovations process

Now that we have an equation for σt(f), the equation for πt(f) is simply a matter of

applying Itô’s rule. Let us see what happens.

Proposition 7.2.8 (Kushner-Stratonovich equation). Let f be C2 and suppose that

f and all its derivatives are bounded. Then we can write

πt(f) = π0(f) +

∫ t

0

πs(L
u
s f) ds+

∫ t

0

{πs(K(s)−1hu
sf) − πs(f)πs(K(s)−1hu

s )}∗(dȲs − πs(K(s)−1hu
s ) ds),

where π0(f) = EP(f(X0)) and (hu
s f)(x) = h(s, x, us)f(x).

Proof. σt(1) is strictly positive P-a.s. (by lemma 7.1.3), and hence also QT -a.s. (t ≤ T ) as

QT � P. Hence we can apply Itô’s rule to compute σt(f)(σt(1))
−1. Straightforward compu-

tations and application of the Kallianpur-Striebel formula yield the desired expression.
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In the Kushner-Stratonovich equation, the interesting process

B̄t = Ȳt −
∫ t

0

πs(K(s)−1hu
s ) ds

just popped up while applying Itô’s rule; B̄t is called the innovations process. It has

an important property that can be extremely useful in control applications.

Proposition 7.2.9. Under P, the innovation B̄t is an FY
t -Wiener process, so we have

πt(f) = π0(f) +

∫ t

0

πs(L
u
s f) ds+

∫ t

0

{K(s)−1(πs(h
u
s f) − πs(f)πs(h

u
s ))}∗dB̄s.

Proof. B̄t is clearly FY
t -adapted and has continuous sample paths. To prove that it is a Wiener

process, we proceed essentially as in the proof of Girsanov’s theorem: we will show that

EP(e
iα∗(B̄t−B̄s)+iβZ) = e−‖α‖2(t−s)/2

EP(e
iβZ) for any FY

s -measurable Z.

It suffices to prove that EP(e
iα∗(B̄t−B̄s)|FY

s ) = e−‖α‖2(t−s)/2, as this statement then follows.

To proceed, let us apply Itô’s rule to eiα∗B̄t . This gives

eiα∗B̄t = eiα∗B̄s +

∫ t

s

eiα∗B̄r iα∗dBr

+

∫ t

s

eiα∗B̄r

[
iα∗K(r)−1(h(r,Xr, ur) − πr(h

u
r )) − ‖α‖2

2

]
dr.

We now condition on FY
s . We claim that the stochastic integral vanishes; indeed, it is an

Ft-martingale, so vanishes when conditioned on Fs, and FY
s ⊂ Fs establishes the claim.

Moreover, note that EP(e
iα∗B̄r EP(h(r,Xr, ur)|FY

r )|FY
s ) = EP(e

iα∗B̄rh(r,Xr, ur)|FY
s ),

as eiα∗B̄r is FY
r -measurable and FY

s ⊂ FY
r . Hence as in the proof of lemma 7.2.7, we find

EP(e
iα∗B̄t |FY

s ) = eiα∗B̄s − ‖α‖2

2

∫ t

s

EP(e
iα∗B̄r |FY

s ) dr.

But this equation has the unique solution EP(e
iα∗B̄t |FY

s ) = eiα∗B̄s−‖α‖2(t−s)/2.

We will postpone providing an application of this result until section 7.5.

How to compute the filtered estimates?

We have now obtained a stochastic integral expression—the Kushner-Stratonovich

equation—for πt(f). However, as you have most likely already noticed, this is not a

stochastic differential equation for πt(f). After all, the integrands in this equation de-

pend on πt(L
u
t f), πt(h

u
s f), etc., which can not be expressed (in general) as functions

of πt(f)! Hence this equation can not be used by itself to compute πt(f).
You might hope that if we choose the functions f correctly, then the filtering equa-

tions would close. For example, suppose there is a collection f1, . . . , fn, for which

we can show that πt(L
u
t fi), πt(h

u
t fi) and πt(h

u
t ) can again be expressed as functions

of πt(f1), . . . , πt(fn). The Kushner-Stratonovich equation for (πt(f1), . . . , πt(fn))



7.2. Nonlinear filtering for stochastic differential equations 183

would then reduce to an SDE which can be computed, e.g., using the Euler-Maruyama

method. Unfortunately, it turns out that this is almost never the case—in most cases no

finite-dimensional realization of the filtering equation exists. There is one extremely

important exception to this rule: when b, h are linear, σ is constant and X0 is a Gaus-

sian random variable, we obtain the finite-dimensional Kalman-Bucy filter which is

very widely used in applications; this is the topic of the next section. However, a

systematic search for other finite-dimensional filters has unearthed few examples of

practical relevance (see, e.g., [HW81, Mit82, Par91, HC99]).1

Of course, it would be rather naive to expect that the conditional expectations

EP(f(Xt)|FY
t ) can be computed in a finite-dimensional fashion. After all, in most

cases, even the unconditional expectation EP(f(Xt)) can not be computed by solving

a finite-dimensional equation! Indeed, the Itô rule gives

d

dt
EP(f(Xt)) = EP(L u

t f(Xt)),

which depends on EP(L u
t f(Xt)); and the equation for EP(L u

t f(Xt)) will depend on

EP(L u
t L u

t f(Xt)) (if b, σ, f are sufficiently smooth), etc., so that we will almost cer-

tainly not obtain a closed set of equations for any collection of functions f1, . . . , fn.

(Convince yourself that the case where b, f are linear and σ is constant is an excep-

tion!) To actually compute EP(f(Xt)) (in the absence of control, for example), we

have two options: either we proceed in Monte Carlo fashion by averaging a large num-

ber of simulated (random) sample paths ofXt, or we solve one of the PDEs associated

with the SDE for Xt: the Kolmogorov forward or backward equations. The latter are

clearly infinite-dimensional, while in the former case we would need to average an

infinite number of random samples to obtain an exact answer for EP(f(Xt)).
We are faced with a similar choice in the filtering problem. If we are not in the

Kalman-Bucy setting, or one which is sufficiently close that we are willing to lin-

earize our filtering model (the latter gives rise to the so-called extended Kalman filter

[Par91]), we will have to find some numerically tractable approximation. One popular

approach is of the Monte Carlo type; the so-called particle filtering methods, roughly

speaking, propagate a collection of random samples in such a way that the probability

of observing these “particles” in a certain set A is an approximation of πt(IA) (or of a

related object). Particle methods are quite effective and are often used, e.g., in track-

ing, navigation, and robotics applications. Unfortunately the details of such methods

are beyond our scope, but see [Del04, CL97] for discussion and further references.

Another approach is through PDEs. For simplicity, let us consider (on a formal

level) the filtering counterpart of the Kolmogorov forward equation. We will assume

that the filtering problem possesses a conditional density, i.e., that there is a random

density pt(x), which is only a functional of the observations FY
t , such that

πt(f) = EP(f(Xt)|FY
t ) =

∫

f(x) pt(x) dx.

1 An important class of finite-dimensional nonlinear filters with applications, e.g., in speech recogni-
tion, are those for which the signal Xt is not the solution of a stochastic differential equation, as in this
section, but a finite-state Markov process [Won65, LS01a]. We will discuss a special case in section 7.4.
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Formally integrating by parts in the Kushner-Stratonovich equation, we obtain

dpt(x) = (L u
t )∗pt(x) dt+

pt(x){K(t)−1(h(t, x, ut) − πt(h
u
t ))}∗ (dȲt − πt(K(t)−1hu

t ) dt),

which is a nonlinear stochastic partial integro-differential equation. It is not an easy

task to make mathematical sense of this equation; how should the equation even be

interpreted, and do such equations have solutions? For details on such questions see,

e.g., [Kun90]. If we wish to work with PDEs, however, it usually makes more sense

to work with the Zakai equation instead. Assuming the existence of qt(x) such that

σt(f) =

∫

f(x) qt(x) dx, pt(x) =
qt(x)

∫

qt(x) dx
,

we can formally obtain the Zakai equation in PDE form:

dqt(x) = (L u
t )∗qt(x) dt+ qt(x) (K(t)−1h(t, x, ut))

∗dȲt.

At least this equation is a linear stochastic partial differential equation, a much more

well-posed object. It is still much too difficult for us, but the corresponding theory can

be found, e.g., in [Par82, Par91, Ben92, Kun90]. The Zakai PDE can now be the start-

ing point for further approximations, e.g., Galerkin-type methods [GP84], spectral

methods [LMR97], or projection onto a finite-dimensional manifold [BHL99].

Finally, there is a third approach which is similar to the method that we have

already encountered in the control setting. We can approximate our signal process by a

discrete time finite-state Markov process, and introduce an appropriate approximation

to the observation process; this can be done, e.g., by introducing a suitable finite-

difference approximation, as we did in the last chapter. The optimal filter for the

approximate signal and observations is a finite-dimensional recursion, which can be

shown to converge to the solution of the optimal filtering problem [Kus77, KD01].

For a recent review on numerical methods in nonlinear filtering, see [Cri02].

Example 7.2.10. For sake of example, and as we already have some experience with

such approximations, let us discuss an extremely simple Markov chain approximation

for a nonlinear filtering problem. This is not necessarily the method of choice for such

a problem, but will serve as a simple demonstration.

Consider a signal process θt on the circle which satisfies

dθt = ω dt+ ν dWt (mod 2π),

where θ0 is uniformly distributed on the circle. We consider the observations process

dYt = sin(θt) dt+ κ dBt,

and our goal is to estimate θt given FY
t . Such a model can be used in phase tracking

problems (e.g., in a phase lock loop), where the goal is to estimate the drifting phase

of an oscillating signal (with carrier frequency ω) from noisy observations [Wil74].



7.2. Nonlinear filtering for stochastic differential equations 185

To proceed, it is easiest to first approximate the signal process θt by a Markov

chain, so that we can subsequently formulate a filtering problem for this Markov chain.

To this end, let us consider the Kolmogorov backward equation for θt:

∂ u(t, θ)

∂t
=
ν2

2

∂2u(t, θ)

∂θ2
+ ω

∂ u(t, θ)

∂θ
, u(0, x) = f(x),

so that u(t,X0) = E(f(Xt)|X0). Substituting our usual finite-difference approxima-

tions on the right, and using a forward difference for the time derivative, we obtain

u(t+∆, θ) ≈
[

1 − ∆ν2

δ2

]

u(t, θ)+
∆

2δ

[

ν2

δ
+ ω

]

u(t, θ+δ)+
∆

2δ

[

ν2

δ
− ω

]

u(t, θ−δ),

where ∆ is the time step size, δ = π/N is the discretization step on the circle, i.e.,

we discretize ]0, 2π] into Sδ = {kδ : k = 1, . . . , 2N}, and circular boundary condi-

tions are implied. But this expression is easily seen to be the Kolmogorov backward

equation for the Markov chain xn with values in Sδ and with transition probabilities

P(xn = kδ|xn−1 = kδ) = 1−∆ν2

δ2
, P(xn = (k±1)δ|xn−1 = kδ) =

∆

2δ

[

ν2

δ
± ω

]

,

provided that ∆, δ are sufficiently small that these values are in the interval [0, 1].
Now that we have obtained our approximate Markov chain, how can we use this to

approximate the optimal filter? Rather than using the Zakai or Kushner-Stratonovich

equations, let us use directly the Kallianpur-Striebel formula. In the current case, we

can write the optimal filter as πt(f) = σt(f)/σt(1), where

σt(f) = EQt

[

f(Xt) exp

(
∫ t

0

κ−2 sin(θt) dYt −
1

2

∫ t

0

κ−2 sin2(θt) dt

)
∣

∣

∣

∣

FY
t

]

.

To approximate this expression, we replace θt by the approximate Markov chain xn,

and we replace the integrals by Euler-Maruyama type sums. This gives

σn∆(f) ≈ EQ

[

f(xn) eκ−2∑n−1
m=0{sin(xm) (Y(m+1)∆−Ym∆)− 1

2 sin2(xm)∆}
∣

∣

∣
FY

n∆

]

,

where Q is the measure under which xn and FY
t are independent. A weak con-

vergence argument [KD01, Kus77] guarantees that this approximate expression does

indeed converge, as ∆, δ → 0, to the exact unnormalized estimate σn∆(f).

Remark 7.2.11. Consider the following discrete time filtering problem: the signal is

our Markov chain xn, while at time n we observe yn = sin(xn) ∆+κ ξn, where ξn is

a Gaussian random variable with mean zero and variance ∆, independent of the signal

process. Using the Bayes formula, you can easily verify that

E(f(xn)|Fy
n) =

EQ(f(xn)Λn|Fy
n)

EQ(Λn|Fy
n)

, Λn = eκ−2∑n−1
m=0{sin(xm) ym− 1

2 sin2(xm)∆},

where Fy
n = σ{ym : m ≤ n} and Q is the measure under which {xn} and {yn}

are independent. Evidently our approximate filter is again a filter for an approximate

problem, just like the Markov chain approximations in the stochastic control setting.
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Figure 7.1. Numerical solution of example 7.2.10 with ω = ν = .5, κ = .1, ∆ = .05 and

N = 25, on the interval t ∈ [0, 20]. The top plot shows θt (blue line) and the approximate

conditional distribution π̃n (shaded background), while the bottom plot shows the observation

increments Y(m+1)∆ − Ym∆ used by the approximate filter (red). The blue and red plots were

computed by the Euler-Maruyama method with a time step much smaller than ∆.

To compute the approximate filter recursively, note that

σ̃n(f) =

EQ

[

EQ(f(xn)|xn−1) e
κ−2∑n−1

m=0{sin(xm) (Y(m+1)∆−Ym∆)− 1
2 sin2(xm) ∆}

∣

∣

∣
FY

n∆

]

,

where we have written σ̃n(f) for the approximate expression for σn∆(f). To see this,

it suffices to note that as Yt is independent of xn under Q, and as xn has the same law

under P and Q, we can write EQ(f(xn)|σ{FY
n∆,Fx

n−1}) = EP(f(xn)|xn−1) using

the Markov property (where Fx
n = σ{xm : m ≤ n}); the claim follows directly using

the tower property of the conditional expectation. But then evidently

σ̃n(f) = σ̃n−1

(

EP(f(xn)|xn−1 = · ) eκ−2{sin( · ) (Y(n)∆−Y(n−1)∆)− 1
2 sin2( · )∆}

)

,

which is the discrete time analog of the Zakai equation. We can now turn this into a

closed-form recursion as follows. Define σ̃k
n = σ̃n(I{kδ}), denote by P the matrix

with elements Pk` = P(xn = `δ|xn−1 = kδ), and by Λ(y) the diagonal matrix with

(Λ(y))kk = eκ−2{sin(kδ) y−sin2(kδ) ∆/2}. Then you can easily verify that

σ̃n = Λ(Yn∆ − Y(n−1)∆)P ∗σ̃n−1, π̃n =
Λ(Yn∆ − Y(n−1)∆)P ∗π̃n−1

∑

k(Λ(Yn∆ − Y(n−1)∆)P ∗π̃n−1)k
,

where π̃k
n = σ̃n(I{kδ})/σ̃n(1) is the approximate conditional probability of finding θt

in the kth discretization interval at time n∆, given the observations up to that time.

A numerical simulation is shown in figure 7.1; that the approximate filter provides

good estimates of the signal location is evident. A curious effect should be pointed

out: note that whenever the signal crosses either π/2 or 3π/2, the conditional distribu-

tion briefly becomes bimodal. This is to be expected, as these are precisely the peaks
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of the observation function sin(x); convince yourself that around these peaks, the fil-

ter cannot distinguish purely from the observations in which direction the signal is

moving! This causes the conditional distribution to have “ghosts” which move in the

opposite direction. However, the “ghosts” quickly dissipate away, as prolonged mo-

tion in the opposite direction is incompatible with the signal dynamics (of course, the

effect is more pronounced if ω is close to zero). Thus the filter does its job in utilizing

both the information gained from the observations and the known signal dynamics.

7.3 The Kalman-Bucy filter

In the previous section we considered the nonlinear filtering problem in a rather gen-

eral setting. We have seen that this problem can be solved explicitly, but that imple-

mentation of the resulting equations is often computationally intensive. Nonetheless,

this can be well worth the effort in a variety of applications (but may be too restrictive

in others). On the other hand, in this and the next section we will discuss two impor-

tant cases where the optimal filtering equations can be expressed in finite-dimensional

closed form. These filters are consequently easily implemented in practice, and are

found in a wide range of applications throughout science and engineering (particularly

the Kalman-Bucy filter, which is the topic of this section).

The linear filtering problem

We will consider the case where b, h are linear and σ is constant, i.e.,

dXt = A(t)Xt dt+B(t)ut dt+ C(t) dWt,

dYt = H(t)Xt dt+K(t) dBt.

HereA(t), B(t), C(t),H(t), andK(t) are non-random matrices of dimensions n×n,

n× k, n×m, p× n, and p× p, respectively, and ut is a k-dimensional control input

which is presumed to be FY
t -adapted. We will make the following assumptions:

1. X0 is a Gaussian random variable with mean X̂0 and covariance P̂0;

2. The equation for (Xt, Yt) has a unique Ft-adapted solution;

3. K(t) is invertible for all t;

4. A(t), B(t), C(t), H(t),K(t),K(t)−1 are continuous.

The goal of the linear filtering problem is to compute the conditional mean X̂t =
E(Xt|FY

t ) and error covariance P̂t = E((Xt − X̂t)(Xt − X̂t)
∗). We will prove:

Theorem 7.3.1 (Kalman-Bucy). Under suitable conditions on the control ut,

dX̂t = A(t)X̂t dt+B(t)ut dt+ P̂t(K(t)−1H(t))∗dB̄t,

dP̂t

dt
= A(t)P̂t + P̂tA(t)∗ − P̂tH(t)∗(K(t)K(t)∗)−1H(t)P̂t + C(t)C(t)∗,

where dB̄t = K(t)−1(dYt −H(t)X̂t dt) is the innovations Wiener process.
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What conditions must be imposed on the controls will be clarified in due course;

however, the theorem holds at least for non-randomut which is locally bounded (open

loop controls), and for sufficiently many feedback controls that we will be able to solve

the partial observations counterpart of the linear regulator problem (section 7.5).

In principle it is possible to proceed as we did in the previous section, i.e., by

obtaining the Zakai equation through the Kallianpur-Striebel formula. The problem,

however, is that the change of measure Λt is generally not square-integrable, so we

will almost certainly have trouble applying lemma 7.2.7. This can be taken care of by

clever localization [Par91] or truncation [Ben92] arguments. We will take an entirely

different route, however, which has an elegance of its own: we will exploit the fact that

the conditional expectation is the least squares estimate to turn the filtering problem

into an optimal control problem (which aims to find an estimator which minimizes

the mean square error). The fundamental connection between filtering and control

runs very deep (see section 7.7 for references), but is particularly convenient in the

Kalman-Bucy case due to the special structure of the linear filtering problem.

Before we embark on this route, let us show that theorem 7.3.1 does indeed follow

from the previous section, provided that we are willing to forgo technical precision.

The easiest way to do this is to consider the density form of the Zakai equation,

σt(f) ≡
∫

f(x) qt(x) dx, dqt(x) = (L u
t )∗qt(x) dt+ qt(x) (K(t)−1h(t, x))∗dȲt.

In the linear case, this becomes

dqt(x) = qt(x) (K(t)−1H(t)x)∗dȲt

+





1

2

n
∑

i,j=1

(C(t)C(t)∗)ij ∂qt(x)

∂xi∂xj
−

n
∑

i=1

∂

∂xi
((A(t)x +B(t)ut)

iqt(x))



 dt.

You can easily verify, by explicit computation, that

qt(x) = Ct exp

(

−1

2
(x− X̂t)

∗P̂−1
t (x− X̂t)

)

is a solution to the Zakai equation, where Ct is an appropriately chosen non-random

function and X̂t, P̂t are as given in theorem 7.3.1. Evidently the conditional density

of Xt is Gaussian with mean X̂t and covariance P̂t (we say that the filtering model

is conditionally Gaussian), from which theorem 7.3.1 follows directly. To make this

approach precise, however, formidable technical problems need to be overcome—

does the Zakai equation hold when b and h are unbounded, under what conditions does

the Zakai PDE hold, and when are the solutions to these equations unique? (Without

the latter, we may have found a solution to the Zakai equation that does not coincide

with the optimal filter!) These questions can all be resolved [Ben92, Par91], but, as

already announced, we will take a different approach to obtain the result.

Throughout this section we will shamelessly exploit the following lemma.
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Lemma 7.3.2. Denote by Φs,t the unique (non-random) matrix that solves

d

dt
Φs,t = A(t) Φs,t (t > s), Φs,s = I,

where I is the identity matrix as usual. Then we can write

Xt = Φ0,tX0 +

∫ t

0

Φs,tB(s)us ds+

∫ t

0

Φs,tC(s) dWs.

Proof. It is elementary that Φs,t = Φ0,t(Φ0,s)
−1. Hence the claim is that we can write

Xt = Φ0,t

[
X0 +

∫ t

0

(Φ0,s)
−1B(s)us ds+

∫ t

0

(Φ0,s)
−1C(s) dWs

]
.

But this is easily verified by Itô’s rule, so we are done.

The uncontrolled case

We will begin by considering the case where there is no control, i.e., we assume until

further notice that ut = 0. As it turns out, the linear filtering problem has special

structure that will allow us to easily reinsert the controls at the end of the day, so it

is convenient not to bother with them in the beginning. In the absence of control, the

linear filtering problem has a very special property: (Xt, Yt) is a Gaussian process.

This has an important consequence, which will simplify matters considerably.

Lemma 7.3.3. If Xn → X in L2, and Xn is a Gaussian random variable for every

n, then X is a Gaussian random variable.

Proof. Note that E(eik∗Xn) = eik∗µn−k∗Pnk/2, where µn and Pn are the mean and covari-

ance of Xn. As Xn → X in L2, we find that µn → µ and Pn → P , where µ and P are the

mean and covariance ofX (which are finite asX ∈ L2). But E(eik∗Xn) → E(eik∗X) as eik∗x

is bounded and continuous, so E(eik∗X) = eik∗µ−k∗Pk/2. Hence X is Gaussian.

Lemma 7.3.4. The finite dimensional distributions of (Xt, Yt) are Gaussian.

Proof. Obvious from lemma 7.3.2 and the previous lemma (where ut = 0).

Why does this help? Recall that we want to compute E(Xt|FY
t ); in general, this

could be an arbitrarily complicated measurable functional of the observation sample

paths {Ys : s ≤ t}. However, it is a very special consequence of the Gaussian property

of (Xt, Yt) that E(Xt|FY
t ) must be a linear functional of {Ys : s ≤ t} (in a sense to

be made precise). This will make our life much simpler, as we can easily parametrize

all linear functionals of {Ys : s ≤ t}; it then suffices, by the least squares property

of the conditional expectation (proposition 2.3.3), to search for the linear functional L
that minimizes the mean square error X̂ i

t = argminL E((X i
t −L(Y[0,t]))

2).

Lemma 7.3.5. There exists a non-random Rn×p-valued function G(t, s) such that

E(Xt|FY
t ) = E(Xt) +

∫ t

0

G(t, s)H(s)(Xs − E(Xs)) ds+

∫ t

0

G(t, s)K(s) dBs,

where
∫ t

0
‖G(t, s)‖2ds <∞. Thus E(Xt|FY

t ) is a linear functional of {Ys : s ≤ t}.
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Proof. Define the processes

X̃t = Xt − E(Xt), Ỹt =

∫ t

0

H(s)X̃s dt+

∫ t

0

K(s) dBs.

Clearly FY
t = F Ỹ

t , (X̃t, Ỹt) is a Gaussian process, and we wish to prove that

E(X̃t|F Ỹ
t ) =

∫ t

0

G(t, s) dỸs =

∫ t

0

G(t, s)H(s)X̃s dt+

∫ t

0

G(t, s)K(s) dBs.

Let us first consider a simpler problem which only depends on a finite number of random

variables. To this end, introduce the σ-algebra G` = σ{Yk2−`t −Y(k−1)2−`t : k = 1, . . . , 2`},

and note that FY
t = σ{G` : ` = 1, 2, . . .} (as Yt has continuous sample paths, so only depends

on its values in a dense set of times). Define also the p2`-dimensional random variable

Ỹ ` = (Ỹ2−`t, Ỹ2·2−`t − Ỹ2−`t, . . . , Ỹt − Ỹ(1−2−`)t),

so that E(X̃t|G`) = E(X̃t|Ỹ `). But (X̃t, Ỹ
`) is a (p2` + n)-dimensional Gaussian random

variable, and in particular possesses a joint (Gaussian) density with respect to the Lebesgue

measure. It is well known how to condition multivariate Gaussians, so we will not repeat the

computation (it is simply a matter of applying example 7.1.1 to the Gaussian density, and per-

forming explicit integrations); the result is as follows: if we denote by ΣXX , ΣY Y the covari-

ance matrices of X̃t and Ỹ `, and by ΣXY the covariance between X̃t and Ỹ `, thenE(X̃t|Ỹ `) =
E(X̃t) + ΣXY (ΣY Y )−1(Ỹ ` − E(Ỹ `)) (if ΣY Y is singular, take the pseudoinverse instead).

