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CHAPTER 1

Introduction

Heegaard Floer homology is an invariant of closed, oriented three-manifolds,
defined by Ozsváth and Szabó by adapting methods from symplectic geometry to
Heegaard diagrams [174]. Knot Floer homology is a variation of this construction,
discovered in 2003 by Ozsváth and Szabó [172] and independently by Jacob Ras-
mussen [191], giving an invariant for knots and links in three-manifolds. It is the
homology of a chain complex whose generators can be easily read off from a Hee-
gaard diagram, and whose differential counts pseudo-holomorphic disks. Thanks
to the contributions of many researchers, the resulting theory has evolved into an
active and successful tool for studying knots, links, and three-manifolds.

In 2006, Sucharit Sarkar found a method that rendered some of the pseudo-
holomorphic disk counts in the Heegaard Floer differential combinatorial; this was
further pursued in a joint paper with Jiajun Wang [206]. Inspired by these ideas,
Ciprian Manolescu, Ozsváth, and Sarkar [135] found a class of Heegaard diagrams
for explicitly computing knot Floer homology for knots and links in S3. These
Heegaard diagrams are naturally associated to grid diagrams, which are simple
combinatorial presentations of knots in S3, dating back to the 19th century [17].
In fact, the above reformulation of knot Floer homology can be used as a def-
inition of invariants of knots in S3: their invariance can also be verified using
elementary methods, following the paper of Manolescu, Ozsváth, Szabó, and Dylan
Thurston [136]. To emphasize this simplicity of the definition, we will call the
resulting theory the grid homology for knots and links, to distinguish it from its
holomorphic antecedent. Of course, grid homology is isomorphic to knot Floer ho-
mology; but owing to its elegance and simplicity, grid homology deserves a purely
self-contained treatment. This is the goal of the present book.

Before describing the contents of this book in detail, we explain the key features
of grid homology.

1.1. Grid homology and the Alexander polynomial

Grid homology is defined in terms of a grid presentation of a knot. Such a
presentation is given by an n×n grid of squares, n of which are marked with an O
and n of which are marked with an X. These are distributed by the rule that each
row and each column contains exactly one square marked with an O and exactly
one square marked with an X. By connecting the two markings in every row and
in every column (orienting the intervals from X to O in the columns and from O
to X in the rows) and following the convention that vertical segments pass over
horizontal ones, a grid G gives rise to a projection of a knot or link together with
an orientation on it. In this case we say that G is a grid presentation of the knot or
link. In fact, it is not hard to see that any link type can be presented in this way,
cf. Figure 1.1.

1



2 1. INTRODUCTION

Figure 1.1. Grid diagram of a knot from its projection. We
approximate the diagram by one that involves only horizontal and
vertical segments, adjust crossings where horizontal passes over
vertical, and mark the turns by O’s and X’s in an alternating
fashion, resulting in a grid diagram.

The simplest version of grid homology for a knot K in S3, ĜH (K), is a finite-
dimensional, bigraded vector space over the field F = Z/2Z of two elements. This

means that ĜH (K) is a vector space, equipped with a splitting as a direct sum,
indexed by pairs of integers:

ĜH (K) =
⊕
d,s∈Z

ĜH d(K, s).

In the above decomposition the index d is called the “Maslov grading” and the

index s is called the “Alexander grading”. Grid homology ĜH (K) is defined as

the homology of a bigraded chain complex (ĜC (G), ∂̂) associated to a grid pre-

sentation G of the knot K. The underlying vector space ĜC (G) decomposes as⊕
d,s∈Z ĜC d(G, s), and the differential ∂̂ drops Maslov grading by one and pre-

serves Alexander grading, i.e.

∂̂ : ĜC d(G, s) → ĜC d−1(G, s).

Thus, both gradings descend to give the stated bigrading on the homology ĜH (K).
The chain complex itself depends on the grid presentation of the knot, but its
homology is independent of this choice.

As a simple example, consider the unknot O. It turns out that the grid homol-

ogy ĜH (O) has total dimension one, supported in Alexander and Maslov gradings
equal to zero; i.e.

(1.1) ĜH d(O, s) =

{
F if d = s = 0
0 otherwise.

Since grid homology has two gradings, its Poincaré polynomial is naturally a
Laurent polynomial in two formal variables q and t:

(1.2) PK(q, t) =
∑
d,s∈Z

dimF ĜH d(K, s) · tsqd.

The natural graded Euler characteristic in this case is a Laurent polynomial in a
single indeterminate t, obtained by setting q = −1:

χ(ĜH (K)) = PK(−1, t) =
∑
d,s∈Z

(−1)d dimF ĜH d(K, s) · ts ∈ Z[t, t−1].

One of the key properties of grid homology is its relationship with a classical
polynomial invariant for knots, the Alexander polynomial, see [1]. This relationship
is expressed in the following:
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Theorem 1.1.1. The graded Euler characteristic of the grid homology of a knot
K ⊂ S3 coincides with the (symmetrized) Alexander polynomial ΔK(t) of K:

χ(ĜH (K)) = ΔK(t).

The Alexander polynomial of a knot satisfies a number of basic properties. We
recall some of these below:

(A-1) It is symmetric in t; i.e. ΔK(t) = ΔK(t−1).
(A-2) It is invariant under taking the mirror image of the knot; i.e. if m(K)

denotes the mirror of K, then ΔK(t) = Δm(K)(t).
(A-3) Evaluating the Alexander polynomial at t = 1 gives the value 1.
(A-4) The Alexander polynomial satisfies a “skein relation”, which relates the

Alexander polynomials of two knots K+ and K− that differ in a single
crossing change, and the Alexander polynomial of the two-component link
K0 obtained by taking the oriented resolution at the crossing:

ΔK+
(t) − ΔK−(t) = (t

1
2 − t−

1
2 )ΔK0

(t).

(The third term here uses a natural extension of the Alexander polynomial
to oriented links in S3. Notice that our convention for the Alexander
polynomial differs from the convention used in [119] by a multiplicative
factor of (−1)|L|−1, where |L| denotes the number of components of the
link L.)

These results have analogues in grid homology. For example, there are symme-
tries between grid homology groups generalizing Properties (A-1) and (A-2) (see
Propositions 7.1.1 and 7.1.2 respectively). Property (A-3) has a manifestation
in grid homology (see Proposition 6.1.4) which is used in the construction of an
integer-valued invariant τ (K), which we will discuss in the next section. Perhaps
the most interesting of the above properties is the skein relation, Property (A-4).
The analogue of this result is a “skein exact sequence” which is a long exact se-

quence relating the grid homology groups ĜH of K+, K−, and K0, where the third
term uses a version of grid homology for links. For the exact sequence of grid
homologies, see Theorems 9.1.1 and 9.1.2.

1.2. Applications of grid homology

Grid homology is useful, for example, in the study of three numerical invariants
of knots: the Seifert genus, the slice genus, and the unknotting number. A knot K in
S3 bounds embedded, oriented, compact surfaces (such a surface is called a Seifert
surface of K), and the minimal genus of such a surface is the Seifert genus g(K) of
K. A smoothly embedded, oriented, compact surface (F, ∂F ) → (D4, ∂D4 = S3)
in the four-ball D4 with the property that ∂F = K is called a slice surface for
K. By taking the minimum of the genera of slice surfaces of K, we arrive at an
inherently four-dimensional invariant, the slice genus (or four-ball genus) gs(K) of
K. The unknotting number of a knot K is the minimum number of times the knot
needs to pass through itself to obtain the unknot. The following inequalities are
easily verified: gs(K) ≤ g(K) and gs(K) ≤ u(K).

Common features of the slice genus and the unknotting number are that both
can be easily bounded from above, but both are difficult to compute. For example,

for the (p, q) torus knot, it is straightforward to find an unknotting with (p−1)(q−1)
2

crossing changes. John Milnor conjectured in 1968 [144] that this bound is sharp.
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This conjecture was verified by Peter Kronheimer and Tomasz Mrowka in 1993 [106]
using smooth four-manifold topology and, specifically, the four-manifold invariants
introduced by Simon Donaldson [34]:

Theorem 1.2.1 (Kronheimer-Mrowka, [106]). Both the unknotting number and

the slice genus of the (p, q) torus knot Tp,q are equal to (p−1)(q−1)
2 .

The original proof of the above theorem is based on a stronger result, the
generalized Thom conjecture, that concerns the minimal genus problem in a smooth
Kähler surface. After this breakthrough, a number of other proofs have emerged,
using Seiberg-Witten theory [107, 150] and Heegaard Floer homology [168]. Other
proofs of Theorem 1.2.1 have been found using knot Floer homology [170, 191]
and Khovanov homology [194].

Following work of Sarkar [204], grid homology can also be used to give a self-
contained proof of Theorem 1.2.1, as follows. First, by attaching further structures
to grid homology, we obtain a variant GH−(K) of the construction, which is a
bigraded module over the polynomial algebra F[U ] in an indeterminate U . This
bigraded module encodes an integer invariant τ (K) for knots. In Chapter 6, we
present a simple proof of the inequality

(1.3) |τ (K)| ≤ u(K),

which quickly leads to a proof of the Milnor conjecture for torus knots. In Chapter 8,
this inequality is sharpened, to give

(1.4) |τ (K)| ≤ gs(K),

leading to a proof of Theorem 1.2.1.
The invariant τ can also be used to find knots with trivial Alexander polynomial

that have gs(K) > 0. Combining the existence of such knots with work of Michael
Freedman [59, 60], exotic differentiable structures on R4 can be constructed; see
Section 8.6. (The first examples of exotic differentiable structures on R4 were
discovered by combining work of Donaldson [33] and Freedman [59]; cf. [30, 76].)

In a different direction, grid homology can be used to effectively study contact
geometric properties of knots in the standard three-sphere. Recall that a contact
structure on a three-manifold is a two-plane field ξ that is nowhere integrable. More
formally, it is the kernel of a one-form α with the property that α∧ dα is a volume
form. There is a canonical contact structure on R3, specified by the one-form
α = dz − y dx, which naturally extends to the one-point compactification S3. The
contact structure on R3 is canonical in the sense that every contact structure in
dimension three is locally contactomorphic to this standard model.

There are two natural variations on knot theory one can study in the presence
of a contact structure. One of these is Legendrian knot theory, where one considers
Legendrian knots, which are smoothly embedded knots everywhere tangent to ξ.
Two such knots are considered equivalent if they are isotopic via a one-parameter
family of Legendrian knots. Another variation of knot theory in a contact manifold
is provided by transverse knots, i.e. by knots that are everywhere transverse to the
two-plane field ξ. These are then studied up to transverse isotopy. (For further
background on these notions, see Chapter 12.)

Besides their smooth knot types, Legendrian knots come with two further “clas-
sical” numerical invariants, their Thurston-Bennequin and rotation numbers. A
motivating problem of Legendrian knot theory is to understand to what extent
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these invariants determine the Legendrian knot type. A smooth knot type is said
to be (Legendrian) non-simple if it contains Legendrian non-isotopic pairs of knots
with identical classical invariants. Building on work of Yasha Eliashberg, Alexander
Givental and Helmut Hofer [40], Yuri Chekanov [23] produced the first pair of such
Legendrian knots.

Unlike Legendrian knots, transverse knots have only one classical numerical
invariant, their self-linking number. The definition of Legendrian non-simplicity
naturally adapts to the transverse setting: a knot type is transversely non-simple
if it contains two transverse knots with equal self-linking numbers which are not
transversely isotopic. Examples of transversely non-simple knot types were given
by John Etnyre and Ko Honda using convex surface theory [47], see also [13].

The connection of Legendrian and transverse knot theory with grid homology is
provided by the following observation: grid position naturally realizes the underly-
ing knot as a Legendrian knot in the standard contact three-sphere. Moreover, the
grid complex associated to a given grid diagram comes equipped with two canonical
cycles, whose homology classes give invariants of the Legendrian knot type. Simi-
larly, a grid diagram naturally defines a transverse knot, and one of the two cycles
above provides a transverse invariant. With the use of these invariants, results of
Chekanov and Etnyre-Honda can be reproved in a fairly simple manner, follow-
ing [185] and [25, 102, 157] respectively. Specifically, in Sections 12.4 and 12.6,
we will prove the following two theorems:

Theorem 1.2.2 (Chekanov [23]). The knot type m(52) shown in Figure 1.2 is
Legendrian non-simple.

Theorem 1.2.3 (Etnyre-Honda [47]). There are transversely non-simple knot
types in S3.

While Etnyre and Honda verified transverse non-simplicity for a certain cable
of the trefoil knot [47], in this book we will show transverse non-simplicity of several
other simpler knot types, including m(10132) shown in Figure 1.3. This latter knot
was shown to be transversely non-simple in [157]; our presentation will also draw
on the argument from [102].

1.3. Knot Floer homology

Grid homology is a special case of a holomorphic construction of an earlier-

defined invariant, knot Floer homology ĤFK and HFK− [172, 191]. Grid diagrams

Figure 1.2. The twist knot m(52). This is the knot with small-
est crossing number which is Legendrian non-simple. It is the mir-
ror image of the knot type 52 from [198].



6 1. INTRODUCTION

Figure 1.3. The knot m(10132), the mirror image of the knot
10132 of Rolfsen’s table [198]. This knot type contains transverse
knots which are not transversely isotopic, although have equal self-
linking numbers.

allow us to bypass the technically more involved theory of pseudo-holomorphic
curves central to knot Floer homology. The price is that the present approach
appears to be too rigid to verify some of the results that are accessible with the
strength of the whole theory. To put grid homology in context, we collect some
important results of knot Floer homology here. (Below we will refer to knot Floer
homology with coefficients in F = Z/2Z.)

A key feature of knot Floer homology, proved using the holomorphic theory,
states that it recognizes the unknot, in the sense that:

Theorem 1.3.1 ([171]). The knot Floer homology ĤFK(K) of a knot K ⊂ S3

has total dimension equal to one if and only if K is the unknot O.

The above theorem follows from a more general result, which states that knot
Floer homology detects the Seifert genus g(K) of a knot K. To state it, note that

knot Floer homology ĤFK is bigraded, i.e. it is given with a splitting

ĤFK(K) =
⊕
d,s∈Z

ĤFKd(K, s),

so that its graded Euler characteristic is the Alexander polynomial.

Theorem 1.3.2 ([171]). If K ⊂ S3 is a knot, then the Seifert genus of K is

equal to the maximal integer s for which ĤFK∗(K, s) is non-zero.

(In [171], the above result was stated using ĤFK with Z coefficients; but the
proof immediately adapts to show the same result with Z/2Z coefficients, as well.)

A classical property of the Alexander polynomial is that it is monic if K is
fibered. The corresponding property for knot Floer homology is fairly straightfor-
ward to establish [175]. The converse to this result, proved by Paolo Ghiggini in
the case where g(K) = 1 [71] and in general by Yi Ni [160], is much deeper and
gives the following:

Theorem 1.3.3 ([71, 160]). If K ⊂ S3 is a knot with Seifert genus g, then

dimF ĤFK∗(K, g) = 1 if and only if K is fibered.

