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Preface

These notes were written for the course APC 550: Probability in High Dimen-
sion that I taught at Princeton in the Spring 2014 and Fall 2016 semesters.
The aim was to introduce in as cohesive a manner as I could manage a set
of ideas at the intersection of probability, analysis, and geometry that arise
across a broad range of contemporary problems in different areas.

The notes are necessarily incomplete: the ambitious syllabus for the course
is laughably beyond the scope of Princeton’s 12-week semester. As a result,
there are regrettable omissions, as well as many fascinating topics that I
would have liked to but could not cover in the available time. Particularly
glaring omissions at present are Bernstein’s inequality and Bernstein-type
concentration inequalities; empirical process methods such as chaining with
brackets and Talagrand’s concentration inequalities for empirical processes;
Boolean Fourier analysis and Hermite polynomials; and a serious discussion
of isoperimetry. Moreover, some parts of these notes, such as the development
of the majorizing measure theory, should be rewritten in light of recent devel-
opments. Hopefully the opportunity will arise in the future to fill in some of
these gaps, in which case I will post an updated version of these notes on my
website. For now, as always, these notes are made available as-is.1

Please note that these are lecture notes, not a monograph. Many important
ideas that I did not have the time to cover are included as problems at the
end of each section. Doing the problems is the best way to learn the material.
To avoid distraction I have on occasion ignored some minor technical issues
(such as measurability issues of empirical processes or domain issues of Markov
generators), but I have tried to give the reader a fair warning when this is the
case. The notes at the end of each chapter do not claim to give a comprehensive
historical account, but rather to indicate the immediate origin of the material
that I used and to serve as a starting point for further reading.

1 I highly recommend the book in progress (as of 2016) by Roman Vershynin [147]
for a wonderful introduction to high-dimensional probability and its applications
from a very different perspective than the one taken in these notes.
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1

Introduction

1.1 What is this course about?

What is probability in high dimension? There is no good answer to this ques-
tion. High-dimensional probabilistic problems arise in numerous areas of sci-
ence, engineering, and mathematics. A (very incomplete) list might include:

• Large random structures: random matrices, random graphs, . . .
• Statistics and machine learning: estimation, prediction and model selection

for high-dimensional data.
• Randomized algorithms in computer science.
• Random codes in information theory.
• Statistical physics: Gibbs measures, percolation, spin glasses, . . .
• Random combinatorial structures: longest increasing subsequence, span-

ning trees, travelling salesman problem, . . .
• Probability in Banach spaces: probabilistic limit theorems for Banach-

valued random variables, empirical processes, local theory of Banach
spaces, geometric functional analysis, convex geometry.

• Mixing times and other phenomena in high-dimensional Markov chains.

At first sight, these different topics appear to have limited relation to one
another. Each of these areas is a field in its own right, with its own unique
ideas, mathematical methods, etc. In fact, even the high-dimensional nature of
the problems involved can be quite distinct: in some of these problems, “high
dimension” refers to the presence of many distinct but interacting random
variables; in others, the problems arise in high-dimensional spaces and prob-
abilistic methods enter the picture indirectly. It would be out of the question
to cover all of these topics in a single course.

Despite this wide array of quite distinct areas, there are some basic prob-
abilistic principles and techniques that arise repeatedly across a broad range
of high-dimensional problems. These ideas, some of which will be described
at a very informal level below, typically take the form of nonasymptotic prob-
abilistic inequalities. Here nonasymptotic means that we are not concerned
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with limit theorems (as in many classical probabilistic results), but rather
with explicit estimates that are either dimension-free, or that capture pre-
cisely the dependence of the problem on the relevant dimensional parameters.
There are at least two reasons for the importance of such methods. First, in
many high-dimensional problems there may be several different parameters of
interest; in asymptotic results one must take all these parameters to the limit
in a fixed relation to one another, while the nonasymptotic viewpoint allows
to express the interrelation between the different parameters in a much more
precise way. More importantly, high-dimensional problems typically involve
interactions between a large number of degrees of freedom whose aggregate
contributions to the phenomenon of interest must be accounted for in the
mathematical analysis; the explicit nature of nonasymptotic estimates makes
them particularly well suited to be used as basic ingredients of the analysis,
even if the ultimate result of interest is asymptotic in nature.

The goal of this course is to develop a set of ideas that arise repeatedly in
the investigation of high-dimensional random structures across different fields.
Our aim will not only be to build up a common toolbox in a systematic way,
but we will also attempt to show how these tools fit together to yield a sur-
prisingly cohesive probabilistic theory. Of course, one should not expect that
any genuinely interesting problem that arises in one of the various fascinat-
ing areas listed above can be resolved by an immediate application of a tool
in our toolbox; the solution of such problems typically requires insights that
are specific to each area. However, the common set of ideas that we will de-
velop provides key ingredients for the investigation of many high-dimensional
phenomena, and forms an essential basis for work in this area.

1.2 Some general principles

The toolbox that we will develop is equipped to address a number of different
phenomena that arise in high dimension. To give a broad overview of some
of the ideas to be developed, and to set the stage for coming attractions, we
will organize our theory around four informal “principles” to be described
presently. None of these principles corresponds to one particular theorem or
admits a precise mathematical description; rather, each principle encompasses
a family of conceptually related results that appear in different guises in dif-
ferent settings. The bulk of this course is aimed at making these ideas precise.

1.2.1 Concentration

If X1, X2, . . . are i.i.d. random variables, then

1
n

n∑
k=1

Xk −E

[
1
n

n∑
k=1

Xk

]
→ 0 as n→∞
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by the law of large numbers. Another way of stating this is as follows: if we
define the function f(x1, . . . , xn) = 1

n

∑n
k=1 xk, then for large n the random

variable f(X1, . . . , Xn) is close to its mean (that is, its fluctuations are small).
It turns out that this phenomenon is not restricted to linear functions f :

it is a manifestation of a general principle, the concentration phenomenon, by
virtue of which it is very common for functions of many independent variables
to have small fluctuations. Let us informally state this principle as follows.

If X1, . . . , Xn are independent (or weakly dependent) random vari-
ables, then the random variable f(X1, . . . , Xn) is “close” to its mean
E[f(X1, . . . , Xn)] provided that the function f(x1, . . . , xn) is not too
“sensitive” to any of the coordinates xi.

Of course, to make such a statement precise, we have to specify:

• What do we mean by “sensitive”?
• What do we mean by “close”?

We will develop a collection of results, and some general methods to prove
such results in different settings, in which these concepts are given a pre-
cise meaning. In each case, such a result takes the form of an explicit bound
on a quantity that measures the size of the fluctuations f(X1, . . . , Xn) −
E[f(X1, . . . , Xn)] (such as the variance or tail probabilities) in terms of “di-
mension” n and properties of the distribution of the random variables Xi.

The concentration phenomenon is in many ways omnipresent in our ev-
eryday experience. For example, it suggests why the world around us behaves
in a predictable manner, despite being composed of a humongous number of
microscopic particles which, as we are told by the laws of physics, behave very
randomly indeed. On the other hand, it is perhaps far from clear at this point
why a principle of the above type might be expected to hold. We will develop
a number of general tools to prove such results that provide insight into the
nature of concentration, as well as its connection with other topics.

One theme that will arise repeatedly in the sequel is the relation between
concentration and the rate of convergence to equilibrium of Markov processes.
At first sight, these appear to be entirely different questions: the concentration
problem is concerned with the fluctuations of f(X) for a given (vector-valued)
random variable X and (possibly very nonlinear) function f , with no Markov
process in sight. Nonetheless, it turns out that one can prove concentration
properties by investigating Markov processes that have the law of X as their
stationary distribution. Conversely, functional inequalities closely connected
to concentration can be used to investigate the convergence of Markov pro-
cesses to the stationary distribution (which is of interest in its own right in
many areas, for example, in non-equilibrium statistical mechanics or Markov
chain Monte Carlo algorithms). Once this connection has been understood,
it will also become clear in what manner such results can be systematically
improved. This will lead us to the notion of hypercontractivity of Markov
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semigroups, which is in turn of great interest in various other problems. Sev-
eral other connections that yield significant insight into the concentration
phenomenon, including to isoperimetric problems and problems in optimal
transportation and information theory, will be developed along the way.

1.2.2 Suprema

The concentration principle is concerned with the deviation of a random func-
tion f(X1, . . . , Xn) from its mean E[f(X1, . . . , Xn)]. However, it does not pro-
vide any information on the value of E[f(X1, . . . , Xn)] itself. In fact, the two
problems of estimating the magnitude and the fluctuations of f(X1, . . . , Xn)
prove to be quite distinct, and must be treated by different methods.

A remarkable feature of the concentration principle is that it provides
information on the fluctuations for very general functions f : even in cases
where the function f is very complicated to compute (for example, when it is
defined in terms of a combinatorial optimization problem), it is often possible
to estimate its sensitivity to the coordinates by elementary methods. When
it comes to estimating the magnitude of the corresponding random variable,
there is no hope to develop a principle that holds at this level of generality: the
functions f that arise in the different areas described in the previous section
are very different in nature, and we cannot hope to develop general tools to
address such problems without assuming some additional structure.

A structure that proves to be of central importance in many high-
dimensional problems is that of random variables F defined as the supremum

F = sup
t∈T

Xt

of a random process {Xt}t∈T (that is, a family of random variables indexed by
a set T that is frequently high- or infinite-dimensional). The reason that such
quantities play an important role in high-dimensional problems is twofold. On
the one hand, problems in high dimension typically involve a large number of
interdependent degrees of freedom; the need to obtain simultaneous control
over many random variables thus arises frequently as an ingredient of the
mathematical analysis. On the other hand, there are many problems in which
various quantities of interest can be naturally expressed in terms of suprema.
Let us consider a few simple examples for sake of illustration.

Example 1.1 (Random matrices). Let M = (Mij)1≤i,j≤n be a random matrix
whose entries Mij are independent (let us assume they are Gaussian for sake
of illustration). One question of interest in this setting is to estimate the
magnitude of the matrix norm ‖M‖ (the largest singular value of M), which
is a nontrivial function of matrix entries. But recall from linear algebra that

‖M‖ = sup
v,w∈B2

〈v,Mw〉,



1.2 Some general principles 5

where B2 is the (Euclidean) unit ball and 〈·, ·〉 denotes the usual inner product
in Rn. We can therefore treat the matrix norm ‖M‖ as the supremum of the
Gaussian process {Xv,w = 〈v,Mw〉}v,w∈B2 indexed by B2 ×B2.

Example 1.2 (Norms of random vectors). Let X be a random vector in Rn,
and let ‖ · ‖B be any norm on Rn (where B denotes the unit ball of ‖ · ‖B).
The duality theory of Banach spaces implies that we can write

‖X‖B = sup
t∈B◦
〈t,X〉,

where B◦ denotes the dual ball. In this manner, the supremum of the random
process {Xt = 〈t,X〉}t∈B◦ arises naturally in probability in Banach spaces.

Example 1.3 (Empirical risk minimization). Many problems in statistics and
machine learning may be formulated as the problem of computing

argmin
θ∈Θ

E[l(θ,X)]

given only observed “data” consisting of i.i.d. samples X1, . . . , Xn ∼ X (that
is, without knowledge of the law of X). Here l is a given loss function and Θ
is a given parameter space, which depend on the problem at hand.

Perhaps the simplest general way to address this problem is to reason as
follows. By the law of large numbers, we can approximate the risk for a fixed
parameter θ by the empirical risk which depends only on the data:

E[l(θ,X)] ≈ 1
n

n∑
k=1

l(θ,Xk).

On might therefore naturally expect that

argmin
θ∈Θ

E[l(θ,X)] ≈ argmin
θ∈Θ

1
n

n∑
k=1

l(θ,Xk).

This approach to estimating the optimal parameter θ from data is called
empirical risk minimization. The problem is now to estimate how close the
empirical risk minimizer is to the optimal parameter as a function of the
number of samples n, the dimension of the parameter space Θ, the dimension
of the state space ofX, etcetera. The resolution of this question leads naturally
to the investigation of quantities such as the uniform deviation

sup
θ∈Θ

1
n

n∑
k=1

{l(θ,Xk)−E[l(θ,X)]} ,

which is the supremum of a random process. Estimating the magnitude of
suprema arises in a similar manner in a wide array of statistical problems.
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Example 1.4 (Convex functions). In principle, we can formulate the problem
of estimating E[f(X1, . . . , Xn)] as a supremum problem whenever f is convex.
Indeed, by convex duality, we can express any convex function f : Rn → R as

f(x) = sup
y∈Rn
{〈y, x〉 − f∗(y)},

where f∗ denotes the convex conjugate of f . The function f(X1, . . . , Xn)
can therefore be expressed as the supremum of the random process {Xy =
〈y,X〉}y∈Rn after subtracting the “penalty” f∗(y) (alternatively, f∗ can be
absorbed in the definition of Xy). This shows that the investigation of suprema
is in fact surprisingly general; this general point of view is very useful in some
applications, while more direct methods might be more suitable in other cases.

In all these cases, the process Xt itself admits a simple description, and the
difficulty lies in obtaining good estimates on the magnitude of the supremum
(for example, to estimate the mean or the tail probabilities). In this setting,
a second general principle appears that provides a key tool in many high-
dimensional problems. We informally state this principle as follows.

If the random process {Xt}t∈T is “sufficiently continuous,” then the
magnitude of the supremum supt∈T Xt is controlled (in the sense that
we have estimates from above, and in some cases also from below) by
the “complexity” of the index set T .

Of course, to make this precise, we have to specify:

• What do we mean by “sufficiently continuous”?
• What do we mean by “complexity”?

These concepts will be given a precise meaning in the sequel. In particular, let
us note that while the supremum of a random process is a probabilistic object,
complexity is not: we will in fact consider different geometric (packing and
covering numbers and trees) and combinatorial (shattering and combinatorial
dimension) notions of complexity. We will develop a collection of powerful
tools, such as chaining and slicing methods, that make the connection between
these probabilistic, geometric, and combinatorial notions in a general setting.
A number of other useful tools will be developed along the way, such as basic
methods for bounding Gaussian and Rademacher processes.

1.2.3 Universality

Let X1, X2, . . . be i.i.d. random variables with finite variance. As in our dis-
cussion of concentration, let us recall once more the law of large numbers

1
n

n∑
k=1

{Xk −EXk} → 0 as n→∞.
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In this setting, however, we do not only know that the fluctuations are of
order n−1/2 (as is captured by the concentration phenomenon), but we have
much more precise information as well: by the central limit theorem, we have
a precise description of the distribution of the fluctuations, as

1√
n

n∑
k=1

{Xk −EXk} ≈ Gaussian

when n is large. A different way of phrasing this property is that

1√
n

n∑
k=1

{Xk −EXk} ≈
1√
n

n∑
k=1

{Gk −EGk},

where Gk are independent Gaussian random variables with the same mean
and variance of Xk (here ≈ denotes closeness of the distributions). Beside
the fact that this gives precise distributional information, what is remarkable
about such results is that they become insensitive to the distribution of the
original random variables Xk as n → ∞. The phenomenon that the detailed
features of the distribution of the individual components of a problem become
irrelevant in high dimension is often referred to a universality.

As in the case of concentration, it turns out that this phenomenon is not
restricted to linear functions of independent random variables, but is in fact
a manifestation of a more general principle. We state it informally as follows.

If X1, . . . , Xn are independent (or weakly dependent) random vari-
ables, then the expectation E[f(X1, . . . , Xn)] is “insensitive” to the
distribution of X1, . . . , Xn when the function f is “sufficiently smooth.”

Of course, to make this precise, we have to specify:

• What do we mean by “insensitive”?
• What do we mean by “sufficiently smooth”?

We will develop some basic quantitative methods to prove universality in
which these concepts are given a precise meaning.

The interest of the universality phenomenon is twofold. First, the presence
of the universality property suggests that the high-dimensional phenomenon
under investigation is in a sense robust to the precise details of the model
ingredients, a conclusion of significant interest in its own right (of course, there
are also many high-dimensional phenomena that are not universal!) Second,
there are often situations in which the quantities of interest can be evaluated
by explicit computation when the underlying random variables have a special
distribution, but where such explicit analysis would be impossible in a general
setting. For example, in random matrix theory, many explicit computations
are possible for appropriately defined Gaussian random matrices due to the
invariance of the distribution under orthogonal transformations, while such
computations would be completely intractable for other distributions of the



8 1 Introduction

entries. In such cases, universality properties provide a crucial tool to reduce
the proofs of general results to those in a tractable special case.

Let us note that the universality phenomenon is not necessarily related
to the Gaussian distribution: universality simply states that certain proba-
bilistic quantities do not depend strongly on the distribution of the individual
components. However, Gaussian distributions do appear frequently in many
high-dimensional problems that involve the aggregate effect of many inde-
pendent degrees of freedom, as do several other distributions (such as Poisson
distributions in discrete problems and extreme value distributions for maxima
of independent random variables; a much less well understood phenomenon
is the appearance of the Tracy-Widom distribution in many complex systems
that are said to belong to the “KPZ universality class,” a topic of intense re-
cent activity in probability theory.) Thus the related but more precise question
of when the distribution a random variable F is close to Gaussian or to some
other distribution also arises naturally in this setting. Explicit nonasymptotic
estimates in terms of dimensional parameters of the problem can be obtained
using a set of tools (collectively known as Stein’s method) that have proved
to be very useful in a number of high-dimensional problems.

1.2.4 Sharp transitions

The last phenomenon that we will discuss lends itself least well to formal-
ization in terms of a general principle, even by the informal standard of
our discussion so far. Nonetheless, the ubiquity of this phenomenon in high-
dimensional systems prompts us to discuss it as a separate principle.

Most probabilistic models are defined in terms of some natural problem pa-
rameters. One might generally expect that the behavior of the model changes
in a smooth manner as one varies the underlying parameters. It is a remarkable
feature of high-dimensional systems that this is often not the case: their behav-
ior tends to undergo abrupt changes when the model parameters cross some
threshold value, a phenomenon commonly known as a phase transition. The
classical example from our everyday experience is that water abruptly turns
from liquid to gas when its temperature reaches boiling point: the abrupt na-
ture of this transition is not due to a conspiracy between the water molecules,
but is rather a general feature of high-dimensional systems. Indeed, the vast
majority of the models that arise in the different subjects described at the be-
ginning of this chapter exhibit some form of phase transition. Unfortunately,
the methods needed to obtain a precise understanding of these transitions
depend rather strongly on the context in which they arise, and a general the-
ory of phase transitions is too much to hope for. We will nonetheless exhibit
a basic mechanism that provides some common understanding of why sharp
transitions occur in a variety of interesting situations.

It is easiest once again to illustrate this phenomenon in a toy setting using
the law of large numbers. Let X1, X2, . . . be i.i.d. Bernoulli random variables,
that is, P[Xk = 1] = p and P[Xk = 0] = 1 − p. The probability p of the
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individual variables is the natural parameter of this model. Let

Z = 1 1
n

Pn
k=1Xk≥

1
2

be the majority function, that is, Z = 1 if the majority of X1, . . . , Xn are one
(including a tie), and Z = 0 if the majority of X1, . . . , Xn are zero. Then

E[Z]→

{
0 if p < 1

2 ,

1 if p > 1
2

as n→∞

by the law of large numbers. That is, as n→∞, the behavior of Z undergoes
an abrupt transition as the parameter p crosses the threshold value p∗ = 1

2 .
In fact, as the fluctuations of 1

n

∑n
k=1Xk are of order ∼ 1√

n
by the central

limit theorem, we clearly obtain the following picture for finite n:

E[Z]

p

0 10.5
0

1

∼ 1√
n

In particular, while the behavior of E[Z] depends rather smoothly on the
parameter p when the dimension n is small, we observe that this transition
becomes increasingly sharp in high dimension.

In this simple example, it is evident that the appearance of a sharp tran-
sition is nothing other than a consequence of the concentration phenomenon.
One can indeed broadly view some form of concentration (in a general sense)
as the reason for the appearance of sharp transitions in high-dimensional mod-
els. However, unlike in the above example, more complicated quantities that
undergo sharp transitions are often not formulated in a manner that admits
a direct application of the concentration principle of section 1.2.1. It nonethe-
less turns out that the above example is a manifestation of a more general
principle that explains why sharp transitions arise in a variety of interesting
and nontrivial situations. We informally state this principle as follows.

If X1, . . . , Xn are independent (or weakly dependent) events with prob-
ability p, then the probability of an event f(X1, . . . , Xn) undergoes a
“sharp transition” in p if f(x1, . . . , xn) is monotone and depends in a
“sufficiently symmetric” manner on the coordinates xi.

Of course, to make this precise, we have to specify:

• What do we mean by “sharp transition”?
• What do we mean by “sufficiently symmetric”?
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We will develop a method to establish sharp transitions that gives a precise
meaning to these concepts. In particular, we will see that an analogue of the
above picture appears in many situations, and we will obtain quantitative
information of the width of the transition region in this picture.

It should should be emphasized that the principle that we have formulated
can only explain why a sharp (as opposed to smooth) transition occurs. It
cannot in itself, however, provide any information on the location of the critical
value p∗ at which the transition occurs. This situation is analogous to the
situation in the setting of the concentration phenomenon, which controls the
fluctuations of a random variable without providing any information on its
magnitude. The location of the phase transition is of course of major interest
in many problems, and must be addressed in a problem-specific manner.

As compared to the first three principles that we discussed, the general
principle outlined in this section arises in a somewhat more restricted setting:
it explains the emergence of phase transitions of monotone events, rather than
of very general functions of independent random variables. It is therefore not
as broadly applicable, in the precise form that we will develop, as many of
the other ideas in this course. Unfortunately, there are few general principles
for establishing sharp transitions, and it is not even clear how a significantly
more general principle might be meaningfully formulated. Nonetheless, the
principle formulated in this section is able to give a common explanation for
the appearance of sharp transitions in a range of interesting problems, partic-
ularly those that appear in the study of random graphs, statistical mechan-
ics, and theoretical computer science. In other situations, where the study of
phase transitions must generally be addressed in a problem-specific manner,
the insight that arises from this general perspective can nonetheless provide
valuable intuition and guidance on how such questions can be approached.

1.3 Organization of this course

We have introduced above four “principles” to motivate some of the general
probabilistic mechanisms that arise in high-dimensional problems. These prin-
ciples should not be taken too seriously, but rather as an informal guide to
place into perspective the topics that we will cover in the sequel. In the fol-
lowing lectures, we will proceed to develop these ideas in a precise manner,
and to exhibit the many interconnections between these topics.



Part I

Concentration





2

Variance bounds and Poincaré inequalities

Recall the informal statement of the concentration phenomenon from Ch. 1:

If X1, . . . , Xn are independent (or weakly dependent) random vari-
ables, then the random variable f(X1, . . . , Xn) is “close” to its mean
Ef(X1, . . . , Xn) provided that the function f(x1, . . . , xn) is not too
“sensitive” to any of the coordinates xi.

In this chapter, we will make a modest start towards making this principle
precise by investigating bounds on the variance

Var[f(X1, . . . , Xn)] := E[(f(X1, . . . , Xn)−Ef(X1, . . . , Xn))2]

in terms of the “sensitivity” of the function f to its coordinates. Various
fundamental ideas and a rich theory already arise in this setting, and this is
therefore our natural starting point. In the following chapters we will show
how to go beyond the variance to obtain bounds on the distribution of the
fluctuations of f(X1, . . . , Xn) that are useful in many settings.

2.1 Tensorization and bounded differences

At first sight, it might seem that the concentration principle is rather trivial
when stated in terms of variance. Indeed, the variance of a constant function
is zero, and it is easy to show that the variance of a function that is almost
constant is almost zero. For example, we have the following simple lemma:

Lemma 2.1. Let X be any (possibly vector-valued) random variable. Then

Var[f(X)] ≤ 1
4 (sup f − inf f)2 and Var[f(X)] ≤ E[(f(X)− inf f)2].

Proof. Note that

Var[f(X)] = Var[f(X)− a] ≤ E[(f(X)− a)2] for any a ∈ R.

For the first inequality, let a = (sup f + inf f)/2 and note that |f(X) − a| ≤
(sup f − inf f)/2. For the second inequality, let a = inf f . ut
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The problem with this trivial result is that it does not capture at all the
high-dimensional phenomenon that we set out to investigate. For example, it
gives a terrible bound for the law of large numbers.

Example 2.2. Let X1, . . . , Xn be independent random variables with values in
[−1, 1], and let f(x1, . . . , xn) = 1

n

∑n
k=1 xk. Then a direct computation gives

Var[f(X1, . . . , Xn)] =
1
n2

n∑
k=1

Var[Xk] ≤ 1
n
.

That is, the average of i.i.d. random variables concentrates increasingly well
around its mean as the dimension is increased. On the other hand, both bounds
of Lemma 2.1 give Var[f(X1, . . . , Xn)] . 1: for example,

Var[f(X1, . . . , Xn)] ≤ 1
4

(sup f − inf f)2 = 1.

Thus Lemma 2.1 provides a reasonable bound on the variance in one dimen-
sion, but is grossly inadequate in high dimension.

Of course, this should not be surprising: no independence was assumed in
Lemma 2.1, and so there is no reason which we should obtain a sharper con-
centration phenomenon at this level of generality. For example, if X1, . . . , Xn

are random variables that are totally dependent X1 = X2 = . . . = Xn, then
the variance of 1

n

∑n
k=1Xk is indeed of order one regardless of the “dimension”

n, and Lemma 2.1 captures this situation accurately. The idea that concentra-
tion should improve in high dimension arises when there are many independent
degrees of freedom. To capture this high-dimensional phenomenon, we must
develop a method to exploit independence in our inequalities.

To this end, we presently introduce an idea that appears frequently in high-
dimensional problems: we will deduce a bound for functions of independent
random variables X1, . . . , Xn (i.e., in high dimension) from bounds for func-
tions of each individual random variable Xi (i.e., in a single dimension). It is
not at all obvious that this is possible: in general, one cannot expect to deduce
high-dimensional inequalities from low-dimensional ones without introducing
additional dimension-dependent factors. Those quantities for which this is in
fact possible are said to tensorize.1 Quantities that tensorize behave well in
high dimension, and are therefore particularly important in high-dimensional
problems. We will presently prove that the variance is such a quantity. With
the tensorization inequality for the variance in hand, we will have reduced the
proof of concentration inequalities for functions of many independent random
variables to obtaining such bounds for a single random variable.

1 The joint law µ1 ⊗ · · · ⊗ µn of independent random variables X1, . . . , Xn is the
tensor product of the marginal laws Xi ∼ µi: the terminology “tensorization”
indicates that a quantity is well behaved under the formation of tensor products.
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To formulate the tensorization inequality, let X1, . . . , Xn be independent
random variables. For each function f(x1, . . . , xn), we define the function

Varif(x1, . . . , xn) := Var[f(x1, . . . , xi−1, Xi, xi+1, . . . , xn)].

That is, Varif(x) is the variance of f(X1, . . . , Xn) with respect to the variable
Xi only, the remaining variables being kept fixed.

Theorem 2.3 (Tensorization of variance). We have

Var[f(X1, . . . , Xn)] ≤ E

[
n∑
i=1

Varif(X1, . . . , Xn)

]

whenever X1, . . . , Xn are independent.

Note that when f is a linear function, it is readily checked that the in-
equality of Theorem 2.3 holds with equality: in this sense, the result is sharp.

The proof of Theorem 2.3 is a first example of the martingale method,
which will prove useful for obtaining more general inequalities later on.

Proof. The idea of the proof is to mimic the trivial fact that the variance
of the sum of independent random varaibles is the sum of the variances. At
first sight, the general function f(x1, . . . , xn) need not look anything like a
sum. We can nonetheless write it as a sum of random variables that, while
not independent, still behave well when we compute the variance.

Define

∆k = E[f(X1, . . . , Xn)|X1, . . . , Xk]−E[f(X1, . . . , Xn)|X1, . . . , Xk−1].

Then

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) =
n∑
k=1

∆k,

and E[∆k|X1, . . . , Xk−1] = 0, that is, ∆1, . . . ,∆k are martingale increments.
In particular, as E[∆k∆l] = E[E[∆k|X1, . . . , Xk−1]∆l] = 0 for l < k, we have

Var[f(X1, . . . , Xn)] = E

[(
n∑
k=1

∆k

)2]
=

n∑
k=1

E[∆2
k].

It remains to show that E[∆2
k] ≤ E[Varkf(X1, . . . , Xn)] for every k.

To this end, note that

E[f(X1, . . . , Xn)|X1, . . . , Xk−1]
= E[E[f(X1, . . . , Xn)|X1, . . . , Xk−1, Xk+1, . . . , Xn]|X1, . . . , Xk−1]
= E[E[f(X1, . . . , Xn)|X1, . . . , Xk−1, Xk+1, . . . , Xn]|X1, . . . , Xk],
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where we have used the tower property of the conditional expectation in the
first equality, and that Xk is independent of X1, . . . , Xk−1, Xk+1, . . . , Xn in
the second equality. In particular, we can write ∆k = E[∆̃k|X1, . . . , Xk] with

∆̃k = f(X1, . . . , Xn)−E[f(X1, . . . , Xn)|X1, . . . , Xk−1, Xk+1, . . . , Xn].

But as Xk and X1, . . . , Xk−1, Xk+1, . . . , Xn are independent, we have

Varkf(X1, . . . , Xn) = E[∆̃2
k|X1, . . . , Xk−1, Xk+1, . . . , Xn].

We can therefore estimate using Jensen’s inequality

E[∆2
k] = E[E[∆̃k|X1, . . . , Xk]2] ≤ E[∆̃2

k] = E[Varkf(X1, . . . , Xn)],

which completes the proof. ut

One can view tensorization of the variance in itself as an expression of the
concentration phenomenon: Varif(x) quantifies the sensitivity of the function
f(x) to the coordinate xi in a distribution-dependent manner. Thus Theorem
2.3 already expresses the idea that if the sensitivity of f to each coordinate
is small, then f(X1, . . . , Xn) is close to its mean. Unlike Lemma 2.1, how-
ever, Theorem 2.3 holds with equality for linear functions and thus captures
precisely the behavior of the variance in the law of large numbers. The ten-
sorization inequality generalizes this idea to arbitrary nonlinear functions, and
constitutes our first nontrivial concentration result.

However, it may not be straightforward to compute Varif : this quantity
depends not only on the function f , but also on the distribution of Xi. In
many cases, Theorem 2.3 is the most useful in combination with a suitable
bound on the variances Varif in each dimension. Even the trivial bounds of
Lemma 2.1 already suffice to obtain a variance bound that is extremely useful
in many cases. To this end, let us define the quantities

Dif(x) :=
sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

and

D−i f(x) := f(x1, . . . , xn)− inf
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn).

Then Dif(x) and D−i f(x) quantify the sensitivity of the function f(x) to the
coordinate xi in a distribution-independent manner. The following bounds
now follow immediately from Theorem 2.3 and Lemma 2.1.

Corollary 2.4 (Bounded difference inequalities). We have

Var[f(X1, . . . , Xn)] ≤ 1
4

E

[
n∑
i=1

(Dif(X1, . . . , Xn))2
]
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and

Var[f(X1, . . . , Xn)] ≤ E

[
n∑
i=1

(D−i f(X1, . . . , Xn))2
]

whenever X1, . . . , Xn are independent.

Let us illustrate the utility of these inequalities in a nontrivial example.

Example 2.5 (Random matrices). Let M be an n×n symmetric matrix where
{Mij : i ≥ j} are i.i.d. symmetric Bernoulli random variables P[Mij = ±1] =
1
2 . We are interested in λmax(M), the largest eigenvalue of M . This is a highly
nonlinear function of the entries: it is not immediately obvious what is the
order of magnitude of either the mean or the variance of λmax(M).

Recall from linear algebra that

λmax(M) = sup
v∈B2

〈v,Mv〉 = 〈vmax(M),Mvmax(M)〉,

where B2 = {v ∈ Rn : ‖v‖2 ≤ 1} is the Euclidean unit ball in Rn and
vmax(M) is any eigenvector of M with eigenvalue λmax(M). Since λmax(M) is
the supremum of a random process, we will be able to use tools from the second
part of this course to estimate its mean: it will turn out that E[λmax(M)] ∼√
n. Let us now use Corollary 2.4 to estimate the variance.

Let us consider for the time being a fixed matrix M and indices i ≥ j.
Choose a symmetric matrix M− such that

λmax(M−) = inf
Mij∈{−1,1}

λmax(M),

that is, M−ij = M−ji is chosen to minimize λmax(M−) while the remaining
entries M−kl = Mkl with {k, l} 6= {i, j} are kept fixed. Then we can estimate

D−ijλmax(M) = λmax(M)− λmax(M−)

= 〈vmax(M),Mvmax(M)〉 − sup
v∈B2

〈v,M−v〉

≤ 〈vmax(M), (M −M−)vmax(M)〉
= 2vmax(M)ivmax(M)j(Mij −M−ij )

≤ 4|vmax(M)i||vmax(M)j |,

where the penultimate line holds as Mkl = M−kl unless k = i, l = j or k =
j, l = i, and the last line holds as Mij ,M

−
ij only take the values ±1. As this

inequality holds for every matrix M and indices i, j, Corollary 2.4 yields

Var[λmax(M)] ≤ E

[∑
i≥j

16|vmax(M)i|2|vmax(M)j |2
]
≤ 16,

where we have used that
∑n
i=1 vmax(M)2i = 1. Thus the variance of the max-

imal eigenvalue of an n× n symmetric random matrix with Bernoulli entries
is bounded uniformly in the dimension n (in contrast to the mean ∼

√
n).
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Remark 2.6. It is natural to ask whether the result of Example 2.5 is sharp:
is Var[λmax(M)] in fact of constant order as n→∞? It turns out that this is
not the case: using specialized computations from random matrix theory, it
can be shown that in fact Var[λmax(M)] ∼ n−1/3, that is, the fluctuations of
the maximal eigenvalue in high dimension are even smaller than is predicted
by Corollary 2.4. In this example, the suboptimal bound already arises at the
level of Theorem 2.3: it is necessary to go beyond tensorization to beat the
dimension-free rate obtained in Example 2.5.

This example highlights the fact that one cannot always expect to obtain
an optimal bound by the application of a general theorem. However, this in
no way diminishes the utility of these inequalities, whose aim is to provide
general principles for obtaining concentration properties in high dimension.
Indeed, even in the present example, we already obtained a genuinely nontriv-
ial result—a dimension-free bound on the variance—using a remarkably simple
analysis that did not use any special structure of random matrix problems.
In many applications such dimension-free bounds suffice, or provide essen-
tial ingredients for a more refined problem-specific analysis. It should also be
noted that there are many problems in which results such as Corollary 2.4 do
give bounds of the optimal order. Whether there exist general principles that
can capture the improved order of the fluctuations in settings such as Exam-
ple 2.5—the superconcentration problem—remains a largely open question,
though we will encounter some results along these lines in Chapter 8.

The bounded difference inequalities of Corollary 2.4, and the tensorization
inequality of Theorem 2.3, are very useful in many settings. On the other hand,
these inequalities can often be restrictive due to various drawbacks:

• Due to the supremum and infimum in the definition ofDif orD−i f , bounds
using bounded difference inequalities are typically restricted to situations
where the random variables Xi and/or the function f are bounded. For
example, the computation in Example 2.5 is useless for random matrices
with Gaussian entries. On the other hand, the tensorization inequality
itself does not require boundedness, but in nontrivial problems such as
Example 2.5 it is typically far from clear how to bound Varif .

• Bounded difference inequalities do not capture any information on the
distribution of Xi. For example, suppose X1, . . . , Xn are i.i.d., and con-
sider f(x) = 1√

n

∑n
k=1 xk. Then Var[f(X1, . . . , Xn)] = Var[X1], but the

bounded difference inequality only gives Var[f(X1, . . . , Xn)] ≤ ‖X1‖2∞.
The latter will be very pessimistic when Var[X1]� ‖X1‖2∞. On the other
hand, the tensorization inequality is too distribution-dependent in that it
is often unclear how to bound Varif directly for a given distribution.

• The tensorization method depends fundamentally on the independence of
X1, . . . , Xn: it is not clear how this method can be extended beyond inde-
pendence to treat more general classes of high-dimensional distributions.
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To address these issues, we must develop a more general framework for un-
derstanding and proving variance inequalities.

Let us note that the inequalities obtained in this section can be viewed as
special cases of a general family of inequalities that are informally described as
follows. We can interpret Dif as a type of “discrete derivative of the function
f(x) with respect to the variable xi.” Similarly, D−i f can be viewed as a
one-sided version of the discrete derivative. More vaguely, one could also view
Varif as a type of squared discrete derivative. Thus the inequalities of this
section are, roughly speaking, of the following form:

“ variance(f) . E[ ‖gradient(f)‖2 ]. ”

Inequalities of this type are called Poincaré inequalities (after H. Poincaré who
first published such an inequality for the uniform distribution on a bounded
domain in Rn and for the classical notion of gradient, ca. 1890). It turns out
that the validity of a Poincaré inequality for a given distribution is intimately
connected the convergence rate of a Markov process that admits that distribu-
tion as a stationary measure. This fundamental connection between two prob-
abilistic problems provides a powerful framework to understand and prove a
broad range of Poincaré inequalities for different distributions and with various
different notions of “gradient” (and, conversely, a powerful method to bound
the convergence rate of Markov processes in high dimension—an important
problem in its own right with applications in areas ranging from statistical
mechanics to Markov Chain Monte Carlo algorithms in computer science and
in computational statistics). We therefore set out in the sequel to develop this
connection in some detail. Before we can do that, however, we must first recall
some basic elements of the theory of Markov processes.

Problems

2.1 (Banach-valued sums). Let X1, . . . , Xn be independent random vari-
ables with values in a Banach space (B, ‖·‖B). Suppose these random variables
are bounded in the sense that ‖Xi‖B ≤ C a.s. for every i. Show that

Var

(∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥
B

)
≤ C2

n
.

This is a simple vector-valued variant of the elementary fact that the variance
of 1

n

∑n
k=1Xk for real-valued random variables Xk is of order 1

n .

2.2 (Rademacher processes). Let ε1, . . . , εn be independent symmetric
Bernoulli random variables P[εi = ±1] = 1

2 (also called Rademacher vari-
ables), let T ⊆ Rn. The following identity is completely trivial:

sup
t∈T

Var

[
n∑
k=1

εktk

]
= sup

t∈T

n∑
k=1

t2k.
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Prove the following nontrivial fact:

Var

[
sup
t∈T

n∑
k=1

εktk

]
≤ 4 sup

t∈T

n∑
k=1

t2k.

Thus taking the supremum inside the variance costs at most a constant factor.

2.3 (Bin packing). This is a classical application of bounded difference in-
equalities. Let X1, . . . , Xn be i.i.d. random variables with values in [0, 1]. Each
Xi represents the size of a package to be shipped. The shipping containers are
bins of size 1 (so each bin can hold a set packages whose sizes sum to at most
1). Let Bn = f(X1, . . . , Xn) be the minimal number of bins needed to store
the packages. Note that computing Bn is a hard combinatorial optimization
problem, but we can bound its mean and variance by easy arguments.

a. Show that Var[Bn] ≤ n/4.
b. Show that E[Bn] ≥ nE[X1].

Thus the fluctuations ∼
√
n of Bn are much smaller than its magnitude ∼ n.

2.4 (Order statistics and spacings). Let X1, . . . , Xn be independent ran-
dom variables, and denote by X(1) ≥ . . . ≥ X(n) their decreasing rearrange-
ment (so X(1) = maxiXi, X(n) = miniXi, etc.) Show that

Var[X(k)] ≤ kE[(X(k) −X(k+1))2] for 1 ≤ k ≤ n/2,

and that

Var[X(k)] ≤ (n− k + 1)E[(X(k−1) −X(k))2] for n/2 < k ≤ n.

2.5 (Convex Poincaré inequality). Let X1, . . . , Xn be independent ran-
dom variables taking values in [a, b]. The bounded difference inequalities of
Corollary 2.4 estimate the variance Var[f(X1, . . . , Xn)] in terms of discrete
derivatives Dif or D−i f of the function f . The goal of this problem is to show
that if the function f is convex, then one can obtain a similar bound in terms
of the ordinary notion of derivative ∇if(x) = ∂f(x)/∂xi in Rn.

a. Show that if g : R→ R is convex, then

g(y)− g(x) ≥ g′(x)(y − x) for all x, y ∈ R.

b. Show using part a. and Corollary 2.4 that if f : Rn → R is convex, then

Var[f(X1, . . . , Xn)] ≤ (b− a)2 E[‖∇f(X1, . . . , Xn)‖2].

c. Conclude that if f is convex and L-Lipschitz, i.e., |f(x)− f(y)| ≤ L‖x− y‖
for all x, y ∈ [a, b]n, then Var[f(X1, . . . , Xn)] ≤ L2(b− a)2.
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2.2 Markov semigroups

A (homogeneous) Markov process (Xt)t∈R+ is a random process that satisfies
the Markov property : for every bounded measurable function f and s, t ∈ R+,
there is a bounded measurable function Psf such that

E[f(Xt+s)|{Xr}r≤t] = (Psf)(Xt).

[We do not put any restrictions on the state space: Xt can take values in any
measurable space E, and the functions above are of the form f : E → R.]
The interpretation, of course, is classical: the behavior of the process in the
future Xt+s depends on the history to date {Xr}r≤t only through the current
state Xt, and is independent of the prior history; that is, the dynamics of the
Markov processes are memoryless. The assumption that Psf does not also
depend on t in the above expression (the homogeneity property) indicates
that the same dynamical mechanism is used at each time.

A probability measure µ is called stationary or invariant if

µ(Ptf) = µ(f) for all t ∈ R+, bounded measurable f.

To interpret this notion, suppose that X0 ∼ µ. Then

E[f(Xt)] = E[E[f(Xt)|X0]] = E[Ptf(X0)] = µ(Ptf).

Thus if µ is stationary, then E[f(Xt)] = µ(f) for every t ∈ R+ and f : in
particular, if the process is initially distributed according to the stationary
measure X0 ∼ µ, then the process remains distributed according to the sta-
tionary measure Xt ∼ µ for every time t. In other words, stationary measures
describe the “steady-state” or “equilibrium” behavior of a Markov process.

Let us describe a few basic facts about the functions Ptf .

Lemma 2.7. Let µ be a stationary measure. Then the following hold for all
p ≥ 1, t, s ∈ R+, α, β ∈ R, bounded measurable functions f, g:

1. ‖Ptf‖Lp(µ) ≤ ‖f‖Lp(µ) := µ(fp)1/p (contraction).
2. Pt(αf + βg) = αPtf + βPtg µ-a.s. (linearity).
3. Pt+sf = PtPsf µ-a.s. (semigroup property).
4. Pt1 = 1 µ-a.s. (conservativeness).

In particular, {Pt}t∈R+ defines a semigroup of linear operators on Lp(µ).

Proof. Assume that X0 ∼ µ. To prove contraction, note that

‖Ptf‖pLp(µ) = E[E[f(Xt)|X0]p] ≤ E[E[f(Xt)p|X0]] = ‖f‖pLp(µ),

where we have used Jensen’s inequality. Linearity follows similarly as

E[αf(Xt) + βg(Xt)|X0] = αE[f(Xt)|X0] + βE[g(Xt)|X0].
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To prove the semigroup property, note that

E[f(Xt+s)|X0] = E[E[f(Xt+s)|{Xr}r≤t]|X0] = E[Psf(Xt)|X0].

The last property is trivial. ut

Remark 2.8. Let µ be a stationary measure. In view of Lemma 2.7, it is easily
seen that the definition and basic properties of Ptf make sense not only for
bounded measurable functions f , but also for every f ∈ L1(µ). From now on,
we will assume the Ptf is defined in this manner for every f ∈ L1(µ).

As an illustration of these basic properties, let us prove the following ele-
mentary observation. In the sequel, we will write Varµ(f) := µ(f2)− µ(f)2.

Lemma 2.9. Let µ be a stationary measure. Then t 7→ Varµ(Ptf) is a de-
creasing function of time for every function f ∈ L2(µ).

Proof. Note that

Varµ(Ptf) = ‖Ptf − µf‖2L2(µ) = ‖Pt(f − µf)‖2L2(µ) = ‖Pt−sPs(f − µf)‖2L2(µ)

≤ ‖Ps(f − µf)‖2L2(µ) = ‖Psf − µf‖2L2(µ) = Varµ(Psf)

for every 0 ≤ s ≤ t. ut

We now turn to an important notion for Markov processes in continuous
time. If you are familiar with Markov chains in discrete time with a finite state
space, you will be used to the idea that the dynamics of the chain is defined in
terms of a matrix of transition probabilities. This matrix describes with what
probability the chain moves from one state to another in one time step, and
forms the basic ingredient in the analysis of the behavior of Markov chains.
This idea does not make sense in continuous time, as a Markov process evolves
continuously and not in individual steps. Nonetheless, there is an object that
plays the analogous role in continuous time, called the generator of a Markov
process. We will first describe the general notion, and then investigate the
finite state space case as an example (in which case the generator can be
interpreted as a matrix of transition rates rather than probabilities).

From now on, we will fix a Markov process with stationary measure µ and
consider {Pt}t∈R+ as a semigroup of linear operators on L2(µ).

Definition 2.10 (Generator). The generator L is defined as

L f := lim
t↓0

Ptf − f
t

for every f ∈ L2(µ) for which the above limit exists in L2(µ). The set of f
for which L f is defined is called the domain Dom(L ) of the generator, and
L defines a linear operator from Dom(L ) ⊆ L2(µ) to L2(µ).
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Remark 2.11 (Warning). For Markov processes whose sample paths are of
pure jump type (i.e., piecewise constant as a function of time) it is often the
case that Dom(L ) = L2(µ). This is the simplest setting for the theory of
Markov processes in continuous time, and here many computations can be
done without any technicalities. On the other hand, for Markov processes
with continuous sample paths (such as Brownian motion, for example), it is
an unfortunate fact of life that Dom(L ) ( L2(µ). In this setting, a rigorous
treatment of semigroups, generators, and domains requires functional ana-
lytic machinery that is not assumed as a prerequisite for this course. While
we should therefore ideally restrict attention to the pure jump case, many
important applications (for example, the proof of the Poincaré inequality for
Gaussian variables) will require the use of continuous Markov processes.

Fortunately, it turns out that domain problems prove to be of a purely
technical nature in all the applications that we will encounter: results that we
will derive for the case Dom(L ) = L2(µ) will be directly applicable even when
this condition fails. While a rigorous proof would require to check carefully
that no domain issues arise, addressing such issues would take significant time
and does not provide much insight into the high-dimensional phenomena that
are of interest in this course. As a compromise, we will therefore generally
ignore domain problems and assume implicitly that Dom(L ) = L2(µ) when
deriving general results, while we will still apply these results in more general
cases. The interested reader should be aware when a shortcut is being taken,
and refer to the literature for a careful treatment of such technical issues.

How can one use the generator L ? We have defined the generator in
terms of the semigroup; however, it is in fact possible to define the semigroup
in terms of the generator, in analogy to the definition of a discrete Markov
chain in terms of its transition probability matrix. To see this, note that

d

dt
Ptf = lim

δ↓0

Pt+δf − Ptf
δ

= lim
δ↓0

Pt

(
Pδf − f

δ

)
= PtL f.

Thus Pt can be recovered as the solution of the Kolmogorov equation

d

dt
Ptf = PtL f, P0f = f.

This computation could also have been performed in a different order:

d

dt
Ptf = lim

δ↓0

Pt+δf − Ptf
δ

= lim
δ↓0

PδPtf − Ptf
δ

= LPtf.

Thus we have demonstrated a basic property: the generator and the semigroup
commute, that is, LPt = PtL . [These statements are entirely clear when
Dom(L ) = L2(µ), and must be given a careful interpretation otherwise.]

Example 2.12 (Finite state space). Let (Xt)t∈R+ be a Markov process with
values in a finite state space Xt ∈ {1, . . . , d}. Such processes are typically
described in terms of their transition rates λij ≥ 0 for i 6= j:
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P[Xt+δ = j|Xt = i] = λijδ + o(δ) for i 6= j.

Evidently, the transition rates λij describe the infinitesimal rate of growth of
the probability of jumping from state i to state j (informally, if Xt = i, then
the probability that Xt+dt = j is λijdt).

Let us organize the transition probabilities qt,ij = P[Xt = j|X0 = i] and
rates λij into matrices Qt = (qt,ij)1≤i,j≤d and Λ = (λij)1≤i,j≤d, respectively,
where we define the diagonal entries of Λ as λii = −

∑
j 6=i λij ≤ 0. Then

lim
t↓0

qt,ij − q0,ij
t

= λij

for every 1 ≤ i, j ≤ d (the diagonal entries λii were chosen precisely to enforce
the law of total probability

∑
j qt,ij = 1). In particular, we have

L f(i) = lim
t↓0

d∑
j=1

f(j)
qt,ij − q0,ij

t
=

d∑
j=1

λijf(j) = (Λf)i,

where we identify the function f with the vector (f(1), . . . , f(d)) ∈ Rd. We
therefore conclude that the generator of a Markov process in a finite state
space corresponds precisely to the matrix of transition rates. The Kolmogorov
equation now reduces to the matrix differential equation

d

dt
Qt = QtΛ, Q0 = I.

This differential equation is the basic tool for computing probabilities of finite
state space Markov processes. The solution is in fact easily obtained as

Qt = etΛ,

from which we readily see why Pt and L must commute.

The above example provides some intuition for the notion of a generator.
Further examples of Markov semigroups will be given in the next section.

Remark 2.13. In analogy with the above example, we can formally express the
relation between the semigroup and generator of a Markov process as Pt =
etL . This expression is readily made precise in the case Dom(L ) = L2(µ)
by interpreting etL as a power series. While this does not work in the case
Dom(L ) ( L2(µ), the intuition extends also to this setting; however, in this
case the meaning of the exponential function must be carefully defined.

We conclude this section by introducing one more fundamental idea in
the theory of Markov processes. Recall that we have defined semigroup Pt as
a family of linear operators on L2(µ). The latter is a Hilbert space, and we
denote its inner product as 〈f, g〉µ := µ(fg) (so that ‖f‖2L2(µ) = 〈f, f〉µ).
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Definition 2.14 (Reversibility). The Markov semigroup Pt with stationary
measure µ is called reversible if 〈f, Ptg〉µ = 〈Ptf, g〉µ for every f, g ∈ L2(µ).

Thus the Markov process is reversible if the operators Pt are self-adjoint
on L2(µ). Equivalently, as Pt = etL , the Markov process is reversible if its
generator L is self-adjoint. The reversibility property has a probabilistic in-
terpretation: if the Markov property is reversible, then (assuming X0 ∼ µ)

〈Ptf, g〉µ = 〈f, Ptg〉µ = E[f(X0)E[g(Xt)|X0]]
= E[f(X0)g(Xt)] = E[E[f(X0)|Xt]g(Xt)]

for every f, g ∈ L2(µ), so that in particular

Ptf(x) := E[f(Xt)|X0 = x] = E[f(X0)|Xt = x].

This implies that when the Markov process (Xt)t∈[0,a] is viewed backwards in
time (Xa−t)t∈[0,a], it has the same law: that is, the law of the Markov process
is invariant under time reversal; hence the name reversibility.

We will see in the following section that reversible Markov processes are
the most natural objects connected to Poincaré inequalities (and to other
functional inequalities that we will encounter in later chapters). However, the
notion of time reversal will not play any role in our proofs. Rather, for reasons
that will become evident in the sequel, the self-adjointness of the generator
L will allow us to obtain a very complete characterization of exponential
convergence of the Markov semigroup to the stationary measure.

Example 2.15 (Finite state space continued). In the setting of Example 2.12,
it is evident that the Markov process is reversible if and only if

d∑
i,j=1

µifiΛijgj =
d∑

i,j=1

µjgjΛjifi

for all f, g ∈ Rd, or equivalently

µiΛij = µjΛji for all i, j ∈ {1, . . . , d},

where µ denotes the stationary measure of the Markov process. The latter
condition is often called “detailed balance” in the physics literature.

Problems

2.6 (Some elementary identities). Let Pt be a Markov semigroup with
generator L and stationary measure µ. Prove the following elementary facts:

a. Show that µ(L f) = 0 for every f ∈ Dom(L ).
b. If φ : R→ R is convex, then Ptφ(f) ≥ φ(Ptf) when f, φ(f) ∈ L2(µ).
c. If φ : R→ R is convex, then L φ(f) ≥ φ′(f)L f when f, φ(f) ∈ Dom(L ).
d. Let f ∈ Dom(L ). Show that the following process is a martingale:

Mf
t := f(Xt)−

∫ t

0

L f(Xs) ds
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2.3 Poincaré inequalities

Throughout this section, we fix a Markov semigroup Pt with generator L and
stationary measure µ. As was discussed in the previous section, the stationary
measure describes the “steady-state” behavior of the Markov process: that is,
if X0 ∼ µ, then Xt ∼ µ for all times t. It is natural to ask whether the Markov
process will in fact eventually end up in its steady state even if it is not started
there, but rather at some fixed initial condition X0 = x: that is, is it true that

E[f(Xt)|X0 = x]→ µf as t→∞?

If this is the case, the Markov process is said to be ergodic. There are various
different notions of ergodicity in the theory of Markov processes; as we are
working in L2(µ), the following will be natural for our purposes.

Definition 2.16 (Ergodicity). The Markov semigroup is called ergodic if
Ptf → µf in L2(µ) as t→∞ for every f ∈ L2(µ).

Recall that a Poincaré inequality for µ is, informally, of the form

“ variance(f) . E[ ‖gradient(f)‖2 ]. ”

At first sight, such an inequality has nothing to do with Markov processes.
Remarkably, however, the validity of a Poincaré inequality for µ turns out to be
intimately related to the rate of convergence of an ergodic Markov process for
which µ is the stationary distribution. Still informally, we have the following:

A measure µ satisfies a Poincaré inequality for a certain notion of
“gradient” if and only if an ergodic Markov semigroup associated to
this “gradient” converges exponentially fast to µ.

The following definition and result makes this principle precise.

Definition 2.17 (Dirichlet form). Given a Markov process with generator
L and stationary measure µ, the corresponding Dirichlet form is defined as

E(f, g) = −〈f,L g〉µ.

Theorem 2.18 (Poincaré inequality). Let Pt be reversible ergodic Markov
semigroup with stationary measure µ. The following are equivalent given c ≥ 0:

1. Varµ[f ] ≤ cE(f, f) for all f (Poincaré inequality).
2. ‖Ptf − µf‖L2(µ) ≤ e−t/c‖f − µf‖L2(µ) for all f, t.
3. E(Ptf, Ptf) ≤ e−2t/cE(f, f) for all f, t.
4. For every f there exists κ(f) such that ‖Ptf − µf‖L2(µ) ≤ κ(f)e−t/c.
5. For every f there exists κ(f) such that E(Ptf, Ptf) ≤ κ(f)e−2t/c.

Remark 2.19. As will be seen in the proof of this Theorem, the implications
5 ⇐ 3 ⇒ 1 ⇔ 2 ⇒ 4 remain valid even when Pt is not reversible. The
remaining implications 5⇒ 3, 4⇒ 2 and 2⇒ 3 require reversibility.
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At this point, the interpretation of Theorem 2.18 is probably far from
clear. There are several questions we must address:

• Why do we call Varµ[f ] ≤ cE(f, f) a Poincaré inequality? In what sense
can E(f, f) be interpreted as an “expected square gradient” of f?

• Is there any relation between Theorem 2.18 and the discrete Poincaré
inequalities that we already derived in section 2.1?

• Why should we expect any connection between Poincaré inequalities and
Markov processes in the first place?

The quickest way to get a feeling for the first two questions is to consider
some illuminating examples. To this end, we will devote the remainder of this
section to developing two applications of Theorem 2.18. First, we will prove
one of the most important examples of a Poincaré inequality, the Gaussian
Poincaré inequality, using the machinery of Theorem 2.18. Along the way, we
will introduce an important Markov process, the Ornstein-Uhlenbeck process,
that will appear again in later chapters. Second, we will show that the ten-
sorization inequality that we already proved in Theorem 2.3 is itself a special
case of Theorem 2.18; this again requires the introduction of a suitable Markov
process. Of course, this is not the easiest proof of the tensorization inequality,
and it is not suggested that Theorem 2.18 should be used when an easier proof
is available. Rather, this example highlights that Theorem 2.18 is not distinct
from the inequalities that we developed in section 2.1, but rather provides a
unified framework for all the Poincaré inequalities that we encounter.

The proof of Theorem 2.18 will be postponed to the next section. When
we begin developing the proof, it will quickly become apparent why Poincaré
inequalities are connected to Markov processes, and why Varµ[f ] ≤ cE(f, f) is
the “right” notion of a Poincaré inequality. The ideas used in the proof are of
interest in their own right and can be used to prove other interesting results.

Remark 2.20. The properties 2–5 of Theorem 2.18 should all be viewed as
different notions of exponential convergence of the Markov semigroup Pt to
the stationary measure µ. Properties 2 and 4 measure directly the rate of
convergence of Ptf to µf in L2(µ) (cf. Definition 2.16). On the other hand,
properties 3 and 5 measure the rate of convergence of the “gradient” of Ptf
to zero. As ergodicity implies that Ptf(x) becomes insensitive to x as t→∞
(that is, the Markov process “forgets” its initial condition), the latter is also
a natural formulation of the ergodicity property. The properties 4 and 5 are
often easier to prove than properties 2 and 3, as they only require control of
the rate of convergence and not of the constant in the inequality.

Remark 2.21. Let µ be a measure for which we would like to prove a Poincaré
inequality. In order to apply Theorem 2.18, we must construct a suitable
Markov process for which µ is the stationary measure. There is not a unique
way to do this: there are many different Markov processes that admit the same
stationary measure µ. However, each Markov process gives rise to a different
Dirichlet form E(f, f), and thus to a Poincaré inequality for µ with respect to a
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different notion of gradient! By choosing different Markov processes, Theorem
2.18 therefore provides us with a flexible mechanism to prove a whole family
of different Poincaré inequalities for the same distribution µ.

Conversely, Theorem 2.18 can be used in the opposite direction. Suppose
that we are interested in ergodicity of a given Markov process with stationary
measure µ. If we can prove, by some means, that µ satisfies a Poincaré inequal-
ity with respect to the Dirichlet form induced by the given Markov process,
then we have immediately established exponential convergence of the Markov
process to its stationary measure. This is important in many applications,
including nonequilibrium statistical mechanics and in the analysis of Markov
Chain Monte Carlo algorithms for sampling from the stationary measure µ.

We now turn to the examples announced above. We begin with an impor-
tant inequality that has many applications: the Gaussian Poincaré inequality.

2.3.1 The Gaussian Poincaré inequality

Our aim is to obtain a Poincaré inequality for the standard Gaussian measure
µ = N(0, 1) in one dimension (we can use tensorization to extend to higher
dimensions). Of course, there is no unique Poincaré inequality: for example,
the trivial Lemma 2.1 applies to the Gaussian distribution as it does to any
other. However, we will see that for the Gaussian, we can obtain a nontrivial
Poincaré inequality with respect to the classical calculus notion of gradient.
This inequality is usually referred to as the Gaussian Poincaré inequality.

By Theorem 2.18, the key to obtaining a Poincaré inequality for µ with a
specific notion of gradient is to construct a Markov process whose Dirichlet
form corresponds to the desired notion of gradient and for which µ is the
stationary distribution. For the Gaussian distribution, the appropriate Markov
process is the Ornstein-Uhlenbeck process, which is one of the most important
tools in the study of Gaussian distributions and which we will encounter again
in later chapters. Given a standard Brownian motion (Wt)t∈R+ , the Ornstein-
Uhlenbeck process can be defined as

Xt = e−tX0 + e−tWe2t−1, X0 ⊥⊥W.

It is evident that if X0 ∼ N(0, 1), then Xt ∼ N(0, 1) for all t ∈ R+. Let us
collect some basic properties of the Ornstein-Uhlenbeck process.

Lemma 2.22 (Ornstein-Uhlenbeck process). The process (Xt)t∈R+ de-
fined above is a Markov process with semigroup

Ptf(x) = E[f(e−tx+
√

1− e−2tξ)], ξ ∼ N(0, 1).

The process admits µ = N(0, 1) as its stationary measure and is ergodic.
Moreover, its generator and Dirichlet form are given by

L f(x) = −xf ′(x) + f ′′(x), E(f, g) = 〈f ′, g′〉µ.

In particular, the Ornstein-Uhlenbeck process is reversible.
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Before we can prove this result, we need an elementary property of the
Gaussian distribution: the Gaussian integration by parts formula.

Lemma 2.23 (Gaussian integration by parts). If ξ ∼ N(0, 1), then

E[ξf(ξ)] = E[f ′(ξ)].

Proof. If f is smooth with compact support, then we have∫ ∞
−∞

f ′(x)
e−x

2/2

√
2π

dx = −
∫ ∞
−∞

f(x)
(
d

dx

e−x
2/2

√
2π

)
dx

by integration by parts, and the result follows readily. We can now extend to
any f with ξf(ξ), f ′(ξ) ∈ L1(µ) by a routine approximation argument. ut

Proof (Lemma 2.22). Let s ≤ t. By the definition of Xt, we have

Xt = e−(t−s)Xs + e−t(We2t−1 −We2s−1)

= e−(t−s)Xs +
√

1− e−2(t−s)ξ,

where ξ = (We2t−1−We2s−1)/
√
e2t − e2s ∼ N(0, 1) is independent of {Xr}r≤s.

It follows immedately that we can write

E[f(Xt)|{Xr}r≤s] = Pt−sf(Xs),

with Ptf as defined in the statement of the Lemma. In particular, (Xt)t≥0

satisfies the Markov property. Moreover, it is evident by inspection that µ =
N(0, 1) is stationary and that the semigroup is ergodic.

With the semigroup in hand, we can now compute the generator and the
Dirichlet form. To compute the generator, note that

d

dt
Ptf(x) = E

[
f ′(e−tx+

√
1− e−2tξ)

{
e−2t

√
1− e−2t

ξ − e−tx
}]

= E[−e−txf ′(e−tx+
√

1− e−2tξ) + e−2tf ′′(e−tx+
√

1− e−2tξ)],

where we have used Lemma 2.23 in the second line. We therefore have

d

dt
Ptf(x) =

{
− x d

dx
+

d2

dx2

}
Ptf(x).

Letting t ↓ 0 yields the expression for L given in the statement of the Lemma.
To compute the Dirichlet form, it suffices to note that

E(f, g) = −〈f,L g〉µ = E[f(ξ){ξg′(ξ)− g′′(ξ)}] = E[f ′(ξ)g′(ξ)],

where we have used Lemma 2.23 once more. Finally, 〈f,L g〉µ = 〈L f, g〉µ as
E(f, g) is symmetric, so the Ornstein-Uhlenbeck process is reversible. ut
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Remark 2.24. Our definition of the Ornstein-Uhlenbeck process may seem
a little mysterious. Perhaps a more intuitive definition of the Ornstein-
Uhlenbeck process is as the solution of the stochastic differential equation

dXt = −Xt dt+
√

2 dBt,

where (Bt)t∈R+ is standard Brownian motion: that is, the Ornstein-Uhlenbeck
process is obtained by subjecting a Brownian motion to linear forcing that
keeps it from going off to infinity. While this approach is more insightful and
is more readily generalized to other distributions, our elementary approach
has the advantage that it avoids the use of stochastic calculus.

From Lemma 2.22, it follows immediately that

E(f, f) = ‖f ′‖2L2(µ) = E[{f ′(ξ)}2], ξ ∼ N(0, 1).

Thus the Dirichlet form for the Ornstein-Uhlenbeck process is precisely the
expected square gradient for the classical calculus notion of gradient! Thus an
inequality of the form Varµ[f ] ≤ cE(f, f) is indeed a Poincaré inequality in the
most classical sense. By Theorem 2.18, proving such an inequality is equivalent
to proving exponential ergodicity of the Ornstein-Uhlenbeck process. With
Lemma 2.22 in hand, this is a remarkably easy exercise.

Theorem 2.25. Let µ = N(0, 1). Then Varµ[f ] ≤ ‖f ′‖2L2(µ).

This is the Gaussian Poincaré inequality in one dimension.

Proof. It follows immediately from the expression for Ptf in Lemma 2.22 that

d

dx
Ptf(x) = e−tPtf

′(x).

Thus

E(Ptf, Ptf) = ‖(Ptf)′‖2L2(µ) = e−2t‖Ptf ′‖2L2(µ)

≤ e−2t‖f ′‖2L2(µ) = e−2tE(f, f).

The result follows by the implication 3⇒ 1 of Theorem 2.18. ut

Remark 2.26. Let us emphasize once more that there is nothing special about
the Ornstein-Uhlenbeck process per se in the context of Theorem 2.18: there
are many Markov processes for which µ = N(0, 1) is stationary. Different
Markov processes could be used to prove different Poincaré inequalities for
the Gaussian distribution for different notions of gradient. What singles out
the Ornstein-Uhlenbeck process is that its Dirichlet form E(f, f) = ‖f ′‖2L2(µ)

is precisely given in terms of the classical calculus notion of gradient, which
provides a particularly useful tool in many applications.
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Having proved the Gaussian Poincaré inequality in one dimension, we im-
mediately obtain an n-dimensional inequality by tensorization. As this is a
very useful inequality in applications, let us state it as a theorem. [We could
also have proved this directly without tensorization using an n-dimensional
Ornstein-Uhlenbeck process, but this does not add much additional insight.]

Corollary 2.27 (Gaussian Poincaré inequality). Let X1, . . . , Xn be inde-
pendent Gaussian random variables with zero mean and unit variance. Then

Var[f(X1, . . . , Xn)] ≤ E[‖∇f(X1, . . . , Xn)‖2].

We now turn to our second example: we will show that the tensorization
inequality of Theorem 2.3 is a special case of Theorem 2.18. Thus the con-
nection between Poincaré inequalities and Markov semigroups captures in a
unified framework all of the inequalities that we have seen so far.

2.3.2 Tensorization revisited

Let µ = µ1 ⊗ · · · ⊗ µn be any product measure. We aim to investigate the
tensorization inequality of Theorem 2.3 from the viewpoint of Theorem 2.18.
To this end, we begin by constructing a Markov process for which µ is the
stationary measure and whose Dirichlet form corresponds to the right-hand
side of the tensorization inequality.

Let Xt = (X1
t , . . . , X

n
t )t∈R+ be a random process constructed as follows.

To each coordinate i = 1, . . . , n, we attach an independent Poisson process
N i
t with unit rate. The Poisson process should be viewed as a random clock

attached to each coordinate that “ticks” whenever N i
t jumps. The process

(Xt)t∈R+ is now constructed by the following mechanism:

• Draw X0 ∼ µ independently from the Poisson process N = (N1, . . . , Nn).
• Each time N i

t jumps for some i, replace the current value of Xi
t by an

independent sample from µi while keeping the remaining coordinates fixed.

As the Poisson process has independent increments, it is easily verified that
(Xt)t∈R+ satisfies the Markov property and that µ is stationary.

Let us now compute the semigroup of (Xt)t∈R+ . By construction,

Ptf(x) = E[f(Xt)|X0 = x] =∑
I⊆{1,...,n}

P[N i
t > 0 for i ∈ I, N i

t = 0 for i 6∈ I]
∫
f(x1, . . . , xn)

∏
i∈I

µi(dxi) =

∑
I⊆{1,...,n}

(1− e−t)|I|e−t(n−|I|)
∫
f(x1, . . . , xn)

∏
i∈I

µi(dxi).

In particular, we can compute the generator as

L f = lim
t↓0

Ptf − f
t

= −
n∑
i=1

δif,
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where we have introduced the notation

δif(x) := f(x)−
∫
f(x1, . . . , xi−1, z, xi+1, . . . , xn)µi(dz).

Finally, let us compute the Dirichlet form

E(f, g) =
n∑
i=1

∫
fδig dµ =

n∑
i=1

∫
δif δig dµ,

where we have used that
∫
h δig dµ = 0 if h(x) does not depend on xi. As

E(f, g) is symmetric, it follows that our Markov process is reversible.
Now note that

E(f, f) =
n∑
i=1

∫
(δif)2 dµ =

n∑
i=1

∫
Varif dµ.

Thus the tensorization inequality of Theorem 2.3 can be expressed as

Varµ[f ] ≤ E(f, f),

and we therefore conclude that tensorization is nothing but a special case
of Theorem 2.18. In fact, given that we already proved the tensorization in-
equality, we could now invoke Theorem 2.18 to conclude immediately that our
Markov process is exponentially ergodic in the sense that

‖Ptf − µf‖L2(µ) ≤ e−t‖f − µf‖L2(µ).

Conversely, if we can give a direct proof of exponential ergodicity of our
Markov process, then we obtain by Theorem 2.18 an alternative proof of the
tensorization inequality. Let us provide such a proof for sake of illustration.
From the explicit formula for Ptf above, it follows that

δiPtf = e−t
∑
I 63i

(1− e−t)|I|e−t(n−1−|I|)
∫
δif(x1, . . . , xn)

∏
i∈I

µi(dxi).

Evidently each term in the sum has L2(µ)-norm at most ‖δif‖L2(µ), so

E(Ptf, Ptf) =
n∑
i=1

‖δiPtf‖2L2(µ) ≤ κ(f)e−2t

for some κ(f) < ∞ for every f ∈ L2(µ). The tensorization inequality of
Theorem 2.3 therefore follows from the implication 5⇒ 1 of Theorem 2.18.



2.3 Poincaré inequalities 33

Problems

2.7 (Carré du champ). We have interpreted the Dirichlet form E(f, f) as
a general notion of “expected square gradient” that arises in the study of
Poincaré inequalities. There is an analogous quantity Γ (f, f) that plays the
role of “square gradient” in this setting (without the expectation). In good
probabilistic tradition, it is universally known by its French name carré du
champ (literally, “square of the field”). The carré du champ is defined as

Γ (f, g) :=
1
2
{L (fg)− fL g − gL f}

in terms of the generator L of a Markov process with stationary measure µ.

a. Show that E(f, f) =
∫
Γ (f, f) dµ, and that E(f, g) =

∫
Γ (f, g) dµ if the

Markov process is in addition reversible.
b. Show that Γ (f, f) ≥ 0, so it can indeed be interpreted as a square.

Hint: use Pt(f2) ≥ (Ptf)2 and the definition of L .
c. Prove the Cauchy-Schwarz inequality Γ (f, g)2 ≤ Γ (f, f)Γ (g, g).

Hint: use that Γ (f + tg, f + tg) ≥ 0 for all t ∈ R.
d. Compute the carré du champ in the various examples of Poincaré inequali-

ties encountered in this chapter, and convince yourself that it should indeed
be interpreted as the appropriate notion of “square gradient” in each case.

2.8 (Gaussian Poincaré inequality). The goal of this problem is to develop
some simple consequences and insights for the Gaussian Poincaré inequality.

a. Let X1, . . . , Xn be i.i.d. standard Gaussians. Show that if f is L-Lipschitz,
that is, |f(x)− f(y)| ≤ L‖x− y‖, then Var[f(X1, . . . , Xn)] ≤ L2.

Remark. The power of the above inequality is its dimension-free nature: it
depends only on the degree of smoothness of f and not on the dimension n.

b. Let X ∼ N(0, Σ) be an n-dimensional centered Gaussian vector with arbi-
trary covariance matrix Σ. Prove the following useful identity:

Var
[

max
i=1,...,n

Xi

]
≤ max
i=1,...,n

Var[Xi].

Hint: write X = Σ1/2Y where Y1, . . . , Yn are i.i.d. standard Gaussians.

c. By a miracle, it is possible to derive the Gaussian Poincaré inequality from
the bounded difference inequality of Corollary 2.4. To this end, let εji be
i.i.d. symmetric Bernoulli variables. By the central limit theorem,

f

(
1√
k

k∑
i=1

ε1i, . . . ,
1√
k

k∑
i=1

εni

)
=⇒ f(X1, . . . , Xn)

in distribution as k → ∞ when f is a bounded continuous function and
X1, . . . , Xn are i.i.d. standard Gaussians. Apply the bounded difference
inequality to the left-hand side and use Taylor expansion to provide an
alternative proof the Gaussian Poincaré inequality of Corollary 2.27.
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Remark. The central limit theorem proof of the Gaussian Poincaré inequality
is very specific to the Gaussian distribution. While it works in this particular
case, the proof we have given above using the Ornstein-Uhlenbeck semigroup is
much more insightful and can be extended to other distributions (for example,
to log-concave distributions as in Problem 2.13 below).

2.9 (Exponential distribution). Let µ(dx) = 1x≥0e
−xdx be the one-sided

exponential distribution. In this problem, we will derive two different (and
not directly comparable) Poincaré inequalities for the distribution µ.

a. Show that
Varµ[f ] ≤ 2 E[ξ|f ′(ξ)|2], ξ ∼ µ.

Hint: show that ξ ∼ (X2 + Y 2)/2 where X,Y are i.i.d. N(0, 1).

b. Show that
Varµ[f ] ≤ 4 E[|f ′(ξ)|2], ξ ∼ µ.

Hint: use
∫∞
0
g(x) e−x dx = g(0) +

∫∞
0
g′(x) e−x dx with g = (f − f(0))2.

These two distinct Poincaré inequalities correspond to two distinct Markov
processes. For the two Markov processes defined below, show that their Dirich-
let forms do indeed yield the two distinct Poincaré inequalities above:

c. The solution of the Cox-Ingersoll-Ross stochastic differential equation

dXt = 2(1−Xt) dt+ 2
√
Xt dBt,

which is a Markov process on R+ with generator

L f(x) = 2(1− x)f ′(x) + 2xf ′′(x).

d. The solution of the stochastic differential equation

dXt = −sign(Xt) dt+
√

2 dBt,

which is a Markov process on R with generator

L f(x) = −sign(x)f ′(x) + f ′′(x).

This process has the two-sided exponential measure µ(dx) = 1
2e
−|x|dx as

its stationary distribution, but the one-sided Poincaré inequality is eas-
ily deduced from it. Alternatively, one can obtain the one-sided inequality
directly by considering the above stochastic differential equation with re-
flection at 0 (i.e., a Brownian motion with negative drift reflected at 0).

Remark. In Problem 2.12 below, we will encounter yet another distinct
Poincaré inequality for the exponential distribution.
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2.10 (Dependent random signs). Let X1, . . . , Xn be random variables
with values in {−1, 1} whose joint distribution is denoted by µ. In this prob-
lem, we do not assume that X1, . . . , Xn are independent. Thus we cannot use
tensorization. Nonetheless, we expect that if X1, . . . , Xn are “weakly depen-
dent” then the concentration phenomenon should still arise. We are going to
use Theorem 2.18 to develop a precise statement along these lines.

Define the influence coefficient of variable j on variable i as

Cij := max
x∈{−1,1}n−2

|P[Xi = 1|Xj = 1, {Xk}k 6=i,j = x]−

P[Xi = 1|Xj = −1, {Xk}k 6=i,j = x]|

for i 6= j, and let Cii = 0. If the random variables X1, . . . , Xn are weakly de-
pendent, then all the influences Cij should be small. The goal of this problem
is to prove the following Poincaré inequality:

(1− ‖C‖sp) Var[f(X1, . . . , Xn)] ≤ E

[
n∑
i=1

Var[f(X1, . . . , Xn)|{Xk}k 6=i]

]
,

where ‖C‖sp denotes the spectral radius of the matrix C. If X1, . . . , Xn are
independent, then C ≡ 0 and this dependent Poincaré inequality reduces to
the tensorization inequality for independent random variables.

The basic idea is to mimic the Markov process construction that we intro-
duced above to prove tensorization. To this end, we attach to every coordinate
i = 1, . . . , n an independent Poisson process N i

t with unit rate. The random
process Zt = (Z1

t , . . . , Z
n
t )t∈R+ is now constructed as follows:

• Draw Z0 ∼ µ independently from the Poisson processes N1
t , . . . , N

n
t .

• Each time N i
t jumps for some i, replace the current value of Zit by an inde-

pendent sample from µi(dxi|Zt) while keeping the remaining coordinates
fixed, where µi(dxi|x) := P[Xi ∈ · |{Xk}k 6=i = {xk}k 6=i].

The process Zt is called a Gibbs sampler or Glauber dynamics for µ.

a. Show that (Zt)t∈R+ is Markov and that µ is stationary.

b. Show that the generator of Zt is given by

L f = −
n∑
i=1

δif, δif(x) := f(x)−
∫
f(x)µi(dxi|x),

and that the Dirichlet form is given by

E(f, g) =
n∑
i=1

∫
δif δig dµ.

In particular, conclude that (Zt)t∈R+ is reversible.
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We are now going to show that the Markov semigroup is exponentially ergodic.

c. Define the local oscillation

∆if := max
x∈{−1,1}n

|f(x1, . . . , xi−1, 1, xi+1, . . . , xn)−

f(x1, . . . , xi−1,−1, xi+1, . . . , xn)|.

Show that for i 6= j

∆j

∫
f dµi ≤ ∆jf +∆if Cij .

d. Deduce from the above inequality that for m sufficiently large

∆j

(
f +

t

m
L f

)
≤
(

1− t

m

)
∆jf +

t

m

n∑
i=1

∆if Cij ,

or, in terms of the vector ∆f := (∆1f, . . . ,∆nf) of local oscillations,

∆(f + tL f/m) ≤ ∆f {I − t(I − C)/m}.

e. Show using the power series identity etL = limm→∞(I + tL /m)m that

∆Ptf ≤ ∆f e−t(I−C).

f. Complete the proof of the Poincaré inequality (use Theorem 2.18, 5⇒ 1).

Remark. The dependent Poincaré inequality extends readily to non-binary
random variables (i.e., not in {−1, 1}), provided Cij are suitably redefined.

2.4 Variance identities and exponential ergodicity

The goal of this section is to prove Theorem 2.18, which connects the Poincaré
inequality to the exponential ergodicity of a Markov semigroup. At first sight,
it is far from clear why Markov semigroups should even enter the picture: what
is the relation between Varµ[f ] and E(f, f)? In fact, the connection between
these quantities is almost trivial, as is shown in the following lemma. Once
this connection has been realized, Theorem 2.18 loses most of its mystery.

Lemma 2.28. The following identity holds:

d

dt
Varµ[Ptf ] = −2E(Ptf, Ptf).
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Proof. Since µ(Ptf) = µ(f),

d

dt
Varµ[Ptf ] =

d

dt
{µ((Ptf)2)− (µPtf)2}

=
d

dt
µ((Ptf)2)

= µ

(
2Ptf

d

dt
Ptf

)
= µ (2PtfLPtf) ,

and the result follows from the definition of the Dirichlet form. ut

Simple as this result is, it yields many important consequences. Let us
record two immediate observations for future reference.

Corollary 2.29. E(f, f) ≥ 0 for every f .

Proof. Immediate from Lemmas 2.9 and 2.28. ut

Corollary 2.30 (Integral representation of variance). Suppose that the
Markov semigroup is ergodic. Then we have for every f

Varµ[f ] = 2
∫ ∞

0

E(Ptf, Ptf) dt.

Proof. Note that Ptf → µf implies Varµ[Ptf ]→ Varµ[µf ] = 0. Thus

Varµ[f ] = Varµ[P0f ]− lim
t→∞

Varµ[Ptf ] = −
∫ ∞

0

d

dt
Varµ[Ptf ] dt

by the fundamental theorem of calculus. Now use Lemma 2.28. ut

Remark 2.31. Integral representations of the variance such as the expression
in Corollary 2.30 can be very useful in different settings. We will encounter
some alternative integral representations in the problems below.

We are now ready to prove the implications 5 ⇐ 3 ⇒ 1 ⇔ 2 ⇒ 4 of
Theorem 2.18 that do not require reversibility. In fact, given the observations
made above, these implications are entirely elementary.

Proof (Theorem 2.18, Part I). The implications 2⇒ 4 and 3⇒ 5 are trivial.
We proceed to consider the remaining implications.

• 3⇒ 1: Assuming 3, we have by Corollary 2.30

Varµ[f ] ≤ 2E(f, f)
∫ ∞

0

e−2t/c dt = cE(f, f).
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• 1⇒ 2: Assuming 1, we have by Lemma 2.28

d

dt
Varµ[Ptf ] ≤ −2

c
Varµ[Ptf ],

from which we obtain

‖Ptf − µf‖2L2(µ) = Varµ[Ptf ] ≤ e−2t/cVarµ[f ] = e−2t/c‖f − µf‖2L2(µ).

• 2⇒ 1: Assuming 2, we obtain using Lemma 2.28

2E(f, f) = lim
t↓0

Varµ[f ]−Varµ[Ptf ]
t

≥ lim
t↓0

1− e−2t/c

t
Varµ[f ] =

2
c

Varµ[f ].

This completes the proof of the implications 5⇐ 3⇒ 1⇔ 2⇒ 4. ut

It remains to prove the implications 2⇒ 3, 5⇒ 3, and 4⇒ 2 of Theorem
2.18. These implications require reversibility, which we have not yet exploited.
It turns out that reversibility implies a much finer property of the variance
as a function of time than was obtained in Lemma 2.28. The appropriate
property is contained in the following useful lemma.

Lemma 2.32. If the Markov semigroup Pt is reversible, then the functions
t 7→ log Varµ[Ptf ] and t 7→ log E(Ptf, Ptf) are convex.

Proof. Since L is self-adjoint, we have

d

dt
E(Ptf, Ptf) = − d

dt
〈Ptf,LPtf〉µ

= −〈LPtf,LPtf〉µ − 〈Ptf,L 2Ptf〉µ
= −2‖LPtf‖2L2(µ).

A straightforward computation yields

d2

dt2
log Varµ[Ptf ] =

4‖LPtf‖2L2(µ)

Varµ[Ptf ]
− 4E(Ptf, Ptf)2

Varµ[Ptf ]2

=
4

Varµ[Ptf ]2
{

Varµ[Ptf ] ‖LPtf‖2L2(µ) − 〈Ptf,LPtf〉2µ
}
.

But note that as Pt1 = 1, we have L 1 = d
dtPt1 = 0, so

〈Ptf,LPtf〉2µ = 〈Ptf − µf,LPtf〉2µ ≤ Varµ[Ptf ] ‖LPtf‖2L2(µ)

by the Cauchy-Schwarz inequality. It follows that d2

dt2 log Varµ[Pt] ≥ 0, so that
we have shown that the function t 7→ log Varµ[Ptf ] is convex. The proof for
t 7→ log E(Ptf, Ptf) is entirely analogous, once we observe that the Dirichlet
form also satisfies the Cauchy-Schwarz inequality E(f, g)2 ≤ E(f, f)E(g, g) (to
prove this, use that E(f + tg, f + tg) ≥ 0 for all t ∈ R by Corollary 2.29). ut



2.4 Variance identities and exponential ergodicity 39

We can now complete the proof of Theorem 2.18.

Proof (Theorem 2.18, Part II). We first prove 2⇒ 3. By Lemma 2.32,

t 7→ d

dt
log Varµ[Ptf ] = −2E(Ptf, Ptf)

Varµ[Ptf ]

is increasing. In particular, we have

−2E(Ptf, Ptf)
Varµ[Ptf ]

≥ −2E(f, f)
Varµ[f ]

.

Rearranging this inequality yields

E(Ptf, Ptf)
E(f, f)

≤ Varµ[Ptf ]
Varµ[f ]

=
‖Ptf − µf‖2L2(µ)

‖f − µf‖2L2(µ)

,

and we have therefore established the implication 2⇒ 3.
It remains to prove 4 ⇒ 2 and 5 ⇒ 3. In fact, both these implications

follow immediately from Lemma 2.32 by applying the following lemma to the
convex functions t 7→ log ‖Ptf − µf‖2L2(µ) and t 7→ log E(Ptf, Ptf). ut

Lemma 2.33. If the function g : R+ → R is convex and g(t) ≤ K − αt for
all t ≥ 0, then in fact g(t) ≤ g(0)− αt for all t ≥ 0.

Proof. It suffices to show that the assumption implies that g′(t) ≤ −α for all
t ≥ 0. Suppose that this is not the case. Then there exists s ≥ 0 such that
g′(s) = −β > −α. As g is convex, g′ is increasing and thus g′(t) ≥ −β for all
t ≥ s. In particular, it follows that g(t) ≥ g(s) − βt for all t ≥ s. As β < α,
this contradicts the assumption that g(t) ≤ K − αt for all t ≥ 0. ut

Remark 2.34 (Finite state space and spectral gaps). While the elementary im-
plications in Theorem 2.18 are entirely intuitive, the role of reversibility in
the remaining implications may not be entirely obvious: indeed, Lemma 2.32,
which containes the essence of the reversibility argument, appears as a bit
of a miracle. The aim of this remark is to highlight a complementary view-
point on Theorem 2.18 that sheds additional light on the interpretation of the
Poincaré inequality and on the role of reversibility. While this viewpoint can
be developed more generally, we restrict attention for simplicity to the setting
of finite state Markov processes as in Examples 2.12 and 2.15 above.

Let (Xt)t∈R+ be a Markov process in a finite state space Xt ∈ {1, . . . , d}.
Denote by Λ the transition rate matrix, by µ the stationary measure, and let
us assume that the reversibility condition µiΛij = µjΛji holds. For notational
simplicity, we will implicitly identify functions and measures on {1, . . . , d}
with vectors in Rd in the obvious fashion. Note that we can write



40 2 Variance bounds and Poincaré inequalities

E(f, g) = −
d∑

i,j=1

µifiΛijgj =
d∑

i,j=1

µifiΛij(gi − gj)

=
1
2

d∑
i,j=1

µiΛij(fi − fj)(gi − gj),

where we have used
∑
j Λij = 0 in the second equality and that µiΛij(gi−gj)

is a skew-symmetric matrix in the third equality. In particular, we have

E(f, f) =
1
2

d∑
i,j=1

µiΛij(fi − fj)2.

Again, E(f, f) can be naturally interpreted as an expected square gradient.
Let us now consider the Poincaré inequality from the point of view of

linear algebra. As the matrix Λ is self-adjoint with respect to the weighted
inner product 〈·, ·〉µ, it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd and associ-
ated eigenvectors v1, . . . , vd. The property E(f, f) = −〈f, Λf〉µ ≥ 0 evidently
implies that λ1 ≤ 0, that is, all the eigenvalues of Λ are nonpositive. More-
over, the property

∑
j Λij = 0 implies that v1 = 1 (the vector of ones) is an

eigenvector with maximal eigenvalue λ1 = 0. If µf = 〈1, f〉µ = 0, we have

E(f, f) = −〈f, Λf〉µ ≥ −λ2〈f, f〉µ = (λ1 − λ2) Varµ[f ],

and this inequality is tight for f = v2. Thus the best constant in the Poincaré
inequality is the spectral gap λ1 − λ2 of the generator Λ. For this reason,
Poincaré inequalities are sometimes called spectral gap inequalities.

We can now also understand why the Poincaré inequality is so closely
related to exponential convergence of the Markov semigroup. Indeed, expand
any function f in the eigenbasis of Λ as f =

∑d
i=1 aivi. Then

Ptf = etΛf =
d∑
i=1

eλitaivi.

As λ1 = 0, we have

sup
f

‖Ptf − µf‖2L2(µ)

‖f − µf‖2L2(µ)

= sup
f

∑d
i=2 e

2λita2
i∑d

i=2 a
2
i

= e−2(λ1−λ2)t.

Thus the spectral gap λ1 − λ2 controls precisely the exponential convergence
rate of the semigroup. The various implications of Theorem 2.18 now become
rather elementary from the linear algebra viewpoint. However, the fact that
these equivalences can be proved hinges from the outset on the fact that Λ ad-
mits a spectral decomposition into eigenvectors with real-valued eigenvalues.
This explains why reversibility of the semigroup (that is, the self-adjointness
of Λ) is essential to obtaining a complete set of equivalences in Theorem 2.18,
despite that this fact was not entirely explicit in our general proof given above.
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Problems

2.11 (Covariance identities). Let Pt be a reversible ergodic Markov semi-
group with stationary measure µ. The goal of this problem is to prove useful
integral representations of the covariance Covµ(f, g) := 〈f − µf, g − µg〉µ.

a. Prove the following identity:

Covµ(f, g) = 2
∫ ∞

0

E(Ptf, Ptg) dt.

b. Prove the following identity:

Covµ(f, g) =
∫ ∞

0

E(f, Ptg) dt.

c. Let X ∼ N(0, Σ) be a centered Gaussian vector in Rn with covariance
matrix Σ. Assume that that the entries are positively correlated, that is,
Σij ≥ 0 for all i, j. Prove that this implies the following much stronger
positive association property: for every pair of functions f, g that are coor-
dinatewise increasing, we have Cov(f(X), g(X)) ≥ 0.
Hint: write X = Σ1/2Y for Y ∼ N(0, I), and apply one of the above identi-
ties for the n-dimensional Ornstein-Uhlenbeck process (which is defined in
the precisely the same manner as the one-dimensional Ornstein-Uhlenbeck
process but using an n-dimensional Brownian motion).

2.12 (Local Poincaré inequalities I). We have seen that the validity of
a Poincaré inequality for a given distribution µ is intimately connected with
exponential ergodicity of Markov processes that admit µ as the stationary
measure. In this problem, we will develop a method to deduce Poincaré in-
equalities for the distribution of the Markov process Xt at a finite time t,
rather than for the stationary distribution (which is obtained as t → ∞). In
most cases, the stationary case is more useful, as it is much easier to construct
a Markov process that admits a given measure µ as its stationary measure
than to construct a Markov process that has distribution µ at a finite time.
Nonetheless, there are several situations in which such local Poincaré inequal-
ities are useful. In the following problem, we will see that this viewpoint
provides significant insight even on the stationary case.

Let Pt be a Markov semigroup with generator L . For the purposes of this
problem, we do not assume the existence of a stationary measure.

a. Prove the following variance identity:

Pt(f2)− (Ptf)2 = 2
∫ t

0

Pt−sΓ (Psf, Psf) ds,

where we recall the definition of the carré du champ (Problem 2.7)
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Γ (f, g) :=
1
2
{L (fg)− fL g − gL f}.

Hint: apply the fundamental theorem of calculus to Pt−s((Psf)2).

b. Suppose that we can prove an identity of the form

Γ (Psf, Psf) ≤ α(s)PsΓ (f, f)

for some function α : R+ → R+. Conclude that

Pt(f2)− (Ptf)2 ≤ c(t)PtΓ (f, f), c(t) =
∫ t

0

2α(s) ds.