But for us E(X̃t) = E(Ỹ `) = 0, so we conclude that E(X̃t|Ỹ `) = ΣXY (ΣY Y )−1Ỹ `.

Evidently E(X̃t|Ỹ `) can be written as a linear combination of the increments of Ỹ ` with

deterministic coefficients. In particular, we can thus write

E(X̃t|G`) =

∫ t

0

G`(t, s) dỸs =

∫ t

0

G`(t, s)H(s)X̃s dt+

∫ t

0

G`(t, s)K(s) dBs,

where s 7→ G`(t, s) is a non-random simple function which is constant on the intervals s ∈
[(k − 1)2−`t, k2−`t[. To proceed, we would like to take the limit as ` → ∞. But note that

E(X̃t|G`) → E(X̃t|FY
t ) in L2 by Lévy’s upward theorem (lemma 4.6.4). Hence the remainder

is essentially obvious (see [LS01a, lemma 10.1] for more elaborate reasoning).

We can now proceed to solve the filtering problem. Our task is clear: out of all

linear functionals of the form defined in the previous lemma, we seek the one that

minimizes the mean square error. We will turn this problem into an optimal control

problem, for which G(t, s) in lemma 7.3.5 is precisely the optimal control.

Theorem 7.3.6 (Kalman-Bucy, no control). Theorem 7.3.1 holds for ut = 0.

Proof. Let us fix the terminal time T . For any (non-random) function G : [0, T ] → Rn×p with∫ T

0
‖G(t)‖2dt <∞, we define the FY

t -adapted process

LG
t = E(Xt) +

∫ t

0

G(s)H(s)(Xs − E(Xs)) ds+

∫ t

0

G(s)K(s) dBs,

We would like to find such aG that minimizes the cost Jv[G] = E((v∗(XT −LG
T ))2) for every

vector v ∈ Rn. By proposition 2.3.3 and lemma 7.3.5, v∗LG∗
T = E(v∗XT |FY

T ) = v∗X̂T and

Jv [G∗] = v∗P̂T v for every v ∈ Rn, where G∗ is the function that minimizes Jv [G].
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Somewhat surprisingly, this is a linear regulator problem in disguise; we have to do a little

work to make this explicit. The idea is to obtain an equation for XT , in almost the same way as

we did in lemma 7.3.2, such that the resulting expression forXT −LG
T contains only stochastic

integrals and no time integrals. Then, using the Itô isometry, we find an expression for Jv [G]
that looks like the quadratic cost in the linear regulator problem. To this end, define

d

ds
ΨG

s,t + ΨG
s,t A(t) −G(t)H(t) = 0 (s < t), ΨG

t,t = I.

Applying Itô’s rule to ΨG
t,T (Xt − E(Xt)) gives

XT −E(XT ) = ΨG
0,T (X0−E(X0))+

∫ T

0

G(s)H(s)(Xs−E(Xs)) ds+

∫ T

0

ΨG
s,TC(s) dWs.

This gives the following expression fo XT − LG
T :

XT − LG
T = ΨG

0,T (X0 − E(X0)) +

∫ T

0

ΨG
s,TC(s) dWs −

∫ T

0

G(s)K(s) dBs.

This expression has no time integrals, as desired. We now easily compute

Jv [G] =

∫ T

0

{
‖C(s)∗(ΨG

s,T )∗v‖2 + ‖K(s)∗G(s)∗v‖2
}
ds+ v∗ΨG

0,T P̂0(Ψ
G
0,T )∗v.

Now define α(t) = G(T − t)∗v, ξα
t = (ΨG

T−t,T )∗v, so that we can write

d

dt
ξα

t = A(T − t)∗ξα
t −H(T − t)∗α(t), ξα

0 = v,

and we obtain the cost Jv [G] = J [α] with

Jv [G] = J [α] =
∫ T

0

{(ξα
s )∗C(T − s)C(T − s)∗ξα

s + α(s)∗K(T − s)K(T − s)∗α(s)} ds+ (ξα
T )∗P̂0ξ

α
T .

But this is precisely a linear regulator problem for the controlled (non-random) differential

equation ξα
t with the cost J [α]. The conclusion of the theorem follows easily (fill in the re-

maining steps!) by invoking the solution of the linear regulator problem (theorem 6.5.1).

It remains to verify that the innovations process B̄t is a Wiener process, as claimed; this

follows immediately, however, from proposition 7.2.9, without any changes in the proof.

The controlled case

Now that we have obtained the Kalman-Bucy filter without control, it remains to con-

sider the controlled case. Once again, the linear structure of the problem simplifies

matters considerably; it allows us to infer the solution of the controlled filtering prob-

lem from its uncontrolled counterpart, which we have alreay solved! It should be clear

that we could never hope for such a result in the general case, but as the linear filtering

problem has such nice structure we will be happy to shamelessly exploit it.

What is the idea? Recall that, by lemma 7.3.2

Xu
t = Φ0,tX0 +

∫ t

0

Φs,tB(s)us ds+

∫ t

0

Φs,tC(s) dWs,
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where we have attached the label u to the signal process to denote its solution with the

control strategy u in operation. But then evidently

Xu
t = X0

t +

∫ t

0

Φs,tB(s)us ds,

and in particular the second term is FY,u
t -adapted (as us was assumed to depend only

on the observations), where we have denoted the observations under the strategy u by

Y u
t =

∫ t

0

H(s)Xu
s ds+

∫ t

0

K(s) dBs, FY,u
t = σ{Y u

s : s ≤ t}.

Hence we obtain

X̂u
t = E(Xu

t |FY,u
t ) = E(X0

t |FY,u
t ) +

∫ t

0

Φs,tB(s)us ds.

If only FY,u
t = FY,0

t , we would easily obtain an equation for X̂u
t : after all, then

X̂u
t = X̂0

t +

∫ t

0

Φs,tB(s)us ds,

and as we have already found the equation for X̂0
t we immediately obtain the appropri-

ate equation for X̂u
t using Itô’s rule. The statement FY,u

t = FY,0
t is not at all obvious,

however. The approach which we will take is simply to restrict consideration only

to those control strategies for which FY,u
t = FY,0

t is satisfied; we will subsequently

show that this is indeed the case for a large class of interesting controls.

Remark 7.3.7. We had no such requirement in the bounded case, where we used

the Kallianpur-Striebel formula to obtain the filter. Indeed this requirement is also

superfluous here: it can be shown that under a straightforward integrability condition

(of purely technical nature), E(X0
t |FY,u

t ) = E(X0
t |FY,0

t ) always holds regardless of

whether FY,u
t = FY,0

t [Ben92, section 2.4]. It is perhaps not surprising that the proof

of this fact hinges crucially on the Kallianpur-Striebel formula! We will not need this

level of generality, however, as it turns out that FY,u
t = FY,0

t for a sufficiently large

class of controls; we will thus be content to stick to this simpler approach.

The following result is now basically trivial.

Theorem 7.3.8 (Kalman-Bucy with control). Suppose that u· ∈
⋂

T<∞ L1(µT ×P)

and that FY,u
t = FY,0

t for all t <∞. Then theorem 7.3.1 holds.

Proof. The integrability condition ensures that Xu
t − X0

t is in L1 (so that the conditional

expectation is well defined). The discussion above gives immediately the equation for X̂u
t ,

which depends on P̂t. We claim that P̂t = E((Xu
t − X̂u

t )(Xu
t − X̂u

t )∗); but this follows

immediately from Xu
t − X̂u

t = X0
t − X̂0

t . It remains to show that the innovation B̄u
t is still a

Wiener process. But as Xu
t − X̂u

t = X0
t − X̂0

t , we find that B̄u
t = B̄0

t , which we have already

established to be a Wiener process. Hence the proof is complete.



7.3. The Kalman-Bucy filter 193

This result is not very useful by itself; it is not clear that there even exist controls

that satisfy the conditions! (Of course, non-random controls are easily seen to work,

but these are not very interesting.) We will conclude this section by exhibiting two

classes of controls that satisfy the conditions of theorem 7.3.8.

The first, and the most important class in the following, consists of those controls

whose value at time t is a Lipschitz function of the Kalman-Bucy filter at time t.
This class of separated controls is particularly simple to implement: we can update

the Kalman-Bucy filter numerically, e.g., using the Euler-Maruyama method, and at

each time we simply feed back a function of the latest estimate. In particular, the

complexity of feedback strategies that depend on the entire obsevation path in an

arbitrary way is avoided. As it turns out, controls of this form are also optimal for the

type of optimal control problems in which we are interested (see section 7.5).

Proposition 7.3.9. Let ut = α(t, X̃t), where α : [0,∞[ × Rn → Rk is Lipschitz and

dX̃t = A(t)X̃t dt+B(t)α(t, X̃t) dt+ P̂t(K(t)−1H(t))∗K(t)−1(dY u
t −H(t)X̃t dt)

with the initial condition X̃0 = X̂0. Then (Xu
t , Y

u
t , X̃t) has a unique solution, ut

satisfies the conditions of theorem 7.3.8, and X̃t = X̂u
t .

Proof. Set F (t) = K(t)−1H(t). To see that (Xu
t , Y

u
t , X̃t) has a unique solution, write

dXu
t = (A(t)Xu

t +B(t)α(t, X̃t)) dt+ C(t) dWt,

dY u
t = H(t)Xu

t dt+K(t) dBt,

dX̃t = (A(t)X̃t +B(t)α(t, X̃t)) dt+ P̂tF (t)∗(dBt + F (t)(Xu
t − X̃t) dt),

and note that this SDE has Lipschitz coefficients. Existence and uniqueness follows from theo-

rem 5.1.3, as well as the fact that ut = α(t, X̃t) is in L2(µT × P) for all T .

To proceed, consider the unique solution to the equation

dX ′
t = (A(t)X ′

t +B(t)α(t,X ′
t)) dt+ P̂tF (t)∗dB̄0

t , X ′
0 = X̂0,

which is FY,0
t -adapted as B̄0

t is an FY,0
t -Wiener process and the coefficients are Lipschitz.

Consider the FY,0
t -adapted control u′

t = α(t,X ′
t). It is easily seen that

E(Xu′

t |FY,0
t ) = X̂0

t +

∫ t

0

Ψs,tB(s)u′
s ds.

Using Itô’s rule, we find that E(Xu′

t |FY,0
t ) satisfies the same equation as X ′

t, so apparently

X ′
t = E(Xu′

t |FY,0
t ) by the uniqueness of the solution. On the other hand, note that

dB̄0
t = K(t)−1dY 0

t − F (t)X̂0
t dt = K(t)−1dY u′

t − F (t)X ′
t ds,

so we can write

dX ′
t = (A(t)X ′

t +B(t)α(t,X ′
t)) dt+ P̂tF (t)∗(K(t)−1dY u′

t − F (t)X ′
t ds).

Thus X ′
t is FY,u′

t -adapted (e.g., note that X ′
t −

∫ t

0
P̂sF (s)∗K(s)−1dY u′

s satisfies an ODE

which has a unique solution), so u′
t = α(t,X ′

t) is both FY,0
t - and FY,u′

t -adapted. But note that

Y u′

t = Y 0
t +

∫ t

0

H(s)

∫ s

0

Φr,tB(r)u′
r dr ds.
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Thus FY,0
t ⊂ FY,u′

t , as Y 0
t is a functional of Y u′

t and u′
t, both of which are FY,u′

t -adapted.

Conversely FY,u′

t ⊂ FY,0
t , as Y u′

t is a functional of Y 0
t and u′

t, both of which are FY,0
t -

adapted. It remains to note that (Xu′

t , Y u′

t , X ′
t) satisfies the same SDE as (Xu

t , Y
u
t , X̃t), so

u′
t = ut, etc., by uniqueness, and in particular X̃t = X ′

t = E(Xu′

t |FY,0
t ) = X̂u′

t = X̂u
t .

The second class of controls that are guaranteed to satisfy the conditions of the-

orem 7.3.8 consists of those strategies which are “nice” but otherwise arbitrary func-

tionals of the observation history. The following result is not difficult to obtain, but as

we will not need it we refer to [FR75, lemma VI.11.3] for the proof. Let us restrict to

a finite interval [0, T ] for notational simplicity (the extension to [0,∞[ is trivial).

Proposition 7.3.10. Let α : [0, T ] × C([0, T ]; Rp) → Rk be a (Borel-)measurable

function which satisfies the following condtions:

1. If ys = y′s for all s ≤ t, then α(t, y) = α(t, y′); in other words, α(t, y) only

depends on {ys : s ≤ t} (for fixed t).

2. ‖α(t, y) − α(t, y′)‖ ≤ Kmaxs∈[0,T ] ‖ys − y′s‖ for some K < ∞ and all

t ∈ [0, T ] and y, y′ ∈ C([0, T ]; Rp); i.e., the function α is uniformly Lipschitz.

3. ‖α(t, 0)‖ is bounded on t ∈ [0, T ].

Define the control ut = α(t, Y·). Then the equation for (Xt, Yt) admits a unique

solution which satisfies the conditions of theorem 7.3.8.

7.4 The Shiryaev-Wonham filter

Beside the Kalman filter, there is another important class of finite-dimensionally com-

putable filters. Unlike in the previous sections, the signal process in these filtering

models is not defined as the solution of a stochastic differential equation. Instead,

one considers signal processes which take a finite number of values (and hence have

piecewise constant sample paths)—in particular, finite-dimensional filters arise in the

case that the signal process is any finite state continuous time Markov process, and the

resulting filters are called Wonham filters [Won65, LS01a]. You can imagine why this

simplifies matters: if Xt only takes a finite number of values x1, . . . , xn at every time

t, then the knowledge of P(Xt = xi|FY
t ), i = 1, . . . , n is sufficient to compute any fil-

tered estimate πt(f). Hence the Wonham filter is a finite-dimensional SDE, driven by

the observations, which propagates the n-dimensional vector πi
t = P(Xt = xi|FY

t ).
In a discrete time setting, we have encountered exactly the same idea in example

7.2.10.

Developing the general theory for such filters is not at all difficult, but requires

some knowledge of continuous time Markov chains. Rather than going in this direc-

tion, we will discuss a particularly straightforward special case which dates back to

the early work of Shiryaev [Shi63, Shi73]. We will encounter this filter again in the

next chapter, where it will be combined with optimal stopping theory to develop some

interesting applications in statistics and in finance.
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We consider the following model. We work on the space (Ω,F , {Ft},P), on

which is defined an Ft-Wiener process Bt and an F0-measurable random variable τ
with values in [0,∞]. We will assume that τ is distributed as follows:

P(τ = 0) = p0, P(τ = ∞) = p∞, P(τ ≤ t|0 < τ <∞) =

∫ t

0

pτ (s) ds,

where 0 ≤ p0, p∞ ≤ 1, p0 + p∞ ≤ 1, and pτ (s) (the density of the continuous part

of τ ) is a nonnegative function such that
∫∞

0
pτ (s)ds = 1. You should interpret τ

as the random time at which a sudden change occurs in our system, e.g., a system

failure of some kind. Then p0 is the probability that the change occured before we

start observing, p∞ is the probability that the change never occurs, and the probability

that the change occurs in the interval ]0, t] is (1 − p0 − p∞)P(τ ≤ t|0 < τ <∞).
Unfortunately, we cannot see directly when the change occurs. Instead, we only

have access to noisy observations of the form yt = γ Iτ≤t + σ ξt, where ξt is white

noise; as usual, we will work with the integrated observations

Yt = γ

∫ t

0

Iτ≤s ds+ σ Bt.

The goal of the filtering problem is to estimate whether the change has occured by the

current time, given the observations up to the current time; in other words, we seek to

compute πt = P(τ ≤ t|FY
t ) = E(Iτ≤t|FY

t ), where FY
t = σ{Ys : s ≤ t}.

We have all the tools to solve this problem; in fact, compared to some of the more

technical problems which we have encountered in the previous sections, this is a piece

of cake! All that is needed is the Bayes formula and some simple manipulations.

Proposition 7.4.1 (Shiryaev-Wonham filter). πt = P(τ ≤ t|FY
t ) satisfies

dπt =
γ

σ
πt(1−πt) dB̄t +

(1 − p0 − p∞) pτ (t)

(1 − p0 − p∞)
∫∞

t pτ (s) ds+ p∞
(1−πt) dt, π0 = p0,

where the innovations process dB̄t = σ−1(dYt − γπt dt) is an FY
t -Wiener process.

Proof. Consider the following change of measure:

dQT

dP
= exp

(
−γ
σ

∫ T

0

Iτ≤s dBs − γ2

2σ2

∫ T

0

Iτ≤s ds

)
.

Clearly Novikov’s condition is satisfied, so by Girsanov’s theorem σ−1Yt is an Ft-Wiener

process under QT on the interval [0, T ]. In particular τ and Yt are independent, and it is easily

verified that τ has the same law under QT and under P. Now note that we obtain

dP

dQt
= exp

(
γ

σ2
(Yt − Yt∧τ ) − γ2

2σ2
(t− τ )+

)

after some simple manipulations. Thus, by the Bayes formula and independence of τ and Yt,

πt = P(τ ≤ t|FY
t ) =

∫
[0,∞]

Is≤t exp( γ
σ2 (Yt − Yt∧s) − γ2

2σ2 (t− s)+)µτ (ds)
∫
[0,∞]

exp( γ
σ2 (Yt − Yt∧s) − γ2

2σ2 (t− s)+)µτ (ds)
,
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where µτ is the law of τ . Let us now evaluate the numerator and denominator explicitly. For

the numerator, we find the explicit expression

Σt =

∫

[0,∞]

Is≤t exp( γ
σ2 (Yt − Yt∧s) − γ2

2σ2 (t− s)+)µτ (ds) =

p0 e
γ

σ2 Yt− γ2

2σ2 t
+ (1 − p0 − p∞)

∫ t

0

pτ (s) e
γ

σ2 (Yt−Ys)− γ2

2σ2 (t−s)
ds.

On the other hand, it is easy to see that for the denominator

∫

[0,∞]

exp( γ
σ2 (Yt−Yt∧s)− γ2

2σ2 (t−s)+)µτ (ds) = Σt +(1−p0−p∞)

∫ ∞

t

pτ (s) ds+p∞.

It remains to apply Itô’s rule. First, applying Itô’s rule to Σt, we obtain the counterpart of the

Zakai equation in the current context:

dΣt =
γ

σ2
Σt dYt + (1 − p0 − p∞) pτ (t) dt, Σ0 = p0.

Another application of Itô’s rule gives

dπt =
γ

σ
πt(1 − πt)σ

−1(dYt − γπt dt) +
(1 − p0 − p∞) pτ (t)

(1 − p0 − p∞)
∫∞

t
pτ (s) ds+ p∞

(1 − πt) dt.

It remains to note that dB̄t = σ−1(dYt − γπt dt) is a Wiener process, which follows exactly

as in proposition 7.2.9 without any change to the proof.

Remark 7.4.2. The uniqueness of the solution of the Shiryaev-Wonham equation is

not entirely obvious, as its coefficients do not satisfy the global Lipschitz condition.

However, they do satisfy the local Lipschitz condition, so have unique solutions until

an explosion time ζ (see section 5.6). On the other hand, we know that there exists

at least one solution πt = P(τ ≤ t|FY
t ) which, by construction, remains in the

interval [0, 1] forever. Hence it must be the case that ζ = ∞ a.s.2 This is important,

as it means that we can actually use the Shiryaev-Wonham equation to compute the

filtered estimate πt (this would not be obvious if the solution were not unique).

An important special case is the setting in which τ is exponentially distributed, i.e.,

pτ (t) = λ e−λt for some λ > 0 and p∞ = 0. The particular relevance of this choice is

that then Iτ≤t becomes a time-homogeneous Markov process, which manifests itself

by the fact that the Shiryaev-Wonham equation becomes time-homogeneous:

dπt =
γ

σ
πt(1 − πt)σ

−1(dYt − γπt dt) + λ (1 − πt) dt, π0 = p0.

Models with exponential waiting times are common in applications; they correspond

to the situation where the change is equally likely to occur in every time interval of

fixed length (as P(τ ∈ ]t, t+∆] | τ > t) = 1−e−λ∆). This setting will be particularly

convenient in combination with optimal stopping theory in the next chapter.

2This is only true, of course, provided that we start with π0 ∈ [0, 1]—the estimate πt must be a
probability! In the meaningless scenario, at least from a filtering perspective, where we try to solve the
Shiryaev-Wonham equation for π0 6∈ [0, 1], the solutions may indeed explode in finite time.
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7.5 The separation principle and LQG control

Let us now move on from filtering, and investigate systems with noisy observations in

the setting of optimal control. Consider again the system-observation pair

dXu
t = b(t,Xu

t , ut) dt+ σ(t,Xu
t , ut) dWt,

dY u
t = h(t,Xu

t , ut) dt+K(t) dBt.

We would like to design a strategy ut to achieve a certain purpose; consider, for exam-

ple, a cost functional that is similar to the finite horizon cost in the previous chapter:

J [u] = E

[

∫ T

0

{v(Xu
t ) + w(ut)} dt+ z(Xu

T )

]

.

(The specific type of running cost is considered for simplicity only, and is certainly

not essential.) Our goal is, as usual, to find a control strategy u∗ that minimizes the

cost J [u]. However, as opposed to the previous chapter, there is now a new ingredient

in the problem: we can only observe the noisy sensor data Y u
t , so that the control

signal ut can only be FY,u
t -adapted (where FY,u

t = σ{Y u
s : s ≤ t}). The theory of

the previous chapter cannot account for this; the only constraint which we are able to

impose on the control signal within that framework is the specification of the control

set U, and the constraint that ut is FY,u
t -adapted is certainly not of this form. Indeed,

if we apply the Bellman equation, we always automatically obtain a Markov control

which is a function of Xu
t and is thus not adapted to the observations.

The trick to circumvent this problem is to express the cost in terms of quantities

that depend only on the observations; if we can then find a feedback control which is

a function of those quantities, then that control is automatically FY,u
t -adapted! It is

not difficult to express the cost in terms of observation-dependent quantities; indeed,

using lemma 7.2.7 and the tower property of the conditional expectation,

J [u] = E

[

∫ T

0

{πu
t (v) + w(ut)} dt+ πu

T (z)

]

(provided we assume that ut is FY,u
t -adapted and that we have sufficient integrability

to apply lemma 7.2.7), where πu
t (f) = E(f(Xu

t )|FY,u
t ). But we can now interpret

this cost as defining a new control problem, where the system Xu
t is replaced by the

filter πu
t (·), and, from the point of view of the filter, we end up with a completely

observed optimal control problem. If we can solve a Bellman equation for such a

problem, then the optimal control at time t will simply be some function of the filter

at time t. Note that this is not a Markov control from the point of view of the physical

systemXu
t , but this is a Markov control from the point of view of the filter. The idea to

express the control problem in terms of the filter is often referred to as the separation

principle, and a strategy which is a function of the filter is called a separated control.

Remark 7.5.1. You might worry that we cannot consider the filter by itself as an

autonomous system to be controlled, as the filter is driven by the observations Y u
t
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obtained from the physical system rather than by a Wiener proces as in our usual

control system models. But recall that the filter can also be expressed in terms of the

innovations process: from this point of view, the filter looks just like an autonomous

equation, and can be considered as a stochastic differential equation quite separately

from the underlying model from which it was obtained.

Unfortunately, the separation principle does not in general lead to results that are

useful in practice. We have already seen that in most cases, the filter cannot be com-

puted in a finite-dimensional fashion. At the very best, then, the separation principle

leads to an optimal control problem for a stochastic PDE. Even if the formidable tech-

nical problems along the way can all be resolved (to see that tremendous difficulties

will be encountered requires little imagination), this is still of essentially no practical

use; after all, an implementation of the controller would require us both to propa-

gate a stochastic PDE in real time, and to evaluate a highly complicated function (the

control function) on an infinite-dimensional space! The former is routinely done in a

variety of applications, but the latter effectively deals the death blow to applications

of optimal control theory in the partially observed setting.3

On the other hand, in those cases where the filtering problem admits a finite-

dimensional solution, the separation principle becomes a powerful tool for control

design. In the remainder of this section we will develop one of the most important

examples: the partially observed counterpart of the linear regulator problem. We will

encounter more applications of the separation principle in the next chapter.