András Juhász has given alternate proofs of both Theorems 1.3.2 and 1.3.3,
using sutured Floer homology [96, 97].
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A knot K is called alternating if it admits a diagram with the property that
crossings alternate between over- and under-crossings, as we travel along the knot.
The study of alternating knots is rather simpler than the general case. In particular,
in the alternating case, the Alexander polynomial contains much more information
about the knot. If K is alternating then the Alexander polynomial detects whether
or not K is the unknot; more generally it encodes the Seifert genus of K; and it
also encodes whether or not K is a fibered knot. (For details of this statement, see
Theorem 2.4.13.) In fact Theorems 1.3.1, 1.3.2 and 1.3.3 can be viewed as extensions
of these results to arbitrary knots, replacing the Alexander polynomial with the
Poincaré polynomial of knot Floer homology. Indeed, for an alternating knot K

the Poincaré polynomial of ĤFK(K) is determined by the Alexander polynomial
ΔK(t) and the signature σ(K) ∈ Z of K; we prove the analogous statement for grid
homology in Theorem 10.3.1.

In addition to the above topological applications, the flexibility afforded by
knot Floer homology makes it amenable to performing computations for certain
infinite families of knots, for example, for torus knots (see Theorem 16.2.6).

The definition of knot Floer homology admits a natural extension to knots
(and links) in arbitrary closed, oriented three-manifolds. This extension fits into
the broader framework of Heegaard Floer homology for three-manifolds [173, 174].
Moreover, knot Floer homology is a useful device for computing the Heegaard Floer
homology groups of three-manifolds obtained by Dehn surgery on K; see [181]. The
details of these constructions are, however, beyond the scope of this book.

1.4. Comparison with Khovanov homology

It is interesting to compare the formal structure of knot Floer homology with a
different kind of knot invariant defined by Mikhail Khovanov [103], and its various
generalizations due to Khovanov and Lev Rozansky [104, 105]. For the sake of
exposition, we focus on the simplest version, from [103]; see also [8, 222].

Like knot Floer homology, Khovanov homology is a bigraded vector space as-
sociated to a knot or link in S3. Its graded Euler characteristic is another familiar
knot polynomial: the Jones polynomial [93]. Khovanov homology can be enriched
by a further differential, introduced by Eun-Soo Lee [117]; and Rasmussen [194]
has used that differential to define a concordance invariant s similar in spirit to τ .
These ideas led Rasmussen to give the first combinatorial proof of Theorem 1.2.1.

An analogue of Theorem 1.3.1 holds for Khovanov homology: Kronheimer and
Mrowka [112] have shown that the unknot is the only knot whose Khovanov homol-
ogy has dimension two over Q. In fact, it is conjectured that the Jones polynomial
also detects the unknot [94].

Intriguing though these similarities are, a precise mathematical relationship
between the constructions of knot Floer and Khovanov homologies has yet to be
discovered; compare [36, 191].

In a different direction, it is also interesting to compare knot Floer homology
with analogous invariants coming from gauge theory, especially instanton homology
for knots [54, 113].

1.5. On notational conventions

In the present book, we wish to distinguish properties of knot Floer homology
that follow from the holomorphic theory (such as Theorem 1.3.1) from properties
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that can be derived purely within the combinatorial framework, and which we
will proceed to prove in this book. To help emphasize this point, we make a
semantic distinction between knot Floer homology and grid homology; and we
make a corresponding notational distinction as well.

For the convenience of the experts, we have assembled a dictionary below con-
necting the traditional notation for knot Floer homology with the notation for
grid homology we use here. The first column describes some construction and, in

The complex for knot/link homology

(crossing no basepoints) C̃L(G) [136] G̃C(G)
Fully blocked grid complex
Link Floer homology

(crossing no basepoints) H̃L(�L) [136] G̃H(�L)
Fully blocked grid homology

The knot/link Floer complex CFK−(K) [185];

(crossing O basepoints) CFL−(�L) [180]; GC−(G)
Unblocked grid complex CL−(G) [136]
Knot/link Floer homology

(crossing O basepoints) HFK−(K) [185]; GH−(�L)

Unblocked grid homology HFL−(�L) [180]
The complex for knot Floer homology

with U = 0 ĈFK(K) [172] ĜC (G)
Simply blocked grid complex
Knot Floer homology with U = 0

Simply blocked grid homology ĤFK(K) [172] ĜH (K)
Link Floer homology with collapsed

grading and with U = 0 ĤFK(�L) [172] ĜH (�L)
Simply blocked, bigraded grid
homology for links
Link Floer homology

Simply blocked, multi-graded grid ĤFL(�L) [180] ĜH(�L)
homology for links
Link Floer homology

Unblocked, multi-graded grid homology HFL−(�L) [180] GH−(�L)
for links

The filtered knot complex ĈF(S3)

(crossing all X and all but one of the O) CFK0,∗(S3, K) [172] ĜC(G)
Simply blocked filtered grid complex

The filtered knot complex CF−(S3)
(crossing all basepoints) CFK−,∗(S3, K) [172] GC−(G)
(Unblocked) filtered grid complex
The multi-filtered link complex

(crossing all basepoints) CFL−,∗(�L) [180] GC−(G)
(Unblocked) filtered grid complex
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italics, gives the name we call it in the present book. In the next column, we
give the notation of the concept customary in knot Floer homology and indicate
references where the notation is introduced or used extensively. In the final column,
we include the notation used in this book.

Link Floer homology is typically thought of as endowed with an Alexander
multi-grading. In the text we distinguish the multi-graded versions from their

bigraded analogues by using boldface for the multi-graded ones (GC−(G), ĜC(G),

GH−(�L), ĜH(�L)), rather than the usual typeface for their bigraded analogues

(GC−(G), ĜC (G), GH−(�L) and ĜH (�L)).
There are two natural conventions for the Maslov grading of a link, which

are different when the link has more than one component. In the present work,
we made a choice which differs from the choices made elsewhere (e.g. in [172]).
These two gradings differ by �−1

2 , where 	 denotes the number of components; see
Equation (9.18). Using our present choice, for any link, the Maslov grading is
always integer-valued.

1.6. Necessary background

This book is aimed at a wide audience, ranging from motivated undergraduates
curious about modern methods in knot theory, to graduate students and researchers
who want a leisurely introduction to the combinatorial aspects of Heegaard Floer
homology. Some familiarity with knot theory would be helpful, say, on the level
of [28, 119, 198], though in Chapter 2 this is recalled. The development of grid
homology also uses some basic tools from homological algebra: chain complexes,
chain maps, chain homotopies, and mapping cones. These concepts can be found
in introductory books on algebraic topology such as [83]; see also [226]. For the
reader’s convenience, though, the relevant part of homological algebra is briefly
summarized either before it is used or in Appendix A.

As we shall see in Chapter 12, Legendrian and transverse knots and links in
the standard contact three-sphere lend themselves to study through grids and grid
homology. Although we have attempted to make this chapter as self-contained as
possible, at times we will refer the reader to basic texts in contact topology, such
as [45, 68].

1.7. The organization of this book

We start our discussion in Chapter 2 with a short review of the classical theory
of knots and links in the three-space. The concept of grid diagrams, their relation
to the Alexander polynomial, and to Seifert surfaces are described in Chapter 3.
In Chapter 4 we introduce the main object of the book, grid homologies of knots.
We start with a simple version and then build up to the further, slightly more
complicated variants. The invariance of these homology groups (i.e. independence
of the presentation of a knot by a grid diagram) is discussed in Chapter 5.

After setting up the basics of the theory, we turn to the first applications.
In Chapter 6 we give a short proof of the fact that the τ -invariant bounds the
unknotting number. This result then leads to the verification of Milnor’s conjecture
on the unknotting numbers of torus knots. Further basic properties are discussed
in Chapter 7.

The rest of the book is devoted to more advanced topics in grid homology. In
Chapter 8 we strengthen the unknotting bound and show that |τ (K)| ≤ gs(K),
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completing the proof of Theorem 1.2.1. Chapter 9 provides an important computa-
tional tool, the skein exact sequence. We also show instances where this long exact
sequence can be conveniently used in explicit computations. A variation of the
skein exact sequence, presented in Chapter 10, then leads us to the computation
of grid homology for all alternating knots. In Chapter 11 we give the details of
the extension of grid homology from knots to links. To put this construction into
perspective, we also recall some standard facts about the multi-variable Alexander
polynomial of a link and the Thurston norm of a link complement. In Chapter 12
we give applications of grid homology for Legendrian and transverse knots. In par-
ticular, in Sections 12.4 and 12.6 we prove Theorems 1.2.2 and 1.2.3. Chapter 13
provides further algebraic background and describes a generalization of the invari-
ant, which is the filtered quasi-isomorphism type of a filtered chain complex over an
appropriate polynomial ring. In Chapter 14 further properties of the filtered chain
complex are discussed. In Chapter 15, we explain the sign conventions required to
develop grid homology with coefficients in Z. In Chapter 16 we review some basic
aspects of Heegaard Floer homology, a theory initiated in [173, 174] and further
developed in [172, 180, 191] for knots and links in general three-manifolds. We
also explain why the combinatorial theory discussed in the earlier chapters is, in-
deed, a special case of this more general theory. In Chapter 17 we collect some
open problems, hopefully motivating further reading and research in the subject.
For the sake of completeness, in Appendix A, we include elements of homological
algebra which we use throughout the book. The text also uses some basic theorems
of knot theory (such as the Reidemeister and the Reidemeister-Singer theorems and
Cromwell’s theorem on grids). Appendix B is devoted to the proofs of these results.

We have included a number of exercises throughout the text, with varying levels
of difficulty. More challenging problems are marked with an asterisk ∗.

The material presented here is an exposition of results which have already
appeared in the literature. Our exposition of basic knot theory was influenced
by [100, 101, 119, 189, 198]; for grid diagrams we have drawn on [28, 37]. Our
discussion of grid homology follows the account from [136] (see also [135]), with
further topics coming from [66, 85, 157, 167, 185, 204, 231]. The proof of
the unknotting bound from Chapter 6 is new, though it is inspired by [204]. The
proof that grid homology gives bounds on the Seifert genus (Proposition 7.2.2) is
new; but our treatment falls short of showing that these bounds are sharp, as we
know from the holomorphic theory. The organization of the invariance proof of the
grid invariants is a little different from that in [136]: we have chosen here to start
from the simplest cases (invariance of the grid homology groups with coefficients
mod 2) and build up to the general case (for the filtered quasi-isomorphism type),
rather than going the other direction, as was done in [136]. As a by-product, the
invariance proof presented here is somewhat simpler than the proof from [136].

This book could be used as a textbook for a semester-long course either at the
graduate level or at an advanced undergraduate level. The background is reviewed
in Chapter 2 and in Appendix A (especially Sections A.1–A.5). The material devel-
oped in Chapters 3-7 could serve as the core for this course. The topics covered in
Chapters 8, 9, and the first three sections of Chapter 15 are essentially independent,
and any of these could be added as additional topics.

A course with more advanced topics could include the computation of the grid
homology for alternating knots from Chapter 10; and the extension of the theory to
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links from Chapter 11. Chapter 12 is a further essentially independent discussion on
the role of grid homology in contact knot theory. The reader interested in pursuing
Heegaard Floer homology further is encouraged to study Chapters 13 and 14 (and
to read Chapter 16, as a preview).
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DMS-1405114. András Stipsicz was partially supported by the Lendület program
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CHAPTER 2

Knots and links in S3

In this chapter we collect the notions and results from classical knot theory
most relevant to our subsequent discussions. In Section 2.1 we provide some basic
definitions and describe some families of knots that will serve as guiding examples
in the further chapters. We discuss Seifert surfaces in Section 2.2, and we define the
Seifert form in Section 2.3. Based on this notion, we define the signature of a knot
and use it to bound the unknotting number. We devote Section 2.4 to the definition
and basic properties of the Alexander polynomial (returning to its multi-variable
generalization in Section 11.5). Extending ideas from Section 2.3, in Section 2.6
we give a proof of the lower bound of the slice genus provided by the signature.
Finally, in Section 2.7 we use the Goeritz matrix associated to a diagram to derive
a simple formula for the signature of a knot. This material is standard; for a more
detailed treatment see [28, 119, 198]. Further basic theorems of knot theory are
collected in Appendix B.

2.1. Knots and links

Definition 2.1.1. An 	–component link L in S3 is a collection of 	 disjoint
smoothly embedded simple closed curves. A 1–component link K is a knot . The
links we consider in this book will typically be oriented. If we want to emphasize

the choice of an orientation, we write �L for a link, equipped with its orientation.

The links �L1, �L2 are equivalent if they are ambiently isotopic, that is, there is
a smooth map H : S3 × [0, 1] → S3 such that Ht = H|S3×{t} is a diffeomorphism

for each t ∈ [0, 1], H0 =idS3 , H1(�L1) = �L2 and H1 preserves the orientation on the
components. An equivalence class of links under this equivalence relation is called
a link (or knot) type.

The above definition can be made with R3 = S3 \ {p} instead of S3, but the
theory is the same: two knots in R3 are equivalent if and only if they are equivalent
when viewed in S3. For this reason, we think of links as embedded in R3 or S3

interchangeably.

Two 	-component links �Li (i = 0, 1) are isotopic if the two smooth maps
fi : ∪�

j=1 S1 → S3 defining the links are isotopic, that is, there is a smooth map

F : (∪�
j=1S

1) × [0, 1] → S3 which has the property that Ft = F |(∪�
j=1S

1)×{t} are

	-component links with Fi = fi (i = 0, 1). By the isotopy extension theorem [87,
Section 8, Theorem 1.6], two links are ambiently isotopic if and only if they are
isotopic.

Reflecting L through a plane in R3 gives the mirror image m(L) of L. Reversing

orientations of all the components of �L gives −�L.

13



14 2. KNOTS AND LINKS IN S3

μ1 μ2

�L1
�L2

Figure 2.1. Meridians of the components of a link. The

oriented link �L of the diagram has two components L1, L2, with
oriented meridians μ1 and μ2.

Remark 2.1.2. Another way to define equivalence of links is to say that �L1 and
�L2 are equivalent if there is an orientation-preserving diffeomorphism f : S3 → S3

so that f(�L1) = �L2. In fact, this gives the same equivalence relation since the group
of orientation-preserving diffeomorphisms of S3 is connected [22].

Remark 2.1.3. It is not hard to see that the smoothness condition in the above
definition can be replaced by requiring the maps to be PL (piecewise linear). For
basic notions of PL topology, see [201]. The PL condition provides an equivalent
theory of knots and links, cf. [18]. (Assuming only continuity would allow wild
knots, which we want to avoid.)

The complements of equivalent links are homeomorphic; therefore the funda-
mental group of the complement, also called the link group (or the knot group for a
knot), is an invariant of the link type. The first homology group of an 	-component
link L = (L1, . . . , L�) is given by

(2.1) H1(S
3 \ L;Z) ∼= Z�.