Such an inequality is called a local Poincaré inequality.

c. Let (Wt)t∈R+ be standard Brownian motion. Brownian motion is itself a
Markov process. Compute an explicit expression for its semigroup and gen-
erator (in analogy with Lemma 2.22), and show that in this case

Γ (Ptf, Ptf) ≤ PtΓ (f, f).

Show that the local Poincaré inequality consequently provides a alternative
proof of the Gaussian Poincaré inequality using Brownian motion.

d. The present approach provides a convenient method to derive Poincaré
inequalities for infinitely divisible distributions (this part requires some fa-
miliarity with Lévy processes). Let ν be a positive measure on R such that∫

R(1 ∧ |x|) ν(dx) < ∞, and let X be an infinitely divisible random vari-
able whose characteristic function has the Lévy-Khintchin representation
E[eiux] = exp{

∫
(eiuz − 1)ν(dz)}. Then X ∼ X1, where (Xt)t∈R+ is the

Lévy process with Lévy measure ν. The latter is Markov with generator

L f(x) =
∫
Dyf(x) ν(dy), Dyf(x) := f(x+ y)− f(x).

Use the above machinery to prove the following Poincaré inequality:

Var[f(X)] ≤ E
[ ∫

(Dyf(X))2 ν(dy)
]
.

In particular, deduce Poincaré inequalities for the Poisson distribution and
for the one-sided exponential distribution (the latter being distinct from
both Poincaré inequalities in Problem 2.9 above).

2.13 (Local Poincaré inequalities II). The approach of Problem 2.12
makes it possible to obtain Poincaré inequalities using Markov processes that
do not admit a stationary measure. However, even for ergodic Markov pro-
cesses, it can be useful to develop a Poincaré inequality for the stationary
measure µ by letting t→∞ in a local Poincaré inequality. The reason for this
is the following result that will be proved in this problem.
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Theorem 2.35 (Local Poincaré inequality). The following are equivalent:

1. cΓ2(f, f) ≥ Γ (f, f) for all f (Bakry-Émery criterion).
2. Γ (Ptf, Ptf) ≤ e−2t/cPtΓ (f, f) for all f, t (local ergodicity).
3. Pt(f2)− (Ptf)2 ≤ c(1− e−2t/c)PtΓ (f, f) for all f, t (local Poincaré).

Here we defined

Γ2(f, g) :=
1
2
{L Γ (f, g)− Γ (f,L g)− Γ (L f, g)}.

This is called the iterated carré du champ or Γ2-operator.
Why is this result useful? Suppose that Pt is an ergodic Markov semigroup

with stationary measure µ. To prove a Poincaré inequality using Theorem
2.18, we had to be able to prove exponential ergodicity of the semigroup.
This is typically a nontrivial matter: one cannot readily read off exponential
ergodicity from the expression for the generator L , for example. In contrast,
the first property of Theorem 2.35 is an algebraic identity

cΓ2(f, f) ≥ Γ (f, f)

that can be verified readily from the expression for L . On the other hand, if
this identity is valid, letting t→∞ in property 3 of Theorem 2.35 yields

Varµ[f ] ≤ cE(f, f)

(cf. Problem 2.7). Thus the local approach provides us with an algebraic
criterion for the validity of a Poincaré inequality. This can be extremely useful,
as we will see below. However, the Bakry-Émery criterion is strictly stronger
than the validity of a Poincaré inequality for the stationary measure µ.

Let us begin by proving the various implications of Theorem 2.35

a. Prove 2⇒ 3. Hint: this follows easily as in Problem 2.12.

b. Prove 1⇒ 2. Hint: d
dsPt−sΓ (Psf, Psf).

c. Prove 3⇒ 1. Hint: limt↓0 t
−2{Pt(f2)− (Ptf)2 − c(1− e−2t/c)PtΓ (f, f)}.

We now demonstrate the power of Theorem 2.35 in an important example.

d. Let µ be a probability measure on Rn with density µ(dx) = e−W (x) dx where
W is a smooth convex function. Such distributions are called log-concave.
Note that is X ∼ µ, then X1, . . . , Xn are not independent. Nonetheless, we
have the following result: if W is ρ-uniformly convex, that is,

n∑
i,j=1

vivj
∂2W (x)
∂xi∂xj

≥ ρ
n∑
i=1

v2
i for all v ∈ Rn,

then we have the dimension-free Poincaré inequality
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Varµ[f ] ≤ 1
ρ

∫
‖∇f‖2 dµ.

To prove it, we note that µ is the stationary measure of the Langevin
stochastic differential equation (B is n-dimensional Brownian motion)

dXt = −∇W (Xt) dt+
√

2 dBt,

which is a Markov process with generator

L f(x) = −
n∑
i=1

∂W (x)
∂xi

∂f(x)
∂xi

+
n∑
i=1

∂2f(x)
∂x2

i

.

Prove the log-concave Poincaré inequality using the Bakry-Émery criterion.

Remark. We have shown that ρ-uniformly log-concave measures admit a
dimension-free Poincaré inequality with constant ρ−1. This says nothing about
general case where ρ may be zero. One of the deepest open problems in the
theory of Poincaré inequalities is to understand the situation for general log-
concave measures. It has been conjectured by Kannan, Lovász and Simonovits
that if µ is a log-concave measure on Rn with zero mean and identity covari-
ance matrix, then Varµ[f ] ≤ C

∫
‖∇f‖2 dµ for a universal constant C (inde-

pendent of the dimension!) To date, there is little progress in this direction.

Notes

§2.1. The tensorization property of the variance is classical. It is sometimes
called the Efron-Stein inequality after [58], where it was used to investigate
Tukey’s jackknife estimator. The importance of tensorization as a fundamental
principle was emphasized by Ledoux [82]. The random matrix example was
taken from [25]. Problems 2.4 and 2.5 are from [26] and [82], respectively.
Much of what is known on superconcentration can be found in [37].

§2.2. The text [86] gives an introduction to Markov processes in continuous
time. A comprehensive treatment of Markov semigroups and their connections
with functional inequalities is given in [10].

§2.3 and §2.4. The treatment of Poincaré inequalities given here follows [10],
as do many of the problems. Problem 2.9 is inspired by [20], and Problem 2.10
is taken from [151]. The application of local Poincaré inequalities to infinitely
divisible distributions in Problem 2.12 is inspired by [31]. See [30, 6] for more
on the conjecture of Kannan, Lovász and Simonovits for log-concave measures.



3

Subgaussian concentration and log-Sobolev
inequalities

In Chapter 2 we investigated the simplest form of the concentration phe-
nomenon: the variance of a function f(X1, . . . , Xn) of independent (or weakly
dependent) random variables is small if the “gradient” of f is small. This is
indeed an embodiment of the concentration phenomenon as it was informally
presented in Chapter 1: the variance measures the size of the fluctuations of
the random variable f(X1, . . . , Xn), while the gradient measures the sensi-
tivity of f(x) to its coordinates xi. While variance bounds can be extremely
useful and are of interest in their own right, it is often important in applica-
tions to have sharper control on the distribution of the fluctuations.

What type of refined behavior can we expect? Let us recall our original
motivating example where f(X1, . . . , Xn) = 1

n

∑n
k=1Xk is a linear function.

By the weak law of large numbers, we expect that the fluctuations are of order

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ∼ σ/
√
n,

which is indeed captured correctly by the variance bounds developed in the
previous chapter. In this case, however, the central limit theorem provides us
with much sharper information: it controls not only the size of the fluctua-
tions, but also the distribution of the fluctuations

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≈ N(0, σ2/n).

In particular, we might expect that

P[|f(X1, . . . , Xn)−Ef(X1, . . . , Xn)| ≥ t] . e−nt
2/2σ2

,

as would be true if the fluctuations were in fact Gaussian (we will show this
below). Such a Gaussian tail inequality provides much more precise control
of the fluctuations than a bound on the variance. This will be important, for
example, in understanding the behavior of suprema later on in the course.

As in the previous chapter, it turns out that the above idea is not restricted
to linear functions, but is in fact a manifestation of a general phenomenon: it is
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often possible to obtain Gaussian tail bounds on the fluctuations of nonlinear
functions f provided that their “gradient” is small in a suitable sense. In this
chapter, we begin the investigation of such concentration inequalities.

3.1 Subgaussian variables and Chernoff bounds

Before we can prove any concentration inequalities, we must first consider how
one might go about proving that a random variable satisfies a Gaussian tail
bound. Most tail bounds in probability theory are proved using some form of
Markov’s inequality. For example, if we have a bound on the variance as in
the previous chapter, we immediately obtain a tail bound of the form

P[|X −E[X]| ≥ t] ≤ Var[X]
t2

.

However, this bound only decays as t−2, and we cannot obtain Gaussian tail
bounds from Poincaré inequalities in this manner. To obtain Gaussian tail
bounds, we must use Markov’s inequality in a more sophisticated manner.
The basic method is known as the Chernoff bound.

Lemma 3.1 (Chernoff bound). Define the log-moment generating function
ψ of a random variable X and its Legendre dual ψ∗ as

ψ(λ) := log E[eλ(X−EX)], ψ∗(t) = sup
λ≥0
{λt− ψ(λ)}.

Then P[X −EX ≥ t] ≤ e−ψ∗(t) for all t ≥ 0.

Proof. The idea is strikingly simple: we simply exponentiate inside the prob-
ability before applying Markov’s inequality. For any λ ≥ 0, we have

P[X −EX ≥ t] = P[eλ(X−EX) ≥ eλt] ≤ e−λtE[eλ(X−EX)] = e−{λt−ψ(λ)}

using Markov’s inequality and that x 7→ eλx is increasing. As the left-hand
side does not depend on the choice of λ ≥ 0, we can optimize the right-hand
side over λ to obtain the statement of the lemma. ut

Remark 3.2. Note that the Chernoff bound only gives the upper tail, that is,
the probability P[X ≥ EX + t] that the random variable X exceeds its mean
EX by a fixed amount. However, we can obtain an inequality for the lower
tail by applying the Chernoff bound to the random variable −X, as

P[X ≤ EX − t] = P[−X ≥ E[−X] + t].

In particular, given an upper and lower tail bound, we can obtain a bound on
the magnitude of the fluctuations using the union bound
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P[|X −EX| ≥ t] = P[X ≥ EX + t or X ≤ EX − t]
≤ P[X ≥ EX + t] + P[−X ≥ E[−X] + t].

In many cases, proving an upper tail bound will immediately imply a lower tail
bound and a two-sided bound in this manner. On the other hand, sometimes
upper or lower tail bounds will be proved under assumptions that are not
invariant under negation. For example, if we prove an upper tail bound for
convex functions f(X), this does not automatically imply a lower tail bound
as −f(X) is concave and not convex; in such cases, a lower tail bound must
be proved separately. One should therefore be careful when interpreting tail
bounds to check separately the validity of upper and lower tail bounds.

Remark 3.3. The utility of the Chernoff bound is by no means restricted to
proving Gaussian tails as we will do below. One can obtain many different tail
behaviors in this manner. However, the method clearly only works if ψ(λ) is
finite at least for λ in a neighborhood of 0. Therefore, to apply the Chernoff
bound, the random variable X should have at least exponential tails. For ran-
dom variables with heavier tails an alternative method is needed, for example,
one could take powers rather than exponentials in Markov’s inequality:

P[X −EX ≥ t] ≤ inf
p∈N

E[(X −EX)p+]
tp

.

In fact, even when the Chernoff bound is applicable, it is not difficult to show
that this moment bound is at least as good as the Chernoff bound.

Why are Chernoff bounds so useful? There are some simple examples, such
as the case of sums of random variables, where the Chernoff bound proves to
be easy to manipulate (we will exploit this in the next section). However, the
real power of the Chernoff bound is that the log-moment generating function
λ 7→ ψ(λ) is a continuous object, and can therefore be investigated using
calculus. We will repeatedly exploit this approach in the sequel.

To show how the Chernoff bound can give rise to Gaussian tail bounds,
let us first consider the case of an actual Gaussian random variable.

Example 3.4. Let X ∼ N(µ, σ2). Then E[eλ(X−EX)] = eλ
2σ2/2, so

ψ(λ) =
λ2σ2

2
, ψ∗(t) =

t2

2σ2
.

In particular, we have P[X −EX ≥ t] ≤ e−t2/2σ2
.

Observe that in order to get the tail bound in Example 3.4, the fact that
X is Gaussian was not actually important: it would suffice to assume that the
log-moment generating function is bounded from above by that of a Gaussian
ψ(λ) ≤ λ2σ2/2. Random variables that satisfy this condition play a central
role in the investigation of Gaussian tail bounds.
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Definition 3.5 (Subgaussian random variables). A random variable is
called σ2-subgaussian if its log-moment generating function satisfies ψ(λ) ≤
λ2σ2/2 for all λ ∈ R (and the constant σ2 is called the variance proxy).

Note that if ψ(λ) is the log-moment generating function of a random vari-
able X, then ψ(−λ) is the log-moment generating function of the random
variable −X. For a σ2-subgaussian random variable X, we can therefore ap-
ply the Chernoff bound to both the upper and lower tails to obtain

P[X ≥ EX + t] ≤ e−t
2/2σ2

, P[X ≤ EX − t] ≤ e−t
2/2σ2

.

As moment generating functions will prove to be much easier to manipulate
than the tail probabilities themselves, we will almost always study Gaussian
tail behavior of random variables in terms of the subgaussian property. Fortu-
nately, it turns out that little is lost in making this simplification: any random
variable that satisfies Gaussian tail bounds must necessarily be subgaussian
(albeit for a slightly larger variance proxy), cf. Problem 3.1 below.

So far, the only examples of subgaussian random variables that we have
encountered are Gaussians, which is not terribly interesting. One of the most
basic results on subgaussian random variables is that every bounded random
variable is subgaussian. This statement is made precise by Hoeffding’s lemma,
which could be viewed as a far-reaching generalization of the trivial Lemma
2.1. Even in this simple setting, the proof provides a nontrivial illustration of
the important role of calculus in bounding moment generating functions.

Lemma 3.6 (Hoeffding lemma). Let a ≤ X ≤ b a.s. for some a, b ∈ R.
Then E[eλ(X−EX)] ≤ eλ2(b−a)2/8, i.e., X is (b− a)2/4-subgaussian.

Proof. We can assume without loss of generality that EX = 0. In this case
we have ψ(λ) = log E[eλX ], and we can readily compute

ψ′(λ) =
E[XeλX ]
E[eλX ]

, ψ′′(λ) =
E[X2eλX ]

E[eλX ]
−
[

E[XeλX ]
E[eλX ]

]2
.

Thus ψ′′(λ) can be interpreted as the variance of the random variable X under
the twisted probability measure dQ = eλX

E[eλX ]
dP. But then Lemma 2.1 yields

ψ′′(λ) ≤ (b− a)2/4, and the fundamental theorem of calculus yields

ψ(λ) =
∫ λ

0

∫ µ

0

ψ′′(ρ) dρ dµ ≤ λ2(b− a)2

8

using ψ(0) = log 1 = 0 and ψ′(0) = EX = 0. ut

Problems

3.1 (Subgaussian variables). There are several different notions of random
variables with a Gaussian tail that are all essentially equivalent up to con-
stants. The aim of this problem is to obtain some insight into these notions.
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a. As a warmup exercise, show that if X is σ2-subgaussian, then Var[X] ≤ σ2.

b. Show that for any increasing and differentiable function Φ

E[Φ(|X|)] = Φ(0) +
∫ ∞

0

Φ′(t) P[|X| ≥ t] dt.

This elementary identity will be needed below.

In the following, we will assume for simplicity that EX = 0. We now prove
that the following three properties are equivalent for suitable constants σ, b, c:
(1) X is σ2-subgaussian; (2) P[|X| ≥ t] ≤ 2e−bt

2
; and (3) E[ecX

2
] ≤ 2.

c. Show that if X is σ2-subgaussian, then P[|X| ≥ t] ≤ 2e−t
2/2σ2

.

d. Show that if P[|X| ≥ t] ≤ 2e−t
2/2σ2

, then E[eX
2/6σ2

] ≤ 2.
Hint: use part b.

e. Show that if E[eX
2/6σ2

] ≤ 2, then X is 18σ2-subgaussian.

Hint: for large values of λ, use Young’s inequality |λX| ≤ aλ2

2 + X2

2a for a
suitable choice of a; for small values of λ, use Young’s inequality together
with E[eλX ] ≤ 1 + λ2

2 E[X2e|λX|] by Taylor’s theorem.

In addition, the subgaussian property of X is equivalent to the fact that the
moments of X scale as is the case for the Gaussian distribution.

f. Show that if X is σ2-subgaussian, then E[X2q] ≤ (4σ2)qq! for all q ∈ N.
Hint: use part b.

g. Show that if E[X2q] ≤ (4σ2)qq! for all q ∈ N, then E[eX
2/8σ2

] ≤ 2.
Hint: expand in a power series.

Note: the numerical constants in this problem are not intended to be sharp.

3.2 (Tightness of Hoeffding’s lemma). Show that the bound of Hoeffd-
ing’s lemma is the best possible by considering P[X = a] = P[X = b] = 1

2 .

3.3 (Chernoff bound vs. moments). Show that for t ≥ 0

P[X −EX ≥ t] ≤ inf
p≥0

E[(X −EX)p+]
tp

≤ inf
λ≥0

e−λtE[eλ(X−EX)].

Thus the moment bound of Remark 3.3 is at least as good as the Chernoff
bound. However, the former is much harder to use than the latter.
Hint: use E[eλ(X−EX)] ≥ E[1X−EX>0e

λ(X−EX)] and expand in a power series.

3.4 (Chernoff bound exercises). Compute the explicit form of the Chernoff
bound for Poisson and Bernoulli random variables.
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3.5 (Maxima of subgaussian variables). Let X1, X2, . . . be (not necessar-
ily independent) σ2-subgaussian random variables. Show that

P
[

max
i≤n
{Xi −EXi} ≥ (1 + ε)σ

√
2 log n

]
n→∞−−−−→ 0 for all ε > 0.

Hint: use the union bound

P[X ∨ Y ≥ t] = P[X ≥ t or Y ≥ t] ≤ P[X ≥ t] + P[Y ≥ t].

This problem shows that the maximum maxi≤n{Xi−EXi} of σ2-subgaussian
random variables is at most of order σ

√
2 log n. This is the simplest example

of the crucial role played by tail bounds in estimating the size of maxima of
random variables. The second part of this course will be entirely devoted to
the investigation of such problems (using much deeper ideas).

3.2 The martingale method

Let X1, . . . , Xn be independent random variables. In the previous chapter, we
showed that the variance of f(X1, . . . , Xn) can be bounded in many cases by
a “square gradient” of the function f . The aim of this chapter is to obtain
a much stronger type of result: we would like to show that f(X1, . . . , Xn) is
subgaussian with variance proxy controlled by a “square gradient” of f .

A key idea developed in the previous chapter was to use tensorization
to reduce the problem to the one-dimensional case. With the tensorization
inequality in hand, we could even apply a trivial bound such as Lemma 2.1
to obtain a nontrivial variance inequality in terms of bounded differences.
Our first instinct in the present setting is therefore to prove a tensorization
inequality for the subgaussian property, which could then be combined with
Hoeffding’s Lemma 3.6 (which plays the analogous role in the present setting
to the trivial Lemma 2.1 for the variance) in order to obtain a concentration
inequality in terms of bounded differences. Unfortunately, it turns out that
unlike in the case of the variance, the subgaussian property does not tensorize
in a natural manner, and thus we cannot directly implement this program. One
of the most important ideas that will be developed in the following sections
is that the proof of subgaussian inequalities can be reduced to a strengthened
form of Poincaré inequalities, called log-Sobolev inequalities, that do tensorize
exactly in the same manner as the variance. This will provide us with a very
powerful tool to prove subgaussian concentration.

There is, however, a more elementary approach that should be attempted
before we begin introducing new ideas. Even though the subgaussian property
does not tensorize in the same manner as the variance, we can still repeat some
of the steps in the proof of the tensorization Theorem 2.3 in the subgaussian
setting. Recall that the main idea of the proof of Theorem 2.3 is to write
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f(X1, . . . , Xn)−Ef(X1, . . . , Xn) =
n∑
k=1

∆k,

where

∆k = E[f(X1, . . . , Xn)|X1, . . . , Xk]−E[f(X1, . . . , Xn)|X1, . . . , Xk−1]

are martingale differences. The following simple result, which exploits the nice
behavior of the exponential of a sum, could be viewed as a sort of poor man’s
tensorization property for sums of martingale increments. By working directly
with the martingale increments, we will be able to derive a first concentration
inequality. This approach is commonly known as the martingale method.

Lemma 3.7 (Azuma). Let {Fk}k≤n be any filtration, and let ∆1, . . . ,∆n be
random variables that satisfy the following properties for k = 1, . . . , n:

1. Martingale difference property: ∆k is Fk-measurable and E[∆k|Fk−1] = 0.
2. Conditional subgaussian property: E[eλ∆k |Fk−1] ≤ eλ2σ2

k/2 a.s.

Then the sum
∑n
k=1∆k is subgaussian with variance proxy

∑n
k=1 σ

2
k.

Proof. For any 1 ≤ k ≤ n, we can compute

E[eλ
Pk
i=1∆i ] = E[eλ

Pk−1
i=1 ∆i E[eλ∆k |Fk−1]] ≤ eλ

2σ2
k/2E[eλ

Pk−1
i=1 ∆i ].

It follows by induction that E[eλ
Pn
i=1∆i ] ≤ eλ2Pn

i=1 σ
2
i /2. ut

Remark 3.8. While we did not explicitly use the martingale difference property
in the proof, E[eλ∆k |Fk−1] ≤ eλ2σ2

k/2 can in fact only hold if E[∆k|Fk−1] = 0
(consider (E[eλ∆k |Fk−1]−1)/λ as λ ↓ 0). In general, the conditional subgaus-
sian property of X given F should read E[eλ(X−E[X|F])|F] ≤ eλ2σ2/2 a.s.

In combination with Hoeffding’s Lemma 3.6, we now obtain a classical
result on the tail behavior of sums of martingale differences.

Corollary 3.9 (Azuma-Hoeffding inequality). Let {Fk}k≤n be any filtra-
tion, and let ∆k, Ak, Bk satisfy the following properties for k = 1, . . . , n:

1. Martingale difference property: ∆k is Fk-measurable and E[∆k|Fk−1] = 0.
2. Predictable bounds: Ak, Bk are Fk−1-measurable and Ak ≤ ∆k ≤ Bk a.s.

Then
∑n
k=1∆k is subgaussian with variance proxy 1

4

∑n
k=1 ‖Bk − Ak‖2∞. In

particular, we obtain for every t ≥ 0 the tail bound

P

[
n∑
k=1

∆k ≥ t

]
≤ exp

(
− 2t2∑n

k=1 ‖Bk −Ak‖2∞

)
.

Proof. Applying Hoeffding’s Lemma 3.6 to ∆k conditionally on Fk−1 implies
E[eλ∆k |Fk−1] ≤ eλ2(Bk−Ak)2/8. The result now follows from Lemma 3.7. ut
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Example 3.10. The Azuma-Hoeffding inequality is often applied in the fol-
lowing setting. Let X1, . . . , Xn be independent random variables such that
a ≤ Xi ≤ b for all i. Applying Corollary 3.9 with ∆k = (Xk −EXk)/n yields

P

[
1
n

n∑
k=1

{Xi −EXi} ≥ t

]
≤ e−2nt2/(b−a)2 .

By the central limit theorem, this bound is of the correct order both in terms
of the size of the sum and its Gaussian tail behavior. However, just as for
the case of the variance (see the discussion in section 2.1), this bound can be
pessimistic in that it does not capture any information on the distribution of
the variables Xi: in particular, the variance proxy (b − a)2/4 may be much
larger than the actual variance of the random variables Xi. Much of the effort
in developing concentration inequalities is to obtain bounds in terms of “good”
variance proxies for the purposes of the application at hand.

We motivated the development of tail bounds for martingale differences as
a partial replacement of the tensorization inequality for the variance. Let us
therefore return to the case of functions f(X1, . . . , Xn) of independent ran-
dom variables X1, . . . , Xn. Using the Azuma-Hoeffding inequality, we readily
obtain our first and simplest subgaussian concentration inequality. Recall that

Dif(x) :=
sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− inf

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

are the discrete derivatives defined in section 2.1.

Theorem 3.11 (McDiarmid). For X1, . . . , Xn independent, f(X1, . . . , Xn)
is subgaussian with variance proxy 1

4

∑n
k=1 ‖Dkf‖2∞. In particular,

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ e−2t2/
Pn
k=1 ‖Dkf‖

2
∞ .

Proof. As in the proof of the tensorization Theorem 2.3, we write

f(X1, . . . , Xn)−Ef(X1, . . . , Xn) =
n∑
k=1

∆k,

where

∆k = E[f(X1, . . . , Xn)|X1, . . . , Xk]−E[f(X1, . . . , Xn)|X1, . . . , Xk−1]

are martingale differences. Note that Ak ≤ ∆k ≤ Bk with

Ak = E[inf
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xk−1],

Bk = E[sup
z
f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn)− f(X1, . . . , Xn)|X1, . . . , Xk−1]

where we have used the independence of Xk and X1, . . . , Xk−1, Xk+1, . . . , Xn.
The result now follows immediately from the Azuma-Hoeffding inequality of
Corollary 3.9 once we note that |Bk −Ak| ≤ ‖Dkf‖∞. ut
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McDiarmid’s inequality should be viewed as a subgaussian form of the
bounded difference inequality of Corollary 2.4. In Corollary 2.4, the variance
is controlled by the expectation of the “square gradient” of the function f . In
contrast, McDiarmid’s inequality yields the stronger subgaussian property, but
here the variance proxy is controlled by a uniform upper bound on the “square
gradient” rather than its expectation. Of course, it makes sense that a stronger
property requires a stronger assumption. We will repeatedly encounter this
idea in the setting of concentration inequalities: typically the expectation of
the “square gradient” controls the variance, while a uniform bound on the
“square gradient” controls the subgaussian variance proxy.

However, from this viewpoint, the result of Theorem 3.11 is not satisfac-
tory: as the appropriate notion of “square gradient” in the bounded differ-
ence inequality is

∑n
k=1 |Dkf |2, we would expect a variance proxy of order

‖
∑n
k=1 |Dkf |2‖∞; however, Theorem 3.11 only yields control in terms of the

larger quantity
∑n
k=1 ‖Dkf‖2∞. The former would constitute a crucial im-

provement over the latter in many situations (for example, in the setting of
the random matrix Example 2.5). Unfortunately, the martingale method is far
too crude to capture this idea. In the sequel, we will develop new techniques
for proving subgaussian concentration inequalities that will make it possible
to prove much more refined bounds in many settings.

Problems

3.6 (Bin packing). For the bin packing Problem 2.3, show that the variance
bound Var[Bn] ≤ n/4 can be strengthened to a Gaussian tail bound

P[|Bn −EBn| ≥ t] ≤ 2e−2t2/n.

In view of Problem 2.3, this bound has the correct order.

3.7 (Rademacher processes). Let ε1, . . . , εn be independent symmetric
Bernoulli random variables P[εi = ±1] = 1

2 , and let T ⊆ Rn. Define

Z = sup
t∈T

n∑
k=1

εktk.

In Problem 2.2, we showed that

Var[Z] ≤ 4 sup
t∈T

n∑
k=1

t2k.

Show that McDiarmid’s inequality can give, at best, a bound of the form

P[|Z −EZ| ≥ t] ≤ 2e−t
2/2σ2

with σ2 =
n∑
k=1

sup
t∈T

t2k.

Show by means of an example that the variance proxy in McDiarmid’s in-
equality can exhibit a vastly incorrect scaling as a function of dimension n.
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3.8 (Empirical frequencies). Let X1, . . . , Xn be i.i.d. random variables
with any distribution µ on a measurable space E, and let C be a countable
class of measurable subsets of E. By the law of large numbers,

#{k ∈ {1, . . . , n} : Xk ∈ C}
n

≈ µ(C)

when n is large. In order to analyze empirical risk minimization methods in
machine learning, it is important to control the deviation between the true
probability µ(C) and its empirical average uniformly over the class C. In
particular, one would like to guarantee that the uniform deviation

Zn = sup
C∈C

∣∣∣∣∣#{k ∈ {1, . . . , n} : Xk ∈ C}
n

− µ(C)

∣∣∣∣∣
does not exceeed a certain level with high probability. As a starting point
towards proving such a result, show that for every n ≥ 1 and t ≥ 0

P[Zn ≥ EZn + t] ≤ e−2nt2 .

To obtain a bound on P[Zn ≥ t], it therefore remains to control EZn (the
techniques for this will be developed in the second part of the course).

3.9 (Sums in Hilbert space). Let X1, . . . , Xn be independent random vari-
ables with zero mean in a Hilbert space, and suppose that ‖Xk‖ ≤ C a.s. for
every k. Let us prove a sort of Hilbert-valued analogue of Example 3.10.

a. Show that for all t ≥ 0

P

[∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥ ≥ E

∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥+ t

]
≤ e−nt

2/2C2
.

b. Show that

E

∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥ ≤ Cn−1/2.

c. Conclude that for all t ≥ Cn−1/2

P

[∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ e−nt

2/8C2
.

d. Finally, argue that for all t ≥ 0

P

[∥∥∥∥∥ 1
n

n∑
k=1

Xk

∥∥∥∥∥ ≥ t
]
≤ 2e−nt

2/8C2
.
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3.10 (Random graphs). An Erdős-Rényi random graph G(n, p) is a graph
on n vertices such that for every pair of vertices v, v′ there is an edge between
them with probability p, independently of the other edges. A coloring of the
graph is the assignment of a color to each vertex such that every pair of
vertices connected by an edge have a distinct color. The chromatic number χ
is the minimal number of colors needed to color the graph. Show that

P[|χ−Eχ| ≥ t
√
n] ≤ 2e−t

2
.

It can be shown that the chromatic number satisfies Eχ ∼ n/2 logb n as n→
∞, where b = 1/(1−p). We therefore see that the fluctuations of the chromatic
number are of much smaller order than its magnitude.

3.11 (A generalization of Azuma-Hoeffding). Consider the same setting
as in Corollary 3.9. The Azuma-Hoeffding inequality provides a Gaussian tail
bound in the case that |Bk−Ak| is uniformly bounded, but this may not always
hold in practice. Prove the following general form of the Azuma-Hoeffding
inequality that does not require boundedness of the increments:

P

[
n∑
k=1

∆k ≥ t and
n∑
k=1

(Bk −Ak)2 ≤ c2
]
≤ e−2t2/c2 .

Hint: consider λ
∑n
k=1∆k − λ2

8

∑n
k=1(Bk −Ak)2.

3.3 The entropy method

The martingale method developed in the previous section has many useful
applications. Nonetheless, as was explained above, the inequalities derived
from this approach are often unsatisfactory in high dimension. In essence,
the fundamental problem is that the subgaussian property does not tensorize
naturally, and the martingale method can only partially address this issue. In
order to obtain sharper results, we must confront the tensorization problem
directly. In this section, we will introduce a powerful method to do just that.
The key idea is to introduce an alternative formulation of the subgaussian
property that behaves naturally under tensorization.

Recall that a random variable X is subgaussian if its log-moment generat-
ing function satisfies ψ(λ) := log E[eλ(X−EX)] . λ2. We have already seen the
importance of using calculus to bound moment generating functions in the
proof of Hoeffding’s Lemma 3.6: the idea used there is that if d2

dλ2ψ(λ) . 1,
then the subgaussian property is obtained by integrating twice. The idea be-
hind the following result is very similar: as the subgaussian property is equiv-
alent to λ−1ψ(λ) . λ, it suffices to show that d

dλλ
−1ψ(λ) . 1.

Definition 3.12. The entropy of a nonnegative random variable Z is

Ent[Z] := E[Z logZ]−E[Z] log E[Z].
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Lemma 3.13 (Herbst). Suppose that

Ent[eλX ] ≤ λ2σ2

2
E[eλX ] for all λ ≥ 0.

Then

ψ(λ) := log E[eλ(X−EX)] ≤ λ2σ2

2
for all λ ≥ 0.

Proof. As ψ(λ) = log E[eλX ]− λEX, we have

d

dλ

ψ(λ)
λ

=
1
λ

E[XeλX ]
E[eλX ]

− 1
λ2

log E[eλX ] =
1
λ2

Ent[eλX ]
E[eλX ]

.

Thus the assumption of the lemma yields

ψ(λ)
λ

=
∫ λ

0

1
u2

Ent[euX ]
E[euX ]

du ≤ λσ2

2

using the fundamental theorem of calculus and limλ↓0 λ
−1ψ(λ) = 0. ut

As an immediate consequence, we see that if a random variable X satisfies

Ent[eλX ] ≤ λ2σ2

2
E[eλX ] for all λ ∈ R,

then X is σ2-subgaussian. Thus we have a sufficient condition for the subgaus-
sian property in terms of entropy. In fact, up to a constant factor, the converse
is also true: if X is σ2

4 -subgaussian, then the assumption of Lemma 3.13 holds
(Problem 3.12). We may therefore view the above entropy inequality as an
alternative formulation of the subgaussian property of a random variable X.

It may not be immediately evident what we have accomplished. Indeed, we
have obtained yet another formulation of the subgaussian property, which may
appear at first sight no more useful than any other (and perhaps somewhat
less intuitive than most). However, the formulation in terms of entropy proves
to be a very powerful idea. For example, we will presently show that entropy
obeys an exact analogue of the tensorization property of the variance, from
which its utility in high dimension will be immediately obvious. In fact, it
turns out that entropy behaves in many ways like the variance. Once we are
comfortable with this idea, it will become evident that several other notions
from Chapter 2 extend naturally to the subgaussian setting.

To formulate the tensorization inequality, let X1, . . . , Xn be independent
random variables. For each function f(x1, . . . , xn), we define the function

Entif(x1, . . . , xn) := Ent[f(x1, . . . , xi−1, Xi, xi+1, . . . , xn)].

That is, Entif(x) is the entropy of f(X1, . . . , Xn) with respect to the variable
Xi only, the remaining variables being kept fixed.
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Theorem 3.14 (Tensorization of entropy). We have

Ent[f(X1, . . . , Xn)] ≤ E

[
n∑
i=1

Entif(X1, . . . , Xn)

]
whenever X1, . . . , Xn are independent.

To prove Theorem 3.14 we will need a fundamental result that can be
viewed as an analogue of Hölder’s inequality for entropy.

Lemma 3.15 (Variational formula for entropy). We have

Ent[Z] = sup{E[ZX] : X is a random variable satisfying E[eX ] = 1}.

Proof. Let E[eX ] = 1 and define the new probability dQ = eXdP. Then

Ent[Z]−E[ZX] = E[Z logZ]−E[Z log eX ]−E[Z] log E[Z]

= EQ[e−XZ log(e−XZ)]−EQ[e−XZ] log EQ[e−XZ].

As x 7→ x log x is convex, it follows from Jensen’s inequality that Ent[Z] −
E[ZX] ≥ 0 for every random variable X such that E[eX ] = 1. But note that
Ent[Z]−E[ZX] = 0 for X = log(Z/E[Z]), and thus the proof is complete. ut

We can now complete the proof of Theorem 3.14.

Proof (Theorem 3.14). Let Z = f(X1, . . . , Xn), and define for k = 1, . . . , n

Uk = log E[Z|X1, . . . , Xk]− log E[Z|X1, . . . , Xk−1].

Then evidently

Ent[Z] = E[Z(logZ − log E[Z])] =
n∑
k=1

E[ZUk].

On the other hand, note that

E[eUk |X1, . . . , Xk−1, Xk+1, . . . , Xn]

=
E[E[Z|X1, . . . , Xk]|X1, . . . , Xk−1, Xk+1, . . . , Xn]

E[Z|X1, . . . , Xk−1]

=
E[E[Z|X1, . . . , Xk]|X1, . . . , Xk−1]

E[Z|X1, . . . , Xk−1]
= 1,

where we have used that Xk+1, . . . , Xn and X1, . . . , Xk are independent.
Therefore, applying Lemma 3.15 conditionally yields

E[ZUk|X1, . . . , Xk−1, Xk+1, . . . , Xn]
≤ Ent[Z|X1, . . . , Xk−1, Xk+1, . . . , Xn]
= Entkf(X1, . . . , Xn),
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where Ent[Z|G] := E[Z logZ|G]−E[Z|G] log E[Z|G]. In particular,

E[ZUk] ≤ E[Entkf(X1, . . . , Xn)],

by the tower property, and the proof is complete. ut

The entropic formulation of the subgaussian property and the tensoriza-
tion inequality for entropy immediately indicate what type of inequalities
we should prove to obtain subgaussian concentration inequalities. Informally,
suppose we can prove an inequality in one dimension of the form

“ entropy(eg) . E[ |gradient(g)|2 eg ]. ”

Then we obtain for product measures in any dimension, by tensorization,

“ entropy(eλf ) . E[ ‖gradient(λf)‖2 eλf ], ”

and thus f is subgaussian with variance proxy of order ‖‖gradient(f)‖2‖∞.
This is precisely the subgaussian counterpart of the Poincaré inequalities

“ variance(f) . E[ ‖gradient(f)‖2 ] ”

that were obtained in Chapter 2. The entropy inequalities informally described
above are one form of a class of inequalities called modified log-Sobolev (MLS)
inequalities. In the next section, we will develop a general framework for un-
derstanding and proving MLS inequalities that is similar to (but less powerful
than) the theory developed in Chapter 2 for Poincaré inequalities.

As a first illustration of the entropy method, let us prove a log-Sobolev
counterpart of the trivial variance inequality of Lemma 2.1.

Lemma 3.16 (Discrete MLS). Let D−f := f − inf f . Then

Ent[ef ] ≤ Cov[f, ef ] ≤ E[|D−f |2ef ].

Remark 3.17. The constant in this inequality is not optimal. Improved con-
stants will be derived in Problem 3.13 below. The suboptimal result is given
here as its simple proof seems the most intuitive and insightful.

Proof. Note that log E[ef ] ≥ E[f ] by Jensen’s inequality. Therefore

Ent[ef ] = E[fef ]−E[ef ] log E[ef ] ≤ E[fef ]−E[f ]E[ef ] = Cov[f, ef ].

To prove the second part, note that

Cov[f, ef ] = E[(f − inf f)(ef −E[ef ])] ≤ E[(f − inf f)(ef − einf f )].

Since ex is convex, the first-order condition for convexity implies ef − einf f ≤
ef (f − inf f). Substituting into the above expression completes the proof. ut
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We can now obtain Gaussian tail bounds in terms of one-sided differences

D−i f(x) := f(x1, . . . , xn)− inf
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn),

D+
i f(x) := sup

z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)− f(x1, . . . , xn)

by combining the discrete MLS inequality with tensorization of entropy.

Theorem 3.18 (Bounded difference inequality). For all t ≥ 0

P[f(X1, . . . , Xn) ≥ Ef(X1, . . . , Xn) + t] ≤ e−t
2/4‖

Pn
i=1 |D

−
i f |

2‖∞ ,

P[f(X1, . . . , Xn) ≤ Ef(X1, . . . , Xn)− t] ≤ e−t
2/4‖

Pn
i=1 |D

+
i f |

2‖∞

whenever X1, . . . , Xn are independent. In particular, the random variable
f(X1, . . . , Xn) is subgaussian with variance proxy 2‖

∑n
i=1 |Dif |2‖∞.

Proof. By Lemma 3.16, we have

Enti[ef ] ≤ E[|D−i f |
2ef |X1, . . . , Xi−1, Xi+1, . . . , Xn].

Thus we have for λ ≥ 0

Ent[eλf ] ≤ λ2E

[
n∑
i=1

|D−i f |
2eλf

]
≤ λ2

∥∥∥∥∥
n∑
i=1

|D−i f |
2

∥∥∥∥∥
∞

E[eλf ]

using the tensorization Theorem 3.14, where we used that D−i (λf) = λD−i f
for λ ≥ 0. Thus Lemma 3.13 and the Chernoff bound yields the upper tail
bound. The lower tail bound is obtained by applying the upper tail bound to
−f and noting that D−i (−f) = −D+

i f . As |D−i f | ≤ |Dif | and |D+
i f | ≤ |Dif |,

the subgaussian property is deduced identically from Lemma 3.13. ut

The bounds of Theorem 3.18 are a vast improvement over McDiarmid’s
inequality of Theorem 3.11: here the variance proxy is a genuine upper bound
on the square gradient ‖

∑n
i=1 |Dif |2‖∞, while in McDiarmid’s inequality the

gradient must be bounded coordinatewise
∑n
i=1 ‖Dif‖2∞. We also obtain finer

bounds in terms of one-sided differences, which is important in many applica-
tions. What enables these improved bounds is that the modified log-Sobolev
inequality tensorizes much more efficiently than the subgaussian property it-
self. Indeed, we have kept the gradient inside the expectation throughout the
tensorization process, and only took its uniform norm at the end to obtain a
subgaussian inequality; had we directly tensorized the subgaussian bound of
Lemma 3.13, we would only be able to recover McDiarmid’s inequality.

On the other hand, unlike in the previous bounds we have encountered,
we see here an important case where the upper and lower tail bounds are not
symmetric: the upper tail bound is given in terms of the negative gradient
D−i f , while the lower tail bound is given in terms of the positive gradient D+

i f .
There are applications where only one of these quantities can be controlled.
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Example 3.19 (Random matrices). We recall the setting of Example 2.5. Let
M be an n × n symmetric matrix where {Mij : i ≥ j} are i.i.d. symmetric
Bernoulli random variables P[Mij = ±1] = 1

2 . We denote by λmax(M) the
largest eigenvalue of M , and by vmax(M) a corresponding eigenvector.

It was shown in Example 2.5 that

D−ijλmax(M) ≤ 4|vmax(M)i||vmax(M)j |.

Thus we can estimate∥∥∥∥∥
n∑

i,j=1

|D−ijλmax(M)|2
∥∥∥∥∥
∞

≤ 16

[
n∑
i=1

|vmax(M)i|2
]2

= 16,

and we therefore obtain by Theorem 3.18 the upper tail bound

P[λmax(M)−Eλmax(M) ≥ t] ≤ e−t
2/64

for all t ≥ 0. This is a much sharper control of the fluctuations above the
mean in comparison to the variance bound of Example 2.5.

On the other hand, we cannot use Theorem 3.18 to control the fluctuations
below the mean. Indeed, for the positive gradient, we can compute

D+
ijλmax(M) ≤ 4|vmax(M (ij))i||vmax(M (ij))j |

as in Example 2.5, where M (ij) is the matrix such that M (ij)
ij = M

(ij)
ji is

chosen to maximize λmax(M) while the remaining entries are kept fixed. Now
there is no reason to expect that

∑n
i=1 |vmax(M (ij))i|2 is bounded uniformly

in the dimension (as a different matrix M (ij) is chosen for every entry i), and
thus we cannot obtain a dimension-free lower tail bound in this manner.

It does not seem to be possible to prove a subgaussian lower tail bound in
terms of D−i f (or, equivalently, an upper tail bound in terms of D+

i f). It is
instructive to attempt to repeat the proof of the discrete MLS inequality of
Lemma 3.16 in terms of the positive gradient: this gives at best

Ent[ef ] ≤ E[|D+f |2] E[ef ],

which does not behave well under tensorization. Thus the situation is inher-
ently asymmetric. However, in many examples where the negative gradient
D−i f can be controlled, it turns out that in fact a stronger property holds as
well that makes it possible to obtain both upper and lower tail bounds using a
result known as Talagrand’s concentration inequality. The machinery needed
to prove such bounds will be discussed in the next chapter.
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Problems

3.12 (Subgaussian variables and entropy). Lemma 3.13 states that if

Ent[eλX ] ≤ λ2σ2

2
E[eλX ] for all λ ∈ R,

then the random variable X is σ2-subgaussian. Prove the following converse
implication: if X is σ2

4 -subgaussian, then the above entropy inequality holds.
We may therefore view this property as yet another equivalent formulation of
the subgaussian property in the spirit of Problem 3.1.
Hint: Note that Ent[eλX ]/E[eλX ] = E[Z logZ] for Z = eλX/E[eλX ]. Now use
concavity of the logarithm and that E[eλ(X−EX)] ≥ 1 (why?).

3.13 (Optimal discrete MLS constants). The discrete MLS inequality
of Lemma 3.16 yields a bounded difference inequality with variance proxy
2‖
∑n
i=1 |D

−
i f |2‖∞. The constant is not optimal: in view of the bounded dif-

ference inequality for the variance (Corollary 2.4), we would expect a variance
proxy ‖

∑n
i=1 |D

−
i f |2‖∞ without the additional factor 2. Moreover, in terms

of the two-sided difference, we would expect 1
4‖
∑n
i=1 |Dif |2‖∞ which gains

an additional factor 1
4 . It turns out that a more refined proof of the discrete

MLS inequality can attain these improved numerical constants.
One place where we lose in the proof of Lemma 3.16 is in estimating the

entropy by a covariance. Instead, we can use a variational principle for the
entropy to obtain an improved upper bound. Of course, Lemma 3.15 is useless
for this purpose as it can only yield lower bounds on the entropy.

a. Prove the following variational principle:

Ent[Z] = inf
t>0

E[Z logZ − Z log t− Z + t].

b. Use the above variational principle to show that

Ent[ef ] ≤ E[ϕ(D−f)ef ], ϕ(x) := e−x + x− 1.

c. Show that ϕ(x) ≤ x2

2 for x ≥ 0, and use it to improve Lemma 3.16 to

Ent[ef ] ≤ 1
2

E[|D−f |2ef ].

d. We now consider the two-sided gradient Df = sup f − inf f . Use the bound
ψ′′(λ) ≤ (Df)2/4 on the log-moment generating function from the proof of
Lemma 3.6 and reason as in the proof of Lemma 3.13 to show that

Ent[ef ] ≤ 1
8

E[|Df |2ef ].

Hint: express Ent[eλf ]/E[eλf ] in terms of ψ(λ) and its derivative and apply
the fundamental theorem of calculus.
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3.14 (Rademacher processes). Let ε1, . . . , εn be independent symmetric
Bernoulli random variables P[εi = ±1] = 1

2 , and let T ⊆ Rn. Define

Z = sup
t∈T

n∑
k=1

εktk.

Show that for t ≥ 0

P[Z −EZ ≥ t] ≤ e−t
2/4σ2

with σ2 = 4 sup
t∈T

n∑
k=1

t2k.

This is a crucial improvement over the result obtained in Problem 3.7 using
McDiarmid’s inequality. However, here we only obtain an upper tail bound:
Talagrand’s inequality is needed to obtain a matching lower tail.

3.15 (Convex MLS). Show that for a convex function f : [a, b]→ R

Ent[ef ] ≤ (b− a)2E[|f ′|2ef ],

where f ′ is the calculus (not discrete) derivative. Conclude that if f : Rn → R
is convex and L-Lipschitz, i.e., |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ Rn, and
if X1, . . . , Xn are independent with values in [a, b], then for every t ≥ 0

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ e−t
2/4(b−a)2L2

.

Note that this does not yield a lower tail bound: if f is convex, −f is concave.
Hint: Recall Problem 2.5.

3.16 (Exponential Poincaré inequalities). In this problem, we will as-
sume the validity of a general kind of MLS inequality of the form

Ent[eλf ] ≤ λ2

2
E[Γ (f)eλf ]

for λ ≥ 0, where Γ (f) is some suitable notion of “‖gradient(f)‖2.” Such an
inequality can be used to prove that f is ‖Γ (f)‖2∞-subgaussian using Lemma
3.13. In this problem, we will show that it is in fact possible to obtain more
precise control on the moment generating function of f . In fact, we will prove

E[ef−Ef ] ≤ E[eΓ (f)],

which could be viewed as an “exponential Poincaré inequality.”

a. Show that

Ent[eλf ] ≥ λ2E[Γ (f)eλf ]−E[eλf ] log E[eλ
2Γ (f)].

Hint: use the variational formula for entropy.

b. Use the MLS inequality to show that

Ent[eλf ] ≤ λ2γ(λ2) E[eλf ], γ(s) = log ‖eΓ (f)‖Ls .

c. Prove the exponential Poincaré inequality E[ef−Ef ] ≤ E[eΓ (f)].
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3.4 Modified log-Sobolev inequalities

In the previous section, we have seen that one can prove dimension-free sub-
gaussian concentration inequalities by establishing modified log-Sobolev in-
equalities. We proved a simple discrete MLS inequality using elementary meth-
ods, and used it to obtain subgaussian analogues of the bounded difference
inequalities for the variance of section 2.1. As in the case of the variance,
however, we would like to develop machinery to prove MLS inequalities in
different settings and with respect to different notions of gradient.

In this section, we will develop a partial MLS analogue of the powerful
Markov process machinery developed in section 2.3 to prove Poincaré inequal-
ities: we will show that the validity of a modified log-Sobolev inequality for
a measure µ is intimately connected to exponential convergence of a Markov
semigroup to its stationary measure µ in the sense of entropy (rather than
in L2(µ), which would only yield a Poincaré inequality as in section 2.3).
To be precise, we will prove an entropic analogue of the “easy” implications
3 ⇒ 1 ⇔ 2 of Theorem 2.18 whose proofs do not require reversibility. It is
not too surprising that we cannot reproduce the remaining implications in
the entropic setting: exploiting reversibility essentially requires the structure
of L2(µ), while entropy (unlike the variance) is not an L2(µ) notion (in the
context of Remark 2.34, note that the entropy is not naturally expressed in
terms of the spectrum of the generator). As a consequence, our MLS analogue
of Theorem 2.18 is significantly less powerful than its Poincaré counterpart.
Nonetheless, we will see that this approach remains extremely useful, partic-
ularly in the setting of continuous distributions.

In the sequel, we define Entµ[f ] := µ(f log f)− µf logµf .

Theorem 3.20 (Modified log-Sobolev inequality). Let Pt be a Markov
semigroup with stationary measure µ. The following are equivalent:

1. Entµ[f ] ≤ cE(log f, f) for all f (modified log-Sobolev inequality).
2. Entµ[Ptf ] ≤ e−t/cEntµ[f ] for all f, t (entropic exponential ergodicity).

Moreover, if Entµ[Ptf ]→ 0 as t→∞ (entropic ergodicity), then

3. E(logPtf, Ptf) ≤ e−t/cE(log f, f) for all f, t

implies 1 and 2 above.

Proof. An elementary computation yields

d

dt
Entµ[Ptf ] = µ(LPtf logPtf) + µ(LPtf) = −E(logPtf, Ptf),

where we have used that µ(LPtf) = d
dtµ(Ptf) = d

dtµf = 0. We now prove:

• 3⇒ 1: By the fundamental theorem of calculus, 3 implies

Entµ[f ] =
∫ ∞

0

E(logPtf, Ptf) dt ≤ E(log f, f)
∫ ∞

0

e−t/cdt = cE(log f, f).
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• 1⇒ 2: Assuming 1, we obtain 2 directly from

d

dt
Entµ[Ptf ] = −E(logPtf, Ptf) ≤ −1

c
Entµ[Ptf ].

• 2⇒ 1: Assuming 2, we can compute

E(log f, f) = lim
t↓0

Entµ[f ]− Entµ[Ptf ]
t

≥ lim
t↓0

1− e−t/c

t
Entµ[f ].

This completes the proof. ut

As in section 2.3, it may not be obvious at first sight why the inequality
Entµ[f ] ≤ cE(log f, f) should be viewed as a modified log-Sobolev inequality
in the sense that we introduced in the previous section. Once we consider some
illuminating examples, it should become clear that this is indeed the case.

Example 3.21 (Discrete modified log-Sobolev inequality). Let µ be any proba-
bility measure, and define a Markov process Xt as follows:

• Draw X0 ∼ µ.
• Let Nt be a Poisson process with rate 1, independent of X0. Each time Nt

jumps, replace the current value of Xt by an independent sample from µ.

This is nothing other than the case n = 1 of the ergodic Markov process
defined in section 2.3.2. In particular, it is easily seen that µ is the stationary
measure of Xt, and that its semigroup and Dirichlet form are given by

Ptf = e−tf + (1− e−t)µf, E(f, g) = Covµ[f, g].

Now note that, by the convexity of x 7→ x log x,

Ptf logPtf ≤ e−t f log f + (1− e−t)µf logµf.

Thus we have

Entµ[Ptf ] = µ(Ptf logPtf)− µf logµf ≤ e−tEntµ[f ],

and we conclude by implication 2⇒ 1 of Theorem 3.20 that

Entµ[f ] ≤ E(log f, f) = Covµ[log f, f ].

Replacing f by eg, we see that we have obtained the discrete MLS inequality
of Lemma 3.16 as a special case of Theorem 3.20.

Remark 3.22. We have seen in section 2.3.2 that the characterization of
Poincaré inequalities of Theorem 2.18 is sufficiently powerful to reproduce
that tensorization inequality for variance. In contrast, in view of the above
example, we see that Theorem 3.20 cannot reproduce the tensorization in-
equality for entropy. Indeed, extending the above example to the setting of
section 2.3.2, we can obtain at best an inequality of the form
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Ent[f(X1, . . . , Xn)] ≤ E

[
n∑
i=1

Covi[log f, f ](X1, . . . , Xn)

]
,

which has covariances on the right-hand side instead of entropies (that is,
Theorem 3.20 yields a combination of the tensorization Theorem 3.14 and the
discrete MLS inequality of Lemma 3.16). Thus the result of Theorem 3.20
is inherently less complete than that of Theorem 2.18. On the other hand,
Theorem 3.20 still provides a powerful tool to prove MLS inequalities. This is
particularly useful in the continuous case, as we will see presently.

Example 3.23 (Gaussian modified log-Sobolev inequality). Let us prove a MLS
inequality for the standard Gaussian distribution µ = N(0, 1) in one dimen-
sion (we will subsequently use tensorization to extend to higher dimensions).
To this end, we will again use the Ornstein-Uhlenbeck processXt introduced in
section 2.3.1. In particular, we recall two important properties of the Ornstein-
Uhlenbeck process that were proved in section 2.3.1:

E(f, g) = µ(f ′g′), (Ptf)′ = e−tPtf
′.

Using these properties, we will now proceed to prove a MLS inequality.
Note that (log f)′f ′ = |f ′|2/f . We therefore have

(logPtf)′(Ptf)′ = e−2t |Ptf ′|2

Ptf
.

By Cauchy-Schwarz, we obtain

|Ptf ′|2 =
∣∣∣∣Pt( f ′√

f

√
f

)∣∣∣∣2 ≤ Pt( |f ′|2f
)
Ptf = Pt((log f)′f ′)Ptf,

and consequently

(logPtf)′(Ptf)′ ≤ e−2t Pt((log f)′f ′).

Integrating with respect to µ on both sides yields

E(logPtf, Ptf) ≤ e−2tE(log f, f),

and thus the implication 3⇒ 1 of Theorem 3.20 yields

Entµ[f ] ≤ 1
2
E(log f, f).

This is the modified log-Sobolev inequality for the Gaussian distribution.

Having proved the Gaussian modified log-Sobolev inequality in one dimen-
sion, we immediately obtain an n-dimensional inequality by tensorization.
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Theorem 3.24 (Gaussian log-Sobolev inequality). Let X1, . . . , Xn be in-
dependent Gaussian random variables with zero mean and unit variance. Then

Ent[f(X1, . . . , Xn)] ≤ 1
2

E[∇f(X1, . . . , Xn) · ∇ log f(X1, . . . , Xn)]

for every f ≥ 0.

Why is this a MLS inequality in the sense of the previous section? Note
that, by the chain rule, the inequality of Theorem 3.24 is equivalent to

Ent[ef(X1,...,Xn)] ≤ 1
2

E[‖∇f(X1, . . . , Xn)‖2 ef(X1,...,Xn)]

for every f . This is precisely the type of inequality that arises in the previous
section. In particular, in this form, it is immediately evident that Theorem 3.24
provides the key ingredient to prove a Gaussian concentration inequality. The
following result is one of the most important properties of Gaussian variables.

Theorem 3.25 (Gaussian concentration). Let X1, . . . , Xn be independent
Gaussian random variables with zero mean and unit variance. Then

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ e−t
2/2σ2

for all t ≥ 0, where σ2 = ‖‖∇f‖2‖∞. In fact, f(X1, . . . , Xn) is σ2-subgaussian.

Proof. By Theorem 3.24 and the chain rule, we can estimate

Ent[eλf(X1,...,Xn)] ≤ λ2‖‖∇f‖2‖∞
2

E[eλf(X1,...,Xn)]

for all λ ∈ R. The result now follows from Lemma 3.13. ut

Remark 3.26. In the Gaussian case, we have seen several different forms of the
modified log-Sobolev inequality. Beside the form as stated in Theorem 3.24

Ent[f ] ≤ 1
2

E[∇f · ∇ log f ] =
1
2
E(log f, f)

(which corresponds to the inequality in Theorem 3.20), we can write

Ent[f ] ≤ 1
2

E
[
‖∇f‖2

f

]
(which is in fact the form that was used in the proof of Theorem 3.24), or

Ent[ef ] ≤ 1
2

E[‖∇f‖2ef ]

(which was used in the proof of Theorem 3.25). Another equivalent form is
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Ent[f2] ≤ 2E[‖∇f‖2] = 2E(f, f).

The latter inequality is called a log-Sobolev inequality. In the Gaussian case,
all these inequalities are equivalent due to the fact that the Dirichlet form is
given in terms of a gradient that satisfies the chain rule (and these inequalities
are therefore collectively referred to as the Gaussian log-Sobolev inequality).

This is not the case in general, however: for many Markov processes (such
as in Remark 3.21) the Dirichlet form does not satisfy the chain rule, and in
this case the above inequalities are typically not equivalent to one another. In
particular, the modified log-Sobolev inequality and the log-Sobolev inequality
are not equivalent in general. Nonetheless, it is often possible to deduce useful
forms of these inequalities even in the absence of the chain rule, as we did, for
example, in the proof of Lemma 3.16. The “true” log-Sobolev inequality will
play an important role in its own right later on in this course.

Remark 3.27. The Gaussian log-Sobolev inequality reads

E[f2 log f ]−E[f2] log ‖f‖2 ≤ c‖∇f‖22,

while the Poincaré inequality reads

E[f2]−E[f ]2 ≤ c‖∇f‖22.

When viewed in this manner, the log-Sobolev inequality looks only slightly
stronger than the Poincaré inequality: the latter controls the L2-norm of a
function by the L2-norm of its gradient, while the former controls the function
in a slightly stronger (by a logarithmic factor) L2 logL-norm.1 As we have
seen, this apparently minor improvement has far-reaching consequences.

In classical analysis, an important role is played by Sobolev inequalities
that have the form ‖f −Ef‖q ≤ c‖∇f‖2 for q > 2. Such inequalities are even
better than log-Sobolev inequalities: they ensure that the Lq-norm of function
is controlled by the L2-norm of its gradient, while log-Sobolev inequalities only
improve over L2 by a logarithmic factor (hence the name). However, unlike
log-Sobolev inequalities, classical Sobolev inequalities do not tensorize. It is
for this reason that log-Sobolev inequalities are much more important than
classical Sobolev inequalities in high-dimensional probability.

In view of the previous remark, it is natural to conclude that log-Sobolev
inequalities are strictly stronger than Poincaré inequalities, but this is not
entirely obvious. We conclude this section by showing that this is indeed
the case, even in the more general setting of Theorem 3.20. This clarifies, in
particular, that the methods developed in this chapter to prove concentration
inequalities can be viewed in a precise sense as direct extensions of the theory
developed in the previous chapter to prove variance bounds.
1 While the idea expressed here is intuitive, it should be noted that entropy is not

a norm. However, the statement can be made precise in terms of Orlicz norms.
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Lemma 3.28. The modified log-Sobolev inequality Ent[f ] ≤ cE(log f, f) for
all f ≥ 0 implies the Poincaré inequality Var[f ] ≤ 2cE(f, f) for all f .

Proof. The modified log-Sobolev inequality states for λ ≥ 0

E[λfeλf ]−E[eλf ] log E[eλf ] ≤ cE(λf, eλf ).

As E(f, 1) = 0, we can estimate

E(λf, eλf ) = λ2E(f, f) + o(λ2),

while we have
E[λfeλf ] = λE[f ] + λ2E[f2] + o(λ2),

and
E[eλf ] log E[eλf ] = λE[f ] + λ2{E[f2] + E[f ]2}/2 + o(λ2).

Thus we obtain the Poincaré inequality Var[f ] ≤ 2cE(f, f) by dividing the
MLS inequality Ent[eλf ] ≤ cE(λf, eλf ) by λ2 and letting λ ↓ 0. ut

Problems

3.17 (Relative entropy convergence). As Theorem 3.20 does not require
Pt to be reversible, the MLS inequality Entµ[f ] ≤ cE(log f, f) is not necessarily
equivalent to the reverse inequality Entµ[f ] ≤ cE(f, log f). There is, however,
a dual form of Theorem 3.20 that will yield the latter.

Define the relative entropy between probability measures ν and µ as

D(ν||µ) := Entµ

[
dν

dµ

]
for ν � µ,

and D(ν||µ) := ∞ otherwise. The relative entropy should be viewed as a
notion of “distance” between probability measures: in particular D(ν||µ) ≥ 0
and D(ν||µ) = 0 if and only of µ = ν. Note, however, that D(ν||µ) is not a
metric (it is neither symmetric, nor does it satisfy a triangle inequality). The
relative entropy will play an important role in the next chapter.

For every probability measure ν, we can define the probability measure νPt
by setting (νPt)f = ν(Ptf) for every function f . Note that νPt is precisely the
law ofXt given that the initial conditionX0 is drawn from ν: indeed, ifX0 ∼ ν,
then νPtf = E[Ptf(X0)] = E[E[f(Xt)|X0]] = E[f(Xt)]. In particular, the
stationary measure µ satisfies, by its definition, µPt = µ for all t.

a. Let h = dν
dµ . Show that D(νPt||µ) = Entµ[P ∗t h], where P ∗t is the adjoint of

the semigroup Pt (that is, 〈f, Ptg〉µ = 〈P ∗t f, g〉µ for all f, g).

b. Show that the modified log-Sobolev inequality

Entµ[f ] ≤ cE(f, log f) for all f

holds if and only if Pt is exponentially ergodic in relative entropy:

D(νPt||µ) ≤ e−t/cD(ν||µ) for all t, ν.
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3.18 (Norms of Gaussian vectors). The goal of this problem is to prove
some classical results about norms of Gaussian vectors. We begin with a simple
but important consequence of Gaussian concentration.

a. Let X ∼ N(0, Σ) be an n-dimensional centered Gaussian vector with arbi-
trary covariance matrix Σ. Prove that (see Problem 2.8 for a hint)

max
i=1,...,n

Xi is τ2 := max
i=1,...,n

Var[Xi]-subgaussian.

b. Show that the mean and median of maxiXi satisfy

E
[

max
i=1,...,n

Xi

]
≤ med

[
max

i=1,...,n
Xi

]
+ τ
√

2 log 2

Hint: estimate P[maxiXi ≥ E[maxiXi]− t] from below for t = τ
√

2 log 2.

Let (B, ‖ · ‖B) be a Banach space, and let X be a centered Gaussian vector in
B (that is, X ∈ B and 〈v,X〉 is a Gaussian random variable for every element
v ∈ B∗ in the dual space of B). Recall that the norm satisfies

‖x‖B = sup
v∈B∗,‖v‖≤1

〈v, x〉

by duality. Assume for technical reasons that the supremum in this expression
can be restricted to a countable dense subset V ⊂ B∗ independent of x (this
is the case, for example, if B∗ is separable). Define

σ2 := sup
v∈B∗,‖v‖≤1

E[〈v,X〉2].

c. Show that σ <∞, E‖X‖B <∞, and that ‖X‖B is σ2-subgaussian.
Hint: med[|〈v,X〉|] ≤ med[‖X‖B ] <∞ for all v ∈ B∗, ‖v‖ ≤ 1.

d. Prove the Landau-Shepp-Marcus-Fernique theorem:

E[eα‖X‖
2
B ] <∞ if and only if α <

1
2σ2

.

Hint: for the only if part, use E[eα‖X‖
2
B ] ≥ E[eα〈v,X〉

2
] for v ∈ B∗, ‖v‖ ≤ 1.

3.19 (Bakry-Émery criterion). In Problems 2.12 and 2.13 (we adopt the
notation used there), we showed that the Bakry-Émery criterion cΓ2(f, f) ≥
Γ (f, f) provides an algebraic criterion for the validity of the Poincaré inequal-
ity. However, the Bakry-Émery criterion is strictly stronger than the validity of
a Poincaré inequality. In the present problem, we will show that if the Markov
semigroup is reversible and its carré du champ satisfies a chain rule, then the
Bakry-Émery criterion even implies validity of the modified log-Sobolev in-
equality. This provides a very useful tool for proving log-Sobolev inequalities
for certain classes of continuous distributions.
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Let Pt be a reversible and ergodic Markov semigroup with stationary mea-
sure µ, and assume that the carré du champ satisfies the chain rule

Γ (f, φ ◦ g) = Γ (f, g)φ′ ◦ g.

For example, this is evidently the case when Γ (f, g) = ∇f · ∇g.

a. Show that

E(logPtf, Ptf) = µ(Γ (Pt logPtf, f))

≤ µ(Γ (f, f)/f)1/2µ(fΓ (Pt logPtf, Pt logPtf))1/2.

b. Show that the Bakry-Émery criterion cΓ2(f, f) ≥ Γ (f, f) for all f implies

E(logPtf, Ptf) ≤ e−t/cE(log f, f)1/2µ(fPtΓ (logPtf, logPtf))1/2.

Hint: use Theorem 2.35 and the chain rule.

c. Show that the above inequality implies

E(logPtf, Ptf) ≤ e−t/cE(log f, f)1/2E(logPtf, Ptf)1/2,

so the Bakry-Émery criterion implies the modified log-Sobolev inequality

Entµ[f ] ≤ c

2
E(log f, f) for all f.

d. Let µ be a ρ-uniformly log-concave probability measure on Rn, that is,
µ(dx) = e−W (x)dx where the potential function W satisfies ∇∇∗W � ρ Id.
Show that µ satisfies the dimension-free log-Sobolev inequality

Entµ[f2] ≤ 2
ρ

∫
‖∇f‖2 dµ.

Hint: see Problem 2.13.

Remark. In the setting of this problem, it is in fact possible after some further
work to show that the Bakry-Émery criterion is equivalent to the validity of
a local log-Sobolev inequality, which strengthens the result of Theorem 2.35
under the chain rule assumption. We omit the details.

3.20 (Bounded perturbations). Let µ be a probability measure for which
we have proved a MLS inequality. Let ν be a “small perturbation” of µ.
It is not entirely obvious that ν will also satisfy a MLS inequality. In this
problem, we will show that log-Sobolev and Poincaré inequalities are stable
under bounded perturbations, so that we can deduce an inequality for ν from
the corresponding inequality for µ. This can be a useful tool to prove log-
Sobolev or Poincaré inequalities in cases for which it is not obvious how to
proceed by a direct approach (for example, using Theorem 3.20).
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Suppose that µ satisfies the modified log-Sobolev inequality

Entµ[f ] ≤ c µ(Γ (log f, f)),

where we have expressed the right-hand side in terms of a “square gradient”
Γ (log f, f) ≥ 0. For example, if µ ∼ N(0, I), we choose Γ (f, g) = ∇f · ∇g.
In the setting of Theorem 3.20, if the Markov semigroup is reversible, we
can choose Γ (log f, f) to be the carré du champ of Problem 2.7; however,
the present result is not specific to the Markov semigroup setting and can be
applied to any modified log-Sobolev type inequality of the above form.

a. Prove the following identity for ν � µ:

Entν [X] ≤
∥∥∥∥dνdµ

∥∥∥∥
∞

Entµ[X].

Hint: use the variational principle of Problem 3.13.

b. Suppose that ν is a bounded perturbation of µ in the sense that ε ≤ dν
dµ ≤ δ

for some δ, ε > 0. Show that ν satisfies the modified log-Sobolev inequality

Entν [f ] ≤ cδ

ε
ν(Γ (log f, f)).

c. Define the probability measure ν(dx) = Z−1e−V (x)dx on R, where Z is
the normalization factor. Suppose that the potential V (x) is sandwiched
between two quadratic functions: x2 + a ≤ V (x) ≤ x2 + b for all x ∈ R.
Show that ν satisfies the log-Sobolev inequality

Entν [f2] ≤ e2(b−a)ν(|f ′|2).

d. We have shown that the log-Sobolev inequality is stable under bounded
perturbations. An analogous result holds for Poincaré inequalities. Indeed,
suppose that µ that satisfies the Poincaré inequality

Varµ[f ] ≤ c µ(Γ (f, f)).

Show that if ε ≤ dν
dµ ≤ δ, then

Varν [f ] ≤ cδ

ε
ν(Γ (f, f)).

Remark. While bounded perturbation results can be useful, the constant δ/ε
can be quite large in practice. In particular, it is typically the case that δ/ε
will increase exponentially with dimension, so that the bounded perturbation
method does not yield satisfactory results when applied in high dimension.
However, one can of course apply the bounded perturbation method in one
dimension, and then obtain dimension-free results by tensorization.
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Notes

§3.1 and §3.2. Much of this material is classical. See, e.g., [25, 51] for a more
systematic treatment of subgaussian inequalities and the martingale method.
Theorem 3.11 was popularized by McDiarmid [94] for combinatorial problems.

§3.3 and §3.4. Logarithmic Sobolev inequalities were first systematically
studied by Gross [73], together with their connection to Markov semigroups.
A comprehensive treatment is given in [75] and in [10] (see also [22] where
such connections are developed in the discrete setting). The tensorization
property of entropy also appears already in [73]; we followed the proof in
[84]. The variational formula for entropy plays a fundamental role in large
deviations theory [46]. Lemma 3.13 is due to I. Herbst, but was apparently
never published by him. The entropy method was systematically applied to the
development of concentration inequalities by Ledoux [82, 84]. A comprehensive
treatment of the entropy method for concentration inequalities is given in [25].
Problem 3.16 is from [21], while Problem 3.18 follows the approach in [83].



4

Lipschitz concentration and transportation
inequalities

In the previous chapters, we have investigated the concentration phenomenon
in the following form: the fluctuations of a function f(X1, . . . , Xn) of indepen-
dent (or weakly dependent) random variables are small if the “gradient” of f
is small. In this chapter, we will develop a different perspective on the concen-
tration phenomenon. Rather than measuring the sensitivity of the function f
in terms of a gradient, we will introduce a metric viewpoint that emphasizes
the role of Lipschitz functions. This complementary perspective will lead us to
new methods to investigate and prove concentration, and to new inequalities
that do not have a natural description in terms of gradients. In particular, we
will prove Talagrand’s inequality, which is important in many applications.

4.1 Concentration in metric spaces

Recall a basic definition.

Definition 4.1 (Lipschitz functions). Let (X, d) be a metric space. A func-
tion f : X→ R is called L-Lipschitz if |f(x)−f(y)| ≤ Ld(x, y) for all x, y ∈ X.
The family of all 1-Lipschitz functions is denoted Lip(X).

What do Lipschitz functions have to do with concentration? While we have
expressed our concentration results to date in terms of gradient bounds, such
results can often be interpreted naturally in terms of Lipschitz properties. To
make this point, let us begin by considering two examples.

Example 4.2 (Gaussian concentration). Let X1, . . . , Xn be i.i.d. N(0, 1) ran-
dom variables. Gaussian concentration (Theorem 3.25) states that the ran-
dom variable f(X1, . . . , Xn) is ‖‖∇f‖2‖∞-subgaussian. However, the quantity
‖‖∇f‖2‖∞ is naturally expressed in terms of a Lipschitz property.

Lemma 4.3. Let f : Rn → R be a C1-function. Then ‖‖∇f‖2‖∞ ≤ L2 if and
only if |f(x)− f(y)| ≤ L‖x− y‖ for all x, y ∈ Rn.
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Proof. Note that the L-Lipschitz property implies

v · ∇f(x) = lim
t→0

f(x+ tv)− f(x)
t

≤ L‖v‖.

Optimizing over ‖v‖ ≤ 1 and x yields ‖‖∇f‖2‖∞ ≤ L2. Conversely,

f(x)− f(y) =
∫ 1

0

d

dt
f(tx+ (1− t)y) dt =

∫ 1

0

(x− y) · ∇f(tx+ (1− t)y) dt

by the fundamental theorem of calculus. It therefore follows readily that if
‖‖∇f‖2‖∞ ≤ L2, then f(x)− f(y) ≤ L‖x− y‖ for all x, y ∈ Rn. ut

In view of this lemma, it follows immediately1 that Gaussian concentration
can be equivalently phrased in terms of Lipschitz functions: if X ∼ N(0, I),
then f(X) is 1-subgaussian for every f ∈ Lip(Rn, ‖ · ‖).

As a second example, let us revisit McDiarmid’s inequality.

Example 4.4 (McDiarmid’s inequality). Let X1, . . . , Xn be independent ran-
dom variables, where Xi takes values in some measurable space Xi for
i = 1, . . . , n. McDiarmid’s inequality (Theorem 3.11) states that the random
variable f(X1, . . . , Xn) is 1

4

∑n
k=1 ‖Dkf‖2∞-subgaussian. Also this inequality

can be phrased in terms of a Lipschitz property. To this end, let us introduce
the weighted Hamming distance dc(x, y) on X1 × · · · × Xn as

dc(x, y) :=
n∑
i=1

ci1xi 6=yi .

Lemma 4.5. Let f : X1×· · ·×Xn → R. Then ‖Dif‖∞ ≤ ci for all i = 1, . . . , n
if and only if |f(x)− f(y)| ≤ dc(x, y) for all x, y ∈ X1 × · · · × Xn.

Proof. Suppose that f is 1-Lipschitz with respect to dc. If x, y only differ in
the ith coordinate, it follows that |f(x)−f(y)| ≤ ci. In particular, we conclude
that that ‖Dif‖∞ ≤ ci for all i. Conversely, consider the telescoping sum

f(x)− f(y) =
n∑
i=1

{f(x1, . . . , xi, yi+1, . . . , yn)− f(x1, . . . , xi−1, yi, . . . , yn)}.

As the ith term in the sum is the difference between f evaluated at two points
that differ only in the ith coordinate, it is bounded by ‖Dif‖∞1xi 6=yi . Thus
if ‖Dif‖∞ ≤ ci for all i, then f is 1-Lipschitz with respect to dc. ut

In view of this simple observation, we obtain the following equivalent for-
mulation of McDiarmid’s inequality: if X is a random vector with independent
entries, f(X) is 1

4‖c‖
2-subgaussian for every f ∈ Lip(X1 × · · · × Xn, dc).

1 The claim holds even when f is not C1 by a simple approximation argument: any
Lipschitz function can be approximated uniformly by a smooth Lipschitz function
by convolving with a smooth density. The details are left as an exercise.
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At an informal level, we have introduced the general concentration prin-
ciple by stating that a function f(X1, . . . , Xn) of independent or weakly de-
pendent random variables is close to its mean if the function f is “not too
sensitive” to any of its coordinates. Gradient bounds and Lipschitz properties
provide two different ways of making the informal notion of “not too sensi-
tive” precise. In the case of gradient bounds, the sensitivity of the function
f is measured locally, while the Lipschitz property quantifies the sensitivity
in a global manner. These two points of view are very similar in spirit, how-
ever, and are often even equivalent as we have seen above in the case of the
Gaussian concentration inequality and McDiarmid’s inequality.

Nonetheless, it will prove to be extremely useful to reconsider the concen-
tration principle from the metric perspective. The reasons for this are twofold:

• While in some cases gradient bounds and Lipschitz properties can be shown
to be equivalent, there are other cases in which these two notions are dis-
tinct. For example, the one-sided difference bound ‖

∑n
i=1 |D

−
i f |2‖∞ ≤ L2

is not naturally formulated in terms of a Lipschitz property with respect
to some metric. Conversely, there are important Lipschitz-type proper-
ties that cannot be naturally formulated in terms of a gradient; we will
encounter such a property when we develop Talagrand’s concentration
inequalities later in this chapter. Thus the complementary viewpoints pro-
vided by gradient and metric notions of concentration give rise to genuinely
different results that can be of substantial importance in different settings.

• Our emphasis on gradients in the previous chapters was intimately tied
to a class of inequalities—Poincaré and log-Sobolev inequalities—that are
of fundamental importance in proving and understanding concentration
properties. The metric perspective, however, will require us to develop new
types of inequalities that exploit the metric structure of the problem. The
development of these ideas will significantly enhance our understanding of
the concentration principle and will provide us with new tools to prove
concentration inequalities that are not easily obtained by other methods.

Having roughly motivated the metric perspective on concentration, we are
ready to take some first steps towards a general theory.

We have shown above that Gaussian concentration can be phrased as
follows: if X ∼ N(0, I), then f(X) is 1-subgaussian for every f ∈ Lip(Rn, ‖·‖).
Similarly, McDiarmid’s inequality states that if X is a random vector with
independent entries, f(X) is 1

4‖c‖
2-subgaussian for f ∈ Lip(X1×· · ·×Xn, dc).

Motivated by these examples, we can pose the following basic question.

For which probability measures µ on the metric space (X, d) is it true
that if X ∼ µ, then f(X) is σ2-subgaussian for every f ∈ Lip(X)?

We presently give a very general answer to this question in terms of a new
class of inequalities that will play a fundamental role throughout this chapter.
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Definition 4.6 (Wasserstein distance). The Wasserstein distance between
probability measures µ, ν ∈ P1(X) := {ρ :

∫
d(x, ·)ρ(dx) <∞} is defined as2

W1(µ, ν) := sup
f∈Lip(X)

∣∣∣∣ ∫ f dµ−
∫
f dν

∣∣∣∣.
Definition 4.7 (Relative entropy). The relative entropy between probabil-
ity measures ν and µ on any measurable space is defined as

D(ν||µ) :=

Entµ

[
dν

dµ

]
if ν � µ,

∞ otherwise.

Theorem 4.8 (Bobkov-Götze). Let µ ∈ P1(X) be a probability measure on
a metric space (X, d). Then the following are equivalent for X ∼ µ:

1. f(X) is σ2-subgaussian for every f ∈ Lip(X).
2. W1(ν, µ) ≤

√
2σ2D(ν‖µ) for all ν.

How should we interpret these concepts? Both the Wasserstein distance
and the relative entropy define a form of distance between probability mea-
sures. The Wasserstein distance defines a metric in terms of expectations of
Lipschitz functions. Relative entropy, on the other hand, is not a metric: it is
not even symmetric and does not satisfy a triangle inequality. Nonetheless, it
is a natural measure of “closeness” between probability measures (for exam-
ple, D(ν||µ) ≥ 0 and D(ν||µ) = 0 if and only of µ = ν). As we will see in the
proof of Theorem 4.8, relative entropy should be viewed as controlling moment
generating functions in a suitable sense. As these two notions of distance are
of an entirely different nature, there is no a priori reason why relative entropy
and Wasserstein distance to a given measure µ should be comparable, and this
is indeed not necessarily true for arbitrary µ. Theorem 4.8 states that rela-
tive entropy and Wasserstein distance are comparable precisely when one can
control the moment generating functions of Lipschitz functions. Inequalities
such as W1(ν, µ) ≤

√
2σ2D(ν‖µ) therefore play a role in the “metric” setting

analogous to log-Sobolev inequalities in the “gradient” setting. We can infor-
mally view this inequality as a type of dual to the log-Sobolev inequality that
is stated in terms of measures rather than functions (cf. Problem 4.1 below).

Before we turn to the proof of Theorem 4.8, let us illustrate how it can be
used to prove a well-known inequality for relative entropy.

Example 4.9 (Pinsker’s inequality). Let d(x, y) := 1x 6=y be the trivial metric.
Then f ∈ Lip(X) if and only if sup f−inf f ≤ 1. Thus the Wasserstein distance
in this case is none other than the total variation distance

W1(µ, ν) = sup
0≤f≤1

∣∣∣∣ ∫ f dµ−
∫
f dν

∣∣∣∣ =: ‖µ− ν‖TV

2 Note that ρ ∈ P1(X) if and only if
R
f dρ <∞ for every f ∈ Lip(X).
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(note that the quantity inside the supremum is invariant under adding a con-
stant to f , so there is no loss in restricting to 0 ≤ f ≤ 1 only).

Now recall from Hoeffding’s Lemma 3.6 that f(X) is 1
4{sup f − inf f}-

subgaussian for every f and µ. Thus Theorem 4.8 implies that

‖µ− ν‖TV ≤
√

1
2D(ν||µ)

for every µ, ν. This extremely useful result is known as Pinsker’s inequality
(which also provides additional intuition for the fact that D(ν||µ) can be
viewed as a form of “closeness” between probability measures). Of course, we
could have also gone in the converse direction: if we had given an independent
proof of Pinsker’s inequality (there are numerous such proofs), then we could
have used Theorem 4.8 to provide an alternative proof of Hoeffding’s lemma.

Let us now turn to the proof of Theorem 4.8. The key insight that is needed
is that relative entropy is intimately related to moment generating functions;
once this has been understood, the remainder of the proof of Theorem 4.8
is essentially trivial. The following result, which dates back to the earliest
history of statistical mechanics, makes this idea precise.

Lemma 4.10 (Gibbs variational principle).

log Eµ[ef ] = sup
ν
{Eν [f ]−D(ν‖µ)}.

Proof. We may assume f is bounded above to avoid integrability problems (if
not, apply the result to f ∧M and then take the supremum over M). Define

dµ̃ =
efdµ

Eµ[ef ]
.

We have for D(ν||µ) <∞

log Eµ[ef ]−D(ν‖µ̃) = log Eµ[ef ]−
∫ (

log
dν

dµ̃

)
dν

= log Eµ[ef ]−
∫ (

log
dν

dµ

)
dν +

∫ (
log

dµ̃

dµ

)
dν

= Eν [f ]−D(ν‖µ).

Taking the supremum over ν on both sides yields the result. ut

Remark 4.11. Note that Lemma 3.15 can be reformulated as

D(ν‖µ) = sup{Eν [f ] : Eµ[ef ] = 1} = sup{Eν [f ]− log Eµ[ef ]},

where the sup is taken over functions f . Thus Lemma 4.10 is precisely the
dual convex optimization problem to the variational formula for entropy.



78 4 Lipschitz concentration and transportation inequalities

We can now complete the proof of Theorem 4.8.

Proof (Theorem 4.8). By definition, the property 1 can be stated as

log Eµ[eλ{f−Eµf}] ≤ λ2σ2

2
for all λ ∈ R, f ∈ Lip(X).

By Lemma 4.10, this is equivalent to

sup
λ∈R

sup
f∈Lip(X)

sup
ν

{
λ{Eνf −Eµf} −D(ν‖µ)− λ2σ2

2

}
≤ 0.

Exchanging the order of the suprema and evaluating explicitly the suprema
over f and λ yields that the above expression is equivalent to

sup
ν

{
W1(µ, ν)2

2σ2
−D(ν‖µ)

}
≤ 0,

which is evidently an immediate reformulation of property 2. ut

Theorem 4.8 characterizes the subgaussian property of Lipschitz functions
on an arbitrary but fixed metric space (X, d). It is important to emphasize that
this is not in itself a “high-dimensional” result. As in the previous chapters, the
crucial idea that will be needed to work in high dimension is a tensorization
principle. In the following section, we will develop a different perspective on
the inequality W1(µ, ν) ≤

√
2σ2D(ν‖µ) that will enable us to prove such a

tensorization principle. This will provide us with a powerful tool to develop
and understand dimension-free Lipschitz concentration inequalities.

Problems

4.1 (Discrete log-Sobolev and Lipschitz concentration). One simple
way to gain some insight into the inequality W1(ν, µ) ≤

√
2σ2D(ν‖µ) is to

note that it implies a sort of “dual” form of the discrete log-Sobolev inequality
Ent[eλf ] ≤ Cov[λf, eλf ] of Lemma 3.16 for Lipschitz functions.

a. Show that W1(ν, µ) ≤
√

2σ2D(ν‖µ) implies the inequality

Cov[λf, eλf ]2 ≤ 2λ2σ2Ent[eλf ]E[eλf ] for λ ∈ R, f ∈ Lip(X).

Hint: consider dν = eλf dµ/Eµ[eλf ].

b. Use the above inequality together with the discrete log-Sobolev inequality
of Lemma 3.16 to prove that W1(ν, µ) ≤

√
2σ2D(ν‖µ) implies that f(X)

is 4σ2-subgaussian for X ∼ µ, f ∈ Lip(X) (which agrees precisely with the
result of Theorem 4.8 up to the suboptimal constant 4).



4.1 Concentration in metric spaces 79

4.2 (Isoperimetric inequalities and concentration). There is an entirely
different approach to investigating Lipschitz concentration properties that
played an important role in the historical development of this area: the isoperi-
metric method. While we have avoided using this approach in this course, the
method remains of fundamental importance in the development and under-
standing of new concentration phenomena. The goal of this problem is to
develop some basic ideas surrounding this approach.

Let (X, d) be a metric space. The idea behind the isoperimetric method is
not to investigate the tail behavior of functions directly, but rather to focus
attention on the probabilities of sets. For any measurable set A ⊆ X, define
its ε-fattening as Aε := {x ∈ X : d(x,A) ≤ ε}. A statement of the form

µ(Aε) ≥ 1− Ce−ε
2/2σ2

for all ε ≥ 0, A ⊆ X such that µ(A) ≥ 1
2

is called an isoperimetric inequality. It states that almost every point in X is
ε-close to a set of measure 1

2 . One way to interpret this result is geometrically:
given any set A with µ(A) = 1

2 , the measure of its ε-boundary is µ(Aε\A) ≈ 1
2 ;

thus the boundary of the set contains almost as much mass as the interior of
the set. Mathematical phenomena relating the size of a set to the size of its
boundary are generally referred to as “isoperimetric problems.”

a. Suppose that the measure µ satisfies the above isoperimetric inequality.
Show that we have the concentration inequality

Pµ[f −med(f) ≥ t] ≤ Ce−t
2/2σ2

for all t ≥ 0, f ∈ Lip(X).

Hint: consider the set A = {f ≤ med(f)}. Here med(f) denotes the median.

b. Conversely, show that the above isoperimetric inequality is implied by

Pµ[f −med(f) ≥ t] ≤ Ce−t
2/2σ2

for all t ≥ 0, f ∈ Lip(X).

Hint: consider f(x) = d(x,A).

We have discovered the elementary fact that isoperimetric inequalities are
equivalent to tail bounds for Lipschitz functions. However, unlike most of our
previous results this course, the deviation here is from the median rather
than from the mean. It turns out that deviation inequalities from the median
and the mean are equivalent, however, up to constants. Whether deviation
from the median or the mean is more useful depends on the application (see
Problem 3.18 for a situation where the median provides useful insight).

c. Suppose that the above isoperimetric inequality holds. Show that

med(f) ≤ Eµf + Cσ
√
π/2

for all f ∈ Lip(X), and conclude that

Pµ[f −Eµf ≥ t] ≤ eC
2π/4e−t

2/8σ2
for all t ≥ 0.

Hint: estimate Eµ[(med(f)− f)+] by integrating the tail bound.
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d. Conversely, suppose that for f ∈ Lip(X)

Pµ[f −Eµf ≥ t] ≤ Ce−t
2/2σ2

for all t ≥ 0.

Show that this implies

Eµf ≤ med(f) + σ
√

2 log 2C

for all f ∈ Lip(X), and conclude that

Pµ[f −med(f) ≥ t] ≤ 2Ce−t
2/8σ2

for all t ≥ 0.

Hint: see Problem 3.18.

Finally, we develop a direct connection between Theorem 4.8 and isoperimetry.

e. Suppose that W1(ν, µ) ≤
√

2σ2D(ν||µ) for all ν. Argue that

d(A,B) ≤W1(µ(·|A), µ(·|B)) ≤
√

2σ2 log(1/µ(A)) +
√

2σ2 log(1/µ(B))

for any disjoint sets A,B ⊆ X.

f. Applying the above result to B = X\Aε, argue that

µ(Aε) ≥ 1− 2e−ε
2/8σ2

for all ε ≥ 0, A ⊆ X such that µ(A) ≥ 1
2 .

Thus W1(ν, µ) ≤
√

2σ2D(ν||µ) yields directly an isoperimetric inequality.

4.2 Transportation inequalities and tensorization

In the previous section, we have introduced the fundamental inequality
W1(ν, µ) ≤

√
2σ2D(ν||µ) as a characterization of the Lipschitz concentration

property on a fixed metric space. However, for this result to be useful in high
dimension, we must understand whether it is possible to tensorize inequalities
of this type. It turns out that there is indeed a tensorization principle that
is extremely useful in this setting, but this is far from obvious from the for-
mulation developed in the previous section. In order to develop this idea, it
will prove to be necessary to formulate these inequalities in a different manner
in terms of optimal transportation. We will presently develop this connection,
and the tensorization principle that follows from it.

Optimal transportation is concerned with the classical notion of coupling.
Recall that a coupling of probability measures of µ, ν is any joint distribution
of random variables (X,Y ) with marginal distributions X ∼ µ and Y ∼ ν. Of
course, there exist many different couplings for given µ, ν.

Definition 4.12 (Coupling). Let µ, ν be two probability measures, and let

C(µ, ν) := {Law(X,Y ) : X ∼ µ, Y ∼ ν}.

Any probability measure M ∈ C(µ, ν) is called a coupling of µ, ν.



4.2 Transportation inequalities and tensorization 81

Let f ∈ Lip(X). Then for any M ∈ C(µ, ν), we have

|Eµf −Eνf | = |EM[f(X)− f(Y )]| ≤ EM[d(X,Y )].

In particular, we obtain the elementary inequality

W1(µ, ν) ≤ inf
M∈C(µ,ν)

EM[d(X,Y )].

That is, the Wasserstein distance is controlled by the smallest expected dis-
tance between random variables X,Y such that X ∼ µ and Y ∼ µ. The latter
optimization over couplings is called an optimal transportation problem. The
name derives not from viewing µ, ν as probabilities but rather as distribu-
tions of mass, for example, in a sandpile: the optimal transportation problem
tells us how to transform one sandpile into another sandpile in a manner that
minimizes the total distance we need to transport the grains of sand.