We consider the system-observation model

dXu
t = A(t)Xu

t dt+B(t)ut dt+ C(t) dWt,

dY u
t = H(t)Xu

t dt+K(t) dBt,

where the various objects in this expression satisfy the same conditions as in section

7.3. Our goal is to find a control strategy u which minmizes the cost functional

J [u] = E

[

∫ T

0

{(Xu
t )∗P (t)Xu

t + (ut)
∗Q(t)ut} dt+ (Xu

T )∗R(Xu
T )

]

,

where P (t), Q(t) and R satisfy the same conditions as in section 6.5. We will insist,

however, that the control strategy ut is FY,u
t -adapted, and we seek a strategy that is

optimal within the class of such controls that satisfy the conditions of theorem 7.3.8.

This is the LQG (Linear, Quadratic cost, Gaussian) control problem.

Theorem 7.5.2 (LQG control). Denote by Nt the solution of the Riccati equation

dNt

dt
= A(t)Nt +NtA(t)∗ −NtH(t)∗(K(t)K(t)∗)−1H(t)Nt + C(t)C(t)∗,

3 That is not to say that this setting has not been studied; many questions of academic interest, e.g., on
the existence of optimal controls, have been investigated extensively. However, I do not know of a single
practical application where the separation principle has actually been applied in the infinite-dimensional
setting; the optimal control problem is simply too difficult in such cases, and other solutions must be found.
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Figure 7.2. Figure 0.3 revisited. The schematic on the left depicts the structure of a completely

observed optimal controller, as in the linear regulator problem. The schematic on the right

depicts the structure of a separated controller, as in the LQG problem.

where the initial conditionN0 is taken to be the covariance matrix of X0, and denote

by Mt the solution of the time-reversed Riccati equation

d

dt
Mt +A(t)∗Mt +MtA(t) −MtB(t)Q(t)−1B(t)∗Mt + P (t) = 0,

with the terminal condition MT = R. Then an optimal feedback control strategy for

the LQG control problem is given by u∗t = −Q(t)−1B(t)∗MtX̂t, where

dX̂t = (A(t) −B(t)Q(t)−1B(t)∗Mt)X̂t dt

+Nt(K(t)−1H(t))∗K(t)−1(dY u∗

t −H(t)X̂t dt), X̂0 = E(X0),

and X̂t = X̂u∗

t , Nt = P̂t are the optimal estimate and error covariance for Xu∗

t .

Proof. As we assume that our controls satisfy the conditions of theorem 7.3.8, the Kalman-

Bucy filtering equations are valid. We would thus like to express the cost J [u] in terms of the

Kalman-Bucy filter. To this end, note that for any (non-random) matrix G

E((Xu
t )∗GXu

t ) − E((X̂u
t )∗GX̂u

t ) = E((Xu
t − X̂u

t )∗G(Xu
t − X̂u

t )) = Tr[GP̂t].

Thus evidently, the following cost differs from J [u] only by terms that depend on Tr[GP̂t]
(provided we assume that ut is a functional of the observations):

J ′[u] = E

[∫ T

0

{(X̂u
t )∗P (t)X̂u

t + (ut)
∗Q(t)ut} dt+ (X̂u

T )∗R(X̂u
T )

]
.

But Tr[GP̂t] is non-random and does not depend on the control u, so that clearly a strategy u∗

which minimizes J ′[u] will also minimize J [u]. Now note that X̂u
t satisfies the equation

dX̂u
t = A(t)X̂u

t dt+B(t)ut dt+ P̂t(K(t)−1H(t))∗dB̄t,

where B̄t is a Wiener process. Hence the equation X̂u
t , together with the cost J ′[u], defines

a linear regulator problem. By theorem 6.5.1, we find that an optimal control is given by the

strategy u∗
t = −Q(t)−1B(t)∗MtX̂

u∗

t , and this control is admissible in the current setting by

proposition 7.3.9. Moreover, the controlled Kalman-Bucy filter is given precisely by X̂t in the

statement of the theorem. Hence we are done.
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Figure 7.3. Simulation of the model of example 7.5.4 with the optimal control strategy in

operation. Shown are the position of the particle xt (blue), the best estimate of the particle

position x̂t (green), and the position of the microscope focus −zt (red). For this simulation

T = 1, β = 100, σ = 10, γ = 5, κ = .5, z0 = 0, E(x0) = 0, var(x0) = 2, P = 1, Q = .5.

Remark 7.5.3. It is worth pointing out once again the structure of the controls ob-

tained through the separation principle (figure 7.2). In the completely observed case

(e.g., the linear regulator), the controller has access to the state of the system, and

computes the feedback signal as a memoryless function of the system state. In the

partially observed case (e.g., the LQG problem), the noisy observations are first used

to compute the best estimate of the system state; the controller then feeds back a mem-

oryless function of this estimate. Evidently the optimal control strategy separates into

a filtering step and a memoryless controller, hence the name “separation principle”.

Example 7.5.4 (Tracking under a microscope IV). Let us return for the last time to

our tracking example. In addition to the previous model, we now have observations:

dzt

dt
= βut, xt = x0 + σWt, dyt = γ (xt + zt) dt+ κ dBt.

We would like to find a strategy u∗ which minimizes the cost

J [u] = E

[

P

∫ T

0

(xt + zt)
2 dt+Q

∫ T

0

(ut)
2 dt

]

,

but this time we are only allowing our controls to depend on the noisy observations.

As before we will define et = xt + zt, so that we can work with the system equation

det = βut dt+σ dWt (as the observations and cost functional depend only on et). But

we can now directly apply theorem 7.5.2. We find that u∗t = −Q−1β mt êt, where

dêt = −β
2mt

Q
êt dt+

γ nt

κ2
(dyt − γ êt dt), ê0 = E(e0),

and mt, nt are the solutions of the equations

dmt

dt
− β2

Q
m2

t + P = 0,
dnt

dt
= σ2 − γ2

κ2
n2

t ,

with mT = 0 and n0 = var(e0). A numerical simulation is shown in figure 7.3.
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Remark 7.5.5. Though we have only considered the finite time horizon cost, it is

not difficult to develop also the time-average and the discounted versions of the LQG

problem; see, e.g., [Dav77]. In fact, the usefulness of the separation principle in

the linear setting is not restricted to quadratic costs; we may choose the running and

terminal costs essentially arbitrarily, and the optimal control will still be expressible

as a function of the Kalman-Bucy filter [FR75] (though, like in the completely ob-

served case, there is no analytic solution for the feedback function when the cost is

not quadratic). The quadratic cost has a very special property, however, that is not

shared by other cost functions. Note that for the quadratic cost, the optimal feedback

function for the partially observed case u∗t = α(t, X̂t) is the same function as in the

completely observed case u∗t = α(t,Xt), where we have merely replaced the system

state by its estimate! This is called certainty equivalence. Though the optimal control

problem still separates for linear systems with non-quadratic cost, certainty equiva-

lence no longer holds in that case. In other words, in the latter case we still have

u∗t = α(t, X̂t), but for the completely observed problem u∗
t = α′(t,Xt) with α′ 6= α.

7.6 Transmitting a message over a noisy channel

We conclude this chapter with a nice control example from communication theory

which does not quite fall within our standard control framework: the transmission

of a message over a noisy channel with noiseless feedback. The problem was briefly

described in the Introduction, but let us recall the basic setting here. We will be content

to treat only the simplest setting and to prove optimality within a restricted class of

strategies; more general results can be found in [LS01b, section 16.4].

Two parties—a transmitter and a receiver—are connected through a noisy com-

munication channel. This means that when the transmitter sends the signal ut through

the channel, the receiver observes the noisy signal yt = ut + ξt where ξt is white

noise. The transmitter cannot just send any signal ut, however. First, we have a time

constraint: the transmitter only has access to the channel in a fixed time interval [0, T ].
Second, the transmitter has a power constraint: it can only send signals which satisfy

E

[

1

t

∫ t

0

(us)
2 ds

]

≤ P ∀ t ∈ [0, T ],

where P bounds the signal power per unit time. On the other hand, we will presume

that the receiver may send a response to the transmitter in a noiseless manner, i.e., that

there is a noiseless feedback channel. This setup is illustrated in figure 7.4.

Let us now turn to the message. We will investigate the simplest type of mes-

sage: the transmitter has obtained a single Gaussian random variable θ, which is F0-

measurable and thus independent of Bt, to transmit to the receiver. We are thus faced

with the following problem: we would like to optimize our usage of the communica-

tion channel by choosing wisely the encoding strategy employed by the transmitter,

the decoding strategy employed by the receiver, and the way in which the receiver and

transmitter make use of the feedback channel, so that the receiver can form the best

possible estimate of θ at the end of the day given the time and power constraints.
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Figure 7.4. Figure 0.4 revisited: setup for the transmission of a message over a noisy channel

with noiseless feedback. Further details can be found in the text.

As usual, we will work with the integrated observations,

Y u
t =

∫ t

0

us ds+Bt, FR,u
t = σ{Y u

s : s ≤ t}, FT,u
t = σ{θ,FR,u

t },

where Bt is an Ft-Wiener process on the probability space (Ω,F , {Ft},P). As the

transmitter has access to Y u
t (by virtue of the noiseless feedback, the receiver can

always forward the received signal Y u
t back to the transmitter), we may choose ut to

be FT,u
t -adapted. On the other hand, the receiver will only have access to the noisy

observations FR,u
t , and at the end of the communication period the receiver will form

an FR,u
T -measurable estimate θ̂u of the message θ. We now have two problems:

• The transmitter must choose the optimal encoding strategy u.

• The receiver must choose the optimal decoding strategy θ̂u.

By “optimal”, we mean that we wish to minimize the mean square error J ′[u, θ̂u] =

E((θ − θ̂u)2) over all encoding/feedback strategies u and all decoding strategies θ̂u.

The second problem—the choice of an optimal decoding strategy—is easy to

solve. After all, we know that at time t, the best estimate of θ based on the obser-

vation history is given by θ̂u
t = E(θ|FR,u

t ), regardless of the encoding strategy u
employed by the receiver. In principle, this solves one half of the problem.

In practice, if we choose a complicated encoding strategy, the resulting decoder

(filter) may be very complicated; in particular, it will be difficult to find the optimal

encoding strategy when we have so much freedom. We will therefore restrict ourselves

to a particularly simple class of encoders, which can be written as ut = at+btθ where

at is FR,u
t -adapted and bt is non-random. We will seek an optimal encoding strategy

within this class of linear encoding strategies. The advantage of the linear strategies

is that the resulting filters θ̂u
t are easily computable; let us begin by doing this.

Lemma 7.6.1. Consider the linear encoding strategy ut = at + btθ, and define the

simplified strategy u′t = btθ. If FR,u
t = FR,u′

t for all t ∈ [0, T ], then

dθ̂u
t = P̂ u

t bt (dY u
t − at dt− btθ̂

u
t dt),

dP̂ u
t

dt
= −(btP̂

u
t )2,

where θ̂u
0 = E(θ) and P̂ u

0 = var(θ).
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Proof. For u′, we simply obtain a Kalman-Bucy filter withX0 = θ,A(t) = B(t) = C(t) = 0,

H(t) = bt, and K(t) = 1. But θ̂u
t = θ̂u′

t follows trivially from the assumption on the equality

of the σ-algebras, so we obtain the result.

We can now find the optimal strategy within this class.

Proposition 7.6.2. Within the class of linear encoding strategies which satisfy the

condition of lemma 7.6.1 and the power constraint, an optimal strategy u∗ is given by

u∗t =

√

P

var(θ)
ePt/2

(

θ − θ̂u∗

t

)

.

The ultimate mean square error for this strategy is E((θ − θ̂u∗

T )2) = var(θ) e−PT .

Proof. Let u be any linear strategy which satisfies the required conditions. The trick is to find a

lower bound on the estimation error given the power constraint on the signal. The problem then

reduces to seeking a strategy that attains this lower bound and satisfies the power constraint.

Note that for the strategy u, the mean square estimation error is precisely P̂u
T . Now compute

d

dt
log(P̂u

t ) = −b2t P̂u
t =⇒ P̂u

t = var(θ) exp

(
−
∫ t

0

b2sP̂
u
s ds

)
.

On the other hand, note that

E((ut)
2) = E((at + btθ̂

u
t + bt(θ − θ̂u

t ))2) = E((at + btθ̂
u
t )2) + b2t P̂

u
t ≥ b2t P̂

u
t ,

where we have used the properties of the conditional expectation to conclude that we may set

E((at + btθ̂
u
t )(θ − θ̂u

t )) = 0. But then our power constraint requires that

∫ t

0

b2sP̂
u
s ds ≤ E

[∫ t

0

(us)
2 ds

]
≤ Pt,

so we conclude that P̂u
t ≥ var(θ) e−Pt. To find a strategy that attains this bound, note that

d

dt
var(θ) e−Pt = −P var(θ) e−Pt = −

(
var(θ) e−Pt

√
P ePt

var(θ)

)2

,

so bt = ePt/2
√
P/var(θ) gives P̂u

t = var(θ) e−Pt. Thus we must choose this bt to obtain

any optimal strategy, provided we can find an at such that the resulting strategy satisfies the

power constraint. But for this choice of bt, we find that

E

[∫ t

0

(us)
2 ds

]
= E

[∫ t

0

(as + bsθ̂
u
s )2 ds

]
+

∫ t

0

b2sP̂
u
s ds = E

[∫ t

0

(as + bsθ̂
u
s )2 ds

]
+Pt,

so the power constraint is satisfied if and only if at + btθ̂
u
t = 0 for all t. This yields the strategy

u∗
t . It remains to check that the strategy u∗

t satisfies the condition of lemma 7.6.1; but this is

easily done following the same logic as in the proof of proposition 7.3.9.

Have we gained anything by using the feedback channel? Let us see what hap-

pens if we disable the feedback channel; in this case, at can no longer depend on the

observations and is thus also non-random. We now obtain the following result.
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Proposition 7.6.3. Within the class of linear encoding strategies without feedback

which satisfy the power constraint, an optimal strategy u∗ is given by

u∗t =

√

P

var(θ)
(θ − E(θ)).

The ultimate mean square error for this strategy is E((θ− θ̂u∗

T )2) = var(θ)/(1+PT ).

Proof. This is the same idea as in the previous proof, only we now require that at is non-random

(note that in this case the condition of lemma 7.6.1 is automatically satisfied). The equation for

P̂u
t can be solved explicitly: it is easily verified that

P̂u
t =

var(θ)

1 + var(θ)
∫ t

0
(bs)2 ds

.

On the other hand, note that

E((ut)
2) = E((at + bt E(θ) + bt(θ − E(θ)))2) = E((at + bt E(θ))

2) + (bt)
2 var(θ).

Then we obtain, using the power constraint,

var(θ)

∫ t

0

(bs)
2 ds ≤ E

[∫ t

0

(us)
2 ds

]
≤ Pt =⇒ P̂u

t ≥ var(θ)

1 + Pt
.

The remainder of the proof follows easily.

Remark 7.6.4. Evidently the strategy that uses the feedback channel performs much

better than the strategy without feedback. It is illuminating in this regard to inves-

tigate the particular form of the optimal strategies. Note that in the absence of the

power constraint, we would have no problem sending the message across the noisy

channel; we could just transmit θ directly over the channel with some large gain fac-

tor, and by cranking up the gain we can make the signal to noise ratio arbitrarily large

(and thus the estimation error arbitrarily small). However, with the power constraint

in place, we have to choose wisely which information we wish to spend our power al-

lowance on. Clearly it is not advantageous to waste power in transmitting something

that the receiver already knows; hence the optimal strategies, rather than transmitting

the message itself, try to transmit the discrepancy between the message and the part

of the message thas is known to the receiver. Here feedback is of great help: as the

transmitter knows what portion of the message was received on the other end, it can

spend its remaining power purely on transmitting the parts of the message that were

corrupted (it does this by only transmitting the discrepancy between the message and

the receiver’s estimate of the message). On the other hand, the feedbackless transmit-

ter has no idea what the receiver knows, so the best it can do is subtract from θ its

mean (which is assumed to be known both to the transmitter and to the receiver).

Surprisingly, perhaps, these results are not restricted to the linear case; in fact, it

turns out that the encoding strategy of proposition 7.6.2 is optimal even in the class

of all nonlinear encoding strategies. It would be difficult to prove this directly, how-

ever, as this would require quantifying the mean-square error for a complicated set of
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nonlinear filters. Instead, such a claim is proved by information-theoretic arguments,

which are beyond our scope. The idea of the proof is still the same: we seek to obtain

a lower bound on the mean-square error given the power constraint, and show that our

candidate strategy (the linear strategy of proposition 7.6.2) attains this bound. How-

ever, techniques from information theory can be used to obtain generic lower bounds

on the mean-square error of an estimator which are not specific to a particular type

of filter, so that the complications of the nonlinear case can be avoided. Nonetheless

the filtering theory is crucial in order to demonstrate that the optimal strategy attains

the lower bound, and to give an explicit expression for the estimator (which we have

already done). Further details can be found in [LS01b, section 16.4], as well as an

extension of these results to more complicated (time-dependent) messages.

7.7 Further reading

There are two main approaches to the nonlinear filtering problem. The first is the ref-

erence probability method which we have used in this chapter. The second approach,

the innovations method, runs almost in the opposite direction. There one begins by

proving that the innovations process is a Wiener process. Then, using a martingale

representation argument (with some delicate technicalities), one can prove that the fil-

ter can be expressed as the sum of a time integral and a stochastic integral with respect

to the innovations. It then remains, using some clever tricks, to identify the integrands.

Both approaches have turned out to be extremely fruitful in various situations.

As you likely realize by this point, an unpleasant feature of the reference probabil-

ity method is that in many cases the Girsanov change of measure Λt is not square-

integrable, so that we can not apply a result such as lemma 7.2.7. The result of a

systematic application of the reference probability method can be seen in the book by

Bensoussan [Ben92]: there is a constant need to perform truncation and limiting argu-

ments to circumvent the technical problems. Not quite as detailed, but more elegant,

are the excellent lecture notes by Pardoux [Par91]. This is a great place to start read-

ing about the reference probability method (if you read French). A somewhat different

point of view and setting can be found in Elliott, Aggoun and Moore [EAM95].

The innovations method, which we have not developed here, has less trouble with

the sort of technical issues that the reference probability method suffers from, and is

more convenient when there are correlations between the noise that is driving the sig-

nal process and the observation noise (a case which we have not considered). A very

accessible introduction to the innovations approach is the book by Krishnan [Kri05],

which is highly recommended. The bible of the innovations approach remains the

two-volume extravaganza by Liptser and Shiryaev [LS01a, LS01b], while the book

by Kallianpur [Kal80] provides another in-depth treatment. A nice discussion of the

innovations approach also appears in the book by Elliott [Ell82].

Both approaches, and much more besides (including discrete time filtering), are

treated in a wonderful set of lecture notes by Chigansky [Chi04].

The problem of making sense of the nonlinear filtering equations, such as the Za-

kai equation, as stochastic PDEs, is treated in various places. Good places to look

are Kunita [Kun90], Bensoussan [Ben92], Pardoux [Par82, Par91], and the book by
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Rozovskii [Roz90]. The issue of efficient numerical algorithms is another story; many

references were already mentioned in the chapter, but see in particular the recent re-

view [Cri02]. There are various interesting issues concerning the finite-dimensional

realization of filtering problems; the volumes [HW81, Mit82] contain some interesting

articles on this topic. Another very useful topic which we have overlooked, the robust

or pathwise definition of the filter, is discussed in an article by Davis in [HW81].

The Kalman-Bucy filter is treated in detail in many places; see, e.g., the book

by Davis [Dav77] and Liptser and Shiryaev [LS01a, LS01b]. Our treatment, through

stochastic control, was heavily inspired by the treatment in Fleming and Rishel [FR75]

and in Bensoussan [Ben92]. The relations between filtering and stochastic control go

very deep indeed, and are certainly not restricted to the linear setting; on this topic,

consult the beautiful article by Mitter and Newton [MN03]. The Kalman-Bucy filter

can be extended also to the general conditionally Gaussian case where A(t), B(t),
C(t), H(t) and K(t) are all adapted to the observations, see Liptser and Shiryaev

[LS01b], as well as to the case where X0 has an arbitrary distribution (i.e., it is non-

Gaussian); for the latter, see the elegant approach by Makowski [Mak86].

The Shiryaev-Wonham filter is due to Shiryaev [Shi63, Shi73] and, in a more gen-

eral setting which allows the signal to be an arbitrary finite state Markov process, due

to Wonham [Won65]. Our treatment was inspired by Rogers and Williams [RW00b].

On the topic of partially observed control, Bensoussan [Ben92] is a good source of

information and further references. Our treatment was inspired by Fleming and Rishel

[FR75], which follows closely the original article by Wonham [Won68b] (for results

in the finite state setting see Segall [Seg77] and Helmes and Rishel [HR92]). Finally,

the transmission of a message through a noisy channel, and many other applications,

are treated in the second volume of Liptser and Shiryaev [LS01b].
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8
Optimal Stopping and Impulse Control

In the previous chapters, we have discussed several control problems where the goal

was to optimize a certain performance criterion by selecting an apppropriate feedback

control policy. In this chapter, we will treat a somewhat different set of control prob-

lems; rather than selecting a continuous control to be applied to an auxiliary input in

the system equations, our goal will be to select an optimal stopping time to achieve a

certain purpose. Such problems show up naturally in many situations where a timing

decision needs to be made, e.g., when is the best time to sell a stock? When should

we decide to bring an apparatus, which may or may not be faulty, in for repair (and

pay the repair fee)? How long do we need to observe an unknown system to be able

to select one of several hypotheses with sufficient confidence? Such problems are

called optimal stopping problems, and we will develop machinery to find the optimal

stopping times. These ideas can also be extended to find optimal control strategies

in which feedback is applied to the system at a discrete sequence of times; we will

briefly discuss such impulse control problems at the end of this chapter.

8.1 Optimal stopping and variational inequalities

The optimal stopping problem

As usual, we work on (Ω,F , {Ft},P) with anm-dimensionalFt-Wiener processWt,

and we will describe the system of interest by the stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt (Xt ∈ Rn),

where X0 is F0-measurable and b : Rn → Rn, σ : Rn → Rn×m satisfy appropriate

conditions that ensure existence and uniqueness of the solution.

207
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Remark 8.1.1. As with the infinite time costs in chapter 6, we will find it convenient

to choose b and σ to be time-independent. However, time can always be added simply

by considering the (n+ 1)-dimensional system X ′
t = (Xt, t).

For an Ft-stopping time τ , define the cost functional

J [τ ] = E

[
∫ τ

0

e−λs w(Xs) ds+ e−λτ z(Xτ )

]

,

where λ ≥ 0 is a discount factor (the case λ = 0 corresponds to the non-discounted

setting). We will call τ admissible if J [τ ] is well defined; any stopping time will be

admissible, e.g., if w, z are nonnegative (or λ > 0 and w, z are bounded). The goal of

the optimal stopping problem is to find a stopping time τ ∗ which minimizes J [τ ]. In

principle, the optimal stopping time τ ∗ can be an arbitrarily complicated functional of

the sample paths ofXt. However, there is a special type of stopping time which plays

the same role in optimal stopping theory as did Markov strategies in chapter 6: this is

precisely the class of stopping rules τ which are the first exit time of Xt from some

set D ⊂ Rn, i.e., τ = inf{t : Xt 6∈ D}. The set D is then called the continuation

region for the stopping rule τ . Conveniently, it turns out that optimal stopping rules

are of this form, just like optimal control strategies turn out to be Markov.

A heuristic calculation

As in chapter 6, we will mostly concentrate on obtaining a useful verification theorem.

However, to clarify where the equations in the verification theorem come from, it is

helpful to first obtain the appropriate equations in a heuristic manner. Let us do this

now. We will disregard any form of technical precision until further notice.

Let τ be an admissible stopping rule. We define the cost-to-go J τ (x) as

Jτ (X0) = E

[
∫ τ

0

e−λs w(Xs) ds+ e−λτ z(Xτ )

∣

∣

∣

∣

X0

]

.

Note that Jτ (x) is the cost of the stopping rule τ when X0 = x is non-random.