An isomorphism φ : H1(S
3 \ L;Z) → Z� is specified by an orientation and a

labeling of the components of L: φ sends the homology class of the positively ori-
ented meridian μi ∈ H1(S

3\L;Z) of the ith component Li to the vector (0, . . . , 0, 1,
0, . . . , 0) ∈ Z� (where 1 occurs at the ith position). For the orientation convention
on the meridian, see Figure 2.1. Suppose that L is a link in R3 and prP : R3 → P
is the orthogonal projection to an oriented plane P ⊂ R3. For a generic choice of P
the projection prP restricted to L is an immersion with finitely many double points.
At the double points, we illustrate the strand passing under as an interrupted curve
segment. If L is oriented, the orientation is specified by placing an arrow on the
diagram tangent to each component of L. The resulting diagram D is called a knot

or link diagram of �L. Obviously, a link diagram determines a link type.
The local modifications of a link diagram indicated in Figure 2.2 are the Rei-

demeister moves ; there are three types of these moves, denoted R1, R2 and R3.
When thinking of oriented link diagrams, the strands in the local picture can be
oriented in any way. The figures indicate changes to the diagram within a small
disk; the rest of the diagram is left alone. The Reidemeister moves obviously pre-
serve the link type. The importance of the Reidemeister moves is underscored by
the following theorem. (For a proof of this fundamental result, see Section B.1.)

Theorem 2.1.4 (Reidemeister, [196]). The link diagrams D1 and D2 corre-
spond to equivalent links if and only if these diagrams can be transformed into each
other by a finite sequence of Reidemeister moves and planar isotopies.
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R3

R2R1R1

Figure 2.2. The Reidemeister moves R1, R2, R3.

........

....

....

....
p strands

q boxes

Figure 2.3. Diagram of the torus link Tp,q. The result is a
knot if gcd(p, q) = 1; in general the torus link has gcd(p, q) com-
ponents.

The following examples will appear throughout the text.

Examples 2.1.5. • Let p, q > 1 be relatively prime integers. The (p, q)
torus knot Tp,q is defined as the set of points

(2.2) {(z1, z2) ∈ C2 | z1z1 + z2z2 = 1, zp1 + zq2 = 0} ⊂ S3.

This knot can be drawn on a standard, unknotted torus in three-space,
so that it meets a longitudinal curve q times (each with local intersection
number +1) and a meridional curve p times (again, each with local inter-
section number +1). A diagram for Tp,q is shown in Figure 2.3. It is easy
to see that Tp,q and Tq,p are isotopic knots. The mirror image m(Tp,q) of
Tp,q is called the negative torus knot T−p,q. For general choices of p
and q, the definition of Equation 2.2 produces a link, the torus link Tp,q,
a link with gcd(p, q) components. T2,3 is the right-handed trefoil knot,
and T−2,3 is the left-handed trefoil knot.

• For a1, . . . , an ∈ Z the diagram of Figure 2.5 defines the (a1, . . . , an)
pretzel knot (or pretzel link) P (a1, . . . an) on n strands. Informally,
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= = =

m

n
n+m1 −1

Figure 2.4. Convention for twists.

....a1 a2 an

Figure 2.5. Diagram of the pretzel link P (a1, . . . , an). A box
with an integer ai means ai right half-twists for ai ≥ 0 and −ai

left half-twists for ai < 0, cf. Figure 2.4.

n

Figure 2.6. Diagram of the twist knot Wn. Clearly, W−1 and
W0 are both unknots, W−2 is the right-handed trefoil knot T2,3,
and W1 is the left-handed trefoil knot m(T2,3) = T−2,3. The knot
W2 is also called the figure-eight knot.

the pretzel link is constructed by taking 2n strands s1, s2, . . . , s2n−1, s2n,
introducing |ai| half-twists (right half-twists when ai ≥ 0 and left half-
twists when ai < 0) on the two strands s2i−1, s2i and then closing up the
strands as shown in Figure 2.5. (The conventions on the half-twists are
indicated in Figure 2.4.)

• For n ∈ Z we define the twist knot Wn by Figure 2.6. Notice that we
fix the clasp, and allow the twist in the box to have arbitrary sign and
parity. Informally, a twist knot is constructed by considering two strands,
adding |n| half-twists (right if n ≥ 0 and left if n < 0) to them and then
closing up with the clasp shown by Figure 2.6.
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Figure 2.7. The Kinoshita-Terasaka knot KT (on the left)
and its Conway mutant, the Conway knot C (on the right).
The two knots are mutants of each other, as the dashed circle on
the Kinoshita-Terasaka knot shows.

H+ H−

Figure 2.8. The two Hopf links H+ and H−.

• A diagram of the Kinoshita-Terasaka knot KT is shown on the left
of Figure 2.7; the knot diagram on the right of Figure 2.7 represents the
Conway knot C. These two knots are mutants of each other, that is,
if we cut out the dashed disk from the left diagram of Figure 2.7 and glue
it back after a 180◦ rotation, we get the Conway knot.

Remark 2.1.6. If we equip the torus knot Tp,q with its two possible orien-
tations, we get isotopic knots. Similarly, the twist knots Wn are isotopic when
equipped with the two possible orientations. When p and q are not relatively prime,

we define the oriented link �Tp,q by orienting all the parallel strands in Figure 2.3 in
the same direction.

Exercise 2.1.7. (a) The above families are not disjoint. Find knots that
appear in more than one family.
(b) Using the Seifert-Van Kampen theorem [83, Theorem 1.20], show that for
(p, q) = 1, the knot group of the torus knot Tp,q is isomorphic to 〈x, y | xp = yq〉.
(c) Compute the link group of T3,6.
(d) Verify the claim of Remark 2.1.6 for the right-handed trefoil and for the figure-
eight knots.
(e) Show that the figure-eight knot W2 and its mirror m(W2) are isotopic.

The oriented link �T2,2 is also called the positive Hopf link H+. Reversing the

orientation on one component of �T2,2, we get the negative Hopf link H−; see Fig-
ure 2.8. A simple three-component link is the Borromean rings; see Figure 2.9.
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Figure 2.9. The Whitehead link (on the left) and the Bor-
romean rings (on the right).

#

R

Figure 2.10. The connected sum operation. The band R is
shown by the shaded rectangle.

An interesting property of knots and links is related to the existence of a fibra-
tion on their complement.

Definition 2.1.8. A link �L is fibered if the complement S3 \ �L admits a

fibration ϕ : S3 \ �L → S1 over the circle with the property that for each t ∈ S1 the

closure ϕ−1(t) of the fiber ϕ−1(t) is equal to ϕ−1(t)∪ �L and is a compact, oriented

surface with oriented boundary �L. (For more on fibered knots, see [18, Chapter 5].)

Exercise 2.1.9. Verify that the torus knot Tp,q is fibered. (Hint: Refer to
Example 2.1.5 and consider the map f/|f | for f(z1, z2) = zp1 + zq2 .)

A well-studied and interesting class of knots are defined as follows.

Definition 2.1.10. A link diagram D is called alternating if the crossings
alternate between over-crossings and under-crossings, as we traverse each compo-
nent of the link. A link admitting an alternating diagram is called an alternating
link .

Examples 2.1.11. The twist knots Wn are alternating for all n. More generally,
consider the pretzel links P (a1, . . . , an) where the signs of the ai are all the same;
these pretzel links are also alternating. The Borromean rings is an alternating link.

Suppose that �K1, �K2 are two oriented knots in S3 that are separated by an

embedded sphere. Form the connected sum �K1# �K2 of �K1 and �K2 as follows. First
choose an oriented rectangular disk R with boundary ∂R composed of four oriented

arcs {e1, e2, e3, e4} such that �K1∩R = −e1 ⊂ �K1 and �K2∩R = −e3 ⊂ �K2, and the
separating sphere intersects R in a single arc and intersects e2 and e4 in a single

point each. Then define �K1# �K2 as

�K1# �K2 = ( �K1 \ e1) ∪ e2 ∪ e4 ∪ ( �K2 \ e3).

The resulting knot type is independent of the chosen band R. For a pictorial
presentation of the connected sum of two knots, see Figure 2.10.
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+ _

Figure 2.11. Signs of crossings. The crossing shown on the
left is positive, while the one on the right is negative.

The connected sum operation for knots is reminiscent to the product of integers:
every knot decomposes (in an essentially unique way) as the connected sum of
basic knots (called prime knots). For more on prime decompositions see [119,
Theorem 2.12]. As it turns out, fiberedness of the connected sum is determined by
the same property of the components: by a result of Gabai [64], the connected sum
of two knots is fibered if and only if the two knots are both fibered.

We define now a numerical obstruction to pulling arbitrarily far apart two

disjoint, oriented knots �K1 and �K2.

Definition 2.1.12. Suppose that �K1, �K2 ⊂ S3 are two disjoint, oriented knots.

Let D be a diagram for the oriented link �K1∪ �K2. The linking number 	k( �K1, �K2)

of �K1 with �K2 is half the sum of the signs of those crossings (in the sense of

Figure 2.11) where one strand comes from �K1 and the other from �K2.

Proposition 2.1.13. The linking number 	k( �K1, �K2) has the following prop-
erties:

• it is independent of the diagram used in its definition;

• if �K1 and �K2 can be separated by a two-sphere, then 	k( �K1, �K2) = 0;
• it is integral valued;

• it is symmetric; i.e. 	k( �K1, �K2) = 	k( �K2, �K1).

Proof. The fact that 	k( �K1, �K2) is independent of the diagram is a straightforward

verification using the Reidemeister moves. It follows immediately that if �K1 and
�K2 can be separated by a two-sphere, then 	k( �K1, �K2) = 0.

Let �K ′
1 be obtained from �K1 by changing a single crossing with �K2 (with respect

to some fixed diagram D). It is straightforward to see that 	k( �K ′
1,

�K2) differs from

	k( �K1, �K2) by ±1. Continue to change crossings of �K1 with �K2 to obtain a new

link �K ′′
1 ∪ �K2 (and a diagram of �K ′′

1 ∪ �K2) with the property that at any crossings

between �K ′′
1 and �K2, the strand in �K ′′

1 is above the strand in �K2. It follows that

the difference between 	k( �K ′′
1 , �K2) and 	k( �K1, �K2) is an integer. Since �K ′′

1 can

be lifted above �K2, and then separated from it by a two-sphere, 	k( �K ′′
1 , �K2) = 0.

We conclude that 	k( �K1, �K2) is integral valued. Finally, the definition of linking

number is manifestly symmetric in the roles of �K1 and �K2.

The linking number has a straightforward generalization to pairs �L1 and �L2 of
oriented links. Clearly, the linking number is not the only obstruction to pulling

apart the link �L1 ∪ �L2. For instance, the two components of the Whitehead link
of Figure 2.9 have zero linking number, but cannot be separated by a sphere (cf.
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Exercise 2.4.12(f)). Similarly, for any two components of the Borromean rings the
linking number is zero; but no component can be separated from the other two.

Definition 2.1.14. Let D be a diagram of the link �L. The writhe wr(D) of
the diagram D is defined to be the number of positive crossings in D minus the
number of negative ones. Notice that if D is the diagram of a knot, then the chosen
orientation does not influence the value of the writhe wr(D).

Exercise 2.1.15. (a) Consider the homology element [ �K2] ∈ H1(S
3 \ �K1;Z) ∼=

Z given by �K2 ⊂ S3 \ �K1. If μ1 is the homology class of an oriented normal circle

of �K1, then show that [ �K2] = 	k( �K1, �K2) · μ1.
(b) Show that the Reidemeister moves R2 and R3 do not change the writhe of a
projection. Determine the change of the writhe under the two versions of R1.

(c) Suppose that D is the diagram of the link �L = �L1∪ �L2. Reverse the orientation

on all components of �L2 (while keeping the orientations of the components of �L1

fixed). Let D′ denote the resulting diagram. Show that

wr(D) = wr(D′) + 4	k(�L1, �L2).

2.2. Seifert surfaces

Knots and links can be studied via the surfaces they bound. More formally:

Definition 2.2.1. A smoothly embedded, compact, connected, oriented

surface-with-boundary in R3 is a Seifert surface of the oriented link �L if ∂Σ = L,

and the orientation induced on ∂Σ agrees with the orientation specified by �L.

Recall that a connected, compact, orientable surface Σ is classified (up to dif-
feomorphism) by its number of boundary components b(Σ), and an additional nu-
merical invariant g, called the genus; see [137, Theorem 11.1]. This quantity can be
most conveniently described through the Euler characteristic χ(Σ) of the surface,
since

χ(Σ) = 2 − 2g(Σ) − b(Σ).

From a given Seifert surface Σ of �L further Seifert surfaces can be obtained
by stabilizing (or tubing) Σ: connect two distinct points p, q ∈ Int Σ by an arc γ
in S3 \ Σ that approaches Σ at p and q from the same side of Σ. Deleting small
disk neighborhoods of p and q from Σ and adding an annulus around γ, we get a
new surface, which (by our assumption on how γ approaches Σ) inherits a natural
orientation from Σ, and has genus g(Σ) + 1, cf. Figure 2.12. According to the
following result, any two Seifert surfaces of a given link can be transformed into
each other by this operation (and isotopy). For a proof of the following result, see
[9] or Section B.3.

Theorem 2.2.2 (Reidemeister-Singer, [212]). Any two Seifert surfaces Σ1 and

Σ2 of a fixed oriented link �L can be stabilized sufficiently many times to obtain
Seifert surfaces Σ′

1 and Σ′
2 that are ambient isotopic.

Exercise 2.2.3. (a) Show that any knot or link in S3 admits a Seifert surface.
(Hint: Using the orientation, resolve all crossings in a diagram to get a disjoint
union of oriented circles in the plane, and consider disks bounded by the result-
ing unknots. Move these disks appropriately to different heights and restore the
crossings by adding bands to the disks. Connectedness can be achieved by tubing
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p

γ

q

y

x

Figure 2.12. Schematic picture of a stabilization of a
Seifert surface. The arc γ in the complement of the surface
is assumed to approach Σ from the same side at p and q, so the
result of the stabilization admits a natural orientation. Although
the diagram shows an unknotted arc, γ is allowed to be knotted.

together various components. For further details, see Section B.3 or [119, Chap-
ter 8].)
(b) Find a genus one Seifert surface for Wn.
(c) Find a genus one Seifert surface for the 3-stranded pretzel knot P (a1, a2, a3)
with ai odd for i = 1, 2, 3.
(d) Find a Seifert surface of genus n for the (2, 2n + 1) torus knot T2,2n+1.

Definition 2.2.4. The genus (or Seifert genus) g(�L) of a link �L is the minimal

genus of any Seifert surface for �L.

Exercise 2.2.5. Show that the unique knot with g(K) = 0 is the unknot O.

Remark 2.2.6. The linking number from Definition 2.1.12 has the following

alternative definition using Seifert surfaces: 	k( �K1, �K2) is the algebraic intersection

number of a Seifert surface for �K1 with the oriented knot �K2; see [198, Chapter 5].

Unlike the case of knots, the Seifert genus of a link in general depends on the
orientations of the various components of L.