Remarkably, it turns out that nothing is lost in estimating the Wasserstein
distance by an optimal transportation cost, under mild technical conditions.
This is the statement of the following classical result.

Theorem 4.13 (Monge-Kantorovich duality). We have

W1(µ, ν) = sup
f∈Lip(X)

|Eµf −Eνf | = inf
M∈C(µ,ν)

EM[d(X,Y )]

for all probability measures µ, ν ∈ P1(X) on a separable metric space (X, d).

To avoid getting distracted by technicalities, we will prove Theorem 4.13
here in the discrete setting. The full intuition arises here, and the extension
to the continuous case is an exercise in approximation (Problem 4.3).

Proof (Discrete case). Let µ, ν be probabilities on the finite set X = {1, . . . , p}.
The optimal transportation problem can evidently be phrased as follows:

Minimize:
M

p∑
i,j=1

d(i, j)M(i, j)

Subject to: M(i, j) ≥ 0, 1 ≤ i, j ≤ p
p∑
j=1

M(i, j) = µ(i), 1 ≤ i ≤ p

p∑
i=1

M(i, j) = ν(j), 1 ≤ j ≤ p

This is nothing other than a standard linear programming problem. The dual
linear programming problem corresponding to this primary problem is
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Maximize:
f,g

p∑
i=1

f(i)µ(i) +
p∑
j=1

g(j)ν(j)

Subject to: f(i) + g(j) ≤ d(i, j), 1 ≤ i, j ≤ p.

By the strong duality theorem of linear programming, the optimal values of
these two optimization problems coincide, so we have proved

inf
M∈C(µ,ν)

EM[d(X,Y )] = sup{Eµf +Eνg : f(x) + g(y) ≤ d(x, y) ∀x, y} =: (∗).

We must now show that the expression (∗) on the right-hand side coincides
with the Wasserstein distance. Here we need to use the fact that d is a metric
(so far, we only used that d is a nonnegative weight function!) To this end,
note that f, g satisfy f(x) + g(y) ≤ d(x, y) for all x, y if and only if

f(x) ≤ f̃(x) := inf
z
{d(x, z)− g(z)} ≤ −g(x) for all x.

Moreover, f̃ ∈ Lip(X) as

f̃(x)− f̃(y) ≤ sup
z
{d(x, z)− d(y, z)} ≤ d(x, y).

It follows immediately that

Eµf + Eνg ≤ Eµf̃ −Eν f̃ ≤W1(µ, ν)

whenever f(x)+g(y) ≤ d(x, y) for all x, y. Thus we have shown (∗) ≤W1(µ, ν),
while (∗) ≥W1(µ, ν) holds trivially (restrict the supremum to g = −f). ut

The separability assumption of Theorem 4.13 is not entirely innocuous.
For example, the trivial metric d(x, y) = 1x 6=y considered in Example 4.9
is not separable (unless X is discrete), yet Monge-Kantorovich duality still
holds in this case. As this is both an important example and an interesting
illustration, let us provide here a direct proof of Monge-Kantorovich duality
for the trivial metric. It is in fact possible to obtain a more general version of
Theorem 4.13 that contains both separable metrics and the trivial metric as
special cases, but this will not be needed for our purposes.

Example 4.14 (Total variation). Let d(x, y) = 1x6=y be the trivial metric. We
have seen in Example 4.9 that in this case the Wasserstein distance coincides
with the total variation distance, so that Monge-Kantorovich duality reads

‖µ− ν‖TV = inf
M∈C(µ,ν)

M[X 6= Y ].

That is, the total variation distance between µ, ν is the minimal probability
that random variables X ∼ µ and Y ∼ ν do not coincide. We will presently
give a direct proof of this fundamental result. As
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‖µ− ν‖TV = sup
0≤f≤1

|EM[f(X)− f(Y )]| ≤M[X 6= Y ]

holds trivially for every M ∈ C(µ, ν), it suffices to construct an optimal cou-
pling that attains equality (in contrast, Theorem 4.13 is not constructive).

To construct an optimal coupling, let us assume that we can write dµ =
fdρ and dν = gdρ for some reference measure ρ and densities f, g (this entails
no loss of generality, as we can always choose ρ = µ+ ν). The idea is now to
decompose µ and ν into a “common part” and “disjoint parts.” We can then
construct a coupling by letting either X = Y be drawn from the common
part, or drawing X and Y independently from the disjoint parts, with the
probabilities chosen appropriately so that this is a coupling. To be precise, let
us define the “common part” η and the “disjoint parts” µ̃, ν̃ as

dη := {f ∧ g}dρ, dµ̃ := {f − f ∧ g}dρ, dν̃ := {g − f ∧ g}dρ.

Then η, µ̃, ν̃ are all positive measures, µ = µ̃ + η, ν = ν̃ + η, and µ̃, ν̃ have
disjoint supports. This construction is illustrated in the following figure:

f g

f ∧ g

g − f ∧ g

f − f ∧ g

We now define the probability measure M as

M(dx, dy) = η(dx) δx(dy) +
µ̃(dx) ν̃(dy)

1− η(X)

(here δx denotes the point mass at x). It is readily verified that M ∈ C(µ, ν)
by construction. Moreover, as µ̃, ν̃ have disjoint supports, we have

M[X 6= Y ] = 1− η(X) =
∫
{f − f ∧ g} dρ.

But note that∫
{f − f ∧ g} dρ =

∫
(f − g)+ dρ = sup

0≤h≤1

∫
h{f − g} dρ = ‖µ− ν‖TV.

Thus we have constructed an optimal coupling that attains the infimum in
the Monge-Kantorovich duality formula for total variation distance.
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We now conclude our detour through the optimal transportation prob-
lem and return to the investigation of concentration. By virtue of Monge-
Kantorovich duality, it evidently follows from Theorem 4.8 that f(X) is σ2-
subgaussian for every f ∈ Lip(X) and X ∼ µ if and only if

W1(µ, ν) = inf
M∈C(µ,ν)

EM[d(X,Y )] ≤
√

2σ2D(ν||µ) for all ν.

Inequalities of this type are called transportation cost inequalities. While we
have previously formulated them without any reference to transportation, it
turns out that the formulation in terms of optimal transportation is crucial
in order to develop a suitable tensorization principle. This is our next goal.

How might we expect Lipschitz concentration to tensorize? It is not even
entirely clear what is meant. Let µi be a probability measure on (Xi, di) for
i = 1, . . . , n, such that each µi satisfies the transportation cost inequality

W1(ν, µi) ≤
√

2σ2D(ν||µi) for all ν.

We would like to deduce that the product measure µ1⊗· · ·⊗µn on X1×· · ·×Xn
satisfies a Lipschitz concentration property, that is, that

W1(ν, µ1 ⊗ · · · ⊗ µn) ≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν.

However, to even make sense of this statement, we must first specify a met-
ric d on X1 × · · · × Xn. For example, one might be interested in working
with the `1-metric d(x, y) = d1(x1, y1) + · · ·+ d(xn, yn), or with the `2-metric
d(x, y) = {d1(x1, y1)2+· · ·+dn(xn, yn)2}1/2, or with any other suitable combi-
nation. Ultimately, however, the appropriate choice of metric will be dictated
by whether we are able to prove a tensorization principle. As will become clear
in the sequel, we can prove different forms of tensorization in product spaces
(i.e., for different definitions of the metric d) by using different types of trans-
portation cost inequalities. It is therefore fruitful, rather than considering one
specific setting, to prove a tensorization principle for a rather general class
of transportation cost inequalities. The following theorem does precisely that.
Once its power has been understood, it will be straightforward to interpret
the behavior of different transportation cost inequalities in high dimension.

Theorem 4.15 (Marton). Let ϕ : R+ → R+ be a convex function, and let
wi : Xi × Xi → R+ be positive weight function. Suppose that for i = 1, . . . , n

inf
M∈C(µi,ν)

ϕ(EM[wi(X,Y )]) ≤ 2σ2D(ν||µi) for all ν.

Then we have

inf
M∈C(µ1⊗···⊗µn,ν)

n∑
i=1

ϕ(EM[wi(Xi, Yi)]) ≤ 2σ2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν.
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The transportation cost inequality W1(µi, ν) ≤
√

2σ2D(ν||µi) corresponds
to the assumption of Theorem 4.15 with ϕ(x) = x2 and wi(x, y) = di(x, y).
However, the quantity on the left-hand side of the “tensorized” inequality[

inf
M∈C(µ1⊗···⊗µn,ν)

n∑
i=1

EM[di(Xi, Yi)]2
]1/2

≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn)

is not itself a Wasserstein distance. We must therefore take an extra step to
use this general tensorization principle. For example, if we define

dc(x, y) :=
n∑
i=1

cidi(xi, yi),

the weighted `1-metric on X1 × · · · × Xn, we obtain the following.

Corollary 4.16. Suppose that the transportation cost inequality

W1(µi, ν) ≤
√

2σ2D(ν||µi) for all ν

holds for µi on (Xi, di) for i = 1, . . . , n. Then the transportation cost inequality

W1(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν

holds for µ1 ⊗ · · · ⊗ µn on (X1 × · · ·Xn, dc) whenever
∑n
i=1 c

2
i = 1.

Proof. For probability measures ν, ρ on (X1 × · · ·Xn, dc), we have

W1(ν, ρ) = inf
M∈C(ν,ρ)

n∑
i=1

ciEM[di(Xi, Yi)] ≤

[
inf

M∈C(ν,ρ)

n∑
i=1

EM[di(Xi, Yi)]2
]1/2

by the Cauchy-Schwarz inequality (as
∑n
i=1 c

2
i = 1). The result now follows

from Theorem 4.15 with ϕ(x) = x2 and wi(x, y) = di(x, y). ut

Corollary 4.16 yields immediately another proof of McDiarmid’s inequality.

Example 4.17 (McDiarmid’s inequality). The trivial metric di(x, y) = 1x 6=y
on Xi satisfies the transportation cost inequality W1(µ, ν) ≤ { 1

2D(ν||µ)}1/2
by Pinsker’s inequality (Example 4.9). Therefore, by Corollary 4.16, we have

W1(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

1
2D(ν||µ1 ⊗ · · · ⊗ µn)

on X1 × · · · × Xn with respect to the weighted Hamming distance dc(x, y) =∑n
i=1 ci1xi 6=yi . Thus Theorem 4.8 yields precisely the Lipschitz formulation

of McDiarmid’s inequality discussed in Example 4.4.
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By using the Cauchy-Schwarz inequality as in Corollary 4.16, the tensoriza-
tion principle of Theorem 4.15 yields dimension-free concentration inequalities
in terms of weighted `1-metrics. In the next section, we will use a more refined
version of the argument that led to the transportation proof of McDiarmid’s
inequality to prove Talagrand’s concentration inequality, which is a crucial
improvement over McDiarmid’s inequality in terms of “one-sided differences”
that makes it possible to obtain lower tail bounds in many situations where
a direct application of the log-Sobolev machinery fails.

On the other hand, Corollary 4.16 does not capture dimension-free concen-
tration with respect to `2-metrics, such as we have seen in the case of Gaussian
concentration. It turns out that not every probability measure µ tensorizes
in an `2-fashion. Nonetheless, by using Theorem 4.15 in a different manner,
we will be able to completely characterize measures µ for which this is the
case using transportation cost inequalities. This will be discussed in detail in
section 4.4 below, and we postpone further discussion until then.

The remainder of this section is devoted to the proof of Theorem 4.15. The
first step in the proof will be based on the following elementary property.

Lemma 4.18 (Chain rule for relative entropy). Let M,N be probability
measures that define the joint distribution of random variables X,Y . Then

D(M{X,Y ∈ ·}||N{X,Y ∈ ·}) =
D(M{X ∈ ·}||N{X ∈ ·}) + EM[D(M{Y ∈ ·|X}||N{Y ∈ ·|X})].

Proof. It is readily verified for M� N that

dM{X,Y ∈ ·}
dN{X,Y ∈ ·}

=
dM{X ∈ ·}
dN{X ∈ ·}

dM{Y ∈ ·|X}
dN{Y ∈ ·|X}

by definition of the Radon-Nikodym density (this is the Bayes formula). Thus

D(M{X,Y ∈ ·}||N{X,Y ∈ ·}) =

EM

[
log

dM{X ∈ ·}
dN{X ∈ ·}

]
+ EM

[
EM

[
log

dM{Y ∈ ·|X}
dN{Y ∈ ·|X}

∣∣∣∣X]],
and the conclusion follows from the definition of relative entropy. ut

We now complete the proof of Theorem 4.15.

Proof (Theorem 4.15). The case n = 1 is trivial as the conclusion coincides
with the assumption. We will proceed with the proof by induction on n. That
is, let us suppose that the result has been proved for the case n = k. We
presently show that this implies the result holds also for the case n = k + 1.

Fix for the time being a probability measure ν on X1 × · · · × Xk+1. Let
ν(k) be the marginal of ν on X1 × · · · × Xk, and let νX1,...,Xk be a version of
the regular conditional probability P[Xk+1 ∈ ·|X1, . . . , Xk]. Then
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D(ν||µ1 ⊗ · · · ⊗ µk+1) = D(ν(k)||µ1 ⊗ · · · ⊗ µk) + Eν [D(νX1,...,Xk ||µk+1)]

by the chain rule for relative entropy. We can now apply the induction hy-
pothesis to the first term on the right and the assumption of the Theorem to
the second term on the right. In particular, by the induction hypothesis

2σ2D(ν(k)||µ1 ⊗ · · · ⊗ µk) ≥ inf
M∈C(µ1⊗···⊗µk,ν(k))

k∑
i=1

ϕ(EM[wi(Xi, Yi)]),

while by the assumption of the Theorem

2σ2D(νy1,...,yk ||µk+1) ≥ inf
M∈C(µk+1,νy1,...,yk )

ϕ(EM[wk+1(X,Y )]).

Fix ε > 0, and choose an ε-minimizer M(k) ∈ C(µ1 ⊗ · · · ⊗ µk, ν(k)) in the
first inequality and an ε-minimizer My1,...,yk ∈ C(µk+1, νy1,...,yk) in the second
inequality for every choice of y1, . . . , yk. Then we have shown that

2σ2D(ν||µ1 ⊗ · · · ⊗ µk+1) ≥
k∑
i=1

ϕ(EM(k) [wi(Xi, Yi)]) + ϕ(EM(k) [EMY1,...,Yk
[wk+1(Xk+1, Yk+1)]])− 2ε,

where we have used convexity of ϕ and that (Y1, . . . , Yk) ∼ ν(k) under M(k).
We now construct a coupling M ∈ C(µ1⊗· · ·⊗µk+1, ν) by sticking together

the couplings M(k) and My1,...,yk . To be precise, define M such that

M[X1, . . . , Xk, Y1, . . . , Yk ∈ · ] = M(k),

M[Xk+1, Yk+1 ∈ · |X1, . . . , Xk, Y1, . . . , Yk] = MY1,...,Yk .

It is readily verified that M ∈ C(µ1⊗· · ·⊗µk+1, ν), so by the above inequality

2σ2D(ν||µ1 ⊗ · · · ⊗ µk+1) ≥ inf
M∈C(µ1⊗···⊗µk+1,ν)

k+1∑
i=1

ϕ(EM[wi(Xi, Yi)])− 2ε.

As ε > 0 and ν were arbitrary, the proof for the case n = k+1 is complete. ut

Remark 4.19. There is a minor technical issue that we have ignored in the
above proof. We selected an ε-minimizer My1,...,yk independently for every
choice of y1, . . . , yk, but in order for the remaining computations to make
sense we must ensure that My1,...,yk depends on y1, . . . , yk in a measurable
fashion. However, this purely technical issue can be resolved using standard
measurable selection arguments in any standard Borel space.
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Problems

4.3 (Monge-Kantorovich duality: continuous case). We have stated
Theorem 4.13 in the setting where (X, d) is a separable metric space. However,
we only provided a proof for the case where X is a finite set. The goal of this
problem is to work through the approximations needed to deduce the general
result from the discrete case. To avoid confusion, define

T1(µ, ν) := inf
M∈C(µ,ν)

EM[d(X,Y )].

Our aim is to show that T1(µ, ν) = W1(µ, ν).

a. Prove that T1 is a metric on P1(X).
Hint: to prove T1(µ, ν) ≤ T1(µ, ρ) + T1(ν, ρ), choose ε-optimal couplings
M1,M2 in the definitions of T1(µ, ρ), T1(ν, ρ) and consider M[X,Y, Z ∈ · ]
defined by M[X,Y ∈ · ] = M1 and M[Z ∈ · |X,Y ] = M2[X ∈ · |Y ].

b. For every k ∈ N, construct disjoint sets Bkn ⊆ X as follows:

Bk1 = {x ∈ X : d(x, x1) < 2−k}, Bkn = {x ∈ X : d(x, xn) < 2−k}\
n−1⋃
i=1

Bki ,

where {xn : n ∈ N} is a countable dense subset of X. Choose an arbitrary
point ykn ∈ Bkn for every n, k. For any µ ∈ P1(X), we now define

µk =
∞∑
n=1

µ(Bkn) δykn .

Show that we have W1(µk, µ) ≤ T1(µk, µ) ≤ 2−k for all k ∈ N.

c. Show that the above construction can be modified such that µk has finite
(rather than countable) support for all k ∈ N, and T1(µk, µ)→ 0 as k →∞.

d. Conclude using the already proved discrete case of Theorem 4.13 that the
conclusion extends to the case where (X, d) is any separable metric space.

4.4 (Monge-Kantorovich duality on R). In many cases, explicit compu-
tation of the Wasserstein distance is impossible. However, there is an explicit
expression for the Wasserstein distance on the real line (R, | · |):

W1(µ, ν) =
∫ ∞
−∞
|F (t)−G(t)| dt,

where F (t) = Pµ[X ≤ t] and G(t) = Pν [X ≤ t] denote the cumulative
distribution functions of µ and ν, respectively.
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a. Show that for smooth functions f with compact support∫
f dµ = −

∫ ∞
−∞

f ′(t)F (t)dt.

b. Use the previous part to prove the explicit expression for W1(µ, ν).

c. By Monge-Kantorovich duality, we obtain

inf
M∈C(µ,ν)

EM[|X − Y |] =
∫ ∞
−∞
|F (t)−G(t)| dt.

Find an explicit construction for the optimal coupling M.
Hint: let U ∼ Uniform[0, 1]. Then F−1(U) ∼ µ and G−1(U) ∼ ν.

4.5 (Concentration for Markov chains). The transportation method can
be useful for obtaining concentration results for dependent random variables.
The goal of this problem is to develop the simplest possible example of this
kind. Let X1, . . . , Xn be a Markov chain with transition kernels

P[Xk ∈ A|X1, . . . , Xk−1] = Qk(Xk−1, A).

We will assume that the chain satisfies the Doeblin condition

‖Qk(x, ·)−Qk(x′, ·)‖TV ≤ 1− α for all x, x′

for some α > 0. Even though X1, . . . , Xn are not independent (we denote their
joint distribution as µ), we can still obtain a transportation cost inequality
by adapting the proof of the tensorization principle of Theorem 4.15.

a. Let ρ1, ρ2, ρ3 be probability distributions on the same space. Show that
there exists a joint distribution M of random variables X,Y, Z such that

M[X ∈ · ] = ρ1, M[Y ∈ · ] = ρ2, M[Z ∈ · ] = ρ3,

and such that

M[X 6= Y ] = ‖ρ1 − ρ2‖TV, M[Y 6= Z] = ‖ρ2 − ρ3‖TV.

Hint: this is similar to part a. of Problem 4.3.

b. Let ν be any distribution of random variables Y1, . . . , Yn. Construct the
probability measure M such that Zk = (Xk, X̃k, Yk), k ≤ n satisfy

M[Xk ∈ · |Z1, . . . , Zk−1] = Qk(Xk−1, A),

M[X̃k ∈ · |Z1, . . . , Zk−1] = Qk(Yk−1, A),
M[Yk ∈ · |Z1, . . . , Zk−1] = ν(Yk ∈ · |Y1, . . . , Yk−1),

and
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M[Xk 6= X̃k|Z1, . . . , Zk−1] = ‖Qk(Xk−1, ·)−Qk(Yk−1, ·)‖TV,

M[X̃k 6= Yk|Z1, . . . , Zk−1] = ‖Qk(Yk−1, ·)− ν(Yk ∈ · |Y1, . . . , Yk−1)‖TV.

Show that

M[Xk 6= Yk|Z1, . . . , Zk−1]

≤
√

1
2D(ν(Yk ∈ · |Y1, . . . , Yk−1)||Qk(Yk−1, ·)) + (1− α)1Xk−1 6=Yk−1 .

c. Now adapt the proof of Theorem 4.15 to show that

inf
M∈C(µ,ν)

α√
n

n∑
k=1

M[Xk 6= Yk] ≤
√

1
2D(ν||µ) for all ν,

and deduce an extension of McDiarmid’s inequality in the present setting
(in the case of equal weights). The independent case is recovered if α = 1.

4.3 Talagrand’s concentration inequality

Up to this point, the metric perspective and the transportation method did
not yield any new results beyond a complementary point of view on the con-
centration phenomenon. In the present section, however, we will see that the
metric approach to concentration allows us to prove new concentration results
that were not accessible by the methods we have developed so far.

Let X1, . . . , Xn be independent. To understand the issue at hand, let us
once more consider McDiarmid’s inequality. One way to phrase it is as follows:

‖Dif‖∞ ≤ ci for 1 ≤ i ≤ n =⇒

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ e−2t2/
Pn
i=1 c

2
i for t ≥ 0.

We proved this result in three different ways: using the martingale method, the
transportation method, and the entropy method. The latter method, however,
was able to produce much stronger results in terms of one-sided differences.
For example, we obtained in Theorem 3.18 the one-sided bound

D−i f(x) ≤ ci(x) for 1 ≤ i ≤ n =⇒

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ e−t
2/4‖

Pn
i=1 c

2
i ‖∞ for t ≥ 0.

This is often a crucial improvement over McDiarmid’s inequality. Unfortu-
nately, while McDiarmid’s inequality is a subgaussian inequality (it gives both
an upper and a lower tail bound by applying the bound to f and −f), the
one-sided result obtained by the entropy method can only give an upper tail
bound and not a lower tail bound in terms of the one-sided differences D−i f
(as D−i (−f) 6= −D−i f). There are many situations in which one can control



4.3 Talagrand’s concentration inequality 91

D−i f only (cf. Example 3.19), and we have not yet developed any tool that
can yield the subgaussian property in such cases.

The aim of this section is to investigate the one-sided difference inequality
from the perspective of Lipschitz concentration. What type of Lipschitz prop-
erty does the one-sided bound correspond to? For McDiarmid’s inequality, the
property ‖Di‖∞ ≤ ci for all i is equivalent to the Lipschitz property

f(x)− f(y) ≤
n∑
i=1

ci1xi 6=yi for all x, y.

If we relax the assumption to D−i (x) ≤ ci(x) for all i, x, it is therefore natural
to consider the analogous “one-sided Lipschitz property”

f(x)− f(y) ≤
n∑
i=1

ci(x)1xi 6=yi for all x, y.

It is easily seen that the latter property does indeed imply D−i f(x) ≤ ci(x).
However, the converse is not true: the one-sided Lipschitz property is strictly
stronger than control on the one-sided gradient. While the two assumptions
can often be verified in the same manner in applications, the one-sided gra-
dient bound is not naturally expressed as a Lipschitz property, while the
one-sided Lipschitz property is not naturally expressed as a gradient.

We have thus arrived at a fork in the road where the perspective of the
present chapter diverges from the perspective developed in the previous chap-
ters. To exploit the one-sided Lipschitz property, we will use the transportation
method to derive an important concentration inequality due to Talagrand. The
remarkable aspect of this result is that it yields the full subgaussian property
(i.e., an upper and lower tail bound) even though only a one-sided assumption
was imposed. This makes it possible to obtain lower tails in many examples
that were out of reach of the theory developed in the previous chapter.

Theorem 4.20 (Talagrand). Let X1, . . . , Xn be independent, and suppose

f(x)− f(y) ≤
n∑
i=1

ci(x)1xi 6=yi for all x, y.

Then f(X1, . . . , Xn) is ‖
∑n
i=1 c

2
i ‖∞-subgaussian.

Remark 4.21. As the one-sided Lipschitz assumption implies D−i f(x) ≤ ci(x),
the upper tail bound obtained from Talagrand’s inequality requires a slightly
stronger assumption than the upper tail bound obtained from the one-sided
difference inequality of Theorem 3.18. As was emphasized above, the key im-
provement over the previous chapter is the lower tail bound. On the other
hand, we will see in the proof of Theorem 4.20 that the lower tail bound
can be proved with variance proxy E[

∑n
i=1 c

2
i ], which is even better than the



92 4 Lipschitz concentration and transportation inequalities

bound ‖
∑n
i=1 c

2
i ‖∞ given in the statement given above (in fact, this variance

proxy coincides with the variance bound of Corollary 2.4). Thus the statement
of Theorem 4.20 can be somewhat improved both in the upper and lower tails,
but the present (very useful) statement is the most compact form of the result.

To illustrate Talagrand’s inequality, let us revisit Example 3.19.

Example 4.22 (Random matrices). We recall the setting of Examples 2.5 and
3.19. Let M be an n×n symmetric matrix where {Mij : i ≥ j} are i.i.d. sym-
metric Bernoulli random variables P[Mij = ±1] = 1

2 . We denote by λmax(M)
the largest eigenvalue of M , and by vmax(M) a corresponding eigenvector.

In Example 2.5 we computed the one-sided differences D−ijλmax(M). How-
ever, the one-sided Lipschitz property can be verified in precisely the same
manner. In particular, repeating the computation of Example 2.5, we obtain

λmax(M)− λmax(M ′) ≤ 2
∑
i≥j

vmax(M)ivmax(M)j(Mij −M ′ij)

≤ 4
∑
i≥j

|vmax(M)i| |vmax(M)j |1Mij 6=M ′ij .

The function M 7→ λmax(M) therefore satisfies the one-sided Lipschitz prop-
erty with weights cij(M) = 4|vmax(M)i||vmax(M)j |. It now follows imme-
diately from Talagrand’s concentration inequality that the random variable
λmax(M) is 16-subgaussian. Thus we have finally obtained a full subgaussian
counterpart of the variance bound obtained in Example 2.5.

The one-sided Lipschitz assumption of Talagrand’s concentration inequal-
ity corresponds to a (local) Lipschitz property with respect to a weighted
Hamming distance. When one is dealing with real-valued random variables,
it is often most convenient to consider Lipschitz properties with respect to
the usual Euclidean distance. While one can obtain such a result for specific
distributions (for example, in the Gaussian case), it is not generally true that
distributions in Rn satisfy a concentration property with respect to the Eu-
clidean distance. However, for convex functions, such a concentration property
turns out to hold for any family of independent bounded random variables,
regardless of the specific properties of their distributions. This simple obser-
vation is a very useful consequence of Talagrand’s inequality.

Corollary 4.23. Let X1, . . . , Xn be independent with values in [0, 1]. Then
f(X1, . . . , Xn) is ‖‖∇f‖2‖∞-subgaussian for every convex function f .

Proof. The first-order condition for convexity implies

f(x)− f(y) ≤ ∇f(x) · (x− y) for all x, y.

As |xi − yi| ≤ 1 by assumption, we obtain
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f(x)− f(y) ≤
n∑
i=1

∣∣∣∣∂f(x)
∂xi

∣∣∣∣1xi 6=yi .
The result follows immediately from Theorem 4.20. ut

We now turn to the proof of Theorem 4.20. We will attempt to follow
as closely as possible the transportation proof of McDiarmid’s inequality in
Example 4.17. Of course, unlike the weighted Hamming distance, the quantity∑
ci(x)1xi 6=yi that appears in the one-sided Lipschitz property is not a metric:

it is not even symmetric in x, y! Remarkably, this turns out to be unimportant:
we will prove a transportation cost inequality for an asymmetric notion of
Wasserstein “distance” that captures the one-sided Lipschitz property.

Theorem 4.24 (Marton). Define the asymmetric “distance”

d2(µ, ν) := inf
M∈C(µ,ν)

sup
EM[

Pn
i=1 ci(X)2]≤1

EM

[
n∑
i=1

ci(X)1Xi 6=Yi

]
.

between probability measures µ, ν on X1 × · · · × Xn. Then

d2(ν, µ1 ⊗ · · · ⊗ µn) ≤
√

2D(ν||µ1 ⊗ · · · ⊗ µn),

d2(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

2D(ν||µ1 ⊗ · · · ⊗ µn)

for any probability measures ν and µ1 ⊗ · · · ⊗ µn and X1 × · · · × Xn.

With this asymmetric transportation cost inequality in hand, the remain-
der of the proof follows exactly as in the previous sections.

Proof (Theorem 4.20). Suppose f satisfies the one-sided Lipschitz property

f(x)− f(y) ≤
n∑
i=1

ci(x)1xi 6=yi .

Let µ := µ1 ⊗ · · · ⊗ µn be a product and let ν be any probability. Then

Eνf −Eµf = inf
M∈C(ν,µ)

EM[f(X)− f(Y )] ≤ Eν

[∑n
i=1 c

2
i

]1/2
d2(ν, µ),

Eµf −Eνf = inf
M∈C(µ,ν)

EM[f(X)− f(Y )] ≤ Eµ

[∑n
i=1 c

2
i

]1/2
d2(µ, ν).

We therefore have by Theorem 4.24

|Eνf −Eµf | ≤
√

2 ‖
∑n
i=1 c

2
i ‖∞D(ν||µ),

and it follows precisely as in the proof of Theorem 4.8 that f(X1, . . . , Xn) is
‖
∑n
i=1 c

2
i ‖∞-subgaussian whenever X ∼ µ1 ⊗ · · · ⊗ µn. ut
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Remark 4.25. We have used Theorem 4.8 to deduce the subgaussian property,
which by its definition controls both the upper and lower tail probabilities.
The proof of Theorem 4.8, however, implies also a one-sided result: given f, µ,

log Eµ[eλ{f−Eµf}] ≤ λ2σ2

2
for all λ ≥ 0

if and only if
Eνf −Eµf ≤

√
2σ2D(ν||µ) for all ν.

As λ ≥ 0 here, this characterizes the upper tail; the lower tail is obtained by
applying this result to −f . Now note that there is an asymmetry in the proof
of Theorem 4.20: for the upper tail, the best we can do is

Eνf −Eµf ≤
√

2 ‖
∑n
i=1 c

2
i ‖∞D(ν||µ) for all ν;

for the lower tail, however, we have an even better bound

Eµf −Eνf ≤
√

2 Eµ[
∑n
i=1 c

2
i ]D(ν||µ) for all ν.

Thus the proof of Theorem 4.20 already yields a sharper conclusion: for t ≥ 0

P[f(X) ≥ Ef(X) + t] ≤ e−t
2/2‖

P
i c

2
i ‖∞ ,

P[f(X) ≤ Ef(X)− t] ≤ e−t
2/2E[

P
i ci(X)2]

when {Xi} are independent and f satisfies the one-sided Lipschitz property.

The rest of this section is devoted to the proof of Theorem 4.24. Following
the logic of the previous section, the proof will consist of two parts. First, we
will use a tensorization principle to reduce the problem to the one-dimensional
case. Then, we will give a direct proof of Theorem 4.24 in one dimension, that
is, we will prove an asymmetric analogue of Pinsker’s inequality.

In order to understand how to apply tensorization, let us begin by stating
a simple reformulation of the asymmetric distance d2.

Lemma 4.26. For any µ, ν on X1 × · · · × Xn, we have

d2(µ, ν) =

[
inf

M∈C(µ,ν)

n∑
i=1

EM[M[Xi 6= Yi|X]2]

]1/2

.

Proof. This follows immediately from

EM

[
n∑
i=1

ci(X)1Xi 6=Yi

]
= EM

[
n∑
i=1

ci(X) M[Xi 6= Yi|X]

]

and Cauchy-Schwarz for the inner product 〈c, c̃〉 = EM[
∑n
i=1 ci(X)c̃i(X)]. ut
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This simple reformulation of the definition of d2 is already very close to the
form of the tensorization principle that we proved in Theorem 4.15. In fact,
only a minor modification is needed in the proof to establish the following.

Proposition 4.27. Let µi be a probability measure on Xi such that

inf
M∈C(µi,ν)

EM[M[X 6= Y |X]2] ≤ 2D(ν||µi) for all ν

holds for every i = 1, . . . , n. Then we have

inf
M∈C(µ1⊗···⊗µn,ν)

n∑
i=1

EM[M[Xi 6= Yi|X]2] ≤ 2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν.

The same conclusion follows if the infimum in the first inequality is replaced
by M ∈ C(ν, µi) and in the second inequality by M ∈ C(ν, µ1 ⊗ · · · ⊗ µn).

Proof. We follow closely the proof of Theorem 4.15. Suppose the conclusion
has been proved for the case n = k; it suffices to show that it holds for the
case n = k + 1. To this end, define probability measures ν, ν(k), νy1,...,yk as in
the proof of Theorem 4.15, and fix ε > 0. By the induction hypothesis, we can
find M(k) ∈ C(µ1⊗ · · · ⊗µk, ν(k)) and My1,...,yk ∈ C(µk+1, νy1,...,yk) such that

2D(ν(k)||µ1 ⊗ · · · ⊗ µk) ≥
k∑
i=1

EM(k) [M(k)[Xi 6= Yi|X]2]− ε,

2D(νy1,...,yk ||µk+1) ≥ EMy1,...,yk
[My1,...,yk [X 6= Y |X]2]− ε.

Define M ∈ C(µ1 ⊗ · · · ⊗ µk+1, ν) as in the proof of Theorem 4.15. Then we
obtain using the chain rule of relative entropy and the definition of M

2D(ν||µ1 ⊗ · · · ⊗ µk+1) ≥
k∑
i=1

EM[M[Xi 6= Yi|X1, . . . , Xk]2]− 2ε

+ EM[M[Xk+1 6= Yk+1|Y1, . . . , Yk, X]2].

Now note that as MY1,...,Yk [Xk+1 ∈ ·] = µk+1, evidently Xk+1 is independent
of {Xi, Yi : i ≤ k}. Thus M[Xi 6= Yi|X1, . . . , Xk] = M[Xi 6= Yi|X], so

2D(ν||µ1 ⊗ · · · ⊗ µk+1) ≥
k+1∑
i=1

EM[M[Xi 6= Yi|X]2]− 2ε

using Jensen. Taking the infimum over M and letting ε ↓ 0 yields the claim.
The case where ν and µ are reversed corresponds to reversing the roles of

X and Y in the above proof. Thus the only change in the proof is that we
must now show M[Xi 6= Yi|Y1, . . . , Yk] = M[Xi 6= Yi|Y ]. This follows as Yk+1

is conditionally independent of Xi given Y1, . . . , Yk by the definition of M. ut
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By virtue of Proposition 4.27, it remains only to prove Theorem 4.24 in the
case n = 1. To this end, we will first prove an analogue of Monge-Kantorovich
duality in this setting by adapting the computations in Example 4.14.

Lemma 4.28. Suppose that µ ∼ ν are probability measures on X. Then

inf
M∈C(µ,ν)

EM[M[X 6= Y |X]2]
1
2 = sup

f≥0
µ(f2)≤1

{Eµf−Eνf} =
[ ∫ (

1− dν
dµ

)2

+

dµ

] 1
2

.

Proof. It is easily seen by Cauchy-Schwarz that

sup{Eµf −Eνf} = sup
∫ (

1− dν

dµ

)
f dµ =

[ ∫ (
1− dν

dµ

)2

+

dµ

] 1
2

,

where the supremum taken is over f ≥ 0, µ(f2) ≤ 1. Moreover,

sup{Eµf −Eνf} = inf
M∈C(µ,ν)

sup EM[f(X)− f(Y )]

≤ inf
M∈C(µ,ν)

sup EM[f(X)1X 6=Y ]

= inf
M∈C(µ,ν)

EM[M[X 6= Y |X]2]
1
2 .

It remains to prove that the inequality is attained. To this end, construct
precisely the same coupling M ∈ C(µ, ν) as in Example 4.14. Then

M[X 6= Y |X] =
(

1− dν

dµ
(X)

)
+

,

and it follows immediately that EM[M[X 6= Y |X]2] =
∫

(1− dν
dµ )2+dµ. ut

We can now complete the proof of Theorem 4.24.

Proof (Theorem 4.24). By Proposition 4.27, it suffices to consider the case
n = 1. That is, we must prove for any probability measures µ, ν on X

d2(ν, µ) ≤
√

2D(ν||µ), d2(µ, ν) ≤
√

2D(ν||µ)

(this is, in essence, an asymmetric analogue of Pinsker’s inequality). It suffices
to assume ν � µ, as otherwise D(ν||µ) = ∞ and the result is trivial. By
a simple perturbation argument, we can assume that µ ∼ ν (replace ν by
dνε = (1 + ε)−1( dνdµ + ε)dµ and let ε ↓ 0 at the end of the proof).

The proof is ultimately a calculus exercise. It is not difficult to show that

x log x− x+ 1− (1− x)2

2
≥ 0, − log x− 1 + x− (1− x)2

2
≥ 0

for 0 ≤ x ≤ 1 (note that the inequalities hold for x = 1, and the left-hand
sides in these inequalities are decreasing functions for 0 ≤ x ≤ 1). Thus
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x log x− x+ 1 = (x log x− x+ 1)1x≤1 + x(− log x−1 − 1 + x−1)1x>1

≥
(1− x)2+ + x(1− x−1)2+

2
for all x ≥ 0. We can therefore estimate

d2(µ, ν)2 + d2(ν, µ)2 =
∫ (

1− dν

dµ

)2

+

dµ+
∫ (

1− dµ

dν

)2

+

dν

dµ
dµ

≤ 2
∫ (

dν

dµ
log

dν

dµ
− dν

dµ
+ 1
)
dµ = 2D(ν||µ).

This evidently implies the claim. ut

Problems

4.6 (Rademacher processes). Let ε1, . . . , εn be independent symmetric
Bernoulli random variables P[εi = ±1] = 1

2 , and let T ⊆ Rn. Define

Z = sup
t∈T

n∑
k=1

εktk, σ2 = 4 sup
t∈T

n∑
k=1

t2k.

Show that Z is σ2-subgaussian (cf. Problems 2.2, 3.7, and 3.14).

4.7 (Balls and bins). Suppose that m balls are thrown independently and
uniformly at random into n bins. Let Z be the number of empty bins. What
can we say about the magnitude and fluctuations of the random variable Z?

a. Show that E[Z] = n(1− 1/n)m.

b. Use McDiarmid’s inequality to show that Z is m/4-subgaussian.

The bound on the fluctuations obtained by McDiarmid’s inequality is coun-
terintuitive: E[Z] decreases with m but the variance proxy in McDiarmid’s
inequality increases with m! Using Talagrand’s concentration inequality, we
can obtain a better bound on the fluctuations of Z.

c. Use Talagrand’s inequality to show that Z is n ∧m-subgaussian.
Hint: let fm(b1, . . . , bm) be the number of nonempty bins if we put ball
i in bin bi, and note that fm(b1, . . . , bm) =

∑m
i=1 1bi 6=bj for j<i. Show that

fm(b) ≤ f2m(b′1, b1, . . . , b
′
m, bm) ≤ fm(b′) +

∑m
i=1 1bi 6=b′i1bi 6=bj for j<i.

4.8 (Travelling salesman problem). Let X1, . . . , Xn be i.i.d. points that
are uniformly distributed in the unit square [0, 1]2. We think of Xi as the
location of city i. The goal of the travelling salesman problem is to find a tour
through all n cities with the shortest possible length. We denote by

Ln := min
σ
{‖Xσ(1) −Xσ(2)‖+ ‖Xσ(2) −Xσ(3)‖+ · · ·+ ‖Xσ(n) −Xσ(1)‖}

the length of the shortest tour, where the minimum is taken over all permu-
tations of {1, . . . , n}. Let us begin by investigating the magnitude of Ln.
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a. Show that E[Ln] �
√
n.

Hint: argue that Ln ≥
∑n
k=1 minl 6=k ‖Xk − Xl‖ for the lower bound and

Ln ≤ Ln−1 + 2 mink<n ‖Xn −Xk‖ for the upper bound.

b. Use McDiarmid’s inequality to show that Ln is 2n-subgaussian.

The bound using McDiarmid’s inequality is terrible: it yields an upper bound
on the magnitude of the fluctuations that is of the same order as the mean.
Thus McDiarmid’s inequality does not even show that Ln concentrates around
its mean. Using Talagrand’s inequality, we will be able to obtain a much
sharper concentration result. This requires some geometric insight.

c. Let v = (0, a) and w = (b, 0) be corners of a right-angled triangle T =
conv{0, v, w}. Show that ‖v − x‖2 + ‖x− w‖2 ≤ ‖v − w‖2 for any x ∈ T .

d. Prove the following: for any x1, . . . , xn ∈ T , there is a permutation σ such
that ‖v − xσ(1)‖2 +

∑n−1
i=1 ‖xσ(i) − xσ(i+1)‖2 + ‖xσ(n) − w‖2 ≤ ‖v − w‖2.

Hint: argue by induction. Suppose the result is true for all right-angled
triangles S and x1, . . . , xn−1 ∈ S. Divide T into two right-angled triangles
by drawing a line from the origin to the hypothenuse. If both triangles
contain points, then use the induction hypothesis to conclude. Otherwise,
continue subdividing until the induction hypothesis applies.

e. Conclude that for any points x1, . . . , xn ∈ [0, 1]2, there exists a permutation
σ such that ‖xσ(1)−xσ(2)‖2 + ‖xσ(2)−xσ(3)‖2 + · · ·+ ‖xσ(n)−xσ(1)‖2 ≤ 4.

We are now going to use this geometric insight to analyze the length of trav-
elling salesman tours. Recall that a tour through a set of points x1, . . . , xn is
defined by a permutation σ of {1, . . . , n}. The length of a given tour will be
denoted as ln(x, σ), so we have Ln := minσ ln(X,σ).

f. Let x = {x1, . . . , xn} and y = {y1, . . . , yn} be sets of points with x∩y 6= ∅.
Let σ be a tour of x and τ be a tour of y. Show that there exists a tour
ρ of x ∪ y such that l2n(x ∪ y, ρ) ≤ ln(y, τ) + 2

∑n
i=1 1xi 6∈ydi(x, σ), where

di(x, σ) is the distance between xi and the previous point in the tour σ.
Hint: imagine σ and τ are two partially overlapping hiking trails marked
red and blue. Your aim is to systematically explore the union of the trails.
To this end, perform the following walk: start walking the blue trail; if at
any point the red trail diverges from the blue trail, walk down the red trail
until just before it hits the blue trail again, then walk back to where you
diverged from the blue trail and continue down the blue trail. While this
walk is not a tour (as some points are visited twice), you can “straighten it
out” into a genuine tour without increasing its length.

g. Fix for every x1, . . . , xn ∈ [0, 1]2 a tour σx as in part e. above. Show that
minσ ln(x, σ) ≤ minσ ln(y, σ) +

∑n
i=1 2di(x, σx)1xi 6=yi for all x, y ∈ [0, 1]2n.

h. Conclude that Ln is 16-subgaussian for every n ≥ 1.
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4.9 (Convexity and Euclidean concentration). Corollary 4.23 shows that
convex Lipschitz functions of bounded independent variables concentrate in
the same manner as Lipschitz functions of Gaussian random variables. How-
ever, in the Gaussian case, convexity is not needed. The goal of this problem
is to show that convexity is in fact essential in the setting of Corollary 4.23.

Let {Xk : k ≥ 1} be i.i.d. symmetric Bernoulli variables P[Xi = ±1] = 1
2 .

Consider for each n ≥ 1 the function fn(x) = d(x,An) on Rn, where

An =

{
y ∈ {−1, 1}n :

n∑
i=1

yi ≤ 0

}

and d(x,A) := infy∈A ‖x− y‖. Note that the function fn(x) is not convex.

a. Show that fn is 1-Lipschitz with respect to the Euclidean distance on Rn.

b. Show that med[fn(X1, . . . , Xn)] = 0.

c. Show that if x ∈ {−1, 1}n satisfies
∑n
i=1 xi ≥

√
n, then

√
n ≤

n∑
i=1

(xi − yi) ≤
n∑
i=1

|xi − yi|2 for all y ∈ A.

In particular, this implies fn(x) ≥ n1/4.

d. Show that
lim inf
n→∞

P[fn(X1, . . . , Xn) ≥ n1/4] > 0.

Argue that this implies that fn(X1, . . . , Xn) cannot be subgaussian with
variance proxy independent of the dimension n.

e. Show that if g is convex and 1-Lipschitz with respect to the Euclidean
distance on Rn, then g(X1, . . . , Xn) is 4-subgaussian (independent of di-
mension n). In view of the above, convexity is evidently essential.

4.4 Dimension-free concentration and the T2-inequality

In the previous sections we have obtained a complete characterization of the
concentration of Lipschitz functions on a fixed metric space in terms of trans-
portation cost inequalities (Theorem 4.8), and we have developed a tensoriza-
tion principle for such inequalities (Theorem 4.15). Together, these two prin-
ciples allow us to deduce concentration of independent random variables in
the following manner. Suppose that Xi ∼ µi on (Xi, di) are such that

f(Xi) is 1-subgaussian when |f(x)− f(y)| ≤ di(x, y),

and that X1, . . . , Xn are independent. Then we have for any
∑n
i=1 c

2
i ≤ 1
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f(X1, . . . , Xn) is 1-subgaussian when |f(x)− f(y)| ≤
n∑
i=1

cidi(xi, yi).

This suffices to recover, for example, McDiarmid’s inequality.
However, in the previous chapters, we have seen examples that exhibit

substantially better concentration properties than is suggested by this general
principle. For example, let Xi ∼ N(0, 1) on Xi = R. Then the Gaussian
concentration property states not only that each Xi exhibits the Lipschitz
concentration property with respect to the metric di(x, y) = |x− y|, but also

f(X1, . . . , Xn) is 1-subgaussian when |f(x)− f(y)| ≤

[
n∑
i=1

di(xi, yi)2
] 1

2

.

Thus we even have dimension-free concentration for independent Gaussian
variables with respect to the Euclidean distance d(x, y) = [

∑
i di(xi, yi)

2]1/2

rather than just the weighted `1-distance dc(x, y) =
∑
i cidi(xi, yi). This is a

much stronger conclusion: indeed, any 1-Lipschitz function with respect to dc
is 1-Lipschitz with respect to d, but a function that is 1-Lipschitz with respect
to d may not be better than

√
n-Lipschitz with respect to dc.

At first sight, the fact that we do not capture concentration with respect
to the Euclidean distance might appear to be an inefficiency in our approach.
One might hope that the conclusion of Theorem 4.15 can be improved to yield
a statement of the following form: if

W1(µi, ν) ≤
√

2σ2D(ν||µi) for all ν

holds for each µi on (Xi, di), then for any n ≥ 1

W1(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν

holds for µ1 ⊗ · · · ⊗ µn on (X1 × · · · × Xn, [
∑n
i=1 d

2
i ]

1/2). However, this con-
clusion is false: in general, it is not true that a distribution that exhibits the
Lipschitz concentration property in one dimension will exhibit dimension-free
concentration with respect to the Euclidean distance. For example, we have
seen in Problem 4.9 that this conclusion fails already for symmetric Bernoulli
variables. Thus dimension-free Euclidean concentration is a strictly stronger
property than is guaranteed by Theorem 4.8. In this section, we will show that
the latter property can nonetheless be characterized completely by means of
a stronger form of the transportation cost inequality.

In order to develop improved concentration results, we must first identify
where lies the inefficiency of our previous tensorization argument. Recall that

W1(µi, ν) ≤
√

2σ2D(ν||µi) for all ν, i

implies, using Theorem 4.15 with ϕ(x) = x2 and wi(x, y) = di(x, y), that
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inf

M∈C(µ1⊗···⊗µn,ν)

n∑
i=1

EM[di(Xi, Yi)]2
]1/2

≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn).

The problem with this expression is that the left-hand side is not a Wasserstein
distance. We resolved this problem in Corollary 4.16 by applying the Cauchy-
Schwarz inequality. Such a brute-force solution can only yield a transportation
cost inequality in terms of weighted `1-distance, however. On the other hand,
note that the quantity on the left-hand side is already tantalizingly close to
a Euclidean transportation cost inequality: if only EM[di(Xi, Yi)]2 could be
replaced by EM[di(Xi, Yi)2], we would immediately deduce

W1(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

2σ2D(ν||µ1 ⊗ · · · ⊗ µn) for all ν

on (X1 × · · · ×Xn, [
∑n
i=1 d

2
i ]

1/2) by Jensen’s inequality. Given the technology
that we have already developed, can easily engineer this situation by starting
from a slighly stronger inequality in one dimension.

Definition 4.29 (Quadratic Wasserstein metric). The quadratic Wasser-
stein metric for probability measures µ, ν on a metric space (X, d) is

W2(µ, ν) := inf
M∈C(µ,ν)

√
E[d(X,Y )2].

Corollary 4.30 (T2-inequality). Suppose that the probability measures µi
on (Xi, di) satisfy the quadratic transportation cost (T2) inequality

W2(µi, ν) ≤
√

2σ2D(ν||µi) for all ν.

Then we have

W2(µ1 ⊗ · · · ⊗ µn, ν) ≤
√

2σ2D(ν|µ1 ⊗ · · · ⊗ µn) for all ν

on (X1 × · · · × Xn, [
∑n
i=1 d

2
i ]

1/2).

Proof. Apply Theorem 4.15 with ϕ(x) = x and wi(x, y) = di(x, y)2. ut

By Jensen’s inequality, we evidently have

W1(µ, ν) ≤ inf
M∈C(µ,ν)

EM[d(X,Y )] ≤ inf
M∈C(µ,ν)

√
EM[d(X,Y )2] = W2(µ, ν).

The T2-inequality is therefore a stronger assumption than the transportation
cost inequalities (or T1-inequalities) that we have considered so far. On the
other hand, combining Corollary 4.30 and Theorem 4.8 shows that if each
measure µi satisfies a T2-inequality, then the product measure µ1 ⊗ · · · ⊗ µn
satisfies the Lipschitz concentration property with respect to the Euclidean
distance d = [

∑
i d

2
i ]

1/2, which is a much stronger conclusion than could be
deduced from the T1-inequality. We have therefore obtained a sufficient con-
dition for dimension-free Euclidean concentration.
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We could verify at this point that the Gaussian distribution satisfies the
T2-inequality, so that the improved tensorization principle of Corollary 4.30
is sufficiently strong to capture Gaussian concentration (see Problems 4.10
and 4.11). This explains why the Gaussian distribution exhibits better con-
centration properties than were predicted by Corollary 4.16. Instead, we will
presently prove a remarkable general fact: the T2-inequality is not only suffi-
cient, but also necessary for dimension-free Euclidean concentration to hold!

Theorem 4.31 (Gozlan). Let µ be a probability measure on a Polish space
(X, d), and let {Xi} be i.i.d. ∼ µ. Denote by dn(x, y) := [

∑n
i=1 d(xi, yi)2]1/2

the Euclidean metric on Xn. Then the following are equivalent:

1. µ satisfies the T2-inequality on (X, d):

W2(µ, ν) ≤
√

2σ2D(ν||µ) for all ν.

2. µ⊗n satisfies the T1-inequality on (Xn, dn) for every n ≥ 1:

W1(µ⊗n, ν) ≤
√

2σ2D(ν||µ⊗n) for all ν, n ≥ 1.

3. There is a constant C such that

P[f(X1, . . . , Xn)−Ef(X1, . . . , Xn) ≥ t] ≤ Ce−t
2/2σ2

for every n ≥ 1, t ≥ 0 and 1-Lipschitz function f on (Xn, dn).

Let us emphasize that this striking result is quite unexpected. While The-
orem 4.8 shows that Lipschitz concentration on a fixed metric space is char-
acterized by the T1-inequality, the necessity in Theorem 4.8 has little bearing
on the behavior of the quadratic Wasserstein metric. The necessity of the
T2-inequality in Theorem 4.31 has a different origin: it is a consequence of a
classical large deviation result in probability theory.

Theorem 4.32 (Sanov). Let µ be a probability measure on a Polish space
X, and let {Xi} be i.i.d. ∼ µ. Let O be a set of probability measures on X that
is open for the weak convergence topology. Then

lim inf
n→∞

1
n

log P

[
1
n

n∑
k=1

δXk ∈ O

]
≥ − inf

ν∈O
D(ν||µ).

Remark 4.33. We have only stated half of Sanov’s theorem: a matching upper
bound can be proved also (see Problem 4.12 below). However, only the lower
bound will be needed in the proof of Theorem 4.31.

Proof. Fix ν ∈ O such that D(ν||µ) < ∞. Let f = dν/dµ, and let Q be the
probability under which {Xi} are i.i.d. ∼ ν. As f > 0 ν-a.s., we can estimate
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P

[
1
n

n∑
k=1

δXk ∈ O

]
≥ P

[
1
n

n∑
k=1

δXk ∈ O,
n∏
k=1

f(Xk) > 0

]

= EQ

[
1 1
n

Pn
k=1 δXk∈O

n∏
k=1

f(Xk)−1

]

≥ e−n{
R

log f dν+ε}Q

[
1
n

n∑
k=1

δXk ∈ O,
1
n

n∑
k=1

log f(Xk) ≤
∫

log f dν + ε

]
.

Note that
∫

log f dν = D(ν||µ), while we have by the law of large numbers
1
n

∑n
k=1 log f(Xk)→

∫
log f dν and 1

n

∑n
k=1 δXk → ν weakly Q-a.s. Thus the

probability in the last line converges to one, and it follows readily that

lim inf
n→∞

1
n

log P

[
1
n

n∑
k=1

δXk ∈ O

]
≥ −D(ν||µ)− ε.

It remains to let ε ↓ 0 and take the supremum over all ν ∈ O. ut

We are now ready to prove Theorem 4.31. The proof of a few technical
results that will be needed along the way is deferred to the end of this section.

Proof (Theorem 4.31). We already proved 1 ⇒ 2 in Corollary 4.30, while
the implication 2 ⇒ 3 with C = 1 follows from Theorem 4.8 and the usual
Chernoff bound. It therefore remains to prove 3⇒ 1.

We will need the following three facts that will be proved below.

1. Wasserstein law of large numbers: E
[
W2

(
1
n

∑n
k=1 δXk , µ

)]
→ 0 as n→∞.

2. Lower-semicontinuity: Ot := {ν : W2(ν, µ) > t} is an open set.

3. Smoothness: gn : (x1, . . . , xn) 7→W2

(
1
n

∑n
k=1 δxk , µ

)
is n−1/2-Lipschitz.

The first two claims are essentially technical exercises: 1
n

∑n
k=1 δXk converges

weakly to µ by the law of large numbers, so the only difficulty is to verify that
the convergence holds in the slightly stronger sense of the quadratic Wasser-
stein distance; and lower-semicontinuity of W2 is an elementary technical fact.
The third claim is a matter of direct computation, which we will do below.
Let us presently take these claims for granted and complete the proof.

As Ot is open, we can apply Sanov’s theorem to conclude that

− inf
ν∈Ot

D(ν||µ) ≤ lim inf
n→∞

1
n

log P[gn(X1, . . . , Xn) > t].

As the function gn is n−1/2-Lipschitz, however, we have

P[gn(X1, . . . , Xn) > t] ≤ Ce−n(t−E[gn(X1,...,Xn)])2/2σ2

by the dimension-free concentration assumption. This implies
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− inf
ν∈Ot

D(ν||µ) ≤ − lim sup
n→∞

(t−E[gn(X1, . . . , Xn)])2

2σ2
= − t2

2σ2

using the Wasserstein law of large numbers. Thus we have proved√
2σ2D(ν||µ) ≥ t whenever W2(µ, ν) > t.

The T2-inequality follows by choosing t = W2(µ, ν)− ε and letting ε ↓ 0. ut

It remains to establish the three claims used in the proof. We begin with the
Lipschitz property of gn, which follows essentially from the triangle inequality.

Lemma 4.34. gn : x 7→W2

(
1
n

∑n
k=1 δxk , µ

)
is n−1/2-Lipschitz on (Xn, dn).

Proof. Let M ∈ C
(

1
n

∑n
i=1 δxi , µ

)
. If we define µi = M[Y ∈ · |X = xi], then

EM[f(X,Y )] =
1
n

n∑
i=1

∫
f(xi, y)µi(dy),

1
n

n∑
i=1

µi = µ.

Conversely, every family of measures µ1, . . . , µn with 1
n

∑n
i=1 µi = µ defines a

coupling M ∈ C
(

1
n

∑n
i=1 δxi , µ

)
in this manner. We can therefore estimate

W2

(
1
n

∑n
i=1 δxi , µ

)
−W2

(
1
n

∑n
i=1 δx̃i , µ

)
≤ sup

1
n

Pn
i=1 µi=µ

{[
1
n

n∑
i=1

∫
d(xi, y)2µi(dy)

] 1
2

−

[
1
n

n∑
i=1

∫
d(x̃i, y)2µi(dy)

] 1
2
}

≤ sup
1
n

Pn
i=1 µi=µ

[
1
n

n∑
i=1

∫
{d(xi, y)− d(x̃i, y)}2µi(dy)

] 1
2

≤ 1√
n

[
n∑
i=1

d(xi, x̃i)2
] 1

2

,

where in the last two lines we used, respectively, the reverse triangle inequality
for L2 norms (that is, ‖X‖2 − ‖Y ‖2 ≤ ‖X − Y ‖2) and for the metric d. ut

Next, we establish lower-semicontinuity of W2. The proof of this technical
lemma is little more than an exercise in using weak convergence.

Lemma 4.35. ν 7→W2(ν, µ) is lower-semicontinuous in the weak topology.

Proof. Let νn → ν weakly as n→∞. We must show that

lim inf
n→∞

W2(νn, µ) ≥W2(ν, µ).

Fix ε > 0, and choose for each n a coupling Mn ∈ C(νn, µ) such that

W2(νn, µ) ≥
√

EMn
[d(X,Y )2]− ε.
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We claim that the sequence {Mn} is tight. Indeed, the sequence {νn} is tight
(as it converges) and clearly µ is itself tight. For any δ > 0, choose a compact
set Kδ such that νn(Kδ) ≥ 1− δ/2 for all n ≥ 1 and µ(Kδ) ≥ 1− δ/2. Then
evidently Mn(Kδ ×Kδ) ≥ 1− δ, and thus tightness follows.

Using tightness, we can choose a subsequence nk ↑ ∞ such that Mnk →M
weakly for some M ∈ C(ν, µ) and lim infnW2(νn, µ) = limkW2(νnk , µ). As the
metric d is continuous and nonnegative, we obtain

lim inf
n→∞

W2(νn, µ) ≥ lim inf
k→∞

√
EMnk

[d(X,Y )2]− ε ≥
√

EM[d(X,Y )2]− ε.

Thus lim infnW2(νn, µ) ≥W2(ν, µ)− ε, and we conclude by letting ε ↓ 0. ut

Finally, we prove the Wasserstein law of large numbers. As the classical
law of large numbers already implies that 1

n

∑n
k=1 δXk → µ weakly, this is

almost obvious. The only issue that arises here is that convergence in W2 is
stronger than weak convergence, as it implies convergence of expectations of
unbounded functions with up to quadratic growth. Proving that this is indeed
the case under the assumption of Theorem 4.31 is an exercise in truncation.

Lemma 4.36. Suppose that µ satisfies condition 3 of Theorem 4.31. Then we
have E[W2( 1

n

∑n
k=1 δXk , µ)]→ 0 as n→∞ when {Xi} are i.i.d. µ.

Proof. Let x∗ ∈ X be some arbitrary point. We truncate as follows:

W2(µ, ν)2 = inf
M∈C(µ,ν)

{EM[d(X,Y )21d(X,Y )≤a] + EM[d(X,Y )21d(X,Y )>a]}

≤ a inf
M∈C(µ,ν)

EM[d(X,Y ) ∧ a] +
4
∫
d(x, x∗)3{µ(dx) + ν(dx)}

a

using (b+ c)3 ≤ 4(b3 + c3) for b, c ≥ 0. We claim that if νn → µ weakly, then

inf
M∈C(νn,µ)

EM[d(X,Y ) ∧ a] n→∞−−−−→ 0.

Indeed, by the Skorokhod representation theorem, we can construct random
variables {Xn} and X on a common probability space such that Xn ∼ νn, X ∼
µ, and Xn → X a.s. Thus E[d(Xn, X)∧ a]→ 0 by bounded convergence, and
as the joint law of Xn, X is in C(νn, µ) the claim follows. Thus νn → µ implies
W2(νn, µ)→ 0 if we can control the second term in the above truncation.

Recall that µn = 1
n

∑n
i=1 δXi satisfies µn → µ weakly a.s. by the law of

large numbers. Therefore, following the above reasoning, we obtain

lim sup
n→∞

E[W2(µn, µ)2] ≤
8
∫
d(x, x∗)3µ(dx)

a

for every a > 0. Thus the result follows by letting a → ∞, provided we can
show that

∫
d(x, x∗)3µ(dx) < ∞. But as x 7→ d(x, x∗) is 1-Lipschitz, this

follows readily from condition 3 of Theorem 4.31. ut

We have now proved all the facts that were used above to establish Theo-
rem 4.31. The proof of Theorem 4.31 is therefore complete.
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Problems

4.10 (The Gaussian T2-inequality). As we have already proved the Gaus-
sian concentration property using the entropy method, Theorem 4.31 implies
that the standard Gaussian distribution N(0, 1) on R must satisfy the T2-
inequality. It is instructive, however, to give a direct proof of this fact. By
Theorem 4.31, this yields an alternative proof of Gaussian concentration.

Fix X ∼ µ = N(0, 1) and ν � µ. Denote their cumulative distribution
functions as F (t) = Pµ[X ≤ t] and G(t) = Pν [X ≤ t], and let ϕ := G−1 ◦ F .

a. Show that

W2(µ, ν) ≤ E[|X − ϕ(X)|2]1/2, D(ν||µ) = E
[

log
dν

dµ
(ϕ(X))

]
.

b. Show that
e−t

2/2 = e−ϕ(t)2/2 dν

dµ
(ϕ(t))ϕ′(t).

c. Use Gaussian integration by parts (Lemma 2.23) to show that

2D(ν||µ) = E[|X − ϕ(X)|2] + 2 E[ϕ′(X)− 1− logϕ′(X)],

and conclude that N(0, 1) satisfies the T2-inequality with σ = 1.

4.11 (Stochastic calculus and the Gaussian T2-inequality). The goal
of this problem is to give an alternative proof of the Gaussian T2-inequality
using stochastic calculus. The method developed here can be extended to
prove the T2-inequality for the laws of diffusion processes. For the purposes of
this problem, we assume the reader is already familiar with stochastic calculus.

Fix µ = N(0, 1) and ν � µ. Let {Wt}t∈[0,1] be standard Brownian motion
under P, and define the probability measure dQ = dν

dµ (W1)dP.

a. Show that for some nonanticipating process {βt}t∈[0,1]

dν

dµ
(W1) = exp

(∫ 1

0

βt dWt −
1
2

∫ 1

0

β2
t dt

)
.

Hint: use the martingale representation theorem and Itô’s formula.

b. Show that {Yt}t∈[0,1] is Brownian motion under Q, where

Yt := Wt −
∫ t

0

βs ds.

c. Argue that

W2(µ, ν)2 ≤ EQ

[ ∫ 1

0

β2
t dt

]
.
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d. Give a careful proof of the identity

D(ν||µ) = EQ

[
1
2

∫ 1

0

β2
t dt

]
.

Conclude that N(0, 1) satisfies the T2-inequality with σ = 1.

4.12 (Sanov’s theorem). We proved in Theorem 4.32 half of Sanov’s theo-
rem. The other half yields a matching upper bound: if C is a set of probability
measures on X that is compact for the weak convergence topology, then

lim sup
n→∞

1
n

log P

[
1
n

n∑
k=1

δXk ∈ C

]
≤ − inf

ν∈C
D(ν||µ).

Sanov’s theorem therefore shows that relative entropy controls the exact
asymptotic behavior, on a logarithmic scale, of the probability that empir-
ical measures take values in a (sufficiently regular) unlikely set.

While only the lower bound in Sanov’s theorem is needed in the proof of
Theorem 4.31, it is instructive to prove the upper bound as well.

a. Show that for any probability measure ν and bounded function f

1
n

log P

[
1
n

n∑
k=1

f(Xk) >
∫
f dν

]
≤ log

∫
ef dµ−

∫
f dν.

b. Fix ε > 0. Use the variational formula for entropy to show that for any
probability measure ν, there is a bounded continuous function fν such that

1
n

log P

[
1
n

n∑
k=1

fν(Xk) >
∫
fν dν

]
≤ −D(ν||µ) + ε.

c. Show that if C is compact, then it can be covered by a finite number of
sets of the form {ρ :

∫
fνdρ >

∫
fνdν} with ν ∈ C.

d. Conclude the proof of the upper bound in Sanov’s theorem.

4.13 (T2-inequality and log-Sobolev inequalities). We have developed
two completely different methods to obtain concentration inequalities: the
entropy method and the transportation method. The goal of this problem is
to develop some connections between the two.

a. Suppose that a probability µ on Rd satisfies the log-Sobolev inequality

Entµ[ef ] ≤ σ2

2
Eµ[‖∇f‖2ef ] for all f.

Show that this implies that µ also satisfies the T2-inequality.
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By Theorem 4.31, the T2-inequality is equivalent to dimension-free Euclidean
concentration. We have just shown that the log-Sobolev inequality implies
the T2-inequality. One might hope that the converse is also true, that is,
that T2 implies log-Sobolev for probability measures on Rd. This proves to
be false, however: log-Sobolev is strictly stronger than T2. It is possible to
provide an explicit example that satisfies T2 but not log-Sobolev (e.g., µ(dx) ∝
e−|x|

3−|x|9/4−3x2 sin2 xdx on R), but we omit the tedious verification of this fact.
Remarkably, however, it is easy to show that if µ satisfies the T2-inequality,

then it also satisfies the log-Sobolev inequality for convex functions. Moreover,
for concave functions, the log-Sobolev inequality can even be improved!

a. Show that for any measure µ and function f ,

Entµ[ef ]
Eµ[ef ]

≤
∫
f dν −

∫
f dµ with dν =

ef

Eµ[ef ]
dµ.

b. Show that

Entµ[ef ]
Eµ[ef ]

≤ inf
M∈C(ν,µ)

EM[∇f(X) · (X − Y )] for convex f,

Entµ[ef ]
Eµ[ef ]

≤ inf
M∈C(ν,µ)

EM[∇f(Y ) · (X − Y )] for concave f.

c. Conclude that if µ satisfies the T2-inequality, then

Entµ[ef ] ≤ 2σ2 Eµ[‖∇f‖2ef ] for convex f,

Entµ[ef ] ≤ 2σ2 Eµ[‖∇f‖2] Eµ[ef ] for concave f.

d. Deduce a version of the Gaussian concentration property (Theorem 3.25)
for concave functions with improved variance proxy.

4.14 (Inf-convolution inequalities). The goal of this problem is to develop
an alternative formulation of the T2-inequality that is particularly useful for
analysis of probability measures on Rd. Before we state this alternative for-
mulation, we must develop an analogue of Monge-Kantorovich duality for W2.

a. Let (X, d) be a separable metric space. Show that

W2(µ, ν)2 = sup
g(x)−f(y)≤d(x,y)2

{Eνg −Eµf}.

Hint: emulate the proof of Theorem 4.13 and Problem 4.3.

For any function f , define the inf-convolution

Qtf(x) := inf
y∈X

{
f(y) +

1
2t
d(x, y)2

}
.

We will show that for any probability µ on a separable metric space (X, d),

W2(µ, ν) ≤
√

2σ2D(ν||µ) for all ν iff Eµ[eQσ2{f−Eµ[f ]}] ≤ 1 for all f.

The latter inequality is called an inf-convolution inequality.
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b. Prove the equivalence between the T2 and inf-convolution inequalities.
Hint: emulate the proof of Theorem 4.8.

Let µ be a probability measure on Rd that satisfies the T2-inequality. We have
seen above that this does not necessarily imply that µ satisfies a log-Sobolev
inequality. However, we will presently show that µ must at least satisfy a
Poincaré inequality whenever the T2-inequality holds.

c. Given any sufficiently smooth function f : Rd → R, show that the function
v(t, x) = Qtf(x) is the (Hopf-Lax) solution of the Hamilton-Jacobi equation

∂v

∂t
+

1
2
‖∇v‖2 = 0, v(0, ·) = f.

d. Show that if a probability µ on Rd satisfies the T2-inequality, then

Varµ[f ] ≤ σ2Eµ[‖∇f‖2] for all f.

Hint: apply the inf-convolution inequality to tf and expand around t = 0.

Notes

§4.1. Historically, the metric approach to concentration was the first to be de-
veloped. The formulation in terms of Lipschitz functions dates back to the first
proof of the Gaussian concentration property due to Tsirelson, Ibragimov, and
Sudakov [140] using stochastic calculus, while the fundamental importance of
Lipschitz concentration and its connection with with isoperimetric problems
(Problem 4.2) was emphasized and systematically exploited by Milman in the
context of Banach space theory [98]. A comprehensive treatment of these ideas
can be found in [84]. Theorem 4.8 is due to [21]. The Gibbs variational prin-
ciple dates back to the inception of statistical mechanics [69, Theorem III, p.
131]. Pinsker’s inequality is a basic fact in information theory [42].

§4.2. The texts by Villani [149, 150] are a fantastic source on optimal trans-
portation problems and their connections with other areas of mathematics.
An elementary introduction to linear programming duality is given in [66]
(in fact, linear programming duality was invented by Kantorovich in order
to prove Theorem 4.13, see [145] for historical comments). The continuous
extension in Problem 4.3 was inspired by the treatment in [56]. The optimal
coupling for the trivial metric was constructed in [50].

The transportation method for proving concentration inequalities is due
to Marton [90]. Both the tensorization method and Problem 4.5 are from [90].
The general formulation of Theorem 4.15 given here was taken from [25].

§4.3. Talagrand’s concentration inequality was developed in [124, 129] in an
isoperimetric form in terms of a “convex distance” from a point to a set (an
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entire family of related inequalities is obtained there as well). A detailed expo-
sition of these results can be found in [133, 84]. It was realized by Marton [91]
that Talagrand’s inequality can be proved using the transportation method
using the asymmetric “distance” d2, and the proof we give is due to her (with
a simplified proof for n = 1 due to Samson [116]). The general inequalities
from [129] can also be recovered by the transportation method [45]. Problems
4.7 and 4.8 were inspired by the presentation in [51]. Problem 4.9 is from
[124]. It is also possible to prove Talagrand’s concentration inequality indi-
rectly (through its isoperimetric form) using log-Sobolev methods; see [25].

§4.4. That the T2-inequality suffices for dimension-free Euclidean transporta-
tion was noted by Talagrand [134]. Problem 4.10 follows the proof in [134]
that the Gaussian measure satisfies the T2-inequality. The stochastic calculus
proof of Problem 4.11 is taken from [49]. Theorem 4.31 is due to Gozlan [72].
Sanov’s theorem is a classical result in large deviations theory [46]; the proof
given here was taken from lecture notes by Varadhan. Problem 4.13 is from
[116]. The connection between concentration and inf-convolutions is due to
Maurey [93]; Problem 4.14 follows the presentation in [84].



Part II

Suprema





5

Maxima, approximation, and chaining

We have shown in the previous chapters that in many cases a function
f(X1, . . . , Xn) of i.i.d. random variables is close to its mean E[f(X1, . . . , Xn)].
The concentration phenomenon says nothing, however, about the magnitude
of the mean E[f(X1, . . . , Xn)] itself. One cannot hope to address such ques-
tions at the same level as generality as we investigated concentration: some
additional structure is needed in order to develop any meaningful theory.

The type of structure that will be investigated in the sequel are suprema

F = sup
t∈T

Xt,

where {Xt}t∈T is a random process that is defined on some index set T . Such
problems arise in numerous high-dimensional applications, such as random
matrix theory and probability in Banach spaces, control of empirical processes
in statistics and machine learning, random optimization problems, etc. It is
typically the case that the distribution of individual Xt is well understood, so
that the main difficulty lies in understanding the effect of the supremum. To
this end, we formulated in Chapter 1 the following informal principle:

If {Xt}t∈T is “sufficiently continuous,” the magnitude of supt∈T Xt is
controlled by the “complexity” of the index set T .

In the sequel, we proceed to make this informal idea precise.

5.1 Finite maxima

Before we can develop a general theory to control suprema of random pro-
cesses, we must understand the simplest possible situation: the maximum of
a finite number of random variables, that is, the case where the index set T
has finite cardinality |T | < ∞. In fact, this special case will form the most
basic ingredient of our theory. To develop a more general theory, the funda-
mental idea in the sequel will be to approximate the supremum over a general
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index set by the maximum over a finite set in increasingly sophisticated ways.
By appropriately combining these two basic ingredients—finite maxima and
approximation—we will develop powerful tools that yield remarkably sharp
control over the suprema of many random processes.

How can one bound the maximum of a finite number of random variables?
The most naive approach imaginable is to bound the supremum by a sum:

sup
t∈T

Xt ≤
∑
t∈T
|Xt|.

Plugging this trivial fact into an expectation, we obtain

E
[

sup
t∈T

Xt

]
≤ |T | sup

t∈T
E|Xt|.

Thus if we can control the magnitude of every random variableXt individually,
then we obtain a bound that grows linearly in the cardinality |T |.

Of course, bounding a maximum by a sum is an exceedingly crude idea,
and it seems unlikely a priori that one could draw any remotely accurate
conclusions from such a procedure. Nonetheless, this simple idea is not a bad
as it may appear on first sight if we use it a bit more carefully. Suppose, for
example, that the random variables Xt have bounded pth moment. Then

E
[

sup
t∈T

Xt

]
≤ E

[
sup
t∈T
|Xt|p

]1/p
≤ |T |1/p sup

t∈T
E[|Xt|p]1/p,

where we have bounded the maximum by a sum after applying Jensen’s in-
equality. This has significantly improved the dependence on the cardinality
from |T | to |T |1/p. Evidently our control of the maximum of random variables
is closely related to the tail behavior of these random variables: the thinner
the tails (i.e., the larger p), the better we can control their maximum. Once
this idea has been understood, however, there is no need to stop at moments:
if the random variables Xt possess a finite moment generating function, we
can apply an exponential transformation precisely as in the development of
Chernoff bounds in section 3.1 to estimate the maximum.

Lemma 5.1 (Maximal inequality). Suppose that log E[eλXt ] ≤ ψ(λ) for
all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0. Then

E
[

sup
t∈T

Xt

]
≤ ψ∗−1(log |T |),

where ψ∗(x) = supλ≥0{λx− ψ(λ)} denotes the Legendre dual of the function
ψ. In particular, if Xt is σ2-subgaussian for every t ∈ T , we have

E
[

sup
t∈T

Xt

]
≤
√

2σ2 log |T |.
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Proof. By Jensen’s inequality, we have for any λ > 0

E
[

sup
t∈T

Xt

]
≤ 1
λ

log E[eλ supt∈T Xt ] ≤ 1
λ

log
∑
t∈T

E[eλXt ] ≤ log |T |+ ψ(λ)
λ

.

As λ > 0 is arbitrary, we can now optimize over λ on the right hand side. In
the special case that Xt is σ2-subgaussian (so that ψ(λ) = λ2σ2/2), we obtain

E
[

sup
t∈T

Xt

]
≤ inf
λ>0

[
log |T |
λ

+
σ2λ

2

]
=
√

2σ2 log |T |.

In the general case, the only difficulty is to evaluate the infimum in

E
[

sup
t∈T

Xt

]
≤ inf
λ>0

log |T |+ ψ(λ)
λ

= ψ∗−1(log |T |).

Suppose ψ∗ is invertible. Note that {ψ∗(z) +ψ(λ)}/λ ≥ z for all λ > 0 by the
definition of ψ∗, and that the inequality is attained if we choose λ to be the
optimizer in the definition of ψ∗. Setting ψ∗(z) = log |T | yields the conclusion.

It remains to show that that ψ∗ is invertible. As ψ∗ is the supremum of
linear functions, x 7→ ψ∗(x) is convex and strictly increasing except at those
values x where the maximum in the definition of ψ∗ is attained at λ = 0,
that is, when λx − ψ(λ) ≤ −ψ(0) for all λ ≥ 0. By the first-order condition
for convexity, the latter occurs if and only if x ≤ ψ′(0) = 0. Moreover, as
ψ∗(0) = 0, we conclude that x 7→ ψ∗(x) is convex, strictly increasing, and
nonnegative for x ≥ 0. Thus the inverse ψ∗−1(x) is well defined for x ≥ 0. ut

Lemma 5.1 should be viewed as an analogue of the Chernoff bound of
Lemma 3.1 in the setting of maxima of random variables. Recall that the
Chernoff bound states that if log E[eλXt ] ≤ ψ(λ) for all λ ≥ 0 and t ∈ T , then

P[Xt ≥ x] ≤ e−ψ
∗(x) for all x ≥ 0, t ∈ T.

Thus our bound on the magnitude of the maximum depends on |T | as the
inverse of the tail probability of the individual random variables (as the inverse
of the function eψ

∗(x) is ψ∗−1(log x)). This is not a coincidence. In fact, we
can use the Chernoff bound directly to estimate the tail probabilities of the
maximum (rather than the expectation as in Lemma 5.1) as follows.

Lemma 5.2 (Maximal tail inequality). Suppose that log E[eλXt ] ≤ ψ(λ)
for all λ ≥ 0 and t ∈ T , where ψ is convex and ψ(0) = ψ′(0) = 0. Then

P
[

sup
t∈T

Xt ≥ ψ∗−1(log |T |+ u)
]
≤ e−u for all u ≥ 0.

In particular, if Xt is σ2-subgaussian for every t ∈ T , we have

P
[

sup
t∈T

Xt ≥
√

2σ2 log |T |+ x

]
≤ e−x2/2σ2

for all x ≥ 0.
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Proof. We readily estimate using the Chernoff bound

P
[

sup
t∈T

Xt ≥ x
]

= P
[ ⋃
t∈T
{Xt ≥ x}

]
≤
∑
t∈T

P[Xt ≥ x] ≤ elog |T |−ψ
∗(x).

Writing u = ψ∗(x)− log |T | yields the first inequality (the invertibility of ψ∗

was shown in the proof of Lemma 5.1). In the subgaussian case,

ψ∗−1(log T + u) =
√

2σ2(log |T |+ u) ≤
√

2σ2 log |T |+
√

2σ2u

yields the second inequality. ut

The argument used in the proof of Lemma 5.2 is called a union bound :
we have estimated the probability of a union of events by the sum of the
probabilities P[A ∪ B] ≤ P[A] + P[B]. This crude estimate plays exactly
the same role in the proof of Lemma 5.2 as does bounding the maximum of
random variables by their sum in the proof of Lemma 5.1.

Remark 5.3. While this may not be evident at the outset, the proofs of Lem-
mas 5.1 and 5.2 are based on precisely the same idea. Indeed, the union bound
is merely another example of bounding a maximum by a sum:

P[A1 ∪ · · · ∪An] = E[max{1A1 , . . . ,1An}] ≤ E[1A1 ] + · · ·+ E[1An ].

Lemmas 5.1 and 5.2 are therefore ultimately implementing the same bound
in a slightly different way. In fact, is not difficult to deduce a form of Lemma
5.1 with a slightly worse constant directly from Lemma 5.2 by integrating the
tail bound, that is, using E[Z] =

∫∞
0

P[Z ≥ z] dz for Z ≥ 0.

We have obtained above some simple bounds on the maximum of a finite
number of random variables. How good are these bounds? There are several
reasons to be suspicious. On the one hand, we have obtained our estimates in
an exceedingly crude fashion by bounding a maximum by a sum. On the other
hand, while we made assumptions about the tail behavior of the individual
variables Xt, we made no assumptions of any kind about the joint distribu-
tion of {Xt}t∈T . One would expect that dependencies between the random
variables Xt to make a significant difference to their maximum. As an ex-
treme example, suppose {Xt}t∈T are completely dependent in the sense that
Xt = Xs for all t, s ∈ T . Then E[suptXt] = E[Xs] does not depend on |T | at
all, whereas the bound in Lemma 5.1 necessarily grows with |T |. Of course,
there is no contradiction: Lemma 5.1 is correct, but is evidently far from sharp
in the presence of strong dependence between the random variables Xt.

Remarkably, however, Lemmas 5.1 and 5.2 prove to be essentially sharp
when the random variables {Xt}t∈T are independent. It is perhaps surprising
that a method as crude as bounding a maximum by a sum would lead to a
sharp result in any nontrivial situation. However, it turns out that this idea is
not as bad as may be expected on first sight in the presence of independence.
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For example, consider the union bound P[A∪B] ≤ P[A]+P[B]. Equality holds
when A and B are disjoint, but this is certainly not the case in the proof of
Lemma 5.2. Nonetheless, when A and B are independent, the probability that
they occur simultaneously is much smaller than the individual probabilities,
so that we still have P[A ∪ B] & P[A] + P[B]. This idea will be exploited in
Problem 5.1 below to show that Lemmas 5.1 and 5.2 are essentially sharp in
the independent case. When viewed in terms of a sum of random variables,
we see that in this setting the sum is dominated by its largest term, so that
approximating the maximum by a sum is not such a bad idea after all.

Problems

5.1 (Maxima of independent random variables). The proofs of the max-
imal inequalities in the present section rely on a very crude device: bounding
the maximum of random variable by a sum. Nonetheless, when the random
variables are independent, the bounds we obtain above are often sharp. To
understand why, we must prove lower bounds of the same order.

It is easiest to consider first the setting of Lemma 5.2. Let us begin by
proving matching upper and lower union bounds for independent events.

a. Show that if A1, . . . , An are independent events, then

(1− e−1)

{
1 ∧

n∑
k=1

P[Ak]

}
≤ P

[
n⋃
k=1

Ak

]
≤ 1 ∧

n∑
k=1

P[Ak].

Hint:
∏n
k=1{1− xk} ≤ exp(−

∑n
k=1 xk) and 1− e−x ≥ (1− e−1) 1 ∧ x.

b. Let η∗ be a strictly increasing convex function. Suppose that

P[Xt ≥ x] ≥ e−η
∗(x) for all x ≥ 0, t ∈ T,

and that {Xt : t ∈ T} are independent. Conclude that for u ≥ 0

P
[

sup
t∈T

Xt ≥ η∗−1(log |T |+ u)
]
≥ (1− e−1) e−u,

and compare with the corresponding upper bound in Lemma 5.2.

Now that we have obtained a lower bound on the tail probability of the max-
imum (corresponding to the upper bound of Lemma 5.2), we can obtain a
lower bound on the expectation of the maximum (corresponding to the upper
bound of Lemma 5.1) by integrating the tail bound.

c. Deduce from the previous part that for x ≥ 0

P
[

sup
t∈T

Xt ≥ η∗−1(2 log |T |)/2 + x

]
≥ (1− e−1) e−η

∗(2x)/2.

Hint: use concavity of η∗−1.
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d. Conclude that if

e−η
∗(x) ≤ P[Xt ≥ x] ≤ e−ψ

∗(x) for all x ≥ 0, t ∈ T,

then we have

η∗−1(log |T |) + sup
t∈T

E[0 ∧Xt] . E
[

sup
t∈T

Xt

]
. ψ∗−1(log |T |).

Hint: use E[0 ∨ Z] =
∫∞
0

P[Z ≥ x]dx.

The upper and lower bound in the previous part are generally of the same
order, provided that we start with upper and lower bounds on P[Xt ≥ x] of
the same order. For example, let us consider the case of Gaussian variables.

e. For X ∼ N(0, 1), show that

P[X ≥ x] ≥ e−x
2

2
√

2
for all x ≥ 0.

Hint: write the probability as an integral and use (v + x)2 ≤ 2v2 + 2x2.

f. Let X1, . . . , Xn be i.i.d. Gaussian random variables with zero mean and
unit variance. Show that the above bound implies

1− e−1

2

√
2 log n2−3/4 − 1√

2π
≤ E

[
max
i≤n

Xi

]
≤
√

2 log n.

In particular, c
√

log n ≤ E[maxi≤nXi] ≤ C
√

log n for n sufficiently large.

g. If X1, X2, . . . are i.i.d. Gaussian, prove the asymptotic

maxi≤nXi√
2 log n

n→∞−−−−→ 1 in probability.

Hint: for the upper bound, see Problem 3.5. For the lower bound, proceed
analogously using a suitable improvement on the Gaussian tail lower bound
obtained above (use (v + x)2 ≤ (1 + ε−1)v2 + (1 + ε)x2).

5.2 (Approximating a maximum by a sum). Show that for λ > 0

max
t∈T

Xt ≤
1
λ

log
∑
t∈T

eλXt ≤ max
t∈T

Xt +
log |T |
λ

.

Thus when λ is large, the sum is increasingly dominated by its largest term.
This simple observation is often useful in problems where a smooth approxi-
mation of the maximum function x 7→ maxi xi is needed.

5.3 (Johnson-Lindenstrauss lemma). The following functional analysis
result has found many applications in computer science and signal processing.
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Let x1, . . . , xn be points in a Hilbert space H. Then for every 0 < ε < 1
and k & ε−2 log n, there exists a linear map T : H → Rk such that

(1−ε)‖xi−xj‖ ≤ ‖Txi−Txj‖ ≤ (1+ε)‖xi−xj‖ for all 1 ≤ i, j ≤ n.

This result should interpreted in terms of compression: if we want to store
the distances between n points in a data structure, and if we tolerate a small
distortion of order ε, it suffices to store an n×k matrix of size ∼ n log n rather
than the full n× n distance matrix of size ∼ n2.

At first sight, the Johnson-Lindenstrauss lemma has nothing to do with
probability: it is a deterministic statement about the geometry of Hilbert
spaces. However, the easiest way to find T is to select it randomly!

a. Argue that we can assume without loss of generality that H = Rn.

b. For a k × n random matrix T such that Tij are i.i.d. N(0, k−1), show that

P[|‖Tz‖ −E‖Tz‖| ≥ ε‖z‖] ≤ 2e−kε
2/2 for z ∈ Rn.

Hint: Gaussian concentration.

c. Show that √
1− k−1‖z‖ ≤ E‖Tz‖ ≤ ‖z‖,

and conclude that for 0 < ε < 1 and k ≥ ε−1

P[(1− ε)‖z‖ < ‖Tz‖ < (1 + ε)‖z‖] ≥ 1− 2e−kε
2/8 for z ∈ Rn.

Hint: Use E‖Tz‖ ≤ E[‖Tz‖2]1/2 for the upper bound. For the lower bound,
estimate Var‖Tz‖ from above using the Gaussian Poincaré inequality.

d. Show that if k > 24ε−2 log n, then

P[(1− ε)‖xi − xj‖ < ‖Txi − Txj‖ < (1 + ε)‖xi − xj‖ for all i, j] > 0.

Hint: use a union bound.

5.2 Covering, packing, and approximation

If the set T is infinite, the maximal inequalities of the previous section pro-
vide no information. This is, however, not surprising. We have seen that the
inequalities for finite maxima work well when the random variables are inde-
pendent. On the other hand, suppose that T is infinite but that t 7→ Xt is
continuous in a suitable sense. Then limt→sXt = Xs, so Xt and Xs must be
strongly dependent when t and s are nearby points! Thus the lack of inde-
pendence should in fact help us to control the infinite supremum: we should
apply the maximal inequalities of the previous section only to a finite number
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of well-separated points (at which the process might be expected to be nearly
independent), and use continuity to control the fluctuations of the remaining
(strongly dependent) degrees of freedom. In this section, we will develop the
crudest illustration of this principle, which will be systematically developed
in the sequel into a powerful machinery to control suprema.

To implement the above idea, we need to have a quantitative notion of
continuity. In this section, we will use the simplest (but, as we will see, often
unsatisfactory) such notion for random processes.

Definition 5.4 (Lipschitz process). The random process {Xt}t∈T is called
Lipschitz for a metric d on T if there exists a random variable C such that

|Xt −Xs| ≤ Cd(t, s) for all t, s ∈ T.

Given a Lipschitz process, our aim is to approximate the supremum over
T by the maximum over a finite set N , to which we will apply the inequalities
of the previous section. To obtain a good bound, we have two competing
demands: on the one hand, we would like the set N to be as small as possible
(so that the bound on the maximum is small); on the other hand, to control
the approximation error, we must make sure that every point in T is close to
at least one of the points in N . This leads to the following concept.

Definition 5.5 (ε-net and covering number). A set N is called an ε-net
for (T, d) if for every t ∈ T , there exists π(t) ∈ N such that d(t, π(t)) ≤ ε.
The smallest cardinality of an ε-net for (T, d) is called the covering number

N(T, d, ε) := inf{|N | : N is an ε-net for (T, d)}.

The covering number N(T, d, ε) should be viewed as a measure of the
complexity of the set T at the scale ε: the more complex T , the more points
we will need to approximate its structure up to a fixed precision. Alternatively,
we can interpret the covering number as describing the geometry of the metric
space (T, d). Indeed, let B(t, ε) = {s : d(t, s) ≤ ε} be a ball of radius ε. Then

N is an ε-net if and only if T ⊆
⋃
t∈N

B(t, ε),

so that the covering number N(T, d, ε) is the smallest number of balls of radius
ε needed to cover T (hence the name). We can therefore interpret the covering
number as a measure of the degree of (non-)compactness of (T, d).

Remark 5.6. In many applications, we may want to compute the supremum
supt∈T Xt of a stochastic process {Xt}t∈S that is defined on a larger index
set S ⊃ T . In this case, even though we are only interested in the process on
the set T , it is not necessary to require that the ε-net N is a subset of T : it
can be convenient to approximate the set T by points in S\T also. For this
reason, we have not insisted in the above definition that N ⊆ T .
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We are now ready to develop our first bound on the supremum of a random
process. We adopt the notation of Definitions 5.4 and 5.5.