Now suppose, as we did in the corresponding discussion in chapter 6, that there

is a stopping rule τ∗, with continuation region D, which minimizes J τ (x) for every

x, and define the value function as the optimal cost-to-go V (x) = J τ∗

(x). We will

try to find an equation for V (x). To this end, let τ be any admissible stopping rule,

and define the new stopping rule τ ′ = inf{t ≥ τ : Xt 6∈ D}. Then τ ′ is the rule

under which we do not stop until the time τ , and continue optimally afterwards, and

by assumption J [τ∗] ≤ J [τ ′]. But then it is not difficult to see that

V (X0) ≤ Jτ ′

(X0) = E

[
∫ τ

0

e−λs w(Xs) ds+ e−λτ V (Xτ )

∣

∣

∣

∣

X0

]

,

where we have used the stong Markov property ofXt (see remark 5.2.3) and the tower

property of the conditional expectation. On the other hand, we obtain an equality in

this expression, rather than an inequality, if we choose τ ≤ τ ∗ (why?).
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Now suppose that V (x) is sufficiently smooth to apply Itô’s rule. Then

e−λτ V (Xτ ) = V (X0) +

∫ τ

0

e−λs{L V (Xs) − λV (Xs)} ds+

∫ τ

0

· · · dWs.

If additionally the expectation of the last term vanishes, then

V (X0) = E

[
∫ τ

0

e−λs{λV (Xs) − L V (Xs)} ds+ e−λτ V (Xτ )

∣

∣

∣

∣

X0

]

.

First, suppose that τ ≤ τ∗. Then we obtain the equality

0 = E

[
∫ τ

0

e−λs{L V (Xs) − λV (Xs) + w(Xs)} ds
∣

∣

∣

∣

X0

]

.

As this holds for any τ ≤ τ∗, we must have L V (X0) − λV (X0) + w(X0) = 0
provided τ∗ > 0, i.e., for X0 ∈ D; for X0 6∈ D this expression is identically zero,

and we do not learn anything from it! But for x 6∈ D, clearly V (x) = z(x); hence

L V (x) − λV (x) + w(x) = 0 for x ∈ D, V (x) = z(x) for x 6∈ D.

Now consider the case that τ is arbitrary. Proceeding in the same way as above, we

obtain L V (x) − λV (x) + w(x) ≥ 0; on the other hand J [τ ∗] ≤ J [0] (we can do at

least as well as stopping immediately), so that in particular V (x) ≤ z(x). Hence

L V (x) − λV (x) + w(x) ≥ 0, V (x) ≤ z(x) for all x.

Evidently V (x) satisfies the following equation:

min{L V (x) − λV (x) + w(x), z(x) − V (x)} = 0.

This is not a PDE in the usual sense; it is called a variational inequality. Just like

in the optimal control case, where the Bellman equation reduces the optimization

problem to a pointwise minimization over all possible control actions, the variational

inequality reduces the optimal stopping problem to a pointwise minimization over

our two options: to continue, or to stop. It is important to note that if V (x) is a

unique solution to the variational inequality, then we can completely reconstruct the

continuation region D: it is simply D = {x : V (x) < z(x)}. Hence it suffices, as in

the optimal control setting, to solve a (nonlinear, variational inequality) PDE for the

value function, in order to be able to construct the optimal strategy.

Remark 8.1.2. There are much more elegant treatments of the optimal stopping the-

ory which can be made completely rigorous with some effort. One of these methods,

due to Snell, is closely related to the martingale dynamic programming principle in

optimal control (see remark 6.1.7) and works in a general setting. Another method,

due to Dynkin, characterizes the optimal cost of stopping problems for the case where

Xt is a Markov process. Both these methods are extremely fundamental to optimal

stopping theory and are well worth studying; see, e.g., [PS06].
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A verification theorem

The previous discussion is only intended as motivation. We have made various en-

tirely unfounded assumptions, which you should immediately discard from this point

onward. Rather than making the story above rigorous, we proceed, as in chapter 6,

in the opposite direction: we will assume that we have found a sufficiently smooth

solution to the appropriate variational inequality, and prove a verification theorem that

guarantees that this solution does indeed give rise to an optimal stopping rule.

Proposition 8.1.3. Let K ⊂ Rn be a set such that Xt ∈ K for all t. Suppose there is

a function V : K → R, which is sufficiently smooth to apply Itô’s rule, such that

min{L V (x) − λV (x) + w(x), z(x) − V (x)} = 0,

and |E(V (X0))| < ∞. Define the set D = {x ∈ K : V (x) < z(x)}, and denote by

K the class of admissible stopping rules τ such that τ <∞ a.s. and

E

[

n
∑

i=1

m
∑

k=1

∫ τ

0

e−λs ∂V

∂xi
(Xs)σ

ik(Xs) dW
k
s

]

= 0.

Suppose that τ∗ = inf{t : Xt 6∈ D} is in K. Then J [τ∗] ≤ J [τ ] for any τ ∈ K, and

the optimal cost can be expressed as E(V (X0)) = J [τ∗].

Remark 8.1.4. Often K = Rn, but we will use the more general statement later on.

Proof. Applying Itô’s rule to e−λtV (Xt) and using the condition on strategies in K, we obtain

E(V (X0)) = E

[∫ τ

0

e−λs{λV (Xs) − L V (Xs)} ds+ e−λτ V (Xτ )

]

for τ ∈ K. But the variational inequality implies V (x) ≤ z(x) and λV (x)−L V (x) ≤ w(x),

so we find that E(V (X0)) ≤ J [τ ]. On the other hand, for τ = τ ∗, we these inequalities

become equalities, so we find that J [τ ∗] = E(V (X0)) ≤ J [τ ]. This establishes the claim.

In this verification result, we required that V (x) “is sufficiently smooth to apply

Itô’s rule”. It would seem that we should just assume that V is in C2, as this is the

requirement for Itô’s rule. Unfortunately, hardly any optimal stopping problem gives

rise to a value function in C2. The problems occur on the boundary ∂D of D: often

V (x) is C2 on K\∂D, but on ∂D it is only C1. We thus need to extend Itô’s rule to

this situation. There are various technical conditions under which this is possible; the

most elegant is the following result, which holds only in one dimension.

Proposition 8.1.5 (Relaxed Itô rule in one dimension). Suppose that V : R → R is

C1 and admits a (not necessarily continuous) second derivative in the sense that there

exists a measurable function ∂2V/∂x2 such that

∂V

∂x
(x) − ∂V

∂x
(0) =

∫ x

0

∂2V

∂x2
(y) dy, x ∈ R.

Then Itô’s rule still applies to V (Xt).
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For the proof of this statement, see [RW00b, lemma IV.45.9]. The proof is a little

too difficult to us; it requires, in essence, to show that Xt does not spend any time at

the discontinuity points of ∂2V/∂x2 (i.e., the amount of time spent at the discontinuity

points has Lebesgue measure zero). For generalizations to the multidimensional case,

see [Kry80, section 2.10] and particularly [PS93] (see also [Øks03, theorem 10.4.1]

and [Fri75, theorem 16.4.1]). For our purposes proposition 8.1.5 will suffice, as we

will restrict ourselves to one-dimensional examples for simplicity.

Remark 8.1.6 (The principle of smooth fit). The fact that V (x) is generally not C2

is not surprising; on the other hand, the fact that V (x) should be C1 is not at all obvi-

ous! Nonetheless, in many cases it can be shown that the gradient of V (x) does indeed

need to be continuous on the boundary ∂D; this is called the principle of smooth fit

(see, e.g., [PS06, DK03] for proofs). This turns out to be an extremely useful tool

for finding an appropriate solution of the variational inequality. In general, there are

many solutions to the variational inequality, each leading to a different continuation

set D; however, it is often the case that only one of these solutions is continuously

differentiable. Only this solution, then, satisfies the conditions of the verification the-

orem, and thus the principle of smooth fit has helped us find the correct solution to the

optimal stopping problem. We will shortly see this procedure in action.

Let us treat an interesting example (from [Øks03]).

Example 8.1.7 (Optimal resource extraction). We are operating a plant that extracts

natural gas from an underground well. The total amount of natural gas remaining

in the well at time t is denoted Rt (so the total amount of extracted natural gas is

R0 − Rt). Moreover, the rate at which we can extract natural gas from the well is

proportional to the remaining amount: that is, when the plant is in operation, the

amount of natural gas in the well drops according the equation

d

dt
Rt = −λRt,

where λ > 0 is the proportionality constant. After the gas has been extracted, it is

sold on the market at the current market price Pt, which is given by the equation

dPt = µPt dt+ σPt dWt,

where µ > 0. However, it costs money to operate the plant: in order to keep the plant

running we have to pay K dollars per unit time. The total amount of money made by

time t by extracting natural gas and selling it on the market is thus given by

∫ t

0

Ps d(R0 −Rs) −Kt =

∫ t

0

(λRsPs −K) ds.

It seems inevitable that at some point in time it will no longer be profitable to keep the

plant in operation: we will not be able to extract the natural gas sufficiently rapidly to

be able to pay for the operating costs of the plant. We would like to determine when
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would be the best time to call it quits, i.e., we would like to find a stopping time τ ∗

which maximizes the expected profit −J [τ ] up to time τ . We thus seek to minimize

J [τ ] = E

[
∫ τ

0

(K − λRsPs) ds

]

.

This is precisely an optimal stopping problem of the type we have been considering.

The problem can be simplified by noting that the cost functional depends only on

the quantity St = RtPt. Using Itô’s rule, we find that

dSt = (µ− λ)St dt+ σSt dWt, J [τ ] = E

[
∫ τ

0

(K − λSs) ds

]

.

As St ≥ 0 a.s. for all t, we can apply proposition 8.1.3 with K = [0,∞[. The

variational inequality for this problem can be written as

min

{

σ2x2

2

∂2V (x)

∂x2
+ (µ− λ)x

∂V (x)

∂x
+K − λx, −V (x)

}

= 0.

Thus on Dc, we must have V (x) = 0 and L V (x) + K − λx = K − λx ≥ 0; in

particular, if x ∈ Dc, then x ≤ K/λ, so we conclude that ]K/λ,∞[ ⊂ D. Let us now

try to solve for V (x) on D. To this end, consider the PDE

σ2x2

2

∂2V (x)

∂x2
+ (µ− λ)x

∂V (x)

∂x
+K − λx = 0.

Let us try a solution of the form

Vc(x) = − K log(x)

µ− λ− σ2/2
+

λx

µ− λ
+ c.

If V (x) = Vc(x) on D, then it must be that Vc(x) < 0 on ]K/λ,∞[; in particular,

this means that we must require that µ < λ. Intuitively this makes sense: if the price

of natural gas were to grow at a faster rate than the rate at which we deplete our well,

then it would always pay off to keep extracting more natural gas!

Let us thus assume that µ < λ, and we are seeking a solution of the form V (x) =
Vc(x) on D and V (x) = 0 on Dc. To determine the appropriate c and D, we will try

to paste the solutions Vc(x) and 0 together in such a way that the result is C1—i.e.,

we are going to use the principle of smooth fit. To this end, note that the derivative of

V must vanish on the boundary of D (as V (x) = 0 on Dc). But

dVc(x)

dx
= − Kx−1

µ− λ− σ2/2
+

λ

µ− λ
= 0 =⇒ x =

K

λ

µ− λ

µ− λ− σ2/2
≡ x∗.

Thus D must be of the form ]x∗,∞[ (note that x∗ < K/λ, so this indeed makes

sense). On the other hand, V (x) must be continuous at x∗, so if V (x) = Vc(x) we

should have Vc(x
∗) = 0. This allows us to select the appropriate value c∗ of c:

Vc∗(x
∗) = 0 =⇒ c∗ =

K log(x∗)

µ− λ− σ2/2
− λx∗

µ− λ
.
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We have thus shown that the variational inequality is solved by the value function

V (x) = 0 for x ≤ x∗, and V (x) = Vc∗(x) for x > x∗; note that V (x) is C1 on [0,∞[
and C2 on [0,∞[\{x∗}. Our candidate stopping rule is thus τ ∗ = inf{t : Xt ≤ x∗}.

To conclude that τ∗ is indeed optimal, it remains to show that τ ∗ ∈ K. This is

indeed possible whenever µ < λ using a more refined version of the optional stopping

theorem than we have discussed; see [RW00a, theorems II.69.2 and II.77.5]. For sake

of simplicity, let us verify that τ∗ ∈ K under the more restrictive assumption that

µ − λ + σ2/2 < 0. Recall that we must assume that E(V (S0)) is finite, and we will

also assume without loss of generality that S0 ≥ x∗ a.s.

First we will establish that E(τ∗) <∞. To this end, note that

log(St∧τ∗) = log(S0) + (µ− λ− σ2/2) t ∧ τ∗ + σWt∧τ∗ .

As E(V (S0)) is finite, E(log(S0)) is finite also, and we find that E(log(St∧τ∗)) =
E(log(S0)) + (µ− λ− σ2/2) E(t ∧ τ∗). In particular, by monotone convergence,

E(τ∗) =
E(log(S0)) − limt→∞ E(log(St∧τ∗))

σ2/2 + λ− µ
.

But E(log(St∧τ∗)) ≥ logx∗, so E(τ∗) <∞. Next, we need to show that

E

[

∫ τ∗

0

∂V

∂x
(Ss)σ Ss dWs

]

= E

[

∫ τ∗

0

(C1 Ss + C2) dWs

]

= 0,

where C1 and C2 are the appropriate constants. The integral over C2 has zero expec-

tation by lemma 6.3.4. To deal with the integral over St, note that for m < n

E





(

∫ n∧τ∗

m∧τ∗

Ss dWs

)2


 = E

[

∫ n∧τ∗

m∧τ∗

(Ss)
2 ds

]

≤ E

[
∫ ∞

0

(Ss)
2 ds

]

.

But you can verify using Itô’s rule that the term on the right is finite whenever we have

µ− λ+ σ2/2 < 0. Hence if this is the case, we find using dominated convergence

∫ n∧τ∗

0

Ss dWs →
∫ τ∗

0

Ss dWs in L2 =⇒ E

[

∫ τ∗

0

Ss dWs

]

= 0

(use that the integral is a Cauchy sequence in L2). This is what we set out to show.

It is often useful to be able to introduce an additional constraint in the optimal

stopping problem; we would like to find the optimal stopping time prior to the time

when the system exits a predetermined set K. We will see an example of this below.

The corresponding extension of proposition 8.1.3 is immediate, and we omit the proof.

Proposition 8.1.8. Let K ⊂ Rn be a fixed open set, with closure K and boundary

∂K = K\K, and assume that X0 ∈ K a.s. Suppose there is a function V : K → R

which is sufficiently smooth to apply Itô’s rule, such that V (x) = z(x) on ∂K,

min{L V (x) − λV (x) + w(x), z(x) − V (x)} = 0,
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and |E(V (X0))| < ∞. Define D = {x ∈ K : V (x) < z(x)}, and let K be the class

of admissible stopping rules τ with τ <∞ a.s., τ ≤ τK = inf{t : Xt 6∈ K}, and

E

[

n
∑

i=1

m
∑

k=1

∫ τ

0

e−λs ∂V

∂xi
(Xs)σ

ik(Xs) dW
k
s

]

= 0.

Suppose that τ∗ = inf{t : Xt 6∈ D} is in K. Then J [τ∗] ≤ J [τ ] for any τ ∈ K, and

the optimal cost can be expressed as E(V (X0)) = J [τ∗].

Note that if K has compact closure, then lemmas 6.3.4 and 6.3.3 can be used to

deal with the technical condition, thus avoiding some amount of trench work.

Markov chain approximations

As in the setting of optimal control, most optimal stopping problems do not admit

analytic solution. However, as before, Markov chain approximations provide an ef-

fective method to approximate the solution of an optimal stopping problem. Let us

demonstrate this method through an important example in mathematical finance.

Example 8.1.9 (Optimal exercise for an American put option). We are holding a

certain amount of stock, whose price at time t is given by the usual equation

dSt = µSt dt+ σSt dWt.

At some point in the future we might want to sell our stock, but this is risky: by that

point the stock price may have tanked, in which case we would not be able to sell the

stock for a reasonable price on the stock market. To mitigate this risk, we may take

out a form of insurance on our stock: a put option. This is a contract which guarantees

that we will be able to sell our stock at some time in the future for a predetermined

priceK. A European put option works precisely in this way: we fix T andK, and the

contract guarantees that we may sell our stock for the price K at time T . Hence the

payoff from such an option is (K −ST )+ (because if the stock price is larger thanK,

we retain the right to sell our stock on the stock market instead).

European put options are not our only choice, however; there are options which

allow us more flexibility. In this example, we will investigate an American put option.

Like in the European case, we fix a price K and a terminal time T . In contrast with

the European option, however, an American put option can be exercised at any point

in time in the interval [0, T ]: that is, after purchasing the option at time zero, we may

decide at any stopping time τ ≤ T to sell our stock for the price K. If we choose

to exercise at time τ , then the payoff from the option is (K − Sτ )+. The question

now becomes: when should we choose to exercise to maximize our payoff from the

option? This problem is naturally formulated as an optimal stopping problem.

In general, there is also a bank account involved which gives an interest rate r. It

is customary to try to maximize the discounted payoff, i.e., we will normalize all our

prices by the amount of money we could have made by investing our money in the

bank account rather than in the risky stocks. This gives rise to the following optimal
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stopping problem: we wish to maximize E(e−rτ (K − Sτ )+) over all stopping times

τ ≤ T . In other words, we want to minimize the following cost:

J [τ ] = E(−e−rτ (K − Sτ )+).

Remark 8.1.10 (Pricing of American options). An important problem in practice is

to determine how an American option should be priced, i.e., how much money should

the seller of the option charge for agreeing to issue this contract? Arbitrage pricing

theory shows that there is only one fair price for an American option in the current

setting; if any other price is charged, either the buyer or the seller of the option can

make money for nothing, which is by definition not “fair”. Moreover, it turns out that

in order to compute the price, we need to solve the above optimal stopping problem

for the case µ = r, and the payoff of the optimal stopping rule is then precisely

the fair price of the option. The replacement µ 7→ r corresponds to a change of

measure, which allows us to replicate the payoff of the option by a suitable trading

strategy using the martingale representation theorem. The details of this procedure

are not difficult, but as they are not directly related to the optimal stopping problem

itself we will forgo a discussion here; see, e.g., [Duf01, section 8G]. Suffice it to say

that the pricing problem for American options makes the solution of optimal stopping

problems of the type which we are considering an important practical problem in real-

world finance (though obviously we are here restricting to the very simplest case).

Let us begin by expressing our optimal stopping problem as a variational in-

equality. As we are seeking stopping times τ which are guaranteed to be less than

T , we need to apply proposition 8.1.8 by considering the two-dimensional process

Xt = (t, St) and the stopping set K = {(t, x) : t < T}. We thus seek a function

V (t, x), defined on the set K, which obeys the following variational inequality:

min

{(

∂

∂t
+
σ2x2

2

∂2

∂x2
+ µx

∂

∂x
− r

)

V (t, x), −(K − x)+ − V (t, x)

}

= 0.

If we can find a suitable function V (t, x), then the continuation region for the optimal

stopping rule is given byD = {(t, x) ∈ K : V (t, x)+(K−x)+ < 0}. Unfortunately,

there is no analytical solution to this problem, so we need to proceed numerically.

Let us define a grid on K. We will split the interval [0, T ] into intervals of length

∆ = T/N , i.e., we will work with the times k∆, k = 0, . . . , N . Placing a suitable grid

on the stock price is more difficult, as it is unbounded from above. Let us therefore

shrink K to the smaller set K ′ = {(t, x) : t < T, x < R} for some R < ∞, and we

discretize [0, R] into intervals of length δ = R/M , i.e., we work with the stock prices

kδ, k = 0, . . . ,M . If we choose R sufficiently large, then we expect that the solution

of the optimal stopping problem in the set K ′ will be close to the solution in the set

K. In the following we will thus consider the optimal stopping problem in K ′.

We now proceed by introducing finite differences. Let us set

∂V (t, x)

∂t
7→ Vδ,∆(t, x) − Vδ,∆(t− ∆, x)

∆

for the time derivative,

∂V (t, x)

∂x
7→ Vδ,∆(t, x+ δ) − Vδ,∆(t, x)

δ
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for the spatial derivative, and we approximate the second derivative by

∂2V (t, x)

∂x2
7→ Vδ,∆(t, x+ δ) − 2Vδ,∆(t, x) + Vδ,∆(t, x− δ)

δ2
.

Now note that the variational inequality can equivalently be written as

min

{(

∂

∂t
+
σ2x2

2

∂2

∂x2
+ µx

∂

∂x
− r

)

V (t, x),
−(K − x)+ − V (t, x)

∆

}

= 0

(convince yourself that this is true!), and we can shift time by ∆ in the second term

without modifying the ∆ → 0 limit (we will shortly see why this is desirable). Sub-

stituting into the variational inequality and rearranging gives

Vδ,∆(t− ∆, x) = min

{

−(K − x)+,

(

1 − ∆σ2x2

δ2
− ∆µx

δ
− ∆r

)

Vδ,∆(t, x)

+

(

∆σ2x2

2δ2
+

∆µx

δ

)

Vδ,∆(t, x+ δ) +
∆σ2x2

2δ2
Vδ,∆(t, x− δ)

}

.

Note that this is a backwards in time recursion for Vδ,∆(t, x)! (It is for this reason

that we shifted the terminal cost term in the variational inequality by ∆: if we did not

do this, the right hand side would depend on Vδ,∆(t − ∆, x)). It remains to specify

boundary conditions, but this follows directly from proposition 8.1.8: we should set

Vδ,∆(t, x) = −(K − x)+ on the boundary of K ′, i.e., whenever t = T or x = R.

We now claim that this discretized equation is itself the dynamic programming

equation for an optimal stopping problem for a discrete time Markov chain on a finite

state space, provided that ∆ is sufficiently small that 1−∆σ2M2 −∆µM −∆r ≥ 0.

Proposition 8.1.11. Let xk , k = 0, . . . , N be a Markov chain on the state space

{nδ : n = 0, . . . ,M} with the following transition probabilities for n < M :

P(xk = nδ|xk−1 = nδ) =
1 − ∆σ2n2 − ∆µn− ∆r

1 − ∆r
,

P(xk = (n+ 1)δ|xk−1 = nδ) =
∆σ2n2 + 2∆µn

2 − 2∆r
,

P(xk = (n− 1)δ|xk−1 = nδ) =
∆σ2n2

2 − 2∆r
,

and all other transition probabilities are zero. For the state n = M (so nδ = R), let

P(xk = R|xk−1 = R) = 1 (so the boundaryR is an absorbing state). Moreover, let

H [τ ] = E
[

−(1 − ∆r)τ (K − xτ )+
]

for any stopping time τ ≤ N for the filtration generated by xk (so τ is an {0, . . . , N}-

valued random variable). Denote D = {(k, nδ) : Vδ,∆(k∆, nδ) + (K − xτ )+ < 0}.

Then τ∗ = inf{k : (k, xk) 6∈ D} is an optimal stopping rule for the cost H [τ ] in the

sense that H [τ∗] = E(Vδ,∆(0, x0)) ≤ H [τ ] for any stopping time τ ≤ N .
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Figure 8.1. Numerical solution of example 8.1.9 with T = 1, K = 100, σ = .3, µ = r = .05,

and R = 200. In the left plot, the boundary ∂D of the continuation region D is plotted in

blue, while the contract price K is shown in green (the horizontal axis is time, the vertical axis

is price). A single sample path of the stock price, started at S0 = 100, is shown in red; the

optimal stopping rule says that we should stop when the stock price hits the curve ∂D. In the

right plot, the value function −V (t, x) is plotted in blue for t = 0 (the horizontal axis is stock

price, the vertical axis is payoff). For an initial stock price of 100 dollars, we see that the option

should be priced at approximately ten dollars. Note that the exercise boundary ∂D intersects

the line t = 0 precisely at the point where −V (0, x) and (K − x)+ (shown in green) diverge.

Proof. Let us write Pmn = P(xk = nδ|xk−1 = mδ). Then

E(Vδ,∆((k − 1)∆, xk−1) − (1 − ∆r)Vδ,∆(k∆, xk)|xk−1 = mδ)

= Vδ,∆((k − 1)∆,mδ) − (1 − ∆r)
∑

n

PmnVδ,∆(k∆, nδ) ≤ 0,

where we have used the equation for Vδ,∆((k − 1)∆,mδ). In particular, we find that

E(Vδ,∆((k − 1)∆, xk−1) − (1 − ∆r)Vδ,∆(k∆, xk)|Fk−1) ≤ 0

by the Markov property, where Fk = σ{x` : ` ≤ k}. Now note that Iτ≥k is Fk−1-measurable,

as τ is a stopping time. Multiplying by Iτ≥k (1 − ∆r)k−1 and taking the expectation gives

E({(1 − ∆r)k−1 Vδ,∆((k − 1)∆, xk−1) − (1 − ∆r)k Vδ,∆(k∆, xk)} Iτ≥k) ≤ 0.