Example 2.2.7. Let �L1 denote the torus link �T2,4, and let �L2 be the same link

with the orientation reversed on one component. It is easy to see that �L2 bounds

an annulus, hence g(�L2) = 0, while g(�L1) = 1.

It is proved in [119, Theorem 2.4] that the Seifert genus is additive under
connected sum of oriented knots.

2.3. Signature and the unknotting number

A Seifert surface Σ for an oriented link �L determines a bilinear form on H1(Σ;Z)
as follows. Consider two elements x, y ∈ H1(Σ;Z) and represent them by oriented,
embedded one-manifolds. More precisely, x can be represented by a collection γx
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of pairwise disjoint, oriented, simple closed curves, and y can be represented by a
similar γy. (Note that γx and γy might have non-empty intersection, though.) Let
γ+
y denote the push-off of γy in the positive normal direction of Σ.

Definition 2.3.1. The Seifert form S for the Seifert surface Σ of the link �L
is defined for x, y ∈ H1(Σ;Z) by

S(x, y) = 	k(γx, γ+
y ).

It is easy to see that the resulting form is independent of the chosen representatives
of the homology classes, and it is a bilinear form on H1(Σ;Z). By choosing a basis
{a1, . . . , an} of H1(Σ;Z) (represented by embedded circles α1, . . . , αn), the form is
represented by a Seifert matrix (Si,j) = (	k(αi, α

+
j )).

The Seifert form gives rise to various invariants of knots and links. In the
following we will concentrate on the signature and the Alexander polynomial (in
Section 2.4). The reason for this choice is that these two invariants have analogues
in grid homology: the τ -invariant (to be defined in Chapter 6 and further explored
in Chapters 7 and 8) shares a number of formal properties with the signature, while
the Poincaré polynomial of grid homology can be regarded as a generalization of
the Alexander polynomial.

Before proceeding with these definitions, we recall some simple facts from linear
algebra. The signature of a symmetric, bilinear form Q on a finite dimensional real
vector space V is defined as follows. Let V + resp. V − be any maximal positive resp.
negative definite subspace of V . The dimensions of V + and V − are invariants of Q,
and the signature σ(V ) of V is given by σ(V ) = dim(V +) − dim(V −). We define
the signature of a symmetric n×n matrix M as the signature of the corresponding
symmetric bilinear form QM on Rn.

Exercise 2.3.2. (a) Let V be a vector space equipped with a symmetric,
bilinear form Q. Let W ⊂ V be a codimension one subspace. Show that

|σ(Q|W ) − σ(Q)| ≤ 1.

(b) Suppose that Q on V is specified by a symmetric matrix M . Let Q′ be rep-
resented by a matrix M ′ which differs from M by adding 1 to one of the diagonal
entries. Show that σ(Q) ≤ σ(Q′) ≤ σ(Q) + 2.

Definition 2.3.3. Suppose that Σ is a Seifert surface for the oriented link �L

and S is a Seifert matrix of Σ. The signature σ(�L) of �L is defined as the signature

of the symmetrized Seifert matrix S + ST . The determinant det(�L) of the link
�L is | det(S + ST )|. The unnormalized determinant Det(�L) of �L is defined as

in · det(S + ST ) = det(iS + iST ), where S + ST is an n× n matrix. Note that if �L

has an odd number of components (hence n is even) then Det(�L) ∈ Z.

We wish to show that σ(�L), det(�L), and Det(�L) are independent of the chosen

Seifert matrix of �L. A key step is the following:

Lemma 2.3.4. If Σ is a Seifert surface for �L and Σ′ is a stabilization of Σ,
then there is a basis for H1(Σ

′;Z) whose Seifert matrix has the form⎛⎝ S ξ 0
0 0 1
0 0 0

⎞⎠ or

⎛⎝ S 0 0
ξT 0 0
0 1 0

⎞⎠
where S is a Seifert matrix for Σ and ξ is some vector.
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Proof. Suppose that {a1, . . . , an} is a basis for H1(Σ;Z), giving the Seifert
matrix S. Adding the two new homology classes y and x of the stabilized surface
Σ′ (as shown by Figure 2.12), we add two columns and two rows to the Seifert
matrix. Clearly, 	k(ai, x

+) = 	k(x, a+
i ) = 0 for all i = 1, . . . , n, and 	k(x, x+) = 0.

Furthermore, according to which side the stabilizing curve γ approaches Σ, either
	k(x, y+) = 0 and 	k(x+, y) = 1 or 	k(x, y+) = 1 and 	k(x+, y) = 0 (after replacing
y by −y, if needed). Now, changing the basis by adding multiples of x if necessary
to the ai’s and y, we get a Seifert matrix of the desired form.

Theorem 2.3.5. The quantities σ(�L), det(�L) and Det(�L) are independent of

the chosen Seifert matrix of �L giving invariants of the link �L.

Proof. This follows immediately from Theorem 2.2.2 and Lemma 2.3.4.

The signature, the determinant, and the unnormalized determinant are con-
strained by the following identity:

Proposition 2.3.6. For an oriented link �L,

Det(�L) = iσ(
�L) det(�L).

Proof. If A is a symmetric matrix over R, then it is elementary to verify that
det(iA) = isgn(A)| det(A)|, where sgn(A) denotes the signature of A. This is obvious
if A is singular. If A is a non-singular n × n matrix, and n+ and n− are the
dimensions of the maximal positive definite resp. negative definite subspaces of A,
then n = n+ + n− and

det(iA) = in−2n− | det(A)| = in+−n− | det(A)| = isgn(A)| det(A)|.
Applying this to the symmetric matrix S + ST , where S is a Seifert matrix for

the link, we get the desired statement.

Exercise 2.3.7. (a) Show that for any knot, det(S − ST ) = 1, and for a link
with more than one component det(S − ST ) = 0 holds.
(b) Show that the signature of a knot is an even integer, and for the unknot O we
have σ(O) = 0. Compute det(O) using a genus one Seifert surface.
(c) Prove that σ(m(K)) = −σ(K) and σ(−K) = σ(K).
(d) Show that for n ≥ 0, the signature of T2,2n+1 is −2n.
(e) Compute the signature of the three-stranded pretzel knots P (a1, a2, a3) with
a1, a2, and a3 odd.
(f) Show that the signature is additive under connected sum, that is, σ(K1#K2) =
σ(K1) + σ(K2).
(g) Suppose that L is a split link, that is, L can be written as L = L1 ∪L2 with Li

non-empty in such a way that there is an embedded sphere S2 ⊂ S3 \L separating

L1 and L2. Show that for any orientation �L on L, det(�L) = 0.
(h) Compute σ(T3,4) and σ(T3,7). (Cf. Exercise 2.7.9.)

Imagine modifying a knot in the following manner: allow the knot to move
around in three-space, so that at one moment, two different strands are allowed
to pass through one another transversely. These two knots are said to be related
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Figure 2.13. A strand passes through another one in un-
knotting a knot.

K+ K−

Figure 2.14. Changing the knot at a crossing.

by a crossing change. Alternatively, take a suitable diagram of the initial knot,
and modify it at exactly one crossing, as indicated in Figure 2.13. Any knot can
be turned into the unknot after a finite sequence of such crossing changes. The
minimal number of crossing changes required to unknot K is called the unknotting
number or Gordian number u(K) of the knot. Clearly, u(K) = u(m(K)).

Exercise 2.3.8. (a) Suppose that the diagram D of a knot K has the following
property: there is a point p on D such that starting from p and traversing the knot,
we reach each crossing for the first time on the overcrossing strand. Show that in
this case K is the unknot.
(b) Verify that for any diagram of a knot K half of the number of crossings provides
an upper bound for u(K).
(c) Suppose that D is a diagram of the knot K with c(D) crossings, and it contains
an arc α with c(α) overcrossings and no undercrossings. Improving the result of
(b) above, show that u(K) ≤ 1

2 (c(D)− c(α)). Using the diagram of Example 2.1.5,

show that u(Tp,q) ≤ 1
2 (p − 1)(q − 1).

Computing the unknotting number of a knot is a difficult task. There is no
general algorithm to determine u(K), since u(K) is difficult to bound from below
effectively. The signature provides a lower bound for u(K), as we shall see below.
(See Chapter 6 for an analogous bound using grid homology.)

Proposition 2.3.9. ([155, Theorem 6.4.7]) Let K+ and K− be two knots before
and after a crossing change, as shown in Figure 2.14. Then, the signatures of K+

and K− are related by the following:

−2 ≤ σ(K+) − σ(K−) ≤ 0.

Proof. Consider the oriented resolution K0 of K+ at its distinguished crossing.
This is a two-component oriented link, where the crossing is locally removed, in a
manner consistent with the orientation on K+ (compare Figure 2.15). Fix a Seifert
surface Σ0 for K0. Adding a band B to Σ0 gives a Seifert surface Σ+ for K+, while
adding B after introducing an appropriate twist, we get a Seifert surface Σ− for
K−. Fix a basis for H1(Σ0;Z) and extend it to a basis for H1(Σ±;Z) by adding the
homology element γ±, obtained as the union of some fixed path in Σ0 and an arc
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which passes through the band B. The two resulting Seifert matrices differ only at
the diagonal entry corresponding to γ±, which is the linking number 	k(γ±, (γ±)+).
When we change the band from the Seifert surface of K+ to the Seifert surface of
K− this linking number increases by one. When relating the symmetrized Seifert
matrices of the two surfaces, this fact implies that the signature of the symmetrized
Seifert matrix either does not change or it increases by two (cf. Exercise 2.3.2(b)),
proving the lemma.

Corollary 2.3.10. For any knot K ⊂ S3 we have the inequality 1
2 |σ(K)| ≤

u(K).

Proof. This follows immediately from Proposition 2.3.9 and the fact that the
unknot O has vanishing signature.

Exercise 2.3.11. Prove that for n ≥ 0 the unknotting number of T2,2n+1 is n.

Remark 2.3.12. By Proposition 2.3.6, the parity of half the signature is de-

termined by the sign of Det(�L). Knowing this parity alone leads to the following
method for determining the signature of an arbitrary knot K. Start from an un-
knotting sequence for K, and look at it in reverse order; i.e. starting at the unknot,
which has vanishing signature. Observe that at each step in the sequence, 1

2σ can
change by zero or ±1. The parity of half the signature determines whether or not
the change is non-zero, and in that case, Proposition 2.3.9 shows that the change
in signature is determined by the type of the crossing change.

Note that, Proposition 2.3.9 gives a bound on u(K) which is slightly stronger
than the one stated in Corollary 2.3.10: if the signature of the knot K is positive,
then in any unknotting sequence for K at least 1

2σ(K) moves must change a negative
crossing to a positive one. Sometimes this stronger bound is referred to as a signed
unknotting bound.

2.4. The Alexander polynomial

Beyond the signature and the determinant, further knot and link invariants

can be derived from the Seifert matrix. Suppose that �L ⊂ S3 is a given link in S3

with a Seifert surface Σ and a corresponding Seifert matrix S. Consider the matrix
t−

1
2 S − t

1
2 ST and define the (symmetrized) Alexander polynomial Δ�L(t) by

(2.3) Δ�L(t) = det(t−
1
2 S − t

1
2 ST ).

Although the Seifert matrix S in the formula depends on certain choices, the above

determinant (as the notation suggests) is an invariant of �L:

Theorem 2.4.1. The Laurent polynomial Δ�L(t) ∈ Z[t
1
2 , t−

1
2 ] is independent

from the chosen Seifert surface and Seifert matrix of �L and hence is an invariant

of the oriented link �L.

Proof. The independence of Δ�L(t) from the chosen basis of H1(Σ;Z) is a simple

exercise in linear algebra. Indeed, a base change replaces S with PSPT for a matrix
with detP = ±1, hence the Alexander polynomial is the same for the two bases.
The theorem now follows from Theorem 2.2.2 and Lemma 2.3.4.
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Example 2.4.2. The Alexander polynomial of the torus knot Tp,q is equal to

(2.4) ΔTp,q
(t) = tk

(tpq − 1)(t − 1)

(tp − 1)(tq − 1)

with k = − (p−1)(q−1)
2 , cf. Exercise 2.4.15.

It follows immediately from the definitions that

Det(�L) = Δ�L(−1),

where the value of Δ�L at −1 is to be interpreted as substituting −i for t
1
2 .

Lemma 2.4.3. For a knot K the Alexander polynomial ΔK(t) is a symmetric
Laurent polynomial, that is,

(2.5) ΔK(t−1) = ΔK(t).

Proof. Let Σ be a genus g Seifert surface for K. Since H1(Σ;Z) ∼= Z2g, S is

a 2g × 2g matrix, hence we have ΔK(t−1) = (−1)2g det(t−
1
2 ST − t

1
2 S) = ΔK(t),

concluding the proof.

More generally, if �L is an oriented link, then Δ�L(t−1) = (−1)|L|−1Δ�L(t), where
|L| denotes the number of components of L.

Exercise 2.4.4. (a) Show that for a knot K the Alexander polynomial is in
Z[t, t−1]. Verify the same for any link with an odd number of components.
(b) Show that for a knot K the Alexander polynomials of K, −K, and m(K) are
all equal.
(c) Show that the Alexander polynomial of the twist knot Wk is given by the
formulas

ΔW2n
(t) = −nt + (2n + 1) − nt−1

ΔW2n−1
(t) = nt − (2n − 1) + nt−1.

(d) Compute the Alexander polynomial of the (2, 2n + 1) torus knot T2,2n+1.
(e) Let P denote the 3-stranded pretzel knot P (2b1+1, 2b2+1, 2b3+1) with integers
bi (i = 1, 2, 3). Compute the Seifert form corresponding to a Seifert surface of genus
equal to one. Show that the Alexander polynomial of P is

ΔP (t) = Bt + (1 − 2B) + Bt−1,

where B = b1b2 + b1b3 + b2b3 + b1 + b2 + b3 + 1.

Note that there are infinitely many pretzel knots with Alexander polynomial
ΔK(t) ≡ 1; the smallest non-trivial one is the pretzel knot P (−3, 5, 7).

The following exercise demonstrates that the Alexander polynomial depends
on the orientation of a link:

Exercise 2.4.5. Consider the (2, 2n) torus link T2,2n for n ≥ 1. Orient the
two strands so that the linking number of the two components is n, and compute
the Alexander polynomial. Now reverse the orientation on one of the components,
and compute the Alexander polynomial of this new oriented link.
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Some important properties of the Alexander polynomial ΔK(t) for knots are
collected in the next result. Since the Alexander polynomial ΔK(t) of the knot
K ⊂ S3 is symmetric in t, we can write it as

(2.6) ΔK(t) = a0 +
n∑

i=1

ai(t
i + t−i).

We define the degree d(K) of ΔK(t) as the maximal d for which ad �= 0.

Theorem 2.4.6 ([119, 198]). Suppose that the knot K ⊂ S3 has Alexander
polynomial ΔK(t) of degree d(K). Then

(1) The Seifert genus g(K) of K satisfies g(K) ≥ d(K).
(2) For any two knots K1 and K2, ΔK1#K2

(t) = ΔK1
(t) · ΔK2

(t).
(3) For any knot K, ΔK(1) = 1.