Lemma 5.7 (Lipschitz maximal inequality). Suppose {Xt}t∈T is a Lips-
chitz process (Definition 5.4) and Xt is σ2-subgaussian for every t ∈ T . Then

E
[

sup
t∈T

Xt

]
≤ inf
ε>0
{εE[C] +

√
2σ2 logN(T, d, ε)}.

Note that this result is indeed a simple incarnation of the informal principle
formulated in Chapter 1: if the process Xt is “sufficiently continuous,” then
supt∈T Xt is controlled by the “complexity” of the index set T .

Proof. Let ε > 0 and let N be an ε-net. Then

sup
t∈T

Xt ≤ sup
t∈T
{Xt −Xπ(t)}+ sup

t∈T
Xπ(t) ≤ Cε+ max

t∈N
Xt.

Taking the expectation and using Lemma 5.1 yields

E
[

sup
t∈T

Xt

]
≤ εE[C] +

√
2σ2 log |N |.

Optimizing over ε-nets N and ε > 0 yields the result. ut

Remark 5.8. The idea behind Lemma 5.7 is that it allows us to trade off
between exploiting independence (better at large scales) and controlling for
dependence (worse at large scales). However, note that we never explicitly
assume or use independence in the proof: instead, the distance d could be
interpreted as a proxy for the degree of independence. While the conclusion
of Lemma 5.7 does not depend on this validity of this interpretation, we
expect that such bounds (and the more powerful bounds to be developed in
the sequel) will be the most effective when the distance d is chosen in such a
way that large distance does indeed correspond to more independence. This
is often the case in practice. In the case of Gaussian processes, for example,
we will see in the next chapter that this idea holds to such a degree that we
can obtain matching upper and lower bounds for the supremum of Gaussian
processes in terms of the geometry of the index set (T, d), albeit in a much
more sophisticated manner than is captured by the trivial Lemma 5.7.

Remark 5.9. When N(T, d, ε) =∞, the bound of Lemma 5.7 is infinite. How-
ever, note that if X1, X2, . . . are i.i.d. unbounded random variables, then we
already have supiXi =∞ a.s. It is therefore to be expected that the supremum
of a random process will typically indeed be infinite if it contains infinitely
many independent degrees of freedom. Thus the fact that N(T, d, ε) = ∞
(which means there are infinitely many points in T that are well separated)
yields an infinite bound is not a shortcoming of Lemma 5.7. To obtain a finite
supremum for noncompact index sets T one must often add a penalty inside
the supremum; such problems will be investigated in section 5.4 below.
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In the remainder of this section, we will illustrate the application of Lemma
5.7 using two illuminating examples. Along the way, we will develop some
useful examples of how one can control covering numbers.

Example 5.10 (Random matrices). Let M be an n ×m random matrix such
that Mij are independent σ2-subgaussian random variables. We would like to
estimate the magnitude of the operator norm

‖M‖ := sup
v∈Bn2 ,w∈Bm2

〈v,Mw〉 = sup
(v,w)∈T

Xv,w,

where Bn2 = {x ∈ Rn : ‖x‖ ≤ 1} is the Euclidean unit ball in Rn and

T := Bn2 ×Bm2 , Xv,w := 〈v,Mw〉 =
n∑
i=1

m∑
j=1

viMijwj .

It follows immediately from Azuma’s inequality (Lemma 3.7) that Xv,w is
σ2-subgaussian for every (v, w) ∈ T . On the other hand, note that

|Xv,w −Xv′,w′ | = |〈v,Mw〉 − 〈v′,Mw′〉|
≤ |〈v − v′,Mw〉|+ |〈v′,M(w − w′)〉|
≤ ‖v − v′‖‖M‖‖w‖+ ‖v′‖‖M‖‖w − w′‖
≤ ‖M‖ {‖v − v′‖+ ‖w − w′‖}

for (v, w) ∈ T . If we define a metric on T as

d((v, w), (v′, w′)) := ‖v − v′‖+ ‖w − w′‖,

we see that the random process {Xv,w}(v,w)∈T is Lipschitz for the metric d.
Note that the random Lipschitz constant happens to be ‖M‖, which is in fact
the quantity we are trying to control in the first place! This is a rather peculiar
situation, but we can nonetheless readily apply Lemma 5.7: this yields

E[‖M‖] ≤ εE[‖M‖] +
√

2σ2 logN(T, d, ε)

for every ε > 0, which we can rearrange to obtain

E[‖M‖] ≤ inf
ε>0

σ
√

2
1− ε

√
logN(T, d, ε).

What remains is to estimate the covering number. To this end, we must intro-
duce an additional idea that will be of significant importance in the sequel.

How can one construct a small ε-net N? The defining property of an ε-net
is that every point in T is within a distance at most ε of some point in N .
We can always achieve this by choosing a very dense set N . However, if we
want |N | to be small, we should intuitively choose the points in N to be as
far apart as possible. This motivates the following definition.
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Definition 5.11 (ε-packing and packing number). A set N ⊆ T is called
an ε-packing of (T, d) if d(t, t′) > ε for every t, t′ ∈ N , t 6= t′. The largest
cardinality of an ε-packing of (T, d) is called the packing number

D(T, d, ε) := sup{|N | : N is an ε-packing of (T, d)}.

The key idea, which was already hinted at above, is that the notion of
packing dual to the notion of covering, as is made precise by the following
result. This means that we can use covering and packing interchangeably (up
to constants). In some cases it is easier to estimate packing numbers than
covering numbers, as we will see shortly. On the other hand, we will see in
the following chapter that packing numbers arise naturally when we aim to
prove lower bounds for the suprema of random processes (as opposed to upper
bounds which are considered exclusively in this chapter).

Lemma 5.12 (Duality between covering and packing). For every ε > 0

D(T, d, 2ε) ≤ N(T, d, ε) ≤ D(T, d, ε).

Note that this can indeed be viewed as a form of duality (in the sense of
optimization): the packing number is defined in terms of a supremum, but the
covering number is defined in terms of an infimum.

Proof. Let D be a 2ε-packing and let N be an ε-net. For every t ∈ D, choose
π(t) ∈ N such that d(t, π(t)) ≤ ε. Then for t 6= t′, we have

2ε < d(t, t′) ≤ d(t, π(t)) + d(π(t), π(t′)) + d(π(t′), t′) ≤ 2ε+ d(π(t), π(t′)),

which implies π(t) 6= π(t′). Thus π : D → N is one-to-one, and therefore
|D| ≤ |N |. This yields the first inequality D(T, d, 2ε) ≤ N(T, d, ε).

To obtain the second inequality, let D be a maximal ε-packing of (T, d)
(that is, |D| = D(T, d, ε)). We claim that D is necessarily an ε-net. Indeed,
suppose this is not the case; then there is a point t ∈ T such that d(t, t′) > ε
for every t′ ∈ D. But then D∪{t} must be a ε-packing also, which contradicts
the maximality of D. Thus we have D(T, d, ε) = |D| ≥ N(T, d, ε). ut

We are now in a position to bound the covering number of the Euclidean
ball Bn2 with respect to the Euclidean distance. The proof of this elementary
result uses a clever technique known as a volume argument.

Lemma 5.13. We have N(Bn2 , ‖ · ‖, ε) = 1 for ε ≥ 1 and(
1
ε

)n
≤ N(Bn2 , ‖ · ‖, ε) ≤

(
3
ε

)n
for 0 < ε < 1.

Proof. That N(Bn2 , ‖ · ‖, ε) = 1 for ε ≥ 1 is obvious: by definition, we have
‖t‖ = ‖t− 0‖ ≤ 1 for every t ∈ Bn2 , so the singleton {0} is an ε-net.

The main part of the proof is illustrated in the following figure:
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The colored ball is Bn2 . To obtain an upper bound on the covering number, we
choose a 2ε-packing D of Bn2 (black dots in left figure). Then balls of radius
ε around t ∈ D be disjoint, and all these balls are contained in a large ball of
size 1 + ε. As the sum of the volumes of the small balls (of which there are
|D|) is bounded above by the volume of the large ball, we obtain an upper
bound on the size of D (and thus on the covering number by Lemma 5.12).
To obtain a lower bound on the covering number, we choose an ε-net N of
Bn2 (black dots in right figure). As the balls of radius ε around t ∈ N cover
Bn2 , the sum of the volumes of these balls (of which there are |N |) is bounded
below by the volume of Bn2 . This yields a lower bound on the size of N .

We now proceed to make this argument precise. Let us begin with the
upper bound. Let D be a 2ε-packing of Bn2 . As d(t, t′) > 2ε for all t 6= t′ in
D, the balls {B(t, ε) : t ∈ D} must be disjoint. On the other hand, every ball
B(t, ε) for t ∈ Bn2 must be contained in the larger ball B(0, 1 + ε). Thus

∑
t∈D

λ(B(t, ε)) = λ

( ⋃
t∈D

B(t, ε)

)
≤ λ(B(0, 1 + ε)),

where λ denotes the Lebesgue measure on Rn. By homogeneity of the Lebesgue
measure, λ(B(t, α)) = λ(B(0, α)) = λ(αB(0, 1)) = αnλ(B(0, 1)). Thus

|D| ≤ λ(B(0, 1 + ε))
λ(B(0, ε))

=
(

1 + ε

ε

)n
.

As this holds for every 2ε-packing D, we have evidently proved the upper
bound N(T, d, 2ε) ≤ D(T, d, 2ε) ≤ (1 + 1/ε)n ≤ (3/2ε)n for 2ε < 1.

To obtain the lower bound, let N be an ε-net for Bn2 . Then

λ(Bn2 ) ≤ λ

( ⋃
t∈N

B(t, ε)

)
≤
∑
t∈N

λ(B(t, ε)),

so we obtain

|N | ≥ λ(Bn2 )
λ(B(0, ε))

=
(

1
ε

)n
.

As this holds for every ε-net N , we have proved N(T, d, ε) ≥ (1/ε)n. ut
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Remark 5.14. Lemma 5.13 quantifies explicitly the dependence of the covering
number on dimension: the number of balls of radius ε needed to cover a ball
in Rn is polynomial in 1/ε of order n. This is not surprising: think of how
many cubes of side length ε can fit into the unit cube in Rn. While balls do
not pack as nicely as cubes, the ultimate conclusion is the same (in fact, the
conclusion of Lemma 5.13 carries over to any norm on Rn, see Problem 5.5).
In this manner, the dependence on dimension will enter explicitly into our
estimates of the suprema of random processes.

Beyond the concrete result on covering numbers in Rn, Lemma 5.13 pro-
vides a good way to think about the notion of dimension in the first place.
The classical idea that Rn is n-dimensional stems from its linear structure:
there is a basis of size n such that any vector in Rn can be written as a linear
combination of these basis elements. This linear-algebraic notion of dimension
is not very useful in general spaces where one does not need to have any linear
structure. Lemma 5.13 motivates a different notion of dimension that makes
sense in any metric space: we say that a metric space (T, d) has metric dimen-
sion n if N(T, d, ε) ∼ ε−n. Lemma 5.13 shows that for (bounded subsets of)
Rn, the linear-algebraic and metric notions of dimension coincide; however,
the definition of metric dimension is independent of the linear structure of the
space. The notion of metric dimension certainly conforms to the intuitive no-
tion that a high-dimensional space has more “room” than a low-dimensional
space (the number of balls of fixed radius needed to cover the space increases
exponentially in the dimension). Of course, not every metric space has fi-
nite metric dimension: we will shortly encounter an infinite-dimensional space
(T, d) for which the covering numbers grow exponentially in 1/ε.

Having developed some basic estimates, we can now complete the example
of random matrices. Here we are not interested in the covering number of Bn2
itself, but rather in the covering number of T = Bn2 ×Bm2 with respect to the
metric d. The latter is however easily estimated using Lemma 5.13. Let N be
an ε-net for Bn2 and let M be an ε-net for Bm2 . Then N ×M is a 2ε-net for
T of cardinality |N ||M |: indeed, setting π((t, s)) = (π(t), π(s)), we have

d((t, s), π((t, s))) = ‖t− π(t)‖+ ‖s− π(s)‖ ≤ 2ε.

This evidently implies that

N(T, d, 2ε) ≤ N(Bn2 , ‖ · ‖, ε)N(Bm2 , ‖ · ‖, ε) ≤
(

3
ε

)n+m

for ε ≤ 1. We therefore obtain

E[‖M‖] ≤ inf
ε>0

σ
√

2
1− ε

√
logN(T, d, ε) . σ

√
n+m.

It turns out that this crude bound already captures the correct order of
magnitude of the matrix norm! In particular, for square matrices, we obtain
E[‖M‖] .

√
n as was already alluded to in Example 2.5.
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We now turn to our second example. Unlike in the previous example, where
we got a sharp result with little work, we will not be so lucky here: we will
derive a nontrivial bound from Lemma 5.7, but the methods we developed so
far will prove to be too crude to capture the correct order of magnitude.

Example 5.15 (Wasserstein law of large numbers). Let X1, X2, . . . be i.i.d.
random variables with values in the interval [0, 1]. We denote their distribution
as Xi ∼ µ. Define the empirical measure of X1, . . . , Xn as

µn :=
1
n

n∑
k=1

δXk .

Then it is easy to estimate

E|µnf − µf | ≤ E[|µnf − µf |2]1/2 ≤ ‖f‖∞√
n
.

In particular, we have µnf → µf in L1 for every bounded function f : this is
none other than the weak law of large numbers with the optimal n−1/2 rate.

At what rate does the law of large numbers µn → µ hold when we consider
other notions of distance between probability measures? In this spirit, we will
presently attempt to estimate the expected Wasserstein distance E[W1(µn, µ)]
between the empirical measure and the underlying distribution. Recall that

W1(µn, µ) = sup
f∈Lip([0,1])

{µnf − µf} = sup
f∈F

Xf ,

where we have defined

Xf := µnf − µf, F := {f ∈ Lip([0, 1]) : 0 ≤ f ≤ 1}.

Thus this question reduces to controlling the supremum of a random process.
(Note that |f(x) − f(y)| ≤ |x − y| ≤ 1 for f ∈ Lip([0, 1]) and x, y ∈ [0, 1]; as
Xf is invariant under adding a constant to f , there is no loss of generality in
restricting the supremum to functions 0 ≤ f ≤ 1 in the definition of W1.)

We begin by noting the trivial estimate

|Xf −Xg| = |µn(f − g)− µ(f − g)| ≤ 2‖f − g‖∞.

Thus the process {Xf}f∈F is Lipschitz with respect to the uniform distance
on F. On the other hand, note that by definition

Xf =
n∑
k=1

f(Xk)− µf
n

,

which is a sum of i.i.d. random variables with values in the interval [− 1
n ,

1
n ].

Thus Xf is 1
n -subgaussian for every f ∈ F by the Azuma-Hoeffding inequality

(Lemma 3.6). We can therefore estimate using Lemma 5.7
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E[W1(µn, µ)] ≤ inf
ε>0

{
2ε+

√
2
n

logN(F, ‖ · ‖∞, ε)
}
.

To proceed, we must bound the covering number N(F, ‖ · ‖∞, ε).

Lemma 5.16. There is a constant c <∞ such that

N(F, ‖ · ‖∞, ε) ≤ ec/ε for ε < 1
2 , N(F, ‖ · ‖∞, ε) = 1 for ε ≥ 1

2 .

Remark 5.17. Note that, unlike in the case of a Euclidean ball where the
covering number is polynomial in 1/ε, the covering number of the family F of
Lipschitz functions is exponential in 1/ε. This indicates that the metric space
(F, ‖ · ‖∞) is in fact infinite-dimensional, which is not too surprising.

Proof. Fix ε > 0. For every function f ∈ F, we will construct a new function
π(f) in the manner illustrated in the following picture:

...

· · ·0 ε
2
ε 3ε

2
1

0

ε

2ε

1

π(f)

f

To be precise, we approximate f : [0, 1] → [0, 1] by π(f) : [0, 1] → [0, 1]
defined as follows. Partition the horizontal axis into consecutive nonoverlap-
ping intervals I1, . . . , Id2/εe of size ε/2 and the vertical axis into consecutive
nonoverlapping intervals J1, . . . , Jd1/εe of size ε. We then define

π(f)(x) =
max J` + min J`

2
whenever x ∈ Ik, f(min Ik) ∈ J`.

That is, in each interval on the horizontal axis, we approximate f by its value
at the left endpoint of the interval rounded to the center of the interval on the
vertical axis to which it belongs. By construction, the set N = {π(f) : f ∈ F}
is an ε-net: indeed, note that whenever x ∈ Ik and f(min Ik) ∈ J`, we have

|f(x)− π(f)(x)| ≤ |f(x)− f(min Ik)|+
∣∣∣∣f(min Ik)− max J` + min J`

2

∣∣∣∣
≤ |x−min Ik|+

max J` −min J`
2

≤ ε,
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where we have used the Lipschitz property of f and the definition of Ik, J`.
(Note that N 6⊆ F: but this is not a problem, cf. Remark 5.6.)

As we now have an ε-net N , it remains to estimate |N |. The most naive
bound would be |N | ≤ d1/εed2/εe < ∞, but we can do somewhat better by
taking into account the Lipschitz property of the functions in F. Note that

|π(f)(min Ik)− π(f)(min Ik+1)| ≤ |f(min Ik)− f(min Ik+1)|+ ε ≤ 3
2ε;

As the possible values of π(f) can only differ by multiples of ε, this implies
that π(f)(min Ik+1) − π(f)(min Ik) ∈ {−ε, 0, ε}. Thus π(f)(0) can take any
of d1/εe different values, but each subsequent interval can only differ from the
previous one in three different ways. This implies the bound

N(F, ‖ · ‖∞, ε) ≤ |N | ≤ d1/εe3d2/εe−1 ≤ ec/ε

for some constant c and every ε > 0. On the other hand, as ‖f − 1
2‖∞ ≤

1
2 for

every f ∈ F, we clearly have N(F, ‖ · ‖∞, ε) = 1 for ε ≥ 1
2 . ut

Having estimated the covering numbers of F, we can now readily complete
our bound on the convergence rate in the Wasserstein law of large numbers:

E[W1(µn, µ)] ≤ inf
ε>0

{
2ε+

√
2c
εn

}
. n−1/3.

Recall that the rate of convergence in the law of large numbers for a single
function is E|µnf − µf | . n−1/2, but we have obtained a slower rate n−1/3

when we consider the convergence uniformly over Lipschitz functions. Is this
rate sharp? It turns out that this is not the case: in the present example, we
will show in the next section that the optimal rate is actually still ∼ n−1/2.

Remark 5.18. There is no reason to expect, in general, the the rate of conver-
gence uniformly over a class of functions will be the same as that for a single
function. The fact that the rate still turns out to be n−1/2 in the present
setting is an artefact of the fact that we are working in one dimension: for
random variables Xk ∈ [0, 1]p for p ≥ 2, the optimal rates turn out to be
strictly slower than n−1/2. Nonetheless, even in this case, the method we have
used in this section does not capture the correct rate of convergence.

The method that we have used in this section to control the suprema or
random processes is too crude to obtain sharp results in most examples of
interest. While we obtained a sharp result in the random matrix example,
this was not the case for the Wasserstein law of large numbers. Unfortunately,
the situation encountered in the second example is the norm. It is illuminating
to understand in what part of the proof we incurred the loss of precision: this
will directly motivate the more powerful approach for bounding the suprema
of random processes that will be developed in the next section.

The approach of Lemma 5.7 relies on two steps: the approximation of the
supremum by a finite maximum, and the estimation of the finite maximum
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using a suitable maximal inequlity. The key problem with this approach is
that we have approximated the supremum by a maximum in an extremely
inefficient manner by using an almost sure Lipschitz property of the process.
Let us illustrate this in the second example. Here the Lipschitz property reads

|Xf −Xg| ≤ 2‖f − g‖∞ a.s.

One cannot substantially improve on this bound if the result is required to
hold almost surely. On the other hand, we can easily compute

E|Xf −Xg| ≤ n−1/2‖f − g‖∞.

While the almost sure Lipschitz constant of the process Xf is 2, we see that
Xf is Lipschitz on average with Lipschitz constant n−1/2 � 2: that is, the
typical behavior of the increments |Xf −Xg| is much better than their worst-
case behavior! One can therefore readily understand why using the almost
sure Lipschitz property incurs a significant loss in our estimates. If we were
to naively substitute the “typical” Lipschitz constant n−1/2 rather than the
“worst-case” constant 2 in the above computation, we would indeed obtain
the correct n−1/2 rather than n−1/3 rate. However, the almost sure Lipschitz
property was crucial in order to control the approximation error in Lemma
5.7, so that such a substitution is certainly unjustified at this point.

Remark 5.19. We can now also understand why the crude approach of Lemma
5.7 proves to be useful in the random matrix example: in this setting, it
so happens that the almost sure Lipschitz constant is of the same order as
the supremum that we are trying to compute. Therefore, even though our
approximation is inefficient, this does not affect the final bound except in the
numerical constant. However, this situation is essentially a coincidence. In the
Wasserstein law of large numbers example, the almost sure Lipschitz constant
is much larger than the supremum of interest, so that the inefficiency in our
approximation swamps the final bound that we obtain.

The basic challenge we therefore face at this point in improving the ap-
proach of Lemma 5.7 is to devise a method of approximation that only uses an
“in probability” version of the Lipschitz property that can capture the typical
size of the increments, rather than an a.s. Lipschitz property that captures the
worst case. In the next section, we will see that this goal can be accomplished
by using a powerful technique known as chaining.

Problems

5.4 (Tightness of Johnson-Lindenstrauss). The Johnson-Lindenstrauss
lemma proved in Problem 5.3 shows that any n points in a Hilbert space H
can be mapped into Rk with k & log n while distorting the distances between
them by at most a constant factor. Show that k & log n is in fact necessary.
Hint: show that the image of n orthonormal vectors x1, . . . , xn in H under a
map T : H → Rk that nearly preserves distances is a packing of a ball in Rk.



130 5 Maxima, approximation, and chaining

5.5 (Covering norm-balls in Rn). The goal of this problem is to investigate
Lemma 5.13 for norms other than the Euclidean norm.

a. Show that the conclusion of Lemma 5.13 holds in any finite-dimensional
Banach space: that is, if | · | is any norm on Rn, then we have(

1
ε

)n
≤ N(B, | · |, ε) ≤

(
3
ε

)n
for 0 < ε < 1,

where B denotes the unit norm-ball {x ∈ Rn : |x| ≤ 1}.

b. Show that in the special case n = 1, we can compute exactly

N(B, | · |, ε) =
⌈

1
ε

⌉
.

5.6 (Proper covering numbers). In our definition of an ε-net N for (T, d),
we did not assume that N ⊆ T (cf. Remark 5.6). It can happen quite naturally
that the points that we use to approximate the set T are not themselves in
T , for example, see the proof of Lemma 5.16. On the other hand, in some
applications, it may be convenient to require that N ⊆ T . When this is the
case, the ε-net is said to be proper, and the proper covering number Npr(T, d, ε)
denotes the cardinality of the smallest proper ε-net. Show that

N(T, d, ε) ≤ Npr(T, d, ε) ≤ N(T, d, ε/2),

which implies that the assumption of properness is harmless in most cases.

5.7 (Parametric classes). Consider a function f : Θ ×X → R such that

|fθ(x)− fθ′(x)| ≤ Cd(θ, θ′) for all x ∈ X

for some metric d on Θ. We think of x 7→ fθ(x) as a function on X that is
parametrized by a parameter θ ∈ Θ. Thus it makes sense to define

F = {fθ : θ ∈ Θ}.

Show that
N(F, ‖ · ‖∞, ε) ≤ N(Θ, d, ε/C).

Thus the covering numbers of parametrized classes of functions that are Lip-
schitz in the parameter can be controlled by the covering numbers of the
parameter space. This is often useful, for example, in parametric statistics.

5.8 (Wasserstein LLN in higher dimension). The goal of this problem is
to extend Example 5.15 to the multidimensional situation where X1, X2, . . .
are i.i.d. random variables with values in the cube [0, 1]d.

a. Let F0 := {f ∈ Lip([0, 1]d) : f(0) = 0}. Show that

N(F0, ‖ · ‖∞, ε) ≤ ec/ε
d

,

where the constant c depends on dimension d only.

b. What upper bound on the rate in the Wasserstein law of large numbers in
dimension d does this imply using the crude method of Lemma 5.7?
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5.3 The chaining method

In the previous section, we developed a simple method to bound the supremum
of a random process that satisfies the Lipschitz property Xt − Xs . d(t, s)
in an almost sure sense. However, we have seen that this requirement is very
restrictive: in many cases, the typical size of the increments Xt −Xs is much
smaller than in the worst case. We therefore aim to develop a method to bound
the suprema of random processes that only requires the Lipschitz property
Xt −Xs . d(t, s) to hold in probability in a suitable sense.

To understand how one might approach this problem, let us recall the
basic idea behind the proof of Lemma 5.7. If N is an ε-net, we can estimate

E
[

sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Xπ(t)

]
+ E

[
sup
t∈T
{Xt −Xπ(t)}

]
.

The first term is a finite maximum that can be controlled by the maximal
inequality of Lemma 5.1. The second term is a small remainder: each variable
inside the supremum has magnitude of order ε by the Lipschitz property of the
process. If the Lipschitz property holds in an almost sure sense, the supremum
drops out and we can immediately control the remainder term.

However, if the Lipschitz property only holds in probability, we cannot
directly control the remainder term. Indeed, in this case each variable inside
the supremum has “typical”size ε; however, we have to control the supremum
of many such variables, whose magnitude can be much larger than ε (e.g., the
maximum of n independent N(0, σ2) variables is of order σ

√
log n� σ, even

though each variable is only of order σ). Therefore, in this case, the problem
of controlling the remainder term is essentially of the same type as that of
controlling the original supremum of interest. Nonetheless, we expect that the
remainder term is smaller than the original supremum, as the size of each
variable in the remainder term is now smaller. To shrink the remainder term
further, we can approximate it once again by a finite maximum at a smaller
scale. For example, if N ′ is an ε/2-net, then we can estimate

E
[

sup
t∈T
{Xt −Xπ(t)}

]
≤ E

[
sup
t∈T
{Xπ′(t) −Xπ(t)}

]
+ E

[
sup
t∈T
{Xt −Xπ′(t)}

]
.

The first term on the right is a finite maximum that can be controlled by
Lemma 5.1. The remainder term is still an infinite supremum, but now each
variable inside the supremum is only of order ε/2: that is, we have cut the
remainder term roughly by half. The key idea of this section is that we can
repeat this procedure over and over again, each time cutting the size of the
remainder term roughly by half. Let us investigate this idea a bit more sys-
tematically. For each k ≥ 0, let Nk be a 2−k-net and choose πk(t) ∈ Nk such
that d(t, πk(t)) ≤ 2−k. Repeating the approximation n times, we obtain
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E
[

sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Xπ0(t)

]
+

n∑
k=1

E
[

sup
t∈T
{

∼2−k︷ ︸︸ ︷
Xπk(t) −Xπk−1(t)}

]

+ E
[

sup
t∈T
{

∼2−n︷ ︸︸ ︷
Xt −Xπn(t)}

]
.

The remainder term is now a supremum of variables of order 2−n. Under mild
conditions, the remainder term will disappear if we let n→∞ without having
to invoke any almost sure Lipschitz property of the process. Thus we surmount
the inefficiency of Lemma 5.7 by approximating the supremum not at a single
scale, but at infinitely many scales. The remaining bound is now an infinite
sum: the kth term in the sum is a finite maximum of random variables at the
scale 2−k. To control these finite maxima, we also do not require an almost
sure Lipschitz property: in view of Lemma 5.1, it suffices to assume that the
Lipschitz property holds “in probability” in the following sense.

Definition 5.20 (Subgaussian process). A random process {Xt}t∈T on
the metric space (T, d) is called subgaussian if E[Xt] = 0 and

E[eλ{Xt−Xs}] ≤ eλ
2d(t,s)2/2 for all t, s ∈ T, λ ≥ 0.

Remark 5.21. The subgaussian property should indeed be interpreted as an
“in probability” form of the Lipschitz property: by Problem 3.1, the subgaus-
sian assumption is equivalent up to constants to an assumption of the form

P[|Xt −Xs| ≥ x d(t, s)] ≤ Ce−x
2/C .

Note also that the assumption E[eλ{Xt−Xs}] ≤ eλ
2d(t,s)2/2 already implies

E[Xt −Xs] = 0 (as limλ↓0{ecλ
2/2 − 1}/λ = 0), so the assumption E[Xt] = 0

merely imposes a convenient normalization. In section 5.4, we will see how to
control the suprema of random processes with nontrivial mean t 7→ E[Xt].

The technique that we have outlined above is known as chaining : the idea
is to approximate Xt by a “chain” Xπk(t) of increasingly accurate approxima-
tions (the “links” in the chain are the increments Xπk(t)−Xπk−1(t)). The main
remaining difficulty in implementing the method is to show that the remain-
der term does indeed vanish as n→∞. To get around this, we will impose a
very mild technical assumption that holds in almost all cases of interest.

Definition 5.22 (Separable process). A random process {Xt}t∈T is called
separable if there is a countable set T0 ⊆ T such that

Xt ∈ lim
s→t
s∈T0

Xs for all t ∈ T a.s.

[Here x ∈ lims→t xs means that there is a sequence sn → t such that xsn → x.]
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Remark 5.23. The assumption of separability is technical, and is almost always
trivially satisfied. For example, if t 7→ Xt is continuous a.s., we can take T0

to be any countable dense subset of T . At the same time, the separability
assumption is in some sense intrinsic to the chaining argument. After all, the
main idea of the chaining argument is to approximate Xt = limk→∞Xπk(t) for
every t ∈ T . If this is in fact valid, however, then the definition of a separable
process will hold for the countable set T0 = {πk(t) : k ≥ 0, t ∈ T}.

For completeness, let us note a somewhat esoteric point that we swept
under the rug. If T is uncountable, supt∈T Xt is the supremum of an uncount-
able family of random variables. In general, the supremum of uncountably
many measurable functions is not even necessarily measurable. Measurability
issues do arise, on occasion, in the control of suprema, but we will shamelessly
ignore such problems in these notes. Under the separability assumption, how-
ever, supt∈T Xt = supt∈T0

Xt a.s., and thus no measurability problems arise
(as a countable supremum of measurable functions is always measurable).

We now have all the ingredients to implement the chaining argument.

Theorem 5.24 (Dudley). Let {Xt}t∈T be a separable subgaussian process
on the metric space (T, d). Then we have the following estimate:

E
[

sup
t∈T

Xt

]
≤ 6

∑
k∈Z

2−k
√

logN(T, d, 2−k).

Proof. We first prove the result in the finite case |T | < ∞, which allows us
to easily eliminate the remainder term in the chaining argument. We subse-
quently use the separability assumption to lift this restriction.

Let |T | <∞. Let k0 be the largest integer such that 2−k0 ≥ diam(T ). Then
any singleton Nk0 = {t0} is trivially a 2−k0-net. We therefore start chaining at
the scale 2−k0 . For k > k0, let Nk be a 2−k-net such that |Nk| = N(T, d, 2−k).
Running the chaining argument up to the scale 2−n yields

E
[

sup
t∈T

Xt

]
≤ E[Xt0 ] +

n∑
k=k0+1

E
[

sup
t∈T
{Xπk(t) −Xπk−1(t)}

]
+ E

[
sup
t∈T
{Xt −Xπn(t)}

]
.

Let us consider each of the terms. As E[Xt0 ] = 0 by assumption, the first term
disappears. Moreover, as |T | < ∞, we can choose n sufficiently large so that
Nn = T . Then the last term disappears. To control the terms inside the sum,
note that the maximum in the kth term contains at most |Nk||Nk−1| ≤ |Nk|2
terms (as |Nk−1| ≤ |Nk|). Moreover, we can readily estimate

d(πk(t), πk−1(t)) ≤ d(t, πk(t)) + d(t, πk−1(t)) ≤ 3× 2−k.

As Xπk(t) −Xπk−1(t) is d(πk(t), πk−1(t))2-subgaussian, Lemma 5.1 yields
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E
[

sup
t∈T

Xt

]
≤ 6

∑
k>k0

2−k
√

log |Nk|.

But |Nk| = N(T, d, 2−k) by construction, so the proof is complete.
In the proof we have used the assumption |T | <∞ to control the remainder

term in the chaining argument. We now use separability to show that one can
approximate the general case by the finite case. Indeed, by separability, there
is a countable subset T ′ ⊆ T such that supt∈T Xt = supt∈T ′ Xt a.s. Denote
by Tk the first k elements of T ′ (in arbitrary order). Then

E
[

sup
t∈T

Xt

]
= E

[
sup
t∈T ′

Xt

]
= sup

k≥1
E
[

sup
t∈Tk

Xt

]
by monotone convergence. Applying the chaining inequality to each finite
maximum and using N(Tk, d, ε) ≤ N(T, d, ε) yields the general result. ut

Very often the result of Theorem 5.24 is written in a slightly different
form by noting that the sum can be viewed as a Riemann sum approximation
to a certain integral. There is no particular mathmatical significance to this
reformulation: it is made for purely aesthetic reasons.

Corollary 5.25 (Entropy integral). Let {Xt}t∈T be a separable subgaus-
sian process on the metric space (T, d). Then we have the following estimate:

E
[

sup
t∈T

Xt

]
≤ 12

∫ ∞
0

√
logN(T, d, ε) dε.

Proof. We can readily estimate

∑
k∈Z

2−k
√

logN(T, d, 2−k) = 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN(T, d, 2−k) dε

≤ 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN(T, d, ε) dε

= 2
∫ ∞

0

√
logN(T, d, ε) dε,

where we used that N(T, d, ε) is decreasing in ε. ut

Remark 5.26. It is important to note that we always have N(T, d, ε) = 1 when
ε ≥ diam(T ), as in this case any singleton N = {t0} is trivially an ε-net. Thus
it suffices to take integral in Corollary 5.25 only up to ε = diam(T ).

Remark 5.27. The logarithm of the covering number logN(T, d, ε) is often
called metric entropy in analogy with information theory: it measures the
number of bits needed to specify an element of T up to precision ε. It is
customary to refer to the integral in Corollary 5.25 as the entropy integral.
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To illustrate Corollary 5.25, let us revisit Example 5.15.

Example 5.28 (Wasserstein law of large numbers revisited). We adopt the
same setting and notation as in Example 5.15. Recall that we want to estimate
the expected Wasserstein distance between the empirical and true measures

W1(µn, µ) = sup
f∈F

Xf ,

where X1, X2, . . . are i.i.d. variables in [0, 1] with distribution µ and

Xf =
n∑
k=1

f(Xk)− µf
n

, F = {f ∈ Lip([0, 1]) : 0 ≤ f ≤ 1}.

By the Azuma-Hoeffding inequality (Corollary 3.9), we have

E[eλ{Xf−Xg}] ≤ eλ
2‖f−g‖2∞/2n.

The process {Xf}f∈F is therefore subgaussian with respect to the metric
d(f, g) = n−1/2‖f − g‖∞. We can consequently estimate using Corollary 5.25

E[W1(µn, µ)] ≤ 12
∫ ∞

0

√
logN(F, n−1/2‖ · ‖∞, ε) dε.

But it is easily seen that

N(F, n−1/2‖ · ‖∞, ε) = N(F, ‖ · ‖∞, n1/2ε),

so that changing variables in the integral and using Lemma 5.16 yields

E[W1(µn, µ)] ≤ 12√
n

∫ ∞
0

√
logN(F, ‖ · ‖∞, ε) dε ≤

12√
n

∫ 1
2

0

√
c

ε
dε.

As ε−1/2 is integrable at the origin, we have proved

E[W1(µn, µ)] . n−1/2,

which is a huge improvement over the n−1/3 rate obtained by the crude
method used in Example 5.15. It is evident from the above computations that
the crucial improvement is due to the fact that |Xf −Xg| . n−1/2‖f−g‖∞ in
probability (as is made precise by the subgaussian property), while the best
almost sure Lipschitz bound one can hope for is |Xf −Xg| . ‖f − g‖∞.

In the present example, it is rather easy to obtain a matching lower bound
on the Wasserstein distance. Indeed, note that for any function f ∈ F that is
not constant µ-a.s., we obtain by the central limit theorem

E[W1(µn, µ)] ≥ E[Xf ∨X1−f ] = E|Xf | ∼ n−1/2.

Thus the rate we obtained by chaning is sharp in the present setting.
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Now that we understand the chaining principle, we can use it to obtain
more sophisticated results. For example, just as we could obtain a tail bound
in Lemma 5.2 corresponding to the maximal inequality of Lemma 5.1, we can
obtain a tail bound counterpart to Corollary 5.25.

Theorem 5.29 (Chaining tail inequality). Let {Xt}t∈T be a separable
subgaussian process on the metric space (T, d). Then for all t0 ∈ T and x ≥ 0

P
[

sup
t∈T
{Xt −Xt0} ≥ C

∫ ∞
0

√
logN(T, d, ε) dε+ x

]
≤ Ce−x

2/C diam(T )2 ,

where C <∞ is a universal constant.

Proof. The beginning of the proof is identical to that of Theorem 5.24, and
we adopt the notations used there. As in Theorem 5.24, it is easily seen that it
suffices to consider |T | <∞, as we will assume in the remainder of the proof.

The idea here is to run the chaining argument without taking the expec-
tation. As |T | <∞, we have πn(t) = t for n sufficiently large. Thus

Xt −Xt0 =
∑
k>k0

{Xπk(t) −Xπk−1(t)}

by the telescoping property of the sum. This elementary chaining identity lies
at the heart of the chaining argument. We immediately obtain

sup
t∈T
{Xt −Xt0} ≤

∑
k>k0

sup
t∈T
{Xπk(t) −Xπk−1(t)}.

Rather than bounding the expectation of this quantity, as we did in Theorem
5.24, we will bound the tail behavior of every term in this sum. To this end,
note that the subgaussian property of {Xt}t∈T and Lemma 5.2 yield

P
[

sup
t∈T
{Xπk(t) −Xπk−1(t)} ≥ 6× 2−k

√
log |Nk|+ 3× 2−kz

]
≤ e−z

2/2.

Thus with high probability, every link Xπk(t)−Xπk−1(t) at the scale k is small.
We would like to show that all links at every scale are small simultaneously,
that is, that the probability of the union over all k of the events in the above
bound is small. We can use a crude union bound to control the latter prob-
ability, but it is clear that we must then choose z to be increasing in such a
way that the probabilities of the individual events are summable: that is,

P[Ω] := P
[
∃ k > k0 s.t. sup

t∈T
{Xπk(t) −Xπk−1(t)} ≥ 6 2−k

√
log |Nk|+ 3 2−kzk

]
≤
∑
k>k0

P
[

sup
t∈T
{Xπk(t) −Xπk−1(t)} ≥ 6 2−k

√
log |Nk|+ 3 2−kzk

]
≤
∑
k>k0

e−z
2
k/2.
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How to choose zk is not so important. An easy choice zk = x+
√
k − k0 yields

P[Ω] ≤
∑
k>k0

e−z
2
k/2 ≤ e−x

2/2
∑
k>0

e−k/2 ≤ Ce−x
2/2.

Now note that on the event Ωc, we have

sup
t∈T
{Xt −Xt0} ≤

∑
k>k0

sup
t∈T
{Xπk(t) −Xπk−1(t)}

≤ 6
∑
k>k0

2−k
√

log |Nk|+ 3 2−k0
∑
k>0

2−k
√
k + 3 2−k0

∑
k>0

2−k x

≤ C
∫ ∞

0

√
logN(T, d, ε) dε+ C diam(T )x,

where we have used that 2−k0 ≤ 2 diam(T ) and

2−k0 ≤ C2−k0−1
√

logN(T, d, 2−k0−1) ≤ C
∑
k>k0

2−k
√

log |Nk|

by the definition of k0. Thus

P
[

sup
t∈T
{Xt −Xt0} ≥ C

∫ ∞
0

√
logN(T, d, ε) dε+ C diam(T )x

]
≤ P[Ω],

and the proof is readily completed. ut

Remark 5.30. Note that the result of Theorem 5.29 is reminiscent of a concen-
tration inequality. Indeed, if we could establish the concentration inequality

P
[

sup
t∈T
{Xt −Xt0} ≥ E

[
sup
t∈T
{Xt −Xt0}

]
+ x

]
≤ Ce−x

2/C diam(T )2 ,

then the conclusion of Theorem 5.29 would follow directly by combining this
inequality with the chaining bound of Corollary 5.25 for the expected supre-
mum. Despite the similarities, however, Theorem 5.29 should not be confused
with a concentration inequality. Its conclusion is both weaker and stronger:
weaker, because Theorem 5.29 cannot establish a deviation inequality from
the mean, but only from a particular upper bound on the mean; stronger,
because the subgaussian assumption of Theorem 5.29 is much weaker than
would be required to establish a concentration inequality.

The proof of Theorem 5.29 suggests that at its core, the chaining method
boils down to simultaneously controlling, using a union bound, the magnitude
of all the linksXπk(t)−Xπk−1(t) in the chaining identity. We might therefore ex-
pect that chaining yields sharp results if the links {Xπk(t)−Xπk−1(t)}t∈T,k>k0
are “nearly independent” in some sense. This is not entirely implausible, as
two links are either far apart or are at a different scale. It turns out that the
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chaining method that we have developed here yields sharp results in many
cases, but falls short in others. In the next chapter, we will see that the chain-
ing method can be further improved to adapt to the structure of the set T .
The resulting method, called the generic chaining, is so efficient that it cap-
tures exactly (up to universal constants) the magnitude of the supremum of
Gaussian processes! Once this has been understood, we can truly conclude
that chaining is the “correct” way to think about the suprema of random pro-
cesses. Nonetheless, considering that we have ultimately used no idea more
sophisticated than the union bound, the remarkably far-reaching power of the
chaining method remains somewhat of a miracle to this author.

Problems

5.9 (The entropy integral and sum). Show that∫ ∞
0

√
logN(T, d, ε) dε ≤

∑
k∈Z

2−k
√

logN(T, d, 2−k) ≤ 2
∫ ∞

0

√
logN(T, d, ε) dε.

Thus nothing is lost in expressing the chaining bound as an integral rather
than a sum, as we have done in Corollary 5.25, up to a constant factor.

5.10 (Chaining with arbitrary tails). The chaining method is not re-
stricted to subgaussian processes: it can be developed analogously for pro-
cesses that are Lipschitz “in probability” in a more general sense.

Let {Xt}t∈T be a separable process with E[Xt] = 0 and

log E[eλ{Xt−Xs}/d(t,s)] ≤ ψ(λ) for all t, s ∈ T, λ ≥ 0,

where ψ is as in Lemma 5.1. Show that

E
[

sup
t∈T

Xt

]
.
∫ ∞

0

ψ∗−1(2 logN(T, d, ε)) dε.

5.11 (An improved chaining bound and Wasserstein LLN). The key
improvement of the chaining bound of Corollary 5.25 over the crude approxi-
mation of Lemma 5.7 is that the former uses only an in probability Lipschitz
property, while the latter uses a stronger almost sure Lipschitz property. These
two ideas are not mutually exclusive, however: when the process {Xt}t∈T sat-
isfies both types of Lipschitz property, we can obtain an improved chaining
bound that is a sort of hybrid between Corollary 5.25 and Lemma 5.7.

a. Prove the following theorem.

Theorem 5.31 (Improved chaining). Let {Xt}t∈T be a separable pro-
cess that is both subgaussian (Definition 5.20) and almost surely Lipschitz
(Definition 5.4). Then we have the following estimate:

E
[

sup
t∈T

Xt

]
≤ inf
δ>0

{
2δE[C] + 12

∫ ∞
δ

√
logN(T, d, ε) dε

}
.
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Hint: run the chaining argument only up to scale 2−n and use the almost
sure Lipschitz property to estimate the remainder term.

To understand the advantage of Theorem 5.31, we first note the following.

b. Show that N(T, d, ε) diverges as ε ↓ 0 whenever |T | =∞.

As the covering number diverges, a nontrivial application of Corollary 5.25 re-
quires that this divergence is sufficiently slow that

√
logN(T, d, ε) is integrable

at zero. This is not always the case. On the other hand, Lemma 5.7 would
give a nontrivial bound even when the covering number is not integrable, but
the use of the almost sure Lipschitz property yields a very pessimistic bound.
Theorem 5.31 provides the best of both worlds: it uses the “in probability”
Lipschitz property as much as possible, while using the almost sure Lipschitz
property to cut off the divergent part of the integral.

To illustrate the efficiency of Theorem 5.31, let us revisit once more the
Wasserstein law of large numbers. We have resolved completely the rate of
convergence in one dimension in Example 5.28. However, in higher dimensions,
we have so far only obtained pessimistic rates in Problem 5.8.

c. Show that we cannot obtain any nontrivial bound for the Wasserstein law
of large numbers in dimensions d ≥ 2 from Corollary 5.25.

d. Using Theorem 5.31, show that in the setting of Problem 5.8

E[W1(µn, µ)] .


n−1/2 for d = 1,
n−1/2 log n for d = 2,
n−1/d for d ≥ 3.

Unlike in the one-dimensional case, a lower bound (and hence the sharpness
of the above estimates for the rates) is not immediately obvious in dimensions
d ≥ 2. We must work a little bit harder to obtain some insight.

e. Suppose that µ(dx) = ρ(x)dx with ‖ρ‖∞ <∞. Show that

E
[

min
i=1,...,n

‖x−Xi‖
]

& n−1/d for all x ∈ [0, 1]d.

Hint: use P[mini≤n ‖x−Xi‖ ≥ t] = P[‖x−X1‖ ≥ t]n and integrate.

f. Conclude that when µ has a bounded density, we have in any dimension d

E[W1(µn, µ)] & n−1/d.

Hint: consider the (random) function f(x) = −mini≤n ‖x−Xi‖.

Taking together all the upper and lower bounds that we have proved for the
Wasserstein law of large numbers, we have evidently obtained sharp rates
∼ n−1/2 in dimension d = 1 and ∼ n−1/d in dimension d ≥ 3. The only case
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still in question is dimension d = 2, where there remains a gap between our
lower and upper bounds n−1/2 . E[W1(µn, µ)] . n−1/2 log n. It turns out
that neither bound is sharp in this case: the correct rate is ∼ n−1/2(log n)1/2.
It has been shown by Talagrand that this rather deep result, due to Ajtai,
Komlós, and Tusnády, can be derived (in a nontrivial manner) using the more
sophisticated generic chaining method that will be developed in Chapter 6.

5.4 Penalization and the slicing method

Up to this point we have considered the suprema of subgaussian processes,
which are necessarily centered E[Xt] = 0 (or at least E[Xt −Xs] = 0 for all
t, s). It is often of interest, however, to consider random processes that have
nontrivial mean behavior t 7→ E[Xt]. To this end, let us decompose

Xt = E[Xt] + Zt

in terms of its mean E[Xt] and fluctuations Zt = Xt −E[Xt]. It is natural to
assume that the fluctuations {Zt}t∈T form a subgaussian process. As

sup
t∈T

Xt = sup
t∈T
{Zt + E[Xt]},

the problem of controlling the supremum of {Xt}t∈T can evidently be inter-
preted as the problem of controlling the penalized supremum of a subgaussian
process, where E[Xt] plays the role of the penalty. The chaining method is well
suited to controlling the fluctuations, but not to controlling the penalty. The
aim of this section is to develop a technique, called the slicing method, that
reduces the problem of controlling a penalized supremum of a subgaussian
process to controlling a subgaussian process without penalty. As penalized
suprema arise in many settings, the slicing method is an important part of
the toolbox needed to control the suprema of random processes.

There is, in fact, nothing special about the specific additive form of the
penalty: the slicing method will prove to be useful in other cases as well. For
example, in various situations it is of interest to control a weighted supremum

sup
t,s∈T

Xt −Xs

ρ(t, s)

of a subgaussian process {Xt}t∈T for some suitable function ρ that should be
viewed as a multiplicative (rather than additive) penalty. One could of course
view Xt,s = {Xt −Xs}/ρ(t, s) as a new stochastic process whose supremum
we wish to compute, but it is generally far from clear that this process is
subgaussian with respect to a natural distance. In such situations, the slicing
method will once again provide an important tool to handle the penalty.

Let us illustrate the basic idea behind the slicing method in the multi-
plicative setting (the additive setting works much in the same way). Fix a
sequence αk ↓ 0 such that ρ(s, t) ≤ α0 for all s, t. Then we can evidently write
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P
[

sup
s,t∈T

Xt −Xs

ρ(t, s)
≥ x

]
= P

[
sup
k≥1

sup
αk≤ρ(s,t)≤αk−1

Xt −Xs

ρ(t, s)
≥ x

]
.

That is, we decompose the supremum over “slices” {(s, t) : αk ≤ ρ(s, t) ≤
αk−1} of the index set T ×T . The key point is that on each slice, the penalty
is controlled both from above and from below, so that it can be eliminated
from the supremum. We can therefore estimate, using a union bound,

P
[

sup
s,t∈T

Xt −Xs

ρ(t, s)
≥ x

]
≤
∞∑
k=1

P
[

sup
αk≤ρ(s,t)≤αk−1

Xt −Xs

ρ(t, s)
≥ x

]

≤
∞∑
k=1

P
[

sup
ρ(s,t)≤αk−1

{Xt −Xs} ≥ αkx
]
.

Each probability inside the sum on the right-hand side is the tail of the supre-
mum of a subgaussian process without penalty. However, the penalty still
appears implicitly, as it determines the subset of the index set over which the
supremum is taken in each term in the sum. This subset is getting smaller
as k increases, which will decrease the probability; at the same time, the
threshold αkx also decreases, which will increase the probability. To be able
to control the weighted supremum, we must therefore balance these compet-
ing forces: that is, the penalty must chosen in such a way that the size of the
set {ρ(t, s) ≤ αk−1} shrinks sufficiently rapidly as compared to the level αk to
render the probabilities summable. This basic idea is common to all applica-
tions of the slicing method: however, its successful implementation requires a
bit of tuning that is specific to the setting in which it is applied. Once the idea
has been understood in detail in one representative example, the application
of the slicing method in other situations is largely routine; several examples
will be encountered in the problems at the end of this chapter.

As a nontrivial illustration of the slicing method, we will presently develop
in detail a very useful general result on weighted suprema: we will control the
modulus of continuity of subgaussian processes. This result is of significant
interest in its own right, as it sheds new light on the meaning of the entropy
integral that apprears in Corollary 5.25. An increasing function ω such that
ω(0) = 0 is called a modulus of continuity for the random process {Xt}t∈T
on the metric space (T, d) if there is a random variable K such that

Xt −Xs ≤ Kω(d(t, s)) for all t, s ∈ T.

Evidently the function ω controls the “degree of smoothness” of t 7→ Xt. To
show that ω is a modulus of continuity, it clearly suffices to prove that

K = sup
t,s∈T

Xt −Xs

ω(d(t, s))
<∞ a.s.

To this end, we will prove the following result.
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Theorem 5.32 (Modulus of continuity). Let {Xt}t∈T be a separable sub-
gaussian process on the metric space (T, d). Assume that N(T, d, ε) ≥ (c/ε)q

for some constants c, q > 0 and all ε > 0. Then the function

ω(δ) =
∫ δ

0

√
logN(T, d, ε) dε

is a modulus of continuity for {Xt}t∈T . In particular, we have

E
[

sup
t,s∈T

Xt −Xs

ω(d(t, s))

]
<∞.

Theorem 5.32 provides us with new insight on the relevance of the entropy
integral in Corollary 5.25: the latter controls not only the magnitude of the
supremum of the process, but in fact even its degree of smoothness!

Remark 5.33. An explicit tail bound on the quantity supt,s{Xt−Xs}/ω(d(t, s))
can be read off from the proof of Theorem 5.32.

Remark 5.34. The technical condition N(T, d, ε) ≥ (c/ε)q required by Theo-
rem 5.32 is very mild: it states that the metric dimension of (T, d) is nonzero
(cf. Remark 5.14). This is the case in almost all situations of practical interest.
Nonetheless, this condition proves to be purely technical, and it can be shown
that ω as defined in Theorem 5.32 is still a modulus of continuity for {Xt}t∈T
even in the absence of the technical condition. The proof of this fact is in the
same spirit as that of Theorem 5.32, but requires a more delicate tuning of the
slicing and chaining method that does not provide much added insight. We
avoid the added complications by imposing the additional technical condition
in order to provide a clean illustration of the slicing method.

To control the terms that appear in the slicing method, we need a local
version of the chaining inequality of Theorem 5.29 where the supremum is
taken over t, s ∈ T such that ω(d(t, s)) ≤ αk. Such a local inequality, which is
very useful in its own right, can be derived rather easily from Theorem 5.29.

Proposition 5.35 (Local chaining inequality). Let {Xt}t∈T be a separa-
ble subgaussian process on the metric space (T, d). Then for all x, δ ≥ 0

P

 sup
t,s∈T
d(t,s)≤δ

{Xt −Xs} ≥ C
∫ δ

0

√
logN(T, d, ε) dε+ x

 ≤ Ce−x2/Cδ2 .

Proof. Define the random process {X̃t,s}(t,s)∈T̃ as

X̃t,s = Xt −Xs, T̃ = {(t, s) ∈ T × T : d(t, s) ≤ δ}.

Using the subgaussian property of {Xt}t∈T and Cauchy-Schwarz, we estimate
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E[eλ{X̃t,s−X̃u,v}] = E[eλ{Xt−Xu}eλ{Xs−Xv}]

≤ E[e2λ{Xt−Xu}]1/2E[e2λ{Xs−Xv}]1/2

≤ eλ
2{d(t,u)2+d(s,v)2},

and by an entirely analogous argument

E[eλ{X̃t,s−X̃u,v}] ≤ E[e2λ{Xt−Xs}]1/2E[e2λ{Xu−Xv}]1/2 ≤ e2λ
2δ2 .

If we define the metric d̃ on T̃ as

d̃((t, s), (u, v)) = 21/2
√
d(t, u)2 + d(s, v)2 ∧ 2δ,

we see that {X̃t,s}(t,s)∈T̃ is a subgaussian process on the metric space (T̃ , d̃).
As diam(T̃ ) ≤ 2δ (and thus N(T̃ , d̃, ε) = 1 for ε > 2δ), we obtain

P

[
sup

(t,s)∈T̃
X̃t,s ≥ C

∫ 2δ

0

√
logN(T̃ , d̃, ε) dε+ x

]
≤ Ce−x

2/Cδ2

by Theorem 5.29. Note that if N is an ε-net for (T, d), then N ×N is a 2ε-net
for (T̃ , d̃). As |N ×N | = |N |2, we obtain N(T̃ , d̃, 2ε) ≤ N(T, d, ε)2. Thus∫ 2δ

0

√
logN(T̃ , d̃, ε) dε ≤ 2

√
2
∫ δ

0

√
logN(T, d, ε) dε,

and the proof is readily completed. ut

We can now complete the proof of Theorem 5.32.

Proof (Theorem 5.32). The slicing argument with αk = ω(∆2−k) yields

P
[

sup
s,t∈T

Xt −Xs

ω(d(t, s))
≥ x

]
≤
∞∑
k=1

P
[

sup
d(s,t)≤∆2−k+1

{Xt −Xs} ≥ ω(∆2−k)x
]
,

where we define ∆ = diam(T ) for simplicity. We would like to apply Propo-
sition 5.35 to each term in the sum. The problem is that here the integral
ω(∆2−k) goes only up to the scale ∆2−k, while the supremum is taken up to
a larger scale ∆2−k+1; in Proposition 5.35, the two scales must be the same.
To resolve this issue, note that as ε 7→ N(T, d, ε) is a decreasing function∫ 2δ

δ

√
logN(T, d, ε) dε ≤

∫ δ

0

√
logN(T, d, ε) dε

for every δ > 0, so that in particular ω(2δ) ≤ 2ω(δ). Therefore
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P
[

sup
s,t∈T

Xt −Xs

ω(d(t, s))
≥ 2(C + x)

]
≤
∞∑
k=1

P
[

sup
d(s,t)≤∆2−k+1

{Xt −Xs} ≥ (C + x)
∫ ∆2−k+1

0

√
logN(T, d, ε) dε

]

≤
∞∑
k=1

Ce
− x2C

“
1

∆2−k+1

R∆2−k+1

0

√
logN(T,d,ε) dε

”2

≤
∞∑
k=1

Ce−x
2 logN(T,d,∆2−k+1)/C ,

where we have used Proposition 5.35 and that ε 7→ N(T, d, ε) is decreasing.
We now note that the technical assumption N(T, d, ε) ≥ (c/ε)q implies that
logN(T, d,∆2−k+1) grows at least linearly in k. Thus the above sum is a
geometric series, and we readily obtain an estimate of the form

P
[

sup
s,t∈T

Xt −Xs

ω(d(t, s))
≥ 2C + x

]
≤ Ae−x

2/A for all x ≥ 1,

where C is the universal constant from Proposition 5.35 and A is a constant
that depends on c, q only. Integrating the tail bound yields the conclusion. ut

Remark 5.36. The proof of Theorem 5.32 highlights the competing demands
on our choice of slicing sequence αk. On the one hand, we want αk−1 and
αk to be sufficiently close together that the scales at which the supremum
and the tail probability are evaluated are of the same order in each term in
the slicing argument. This requires that the sequence αk converges not too
quickly. On the other hand, we want αk−1 and αk to be sufficiently far apart
that the probabilities in the slicing bound are summable. This requires that the
sequence αk converges not too slowly. In the proof of Theorem 5.32, we initially
chose a geometric sequence αk = ω(∆2−k) to ensure that αk ≤ αk−1 ≤ 2αk
are not too far apart; we subsequently imposed the technical condition on the
covering numbers to ensure that the probabilities are summable.

To illustrate Theorem 5.32, let us prove a classical result in stochastic
analysis due to P. Lévy on the modulus of continuity of Brownian motion.

Example 5.37 (Modulus of continuity of Brownian motion). Let {Bt}t∈[0,1] be
standard Brownian motion. As Bt −Bs is Gaussian, we compute exactly

E[eλ{Bt−Bs}] = eλ
2|t−s|/2,

Thus {Bt}t∈[0,1] is subgaussian on ([0, 1], d) with the metric d(t, s) =
√
|t− s|.

Moreover, by Lemma 5.13, we readily obtain the estimates

1
ε2
≤ N([0, 1], d, ε) = N([0, 1], | · |, ε2) ≤ 3

ε2
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for ε ≤ 1. Thus Theorem 5.32 states that

|Bt −Bs| . ω(
√
|t− s|) for all t, s ∈ [0, 1] a.s.,

where

ω(δ) =
∫ δ

0

√
log

3
ε2
dε . δ

√
log

1
δ
.

That is, the sample paths of Brownian motion are slightly less smooth than
Hölder- 1

2 by a logarithmic factor. It is easy to see that this result is sharp!
Indeed, note that as Brownian motion has independent increments,

sup
|t−s|≤ε

|Bt −Bs|
ω(
√
|t− s|)

≥ max
n≤ε−1

Bnε −B(n−1)ε

ω(
√
ε)

&
maxn≤N Xn√

logN
,

where N = ε−1 and Xn = ε−1/2{Bnε −B(n−1)ε} are i.i.d. ∼ N(0, 1). Thus

E
[

lim sup
|t−s|↓0

|Bt −Bs|
ω(
√
|t− s|)

]
& lim sup

N→∞

E[maxn≤N Xn]√
logN

> 0

by Problem 5.1, so the modulus of continuity ω(
√
|t− s|) is evidently sharp.

Problems

5.12 (Empirical risk minimization I: slicing). Empirical risk minimiza-
tion is a simple but fundamental idea that arises throughout machine learning,
statistics (where it is often called M -estimation), and stochastic programming
(where it is called sample average approximation). The basic problem can be
phrased as follows. Let (T, d) be a metric space, and consider a given family
of functions {ft : t ∈ T} on some probability space (X, µ). We define the risk
of t ∈ T as R(t) := µft. Our goal is to select t∗ ∈ T that minimizes the risk:

t∗ := arg min
t∈T

R(t) := arg min
t∈T

µft.

However, it may be impossible to do this directly: either because the measure
µ is unknown (in machine learning and statistics), or because computing in-
tegrals with respect to µ is intractable (in stochastic programming). Instead,
we assume that we have access to n i.i.d. samples X1, . . . , Xn ∼ µ. By the law
of large numbers, the risk should be well approximated by the empirical risk

R(t) ≈ µnft :=
1
n

n∑
k=1

ft(Xk)

when the sample size n is large. The empirical risk minimizer

t̂n := arg min
t∈T

µnft

should therefore be a good approximation of the optimum t∗. We would like
to find out how good of an approximation this is: that is, we would like to
bound the excess risk R(t̂n)−R(t∗) of the empirical risk minimizer.
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a. Argue that

P[R(t̂n)−R(t∗) ≥ δ] ≤ P

 sup
t∈T

R(t)−R(t∗)≥δ

µn(ft∗ − ft) ≥ 0

 .
Hint: use that µn(ft∗ − ft̂n) ≥ 0 by construction.

b. Define the random process Xt := µn(ft∗−ft). Note that Xt is not centered,
so that we cannot apply chaining directly. However, show that

Zt := n1/2{Xt +R(t)−R(t∗)}

is subgaussian on (T, d) with the metric d(t, s) := ‖ft − fs‖∞.

c. Use the slicing argument to show that

P[R(t̂n)−R(t∗) ≥ δ] ≤
∞∑
k=1

P
[

sup
R(t)−R(t∗)≤δ2k

Zt ≥ δ2k−1n1/2

]
.

d. The bound we have obtained already suffices to obtain a crude upper bound
on the magnitude of the excess risk: show that if∫ ∞

0

√
logN(T, d, ε) dε <∞

(and assuming {Zt}t∈T is separable), we have

R(t̂n)−R(t∗) = OP (n−1/2).

Hint: set δ = n−1/2(K + x) for a sufficiently large constant K, and replace
the supremum in the slicing bound by the supremum over the entire set T .

The above bound on the excess risk is exceedingly pessimistic. Indeed, if we
set δ = Kn−1/2, then the suprema in the slicing bound are taken over the
sets Tk,n = {t ∈ T : R(t) − R(t∗) ≤ K2kn−1/2} which shrink rapidly as n
increases. Thus these suprema should be much smaller than is captured by our
crude estimate on the excess risk, where we have entirely ignored this effect.
However, we cannot obtain more precise rates unless we are able to control
the sizes of the sets Tk, and this requires to impose a suitable assumption on
the risk R(t). To this end, it is common to assume that a margin condition

R(t)−R(t∗) ≥ (d(t, t∗)/c1)α for all t ∈ T

holds for some constants c1 > 0 and α > 1.

e. Assume that the margin condition holds and that
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0

√
logN(T, d, ε) dε ≤ c2δβ

for some c2 > 0 and 0 < β < 1. Show that

R(t̂n)−R(t∗) = oP (n−α/2(α−β)).

Hint: choose δ = c3n
−α/2(α−β) in the slicing bound for a sufficiently large

constant c3 (depending on c1, c2, α, β). Then we can estimate

C

∫ c1δ
1/α2k/α

0

√
logN(T, d, ε) dε ≤ δ2k−2n1/2,

and thus it is possible to apply Proposition 5.35.

Remark 5.38. The bounds obtained in the previous problem are often unsat-
isfactory in practice. The reason is that we have endowed T with the uniform
norm d(t, s) := ‖ft−fs‖∞, which is too stringent in most applications: it diffi-
cult both to satisfy the margin condition and to control the covering numbers
for such a strong norm. The uniform norm is the best we can hope for, how-
ever, if we use only the subgaussian property of {Zt}t∈T (Azuma-Hoeffding).
Later in this course, we will develop new tools from empirical process theory
that make it possible to obtain uniform bounds on the supremum of empirical
averages µnf − µf under much weaker norms. With this machinery in place,
however, the slicing argument will go through precisely as we used it above.

5.13 (Empirical risk minimization II: modulus of continuity). The
goal of this problem is to outline an alternative proof of the results obtained
in the previous problem: rather than employing the slicing argument directly,
we will deduce the bound on the excess risk from the modulus of continuity of
the process {Zt}t∈T . This is not really different, of course, as one must still use
slicing (in the form of Theorem 5.32) to control the modulus of continuity. The
main point of the present problem, however, is to emphasize that the modulus
of continuity arises naturally in the empirical risk minimization problems.

In the sequel, we work in the same setting as in the previous problem.

a. Show that

R(t̂n)−R(t∗) ≤ µn(ft∗ − ft̂n)− µ(ft∗ − ft̂n) = n−1/2Zt̂n .

Hint: use that µn(ft∗ − ft̂n) ≥ 0 by construction.

b. Show directly (without slicing) that if∫ ∞
0

√
logN(T, d, ε) dε <∞,

then we have
E[R(t̂n)−R(t∗)] . n−1/2.
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c. The reason that the above bound is pessimistic is that t̂n → t∗, so we expect
that Zt̂n−Zt∗ � supt∈T {Zt−Zt∗}. To capture this behavior, suppose that
ω(δ) = δβ is a modulus of continuity for {Zt}t∈T , so Zt̂n −Zt∗ . d(t̂n, t∗)β

a.s. If in addition the margin condition holds, show that this implies

R(t̂n)−R(t∗) . n−α/2(α−β) a.s.

d. Deduce the conclusion of the previous problem from the off-the-shelf mod-
ulus of continuity result obtained in Theorem 5.32.

5.14 (Law of iterated logarithm). A classical application of the slicing
method in probability theory is the proof of the law of iterated logarithm. In
this problem, we will prove the simplest form of such a result.

Let X1, X2, . . . be i.i.d. Gaussian random variables with zero mean and
unit variance. We aim to show the law of iterated logarithm

lim sup
n→∞

1√
2n log log n

n∑
k=1

Xk ≤ 1 a.s.

(in fact, with a bit more work one can prove that equality holds a.s.)

a. Use the slicing method to show that for β > 1 and m ∈ N

P

[
sup
n≥βm

1√
2n log log n

n∑
k=1

Xk ≥ x

]

≤
∞∑
`=m

P

[
max
n≤β`+1

n∑
k=1

Xk ≥ x
√

2β`{log `+ log log β}

]
.

b. Prove the following maximal inequality:

P

[
sup
n≤N

n∑
k=1

Xk ≥ x

]
≤ e−x

2/2N .

Hint: without the sup, this is the Chernoff bound for Gaussian variables.
Now note that Mn =

∑n
k=1Xk is a martingale, so eλMn is a submartingale.

Improve the Chernoff bound using Doob’s submartingale inequality.

c. Show that whenever x2 > β

lim
m→∞

P

[
sup
n≥βm

1√
2n log log n

n∑
k=1

Xk ≥ x

]
= 0,

and conclude the form of the law of iterated logarithm stated above.
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5.15 (Maxima of independent Gaussians). Let {Xn}n≥0 be i.i.d. N(0, 1)
random variables. Of course, it is trivially seen that supnXn =∞ a.s., so there
is nothing interesting to be said about the supremum of the process {Xn}n≥0

itself. However, even when the supremum of a process is infinite, the penalized
supremum can still be finite if the penalty is chosen appropriately.

a. Let an ↑ ∞. Show that supnXn/an <∞ if and only if an &
√

log n.

b. Let bn ↑ ∞. Show that supn{Xn − bn} <∞ if and only if bn &
√

log n.

Notes

§5.1. The use of union bounds to estimate maxima of independent random
variables is classical. The proof of Lemma 5.1 arises naturally from the de-
velopment of maximal inequalities in terms of Orlicz norms, cf. [107]; the
present formulation is taken from [25]. Orlicz norms make it possible to define
bona fide Banach spaces of random variables with given tail behavior, and are
therefore particularly useful in a functional-analytic setting. The Johnson-
Lindenstrauss lemma (Problem 5.3) can be found, for example, in [92].

§5.2. Covering and packing numbers were first studied systematically in the
beautiful paper of Kolmogorov and Tikhomirov [80], which remains surpris-
ingly modern. The covering number estimates of finite-dimensional balls and
of Lipschitz functions are already obtained there. The application of Lemma
5.7 is often referred to as “an ε-net argument”; it is the simplest and most
classical method to bound the supremum of a random process. Much more on
estimating the norm of a random matrix can be found in [146].

§5.3. The chaining method appears in any first course on stochastic processes
in the form of the Kolmogorov continuity theorem [79, Theorem 2.2.8]. It was
developed by Kolmogorov in 1934 but apparently never published by him (see
[40]). The general formulation for (sub)gaussian processes in terms of covering
numbers is due to Dudley [52]. A method of chaining using Orlicz norms due to
Pisier [107] has become popular as it yields tail bounds without any additional
effort. The tail bound of Theorem 5.29 (whose proof was inspired by [148]) is
much sharper, however, and we have therefore avoided chaining with Orlicz
norms. A different approach to deriving sharp chaining tail bounds can be
found in [85, section 11.1]. The sharp rates of convergence for the Wasserstein
LLN stated in Problem 5.11 can be found in [4] (see also [137]).

§5.4. The idea behind the slicing (also known as peeling or stratification)
method already arises in the classical proof of the law of iterated logarithm
(Problem 5.14) and has a long history of applications to empirical processes.
Theorem 5.32 appears, without the additional technical condition, in [53].
Problems 5.12 and 5.13 only give a flavor of numerous applications of these
ideas in mathematical statistics; see [68, 67] for much more on this topic.
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Gaussian processes

In the previous chapter, we developed the chaining method to bound the
suprema of subgaussian processes. This provides a powerful tool that is useful
in many applications. However, at this point in the course, it is not entirely
clear why this method is so effective: at first sight the method appears quite
crude, being at its core little more than a conveniently organized union bound.
It is therefore a remarkable fact that some form of the chaining method suffices
in many situations (in some cases in a more sophisticated form than was
developed in the previous chapter) to obtain sharp results.

To understand when the chaining method is sharp, we must supplement
our chaining upper bounds in terms of corresponding lower bounds. It is clear
that we cannot expect to obtain sharp lower bounds at the level of generality
of subgaussian processes; even in the case of finite maxima, we have seen that
we need the additional assumption of independence to obtain lower bounds.
In the case of general suprema, a more specific structure is needed. In this
chapter we will investigate the case of Gaussian processes, for which a very
precise understanding of these questions can be obtained.

Definition 6.1 (Gaussian process). The random process {Xt}t∈T is called
a (centered) Gaussian process if the random variables {Xt1 , · · · , Xtn} are cen-
tered and jointly Gaussian for all n ≥ 1, t1, · · · , tn ∈ T .

There are several reasons to concentrate on Gaussian processes:

1. Gaussian processes arise naturally in many important applications, both
explicitly and implicitly as a mathematical tool in proofs.

2. Gaussian processes provide us with the simplest prototypical setting in
which to investigate and understand chaining lower bounds.

3. Our investigation of Gaussian processes will give rise to new ideas and
methods that are applicable far beyond the Gaussian setting.

Remark 6.2. In the sequel, all Gaussian processes will be assumed to be cen-
tered (that is, E[Xt] = 0) unless stated otherwise. Some methods to deal with
non-centered processes were discussed in section 5.4.
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Let us remark at the outset that for a Gaussian process {Xt}t∈T , we have

E[eλ{Xt−Xs}] = eλ
2E[|Xt−Xs|2]/2.

Thus a Gaussian process determines a canonical metric on the index set T .

Definition 6.3 (Natural distance). A Gaussian process {Xt}t∈T is sub-
gaussian on (T, d) for the natural distance d(t, s) := E[|Xt −Xs|2]1/2.

Gaussian processes {Xt}t∈T will always be considered as being defined on
(T, d) endowed with the natural distance d. As we will see in the sequel, the
magnitude of the suprema of Gaussian processes can be understood completely
(up to universal constants) in terms of chaining under the natural distance.
Once this has been understood, we can truly conclude that chaining is the
“right” way to think about the suprema of random processes.

6.1 Comparison inequalities

How can we obtain a lower bound on the expected supremum of a Gaussian
processes? The simplest possible situation is one that was already developed
in Problem 5.1: if X1, . . . , Xn are i.i.d. Gaussians, the maximal inequalities
of section 5.1 are sharp. As this elementary fact will form the basis for all
further developments, let us begin by giving a complete proof.

Lemma 6.4. If X1, . . . , Xn are i.i.d. N(0, σ2) random variables, then

cσ
√

log n ≤ E
[

max
i≤n

Xi

]
≤ σ

√
2 log n

for a universal constant c.

Proof. The upper bound follows immediately from Lemma 5.1 (and does not
require independence). To prove the lower bound, note that for any δ > 0

E
[

max
i≤n

Xi

]
=
∫ ∞

0

P
[

max
i≤n

Xi ≥ t
]
dt+ E

[
max
i≤n

Xi ∧ 0
]

≥ δP
[

max
i≤n

Xi ≥ δ
]

+ E[X1 ∧ 0]

= δ{1− (1−P[X1 ≥ δ])n}+ E[X1 ∧ 0],

as P[maxi≤nXi ≥ t] is decreasing in t and as {Xi} are i.i.d. Now note that

P[X1 ≥ δ] =
∫ ∞
δ

e−x
2/2σ2

√
2πσ2

dx ≥ e−δ
2/σ2

c1
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for a universal constant c1, where we used x2 = (x− δ+ δ)2 ≤ 2(x− δ)2 + 2δ2.
Thus if we choose the parameter δ as

δ = σ
√

log n− σ
√

log c1,

we have P[X1 ≥ δ] ≥ 1/n. This implies

E
[

max
i≤n

Xi

]
≥ (1− e−1)σ

√
log n− c2σ

for a universal constant c2. Thus the result follows when n ≥ e4c22/(1−e−1)2 . On
the other hand, as there are only a finite number of values n < e4c

2
2/(1−e

−1)2 ,
the lower bound trivially holds with some universal constant in this case. ut

Let {Xt}t∈T be a random process on a general index set T . The intuition
behind the upper bounds developed in the previous chapter was that while
Xt and Xs will be strongly dependent when t and s are close together, Xt and
Xs can be nearly independent when t and s are far apart. This motivated the
approximation of the supremum by finite maxima over well separated points,
for which the result of Lemma 5.1 might reasonably be expected to be sharp.
However, we never actually used any form of independence in the proofs: our
upper bounds still work even if the intuition fails. On the other hand, we
can only expect these bounds to be sharp if the intuition does in fact hold.
The first challenge that we face in proving lower bounds is therefore to make
mathematical sense of the above intuition that was only used as a guiding
heuristic for obtaining upper bounds in the previous chapter. This is precisely
what will be done in this section in the setting of Gaussian processes.

What should such a result look like? Let N be a maximal ε-packing of T .
If {Xt : t ∈ N} behave in some sense like independent Gaussians, then we
would expect by Lemma 6.4 that E[supt∈T Xt] ≥ E[maxt∈N Xt] &

√
log |N |.

In view of the duality between packing and covering numbers (Lemma 5.12),
this is precisely the content of the following result.

Theorem 6.5 (Sudakov). For a Gaussian process {Xt}t∈T , we have

E
[

sup
t∈T

Xt

]
≥ c sup

ε>0
ε
√

logN(T, d, ε)

for a universal constant c.

Remark 6.6. Combining Sudakov’s lower bound with the upper bound ob-
tained in the previous chapter by chaining, we have evidently shown that

sup
ε>0

ε
√

logN(T, d, ε) . E
[

sup
t∈T

Xt

]
.
∫ ∞

0

√
logN(T, d, ε) dε,

or, equivalently up to universal constants,
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sup
k∈Z

2−k
√

logN(T, d, 2−k) . E
[

sup
t∈T

Xt

]
.
∑
k∈Z

2−k
√

logN(T, d, 2−k).

Thus the upper bound and the lower bound we have obtained contain pre-
cisely the same terms at every scale; however, the upper bound is a multiscale
bound (a sum over all scales), while the lower bound is a single scale bound
(a maximum over all scales). These two bounds are not as far apart as may
appear at first sight: in many situations the terms 2−k

√
logN(T, d, 2−k) be-

have like a geometric series, so that their sum is of the same order as the
largest term. There are also many cases, however, where there is indeed a
gap between these two bounds. The main objective in the remainder of this
chapter will be to close the gap between these upper and lower bounds.

Remark 6.7. We have phrased Theorem 6.5 in terms of the covering numbers
N(T, d, ε) to bring out the similarity between the upper and lower bounds.
It should be emphasized, however, that upper and lower bounds require in
principle fundamentally different ingredients. Upper bounds, which require
approximation of every point in the index set T , are naturally obtained in
terms of a covering of T . On the other hand, lower bounds, which require a
subset of T that is well separated, are naturally obtained in terms of a packing
of T (indeed, it is in fact the packing number D(T, d, ε) and not the covering
number that arises in the proof of Theorem 6.5). The duality of packing and
covering, while somewhat hidden in the statement of our results, therefore lies
at the heart of the development of matching upper and lower bounds. While
the duality between packing an covering numbers (Lemma 5.12) is elementary,
the development of a more sophisticated form of this duality will prove to be
one of the challenges that we must surmount in our quest to develop matching
chaining upper and lower bounds for Gaussian processes.

We now turn to the proof of Theorem 6.5. The key idea that we aim to
make precise is that if N is an ε-packing, then the Gaussian vector {Xt}t∈N
behaves in some sense like a collection {Yt}t∈N of i.i.d. Gaussians, so that we
can apply Lemma 6.4. We therefore need a tool that allows us to compare
the maxima of two different Gaussian vectors. To this end, we will use the
following classical comparison inequality for Gaussian vectors.

Theorem 6.8 (Slepian-Fernique). Let X ∼ N(0, ΣX) and Y ∼ N(0, ΣY )
be n-dimensional Gaussian vectors. Suppose that we have

E|Xi −Xj |2 ≥ E|Yi − Yj |2 for all i, j = 1, . . . , n.

Then

E
[

max
i≤n

Xi

]
≥ E

[
max
i≤n

Yi

]
.

Using this comparison inequality, we can now easily complete the proof of
Sudakov’s inequality by comparing with the independent case.
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Proof (Theorem 6.5). Fix ε > 0 and an ε-packing N of T for the time being.
Define X = {Xt}t∈N , and let Y = {Yt}t∈N be i.i.d. N(0, ε2/2) variables. Then

E|Xt −Xs|2 = d(t, s)2 ≥ ε2 = E|Yt − Ys|2 for all t, s ∈ N, t 6= s.

Therefore, we obtain using Theorem 6.8 and Lemma 6.4

E
[

max
t∈T

Xt

]
≥ E

[
max
t∈N

Xt

]
≥ E

[
max
t∈N

Yt

]
≥ cε

√
log |N |.

We now optimize over ε > 0 and ε-packings N to obtain

E
[

max
t∈T

Xt

]
≥ c sup

ε>0
ε
√

logD(T, d, ε) ≥ c sup
ε>0

ε
√

logN(T, d, ε),

where we have used Lemma 5.12 in the last inequality. ut

We now turn to the proof of Theorem 6.8. Let us note that up to this point,
we have not used any properties that are particularly specific to Gaussian
processes. Indeed, in Lemma 6.4 we used only a subgaussian-type lower bound
on the tail probabilities, and the conclusions of Theorems 6.5 and 6.8 can
certainly hold also for other types of processes. In the proof of Theorem 6.8,
however, we will perform computations that exploit the specific form of the
Gaussian distribution. This is the only point in this chapter we will use the full
strength of the Gaussian assumption. The Gaussian interpolation technique
that will be used in the proof is of interest in its own right, and proves to be
useful in many other interesting problems involving Gaussian variables.

The idea behind the proof of Theorem 6.8 is as follows. We would like to
prove that the expected maximum of the vector Y is smaller than that of the
vector X. Rather than proving this directly, we will define a family of Gaussian
vectors {Z(t)}t∈[0,1] that interpolate between Z(0) = Y and Z(1) = X. To
establish Theorem 6.8, it then suffices to show that the expected maximum of
Z(t) is increasing in t. The beauty of this approach is that the latter problem
can be investigated “locally” by considering the derivative with respect to t.

Lemma 6.9 (Interpolation). Let X ∼ N(0, ΣX) and Y ∼ N(0, ΣY ) be
independent n-dimensional Gaussian vectors, and define

Z(t) =
√
tX +

√
1− t Y, t ∈ [0, 1].

Then we have for every smooth function f

d

dt
E[f(Z(t))] =

1
2

n∑
i,j=1

(ΣX
ij −ΣY

ij ) E
[

∂2f

∂xi∂xj
(Z(t))

]
.

The result of Lemma 6.9 is very closely related to the computations that
we performed to prove the Gaussian Poincaré inequality in section 2.3.1: the
second derivative appears here for precisely the same reason as it does in the
generator of the Ornstein-Uhlenbeck process. To prove Lemma 6.9, we require
a multidimensional version of the Gaussian integration by parts Lemma 2.23.
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Lemma 6.10 (Gaussian integration by parts). Let X ∼ N(0, Σ). Then

E[Xif(X)] =
n∑
j=1

Σij E
[
∂f

∂xj
(X)

]
.

Proof. Let Z ∼ N(0, I). Then X has the same distribution as Σ1/2Z Thus

E[Xif(X)] =
n∑
k=1

Σ
1/2
ik E[Zkf(Σ1/2Z)] =

n∑
k=1

Σ
1/2
ik E[Zkg(Z)],

where g(z) = f(Σ1/2z). As {Zk} are independent, we can apply the integra-
tion by parts Lemma 2.23 conditionally on {Zj}j 6=k to obtain

E[Zkg(Z)] = E
[
∂g

∂zk
(Z)
]

=
n∑
j=1

Σ
1/2
jk E

[
∂f

∂xj
(Σ1/2Z)

]
.

The proof is easily completed as
∑
kΣ

1/2
ik Σ

1/2
jk = Σij . ut

Using the Gaussian integration by parts property, the proof of the inter-
polation Lemma 6.9 is now a matter of straightforward computation.

Proof (Lemma 6.9). We readily compute

d

dt
E[f(Z(t))] =

n∑
i=1

E
[
∂f

∂xi
(Z(t))

dZi(t)
dt

]

=
1
2

n∑
i=1

E
[
∂f

∂xi
(Z(t))

{
Xi√
t
− Yi√

1− t

}]
.

As X and Y are independent, we can apply Lemma 6.10 to the 2n-dimensional
Gaussian vector (X,Y ) to compute the first term on the right as

E
[
∂f

∂xi
(Z(t))

Xi√
t

]
=

n∑
j=1

ΣX
ij E

[
∂2f

∂xi∂xj
(Z(t))

]
.

An identical computation for the second term completes the proof. ut

We are now ready to complete the proof of Theorem 6.8. Ideally, we would
like the proof to work as follows. First, we define f(x) = maxi≤n xi. We then
use Lemma 6.9 to establish that under the assumptions of Theorem 6.8

d

dt
E[f(Z(t))] ≥ 0.

Then the proof is complete, as this evidently implies
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E
[

max
i≤n

Xi

]
= E[f(Z(1))] ≥ E[f(Z(0))] = E

[
max
i≤n

Yi

]
.

The problem with this idea is that the function f is not twice differentiable, so
that we cannot apply Lemma 6.9 directly. We can nonetheless make the proof
work by working with a convenient smooth approximation of the function f .

Proof (Theorem 6.8). Define for β > 0 the function

fβ(x) =
1
β

log
n∑
i=1

eβxi .

Then evidently (cf. Problem 5.2)

max
i≤n

xi =
1
β

log
(

max
i≤n

eβxi
)
≤ fβ(x) ≤ 1

β
log
(
nmax
i≤n

eβxi
)

= max
i≤n

xi+
log n
β

.

Thus fβ(x)→ maxi≤n xi as β →∞. Moreover,

∂fβ(x)
∂xi

=
eβxi∑n
j=1 e

βxj
=: pi(x),

∂2fβ(x)
∂xi∂xj

= β{δijpi(x)− pi(x)pj(x)}.

Lemma 6.9 therefore yields

d

dt
E[fβ(Z(t))] =

β

2

n∑
i=1

(ΣX
ii −ΣY

ii ) E[pi(Z(t)){1− pi(Z(t))}]

− β

2

∑
i 6=j

(ΣX
ij −ΣY

ij ) E[pi(Z(t))pj(Z(t))].

But noting that 1− pi(x) =
∑
j 6=i pj(x), we can write

n∑
i=1

ai pi(x){1− pi(x)} =
∑
i 6=j

ai pi(x)pj(x) =
∑
i 6=j

aj pi(x)pj(x),

where we exchanged the roles of the variables i and j. Averaging the two
expressions on the right hand side and plugging into the above identity yields

d

dt
E[fβ(Z(t))] =

β

4

∑
i 6=j

{E|Xi −Xj |2 −E|Yi − Yj |2}E[pi(Z(t))pj(Z(t))]

using E|Xi −Xj |2 = ΣX
ii − 2ΣX

ij +ΣX
jj and E|Yi − Yj |2 = ΣY

ii − 2ΣY
ij +ΣY

jj .
It follows immediately from our assumptions that the right hand side of this
expression is nonnegative, so that E[fβ(Z(t))] is increasing in t. Thus

E[fβ(X)] = E[fβ(Z(1))] ≥ E[fβ(Z(0))] = E[fβ(Y )].

Letting β →∞ in this expression completes the proof. ut
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The conclusion of the proof of Theorem 6.8 marks the last time in this
chapter that we will make explicit use of the Gaussian property of the under-
lying process. In the rest of this chapter, we will only make use of two facts
about Gaussian processes: the validity of Sudakov’s inequality (Theorem 6.5),
and Gaussian concentration (Theorem 3.25). While both these properties are
stronger than the subgaussian property used in the previous chapter, such
properties or their variants do continue to hold in many situations where the
underlying process is not actually Gaussian. For this reason, while we will
concentrate our attention here on the classical setting of Gaussian processes
for concreteness, the methods that we are about to develop prove to be very
useful in a variety of problems that go far beyond the Gaussian setting.

Problems

6.1 (Norm of a random matrix). Let M be an n×m random matrix such
that Mij are independent N(0, 1) random variables. In Example 5.10, we
used an ε-net argument to show that E‖M‖ ≤ C

√
n+m for some universal

constant C (this conclusion holds even in the case where the entries Mij are
only subgaussian). The goal of this problem is to obtain some further insight
on the norm of a random matrix in the Gaussian case.

a. The ε-net argument only yields an upper bound E‖M‖ ≤ C
√
n+m. It

is far from clear, a priori, whether this bound is sharp. Use Sudakov’s
inequality to show that in the Gaussian case, we have in fact a matching
lower bound E‖M‖ ≥ C ′

√
n+m for some universal constant C ′.

Hint: consider the Gaussian process Xv,w = 〈v,Mw〉 on Sn−1 × Sm−1

(where Sn−1 is the unit sphere in Rn), and show that the corresponding
natural distance satisfies d((v, w), (v′, w′)) ≥ ‖v − v′‖ ∨ ‖w − w′‖.

While upper bounds using ε-net arguments or chaining often give sharp results
up to universal constants, there is little hope to obtain realistic values of the
constants in this manner. If one cares about the best values of the constants,
one must typically resort to other techniques. In the Gaussian setting of this
problem, we can use the Slepian-Fernique inequality as a replacement for the ε-
net argument to prove the much sharper inequality E‖M‖ ≤

√
n+
√
m. In fact,

it is known from random matrix theory that this result is sharp asymptotically
as n→∞ with m ∝ n (note that this improved estimate does not contradict
our earlier bounds as 2−1/2{

√
n+
√
m} ≤

√
n+m ≤

√
n+
√
m).

b. Let Z ∼ N(0, In) and Z ′ ∼ N(0, Im) be independent standard Gaussian
vectors of dimensions n and m, and define for (v, w) ∈ Sn−1 × Sm−1

Xv,w = 〈v,Mw〉, Yv,w = 〈v, Z〉+ 〈w,Z ′〉.

Show that E|Yv,w − Yv′,w′ |2 ≥ E|Xv,w −Xv′,w′ |2 for all v, v′, w, w′.

c. Conclude by the Slepian-Fernique inequality that E‖M‖ ≤
√
n+
√
m.
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6.2 (Gordon’s inequality and the smallest singular value). The Slepian-
Fernique inequality is only one of a family of Gaussian comparison inequalities.
There is nothing terribly special about the maximum function—the only im-
portant property needed to apply the interpolation Lemma 6.9 is that the
second derivatives of the function have the appropriate sign.

In this problem, we will develop another Gaussian comparison inequality
due to Gordon. To this end, let X and Y be n ×m matrices with centered
and jointly Gaussian (but not necessarily independent) entries. To obtain a
comparison, we will assume the following inequalities between the covariances:

E[XijXil] ≤ E[YijYil] for all i, j, l,
E[XijXkl] ≥ E[YijYkl] for all i 6= k and j, l,

E[X2
ij ] = E[Y 2

ij ] for all i, j.

a. Show that for all x ∈ R

P
[

min
i≤n

max
j≤m

Xij ≥ x
]
≥ P

[
min
i≤n

max
j≤m

Yij ≥ x
]
.

Hint: let αk : R→ [0, 1] be smooth and decreasing in x such that αk(x)→
1x<0 as k →∞. Apply Lemma 6.9 to fk(x) =

∏n
i=1{1−

∏m
j=1 αk(xij−x)}.

b. Conclude that

E
[

min
i≤n

max
j≤m

Xij

]
≥ E

[
min
i≤n

max
j≤m

Yij

]
.

Let M be an n×m random matrix with n > m, such that Mij are independent
N(0, 1) random variables. The minimal and maximal singular values of M are
defined as the optimal constants smin(M), smax(M) in the inequality

smin(M)‖x‖ ≤ ‖Mx‖ ≤ smax(M)‖x‖ for all x ∈ Rm.

Evidently smax(M) = ‖M‖, and thus we obtained a sharp upper bound for
smax(M) using Slepian’s inequality in the previous problem. Using Gordon’s
inequality, we can obtain a sharp lower bound for smin(M).

c. Use Gordon’s inequality to show that E[smin(M)] ≥
√
n−
√
m.

Hint: If Zn ∼ N(0, In) is n-dimensional standard normal, it can be verified
by tedious explicit computation that E‖Zn‖ −

√
n is increasing in n.

6.3 (Sudakov’s inequality and convex geometry). The proof of Su-
dakov’s inequality that we have given is certainly the most intuitive. However,
it relies on the Slepian-Fernique inequality, whose proof is based on explicit
Gaussian computations. The goal of this problem is to give a completely differ-
ent proof of Sudakov’s inequality using ideas from convex geometry. The fact
that Sudakov’s inequality can be proved by such drastically different means
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suggests that this result is more robust and less closely tied to the precise
form of the Gaussian distribution than might appear from the proof using
Slepian-Fernique. In any case, the connection between Sudakov’s inequality
and convex geometry is of significant interest in its own right.