Now sum over k from 1 to N . This gives

E(Vδ,∆(0, x0)) ≤ E((1 − ∆r)τ Vδ,∆(τ∆, xτ )) ≤ E(−(1 − ∆r)τ (K − xτ )+) = H[τ ],

where we have used the equation for Vδ,∆(t, x) again. But repeating the same argument with

τ∗ instead of τ , the inequalities are replaced by equalities and we find that E(Vδ,∆(0, x0)) =
H[τ∗]. Thus τ∗ is indeed an optimal stopping time for the discrete problem.

The numerical solution of the problem is shown in figure 8.1. Evidently the bound-

ary ∂D of the continuation region is a curve, and D is the area above the curve. The
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optimal time to exercise the option is the time at which the stock price first hits ∂D
(provided that the inital stock price lies above the curve), and we can read off the

optimal cost (and hence the fair price of the option) from the value function V (0, x).

8.2 Partial observations: the modification problem

Just as in stochastic control, we do not always have access to the system state Xt in

optimal stopping problems. When only a noisy observation process Yt is available,

our only option is to base our stopping decisions on that process. In other words,

in this case we wish to minimize the cost J [τ ] over all FY
t -stopping times τ (where

FY
t = σ{Ys : s ≤ t}), rather than over all Ft-stopping times. By definition, this

ensures that {ω : τ(ω) ≤ t} ∈ FY
t , so that we can decide when to stop based purely

on the observation history. We will encounter examples of such problems in the next

two sections, where we discuss applications of optimal stopping in statistics.

We will solve the partial observation problem, as usual, by using the separation

principle. However, there is a subtlety in applying this procedure to optimal stopping

problems. Recall that we are working with the cost functional

J [τ ] = E

[
∫ τ

0

e−λs w(Xs) ds+ e−λτ z(Xτ )

]

,

and assume that τ is an FY
t -stopping time. As before, we would like to use the tower

property of the conditional expectation to express this cost directly in terms of the

filter. Consider first the integral term. If w is nonnegative, for example (so we can

apply Fubini’s theorem—clearly this can be weakened), we obtain

E

[
∫ τ

0

e−λs w(Xs) ds

]

= E

[
∫ ∞

0

Is<τ e
−λs w(Xs) ds

]

=

∫ ∞

0

E(Is<τ e
−λs w(Xs)) ds =

∫ ∞

0

E(Is<τ e
−λs E(w(Xs)|FY

s )) ds

= E

[
∫ ∞

0

Is<τ e
−λs E(w(Xs)|FY

s ) ds

]

= E

[
∫ τ

0

e−λs E(w(Xs)|FY
s ) ds

]

,

where we have used that Is<τ is FY
s -measurable. The second term is more difficult,

however. Define πt(f) = E(f(Xt)|FY
t ). Ultimately, we would like to write

J [τ ] = E

[
∫ τ

0

e−λs πs(w) ds + e−λτ πτ (z)

]

;

if this is true, then the partially observed problem reduces to a completely observed

optimal stopping problem for the filter. However, it is not at all obvious that

E(e−λτ z(Xτ )) = E(e−λτ πτ (z)) = E(e−λτ E(z(Xt)|FY
t )|t=τ ).

In fact, at this point, this expression is neither true or false—it is meaningless!

To understand this point, let us revisit the definition of the conditional expectation.

Recall that for any random variable X ∈ L1 and σ-algebra F , the conditional expec-

tation E(X |F) is defined uniquely up to a.s. equivalence. In particular, there may
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well be two different random variables A and B, both of which satisfy the definition

of E(X |F); however, in this case, we are guaranteed that A = B a.s.

Now consider the stochastic process t 7→ πt(f). For every time t separately, πt(f)
is defined uniquely up to a.s. equivalence. But this means that the process πt(f) is only

defined uniquely up to modification; in particular, two processes At and Bt may both

satisfy the definition of πt(f), but nonetheless P(At = Bt ∀ t) < 1 (after all, we are

only guaranteed that P(At = Bt) = 1 for all t ∈ [0,∞[, and [0,∞[ is an uncountable

set). In this case, there may well be a stopping time τ such that Aτ 6= Bτ : modi-

fication need not preserve the value of a process at stopping times. See section 2.4

for a discussion on this point. Unfortunately, this means that E(z(Xt)|FY
t )|t=τ is a

meaningless quantity; it may take very different values, even with nonzero probability,

depending on how we choose to define our conditional expectations.

Does this mean that all is lost? Not in the least; it only means that we need

to do a little more work in defining the process πt(f). As part of the definition of

that process, we will select a particular modification which has the following special

property: πτ (f) = E(f(Xτ )|FY
τ ) for all FY

t -stopping times τ (with τ < ∞ a.s.).

The process πt(f) is then no longer “just” the conditional expectation process; this

particular modification of the conditional expectation process is known as the optional

projection of the process f(Xt) onto the filtration FY
t . Provided that we work with

this particular modification, we can complete the separation argument. After all,

E(e−λτ z(Xτ)) = E(e−λτ E(z(Xτ )|FY
τ )) = E(e−λτ πτ (z)),

where we have used that τ is FY
τ -measurable. Hence the problem is now finally

reduced to an optimal stopping problem for the filter—that is, if the filter does indeed

compute the optional projection πt(z) (which, as we will see, is the case).

Remark 8.2.1. A general theory of optional projections is developed in detail in Del-

lacherie and Meyer [DM82, section VI.2] (a brief outline can be found in [RW00b,

section VI.7]). We will have no need for this general theory, however; instead, we will

follow a simple argument due to Rao [Rao72], which provides everything we need.

Let us begin by recalling the definition of the σ-algebra FY
τ of events up to and in-

cluding time τ . We have encountered this definition previously: see definition 2.3.16.

Definition 8.2.2. We define FY
τ = {A : A ∩ {τ ≤ t} ∈ FY

t for all t ≤ ∞} for any

FY
t -stopping time τ . Then, in particular, τ is FY

τ -measurable.

To demonstrate where we want to be going, consider our usual observation model

dYt = h(Xt) dt+K dBt.

In the previous chapter, we found filtering equations for πt(f) = E(f(Xt)|FY
t ) for

several different signal models; in all these filters, πt(f) was expressed as the sum of

E(f(X0)), a time integral, and a stochastic integral with respect to the observations.

But recall that we have defined both the time integral and the stochastic integrals

to have continuous sample paths; thus the πt(f) obtained by solving the filtering

equations of the previous chapter is not just any version of the conditional expectation:
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it is the unique modification of the conditional expectation process that has continuous

sample paths (uniqueness follows from lemma 2.4.6). We are going to show that it is

precisely this modification that is the optional projection.

Proposition 8.2.3. Let Xt be a process with right-continuous sample paths, and let

f be a bounded continuous function. Suppose there is a stochastic process πt(f)
with continuous sample paths such that πt(f) = E(f(Xt)|FY

t ) for every t. Then

πτ (f) = E(f(Xτ )|FY
τ ) for all FY

t -stopping times τ <∞.

Remark 8.2.4. The “suppose” part of this result is superfluous: it can be shown that

a continuous modification of E(f(Xt)|FY
t ) always exists in this setting [Rao72]. We

will not need to prove this, however, as we have already explicitly found a continuous

modification of the conditional expectation process, viz. the one given by the filtering

equations, in all cases in which we are interested.

To prove this statement, we will begin by proving it for the special case that τ
only takes a countable number of values. In this case, the result is independent of

modification: after all, the problem essentially reduces to discrete time, where two

modifications are always indistinguishable (see section 2.4).

Lemma 8.2.5. Proposition 8.2.3 holds for any modification of πt(f) whenever τ takes

values only in a countable set times {t1, t2, . . .}.

Proof. We need to show that E(πτ (f) IB) = E(f(Xτ ) IB) for everyB ∈ FY
τ , and that πτ (f)

is FY
τ -measurable. This establishes the claim by the Kolmogorov definition of the conditional

expectation. We begin by demonstrating the first claim. Note that B =
⋃

i≥1 B ∩ {τ = ti}, so

E(πτ (f) IB) =
∞∑

i=1

E(πτ (f) IB∩{τ=ti}), E(f(Xτ ) IB) =
∞∑

i=1

E(f(Xτ ) IB∩{τ=ti}).

Hence it suffices to prove E(πτ (f) IB∩{τ=ti}) = E(f(Xτ ) IB∩{τ=ti}) for every B ∈ FY
τ

and i ≥ 1. But by definition, Bi = B ∩ {τ = ti} ∈ FY
ti

, so we do indeed find that

E(πτ (f) IBi) = E(πti(f) IBi ) = E(f(Xti) IBi) = E(f(Xτ ) IBi).

To show that πτ (f) is FY
τ -measurable, note that

{πτ (f) ∈ A} =
⋃

i≥1

{πτ (f) ∈ A and τ = ti} =
⋃

i≥1

{πti(f) ∈ A} ∩ {τ = ti}

for every Borel set A; hence {πτ (f) ∈ A} ∩ {τ = tj} ∈ FY
tj

⊂ FY
ti

for every j ≤ i, so it

follows easily that {πτ (f) ∈ A} ∈ FY
τ (take the union over j ≤ i). We are done.

To prove proposition 8.2.3 in its full glory, we can now proceed as follows. Even

though τ does not take a countable number of values, we can always approximate

it by a sequence of stopping times τn such that every τn takes a countable number

of values and τn ↘ τ . We can now take limits in the previous lemma, and this is

precisely where the various continuity assumptions will come in. Before we complete

the proof, we need a an additional lemma which helps us take the appropriate limits.
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Lemma 8.2.6 (A version of Hunt’s lemma). Let Xn be a sequence of random vari-

ables such that Xn → X∞ in L2, let Fn be a reverse filtration Fn−1 ⊃ Fn ⊃
Fn+1 ⊃ · · · , and denote by F∞ =

⋂

n Fn. Then E(Xn|Fn) → E(X∞|F∞) in L2.

Proof. Note that we can write ‖E(Xn|Fn) − E(X∞|F∞)‖2 ≤ ‖E(Xn − X∞|Fn)‖2 +
‖E(X∞|Fn) − E(X∞|F∞)‖2. But for the first term, we obtain using Jensen’s inequality

‖E(Xn −X∞|Fn)‖2 ≤ ‖Xn −X∞‖2 → 0 by assumption. Hence it remains to prove that the

second term converges to zero. To this end, let us write Fn = E(X∞|Fn). Then for m < n

E((Fm − Fn)2) = E(F 2
m) + E(F 2

n) − 2E(FnFm)

= E(F 2
m) + E(F 2

n) − 2E(Fn E(Fm|Fn)) = E(F 2
m) − E(F 2

n).

But then we find, in particular, that

n∑

k=m+1

E((Fk−1 − Fk)2) = E(F 2
m) − E(F 2

n) ≤ 2E(X2
∞) <∞,

so we conclude (let n → ∞, then m → ∞) that Fn is a Cauchy sequence in L2. But then

Fn must converge in L2 to some random variable F∞, and it remains to verify that F∞ =
E(X∞|F∞). To this end, note that for every A ∈ F∞ ⊂ Fn, we have

E(F∞ IA) = lim
n→∞

E(Fn IA) = lim
n→∞

E(X∞ IA) = E(X∞ IA)

by dominated convergence. On the other hand, {Fn}n≥m is a sequence of Fm-measurable

random variables, so the limit (in L2) of this sequence is also Fm-measurable. But F∞ is the

limit of every such sequence, so F∞ is Fm measurable for everym, i.e.,F∞ is F∞-measurable,

and this establishes the claim by the Kolmogorov definition of the conditional expectation.

We can finally proceed to the proof of proposition 8.2.3.

Proof of proposition 8.2.3. Define the stopping times τn = 2−n(b2nτc + 1). Then τn ↘ τ ,

and each τn takes a countable number of values. By lemma 8.2.5, we find that πτn(f) =
E(f(Xτn )|FY

τn
) for every n. We would like to take the limit of this expression as n→ ∞. The

left-hand side is easy: πτn(f) → πτ (f) by the continuity of the sample paths of πt(f) (which

we have assumed). It remains to tackle the right-hand side.

First, we claim that FY
τn

⊃ FY
τn+1

. To see this, let A ∈ FY
τn+1

be arbitrary. Then

A ∩ {τn ≤ t} = A ∩ {τn+1 ≤ t} ∩ {τn ≤ t} ∈ FY
t ,

where we have used that τn+1 ≤ τn, the definition of FY
τn+1

and that τn is an FY
t -stopping

time. But this holds for every t, so the claim follows by the definition of FY
τn

. We can thus

conclude by lemma 8.2.6, the boundedness of f and the right-continuity of f(Xt), that

E(f(Xτn)|FY
τn

)
n→∞−−−−→ E(f(Xτ )|G) in L2, G =

⋂

n≥1

FY
τn
.

We now have to show that E(f(Xτ )|G) = E(f(Xτ )|FY
τ ) a.s. Clearly FY

τ ⊂ G (as τ < τn for

all n), so it suffices to show that E(E(f(Xτ )|G)|FY
τ ) = E(f(Xτ )|G) a.s. But we know that

E(f(Xτ )|G) = πτ (f) a.s. Hence we are done if we can show that πτ (f) is FY
τ -measurable.

To see that this is the case, define the stopping times σn = τn − 2−n. Then σn ≤ τ , and

σn → τ as n → ∞. But πσn(f) isFY
σn

-measurable (see the proof of lemma 8.2.5), so it is FY
τ -

measurable for every n (as σn ≤ τ implies FY
σn

⊂ FY
τ ). But then πτ (f) = limn→∞ πσn(f)

(by the continuity of the sample paths) must be FY
τ -measurable.
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8.3 Changepoint detection

We are now ready to treat a statistical application: the detection of a sudden change in

white noise. This is known as a changepoint detection problem.

The problem is as follows. Our system—and industrial process, a stock, a com-

puter network, etc.—has a parameter which undergoes a sudden change at some ran-

dom time τ (in the above examples, e.g., a machine breakdown, a stock crash, a

denial-of-service attack, etc.). We will assume that τ is exponentially distributed, i.e.,

P(τ = 0) = π0 and P(τ > t|τ > 0) = e−λt. In an ideal world, we would intervene

as soon as the sudden change occurs, i.e., we would like to take some action to correct

for the change. Unfortunately, we can not actually see when the change happens; all

that is available to us is the noisy observation process

dYt = γ Iτ≤t dt+ σ dBt, FY
t = σ{Ys : s ≤ t},

where Bt is a Wiener process independent of τ . Our goal is thus to find an FY
t -

stopping time ϑ, i.e., a stopping time that is decided purely on the basis of the obser-

vations, that is as close as possible to the changepoint τ in a suitable sense.

In deciding on a stopping strategy ϑ, however, we have two competing goals. On

the one hand, we would like to intervene as soon as possible after the changepoint

τ occurs, i.e., we would like to minimize the expected delay E((ϑ − τ)+). On the

other hand, it is bad if we decide to intervene before the change has actually occured,

i.e., we would like to minimize the probability of false alarm P(ϑ < τ). As you can

imagine, these goals are in some sense mutually exclusive: if we do not care about

false alarms then it is always best to stop at ϑ = 0 (as the delay time is then zero!),

while if we do not care about delay then we should intervene at ϑ = ∞ (τ < ∞ a.s.,

so if we wait long enough we are sure that there will be no false alarm). Generally,

however, there is a tradeoff between the two, and it is in this case that the problem

becomes nontrivial. To quantify the tradeoff, let us introduce the cost functional

J [ϑ] = P(ϑ < τ) + cE((ϑ− τ)+).

The constant c > 0 allows us to select the relative merit of minimizing the false

alarm probability or the delay time. Our goal is to find an FY
t -stopping rule ϑ∗ which

minimizes J [ϑ]. Using the Shiryaev-Wonham filter, we can turn this into an ordinary

optimal stopping problem to which proposition 8.1.3 can be applied.

Remark 8.3.1. There are various variations on the changepoint detection problem,

some of which we will discuss at the end of this section. For the time being, however,

let us concentrate on solving the problem in this basic form.

Define πt = P(τ ≤ t|FY
t ), and recall that the Shiryaev-Wonham filter gives

dπt =
γ

σ
πt(1 − πt) dB̄t + λ(1 − πt) dt, dB̄t = σ−1(dYt − γπt dt).

If we write Iτ≤t = Xt, then we obtain the more familiar cost

J [ϑ] = E

[

c

∫ ϑ

0

Xs ds+ (1 −Xϑ)

]

= E

[

∫ ϑ

0

c πs ds+ (1 − πϑ)

]

,
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where we have used the result of the previous section (note that Iτ≤t does not have

continuous sample paths, but it does have right-continuous sample paths). We can

thus apply proposition 8.1.3 with K = [0, 1], and the variational inequality reads

min

{

γ2x2(1 − x)2

2σ2

∂2V (x)

∂x2
+ λ(1 − x)

∂V (x)

∂x
+ cx, 1 − x− V (x)

}

= 0.

Perhaps remarkably, this problem has a (somewhat) explicit solution.

To begin, recall that once we have obtaind a suitable solution V (x) to this problem,

the interval [0, 1] is divided into the continuation region D = {x : V (x) < 1 − x}
and the stopping region Dc = {x : V (x) = 1 − x}. On the former, we must have

L V (x)+cx = 0, while on the latter we must have L V (x)+cx ≥ 0. In particular, we

can use the latter requirement to find a necessary condition on the set D: substituting

V (x) = 1 − x into the inequality, we find that it must be the case that x ≥ λ/(c+ λ)
for any x ∈ Dc. In particular, this implies that [0, λ/(c+ λ)[ ⊂ D.

Let us now try to solve for V (x) on D. Note that LV (x) + cx = 0 gives

∂U(x)

∂x
= −2σ2

γ2

(

λ

x2(1 − x)
U(x) +

c

x(1 − x)2

)

(x > 0), U(0) = 0,

where U(x) = ∂V (x)/∂x. This is an (admittedly nasty) ordinary differential equa-

tion, which does however have locally Lipschitz coefficients on ]0, 1[; if we require1

U(x) → 0 as x → 0 (so that V (x) is C1 at x = 0), we obtain the unique solution

U(x) = −2σ2c

γ2
e
− 2σ2λ

γ2 (log( x
1−x )− 1

x )
∫ x

0

e
2σ2λ

γ2 (log( y
1−y )− 1

y )

y(1 − y)2
dy.

Let us verify some elementary properties of this equation.

Lemma 8.3.2. The function U(x), as defined above, has the following properties:

1. U(x) ≤ 0;

2. U(x) is C1 on [0, 1[;

3. U(x) → 0 as x↘ 0; and

4. U(x) → −∞ as x↗ 1.

Proof. That U(x) ≤ 0 is trivial. It is easily verified that the integrand of the integral in the

expression forU(x) is bounded on every set of the form [0, x] with x < 1. Thus U(x) is clearly

well-defined for every x ∈ ]0, 1[, and it follows directly that U(x) is C1 in ]0, 1[. The behavior

of U(x) as x ↘ 0 or x ↗ 1 follows by an application of l’Hospital’s rule (with the integral in

the numerator and the exponential prefactor in the denominator). It remains to show that U(x)
is differentiable at x = 0 (so U(x) is C1 on [0, 1[); this follows by applying l’Hospital’s rule to

U(x)/x (with the integral in the numerator and the prefactor in the denominator).

Here is another very useful property of U(x), which is not immediately obvious.

1 We have to require this to apply proposition 8.1.3, as we know that 0 ∈ D and V (x) must be C1.
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Lemma 8.3.3. U(x) is strictly decreasing.

Proof. Using the differential equation satisfied by U(x), it follows that

∂U(x)

∂x
< 0 ⇐⇒ −U(x) <

c

λ

x

1 − x
.

We would like to show that this is in fact the case. Using the expression for U(x), this becomes

2σ2λ

γ2
e
− 2σ2λ

γ2 (log( x
1−x

)− 1
x

)
∫ x

0

e
2σ2λ

γ2 (log( y
1−y

)− 1
y

)

y(1 − y)2
dy <

x

1 − x
.

The trick is to note that we have the identity

d

dy
e

2σ2λ
γ2 (log(

y
1−y

)− 1
y

)
=

2σ2λ

γ2

e
2σ2λ

γ2 (log( y
1−y

)− 1
y
)

y2(1 − y)
,

so that it evidently remains to prove that

e
− 2σ2λ

γ2 (log( x
1−x

)− 1
x

)
∫ x

0

y

1 − y

d

dy
e

2σ2λ
γ2 (log( y

1−y
)− 1

y
)
dy <

x

1 − x
.

But this is clearly true for all 0 < x < 1, and thus the proof is complete.

We can now finally complete the solution of the optimal stopping problem. We

need to use the principle of smooth fit to determineD. Note that for x on the boundary

of D, we must have U(x) = −1 in order to make V (x) be C1. But the previous

lemmas demonstrate that there is a unique point π∗ ∈ ]0, 1[ such that U(π∗) = −1:

there is at least one such point (as U(0) ≥ −1 ≥ U(1)), and uniqueness follows

as U(x) is decreasing. We have thus established, in particular, that the continuation

region must be of the formD = [0, π∗[, and the remainder of the argument is routine.

Theorem 8.3.4 (Changepoint detection). Let π∗ ∈ ]0, 1[ be the unique point such

that U(π∗) = −1, and define the concave function V (x) as

V (x) =

{

1 − π∗ +
∫ x

π∗ U(y) dy for x ∈ [0, π∗[,
1 − x for x ∈ [π∗, 1].

Then V (x) is C1 on [0, 1], C2 on [0, 1]\{π∗}, and

min

{

γ2x2(1 − x)2

2σ2

∂2V (x)

∂x2
+ λ(1 − x)

∂V (x)

∂x
+ cx, 1 − x− V (x)

}

= 0.

In particular, the stopping rule ϑ∗ = inf{t : πt 6∈ [0, π∗[} is optimal in that it

minimizes the cost J [ϑ] in the class of FY
t -stopping times.

Proof. The various smoothness properties of V (x) follow from the lemmas proved above. That

V (x) is concave follows as its second derivative is nonpositive. Next, let us show that (as

expected) π∗ > λ/(c + λ). To this end, it suffices to substitute U(x) = −1 into the equation

for ∂U(x)/∂x, and to use the fact that the latter is negative. But then it follows directly that the

variational inequality is satisfied on [π∗, 1]. That L V (x)+ cx = 0 on [0, π∗[ follows from the
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definition of U(x), while that V (x) < 1 − x on [0, π∗] follows from the concavity of V (x).

Hence we have established that the variational inequality is satisfied on [0, 1].
We now invoke proposition 8.1.3 with K = [0, 1]. Clearly V (x) is sufficiently smooth,

and as V (x) and both its derivatives are bounded, it remains by lemma 6.3.4 to show that

E(ϑ∗) <∞. To this end, define αt = − log(1 − πt). Then Itô’s rule gives

dαt =
γ

σ
πt dB̄t + λdt+

γ2

2σ2
π2

t dt.

Hence we obtain, in particular,

E(αt∧ϑ∗) ≥ α0 + λE(t ∧ ϑ∗).

But αt∧ϑ∗ ≤ − log(1 − π∗), so E(ϑ∗) <∞ by monotone convergence. We are done.

We now have a complete solution to the basic changepoint detection problem for

our model. The rest of this section discusses some variations on this theme.

Example 8.3.5 (Variational formulation). We have discussed what is known as the

“Bayesian” form of the changepoint detection problem: we have quantified the trade-

off between false alarm probability and expected delay by minimizing a weighted sum

of the two. Sometimes, however, a “variational” form of the problem is more appro-

priate. The latter asks the following: in the class of FY
t -stopping rules ϑ with a false

alarm probability of at most α ∈ ]0, 1[, what is the stopping rule that minimizes the

expected delay? With the solution to the Bayesian problem in hand, we can now solve

the variational problem using a method similar to the one used in example 6.4.7.

Corollary 8.3.6. Let α ∈ ]0, 1[. Then amongst those FY
t -stopping times ϑ such that

P(ϑ < τ) ≤ α, the expected delay is minimized by ϑ∗ = inf{t : πt 6∈ [0, 1− α[}.

Proof. First, we claim that we can choose the Bayesian cost J [ϑ] in such a way that π∗ = 1−α
in the previous theorem, i.e., there exists a constant cα > 0 such that U(1 − α) = −1 for

c = cα. This is trivially seen, however, as U(x) is directly proportional to c. Denote by Jα[ϑ]
the cost with c = cα; evidently ϑ∗ = inf{t : πt 6∈ [0, 1 − α[} minimizes Jα[ϑ].