Proof. For the first claim, choose a Seifert surface for K with genus g(K), and use
its associated Seifert form to compute the Alexander polynomial. The inequality
g(K) ≥ d(K) follows at once.

The second property is clear by choosing Seifert surfaces Σ1 and Σ2 for K1 and
K2 and taking their boundary connected sum.

Given any two curves γ1 and γ2 in Σ, 	k(γ+
1 , γ2) − 	k(γ+

2 , γ1) is the algebraic
intersection number of γ1 and γ2. To prove the third property, choose a basis
{αi, βj}gi,j=1 for H1(Σ) so that #(αi ∩ βi) = 1 and all other pairs of curves are

disjoint. If S is the Seifert matrix with respect to this basis, then the matrix ST −S

decomposes as blocks of

(
0 1
−1 0

)
; and since this matrix has determinant 1, the

claim follows at once.

An argument using a Z-fold covering of S3 \K shows that the Alexander poly-
nomial provides an obstruction for a knot being fibered.

Theorem 2.4.7. ([198, page 326]) If K is fibered, then g(K) = d(K) and
ad(K) = ±1.

Example 2.4.8. The computation of the Alexander polynomials for twist knots
(given in Exercise 2.4.4(c)) together with the above result shows that W2n and
W2n−1 are not fibered once |n| > 1.

An important computational tool for the symmetrized Alexander polynomial
Δ�L is provided by the skein relation.

Definition 2.4.9. Three oriented links (�L+, �L−, �L0) are said to form an ori-
ented skein triple if they can be specified by diagrams D+, D−, D0 that are
identical outside of a small disk, in which they are as illustrated in Figure 2.15. In
this case, D0 is called the oriented resolution of D+ (or D−) at the distinguished
crossing.

Theorem 2.4.10. Let (�L+, �L−, �L0) be an oriented skein triple. Then,

(2.7) Δ�L+
(t) − Δ�L−

(t) = (t
1
2 − t−

1
2 )Δ�L0

(t).
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D+ D− D0

Figure 2.15. Diagrams for the skein relation. Three dia-
grams differ only inside the indicated disk.

Proof. Fix a Seifert surface Σ0 for �L0 as in the proof of Proposition 2.3.9,

and consider the Seifert surfaces Σ+ and Σ− for �L+ and �L− obtained from Σ0 by
adding the appropriate bands around the crossing. Let S0 denote the Seifert form
corresponding to a chosen basis of H1(Σ0;Z). As in the proof of Proposition 2.3.9,
such a basis can be extended to bases of H1(Σ±;Z) by adding one further basis
element γ± that passes through the band.

When computing the determinants defining the terms in the skein relation (2.7),
on the left-hand-side all terms cancel except the ones involving the diagonal entries
given by 	k(γ±, (γ±)+) in the Seifert form. In the computation of the determinant,

this entry gives rise to a factor (t
1
2 − t−

1
2 ), which is multiplied with the determinant

of the corresponding minor. Since that minor is t−
1
2 S0 − t

1
2 ST

0 , whose determinant
is Δ�L0

(t), the statement of the theorem follows at once.

Example 2.4.11. Using the skein relation, it follows immediately that the
Alexander polynomial of the Hopf link H± is equal to ±(t

1
2 − t−

1
2 ). A slightly

longer computation shows that the Alexander polynomial ΔB(t) of the Borromean

rings B is equal to (t
1
2 − t−

1
2 )4.

Exercise 2.4.12. (a) Show that for a split link �L we have Δ�L(t) ≡ 0.
(b) Show that the skein relation, together with the normalization ΔO(t) = 1 on
the unknot O, determines the Alexander polynomial for all oriented links.
(c) Using the skein relation, determine the Alexander polynomial of Wn for all n.
Determine the Seifert genus of Wn.
(d) Verify that the Kinoshita-Terasaka and the Conway knots both have Alexander
polynomial equal to 1.
(e) Given a knot K, consider the 2-component link L we get by adding a meridian
to K. Depending on the orientation of the meridian we get L(+) and L(−) (in the
first case the linking number of the two components is 1, while in the second case
it is −1). Show that ΔL(±)(t) = ±(t

1
2 − t−

1
2 )ΔK .

(f) Determine the Alexander polynomial of the Whitehead link of Figure 2.9.

The Alexander polynomial is an effective tool for studying alternating knots.
(Compare the results below with Theorems 2.4.6 and 2.4.7.)

Theorem 2.4.13 ([152, 155]). Suppose that K is an alternating knot with

Alexander polynomial ΔK(t) = a0 +
∑d

i=1 ai(t
i + t−i) and with degree d(K).

• The genus g(K) of the knot K is equal to d(K). In particular, if the
Alexander polynomial of K is trivial, then K is the unknot.

• For i = 0, . . . , d(K)−1 the product aiai+1 is negative, that is, none of the
coefficients (of index between 0 and d(K)) of the Alexander polynomial of
K vanish, and these coefficients alternate in sign.

• The knot K is fibered if and only if ad(K) = ±1.
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Exercise 2.4.14. Identify the torus knots that are alternating.

2.4.1. The Alexander polynomial via Fox calculus. There is an algebraic
way to compute the Alexander polynomial of a link through Fox’s free differential
calculus. For this construction, fix a presentation of the fundamental group of the
link complement

π1(S
3 \ L) = 〈g1, . . . , gn | r1, . . . , rm〉.

(By possibly adding trivial relations, we can always assume that m ≥ n − 1.) We
associate to the presentation its n×m Jacobi matrix J = (Ji,j) over Z[t, t−1], which
is defined as follows. The presentation gives a surjective homomorphism of groups
Fn → π1(S

3\L), where Fn denotes the free group generated by the letters g1, . . . , gn.
Consider the induced map Z[Fn] → Z[π1(S

3 \ L)] on the group rings. Composing
this map with the abelianization, we get a map Z[Fn] → Z[H1(S

3 \ L;Z)]. Recall
that the orientation of the link L provides a further map H1(S

3\L;Z) → Z, sending
the oriented meridians of the components to 1. Hence, after identifying the group
ring Z[Z] with Z[t, t−1], we get a map

(2.8) φ : Z[Fn] → Z[t, t−1].

For a word w ∈ Fn define the free derivative

∂w

∂gj
∈ Z[Fn]

by the rules

∂uv

∂x
=

∂u

∂x
+ u

∂v

∂x
,

∂gi
∂gi

= 1,
∂gi
∂gj

= 0 (i �= j).

Exercise 2.4.15. (a) Show that for n ∈ N

∂xn

∂x
=

xn − 1

x − 1
and

∂x−n

∂x
= −x−1x−n − 1

x−1 − 1
.

(b) Suppose that for p, q ∈ N relatively prime integers the group G is presented as

〈x, y | xpy−q〉. Determine ∂(xpy−q)
∂x and ∂(xpy−q)

∂y .

Applying the map φ of Equation (2.8) to the free derivative ∂ri
∂gj

we get a

polynomial Ji,j , the (i, j)-term of the Jacobi matrix J of the presentation. Consider
the ideal ε1 generated by the determinants of the (n − 1) × (n − 1)-minors of the
Jacobian J . For the proof of the following theorem, see [119, Chapters 6 and 11].

Theorem 2.4.16. The ideal ε1 is a principal ideal, and its generator P (t) is

±t
k
2 times the Alexander polynomial Δ�L(t), for some k ∈ Z.

Exercise 2.4.17. (a) Using Fox calculus, verify Equation (2.4), and compute
the Alexander polynomial of the (p, q) torus knot. (Hint: Recall Exercise 2.1.7(b)
and apply Exercise 2.4.15(b)).
(b) Using the Alexander polynomial (and the result of Theorem 2.4.6), show that
the Seifert genus of the torus knot Tp,q is given by g(Tp,q) = 1

2 (p − 1)(q − 1).

(c) Find a presentation of π1(S
3 \ B) for the Borromean rings B, and compute

±ΔB(t) with the aid of Fox calculus.
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+ _

Figure 2.16. By introducing a clasp we construct the
Whitehead double of K. Notice that there are two different
ways for introducing the clasp, providing a further parameter ±
besides the chosen framing.

2.5. Further constructions of knots and links

The normal bundle ν(K) → K of a knot K ⊂ S3 is an oriented D2-bundle
over S1, hence it is trivial. A trivialization of this bundle is called a framing of
K. Thought of as a complex line bundle, the normal bundle can be trivialized by
a single (nowhere zero) section, hence by a push-off K ′ of K. The linking number
	k(K, K ′) of the knot K with the push-off K ′ determines the framing up to isotopy.
With this identification, the push-off along a Seifert surface, providing the Seifert
framing, corresponds to 0.

Exercise 2.5.1. Suppose that the knot K is given by the diagram D. The
diagram provides a framing by pushing off the arcs of D within the plane. Show
that the resulting framing corresponds to the writhe wr(D) ∈ Z.

Knots with interesting properties can be constructed as follows. For a given
knot K consider the push-off K ′ of K corresponding to the framing k ∈ Z, and orient
K ′ opposite to K. Then the resulting two-component link Lk(K) bounds an annulus
between K and K ′, and it is easy to see from the definition that for the given framing

k, the link will have Alexander polynomial equal to ΔLk(K)(t) = k(t−
1
2 − t

1
2 ). (The

annulus provides a Seifert surface with corresponding 1 × 1 Seifert matrix (k).) In
particular, for k = 0 the resulting link L0(K) has vanishing Alexander polynomial.

Modify now the link Lk(K) constructed above by replacing the two close par-
allel segments near a chosen point p with a clasp as shown in Figure 2.16. The
resulting knot is called a Whitehead double of K. Notice that since the clasp can
be positive or negative, for each framing k we actually have two doubles, W+

k (K)

and W−
k (K); the k-framed positive resp. negative Whitehead double of K. Observe

that the k-framed Whitehead double of the unknot is a twist knot; more precisely,
W+

k (O) = W2k and W−
k (O) = W2k−1.

Lemma 2.5.2. The 0-framed Whitehead doubles W±
0 (K) for any knot K have

Alexander polynomial ΔW±
0 (K)(t) = 1.

Proof. Use the skein relation at a crossing of the clasp, and note that the
oriented resolution has vanishing Alexander polynomial, as shown above, while the
knot obtained by a crossing change is the unknot.

Exercise 2.5.3. Compute Det(W±
0 (K)) and show that σ(W±

0 (K)) = 0.
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(c)(b)(a)

2k

Figure 2.17. Adding a band. Start from the two-component
unlink of (a) and add the band B (an example shown in (b)) to
get the knot K(B). Adding k full twists to B we get the family
K(B, k) of knots, shown by (c).

Another class of examples is provided by the two-component unlink, equipped
with an embedded band B added to the unlink which turns it into a knot K(B), cf.
Figure 2.17. In this construction B can be any band whose interior is disjoint from
the unlink, and whose ends are contained in different components of the unlink. A
band B gives rise to further bands by adding twists to it: by adding k full twists
to B, we get K(B, k).

Lemma 2.5.4. The Alexander polynomial of K(B, k) is independent of k:

ΔK(B,k)(t) = ΔK(B)(t).

Proof. Applying the skein relation to a crossing coming from the twist on the
band B, the three links in the skein triple are K(B, k), K(B, k − 1) and the two-
component unlink. Since the two-component unlink has vanishing Alexander poly-
nomial, induction on k verifies the statement of the lemma.

Remark 2.5.5. Using other knot invariants, it is not hard to see that K(B, k)
for various k can be distinct. For example, if K(B) has non-trivial Jones polynomial
(cf. [119]), then the Jones polynomials distinguish the K(B, k) for various values
of k.

For a variation on this theme, consider the Kanenobu knots K(p, q) shown
in Figure 2.18. These knots are constructed from the two-component unlink by a
similar procedure as our previous examples K(B, k) in two different ways: we could
regard the region with the p full twists as a band added to the two-component unlink
(cf. Figure 2.19(a)), or we can do the same with the region of the q full twists, as
shown in Figure 2.19(b). It follows that all of them have the same Alexander
polynomial.

If we allow both parameters to change so that p+q stays fixed, then not only the
Alexander polynomials, but also the HOMFLY (and hence the Jones) polynomials
and Khovanov (and Khovanov-Rozansky) homologies of the resulting knots stay
equal. For these latter computations see [224], cf. also [85].

Remark 2.5.6. The definition of the Alexander polynomial through Fox calcu-
lus provides further invariants by considering the kth elementary ideals εk generated
by the determinants of the (n− k)× (n− k) minors of a Jacobi matrix J for k > 1.
Indeed, the Kanenobu knots (of Figure 2.18) can be distinguished by the Jones
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2q

2p

Figure 2.18. The Kanenobu knot K(p, q). The boxes repre-
sent 2p and 2q half twists; that is p and q full twists.

2q

2p

(a) (b)

Figure 2.19. Two ribbon representations of K(p, q).

polynomial together with the second elementary ideal ε2: for K(p, q) it is gener-
ated by the two polynomials t2 − 3t + 1 and p − q, hence for fixed p + q this ideal
determines p and q. For this computation and further related results see [99].

Exercise 2.5.7. Determine ΔK(p,q)(t). (Hint: Pick p = q = 0 and identify
K(0, 0) with the connected sum of two copies of the figure-eight knot.)

The construction of the knots K(B) naturally generalizes by considering the
n-component unlink and adding (n− 1) disjoint bands to it in such a way that the
result is connected. A knot presented in this way is called a ribbon knot.

Exercise 2.5.8. Show that K ⊂ S3 is ribbon if and only if it bounds an
immersed disk in S3, where the double points of the immersion, that is, the self-
intersections of the disk locally look like the picture of Figure 2.20.

2.6. The slice genus

A further basic knot invariant is the (smooth) slice genus (or four-ball genus)
gs(K) of a knot K, defined as follows. An oriented, smoothly embedded surface
(F, ∂F ) ⊂ (D4, ∂D4 = S3) with ∂F = K is called a slice surface of K.
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Figure 2.20. Ribbon singularity.

Definition 2.6.1. The integer

gs(K) = min{g(F ) | (F, ∂F ) ⊂ (D4, S3) is a slice surface for K}
is the slice genus (or four-ball genus) of the knot K. A knot K is a slice knot if
gs(K) = 0, that is, if it admits a slice disk.

The invariant gs provides a connection between knot theory and 4-dimensional
topology; see also Section 8.6. The slice genus is related to the Seifert genus and
the unknotting number by the inequalities:

(2.9) gs(K) ≤ g(K), gs(K) ≤ u(K).

The first is immediate: just push the interior of a Seifert surface into the interior
of D4. For the second, note that a d-step unknotting of K (followed by capping
off the unknot at the end) can be viewed as an immersed disk in D4 with d double
points. Resolving the double points gives a smoothly embedded genus d surface
which meets ∂D4 = S3 at K. In more detail, this resolution is done by removing
two small disks at each double point of the immersed disk, and replacing them
with an embedded annulus. Clearly, for each double point, this operation drops
the Euler characteristic by two and hence increases the genus by one. One can find
knots K for which the differences g(K) − gs(K) and u(K) − gs(K) are arbitrarily
large. (See for instance Exercise 2.6.2(b) and Example 8.7.1.)