We begin by reducing the problem to a convenient special case. Let G =
{g1, . . . , gn} be independent N(0, 1) variables, and define

Xt =
n∑
k=1

gktk, t ∈ Rn.

Let T ⊆ Rn, and consider the Gaussian process {Xt}t∈T . The natural distance
for this process is simply the Euclidean distance d(x, y) = ‖x− y‖.

a. Argue that to prove Theorem 6.5 in full generality, it suffices to consider
the special Gaussian processes {Xt}t∈T as defined above.
Hint: for any Gaussian process {Zu}u∈U and points u1, . . . , un ∈ U , find
points t1, . . . , tn ∈ Rn such that {Zui}i≤n has the same law as {Xti}i≤n.

b. Argue further that it suffices to consider only convex sets T ⊆ Rn.

c. Show that for any t0 ∈ T

E
[

sup
t∈T
|Xt −Xt0 |

]
≤ 2 E

[
sup
t∈T

Xt

]
.

Conclude that it suffices to consider only symmetric convex sets T ⊆ Rn.

We now take a rather surprising detour by proving an apparently quite differ-
ent result. Given two convex sets A and B in Rn, let N(B,A) be the smallest
number of translates of A needed to cover B: that is,

N(B,A) := min

{
k : ∃x1, . . . , xk ∈ Rn such that B ⊆

k⋃
l=1

{xl +A}

}
.

We are going to prove the following inequality:

P[G ∈ A] ≥ 2
3

implies sup
ε>0

ε
√

logN(B2, εA) ≤ c

for some universal constant c, where B2 = {x ∈ Rn : ‖x‖ ≤ 1} is the Eu-
clidean unit ball and A is any symmetric convex set. The proof of this result
is one that we are quite familiar with: we will essentially use the same vol-
ume argument as was used in the proof of Lemma 5.13, but we will use the
Gaussian measure P[G ∈ A] to measure the “volume” of the set A instead
of the Lebesgue measure. The main difficulty is that the Gaussian measure,
unlike the Lebesgue measure, is not translation-invariant, so we must first
understand how to estimate the Gaussian measure of a translate of a set.
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d. Let A be a symmetric set. Show that

P[G ∈ x+A] ≥ e−‖x‖
2/2 P[G ∈ A] for all x ∈ Rn.

Hint: write out the probability as a Gaussian integral and use Jensen.

e. Let A be a symmetric set. Let x1, . . . , xk ∈ B2 be such that the translates
{xi + εA} are disjoint. Show that we can estimate

k e−1/2ε2 P[G ∈ A] ≤
k∑
i=1

P[G ∈ xi
ε +A] ≤ 1.

f. Let A be a symmetric convex set. Show that

N(B, 2A) ≤ max{k : ∃x1, . . . , xk ∈ B s.t. {xi +A}i=1,...,k are disjoint}.

Hint: if {x+ A} ∩ {z + A} 6= ∅, then z ∈ x+ A− A, and thus z ∈ x+ 2A
as A is symmetric and convex (note that A+A 6= 2A without convexity!)

g. Conclude that if A is a symmetric convex set and P[G ∈ A] ≥ 2/3, then

sup
ε>0

ε
√

logN(B2, εA) ≤ c

for a universal constant c.

So far, the supremum of the Gaussian process does not appear. Let us correct
this. Let T be a symmetric convex set, and define its polar

T ◦ := {x ∈ Rn : 〈t, x〉 ≤ 1 for all t ∈ T}.

Then evidently

P[G ∈ aT ◦] = P
[

sup
t∈T

Xt ≤ a
]
≥ 1− 1

a
E
[

sup
t∈T

Xt

]
by Markov’s inequality. So if we choose A = 3 E[supt∈T Xt]T ◦, we obtain

sup
ε>0

ε
√

logN(B2, εT ◦) ≤ 3cE
[

sup
t∈T

Xt

]
.

This result is known as the dual Sudakov inequality. The covering number
on the right-hand side is not the same one that shows up in the Sudakov
inequality: in Theorem 6.5, N(B2, εT

◦) is replaced by N(T, d, ε) = N(T, εB2).
To deduce the Sudakov inequality from the dual Sudakov inequality, we will
use a convex duality argument to relate these two covering numbers.

h. Show that for every x ∈ Rn

‖x‖2 = 〈x, x〉 ≤ sup
t∈T
〈t, x〉 sup

t∈T◦
〈t, x〉.

Hint: note that x/ supt∈T 〈t, x〉 ∈ T ◦.
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i. Conclude from the previous part that 2T ∩ ε2

2 T
◦ ⊆ εB2, and therefore

N(T, εB2) ≤ N(T, 2T ∩ ε2

2 T
◦) = N(T, ε

2

2 T
◦).

j. Show that
N(T, εB2) ≤ N(T, 2εB2)N(2εB2,

ε2

2 T
◦).

Hint: construct a cover of T by translates of ε2

2 T
◦ by first covering T by

translates of 2εB2, then covering each of the latter by translates of ε2

2 T
◦.

k. Conclude that

sup
ε>0

ε
√

logN(T, εB2) ≤ 8 sup
ε>0

ε
√

logN(B2, εT ◦),

so that Theorem 6.5 follows from the dual Sudakov inequality.

6.2 Chaining in reverse and stationary processes

In the previous section we made a first step towards proving lower bounds for
the suprema of Gaussian processes: we showed how one can make precise the
intuition that well-separated points behave like independent variables. This
allows us to obtain a lower bound in terms of the covering number at a single
scale. However, in the upper bound we obtained by chaining, we necessarily
must deal with infinitely many scales in order to eliminate the remainder term
in the chaining method. In order to close the gap between our upper and lower
bounds, our second challenge is therefore to show how to obtain a multiscale
lower bound. We will presently show how this can be done.

Let us recall the basic step in the chaining method: if diam(T ) ≤ ε and if
N ⊆ T is an ε/2-net, then we have for some universal constant c1

E
[

sup
t∈T

Xt

]
≤ c1ε

√
log |N |+ E

[
sup
t∈T
{Xt −Xπ(t)}

]
.

This yields the contribution at a single scale ε, plus a remainder term. By
iterating this bound, we can eliminate the remainder term and obtain a sum
at infinitely many scales. To obtain a matching lower bound, we would like to
mimick this procedure in the reverse direction. In order to do this, we would
like to have an inequality of the following form: if N ⊆ T is an ε-packing, then

E
[

sup
t∈T

Xt

]
≥ c2ε

√
log |N | + a remainder term

for some universal constant c2. In the absence of the remainder term, this
is precisely Sudakov’s inequality proved in the previous section. However,
without the remainder term, our lower bound necessarily terminates at a
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single scale. On the other hand, if we could prove an improvement of Sudakov’s
inequality that includes a remainder term (hopefully of a similar form to the
one that appears in the chaining upper bound), then it becomes possible to
iterate this inequality to obtain a multiscale lower bound. In essence, our aim
is to develop an improved version of Sudakov’s inequality that will allow us to
run the chaining argument in reverse! This is the idea of the following result.

Theorem 6.11 (Super-Sudakov). Let {Xt}t∈T be a separable Gaussian
process and let N be an ε-packing of (T, d). Then we can estimate

E
[

sup
t∈T

Xt

]
≥ cε

√
log |N |+ min

s∈N
E
[

sup
t∈B(s,αε)

Xt

]
,

where c and α < 1
2 are universal constants and B(s, ε) := {t ∈ T : d(t, s) ≤ ε}.

The geometry of Theorem 6.11 is illustrated in the following figure:

ε

αε

The set T (large circle) is packed with points at distance ε; around each point
in the packing, we consider the set of parameters in a ball with radius αε
(small circles). The supremum of the process over the entire set is estimated
from below by the lower bound obtained by applying Sudakov’s inequality
to the ε-packing, plus a remainder term which corresponds to the smallest
expected supremum of the process over one of the disjoint balls.

The proof of Theorem 6.11 is not difficult. It will be deduced directly from
Sudakov’s inequality, together with the following basic consequence of the
Gaussian concentration principle (Theorem 3.25).

Lemma 6.12 (Concentration of suprema). Let {Xt}t∈T be a separable
Gaussian process. Then supt∈T Xt is supt∈T Var[Xt]-subgaussian.

Proof. By separability, we can approximate the supremum over T by the
supremum over a finite set (cf. the proof of Theorem 5.24). It therefore suffices
to prove the result for the maximum maxi≤nXi of an n-dimensional Gaussian
vector X ∼ N(0, Σ). It is convenient to write X = Σ1/2Z for Z ∈ N(0, I).
It then follows from Theorem 3.25 that maxi≤nXi is ‖∇f‖2∞-subgaussian,
where we have defined the function f(z) := maxi≤n(Σ1/2z)i. Note that
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∂f

∂zi
(z) =

n∑
j=1

1j=i∗(z)Σ
1/2
ji = Σ

1/2
i∗(z)i,

where we defined i∗(z) := arg maxi≤n(Σ1/2z)i. Thus

‖∇f(z)‖2 =
n∑
i=1

Σ
1/2
i∗(z)iΣ

1/2
ii∗(z) = Σi∗(z)i∗(z) ≤ max

i≤n
Σii.

As Σii = Var[Xi], the result follows immediately. ut

We now complete the proof of Theorem 6.11.

Proof (Theorem 6.11). We can evidently estimate

E
[

sup
t∈T

Xt

]
≥ E

[
max
s∈N

sup
t∈B(s,αε)

Xt

]
= E

[
max
s∈N

{
Xs + E

[
sup

t∈B(s,αε)

Xt

]
+ Ys

}]
≥ E

[
max
s∈N

Xs

]
+ min
s∈N

E
[

sup
t∈B(s,αε)

Xt

]
−E

[
max
s∈N
{−Ys}

]
,

where we defined

Ys = sup
t∈B(s,αε)

{Xt −Xs} −E
[

sup
t∈B(s,αε)

{Xt −Xs}
]
.

By Lemma 6.12, Ys is α2ε2-subgaussian for all s ∈ N . Thus we obtain, bound-
ing the first term using Theorem 6.5 and the last term using Lemma 5.1,

E
[

sup
t∈T

Xt

]
≥ {c− α

√
2}ε
√

log |N |+ min
s∈N

E
[

sup
t∈B(s,αε)

Xt

]
for some universal constant c. Choosing α = c/2

√
2 completes the proof. ut

Let us compare the lower bound of Theorem 6.11 to the chaining upper
bound. An immediate difference between the two bounds is that the former is
stated in terms of an ε-packing, while the latter is in terms of an ε-net. This
will be taken care of using the duality between covering and packing, however,
so that this difference is not a major concern at this stage. A more pressing
concern is the minimum in the bound of Theorem 6.11. To emphasize this
issue, let us reformulate the chaining upper bound to bring out the similarity
between the two bounds: if diam(T ) ≤ ε and N ⊆ T is an αε-net, then

E
[

sup
t∈T

Xt

]
≤ c1ε

√
log |N |+ E

[
max
s∈N

sup
t∈B(s,αε)

{Xt −Xs}
]

≤ c′1ε
√

log |N |+ max
s∈N

E
[

sup
t∈B(s,αε)

Xt

]
.
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The first inequality follows trivially from the chaining upper bound as stated
at the beginning of this section, while the second bound is readily obtained
by using Gaussian concentration as in the proof of Theorem 6.11. In contrast,
the bound of Theorem 6.11 states that if N is an ε-packing, then

E
[

sup
t∈T

Xt

]
≥ cε

√
log |N |+ min

s∈N
E
[

sup
t∈B(s,αε)

Xt

]
.

When phrased in this manner, the two bounds appear to be very similar, with
one crucial difference: in the chaining upper bound, the remainder term is the
largest expected supremum of the Gaussian process over a ball centered at one
of the points in N , while the remainder term in Theorem 6.11 is the smallest
expected supremum over such a ball. There is no reason why the supremum
of the Gaussian process over two balls of the same radius should be of the
same order: in general, the remainder terms in our upper and lower bounds
can be of a very different order of magnitude. The major remaining question,
to be addressed in the next section, is how to overcome this problem.

For the time being, however, we would like to illustrate the idea of chaining
in reverse without having to cope with the complications arising from the
above problem. To this end, we will investigate in the remainder of this section
a special class of Gaussian processes for which this problem does not arise.

Definition 6.13 (Stationary Gaussian process). The Gaussian process
{Xt}t∈T is called stationary if there exists a group G acting on T such that

1. d(g(t), g(s)) = d(t, s) for all t, s ∈ T , g ∈ G (translation invariance).
2. For every t, s ∈ T , there exists g ∈ G such that t = g(s) (transitivity).

Of course, the key point of this definition is that for a stationary Gaussian
process all balls are created equal: indeed, we have equality in distribution

{Xt −Xs : t ∈ B(s, ε)} d= {Xt −Xs′ : t ∈ B(s′, ε)} for all s, s′ ∈ T.

To see this, recall that the law of the increments of a Gaussian process is
entirely determined by the natural metric d, and note that if g ∈ G is such
that s′ = g(s), then g maps B(s, ε) isometrically onto B(s′, ε). Thus

max
s∈T

E
[

sup
t∈B(s,ε)

Xt

]
= min

s∈T
E
[

sup
t∈B(s,ε)

Xt

]
,

so our upper and lower bounds are of the same order in this case.

Example 6.14 (Brownian motion). Let {Bt}t∈R be two-sided Brownian motion
(that is, Bt = B′t for t ≥ 0 and Bt = B′′−t for t < 0, where {B′t}t≥0 and
{B′′t }t≥0 are independent standard Brownian motions). We can view the index
set R itself as a group G = (R,+) under addition. It is now easily seen that
Brownian motion is a stationary Gaussian process: transitivity is obvious,
while translation invariance can be read off from d(t, s) =

√
|t− s|.
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Example 6.15 (Random Fourier series). A classical application of stationary
Gaussian processes is to develop an understanding of Fourier series with ran-
dom coefficients. Let gk and g′k be i.i.d. N(0, 1) random variables, and let ck
be coefficients such that

∑
k c

2
k <∞. Define for t ∈ S1 = [0, 2π[ the process

Xt =
∞∑
k=0

ck{gk sin kt+ g′k cos kt}.

Then {Xt}t∈S1 is a stationary Gaussian process for the group of rotations of
the circle S1. Indeed, transitivity is obvious, and is it not difficult to compute
d(t, s)2 = 2

∑
k c

2
k{1− cos(k(t− s))} which is evidently translation-invariant.

Under the stationarity assumption, we have seen that the upper bound
we have used in a single iteration of the chaining argument is matched by an
essentially equivalent lower bound. Therefore, in this setting, we expect that
the chaining bound obtained in the previous chapter is tight. To prove this,
little remains but to run the chaining argument in reverse.

Theorem 6.16 (Fernique). Let {Xt}t∈T be a stationary separable Gaussian
process. Then we can estimate for some universal constants c1, c2

c1

∫ ∞
0

√
logN(T, d, ε) dε ≤ E

[
sup
t∈T

Xt

]
≤ c2

∫ ∞
0

√
logN(T, d, ε) dε.

Proof. As the Gaussian process is stationary, all balls behave in the same way.
Thus we will lighten our notation by defining B(ε) = B(t0, ε) for some fixed
by arbitrary point t0 ∈ T . This will play the role of our “representative ball”.

Let us begin by applying Theorem 6.11 at the scale αn. Choose Nn to be
a maximal αn+2-packing of the ball B(αn+1). Then we have⋃

s∈Nn

B(s, αn+3) ⊆ B(αn),

as d(t0, t) ≤ d(t0, s) + d(s, t) ≤ αn+1 + αn+3 ≤ αn for every s ∈ Nn and
t ∈ B(s, αn+3). This situation is illustrated in the following figure:

αn

αn+1
αn+2

αn+3
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By the maximality of the packing Nn, the duality between packing and cov-
ering numbers yields |Nn| ≥ N(B(αn+1), d, αn+2). Thus Theorem 6.11 yields

E
[

sup
t∈B(αn)

Xt

]
≥ cαn+2

√
logN(B(αn+1), d, αn+2) + E

[
sup

t∈B(αn+3)

Xt

]
,

where we have used stationarity and B(s, αn+3) ⊂ B(αn) to conclude that

min
s∈Nn

E
[

sup
t∈B(αn)∩B(s,αn+3)

Xt

]
= E

[
sup

t∈B(αn+3)

Xt

]
.

(the term on the left being the one that arises in Theorem 6.11).
We now iterate this bound. Let k0 be the largest integer such that αk0 ≥

diam(T ). If we start the iteration at any n ≤ k0, then we obtain

E
[

sup
t∈T

Xt

]
≥ c

∑
k≥0

αn+3k+2
√

logN(B(αn+3k+1), d, αn+3k+2).

This completes the core part of the proof of Theorem 6.16: we have obtained a
multiscale lower bound on the supremum of the Gaussian process by “chaining
in reverse”. However, at first sight the lower bound looks a little different than
the upper bound of Theorem 5.24. The difference proves to be cosmetic, and
we will presently “fix” the discrepancy between the two bounds.

First, note that the terms in the above sum “skip” from scale αk to αk+3,
rather than summing over all k ∈ Z. As the starting point n is arbitrary,
however, we can fix this by averaging over n = k0, k0 − 1, k0 − 2. This yields

E
[

sup
t∈T

Xt

]
≥ c

3

∑
k∈Z

αk+1
√

logN(B(αk), d, αk+1).

The remaining problem with this lower bound is that it contains covering
numbers of the form N(B(αk), d, αk+1), while our upper bound is phrased in
terms of covering numbers of the entire set N(T, d, αk+1). To fix this, let us
do some covering number gymnastics. Suppose we can cover T by m balls of
radius αk, and that each ball of radius αk can be covered by m′ balls of radius
αk+1. Then clearly T can be covered by mm′ balls of radius αk+1. We can
choose m = N(T, d, αk) and m′ = N(B(αk), d, αk+1) (using stationarity to
argue that the covering number of any ball B(s, αk) is equal to that of our
representative ball B(αk)). A moment’s reflection will show that we proved

N(T, d, αk+1) ≤ N(T, d, αk)N(B(αk), d, αk+1).

This sort of reasoning is useful in many problems involving covering numbers.
In the present setting, plugging this identity into the above bound yields



168 6 Gaussian processes

E
[

sup
t∈T

Xt

]
≥ c

3

∑
k∈Z

αk+1
√

logN(T, d, αk+1)− c

3

∑
k∈Z

αk+1
√

logN(T, d, αk)

=
c(1− α)

3

∑
k∈Z

αk+1
√

logN(T, d, αk+1)

≥ c′
∫ ∞

0

√
logN(T, d, ε) dε

for some universal constant c′, where we estimated the sum by an integral
in the usual manner (cf. Problem 5.9). Note that in order to prove that the
two terms in the first inequality are of the same order, we used the fact that
the sum runs over all k ∈ Z and not just over multiples of three. This minor
annoyance in the proof therefore does serve a purpose.

We have now proved the lower bound. The corresponding upper bound
follows immediately from the previous chapter (Corollary 5.25). ut

Problems

6.4 (An alternative proof of super-Sudakov). We deduced the super-
Sudakov inequality from the ordinary Sudakov inequality together with Gaus-
sian concentration. It is also possible, however, to obtain Theorem 6.11 directly
from the Slepian-Fernique inequality by modifying the proof of the Sudakov
inequality. The advantage of this is that it yields somewhat sharper constants.
The aim of this problem is to develop this alternative proof.

For simplicity, let {Xt}t∈T be a Gaussian process on a finite index set T
(the extension to the case of a separable Gaussian process follows readily as
in the proof of Theorem 5.24). Let N be an ε-packing of (T, d).

a. For every s ∈ N , let Ts := {t ∈ T : d(t, s) ≤ 1
4ε} and

Zt = X
(s)
t −X(s)

s + 1
4εgs for t ∈ Ts, s ∈ N,

where {X(s)
t }t∈T are independent copies of {Xt}t∈T and gs are independent

N(0, 1) random variables for s ∈ N . Show that we have

E|Xt −Xt′ |2 ≥ E|Zt − Zt′ |2 for all t, t′ ∈
⋃
s∈N

Ts.

b. Conclude from Theorem 6.8 that

E
[

sup
t∈T

Xt

]
≥ E

[
max
s∈N

{
ε

4
gs + sup

t∈Ts
{X(s)

t −X(s)
s }

}]
.

c. Use Jensen’s inequality conditionally on {gs}s∈N to conclude that

E
[

sup
t∈T

Xt

]
≥ ε

4
E
[

max
s∈N

gs

]
+ min
s∈N

E
[

sup
t∈Ts

Xt

]
,

and conclude that Theorem 6.11 holds for α = 1
4 .
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6.5 (Rectangles). Consider the Gaussian process {Xt}t∈{−1,1}n of the form

Xt =
n∑
k=1

gktkak,

where a1 > · · · > an > 0 are given constants and g1, . . . , gn are i.i.d. N(0, 1).
Such a process is called a rectangle (as the index set ({−1, 1}n, d) has the
same geometry as the corners of a rectangle in (Rn, ‖ · ‖)).

a. Show that

E
[

sup
t∈{−1,1}n

Xt

]
=

√
2
π

n∑
k=1

ak.

b. Argue that {Xt}t∈{−1,1}n is a stationary Gaussian process, so that∫ ∞
0

√
logN({−1, 1}n, d, ε) dε �

n∑
k=1

ak.

c. Attempt to verify this conclusion by estimating covering numbers and com-
puting the entropy integral directly. (This is surprisingly hard!)

d. Let ak = 1/k. Show that for every n ≥ 1

sup
ε>0

ε
√

logN({−1, 1}n, d, ε) ≤ c and
n∑
k=1

ak & log n

for some universal constant c. Therefore, while the chaining bound of The-
orem 5.24 is sharp, Sudakov’s inequality is far from sharp in this example.

6.6 (A nonstationary process). Consider the Gaussian process {Xn}n∈N

Xn =
gn√

1 + log n
,

where {gn}n∈N are i.i.d. N(0, 1). This process is most definitely not stationary.

a. Show that

E
[

sup
n∈N

Xn

]
<∞.

b. Show that ∫ ∞
0

√
logN(N, d, ε) dε =∞,

so the conclusion of Theorem 6.16 can indeed fail in the nonstationary case.
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c. To gain some insight into the problem, compute the quantity

E
[

sup
d(n,m)≤ε

Xn

]
for different m ∈ N. Conclude that while one needs N(N, d, ε) balls of radius
ε to cover N (and N(N, d, ε) ↑ ∞ as ε ↓ 0), the expected supremum of the
Gaussian process over all but one of these balls vanishes. Thus the remain-
der terms in our chaining upper and lower bounds are not comparable (in
fact, in this case it is clearly the upper bound that is inefficient).

6.7 (An improved chaining argument). Let {Xt}t∈T be a (nonstationary)
Gaussian process. In order to compare the super-Sudakov inequality to the
chaining upper bound, we used Gaussian concentration to reformulate the
upper bound as follows: if diam(T ) ≤ ε and N ⊆ T is an αε-net, then

E
[

sup
t∈T

Xt

]
≤ cε

√
log |N |+ max

s∈N
E
[

sup
t∈B(s,αε)

Xt

]
.

The goal of this problem is to note that chaining using this improved inequality
will in fact yield a slightly improved version of Corollary 5.25:

E
[

sup
t∈T

Xt

]
≤ c1 sup

t∈T

∫ ∞
0

√
logN(B(t, c2ε), d, ε) dε

for universal constants c1, c2 > 1.

a. Prove the above inequality.

b. Find an example where this inequality is sharp, but Corollary 5.25 is not.
Hint: let T be a (not necessarily regular) finite rooted tree with root t0 ∈ T
and leaves T ⊆ T. Assume that all leaves have the same depth n. For every
leaf t ∈ T , denote by π0(t), π1(t), . . . , πn(t) the unique path in the tree from
the root π0(t) = t0 to the leaf πn(t) = t. Attach to each vertex s ∈ T an i.i.d.
N(0, 1) random variable ξs, and define {Xt}t∈T as Xt =

∑n
k=0 β

kξπk(t).
Choose β < 1 and an irregular tree T carefully to construct the example.

c. Find an example where also the present inequality is not sharp.
Hint: consider Problem 6.6.

6.3 The majorizing measure theorem

In the previous section we developed the machinery needed to run the chaining
argument in reverse. However, our upper bound involved a maximum over the
expected supremum of different balls, while our lower bound involved a min-
imum over the expected supremum of different balls. In the stationary case,
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these quantities are of the same order and we were able to run the chaining
argument to its completion. In the general case, however, the supremum over
different balls of the same radius can be of a very different order of magnitude,
and thus our upper and lower bounds do not match. To close this gap, it will
be essential to take the inhomogeneity of the process into account.

In this section, we will develop our most efficient incarnation of the chain-
ing method that achieves precisely this goal. There are two problems to be
overcome. First, we must understand how to obtain matching upper and lower
bounds at the level of a single iteration of the chaining argument. This will
prove to be surprisingly straightforward: we have already encountered most
of the ideas in the previous section, and it remains to note that they can be
implemented more efficiently. Next, we must understand how to iterate these
inequalities so that we ultimately obtain matching upper and lower bounds.
This will prove to be the most clever part of the argument, and we will see
that we must organize the chaining argument carefully in order to retain the
duality between packing and covering at different scales. The payoff, however,
will be a remarkable achievement: a complete understanding of the expected
supremum of a Gaussian process in terms of chaining! With that accomplish-
ment to look forward to, let us proceed to making it happen.

Our first step is a seemingly innocuous observation. In the super-Sudakov
inequality of Theorem 6.11, we could choose N to be any ε-packing. If we did
not have the remainder term, then the best possible bound would be obtained
by choosing a maximal packing, as we did in the Sudakov inequality of Theo-
rem 6.5. However, in the super-Sudakov inequality, this is not necessarily the
best idea: if we increase the size of the packing, then evidently the size of the
remainder term will decrease, and thus we could “miss” important parts of
the index set that will arise in a later iteration of the chaining argument. By
resisting the temptation to be greedy, we obtain an immediate improvement
of the super-Sudakov inequality without any additional effort.

Corollary 6.17 (Super-Sudakov improved). Let {Xt}t∈T be a separable
Gaussian process and let N = {t1, . . . , tr} be an ε-packing of (T, d). Then

E
[

sup
t∈T

Xt

]
≥ min

σ
max
k≤r

{
cε
√

log σ(k) + E
[

sup
t∈B(tk,αε)

Xt

]}
.

where the minimum is over all permutations σ of {1, . . . , r}.

While we have phrased this result as a minimum over permutations for
aesthetic reasons, note that it is clear what is the optimal permutation: it is
given by σ(ki) = i if we rank the remainder terms in decreasing order

E
[

sup
t∈B(tk1 ,αε)

Xt

]
≥ E

[
sup

t∈B(tk2 ,αε)

Xt

]
≥ · · · ≥ E

[
sup

t∈B(tkr ,αε)

Xt

]
.

Thus the permutation σ captures precisely the inhomogeneity of the process:
“fatter” balls B(tk, αε) end up with smaller labels σ(k).
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Proof. Sort the packing N = {tk1 , . . . , tkr} as indicated above. If we apply
Theorem 6.11 to the smaller packing {tk1 , . . . , tk`} only, we evidently obtain

E
[

sup
t∈T

Xt

]
≥ cε

√
log `+ E

[
sup

t∈B(tk` ,αε)

Xt

]
for any ` ≤ r.

The result follows immediately by optimizing this bound over `. ut

It might be unclear at this point that we have made significant progress.
Indeed, while we now capture the inhomogeneity of the Gaussian process
in the lower bound, we have essentially just rearranged our previous lower
bound without making any fundamental improvement. In particular, we are
still far removed from our chaining upper bound. However, now that we have
reformulated our lower bound in this illuminating manner, it will quickly
become clear that it is in fact the upper bound that is inefficient and fails to
capture the inhomogeneity of the process. We will presently correct this.

Proposition 6.18 (Super-chaining). Let {Xt}t∈T be a separable Gaussian
process. If diam(T ) ≤ ε and {A1, . . . , Ar} is a partition of T , then

E
[

sup
t∈T

Xt

]
≤ min

σ
max
k≤r

{
3ε
{

1 +
√

log σ(k)
}

+ E
[

sup
t∈Ak

Xt

]}
.

The improved upper bound of Proposition 6.18 captures the inhomogeneity
of the Gaussian process in a completely analogous manner to the lower bound
of Corollary 6.17. To prove this result, we must eliminate the inefficiency in
the proof of our previous upper bound. Somewhat surprisingly, it turns out
that this inefficiency arises in the very first result we proved about maxima of
random variables: Lemma 5.1. The following apparently minor improvement,
which is proved using a simple union bound, yields precisely what we need.

Lemma 6.19. Let Z1, . . . , Zn be σ2-subgaussian random variables. Then

E
[

max
k≤n
{Zk −E[Zk]− 2σ

√
log k}

]
≤ 3σ.

Proof. We can assume without loss of generality that E[Zk] = 0 for all k.
Using a union bound and the subgaussian property, we evidently have

P
[

max
k≤n
{Zk − 2σ

√
log k} ≥ t

]
≤

n∑
k=1

P[Zk ≥ 2σ
√

log k + t]

≤
n∑
k=1

e−(2σ
√

log k+t)2/2σ2
≤ e−t

2/2σ2
n∑
k=1

1
k2
.

We therefore estimate

E
[

max
k≤n
{Zk − 2σ

√
log k}

]
≤
∫ ∞

0

e−t
2/2σ2

dt

∞∑
k=1

1
k2

=
π5/2

6
√

2
σ.

For simplicity we estimate the ugly constant π5/2/6
√

2 ≈ 2.06 by 3. ut
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We can now complete the proof of Proposition 6.18.

Proof (Proposition 6.18). Fix any t0 ∈ T . As E[Xt0 ] = 0, we can estimate

E
[

sup
t∈T

Xt

]
= E

[
max
k≤r

sup
t∈Ak
{Xt −Xt0}

]
= E

[
max
k≤r

{
2ε
√

log k + E
[

sup
t∈Ak

Xt

]
+ {Yk − 2ε

√
log k}

}]
,

where we have defined

Yk = sup
t∈Ak
{Xt −Xt0} −E

[
sup
t∈Ak
{Xt −Xt0}

]
.

As d(t, t0) ≤ diam(T ) ≤ ε, the random variables Yk are ε2-subgaussian by
Lemma 6.12. Thus Lemma 6.19 immediately yields

E
[

max
k≤r
{Yk − 2ε

√
log k}

]
≤ 3ε,

and thus we obtain

E
[

sup
t∈T

Xt

]
≤ max

k≤r

{
3ε
{

1 +
√

log k
}

+ E
[

sup
t∈Ak

Xt

]}
.

But note that this result holds for any ordering of {A1, . . . , Ar}. Replacing Ai
by Aσ−1(i) and optimizing over permutations σ concludes the proof. ut

Up to the duality between packing and covering, we have now essentially
obtained matching upper and lower bounds in Corollary 6.17 and Proposition
6.18 for a single iteration of the chaining argument. We have therefore finally
reached a point at which it should no longer appear to be a major miracle
that we can obtain matching upper and lower bounds on the supremum of
a Gaussian process. However, these bounds will be necessarily more sophis-
ticated than in Theorem 5.24, as we must now explicitly keep track of the
inhomogeneity of the process in each iteration of the chaining argument. In
particular, it is no longer enough just to choose any sequence of coverings of
the index set T at different scales: we must sort each of the covers in accor-
dance with the permutations σ in Corollary 6.17, which should be thought of
as ranking the elements of the cover in order of decreasing “fatness”. This re-
quires some amount of bookkeeping, which can be done in different ways. The
device that we will choose for this purpose, given in the following definition,
is designed to be as close as possible to the statement of Proposition 6.18.

Recall that an increasing sequence of partitions {An}n∈Z is a family of
partitions An such that every B ∈ An+1 is contained in some set A ∈ An.
The set of children of a set A ∈ An is denoted c(A) := {B ∈ An+1 : B ⊆ A}.
For any t ∈ T , we denote by An(t) the unique set A ∈ An that contains t.
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Definition 6.20 (Labelled net). A pair (A, `) is called a labelled net if

1. A = {An}n∈Z is an increasing sequence of partitions of T .
2. diam(A) ≤ 2αn for every A ∈ An, n ∈ Z.
3. ` : A→ N satisfies {`(B) : B ∈ c(A)} = {1, . . . , |c(A)|} for all A ∈ A.

That is, a labelled net is an increasing family of partitions A, together with
a labeling ` that defines an ordering among all elements of each partition that
share the same parent. Such a construction is illustrated in the following figure.

Ak0 = {T}1

Ak0+1
312

Ak0+2
121123

Ak0+3
122132112121

Each horizontal interval represents a partition of T , and the numbers indicate
an assignment of labels to each partition element. The dotted lines indicate
the children of each partition element. Note that each t ∈ T defines a vertical
slice through this picture. Listing the labels one encounters along this slice
from top to bottom gives the sequence `(Ak0(t)), `(Ak0+1(t)), . . .

We are now ready to state a form of the ultimate chaining bound for
Gaussian processes due to Talagrand.

Theorem 6.21 (The majorizing measure theorem). Let {Xt}t∈T be a
separable Gaussian process. Then we have for universal constants c1, c2, α

c1γ(T ) ≤ E
[

sup
t∈T

Xt

]
≤ c2γ(T ).

Here we defined

γ(T ) := inf
(A,`)

sup
t∈T

∑
k∈Z

αk
√

log `(Ak(t)),

where the infimum is taken over all labelled nets (A, `).

Let us take a moment to consider what we have achieved. Theorem 6.21
gives matching upper and lower bounds for the expected supremum of a Gaus-
sian process. We can therefore conclude that we have completely understood
the magnitude of the supremum of Gaussian processes in terms of chaining!
On the other hand, the chaining object that arises in Theorem 6.21 is of a very
sophisticated form (necessarily so, as we must account explicitly for the inho-
mogeneity of the Gaussian process): to find a good bound in this manner we
must be able to construct a “good” labelled net. Unlike the covering numbers
that arose in Theorem 5.24, which are often easy to estimate, constructing
good labelled nets “by hand” in inhomogeneous situations is generally an ex-
ceedingly difficult task. It may therefore be unclear at this point that Theorem
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6.21 has any practical utility. It turns out that Theorem 6.21 is a powerful tool
that makes it possible to prove useful and deep results about the suprema of
random processes that do not appear to be readily established by other means.
We will encounter some examples of such results in the next section.

Remark 6.22. The bookkeeping in the chaining argument can be done in sev-
eral different ways. We have chosen the labelled net as the basic object in
our development of Theorem 6.21 as its definition is tailored to the applica-
tion of Proposition 6.18. The name “majorizing measure theorem” refers to
a different method of bookkeeping that was used in the original formulation
of Theorem 6.21, where role of the labels ` is replaced by the definition of
a measure on the index set T that assigns larger mass to “fatter” partition
elements. This idea will be developed in Problem 6.10 below. Yet another
formulation, in terms of admissible nets, dispenses entirely of the need for
explicitly labelling partition elements. This idea will be developed in the next
section.

Let us turn to the proof of Theorem 6.21. We begin by proving the upper
bound, which is an almost immediate consequence of Proposition 6.18.

Proof (Upper bound). As in the proof of Theorem 5.24, it suffices to consider
the case that T is a finite set. In the following, we fix a labelled net (A, `),
and let k0 be the largest integer such that Ak0 = {T}. We aim to show that

E
[

sup
t∈T

Xt

]
≤ c′ sup

t∈T

∑
k>k0

αk
√

log `(Ak(t)).

Note that if k0 = −∞, then the right-hand side of this inequality is infinite
and the statement is trivial. We may therefore assume that k0 > −∞.

The proof is now easily completed. By Proposition 6.18, we have

E
[

sup
t∈A

Xt

]
≤ max
B∈c(A)

{
6αk

{
1 +

√
log `(B)

}
+ E

[
sup
t∈B

Xt

]}
for any A ∈ Ak. Iterating this inequality n times starting at k = k0 yields

E
[

sup
t∈T

Xt

]
≤ sup

t∈T

{ k0+n−1∑
k=k0

6αk
{

1 +
√

log `(Ak+1(t))
}

+ E
[

sup
s∈Ak0+n(t)

Xs

]}

≤ 6αk0

1− α
+

6
α

sup
t∈T

∑
k>k0

αk
√

log `(Ak(t))

provided that n is chosen sufficiently large. Here we have used that as T is
assumed to be finite, the remainder term vanishes uniformly in t for large n.

It remains to eliminate the additive constant. To this end, note that by
the definition of k0, there exists t ∈ T such that `(Ak0+1(t)) = 2, so that
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αk0+1
√

log 2 ≤ sup
t∈T

∑
k>k0

αk
√

log `(Ak(t)).

The proof is now easily completed with c2 = 6α−1{1 + 1/(1− α)
√

log 2}. ut

We now turn to the lower bound. The difficulty here is that the lower
bound of Corollary 6.17 requires a packing, while the labelled net is defined
in terms partitions. Of course, the duality between packing and covering will
be essential here, but the situation proves to be somewhat more delicate than
we have previously encountered. To understand the problem, let us try to
apply a naive duality argument to the first chaining iteration. Assume for
simplicity that diam(T ) = αk0 . To apply the lower bound, we first choose a
maximal αk0+1-packing Nk0+1 = {t1, . . . , tr} of T . Then Corollary 6.17 gives

E
[

sup
t∈T

Xt

]
≥ max

k≤r

{
c′αk0+1

√
log σ(k) + E

[
sup

t∈B(tk,αk0+2)

Xt

]}
for a suitable choice of σ. We now define the first nontrivial partition Ak0+1 =
{A1, . . . , Ar} of our labelled net by setting Ak = {t ∈ T : πk0+1(t) = tk}, and
define the label `(Ak) = σ(k). By maximality of the packing, each set Ak has
diameter at most 2αk0+1 as required. Then Proposition 6.18 gives

E
[

sup
t∈T

Xt

]
≤ max

k≤r

{
cαk0+1

√
log σ(k) + E

[
sup
t∈Ak

Xt

]}
.

Unfortunately, we are now stuck: while the primary terms in the upper and
lower bounds match, the remainder terms are not necessarily comparable.
Indeed, in the lower bound, we only see the supremum of the process over
small balls B(tk, αk0+2) centered at each point in the packing, while in the
upper bound we have the supremum over every element of a partition of the
set. If we attempt to iterate this procedure, we will therefore miss in the lower
bound all elements of the partitions An in subsequent stages n ≥ k0 + 1 that
are not included in one of the balls B(tk, αk0+2).

The solution to this problem lies in a clever organization of the duality
argument. Rather than choosing any maximal packing Nk0+1, we will choose
the points t1, . . . , tr in such a way that the expected supremum of the process
over each of the balls B(tk, αk0+2) is maximized. Because of this choice, the
expected supremum of any element of a partition at a smaller scale is bounded
above by the expected supremum over B(tk, αk0+2), and we can therefore
recover all elements of the labelled net in the lower bound. In the end, the
argument is not any more difficult than the naive duality argument: the key
to the proof is the insight that one must organize the duality argument at a
given scale with subsequent iterations of the chaining argument in mind.

Proof (Lower bound). Define for any subset A ⊆ T

G(A) := E
[

sup
t∈A

Xt

]
.
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We can assume that G(T ) <∞, as the lower bound is trivial otherwise. This
implies that N(T, d, ε) < ∞ for all ε > 0 by Sudakov’s inequality, and thus
diam(T ) <∞. Let k0 be the largest integer such that 2αk0 ≥ diam(T ).

To prove the lower bound, we must construct a labelled net (A, `) so that

G(T ) ≥ c1
∑
k∈Z

αk
√

log `(Ak(t))

for every t ∈ T . To this end, we first let Ak = {T} for all k ≤ k0 (with
`(T ) = 1). We now construct Ak for k > k0 iteratively in the following manner.

Suppose Ak has been constructed. We will construct Ak+1 by partitioning
every element A ∈ Ak into smaller subsets as follows.

1. Choose t1 ∈ A so that G(A ∩B(t1, αk+2)) is maximized.
2. Let A1 = A ∩B(t1, αk+1) and `(A1) = 1.
3. Choose t2 ∈ A\A1 so that G(A\A1 ∩B(t2, αk+2)) is maximized.
4. Let A2 = A\A1 ∩B(t2, αk+1) and `(A2) = 2.
5. Choose t3 ∈ A\(A1∪A2) so thatG(A\(A1∪A2)∩B(t3, αk+2)) is maximized.
6. . . . etc.

This construction is illustrated in the following figure:

· · ·
t1 A1

t2

A1

A2

t3

The optimization over the choice of ti ensures thatG(H) ≤ G(Ai∩B(ti, αk+2))
for any set H ⊆ Ai that is contained in a ball of radius αk+2. This will allow
us to control the remainder term in Corollary 6.17. On the other hand, in each
stage we remove from the set A a ball B(ti, αk+1) with a larger radius αk+1.
This ensures that d(ti, tj) ≥ αk+1, so that {t1, t2, . . .} form an αk+1-packing
of A as is required to apply Corollary 6.17. This also implies that the above
construction must terminate after a finite number of steps, as the set T has
finite packing numbers (as N(T, d, ε) <∞ for all ε > 0).

Suppose that the above construction terminates after r steps. Then
{A1, . . . , Ar} must be a partition of A, each Ai has a distinct label `(Ai) = i,
and diam(Ai) ≤ 2αk+1 by construction. By partitioning every A ∈ Ak in
this manner, we have constructed a labelled partition Ak+1 of T that satisfies
all the properties required of a labelled net. We now iterate this process to
construct Ak+2,Ak+3, and so forth, to obtain a labelled net (A, `).

Now consider again A ∈ Ak and the partition {A1, . . . , Ar} and packing
{t1, . . . , tr} constructed above. As G(B(ti, αk+2)) is decreasing in i, we have
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G(A) ≥ max
i≤r
{cαk+1

√
log `(Ai) +G(B(ti, αk+2))}

by Corollary 6.17. Now note that for any t ∈ Ai, we have Ak(t) = A, Ak+1(t) =
Ai, Ak+3(t) ⊆ Ai, and diam(Ak+3(t)) ≤ 2αk+3 ≤ αk+2. Thus G(Ak+3(t)) ≤
G(B(ti, αk+2)) by the maximality property of ti, and we obtain

G(Ak(t)) ≥ cαk+1
√

log `(Ak+1(t)) +G(Ak+3(t)).

This identity holds for every t ∈ T and k ≥ k0. As in the proof of Theorem
6.16, this inequality “skips” from scale αk to αk+3, so we can iterate starting
at k = k0, k0 − 1, k0 − 2 and average these lower bounds to obtain

G(T ) ≥ c

3

∑
k∈Z

αk
√

log `(Ak(t)).

As this holds for every t ∈ T , the proof is complete. ut

Remark 6.23. Throughout this section, we have fixed α as defined in Theorem
6.11. All our constructions, including the definition of a labelled net, were
stated in terms of this universal constant. However, it should be noted that
while α must be sufficiently small to ensure the validity of Theorem 6.11,
the precise value of α has no particular significance: in particular, we can
replace α by any β < α throughout at the expense only of changing the
universal constants that appear in Theorem 6.21. In view of Problem 6.4, we
may therefore fix an arbitrary value α ≤ 1

4 throughout this section.

Problems

6.8 (Classical chaining and labelled nets). As the chaining functional
γ(T ) of Theorem 6.21 is equivalent to the supremum of the Gaussian process
up to universal constants, any upper bound on the latter must also be an upper
bound for γ(T ) up to a universal constant. This is the case, in particular, for
all the chaining bounds that we constructed previously. It is straightforward
but instructive, however, to give a direct proof that

γ(T ) .
∫ ∞

0

√
logN(T, d, ε) dε

by constructing a simple labelled net that witnesses the upper bound. Simi-
larly, give a direct proof of the improved chaining bound

γ(T ) . sup
t∈T

∫ ∞
0

√
logN(B(t, cε), d, ε) dε

that was investigated in Problem 6.7 above.
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6.9 (A nonstationary process revisited). In Problem 6.6 we considered
the decidedly nonstationary Gaussian process {Xn}n∈N defined by

Xn =
gn√

1 + log n
,

where {gn}n∈N are i.i.d. N(0, 1). The expected supremum of this process
is finite, but none of the chaining bounds that we obtained previously was
able to capture this fact (see Problems 6.6 and 6.7). As Theorem 6.21 is
sharp, however, there must exist a labelled net that witnesses the finiteness
of E[supnXn]. Construct such a labelled net explicitly.
Hint: choose partitions of the form Ak = {{1}, {2}, . . . , {nk},N ∩ ]nk,∞[}.

6.10 (Majorizing measures). In the original formulation of Theorem 6.21,
the bookkeeping in the chaining argument was not done in terms of labelled
nets but rather in terms of “majorizing measures”. The goal of this problem
is to develop this alternative formulation of Theorem 6.21.

We begin by proving a discrete version of the majorizing measure bound

γ(T ) � inf
(A,µ)

sup
t∈T

∑
k∈Z

αk

√
log

1
µ(Ak(t))

=: γ̃(T ),

where A = {Ak}k∈Z is an increasing sequence of partitions of T such that
diam(A) ≤ 2αn for all A ∈ An, and µ is a probability measure on T . The
majorizing measure µ here plays the role of the labels in the definition of γ(T ):
evidently µ should assign larger mass to “fatter” partition elements.

a. Show that γ(T ) ≤ γ̃(T ).
Hint: if p1 ≥ p2 ≥ · · · ≥ pr ≥ 0 and

∑r
i=1 pi ≤ 1, then pi ≤ 1/i for every i.

To establish the converse inequality, we must be able to construct a majorizing
measure µ from labels `. The problem here is that 1/µ(Ak(t)) must be increas-
ing in k, while there is no ordering relation between the labels `(Ak(t)). The
appropriate property is easily engineered, however, by “integrating by parts”.

b. Let {bk}k∈Z be any sequence such that bk = 0 for all k sufficiently small.
Prove the elementary “integration by parts” identity∑

k∈Z
αkbk = (1− α)

∑
k∈Z

αkBk, Bk :=
∑
m≤k

bm.

c. Conclude that

γ(T ) & inf
(A,`)

sup
t∈T

∑
k∈Z

αk
√

log
∏
m≤k

`(Am(t)).
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d. Let (A, `) be a labelled net, and let k0 be the largest integer such that
Ak0 = {T}. Fix an arbitrary tA ∈ A for every A ∈ An, n ∈ Z. Show that∑

A∈Ak

∏
m≤k

1
`(Am(tA))2

≤
(
π2

6

)k−k0
≤ 2k−k0 .

e. In the setting of the previous part, define the probability measure

µ ∝
∑
k>k0

2−2(k−k0)
∑
A∈Ak

δtA
∏
m≤k

1
`(Am(tA))2

.

Show that for every t ∈ T and k ∈ Z

log
1

µ(Ak(t))
≤ 2(k − k0) log 2 + 2 log

∏
m≤k

`(Am(t)).

f. Conclude that γ(T ) & γ̃(T ).

The original formulation of the majorizing measure theorem was in terms of
an integral rather than a sum, in analogy to Corollary 5.25:

γ(T ) � inf
µ

sup
t∈T

∫ ∞
0

√
log

1
µ(B(t, ε))

dε =: γ̄(T ).

It might seem at first sight that the continuous formulation is simpler, as it
does not explicitly involve a choice of partitions. However, in applications of
the majorizing measure theorem, the discrete formulation is often easier to
use and more natural as it is closer to the underlying chaining mechanism.

We will presently prove the continuous formulation as well.

g. Deduce from the discrete majorizing measure bound that γ(T ) & γ̄(T ).

The converse inequality is much more difficult, as we must now construct a
sequence of partitions which was somehow lost in the continuous formulation
of the majorizing measure bound. In fact, we might as well construct an entire
labelled net. To this end, let us define for every A ⊆ T the functional

F (A) := inf
µ

sup
t∈A

∫ diam(A)

0

√
log

1
µ(B(t, ε))

dε.

It turns out that F (A) behaves very much like G(A) := E[supt∈AXt].

h. Suppose that α ≤ 1
8 . Prove the following “super-Sudakov inequality” for

the functional F : if N is an ε-packing of A ⊆ T , then

F (A) ≥ cε
√

log |N |+ min
s∈N

F (A ∩B(s, αε)).

Hint: use that if B1, . . . , Br are disjoint, then µ(Bi) ≤ 1/r for some i.

i. Repeat the proof of Theorem 6.21 to show that γ(T ) . F (T ) = γ̄(T ).
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6.4 The generic chaining, admissible nets, and trees

The majorizing measure theorem developed in the previous section completely
characterizes the supremum of Gaussian processes in terms of chaining. From
the fundamental viewpoint, this provides us with substantial insight into the
nature of Gaussian processes. On the other hand, it is far from clear at this
point that this is a useful result: labelled nets are intricate chaining objects
that are usually difficult to construct for any given problem. In this section, we
will develop some alternative formulations of the majorizing measure theorem
and show how they can be used to prove some highly nontrivial results about
Gaussian and subgaussian processes. While we only scratch the surface of
what can be done with this machinery, the results developed in this section
give a flavor of the manner in which such machinery is applied.

We begin with a simple but very important extension of Theorem 6.21.
In both the upper bound and lower bound of Theoren 6.21, we have used the
Gaussian nature of the process {Xt}t∈T . In the lower bound, of course, we
already heavily used the Gaussian property even to prove Sudakov’s inequal-
ity at a single scale. In the upper bound, however, we only used Gaussian
concentration in Proposition 6.18 to handle the remainder term; the rest of
the proof used a simple union bound and did not use any special properties
of Gaussians. On the other hand, note that all we will do with the remainder
term in Proposition 6.18 is to apply the same result to it again in the next
iteration of the chaining argument. If, rather than running our chaining ar-
gument one iteration at a time, we were to bound all the links in the chain
at once as we did in the proof of Theorem 5.29, then Gaussian concentration
is no longer needed in the upper bound. In particular, this implies that the
upper bound in Theorem 6.21 only requires that {Xt}t∈T is subgaussian!

Theorem 6.24 (Generic chaining). Let {Xt}t∈T be a separable subgaus-
sian process on (T, d). Then we have for a universal constant c

E
[

sup
t∈T

Xt

]
≤ c γ(T ).

Proof. We begin by arguing as in the proof of Theorem 5.29. As usual, it
suffices to assume that T is a finite set. Let (A, `) be any labelled net, and
let k0 be the largest integer such that Ak0 = {T}. Choose for every A ∈ A

an arbitrary point tA ∈ A, and define πk(t) := tAk(t) for every t ∈ T . As T is
finite and the diameter of Ak(t) decreases to zero, we evidently have

Xt −Xt0 =
∑
k>k0

{Xπk(t) −Xπk−1(t)},

where t0 = πk0(t). This is the usual chaining identity.
Let us define a suitable function u : A → [1,∞[ to be chosen later. Then

it follows immediately from the subgaussian assumption that
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P
[
Xπk(t) −Xπk−1(t) ≥ xα

k−1
√

log u(Ak(t))
]
≤ u(Ak(t))−x

2/8,

where we have used that d(πk(t), πk−1(t)) ≤ diam(Ak−1(t)) ≤ 2αk−1 by the
definition of a labelled net. We therefore obtain by the union bound that

P[Ωx] := P
[
∃ k > k0, t ∈ T s.t. Xπk(t) −Xπk−1(t) ≥ xα

k−1
√

log u(Ak(t))
]

≤
∑
k>k0

∑
A∈Ak

u(A)−x
2/8,

while we evidently have on the event Ωcx

sup
t∈T
{Xt −Xt0} ≤

x

α
sup
t∈T

∑
k>k0

αk
√

log u(Ak(t)).

This simple computation contains the entire idea behind the generic chaining
bound. The challenge is to choose the function u such that the bound on the
supremum of the Gaussian process is as small as possible, while we can still
control the probability of the bad eventsΩx (once we have a good bound on the
probabilities, we obtain a bound on the expectation as usual by integration).
In view of Theorem 6.21 we would really like to choose u(A) = `(A), but this
is clearly not a good idea: there are many sets A ∈ A with label `(A) = 1,
and thus one cannot control our bound on P[Ωx] in this manner.

To get around this problem, note that we have a lot of freedom in how to
arrange a geometric sum. This idea is extremely useful in chaining arguments.

Lemma 6.25. Let α < 1 and uk ≥ 1 for all k > k0. Then

(1− α)
∑
k>k0

αk
√

logUk ≤
∑
k>k0

αk
√

log uk with Uk :=
∏

k0<m≤k

um.

Proof. As Uk = Uk−1uk for k > k0 + 1, we can estimate∑
k>k0

αk
√

logUk ≤
∑

k>k0+1

αk
√

logUk−1 +
∑
k>k0

αk
√

log uk

= α
∑
k>k0

αk
√

logUk +
∑
k>k0

αk
√

log uk.

The inequality now follows readily. ut

The advantage of this simple reformulation is that Uk is much larger than
uk, while the geometric sum differs by at most a constant factor. To put this
idea to good use, let us define for every k > k0 and t ∈ T

u(Ak(t)) = 2k−k0
∏

k0<m≤k

`(Am(t))2.

Then we have on the event Ωcx
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sup
t∈T
{Xt −Xt0} ≤ αk0−1x

∑
k>0

αk
√
k log 2 +

x
√

2
α(1− α)

sup
t∈T

∑
k>k0

αk
√

log `(Ak(t))

≤ c1x sup
t∈T

∑
k>k0

αk
√

log `(Ak(t))

using Lemma 6.25, where c1 is a constant that depends on α only and where
the second inequality follows as in the upper bound proof of Theorem 6.21.
On the other hand, note that by the definition of a labelled net

∑
B∈c(A)

1
`(B)2

=
|c(A)|∑
m=1

1
m2

< 2

for every A ∈ A, so that we can estimate∑
A∈Ak

∏
k0<m≤k

1
`(Am(tA))2

=
∑

A∈Ak−1

∑
B∈c(A)

1
`(B)2

∏
k0<m≤k−1

1
`(Am(tA))2

< 2
∑

A∈Ak−1

∏
k0<m≤k−1

1
`(Am(tA))2

< · · · < 2k−k0 .

We can therefore estimate for every x ≥ 4

P[Ωx] ≤
∑
k>k0

2−(k−k0)x2/8
∑
A∈Ak

∏
k0<m≤k

1
`(Am(tA))2

≤ c22−x
2/8,

where c2 is a universal constant. We have now finally proved that

P

[
sup
t∈T
{Xt −Xt0} ≥ c1x sup

t∈T

∑
k>k0

αk
√

log `(Ak(t))

]
≤ c22−x

2/8.

for x ≥ 4. Using E[Z] ≤
∫∞
0

P[Z ≥ x] dx ≤ 4+
∫∞
4

P[Z ≥ x] dx and optimizing
over all labelled nets (A, `) completes the proof of the Theorem. ut

We now immediately obtain our first nontrivial application of the majoriz-
ing measure theorem. The statement of this result is so simple that one would
expect that there must be an elementary proof; but no other proof is known.

Corollary 6.26 (Subgaussian comparison theorem). Let {Yt}t∈T be a
separable Gaussian process with natural metric d, and let {Xt}t∈T be a sepa-
rable subgaussian process on (T, d). Then for a universal constant C

E
[

sup
t∈T

Xt

]
≤ C E

[
sup
t∈T

Yt

]
.

Proof. Combine Theorems 6.24 and 6.21. ut
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Remark 6.27. A comparison theorem of this kind can be very useful in prac-
tice. In many problems, it is possible to explicitly compute the supremum of a
Gaussian process by exploiting special properties of Gaussians (e.g., rotation
invariance). One can then invoke Corollary 6.26 to show that the same bound
applies when the Gaussian variables are replaced by subgaussian ones, even
though one cannot perform explicit computations in the general setting.

While Corollary 6.26 is a trivial consequence of the generic chaining
method, most applications require one to work in a nontrivial manner with
the chaining bounds. So far we have taken care of the bookkeeping in the
chaining argument in terms of labelled nets, as this formulation arose in the
most natural manner from the investigation of Gaussian processes. A labelled
net is a somewhat unwieldy object, however: not only must one construct
increasing partitions, but one must also keep track of labels along the way.
We will presently develop an alternative way to organize the generic chaining
bounds that dispenses with the need to keep track of the labels.

The basic idea that will be used in the sequel is as follows. In all the chain-
ing arguments that we have used above, we fixed at each scale the diameter of
the sets A ∈ Ak but allowed an arbitrary number of such sets. An alternative
way of organizing the chaining argument is to fix the number of sets in the
partition Ak, but to allow their diameters to vary. As a warm-up execise, let
us reformulate the simple entropy integral bound from the previous chapter
(Corollary 5.25) in this manner. Recall that the covering number N(T, d, ε)
denotes the smallest number of ε-balls needed to cover T . If we define

en(T ) := inf{ε : N(T, d, ε) < 22n},

then the entropy number en(T ) is the smallest radius ε for which one can cover
T by less than 22n ε-balls (the mysterious 22n will be explained shortly). To
formulate the chaining bound in terms of entropy numbers, note that∫ ∞

0

√
logN(T, d, ε) dε =

∑
n≥0

∫ en(T )

en+1(T )

√
logN(T, d, ε) dε.

Using that 22n ≤ N(T, d, ε) < 22n+1
when en+1(T ) < ε < en(T ), we obtain∫ ∞

0

√
logN(T, d, ε) dε �

∑
n≥0

2n/2{en(T )− en+1(T )} �
∑
n≥0

2n/2en(T ).

Thus we obtain a bound in terms of entropy numbers that is entirely equiva-
lent, up to the constants, to the entropy integral of Corollary 5.25.

Remark 6.28. Let {βn} be an increasing sequence with β0 = 2, and define the
β-entropy numbers eβn = inf{ε : N(T, d, ε) < βn}. Then we can estimate∑
n≥0

√
log βn{eβn−e

β
n+1} ≤

∫ ∞
0

√
logN(T, d, ε) dε ≤

∑
n≥0

√
log βn+1{eβn−e

β
n+1}
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by arguing as above. In order for the left- and right-hand sides to be compara-
ble, we must have log βn+1 . log βn, which means that log βn should increase
at most exponentially. This explains why we chose βn = 22n above (of course,
any ab

n

for a, b > 1 would give equivalent results up to universal constants.)

We now develop a formulation of the generic chaining bound along these
lines. The remarkable feature of this formulation is that, somewhat surpris-
ingly, there is no longer a need to keep track of a label for each partition
element: the labels are “hidden” in the diameters of the partition elements.

Definition 6.29 (Admissible net). An increasing sequence of partitions
A = {An}n≥0 of T is called an admissible net if |An| < 22n for every n ≥ 0.

Theorem 6.30 (Labelled and admissible nets). There exist universal
constants c1, c2 such that c1γ′(T ) ≤ γ(T ) ≤ c2γ′(T ). Here we defined

γ′(T ) := inf
A

sup
t∈T

∑
n≥0

2n/2 diam(An(t)),

where the infimum is taken over all admissible nets A.

To illustrate the idea of the proof, consider the upper bound γ(T ) . γ′(T ).
For any admissible net A′, we must construct an labelled net (A, `) such that

sup
t∈T

∑
k∈Z

αk
√

log `(Ak(t)) . sup
t∈T

∑
n≥0

2n/2 diam(A′n(t)).

We can view any increasing sequence of partitions as a partition tree with a
directed edge from A to B if B ∈ c(A). A cut in the tree is a set of vertices B

such that every branch of the tree contains exactly one element of B. Clearly
any cut of a partition tree is itself a partition. The idea of the proof is to
define each partition An by taking the smallest possible cut in A′ such that
each element of An has diameter at most 2αn. Then the above inequality will
follow if we assign labels in order of increasing depth of the elements in the
original tree A′. This construction is illustrated in the following figure.

A′2

A′1

A′0

2α

A ∈ A1

`(A)1

2 3

4 5 6 7 8 9 10 11

Proof (Upper bound). Let A′ be an admissible net, and define

nk(t) = inf{n : diam(A′n(t)) ≤ 2αk}

for every k ∈ Z and t ∈ T (we may assume that nk(t) < ∞ for every k, t, as
otherwise the quantity in the definition of γ′(T ) will be infinite). Let k0 be
the largest integer such that diam(T ) ≤ 2αk0 , and define A = {Ak}k∈Z as
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Ak = {T} for k ≤ k0, Ak = {A′nk(t)(t) : t ∈ T} for k > k0.

Clearly Ak defines a cut in A′, and thus A is an increasing sequence of parti-
tions as in the definition of a labelled net. We now assign labels such that if
Ak−1(t) = Ak−1(t′), then `(Ak(t)) > `(Ak(t′)) whenever nk(t) > nk(t′).

Now note that we can reorganize the sum in the definition of γ′(T ) as∑
n≥0

2n/2 diam(A′n(t)) =
∑
k>k0

∑
nk−1(t)≤n<nk(t)

2n/2 diam(A′n(t))

≥
∑
k>k0

2αk
∑

nk−1(t)≤n<nk(t)

2n/2

≥
√

2
∑
k>k0

αk2nk(t)/21nk(t)6=nk−1(t).

We now claim that 2nk(t)/21nk(t)6=nk−1(t)

√
log 2 ≥

√
log `(Ak(t)). To see this,

note that if nk(t) = nk−1(t), then Ak(t) is the only child of Ak−1(t) and
thus `(Ak(t)) = 1, while we must have `(Ak(t)) ≤ |A′nk(t)| < 22nk(t)

as the
labels are sorted by increasing depth in A′. Thus we have shown that for every
admissible net A′, there exists a labelled net (A, `) such that∑

n≥0

2n/2 diam(A′n(t)) ≥
√

2
log 2

∑
k∈Z

αk
√

log `(Ak(t))

for all t ∈ T . Taking the supremum over t, the infimum over (A, `), and then
the infimum over A yields γ(T ) ≤ c2γ′(T ) with c2 =

√
2−1 log 2. ut

The proof of the lower bound follows along very similar lines: starting from
a labelled net (A, `), we will choose cuts A′n such that |A′n| < 22n .

Proof (Lower bound). This time we start with a labelled net (A, `). Let k0 be
the largest integer such that Ak0 = {T}, and define the quantity

u(Ak(t)) = 4k−k0
∏

k0<m≤k

`(Am(t))2.

Then we have as in the proof of Theorem 6.24 for a universal constant c

sup
t∈T

∑
k∈Z

αk
√

log `(Ak(t)) ≥ c sup
t∈T

∑
k>k0

αk
√

log u(Ak(t)).

We now define a cut in A by setting

kn(t) = sup{k ≥ k0 : u(Ak(t)) < 22n}.

Note that kn(t) <∞ as u(Ak(t)) increases to infinity (this is the reason why
we work with the cumulative labels u(Ak(t)) rather than the labels `(Ak(t))).
Thus we can define the increasing sequence of partitions A′ = {A′n}n≥0 as
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A′n = {Akn(t)(t) : t ∈ T}.

As u(Ak(t)) ≥ 22n when k > kn(t), we can estimate∑
k>k0

αk
√

log u(Ak(t)) =
∑
n≥0

∑
kn(t)<k≤kn+1(t)

αk
√

log u(Ak(t))

≥
√

log 2
α

1− α
∑
n≥0

2n/2{αkn(t) − αkn+1(t)}

≥
√

log 2
(

1− 1√
2

)
α

1− α
∑
n≥0

2n/2αkn(t)

≥
√

log 2
2

(
1− 1√

2

)
α

1− α
∑
n≥0

2n/2 diam(A′n(t)).

Thus the only thing that remains to be proved is that A′ is an admissible net.
If this is the case, then taking the supremum over t, the infimum over A′, and
then the infimum over A yields the result c1γ′(T ) ≤ γ(T ).

It therefore remains to show that |A′n| < 22n . To this end, note that by
the definition of a labelled net, every partition element Ak(t) ∈ Ak gives rise
to a distinct sequence of labels `(Ak0+1(t)), . . . , `(Ak(t)). Thus

|A′n| ≤
∑
k>k0

∑
`k0+1,...,`k∈N

14k−k0
Q
k0<m≤k

`2m<22n

≤ 22n
∑
k≥1

4−k
∑

`1,...,`k∈N

∏
1≤m≤k

1
`2m

< 22n ,

as
∑
k 4−k

∑
`1,...,`k

∏
m

1
`2m

=
∑
k

(
π2

24

)k ≈ 0.7. ut

While the formulation in terms of admissible nets is entirely equivalent
to the formulation in terms of labelled nets, the former can often be simpler
to use in applications as there are no labels to keep track of. To illustrate a
nontrivial result that can now readily be obtained, let us prove a remarkable
fact about the geometry of Gaussian processes on Rn.

For any subset T ⊆ Rn, let us define the Gaussian width g(T ) as

g(T ) := E

[
sup
t∈T

n∑
i=1

giti

]
, g1, . . . , gn ∼ i.i.d. N(0, 1).

That is, g(T ) is the expected supremum over T of the Gaussian process whose
natural distance is the Euclidean distance. We begin with an easy example.

Lemma 6.31. Let T = {tk : k ≥ 2} with supk ‖tk − s‖
√

log k ≤ a for some
s ∈ Rn. Then g(T ) ≤ Ca for a universal constant C.
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Proof. As Xk =
∑n
i=1 gi{tki − si} ∼ N(0, ‖tk − s‖2), the union bound gives

P
[

sup
k≥2

Xk ≥ x
]
≤
∑
k≥2

e−x
2/2‖tk−s‖2 ≤

∑
k≥2

k−x
2/2a2

.

For x ≥ 2a, the right-hand side is ≤ C ′2−x
2/2a2

for a universal constant C ′.
Thus g(T ) ≤ 2a+ C ′

∫∞
2a

2−x
2/2a2

dx ≤ Ca for a universal constant C. ut

We now make a trivial observation: as the supremum of a linear function
L(t) over T ⊆ Rn equals the supremum over the closed convex hull conv T ,
we immediately obtain g(T ) = g(conv T ) for any set T . This implies:

Corollary 6.32. Let T ⊆ conv{tk : k ≥ 2} with supk ‖tk − s‖
√

log k ≤ a for
some s ∈ Rn. Then g(T ) ≤ Ca for a universal constant C.

This easy example gives us a simple geometric principle to control the
Gaussian width: if T is contained in the convex hull of a sequence of points
tk → s that converge at rate a/

√
log k, then its Gaussian width g(T ) is con-

trolled by a. However, this sort of principle appears to be completely arbitrary:
we could have started with any example in which we can compute explicitly
the Gaussian width (for example, ellipsoids or squares) and deduce an anal-
ogous geometric principle. The completely unexpected feature of Corollary
6.32, however, is that it admits a sharp converse.

Theorem 6.33. There is a universal constant K such that whenever g(T ) ≤
Ka, there exist s, {tk} with supk ‖tk−s‖

√
log k ≤ a and T ⊆ conv{tk : k ≥ 2}.

Combining Corollary 6.32 and Theorem 6.33 immediately yields the fol-
lowing geometric characterization of the Gaussian width:

g(T ) � inf
{

sup
k≥2
‖tk − s‖

√
log k : T ⊆ conv{tk : k ≥ 2}

}
.

This remarkable result appears as a complete mystery at this point. However,
much of the mystery is about to disappear: as we will see presently, Theorem
6.33 is little more than a reformulation of the majorizing measure theorem.
The key idea is that the points tk are none other than rescaled versions of the
“links” πn(t)− πn−1(t) that appear in the chaining argument.

Proof. By the majorizing measure theorem, there is an admissible net A with∑
n≥0

2n/2 diam(An(t)) ≤ c g(T )

for all t ∈ T . Choose for every A ∈ A an arbitrary point tA ∈ A, and define
πn(t) := tAn(t). Fix also an arbitrary point s ∈ T and let π−1(t) := s. Define
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βn(t) =
2n/2‖πn(t)− πn−1(t)‖

Cg(T )
, xn(t) =

Cg(T )
2n/2

πn(t)− πn−1(t)
‖πn(t)− πn−1(t)‖

for n ≥ 0. As ‖πn(t)− t‖ ≤ diam(An(t))→ 0, we have

t = s+
∑
n≥0

{πn(t)− πn−1(t)} = s+
∑
n≥0

βn(t)xn(t).

As g(T ) ≥ E[〈g, t〉 ∨ 〈g, s〉] = E|〈g, t−s2 〉| = ‖t− s‖/
√

2π for all t ∈ T ,

∑
n≥0

βn(t) ≤
√

2π
C

+
1

Cg(T )

∑
n≥1

2n/2 diam(An−1(t)) ≤ 1

if we choose C =
√

2π + c
√

2. Thus

T ⊆ conv{s+ xn(t) : n ≥ 0, t ∈ T} =: conv{zk : k ≥ 1},

where zk have been sorted such that ‖zk − s‖ is nonincreasing.
Now note that ‖xn(t)‖ = Cg(T )2−n/2, while there are at most |An||An−1|

such terms. We can therefore readily estimate

max{k : ‖zk − s‖ > Cg(T )2−n/2} ≤
n−1∑
k=0

22k22k−1
≤ n22n ≤ 22n+1

.

Thus we have for all n ≥ 0 and 22n+1
< k ≤ 22n+2

‖zk − s‖ ≤
Cg(T )
2n/2

=
2
√

log 2Cg(T )√
log 22n+2

≤ 2
√

log 2Cg(T )√
log k

.

Setting tk+1 = zk so that T ⊆ conv{tk : k ≥ 2}, we can readily choose K such
that g(T ) ≤ Ka implies ‖tk − s‖ ≤ a/

√
log k for all k ≥ 2. ut

We have seen above several different but closely related formulations of the
generic chaining bound: in terms of labelled nets (Theorems 6.21 and 6.24), in
terms of majorizing measures (Problem 6.10), and in terms of admissible nets
(Theorem 6.30). We conclude this section by developing a dual formulation of
the generic chaining bound. Beside that this very useful result is of significant
interest in its own right, we will isolate along the way a fundamental idea that
underlies many applications of the generic chaining machinery.

Let us begin by motivating why we develop yet another formulation of
the generic chaining. The definition of γ(T ) involves an infimum over labelled
nets: this means that in order to obtain an upper bound on the supremum
of a given Gaussian process, we only need to exhibit one particular labelled
net for which the quantity in the definition of γ(T ) is small. In essence, this
is what we have been doing in the previous chapter: it is easy to construct
labelled nets by piecing together ε-nets at different scales, in which case we



190 6 Gaussian processes

recover the entropy integral of Corollary 5.25 (cf. Problem 6.8). However, to
have a sharp understanding of the supremum of a given Gaussian process, we
must also obtain a matching lower bound. It is very difficult to obtain lower
bounds on γ(T ), as this would require us to argue that the quantity in the
definition of γ(T ) is large for every possible choice of the labelled net.

One should think of a labelled or admissible net, which defines a covering
of the set T at many different scales, as a multiscale counterpart to the notion
of an ε-net, which defines a covering of the set T at a single scale ε. From this
viewpoint, the majorizing measure theorem states that the expected supre-
mum of a Gaussian process over T is equivalent up to universal constants to
the smallest “size” (in the γ(T )-sense) of a multiscale covering of T . The clas-
sical duality between packing and covering now suggests an interesting idea: is
there a corresponding multiscale counterpart to the notion of an ε-packing, so
that the supremum of a Gaussian process is equivalent up to the largest “size”
of a multiscale packing? This is precisely the idea that will be developed in the
remainder of this section. Such a dual formulation is precisely what one needs
in order to obtain lower bounds on the supremum of a Gaussian process.

It is not difficult to find a good candidate for the notion of multiscale pack-
ing. Recall that there was no mystery in the definition of a labelled net: this
notion was simply designed to obtain the best possible upper bound on the
supremum of a Gaussian process using the super-chaining principle (Propo-
sition 6.18). To obtain a notion of multiscale packing, we apply precisely the
same idea in the opposite direction: we design an object that yields the best
possible lower bound using the super-Sudakov inequality (Theorem 6.11). To
help us with the bookkeeping, let us introduce some useful structures.

Definition 6.34 (Trees). A T -tree is a family T of nonempty subsets of T
such that T ∈ T, and for all C,C ′ ∈ T either C ∩C ′ = ∅, C ⊆ C ′, or C ′ ⊆ C.

The definition of a tree is illustrated in the following figure (the base set
T is duplicated several times to clarify the positions of the elements of T):

T

T

T

T

It is not difficult to see that a T -tree can be thought of as a directed tree in
the graph-theoretic sense. The root of the tree is T , and the children of a node
c(A) and the leaves of the tree l(T) are defined by inclusion in the obvious
fashion. For every leaf A ∈ l(T), we will denote the corresponding branch of
the tree as A0 ⊆ A1 ⊆ . . . (starting at the root A0 = T ).

An increasing sequence of partitions, such as in the definition of a labelled
net, naturally defines a T -tree with the additional property that its leaves
cover T . In contrast, in a multiscale notion of packing, we would like the
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children of each node in the tree to be well separated. The following notion is
specifically designed in order to apply Theorem 6.11.

Definition 6.35 (Packing tree). A packing tree (T,κ) is a T -tree T to-
gether with a map κ : T → Z such that the following holds for every A 6∈ l(T):

1. For every C ∈ c(A), there exists tC ∈ T such that C ⊆ B(tC , ακ(A)+1).
2. d(tC , tC′) ≥ ακ(A) for all C,C ′ ∈ c(A), C 6= C ′.

We can now state a dual form of the majorizing measure theorem (where
we note that the upper bound holds already when {Xt}t∈T is subgaussian.)

Theorem 6.36 (Dual majorizing measure theorem). Let {Xt}t∈T be a
separable Gaussian process. Then we have for universal constants c1, c2

c1γ
′′(T ) ≤ E

[
sup
t∈T

Xt

]
≤ c2γ′′(T ).

Here we defined

γ′′(T ) = sup
(T,κ)

inf
A∈l(T)

∑
n≥0

ακ(An)
√

log |c(An)|,

where the supremum is taken over all packing trees (T,κ).

While we only formally defined the notion of a packing tree here, this is not
the first time that we have enocountered this idea: we essentially constructed a
packing tree in the proof of Theorem 6.16. The special feature of the stationary
case is that the packing tree is regular, so that γ′′(T ) can be expressed in terms
of the packing numbers of T . Then the equivalence between γ′′(T ) and the
entropy integral follows from the simple duality between packing and covering
numbers each scale. Theorem 6.36 could be viewed as a generalization of this
idea to the nonstationary setting. This result lies much deeper, however, as
we must now run the duality argument in a multiscale fashion.

We now turn to the proof of Theorem 6.36. The lower bound is easy: it
follows almost trivially, by design, from iterating the super-Sudakov inequality.

Proof (Lower bound). Given a packing tree (T,κ), we obtain

E
[

sup
t∈T

Xt

]
≥ c inf

A∈l(T)

∑
n≥0

ακ(An)
√

log |c(An)|

by repeatedly applying Theorem 6.11 starting from the root of the tree (we
do not need to worry about the remainder term at the end of the chaining
argument as this is a lower bound). Now take the supremum over (T,κ). ut

The interesting part of the proof is the upper bound γ(T ) . γ′′(T ). It turns
out that we already did almost all the necessary work in the proof of the lower
bound in Theorem 6.21, but this is not at all obvious at the moment. Let us
therefore first give an abstract statement of what we accomplished there.
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Definition 6.37 (Growth functional). A map F : 2T → R+ is called a
growth functional if F (B) ≤ F (A) whenever B ⊆ A ⊆ T , and

F (A) ≥ cαn
√

log |N |+ min
s∈N

F (A ∩B(s, αn+1))

whenever N is an αn-packing of A ⊆ T for some n ∈ Z.

Theorem 6.38 (Partitioning scheme). γ(T ) ≤ KF (T ) for any growth
functional F (the constant K depends only on c, α in the definition of F ).

Proof. Repeat verbatim the proof of the lower bound of Theorem 6.21, replac-
ing the special growth functional G(A) by F (A) throughout. ut

The key insight behind Theorem 6.38 is that in order to upper bound γ(T )
in the proof of the majorizing measure theorem, the only Gaussian property
that we used was the super-Sudakov inequality. Thus we can use the same
proof to bound γ(T ) by any other object that satisfies the super-Sudakov
inequality. Theorem 6.38 turns out to be perhaps the most important tool
in applications of the majorizing measure theorem: while it is exceedingly
difficult to construct good labelled nets (or even admissible nets) by hand in
any given situation, it is often much more promising to try to guess the form of
a growth functional that captures the geometry of the problem. Thus Theorem
6.38 provides a powerful tool to obtain upper bounds on γ(T ) in different
problems (supposing, of course, that the easiest entropy integral bounds from
the previous chapter do not suffice). We presently give a simple illustration of
this idea by completing the proof of the upper bound in Theorem 6.36.

Proof (Upper bound). It suffices by Theorem 6.24 to show that γ(T ) ≤
Kγ′′(T ) for a universal constant K. To this end, we will show that γ′′ is
itself a growth functional, so that the proof is complete by Theorem 6.38.

Fix a set S ⊆ T and an αn-packing N of S. Let ε > 0, and choose for
every s ∈ N a packing tree (Ts,κs) of S ∩B(s, αn+1) such that

inf
A∈l(Ts)

∑
n≥0

ακs(An)
√

log |c(An)| ≥ min
s∈N

γ′′(S ∩B(s, αn+1))− ε.

Now define a new tree T = {S} ∪
⋃
s∈N Ts, and assign labels κ(A) = κs(A)

for A ∈ Ts and κ(S) = n. Then clearly (T,κ) is a packing tree of S and

γ′′(S) ≥ inf
A∈l(T)

∑
n≥0

ακ(An)
√

log |c(An)|

≥ αn
√

log |N |+ min
s∈N

γ′′(S ∩B(s, αn+1))− ε.

Letting ε ↓ 0 shows that γ′′ satisfies the super-Sudakov inequality. As γ′′ is
clearly increasing γ′′(A) ≤ γ′′(B) for A ⊆ B, it is a growth functional. ut
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Problems

6.11 (Chaining with admissible nets). The formulation of the majorizing
measure theorem in terms of admissible nets seems to be somewhat simpler
than the formulation in terms of labelled nets, as there are no labels to keep
track of. In fact, from the point of view of the upper bounds, chaining with
admissible nets is even easier than using labelled nets.

a. Give a direct proof, along the lines of Theorem 6.24, of the fact that if
{Xt}t∈T is a separable subgaussian process on (T, d) then

E
[

sup
t∈T

Xt

]
. γ′(T ).

It is in fact also possible to give a direct proof of the lower bound in the ma-
jorizing measure theorem in terms of admissible nets. However, this approach
is less intuitive than the proof in terms of labelled nets, as we lose the natural
symmetry between the upper and lower bounds in the chaining argument.

Let us now consider a less structured variant of the notion of an admissible
net. Call A = {An}n≥0 an admissible family if each An individually is a
partition of T with |An| < 22n , but where we do not make the assumption
that the sequence of partitions is increasing. Define

γ′0(T ) := inf
A

sup
t∈T

∑
n≥0

2n/2 diam(An(t)),

with the infimum taken over all admissible families A.

b. Show that γ′0(T ) ≤ γ′(T ) ≤ Kγ′0(T ) for a universal constant K.
Hint: given an admissible family A, define an increasing sequence of parti-
tions B by letting Bn be the partition generated by A0, . . . ,An.

c. Give a direct proof of the upper bound in terms of entropy numbers

γ′0(T ) ≤
∑
n≥0

2n/2en(T )

that is equivalent to the simple chaining bound in the previous chapter.

6.12 (Separated trees). A separated tree (T,κ) is a T -tree T together with
a map κ : T → Z such that for every A 6∈ l(T), we have d(C,C ′) ≥ ακ(A) and
κ(C) > κ(A) for all C,C ′ ∈ c(A), C 6= C ′. Thus a separated tree is a less
structured variant of a packing tree where we have no control of the diameters
of the elements of a separated tree. Nonetheless, we will see that the quantity

γ′′0 (T ) = sup
(T,κ)

inf
A∈l(T)

∑
n≥0

ακ(An)
√

log |c(An)|,

where the supremum is taken here over all separated trees (T,κ), plays an
equivalent role to the quantity γ′′(T ). This is not at all obvious, as we cannot
apply the super-Sudakov inequality without control on the diameter.
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a. Show that γ′′(T ) . γ′′0 (T ).

b. Show that γ′′0 (T ) . γ(T ).
Hint: fix a separated tree (T,κ) and labelled net (A, `). Now argue as follows
starting from the root B0 of T: as the children c(B0) are ακ(B0)-separated,
each element of Aκ(B0)+1 can intersect at most one element of c(B0). Thus
we can choose B1 ∈ c(B0) and A1 ∈ Aκ(B0)+1 with `(A1) ≥ |c(B0)|. Now
iterate this procedure to select a full branch B0, B1, . . . of T and a sequence
Ai+1 ∈ Aκ(Bi)+1 with `(Ai+1) ≥ |c(Bi)|. Finally, compare the sums that
appear in the definitions of γ′′0 (T ) and γ(T ) for this selection.

c. Conclude that γ′′(T ) � γ′′0 (T ).

6.13 (Ultrametrics). A (finite) ultrametric space (U, d) is a (finite) set U
together with a metric d on U that satisfies the ultra-triangle inequality

d(u, v) ≤ max{d(u,w), d(v, w)} for all u, v, w ∈ X.

Ultrametric spaces play an important role in the geometry of metric spaces,
where they play a role analogous to that of Hilbert spaces in functional analysis
(any finite ultrametric space can be isometrically embedded in `2; the proof of
this fact is left to the interested reader). They also arise naturally in statistical
physics, computer science, and computational biology.

a. Let U be a finite set and T be a U -tree whose leaves are the singletons {u}.
Fix δ : T → R+ so that δ({u}) = 0 and δ(C) < δ(A) if C ∈ c(A), and let

d(u, v) = δ(A(u, v)), A(u, v) =
⋂
{C ∈ T : C ⊇ {u, v}}.

Show that (U, d) is an ultrametric space.

b. Let (U, d) be a finite ultrametric space. Show that there is a tree T and
assignment δ : T → R+ as in part a. such that d(u, v) = δ(A(u, v)).
Hint: show that if (U, d) is ultrametric, then balls B(u, ε) and B(v, ε) that
do not coincide must be disjoint. Thus {B(u, ε) : u ∈ U} is a partition.

A finite metric space (U, d) K-embeds in an ultrametric space if there is an
ultrametric du on U such that K−1du(u, v) ≤ d(u, v) ≤ Kdu(u, v) for all
u, v ∈ U . This idea proves to be intimately related to Gaussian processes.

c. Prove the following formulation of the majorizing measure theorem: there is
a universal constant K so that for any separable Gaussian process {Xt}t∈T ,
there is a finite subset U ⊆ T that K-embeds in an ultrametric space with

E
[

sup
u∈U

Xu

]
≤ E

[
sup
t∈T

Xt

]
≤ K E

[
sup
u∈U

Xu

]
.

Hint: consider a more structured notion of packing tree with the additional
requirement that each A ∈ T has diameter . ακ(A). Use a minor modifica-
tion of Theorem 6.38 to show that Theorem 6.36 still holds for the modified
packing tree. Finally, use the packing tree to define a suitable ultrametric.
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Notes

§6.1. The inequalities of Slepian-Fernique and Sudakov are classical results
on Gaussian processes. The approach starting from Gaussian interpolation
(Lemma 6.9) is due to Slepian [118]. We follow Chatterjee in using the con-
venient approximation of the maximum in the proof of Theorem 6.5 (see [3]).
See [146] for more on applications to random matrices (Problems 6.1 and 6.2).
The convex geometry proof of Problem 6.3, due to Talagrand [85], makes it
possible to extend Sudakov’s inequality to non-Gaussian processes [128].

§6.2. The super-Sudakov inequality is due to Talagrand [125]. The alternative
proof of Problem 6.4 is taken from [88]. Theorem 6.16 is due to Fernique [62].
As is noted in [83], the super-Sudakov inequality makes it possible to give a
particularly transparent proof that is almost entirely analogous to that of the
chaining upper bound. Problem 6.7 is inspired by [130].

§6.3. Talagrand’s majorizing measure theorem is considered to be notoriously
difficult, perhaps because the complicated chaining object that arises here
looks so bizarre. I have tried to tell the story in such a way that the result does
not appear as a major miracle, but rather as the natural consequence of basic
properties of Gaussian variables. In particular, it seems that the symmetry
between Corollary 6.17 and Proposition 6.18 is the central idea in the proof;
once this has been understood, it should be almost clear why the result must
be true. The proof given here and the formulation in terms of labelled nets
is the one developed in [125, 126]; the presentation is inspired by [83, 74] (I
learned the proof from [83]). Proposition 6.18 appears in [130].

The original proof of the majorizing measure theorem [123] was very com-
plicated, as everything was formulated directly in terms of continuous ma-
jorizing measures which are not well suited to chaining. A good exposition
of it can be found in [2]. The most recent formulation in terms of admissible
nets (section 6.4) is often simpler to use, but a direct proof of the majorizing
measure theorem along these lines [137, 138] is in my opinion more mysterious
as the natural symmetry between the upper and lower bounds is lost.

The (continuous) upper bound in the majorizing measure theorem as for-
mulated in Problem 6.10 is much older and is due to Fernique [62]. It can even
be developed pathwise as a real analysis lemma, see [15].

§6.4. The proof of Theorem 6.24 is based on [132], while the proof of Theorem
6.30 is inspired by [135]. The remaining results in this chapter are taken from
[137, 138], where an exhaustive treatment of the generic chaining method and
its applications is given (using exclusively the admissible net formulation). A
remarkable application of the connection with separated trees can be found in
[48]. The formulation in terms of ultrametric spaces (Problem 6.13) is implicit
in [123]; see [95] for further developments in this direction.
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Empirical processes and combinatorics

In the previous chapter, we have developed a detailed understanding of the
supremum of a Gaussian process {Xt}t∈T by chaining with respect to the
natural metric d(t, s) = ‖Xt−Xs‖2. While Gaussian processes are important
in their own right, in many applications such processes arise only in an indirect
manner. Particularly in areas such as statistics and machine learning, the more
fundamental object of interest is the empirical process {Gn(f)}f∈F over a class
of functions F, defined in terms of an i.i.d. sequence X1, X2, . . . ∼ µ as

Gn(f) :=
√
n{µnf − µf}, µn =

1
n

n∑
k=1

f(Xk).

Understanding the supremum of the empirical process determines the rate of
convergence of the law of large numbers uniformly over a class of functions F,
and thereby the performance of many types of statistical estimators. Similar
problems arise at a fundamental level in the geometry of Banach spaces, in
combinatorial set theory, and in many other applications.

That empirical processes are closely related to Gaussian processes is ex-
pressed by the following immediate consequence of the multivariate CLT.

Lemma 7.1 (Central limit theorem). For any f1, . . . , fk ∈ F, we have

(Gn(f1), . . . , Gn(fk)) =⇒ (Z(f1), . . . , Z(fk)) in distribution as n→∞,

where {Z(f)}f∈F is the Gaussian process with Cov[Z(f), Z(g)] = Covµ[f, g].

In view of the central limit theorem, we expect that the empirical process
{Gn(f)}f∈F should in some sense behave like the Gaussian process {Z(f)}f∈F

when n is sufficiently large. In particular, as the natural metric for the Gaus-
sian process is given by d(f, g) = Varµ[f − g]1/2, we might hope to control
the supremum of the empirical process by chaining with respect to d. Of
course, the empirical process is not actually Gaussian for finite n, but the
Azuma-Hoeffding inequality (Lemma 3.6) ensures that the empirical process
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is subgaussian with respect to the metric d∞(f, g) = ‖f −g‖∞. We can there-
fore directly control the supremum of the empirical process by chaining with
respect to the uniform metric (indeed, we have already seen this approach in
action in Example 5.28!) The problem with this approach is that the uniform
metric d∞ can be much larger than the L2(µ)-metric d in many cases, so that
we can incur an enormous loss of efficiency in controlling the empirical process
as compared to the limiting Gaussian process. Let us give a simple illustration
of a setting where this issue arises in a dramatic fashion.

Example 7.2. Let X1, X2, . . . be an i.i.d. sequence of real-valued random vari-
ables with distribution µ. By the law of large numbers, the empirical distribu-
tion function Fn(x) = µn(]−∞, x]) converges a.s. to the distribution function
F (x) = µ(]−∞, x]) for every x ∈ R. However, Glivenko and Cantelli proved
already in 1933 that the convergence is even uniform in x:

‖Fn − F‖∞
n→∞−−−−→ 0 a.s.

To understand this phenomenon (as well as the rate of convergence at which
this happens), we must understand the supremum of the empirical process

sup
f∈F
|µnf − µf | =

1√
n

sup
f∈F
|Gn(f)|

over the class of indicators F = {1]−∞,x] : x ∈ R}. Now note that

‖1]−∞,x] − 1]−∞,x′]‖∞ = 1 whenever x 6= x′.

Thus evidently N(F, ‖ · ‖∞, ε) =∞ for every ε < 1! In particular, we see that
no chaining argument with respect to the uniform metric can ever capture
the uniform convergence of the empirical process over the class F, or for that
matter over any other infinite class of (indicators of) sets. On the other hand,
it is not difficult to see that the covering numbers N(F, ‖ · ‖L2(µ), ε) are small,
and thus the Gaussian process {Z(f)}f∈F is easily controlled by chaining.

It should be evident from the above discussion that a direct application
of the methods that we developed so far to control the suprema of random
processes fails to capture the behavior of empirical processes. In order to
obtain better control of empirical processes, we must understand in what
sense the behavior of such processes is similar to that of the Gaussian limit.
In this chapter, we will develop methods to “bring out the Gaussian nature”
of empirical processes and to control the resulting inequalities.

7.1 The symmetrization method

One of the most fundamental approaches to bringing out the Gaussian na-
ture of empirical processes is through the method of symmetrization. To un-
derstand this idea behind this method, let us begin with a (very) informal
discussion of “why the central limit theorem works.”
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Let us fix a bounded function f , and consider the sum
∑n
k=1{f(Xk)−µf}.