Next, we claim that P(ϑ∗ < τ ) = α whenever π0 < 1 − α. To see this, note that using

proposition 8.2.3, we can write P(ϑ∗ < τ ) = 1 − E(P(τ ≤ ϑ∗|FY
ϑ∗ )) = 1 − E(πϑ∗) = α.

Whenever π0 ≥ 1 − α, it must be the case that ϑ∗ = 0, so we find P(ϑ∗ < τ ) = 1 − π0.

For the latter case, however, the result holds trivially. To see this, note that ϑ∗ = 0 satisfies

P(ϑ < τ ) ≤ α, while the expected delay is zero for this case. As a smaller delay is impossible,

ϑ∗ = 0 is indeed optimal in the class of stopping rules in which we are interested.

It thus remains to consider the case when π0 < 1 − α. To this end, let ϑ be an arbitrary

FY
t -stopping time with P(ϑ < τ ) ≤ α. Then Jα[ϑ∗] ≤ Jα[ϑ] gives

α + cα E((ϑ
∗ − τ )+) = P(ϑ∗ < τ ) + cα E((ϑ

∗ − τ )+)

≤ P(ϑ < τ ) + cα E((ϑ− τ )+) ≤ α+ cα E((ϑ− τ )+).

Thus E((ϑ∗−τ )+) ≤ E((ϑ−τ )+), so ϑ cannot have a smaller delay than ϑ∗. We are done.

Note that the variational problem is, in some sense, much more intuitive than its

Bayesian counterpart: given that we can tolerate a fixed probability of false alarm α,

it is best not to stop until the conditional probability of being in error drops below α.
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Example 8.3.7 (Expected miss criterion). The cost J [ϑ] is quite general, and con-

tains seemingly quite different cost functionals as special cases. To demonstrate this

point, let us show how to obtain a stopping rule ϑ∗ that minimizes the expected miss

criterion J ′[ϑ] = E(|ϑ − τ |). In the absence of explicit false alarm/expected delay

preferences, this is arguably the most natural cost functional to investigate!

The solution of this problem is immediate if we can rewrite the cost J ′[ϑ] in terms

of J [ϑ] (for some suitable c). This is a matter of some clever manipulations, combined

with explicit use of the Shiryaev-Wonham filter. We begin by noting that

J ′[ϑ] = E(τ + ϑ− 2 τ ∧ ϑ) =
1 − π0

λ
+ E

[

∫ ϑ

0

{1− 2 Is<τ} ds
]

,

where we have used E(τ) = (1 − π0)/λ. Using the the tower property, we obtain

J ′[ϑ] =
1− π0

λ
+E

[

∫ ϑ

0

{2 Iτ≤s − 1} ds
]

=
1 − π0

λ
+E

[

∫ ϑ

0

{πs − (1 − πs)} ds
]

.

Now note that the Shiryaev-Wonham equation gives

πϑ = π0 + λ

∫ ϑ

0

(1 − πs) ds+
γ

σ

∫ ϑ

0

πs(1 − πs) dB̄s.

In particular, if we restrict to stopping times ϑ with E(ϑ) <∞ (this is without loss of

generality, as it is easy to see that J ′[ϑ] = ∞ if E(ϑ) = ∞), then lemma 6.3.4 gives

λJ ′[ϑ] = 1 − π0 + E

[

∫ ϑ

0

λπs ds+ π0 − πϑ

]

= Jλ[ϑ],

where Jλ[ϑ] is our usual cost J [ϑ] with c = λ. Evidently J ′[ϑ] and Jλ[ϑ] differ only

by a constant factor, and hence their minima are the same. It thus remains to invoke

theorem 8.3.4 with c = λ, and we find that ϑ∗ = inf{t : πt 6∈ [0, π∗[} for suitable π∗.

Let us complete this section with an interesting application from [RH06].

Example 8.3.8 (Optimal stock selling). The problem which we wish to consider is

how to best make money off a “bubble stock”. Suppose we own a certain amount of

stock in a company that is doing well—the stock price increases on average. However,

at some random point in time τ the company gets into trouble (the “bubble bursts”),

and the stock price starts falling rapidly from that point onward. Concretely, you can

imagine a situation similar to the dot-com bubble burst in early 2000.

It seems evident that we should sell our stock before the price has dropped too far,

otherwise we will lose a lot of money. However, all we can see is the stock price: if

the stock price starts dropping, we are not sure whether it is because the bubble burst

or whether it is just a local fluctuation in the market (in which case the stock price will

go up again very shortly). The problem is thus to try to determine, based only on the

observed stock prices, when is the best time to sell our stock.
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Let us introduce a simple model in which we can study this problem. The total

amount of money we own in stock is denoted St, and satisfies

dSt = µtSt dt+ σSt dWt.

Prior to the burst time τ , the stock is making money: we set µt = a > 0 for t < τ .

After the burst, the stock loses money: we set µt = −b < 0 for τ ≤ t. In particular,

dSt = (a It<τ − b Iτ≤t)St dt+ σSt dWt.

Denote by FS
t = σ{Ss : s ≤ t} the filtration generated by the stock price, and we

choose τ to be an exponentially distributed random variable, i.e., P(τ = 0) = π0 and

P(τ > t|τ > 0) = e−λt, which is independent of the Wiener process Wt. Our goal

is to maximize the expected utility E(u(Sϑ)) from selling at time ϑ, i.e., we seek to

minimize the cost J ′[ϑ] = E(−u(Sϑ)) in the class of FS
t -stopping rules (see example

6.2.4 for a discussion of utility). For simplicity we will concentrate here on the Kelly

criterion u(x) = log(x) (the risk-neutral case can be treated as well, see [RH06]).

We begin by rewriting the cost in a more convenient form. We will restrict our-

selves throughout to stopping times with E(ϑ) <∞ (and we seek an optimal stopping

rule in this class), so that we can apply lemma 6.3.4. Using Itô’s rule, we then obtain

J ′[ϑ] = E

[

∫ ϑ

0

{

σ2

2
− a Is<τ + b Iτ≤s

}

ds

]

− log(S0),

where we presume that S0 (our starting capital) is non-random. It follows that

J ′[ϑ] = E

[

∫ ϑ

0

{

σ2

2
− a+ (a+ b) P(τ ≤ s|FS

s )

}

ds

]

− log(S0),

where we have used the tower property of the conditional expectation.

Let us now introduce the process Yt = log(St) − log(S0) + ( 1
2σ

2 − a) t. Then

dYt = −(a+ b) Iτ≤t dt+ σ dWt = γ Iτ≤t dt+ σ dWt, γ = −(a+ b).

But clearly we can transform back and forth between St and Yt without losing any

information, so in particular FS
t = FY

t = σ{Ys : s ≤ t}, and we can thus conclude

that P(τ ≤ t|FS
t ) = P(τ ≤ t|FY

t ) = πt satisfies the Shiryaev-Wonham equation:

dπt =
γ

σ
πt(1 − πt) dB̄t + λ(1 − πt) dt, dB̄t = σ−1(dYt − γπt dt).

We can now transform the cost J ′[ϑ] into the cost J [ϑ] of the changepoint detection

problem as in the previous example. To this end, we rewrite J ′[ϑ] suggestively as

J ′[ϑ] = E

[

∫ ϑ

0

{(

σ2

2
− a

)

(1 − πs) +

(

σ2

2
+ b

)

πs

}

ds

]

− log(S0).

Using the Shiryaev-Wonham equation, we obtain

J ′[ϑ] = E

[

1

λ

(

a− σ2

2

)

(π0 − πϑ) +

∫ ϑ

0

(

σ2

2
+ b

)

πs ds

]

− log(S0).
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Figure 8.2. Solution of example 8.3.8 with a = 1, b = 2, σ = .6, S0 = 100, λ = 1, and

π0 = 0. The left plot shows V (x) of theorem 8.3.4; note that the threshold π∗ is precisely the

point where V (x) and 1 − x diverge. A simulation on the time interval [0, 2] of the stock price

St (which starts tanking at time τ ) and the filter πt, with the optimal stopping strategy in action,

is shown on the right. The optimal time to sell is the first time the filter exceeds π∗.

Things are starting to look up—this is almost the changepoint detection problem!

To proceed, we need to distinguish between two cases. The first case is when

2a ≤ σ2. In this case, the problem becomes essentially trivial; indeed, you can read

of from the expression for J ′[ϑ] above that the optimal stopping rule for this case tries

to simultaneously minimize the expected delay, and maximize the probability of false

alarm. This is easily accomplished by setting ϑ∗ = 0, and this is indeed the optimal

stopping rule when 2a ≤ σ2. It thus remains to consider the nontrivial case 2a > σ2.

Define the constants q = (2a − σ2)/2λ and c = (σ2 + 2b)/2q, and note in

particular that q, c > 0 when 2a > σ2 (which we now assume). Then we can write

q−1J ′[ϑ] = E

[

1 − πϑ +

∫ ϑ

0

cπs ds

]

− q−1 log(S0) + π0 − 1.

In particular, we find that J ′[ϑ] = q J [ϑ] − log(S0) − q (1 − π0), where J [ϑ] is our

usual changepoint detection cost (with c = (σ2 + 2b)/2q). But as q > 0, it is clear

that the FS
t -stopping rule ϑ∗ that minimizes J ′[ϑ] coincides with the FY

t -stopping

rule that minimizes J [ϑ]. Hence the optimal time ϑ∗ to sell our stock can be found

directly by substituting the appropriate values into theorem 8.3.4.

The function V (x) of theorem 8.3.4 is shown in figure 8.2 for a particular set of pa-

rameter values for the stock selling problem. Note that the value function does indeed

have the desired behavior, and we can read off the boundary π∗ of the continuation

region. A numerical simulation shows the stock selling problem in action.
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8.4 Hypothesis testing

Another classic optimal stopping problem from statistics is the sequential testing of

hypotheses. We will develop this theory here in the simplest continuous time setting.

The model in this case is very simple. Suppose that we are sent a single bit through

a noisy channel. The observation process is then given by

dYt = γX dt+ σ dBt, FY
t = σ{Ys : s ≤ t},

where X (the bit) is either zero or one. We would like to determine the value of X on

the basis of the observations, i.e., we would like to accept one of the two hypotheses

X = 0 or X = 1, and we would like to do this in such a way that the probabilities of

selecting the wrong hypothesis (we accept the hypothesisX = 0 when in fact X = 1,

and vice versa) are as small as possible. On a fixed time horizon [0, T ], it is well

known how to do this: the Neyman-Pearson test characterizes this case completely.

The problem becomes more interesting, however, when we do not fix the obser-

vation interval [0, T ], but allow ourselves to decide when we have collected enough

information from the observations to accept one of the hypotheses with sufficient con-

fidence. A decision rule in this problem consists of two quantities: an FY
t -stopping

time τ (the decision time) and a {0, 1}-valued FY
τ -measurable random variable H

(the accepted hypothesis, i.e., H = 1 means we think that X = 1, etc.) We are now

faced with the competing goals of minimizing the following quantities: the probabil-

ity that H = 1 when in fact X = 0; the probability that H = 0 when in fact X = 1;

and the observation time τ required to determine our accepted hypothesis H . The

question is, of course, how to choose (τ,H) to achieve these goals.

Remark 8.4.1. A simple-minded application might help clarify the idea. We wish to

send a binary message through a noisy channel using the following communication

scheme. At any point in time, we transmit the current bit “telegraph style”, i.e., the

receiver observes yt = γ X+σ ξt, where ξt is white noise andX is the value of the bit

(zero or one). One way of transmitting a message is to allocate a fixed time interval

of length ∆ for every bit: i.e., we send the first bit during t ∈ [0,∆[, the second

bit during [∆, 2∆[, etc. The Neyman-Pearson test then provides the optimal way for

the receiver to determine the value of each bit in the message, and the probability of

error depends purely on ∆. If we thus have an upper bound on the acceptable error

probability, we need to choose ∆ sufficiently large to attain this bound.

Now suppose, however, that we allow the receiver to signal back to the transmitter

when he wishes to start receiving the next bit (e.g., by sending a pulse on a feedback

channel). Given a fixed upper bound on the acceptable error probability, we should

now be able to decrease significantly the total amount of time necessary to transmit

the message. After all, for some realizations of the noise the observations may be rela-

tively unambiguous, while for other realizations it might be very difficult to tell which

bit was transmitted. By adapting the transmission time of every bit to the random

fluctuations of the noise, we can try to optimize the transmission time of the mes-

sage while retaining the upper bound on the probability of error. This is a sequential

hypothesis testing problem of the type considered in this section.
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Bayesian problem

As in the changepoint detection problem, we will begin by solving the “Bayesian”

problem and deduce the variational form of the problem at the end of the section.

To define the Bayesian problem, we suppose that X is in fact a random variable,

independent of Bt, such that P(X = 1) = π0 (where π0 ∈ ]0, 1[, otherwise the

problem is trivial!). For any decision rule (τ,H), we can then introduce the cost

J̃ [τ,H ] = E(τ) + aP(X = 1 and H = 0) + bP(X = 0 and H = 1),

where a > 0 and b > 0 are constants that determine the tradeoff between the two

types of error and the length of the observation interval. The goal of the Bayesian

problem is to select a decision rule (τ ∗, H∗) that minimizes J̃ [τ,H ].

Remark 8.4.2. Nothing is lost by assuming that E(τ) < ∞, as otherwise the cost is

infinite. We will thus always make this assumption throughout this section.

To convert this problem into an optimal stopping problem, our first goal is to

eliminate H from the problem. For any fixed stopping rule τ , it is not difficult to

find the hypothesis H∗
τ that minimizes H 7→ J̃ [τ,H ]. If we substitute this optimal

hypothesis into the cost above, the problem reduces to a minimization of the cost

functional J [τ ] = J̃ [τ,H∗
τ ] over τ only. Let us work out the details.

Lemma 8.4.3. Denote by πt the stochastic process with continuous sample paths such

that πt = P(X = 1|FY
t ) for every t. Then for any fixed FY

t -stopping time τ with

E(τ) <∞, the cost J̃ [τ,H ] is minimized by accepting the hypothesis

H∗
τ =

{

1 if aπτ ≥ b(1 − πτ ),
0 if aπτ < b(1 − πτ ).

Moreover, the optimal cost is given by

J [τ ] = J̃ [τ,H∗
τ ] = E(τ + aπτ ∧ b(1 − πτ )).

Proof. As τ is fixed, it suffices to find an FY
τ -measurable H that minimizes E(a IX=1IH=0 +

b IX=0IH=1). But using the tower property of the conditional expectation and the optional

projection, we find that we can equivalently minimize E(aπτ (1− IH=1) + b (1−πτ ) IH=1).

But clearly this expression is minimized by H∗
τ , as aπτ (1 − IH∗

τ =1) + b (1 − πτ ) IH∗
τ =1 ≤

a πτ (1 − IH=1) + b (1 − πτ ) IH=1 a.s. for any other H . The result now follows directly.

The filter πt can be obtained in various ways; we have computed it explicitly

in example 7.1.9, and we can easily apply Itô’s rule to this expression to obtain a

stochastic differential equation. Alternatively, the current case is simply the Shiryaev-

Wonham equation with p0 + p∞ = 1, so we immediately obtain the equation

dπt =
γ

σ
πt(1 − πt) dB̄t, dB̄t = σ−1(dYt − γπt dt).

By the previous lemma, we are seeking a stopping time τ that minimizes

J [τ ] = E

[
∫ τ

0

dt+ aπτ ∧ b(1 − πτ )

]

.
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This is precisely an optimal stopping problem as formulated in proposition 8.1.3. To

solve the problem, we consider as usual the corresponding variational inequality:

min

{

γ2x2(1 − x)2

2σ2

∂2V (x)

∂x2
+ 1, ax ∧ b(1 − x) − V (x)

}

= 0.

Recall that once we have obtained a suitable solution V (x), the interval [0, 1] is di-

vided into the continuation regionD = {x : V (x) < ax∧b(1−x)}, on which we must

have L V (x) + 1 = 0, and the stopping region Dc = {x : V (x) = ax ∧ b(1 − x)},

on which L V (x) + 1 ≥ 0. Moreover, the function V (x) should be C1 across the

boundary ∂D, if we are going to be able to apply proposition 8.1.3.

We begin by seeking solutions to the equation L V (x) + 1 = 0. This is simply a

matter of integrating twice, and we find at once the general solution on ]0, 1[:

Vc,d(x) =
2σ2

γ2
(1 − 2x) log

(

x

1 − x

)

+ cx+ d.

Note that regardless of c, d, the function Vc,d(x) is strictly concave and satisfies

V (x) → −∞ as x ↘ 0 or x ↗ 1. In particular, this implies that ∂Vc,d(x)/∂x
takes every value in R exactly once on x ∈ ]0, 1[.

The constants c, d and the continuation region D remain to be found. To this end,

we will apply the principle of smooth fit. Let us first narrow down the form of the

continuation region. Note that as no Vc,d(x) can be made continuous at x = 0 or

x = 1, the continuation region D must exclude at least some neighborhood of these

points. On the other hand, the continuation region must include at least x = b/(a+b),
as otherwise V (x) could not be C1 at this point (why?). Hence the boundary of D
must consist of points in the interval ]0, b/(a+ b)[ and in the interval ]b/(a + b), 1[.
But on the former, the principle of smooth fit requires that ∂V (x)/∂x = a, while on

the latter it must be the case that ∂V (x)/∂x = −b. As the derivative of V (x) takes

every value in R only once, the principle of smooth fit forces the continuation region

to be of the form ]π0, π1[ with π0 ∈ ]0, b/(a+ b)[ and π1 ∈ ]b/(a+ b), 1[.
We now need to determine c, d, π0, π1. Once we have found π0, we can directly

eliminate c and d; after all, the principle of smooth fit requires that V (π0) = aπ0 and

∂V (x)/∂x|x=π0 = a. Thus, given π0, we must have

V (x) = Ψ(x) − Ψ(π0) + (a− ψ(π0)) (x− π0) + a π0 (for x ∈ ]π0, π1[),

where we have written

Ψ(x) =
2σ2

γ2
(1 − 2x) log

(

x

1 − x

)

, ψ(x) =
∂Ψ(x)

∂x
.

The trick is now to select π0 and π1 in such a way that V (x) is C1 at π1. This gives

V (π1) = b(1 − π1),
∂V (x)

∂x

∣

∣

∣

∣

x=π1

= ψ(π1) − ψ(π0) + a = −b.

We now have two equations relating two unknowns π0 and π1; if we can show that a

solution exists, then the problem is essentially solved (up to minor technicalities). We

will show that there is in fact a unique solution; the proof is illustrated in figure 8.3.
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Figure 8.3. Illustration of lemma 8.4.4. If π0 is chosen too small then V (x) does not touch the

line b(1−x) at all (first figure), while if π0 is too large then the maximum of V (x)− b(1−x)
lies above zero (second figure). For the correct choice of π0, the curve V (x) will be precisely

tangent to b(1 − x) (third figure). The final construction of the value function (as in theorem

8.4.5) is shown in the last figure. For these plots γ = 1, σ = .4, a = 1 and b = 1.5.

Lemma 8.4.4. There is a unique π0, π1 with 0 < π0 < b/(a+ b) < π1 < 1 such that

Ψ(π1) − Ψ(π0) + (a− ψ(π0)) (π1 − π0) + a π0 = b(1 − π1),

ψ(π0) − ψ(π1) = a+ b.

Proof. Consider the function W (x) = V (x) − b (1 − x) (recall that this equation depends on

π0). Note that W (x) is strictly concave for every π0 and satisfies W (x) → −∞ as x ↘ 0 or

x↗ 1. Hence W (x) has a maximum in the interval ]0, 1[ for every π0.

For π0 = b/(a + b) the maximum lies above zero: after all, in this case W (π0) = 0,

while ∂W (x)/∂x|x=π0 = a is positive. As π0 → 0, however, the maximum of W (x)
goes below zero. To see this, note that W (x) attains its maximum at the point x∗ such that

∂W (x)/∂x|x=x∗ = ψ(x∗)−ψ(π0)+a+ b = 0, and ψ(π0) → ∞ as π0 → 0; hence x∗ → 0
as well. On the other hand, W (x) ≤ ax− b (1−x) everywhere by concavity, so as x∗ → 0 we

obtain at least W (x∗) ≤ −b/2. Now note that ψ(x∗) − ψ(π0) + a+ b = 0 implies that x∗ is

strictly decreasing as π0 decreases. Hence there must thus be a unique 0 < π0 < b/(a+b) such

that x∗ is precisely zero. But then for that π0, V (x∗) = b (1−x∗) and ∂V (x)/∂x|x=x∗ = −b,
so we have found the desired π0 and π1 = x∗. Note that π1 > b/(a + b) necessarily, as

V (x) ≤ ax everywhere (so V (x∗) = b(1 − x∗) means b(1 − x∗) < ax∗).

The remainder of the argument is now routine.

Theorem 8.4.5 (Sequential hypothesis testing). Define the concave function

V (x) =







ax for 0 ≤ x < π0,
Ψ(x) − Ψ(π0) + (a− ψ(π0)) (x − π0) + a π0 for π0 ≤ x ≤ π1,
b(1− x) for π1 < x ≤ 1,

where 0 < π0 < b
a+b < π1 < 1 are the unique points such that V (π1) = b(1 − π1)

and ψ(π0) − ψ(π1) = a+ b. Then V (x) is C1 on [0, 1], C2 on [0, 1]\{π0, π1}, and

min

{

γ2x2(1 − x)2

2σ2

∂2V (x)

∂x2
+ 1, ax ∧ b(1 − x) − V (x)

}

= 0.
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In particular, the decision strategy

τ∗ = inf{t : πt 6∈ ]π0, π1[}, H∗ =

{

1 if aπτ∗ ≥ b(1 − πτ∗),
0 if aπτ∗ < b(1 − πτ∗),

is optimal in that is minimizes the cost J̃ [τ,H ] over all decision rules.

Proof. The various smoothness properties of V (x) hold by construction, while V (x) is easily

seen to be concave as its second derivative is nonpositive. Now clearly L V (x) + 1 = 0
on ]π0, π1[, while on the remainder of the interval V (x) = ax ∧ b(1 − x). Moreover, as

V (x) is concave and V (x) is tangent to ax ∧ b(1 − x) at π0 and π1, we must have V (x) ≤
ax ∧ b(1 − x) everywhere; on the other hand, it is immediately verified that L V (x) + 1 ≥ 0
everywhere. Hence the variational inequality is satisfied. We now invoke proposition 8.1.3

with K = [0, 1]. Clearly V (x) is sufficiently smooth, and as V (x) and both its derivatives are

bounded, it remains by lemma 6.3.4 to show that E(τ∗) < ∞; but this follows immediately

from lemma 6.3.3, and the claim is thus established. We are done.

Variational problem

We now consider the variational version of the problem. Rather than minimizing a

cost functional, which trades off between the error probabilities and the length of the

observation interval, we now specify fixed upper bounds on the probability of error.

We then seek a decision strategy that minimizes the observation time within the class

of strategies with acceptable error probabilities. In many situations this is the most

natural formulation, and we will see that also this problem has an explicit solution.

We first need to define the problem precisely. To this end, let us denote by ∆α,β

the class of decision rules (τ,H) such that

P(H = 0|X = 1) ≤ α, P(H = 1|X = 0) ≤ β.

For fixed α, β, our goal is to find a decision rule (τ ∗, H∗) that minimizes E(τ)
amongst all decision rules in ∆α,β . We will need the following lemmas.

Lemma 8.4.6. When π0 ∈ ]π0, π1[, the rule (τ∗, H∗) of theorem 8.4.5 satisfies

P(H∗ = 0|X = 1) =
π0

π0

π1 − π0

π1 − π0
, P(H∗ = 1|X = 0) =

1 − π1

1 − π0

π0 − π0

π1 − π0
,

Proof. We will consider P(H∗ = 0|X = 1); the remaining claim follows identically. Note

that P(H∗ = 0|X = 1) = P(H∗ = 0 and X = 1)/P(X = 1) = P(H∗ = 0 and X = 1)/π0.

Using the tower property of the conditional expectation and the optional projection, we find that

P(H∗ = 0 and X = 1) = E(IH∗=0πτ∗) = E(Iπτ∗=π0πτ∗) = π0 P(πτ∗ = π0). To evaluate

the latter, note that πτ∗ is a {π0, π1}-valued random variable; hence

E(πτ∗) = π0
P(πτ∗ = π0)+π1(1−P(πτ∗ = π0)) = π0 =⇒ P(πτ∗ = π0) =

π1 − π0

π1 − π0
,

as πt is a bounded martingale. This establishes the result.
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Lemma 8.4.7. Given 0 < α + β < 1 and π0 ∈ ]0, 1[, there are unique constants

a, b > 0 in the Bayesian cost J̃ [τ,H ] such that (τ∗, H∗) of theorem 8.4.5 satisfies

P(H∗ = 0|X = 1) = α and P(H∗ = 1|X = 0) = β; moreover, for these a, b we find

π0 =
π0α

(1 − π0)(1 − β) + π0α
, π1 =

π0(1 − α)

(1 − π0)β + π0(1 − α)
,

where it is easily verified that 0 < π0 < π0 < π1 < 1.