Exercise 2.6.2. (a) Show that a ribbon knot is slice. In particular, verify that
the knots K(B, k) from Lemma 2.5.4 are slice.
(b) Show that for any knot K, K#m(−K) is a slice knot. Show that K#m(−K)
is, indeed, ribbon.

Remark 2.6.3. There is no known example of a slice knot which is not ribbon.
Indeed, the slice-ribbon conjecture of Fox [57] asserts that any slice knot is
ribbon. The conjecture has been verified for 2-bridge knots [124] and for certain
Montesinos knots [116], but it is open in general.

A further property, the Fox-Milnor condition, of the Alexander polynomial can
be used to show that certain knots are not slice.

Theorem 2.6.4 (Fox-Milnor, [56, 58]). If K is a slice knot, then there is a
polynomial f with the property that ΔK(t) = f(t) · f(t−1).

Exercise 2.6.5. Compute the slice genus of the figure-eight knot W2 (cf. Fig-
ure 2.6) and of the right-handed trefoil knot T2,3.

Like the unknotting number u(K), the slice genus gs(K) is poorly understood;
in fact it is unknown even for some small-crossing knots. However, there are some
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classical lower bounds on the slice genus; we review here one coming from the
signature (generalizing Corollary 2.3.10):

Theorem 2.6.6. For a knot K ⊂ S3, 1
2 |σ(K)| ≤ gs(K).

We return to a proof of Theorem 2.6.6 after some further discussion.
The bound in Theorem 2.6.6 is typically not sharp. For example, as we will see,

the slice genus of the (p, q) torus knot Tp,q is 1
2 (p − 1)(q − 1), while the signature

can be significantly smaller. (For a recursive formula for σ(Tp,q) see [155].) For
example, 1

2σ(T3,7) = −4 (cf. Exercise 2.3.7(h)), while gs(T3,7) = u(T3,7) = 6.

Similarly, in Chapter 8 (see Remark 8.6.5) we will show that gs(W
−
0 (T−2,3)) = 1,

while (according to Exercise 2.5.3) it has vanishing signature.
The conclusion of Theorem 2.6.4 holds even when the hypothesis that K is slice

is replaced by the following weaker condition:

Definition 2.6.7. A knot K is called topologically slice if there is a continu-
ous embedding φ : (D2×D2, (∂D2)×D2) → (D4, ∂D4 = S3) such that φ(∂D2×{0})
is K.

Note that the “normal” D2-direction (required by the above definition) au-
tomatically exists for smooth embeddings of D2 in D4. The topologically slice
condition on K is strictly weaker than the (smoothly) slice condition: for exam-
ple the Whitehead double of any knot (with respect to the Seifert framing) is a
topologically slice knot, but in many cases (for example, for the negatively clasped
Whitehead double of the left-handed trefoil knot) it is not smoothly slice. The fact
that these knots are topologically slice follows from a famous result of Freedman
[59] (see also [67]), showing that any knot whose Alexander polynomial ΔK(t) = 1
is topologically slice. The fact that W−

0 (T−2,3) is not smoothly slice will be demon-
strated using the τ invariant in grid homology, cf. Lemma 8.6.4. In particular,
the condition that ΔK = 1 is not sufficient for a knot to admit a smooth slice
disk. Recall that both the Kinoshita-Terasaka knot and the Conway knot have
ΔK = 1. The Kinoshita-Terasaka knot is smoothly slice, while the (smooth) slice
genus of the Conway knot is unknown. Note that the distinction between smooth
and topological does not appear for the Seifert genus, cf. [2, Section 1.1].

Exercise 2.6.8. Find a slice disk for the Kinoshita-Terasaka knot.

The rest of this section is devoted to the proof of Theorem 2.6.6. During the
course of the proof, we give some preparatory material which will also be used in
Chapter 8, where we present an analogous bound coming from grid homology.

We prefer to recast Theorem 2.6.6 in terms of knot cobordisms, defined as

follows. Given two oriented links �L0, �L1 ⊂ S3, a cobordism between them is a
smoothly embedded, compact, oriented surface-with-boundary W ⊂ S3 × [0, 1]

such that W ∩ (S3 × {i}) is �Li for i = 0, 1, and the orientation of W induces the

orientation of �L1 and the negative of the orientation of �L0 on the two ends.
We will prove the following variant of Theorem 2.6.6. (The proof we describe

here is similar to the one given by Murasugi [153].)

Theorem 2.6.9. Suppose that W is a smooth genus g cobordism between the
knots K1 and K2. Then

|σ(K1) − σ(K2)| ≤ 2g.

Before we provide the details of the proof, we need a definition.
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Figure 2.21. A saddle move. Adding a band to �L (on the left)

we get the link �L′ (on the right), and the two links are related by
a saddle move.

Definition 2.6.10. Given two oriented links �L and �L′, we say that �L and �L′ are
related by a saddle move if there is a smoothly embedded, oriented rectangle R

with oriented edges e1, . . . , e4, whose interior is disjoint from �L, with the property

that �L ∩ R = (−e1) ∪ (−e3), and �L′ is obtained by removing e1 and e3 from �L
and attaching e2 and e4 with the given orientations (and smoothing the corners).

This relation is clearly symmetric in �L and �L′, see Figure 2.21. (Notice that the
connected sum of two knots is a special case of this operation.) If we have k

disjoint rectangles between �L and �L′ as above, we say that �L and �L′ are related by
k simultaneous saddle moves .

In the course of the verification of the inequality of Theorem 2.6.9, we use the
following standard result. (See also Section B.5.) For the statement, we introduce
the following notational convention: given a knot K and an integer n, let Un(K)
denote the link obtained by adding n unknotted, unlinked components to K.

Proposition 2.6.11 (cf. Section B.5). Suppose that two knots K1 and K2 can
be connected by a smooth, oriented, genus g cobordism W . Then, there are knots
K ′

1 and K ′
2 and integers b and d with the following properties:

(1) Ub(K1) can be obtained from K ′
1 by b simultaneous saddle moves.

(2) K ′
1 and K ′

2 can be connected by a sequence of 2g saddle moves.
(3) Ud(K2) can be obtained from K ′

2 by d simultaneous saddle moves.

The proof of this proposition relies on the concept of normal forms of cobor-
disms between knots, as explained in Section B.5.

With Proposition 2.6.11 at our disposal, the proof of Theorem 2.6.9 will easily
follow from the two lemmas below:

Lemma 2.6.12. If �L and �L′ are oriented links that differ by a saddle move, then

|σ(�L) − σ(�L′)| ≤ 1.

Proof. A Seifert surface for �L can be obtained from one for �L′ by adding a band

to it, cf. the proof of Proposition 2.3.9. Thus, a Seifert matrix for �L is obtained by

adding one row and one column to a Seifert matrix of �L′. This fact immediately
implies that the signature can change by at most one (cf. Exercise 2.3.2(a)).

Lemma 2.6.13. Let K1 and K2 be knots with the property that K2 can be
obtained from Ud(K1) by d simultaneous saddle moves. Then, σ(K1) = σ(K2).
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α

Figure 2.22. Resolution of a ribbon singularity. By pulling
apart the bands slightly, we get a Seifert surface for the knot we
got by attaching the bands to Ud(K). The curve α is indicated in
the picture on the right.

Proof. Fix a Seifert surface Σ for K1 and the spanning disks for the d unknot
components in Ud(K1). By making the bands sufficiently thin, we can arrange
that the intersections of the saddle bands with the spanning disks or Σ are ribbon
singularities, as shown in Figure 2.20 (or on the left in Figure 2.22). A Seifert
surface Σ′ for K2 can be constructed by pulling the bands slightly apart at the
ribbon singularities, as shown on the right in Figure 2.22. Each time we apply this
operation, we increase the genus of the surface Σ by one, hence we increase the
number of rows (and columns) of the Seifert matrix by two. One of the two new
homology elements, called αp at the ribbon singularity p, can be visualized on the
picture: it encircles the square we opened up. The linking number of αp with α+

p

vanishes. Furthermore, the linking number of αp with all homology elements on
the Seifert surface Σ, and with the other αq also vanish.

The surfaces Σ and Σ′ give Seifert forms S and S′. We wish to compare the
signatures of the bilinear forms Q and Q′ represented by S + ST and S′ + (S′)T .
There is a natural embedding H1(Σ) ↪→ H1(Σ

′), and the restriction of Q′ to H1(Σ)
is Q. Since the determinant of a knot is always non-trivial (cf. Exercise 2.3.7(a)), it
follows that Q and Q′ are both non-degenerate; so there is a perpendicular splitting
(with respect to Q′)

H1(Σ
′;R) ∼= H1(Σ;R) ⊕ V.

The curves αp are linearly independent, since surgery along them gives a connected
surface. Thus, the αp span a half-dimensional subspace of V , moreover Q′ vanishes
on their span. Since Q′ is non-degenerate on V , it follows that the signature of V
vanishes; and hence the signature of Q equals the signature of Q′.

Proof of Theorem 2.6.9. The theorem is now a direct consequence of Proposi-
tion 2.6.11, Lemma 2.6.12 and Lemma 2.6.13.

It follows that the signature bounds the slice genus:

Proof of Theorem 2.6.6. Removing a small ball around some point on a smooth
slice surface gives a smooth genus g cobordism from K to the unknot. Applying
Theorem 2.6.9 and the fact that the signature of the unknot vanishes, the result
follows at once.

Remark 2.6.14. The above proof of Theorem 2.6.6 rests on the normal form for
cobordisms (Proposition 2.6.11), whose hypothesis is that the surface is smoothly
embedded. With different methods it can be shown that 1

2 |σ(K)| ≤ gtop(K), for the
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(a) (b)

Figure 2.23. The sign ε = ±1 associated to a crossing in
the diagram. If the crossing is positioned as (a) with respect to
the black regions, we associate +1 to it, while if the crossing has
the shape of (b), then we associate −1 to it.

topological slice genus gtop(K), the minimal genus of a locally flat embedded surface
in D4 bounding K [119, Theorem 8.19]. Consequently, the signature σ(K) vanishes
for any topologically slice knot, and therefore it cannot be used to distinguish
topological and smooth sliceness.

2.7. The Goeritz matrix and the signature

We include here a handy formula, due to Gordon and Litherland [78], for
computing the signature of a link in terms of its diagram. (This material will be
needed in Section 10.3, where we compute the grid homology for alternating knots.)

Let D be a diagram of a link. The diagram admits a chessboard coloring:
the components of the complement of the diagram in the plane can be colored
black and white in such a manner that domains with the same color do not share
sides. Indeed, the diagram D admits two such colorings; choose the one where the
unbounded region is white and call this unbounded region d0. Let the other white
regions be denoted by d1, . . . , dn.

Definition 2.7.1. The black regions can be glued together to form a compact
surface, the black surface Fb ⊂ R3 with the given link as its boundary ∂Fb: at
each crossing glue the domains together with a twisted band to restore the crossing
in the diagram.

Exercise 2.7.2. Consider the alternating diagram of the (2, 2n+1) torus knot
T2,2n+1 given by Figure 2.3. Show that the surface Fb is homeomorphic to the
Möbius band, so Fb is not a Seifert surface.

The chessboard coloring gives rise to a matrix defined as follows. First associate
to each crossing p of the diagram D a sign ε(p) ∈ {±1} shown in Figure 2.23.
(Conventions on ε are not uniform in the literature; we are using the one from [18].)

Definition 2.7.3. Define the unreduced Goeritz matrix G′ = (gi,j)
n
i,j=0 as

follows. For i �= j, let

gi,j = −
∑
p

ε(p),

where the sum is taken over all crossings p shared by the white domains di and dj ;
for i = j, let

gi,i = −
∑
k �=i

gi,k.



38 2. KNOTS AND LINKS IN S3

Type I Type II

Figure 2.24. Types of crossings in an oriented diagram.

The reduced Goeritz matrix G = G(D) is obtained from G′ by considering the
n rows and columns corresponding to i, j > 0.

Recall that the link (and hence its projection D) is equipped with an orientation.
Classify a crossing p of D as type I or type II according to whether at p the positive
quadrant is white or black; see Figure 2.24. The type of a crossing is insensitive to
which of the two strands passes over the other one; but it takes the orientation of the
link into account. Define μ(D) as

∑
ε(p), where the summation is for all crossings

in D of type II. The Goeritz matrix (together with the correction term μ(D) above)

can be used to give an explicit formula for computing the signature of a link �L from
a diagram D. This formula is often more convenient than the original definition
using the Seifert form of a Seifert surface. (The proof given below follows [189].)

Theorem 2.7.4 (Gordon-Litherland formula, [78]). Suppose that D is a di-

agram of a link �L with reduced Goeritz matrix G = G(D). Let σ(G) denote the

signature of the symmetric matrix G. Then, σ(�L) is equal to σ(G) − μ(D).

In the course of the proof of this theorem we will need the following definition
and lemma (the proof of which will be given in Appendix B).

Definition 2.7.5. The diagram D of a link �L is special if it is connected, and

the associated black surface Fb (from Definition 2.7.1) is a Seifert surface for �L.

Lemma 2.7.6 (see Proposition B.3.3). Any oriented link admits a special dia-
gram.

Using the above result, the proof of Theorem 2.7.4 will be done in two steps.
First we assume that D is a special diagram, and check the validity of the formula
for the signature in this case. In the second step we show that σ(G) − μ(D) is a
link invariant; i.e., it is independent of the chosen projection.

Lemma 2.7.7. Suppose that D is a special diagram of the oriented link �L. Then

the signature of the reduced Goeritz matrix G(D) is equal to σ(�L), and μ(D) = 0.

Proof. The contour of any bounded white domain gives a closed, embedded curve,
hence a one-dimensional homology class in the Seifert surface Fb. We claim these
classes give a basis for H1(Fb;R). To show linear independence, for each crossing
c consider the relative first homology class pc in H1(Fb, ∂Fb;R) represented by the
arc in Fb that is the pre-image of the crossing. For a crossing adjacent to the
unbounded domain the corresponding arc is intersected by a single contour, and
working our way towards the inner domains, an inductive argument establishes
linear independence.
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Let B denote the number of black regions, W the number of white regions,
and C the number of crossings. Thinking of the connected projection as giving
a cell decomposition of S2, we see that W + B − C = 2. By definition we have
χ(Fb) = B −C. It follows that the first homology of Fb has dimension W − 1; thus
the contours give a basis for H1(Fb;R).

A local computation shows that the reduced Goeritz matrix is equal to S +ST ,
where S is the Seifert matrix of Fb for the above basis. The definition immediately

provides the identity σ(G(D)) = σ(�L).

If Fb is a Seifert surface for �L, the diagram D has no type II crossing, hence
for a special diagram D the correction term μ(D) is equal to zero.

Lemma 2.7.8. Fix an oriented link �L and consider a diagram D of it. The
difference σ(G)−μ(D) is independent of the chosen diagram D, and is an invariant

of �L.