As this sum contains n terms of order 1 each, this quantity could be as large
as ∼ n in the worst case. However, the typical situation is quite different: the
central limit theorem states that the sum is only of order

√
n in probability! Of

course, the reason for this is clear. In order for the sum to be of order n, most of
the terms in the sum must have the same sign so that their contributions add
up. But as the terms in the sum are independent and centered, they are highly
unlikely to all be of the same sign; to the contrary, there will typically be many
terms of opposite sign, so that most of the terms in the sum cancel rather than
adding up. This cancellation between terms of different sign accounts for the
major reduction in scale from O(n) to only O(

√
n).

The cancellation of terms of different signs proves to be the key mechanism
of the central limit theorem: it is the aggregate effect of random signs that
leads to Gaussian behavior. The remaining features of the distribution µ are
only relevant to the limiting behavior to the extent that they determine the
scale of the Gaussian (i.e., its variance). This suggests that in order to bring
out the Gaussian nature of the empirical process, we should somehow isolate
the random signs in such a manner that we can apply the machinery developed
in the previous chapters only to the “Gaussian part” of the empirical process.
The method of symmetrization achieves precisely this aim.

Lemma 7.3 (Symmetrization). Let X1, . . . , Xn be i.i.d. random variables
in X with distribution µ, and let F be a class of functions on X. Then

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

{f(Xk)− µf}

∣∣∣∣∣
]
≤ E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk{f(Xk)− f(Yk)}

∣∣∣∣∣
]

≤ 2 E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

{f(Xk)− µf}

∣∣∣∣∣
]
,

where Y1, . . . , Yn is an independent copy of X1, . . . , Xn, and ε1, . . . , εn are
i.i.d. symmetric Bernoulli random variables independent of X,Y .

Proof. As µf = E[f(Yk)|X1, . . . , Xn], Jensen’s inequality yields

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

{f(Xk)− µf}

∣∣∣∣∣
]
≤ E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

{f(Xk)− f(Yk)}

∣∣∣∣∣
]
.

But note that f(Xk)− f(Yk), being a symmetric random variable (hence the
name symmetrization!), has the same law as εk{f(Xk)− f(Yk)}. This implies

E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

{f(Xk)− f(Yk)}

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣
n∑
k=1

εk{f(Xk)− f(Yk)}

∣∣∣∣∣
]
,

which proves the first inequality. The second inequality follows readily using
f(Xk)− f(Yk) = f(Xk)− µf − {f(Yk)− µf} and the triangle inequality. ut
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Let us consider what we have achieved. Define the process

Zn(f) =
1√
n

n∑
k=1

εk{f(Xk)− f(Yk)}.

At first sight, this process seems no more useful than the empirical process
Gn(f): the best we can do is still to apply the Azuma-Hoeffding inequal-
ity, which shows that {Zn(f)}f∈F is subgaussian with respect to the uniform
norm. However, this is not the right way to bound the supremum of Zn(f).
What we have accomplished here is to isolate the behavior of the signs: the
random signs εk are independent of the remaining randomness in the problem.
We should therefore apply our machinery conditionally on X,Y , so that only
the “Gaussian part” of the process remains. If we apply the Azuma-Hoeffding
inequality conditionally on X,Y , we find that the process {Zn(f)}f∈F is sub-
gaussian with respect to the random metric dn on F defined by

dn(f, g) :=

[
1
n

n∑
k=1

{f(Xk)− g(Xk)− f(Yk) + g(Yk)}2
]1/2

.

To interpret this metric, note that by the law of large numbers

lim
n→∞

dn(f, g) = E[{f(X1)− g(X1)− f(Y1) + g(Y1)}2]1/2 = 2 Varµ[f − g]1/2,

which is none other (up to a constant factor) than the natural metric d for
the limiting Gaussian process Z(f)! Thus the symmetrization method isolates
precisely in what sense the empirical process approximates the Gaussian pro-
cess Z(f): by Lemma 7.3, controlling the supremum of the empirical process
Gn(f) is equivalent to controlling the supremum of a process that is subgaus-
sian for an empirical approximation to the natural metric of Z(f).

Once the symmetrization argument has been understood, we can apply all
the machinery developed in the previous chapters conditionally on X,Y . For
example, applying Corollary 5.25 conditionally yields

E
[

sup
f∈F
|Gn(f)|

]
. E

[ ∫ ∞
0

√
logN(F, dn, ε) dε

]
.

This is a vast improvement over the analogous bound with N(F, ‖·‖∞, ε) that
would be obtained by a direct application of Azuma-Hoeffding to Gn(f). At
the same time, the fact that we have to deal with a random metric dn is a
nontrivial complication: to control the covering numbers N(F, dn, ε) we must
understand the random geometry of the metric space (F, dn). In the following
sections we will develop some tools to deal with this problem.

So far there has been no loss in our estimates except universal constants:
Lemma 7.3 has matching upper and lower bounds. In many applications of
symmetrization, however, the following bounds prove to be convenient.
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Lemma 7.4 (Symmetrization II). Let X1, . . . , Xn be i.i.d. random vari-
ables in X with distribution µ, and let F be a class of functions on X. Then

E

[
sup
f∈F

n∑
k=1

{f(Xk)− µf}

]
≤ 2 E

[
sup
f∈F

n∑
k=1

εkf(Xk)

]

≤
√

2πE

[
sup
f∈F

n∑
k=1

gkf(Xk)

]
,

where ε1, . . . , εn are i.i.d. symmetric Bernoulli random variables and g1, . . . , gn
are i.i.d. N(0, 1) random variables independent of X.

Remark 7.5. The symmetrization method has its origin in functional anal-
ysis, where symmetric Bernoulli random variables are often referred to as
Rademacher variables. Thus the first inequality is called Rademacher sym-
metrization, while the second inequality is called Gaussian symmetrization.

Proof. It follows exactly as in the proof of Lemma 7.3 that

E

[
sup
f∈F

n∑
k=1

{f(Xk)− µf}

]
≤ E

[
sup
f∈F

n∑
k=1

εk{f(Xk)− f(Yk)}

]
.

Splitting the supremum yields

E

[
sup
f∈F

n∑
k=1

{f(Xk)− µf}

]
≤ E

[
sup
f∈F

n∑
k=1

εkf(Xk)

]
+ E

[
sup
f∈F

n∑
k=1

(−εk)f(Yk)

]
.

As (εk, Xk) has the same distribution as (−εk, Yk), the first inequality follows.
For the second inequality, as E[|gk||ε1, . . . , εn, X1, . . . , Xn] =

√
2/π, we have√

2
π

E

[
sup
f∈F

n∑
k=1

εkf(Xk)

]
= E

[
sup
f∈F

E

[
n∑
k=1

εk|gk|f(Xk)

∣∣∣∣∣ε,X
]]

≤ E

[
sup
f∈F

n∑
k=1

εk|gk|f(Xk)

]
.

But as gk is symmetric, εk|gk| has the same law as gk, and we are done. ut

Lemma 7.4 has two advantages. First, the natural random metric associ-
ated with the symmetrized process is the L2(µn)-metric

‖f − g‖L2(µn) =

[
1
n

n∑
k=1

{f(Xk)− g(Xk)}2
]1/2

,

which is often easier to control than the metric dn defined above (while the
latter is more precise, in most applications Lemma 7.4 suffices). Second, here
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we see that we can even control the supremum of the empirical process by
the supremum of a true Gaussian process (conditionally on X), not just by
a subgaussian process. This is conceptually pleasing, but does not make any
difference in most applications: upper bounds using chaining work just as
well for Gaussian processes as for subgaussian processes. We have used the
Gaussian property much more heavily in deriving lower bounds; however, the
Gaussian symmetrization is not necessarily sharp, so that we cannot derive
lower bounds in this manner without further work (see, however, Problems
7.1 and 7.2 below for situations where one can implement this idea).

We conclude this section by noting that we can use symmetrization not
only to bound the expectated supremum of the empirical process, but also its
tail probabilities. The following simple tool provides one way to do this.

Lemma 7.6 (Panchenko). Let X,Y be random variables such that

E[Φ(X)] ≤ E[Φ(Y )]

for every increasing convex function Φ. If

P[Y ≥ t] ≤ c1e−c2t
α

for all t ≥ 0

for some c1, α ≥ 1 and c2 > 0, then

P[X ≥ t] ≤ c1e1−c2t
α

for all t ≥ 0.

Proof. As x 7→ Φ(xα+) is increasing and convex for every α ≥ 1, it suffices to
consider the case α = 1. Applying the assumption to Φ(x) = (x− t)+ yields∫ ∞

t

P[X ≥ s] ds ≤
∫ ∞
t

P[Y ≥ s] ds ≤ c1
c2
e−c2t for all t ≥ 0.

Thus we have

P[X ≥ t] ≤ 1
a

∫ t

t−a
P[X ≥ s] ds ≤ ec2a

c2a
c1e
−c2t for all t ≥ a.

Choosing the optimal value a = 1/c2 yields the result for t ≥ 1/c2, while the
result holds trivially for t ≤ 1/c2 as then c1e

1−c2t > 1 ≥ P[X ≥ t]. ut

Using this lemma, we readily obtain the following symmetrization bound.

Corollary 7.7 (Symmetrization tail bound). Suppose that

P

[
2 sup
f∈F

n∑
k=1

εkf(Xk) ≥ K + t

]
≤ c1e−c2t

2
for all t ≥ 0

for some constants c1 ≥ 1 and c2,K ≥ 0. Then

P

[
sup
f∈F

n∑
k=1

{f(Xk)− µf} ≥ K + t

]
≤ 3c1e−c2t

2
for all t ≥ 0.
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Proof. The identical proof to Lemma 7.4 shows that

E

[
Φ

(
sup
f∈F

n∑
k=1

{f(Xk)− µf}

)]
≤ E

[
Φ

(
2 sup
f∈F

n∑
k=1

εkf(Xk)

)]

for any increasing convex function Φ. It remains to apply Lemma 7.6. ut

Corollary 7.7 can now be used in conjunction with results such as Theorem
5.29 to obtain tail bounds for the empirical process in terms of chaining.

Problems

7.1 (Rademacher and Gaussian processes). Let T ⊆ Rn. In the proof of
Lemma 7.4, we have seen that we can always bound

r(T ) := E

[
sup
t∈T

n∑
k=1

εktk

]
. E

[
sup
t∈T

n∑
k=1

gktk

]
=: g(T ),

where ε1, . . . , εn are i.i.d. symmetric Bernoulli and g1, . . . , gn are i.i.d. N(0, 1).
Unfortunately, the converse inequality does not hold in general.

a. Show for T = {t ∈ Rn : ‖t‖1 ≤ 1} that r(T ) ∼ 1 and g(T ) ∼
√

2 log n.

b. Evidently r(T ) can be small for two distinct reasons: either because g(T )
is small, or because the `1-diameter supt∈T ‖t‖1 is small. Combine these as
follows: if T ⊆ T1 +T2 with g(T1) ≤ a and supt∈T2

‖t‖1 ≤ a, then r(T ) . a.

A deep result, conjectured by Talagrand and proved by Bednorz and Lata la,
shows that this idea captures completely the behavior of the Rademacher
process: if r(T ) ≤ a, then T ⊆ T1 + T2 for some T1, T2 such that g(T1) ≤ ca
and supt∈T2

‖t‖1 ≤ ca. This result is proved by a very sophisticated form of
the generic chaining method, and is beyond our scope.

In the example of part a., r(T ) and g(T ) are apart by a factor ∼
√

log n.
It turns out that this is the worst case situation: we always have

r(T ) . g(T ) . r(T )
√

log n.

This could be deduced from Bednorz and Lata la, but we give a direct proof.

c. Show that if |a1|, . . . , |an| ≤ 1, then

E

[
sup
t∈T

n∑
k=1

εktkak

]
≤ E

[
sup
t∈T

n∑
k=1

εktk

]
.

Hint: (a1, . . . , an) 7→ E[supt∈T
∑n
k=1 εktkak] is convex.

d. Conclude that g(T ) . r(T )
√

log n.
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We have seen above that in general, the supremum of a Rademacher pro-
cess and a Gaussian process can be far apart. However, in the context
of the symmetrization Lemma 7.4, the situation should be much better
than in the general case: here the supremum is taken over the random set
T = {(f(X1), . . . , f(Xn)) : f ∈ F}. Informally speaking, the typical magni-
tude of the `1-norm of an element of this set is of order n, so we expect that
r(T ) can be small only if g(T ) is small. Let us try to prove such a result.

e. Provided {ε1, . . . , εk}, {g1, . . . , gk}, {X1, . . . , Xk} are independent, show

E

[
sup
f∈F

n∑
k=1

gkf(Xk)

]
≤
∫ ∞

0

E

[
sup
f∈F

n∑
k=1

εk1|gk|≥xf(Xk)

]
dx

=
∫ ∞

0

E

[
sup
f∈F

|{k≤n:|gk|≥x}|∑
k=1

εkf(Xk)

]
dx.

Hint: use |gk| =
∫∞
0

1|gk|≥x dx.

f. Let ϕ : R+ → R+ be a concave increasing function. Suppose that

E

[
sup
f∈F

n∑
k=1

εkf(Xk)

]
≤ ϕ(n) for all n ≥ 1.

Show that

E

[
sup
f∈F

n∑
k=1

gkf(Xk)

]
≤
∫ ∞

0

ϕ(nP[|g1| ≥ x]) dx for all n ≥ 1.

In particular, if we choose ϕ(n) = cnα for 1
2 ≤ α < 1, then we can control

the Gaussian and Rademacher symmetrizations by the same rate.

7.2 (The Glivenko-Cantelli theorem). Let X1, X2, . . . be i.i.d. random
variables with distribution µ on a measurable space X, and let F be a class
of functions on X. For simplicity, we will assume throughout this problem
that the class F is uniformly bounded (and, as we have implicitly assumed
throughout these notes, that the suprema we will encounter are measurable).
The class of functions F is said to be µ-Glivenko-Cantelli if

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

{f(Xk)− µf}

∣∣∣∣∣
]

n→∞−−−−→ 0.

Technically speaking, such a class is called weak Glivenko-Cantelli, as opposed
to the strong Glivenko-Cantelli property that requires a.s. convergence.

a. Show that the weak Glivenko-Cantelli property implies the strong Glivenko-
Cantelli property in the setting of this problem (of uniformly bounded F).
Hint: use a suitable concentration inequality and Borel-Cantelli.
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Symmetrization is a key tool to understand Glivenko-Cantelli classes. Let
ε1, ε2, . . . and g1, g2, . . . be i.i.d. Rademacher and Gaussian variables as usual.

b. Show that F is Glivenko-Cantelli if and only if

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]

n→∞−−−−→ 0.

Hint: use |
∑n
k=1 εkf(Xk)| ≤ |

∑n
k=1 εk{f(Xk)− µf}|+ ‖f‖∞|

∑n
k=1 εk|.

c. In the previous problem we discussed a method to reverse the inequality
between Rademacher and Gaussian symmetrization. In the present setting
it will be useful to prove the following related inequality: for any M ≥ 0

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

gkf(Xk)

∣∣∣∣∣
]
≤ ‖F‖∞

M
+M E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

εkf(Xk)

∣∣∣∣∣
]
.

Hint: insert 1 = 1|gk|≤M + 1|gk|>M inside the Gaussian symmetrization.

d. Show that F is Glivenko-Cantelli if and only if

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
k=1

gkf(Xk)

∣∣∣∣∣
]

n→∞−−−−→ 0.

We are now ready to give a necessary and sufficient condition for the Glivenko-
Cantelli propery in terms of the random geometry of the set F: we claim that
F is Glivenko-Cantelli if and only if the following condition (∗) holds:

logN(F, ‖ · ‖L2(µn), ε)
n

n→∞−−−−→ 0 in probability for every ε > 0.

Here µn denotes the empirical measure of X1, . . . , Xn.

e. Show that condition (∗) is sufficient for the Glivenko-Cantelli property.
Hint: use Lemma 5.7.

f. Show that condition (∗) is necessary for the Glivenko-Cantelli property.
Hint: use Sudakov’s inequality.

7.3 (Self-normalized sums). Consider independent Gaussian random vari-
ables X1, . . . , Xn with E[Xi] = 0 and Var[Xi] = σ2

i . Obviously we have

P

[
n∑
i=1

Xi ≥ t
{ n∑
i=1

σ2
i

}1/2
]
≤ e−t

2/2 for all t ≥ 0.

Can one obtain similar inequalities when the variables Xi are not Gaussian?
By Azuma’s inequality (Lemma 3.7), we obtain the same result if Xi is σ2

i -
subgaussian. However, for general random variables, there is no hope to obtain
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such an inequality. Indeed, if the variables Xi have heavy tails, for example,
then clearly the sum cannot have a Gaussian tail for large t.

Remarkably, there is a method to obtain Gaussian inequalities of this type
that works without any tail assumption on the random variables! The key
idea is to choose a random normalization that plays the role of the sum of the
variances in the Gaussian case. We then say the sum is self-normalized.

a. Consider first the simplest case of independent random variables Xi that
all have symmetric distributions. Show that

P

[
n∑
i=1

Xi ≥ t
{ n∑
i=1

X2
i

}1/2
]
≤ e−t

2/2 for all t ≥ 0.

Hint: apply Hoeffding’s inequality conditionally.

b. Prove the following consequence of Lemma 7.6: if c1 ≥ 1, c2 > 0 are con-
stants and X,Y, Z are random variables such that Y is nonnegative and

P[X ≥
√
tY ] ≤ c1e−c2t for all t ≥ 0,

then
P[E[X|Z] ≥

√
tE[Y |Z]] ≤ c1e1−c2t for all t ≥ 0.

Hint: use
√
tY = infa>0{t/2a+ aY/2}.

c. Let X1, . . . , Xn be any independent random variables with E[Xi] = 0 and
E[X2

i ] = σ2
i . Prove the following self-normalized inequality:

P

[
n∑
i=1

Xi ≥ t
{ n∑
i=1

(X2
i + σ2

i )
}1/2

]
≤ e1−t

2/2 for all t ≥ 0.

7.4 (The contraction principle). Let g1, . . . , gn be i.i.d. N(0, 1). Consider

E

[
sup
t∈T

n∑
i=1

giti

]
for a subset T ⊆ Rn. In the best case T = {−t, t}, the magnitude of this quan-
tity is of order

√
n. We informally view this rate as arising from cancellation

of terms in the sum with opposite signs. When the set T is “large,” however,
this quantity can be much larger than

√
n as the supremum can cancel some

of the signs. For example, in the extreme case that T = {−1, 1}n, we can
cancel the signs exactly and the above quantity is of order n.

The above dicussion suggests that a class T with “less variability” should
lead to a smaller Gaussian supremum. One simple result along these lines is

E

[
sup
t∈T

n∑
i=1

gi|ti|

]
≤ E

[
sup
t∈T

n∑
i=1

giti

]
.

This statment is an easy consequence of Slepian’s inequality.
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a. Prove the above bound.

We now turn our attention to the Rademacher process

E

[
sup
t∈T

n∑
i=1

εiti

]
.

Is there an analogue for the Rademacher process of the property proved in
part a.? It is not immediately clear how to proceed, as there is no Slepian in-
equality for Rademacher processes (in fact, the absence of such an inequality
presents a major challenge in the deeper understanding of such processes!)
However, there is a less powerful comparison inequality for Rademacher pro-
cesses, called the contraction principle, that can sometimes play an analogous
role to Slepian’s inequality in this setting. We develop it presently.

b. Let T be a bounded subset of R2, and let ϕ : R→ R be 1-Lipschitz. Prove

sup
t∈T
{t1 + ϕ(t2)}+ sup

t∈T
{t1 − ϕ(t2)} ≤ sup

t∈T
{t1 + t2}+ sup

t∈T
{t1 − t2}.

c. Let ϕi : R→ R be 1-Lipschitz for i ≤ n. Prove the contraction principle

E

[
sup
t∈T

n∑
i=1

εiϕi(ti)

]
≤ E

[
sup
t∈T

n∑
i=1

εiti

]
.

Hint: apply the previous part conditionally on ε1, . . . , εi−1, εi+1, . . . , εn.

d. Deduce the Rademacher analogue of the above Gaussian inequality:

E

[
sup
t∈T

n∑
i=1

εi|ti|

]
≤ E

[
sup
t∈T

n∑
i=1

εiti

]
.

e. Let F be a uniformly bounded class of functions with ‖f‖∞ ≤ M for all
f ∈ F. In various applications, it proves to be important to control the
empirical process over the family of squares f2. Show that

E

[
sup
f∈F

n∑
k=1

{f(Xk)2 − µ(f2)}

]
≤ 4M E

[
sup
f∈F

n∑
k=1

εkf(Xk)

]
,

so that it is possible to control the empirical process using the covering
numbers of F itself (rather than the covering numbers of F2 = {f2 : f ∈ F}
that would arise from a direct application of symmetrization).

Let us note that with a bit more work, we can also deduce a version of the
contraction principle that makes it possible to obtain tail bounds by including
a convex function as we did for symmetrization in the proof of Corollary 7.7.
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7.2 Vapnik-Chervonenkis combinatorics

In the previous section, we saw that we can bound using symmetrization

E
[

sup
f∈F

Gn(f)
]

. E
[ ∫ ∞

0

√
logN(F, ‖ · ‖L2(µn), ε) dε

]
.

This is a vast improvement over the result that we would have obtained by
chaining directly using the Azuma-Hoeffding inequality, in which case the cov-
ering number would be replaced by the much larger quantity N(F, ‖ · ‖∞, ε).
The difficulty in applying the above bound, however, is that we must control
the random covering numbers N(F, ‖ · ‖L2(µn), ε). Unfortunately, it is often
difficult to obtain bounds that exploit the specific structure of the random ge-
ometry of (F, L2(µn)). We therefore concentrate on the intermediate problem
of controlling the random covering numbers uniformly :

N(F, ‖ · ‖L2(µn), ε) ≤ ‖N(F, ‖ · ‖L2(µn), ε)‖∞ ≤ N(F, ‖ · ‖∞, ε).

At first sight, one might expect that uniform control of the random cover-
ing numbers would essentially reduce to covering in the uniform norm, as all
the structure of the original distribution µ is lost. Surprisingly, this intuition
proves to be incorrect: in many cases, the combinatorial structure of the class
F makes it possible to control its uniform covering numbers very effectively,
while covering in the uniform norm leads to useless bounds. We have seen in
Example 7.2 that the latter difficulty already arises in an extreme manner for
classes of indicator functions. We therefore begin in this section by investi-
gating this situation: that is, we will assume that F = {1C : C ∈ C} for a
class of sets C. Such problems are of significant interest in their own right in
many applications, and also serve to illustrate the ideas that we are about
to develop in the simplest possible setting. In the following section, we will
extend these ideas to general classes of functions.

As we will be working exclusively with sets in this section, we will simplify
our notation by implicitly identifying sets and their indicator functions; in
particular, we denote by (C, ‖·‖) the class of sets C with the metric ‖1C−1C′‖.
Let us begin by recalling the difficulty with using the uniform norm: clearly
‖1C − 1C′‖∞ = 1 whenever C 6= C ′, so a moment’s reflection will show that

N(C, ‖ · ‖∞, ε) = |C| for ε < 1.

As |C| =∞ in most cases of interest, this is useless. How can symmetrization
beat this limitation? In fact, symmetrization can help us in two distinct ways:

1. The symmetrized bound requires covering only in L2 rather than L∞.

2. The symmetrized bound involves only norms supported on the finite set
suppµn = {X1, . . . , Xn} rather than the entire space X.
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The combination of these two ideas will lead to a powerful machinery to
control the covering numbers in the symmetrization bound. In order to gain
insight into the roles played by each of these ideas, we will begin by disre-
garding the first point completely and see how far we can get by exploiting
only the reduction in complexity provided by the second point. Once this idea
has been understood, we will return to the first point and show how it can be
exploited to further reduce the complexity of the problem.

In order to exploit the reduction of the underlying space to a finite set, let
us bound the random covering numbers in the most naive manner possible:

N(C, ‖ · ‖L2(µn), ε) ≤ N(C, ‖ · ‖L∞(µn), ε) = |C ∩ {X1, . . . , Xn}|.

As C ∩ {X1, . . . , Xn} consists of subsets of at most n points, the above quan-
tity is bounded by at most 2n. Thus this naive bound already improves over
covering in the uniform norm on the entire space X! Unfortunately, bounding
the covering number by 2n does not lead to any nontrivial result. Indeed, as
the diameter of the set C is bounded by one, we can estimate

E
[

sup
C∈C

Gn(C)
]

. E[
√

log |C ∩ {X1, . . . , Xn}|] .
√
n,

which we could have seen immediately from the definition of the empirical
process (as ‖Gn(C)‖∞ ≤

√
n). Of course, we cannot expect anything better

at this level of generality: if C is the class of all (measurable) subsets of X, then
clearly supC∈CGn(C) =

√
n for any nonatomic measure µ. In order to obtain

nontrivial result, we must exploit the structure of the set C. Remarkably, it
turns out that in many cases the quantity |C∩{X1, . . . , Xn}| is much smaller
than 2n. Before we attempt to understand this phenomenon in a general
setting, let us develop some intuition in two illuminating examples.

Example 7.8 (The empirical distribution function). Let us revisit the setting
of Example 7.2 where X = R and C = {]−∞, x] : x ∈ R}. Clearly

C ∩ {X1, . . . , Xn} = {{X(n), . . . , X(k)} : k = 1, . . . , n} ∪ {∅},

where X(1) ≥ · · · ≥ X(n) is the decreasing rearrangement of X1, . . . , Xn. Thus
we have shown in this case that |C ∩ {X1, . . . , Xn}| ≤ n + 1, which is much
smaller than 2n! In particular, this implies the nontrivial result

E‖Fn − F‖∞ =
1√
n

E
[

sup
C∈C
|Gn(C)|

]
.

√
log n
n

.

It turns out that the rate that we obtained here is not optimal: we lost
a logarithmic factor when we bounded the L2(µn)-covering number by the
L∞(µn)-covering number. This inefficiency will be addressed later in this sec-
tion. Nonetheless, the simple argument given here already suffices to prove
the classical Glivenko-Cantelli theorem discussed in Example 7.2 (it is left as
an exercise to deduce a.s. convergence from convergence of the mean using
McDiarmid’s inequality and the Borel-Cantelli lemma).
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Example 7.9 (Rectangles). Let X = R2 and let

C = {[a, b]× [c, d] : a ≤ b, c ≤ d}

be the class of axis-parallel rectangles. We claim that in this case

|C ∩ {X1, . . . , Xn}| ≤ n4.

To see why this is the case, let us use a simple counting argument. Fix a
configuration of points X1, . . . , Xn. To every rectangle C ∈ C, we can associate
uniquely another rectangle C ′ that is the smallest rectangle such that C ∩
{X1, . . . , Xn} = C ′ ∩ {X1, . . . , Xn}. This is illustrated in the following figure:

C

C ′

Note that |C∩{X1, . . . , Xn}| is equal to the number of minimal rectangles C ′.
Each C ′ can be represented by specifying four points in {X1, . . . , Xn}, one
for each edge. Thus there are at most n4 such possibilities. (To be precise, we
must account separately for the case C = ∅; however, as not every 4-tuple of
points defines a valid rectangle, the crude upper bound n4 is still valid.)

In view of this simple estimate, we can now bound the supremum of the
empirical process over rectangles precisely as in the previous example.

It appears in these examples that the quantity |C∩{X1, . . . , Xn}| somehow
captures the number of degrees of freedom of the class C. In the first example
there was only one parameter x ∈ R, and the number of sets was ∼ n. In the
second example there were four parameters a, b, c, d ∈ R, and the number of
sets was ∼ n4. This is not a coincidence: it is typically the case that a class of
sets C of “dimension” d satisfies |C∩ {X1, . . . , Xn}| ∼ nd. To understand this
phenomenon for general classes of sets, we must understand how to define an
intrinsic notion of “dimension” that does not depend on a parametrization.
To this end, we introduce a combinatorial notion of dimension.

Definition 7.10 (Shattering). A set I ⊆ X is said to be shattered by C if
C∩ I = 2I , that is, if for every J ⊆ I, there exists C ∈ C such that C ∩ I = J .

Definition 7.11 (VC-dimension). The Vapnik-Chervonenkis dimension or
VC-dimension of C is defined as vc(C) := sup{|I| : I is shattered by C}.

In words, vc(C) is the cardinality of the largest set of points so that we
can recover all possible subsets of these points by intersecting with elements
of C. Another way to view the VC-dimension vc(C) is as the largest integer
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n such that |C ∩ {x1, . . . , xn}| = 2n for some set of points x1, . . . , xn ∈ X. If
vc(C) =∞, then it is quite possible that |C∩{X1, . . . , Xn}| ∼ 2n for all n, and
there is nothing nontrivial to be gained from the present approach (at least
without exploiting specific properties of the random samples X1, . . . , Xn). It
is not at all obvious at this point, however, that we are any better off in
the situation where vc(C) < ∞: even if |C ∩ {x1, . . . , xn}| < 2n for all points
x1, . . . , xn, what is preventing us from having, say, |C∩ {x1, . . . , xn}| ≥ 2n/2?
It is a remarkable combinatorial fact that this situation cannot occur: a class
of sets with vc(C) = d always satisfies |C ∩ {x1, . . . , xn}| . nd.

Lemma 7.12 (Sauer-Shelah). For all n ≥ 1 and x1, . . . , xn ∈ X

|C ∩ {x1, . . . , xn}| ≤
vc(C)∑
k=0

(
n

k

)
≤
(

en

vc(C)

)vc(C)

.

The proof of Lemma 7.12 is an exercise in combinatorics: we must find
an effective way to count the subsets |C∩{x1, . . . , xn}|. We will postpone the
proof of this result until the end of this section, so that we can focus our
attention on its implications for the control of empirical processes. Before we
continue down this road, however, it is instructive to verify the validity of the
Sauer-Shelah lemma in the two examples discussed above.

Example 7.13 (The empirical distribution function). In the setting of Example
7.8, it is easily seen that vc(C) = 1. Indeed, clearly any singleton {z} is
shattered, as {z} ∩ ]−∞, z − 1] = ∅ and {z} ∩ ]−∞, z] = {z}. On the other
hand, no set of two points {z1, z2} is shattered: after all, if z1 < z2, then the
set {z2} cannot be recovered by intersecting with any set in C.

Example 7.14 (Rectangles). In the setting of Example 7.9, we claim that
vc(C) = 4. It is easy to construct a set of four points that is shattered (for ex-
ample, {(0, 1), (0,−1), (1, 0), (−1, 0)}). On the other hand, choose any set I of
five points, and let C be the smallest rectangle enclosing I. Then at least four
points in I touch the boundary of C. But any rectangle that contains these
four points must necessarily also contain the fifth, so I cannot be shattered.

As can be seen in these examples, the VC-dimension of a class of sets
is often easy to compute. The beauty of this notion is that shattered sets,
which are “witnesses” to high-dimensional behavior, are very rigid objects,
and it is therefore often straightforward to rule out their existence in specific
situations. The combinatorial principle expressed by the Sauer-Shelah lemma
is consequently a powerful tool not just in theory but also in practice.

Let us now return to the control of the empirical process. By combining the
Sauer-Shelah lemma with our symmetrization bound, we immediately obtain

sup
µ

E
[

sup
C∈C
{µn(C)− µ(C)}

]
.
√

vc(C)

√
log n
n

,
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where the supremum is taken over all probability measures µ on X. This result
shows not only that the law of large numbers holds uniformly over classes of
sets C with finite VC-dimension—a far-reaching generalization of the original
result of Glivenko and Cantelli discussed in Example 7.2—but we even obtain
a bound on the rate of convergence that is completely independent of the
distribution of the underlying independent variables! Classes C that satisfy
this property are called uniform Glivenko-Cantelli classes.

Remark 7.15. The independence of our bounds of the distribution µ can be
both a positive and negative feature. In applications in statistics or machine
learning, where only independent samples are available and the underlying
distribution µ is unknown, distribution-free estimates make it possible to eval-
uate the error of statistical procedures without making any assumptions on
the data-generating mechanism. On the other hand, it is certainly possible
for a class C to satisfy the µ-Glivenko-Cantelli property for some distributions
µ and not for others, and the VC-dimension cannot capture this behavior.
In such situations, we cannot ignore the law of the samples X1, . . . , Xn: the
random geometry must be genuinely understood to obtain nontrivial results.
We will encounter an example in which this can be done in Problem 7.10.

Despite that we have obtained a decidedly nontrivial result from a direct
application of the Sauer-Shelah lemma, it turns out that this result is not
sharp: the optimal rate in the uniform law of large numbers for classes of finite
VC-dimension is in fact the usual 1/

√
n central limit theorem rate! Thus we

have apparently picked up an extra factor of order
√

log n. This origin of this
inefficiency does not lie in the Sauer-Shelah lemma: our combinatorial bound

N(C, ‖ · ‖L∞(µn), ε) . nvc(C)

is sharp, as can be seen in Examples 7.8 and 7.9. The problem lies in the very
first step of our analysis, where is applied the crude estimate

N(C, ‖ · ‖L2(µn), ε) ≤ N(C, ‖ · ‖L∞(µn), ε).

The L2-covering numbers prove to be much smaller than the L∞-covering
numbers: while the latter must necessarily grow with n, the former do not
depend on n at all! In fact, it turns out that the space (C, ‖ · ‖L2(µ)) has
metric dimension ∝ vc(C), uniformly over all probability measures µ.

Theorem 7.16 (Dudley). There is a universal constant K such that

sup
µ
N(C, ‖ · ‖L2(µ), ε) ≤

(
K

ε

)K vc(C)

for all ε < 1.

Where did the dependence on n disappear to? The idea is suprisingly
simple. Suppose that {C1, . . . , Cm} is a maximal ε-packing of (C, ‖ · ‖L2(µ)):
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that is, ‖1Ci − 1Cj‖L2(µ) > ε for all i 6= j. If we draw r random samples from
µ, then the law of large numbers ensures that we have

‖1Ci − 1Cj‖L2(µ) ≈ ‖1Ci − 1Cj‖L2(µr).

Thus if we choose r large enough, then we can ensure that {C1, . . . , Cm} is
still an ε/2-packing of (C, ‖ · ‖L2(µr)), and in this case we obtain

N(C, ‖ · ‖L2(µ), ε) ≤ N(C, ‖ · ‖L2(µr), ε/4) ≤ N(C, ‖ · ‖L∞(µr), ε/4) . rvc(C).

The key insight is now that the number of samples r that we need to draw in
order to ensure that this estimate holds depends only on ε and m—the original
sample size n of the empirical process is completely irrelevant! In particular,
just as we previously exploited the fact that symmetrization reduces the space
X to a finite set {X1, . . . , Xn} of cardinality n, we now reduce the size of
the space even further by throwing out those points that are not needed to
maintain the separation between the sets Ci. The gain obtained from this
reduction accounts precisely for the improvement in Theorem 7.16. This idea,
called probabilistic extraction, is made precise by the following lemma. For
future reference, we formulate it for general functions rather than sets (see
Problem 7.6 for a somewhat sharper bound that is specific to sets).

Lemma 7.17 (Extraction). Let f1, . . . , fm be functions on X such that

‖fi‖∞ ≤ 1, ‖fi − fj‖L2(µ) > ε for all 1 ≤ i < j ≤ m.

Then there exist r ≤ cε−4 logm points x1, . . . , xr ∈ X such that

‖fi − fj‖L2(µx) > ε/2 for all 1 ≤ i < j ≤ m,

where µx := 1
r

∑r
k=1 δxk and c is a universal constant.

Proof. Let X1, . . . , Xr ∼ µ be i.i.d., and denote by µr their empirical measure.
Then we can estimate using the Azuma-Hoeffding inequality

P
[
‖fi−fj‖2L2(µr)

≤ ε2

4

]
≤ P

[
‖fi−fj‖2L2(µr)

≤ ‖fi−fj‖2L2(µ)−
3ε2

4

]
≤ e−rε

4/15

for every i 6= j. A union bound now gives

P
[
‖fi − fj‖L2(µr) >

ε

2
for all i 6= j

]
≥ 1−m2e−rε

4/15 > 0

for r > 30ε−4 logm, and the result follows readily. ut

We can now easily complete the proof of Theorem 7.16.
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Proof (Theorem 7.16). Let µ be any probability on X, and let C1, . . . , Cm be a
maximal ε-packing of (C, ‖·‖L2(µ)). By Lemma 7.17, there exist r ≤ cε−4 logm
points x1, . . . , xr so that C1, . . . , Cm is still a packing of (C, ‖ · ‖L2(µx)). Thus

m ≤ |C ∩ {x1, . . . , xr}| ≤
(

er

vc(C)

)vc(C)

≤
(

logm
vc(C)

(ec)1/4

ε

)4 vc(C)

by the Sauer-Shelah lemma. But using α logm ≤ mα, we obtain

m1/2 ≤
(

2(ec)1/4

ε

)4 vc(C)

,

and the proof is complete as m ≥ N(C, ‖ · ‖L2(µ), ε) by Lemma 5.12. ut

With the proof of Theorem 7.16 being complete, we have now accom-
plished what we set out to do at the beginning of this section: we obtained
uniform control over the L2-covering numbers of a class of sets C in terms of
its combinatorial structure. In particular, we can now obtain the optimal rate
in the uniform law of large numbers for classes of finite VC-dimension.

Corollary 7.18 (Uniform Glivenko-Cantelli classes). There is a univer-
sal constant L such that for any class C of measurable subsets of X and n ≥ 1

sup
µ

E
[

sup
C∈C
|µn(C)− µ(C)|

]
≤ L

√
vc(C)
n

,

where the supremum is taken over all probability measures µ on X.

Proof. Using symmetrization and Theorem 7.16 we obtain

E
[

sup
C∈C
|µn(C)− µ(C)|

]
≤ K ′√

n
E
[ ∫ 1

0

√
logN(C, ‖ · ‖L2(µn), ε) dε

]
≤
√

vc(C)
n

K ′
√
K

∫ 1

0

√
log

K

ε
dε,

where K ′ is the universal constant that arises in Corollary 5.25 and we have
used that the diameter of (C, ‖ · ‖L2(µ)) is at most one. ut

It remains to take care of unfinished business: we must still prove the Sauer-
Shelah lemma. The remainder of the section will be devoted to this task. There
are in fact a number of different proofs of the Sauer-Shelah lemma, each of
which is interesting in its own right. We will develop in some detail a proof
that is loosely reminiscent of the lower bound construction in the proof of
the majorizing measure theorem. In the case of classes of sets, this proof is
somewhat pedantic; the same basic step can be used to give a shorter proof
by induction on the dimension (Problem 7.7). However, the ideas that we
will develop will prove to be particularly useful in the next section when we
attempt to extend the conclusion of Theorem 7.16 to classes of functions.

The conclusion of the Sauer-Shelah lemma is in fact an immediate conse-
quence of the following more precise combinatorial principle.
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Theorem 7.19 (Pajor). For any class C of subsets of X, we have

|C| ≤ |{I ⊆ X : I is shattered by C}|.

Let us see why Lemma 7.12 follows.

Proof (Lemma 7.12). By the definition of the VC-dimension, every shattered
set I must satisfy |I| ≤ vc(C). Thus Theorem 7.19 implies

|C ∩ {x1, . . . , xn}| ≤ |{I ⊆ {x1, . . . , xn} : I is shattered by C}|

≤ |{I ⊆ {x1, . . . , xn} : |I| ≤ vc(C)}| =
vc(C)∑
k=0

(
n

k

)
.

The remaining bound in Lemma 7.12 is an elementary consequence of the
binomial theorem: for any d ≤ n we can estimate(

d

n

)d d∑
k=0

(
n

k

)
≤

d∑
k=0

(
n

k

)(
d

n

)k
=
(

1 +
d

n

)n
≤ ed.

Thus the proof of Lemma 7.12 is hereby complete. ut

Remark 7.20. It is not difficult to see that Theorem 7.19 and Lemma 7.12 are
sharp. Indeed, consider the class C = {I ⊆ {1, . . . , n} : |I| ≤ d}. Then every
subset of cardinality d is shattered, and clearly no set of cardinality greater
than d can be shattered. Thus vc(C) = d, and in this example the result of
Theorem 7.19 and the first inequality in Lemma 7.12 hold with equality.

We now finally turn to the heart of the matter, which is to prove Theorem
7.19. The essential difficulty that we face is to devise an efficient way to
organize our counting of the number of shattered sets. This requires some
form of bookkeeping. To this end, we will build a tree (cf. Definition 6.34)
of subsets of C—that is, each node of the tree represents a family of sets in
C—that encodes information about what points are shattered.

Definition 7.21 (Splitting tree). Let C be a class of subsets of X. A C-tree
A is called a splitting tree if every node A ∈ A that is not a leaf satisfies:

1. A has exactly two children A+ and A−;
2. There exists xA ∈ X so that xA ∈ C for C ∈ A+ and xA 6∈ C for C ∈ A−.

The motivation for this definition is that a set I = {x1, . . . , xn} is shattered
if and only if there exists a splitting tree A with the following properties:

1. A is a complete binary tree of depth n.
2. {xA : A ∈ A} = {x1, . . . , xn}.
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Indeed, suppose such a tree exists. Then for any J ⊆ I, we can find a set
C ∈ C such that C ∩ I = J (thereby verifying that I is shattered) by using
the tree as a lookup table: starting at the root C, traverse down the unique
path in the tree such that at every node A, we move to A+ if xA ∈ J and to
A− otherwise. We end up at a leaf AJ of the tree, and by construction any
C ∈ AJ satisfies C ∩ I = J . Conversely, if I is shattered, then

A = {{C ∈ C : C ∩ {x1, . . . , xi} = J} : 0 ≤ i ≤ n, J ⊆ {x1, . . . , xi}}

evidently defines a splitting tree with the above two special properties.
In view of the above discussion, finding shattered sets is equivalent to

finding complete splitting trees. The difficulty is that complete splitting trees
are hard to find. However, it is very easy to construct a splitting tree without
the above special properties by repeatedly splitting each node of the tree into
two subsets in a “greedy” fashion starting at the root. The idea behind the
proof of Theorem 7.19 is to show that any large splitting tree must contain
many subtrees that are complete. This is a simple example of the Ramsey
phenomenon that arises in many combinatorial problems, which states that
that any “large” system must contain large “highly structured” subsystems.

Lemma 7.22. Let C be a class of subsets of X. Then for any splitting tree A

|{leaves of A}| ≤ |{I ⊆ X : I is shattered by C}|.

Proof. It is convenient to define for A ⊆ C

S(A) := {I ⊆ X : I is shattered by A},

where we note that ∅ ∈ S(A) for any A. The key point of the proof is that

|S(A)| ≥ |S(A+)|+ |S(A−)|

holds for every node A ∈ A that is not a leaf. To see this, note that if a set I is
shattered by a subfamily of A, then it is shattered by A as well by definition.
Thus the only issue we have to address is that sets I that are shattered both
by A+ and A− are double-counted in the lower bound. On the other hand, if
I is shattered by both A+ and A−, then it is easily verified that both I and
I ∪ {xA} are shattered by A. Thus the claim is valid. To complete the proof,
it remains to iterate the above inequality starting from the root. This yields

|S(C)| ≥
∑

A is a leaf

|S(A)| ≥ |{leaves of A}|,

where we have used that |S(A)| ≥ 1 (because ∅ ∈ S(A)). ut

To complete the proof of Theorem 7.19, it remains to construct a splitting
tree with |C| leaves. But this is trivial: the most naive construction works.
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Lemma 7.23. For any class of sets C, there exists a splitting tree A with

|{leaves of A}| = |C|.

Proof. It is trivial that for any subset A ⊆ C with |A| ≥ 2, we can choose
xA ∈ X such that A+ = {C ∈ A : xA ∈ C} and A− = {C ∈ A : xA 6∈ C} are
nonempty: indeed, it suffices to choose any xA ∈ C4C ′ for distinct elements
C,C ′ ∈ A. Thus we can grow a splitting tree by starting at the root C and
repeatedly splitting the leaves of the tree into two subsets until all the leaves
are singletons. As we have not thrown out any elements of C, the leaves form
a partition of C, and as each leaf is a singleton the conclusion follows. ut

Combining Lemmas 7.22 and 7.23 concludes the proof of Theorem 7.19.

Problems

7.5 (Computing the VC-dimension). The aim of this problem is to com-
pute the VC-dimension of various classes of sets C. We begin with a simple
observation that is useful in many geometric situations.

a. Let C be a class of convex subsets of Rd. Show that if I ⊂ Rd is shattered
by C, then every x ∈ I must be an extreme point of the convex hull conv I.

We now consider several interesting examples of classes of convex sets.

b. Show that vc(C) = 3 for the class of discs in the plane

C = {{x ∈ R2 : ‖x− z‖ ≤ r} : z ∈ R2, r ∈ R+}.

Hint: suppose that {x1, x2, x3, x4} are the corners of a convex polygon,
listed in clockwise order. Show that if there is a disc that contains only
{x1, x3} and a disc that contains only {x2, x4}, the symmetric difference of
these discs must consist of four disjoint regions, which is impossible.

c. Show that vc(C) = d+ 1 for the class of d-dimensional halfspaces

C = {{x ∈ Rd : 〈z, x〉 ≥ a} : z ∈ Rd, a ∈ R}.

Hint: consider {0, e1, . . . , ed} (where {ei} denotes the unit basis in Rd). On
the other hand, for any {x1, . . . , xd+2}, one can find b ∈ Rd+2\{0} such
that b1x1 + · · ·+ bd+2xd+2 = 0 and b1 + · · ·+ bd+2 = 0.

d. Show that vc(C) = 7 for the class of all triangles

C = {conv{x1, x2, x3} : x1, x2, x3 ∈ R2}.

Hint: consider 7 points lying on a circle. On the other hand, let {x1, . . . , x8}
be the corners of a convex polygon, listed in clockwise order. Show that no
triangle can contain x1, x3, x5, x7 but exclude x2, x4, x6, x8, as every pair
xi, xi+2 must be separated from xi+1 by an edge of the triangle.
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Let us note that triangles are naturally described by 6 parameters, while the
VC-dimension is 7. Similarly, halfspaces can be described by d parameters
(as we may assume without loss of generality that ‖z‖ = 1), while the VC-
dimension is d+ 1. Thus it is not always the case that the VC-dimension of a
parametrized family of sets equals the number of parameters.

The following construction provides a useful method to generate classes of
sets with small VC-dimension that can have complicated structure.

e. Let X be any set, and let g1, . . . , gd : X → R be arbitrary functions. Show
that vc(C) ≤ d if we define the class of upper level sets

C = {{x ∈ X : b1g1(x) + · · ·+ bdgd(x) ≥ 0} : b1, . . . , bd ∈ R}.

Use this to give another proof of the VC-dimension of discs in part b.

Finally, we note that even “nice” sets can have infinite VC-dimension.

f. Show that vc(C) =∞ for

C = {C ⊂ R2 : C is compact and convex}.

Hint: consider n points on a circle.

7.6 (A sharper uniform covering bound). Theorem 7.16, as we have
stated it, implies that the metric dimension of (C, ‖·‖L2(µ)) is at most K vc(C)
uniformly over all probability measures µ. The constant K that we obtained in
not sharp. The reason for this is that we have used a very general probabilistic
extraction principle in the form of Lemma 7.17. For classes of sets, we can get
away with a more elementary approach that leads to a better constant.

The problem with Lemma 7.17 is that it insists that the ε-packing
{C1, . . . , Cm} in L2(µ) remains a ε/2-packing in L2(µx). This strong separa-
tion will be needed when we extend to classes of functions in the next section.
Here, however, we are only interested in counting |C ∩ {x1, . . . , xr}| ≥ m.
Therefore, to ensure that this is the case, we only need to ensure that the sets
C1, . . . , Cm remain distinct when they are intersected with {x1, . . . , xr}.
a. Let X1, . . . , Xr ∼ µ be i.i.d. Show that

P[C ∩ {X1, . . . , Xr} = C ′ ∩ {X1, . . . , Xr}] =
{

1− ‖1C − 1C′‖2L2(µ)

}r
.

b. Conclude that if C1, . . . , Cm is an ε-packing in L2(µ), then

P[Ci∩{X1, . . . , Xr} 6= Cj∩{X1, . . . , Xr} for all i 6= j] ≥ 1−m2{1−ε2}r > 0

for r > 2ε−2 logm (compare with r & ε−4 logm in Lemma 7.17!)

c. Deduce the following improved form of Theorem 7.16:

sup
µ
N(C, ‖ · ‖L2(µ), ε) ≤

(
Kδ

ε

)(2+δ) vc(C)

for all ε < 1, δ > 0,

where Kδ is a universal constant that depends on δ.
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d. The last bound is sharp in the following sense. Let C = {I ⊂ N : |I| ≤ d},
so that vc(C) = d. Show that for a universal constant K ′δ depending on δ

sup
µ
N(C, ‖ · ‖L2(µ), ε) ≥

(
K ′δ
ε

)(2−δ) vc(C)

for all ε < 1, δ > 0.

Hint: consider probability measures µ({n}) ∝ n−(1+α).

Evidently 2 vc(C) is the optimal value of the exponent in the behavior of the
uniform covering numbers of a class of sets. In the above bounds, however,
Kδ → ∞ and K ′δ → 0 as δ → 0. A delicate analysis due to Haussler shows
that it is in fact possible to attain the exponent 2 vc(C) with a finite constant.

7.7 (A short induction proof of Pajor’s theorem). Our proof of Theorem
7.19 introduced splitting trees as a bookkeeping device. The insight gained
from this idea will pay off in the next section. In the case of sets, however, one
can rewrite the proof in a much more efficient manner without any reference
to splitting trees. This yields perhaps the shortest and cleanest approach.

a. Suppose that the conclusion of Theorem 7.19 holds for any class C of subsets
of X with |X| = m. Show that the conclusion also follows when |X| = m+1.
Hint: let |X| = m+ 1 and choose any x ∈ X. Define C+ = {C ∈ C : x ∈ C}
and C− = {C ∈ C : x 6∈ C}, and apply the basic argument of Lemma 7.22.

b. Conclude the proof of Theorem 7.19 by induction on |X|.

Let us emphasize that this proof is essentially identical to the proof we have
given. Here we have simply merged the construction of the splitting tree with
the proof of Lemma 7.22, so that no additional bookkeeping is needed.

7.8 (A rearrangement proof of Pajor’s theorem). The goal of this prob-
lem is to give an entirely different proof of Theorem 7.19 in the spirit of ex-
tremal combinatorics. This elegant method is useful in many other problems.

Let us begin by gaining some intuition. A class C of subsets of a set X is
called hereditary if C ∈ C implies C ′ ∈ C for all C ′ ⊆ C.

a. Show that Theorem 7.19 holds with equality for hereditary C.

Evidently hereditary classes are extremal with respect to shattering. The idea
we will now pursue is that an arbitrary class C can be transformed into a
hereditary class without changing its cardinality or increasing the number of
shattered sets. This will be done by a form of rearrangement (in analogy with
the proof of the classical isoperimetric inequality by Steiner symmetrization).

Consider a class C of subsets of a finite set X. The basic step that we
consider is as follows. Given a point x ∈ X, define SxC = {SxC : C ∈ C} such
that SxC = C\{x} if C\{x} 6∈ C, and SxC = C otherwise. This operation is
called shifting : it tries to “remove the holes” in the class C that prevent it from
being hereditary, one coordinate at a time. Let us investigate its consequences.
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b. Show that |SxC| = |C|.

c. Show that if I ⊆ X is shattered by SxC, then it is also shattered by C.

d. Show that if SxC = C for all x ∈ X, then C is hereditary.

e. Now starting from any class C, repeatedly apply the operation Sx by cycling
through the points x ∈ X. Show that the transformed set Sxq · · ·Sx1C

becomes hereditary after a finite number q of such operations.

f. Show that the conclusion of Theorem 7.19 follows readily (while we assumed
here that X is finite, argue that this entails no loss of generality).

7.9 (Necessity of finite VC-dimension). We have seen that classes C

with vc(C) <∞ have many nice properties. In particular, such classes admit
distribution-free bounds. The aim of this problem is to show that the condition
vc(C) <∞ is often also necessary to obtain distribution-free results.

Let us begin by considering the uniform covering number. We have seen

vc(C) <∞ implies sup
µ
N(C, ‖ · ‖L2(µ), ε) <∞

by Theorem 7.16. Let us show, conversely, that for ε < 1/2

vc(C) =∞ implies sup
µ
N(C, ‖ · ‖L2(µ), ε) =∞.

a. Prove the following basic result.

Lemma 7.24 (Gilbert-Varshamov). Let C = 2X be the class of all sub-
sets of X = {1, . . . , n} and let d(C,D) = |C4D|. Then N(C, d, n/4) ≥ en/8.

Hint: use a “volume argument” with the uniform measure on C in the role
of the volume, and use Azuma-Hoeffding to estimate the volume of d-balls.

b. Conclude that vc(C) =∞ implies supµN(C, ‖ · ‖L2(µ), ε) =∞ for ε < 1/2.
Hint: let µ be the uniform distribution on a shattered set I ⊆ X.

Let us now consider the uniform law of large numbers. We have seen that

vc(C) <∞ implies lim sup
n→∞

sup
µ

E
[

sup
C∈C
|µn(C)− µ(C)|

]
= 0

by Corollary 7.18. Let us show, conversely, that

vc(C) =∞ implies lim inf
n→∞

sup
µ

E
[

sup
C∈C
|µn(C)− µ(C)|

]
> 0.

Thus vc(C) < ∞ is sufficient and necessary to obtain a distribution-free rate
in the uniform law of large numbers (the uniform Glivenko-Cantelli property).
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c. Let ε1, . . . , εn be i.i.d. symmetric Bernoulli. Show that vc(C) =∞ implies

sup
µ

E

[
sup
C∈C

∣∣∣∣∣ 1n
n∑
k=1

εk1C(Xk)

∣∣∣∣∣
]
≥ 1

2
.

Hint: let µ be the uniform distribution on a shattered set of cardinality
N � n, and show that {X1, . . . , Xn} is shattered with high probability.

d. Conclude that the uniform Glivenko-Cantelli property fails if vc(C) =∞.
Hint: see Problem 7.2.

Finally, we argue that the distribution-free rate obtained in Corollary 7.18 is
even quantitatively correct up to universal constants. That is, let us show that

K
√

vc(C) ≤ lim inf
n→∞

sup
µ

E
[

sup
C∈C

√
n|µn(C)− µ(C)|

]
≤ lim sup

n→∞
sup
µ

E
[

sup
C∈C

√
n|µn(C)− µ(C)|

]
≤ L

√
vc(C).

In view of Corollary 7.18, we must only prove the lower bound.

e. Denote by {Zµ(C)}C∈C be the centered Gaussian process whose covariance
function is given by Cov[Zµ(C), Zµ(C ′)] = Covµ[1C ,1C′ ]. Show that

lim inf
n→∞

sup
µ

E
[

sup
C∈C

√
n|µn(C)− µ(C)|

]
≥ sup

µ
E
[

sup
C∈C
|Zµ(C)|

]
.

f. Show that the right-hand side in the last inequality is &
√

vc(C).
Hint: choose µ to be uniformly distributed on a shattered set I, and repre-
sent Zµ(C) = |I|−1/2

∑
x∈I gx{1C(x)− µ(C)} with {gx}x∈I i.i.d. N(0, 1).

7.10 (Glivenko-Cantelli theorem and convex sets). We have seen in
the previous problem that vc(C) < ∞ is necessary and sufficient in order for
the law of large numbers to hold uniformly over C with a distribution-free
rate. However, when vc(C) =∞, it can still be the case that the law of large
numbers holds uniformly over C for any given distribution µ. We characterized
such classes in Problem 7.2 in terms of a random entropy condition. It turns
out that in the case of sets, the entropy condition can be replaced by a random
combinatorial condition: C is a µ-Glivenko-Cantelli class if and only if

vc(C ∩ {X1, . . . , Xn})
n

n→∞−−−−→ 0 in probability,

where X1, X2, . . . is an i.i.d. sequence of variables with distribution µ. Note
that this condition can clearly hold even when vc(C) =∞.

a. Show that the above condition implies the µ-Glivenko-Cantelli property.
Hint: use the random entropy condition of Problem 7.2.
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b. Show that the µ-Glivenko-Cantelli property implies the above condition.
Hint: start with the symmetrized formulation from Problem 7.2, and use
that E[supt∈T

∑
k∈I εktk] ≥ E[supt∈T

∑
k∈J εktk] when J ⊆ I.

The advantage of the combinatorial formulation is that shattered sets are
very rigid structures that are often easy to detect. Nonetheless, in the present
setting we must understand what random combinatorial structures can arise
in a sample X1, . . . , Xn from a given distribution µ, which may not be a trivial
matter. Let us develop in detail one example in which this can be done.

Let C be the class of all compact and convex subsets of X = [0, 1]d (we can
easily extend the following arguments to the case X = Rd by a straightforward
truncation, but this provides no additional insight). It was shown in Problem
7.5 above that vc(C) = ∞. Nonetheless, we will show that C is µ-Glivenko-
Cantelli whenever µ has a density with respect to Lebesgue measure.

c. Find an example of a measure µ such that C fails to be µ-Glivenko-Cantelli.
Thus the assumption that µ has a density is not superfluous.

d. Show that a set I is shattered by C if and only if none of the points x ∈ I is
a convex combination of the others I\{x} (that is, I is in convex position).

e. Show that if µ has a density with respect to Lebesgue measure, then the
boundary ∂C of every convex set C ∈ C has zero measure µ(∂C) = 0.
Hint: if 0 ∈ intC, then ∂C ⊂ (1 + ε)C\(1− ε)C.

The heuristic idea behind the proof is now as follows. By the combinatorial
formulation developed in the first part of this problem, we must show that
among n random points X1, . . . , Xn, the maximal size of a subset that is in
convex position is sublinear in n. Suppose, to the contrary, that there is a
subset I ⊆ {X1, . . . , Xn} with |I| ≥ αn that is in convex position. Then the
boundary of the convex set C = conv I has empirical measure µn(∂C) ≥ α. If
we could argue µn(∂C) ≈ µ(∂C) for all C ∈ C, we would have a contradiction.
At first sight, it seems like this got us nowhere: we must now prove that the
class ∂C of boundaries of convex sets is µ-Glivenko-Cantelli! But the latter
problem can be addressed by exploiting the geometry of convex sets.

f. Let Xm be the partition of X = [0, 1]d into md cubes of side length 1/m.
Define the discretized boundary ∂mC =

⋃
{B ∈ Xm : B ∩ ∂C 6= ∅}. Prove

lim sup
n→∞

sup
C∈C

µn(∂C) ≤ inf
m≥1

sup
C∈C

µ(∂mC).

g. Clearly infm≥1 µ(∂mC) = µ(∂C) = 0, but we need this conclusion to hold
uniformly over C ∈ C. Show that if µ is the Lebesgue measure on X, then

sup
C∈C

µ(∂3mC) ≤ (1− 3−d)m for all m ≥ 1.

Hint: for m = 1, the partition X3 consists of one cube in the center of X
surrounded by 3d− 1 cubes along the sides of X. Show that if all the cubes
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along the sides contain a point in ∂C, then the middle cube cannot intersect
∂C. Thus µ(∂3C) ≤ (1− 3−d)µ(∂1C). Now iterate this argument.

h. Deduce that if µ has a density with respect to Lebesgue measure, then

inf
m≥1

sup
C∈C

µ(∂mC) = 0.

i. Conclude that the combinatorial condition formulated at the beginning of
this problem holds for C whenever µ has a density with respect to Lebesgue
measure by carefully making precise the reasoning given above.

7.11 (Kolmogorov, Smirnov, and Donsker). Let X1, X2, . . . be i.i.d. real-
valued variables with distribution function F (x) = µ(]−∞, x]), and define the
empirical distribution function Fn(x) = µn(]−∞, x]). The classical Glivenko-
Cantelli theorem states that ‖Fn − F‖∞ → 0. By Corollary 7.18, the conver-
gence even takes place at the central limit theorem rate ‖Fn −F‖∞ . n−1/2.
We might therefore wonder whether one can go one step further and show
that

√
n‖Fn − F‖∞ converges weakly to some limiting distribution.

a. Let Gn(x) :=
√
n{Fn(x)− F (x)}. Show that for any x1, . . . , xk ∈ R

(Gn(x1), . . . , Gn(xk)) =⇒ (B(F (x1)), . . . , B(F (xk))) in distribution.

Here {B(t)}t∈[0,1] is the Brownian bridge defined by B(t) = W (t)− tW (1),
where {W (t)}t∈[0,1] is standard Brownian motion.

In view of this computation, it is natural to conjecture that
√
n‖Fn − F‖∞

converges in distribution to ‖B‖∞, the supremum of a Brownian bridge (note
that this limiting distribution does not depend on the law µ!) This is indeed
the case, as was proved by Kolmogorov and Smirnov in the 1930s, and is of
significant importance in classical nonparametric statistics.

It is obvious from the central limit theorem that if I ⊂ R is a finite set,
then maxx∈I

√
n|Fn(x)−F (x)| converges in distribution to maxx∈I |B(F (x))|.

It is not at all clear, however, that this is still the case for I = R. To prove
this, we must establish that

√
n‖Fn−F‖∞ can be approximated uniformly in

n by maxx∈I
√
n|Fn(x)−F (x)| for sufficiently large finite sets I. It is here that

the empirical process machinery that we have developed enters the picture.

b. Let Q ⊆ R2. Show that

E
[

sup
(x,x′)∈Q

|Gn(x)−Gn(x′)|
]

. E
[
ω

(
sup

(x,x′)∈Q
|Fn(x)− Fn(x′)|

)]
,

where ω(u) :=
∫√u
0

√
log 1

ε dε .
√
u log(1/u).

c. Let Qδ = {(x, x′) : |F (x)− F (x′)| ≤ δ}. Prove asymptotic equicontinuity

lim
δ↓0

lim sup
n→∞

E
[

sup
(x,x′)∈Qδ

|Gn(x)−Gn(x′)|
]

= 0.
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d. Show that there exist finite sets Ik ⊂ R such that

lim
k→∞

lim sup
n→∞

E
[√

n

∣∣∣∣‖Fn − F‖∞ −max
x∈Ik
|Fn(x)− F (x)|

∣∣∣∣] = 0,

and conclude that
√
n‖Fn − F‖∞ =⇒ ‖B‖∞ in distribution.

From the asymptotic equicontinuity result obtained above, we can in fact
derive a much more general statement of the idea that the empirical process
Gk converges weakly to the Brownian bridge B ◦F . This result, originally due
to Donsker, can be viewed as a uniform central limit theorem.

e. View the empirical process x 7→ Gn(x) as a random path with values in
L∞(R). Show that for any functional H : L∞(R) → R that is Lipschitz in
the sense |H[G]−H[G′]| ≤ L‖G−G′‖∞ for all G,G′ ∈ L∞(R), we have

E[H[Gn]]→ E[H[B ◦ F ]] as n→∞.

(Assume for simplicity that H[Gn] and H[B ◦ F ] are measurable, though
this is neither obvious nor always true; measurability issues of this kind
arise often in the development of uniform central limit theorems.)

While we have considered the example of empirical distribution functions for
sake of illustration, uniform central limit theorems can be developed in con-
siderable generality. A class of functions F for which the empirical process
satisfies the central limit theorem in L∞(F) is called a Donsker class. The
characterization of such classes, as well as closely related questions concern-
ing central limit theorems in Banach spaces, have historically motivated the
development of many of the tools that are used to control empirical processes.

7.3 Combinatorial dimension and uniform covering

In the previous section we developed, in the special case of classes of sets,
a combinatorial method to control uniformly the random covering numbers
that appear in symmetrization bounds. In a sense, is not surprising that com-
binatorics enters the picture in this setting: as the empirical measure µn that
arises in the symmetrization process is supported on a finite set, it is natural
that our bounds for classes of sets will essentially reduce to the combinatorial
problem of counting induced subsets. Whether such ideas are still useful in the
general setting of classes of functions is far from clear at this point: even when
restricted to a finite set, a class of functions is still a continuous object (with a
potentially nontrivial geometric structure) and is not, a priori, combinatorial
in nature. Nonetheless, the theory of previous section admits a very natural
generalization to classes of functions, which we develop presently.



7.3 Combinatorial dimension and uniform covering 225

To gain some intuition, let us begin by reconsidering a class of sets C in
terms of the corresponding class of indicator functions F = {1C : C ∈ C}. As
indicator functions only take the values zero and one, the restricted class

F|x1,...,xn = {(f(x1), . . . , f(xn)) : f ∈ F} ⊆ Rn

is a subset of the hypercube {0, 1}n. In particular, a set {x1, . . . , xn} is said
to be shattered by C precisely when F|x1,...,xn = {0, 1}n is the full hypercube.
Thus we can interpret vc(C) geometrically as the largest dimension of a hyper-
cube that is contained in a coordinate projection of C. This idea is illustrated
in the following figure for different classes of subsets of {x1, x2}:

1C(x2)

1C(x1)0
0 1

1

vc(C) = 0

1C(x2)

1C(x1)0
0 1

1

vc(C) = 1

1C(x2)

1C(x1)0
0 1

1

vc(C) = 2

In contrast to the special case of indicator functions, for a general class of
functions F the restricted class F|x1,...,xn can be an arbitrary subset of Rn.
In analogy with the combinatorial theory of the previous section, we might
try to define the VC-dimension of F as the largest dimension of a cube that
is contained in a coordinate projection of F. However, unlike in the case of
indicator functions, there is some ambiguity in this definition in the general
setting: the notion of dimension we obtain will depend on the size of the cubes
that we consider and not just on their dimension. For example, it is perfectly
possible that F contains only low-dimensional cubes of the form {0, 1}n, but
contains high-dimensional cubes of the form {0, ε}n for ε� 1. To emphasize
this point, consider a simple example that is illustrated in the following figure:

f(x1)

f(x2)

f(x1)

f(x2)

F|x2

F|x1

F|x1,x2

∼ε

∼1

The projection F|x1,x2 contains a cube of size at most ∼ ε, but each of the
projections F|x1 and F|x2 contain a cube of size ∼ 1. The set evidently contains
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no cubes of size � 1. Thus the dimension of the set depends on the scale at
which we are viewing it: it is zero-dimensional at very large scales (it looks
like a point), it is one-dimensional at scale ∼ 1 (it looks like the letter L),
and it is two-dimensional at scale ∼ ε (where we see the “fatness” of the set).
If the class F is defined on other points x3, x4, . . . as well, then the set can
be higher-dimensional still when viewed as smaller scales. The dependence
of the dimension on scale is not a drawback of this approach, but a genuine
phenomenon: in extending the theory of the previous section to the general
setting, we must introduce a scale-sensitive notion of dimension in order to
capture the structure of the set from the point of view of covering numbers.
In the remainder of this section we will make these ideas precise.

Let us begin by making precise what we mean by the statement that a
coordinate projection of F contains a cube. The requirement that Fx1,...,xn

actually contains a copy of some hypercube {0, ε}n is too stringent: for exam-
ple, if Fx1,...,xn were itself a tiny perturbation of a hypercube (e.g., perturb
each corner of the hypercube randomly), then it would not contain any hyper-
cube but the dimension should not be much affected. Instead, we introduce a
slightly more flexible generalization of the notion of a shattered set.

Definition 7.25 (ε-shattering). Let I ⊆ X and h ∈ RI . The pair (I, h) is
said to be ε-shattered by F if for every J ⊆ I, there exists f ∈ F such that

f(x) ≤ h(x) for x ∈ J, f(x) ≥ h(x) + ε for x ∈ I\J.

The set I ⊆ X is said to be ε-shattered if (I, h) is ε-shattered for some h ∈ RI .

If the inequalities f(x) ≤ h(x) and f(x) ≥ h(x) + ε in the definition of an
ε-shattered set were replaced by equalities, then the definition would reduce to
the statement that F|I ⊇ h+ {0, ε}|I|, that is, that the coordinate projection
of F on I contains a (translate of the) hypercube {0, ε}|I|. When the class F is
convex these two definitions are even equivalent, see Problem 7.13. However,
in the general setting, the notion of ε-shattering as defined above provides a
suitable implementation of the idea that F contains a combinatorial structure
that is “larger” than a hypercube {0, ε}|I| in the appropriate sense.

Having defined a notion of shattering for function classes, we can analo-
gously extend the definition of VC-dimension for a given scale ε > 0.

Definition 7.26 (Combinatorial dimension). The combinatorial dimen-
sion of F at scale ε is defined as vc(F, ε) := sup{|I| : I is ε-shattered by F}.

Remark 7.27. vc(F, ε) is known under various different names, including scale-
sensitive dimension or the somewhat lipectomous fat-shattering dimension.
Note that, by its definition, vc(F, ε) is increasing as ε ↓ 0.

To illustrate this notion, let us consider two useful examples.
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Example 7.28 (Vector spaces). Let X be any set and let f1, . . . , fd : X→ R be
linearly independent functions. Consider the linear class of functions

F = {a1f1 + · · ·+ adfd : a1, . . . , ad ∈ R}.

We claim that the combinatorial dimension of F is given by

vc(F, ε) = d for all ε > 0.

Thus in this case, the dimension of F does not depend on the scale ε.
Let us first show that vc(F, ε) ≥ d. By linear independence, we can choose

x1, . . . , xd ∈ X so that the matrix M with Mij = fj(xi) is nonsingular. Then
for any b ∈ Rd, we can find f ∈ F such that f(xi) = bi for all i: just choose

f =
d∑
i=1

aifi with a = M−1b.

It follows immediately that {x1, . . . , xd} is ε-shattered.
It remains to show that vc(F, ε) ≤ d. Suppose there exists an ε-shattered

set I = {x1, . . . , xd+1}. The matrix M defined above is now a (d + 1) × d
matrix, so there exists a vector z ∈ Rd+1\{0} such that z∗M = 0. Thus

d+1∑
i=1

zif(xi) = 0 for all f ∈ F.

As I is ε-shattered, however, we can choose f+, f− ∈ F so that f±(xi) ≤ hi for
sign zi = ∓1 and f±(xi) ≥ hi + ε otherwise. Then f = f+ − f− ∈ F satisfies

d+1∑
i=1

zif(xi) ≥ ε
d+1∑
i=1

|zi| > 0,

which entails a contradiction. Thus {x1, . . . , xd+1} cannot be ε-shattered.

Example 7.29 (Functions of bounded variation). Recall that the total variation
of a function f : R→ R is defined in the following manner:

‖f‖var := sup
n

sup
x1<···<xn

n−1∑
k=1

|f(xk+1)− f(xk)|.

Let us consider the class of functions of bounded variation

F = {f : R→ R : ‖f‖var ≤ V }.

There are many functions of bounded variation: examples include bounded
increasing functions and Lipschitz functions with compact support.

We are going to show that the combinatorial dimension of F satisfies
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vc(F, ε) = 1 +
⌊
V

ε

⌋
for all ε > 0.

Thus, unlike in the previous example, the class F is genuinely infinite-
dimensional: the combinatorial dimension diverges as ε ↓ 0. Nonetheless, at
every fixed scale the class is finite-dimensional, which is precisely what will
be needed to estimate the uniform covering numbers below.

Consider I = {x1, . . . , xn} ⊂ R with x1 < · · · < xn. Suppose that I is
ε-shattered by F. Then we can find h ∈ RI and f+, f− ∈ F such that

f+(xi) ≤ h(xi) for odd i, f+(xi) ≥ h(xi) + ε for even i,

f−(xi) ≤ h(xi) for even i, f−(xi) ≥ h(xi) + ε for odd i.

In particular, f = 1
2{f+ − f−} ∈ F satisfies

f(xi) ≤ −
ε

2
for odd i, f(xi) ≥

ε

2
for even i.

This construction is illustrated in the following figure.

x1 x2 x3 x4 x5

h

h+ε

f+

x1 x2 x3 x4 x5

h

h+ε

f−

x1 x2 x3 x4 x5

+ ε
2

− ε2
f

By construction, we can now estimate

(n− 1)ε ≤
n−1∑
k=1

|f(xk+1)− f(xk)| ≤ ‖f‖var ≤
‖f+‖var + ‖f−‖var

2
≤ V,

and thus the cardinality of our shattered set must satisfy n ≤ 1 +V/ε. As the
combinatorial dimension is integer, this evidently implies vc(F, ε) ≤ 1+bV/εc.

Now let x1 < . . . < xn with n = 1 + bV/εc be arbitrary. Define

fJ(x) =


ε1x1 6∈J for x ∈ ]−∞, x2[,
ε1xi 6∈J for x ∈ [xi, xi+1[, 1 < i < n,

ε1xn 6∈J for x ∈ [xn,∞[

for every J ⊆ {x1, . . . , xn}. Then ‖fJ‖var ≤ (n−1)ε ≤ V , so fJ ∈ F. Moreover,
by construction, fJ(xi) = 0 if xi ∈ J and fJ(xi) = ε if xi 6∈ J . Thus any set
of cardinality n is ε-shattered by F, so we have proved vc(F, ε) = 1 + bV/εc.

In view of the above discussion and examples, the combinatorial dimension
vc(F, ε) is evidently a natural analogue in the general setting of the VC-
dimension of a class of sets. However, the real power of this notion lies not in
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its definition, but in the fact that it can be used to bound uniform covering
numbers in direct analogy to the theory developed in the previous section.
This is made precise by the following generalization of Theorem 7.16.

Theorem 7.30 (Mendelson-Vershynin). Let F be a class of functions on
X that is uniformly bounded supf∈F ‖f‖∞ ≤ 1. Then we have

sup
µ
N(F, ‖ · ‖L2(µ), ε) ≤

(
K

ε

)K vc(F,ε/K)

for all ε > 0,

where K is a universal constant.

Note that Theorem 7.30 is indeed a generalization of Theorem 7.16: if
F = {1C : C ∈ C}, then it is easily seen that vc(F, ε) = vc(C) for all ε < 1,
and thus we recover Theorem 7.16. On the other hand, unlike in the case of
sets, Theorem 7.30 can bound the covering numbers of classes of functions
with infinite metric dimension: for example, if we consider the class

F = {f : R→ [−1, 1] : ‖f‖var ≤ V },

then Theorem 7.30 yields

sup
µ
N(F, ‖ · ‖L2(µ), ε) ≤ e

KV
ε log K

ε ,

so this bound on the covering numbers even grows superexponentially in 1/ε
(we will see in the next section that the optimal bound in this example is only
exponential in 1/ε; however, the above bound suffices in most applications).

We now turn to the proof of Theorem 7.30. The main steps in the proof are
precisely the same as in Theorem 7.16. We will first use probabilistic extraction
to reduce the original continuous problem to a combinatorial problem; we
already phrased the extraction Lemma 7.17 in terms of functions, so that
no additional work is needed. Then, we will use a combinatorial principle to
resolve the finite problem. The main challenge in the general setting is to prove
a counterpart of Pajor’s Theorem 7.19 that counts ε-shattered sets (I, h). Let
us begin by giving a precise statement of the requisite result.

Definition 7.31 (ε-cube). A pair (I, h) is called a ε-cube in F if I ⊆ X,
h ∈ (εZ)I , and the pair (I, h) is ε-shattered by F.

Thus an ε-cube is simply an ε-shattered pair (I, h) such that the values of
h(x) are integer multiples of ε. The reason for the latter restriction is to ensure
that the problem of counting ε-cubes is a combinatorial one: if |X| < ∞ and
‖f‖∞ ≤ 1 for all f ∈ F, then there are only a finite number of possibilities for
I and h. The following result is a form of Pajor’s Theorem 7.19 for ε-cubes.

Theorem 7.32. Let F be a class of functions and let µ be a probability on X.
Then for any G ⊆ F that is a cε-packing of (F, ‖ · ‖L2(µ)), we have
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|G|1/2 ≤ |{(I, h) : (I, h) is an ε-cube}|.

Here c is a universal constant.

Note that even in the special case of indicator functions, Theorem 7.32
yields a somewhat weaker result than Theorem 7.19. While these two results
and their proofs are very much in the same spirit, there is a genuninely new
difficulty that arises in the setting of functions that must be overcome by
Theorem 7.32 and that accounts for the difference between the two results.
To understand the problem, note that for indicator functions 1C(x) 6= 1D(x)
necessarily implies 1C(x) ≤ 0 and 1D(x) ≥ 1 or vice versa, so a shattered
set is automatically 1-shattered. On the other hand, for arbitrary functions
f(x) 6= g(x) does not imply f(x) ≤ h and g(x) ≥ h + ε or vice versa, as is
needed in the definition of ε-shattering. In the process of counting ε-shattered
sets we will necessarily have to throw out some of the functions in G that
happen to take values in the forbidden regions [h, h+ε], and the key difficulty
in the proof is to ensure that we do not discard too many of these functions.
The assumption that G is a cε-packing of (F, ‖ · ‖L2(µ)) is needed to ensure
that we can find coordinates on which there are many functions in G that do
not take values in [h, h+ ε]. On the other hand, after throwing out the “bad”
functions we will only be able to ensure that we have |G|1/2 functions left over,
which accounts for the difference between the conclusions of Theorems 7.32
and 7.19. These ideas will be made precise in the proof.

Before proving Theorem 7.32, however, let us first complete the proof of
Theorem 7.30 as we now have all the necessary ingredients to do so. We begin
by formulating an analogue of the Sauer-Shelah lemma in the present setting.

Corollary 7.33. Let F be a class of functions on a finite set X with ‖f‖∞ ≤ 1
for all f ∈ F. Then for any probability µ and cε-packing G of (F, ‖ · ‖L2(µ))

|G|1/2 ≤
vc(F,ε)∑
k=0

(
|X|
k

)(
2
ε

)k
≤
(

2e|X|
ε vc(F, ε)

)vc(F,ε)

.

Proof. If (I, h) is an ε-cube, then h(x) is an integer multiple of ε and we must
have −1 ≤ h(x) < 1 as ‖f‖∞ ≤ 1 for all f ∈ F. Thus, for a given I ⊆ X, there
can be at most ( 2

ε )|I| ε-cubes (I, h). There are consequently at most
(|X|
k

)
( 2
ε )k

ε-cubes (I, h) with |I| = k. By definition, however, any ε-cube (I, h) must
have |I| ≤ vc(F, ε). Thus the first inequality follows from Theorem 7.32, while
the second inequality follows as in the proof of Lemma 7.12. ut

We can now complete the proof of Theorem 7.30.

Proof (Theorem 7.30). Let µ be any probability on X, and let G = {f1, . . . , fm}
be a maximal ε-packing of (F, ‖ · ‖L2(µ)). By Lemma 7.17, there exist r <
cε−4 logm points x1, . . . , xr such that G is an ε/2-packing of µx = 1

r

∑r
k=1 δxk .

Using Corollary 7.33 and arguing as in the proof of Theorem 7.16 yields



7.3 Combinatorial dimension and uniform covering 231

m1/2 ≤
(

logm
vc(F, ε/2c)

4ec
ε5

)vc(F,ε/2c)

≤ m1/4

(
4(4ec)1/5

ε

)5 vc(F,ε/2c)

.

As N(F, ‖ · ‖L2(µ), ε) ≤ m, the proof is readily completed. ut

The remainder of this section is devoted to the proof of Theorem 7.32.
Let us first recall how we proved the analogous result for classes of sets: first,
we introduced a structure, called a splitting tree, to help us count shattered
sets. A shattered set corresponds to a complete splitting tree, but these are
hard to find. Instead, we proved a sort of Ramsey principle: any splitting tree
contains at least as many complete subtrees as the number of leaves in the
tree. For a class of sets C, it was trivial to construct a splitting tree with |C|
leaves in a greedy fashion, and thus the result followed.

We will follow exactly the same approach in the proof of Theorem 7.32.
Let us begin by defining the analogue of a splitting tree in the present setting.

Definition 7.34 (ε-splitting tree). Let F be a class of functions on X. A
F-tree A is called an ε-splitting tree if every A ∈ A that is not a leaf satisfies:

1. A has exactly two children A+ and A−;

2. There exist xA ∈ X and hA ∈ εZ such that

f(xA) ≤ hA for f ∈ A−, f(xA) ≥ hA + ε for f ∈ A+.

In exact analogy to the previous section (cf. Definition 7.21 and the dis-
cussion thereafter), an ε-cube corresponds to a complete ε-splitting tree, while
any ε-splitting tree contains at least as many complete subtrees as leaves.

Lemma 7.35. Let F be a class of functions on X. For any ε-splitting tree A

|{leaves of A}| ≤ |{(I, h) : (I, h) is an ε-cube}|.

Proof. The proof is identical to that of Lemma 7.22. ut

It only remains to construct an ε-splitting tree. While this was trivial in
the case of sets, it is here that the difficulties arise in the general setting.

Let us recall in more detail how we constructed a splitting tree for a
class F of indicator functions of sets. Let A = {1C : C ∈ C} be a class of
indicators. Note that for indicator functions, 1C 6= 1D necessarily implies
that 1C(x) = 0 and 1D(x) = 1, or vice versa, for some x ∈ X. Therefore,
as long as A is not a singleton, we can partition A into two nonempty sets
A+ = {1C ∈ A : 1C(x) = 1} and A− = {1C ∈ A : 1C(x) = 0}. We can
now repeatedly apply this construction, starting at the root F, until all of the
leaves of the resulting tree are singletons. The key point of this construction
is that nothing was lost in the process, so the leaves of the tree must form a
partition of F. But each leaf is a singleton, so there are |F| leaves.
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Let us now attempt to apply the same idea to a general class of functions
F. Consider a set of functions A ⊆ F that is not a singleton. Unlike in the
case of indicators, f 6= g does not imply that f(x) ≤ h and g(x) ≥ h + ε,
or vice versa, for some x ∈ X and h ∈ R, as is needed for the construction
of the children of A. Thus we must assume some form of separation between
the elements of A. The minimal assumption we could impose is that A is an
ε-packing of (F, ‖ · ‖∞): this would ensure that ‖f − g‖∞ ≥ ε, and thus the
above conclusion would follow. Therefore, if we introduce this assumption,
then both A+ = {f ∈ A : f(x) ≤ h} and A− = {f ∈ A : f(x) ≥ h + ε}
are nonempty and satisfy the definition of an ε-splitting tree. However, A+

and A− no longer form a partition of A: it is very likely that some of the
functions in A happen to take values in the “forbidden” region [h, h+ ε], and
these functions must be thrown out in the construction of the tree. The key
problem that we face is that we do not know how many functions we throw
out, and thus we have no control over the number of leaves in the tree.

To surmount this problem, it is essential to find a coordinate x and level h
at which we can split the set A without discarding too many functions. This
is precisely the content of the following result. The price we pay is that the
assumption that A is a packing in (F, ‖ ·‖∞) is too weak to make this happen:
we need the stronger assumption that A is a packing in (F, ‖ · ‖L2(µ)).

Proposition 7.36 (Controlled splitting). Let F be a class of functions and
µ be a probability on X. Let A be a cε-packing of (F, ‖ · ‖L2(µ)) with |A| ≥ 2.
Then there exist x ∈ X and h ∈ εZ such that the sets

A− = {f ∈ A : f(x) ≤ h}, A+ = {f ∈ A : f(x) ≥ h+ ε}

satisfy |A+|1/2 + |A−|1/2 > |A|1/2.

Proof. The idea is quite simple. Let us choose two random elements a, a′ ∈ A

drawn uniformly and independently. By assumption ‖a−a′‖L2(µ) ≥ cε as long
as a 6= a′, which happens with probability 1− 1

|A| ≥
1
2 . Thus

c2ε2

2
≤
(

1− 1
|A|

)
c2ε2 ≤ E‖a− a′‖2L2(µ) =

∫
E|a(x)− a′(x)|2 µ(dx).

Thus we can certainly choose x ∈ X such that

c2ε2

2
≤ E|a(x)− a′(x)|2 = 2 Var[a(x)].

We now want to find h ∈ εZ such that

P[a(x) ≤ h]1/2 + P[a(x) ≥ h+ ε]1/2 > 1.

Indeed, as we have P[a(x) ≤ h] = |A−|
|A| and P[a(x) ≥ h+ ε] = |A+|

|A| , the proof
would evidently be complete once we can find such an h.
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At this point, it seems the proof should reduce to a general probabilistic
principle: if Var[X] ≥ C2ε2 for C � 1, then it should not be possible that
most of the probability mass of X is concentrated in an interval of size ≤ ε.
This is precisely the statement of the following result to be proved below.

Lemma 7.37. There is a universal constant C such that if Var[X] ≥ C2ε2,
then there exists b ∈ R such that P[X ≤ b]1/2 + P[X ≥ b+ ε]1/2 > 1.

The only remaining issue is that Lemma 7.37 yields b ∈ R, while we need
h ∈ εZ. This is easily resolved, however. Choose the universal constant c = 4C.
As we have Var[a(x)] ≥ C2(2ε)2, Lemma 7.37 yields b ∈ R such that

P[a(x) ≤ b]1/2 + P[a(x) ≥ b+ 2ε]1/2 > 1.

Now choose h to be the value of b rounded upwards to the nearest multiple
of ε. Then b ≤ h ≤ b+ ε, and the proof is readily completed. ut

It remains to prove the small deviation principle used above.

Proof (Lemma 7.37). We prove the contrapositive. Suppose the conclusion
fails, that is, that P[X ≤ b]1/2 + P[X ≥ b+ ε]1/2 ≤ 1 for all b ∈ R. Then

P[X > b+ ε] ≤ P[X > b]2, P[X < b] ≤ P[X < b+ ε]2 for all b ∈ R,

where we used P[X ≤ b] ≤ P[X ≤ b]1/2 (P[X ≥ b+ ε] ≤ P[X ≥ b+ ε]1/2) in
the first (second) inequality. Let M = med(X) be the median of X. Iterating
these inequalities starting from P[X > M ] ≤ 1

2 (P[X < M ] ≤ 1
2 ) yields

P[X > M + kε] ≤ 2−2k , P[X < M − kε] ≤ 2−2k for all k ∈ N.

Thus the random variable X has very thin tail probabilties. But a random
variable with thin tails certainly cannot have large variance: to be precise,

Var[X] ≤ E[(X −M)2] =
∞∑
k=0

∫ (k+1)ε

kε

2tP[|X −M | > t] dt < C2ε2

with C2 =
∑∞
k=0 4(k + 1)2−2k . Thus the contrapositive is proved. ut

With Proposition 7.36 in hand, we can now construct a large ε-splitting
tree in a greedy fashion in the same manner as we did in the case of sets.

Corollary 7.38. Let F be a class of functions and µ be a probability on X.
Let G be a cε-packing of (F, ‖ · ‖L2(µ)). There exists a ε-splitting tree A with

|{leaves of A}| ≥ |G|1/2.



234 7 Empirical processes and combinatorics

Proof. Grow the ε-splitting tree A by starting with G as the root and repeat-
edly splitting the leaves of the tree into two subsets using Proposition 7.36
until all leaves are singletons. By construction, we have |A+|1/2 + |A−|1/2 >
|A|1/2 for every A ∈ A. Iterating this bound starting at the root gives

|G|1/2 <
∑

A is a leaf

|A|1/2 = |{leaves in A}|,

and the proof is complete. ut

Combining Lemma 7.35 and Corollary 7.38 yields Theorem 7.32.

Remark 7.39. There is nothing special about the power |G|1/2 in Theorem 7.32:
the statement remains valid if |G|1/2 is replaced by |G|1−α for any 0 < α < 1
at the expense of changing the value of the universal constant c. To see this,
note that the origin of the power 1

2 is in Lemma 7.37, where the precise value
of the power is however entirely irrelevant in the proof. We have stated the
above results in terms of |G|1/2 merely to avoid notational distractions (the
value of the power ultimately affects only the constants in Theorem 7.30).

Problems

7.12 (VC-subgraph classes and pseudodimension). There is a simple
method to extend the bound of Theorem 7.16 for classes of sets to classes of
functions without introducing the notion of combinatorial dimension. Given
a class of functions F on a set X, define an associated class of sets CF as

CF := {C ⊆ X× R : C = {(x, t) : t < f(x)}, f ∈ F}.

That is, CF is the class of subgraphs of functions in F. We now define the
pseudodimension vc(F) as the VC-dimension vc(CF) of the subgraphs.

a. Deduce directly from Theorem 7.16 that if F is a class of functions such
that ‖f‖∞ ≤ 1 for all f ∈ F, then there is a universal constant K such that

sup
µ
N(F, ‖ · ‖L2(µ), ε) ≤

(
K

ε

)K vc(F)

for all ε < 1.

Hint: consider (CF, ‖ · ‖L2(µ⊗λ)) with λ the uniform distribution on [−1, 1].

b. Show that the linear class F in Example 7.28 satisfies vc(F) <∞, but that
the bounded variation class in Example 7.29 satisfies vc(F) =∞.

At first sight, pseudodimension and combinatorial dimension seem to yield two
distinct methods to bound the uniform covering numbers of function classes.
However, this is not the case: the result of part a. is none other than a special
case of Theorem 7.30 for classes of finite metric dimension.
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c. Show that vc(F) = supε>0 vc(F, ε), and conclude that the result of part a.
follows as a special case of Theorem 7.30.

7.13 (Combinatorial dimension of convex classes). The notion of com-
binatorial dimension is designed to be meaningful for any class of functions F.
If we assume that the class F is convex, however, the combinatorial dimension
can be given a simple geometric interpretation: (F, ε) is the largest dimension
of a cube of side length ε that is contained in a coordinate projection of F.

a. Suppose that F is convex. Show that

(I, h) is ε-shattered if and only if F|I ⊇ h+ [0, ε]I .

Hint: assume the conclusion is false; use the separating hyperplane theorem
and reason as in Example 7.28 to generate a contradiction.

b. Suppose that F is convex and symmetric. Show that

I is ε-shattered if and only if F|I ⊇ [− ε2 ,
ε
2 ]I .

Hint: reason as in Example 7.29.

If F is not convex, one might expect that (I, h) is ε-shattered if and only if
the convex hull of F contains a cube conv F|I ⊇ h + [0, ε]I . This is not true,
however: conv F can have many more shattered sets than F itself.

c. Let F = {1{i} : i ∈ N} be a class of indicator functions on N. Show that
vc(F, ε) = 1 for all ε < 1, but that vc(conv F, ε) diverges as ε ↓ 0. Thus the
convex hull of a finite-dimensional class can even be infinite-dimensional.