Proof. The π0 and π1 in the lemma are obtained by setting P(H∗ = 0|X = 1) = α and

P(H∗ = 1|X = 0) = β in the previous lemma, then solving for π0 and π1. It is easily verified

that 0 < α+β < 1 and π0 ∈ ]0, 1[ ensures that 0 < π0 < π0 < π1 < 1. It remains to find a, b
that give rise to these π0, π1; but substituting π0, π1 into lemma 8.4.4, we find a linear system

of equations for a, b which clearly has a unique solution. Thus the claim is established.

We can now proceed to solve the variational problem as in corollary 8.3.6.

Lemma 8.4.8. For any π0 ∈ ]0, 1[, the optimal Bayesian decision rule (τ ∗, H∗) with

a, b as in the previous lemma is optimal for the variational problem.

Proof. Note that (τ∗, H∗) ∈ ∆α,β by construction. It remains to show that for any (τ,H) ∈
∆α,β , we have E(τ∗) ≤ E(τ ). But as (τ∗, H∗) is optimal for the Bayesian problem,

E(τ∗) + aπ0α+ b(1 − π0)β = J̃ [τ∗, H∗] ≤ J̃ [τ,H] ≤ E(τ ) + aπ0α+ b(1 − π0)β,

so it is indeed the case that E(τ∗) ≤ E(τ ). This establishes the claim.

Though this result does, in principle, solve the variational problem, the true struc-

ture of the problem is still in disguise. It is illuminating to remove the somewhat

strange dependence of the stopping boundaries π0, π1 on π0 = P(X = 1) through a

change of variables. To this end, let us define the likelihood ratio

ϕt ≡
πt

1 − πt

1 − π0

π0
= exp

(

γ

σ2
Yt −

γ2

2σ2
t

)

,

where the latter equality can be read off from example 7.1.9. As x/(1 − x) is strictly

increasing, the stopping rule (τ ∗, H∗) of lemma 8.4.8 can be equivalently written as

τ∗ = inf

{

t : ϕt 6∈
]

α

1 − β
,
1 − α

β

[}

, H∗ =

{

1 if ϕτ∗ ≥ (1 − α)/β,
0 if ϕτ∗ ≤ α/(1 − β).

Evidently the optimal variational decision rule (τ ∗, H∗) can be computed without any

knowledge of π0; after all, both the functional ϕt and the stopping boundaries no

longer depend on π0. Hence we find that unlike in the Bayesian problem, no prob-

abilistic assumption needs to be made on the law of X in the variational problem.

Indeed, we can consider the value of X simply as being “unknown”, rather than “ran-

dom”. This is very much in the spirit of the Neyman-Pearson test, and the two methods

are in fact more closely related than our approach indicates (see [Shi73, section IV.2]).
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8.5 Impulse control

In many ways optimal stopping problems are optimal control problems—they involve

the choice of a strategy which, if followed, achieves a particular goal; this is in essence

what control is all about! However, techniques very similar to the ones used in optimal

stopping theory can also be useful in conjunction with more traditional types of con-

trol. For example, one could investigate a combination of the indefinite cost control

problem of chapter 6 and an optimal stopping problem, where the goal is to optimize

simultaneously over the time at which the control is terminated and the continuous

control strategy followed up to that time. A description of such combined problems

can be found, for example, in [ØS05, chapter 4].

In this final section we will discuss a different combination of optimal control

and optimal stopping techniques. We are interested in the situation where there is

no terminal time—we will control the system of interest on the infinite time horizon.

However, unlike in chapter 6, where we applied a control continuously in time, we

will only apply a control action at a sequence of stopping times, i.e., we allow our-

selves to give the system impulses at suitably chosen times; this is called an impulse

control problem. Such problems are important in a variety of applications, including

resource management (when should we cut down and replant a forest to maximize the

yield?), inventory management (when should we restock our warehouse?), production

planning (when to start and stop production?), and economic applications.2

Before we can solve the control problem, we need to make precise what we mean

by an impulse control strategy. For times prior to the first intervention time t < τ1,

the system evolves according to the stochastic differential equation

Xu
t = X0 +

∫ t

0

b(Xu
s ) ds+

∫ t

0

σ(Xu
s ) dWs,

where X0 is F0-measurable and b : Rn → Rn, σ : Rn → Rn×m satisfy appropriate

conditions that ensure existence and uniqueness of the solution. At the stopping time

τ1, we impulsively change the system state from Xu
τ1− to Xu

τ1
= Γ(Xu

τ1−, ζ1), where

Γ : Rn × U → Rn is a given control action function and U is the control set. The

control ζ1 is assumed to be Fτ1-measurable, i.e., the control strategy is adapted.

Remark 8.5.1. As the state of the system jumps at the intervention time, we need to

have notation that distinguishes between the state just prior and just after the interven-

tion. In the following, we will denote by Xτ− the state just prior to the intervention

time τ , and by Xτ the state just after the intervention time τ . We will thus always

have Xτ = Γ(Xτ−, ζ), where ζ is the control applied at time τ .

2 An interesting economic application is the following. Due to various economic factors, the exchange
rate between two currencies (say, the dollar and some foreign currency) fluctuates randomly in time. It is
not a good idea, however, to have the exchange rate be too far away from unity. As such, the central bank
tries to exert its influence on the exchange rates to keep them in a certain “safe” target zone. One way in
which the central bank can influence the exchange rate is by buying or selling large quantities of foreign
currency. The question then becomes, at which points in time should the central bank decide to make a large
transaction in foreign currency, and for what amount, in order to keep the exchange rate in the target zone.
This is an impulse control problem. See [Kor99] for a review of impulse control applications in finance.
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We left off just after the first intervention time τ1. For times after τ1 but before the

second intervention time τ2 > τ1, we solve the stochastic differential equation

Xu
t = Xu

τ1
+

∫ t

τ1

b(Xu
s ) ds+

∫ t

τ1

σ(Xu
s ) dWs.

We will assume that such an equation has a unique solution starting from every finite

stopping time, so that we can solve for Xt between every pair τi < τi+1.

Remark 8.5.2. This is indeed the case when b, σ satisfy the usual Lipschitz condi-

tions; this follows from the strong Markov property, but let us not dwell on this point.

At time τ2 we apply another control action ζ2, etc. We now have the following.

Definition 8.5.3. An impulse control strategy u consists of

1. a sequence of stopping times {τj}j=1,2,... such that τj <∞ a.s. and τj < τj+1;

2. a sequence {ζj}j=1,2,... such that ζj ∈ U and ζj is Fτj -measurable.

The strategy u is called admissible if the intervention times τj do not accumulate, and

Xu
t has a unique solution on the infinite time interval [0,∞[.

Let us investigate the discounted version of the impulse control problem (a time-

average cost can also be investigated, you can try to work this case out yourself or

consult [JZ06]). We introduce the following discounted cost functional:

J [u] = E





∫ ∞

0

e−λs w(Xs) ds+

∞
∑

j=1

e−λτj v(Xτj−, ζj)



 .

Here w : Rn → R is the running cost, v : Rn × U → R is the intervention cost, and

λ > 0 is the discounting factor. We seek an admissible impulse control strategy u∗

that minimizes the cost J [u]. To this end we will prove a verification theorem.

Proposition 8.5.4. Assume that w and v are either both bounded from below, or both

bounded from above. Let K ⊂ Rn be a set such that Xt ∈ K for all t, and suppose

there is a V : K → R, which is sufficiently smooth to apply Itô’s rule, such that

min{L V (x) − λV (x) + w(x), K V (x) − V (x)} = 0,

where the intervention operator K is defined as

K V (x) = min
α∈U

{V (Γ(x, α)) + v(x, α)}.

Assume that |E(V (X0))| < ∞, and denote by K the class of admissible strategies u
such that E(e−λτjV (Xu

τj−)) −−−→
j→∞

0 and such that

E

[

n
∑

i=1

m
∑

k=1

∫ τj

τj−1

e−λs ∂V

∂xi
(Xu

s )σik(Xu
s ) dW k

s

]

= 0 for all j.
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Define the continuation set D = {x ∈ K : K V (x) > V (x)} and strategy u∗ with

τ∗j = inf{t > τ∗j−1 : Xu∗

t 6∈ D}, ζ∗j ∈ argminα∈U{V (Γ(Xu∗

τj−, α))+v(Xu∗

τj−, α)}.

If u∗ defines an admissible impulse control strategy in K, then J [u∗] ≤ J [u] for any

u ∈ K, and the optimal cost can be written as E(V (X0)) = J [u∗].

Proof. We may assume without loss of generality that w and v are both nonnegative or both

nonpositive; otherwise this can always be accomplished by shifting the cost by a constant. We

now begin by applying Itô’s rule to e−λt V (Xu
t ). Familiar manipulations give

E(e−λτn−1V (Xu
τn−1

)) − E(e−λτnV (Xu
τn−)) =

E

[∫ τn

τn−1

e−λs{λV (Xu
s ) − L V (Xu

s )} ds
]
≤ E

[∫ τn

τn−1

e−λsw(Xu
s ) ds

]
.

Summing n from 1 to j (set τ0 = 0), we obtain

E(V (X0)) − E(e−λτjV (Xu
τj−))

≤ E
[∫ τj

0

e−λsw(Xu
s ) ds+

j−1∑

i=1

e−λτi(V (Xτi−) − V (Xτi ))

]
.

But V (Xτi ) = V (Γ(Xτi−, ζi)) ≥ K V (Xτi−) − v(Xτi−, ζi) by the definition of the in-

tervention operator, so V (Xτi−) − V (Xτi ) ≤ V (Xτi−) − K V (Xτi−) + v(Xτi−, ζi) ≤
v(Xτi−, ζi) using the fact that K V (x) − V (x) ≥ 0. Hence

E(V (X0)) − E(e−λτjV (Xu
τj−)) ≤ E

[∫ τj

0

e−λsw(Xu
s ) ds+

j−1∑

i=1

e−λτi v(Xτi−, ζi)

]
.

Now let t, j → ∞, using monotone convergence on the right and the assumption on u ∈ K on

the left (recall that as u is admissible, the intervention times cannot accumulate so τj ↗ ∞).

This gives E(V (X0)) ≤ J [u]. Repeating the same arguments with u∗ instead of u gives

E(V (X0)) = J [u∗], so the claim is established.

Remark 8.5.5. The equation for the value function V (x) is almost a variational in-

equality, but not quite; in a variational inequality, the stopping cost z(x) was indepen-

dent of V (x), while in the current problem the intervention cost K V (x) very much

depends on the value function (in a nontrivial manner!). The equation for V (x) in

proposition 8.5.4 is known as a quasivariational inequality.

Let us treat an interesting example, taken from [Wil98].

Example 8.5.6 (Optimal forest harvesting). We own a forest which is harvested for

lumber. When the forest is planted, it starts off with a (nonrandom) total biomass

x0 > 0; as the forest grows, the biomass of the forest grows according the equation

dXt = µXt dt+ σXt dWt, X0 = x0 (µ > 0).

At some time τ1, we can decide to cut the forest and sell the wood; we then replant

the forest so that it starts off again with biomass x0. The forest can then grow freely
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until we decide to cut and replant again at time τ2, etc. Every time τ we cut the forest,

we obtain Xτ− dollars from selling the wood, but we pay a fee proportional to the

total biomass αXτ− (0 ≤ α < 1) for cutting the forest, and a fixed fee Q > 0 for

replanting the forest to its initial biomass x0. When inflation, with rate3 λ > µ, is

taken into account, the expected future profit from this operation is given by

E





∞
∑

j=1

e−λτj ((1 − α)Xτj− −Q)



 .

Our goal is to choose a harvesting strategy τ1, τ2, . . . which maximizes our expected

profit, i.e., we wish to choose an impulse control strategy u∗ which minimizes

J [u] = E





∞
∑

j=1

e−λτj (Q− (1 − α)Xτj−)



 .

For this impulse control problem, U consists of only one point (so we can essentially

ignore it) and the control action is Γ(x, α) = x0 for any x. Note, moreover, that

Xt > 0 always, so we can apply proposition 8.5.4 with K = ]0,∞[.
To solve the impulse control problem, we consider the quasivariational inequality

min

{

σ2x2

2

∂2V (x)

∂x2
+ µx

∂V (x)

∂x
− λV (x), Q− βx + V (x0) − V (x)

}

= 0,

where β = 1−α. The first thing to note is that in order to obtain a meaningful impulse

control strategy, the initial biomass x0 must be in the continuation set D; if this is not

the case, then replanting the forest is so cheap that you might as well immediately

cut down what has just been planted, without waiting for it to grow. To avoid this

possibility, note that x0 ∈ D requires x0 < Q/β. We will assume this from now on.

Now consider L V (x)− λV (x) = 0, which must hold on the continuation region

D. The general solution to this equation is given by V (x) = c+x
γ+ + c−x

γ− , where

γ± =
σ2 − 2µ±

√

(σ2 − 2µ)2 + 8σ2λ

2σ2
.

Note that γ+ > 1 (due to λ > µ), while γ− < 0.

We could proceed to analyze every possible case, but let us make a few educated

guesses at this point. There is nothing lost by doing this: if we can find one solution

that satisfies the conditions of the verification theorem, then we are done; otherwise

we can always go back to the drawing board! We thus guess away. First, it seems

unlikely that it will be advantageous to cut the forest when there is very little biomass;

this will only cause us to pay the replanting feeQ, without any of the benefit of selling

the harvested wood. Hence we conjecture that the continuation region has the form

D = ]0, y[ for some y > x0. In particular, this means the V (x) = c+x
γ+ +c−x

γ− for

3 If the inflation rate were lower than the mean growth rate of the forest, then it never pays to cut down
the forest—if we are patient, we can always make more money by waiting longer before cutting the forest.
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x ∈ ]0, y[. But as the second term has a pole at zero, we must choose c− = 0; after all,

c− > 0 is impossible as the cost is bounded from above, while c− < 0 would imply

that we make more and more profit the less biomass there is in the forest; clearly this

cannot be true. Collecting these ideas, we find that V (x) should be of the form

V (x) =

{

c xγ+ for x < y,
Q− βx+ c x

γ+

0 for x ≥ y.

The constants c and y remain to be determined. To this end, we apply the principle of

smooth fit. As V (x) should be C1 at y, we require

γ+c y
γ+−1 = −β, c yγ+ = Q− βy + c x

γ+

0 .

Hence we obtain the candidate value function

V (x) =

{

ψ(x) for x < y,
Q− βx+ ψ(x0) for x ≥ y,

ψ(x) = −βy
γ+

(

x

y

)γ+

,

where y > x0 solves the equation

y =
γ+Q− βy (x0/y)

γ+

β(γ+ − 1)
.

To complete the argument, it remains to show (i) that there does exist a solution y >
x0; and (ii) that the conditions of proposition 8.5.4 are satisfied for V (x).

Let us first deal with question (i). Let f(z) = β(γ+ − 1)z+βz (x0/z)
γ+ − γ+Q;

then y satisfies f(y) = 0. It is easily verified that f(z) is strictly convex and attains

its minimum at z = x0; furthermore, f(x0) < 0 as we have assumed that x0 < Q/β.

Hence f(z) has exactly two roots, one of which is larger than x0. Hence we find that

there exists a unique y > x0 that satisfies the desired relation.

We now verify (ii). Note that V (x) is, by construction, C1 on ]0,∞[ and C2

on ]0,∞[\{y}. Hence V (x) is sufficiently smooth. The running cost w is zero in our

case, while the intervention cost v is bounded from above. By construction, L V (x)−
λV (x) = 0 on D = ]0, y[, while V (x) = K V (x) on Dc. It is easily verified by

explicit computation that L V (x) − λV (x) ≥ 0 on Dc and that V (x) < K V (x) on

D. Hence the quasivariational inequality is satisfied. It thus remains to show that the

candidate optimal strategy u∗ is admissible, and in particular that it is in K.

To show that this is the case, we proceed as follows. First, we claim that τj <
∞ a.s. for every j. To see this, it suffices to note that for the uncontrolled process

E(Xt) = x0 e
µt → ∞, so there exists a subsequence tn such that Xtn → ∞ a.s., so

that in particularXt must eventually exit D a.s. Furthermore, due to the continuity of

the sample paths of Xt, we can immediately see that τj−1 < τj . Now note that our

process Xu
t restarts at the same, non-random point at every intervention time τj . In

particular, this means that τj − τj−1 are independent of each other for every j, and as

τj−τj−1 > 0, there must exist some ε > 0 such that P(τj−τj−1 > ε) > 0. These two

facts together imply that P(τj − τj−1 > ε i.o.) = 1 (see, for example, the argument in

the example at the end of section 4.1). But then we conclude that the stopping times

τj cannot accumulate, and in particular τj ↗ ∞. Thus u∗ is admissible.
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Figure 8.4. Simulation of the optimal impulse control strategy of example 8.5.6. One sample

path of the controlled process Xu
t is shown in blue; the intervention threshold y is shown in

green. The parameters for this simulation were µ = σ = 1, λ = Q = 2, α = .1, and x0 = 1.

To show that u∗ is also in K is now not difficult. Indeed, asD has compact closure,

Xu
t is a bounded process. Hence E(e−λτjV (Xu

τj−)) → 0, while

E

[

n
∑

i=1

m
∑

k=1

∫ τj

τj−1

e−λs ∂V

∂xi
(Xu

s )σik(Xu
s ) dW k

s

]

= 0

follows from the fact that the integrand is square-integrable on the infinite time horizon

(being the product of a decaying exponential and a bounded process). Thus all the

requirements of proposition 8.5.4 are satisfied, and we are convinced that we have

indeed found an optimal impulse control strategy, as we set out to do (see figure 8.4).

More elaborate optimal harvesting models can be found in [Wil98] and in [Alv04].

8.6 Further reading

The recent book by Peskir and Shiryaev [PS06] is an excellent resource on optimal

stopping theory, and covers in depth the fundamental theory, methods of solution, and

a wide range of applications; if you wish to learn more about optimal stopping, this

book is very highly recommended. Shiryaev’s older monograph [Shi73] is also still a

classic on the topic. Both these references develop in detail the connections between

optimal stopping problems and so-called free boundary problems, which is what is

obtained when the variational inequality is combined with the principle of smooth fit.

The name should be obvious: these are PDEs whose boundary conditions live on a

“free” boundary, which is itself a part of the solution. For much more on this topic,

see Bensoussan and Lions [BL82, Ben82, BL84] and Friedman [Fri75]. Øksendal

[Øks03] and Øksendal and Sulem [ØS05] contain some useful verification theorems.

The fundamental theory of optimal stopping is still being developed after all these

years; see, e.g., Dayanik and Karatzas [DK03] for a recent contribution.

Numerical methods for optimal stopping problems, using Markov chain approxi-

mations, are detailed in Kushner [Kus77] and Kushner and Dupuis [KD01]. A discus-

sion of optimal stopping for discrete time, discrete state space Markov chains can be

found in [Kus71]; a nice introduction to this topic is also given in [Bil86].
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An in-depth study of the optional projection and friends (who we did not intro-

duce) can be found in Dellacherie and Meyer [DM82]. For more on the separation

principle in the optimal stopping setting see, e.g., Szpirglas and Mazziotto [SM79].

Our treatment of both the changepoint detection problem and the hypothesis test-

ing problem come straight from Shiryaev [Shi73], see also [PS06]. For more on the

expected miss criterion see Karatzas [Kar03], while the stock selling problem is from

Rishel and Helmes [RH06], where the risk-neutral version can also be found. Many

interesting applications of changepoint detection can be found in Basseville and Niki-

forov [BN93]. An extension of the hypothesis testing problem to time-varying signals

can be found in Liptser and Shiryaev [LS01b, section 17.6].

Our discussion of the impulse control problem is inspired by Øksendal and Sulem

[ØS05] and by Brekke and Øksendal [BØ94]. An extension of example 8.1.7 to the

impulse control setting can be found in the latter. The time-average cost criterion is

discussed, e.g., in Jack and Zervos [JZ06]. Finally, the classic tome on quasivaria-

tional inequalities, and a rich source of examples of impulse control applications in

management problems, is Bensoussan and Lions [BL84]. Markov chain approxima-

tions for the solution of impulse control problems can be found in Kushner [Kus77].
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A.1 Problem set 1

Q. 1. Let (Ω,F ,P) be a probability space on which is defined a sequence of i.i.d.

Gaussian random variables ξ1, ξ2, . . . with zero mean and unit variance. Consider the

following recursion:

xn = ea+bξnxn−1, x0 = 1,

where a and b are real-valued constants. This is a crude model for some nonnegative

quantity that grows or shrinks randomly in every time step; for example, we could

model the price of a stock this way, albeit in discrete time.

1. Under which conditions on a and b do we have xn → 0 in Lp?

2. Show that if xn → 0 in Lp for some p > 0, then xn → 0 a.s.

Hint: prove xn → 0 in Lp =⇒ xn → 0 in probability =⇒ xn → 0 a.s.

3. Show that if there is no p > 0 s.t. xn → 0 in Lp, then xn 6→ 0 in any sense.

4. If we interpretxn as the price of stock, then xn is the amount of dollars our stock

is worth by time n if we invest one dollar in the stock at time 0. If xn → 0 a.s.,

this means we eventually lose our investment with unit probability. However, it

is possible for a and b to be such that xn → 0 a.s., but nonetheless our expected

winnings E(xn) → ∞! Find such a, b. Would you consider investing in such a

stock? [Any answer is acceptable, as long as it is well motivated.]

Q. 2. We work on the probability space (R,B(R),P), where the probability measure

P is such that the canonical random variableX : ω 7→ ω is a Gaussian random variable

with zero mean and unit variance. In addition to P, we consider a probability measure

242
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Q under whichX−a is a Gaussian random variable with zero mean and unit variance,

where a ∈ R is some fixed (non-random) constant.

1. Is it true that Q � P, and if so, what is the Radon-Nikodym derivative dQ/dP?

Similarly, is it true that P � Q, and if so, what is dP/dQ?

We are running a nuclear reactor. That being a potentially dangerous business, we

would like to detect the presence of a radiation leak, in which case we should shut

down the reactor. Unfortunately, we only have a noisy detector: the detector generates

some random value ξ when everything is ok, while in the presence of a radiation leak

the noise has a constant offset a+ ξ. Based on the value returned by the detector, we

need to make a decision as to whether to shut down the reactor.

In our setting, the value returned by the detector is modelled by the random vari-

able X . If everything is running ok, then the outcomes ofX are distributed according

to the measure P. This is called the null hypothesis H0. If there is a radiation leak,

however, then X is distributed according to Q. This is the alternative hypothesis H1.

Based on the value X returned by the detector, we decide to shut down the reactor if

f(X) = 1, with some f : R → {0, 1}. Our goal is to find a suitable function f .

How do we choose the decision function f? What we absolutely cannot toler-

ate is that a radiation leak occurs, but we do not decide to shut down the reactor—

disaster would ensue! For this reason, we fix a tolerance threshold: under the measure

corresponding to H1, the probability that f(X) = 0 must be at most some fixed

value α (say, 10−12). That is, we insist that any acceptable f must be such that

Q(f(X) = 0) ≤ α. Given this constraint, we now try to find an acceptable f that

minimizes P(f(X) = 1), the probability of false alarm (i.e., there is no radiation leak,

but we think there is).

Claim: an f∗ that minimizes P(f(X) = 1) subject to Q(f(X) = 0) ≤ α is

f∗(x) =

{

1 if dQ
dP

(x) > β,
0 otherwise,

where β > 0 is chosen such that Q(f ∗(X) = 0) = α. This is called the Neyman-

Pearson test, and is a very fundamental result in statistics (if you already know it, all

the better!). You are going to prove this result.

2. Let f : R → {0, 1} be an arbitrary measurable function s.t. Q(f(X) = 0) ≤ α.

Using Q(f(X) = 0) ≤ α and Q(f∗(X) = 0) = α, show that

Q(f∗(X) = 1 and f(X) = 0) ≤ Q(f∗(X) = 0 and f(X) = 1).

3. Using the definition of f∗, show that the previous inequality implies

P(f∗(X) = 1 and f(X) = 0) ≤ P(f∗(X) = 0 and f(X) = 1).