Proof. By the Reidemeister Theorem 2.1.4, the claim follows once we show that
σ(G) − μ(D) remains unchanged if we perform a Reidemeister move.

The first Reidemeister move creates one new domain, which in the chessboard
coloring is either black or white. If it is black, the new crossing is of type I and
the Goeritz matrix remains unchanged, hence the quantity σ(G) − μ(D) remains
unchanged, as well. If the new domain is white, then the new crossing p is of type
II, hence μ changes by ε(p). The Goeritz matrix also changes, as follows. Let dnew
denote the new white domain, and dnext the domain sharing a crossing with dnew.
The new Goeritz matrix, written in the basis provided by the domains with the
exception of taking dnext + dnew instead of dnext, is the direct sum of the Goeritz
matrix we had before the move, and the 1×1 matrix (ε(p)). The invariance follows
again.

For the second Reidemeister move, we have two cases again, depending on
whether the bigon enclosed by the two arcs is black or white in the chessboard
coloring. If it is black, then the matrix G does not change, and the two new
intersections have the same type, with opposite ε-values, hence μ does not change
either. If the new domain is white, then μ does not change under the move by
the same reasoning as before. Now, however, the matrix changes, but (as a simple
computation shows) its signature remains the same, verifying the independence.

The invariance under the Reidemeister move R3 needs a somewhat longer case-
analysis, corresponding to the various orientations of the three strands involved.
Interpret the move as pushing a strand over a crossing p, and suppose that a black
region disappears and a new white region is created. Inspecting each case, one sees
that μ changes to μ − ε(p), while G acquires a new row and column, and after an
appropriate change of basis this row and column contains only zeros except one
term -ε(p) in the diagonal; hence the invariance follows as before.

After these preparations we are ready to prove the Gordon-Litherland formula:

Proof of Theorem 2.7.4. Consider the given diagram D and a special diagram

D′ for the fixed oriented link �L. By Lemma 2.7.8

σ(G(D))− μ(D) = σ(G(D′)) − μ(D′),
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while for the special diagram D′ (by Lemma 2.7.7) we have σ(G(D′)) = σ(�L) and
μ(D′) = 0, verifying the identity of the theorem.

Exercise 2.7.9. Compute the signature σ(T3,3n+1) as a function of n.

If Σ is a Seifert surface for �L, then −Σ is a Seifert surface for −�L. Thus, if S

is the Seifert matrix for �L, then ST is the Seifert matrix for −�L. The signature,
determinant and the Alexander polynomial of an oriented link therefore remains
unchanged if we reverse the orientations of all its components.

If we reverse the orientation of only some components of a link, however, the
situation is different. As Exercise 2.4.5(b) shows, the Alexander polynomial changes
in general. As it will be explained in Chapter 10, the determinant of the link will
stay unchanged under such reversal of orientations.

The signature of a link depends on the orientation of the link, and it changes
in a predictable way if we reverse the orientations of some of its components. Later
we will need the exact description of this change, which was first established by
Murasugi [154]. Here we follow the elegant derivation of [78], using the Gordon-
Litherland formula of Theorem 2.7.4.

Corollary 2.7.10. Let �L1 and �L2 be two disjoint, oriented links. Then,

σ(�L1 ∪ �L2) = σ((−�L1) ∪ �L2) − 2	k(�L1, �L2).

Proof. Let �L = �L1 ∪ �L2. Fix a diagram D for the oriented link �L1 ∪ �L2, and let

D′ be the induced diagram for (−�L1) ∪ �L2, obtained by changing the orientations
on L1. Since reversing the orientation on some of the components of D leaves the
Goeritz matrix unchanged, the Gordon-Litherland formula gives

σ(�L1 ∪ �L2) − σ((−�L1) ∪ �L2) = μ(D′) − μ(D).

The identification

μ(D′) − μ(D) = −2	k(�L1, �L2)

is now a straightforward matter: at those crossings where both strands belong

either to �L1 or to �L2 the same quantity appears in μ(D′) and in μ(D). At crossings

of strands from �L1 and �L2 the orientation reversal changes the type, but leaves the
quantity ε(p) unchanged. Summing up these contributions (as required in the sum

given by μ(D′)− μ(D)) we get −2	k(�L1, �L2) (cf. Definition 2.1.12), concluding the
proof.

The Gordon-Litherland formula has an interesting consequence for alternating
links. To describe this corollary, we introduce the following notion. The compatible
coloring for an alternating link arranges for each crossing to have the coloring shown
in Figure 2.23(b). It is easy to see that a connected alternating diagram always has
a unique compatible coloring.

Suppose now that D is a connected alternating diagram of a link L. Let Neg(D)
(and similarly, Pos(D)) denote the number of negative (resp. positive) crossings in
D, and let White(D) (and Black(D)) denote the number of white (resp. black)
regions, for the compatible coloring.
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Corollary 2.7.11. Let �L be a link which admits a connected, alternating di-
agram D. Equip D with a compatible coloring. Then,

(2.10) σ(�L) = Neg(D) − White(D) + 1 and σ(�L) = Black(D) − Pos(D) − 1.

Proof. Thinking of the knot projection as giving a cell decomposition of S2, it
follows that

White(D) + Black(D) = Pos(D) + Neg(D) + 2;

so it suffices to prove only one of the two formulas in Equation (2.10).
Suppose first that for the compatible coloring of D we have that the unbounded

domain is white. From our coloring conventions on the alternating projection it is
clear that ε(p) = −1 for all crossings, and furthermore positive crossings are of type
I and negative crossings are of type II. Therefore, μ(D) = −Neg(D).

Next we claim that the Goeritz matrix of a compatibly colored, connected,
alternating link diagram is negative definite. We see this as follows. By the al-
ternating property it follows that ε(p) = −1 for all crossings. Let m denote the
number of crossings in the diagram. Consider the negative definite lattice Zm,
equipped with a basis {ep}mp=1 so that 〈ep, eq〉 = −δpq (with δpq being the Kro-
necker delta). Think of the basis vectors ep as being in one-to-one correspondence
with the crossings in the projection. Consider next the vector space whose basis
vectors correspond to the bounded white regions {di}ni=1 in the diagram. At each
crossing, label one of the white quadrants with +1 and the other with −1. For
i = 1, . . . , n and p = 1, . . . , m, let ci,p be zero if the pth crossing does not appear on
the boundary of di or if it appears twice on the boundary of di; otherwise, let ci,p
be ±1, depending on the sign of the quadrant at the pth crossing in di. Consider
the linear map sending di to

∑
p ci,p ·ep. Since D is connected, this map is injective.

(This follows from the inductive argument used in the proof of Lemma 2.7.7.) It
is now straightforward to check that this linear map realizes an embedding of the
lattice specified by the Goeritz matrix G(D) into the standard, negative definite
lattice. It follows at once that the Goeritz matrix is negative definite, as claimed.

The above argument shows that σ(G(D)) is equal to −(White(D)− 1), and so
the Gordon-Litherland formula immediately implies the corollary.

Assume now that the compatible coloring on D provides a black unbounded do-
main. Reverse all crossings of D to get the mirror diagram m(D), which represents

the mirror link m(�L). Since the reversal also reverses the colors of the domains
in the compatible coloring, the unbounded domain of the compatible coloring on
m(D) is white. For this diagram the previous argument then shows

σ(m(�L)) = Neg(m(D)) − White(m(D)) + 1.

Since Neg(m(D)) = Pos(D), White(m(D)) = Black(D) and σ(m(�L)) = −σ(�L), we
get

σ(�L) = Black(D) − Pos(D) − 1.





CHAPTER 3

Grid diagrams

In this chapter we introduce the concept of a grid diagram, giving a convenient
combinatorial way to represent knots and links in S3. Grid diagrams will play an
essential role in the rest of the book. These diagrams, as a tool for studying knots
and links, made their first appearance in the work of Brunn in the late 19th cen-
tury [17]. Other variants have been used since then, for example, in bridge positions
[127], or in arc presentations of Cromwell and Dynnikov [27, 37]. Dynnikov used
grid diagrams in his algorithm for recognizing the unknot [37]; see also [12]. Our
presentation rests on Cromwell’s theorem which describes the moves connecting
different grid presentations of a given link type.

In Section 3.1 we introduce planar grid diagrams and their grid moves. Planar
grid diagrams can be naturally transferred to the torus, to obtain toroidal grid dia-
grams, used in the definition of grid homology. Toroidal grid diagrams are discussed
in Section 3.2. In Section 3.3 we show how grid diagrams can be used to compute
the Alexander polynomial, while in Section 3.4 we introduce a method which pro-
vides Seifert surfaces for knots and links in grid position. Finally, in Section 3.5
we describe a presentation of the fundamental group of a link complement that is
naturally associated to a grid diagram.

3.1. Planar grid diagrams

The present section will concern the following object:

Definition 3.1.1. A planar grid diagram G is an n × n grid on the plane;
that is, a square with n rows and n columns of small squares. Furthermore, n of
these small squares are marked with an X and n of them are marked with an O;
and these markings are distributed subject to the following rules:

(G-1) Each row has a single square marked with an X and a single square marked
with an O.

(G-2) Each column has a single square marked with an X and a single square
marked with an O.

(G-3) No square is marked with both an X and an O.

The number n is called the grid number of G.

We denote the set of squares marked with an X by X and the set of squares
marked with an O by O. Sometimes, we will find it convenient to label the O-
markings {Oi}ni=1. A grid diagram can be described by two permutations σO and
σX. If there is an O-marking in the intersection of the ith column and the jth row,
then the permutation σO maps i to j. We will indicate this permutation as an
n-tuple, (σO(1), . . . , σO(n)). (By convention, we regard the left-most column and
the bottom-most row as first.) The permutation σX is defined analogously, using
the X-markings in place of the O-markings.
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Figure 3.1. The knot associated to the pictured grid dia-
gram, with orientation and crossing conventions. The dia-
gram can be described by the two permutations σO and σX, specify-
ing the locations of the O’s and X’s. Above, the two permutations
are σO = (2, 6, 5, 3, 4, 1) and σX = (5, 4, 1, 6, 2, 3).

In this section, we will use the terms “planar grid diagram” and simply “grid
diagram” interchangeably. Care must be taken once we introduce the notion of a
“toroidal grid diagram”, later in the chapter.

3.1.1. Specifying links via planar grid diagrams. A grid diagram G spec-

ifies an oriented link �L via the following procedure. Draw oriented segments con-
necting the X-marked squares to the O-marked squares in each column; then draw
oriented segments connecting the O-marked squares to the X-marked squares in
each row, with the convention that the vertical segments always cross above the
horizontal ones. See Figure 3.1 for an example. In this case, we say that G is a grid

diagram for �L.

Remark 3.1.2. The permutation σX · σ−1
O can be decomposed as a product of

	 disjoint cycles for some 	. This number is equal to the number of components of
the link specified by the grid diagram.

Lemma 3.1.3. Every oriented link in S3 can be represented by a grid diagram.

Proof. Approximate the link �L by a PL-embedding with the property that
the projection admits only horizontal and vertical segments. At a crossing for
which the horizontal segment is an over-crossing, apply the modification indicated in
Figure 3.2. Finally, move the link into general position, so that different horizontal
(or vertical) segments are not collinear. Mark the turns by X’s and O’s, chosen so
that vertical segments point from X to O, while horizontal segments point from O

to X. The result is a grid diagram representing �L.

Examples 3.1.4. (a) Given p, q > 1, define a (p + q) × (p + q) grid G(p, q) by
σO = (p+q, p+q−1, . . . , 2, 1) and σX = (p, p−1, . . . , 1, p+q, p+q−1, . . . , p+2, p+1).
For G(2, 3) see the right picture in Figure 3.3. When (p, q) = 1, G(p, q) represents
the torus knot Tp,q, cf. Exercise 3.1.5(a). More generally, G(p, q) represents the
torus link Tp,q.
(b) Figure 3.4 provides grid presentations of the Kinoshita-Terasaka and Conway
knots.



3.1. PLANAR GRID DIAGRAMS 45

Figure 3.2. The local modification for correcting crossings.

Figure 3.3. Grid diagrams for the trefoils. The left-handed
trefoil T−2,3 is on the left; the right-handed trefoil T2,3 is on the
right.

Figure 3.4. Grid diagrams for the Conway knot (left) and
the Kinoshita-Terasaka knot (right).

Figure 3.5. Grid diagram for the Borromean rings.

(c) The diagram of Figure 3.5 is a grid diagram for the Borromean rings.
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Figure 3.6. Two grid diagrams of the 52 knot, isotopic to
the twist knot W3.

Exercise 3.1.5. (a) Show that when (p, q) = 1, G(p, q) represents the (p, q)
torus knot Tp,q.
(b) Find a grid presentation of the twist knot Wn from Example 2.1.5. (Hint : For
the special case n = 3 consult Figure 3.6. Notice that both diagrams present the
same knot, which is 52 in the knot tables.)
(c) Consider the permutations σX = (p + 1, p + 2, . . . , p + q, 1, . . . , p) and σO =
(1, 2, . . . , p + q). Show that the resulting (p + q) × (p + q) grid diagram represents
T−p,q, the mirror of the torus knot Tp,q.
(d) Show that by reversing the roles of X and O, the resulting diagram represents
the same link with the opposite orientation.
(e) Similarly, by reflecting a given grid G across the diagonal, the resulting grid G′

represents the same link as G, but with the opposite orientation.
(f) Suppose that the grid G represents the knot K. Reflect G through the horizontal
symmetry axis of the grid square and show that the resulting grid diagram G∗

represents m(K), the mirror image of K.
(g) Find diagrams for the Hopf links H±.

3.1.2. Grid moves. Following Cromwell [27] (compare also Dynnikov [37]),
we define two moves on planar grid diagrams.

Definition 3.1.6. Each column in a grid diagram determines a closed interval
of real numbers that connects the height of its O-marking with the height of its X-
marking. Consider a pair of consecutive columns in a grid diagram G. Suppose that
the two intervals associated to the consecutive columns are either disjoint, or one
is contained in the interior of the other. Interchanging these two columns gives rise
to a new grid diagram G′. We say that the two grid diagrams G and G′ differ by a
column commutation . A row commutation is defined analogously, using rows
in place of columns. A column or a row commutation is called a commutation
move , cf. Figure 3.7.

The second move on grid diagrams will change the grid number.

Definition 3.1.7. Suppose that G is an n × n grid diagram. A grid diagram
G′ is called a stabilization of G if it is an (n + 1)× (n + 1) grid diagram obtained
by splitting a row and column in G in two, as follows. Choose some marked square
in G, and erase the marking in that square, in the other marked square in its row,
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Figure 3.7. The commutation move of two consecutive
columns in a grid diagram. Rotation by 90◦ gives an example
of a row commutation.

and in the other marked square in its column. Now, split the row and column in
two (i.e. add a new horizontal and a new vertical line). There are four ways to
insert markings in the two new columns and rows in the (n + 1) × (n + 1) grid to
obtain a grid diagram; see Figure 3.8 in the case where the initial square in G was
marked with an X. Let G′ be any of these four new grid diagrams. The inverse of
a stabilization is called a destabilization .