This example raises a basic question: when F is not convex, what can be said
about the combinatorial dimension of the convex hull vc(conv F, ε) in terms
of vc(F, ε)? Surprisingly, Theorem 7.30 can help us address this question.

d. If {x1, . . . , xn} ⊆ X is ε-shattered by F and g1, . . . , gn ∼ i.i.d. N(0, 1), prove

`I(F) := E

[
sup
f∈F

n∑
i=1

gif(xi)

]
& εn.

Hint: replace f(xi) by f(xi)− hi − ε
2 in the definition of `I(F), and choose

the functions f to cancel the signs of the Gaussian variables gi.

e. Suppose that ‖f‖∞ ≤ 1 for all f ∈ F. Show that for any δ > 0

`I(F) . nδ +
√
n

∫ 2

δ

√
K vc(F, t/K) log(K/t) dt

. nδ +
√
n vc(F, δ/K).

Hint: recall Theorem 5.31.
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f. Let F be a class of functions such that ‖f‖∞ ≤ 1 for all f ∈ F. Show that

vc(conv F, Lε) ≤ vc(F, ε)
ε2

for all ε > 0,

where L is a universal constant.
Hint: show that `I(F) = `I(conv F) and combine the previous two parts.

7.14 (Elton’s theorem). The notion of combinatorial dimension has its ori-
gin not in probability theory but in geometric functional analysis. Let us use
the machinery we have developed to prove a classic result in this direction.

Let (B, ‖·‖B) be a Banach space. We are interested in the question whether
the finite-dimensional Banach space `n1 embeds into B: that is, whether one
can find vectors x1, . . . , xn ∈ B whose linear span is isomorphic to `n1 in the
sense that there exist constants C1, C2 (independent of n) such that

C1

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
B

≤ C2

n∑
i=1

|ai| for all a ∈ Rn.

The upper bound is trivial: if we choose any x1, . . . , xn in the unit ball of
B (i.e., ‖xi‖B ≤ 1) then the upper bound holds for C2 = 1 by the triangle
inequality. The difficulty is to understand what spaces B admit a lower bound.

If the lower bound holds, then we obtain as a special case that

‖ ± x1 ± · · · ± xn‖B ≥ C1n

for all possible choices of signs; when this is the case, we say that `n1 sign-
embeds into B. The converse is far from clear, however: if `n1 sign-embeds into
B, does this already imply a full embedding as defined above?

Elton’s theorem provides an answer to this question. In fact, Elton only
makes the weaker assumption that the sign-embedding holds “on average” in
the sense that there exist x1, . . . , xn in the unit ball of B and δ > 0 such that

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
B

≥ δn,

where ε1, . . . , εn are i.i.d. symmetric Bernoulli variables (random signs). Un-
der this assumption, we will prove the following quantitative form of Elton’s
theorem: there is a subset I ⊆ {1, . . . , n} of cardinality |I| ≥ cδ2n such that

cδ
∑
i∈I
|ai| ≤

∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥
B

≤
∑
i∈I
|ai| for all a ∈ Rn,

where c is a universal constant. Thus the existence of a random sign-
embedding of `n1 with dimension n and constant δ implies the existence of
an embedding of `n

′

1 with dimension n′ & n and constant & δ.
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a. Let B∗1 be the unit ball in the dual space of B, and define

F = {f : {x1, . . . , xn} → R : f(x) = 〈y, x〉, y ∈ B∗1}.

Show that {xi : i ∈ I} is 2ε-shattered by F if and only if∥∥∥∥∥∑
i∈I

aixi

∥∥∥∥∥
B

= sup
f∈F

∑
i∈I

aif(xi) ≥ ε
∑
i∈I
|ai| for all a ∈ Rn.

Hint: use the ideas from the first part of Problem 7.13.

b. Show that for all ε > 0

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
B

. nε+
√
n vc(F, ε/K).

Hint: argue as in the second part of Problem 7.13.

c. Complete the proof of Elton’s theorem in the form stated above.

7.4 The iteration method

We have developed in the previous section a powerful combinatorial bound on
the uniform covering numbers of classes of functions. This bound suffices in
many cases to obtain distribution-free control of the supremum of empirical
processes. It is of significant interest, however, to understand how sharp such
bounds are in general: does combinatorial dimension capture completely the
size of the uniform covering numbers? To gain some insight into this question,
let us begin by developing a simple lower bound.

Lemma 7.40. Let F be a class of functions on X that is uniformly bounded
supf∈F ‖f‖∞ ≤ 1. Then for universal constants C, c and all ε > 0

1
8 vc(F, 4ε) ≤ log sup

µ
N(F, ‖ · ‖L2(µ), ε) ≤ C vc(F, cε) log

(
C

ε

)
.

Proof. The upper bound is Theorem 7.30. To prove the lower bound, let (I, h)
be a 4ε-shattered pair with |I| = vc(F, 4ε), and let µ be the uniform distribu-
tion on I. The proof follows once we show logN(F, ‖ · ‖L2(µ), ε) ≥ |I|/8.

To establish this claim, choose for every J ⊆ I a function fJ ∈ F such
that fJ(x) ≤ h(x) for x ∈ J and fJ(x) ≥ h(x) + 4ε for x ∈ I\J . Then
‖fJ − fJ′‖L2(µ) ≥ 4ε

√
|I|−1|J4J ′| for every J, J ′ ⊆ I. By Lemma 7.24, there

exists a family J of subsets of I with |J| ≥ e|I|/8 such that |J4J ′| ≥ |I|/4 for
every J, J ′ ∈ J, J 6= J ′. Then {fJ : J ∈ J} is evidently a 2ε-packing of F, and
the claim follows by the duality between packing and covering. ut
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Lemma 7.40 suggests that our combinatorial bounds are not far from being
sharp: up to universal constants, the lower and upper bounds in Lemma 7.40
differ only by a logarithmic factor ∼ log(1/ε). The immediate question that
arises at this point is whether we can close the gap between the upper and
lower bounds: perhaps an improved upper bound can eliminate the logarithmic
factor, or perhaps an improved lower bound can add an additional logarithmic
factor? Unfortunately, no improvement of this kind is possible: the logarithmic
factor is sharp for some classes F but not for others.

Example 7.41. Let X = N and F = {1{i} : i ∈ N}. Then vc(F, ε) = 1 for all
0 < ε ≤ 1. On the other hand, if µ is the uniform distribution on N∩[1, 1/8ε2],
then we have ‖1{i}−1{j}‖L2(µ) > 2ε for all i, j ≤ d1/8ε2e, i 6= j, which implies
logN(F, ‖ · ‖L2(µ), ε) & log(1/ε) by duality of packing and covering. Thus in
this case the logarithmic factor in the upper bound of Lemma 7.40 is sharp.

Example 7.42. Let X = [0, 1] and F = {f ∈ Lip(X) : 0 ≤ f ≤ 1}. It is easily
shown as in Example 7.29 that vc(F, ε) = 1 + b1/εc for all 0 < ε ≤ 1 (the
upper bound follows immediately from Example 7.29; for the lower bound,
repeating the proof in Example 7.29 with piecewise linear functions fJ shows
that I = {kε : 0 ≤ k ≤ b1/εc} is ε-shattered). On the other hand, we have
proved in Lemma 5.16 that logN(F, ‖ · ‖L2(µ), ε) . 1/ε for every probability
measure µ. Thus in this case the lower bound in Lemma 7.40 is sharp, while
the upper bound contains an unnecessary logarithmic factor.

For what classes must the logarithmic factor to appear and when it is un-
necessary? In the remainder of this section, we will develop a method that will
make it possible in many cases to resolve the mystery of the logarithmic factor.
In concrete applications this will often not yield a major improvement: the
logarithmic factor tends to be innocuous except in borderline cases. Nonethe-
less, a better understanding of uniform covering bounds can lead to sharper
results in certain problems, and deepens our fundamental understanding of
the connections between covering numbers and combinatorial dimension. More
importantly, the iteration method that we will develop for this purpose is of
significant interest in its own right, and can be used to great effect in many
other problems (see, for example, Problem 7.17 below).

In order to understand how one might eliminate the logarithmic factor,
let us begin with an elementary observation. While this might not be entirely
obvious at first sight, the bound of Theorem 7.30 depends on two distinct
scales: on the one hand, we are covering the class F by balls of radius ε; on
the other hand, we have assumed that the class F is itself uniformly bounded
by supf∈F ‖f‖∞ ≤ 1. If we were to assume instead that supf∈F ‖f‖∞ ≤ a,
then applying Theorem 7.30 to the scaled class F/a readily yields

logN(F, ‖ · ‖L2(µ), ε) ≤ C vc(F, cε) log
(
Ca

ε

)
for every ε > 0 and every probability measure µ. Thus the logarithmic factor
in Lemma 7.40 does not depend on ε, but rather on the ratio ε/a between the
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scale of the cover and the size of the class F. The logarithmic factor would
disappear entirely if a . ε, but this is not adequate: the size of the class F is
fixed, while we are interested in the behavior of the covering numbers as ε ↓ 0.
Nonetheless, we will be able to exploit the fact that we have better covering
number bounds for classes with controlled size to systematically improve our
covering number bounds for arbitrary classes. This is the idea behind the
iteration method, which we develop presently in a general setting.

Let (T, d) be a metric space, and suppose that can bound the covering
number of any ball B(t, 2ε) of radius 2ε by balls of radius ε as follows:

logN(T ∩B(t, 2ε), d, ε) ≤ ϕ(ε).

We would like to obtain a bound on the covering number N(T, d, ε) of the
entire set T . To this end, let us first cover T by N(T, d, 2ε) balls of radius
2ε, and then cover each of these balls by balls of radius ε. Then evidently the
union of the latter balls is a cover of T by balls of radius ε, and there are at
most eϕ(ε)N(T, d, 2ε) such balls. We have therefore shown that

logN(T, d, ε) ≤ ϕ(ε) + logN(T, d, 2ε).

We can now iterate this bound to obtain

logN(T, d, ε) ≤
∞∑
k=0

ϕ(2kε)

(note that if T has finite diameter, then logN(T, d, 2kε) = 0 for k sufficiently
large and the remainder term in the iteration vanishes; while if T has infinite
diameter, then ϕ(ε) ≥ log 2 for all ε > 0 and the inequality holds trivially).

Despite its simplicity, this procedure already explains the difference be-
tween Examples 7.41 and 7.42. Let us assume for the moment that we can
apply the above iteration method with ϕ(ε) . vc(F, cε) (this is not entirely
obvious at this point, but this idea will be made precise in the remainder of
this section). In Example 7.42, we have ϕ(ε) . 1/ε, so

logN(T, d, ε) .
1
ε

∞∑
k=0

2−k .
1
ε
.

Thus we have eliminated the logarithmic term in Lemma 7.40! On the other
hand, in Example 7.41 we have ϕ(ε) . 1 and vc(F, ε) = 0 for ε > 1, so that

logN(T, d, ε) ≤
log(1/cε)∑
k=0

ϕ(2kε) . log
(

1
cε

)
.

Thus in this case the logarithmic term in Lemma 7.40 remains in place. This
computation explains much of the mystery of the logarithmic term: the lower
bound in Lemma 7.40 is sharp for infinite-dimensional classes for which the
combinatorial dimension vc(F, ε) is at least polynomial in 1/ε, while the upper
bound is sharp for finite-dimensional classes when vc(F, ε) is constant.
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Remark 7.43. The iteration method should be understood as the direct ana-
logue for covering numbers of the chaining method. In the chaining method,
we aim to obtain a bound on the supremum of a general random process on
T starting from such a bound for the special case where the cardinality |T | is
controlled. To this end, we approximate the supremum of a general process by
the supremum over a finite set plus a remainder term that is of the same form
as the original supremum, and iterate this bound until the remainder term
is eliminated. In a completely analogous manner, the iteration method allows
to obtain a bound on the covering number of the set T starting from such
a bound for the special case where the diameter of T is controlled. Even if
we can directly estimate N(T, d, ε) as in Lemma 7.40, iteration systematically
improves this bound by exploiting the control on the diameter at each scale.

The above discussion contains the key idea that will be developed in the
sequel. Unfortunately, we cannot immediately apply the above computation
to obtain bounds in terms of combinatorial dimension. In order to apply the
simple iteration method developed above, we would require that

logN(F, ‖ · ‖L2(µ), ε) ≤ C vc(F, cε) log
(
Ca

ε

)
for all ε > 0 whenever supf∈F ‖f‖L2(µ) ≤ a. However, we have only proved
such a bound when supf∈F ‖f‖∞ ≤ a, which does not suffice. Indeed, using
the latter bound, the first step of the iteration method would yield

logN(F, ‖ · ‖L2(µ), ε) ≤ C log(2C) vc(F, cε) + logN(F, ‖ · ‖∞, 2ε),

but then no control of the remainder term is possible as the L∞-covering
numbers are generally infinite (as is the case, for example, for classes of sets).
On the other hand, we did not use the uniform bound supf∈F ‖f‖∞ ≤ a in
the proof of Theorem 7.30 in a very sharp manner, so that one might hope
that an improvement of the proof would show that the conclusion of Theorem
7.30 remains valid under the assumption supf∈F ‖f‖L2(µ) ≤ a. Unfortunately,
this also cannot be the case, as the following simple example demonstrates.

Example 7.44. Let X = [0, 1] and let µ be the uniform distribution on X. Let

Fδ = {1[a,b] : ‖1[a,b]‖L2(µ) ≤ δ}.

It is a trivial exercise to show that vc(Fδ, ε) = 2 for all 0 < ε ≤ 1.
On the other hand, let Ck = [(k − 1)ε2, kε2]. As ‖1Ck‖L2(µ) = ε and

‖1Ck − 1Cl‖L2(µ) = 21/2ε for all 1 ≤ k, l ≤ bε−2c, k 6= l, we can estimate

N(Fε, ‖ · ‖L2(µ), 2−1/2ε) ≥ bε−2c

by the duality of covering and packing. Thus it is not possible to replace the
assumption supf ‖f‖∞ ≤ 1 by supf ‖f‖L2(µ) ≤ 1 in Theorem 7.30, as that
would imply that N(Fε, ‖ · ‖L2(µ), 2−1/2ε) can be bounded uniformly in ε.



7.4 The iteration method 241

Despite this discouraging example, things are not quite as bad as they
seem. While it is not possible to replace supf ‖f‖∞ ≤ 1 by supf ‖f‖L2(µ) ≤ 1
in Theorem 7.30, we will show that a significant improvement is still possible:
it suffices to assume supf ‖f‖Lp(µ) ≤ 1 for any p > 2! In fact, we will prove a
more general result that is essential for implementing the iteration method.

Theorem 7.45 (Rudelson-Vershynin). Let F be a class of functions on X
and let p ≥ 2. Suppose that supf∈F ‖f‖L2p(µ) ≤ a for some probability µ. Then

logN(F, ‖ · ‖Lp(µ), ε) ≤ Cp2 vc(F, cε) log
(
a

cε

)
for all 0 < ε < a,

where C, c are universal constants.

Remark 7.46. There is nothing special about the bound supf ‖f‖L2p(µ) ≤ a:
the same proof will go through if supf ‖f‖Lβp(µ) ≤ a for any β > 1, provided
that we replace the constants C, c by Cβ = Cβ/(β− 1) and cβ = c(β− 1)∧ c,
cf. Problem 7.15. As we will only need to apply this result for a fixed value of
β, however, we have fixed β = 2 above for notational convenience.

Theorem 7.45 is all we need to apply the iteration method. The idea is
exactly the same as in the simple iteration method discussed above: the only
new feature is that we must use a different Lp-norm in every stage of the
iteration in order to eliminate the logarithmic factor. Before we turn to the
proof of Theorem 7.45, let us explore the consequences of this idea.

Corollary 7.47 (Iteration). Let F be a class of functions on X. Then

log sup
µ
N(F, ‖ · ‖L2(µ), ε) ≤ 4C log(α/c)

∞∑
k=0

4k vc(F, cαkε)

for any α > 1, where C, c are universal constants.

Proof. Fix a probability measure µ, and let p ≥ 1 and ε > 0. Define Bp(f, ε) =
{g : ‖g − f‖Lp(µ) ≤ ε}. By covering F by L2p-balls of radius αε, and then
covering each of these balls by Lp-balls of radius ε, we can estimate

N(F, ‖ · ‖Lp(µ), ε) ≤ sup
f∈F

N(F ∩B2p(f, αε), ‖ · ‖Lp(µ), ε)N(F, ‖ · ‖L2p(µ), αε).

Applying Theorem 7.45 to {F − f} ∩B2p(0, αε) yields

logN(F, ‖ · ‖Lp(µ), ε) ≤ C log(α/c) p2 vc(F, cε) + logN(F, ‖ · ‖L2p(µ), αε).

Iterating this bound starting at p = 2 readily yields the result, provided that
the remainder term logN(F, ‖ · ‖L2n+1 (µ), α

nε) vanishes as n→∞.
To see this, note that if supf,g∈F ‖f − g‖∞ = ∞, then vc(F, ε) ≥ 1 for

all ε > 0 and thus the iteration bound holds trivially. On ther other hand, if
supf,g∈F ‖f − g‖∞ <∞, then N(F, ‖ · ‖L2n+1 (µ), α

nε) ≤ N(F, ‖ · ‖∞, αnε) = 1
for all n sufficiently large and thus the remainder term converges to zero. ut



242 7 Empirical processes and combinatorics

Using Corollary 7.47, we can readily understand when the lower bound in
Lemma 7.40 is sharp: this is always the case for classes whose combinatorial
dimension is at least polynomial. This yields a sharp bound, up to universal
constants, for most infinite-dimensional classes of practical interest.

Corollary 7.48 (Infinite-dimensional classes). Let F be a class of func-
tions on X. Suppose there is a function ξ : R+ → R+ and α > 1 such that

vc(F, ε) ≤ ξ(ε), ξ(αε) ≤ ξ(ε)/8 for all ε > 0.

Then

log sup
µ
N(F, ‖ · ‖L2(µ), ε) ≤ 8C log(α/c) ξ(cε) for all ε > 0.

In particular, if vc(F, ε) is comparable to ξ(ε) in the sense that

ξ(ε/K) . vc(F, ε) . ξ(ε) for all ε > 0

holds for some constant K, then

vc(F, 4ε) . log sup
µ
N(F, ‖ · ‖L2(µ), ε) . vc(F,Kcε) for all ε > 0.

Proof. The upper bound follows immediately from Corollary 7.47 and the
property ξ(αkε) ≤ 8−kξ(ε). The lower bound follows from Lemma 7.40. ut

In applications to empirical processes, we are typically interested not in
N(F, ‖·‖L2(µ), ε) in its own right, but rather in the chaining bound that arises
from symmetrization. Applying Theorem 7.30 yields the upper bound∫ ∞

0

sup
µ

√
logN(F, ‖ · ‖L2(µ), ε) dε .

∫ ∞
0

√
vc(F, ε) log(1/ε) dε,

and we have seen that the logarithmic factor can be removed for most
infinite-dimensional classes. Surprisingly, however, the latter assumption is
not needed: the logarithmic factor can always be removed in the entropy in-
tegral without any further assumptions! While this is a remarkable result,
it should not come as a great surprise: we have essentially already used the
iteration method in the proof of Theorem 6.16 in the same manner.

Corollary 7.49 (Entropy integral and combinatorial dimension). Let
F be a class of functions on X. Then we have∫ ∞

0

sup
µ

√
logN(F, ‖ · ‖L2(µ), ε) dε �

∫ ∞
0

√
vc(F, ε) dε.

Proof. The lower bound follow immediately from Lemma 7.40. For the upper
bound, note that we have by Corollary 7.47 with α = 4

sup
µ

√
logN(F, ‖ · ‖L2(µ), ε) .

∞∑
k=0

2k
√

vc(F, c4kε).

Integrating both sides and a simple change of variables yields the proof. ut
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The remainder of this section is devoted to the proof of Theorem 7.45.
Somewhat surprisingly, the difficulty of the proof does not lie in the combina-
torial aspect of the problem, which is where most of our efforts were spent in
the previous sections: the combinatorial part of the proof follows essentially
along the same lines as in the proof of Theorem 7.30. As will become clear in
due course, the real difficulty of Theorem 7.45 is that the probabilistic extrac-
tion principle provided by Lemma 7.17 is no longer adequate when we only
assume that the class is bounded in Lp rather than in L∞.

Let us begin, however, with the combinatorial part of the proof. Following
the proof of Theorem 7.30, we first obtain an analogue of Theorem 7.32.

Theorem 7.50. Let F be a class of functions and let µ be a probability on X.
Then for any G ⊆ F that is a cε-packing of (F, ‖ · ‖Lp(µ)) for p ≥ 2, we have

|G|1/p ≤ |{(I, h) : (I, h) is an ε-cube}|.

Here c is a universal constant.

The proof is almost identical to that of Theorem 7.32, and we only sketch
the necessary changes. We first extend Lemma 7.37. It is not at all surprising
that this is possible: we left a lot of room in the proof of Lemma 7.37.

Lemma 7.51. There is a universal constant C so that if E[|X−med(X)|p] ≥
Cpεp for some p ≥ 2, then P[X ≤ b]1/p+P[X ≥ b+ε]1/p > 1 for some b ∈ R.

Proof. Suppose that the conclusion fails. Then it follows that

P[|X −med(X)| > kε] ≤ 21−pk for all k ∈ N

as in the proof of Lemma 7.37. Therefore

E[|X −med(X)|p] =
∞∑
k=0

∫ (k+1)ε

kε

ptp−1 P[|X −med(X)| > t] dt < Cpεp,

where we used {2p
∑∞
k=0(k+1)p−12−p

k}1/p ≤ 2e{1+
∑∞
k=1(k+1)2−2k−1} =: C

as p ≥ 2. Thus we proved the contrapositive of the result. ut

Proof (Theorem 7.50). We must only prove an analogue of Proposition 7.36:
the remainder of the proof is identical to that of Theorem 7.32.

To this end, let A be a cε-packing of (F, ‖ · ‖Lp(µ)) with |A| ≥ 2, and draw
random elements a, a′ ∈ A uniformly and independently. Then

cpεp

2
≤ E‖a− a′‖pLp(µ) =

∫
E|a(x)− a′(x)|p µ(dx).

Thus there exists x ∈ X such that

cpεp

2
≤ E|a(x)− a′(x)|p ≤ 2p E|a(x)−med(a(x))|p,
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where we used the triangle inequality |a− a′| ≤ |a−med(a)|+ |a′ −med(a′)|
and convexity (x+ y)p ≤ 2p−1(xp + yp). We can now apply Lemma 7.51, and
the remainder of the proof is identical to that of Proposition 7.36. ut

Next, we prove an analogue of Corollary 7.33 in the present setting. The
main difficulty here is that we no longer have boundedness of the class in L∞

but only in L2p. At this stage, however, this is only a minimal inconvenience:
even boundedness in L1 suffices, and the proof is an exercise in counting.

Corollary 7.52. Let F be a class of functions on a finite set X, and let µ be
the uniform distribution on X. Suppose that ‖f‖L1(µ) ≤ a for all f ∈ F. Then
for any p ≥ 2 and cε-packing G of (F, ‖ · ‖Lp(µ)) with ε < a, we have

|G|1/p ≤
(

4e2a|X|
ε vc(F, ε)

)2 vc(F,ε)

.

Proof. First, we claim that if (I, h) is an ε-cube, then
∑
x∈I |h(x)| ≤ a|X|.

Indeed, as (I, h) is ε-shattered, we can find f ∈ F such that f(x) ≤ h(x) if
h(x) < 0 and f(x) ≥ h(x) + ε if h(x) ≥ 0. This implies, in particular, that
|h(x)| ≤ |f(x)| for x ∈ I, and thus the claim follows from ‖f‖L1(µ) ≤ a.

Now note that given a fixed set I ⊆ X with |I| = k, we have

|{h ∈ (εZ)I :
∑
x∈I |h(x)| ≤ a|X|}|

≤ 2k|{m1, . . . ,mk ∈ Z+ :
∑k
i=1mi ≤ a|X|/ε}|

= 2k|{m1, . . . ,mk ∈ N :
∑k
i=1mi ≤ a|X|/ε+ k}|.

As ru =
∑u
i=1mi defines a one-to-one correspondence between sequences of

integers m1, . . . ,mk ≥ 1 such that
∑k
i=1mi ≤ N and increasing sequences of

integers 1 ≤ r1 < · · · < rk ≤ N (of which there are
(
N
k

)
), we obtain

|{h : (I, h) is an ε-cube}| ≤ 2k
(
ba|X|/εc+ k

k

)
≤
(

4ea
ε

)k(|X|
k

)
,

where we used (Nk )k ≤
(
N
k

)
≤ ( eNk )k in the second inequality. Therefore

|{(I, h) is an ε-cube}| ≤
vc(F,ε)∑
k=0

(
|X|
k

)2(4ea
ε

)k
≤

[
vc(F,ε)∑
k=0

(
|X|
k

)(
4ea
ε

)k]2

.

The right-hand side can be estimated as in the proof of Lemma 7.12, and the
proof is completed by applying Theorem 7.50. ut

The combinatorial part of the proof is now complete, and all that remains
is to apply a probabilistic extraction principle. It is not obvious how to do this,
however, as Lemma 7.17 uses uniform boundedness supf ‖f‖∞ ≤ 1 in a fun-
damental manner. To see why, note that in order for the extraction principle
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to yield a nontrivial bound in conjunction with Corollary 7.52, the number of
samples r in the extraction principle can be at most (poly)logarithmic in the
size of the packing. In Lemma 7.17, the uniform boundedness assumption en-
sures that the random norm ‖fi−fj‖2L2(µr)

is a subgaussian random variable,
so that a logarithmic number of samples suffices by a simple union bound. If
we only have control of the form supf ‖f‖q ≤ 1 for some q < ∞, however,
the best we can hope for is a polynomial tail probability for ‖fi − fj‖pLp(µr),
and thus a simple union bound gives a polynomial rather than logarithmic
number of samples. This does not suffice to conclude the proof.

We must therefore develop a more sophisticated extraction principle. The
key idea that makes this possible is that, instead of working directly with the
Lp norms ‖fi − fj‖Lp(µ), we should focus attention on the tail probabilities
µ(|fi − fj | ≥ t). The following simple lemma shows how this can be done.

Lemma 7.53. Let g be a measurable function on the measure space (X, µ). If
‖g‖Lp(µ) > ε, then for any α > 1 there exists t ≥ 0 so that

tαpµ(|g| > t) >
(
α− 1
α

)α
εαp.

Conversely, if ‖g‖Lp(µ) ≤ ε, then tpµ(|g| > t) ≤ εp for all t ≥ 0.

Proof. Suppose that µ(|h| > t) ≤ t−αp for all t ≥ 0. Then we can estimate

‖h‖pLp(µ) ≤ 1 +
∫ ∞

1

ptp−1µ(|h| > t) dt ≤ α

α− 1
.

Inserting h = ( α
α−1 )1/pg/ε readily yields the contrapositive of the first asser-

tion. The second assertion is immediate from Chebyshev’s inequality. ut

The key advantage of working with tail probabilities rather than Lp norms
is that the empirical measure µr(|fi − fj | ≥ t) is subgaussian, and we can
therefore use a simple union bound to control the empirical tail probabilities
using a number of samples that is only logarithmic in the size of the packing.
On the other hand, Lemma 7.53 shows that separation in Lp yields a tail
bound of order t−p

′
only if we are willing to lose slightly in the exponent

p′ > p. This explains why it is essential for dimension-free control of Lp-
covering numbers that the class is Lp

′
-bounded for p′ > p. Once this idea has

been understood, it is not difficult to work out the details.

Proposition 7.54 (Weak extraction). Let p ≥ 1, a > ε > 0, m ≥ 2, and
let µ be a probability measure on X. If f1, . . . , fm are functions on X such that

‖fi‖L2p(µ) ≤ a, ‖fi − fj‖Lp(µ) > ε for all 1 ≤ i < j ≤ m,

then there exist r ≤ C(2a/ε)12p logm points x1, . . . , xr ∈ X and a subset
J ⊆ {1, . . . ,m} of cardinality |J | ≥ m/2 such that

‖fi‖L2p(µx) ≤ 2a, ‖fi − fj‖L3p/2(µx) > ε/9 for all i, j ∈ J, i 6= j,

where µx := 1
r

∑r
k=1 δxk and C is a universal constant.
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Proof. Let X1, . . . , Xr ∼ µ be i.i.d., and denote by µr their empirical measure.
We begin by controlling the L2p(µr)-norm of the functions fi. Note that

P[‖fi‖L2p(µr) > 2a] ≤
‖fi‖2pL2p(µ)

(2a)2p
≤ 1

4

by Chebyshev’s inequality. We therefore have

E|{i : ‖fi‖L2p(µr) ≤ 2a}| =
m∑
i=1

P[‖fi‖L2p(µr) ≤ 2a] ≥ 3m
4
.

Using E[Z] < u+ ‖Z‖∞P[Z ≥ u], we can estimate

P
[
|{i : ‖fi‖L2p(µr) ≤ 2a}| ≥ m

2

]
>

1
4
.

Thus with probability more than one quarter, at least half of the functions fi
remain bounded as ‖fi‖L2p(µr) ≤ 2a under the empirical measure.

We now turn to controlling the separation between the functions fi. Ap-
plying Lemma 7.53 with α = 3/2, we choose tij > 0 for every i < j so that

3−3/2

(
ε

tij

)3p/2

≤ µ(|fi − fj | > tij) ≤
(

2a
tij

)2p

.

Rearranging yields (ε/tij)3p/2 > 3−9/2(ε/2a)6p. We can therefore estimate
using the Azuma-Hoeffding inequality

P
[
t
3p/2
ij µr(|fi − fj | > tij) ≤ 3−2ε3p/2

]
≤ P

[
t
3p/2
ij µr(|fi − fj | > tij) ≤ t3p/2ij µ(|fi − fj | > tij)− 3−3ε3p/2

]
≤ e−r3

−15(ε/2a)12p .

A union bound now gives

P
[
t
3p/2
ij µr(|fi − fj | > tij) > 3−2ε3p/2 ∀ i < j

]
≥ 1−m2e−r3

−15(ε/2a)12p >
3
4

for r & (2a/ε)12p logm. In particular, Lemma 7.53 implies that

P
[
‖fi − fj‖L3p/2(µr) > ε/9 for all i < j

]
>

3
4

for r & (2a/ε)12p logm. Thus with probability more that three quarters, all
functions fi are separated by ε/9 in L3p/2(µr) under the empirical measure.

Now note that the sum of the probabilities of the events on which bound-
edness and separation hold under the empirical measure exceeds one if we
choose r = bC(2a/ε)12p logmc for a sufficiently large universal constant C.
Thus these events cannot be disjoint, and we can select a sample x1, . . . , xr
in their intersection. The conclusion of the proof follows readily. ut



7.4 The iteration method 247

We now have all the ingredients to complete the proof of Theorem 7.45.

Proof (Theorem 7.45). Let f1, . . . , fm ∈ F be a ε-packing of (F, ‖ · ‖Lp(µ))
of cardinality m ≥ N(F, ‖ · ‖Lp(µ), ε). By Proposition 7.54 there exist r ≤
C(2a/ε)12p logm points x1, . . . , xr ∈ X and f1, . . . , fl ∈ F with l ≥ m/2 such
that ‖fi‖L2p(µr) ≤ 2a and ‖fi− fj‖L3p/2(µr) ≥ ε/9 for all 1 ≤ i < j ≤ l, where
µr is the uniform distribution on x1, . . . , xr. By Corollary 7.52, we have

m ≤
(
Ka

ε

)39p2 vc(F,ε/9c)( logm
6p vc(F, ε/9c)

)3p vc(F,ε/9c)

for a universal constant K. Using α logm ≤ mα and rearranging, this yields

N(F, ‖ · ‖Lp(µ), ε) ≤ m ≤
(
Ka

ε

)78p2 vc(F,ε/9c)

.

This completes the proof. ut

Problems

7.15 (Improved uniform covering bounds). In order to keep the notation
minimal, we made some arbitrary choices in the statement and proof of Theo-
rem 7.45. By carefully keeping track of the constants in the proof, extend The-
orem 7.45 to boundN(F, ‖·‖Lp(µ), ε) under the assumption supf ‖f‖Lβp(µ) ≤ a
for any p ≥ 1 and β > 1 as indicated in Remark 7.46.

7.16 (L∞-covering numbers and combinatorial dimension). Through-
out this chapter, we have obtained dimension-free estimates for Lp-covering
numbers with p < ∞. One cannot expect to obtain dimension-free L∞-
covering numbers, however. For example, when F is a class of indicator func-
tions on a finite set X, then N(F, ‖·‖∞, ε) = |F| for all 0 < ε < 1 and thus any
nontrivial L∞-covering number bound must depend on |X|. While this depen-
dence is in general exponential, the Sauer-Shelah Lemma 7.12 states that the
L∞-covering numbers grow only polynomially in |X| for VC-classes of sets. It
is natural to ask whether this is also true for general function classes.

a. Let X be a finite set and let µ be the uniform distribution on X. Show that
e−1‖f‖∞ ≤ ‖f‖Llog |X|(µ) ≤ ‖f‖∞ for every function f on X.

b. Deduce from Corollary 7.52 that if F is a class of functions on a finite set
X such that ‖f‖∞ ≤ 1 for all f ∈ F, then for universal constants c, C

logN(F, ‖ · ‖∞, ε) ≤ 2 vc(F, cε) log |X| log
(

C|X|
ε vc(F, cε)

)
.
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For classes of sets C the Sauer-Shelah lemma implies logN(C, ‖ · ‖∞, ε) .
log |X|, while we have obtained above a bound of order log2 |X| for arbitrary
function classes F. It is not known whether a polynomial bound is possible
in the general setting. However, we can achieve nearly polynomial scaling by
improving the above bound to log1+δ |X| for any δ > 0.

c. The small deviation result of Lemma 7.51 is not the most efficient. Show
that the conclusion can be improved to P[X ≤ b]1/pδ +P[X ≥ b+ε]1/pδ > 1
for any δ > 0, with the constant C depending on δ but not on p.

d. Prove a general bound of order logN(F, ‖ · ‖∞, ε) . log1+δ |X|.

e. Similarly, the scaling ∝ p2 of the bound of Theorem 7.45 is not the best
possible. Show that the scaling can be improved to ∝ p1+δ for any δ > 0.

7.17 (Iteration and Sudakov’s inequality). We have systematically de-
veloped upper and lower bounds for the suprema of random processes in terms
of covering numbers. An implicit motivation for these results is that it is of-
ten easier to bound the covering numbers of a set T than to bound directly a
random process defined on T . However, these results prove to be useful also
in the converse direction: there are situations where a direct estimate on the
supremum of a random process can be used to obtain nontrivial bounds for
covering numbers that are otherwise hard to compute.

The simplest result that can be used for this purpose is Sudakov’s inequal-
ity. Let T ⊆ B(0, 1) be a subset of the Euclidean unit ball in Rn, and

Xt :=
n∑
i=1

giti, ω(ε) := sup
s∈T

E
[

sup
t∈T∩B(s,ε)

Xt

]
where g1, . . . , gn are i.i.d. N(0, 1). Note that {Xt}t∈T is a Gaussian process
whose natural distance d is the Euclidean distance. We can therefore estimate

logN(T, d, ε) .
ω(1)2

ε2
.

How good is this bound? Unfortunately, it leaves something to be desired.

a. Let T = B(0, 1) be the Euclidean unit ball. Show that Sudakov’s inequality
yields at best logN(T, d, ε) . n/ε2. On the other hand, show that in fact
logN(T, d, ε) � n log(1/ε), which is far better than is predicted by Sudakov.

It is not too surprising that Sudakov’s inequality fails to capture the cor-
rect behavior of the covering numbers even in the simplest possible example:
ω(1) < ∞ can hold even for infinite-dimensional classes, and thus we cannot
predict correctly the behavior of the covering numbers on the basis of this
quantity only. On the other hand, the local modulus of continuity ω(ε) con-
tains much more information. It can be exploited using an iteration argument.
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b. Show that for any ε > 0

logN(T, d, ε) .
∞∑
k=0

12kε<1

ω(2k+1ε)2

(2kε)2
.
∫ 2

ε

ω(2x)2

x3
dx.

c. Show that if T = B(0, 1) is the Euclidean unit ball, then ω(x) ≤ x
√
n and

thus iteration yields a covering number estimate of the correct order.

Notes

§7.1. The symmetrization method, which has its origin in probability in Ba-
nach spaces, has been a fundamental part of empirical process theory following
the influential work of Giné and Zinn [70]. A slightly different form of sym-
metrization was already used by Vapnik and Chervonenkis [142]. Lemma 7.6
is due to Panchenko [105]. The characterization of Bernoulli processes men-
tioned in Problem 7.1 was proved by Bednorz and Lata la [16] (see also [138]
for an exposition). The simple contraction method used in Problem 7.1 is
classical [85], while the “inverse” Gaussian symmetrization method is based
on [108]. Problem 7.2 is based on [70] (the result developed here dates back
to [143]). See [131] for more precise characterizations of the Glivenko-Cantelli
property. Much more on self-normalized processes (Problem 7.3) can be found
in [106]. The contraction principle of Problem 7.4 can be found in [85].

§7.2. The notion of VC-dimension and its application to the Glivenko-Cantelli
problem were developed by Vapnik and Chervonenkis [142]. The Sauer-Shelah
lemma was proved by Sauer in answer to a question posed by Erdős [117];
an infinite version of it appeared in work on mathematical logic by Shelah.
Theorem 7.16 is due to Dudley [54]. Uniform Glivenko-Cantelli classes were
studied systematically by Dudley, Giné and Zinn [57] and Alon et al. [5].
Pajor’s formulation of the Sauer-Shelah lemma is from [104]. The somewhat
pedantic proof we have given here (based on [96]) is intended to prepare the
reader for the next section. Classical proofs are developed in Problems 7.7
and 7.8. The formulation of the Glivenko-Cantelli theorem in Problem 7.10
is due to Steele [119]; the example of convex sets follows the treatment in
[109]. Problem 7.11 gives a very brief introduction to the topic of uniform
central limit theorems that has historically motivated many developments in
empirical process theory; textbook treatments can be found in [55, 141].

§7.3. The notion of combinatorial dimension has its origin in Banach space
theory. It was used implicitly by Elton [59] following the development of an
infinite counterpart of this idea by Rosenthal [110] to characterize Banach
spaces that embed `1 (see [76] for the probabilistic significance of the latter
notion). A first result along the lines of Theorem 7.30, but with much worse
scaling, is due to Pajor [104]. Theorem 7.30, due to Mendelson and Vershynin
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[96], is essentially the best possible. The much simpler notion of VC-subgraph
classes (Problem 7.12) appeared independently, cf. [109]. Problem 7.13 is taken
from [97], while the approach of Problem 7.14 follows [96].

§7.4. The lower bound in Lemma 7.40 is from [136]. The iteration method
is often used in Banach space theory; see, for example, [8] for an interesting
application. Example 7.44 is inspired by the example given in [9, Lemma 4.9].
Theorem 7.45 and its use as an iteration principle are due to Rudelson and
Vershynin [113], and we follow a simplified version of their proof. L∞-covering
bounds in terms of combinatorial dimension (Problem 7.16) were first obtained
in [5] with a worse scaling. Problem 7.17 is inspired by [28].
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8

Sharp transitions and hypercontractivity

A remarkable feature of high-dimensional random structures is that their be-
havior tends to undergo abrupt changes as one varies the parameters that
define the model. Such phenomena are often referred to as phase transitions.
Different tools have been developed to study sharp transitions in different ar-
eas, and a precise understanding of such transitions must often be obtained
in a problem-specific manner. Nonetheless, there are some basic mechanisms
that provide a common understanding of why sharp transitions appear in var-
ious interesting situations. The aim of this chapter is to develop some basic
theory along these lines. Along the way, we will encounter some important
ideas of broader significance, such as the notion of hypercontractivity.

To place our investigation of sharp transitions on a concrete footing, we
will consider the following setting. Let X1, . . . , Xn be independent Bernoulli
variables of probability p under the probability measure Pp, that is,

Pp[Xi = 1] = p, Pp[Xi = 0] = 1− p.

Let f : {0, 1}n → {0, 1} be a function that describes the outcome of an event
of interest. For example, X1, . . . , Xn could be the votes of individual voters,
and f(X1, . . . , Xn) is the outcome of an election; or X1, . . . , Xn could denote
the presence of edges in a random graph, and f(X1, . . . , Xn) indicates whether
the graph is connected. We will be interested in the behavior of the function

p 7→ Ep[f(X1, . . . , Xn)].

That is, we would like to know how the probability of the event of interest
depends on the probability of the individual constituent events.

It is often the case that Ep[f ] changes abruptly from nearly 0 to nearly 1
at some critical probability pc. In Chapter 1, we stated an informal principle:

If X1, . . . , Xn are independent (or weakly dependent) events with prob-
ability p, then the probability of an event f(X1, . . . , Xn) undergoes a
“sharp transition” in p if f(x1, . . . , xn) is monotone and depends in a
“sufficiently symmetric” manner on the coordinates xi.
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This principle will be made precise in the sequel. In particular, we will see
that the presence of a sharp transition is intimately connected to the concen-
tration phenomenon: a sharp transition occurs whenever f has strictly smaller
fluctuations than is suggested by the Poincaré inequality. This motivates us
to investigate systematically when the Poincaré inequality can be improved,
a question of evident interest far beyond the setting of sharp transitions.

8.1 From sharp transitions to concentration

Before we can study sharp transitions, we must explain what transition we are
actually referring to. As explained above, we would like to understand for what
Boolean functions f : {0, 1}n → {0, 1} the probability Ep[f ] changes abruptly
from nearly 0 to nearly 1 as we change the probability p of the underlying
variables. However, for an arbitrary Boolean function the map p 7→ Ep[f ] can
behave in an essentially arbitrary manner, and thus the phenomenon we aim
to investigate is not clearly defined. To obtain a meaningful theory, we will
restrict our attention to the interesting case of monotone functions.

Definition 8.1 (Monotonicity). The Boolean function f : {0, 1}n → {0, 1}
is called monotone if f(x) ≤ f(y) whenever xi ≤ yi for all i.

Monotonicity arises naturally in many problems. For example:

Example 8.2 (Voting). Suppose X1, . . . , Xn are the votes of n individuals in
a two-party system. Then we can define f(X1, . . . , Xn) to be the outcome of
the election. There are many potential election schemes, each corresponding
to a different function f . For example, in a majority voting scheme, the party
that gets the most votes wins the election. On the other hand, in the electoral
college scheme, the voters are distributed into groups, and the majority is
computed inside each group to determine one vote in the electoral college; the
majority vote in the electoral college wins. Other schemes include unanimous
vote, dictatorship (one one particular voter’s vote matters), etc.

All reasonable voting schemes must have one thing in common: if more
people vote for a particular party, then that party should become more likely
to win the election. Thus any reasonable voting scheme f is monotone.

Example 8.3 (Random graphs). The Erdős-Rényi random graph G(n, p) is a
probabilistic model of a graph G = (V,E) with n vertices V = {1, . . . , n},
where every pair of vertices is connected independently with probability p. In
this model, the variables X1, . . . , XN , N =

(
n
2

)
denote what edges are present

in the graph; that is, Xi = 1 if edge i is present. There are numerous properties
of graphs that are interesting to study in this context. For example, we can
define f such that f(X1, . . . , Xn) = 1 if the graph G is connected, or if the
graph contains a clique of size k, or if the graph fails to be k-colorable. It is
readily verified that all these graph properties, as well as many others, are
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monotone. For example, if a graph is connected, then it will remain connected
if we add edges to the graph; thus connectedness is a monotone graph property.

Example 8.4 (Percolation). Percolation is an important model in statistical
mechanics. Attach to every site in a box v ∈ {−n, . . . , n}d an independent
Bernoulli variable Xv that determines whether the site is “open” (Xv = 1) or
“closed” (Xv = 0). The basic property of interest in this model is the event
f(X1, . . . , XN ), N = (2n + 1)d that there is a path of open sites connecting
the origin to the boundary of the box. You can think of this as a model of
percolation of water through coffee grinds: a site is closed if it is occupied by a
coffee grind, and is open otherwise. The probability p determines the density
of the coffee grinds. If we pour water at the origin, will it be able to percolate
through the coffee? This question is modelled by the Boolean function f . It
is clearly monotone: if we add more open sites, percolation becomes easier.

The key feature of the monotonicity property is that it ensures that the
map p 7→ Ep[f ] is nondecreasing (it is an easy exercise to prove this, but we will
shortly see that it follows automatically from Lemma 8.5 below). Therefore,
for monotone functions, the graph of p 7→ Ep[f ] must look like this:

Ep[f ]

p

0 1pcpε p1−ε

0

1

1
2

ε

1−ε
critical window

Consequently, the quantity Ep[f ] exhibits an unambiguous transition from
values near zero for small p to values near one for large p. The “center” of
the transition occurs at the critical probability p = pc at which Epc [f ] = 1

2 .
Moreover, if we fix some ε > 0, then the “bulk” of the transition occurs in
the critical window p ∈ [pε, p1−ε], where we defined pε such that Epε [f ] = ε.
We will be interested in understanding when the system undergoes a sharp
transition, that is, when the width of the critical window is small. It should
be emphasized that monotonicity was essential to give a precise meaning to
this question: when f is not monotone, the function p 7→ Ep[f ] can increase
or decrease in an arbitrary manner and the notion of a transition (sharp or
otherwise) is simply not meaningful in general. For this reason, we will restrict
attention to monotone functions when investigating sharp transitions.

Now that we have defined the basic quantities that we would like to in-
vestigate, we must begin to understand how one can control the width of
the critical window. The starting point for the theory of sharp transitions is
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the following simple observation: in order for a sharp transition to occur, the
function p 7→ Ep[f ] should have a large slope inside the critical window. In
particular, if the slope inside the critical window is at least ∆, then the width
of the critical window can be at most ∆−1. Computing the slope of p 7→ Ep[f ]
is an easy exercise that will however have far-reaching consequences.

Recall from Chapter 2 the definitions of the quantities

Dif(x1, . . . , xn) := sup
xi

f(x1, . . . , xn)− inf
xi
f(x1, . . . , xn),

D−i f(x1, . . . , xn) := f(x1, . . . , xn)− inf
xi
f(x1, . . . , xn),

D+
i f(x1, . . . , xn) := sup

xi

f(x1, . . . , xn)− f(x1, . . . , xn).

Lemma 8.5 (Margulis-Russo). For any monotone f : {0, 1}n → {0, 1}

d

dp
Ep[f ] = Ep

[
n∑
i=1

(Dif)2
]

=
1
p

Ep

[
n∑
i=1

(D−i f)2
]

=
1

1− p
Ep

[
n∑
i=1

(D+
i f)2

]
.

It follows immediately that p 7→ Ep[f ] is nondecreasing.

Proof. We simply perform an explicit computation using the law Pp:

d

dp
Ep[f ] =

d

dp

∑
x∈{0,1}n

n∏
i=1

pxi(1− p)1−xif(x1, . . . , xn)

=
n∑
i=1

∑
x∈{0,1}n

∏
j 6=i

pxj (1− p)1−xj (−1)1−xif(x1, . . . , xn)

=
n∑
i=1

Ep[f(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)

− f(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)].

But note that

f(x1, . . . , xi−1, 1, xi+1, . . . , xn) = sup
xi

f(x1, . . . , xn),

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) = inf
xi
f(x1, . . . , xn)

as f is monotone. Moreover, as f ∈ {0, 1} is a Boolean function, we have
Dif ∈ {0, 1} and therefore Dif = (Dif)2. Thus we have shown that

d

dp
Ep[f ] = Ep

[
n∑
i=1

Dif

]
= Ep

[
n∑
i=1

(Dif)2
]
.

To prove the second identity in the statement of the lemma, note that
D−i f(x) = 1xi=1Dif(x) as f is monotone. But 1Xi=1 and Dif(X1, . . . , Xn)
are independent as the latter does not depend on Xi, so that
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Ep[(D−i f)2] = Ep[1Xi=1(Dif)2] = Ep[1Xi=1] Ep[(Dif)2] = pEp[(Dif)2].

This gives the second identity. The third identity follows likewise. ut

The Margulis-Russo lemma shows that the slope of the function p 7→ Ep[f ]
is none other than the right-hand side of the discrete Poincaré inequality of
Corollary 2.4. Thus the Poincaré inequality immediately yields a lower bound
on the slope, and therefore an upper bound on the critical window. This simple
observation already illustrates the close connection between sharp transitions
and concentration! A direct application of the Poincaré inequality provides us
with our first bound on the width of the critical window.

Corollary 8.6 (Bollobás-Thomason). For any monotone Boolean function
f : {0, 1}n → {0, 1} and 0 < ε < 1

2 , the width of the critical window is at most

p1−ε − pε ≤ C(ε) min(pc, 1− pc),

where C(ε) :=
(

1−ε
ε

)1/ε − 1 > 0.

Proof. Lemma 8.5 and Corollary 2.4 show that

d

dp
Ep[f ] ≥ 1

p
Varp[f ] =

1
p

Ep[f ](1−Ep[f ]).

If p ∈ [pε, p1−ε] is in the critical window, then Ep[f ] ∈ [ε, 1− ε] and we have

d

dp
log Ep[f ] ≥ 1

p
(1−Ep[f ]) ≥ ε

p
.

Therefore, by the fundamental theorem of calculus,

log(1− ε)− log ε =
∫ p1−ε

pε

d

dp
log Ep[f ] dp ≥ ε(log p1−ε − log pε)

and rearranging yields

p1−ε − pε ≤ C(ε)pε ≤ C(ε)pc.

To obtain the bound p1−ε − pε ≤ C(ε)(1 − pc), we repeat the proof using
the last identity in Lemma 8.5 instead of the second identity (notice that as
D+
i f = −D−i (−f), Corollary 2.4 remains valid if we replace D−i by D+

i ). ut

Corollary 8.6 illustrates the basic principle that we will use to control the
width of the critical window. However, this result cannot establish the presence
of any sharp transition. For example, in cases where the critical probability
is bounded away from zero or one, this result is essentially meaningless as it
provides a trivial O(1) upper bound on the width of the critical window. This
must necessarily be the case, however: we have made no assumptions so far
on the Boolean function f other than monotonicity. It is certainly not true
that every monotone function exhibits a sharp transition!
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Example 8.7 (Dictatorship). Let f : {0, 1}n → {0, 1} describe the outcome of
an election under a fair voting scheme: that is, f is monotone and pc = 1

2 .
The latter means that if voters are more likely to vote for a particular party,
then that party is more likely to win the election. One might hope that this
function exhibits a sharp transition, that is, that the width of the critical
window converges to zero as the number of voters is increased (this reflects
a well-functioning democracy, that is, the party that voters are more likely
to vote for wins the election with high probability). But there is no reason
for this to be the case if we do not impose further assumptions. For example,
consider the function f(x1, . . . , xn) = x1: this is an election where a single
distinguished voter (the dictator) decides the outcome of the election. In this
setting, clearly Ep[f ] = p does not exhibit any form of sharp transition.

Corollary 8.6 provides nontrivial information in situations where the crit-
ical probability is very close to zero or one: it shows that the width of the
critical window can never be of larger order than the critical probability it-
self. Thus if pc = o(1), then p1−ε − pε = o(1) as well. However, even in this
case it is unreasonable to call this phenomenon a sharp transition: in situa-
tions where pc = o(1), the value of pc sets the natural scale for the probability
of the phenomenon of interest, so that we can speak of a sharp transition only
if the width of the critical window shrinks at a faster rate than the critical
probability itself. We will therefore employ the following informal definition:

A monotone Boolean function f : {0, 1}n → {0, 1} is said to exhibit a
sharp transition if p1−ε − pε � min(pc, 1− pc).

What functions exhibit a sharp transition? The proof of Corollary 8.6
provides significant insight, as the only inequality that was used in the proof
was the Poincaré inequality! For example, given fixed ε > 0 and pc ≤ 1

2 , it
is readily verified that the only way in which the conclusion of Corollary 8.6
could be substantially improved is if it were the case that

Varp[f ]
?
� Ep

[
n∑
i=1

(D−i f)2
]

for p in the critical window. We therefore see that

A monotone Boolean function f : {0, 1}n → {0, 1} exhibits a sharp
transition if and only if its fluctuations are much smaller than sug-
gested by the Poincaré inequality for p in the critical window.

Thus the study of sharp transitions is intimately connected to a tantalizing
question about the concentration phenomenon: we must understand when
we can beat the bounds provided by the Poincaré inequalities developed in
Chapter 2. This question is evidently of significant interest far beyond the
setting of sharp transitions; indeed, we already observed in Remark 2.6 that
Poincaré inequalities do not always yield sharp bounds on the fluctuations.
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We will therefore aim in the following sections to develop some systematic
understanding of when the Poincaré inequality can be improved.

Problems

8.1 (Why monotonicity?). We observed as a consequence of the Margulis-
Russo lemma that p 7→ Ep[f ] is nondecreasing whenever f is monotone. How-
ever, this can be seen in a much more elementary way.

a. Let p ≤ p′. Show that there is a coupling (X,X ′) of Pp and Pp′ such
that Xi ≤ X ′i a.s. for every i = 1, . . . , n. Conclude that p 7→ Ep[f ] is
nondecreasing whenever f is monotone.

When f is not monotone, we know little about the map p 7→ Ep[f ]. In fact,
this map can be essentially arbitrary, as the following exercise shows.

b. Given any continuous function h : [0, 1] → [0, 1], construct functions fn :
{0, 1}n → {0, 1} so that Ep[fn]→ h(p) as n→∞ for all p ∈ (0, 1).

For this reason, we cannot meaningfully define the notion of a (sharp) transi-
tion in general, unless we make an assumption such as monotonicity.

8.2 (The sharpest possible transition). Let f : {0, 1}n → {0, 1} be a
fair voting scheme, that is, a monotone Boolean function with pc = 1

2 . In a
democratic election, we would like this scheme to exhibit a sharp transition:
if p > 1

2 , say, then we would like f = 1 to occur with very high probability.
One might wonder what is the most democratic fair voting scheme.

a. To answer this question, suppose that n is odd, and let fmaj(x) :=
1x1+...+xn>n/2 be the majority voting scheme (we choose n odd to avoid
the possibility of a tie). Show that for any fair voting scheme f , we have

Ep[f ] ≤ Ep[fmaj] for p ≥ 1
2 , Ep[f ] ≥ Ep[fmaj] for p ≤ 1

2 .

That is, majority has the sharpest transition among fair voting schemes.
Hint: write Ep[f ] =

∑
x p

x1+···+xn(1− p)n−x1−···−xnf(x).

b. Show by explicit computation that
√
nVarp[fmaj] � Ep[

∑n
i=1(Difmaj)2]

for p in the critical window, verifying that one can significantly beat the
Poincaré inequality in the presence of this sharp transition.

c. Use part b. and the Margulis-Russo lemma to argue that the width of the
critical window of fmaj is of order p1−ε − pε ∼ 1√

n
. (Of course, this could

easily be seen directly in this example using the central limit theorem.)
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8.2 Hypercontractivity and log-Sobolev inequalities

We have seen in the previous section that in order to exhibit a sharp transi-
tion, we must understand when it is possible to beat the Poincaré inequality.
The latter will require us to introduce an important new idea, hypercontrac-
tivity of Markov semigroups, that will be developed in this section. To explain
the significance of this phenomenon, we will begin by isolating the origin of
the inefficiency in the Poincaré inequality. This will immediately suggest a
program for proving improved Poincaré inequalities, which will be completed
in the next section after the necessary theory has been developed.

8.2.1 What is wrong with the Poincaré inequality?

To understand why the Poincaré inequality might be inefficient, let us revisit
the proof of the Poincaré inequality for the standard Gaussian distribution
γ = N(0, 1) in one dimension, which was developed in section 2.3.1. Recall that
this measure is stationary for the Ornstein-Uhlenbeck semigroup Pt, whose
Dirichlet form is given by E(f, f) = ‖f ′‖2L2(γ) and (Ptf)′ = e−tPtf

′.
To prove the Poincaré inequality in this setting, let us repeat the arguments

of section 2.4. The key observation behind the proof is that we have an identity
for the variance in terms of the semigroup:

Varγ [f ] = 2
∫ ∞

0

E(Ptf, Ptf) dt = 2
∫ ∞

0

e−2t‖Ptf ′‖2L2(γ) dt.

We immediately obtain the Poincaré inequality from this identity using con-
tractivity of the semigroup ‖Ptf ′‖L2(γ) ≤ ‖f ′‖L2(γ) (i.e., Jensen’s inequality).
We emphasize that this is the only inequality that appears in the proof. There-
fore, the only way that the Poincaré inequality can be suboptimal is if

‖Ptf ′‖L2(γ)

?
� ‖f ′‖L2(γ),

that is, if we can substantially improve on the contractivity property of the
semigroup. Let us try to understand why this might be possible.

It is clearly impossible to improve contractivity when t → 0, as we have
‖P0f

′‖L2(γ) = ‖f ′‖L2(γ). On the other hand, ‖Ptf ′‖L2(γ) → Eγ [f ′] as t→∞
by ergodicity, so it may be possible to improve on contractivity when t is
large. In particular, if the function f is monotone (which is the case we are
interested in in the setting of sharp transitions), then f ′ ≥ 0, so the value of
‖Ptf ′‖L2(γ) varies between ≈ ‖f ′‖L2(γ) for small t and ≈ ‖f ′‖L1(γ) for large
t. We could therefore expect to be able to beat the Poincaré inequality when

‖f ′‖L1(γ)

?
� ‖f ′‖L2(γ).

This idea will be given a precise formulation in the next section.
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In order to implement this program, we need to develop a quantitative un-
derstanding of how ‖Ptf ′‖L2(γ) interpolates between ‖f ′‖L2(γ) and ‖f ′‖L1(γ).
It may not be immediately obvious how such a property of the semigroup could
be formulated. It turns out that for the Ornstein-Uhlenbeck semigroup, we
have the following remarkable quantitative manifestation of this phenomenon:

‖Ptf‖2 ≤ ‖f‖p(t) where p(t) = 1 + e−2t.

This property is called hypercontractivity. While this property can be inter-
preted rather intuitively as an interpolation between the two extreme cases
t = 0 and t = ∞, it should be far from clear at present how it arises for any
given semigroup. We presently turn to the explanation of this phenomenon,
where we will see that it is intimately connected to some familiar ideas.

8.2.2 Hypercontractivity

Let Pt be a Markov semigroup with stationary measure µ. The semigroup is
said to be hypercontractive if ‖Ptf‖Lq(µ) ≤ ‖f‖Lp(µ) for some q > p. Not every
semigroup is hypercontractive, and the aim of this section is to understand
when this phenomenon occurs. In contrast, every Markov semigroup is trivially
contractive by Jensen’s inequality, that is, the above property holds for q = p.
We aim to understand how large we can choose q as a function of p and t.

To approach this problem, consider the following simple idea. Let q(t) be
an increasing function such that q(0) = p. To prove hypercontractivity

‖Ptf‖Lq(t)(µ) ≤ ‖f‖Lp(µ),

it clearly suffices to show that the function t 7→ ‖Ptf‖Lq(t)(µ) is decreasing.
We therefore begin by computing the derivative of this function.

Lemma 8.8. For any f ≥ 0 and increasing function q(t) ≥ 1, we have

d

dt
log ‖Ptf‖Lq(t)(µ) = Cf (t)

{
Entµ[(Ptf)q(t)]− q(t)2

q′(t)
E((Ptf)q(t)−1, Ptf)

}
,

where Cf (t) = q′(t)/q(t)2‖Ptf‖q(t)q(t) ≥ 0.

Proof. The proof is just a calculus exercise. By the product rule

d

dt

log Eµ[(Ptf)q(t)]
q(t)

=− q′(t)

q2(t)‖Ptf‖q(t)q(t)

Eµ[(Ptf)q(t)] log Eµ[(Ptf)q(t)]

+
1

q(t)‖Ptf‖q(t)q(t)

d

dt
Eµ[(Ptf)q(t)].

Moreover, we have by the chain rule



262 8 Sharp transitions and hypercontractivity

d

dt
Eµ[(Ptf)q(t)] =

q′(t)
q(t)

E[(Ptf)q(t) log(Ptf)q(t)] + q(t) Eµ[(Ptf)q(t)−1LPtf ],

where L is the generator of Pt. The proof follows by combining these two
identities and using the definitions of entropy and of the Dirichlet form. ut

Lemma 8.8 shows that in order to establish hypercontractivity, we must
obtain an inequality between the entropy of a function and the Dirichlet form.
But such an inequality is not new to us: what is needed is none other than the
log-Sobolev inequality that was already introduced in Chapter 3 in connection
with subgaussian concentration! Indeed, the following classic result of Gross
shows that these two phenomena are essentially equivalent.

Theorem 8.9 (Gross). Let Pt be a reversible Markov semigroup with sta-
tionary measure µ. Then the following are equivalent for given c ≥ 0:

1. Entµ[f2] ≤ 2cE(f, f) for all f (log-Sobolev inequality).
2. ‖Ptf‖1+(p−1)e2t/c ≤ ‖f‖p for all f, t and p ≥ 1 (hypercontractivity).

Proof. Let us first prove 2⇒ 1. Note that 2 with p = 2 implies

d

dt
log ‖Ptf‖1+e2t/c

∣∣∣∣
t=0

= lim
t↓0

log ‖Ptf‖1+e2t/c − log ‖f‖2
t

≤ 0.

But then Lemma 8.8 with q(t) = 1 + e2t/c yields

Entµ[f2]− 2cE(f, f) ≤ 0,

which is the desired log-Sobolev inequality.
We now prove the implication 1⇒ 2. Let q(t) = 1 + (p− 1)e2t/c. Then

d

dt
log ‖Ptf‖Lq(t)(µ)

≤ Cf (t)
{

2cE((Ptf)q(t)/2, (Ptf)q(t)/2)− q(t)2

q′(t)
E((Ptf)q(t)−1, Ptf)

}
by property 1 and Lemma 8.8. We would like to show that the right-hand side
is negative. We must therefore understand how E(fq/2, fq/2) and E(fq−1, f)
are related. To gain some intuition, consider first an important special case.

Example 8.10. Suppose that E(f, g) = Eµ[〈∇f,∇g〉] (this is the case, for ex-
ample, for the Ornstein-Uhlenbeck semigroup). Then we have by the chain
rule ‖∇fq/2‖2 = (q/2)2fq−2‖∇f‖2 and 〈∇fq−1,∇f〉 = (q − 1)fq−2‖∇f‖2.
Therefore, we obtain in this special case the crucial identity

E(fq−1, f) =
4(q − 1)
q2

E(fq/2, fq/2).

We can now readily conclude the proof: we have shown that
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d

dt
log ‖Ptf‖Lq(t)(µ) ≤ Cf (t)

{
2c− 4(q(t)− 1)

q′(t)

}
E((Ptf)q(t)/2, (Ptf)q(t)/2) = 0,

where we used that q(t) = 1 + (p− 1)e2t/c satisfies q′(t) = 2
c (q(t)− 1). Thus

‖Ptf‖Lq(t)(µ) ≤ ‖P0f‖Lq(0)(µ) = ‖f‖Lp(µ),

which is the desired hypercontractivity property.

Unfortunately, it is not true in general that the Dirichlet form of a semi-
group satisfies an analogue of the chain rule (in particular, this is not true
in discrete situations where derivatives are replaced by finite differences).
Nonetheless, we can always obtain an inequality, which will be more than
enough for our purposes. Note that this is the only place in the proof where
the reversibility property of the semigroup will be used.

Lemma 8.11. E(fq−1, f) ≥ 4(q−1)
q2 E(fq/2, fq/2).

Proof. Note that as L f = d
dtPtf |t=0 = limt↓0(Ptf − f)/t, we have

E(f, g) := −Eµ[fL g] = lim
t↓0

Eµ[fg]−Eµ[fPtg]
t

.

Let (Xt)t∈R+ be the stationary Markov process with semigroup Pt and Xt ∼ µ
for all t. As we assumed that Pt is reversible, we can write

2(Eµ[fg]−Eµ[fPtg]) = 2Eµ[fg]−Eµ[fPtg]−Eµ[gPtf ]
= Eµ[{f(Xt)− f(X0)}{g(Xt)− g(X0)}].

It therefore suffices to prove the identity

(aq−1 − bq−1)(a− b) ≥ 4(q − 1)
q2

(aq/2 − bq/2)2

for all a, b ≥ 0. Suppose without loss of generality that a > b. Then(
aq/2 − bq/2

a− b

)2

=
(

1
a− b

∫ a

b

q

2
xq/2−1dx

)2

≤ 1
a− b

∫ a

b

(
q

2

)2

xq−2dx =
q2

4(q − 1)
aq−1 − bq−1

a− b

by the fundamental theorem of calculus and Jensen’s inequality. Rearranging
this inequality yields the desired conclusion.

With the inequality of Lemma 8.11 in hand, the remainder of the proof is
identical to the special case considered in Example 8.10. ut
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8.2.3 Log-Sobolev inequalities

It is important at this stage to contrast the result of Theorem 8.9 to the type
of log-Sobolev inequalities that were introduced in Chapter 3. In Theorem
8.9, we introduced the log-Sobolev inequality

Entµ[f2] ≤ 2cE(f, f) (LS)

and showed that is is equivalent to hypercontractivity. On the other hand, in
Theorem 3.20 we introduced the modified log-Sobolev inequality

Entµ[f ] ≤ c

2
E(log f, f) (MLS)

and showed that it is equivalent to exponential decay of the entropy along
the semigroup. We already noted in Chapter 3 that (LS) and (MLS) are
equivalent in the case that the Dirichlet form E(f, g) = Eµ[〈∇f,∇g〉] satisfies
the chain rule, as 〈∇ log f2,∇f2〉 = 4‖∇f‖2. Thus the validity of (LS) for
the standard Gaussian measure, and consequently hypercontractivity of the
Ornstein-Uhlenbeck semigroup, follows already from Theorem 3.24.

However, for general Markov semigroups, the connection between (LS)
and (MLS) is far from clear. It turns out that (LS) implies (MLS), but the
converse implication is false (as we will see below). Thus hypercontractivity is,
in general, a strictly stronger property than exponential decay of the entropy—
though the two coincide when Dirichlet form satisfies the chain rule.

Lemma 8.12. Let Pt be a reversible Markov semigroup and let c ≥ 0 be given.
Then we have the following implications:

Entµ[f2] ≤ 2cE(f, f) (log-Sobolev) =⇒

Entµ[f ] ≤ c

2
E(log f, f) (modified log-Sobolev) =⇒

Varµ[f ] ≤ cE(f, f) (Poincaré).

Proof. The second implication was already proved in Lemma 3.28. To prove
the first implication, we evidently need to show that 4E(

√
f,
√
f) ≤ E(log f, f).

By the same argument as in the proof of Lemma 8.11, it suffices to prove that

4(
√
a−
√
b)2 ≤ (log a− log b)(a− b)

for all a, b > 0. This follows from

4
(√

a−
√
b

a− b

)2

=
(

1
a− b

∫ a

b

1√
x
dx

)2

≤ 1
a− b

∫ a

b

1
x
dx =

log a− log b
a− b

by Jensen’s inequality, and rearranging yields the conclusion. ut

In the sequel, we will be particularly interested in two examples: the case
of the standard Gaussian measure γ = N(0, I) on Rn, and the case of the mea-
sures Pp on the hypercube {0, 1}n that arise in the study of sharp transitions.
Let us develop the requisite log-Sobolev inequalities for these cases.
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Example 8.13 (Gaussian measure). Let γ = N(0, I) be the standard Gaussian
measure on Rn. The associated multidimensional Ornstein-Uhlenbeck semi-
group Pt is defined simply by taking each coordinate of the associated Markov
process (Xt)t∈R+ to be an independent one-dimensional Ornstein-Uhlenbeck
process. More concretely (cf. section 2.3.1), we have

Ptf(x) = E[f(e−tx+
√

1− e−2tξ)], ξ ∼ N(0, I)

for f : Rn → R. The generator and Dirichlet form are given by

L f = −〈x,∇f(x)〉+∆f(x), E(f, g) = Eγ [〈∇f,∇g〉].

Because the Dirichlet form satisfies the chain rule, it follows immediately from
Theorem 3.24 that γ satisfies the log-Sobolev inequality

Entγ [f2] ≤ 2E(f, f),

so the Ornstein-Uhlenbeck semigroup is hypercontractive with constant c = 1.

Example 8.14 (Hypercube). We now turn to the measure Pp on the hypercube
{0, 1}n. We view Pp = µp ⊗ · · · ⊗ µp as a product measure of n copies of the
measure µp on {0, 1} such that µp({1}) = p. The associated discrete semigroup
Pt was already defined in section 2.3.2: it is obtained by attaching to every
coordinate an independent Poisson clock of unit rate, where we replace a given
coordinate by an independent draw from µp every time its clock “ticks”. We
recall from section 2.3.2 that the generator and Dirichlet form are given by

L f = −
n∑
i=1

δif, E(f, g) = Ep

[
n∑
i=1

δif δig

]
,

where

δif(x) = f(x)−
∫
f(x1, . . . , xi−i, z, xi+1, . . . , xn)µp(dz).

In particular, we obtain in the present case

E(f, f) = p(1− p) Ep

[
n∑
i=1

(Dif)2
]
,

as µp[(g − µp(g))2] = (p(1− p)2 + p2(1− p))(g(1)− g(0))2 = p(1− p)|Df |2.
To establish hypercontractivity of the discrete semigroup, we need to prove

a log-Sobolev inequality for Pp. In fact, by tensorization, it already suffices
to prove that µp satisfies a log-Sobolev inequality. We previously proved a
modified log-Sobolev inequality in Lemma 3.16. However, in the present case,
the Dirichlet form does not satisfy the chain rule, and thus the log-Sobolev
inequality does not follow. We must therefore proceed more carefully to prove
a true log-Sobolev inequality in this setting. The discrete nature of the set
{0, 1} will play an important role in the proof (unlike in Lemma 3.16).
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Lemma 8.15. Entµp [f2] ≤ 2cp(1− p)|Df |2 with c = 1/min(p, 1− p).

Proof. Note that as log(x) ≤ x− 1, we have the general inequality

Ent[X] := E
[
X log

(
X

E[X]

)]
≤ E

[
X

(
X

E[X]
− 1
)]

=
Var[X]
E[X]

.

Writing out the definition of µp gives

Entµp [f2] ≤
Varµp [f2]

Ep[f2]
=
p(1− p)(f(1)2 − f(0)2)2

pf(1)2 + (1− p)f(0)2
.

But as a2 − b2 = (a+ b)(a− b) and (a+ b)2 ≤ 2(a2 + b2), we can estimate

Entµp [f2] ≤ (f(1) + f(0))2

pf(1)2 + (1− p)f(0)2
p(1− p)|Df |2 ≤ 2cp(1− p)|Df |2,

which concludes the proof. ut

Combining Lemma 8.15 with tensorization of the entropy (Theorem 3.14)
shows that Pp satisfies the log-Sobolev inequality

Entp[f2] ≤ 2cpE(f, f), cp =
1

min(p, 1− p)

(we write Entp := EntPp for notational simplicity). Consequently, the discrete
semigroup is hypercontractive with constant c = cp.

Remark 8.16. The biased coin measure µp illustrates that log-Sobolev inequal-
ities are generally strictly stronger than modified log-Sobolev inequalities.
Note that the log-Sobolev constant cp in Lemma 8.15 diverges as p ↓ 0. While
the dependence on p in Lemma 8.15 is not optimal (see Problem 8.3), the log-
Sobolev constant must necessarily diverge: indeed, for the function f(x) = x

Entµp [f2]
E(f, f)

= − log p
1− p

→ +∞ as p ↓ 0.

On the other hand, µp satisfies the modified log-Sobolev inequality

Entµp [f ] ≤ Covµp(log f, f) = E(log f, f)

by Lemma 3.16. Here the constant is independent of p, so we see that the
modified log-Sobolev inequality behaves much better than the log-Sobolev
inequality for small p. One should therefore take care to use in any given
situation the weakest inequality that suffices for that purpose.
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Problems

8.3 (Optimal log-Sobolev constants on the hypercube). The constant
c in Lemma 8.15 is not sharp for any value of p. It is possible to obtain the
best possible constant, but we have to work a bit harder.

a. Lemma 8.15 shows that Entµ1/2 [f2] ≤ 2cE(f, f) with c = 2. Show that the
inequality even holds with c = 1, and that this is optimal.
Hint: let fa,b(0) = a, fa,b(1) = b, and ha(b) = Entµ1/2 [f2

a,b]− 2cE(fa,b, fa,b).
Show that b = a is a local minimum of ha if c < 1 and a global maximum
if c ≥ 1 (to show the latter, it is helpful to note that ha is concave).

b. Show that the Gaussian log-Sobolev inequality can be derived from the
optimal log-Sobolev inequality of part a. using the central limit theorem.

The case p 6= 1
2 is harder. We proceed in a few steps.

c. Show that for any g such that µp[eg] = 1, we have

sup
f>0

µp[f2g]
p(p− 1)|Df |2

=
g(0)g(1)
µp[g]

.

d. Conclude using the variational formula for entropy (Lemma 3.15) that the
optimal log-Sobolev constant c∗p for µp can be written as

c∗p = sup
g:µp[eg]=1

g(0)g(1)
2 Ep[g]

.

e. Compute the above supremum to conclude that

c∗p =
1
2

1
1− 2p

log
(

1− p
p

)
.

8.4 (Hypercontractivity without reversibility). The assumption that
the semigroup is reversible was only used in the proof of Theorem 8.9 in order
to ensure that the chain rule inequality of Lemma 8.11. Without reversibility,
the latter does not hold, but one can still obtain a partial replacement.

a. Show that for any (non-reversible) semigroup,

E(fq−1, f) ≥ 2
q

E(fq/2, fq/2) for q ≥ 2.

Hint: for q ≥ 2, the function a 7→ aq/2 is convex. Argue as in the proof of
Lemma 8.11 using the first-order condition for convexity instead of Jensen.

b. Deduce a weaker form of the implication 1 ⇒ 2 in Theorem 8.9 for p ≥ 2
that holds in the absence of reversibility.
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8.5 (Lq-Poincaré inequalities). Let γ = N(0, I) be the standard Gaussian
measure on Rn. The Gaussian Poincaré inequality states that

‖f −Eµf‖L2(µ) ≤ ‖∇f‖L2(µ),

where we write ‖∇f‖qLq(µ) = Eµ[‖∇f‖q]. The aim of this problem is to show
that γ actually satisfies an entire hierarchy of Lq-Poincaré inequalities

‖f −Eµf‖Lq(µ) .
√
q ‖∇f‖Lq(µ), q ≥ 2

as a consequence of the Gaussian log-Sobolev inequality.

a. Show that for every f > 0 and q ≥ 2

d

dq
‖f‖2Lq(µ) ≤ ‖∇f‖

2
Lq(µ).

Hint: use the log-Sobolev inequality, the chain rule, and Hölder’s inequality.

b. Show that for all f and q ≥ 2

‖f‖2Lq(µ) ≤ ‖f‖
2
L2(µ) + (q − 2)‖∇f‖2Lq(µ).

Hint: to drop the assumption f > 0, apply the previous bound to |f |+ ε.

c. Conclude that for all f and q ≥ 2

‖f −Eµf‖Lq(µ) ≤
√
q − 1 ‖∇f‖Lq(µ).

d. Obtain an analogous result for the measure P1/2 on the hypercube.
Hint: take inspiration from Lemma 8.11 to replace the chain rule.

8.6 (Concentration for non-Lipschitz functions). This problem is a con-
tinuation of the previous one. Let γ = N(0, 1) be the one-dimensional standard
Gaussian measure. If f : R→ R is Lipschitz, that is, if ‖f ′‖∞ ≤ L is uniformly
bounded, then we have Gaussian concentration

Pγ [f ≥ Eγf + t] ≤ e−t
2/2L2

.

However, sometimes one encounters functions that are not Lipschitz, but
which instead have the property that one of the higher derivatives f (k) := dk

dxk
f

is uniformly bounded (for example, if f is a polynomial). We will presently
obtain a concentration inequality for this situation.

a. Show that for any f

‖f −Eγf‖Lq(γ) ≤
d−1∑
k=1

(q − 1)k/2|Eγ [f (k)]|+ (q − 1)d/2‖f (d)‖∞ for q ≥ 2.

Hint: iterate the bound obtained in the previous problem.
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b. Conclude that for any d ≥ 1 and f , and t > 0

Pγ [|f −Eγf | ≥ t] ≤ Cd e−ηf,d(t)/Cd

for a universal constant Cd, where

ηf,d(t) = min
1≤k≤d−1

(
t

|Eγ [f (k)]|

)2/k

∧
(

t

‖f (d)‖∞

)2/d

.

Hint: apply Markov’s inequality in the form P[X ≥ e‖X‖Lq ] ≤ e−q.

Note that it is important in this problem to work with moments rather than
Chernoff bounds (cf. Remark 3.3): as soon as d > 2, the moment generating
function of f will be infinite and we cannot prove tail bounds in this manner.

8.7 (Khintchine-Kahane inequality). Let ε1, . . . , εn be independent ran-
dom variables such that P[εi = +1] = P[εi = −1] = 1

2 , and let a1, . . . , an ∈ R
be arbitrary scalars. Define the random variable

Z =
n∑
i=1

aiεi.

Show that

‖Z‖Lq ≤
√
q − 1
p− 1

‖Z‖Lp

for every q > p > 1. This is known as the Khintchine-Kahane inequality.
Hint: use the optimal hypercontractive constant of Problem 8.3 and observe
that Ptf = e−tf + (1 − e−t)E[f ] for linear functions f . What would happen
if you were to use the suboptimal constant from Example 8.14?

8.3 Talagrand’s L1-L2 inequality

Now that we have developed both the basic ideas behind sharp transitions
and the notion of hypercontractivity, we are finally in a position to complete
the program initiated in the previous two sections.

8.3.1 Improving Poincaré

We begin by developing systematically the method suggested in section 8.2.1
for improving on the Poincaré inequality. We would like to simultaneously
cover several interesting situations such as Gaussian and discrete variables. To
this end, we will work in the following abstract setting. Let Pt be a reversible
Markov semigroup with stationary measure µ and Dirichlet form E(f, g). We
will assume that the Dirichlet form can be expressed as
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E(f, f) =
n∑
i=1

Eµ[Γi(f)2],

where Γi(f) is a suitable notion of “gradient in coordinate i”. For example, in
the case of the Ornstein-Uhlenbeck semigroup we will choose Γi(f) = | ∂∂xi f |,
while we will choose Γi(f) = |δif | for the discrete semigroup on the hypercube.
With these definitions, we obtain the following systematic improvement on
the Poincaré inequality due to Talagrand (on the discrete cube; the present
abstract formulation is due to Cordero-Erausquin and Ledoux).

Theorem 8.17 (L1-L2 inequality). Suppose that µ satisfies the log-Sobolev
inequality with constant c and that Γi(Ptf) . Pt(Γif) for all i, t, f . Then

Varµ[f ] . c

n∑
i=1

‖Γi(f)‖2L2(µ)

1 + log
(‖Γi(f)‖L2(µ)

‖Γi(f)‖L1(µ)

) .
As ‖Γi(f)‖L1(µ) ≤ ‖Γi(f)‖L2(µ) by Jensen’s inequality, the bound of The-

orem 8.17 is never worse than the Poincaré inequality (up to the value of the
constant). However, this bound provides a precise quantitative expression of
the idea envisioned in section 8.2.1 that one could significantly improve on
the Poincaré inequality when ‖Γi(f)‖L1(µ) � ‖Γi(f)‖L2(µ).

Proof. For sake of illustration, let us begin by proving the theorem in the
special case of the Ornstein-Uhlenbeck semigroup, in which case µ = N(0, I)
is the standard Gaussian measure on Rn and Γi(f) = ∂

∂xi
f . Following the

argument of section 8.2.1, we have the following identity:

Varµ[f ] =
n∑
i=1

∫ ∞
0

2e−2t‖PtΓi(f)‖2L2(µ) dt.

We have seen in Example 8.13 that the Ornstein-Uhlenbeck semigroup is
hypercontractive with constant c = 1. Therefore

‖PtΓi(f)‖L2(µ) ≤ ‖Γi(f)‖Lp(t)(µ) where p(t) = 1 + e−2t :

indeed, using Theorem 8.9, it suffices to note that q(t) = 1 + (p(t)− 1)e2t = 2
for all t. Substituting into the above variance identity gives

Varµ[f ] ≤
n∑
i=1

∫ 2

1

‖Γi(f)‖2Lv(µ) dv,

where we made the change of variables v = 1 + e−2t. This inequality can
already be viewed in its own right as an improved Poincaré inequality, and is
in fact slightly sharper in some cases than the inequality in the statement of
the Theorem. However, this inequality is a little unwieldy as it involves not
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just the L1 and L2 norms, but also all norms Lv, 1 ≤ v ≤ 2 in between. To
make it easier to use, we will estimate the Lv norm by L1 and L2 norms using
Hölder’s inequality. To this end, note that by Hölder’s inequality

Eµ[|g|v] = Eµ[|g|θv|g|(1−θ)v] ≤ Eµ[|g|]θvEµ[g2](1−θ)v/2

for v ∈ [1, 2], where θ = θ(v) ∈ [0, 1] satisfies θv + (1− θ)v/2 = 1. Thus

‖g‖Lv(µ) ≤ ‖g‖
θ(v)
L1(µ)‖g‖

1−θ(v)
L2(µ) = ‖g‖L2(µ)

(‖g‖L1(µ)

‖g‖L2(µ)

)θ(v)
.

Therefore, using θ(v) = 2/v − 1 and another change of variables, we have∫ 2

1

‖Γi(f)‖2Lv(µ) dv ≤ ‖Γi(f)‖2L2(µ)

∫ 2

0

(‖Γi(f)‖L1(µ)

‖Γi(f)‖L2(µ)

)s 4
(s+ 2)2

ds

≤
e2‖Γi(f)‖2L2(µ)

1 + log
(‖Γi(f)‖L2(µ)

‖Γi(f)‖L1(µ)

)
as
∫ 2

0
xs ds ≤ e2

∫ 2

0
es log(x/e) ds = e2(1−(x/e)2)/ log(e/x) ≤ e2/(1+log(1/x))

for x ∈ [0, 1]. This evidently completes the proof of the L1-L2 inequality for
the special case of the Ornstein-Uhlenbeck semigroup.

We now turn to the general case. Here the main part of the proof is almost
identical, but there is a small additional issue that needs to be addressed. We
could begin by writing using Corollary 2.30 the variance identity

Varµ[f ] = 2
∫ ∞

0

E(Ptf, Ptf) dt = 2
n∑
i=1

∫ ∞
0

Eµ[Γi(Ptf)2] dt.

What was special for the Ornstein-Uhlenbeck semigroup is that we could
write Γi(Ptf) = e−tPt(Γif). However, in the general case, we only assumed
that Γi(Ptf) . Pt(Γif), that is, the exponential factor is missing. This weaker
assumption will be essential in order to capture the discrete case, for example.
But if we repeat the above proof without the e−t factor, then the integral will
diverge. We must therefore find a way to truncate this integral. What enables
us to do this is that the log-Sobolev inequality with constant c implies a
Poincaré inequality with the same constant by Lemma 8.12. Thus the quantity
E(Ptf, Ptf) decays exponentially by Theorem 2.18, so that the large values of
t in the above integral are negligible. A convenient way to exploit this is to
notice that as Varµ[Ptf ] ≤ e−2t/cVarµ[f ] by Theorem 2.18, we have

Varµ[f ] ≤ Varµ[f ]−Varµ[Ptf ]
1− e−2t/c

=
2

1− e−2t/c

∫ t

0

E(Psf, Psf) ds

for any t using Lemma 2.28. In particular, choosing t = c gives
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Varµ[f ] .
∫ c

0

E(Ptf, Ptf) dt =
n∑
i=1

∫ c

0

Eµ[Γi(Ptf)2] dt,

that is, we have truncated the integral in the variance representation. This
is precisely what we wanted to achieve. The rest of the proof is now almost
identical to the Ornstein-Uhlenbeck case. Indeed, by Theorem 8.9, we have
‖Γi(Ptf)‖L2(µ) . ‖PtΓi(f)‖L2(µ) ≤ ‖Γi(f)‖Lp(t)(µ) for p(t) = 1 + e−2t/c. Thus

Varµ[f ] .
n∑
i=1

∫ c

0

‖Γi(f)‖2Lp(t)(µ) dt . c

n∑
i=1

∫ 2

1

‖Γi(f)‖2Lv(µ) dv,

and the proof is completed exactly as above. ut

As special cases of Theorem 8.17, we deduce the following inequalities for
the Gaussian measure and for the hypercube.

Corollary 8.18. For the standard Gaussian measure γ = N(0, I) on Rn,

Varγ [f ] .
n∑
i=1

‖ ∂f∂xi ‖
2
L2(γ)

1 + log
(
‖ ∂f∂xi ‖L2(γ)

‖ ∂f∂xi ‖L1(γ)

) .
Proof. This case appears already in the proof of Theorem 8.17. ut

Corollary 8.19. For the measure Pp on the hypercube {0, 1}n, we have

Varp[f ] .
n∑
i=1

Ep[(Dif)2]

1 + log
(

1
4p(1−p)

Ep[(Dif)2]
Ep[|Dif |]2

) .
Proof. Let Pt be the discrete semigroup with stationary measure Pp. The
conditions of Theorem 8.17 are satisfied if we choose Γi(f) = δif , as in this
case Γi(Ptf) = Pt(Γif) (the easiest way to see this is to note that δi com-
mutes with the generator L , and therefore also with Pt = etL ; see Example
8.14 above for the relevant notations). The result is readily obtained using
Ep[(δif)2] = p(1− p)Ep[(Dif)2] and Ep[|δif |] = 2p(1− p)Ep[|Dif |]. ut

8.3.2 Some illuminating examples

Before we proceed to apply these results to the problem of establishing sharp
transitions, let us illustrate the improvement that can be achieved over the
Poincaré inequality in some interesting examples.

Example 8.20 (Gaussian maxima). Consider the function

f(x) = max
i≤n

xi,
∂f

∂xi
(x) = 1i=argmaxjxj .
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For X ∼ N(0, I), the Poincaré inequality gives

Var
[

max
i≤n

Xi

]
≤

n∑
i=1

P[i = argmaxjXj ] =
n∑
i=1

1
n

= 1.

Here we used that the distribution of X is invariant under permutation of
the entries; therefore, by symmetry, each coordinate is equally likely to be the
maximizer (and the probability of a tie is zero), so P[i = argmaxjXj ] = 1

n .
However, it turns out that the Poincaré inequality is suboptimal in this

example: applying Theorem 8.17 gives the much better bound

Var
[

max
i≤n

Xi

]
.

n∑
i=1

P[i = argmaxjXj ]
1 + log(P[i = argmaxjXj ]−1/2)

� 1
log n

.

In particular, the variance of the maximum of n standard Gaussian variables
is not just dimension-free, but actually becomes increasingly small as n→∞.
It can be verified by a classical extreme value computation that the above
bound on the variance is in fact sharp in this example.

Example 8.21 (First passage percolation on the torus). Consider an m × m
grid G with periodic boundary conditions (that is, beside the regular grid
edges, there is are edges between the points (i,m) and (i, 1) and between the
points (m, i) and (1, i) for every 1 ≤ i ≤ m.) Fix b > a > 0. To every edge
e, we attach an independent weight Xe that takes the values a, b with equal
probability. The weight Xe should be interpreted as the length of the edge e;
in this manner, our grid G becomes a toy model for random geometry. For any
path γ in G, the length of the path is defined as the sum of its edge weights

len(γ) :=
∑
e∈γ

Xe.

For example, you could think of G as describing random geometry generated
by coffee grounds, and by len(γ) the amount of time it takes for water to
percolate through these grounds along a given path γ.

In our toy model, periodic boundary conditions are imposed to simplify
the analysis, so the model lives on a discrete torus. The natural quantity to
investigate in this setting is the circumference of the torus in the x-direction
(by symmetry, the circumference in the y-direction has the same distribution,
so it suffices to consider one direction only). This quantity is defined as

Z := min
γ

∑
e∈γ

Xe,

where the minimum is taken over all cycles that wind around the torus in the
x-direction. One such cycle is illustrated in the following figure:
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γ

Let us denote the (random) cycle of minimal length by γ∗. If there are several
cycles of minimal length, we choose γ∗ uniformly at random among them.

It is easy to establish the order of magnitude of the random variable Z:
it is trivially seen that am ≤ Z ≤ bm a.s., so Z grows linearly in m. Much
more interesting is the magnitude of the fluctuations. As a first bound, we
can consider the Poincaré inequality. To this end, note that

D+
e Z := sup

Xe

Z − Z = sup
Xe

min
γ

∑
e′∈γ

Xe′ −
∑
e′∈γ∗

Xe′ ≤ (b− a)1e∈γ∗ .

Therefore, the Poincaré inequality gives

Var[Z] ≤ (b− a)2
∑
e

E[1e∈γ∗ ] = (b− a)2E[|γ∗|],

where |γ| denotes the number of edges in γ. But note that

a|γ∗| ≤
∑
e∈γ∗

Xe = min
γ

∑
e∈γ

Xe ≤ bm,

so |γ∗| ≤ bm/a. We have therefore shown that Var[Z] . m. This is already a
nontrivial bound, as it shows that while the magnitude of Z is of order m, its
fluctuations are at most of much smaller order

√
m.

However, we can do better by using the L1-L2 inequality. To this end, we
note as in the proof of Lemma 8.5 that D+

e Z = 1Xe=aDeZ. Therefore, using
Corollary 8.19 for p = 1

2 , we can estimate the variance by

Var[Z] .
∑
e

E[(D+
e Z)2]

log(E[(D+
e Z)2]/E[|D+

e Z|]2)
.
∑
e

P[e ∈ γ∗]
log(1/P[e ∈ γ∗])

.