Finally, complete the proof of optimality of the Neyman-Pearson test by adding

a suitable quantity to both sides of this inequality.
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A better detector would give a sequence X1, . . . , XN of measurements. Under the

measure P (everything ok), the random variables X1, . . . , XN are independent Gaus-

sian random variables with zero mean and unit variance; under the measure Q (radi-

ation leak), the random variables X1 − a1, . . . , XN − aN are independent Gaussian

random variables with zero mean and unit variance, where a1, . . . , aN is a fixed (non-

random) alarm signal (for example, a siren an = sin(nπ/2).)

4. Construct X1, . . . , XN , P and Q on a suitable product space. What is dQ/dP?

How does the Neyman-Pearson test work in this context?

5. Bonus question: Now suppose that we have an entire sequence X1, X2, . . .,
which are i.i.d. Gaussian random variables with mean zero and unit variance

under P, and such thatX1−a1, X2−a2, . . . are i.i.d. Gaussian random variables

with mean zero and unit variance under Q. Give a necessary and sufficient

condition on the non-random sequence a1, a2, . . . so that Q � P. In the case

that Q � P, give the corresponding Radon-Nikodym derivative. If Q 6� P,

find an event A so that P(A) = 0 but Q(A) 6= 0. In theory, how would you

solve the hypothesis testing problem when Q � P? How about when Q 6� P?

A.2 Problem set 2

Q. 3. Let Wt be a Wiener process.

1. Prove that W̃t = cWt/c2 is also a Wiener process for any c > 0. Hence the

sample paths of the Wiener process are self-similar (or fractal).

2. Define the stopping time τ = inf{t > 0 : Wt = x} for some x > 0. Calculate

the moment generating function E(e−λτ ), λ > 0 by proceding as follows:

a) Prove that Xt = e(2λ)1/2Wt−λt is a martingale. Show that Xt → 0 a.s.

as t → ∞ (first argue that Xt converges a.s.; it then suffices to show that

Xn → 0 a.s. (n ∈ N), for which you may invoke Q.1 in homework 1.)

b) It follows that Yt = Xt∧τ is also a martingale. Argue that Yt is bounded,

i.e., Yt < K for some K > 0 and all t, and that Yt → Xτ a.s. as t→ ∞.

c) Show that it follows that E(Xτ ) = 1 (this is almost the optional stopping

theorem, except that we have not required that τ <∞!) The rest is easy.

What is the mean and variance of τ? (You don’t have to give a rigorous argu-

ment.) In particular, does Wt always hit the level x in finite time?

Q. 4 (Lyapunov functions). In deterministic nonlinear systems and control theory,

the notions of (Lyapunov) stability, asymptotic stability, and global stability play an

important role. To prove that a system is stable, one generally looks for a suitable

Lyapunov function, as you might have learned in a nonlinear systems class. Our goal

is to find suitable stochastic counterparts of these ideas, albeit in discrete time.
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We work on a probability space (Ω,F ,P) on which is defined a sequence of i.i.d.

random variables ξ1, ξ2, . . . We consider a dynamical system defined by the recursion

xn = F (xn−1, ξn) (n = 1, 2, . . .), x0 is non-random,

where F : S × R → S is some continuous function and S is some compact subset of

Rd (compactness is not essential, but we go with it for simplicity). Let us assume that

F (x∗, ξ) = x∗ for some x∗ ∈ S and all ξ ∈ R.

The following notions of stability are natural counterparts of the deterministic

notions (see your favorite nonlinear systems textbook). The equilibrium x∗ is

• stable if for any ε > 0 and α ∈ ]0, 1[, there exists a δ < ε such that we have

P(supn≥0 ‖xn −x∗‖ < ε) > α whenever ‖x0 −x∗‖ < δ (“if we start close to

x∗, then with high probability we will remain close to x∗ forever”);

• asymptotically stable if it is stable and for every α ∈ ]0, 1[, there exists a κ
such that P(xn → x∗) > α whenever ‖x0 − x∗‖ < κ (“if we start sufficiently

close to x∗, then we will converge to x∗ with high probability”);

• globally stable if it is stable and xn → x∗ a.s. for any x0.

1. Prove the following theorem:

Theorem A.2.1. Suppose that there is a continuous function V : S → [0,∞[,
with V (x∗) = 0 and V (x) > 0 for x 6= x∗, such that

E(V (F (x, ξn))) − V (x) = k(x) ≤ 0 for all x ∈ S.

Then x∗ is stable. (Note: as ξn are i.i.d., the condition does not depend on n.)

Hint. Show that the process V (xn) is a supermartingale.

2. Prove the following theorem:

Theorem A.2.2. Suppose that there is a continuous function V : S → [0,∞[
with V (x∗) = 0 and V (x) > 0 for x 6= x∗, such that

E(V (F (x, ξn))) − V (x) = k(x) < 0 whenever x 6= x∗.

Then x∗ is globally stable.

Hint. The proof proceeds roughly as follows. Fill in the steps:

a) Write V (x0)−E(V (xn)) as a telescoping sum. Use this and the condition

in the theorem to prove that k(xn) → 0 in probability “fast enough”.

b) Prove that if some sequence sn ∈ S converges to a point s ∈ S, then

k(sn) → k(s), i.e., that k(x) is a continuous function.

c) As k(xn) → 0 a.s., k is continuous, and k(sn) → 0 only if sn → x∗

(why?), you can now conclude that xn → x∗ a.s.
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3. (Inverted pendulum in the rain) A simple discrete time model for a controlled,

randomly forced overdamped pendulum is

θn+1 = θn + (1 + ξn) sin(θn)∆ + un+1∆ mod 2π,

where θn is the angle (θ = 0 is up) of the pendulum at time n∆, ∆ is the

time step size (be sure to take it small enough), un+1 an applied control (us-

ing a servo motor), and ξn are i.i.d. random variables uniformly distributed on

[0, 1]. The sin θn term represents the downward gravitational force, while the

term ξn sin θn represents randomly applied additional forces in the downward

direction—i.e., the force exerted on the pendulum by rain drops falling from

above. (This model is completely contrived! Don’t take it too seriously.)

Let us represent the circle θ ∈ S1 as the unit circle in R2. Writing xn = sin θn,

yn = cos θn, and f(x, ξ, u) = (1 + ξ)x∆ + u∆, we get

xn+1 = xn cos(f(xn, ξn, un+1)) + yn sin(f(xn, ξn, un+1)),

yn+1 = yn cos(f(xn, ξn, un+1)) − xn sin(f(xn, ξn, un+1)).

Find some control law un+1 = g(xn, yn) that makes the inverted position θ = 0
stable. (Try an intuitive control law and a linear Lyapunov function; you might

want to use your favorite computer program to plot k(·).)

4. Bonus question: The previous results can be localized to a neighborhood.

Prove the following modifications of the previous theorems:

Theorem A.2.3. Suppose there is a continuous function V : S → [0,∞[ with

V (x∗) = 0 and V (x) > 0 for x 6= x∗, and a neighborhoodU of x∗, such that

E(V (F (x, ξn))) − V (x) = k(x) ≤ 0 whenever x ∈ U.

Then x∗ is stable.

Theorem A.2.4. Suppose there is a continuous function V : S → [0,∞[ with

V (x∗) = 0 and V (x) > 0 for x 6= x∗, and a neighborhoodU of x∗, such that

E(V (F (x, ξn))) − V (x) = k(x) < 0 whenever x ∈ U\{x∗}.

Then x∗ is asymptotically stable.

Hint. Define a suitable stopping time τ , and apply the previous results to xn∧τ .

You can now show that the controlled pendulum is asymptotically stable.

A.3 Problem set 3

Q. 5. Let Wt be an n-dimensional Wiener process on a probability space (Ω,F ,P).
For non-randomx ∈ Rn, we call the processW x

t = x+Wt a Brownian motion started

at x. We are going to investigate the behavior of this process in various dimensions.
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1. Consider the annulus D = {x : r < ‖x‖ < R} for some 0 < r < R < ∞,

and define the stopping time τx = inf{t : W x
t 6∈ D}. For which functions

h : Rn → R is h(W x
t∧τx

) a martingale for all x ∈ D? You may assume that h
is C2 in some neighborhood of D. (Such functions are called harmonic).

2. Using the previous part, show that h(x) = |x| is harmonic for n = 1, h(x) =
log ‖x‖ is harmonic for n = 2, and h(x) = ‖x‖2−n is harmonic for n ≥ 3.

3. Let us write τR
x = inf{t : ‖W x

t ‖ ≥ R} and τ r
x = inf{t : ‖W x

t ‖ ≤ r}. What is

P(τr
x < τR

x ) for n = 1, 2, 3, . . .? [Hint: ‖W x
τx
‖ can only take values r or R.]

4. What is P(τ r
x < ∞)? Conclude the Brownian motion is recurrent for dimen-

sions 1 and 2, but not for 3 and higher. [Hint: {τ r
x <∞} =

⋃

R>r{τr
x < τR

x }.]

Q. 6. We consider a single stock, which, if we were to invest one dollar at time

zero, would be worth St = e(µ−σ2/2)t+σWt dollars by time t; here µ > 0 (the re-

turn rate) and σ > 0 (the volatility) are constants, and Wt is a Wiener process on

(Ω,F , {Ft},P). We also have a bank account, which, if we were to deposit one dol-

lar at time zero, would contain Rt = ert dollars at time t, where r > 0 (the interest

rate) is constant.

If we invest α0 dollars in stock and β0 dollars in the bank at time zero, then at time

t our total wealth isXt = α0St +β0Rt dollars. We can decide to reinvest at time t, so

to put αtSt dollars in stock and βtRt dollars in the bank. However, if our investment

is self-financing, then we should make sure that Xt = α0St + β0Rt = αtSt + βtRt

(i.e., the total amount of invested money is the same: we have just transferred some

money from stock to the bank or vice versa, without adding in any new money). Note

that we will allow αt and βt to be negative: you can borrow money or sell short.

1. Show that if we modify our investment at times t1, t2, . . ., then

Xtn+1 = α0 + β0 +

n
∑

i=0

αti(Sti+1 − Sti) +

n
∑

i=0

βti(Rti+1 −Rti),

provided our strategy is self-financing. Show that this expression is identical to

Xtn+1 = X0 +

∫ tn+1

0

(µαsSs + rβsRs) ds+

∫ tn+1

0

σαsSs dWs,

where αt and βt are the simple integrands that take the values αti and βti on

the interval [ti, ti+1], respectively. [Assume that αti and βti are Fti -measurable

(obviously!) and sufficiently integrable.]

The integral expression for Xt still makes sense for continuous time strategies with

αtSt and βtRt in L2(µT × P) (which we will always assume). Hence we can define

a self-financing strategy to be a pair αt, βt that satisfies this expression (in addition to

Xt = αtSt + βtRt, of course). You can see this as a limit of discrete time strategies.

In a sensible model, we should not be able to find a reasonable strategy αt, βt that

makes money for nothing. Of course, if we put all our money in the bank, then we
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will always make money for sure just from the interest. It makes more sense to study

the normalized market, where all the prices are discounted by the interest rate. So we

will consider the discounted wealth X t = Xt/Rt and stock price St = St/Rt. We

want to show that there does not exist a trading strategy with X0 = a, Xt ≥ a a.s.,

and P(Xt > a) > 0. Such a money-for-nothing opportunity is called arbitrage.

2. Show that the discounted wealth at time t is given by

Xt = X0 +

∫ t

0

(µ− r)αsSs ds+

∫ t

0

σαsSs dWs.

3. Find a new measure Q such that Q � P, P � Q, and X t is a martingale under

Q (for reasonable αt). Q is called the equivalent martingale measure.

4. The equivalent martingale measure has a very special property: EQ(Xt) =
X0 (assuming our initial wealth X0 is non-random), regardless of the trading

strategy. Use this to prove that there is no arbitrage in our model.

We are going to do some simple option pricing theory. Consider something called

a European call option. This is a contract that says the following: at some predeter-

mined time T (the maturity), we are allowed to buy one unit of stock at some prede-

termined price K (the strike price). This is a sort of insurance against the stock price

going very high: if the stock price goes below K by time T we can still buy stock at

the market price, and we only lose the money we paid to take out the option; if the

stock price goes above K by time T , then we make money as we can buy the stock

below the market price. The total payoff for us is thus (ST −K)+, minus the option

price. The question is what the seller of the option should charge for that service.

5. If we took out the option, we would make (ST − K)+ dollars (excluding the

option price). Argue that we could obtain exactly the same payoff by imple-

menting a particular trading strategy αt, βt, a hedging strategy, provided that

we have sufficient starting capital (i.e., for some X0, αt, βt, we actually have

XT = (ST −K)+). Moreover, show that there is only one such strategy.

6. Argue that the starting capital required for the hedging strategy is the only fair

price for the option. (If a different price is charged, either we or the seller of the

option can make money for nothing.)

7. What is the price of the option? [Hint: use the equivalent martingale measure.]

Congratulations—you have just developed the famous Black-Scholes model!

Q. 7 (Bonus question: baby steps in the Malliavin calculus). Very roughly speak-

ing, whereas the Itô calculus defines integrals
∫

· · · dWt with respect to the Wiener

process, the Malliavin calculus defines derivatives “d · · · /dWt” with respect to the

Wiener process. This has applications both in stochastic analysis (smoothness of den-

sities, anticipative calculus) and in finance (computation of sensitivities and hedging

strategies, variance reduction of Monte Carlo simulation, insider trading models, etc.)
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This is a much more advanced topic than we are going deal with in this course. As

we have the necessary tools to get started, however, I can’t resist having you explore

some of the simplest ideas (for fun and extra credit—this is not a required problem!).

We work on (Ω,F ,P), on which is defined a Wiener process Wt with its natural

filtrationFt = σ{Ws : s ≤ t}. We restrict ourselves to a finite time interval t ∈ [0, T ].
An FT -measurable random variable X is called cylindrical if it can be written as

X = f(Wt1 , . . . ,Wtn) for a finite number of times 0 < t1 < · · · < tn ≤ T and some

function f ∈ C∞
0 . For such X , the Malliavin derivative of X is defined as

DtX =

n
∑

i=1

∂f

∂xi
(Wt1 , . . . ,Wtn) It≤ti .

1. For cylindricalX , prove the Clark-Ocone formula:

X = E(X) +

∫ T

0

E(DtX |Ft) dWt.

Hint: look at the proofs of lemma 4.6.5 and lemma 3.1.9.

As anyFT -measurable random variable Y in L2(P) can be approximated by cylin-

drical functions, one can now extend the definition of the Malliavin derivative to a

much larger class of random variables by taking limits. Not all such Y are Malli-

avin differentiable, but with a little work one can define a suitable Sobolev space of

differentiable random variables. If you want to learn more about this, see [Nua95].

Let us take a less general approach (along the lines of Clark’s original result),

which allows a beautiful alternative development of the Clark-Ocone formula (the idea

is due to Haussmann and Bismut, here we follow D. Williams). Let f : C([0, T ]) → R

be a measurable map. We will consider random variables of the form X = f(W·)
(actually, any FT -measurable random variable can be written in this way.)

2. Let ut be bounded and Ft-adapted, and let ε ∈ R. Prove the invariance formula

E(f(W·)) = E

[

f

(

W· − ε

∫ ·

0

us ds

)

eε
∫

T
0

us dWs−
ε2

2

∫
T
0

(us)2ds

]

.

We are now going to impose a (Fréchet) differentiability condition on f . We

assume that for any continuous function x and bounded function α on [0, T ], we have

f

(

x· + ε

∫ ·

0

αs ds

)

− f(x·) = ε

∫ T

0

f ′(s, x·)αs ds+ o(ε),

where f ′ : [0, T ]×C([0, T ]) → R is some measurable function. Then forX = f(W·),
we define the Malliavin derivative of X as DtX = f ′(t,W·).

3. Show that this definition of DtX coincides with our previous definition for

cylindrical random variables X .
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4. LetX = f(W·), and assume for simplicity that f(x·) and f ′(t, x·) are bounded.

By taking the derivative with respect to ε, at ε = 0, of the invariance formula

above, prove the Malliavin integration by parts formula

E

[

X

∫ T

0

us dWs

]

= E

[

∫ T

0

us DsX ds

]

for any bounded and Ft-adapted process ut. Show, furthermore, that

E

[

X

∫ T

0

us dWs

]

= E

[

∫ T

0

us E(DsX |Fs) ds

]

.

5. Using the Itô representation theorem, prove that there is a unique Ft-adapted

process Ct such that for any bounded and Ft-adapted process ut

E

[

X

∫ T

0

us dWs

]

= E

[

∫ T

0

us Cs ds

]

.

Conclude that the Clark-Ocone formula still holds in this context.

A.4 Problem set 4

This problem set involves some programming; you may use whatever you want for

this, but I strongly recommend you use either Matlab (or something similar, such

as R) or a compiled programming language (e.g., C++) for this purpose. If you have

never done any programming, please contact me and we will figure something out.

Q. 8. Consider the stochastic differential equations

dXr
t = sin(Xr

t ) dW 1
t + cos(Xr

t ) dW 2
t , Xr

0 = r, dY r
t = dW 1

t , Y r
0 = r,

where r ∈ R is non-random and (W 1
t ,W

2
t ) is a two-dimensional Wiener process.

1. Show that Xr
t has the same law as Y r

t for every fixed time t.

[Hint: investigate the Kolmogorov backward equations for X r
t and Y r

t .]

2. Show thatXr
t has independent increments. Together with the previous part, this

implies that {Xr
t } is a one-dimensional Brownian motion started at r.

[Hint: show that E(f(Xr
t −Xr

s )|Fs) = E(f(Xr
t − z)|Fs)|z=Xr

s
≡ g(Xr

s ) is

constant, i.e., the function g(x) is independent of x (you do not need to prove

the first equality; it follows as in the proof of lemma 3.1.9). Then show why this

implies E(f(Xr
t −Xr

s )Z) = E(f(Xr
t −Xr

s )) E(Z) for any Fs-measurableZ.]

Xr
t is thus a Brownian motion started at r—what more can be said? Surprisingly,

Xr
t and Y r

t behave very differently if we consider multiple initial points r1, . . . , rn
simultaneously, but driven by the same noise. In other words, we are interested in

Yt = (Y r1
t , . . . , Y rn

t ) = (r1 +W 1
t , . . . , rn +W 1

t ), Xt = (Xr1
t , . . . , Xrn

t ),
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where the latter is the solution of the n-dimensional SDE every component of which

satisfies the equation for Xr
t above.

3. Use the Euler-Maruyama method to compute several sample paths of Xt and

of Yt in the interval t ∈ [0, 10], with (r1, . . . , rn) = (−3,−2.5,−2 . . . , 3) and

with step size ∆t = .001. Qualitatively, what do you see?

Apparently the SDEs forXr
t and Y r

t are qualitatively different, despite that for ev-

ery initial condition their solutions have precisely the same law! These SDEs generate

the same Markov process, but a different flow r 7→ Xr
t , r 7→ Y r

t . Stochastic flows are

important in random dynamics (they can be used to define Lyapunov exponents, etc.),

and have applications, e.g., in the modelling of ocean currents.

Q. 9. We are going to investigate the inverted pendulum of example 6.6.5, but with a

different cost functional. Recall that we set

dθu
t = c1 sin(θu

t ) dt− c2 cos(θu
t )ut dt+ σ dWt.

As the coefficients of this equation are periodic in θ, we may interpret its solution

modulo 2π (i.e., θu
t evolves on the circle, which is of course the intention).

Our goal is to keep θu
t as close to the up position θ = 0 as possible on some

reasonable time scale. We will thus investigate the discounted cost

Jλ[u] = E

[
∫ ∞

0

e−λs{p (us)
2 + q (1 − cos(θu

s ))} ds
]

.

This problem does not lend itself to analytic solution, so we approach it numerically.

1. Starting from the appropriate Bellman equation, develop a Markov chain ap-

proximation to the control problem of minimizing Jλ[u] following the finite-

difference approach of section 6.6. Take the fact that θu
t evolves on the circle

into account to introduce appropriate boundary conditions.

[Hint: it is helpful to realize what the discrete dynamic programming equa-

tion for a discounted cost looks like. If xα
n is a controlled Markov chain with

transition probabilies Pα
i,j from state i to state j under the control α, and

K%[u] = E

[

∞
∑

n=0

%n w(xu
n, un+1)

]

, 0 < % < 1,

then the value function satisfies V (i) = minα∈U{%
∑

j P
α
i,jV (j) + w(i, α)}.

You will prove a verification theorem for such a setting in part 2.]

2. To which discrete optimal control problem does your numerical method corre-

spond? Prove an analog of proposition 6.6.2 for this case.

3. Using the Jacobi iteration method, implement the numerical scheme you devel-

oped, and plot the optimal control and the value function.

You can try, for example, c1 = c2 = σ = .5, p = q = 1, λ = .1; a grid which

divides [0, 2π[ into 100 points; and 500 iterations of the Jacobi method (but play

around with the parameters and see what happens, if you are curious!)
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A.5 Problem set 5

Q. 10. A beautiful butterfly is fluttering around a patch of tasty flowers. At a certain

time, the butterfly decides that it has got the most out of its current flower patch, and

flies off at a rapid rate in search of fresh flowers. We model the position xt of the

butterfly at time t (in one dimension for simplicity, i.e., xt ∈ R1) by the equation

dxt = γ Iτ≤t dt+ σ dBt, x0 = x,

where σ determines the vigorousness of the butterfly’s fluttering, τ is the time at which

it decides to fly away, γ is the speed at which it flies away, andBt is a Wiener process.

We will assume that τ is exponentially distributed, i.e., that P(τ > t) = e−λt.

Beside the butterfly the forest also features a biologist, who has come equipped

with a butterfly net and a Segway. The biologist can move around at will on his

Segway by applying some amount of power ut; his position zu
t is then given by

dzu
t

dt
= β ut, z0 = z.

Mesmerized by the colorful butterfly, the biologist hatches a plan: he will try to in-

tercept the butterfly at a fixed time T , so that he can catch it and bring it back to his

laboratory for further study. However, he would like to keep his total energy consump-

tion low, because he knows from experience that if he runs the battery in the Segway

dry he will flop over (and miss the butterfly). As such, the biologist wishes to pursue

the butterfly using a strategy u that minimizes the cost functional

J [u] = E

[

P

∫ T

0

(ut)
2 dt+Q (xT − zu

T )2

]

, P,Q > 0,

where the first term quantifies the total energy consumption and the second term quan-

tifies the effectiveness of the pursuit. The entire setup is depicted in figure A.1.

Note that this is a partially observed control problem: the control ut is allowed to

be Fx
t = σ{xs : s ≤ t}-adapted, as the biologist can see where the butterfly is, but

the biologist does not know the time τ at which the butterfly decides to leave.

1. Define the predicted interception point rt = E(xT |Fx
t ). Show that

rt = xt + γ

∫ T

t

P(τ ≤ s|Fx
t ) ds.

2. Prove that for s > t, we have 1−P(τ ≤ s|Fx
t ) = e−λ(s−t)(1−P(τ ≤ t|Fx

t )).
Now obtain an explicit expression for rt in terms of xt and πt = P(τ ≤ t|Fx

t ).

3. Using Itô’s rule and the appropriate filter, find a stochastic differential equation

for (rt, πt) which is driven by the innovations process B̄t and in which τ no

longer appears explicitly.
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Figure A.1. Schematic of problem 10 (“Der Schmetterlingsjäger”, Carl Spitzweg, 1840).

4. Define eu
t = rt − zu

t . Obtain a stochastic differential equation for (eu
t , πt)

which is driven by B̄t, and rewrite the cost J [u] in terms of (eu
t , πt). You have

now converted the partially observed control problem into one with complete

observations. What is the corresponding Bellman equation?

5. We are now faced with the difficulty of solving a nonlinear control problem,

but nonetheless we will find an analytic solution for the optimal control. To

this end, try substituting into the Bellman equation a value function of the form

V (t, e, π) = a(t) e2+b(t, π), and find equations for a(t) and b(t, π). Use this to

determine the optimal control strategy. You may assume that the equation you

find for b(t, π) admits a sufficiently smooth solution (this is in fact the case).

6. Roughly speaking, how could you interpret the optimal strategy? (This is not a

deep question, give a one or two line answer.)

A more general version of this problem can be found in [HR92].



Bibliography

[Alv04] L. H. R. Alvarez, Stochastic forest stand value and optimal timber harvest-

ing, SIAM J. Control Optim. 42 (2004), 1972–1993.

[Apo69] T. M. Apostol, Calculus. Volume II, Wiley, 1969.

[Arn74] L. Arnold, Stochastic differential equations: Theory and applications, Wi-

ley, 1974.
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