In order to improve on the Poincaré bound, we must show that P[e ∈ γ∗]� 1.
It is far from obvious, for a general percolation model, how to control the
probability that a given edge is in the optimal path. However, in our case,
the problem is highly simplified by the symmetry of the model. To exploit
symmetry, note that the distribution of the model is invariant under rotation
the torus around the x-axis and around the y-axis. Therefore, for a given path
γ, any other path γ′ that is obtained from γ by translation is equally likely
to be the optimal path. In particular, this implies that all vertical edges have
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the same probability of being in γ∗, and similarly all horizontal edges have
the same probability of being in γ∗. Therefore

m2P[eh ∈ γ∗] +m2P[ev ∈ γ∗] =
∑
e

P[e ∈ γ∗] = E[|γ∗|] . m,

where eh denotes any horizontal edge and ev denotes any vertical edge. In
particular, this shows that P[e ∈ γ∗] . 1/m for every edge e, so that

Var[Z] .
1

logm

∑
e

E[1e∈γ∗ ] .
m

logm
.

This is strictly better than the bound obtained from the Poincaré inequality.

Remark 8.22. It is conjectured that the first passage percolation model is in
the KPZ universality class (precisely what this means is beyond the scope of
this course). This suggests that the true order of the fluctuations should be
of order Var[Z] ∼ n2/3 which is much smaller than suggested by Poincaré.
It is remarkable that such a simple question remains open. The conclusion
obtained from the L1-L2 inequality is a very modest step in this direction.

8.3.3 Sharp transitions

We finally return to the study of sharp transitions. Let f : {0, 1}n → {0, 1}
be a Boolean function on the hypercube. Then (Dif)2 = Dif ∈ {0, 1}, so

Varp[f ] .
n∑
i=1

Ep[(Dif)2]
log(1/Ep[(Dif)2])

≤ 1
log(1/maxi Ep[(Dif)2])

n∑
i=1

Ep[(Dif)2]

by Corollary 8.19. In particular, we significantly improve on Poincaré when

max
i≤n

Ep[(Dif)2]� 1.

Remarkably, it turns out that this phenomenon automatically appears in any
model that exhibits sufficient symmetry! For this reason, sharp transitions
prove to be a rather ubiquitous phenomenon. We have already seen a hint of
this in the Gaussian maxima and percolation examples: in each case, we made
use of symmetry in order to simplify the computation of the logarithmic term.
We will presently develop this idea into a general principle.

We begin by formalizing what sort of symmetry will be useful to us.

Definition 8.23. Denote by Πn the symmetric group on {1, . . . , n}. A family
of permutations Γ ⊆ Πn is said to be transitive if for every i, j ∈ {1, . . . , n},
there exists σ ∈ Γ such that σ(i) = j. A function f : {0, 1}n → {0, 1} is
invariant under Γ if f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all x and σ ∈ Γ .
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Theorem 8.24. Suppose that f : {0, 1}n → {0, 1} is invariant under a tran-
sitive family of permutations Γ . Then we have

Varp[f ] .
1

log n

n∑
i=1

Ep[(Dif)2],

that is, the Poincaré inequality is improved by a logarithmic factor.

Proof. Invariance ensures that Dif(x1, . . . , xn) = Dσ(i)f(xσ(1), . . . , xσ(n)) for
all i, x and σ ∈ Γ . But as Pp has i.i.d. coordinates, this implies

Ep[(Dif)2] = Ep[(Dσ(i)f)2] for all i ≤ n, σ ∈ Γ.

In particular, as Γ is transitive, we conclude that all Ep[(Dif)2] are equal, so

max
i≤n

Ep[(Dif)2] =
1
n

n∑
i=1

Ep[(Dif)2].

We now distinguish two cases.

1. Suppose that
n∑
i=1

Ep[(Dif)2] > log n.

As Varp[f ] = Ep[f ](1−Ep[f ]) for Boolean f , we trivially obtain

Varp[f ] ≤ 1 ≤ 1
log n

n∑
i=1

Ep[(Dif)2].

2. Suppose that
n∑
i=1

Ep[(Dif)2] ≤ log n.

Then
max
i≤n

Ep[(Dif)2] ≤ log n
n

,

so the conclusion follows from the L1-L2 inequality. ut

Corollary 8.25 (Friedgut-Kalai). Suppose that f : {0, 1}n → {0, 1} is
monotone and invariant under a transitive family of permutations Γ . Then

p1−ε − pε ≤
C(ε)
log n

,

where C(ε) ≥ 0 is a constant depending only on ε.
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Proof. By the Margulis-Russo lemma and Theorem 8.24, we have

d

dp
Ep[f ] & Ep[f ](1−Ep[f ]) log n ≥ ε2 log n

for p ∈ [pε, p1−ε]. Therefore

1− 2ε =
∫ p1−ε

pε

d

dp
Ep[f ] dp & (p1−ε − pε)ε2 log n.

Rearranging completes the proof. ut

Corollary 8.25 shows that the width of the critical window of any suffi-
ciently symmetric monotone Boolean function becomes increasingly small as
the dimension is increased. This provides a precise formulation of the informal
principle that was stated at the beginning of this chapter.

Example 8.26 (Voting schemes). A fair voting scheme is a monotone Boolean
function f : {0, 1}n → {0, 1} with pc = 1

2 (this means that the party that
voters prefer on average is the most likely to win the election). Corollary
8.25, or trivial modifications thereof, shows that the critical window of every
“sufficiently democratic” voting scheme converges to zero. In particular, any
“sufficiently democratic” fair voting scheme exhibits a sharp transition.

In the setting of Corollary 8.25, “sufficiently democratic” means that the
voting scheme is invariant under a transitive family of permutations. This
means that every voter has equal influence on the election. Not every fair
voting scheme is quite so democratic. For example, the electoral college scheme
is invariant only under permutation of the voters inside each state. However,
Corollary 8.25 is easily modified to show that the critical window is at most of
order 1/ log k if every state has at least k individuals. Therefore, the electoral
college scheme is “sufficiently democratic” as long as none of the states is too
small. Similar reasoning applies to many other schemes.

Example 8.27 (Graph properties). Let G = (V,E) be a graph with n vertices
V = {1, . . . , n}. As there are N =

(
n
2

)
potential edges, we can view E as an

element of {0, 1}N : that is, an edge is present if the corresponding variable
is one. A Boolean function f : {0, 1}N → {0, 1} is called a graph property
if it is a function only of the graph structure and not of the labels of the
vertices. In other words, if Γ denotes the family of edge permutations that
is induced by permutations of the vertices (graph isomorphisms), then f is
a graph property if and only if it is Γ -invariant. For example, all properties
considered in Example 8.3 are obviously graph properties.

Note that not every permutation of the edges is induced by a vertex permu-
tation, so Γ ( ΠN . Nonetheless, Γ is transitive, as for every choice of vertices
i 6= j and k 6= l, there is a permutation π of V such that (π(i), π(j)) = (k, l).
Thus we obtain the remarkable conclusion that the width of the critical win-
dow of any graph property of an Erdős-Rényi graph is at most of order 1/ log n.
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It is important to note that Corollary 8.25 only implies the presence of a
sharp transition in cases where pc is bounded away from zero and one as n→
∞ (for example, for fair voting schemes), or when pc approaches the boundary
at a slower than logarithmic rate. Recall that we defined sharp transition as
the phenomenon that p1−ε − pε � min(pc, 1− pc), that is, a sharp transition
occurs when the width of the critical window is of much smaller order that
the magnitude of the critical probability. Therefore, if the critical probability
decays at a faster than logarithmic rate, Corollary 8.25 provides no interesting
information. For example, the critical probability for an Erdős-Rényi graph
to be connected is of order ∼ logn

n , so that Corollary 8.25 is not relevant
to this natural graph property. Nonetheless, the connectivity transition of
Erdős-Rényi is indeed sharp, as can be shown by different methods.

The restriction to situations where the critical probability is large is one
of the main drawbacks of the theory we have developed. While the advantage
of this theory is that it is remarkably general, more sophisticated methods are
needed to understand situations where the critical probability is small. The
present theory is the starting point for much stronger results on sharp transi-
tions that can capture small pc situations in various interesting cases, though
this theory is not as complete as the large pc theory developed here. Regard-
less, the mathematical phenomena that we encountered while developing this
theory, such as hypercontractivity, are of much broader significance and arise
in many other problems of high-dimensional probability and analysis.

Problems

8.8 (Group orbits). Prove the following simple extension of Corollary 8.25.
Let Γ be a subgroup of the symmetric group Πn, and let f : {0, 1}n → {0, 1}
be monotone and Γ -invariant. Let Γ (i) = {σ(i) : σ ∈ Γ} be the orbit of
i ∈ {1, . . . , n}. Then the critical window of f has width . 1/ log(mini |Γ (i)|).
Give an interpretation in terms of voting schemes (cf. Example 8.26).

8.9 (The least sharp transition). Corollary 8.25 shows that every mono-
tone Boolean function f : {0, 1}n → {0, 1} that is invariant under a transitive
family of permutations has critical window of width at most 1/ log n. How-
ever, this is a worst-case result: the critical window can certainly be much
smaller. We have seen in Problem 8.2 that among all functions with pc = 1

2 ,
the sharpest transition occurs for the majority function whose critical win-
dow width is of order 1/

√
n. In this problem, we will see that the conclusion

of Corollary 8.25 is nonetheless the best possible: there exists a monotone
Boolean function with pc ≈ 1

2 whose critical window width is of order 1/ log n.
The example is known as the tribes function. Consider n = k` i.i.d.

Bernoulli variables Xij , i ≤ k, j ≤ `. The tribes function is given by

f(x) = max
i≤k

min
j≤`

xij .
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You can think of this as a voting scheme where all voters are divided into k
tribes each consisting of ` individuals. The election outcome is favorable if at
least one tribe votes unanimously for the outcome.

a. In this model, the critical probability depends on the tribe size `. Show that
the choice ` = dlog2 n− log2 log ne ensures that pc → 1

2 as n→∞.
b. Show that if p = 1

2 (1 + c/ log2 n), then Ep[f ] → 1 − 2−e
c

as n → ∞.
Conclude that the width of the critical window is of order 1/ log n.

c. Show that the tribes function f is invariant under a transitive family of
permutations, so that Corollary 8.25 is sharp in this example.

8.10 (BKKKL). Let f : {0, 1}n → {0, 1} be a monotone Boolean function.
The quantity Ipi (f) := Ep[(Dif)2] is called the influence of the ith coordinate:
it is the probability that f will change its value if we flip the value of Xi. For
example, if f is a voting scheme, then Ipi (f) is the probability that ith voter
will change the outcome of the election by changing her vote.

a. Show that the Poincaré inequality implies that there is at least one coordi-
nate whose influence is Ipi (f) ≥ 1

nVarp[f ].
b. Show that the L1-L2 inequality implies that there is at least one coordinate

whose influence is Ipi (f) & logn
n Varp[f ]. That is, at least one voter has

nontrivial influence over the outcome of the election. This is a famous result
of Bourgain, Kahn, Kalai, Katznelson, and Linial (BKKKL).

c. Show that the example of Problem 8.9 satisfies I1/2
i (f) � logn

n Var1/2[f ] for
all i, so that the conclusion of part b. cannot be improved.

8.11 (When can we beat Poincaré?). Let γ = N(0, I) be the stan-
dard Gaussian measure on Rn. The Gaussian Poincaré inequality states that
Varγ [g] ≤ Eγ [‖∇f‖2]. From the L1-L2 inequality, it follows immediately that
we can significantly improve on the Poincaré inequality if

max
i≤n

‖ ∂
∂xi

f‖L1(γ)

‖ ∂
∂xi

f‖L2(γ)

� 1.

However, we can even do a bit better. To this end, define

∆f :=

∑n
i=1 ‖

∂
∂xi

f‖2L1(γ)∑n
i=1 ‖

∂
∂xi

f‖2L2(γ)

.

a. Show that the function g(x) := 1/(1 + log(x−1/2)) is concave for x ∈ [0, 1].

b. Show that
Varγ [f ] . g(∆f )Eγ [‖∇f‖2].

We therefore beat the Poincaré inequality when ∆f � 1. It is natural to ask
whether the condition ∆f � 1 is also necessary in order to beat the Poincaré
inequality. This is certainly not the case for general functions f . However, if
the function f is monotone (that is, if ∂

∂xi
f ≥ 0 for all i), we can say more.
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c. Show that for any function f

Varγ [f ] ≥
n∑
i=1

(Eγ [ ∂f∂xi ])
2.

Hint: use the same variance identity as in the proof of L1-L2.

d. Conclude that if f is monotone, then

Varγ [f ] ≥ ∆fEγ [‖∇f‖2].

Thus it turns out that for monotone functions, the condition ∆f � 1 is
necessary and sufficient to beat the Poincaré inequality. This partially explains
the utility of the L1-L2 inequality in the study of monotone functions.

8.12 (An alternative approach). We have developed a natural approach
to sharp transitions through hypercontractivity and the Talagrand L1-L2 in-
equality. There is an alternative approach, however, that avoids using hyper-
contractivity but rather works directly with the log-Sobolev inequality. The
idea behind this approach is that the log-Sobolev inequality can be viewed in
itself as an improvement of the Poincaré inequality, in that it replaces variance
of f (an L2 norm) by entropy of f2 (an L2 logL “norm”); cf. Remark 3.27.
This intuition is captured by the following simple observation.

a. Show that for any f

Ent[f2] ≥ E[f2] log
(
‖f‖2L2

‖f‖2L1

)
.

Hint: write this expression as log E[g]−E[g2 log(1/g)] ≥ 0 for g = |f |/‖f‖L2 .

The difficulty with this approach is to understand how to properly tensorize
this inequality. To this end, let X1, . . . , Xn be i.i.d. Bernoulli variables with
Xi ∼ µp. Following the proof of tensorization of the variance (Theorem 2.3),
we can express any function f : {0, 1}n → R as a sum of martingale increments

f −Ep[f ] =
n∑
i=1

∆i, ∆i(X) := E[f(X)|X1, . . . , Xi]−E[f(X)|X1, . . . , Xi−1].

We denote by E(f, g) the Dirichlet form defined in Example 8.14.

b. Show that

Varp[f ] =
n∑
i=1

Ep[∆2
i ], E(f, f) =

n∑
i=1

E(∆i, ∆i).

Hint: show that E(∆i, ∆j) = 0 for i 6= j.
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c. Combine parts a. and b. and convexity of − log x to show that

2cpE(f, f) ≥
n∑
i=1

Ep[∆2
i ] log

(
Ep[∆2

i ]
Ep[|∆i|]2

)
≥ Varp[f ] log

(
Varp[f ]∑n

i=1 Ep[|∆i|]2

)
,

where cp denotes the log-Sobolev constant of the measure Pp.

d. Deduce the following inequality that is somewhat reminiscent of L1-L2:
n∑
i=1

Ep[(Dif)2] & Varp[f ] log
(

Varp[f ]∑n
i=1 Ep[|Dif |]2

)
.

e. Use the inequality of part d. to give an alternative proof of Theorem 8.24.

8.13 (Friedgut’s theorem). As was explained in Example 8.26, a conse-
quence of Corollary 8.25 is that any “sufficiently democratic” fair voting
scheme has a sharp transition. The goal of this problem is to prove a strong
converse to this statement due to Friedgut: if a voting scheme fails to exhibit
a sharp transition, then the outcome of the election is essentially controlled
by a small (fixed size) group of individuals, also known as a junta.

This problem is a continuation of Problem 8.12, and we adopt the notations
and results used there. We let f : {0, 1}n → {0, 1} be any fair voting scheme,
that is, a monotone Boolean function such that pc = 1

2 . Fix p, and assume
without loss of generality that Ep[(D1f)2] ≥ Ep[(D2f)2] ≥ · · · ≥ Ep[(Dnf)2],
that is, the voters are labeled in order of decreasing influence. Define

hk(X) := Ep[f(X)|X1, . . . , Xk], fk := 1hk≥1/2.

Then fk is the “best approximation” of the voting scheme f by a voting
scheme that is controlled only by the k most influential voters.

a. Show that Ep[(f − fk)2] ≤ 4 Ep[(f − hk)2] and E(f, f) ≥ E(f − hk, f − hk).

b. Show that
n∑
i=1

Ep[(Dif)2] & Ep[(f − fk)2] log
(

Ep[(f − fk)2]∑n
i=k+1 Ep[|Dif |]2

)
.

c. Argue that Ep[(Djf)2] ≤ 1
j

∑n
i=1 Ep[(Dif)2] for all j ≥ 1, so that

n∑
i=k+1

Ep[|Dif |]2 ≤
1
k

(
n∑
i=1

Ep[(Dif)2]

)2

.

d. Combine parts b. and c. to show that

Ep[(f − fk)2] .
1

log k

n∑
i=1

Ep[(Dif)2].

e. If f is a fair voting scheme that fails to exhibit a sharp transition, then the
slope d

dpEp[f ] = O(1) for some p in the critical window. Show that in this
case, there exists for every δ > 0 a voting scheme f ′ that is controlled by
at most k = eO(1)/δ individuals such that Pp[f 6= f ′] ≤ δ.
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Notes

§8.1. The general study of sharp transitions (as opposed to the study of
specific examples) dates back to the work of Margulis [89] in the context of
random graphs and Russo [114] in the context of percolation. Lemma 8.5 was
proved independently by them. The theory was put on a precise quantitative
footing by Talagrand [127] and by Friedgut and Kalai [64], leading to many
further developments. Excellent reviews of this theory and its applications can
be found in [78, 65, 103]. Corollary 8.6 was proved by Bollobás and Thomason
[23]. The conclusion of Problem 8.2 was noted in [64].

§8.2. The notion of hypercontractivity is of great importance in many prob-
lems in probability, analysis, and discrete mathematics. It first appeared in
the work of Nelson [100, 101] in quantum field theory. A version for discrete
measures first appeared in the work of Bonami [24] in harmonic analysis (see
also [14]). Of major importance was the paper of Gross [73] who systemat-
ically developed the theory of log-Sobolev inequalities and their connection
with hypercontractivity. Theorem 8.9 essentially appears in this paper. Fur-
ther historical remarks can be found in [43, 103]. Lemma 8.11, which enables
the formulation for general Markov semigroups, is sometimes known as the
Stroock-Varopoulos inequality [122, p. 183], [144]. A detailed treatment of
log-Sobolev inequalities in various settings (particularly in statistical mechan-
ics) can be found in [75], while the connections between log-Sobolev, modified
log-Sobolev, and Poincaré inequalities is explored in [22]. Problem 8.3 is taken
from [115] and Problem 8.4 is taken from [47]. Problems 8.5 and 8.6 are taken
from [1] (which also contains a multidimensional version of Problem 8.6).

§8.3. The L1-L2 inequality for the hypercube is due to Talagrand [127], who
developed it specifically for the investigation of sharp transitions. A precursor
for the case p = 1

2 appeared in a famous paper of Kahn, Kalai and Linial
[77]. We have followed the semigroup treatment given in [41]. The applica-
tion to percolation is due to Benjamini, Kalai, and Schramm [19]; see [65]
for a detailed presentation. The book of Chatterjee [37] contains a systematic
study of this and other methods for beating the Poincaré inequality (a phe-
nomenon referred to as superconcentration). Corollary 8.25 is due to Friedgut
and Kalai [64]. Problem 8.9 has its origin in Ben Or and Linial [17]. Problem
8.10 follows [77, 27]. Problem 8.11 is taken from [37]. The approach of Prob-
lem 8.12 is independently due to Falik and Samorodnitsky [61] and Rossignol
[112]. Problem 8.13 is due to Friedgut [63], but we follow the approach in [25].
There are various other notions connected to sharp transitions, such as the
important idea of noise sensitivity. See [65] for a detailed treatment or [29] for
a semigroup approach that is similar in spirit to the methods of this section.
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Universality

Let f(X1, . . . , Xn) =
∑n
k=1Xk be a linear function of independent random

variables. Then the central limit theorem suggests that

f(X1, . . . , Xn) ≈ N(Ef,Varf)

when n is large. In Chapter 3, we showed that the Gaussian nature of fluctua-
tions extends in a weak sense to many nonlinear functions f : the fluctuations
of a Lipschitz function of independent random variables are subgaussian.

In this chapter, we will interpret the conclusion of the central limit theo-
rem in a very different light. Observe that the central limit theorem exhibits a
remarkably property: it shows that the distribution of a linear function of in-
dependent random variables is close to Gaussian regardless of the distribution
of the underlying variables X1, . . . , Xn! The phenomenon that the distribution
of a function of many independent random variables tends to be insensitive to
the distributions of the underlying variables is called universality. This phe-
nomenon is very common in high-dimensional random structures, and is quite
distinct from the concentration phenomenon.

The aim of this chapter is to develop some basic tools for the study of
universality properties of general nonlinear functions f(X1, . . . , Xn) of inde-
pendent random variables. We will address two distinct questions:

a. When is Ef(X1, . . . , Xn) insensitive to the distributions of X1, . . . , Xn?
b. When is the distribution of f(X1, . . . , Xn) approximately Gaussian?

In principle, these two questions are completely orthogonal. The first is a direct
formulation of the notion of universality, and is unrelated to the Gaussian dis-
tribution (there is no reason to demand that f(X1, . . . , Xn) is approximately
Gaussian for the universality phenomenon to appear; indeed, this is typically
not the case in interesting problems). The second could be viewed as a nonlin-
ear central limit theorem: it asks when Gaussian behavior appears in highly
nonlinear settings. Despite that these are independent questions, both will be
addressed in this chapter using a common framework.
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9.1 The Lindeberg method

In Chapter 1, we stated the following informal principle:

If X1, . . . , Xn are independent (or weakly dependent) random vari-
ables, then the expectation E[f(X1, . . . , Xn)] is “insensitive” to the
distribution of X1, . . . , Xn when the function f is “sufficiently smooth.”

We presently develop a very simple method that makes this idea precise.
Let us begin by considering the case whereX and Y are real-valued random

variables with the same mean and variance. Then we can use a rather trivial
observation: if we Taylor expand f to third order, the first and second order
terms in E[f(X)] − E[f(Y )] cancel as X and Y have the same mean and
variance. Thus |E[f(X)]−E[f(Y )]| is controlled by the third derivative of f .

Lemma 9.1. Let X and Y be real-valued random variables with the same
mean and variance. Then for any f : R→ R, we have

|E[f(X)]−E[f(Y )]| ≤ 1
6
‖f ′′′‖∞E[|X|3 + |Y |3].

Proof. Taylor expanding f to third order gives

|f(X)− f(0)− f ′(0)X − 1
2f
′′(0)X2| ≤ 1

6‖f
′′′‖∞|X|3,

|f(Y )− f(0)− f ′(0)Y − 1
2f
′′(0)Y 2| ≤ 1

6‖f
′′′‖∞|Y |3.

We therefore have

|E[f(X)]−E[f(Y )]|
≤ |E[f ′(0)(X − Y ) + 1

2f
′′(0)(X2 − Y 2)]|+ 1

6‖f
′′′‖∞E[|X|3 + |Y |3].

The proof is concluded using E[X − Y ] = E[X2 − Y 2] = 0. ut

The basic message of Lemma 9.1 is that if f has small third derivative,
then the expectation E[f(X)] can depend significantly only on the mean and
variance of X but is otherwise nearly insensitive to its distribution. In itself,
this rather trivial observation is not terribly useful. Remarkably, however,
it becomes a powerful tool when extended to higher-dimensional situations.
The key issue that we must address is how to tensorize Lemma 9.1 to higher
dimensions. To this end, we will use a simple device that is very similar in
spirit to the proof of tensorization of the variance (Theorem 2.3).

Theorem 9.2 (Universality). Let X and Y be random vectors in Rn with
independent coordinates, and suppose that E[Xi] = E[Yi] and E[X2

i ] = E[Y 2
i ]

for all i. Then for any f : Rn → R, we have

|E[f(X)]−E[f(Y )]| ≤ 1
6

n∑
i=1

∥∥∥∥∂3f

∂x3
i

∥∥∥∥
∞

E[|Xi|3 + |Yi|3].
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Proof. Define the random vector Zi := (X1, . . . , Xi, Yi+1, . . . , Yn). Then we
can write the difference between E[f(X)] and E[f(Y )] as a telescoping sum

E[f(X)]−E[f(Y )] =
n∑
i=1

{E[f(Zi)]−E[f(Zi−1)]}.

That is, we replace the coordinates Xi by Yi one at a time. To bound the ith
summand, we note that Lemma 9.1 gives the estimate

|E[f(Zi)|F(i)]−E[f(Zi−1)|F(i)]| ≤ 1
6

∥∥∥∥∂3f

∂x3
i

∥∥∥∥
∞

E[|Xi|3 + |Yi|3|F(i)],

where we wrote F(i) = (Xj , Yj)j 6=i and where we used that E[Xi|F(i)] =
E[Yi|F(i)] and E[X2

i |F(i)] = E[Y 2
i |F(i)] as (Xi, Yi) are independent of F(i).

Substituting into the telescoping sum completes the proof. ut

Remark 9.3. It will be evident that Theorem 9.2 can be improved in various
ways. For example, one can obtain better bounds on the remainder term in
the Taylor expansion, and one can prove sharper results when we match more
moments E[X`

i ] = E[Y `i ] for ` < k (this situation arises, for example, in some
problems of random matrix theory). However, the basic principle behind the
proof, called the Lindeberg method, is surprisingly useful for proving univer-
sality statements and can often be adapted to more sophisticated situations.

We will illustrate the application of Theorem 9.2 in two examples: we
will develop a quantitative error bound in the central limit theorem, and we
investigate the Wigner semicircle law in random matrix theory.

9.1.1 Universality and the central limit theorem

Let X1, . . . , Xn and Y1, . . . , Yn be independent random variables such that
E[Xi] = E[Yi] = 0 and E[X2

i ] = E[Y 2
i ] for all i. Then Theorem 9.2 gives∣∣∣E[g( 1√

n

∑n
i=1Xi

)]
−E

[
g
(

1√
n

∑n
i=1 Yi

)]∣∣∣
≤ 1

6

n∑
i=1

(
1√
n

)3

‖g′′′‖∞E[|Xi|3 + |Yi|3]

≤ ‖g
′′′‖∞

6
√
n

max
i≤n

E[|Xi|3 + |Yi|3]

for every smooth function g : R → R. We therefore see that as long as
maxi E|Xi|3 = o(

√
n), the distribution of 1√

n

∑n
i=1Xi becomes increasingly

insensitive to the distribution of the random variables Xi as n→∞. That is,
we obtain a quantitative statement of universality in the central limit theorem.

In principle, there is no special connection between the universality prop-
erty and the Gaussian distribution. In particular, while we have seen that the
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distribution of 1√
n

∑n
i=1Xi is insensitive to the distributions of the random

variables Xi, we did not conclude anything about what the distribution of
1√
n

∑n
i=1Xi actually is. It is a rather special feature of the present example

that it is easy to derive the central limit theorem from universality alone.
Indeed, suppose that Xi are independent random variables with mean zero,
unit variance, and bounded third moment, and let Gi ∼ N(0, 1) be indepen-
dent standard Gaussian variables. Then we may certainly make the special
choice Yi = Gi in the above formula. However, for Gi, the distribution of
1√
n

∑n
i=1Gi ∼ N(0, 1) can be explicitly computed. We therefore obtain∣∣∣∣E[g( 1√

n

∑n
i=1Xi

)]
−
∫
g(x)

e−x
2/2

√
2π

dx

∣∣∣∣ . ‖g′′′‖∞√n
for every smooth function g, which is a quantitative central limit theorem.

9.1.2 The semicircle law

In order to illustrate the application of Theorem 9.2 in a nontrivial setting, we
presently use it to give a simple proof of a classical result in random matrix
theory. This elaborate example will require us to introduce some additional
ideas that illustrate various tools that we encountered previously.

Throughout this section, let X be an n×n symmetric matrix whose entries
Xij are independent random variables with E[Xij ] = 0, E[X2

ij ] = 1, and
E[|Xij |3] ≤ C for i ≥ j (here C is a constant independent of n). A random
matrix X with these properties, called a Wigner matrix, is perhaps the most
basic model for a symmetric matrix with random entries.

One of the main goals of random matrix theory is to understand the be-
havior of the eigenvalues λi(X) of the matrix X. To obtain a first rough idea
of the scale of these eigenvalues, note that we have

E

[
1
n

n∑
i=1

λi(X)2
]

=
1
n

E[TrX2] =
1
n

n∑
i,j=1

E[X2
ij ] = n.

That is, the average magnitude of an eigenvalue of X is of order ∼
√
n.

This means, in particular, that the eigenvalues of the matrix X/
√
n should

have magnitude of order one. We are interested in understanding how these
eigenvalues are distributed when the dimension n of the matrix is large. To
this end, we define the spectral distribution of X/

√
n as

µn := E

[
1
n

n∑
i=1

δλi(X/
√
n)

]
,

where δx denotes a point mass at x. That is, µn is the probability measure on
R such that µn([a, b]) is the expected fraction of the eigenvalues of X/

√
n that

lie in the interval [a, b]. This distribution obeys the following unusual law.
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Theorem 9.4 (Wigner semicircle law). The measures µn converge in dis-
tribution as n→∞ to the Wigner semicircle distribution

µn(dx) =⇒ µsc(dx) :=
1

2π

√
4− x2 1|x|≤2 dx.

The density of the measure µsc has the following form:

0−2 2

Theorem 9.4 can be interpreted as follows: the (averaged) histogram of the
eigenvalues of the matrix X/

√
n looks, when n is large, like a semicircle. This

amusing fact can be verified numerically using your favorite software.
The formulation of Theorem 9.4 immediately evokes two questions:

a. Where does the semicircle distribution µsc come from?
b. Why is µn insensitive to the distribution of the entries Xij as n→∞?

To prove Theorem 9.4, we will in fact address each of these questions sepa-
rately. First, we will use Theorem 9.2 to show that the limiting distribution of
µn is universal. Once this has been established, we can choose any convenient
distribution of the entries for the purposes of further analysis. We will find
it particularly convenient to complete the proof in the setting of Gaussian
Wigner matrices with Xij ∼ N(0, 1). In this case, we can take full advan-
tage of uniquely Gaussian tools, such as Gaussian integration by parts and
the Poincaré inequality, to deduce convergence to the semicircle distribution.
Such a two-step approach is quite typical in applications of Theorem 9.2.

Before we can proceed with either part of the proof, we must understand
how to prove convergence in distribution of the measures µn. By definition,
we must show that

∫
f(u)µn(du) converges to

∫
f(u)µsc(du) for any bounded

continuous function f (it suffices to consider smooth functions with com-
pact support by a routine approximation argument). However, it may not be
straightforward to analyze directly an arbitrary continuous function of the
eigenvalues of a random matrix. To simplify the problem, a classical idea in
probability theory is that it suffices to prove convergence of the characteristic
functions

∫
eituµn(du) to

∫
eituµsc(du). In the setting of random matrices, it

proves to the useful to consider instead a somewhat different transformation.

Definition 9.5 (Stieltjes transform). The Stieltjes transform Sµ of a prob-
ability measure µ on R is the function Sµ : C\R→ C defined as

Sµ(z) :=
∫

1
u− z

µ(du).
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Just like the characteristic function, the Stieltjes transform contains all
information needed to recover the distribution. In fact, the inversion formula
for Stieltjes transforms is much simpler than for characteristic functions.

Lemma 9.6. For any bounded continuous function f∫
f(x)µ(dx) = lim

ε↓0

1
π

∫
f(x) Im[Sµ(x+ iε)] dx.

Proof. Note that the imaginary part of (u− z)−1 can be written as

1
π

Im
[

1
u− x− iε

]
=

1
π

ε

(u− x)2 + ε2
= ρε(x− u),

where ρε is the probability density function of the Cauchy distribution with
mean zero and scale parameter ε. We can therefore write

1
π

∫
f(x) Im[Sµ(x+ iε)] dx =

∫
f(x) ρε(x− u) dxµ(du) = E[f(X + Zε)]

where X ∼ µ and Zε ∼ Cauchy(0, ε) are independent. As Zε → 0 in proba-
bility as ε→ 0, the claim follows immediately. ut

Now that we know that Sµ characterizes the distribution, it is not surpris-
ing that pointwise convergence of Sµ characterizes convergence in distribution
just as in the case of characteristic functions. The proof is a routine weak con-
vergence argument which we include for completeness.

Lemma 9.7. Let µn be any sequence of probability measures on R. Then there
is a subsequence along which Sµnk converges pointwise to the Stieltjes trans-
form Sµ of a sub-probability measure µ. If all such subsequences converge to
the same limit and µ is a probability measure, then µn ⇒ µ.

Proof. A sequence of measures µn on R is said to converge vaguely to a mea-
sure µ if

∫
fdµn →

∫
fdµ for every continuous function f that vanishes at

infinity. The following facts are classical (see Problem 9.4):

a. Any sequence of probability measures µn on R has a subsequence that
converges vaguely to a limiting sub-probability measure µ on R.

b. If every vaguely convergent subsequence of µn converges to the same mea-
sure µ, and if µ is a probability measure, then µn ⇒ µ.

We can now easily complete the proof. There exists a subsequence µnk that
converges vaguely to a sub-probability µ. As u 7→ (u− z)−1 is continuous and
vanishes at infinity whenever z ∈ C\R, Sµnk → Sµ pointwise. Now suppose
every pointwise convergence subsequence of Sµn converges to Sµ. Then by
Lemma 9.6, every vaguley convergent subsequence of µn converges to µ. ut
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The previous lemmas show that Stieltjes transforms can be applied in
the same way as characteristic functions to prove convergence in distribution.
The advantage of Stieltjes transforms is essentially for the following reason.
Proving

∫
fdµn →

∫
fdµ directly for arbitrary bounded continuous functions

f can be challenging. Characteristic functions reduce attention to the special
case f(u) = eitu, which are analytic functions with many nice properties.
Stieltjes transforms instead reduce attention to the case f(u) = (u − z)−1,
which are algebraic functions. This is particularly convenient in the random
matrix setting, as it allows us to use linear algebra to do computations.

Our short detour through probability transforms and limit theorems has
little to do with the methods of this course, but was necessary to provide us
with the basic objects that appear in the proof of Theorem 9.4. We are now
ready to execute the proof. We begin by establishing universality.

Proposition 9.8. Let X and Y be Wigner matrices with E[Xij ] = E[Yij ] = 0,
E[X2

ij ] = E[Y 2
ij ] = 1, and E[|Xij |3 + |Yij |3] ≤ C. Denote by µXn and µYn the

spectral distributions of X/
√
n and Y/

√
n, respectively. Then

|SµXn (z)− SµYn (z)| . C

|Im[z]|4
√
n
.

Proof. Fix z ∈ C\R, and define the function

f(X) :=
1
n

Tr
[(

X√
n
− zI

)−1]
=

1
n

n∑
i=1

1
λi(X/

√
n)− z

.

Then by definition SµXn (z) = E[f(X)] and SµYn (z) = E[f(Y )]. As the matrices
X and Y are symmetric by definition, we will think of f as being a function
only of the independent variables {Xij : i ≥ j}.

To apply Theorem 9.2, we need to compute the derivatives of f . Recall
that as 0 = d

dtM(t)M(t)−1 = dM(t)
dt M(t)−1 +M(t)dM(t)−1

dt by the chain rule,
we have the matrix identity d

dtM(t)−1 = −M(t)−1 dM(t)
dt M(t)−1. Therefore,

d

dXij

(
X√
n
− zI

)−1

= − 1√
n

(
X√
n
− zI

)−1

Eij

(
X√
n
− zI

)−1

,

where Eij = dX
dXij

is the matrix whose (i, j) and (j, i) entries are one and the
remaining entries are zero. In particular, we compute

d3f(X)
dX3

ij

=

− 6
n5/2

Tr
[(

X√
n
− zI

)−1

Eij

(
X√
n
− zI

)−1

Eij

(
X√
n
− zI

)−1

Eij

(
X√
n
− zI

)−1]
.

But note that as |(u− z)−1| = 1/|u− z| ≤ 1/|Im[z]| for every u ∈ R, we have
‖(X/

√
n−zI)−1‖ ≤ 1/|Im[z]| where ‖·‖ denotes the operator norm. Moreover,

it is easily seen that ‖Eij‖ ≤ Tr[|Eij |] ≤ Tr[E2
ij ]

1/2 ≤ 2. We therefore obtain
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dX3
ij

∥∥∥∥
∞

.
1

|Im[z]|4n5/2

using |Tr[AB]| ≤ Tr[|A|]‖B‖. The conclusion follows from Theorem 9.2. ut

Proposition 9.8 shows that any limit of the Stieltjes transforms Sµn(x)
must be independent of the choice of distribution of the entries Xij of the
underlying Wigner matrices: that is, we have explained the universality that
appears in Theorem 9.4. In particular, we are now free to choose any conve-
nient distribution of the entries in the remainder of the proof. We presently
complete the proof in the case of Gaussian Wigner matrices, were we can take
advantage of specifically Gaussian tools to simplify the computations.

Proposition 9.9. Let X be a Gaussian Wigner matrix with Xij ∼ N(0, 1)
for all i ≥ j. Then Sµn(z)→ Sµsc(z) for every z ∈ C\R as n→∞.

Proof. The idea behind the proof is a simple algebraic computation. Note that
(Y − zI)(Y − zI)−1 = I implies Y (Y − zI)−1 = I + z(Y − zI)−1. Thus

1 + zSµn(z) = E
[

1
nTr

[
X√
n

(
X√
n
− zI

)−1]]
.

But E[Xijf(X)] = E[df(X)
dXij

] by Gaussian integration by parts (Lemma 2.23),
so the derivative formula in the proof of Proposition 9.8 yields

E
[
Xij

(
X√
n
− zI

)−1

ij

]
=

− 1√
n

E
[(

X√
n
− zI

)−1

ii

(
X√
n
− zI

)−1

jj
+
((

X√
n
− zI

)−1

ij

)2]
for every i 6= j (for i = j, the same equation holds when the right-hand side
is multiplied by a factor 1

2 ). In particular, we obtain

1 + zSµn(z) = − 1
n2

E
[
Tr
[(

X√
n
− zI

)−1]2]
− 1
n2

E
[
Tr
[(

X√
n
− zI

)−2]]
+

1
n2

n∑
i=1

E
[((

X√
n
− zI

)−1

ii

)2]
.

This expression is rather illuminating. Note first that both terms on the second
line of this expression are of order O(n−1), as u 7→ (u − z)−1 is a bounded
function when z ∈ C\R. These terms are therefore negligible. On the other
hand, the term on the first line is nearly equal to −Sµn(z)2: it would be equal
if we could move the square outside the expectation. To this end, note that∣∣∣∣ 1

n2
E
[
Tr
[(

X√
n
− zI

)−1]2]
− Sµn(z)2

∣∣∣∣ = |E[(f(X)−Ef(X))2]|

. Var[Ref(X)] + Var[Imf(X)],
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where the function f is defined as in the proof of Proposition 9.8. But it is
readily verified using the derivative formula in the proof of Proposition 9.8
that

∣∣df(X)
dXij

∣∣ . n−3/2, so that Var[Ref(X)] + Var[Imf(X)] = O(n−1) by the
Gaussian Poincaré inequality. We have therefore shown that

1 + zSµn(z) = −Sµn(z)2 +O(n−1).

That is, we have obtained an explicit equation for Sµn in the limit n→∞.
To complete the proof, suppose that a subsequence of Sµn(z) converges to

the Stieltjes transform S(z) of some sub-probability measure. Then we must
have 1 + zS(z) = −S(z)2, and solving using the quadratic formula yields

S(z) = −z
2
± 1

2

√
z2 − 4.

But note that

lim
ε↓0

Im[S(x+ iε)] = lim
ε↓0

(
− ε

2
± 1

2
Im[
√
x2 − ε2 + 2iεx− 4]

)
= ±1

2
Im[
√
x2 − 4] = ±1

2

√
4− x2 1|x|≤2.

As we assumed that S(z) is the Stieltjes transform of a subprobability mea-
sure, it follows that we must choose the positive solution of the quadratic
formula, and we conclude using Lemma 9.6 that S(z) is in fact the Stieltjes
transform of the semicircle law. As the same law is obtained for any conver-
gent subsequence of Sµn(z), the conclusion follows from Lemma 9.7. ut

Problems

9.1 (Nonequal means and variances). The proof of Theorem 9.2 is easily
extended to the case where E[Xi] 6= E[Yi] and E[X2

i ] 6= E[Y 2
i ].

a. Prove the following generalized variant of Theorem 9.2:

|E[f(X)]−E[f(Y )]| ≤
n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥
∞
|E[Xi]−E[Yi]|+

1
2

n∑
i=1

∥∥∥∥∂2f

∂x2
i

∥∥∥∥
∞
|E[X2

i ]−E[Y 2
i ]|+ 1

6

n∑
i=1

∥∥∥∥∂3f

∂x3
i

∥∥∥∥
∞

E[|Xi|3 + |Yi|3].

b. Show that the conclusion of Theorem 9.4 continues to hold when the diago-
nal entries of X have arbitrary mean |E[Xii]| ≤ C and variance E[X2

ii] ≤ C.

9.2 (Better convergence rate in the central limit theorem). We saw
in section 9.1.1 that convergence in the central limit theorem occurs with rate
n−1/2 for i.i.d. random variables with zero mean, unit variance, and finite
third moment (at least for smooth test functions g). The aim of this problem
is to show that the rate of convergence can sometimes be much faster.
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a. Let k ≥ 1. Prove a variant of Theorem 9.2 that involves only
∥∥∂kf
∂xki

∥∥
∞.

b. Let g ∼ N(0, 1), and suppose that Xi are i.i.d. random variables such that
the first k− 1 moments satisfy E[X`

i ] = E[g`] for ` < k, and E[|Xi|k] <∞.
Then the convergence rate in the central limit theorem is of order ∼ n1−k/2:
we obtain fast rates if we match more moments of the Gaussian distribution.

9.3 (Sherrington-Kirkpatrick ground state). To define a statistical me-
chanics model of n spins (particles that can be in one of two states {−1, 1}), we
must specify for every configuration σ ∈ {−1, 1}n of spins the energy H(σ) of
that configuration. Particularly challenging are systems like glass in which the
energy landscape is very rough or “disordered”. A classical model due to Sher-
rington and Kirkpatrick models such a rough energy landscape by introducing
random interactions between the spins. To this end, let Xij , 1 ≤ i, j ≤ n be
independent random variables with zero mean and unit variance, and define

H(σ) =
1

n3/2

∑
1≤i<j≤n

Xijσiσj .

The ground-state energy, that is, the energy the system attains at zero tem-
perature (assuming it is in thermal equilibrium), is given by

Z = min
σ∈{−1,1}n

H(σ).

(The scaling of the energy function was chosen so that Z is of order unity.)
One of the basic questions one can ask about this model is whether the

ground-state energy is universal, that is, does it depend significantly on the
distribution of the variables Xij? Universality is important from the physical
perspective: it states that macroscopic observations are insensitive to the mi-
croscopic details in the description of physical systems. We would like to apply
Theorem 9.2 to this setting. However, random variable Z is not three times
differentiable with respect to the variables Xij . The solution to this problem
is to introduce a suitable smooth approximation of the minimum.

a. Show that for any β > 0

|Z − Zβ | ≤
n log 2
β

, Zβ = − 1
β

log

( ∑
σ∈{−1,1}n

e−βH(σ)

)
.

b. Combine part a. with Theorem 9.2 to show that the expected ground-state
energy E[Z] is insensitive to the distribution of the variables Xij .

9.4 (Vague convergence). Let σn be a sequence of probability measures
on [−1, 1]. As the interval [−1, 1] is compact, any such sequence is tight and
therefore admits a subsequence that converges in distribution.
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a. Show that if every convergent subsequence of the sequence σn converges to
the same limiting probability measure σ, then σn ⇒ σ.
Hint: if the conclusion is false, there exists a bounded continuous f such
that lim inf σn(f) < lim supσn(f). Now extract convergent subsequences.

Now let µn be a sequence of probability measures on R.

b. Show by example that it is possible that there does not exist any subse-
quence of µn that converges in distribution.

c. Let ι(x) := tanh(x) and define σn = µn ◦ ι−1. Then each σn is a probability
measure on ]−1, 1[, so there exists a subsequence such that σnk ⇒ σ for a
probability measure σ on [−1, 1]. Show that µ = σn ◦ ι is a sub-probability
measure on R and that µnk converges vaguely to µ.

d. Show that if every vaguely convergent subsequence of the sequence µn con-
verges to the same limiting sub-probability measure µ, then µn → µ vaguely.

e. Show that if the sequence µn converges vaguely to µ and µ is a probability
measure (as opposed to a sub-probability), then µn ⇒ µ.
Hint: let χk ∈ [0, 1] be a smooth function that vanishes at infinity such that
χk(x) = 1 for |x| ≤ k. Then fχk is continuous and vanishes at infinity for
every bounded continuous function f , and |f − fχk| ≤ ‖f‖∞(1− χk).

9.5 (Almost sure convergence in the semicircle law). In Theorem 9.4,
we have seen that the expected fraction of eigenvalues of X/

√
n that lie in

the interval [a, b] converges to µsc([a, b]) as n → ∞. It turns out there is no
need to average: the fraction of eigenvalues of X/

√
n that lie in the interval

[a, b] converges a.s. to µsc([a, b]). That is, the histogram of the eigenvalues of
a single realization of a large random matrix already looks like a semicircle.

a. Show that (A− zI)−1 − (B − zI)−1 = (A− zI)−1(B −A)(B − zI)−1.

b. Deduce that if A and B are matrices that differ only in a single row and
column, then rank((A− zI)−1 − (B − zI)−1) ≤ 2.

c. Conclude that if A and B differ only in a single row and column, then
|Tr[(A−zI)−1]−Tr[(B−zI)−1]| ≤ 4/Im[z]. Hint: use |Tr[A]| ≤ rank(A)‖A‖.

d. Use McDiarmid’s inequality and a Borel-Cantelli argument to show that
1
nTr[(X/

√
n− zI)−1]− Sµn(z)→ 0 a.s. as n→∞.

e. Conclude in the setting of Theorem 9.4 that the fraction of eigenvalues of
X/
√
n that lie in the interval [a, b] converges a.s. to µsc([a, b]).
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9.2 Stein’s method

In the previous section we developed a very elementary approach—the Linde-
berg method—for bounding |E[f(X)]−E[f(Y )]| when X,Y are random vec-
tors with independent coordinates. The key idea behind this method was to
interpolate between the distributions of X and Y by switching one coordinate
at a time: we introduced a sequence of random vectors Zi such that Z0 = X,
Zn = Y , and Zi−Zi−1 depends only on Xi−Yi. By writing E[f(X)]−E[f(Y )]
as a telescoping sum, we could apply a trivial one-dimensional bound to each
term in the sum. This idea is reminiscent of the approach that we used to
prove tensorization of the variance. This is however by no means the only way
in which one can interpolate between two distributions.

In this section, we develop another natural approach that relies on a differ-
ent notion of interpolation. To interpolate between the distributions of random
vectors X and Y , we will introduce an ergodic Markov semigroup whose sta-
tionary measure is the distribution of Y . If (Xt)t≥0 is the associated Markov
process that is started in the initial distribution X0 ∼ X, then Xt has the
distribution of X at t = 0 and the distribution of Y as t→∞ (we emphasize
that in contrast to earlier chapters, here we do not start the Markov process
in its stationary distribution). Thus we can view t 7→ Xt as a continuous path
that interpolates between these two distributions. This construction enables
us to use semigroup methods to develop universality results. As was the case
for Poincaré inequalities, the semigroup approach (known as Stein’s method in
the present setting) provides a powerful tool to investigate universality phe-
nomena that goes significantly beyond the simple tensorization methods. For
concreteness, we will focus on the case that Y is Gaussian, though the basic
approach can be extended to many other distributions.

Throughout this section, we let X be a random vector on Rn with dis-
tribution µ (unlike in the previous section, we do not assume that X has
independent coordinates). We let G be a standard Gaussian vector on Rn
with distribution γ := N(0, I), and we denote by

Ptf(x) := E[f(e−tx+
√

1− e−2tG)]

the Ornstein-Uhlenbeck semigroup with stationary measure γ. Recall that the
generator of Pt is given by L f(x) = ∆f(x)− 〈x,∇f(x)〉 (see Example 8.13).
We can now easily interpolate between the distributions of X and G by using,
instead of a telescoping sum as in the Lindeberg method, the fundamental
theorem of calculus. To this end, note that we can write

E[f(G)]− f(x) = P∞f(x)− P0f(x) =
∫ ∞

0

d

dt
Ptf(x) dt =

∫ ∞
0

LPtf(x) dt.

Substituting X into this identity gives immediately

|E[f(X)]−E[f(G)]| =
∣∣∣∣E[ ∫ ∞

0

LPtf(X) dt
]∣∣∣∣.
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This identity is surely an excellent starting point for bounding the quantity
|E[f(X)] − E[f(G)]|. However, it is far from clear in first instance how one
might control this expression. In particular, the presence of an infinite integral
may appear somewhat ominous: if one is not careful when bounding the in-
tegrand, the integral may diverge. It will therefore be very useful to begin by
simplifying the appearance of this identity by eliminating the infinite integral.
To this end, we introduce the following definition.

Definition 9.10 (Potential). The potential operator G is defined as

G f :=
∫ ∞

0

(Ptf − γf) dt.

Of course, this definition achieves little more than hiding the infinite in-
tegral in the notation G f . This is useful, however, as we will be able to take
care of convergence of the integral once and for all in a single lemma.

Lemma 9.11. Let f : Rn → R be an L-Lipschitz function. Then:

1. The integral in the definition of G f converges uniformly on compacts.
2.
∥∥∂kG f
∂xki

∥∥
∞ ≤

1
k

∥∥∂kf
∂xki

∥∥
∞ for every k ≥ 1 and 1 ≤ i ≤ n.

3. ‖∇G f(x)‖ ≤ L and ‖∇2G f(x)‖ ≤ L
√

2
π for every x ∈ Rn.

4. f − γf = −L G f (Poisson equation).

Proof. To prove convergence, note that

|Ptf(x)− γf | = |E[f(e−tx+
√

1− e−2tG)− f(G)]|

≤ LE[e−t‖x‖+ (1−
√

1− e−2t)‖G‖] ≤ Le−t(‖x‖+
√
n),

where we used 1 −
√

1− e−2t ≤ e−2t and E‖G‖ ≤
√
n. Thus clearly the

integral in the definition of G f converges uniformly on any compact set.
To bound the derivatives, first note that

∂k

∂xki
G f(x) =

∫ ∞
0

∂k

∂xki
Ptf(x) dt =

∫ ∞
0

e−ktPt

(
∂kf

∂xki

)
(x) dt,

where we used that ∇Ptf = e−tPt∇f . Thus the uniform derivative bound
follows from

∫∞
0
e−ktdt = 1

k . The bound ‖∇G f(x)‖ ≤ L follows similarly as

‖∇G f(x)‖ =
∥∥∥∥ ∫ ∞

0

e−tPt∇f(x) dt
∥∥∥∥ ≤ ∫ ∞

0

e−tPt‖∇f‖(x) dt ≤ L.

So far, we have bounded the kth derivatives of G f by the kth derivatives of
f . Now, however, we would like to bound the second derivative ∇2G f by the
Lipschitz constant L, which controls the first derivative of f . To this end, we
use Gaussian integration by parts (Lemma 2.23) to eliminate one derivative:
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∂2

∂xi∂xj
G f(x) =

∫ ∞
0

e−2t E
[

∂2f

∂xi∂xj
(e−tx+

√
1− e−2tG)

]
dt

=
∫ ∞

0

e−2t

√
1− e−2t

E
[
Gj

∂f

∂xi
(e−tx+

√
1− e−2tG)

]
dt.

We can therefore compute (here B is the unit ball in Rn)

‖∇2G f(x)‖ = sup
v,w∈B

〈v,∇2G f(x)w〉

= sup
v,w∈B

∫ ∞
0

e−2t

√
1− e−2t

E[〈w,G〉〈v,∇f(e−tx+
√

1− e−2tG)〉] dt

≤ L sup
w∈B

E[|〈w,G〉|]
∫ ∞

0

e−2t

√
1− e−2t

dt ≤ L
√

2
π
,

where we used that E[|ξ|] =
√

2
π for ξ ∼ N(0, 1) and e−2t

√
1−e−2t = d

dt

√
1− e−2t.

Finally, to prove the Poisson equation, we simply note that

L G f =
∫ ∞

0

LPtf dt =
∫ ∞

0

d

dt
Ptf dt = γf − f,

where we used that L γf = 0. The proof is complete. ut

Now that we have established that G f is a well-defined (and very regular)
operator, we can formulate the core principle of Stein’s method.

Corollary 9.12 (C. Stein). For every Lipschitz function f , we have

|E[f(X)]−E[f(G)]| = |E[L G f(X)]|.

In particular, we have for any probability measure µ on Rn

W1(µ, γ) ≤ sup
‖∇g‖≤1,‖∇2g‖≤

√
2
π

|Eµ[L g]|.

Proof. The first identity follows immediately from the Poisson equation,
while the second identity follows from the definition of Wasserstein distance
W1(µ, γ) := supf∈Lip(Rn) |E[f(X)]−E[f(G)]| and Lemma 9.11. ut

Corollary 9.12 provides us with a powerful “master theorem” for proving
results about Gaussian approximation. In particular, we will see that it can
be used both for proving universality results, and for proving central limit
theorems in complex situations. At first sight, however, its significance is far
from clear: why should Eµ[L g] = E[∆g(X)−〈X,∇g(X)〉] be small, and what
does this have to do with Gaussian distributions? To shed some light on the
significance of Corollary 9.12, let us first investigate a trivial situation.
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Example 9.13 (Integration by parts characterizes the Gaussian distribution).
If X is itself a standard Gaussian random vector, then Lemma 2.23 shows
that it satisfies the following Gaussian integration by parts identity:

E
[
Xi

∂g

∂xi
(X)

]
= E

[
∂2g

∂2xi
(X)

]
for every i, g. It turns out that the Gaussian integration by parts identity
uniquely characterizes the Gaussian distribution. Indeed, if µ is any distribu-
tion such that X ∼ µ satisfies the above identity, then

W1(µ, γ) ≤ sup |Eµ[L g]| = sup |E[∆g(X)− 〈X,∇g(X)〉]| = 0

by Corollary 9.12, where the supremum is taken over all functions g such that
‖∇g‖ ≤ 1 and ‖∇2g‖ ≤

√
2/π. Thus in this case we must have µ = γ.

Example 9.13 suggests a rather intuitive interpretation of Stein’s method.
If a measure µ possesses the Gaussian integration by parts property, we have
seen that µ = γ must be Gaussian. In essence, Corollary 9.12 states that if µ
approximately satisfies the Gaussian integration by parts property, then µ ≈ γ
must be approximately Gaussian (in a precise quantitative sense). This idea
played an important role in the historical development of Stein method.

What remains to be understood is how one might establish, in any given
situation, that E[∆g(X) − 〈X,∇g(X)〉] is small. In many cases, this can be
accomplished by a clever use of Taylor expansion in the spirit of Lemma 9.1.
We will illustrate this approach presently in two simple examples. In the next
section, we will encounter another method for controlling the Stein identity
that will allow us to derive a very general nonlinear central limit theorem.

As a first example, let us give an alternative proof of Theorem 9.2 using
Stein’s method. This shows that the universality principle developed in the
previous section can be recovered as a special case of the present approach.

Example 9.14 (Universality). In this example, we assume that X1, . . . , Xn are
independent random variables with mean zero and unit variance, and we let
f : Rn → R be a given function. We would like to bound

|E[f(X)]−E[f(G)]| = |E[L g(X)]| =

∣∣∣∣∣
n∑
i=1

E
[
∂2g

∂x2
i

(X)−Xi
∂g

∂xi
(X)

]∣∣∣∣∣,
where we defined g := G f . To this end, define

X(i) := (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn).

We first Taylor expand ∂g
∂xi

to second order:

∂g

∂xi
(X) =

∂g

∂xi
(X(i)) +Xi

∂2g

∂x2
i

(X(i)) +O

(
X2
i

∥∥∥∥∂3g

∂x3
i

∥∥∥∥
∞

)
.
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Multiplying by Xi and taking the expectation gives

E
[
Xi

∂g

∂xi
(X)

]
= E

[
Xi

∂g

∂xi
(X(i)) +X2

i

∂2g

∂x2
i

(X(i))
]

+O

(∥∥∥∥∂3g

∂x3
i

∥∥∥∥
∞

E[|Xi|3]
)

= E
[
∂2g

∂x2
i

(X(i))
]

+O

(∥∥∥∥∂3g

∂x3
i

∥∥∥∥
∞

E[|Xi|3]
)
,

where we used that E[Xi] = 0 and E[X2
i ] = 1, and that Xi and X(i) are

independent. The approximate Gaussian integration by parts property is al-
ready clearly visible here! The only problem is that the second derivative on
the right depends on X(i) rather than on X. To resolve this issue, we simply
Taylor expand this term as well, which yields another remainder term

∂2g

∂x2
i

(X(i)) =
∂2g

∂x2
i

(X) +O

(
|Xi|

∥∥∥∥∂3g

∂x3
i

∥∥∥∥
∞

)
.

Putting everything together yields the bound

|E[f(X)]−E[f(G)]| .
n∑
i=1

∥∥∥∥∂3g

∂x3
i

∥∥∥∥
∞

E[|Xi|3]

(we used E[|Xi|] ≤ 1 ≤ E[|Xi|3] as E[X2
i ] = 1). But as

∥∥ ∂3g
∂x3
i

∥∥
∞ .

∥∥∂3f
∂x3
i

∥∥
∞ by

Lemma 9.11, we essentially recover the conclusion of Theorem 9.2.

Remark 9.15. Note that the statement of Theorem 9.2 was formulated for any
pair of random vectors X,Y with independent entries, while in the present
setting one of the vectors was assumed to be Gaussian. However, this is not
an issue: if Y is another random vector whose entries are independent with
mean zero and unit variance, we can simply estimate

|E[f(X)]−E[f(Y )]| ≤ |E[f(X)]−E[f(G)]|+ |E[f(Y )]−E[f(G)]|

and apply the above bound to each term to recover Theorem 9.2 (the state-
ment is also easily extended to arbitrary means and variances by scaling and
centering X and Y ). Therefore, even though the Gaussian distribution played
a central role in our development of Stein’s method (through the choice of
semigroup), we nonetheless recover a genuine universality statement.

As a second example, we will use Stein’s method to bound the rate of
convergence in the central limit theorem with respect to the Wasserstein dis-
tance. In this setting, we will use Stein’s method in a very different manner
than when we proved universality: in particular, here the Gaussian distribu-
tion plays a special role. (One can apply similar ideas to prove quantitative
bounds in limit theorems with other limiting distributions, such as Poisson
limits; however, each distribution requires its own variant of Stein’s method
for the associated semigroup, which can be developed along the same lines.)
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Example 9.16 (Wasserstein convergence rate in the central limit theorem). Let
Z1, . . . , Zk be independent random variables with zero mean and unit variance.
The central limit theorem states that the random variable

X :=
1√
k

k∑
i=1

Zi

is approximately Gaussian. The aim of this example is to prove a strong
quantitative form of this statement. We will denote the distribution of X as
X ∼ µk, and we denote by γ the standard Gaussian measure on R.

Proposition 9.17. In the present setting

W1(µk, γ) .
1

k3/2

k∑
i=1

E[|Zi|3].

Unlike in the case of universality, our aim here is not to understand what
happens to the distribution of X when we change the distribution of the ran-
dom vector Z1, . . . , Zk to that of a Gaussian vector. Rather, we would like to
understand how far is the distribution of the one-dimensional random vari-
able X itself from a one-dimensional Gaussian G ∼ N(0, 1). We will therefore
apply Stein’s method in the one-dimensional setting n = 1.

Proof (Proposition 9.17). Let f : R→ R be any 1-Lipschitz function, and let
g = G f be its (one-dimensional) potential. By Corollary 9.12, we have

|E[f(X)]−E[f(G)]| = |E[g′′(X)−Xg′(X)]|

=

∣∣∣∣∣E[g′′(X)]− 1√
k

k∑
i=1

E[Zig′(X)]

∣∣∣∣∣.
To make this expression small, we would like to express E[Zig′(X)] in terms
of g′′. For our present purposes, it will be convenient to use the following exact
expression for the first-order Taylor expansion of g′.

Lemma 9.18. Let U ∼ Unif([0, 1]) be a uniform random variable. Then

g′(x)− g′(y) = (x− y) E[g′′(y + U(x− y))].

Proof. We clearly have

g′(x)− g′(y) =
∫ 1

0

d

dt
g′(tx+ (1− t)y) dt = (x− y)

∫ 1

0

g′′(y + t(x− y)) dt

by the fundamental theorem of calculus. ut
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If we use Lemma 9.18 to Taylor expand g′ around a point Xi, we obtain

E[Zig′(X)] = E[Zig′(Xi)] + E[Zi(X −Xi)g′′(Xi + U(X −Xi))]

with U ∼ Unif([0, 1]) independent of Z1, . . . , Zn, X
i. How do we choose Xi?

The main idea to keep in mind is that we would like to mimic the Gaussian
integration by parts formula, so only g′′ should appear on the right-hand side.
We should therefore choose Xi such that E[Zig′(Xi)] = 0. In the present
setting, this is easily accomplished by choosing

Xi :=
1√
k

∑
j 6=i

Zj ,

so that Xi is independent of Zi and X−Xi = Zi√
k

. Then E[Zig′(Xi)] vanishes
as E[Zi] = 0, and we obtain the approximate integration by parts identity

E[Zig′(X)] = E
[
Z2
i√
k
g′′
(
Xi +

UZi√
k

)]
.

We have therefore shown that

|E[f(X)]−E[f(G)]| =

∣∣∣∣∣1k
k∑
i=1

E
[
g′′
(
Xi +

Zi√
k

)
− Z2

i g
′′
(
Xi +

UZi√
k

)]∣∣∣∣∣.
At this stage, the remainder of the proof should be almost obvious. Suppose
g′′ was evaluated at the point Xi (rather than Xi+Zi/

√
k and Xi+UZi/

√
k)

in this expression. Then the right-hand side would vanish as E[Z2
i ] = 1 and as

Zi is independent of Xi. Therefore, if we could Taylor expand g′′ to first order
around Xi, then we could bound the right-hand side by the remainder terms
which are precisely of the order suggested by Proposition 9.17. The problem
with this approach is that we do not know that g′′′ is bounded: this does not
follow from Lemma 9.11 as we only assumed that f is Lipschitz. Fortunately,
it will suffice to use the following slightly weaker property.

Lemma 9.19. |g′′(x)− g′′(y)| . (1 + |y|)|x− y| for every x, y ∈ R.

Proof. By construction, g satisfies the Poisson equation

g′′(x)− xg′(x) = γf − f(x).

We therefore obtain

|g′′(x)− g′′(y)| ≤ |f(x)− f(y)|+ |g′(x)| |x− y|+ |y| |g′(x)− g′(y)|.

But f is 1-Lipschitz, |g′| ≤ 1 and g′ is
√

2
π -Lipschitz by Lemma 9.11. ut
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Using this lemma, we estimate∣∣∣∣g′′(Xi +
Zi√
k

)
− g′′(Xi)

∣∣∣∣ . (1 + |Xi|) |Zi|√
k
,∣∣∣∣g′′(Xi +

UZi√
k

)
− g′′(Xi)

∣∣∣∣ . (1 + |Xi|)U |Zi|√
k
.

We therefore obtain

|E[f(X)]−E[f(G)]| . 1
k3/2

k∑
i=1

E[(1 + |Xi|)(|Zi|+ U |Zi|3)].

But as Xi and Zi are independent and E[|Xi|2] ≤ 1 and E[Z2
i ] = 1, we have

E[(1 + |Xi|)(|Zi|+ U |Zi|3)] = E[1 + |Xi|] E[|Zi|+ U |Zi|3] . E[|Zi|3].

We have therefore shown that

W1(µn, γ) = sup
f∈Lip(R)

|E[f(X)]−E[f(G)]| . 1
k3/2

k∑
i=1

E[|Zi|3],

and the proof is complete. ut

It should be emphasized that we applied Stein’s method in a very different
manner when we proved universality and the Wasserstein central limit theo-
rem, even though both were based on the same “master principle” (Corollary
9.12). These ideas extend in orthogonal directions. As we already discussed,
universality arises in many situations that have no particular relation to the
Gaussian distribution. On the other hand, Stein’s method for Gaussian ap-
proximation can be used to prove central limit theorems in complex situations
where other methods are not easily applicable, such as in the presence of non-
trivial dependence structures or highly nonlinear interactions. We will develop
an interesting principle of the latter type in the next section.

Problems

9.6 (Uniqueness). We have seen in Example 9.13 that the integration by
parts identity uniquely characterizes the Gaussian measure. The aim of this
problem is to investigate the significance of this fact from another perspective.

a. Let Pt be the Ornstein-Uhlenbeck semigroup and γ be the standard Gaus-
sian measure. Show that γ is the unique stationary distribution for Pt.
Hint: use that Ptf → γf pointwise as t→∞.

b. Argue that µ is a stationary measure for a Markov semigroup Pt with
generator L if and only if Eµ[L f ] = 0 for all f ∈ Dom(L ).

Thus the conclusion of Example 9.13 is simply a reformulation of the fact that
the Ornstein-Uhlenbeck semigroup has a unique stationary measure.



302 9 Universality

9.7 (Regularity of the third derivative). Let f be a Lipschitz function.
We have shown in Lemma 9.11 that the potential G f has bounded first and
second derivatives. Unfortunately, the integration by parts trick that was used
in the proof of Lemma 9.11 does not allow us to obtain any meaningful infor-
mation on the third derivatives of G f (why?)

While one cannot expect to control the third derivatives in any dimension,
it turns out that the one-dimensional case hase a very special property: we
always have ‖(G f)′′′‖∞ ≤ 4‖f ′‖∞ for any Lipschitz function f : R → R.
This property is much more delicate than the general regularity properties
that were developed in Lemma 9.11. Nonetheless, this special one-dimensional
property is extremely useful. For example, it would have simplified the proof of
Proposition 9.17, and is crucial for extensions of the latter result to dependent
situations. The aim of this problem is to develop the relevant estimate.

a. Let f : R→ R be Lipschitz and g := G f . Show that

L g′(x) = g′(x)− f ′(x).

Hint: take inspiration from Lemma 9.19.

b. Show that the above identity implies that

g′(x)− γg′ = G h(x), h(x) := f ′(x)− g′(x).

Hint: what is G L f for a Lipschitz function f?

c. Show that ‖h− γh‖∞ ≤ 2‖f ′‖∞.

In view of what we have just shown, the estimate ‖(G f)′′′‖∞ ≤ 4‖f ′‖∞ would
follow from the equally interesting estimate ‖(G h)′′‖∞ ≤ 2‖h − γh‖∞. The
remainder of this problem is devoted to establishing the latter inequality.

d. Show that
(G h)′(x) = ex

2/2

∫ ∞
x

e−y
2/2(h(y)− γh) dy.

Hint: denote by h̃′(x) the right-hand side in the above expression. First
show that L h̃(x) = γh− h. Now conclude as in part b. that G h = h̃− γh̃.

e. Prove the Mills ratio estimate∫ ∞
x

e−y
2/2 dy ≤ e−x

2/2

x
, x > 0.

f. Conclude that for x ≥ 0

|(G h)′′(x)| = |x(G h)′(x)− h(x) + γh| ≤ 2‖h− γh‖∞.

g. Extend the conclusion to x ≤ 0. Hint: consider G h− where h−(x) := h(−x).
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9.8 (Counting triangles in Erdős-Rényi graphs). Let G ∼ G(n, p) an
Erdős-Rényi graph with n vertices and edge probability p. That is, G = (V,E)
is a random graph with vertices V = {1, . . . , n}, and where each potential edge
between two vertices is chosen to be present in the graph independently with
probability p. We will write X̃e = 1 if e ∈ E, and X̃e = 0 otherwise.

We are interested in the total number of triangles Z̃ in G, that is,

Z̃ :=
∑
τ∈T

∏
e∈Eτ

X̃e,

where we defined T := {τ ⊆ V : |τ | = 3} and Eτ := {e ⊂ τ : |e| = 2}.

a. Compute E[Z̃] and Var[Z̃].

While the edge variables X̃e are independent, the triangle count Z̃ is a sum
of dependent random variables. Nonetheless, Z̃ will typically satisfy a central
limit theorem when n is large: the standardized triangle count Z defined by

Z :=
Z̃ −E[Z̃]
Var[Z̃]1/2

=
∑
τ∈T

Xτ , Xτ :=

∏
e∈Eτ X̃e − p3

Var[Z̃]1/2

is approximately N(0, 1) distributed when n is sufficiently large. Stein’s
method provides us with a powerful method to quantify this approximation
as a function of n and p. The aim of this problem is to adapt the proof of
Proposition 9.17 to obtain a bound on W1(µn,p, γ), where µn,p denotes the
distribution of Z and γ is the standard Gaussian measure on R.

b. Let f : R→ R be 1-Lipschitz and g := G f . Show that

|µn,pf − γf | =

∣∣∣∣∣E[g′′(Z)]−
∑
τ∈T

E[Xτg
′(Z)]

∣∣∣∣∣.
c. Define

Zτ :=
∑

τ ′∈T :|τ ′∩τ |≤1

Xτ ′ ,

so that Zτ is independent of Xτ . Show that

E[Xτg
′(Z)] = E[Xτ (Z − Zτ )g′′(Z)] +O(E[|Xτ |(Z − Zτ )2]).

Hint: use the third derivative estimate of Problem 9.7.

d. Define
Γ :=

∑
τ∈T

Xτ (Z − Zτ ).

Show that E[Γ ] = E[Z2] = 1, and conclude that

|µn,pf − γf | .
√

Var[Γ ] +
∑
τ∈T

E[|Xτ |(Z − Zτ )2].
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e. Show that

Var[Γ ] .
n3p3 + n4p5 + n5p7 + n6p9

Var[Z̃]2
,

∑
τ∈T

E[|Xτ |(Z − Zτ )2] .
n3p3 + n4p5 + n5p7

Var[Z̃]3/2
.

f. Conclude that if p ≤ 1
2 and np ≥ 1, then

W1(µn,p, γ) .
1
np
.

In particular, the central limit theorem µn,p ⇒ γ holds as np→∞.
Hint: Var[Z̃] & n3p3(1 + np2) and n3p3 + n4p5 + n5p7 . n3p3(1 + np2)2.

g. Argue that the central limit theorem µn,p ⇒ γ cannot hold if np 6→ ∞.

9.9 (The Stein-Chen method). While we have developed Stein’s method
in the Gaussian setting, it should be clear that the basic principle behind
this method is not specific to the Gaussian distribution: one can develop an
analogous theory for many other distributions by starting with an appropri-
ate semigroup. As an illustration, we will develop in this problem a classical
variant of Stein’s method for the Poisson distribution due to Chen.

We denote by νλ the Poisson distribution on Z+ with rate λ > 0. We first
construct a Markov semigroup on Z+ for which νλ is stationary. To this end,
consider the Markov process (Xt)t∈R+ with transition rates (cf. Example 2.12)

P[Xt+δ = k + 1|Xt = k] = λδ + o(δ),
P[Xt+δ = k − 1|Xt = k] = kδ + o(δ),

P[Xt+δ = j|Xt = k] = o(δ) for |j − k| > 1.

Denote by Pt the associated Markov semigroup and by L its generator.

a. Show that L f(k) = λ∆f(k+1)−k∆f(k), where ∆f(k) := f(k)−f(k−1).

b. Show that νλ is a stationary measure for Pt. Hint: νλ(L f) = 0.

The main challenge in establishing analogues of Stein’s method for other dis-
tributions is to obtain a suitable replacement for Lemma 9.11. In the present
setting, we will accomplish this using an elementary coupling argument.

c. Let (Xt)t∈R+ be a Markov process with semigroup Pt started atX0 = k, and
let T ∼ Expon(1) be independent of X. Define Yt = Xt + 1T>t. Show that
(Yt)t∈R+ is Markov with the same semigroup Pt but started at Y0 = k + 1.

d. Conclude that ∆Ptf = e−tPt∆f .
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e. For any function f : Z+ → R, define

S f(k) :=
∫ ∞

0

∆Ptf(k) dt.

Show that S f is well defined, ‖S f‖∞ ≤ ‖∆f‖∞, and

kS f(k)− λS f(k + 1) = f(k)− νλf.

f. Conclude that for any Z+-valued random variable X ∼ µ, we have

‖µ− νλ‖TV ≤ sup
‖g‖∞≤1

|E[λg(X + 1)−Xg(X)]|.

We now develop a simple application. LetX1, . . . , Xn be independent Bernoulli
variables with P[Xi = 1] = pi and P[Xi = 0] = 1− pi. Define

Z :=
n∑
i=1

Xi, λ = E[Z] =
n∑
i=1

pi,

and denote the distribution of Z by µ.

g. Show that

E[λg(Z + 1)− Zg(Z)] =
n∑
i=1

p2
iE[g(Z + 1)− g(Z)|Xi = 1].

h. Prove the law of small numbers

‖µ− νλ‖TV .
n∑
i=1

p2
i .

In particular, if λ = O(1) and maxi pi = o(1), then the distribution of Z
converges as n→∞ to a Poisson distribution with rate λ.

9.3 A second-order Poincaré inequality

Stein’s method as developed in the previous section provides a “master theo-
rem” for proving both universality statements and quantitative central limit
theorems. In the case of universality, we derived a general principle that ex-
plains when the distribution of a given function f(X1, . . . , Xn) of independent
random variables is insensitive to the distribution of the underlying variables
Xi (Theorem 9.2). In contrast, when we applied Stein’s method to prove
central limit theorems, we used more problem-specific arguments to perform
the analysis. To improve both our understanding and the utility of Stein’s
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method, it will be of significant interest to discover general principles that ex-
plain when the distribution of a given function f(X1, . . . , Xn) of independent
random variables is itself close to Gaussian.

We will presently develop such a principle in the special case that Xi are
themselves standard Gaussian variables. This by no means trivializes the prob-
lem, as there is no reason in general why a nonlinear function f(X1, . . . , Xn)
of Gaussian random variables should be Gaussian. The setting where the un-
derlying variables Xi are themselves Gaussian is already of significant interest
and allows for a particularly clean formulation of a general principle.

Theorem 9.20 (Chatterjee). Let X1, . . . , Xn ∼ N(0, 1) be i.i.d. standard
Gaussian variables. If f : Rn → R satisfies E[f(X)] = 0, Var[f(X)] = 1, then

W1(Law(f(X)), N(0, 1)) . E[‖∇f(x)‖4]1/4E[‖∇2f(x)‖4]1/4.

This remarkably general nonlinear central limit theorem is reminiscent in
appearance of the Poincaré inequality. The Poincaré inequality states that
f(X) has bounded variance if ‖∇f‖ = O(1). Theorem 9.20 refines this to
a second-order statement: if in addition ‖∇2f‖ = o(1), then f(X) obeys a
central limit theorem. For this reason, Theorem 9.20 is often referred to as a
“second-order Poincaré inequality” (as we will see, the proof also has much
in common with the Poincaré inequality). The role of the Hessian of f could
be viewed as a quantitative measure of nonlinearity: if the Hessian vanishes,
then f is a linear function and Theorem 9.20 reduces to the trivial statement
that a linear function of independent Gaussian variables is Gaussian.

Proof (Theorem 9.20). We begin by using Corollary 9.12 to estimate

W1(Law(f(X)), N(0, 1)) ≤ sup
|φ′′|≤

√
2
π

|E[φ′′(f(X))− f(X)φ′(f(X))]|,

that is, we use Stein’s method in its one-dimensional form. As usual, we would
like to replace φ′ by φ′′ to show that the right-hand side is small. We previously
accomplished this by Taylor expansion around a cleverly chosen point. In the
present case, however, we will take a different route that exploits the fact that
the variables Xi are Gaussian. To this end, we begin by noting that

E[f(X)φ′(f(X))] = E[f(X)(φ′(f(X))−E[φ′(f(X))])]
= Cov[f(X), φ′(f(X))],

where we used that E[f(X)] = 0. The main idea behind the proof is the
following observation: just as the Poincaré inequality bounds the variance of
a function of Gaussian variables by its gradient, we can obtain an expression
for the covariance of two functions of Gaussian variables in terms of their
gradients (in fact, we already did this in Problem 2.11, but we will give an
independent proof presently). As∇φ′(f(X)) = φ′′(f(X))∇f(X), the resulting
expression involves φ′′ only, which is precisely what we aim to accomplish!
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Let us now proceed to implement this idea. While we could mimic the
proof of the Poincaré inequality to obtain the requisite covariance identity, we
can actually use Stein’s method to take an easy shortcut.

Lemma 9.21. Let X1, . . . , Xn ∼ N(0, 1) be i.i.d. standard Gaussian vari-
ables. Then we have for any functions g : Rn → R and h : Rn → R

Cov[g(X), h(X)] = E[〈∇g(X),∇G h(X)〉].

Proof. Let γ be the standard Gaussian measure in Rn. Then

Covγ [g, h] = Eγ [g(h− γh)] = −Eγ [gL G h] = E(g,G h),

where we used the Poisson equation (Lemma 9.11). Here L ,E are the gener-
ator and Dirichlet form of the n-dimensional Ornstein-Uhlenbeck process. ut

Remark 9.22. The reader should verify that the covariance identity obtained
here coincides with the identity obtained from first principles in Problem 2.11.

Using Lemma 9.21, we obtain

Eγ [φ′′(f)− fφ′(f)] = Eγ [φ′′(f)]− Covγ [φ′(f), f ]
= Eγ [(1− 〈∇f,∇G f〉)φ′′(f)]

for any function φ, where γ is the standard Gaussian measure in Rn. On the
other hand, for the special case φ(x) = x2 this expression reduces to

Eγ [〈∇f,∇G f〉] = 1,

where we used E[f(X)2] = 1. We can therefore estimate

W1(Law(f(X)), N(0, 1)) ≤
√

2
π

Eγ [|1− 〈∇f,∇G f〉|]

≤
√

2
π

Varγ [〈∇f,∇G f〉]1/2.

To complete the proof, we simply apply the Poincaré inequality to the variance
on the right-hand side of this expression. This gives

W1(Law(f(X)), N(0, 1)) . Eγ [‖∇〈∇f,∇G f〉‖2]1/2

= Eγ [‖∇2f ∇G f +∇2G f ∇f〉‖2]1/2

≤ Eγ [‖∇2f‖4]1/4Eγ [‖∇G f‖4]1/4 + Eγ [‖∇2G f‖4]1/4Eγ [‖∇f‖4]1/4,

where we used the triangle inequality and Cauchy-Schwarz. It finally remains
to eliminate the potential operator G from this expression. This is easily done
following the proof of Lemma 9.11. Indeed, as
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∇G f =
∫ ∞

0

e−tPt∇f dt,

we can estimate

Eγ [‖∇G f‖4] ≤
∫ ∞

0

e−tEγ [Pt‖∇f‖4] dt = Eγ [‖∇f‖4]

using Jensen’s inequality and that γ is the stationary distribution of the
Ornstein-Uhlenbeck semigroup Pt. Applying the identical argument to ∇2G f
yields Eγ [‖∇2G f‖4] ≤ Eγ [‖∇2f‖4], which completes the proof. ut

Remark 9.23. Note that we applied Stein’s method in two different ways in
the above proof. We first used the one-dimensional form of Stein’s method
to bound the Wasserstein distance. We subsequently used the n-dimensional
form of Stein’s method to prove Lemma 9.21 and to control G f .

To illustrate the power of Theorem 9.20, we will apply it to obtain a central
limit theorem for the eigenvalues of Gaussian Wigner matrices.

Example 9.24 (Central limit theorem for Gaussian Wigner matrices). Let X
be an n×n symmetric matrix whose entries Xij ∼ N(0, 1) are i.i.d. standard
Gaussian random variables for i ≥ j. That is, X is a Gaussian Wigner matrix.
We showed in Theorem 9.4 and Problem 9.5 that

lim
n→∞

1
n

n∑
i=1

h(λi(X/
√
n)) =

∫
h(x)µsc(dx)

for all nice functions h. This could be interpreted as a sort of law of large
numbers for the eigenvalues of Wigner matrices. It is therefore natural to
wonder whether the eigenvalues of Wigner matrices also satisfy an analogue of
the central limit theorem? It turns out that this is indeed the case despite that
the random variables λi(X/

√
n), far from being independent, exhibit a very

complicated dependence structure. For simplicity, we will restrict attention to
Gaussian Wigner matrices and to functions of the form h(x) = xq for q ≥ 1
(the proof is easily extended to the case that h is any polynomial).

Proposition 9.25. In the present setting, let

Z :=
n∑
i=1

λi(X/
√
n)q, Z̄ :=

Z −EZ
Var[Z]1/2

.

Then there is a universal constant C(q) depending only on q such that

W1(Law(Z̄), N(0, 1)) ≤ C(q)
n

.
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The simplification provided by the choice h(x) = xq is that we can easily
express Z = Tr[(X/

√
n)q] as a function of the entries of the matrix X. As

the latter were assumed to be independent Gaussians, we are immediately in
the setting of Theorem 9.20. The proof of Proposition 9.25 will follow once we
bound the derivatives of the function f(X) := (Tr[(X/

√
n)q]−EZ)/Var[Z]1/2.

This is easily accomplished using the tools developed in previous chapters.

Lemma 9.26. There is a constant C(q) depending only on q such that

E[‖∇f(X)‖4]1/4 ≤ C(q)
Var[Z]1/2

, E[‖∇2f(X)‖4]1/4 ≤ C(q)
nVar[Z]1/2

.

Proof. We first bound the gradient E‖∇f(X)‖4. We readily compute

∂f(X)
∂Xij

=
Tr[q(X/

√
n)q−1Eij ]√

nVar[Z]1/2
,

where Eij is as defined in the proof of Proposition 9.8. So

‖∇f(X)‖2 =
q2Tr[(X/

√
n)2q−2]

nVar[Z]
≤ q2‖X/

√
n‖2q−2

Var[Z]
.

To bound E‖∇f(X)‖4, it remains to estimate E‖X/
√
n‖4q−4. But a trivial

modification of Example 5.10 already shows that E‖X‖ .
√
n. Moreover, as

‖X −Y ‖ ≤ Tr[(X −Y )2]1/2 = [
∑
ij(Xij −Yij)2]1/2, the random variable ‖X‖

is 1-subgaussian by Gaussian concentration. Therefore

E[‖X‖4q−4]1/(4q−4) ≤ E‖X‖+ E[(‖X‖ −E‖X‖)4q−4]1/(4q−4) ≤
√
n+K(q)

for a universal constant K(q) that depends only on q (cf. Problem 3.1). This
readily gives the claimed bound on the gradient E‖∇f(X)‖4.

The Hessian case E‖∇2f(X)‖4 is almost identical. We readily compute

∂2f(X)
∂Xij∂Xkl

=
q−2∑
u=0

Tr[qEij(X/
√
n)uEkl(X/

√
n)q−2−u]

nVar[Z]1/2
.

Therefore

‖∇2f(X)‖ = sup
q−2∑
u=0

Tr[qM(X/
√
n)uN(X/

√
n)q−2−u]

nVar[Z]1/2
,

where the supremum is taken over all symmetric matricesM,N with Tr[M2] =
Tr[N2] = 1. But note that by the matrix Hölder inequality

Tr[M(X/
√
n)uN(X/

√
n)q−2−u] ≤ ‖X/

√
n‖q−2Tr[M2]1/2Tr[N2]1/2,

so we have

‖∇2f(X)‖ ≤ q(q − 1)‖X/
√
n‖q−2

nVar[Z]1/2
.

The rest of the proof is identical to the gradient case. ut
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We now readily conclude the proof of Proposition 9.25.

Proof (Proposition 9.25). Combining Theorem 9.20 and Lemma 9.26 yields

W1(Law(Z̄), N(0, 1)) .
C(q)

nVar[Z]
.

It therefore remains to show that Var[Z] ≥ C ′(q) for a constant C ′(q) > 0
that depends only on q. To this end, we first write

Var[Z] = Var

[
1

nq/2

n∑
i1,...,iq=1

Xi1i2Xi2i3 · · ·Xiqi1

]

=
1
nq

n∑
i1,...,iq=1

n∑
j1,...,jq=1

Cov[Xi1i2Xi2i3 · · ·Xiqi1 , Xj1j2Xj2j3 · · ·Xjqj1 ].

We need the following simple lemma.

Lemma 9.27. Let g1, . . . , gk ∼ N(0, 1) be independent standard Gaussian
random variables, and let n1, . . . , nk,m1, . . . ,mk ∈ Z+. Then

Cov[gn1
1 · · · g

nk
k , gm1

1 · · · gmkk ] ≥ 0.

Proof. It suffices to note that

Cov[gn1
1 · · · g

nk
k , gm1

1 · · · gmkk ] =
n∏
i=1

E[gni+mii ]−
n∏
i=1

E[gnii ]E[gmii ],

and E[gnii ]E[gmii ] ≤ E[gni+mii ]
ni

ni+mi E[gni+mii ]
mi

ni+mi = E[gni+mii ]. ut

In view of this lemma, we can estimate

Var[Z] ≥ 1
nq

n∑
i1,...,iq=1

Var[Xi1i2Xi2i3 · · ·Xiqi1 ] ≥ n(n− 1) · · · (n− q + 1)
nq

,

where we used that Var[Xi1i2Xi2i3 · · ·Xiqi1 ] = 1 when ik are all distinct. ut

Problems

9.10 (Stein’s method and the Gaussian Poincaré inequality). Show
that Stein’s method provides a very short proof of the Gaussian Poincaré
inequality by combining Lemma 9.21 and Cauchy-Schwarz.

9.11 (A simple dependent central limit theorem). Let X1, . . . , Xn ∼
N(0, 1) be independent standard Gaussian variables, and define

Z :=
1√
n

n∑
i=1

XiXi+1

(we define Xn+1 := X1 for simplicity). This is a sum of dependent random
variables. Nonetheless, it obeys a central limit theorem.
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a. Use Theorem 9.20 to show that

W1(Law(Z), N(0, 1)) .
1√
n
.

In particular, the distribution of Z converges to N(0, 1) as n→∞.

Now suppose Y1, . . . , Yn are arbitrary independent random variables with zero
mean, unit variance, and E[|Yi|3] ≤ C, and define

Z̃ :=
1√
n

n∑
i=1

YiYi+1.

b. Use universality to show that Z̃ converges in distribution to N(0, 1).
Hint: show that |E[g(Z̃)]−E[g(Z)]| → 0 as n→∞ for any smooth function
g with compact support. You will have to prove a slight generalization of
Theorem 9.2 that does not require a uniform bound on the third derivative.

c. Give a direct proof of the quantitative bound

W1(Law(Z̃), N(0, 1)) .
1√
n

along the lines of Problem 9.8.

Notes

§9.1. The principle behind Theorem 9.2 was invented by Lindeberg [87] in
1922 in order to give an elementary proof of the central limit theorem. That
this method applies almost verbatim to arbitrary nonlinear functions was
emphasized by Chatterjee [33] and Mossel, O’Donnell, and Oleszkiewicz [99].
The uniform bound on the third derivatives in Theorem 9.2 is often too crude,
and it is useful to work with the exact form of the remainder term in the Taylor
expansion; see [99] and [81] for various interesting applications. The proof of
Theorem 9.4 given here is a combination of the Gaussian proof in [7] and the
universality principle in [33]. A much more sophisticated application of the
Lindeberg principle in random matrix theory can be found in [139]. Problem
9.3 is taken from [32], and Problem 9.5 is taken from [18].

§9.2. Stein’s method was introduced by Charles Stein [120] in order to prove
quantitative central limit theorems for dependent random variables, and was
developed in detail in his monograph [121]. The method was originally devel-
oped by Stein only in the one-dimensional case on an ad-hoc basis. That this
method can be naturally interpreted as a semigroup interpolation scheme was
realized by Barbour [11, 12] and Götze [71], making the connection with clas-
sical notions of potential and the Poisson equation in Markov process theory
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[44]. The semigroup approach provides a systematic method to extend Stein’s
method to other distributions, which was previously done on a case by case
basis. Of course, the use of semigroups to interpolate between distributions
appeared much earlier (for example, we already used this idea in Lemma 6.9).
Excellent treatments of Stein’s method can be found in [39, 102, 111]. Example
9.14 was taken from [36] (a more sophisticated form of the semigroup method
plays an important role in the universality problem in random matrix theory
[60]). Our treatment of the proof of Proposition 9.17 is taken from [102]. The
third derivative bound in Problem 9.7 is due to Stein [121]. Problem 9.8 is
taken from [13], while Problem 9.9 has its origin in Chen [38].

§9.3. Theorem 9.20 is due to Chatterjee [35], from whom we have also taken
Example 9.24. We followed the presentation in [102]. Unfortunately, the clean
and simple statement of Theorem 9.20 does not extend readily to functions of
non-Gaussian random variables, but a partial analogue can be found in [34].
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Statist. 32(6), 779–799 (1996)

131. Talagrand, M.: The Glivenko-Cantelli problem, ten years later. J. Theoret.
Probab. 9(2), 371–384 (1996)

132. Talagrand, M.: Majorizing measures: the generic chaining. Ann. Probab. 24(3),
1049–1103 (1996)

133. Talagrand, M.: A new look at independence. Ann. Probab. 24(1), 1–34 (1996)
134. Talagrand, M.: Transportation cost for Gaussian and other product measures.

Geom. Funct. Anal. 6(3), 587–600 (1996)
135. Talagrand, M.: Majorizing measures without measures. Ann. Probab. 29(1),

411–417 (2001)
136. Talagrand, M.: Vapnik-Chervonenkis type conditions and uniform Donsker

classes of functions. Ann. Probab. 31(3), 1565–1582 (2003)
137. Talagrand, M.: The generic chaining. Springer Monographs in Mathematics.

Springer-Verlag, Berlin (2005)
138. Talagrand, M.: Upper and lower bounds for stochastic processes, Ergebnisse

der Mathematik und ihrer Grenzgebiete, vol. 60. Springer, Heidelberg (2014)
139. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics.

Acta Math. 206(1), 127–204 (2011)
140. Tsirelson, B.S., Ibragimov, I.A., Sudakov, V.N.: Norms of Gaussian sample

functions. In: Proceedings of the Third Japan-USSR Symposium on Proba-
bility Theory (Tashkent, 1975), pp. 20–41. Lecture Notes in Math., Vol. 550.
Springer, Berlin (1976)

141. van der Vaart, A.W., Wellner, J.A.: Weak convergence and empirical processes.
Springer Series in Statistics. Springer-Verlag, New York (1996)
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