We will find it useful to classify the various types of stabilizations in a grid
diagram. To this end, observe that for any stabilization, the original marked square
gets subdivided into four squares, arranged in a 2× 2 block. Exactly three of these
new squares will be marked. The type of a stabilization is encoded by a letter X
or an O, according to the marking on the original square chosen for stabilization
(or equivalently, which letter appears twice in the newly-introduced 2 × 2 block),
and by the position of the square in the 2×2 block which remains empty, which we
indicate by a direction: northwest NW , southwest SW , southeast SE, or northeast
NE. It is easy to see that a stabilization changes the projection either by a planar
isotopy or by a Reidemeister move R1. For example, in the diagrams of Figure 3.8
the stabilizations X:NW,X:NE,X:SE give isotopies while X:SW corresponds to the
Reidemeister move R1.

Definition 3.1.8. We call commutations, stabilizations, and destabilizations
grid moves collectively.

Grid diagrams are an effective tool for constructing knot invariants, thanks to
the following theorem of Cromwell [27], see also [37] and Section B.4:

Theorem 3.1.9 (Cromwell, [27]). Two planar grid diagrams represent equiva-
lent links if and only if there is a finite sequence of grid moves that transform one
into the other.

3.1.3. Other moves between grid diagrams. Interchanging two consecu-
tive rows or columns can be a commutation move; there are two other possibilities:

Definition 3.1.10. Consider two consecutive columns in a grid diagram. These
columns are called special if the X-marking in one of the columns occurs in the
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X:SE

X:NEX:NW

X:SW

Figure 3.8. The stabilization at an X-marking. There are
four different stabilizations which can occur at a given X-marking:
X:NW,X:NE,X:SE, and X:SW. The further four types of stabi-
lizations (i.e. at O-markings) can be derived from these diagrams
by interchanging all X- and O-markings.

Figure 3.9. A switch of two special columns. Rotate both
diagrams by 90◦ to get an example of a switch of two special rows.

same row as the O-marking in the other column. If G′ is obtained from G by
interchanging a pair of special columns, then we say that G and G′ are related by
a switch . Similarly, if two consecutive rows have an X- and an O-marking in the
same column, interchanging them is also called a switch. See Figure 3.9.

Clearly, grid diagrams that differ by a switch determine the same link type.

Exercise 3.1.11. Express a switch as a sequence of commutations, stabiliza-
tions, and destabilizations.

Definition 3.1.12. Fix two consecutive columns (or rows) in a grid diagram
G, and let G′ be obtained by interchanging those two columns (or rows). Suppose
that the interiors of their corresponding intervals intersect non-trivially, but neither
is contained in the other; then we say that the grid diagrams G and G′ are related
by a cross-commutation .
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Figure 3.10. A cross-commutation move.

The proof of the following proposition is straightforward:

Proposition 3.1.13. If G and G′ are two grid diagrams that are related by a

cross-commutation, then their associated oriented links �L and �L′ are related by a
crossing change.

Grid diagrams can be used to show that any knot can be untied by a finite
sequence of crossing changes (compare Exercise 2.3.8). Pick an X-marking and
move the row containing the O-marking sharing the column with the chosen X-
marking until these two markings occupy neighbouring squares. These moves are
either commutations, switches (as such, leaving the link type unchanged), or cross-
commutations, causing crossing changes. Then commute the column of the chosen
X-marking until it reaches the O-marking in its row (compare Figure 3.12) and
destabilize. This procedure reduces the grid number of the diagram. Repeatedly
applying the procedure we turn the initial grid diagram into a 2 × 2 grid diagram
representing the unknot, while changing the knot diagram by planar isotopies,
Reidemeister moves and crossing changes only.

3.2. Toroidal grid diagrams

We find it convenient to transfer our planar grid diagrams to the torus T ob-
tained by identifying the top boundary segment with the bottom one, and the left
boundary segment with the right one. In the torus, the horizontal and vertical
segments (which separate the rows and columns of squares) become horizontal and
vertical circles. The torus inherits its orientation from the plane. We call the
resulting object a toroidal grid diagram.

Conversely, a toroidal grid diagram can be cut up to give a planar grid diagram
in n2 different ways. We call these planar realizations of the given toroidal grid
diagram. It is straightforward to see that two different planar realizations of the
same grid diagram represent isotopic links. The relationship between these different
planar realizations can be formalized with the help of the following:

Definition 3.2.1. Let G be a planar grid diagram, and let G′ be a new planar
diagram obtained by cyclically permuting the rows or the columns of G. (Notice
that this move has no effect on the induced toroidal grid diagram.) In this case, we
say that G′ is obtained from G by a cyclic permutation . See Figure 3.11 for an
example.

Clearly, two different planar realizations of a toroidal grid diagram can be
connected by a sequence of cyclic permutations.
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Figure 3.11. Cyclic permutation. By moving the top row of
the left grid to the bottom, we get the grid on the right. In a
cyclic permutation we can move several consecutive rows from top
to bottom (or from bottom to top), and there is a corresponding
move for columns as well.

The toroidal grid diagram inherits a little extra structure from the planar dia-
gram. Thinking of the coordinate axes on the plane as oriented, there are induced
orientations on the horizontal and vertical circles: explicitly, the grid torus is ex-
pressed as a product of two circles T = S1 × S1, where S1 × {p} is a horizontal
circle and {p} × S1 is a vertical circle; and both the horizontal and vertical circles
are oriented. At each point in the torus, there are four preferred directions, which
we think of as North, South, East, and West. (More formally, “North” refers to the
oriented tangent vector of the circles {p} × S1; “South” to the opposite direction;
“East” refers to the positive tangent vector of the circles S1 × {p}; and “West”
to its opposite.) Correspondingly, each of the squares in the toroidal grid has a
northern edge, an eastern edge, a southern edge, and a western edge.

Commutation and stabilization moves have natural adaptations to the toroidal
case. For example, we say that two toroidal grid diagrams differ by a commutation
move if they have planar realizations which differ by a commutation move. Stabi-
lization moves on toroidal grids are defined analogously. The classification of the
types of stabilizations carries over to the toroidal case.

The grid chain complex (introduced in the next chapter) is associated to a
toroidal grid diagram for a knot K. The resulting homology, however, depends on
K only. The proof of this statement will hinge on Theorem 3.1.9: we will check
that grid homology is invariant under grid moves. In the course of the proof it will
be helpful to express certain grid moves in terms of others.

Lemma 3.2.2. A stabilization of type O:NE (respectively O:SE, O:NW, or
O:SW) can be realized by a stabilization of type X:SW (respectively X:NW, X:SE,
or X:NE), followed by a sequence of commutation moves on the torus.

Proof. Let G be a grid diagram and G1 be the stabilization of G at an O-marking.
Commute the new length one vertical segment repeatedly until it meets another
X–marking, and let G2 denote the resulting grid diagram. A type X destabilization
on G2 gives G back. See Figure 3.12 for an illustration.

Corollary 3.2.3. Any stabilization can be expressed as a stabilization of type
X:SW followed by sequence of switches and commutations.
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X:SW stabilization

commutation moves

O:NE stabilization

Figure 3.12. A stabilization of type O:NE is equivalent to
an X:SW stabilization and a sequence of commutations.

Proof. First use Lemma 3.2.2 to express stabilizations of type O in terms
of stabilizations of type X (and commutations). Next note that stabilizations
X:SE,X:SW,X:NE,X:NW differ from each other by one or two switches.

In a similar spirit, we have the following lemma, which will be used in Chap-
ter 12:

Lemma 3.2.4. A cyclic permutation is equivalent to a sequence of commutations
in the plane, stabilizations, and destabilizations of types X:NW, X:SE, O:NW, and
O:SE.

Proof. Consider the case of moving a horizontal segment from the top to the
bottom, and suppose moreover that the left end of that segment is marked X1,
and the right end is marked O2. Let O1 (respectively X2) be the other marking in
the column containing X1 (respectively O2). Apply a stabilization of type X:NW
at X2, and commute the resulting horizontal segment of length 1 to the bottom of
the diagram. We now have a vertical segment stretching the height of the diagram;
apply commutation moves until it is just to the right of the column containing X1.
Now the horizontal segment starting at X1 is of length 1, and so can be commuted
down until it is just above O1, where we can apply a destabilization of type O:SE
to get the desired cyclic permutation. See Figure 3.13 for a picture of the sequence
of moves we just performed. The other cases are handled similarly.

3.3. Grids and the Alexander polynomial

In this section grids will refer to planar grids, unless explicitly stated otherwise.
Let G be an n× n planar grid diagram for a link placed in the [0, n]× [0, n] square
on the plane. (The horizontal segments of the grid now have integral y-coordinates,
while the vertical ones have integral x-coordinates. The O- and X-markings have
half-integer coordinates.) Remember that the grid can be specified by the two
permutations σO and σX describing the locations of the two sets of markings.

Recall the following construction from elementary topology:
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X:NW

O:SE

commutations

row

destabilization

row

stabilization

commutations

column commutations

Figure 3.13. The steps of the proof of Lemma 3.2.4.

Definition 3.3.1. Let γ be a closed, piecewise linear, oriented (not necessarily
embedded and possibly disconnected) curve γ in the plane and a point p ∈ R2 \ γ.
The winding number wγ(p) of γ around the point p is defined as follows. Draw
a ray ρ from p to ∞, and let wγ(p) be the algebraic intersection of ρ with γ. The
winding number is independent of the choice of the ray ρ.

With this terminology in place, we associate a matrix to the grid G as follows.

Definition 3.3.2. Fix a grid diagram G representing the link �L. Form the
n × n matrix whose (i, j)th entry (the element in the ith row and jth column) is
obtained by raising the formal variable t to the power given by (−1)-times the
winding number of the link diagram given by G around the (j − 1, n − i)th lattice
point with 1 ≤ i, j ≤ n. Call this matrix the grid matrix , and denote it by M(G).

Notice that the left-most column and the bottom-most row of M(G) consist of
1’s only. To explain our above convention, note that the (1, 1) entry of a matrix is
in the upper left corner, while in our convention for grids the bottom-most row is
the first. As an example, for the grid diagram in Figure 3.1 (compare Figure 3.14)
the grid matrix is ⎛⎜⎜⎜⎜⎜⎜⎝

1 1 t t 1 1
1 t−1 1 t 1 1
1 t−1 t−1 1 t−1 1
1 t−1 t−1 1 1 t
1 1 1 t t t
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Exercise 3.3.3. Consider the 2 × 2 and 3 × 3 grid diagrams for the unknot,
given by Figure 3.15. Compute the determinants of the associated matrices.

Consider the function det(M(G)) associated to the diagram. According to Ex-
ercise 3.3.3, one immediately realizes that this determinant is not a link invariant: it
does depend on the choice of the grid diagram representing the given link. However,
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Figure 3.14. For the grid diagram illustrated in Figure 3.1, we
shade regions according to the winding number of the knot: diag-
onal hatchings from lower left to upper right indicate regions with
winding number +1, the other hatchings indicate winding number
−1, and no hatchings indicate winding number 0.

Figure 3.15. Two grids representing the unknot. It is easy
to see that the associated determinants det(M(G)) are different.

as we will see, after a suitable normalization of this quantity, we obtain the Alexan-
der polynomial of the link represented by the grid. To describe the normalization,
we consider the following quantity a(G) associated to the grid. For an O and an
X consider the four corners of the square in the grid occupied by the marking and
sum up the winding numbers in these corners. By summing these contributions
for all O’s and X’s and dividing the result by 8, we get a number a(G) associated
to the n × n grid. Finally, let ε(G) ∈ {±1} be the sign of the permutation that
connects σO and (n, n − 1, ..., 1).

Definition 3.3.4. Suppose that G is an n×n grid. Define the function DG(t)
to be the product

ε(G) · det(M(G)) · (t− 1
2 − t

1
2 )1−nta(G).

Exercise 3.3.5. Compute DG(t) for the two grids in Figure 3.15.

The next theorem relates the function DG(t) with the Alexander polynomial.

Theorem 3.3.6. Let G be a grid diagram that represents �L. Then, the function
DG(t) is a link invariant and it coincides with the symmetrized Alexander polyno-

mial Δ�L(t) of the link �L (as it is defined in Equation (2.3)).

To prove Theorem 3.3.6, we establish some invariance properties of DG(t).

Lemma 3.3.7. The function DG(t) is invariant under commutation moves.
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Figure 3.16. The two cases in Lemma 3.3.7. On the left the
y-projections of the O−X intervals are disjoint, while on the right
the projections are nested. The diagrams represent two consecutive
columns of the grid (say the ith and (i + 1)st), and therefore the
vertical lines correspond to the ith, (i + 1)st and (i + 2)nd columns
of the grid matrix.

Proof. Suppose that the grid G′ is derived from G by commuting the ith and
(i + 1)st columns. Then the matrices M(G) and M(G′) differ in the (i+1)st column
only.

We distinguish two cases, depending on whether the two intervals we are about
to commute project disjointly to the y-axis, or one projection contains the other
one (the two possibilities are shown by the left and right diagrams of Figure 3.16).
In the first case, subtract the ith column from the (i+1)st in M(G) and the (i+2)nd

from the (i + 1)st in M(G′). The resulting matrices will differ only in the sign of
the (i + 1)st column, hence their determinants are opposites of each other. Since
neither the size of the grid nor the quantity a(G) changes, while ε(G) = −ε(G′),
the invariance of DG(t) under such commutation follows at once.

In the second case, we distinguish further subcases, depending on the relative
positions of the O- and X-markings in the two columns. In the right diagram of
Figure 3.16 we show the case when in both columns the O-marking is over the X-
marking; the further three cases can be given by switching one or both pairs within
their columns. In the following we will give the details of the argument only for the
configuration shown by Figure 3.16; the verifications for the other cases proceed
along similar lines.

As before, we subtract one column from the other one in each matrix. The
choice of the columns in this case is important. In the case shown by Figure 3.16
we subtract the (i + 2)nd column from the (i + 1)st; in general we subtract the
column on the side of the shorter O-X-interval (that is, on the side where the two
markings in the column are closer to each other). After performing the subtraction
in both matrices M(G) and M(G′), we realize that the (i+1)st columns of the two
matrices differ not only by a sign, but also by a multiple of t. A simple calculation
shows that this difference is compensated by the difference in the terms originating
from a(G) and a(G′), while the sign difference is absorbed by the change of ε.
This results that DG(t) remains unchanged under commuting columns. A similar
argument verifies the result when we commute rows, completing the argument.



3.3. GRIDS AND THE ALEXANDER POLYNOMIAL 55

i+2

i+1

i

Figure 3.17. The convention used in the proof of Lemma 3.3.8.

Lemma 3.3.8. The function DG(t) is invariant under stabilization moves.

Proof. Consider the case where the stabilization is of type X:SW. In the matrix
of the stabilized diagram, if we subtract the (i + 2)nd row of Figure 3.17 from the
(i + 1)st row (passing between the two X’s in the stabilization), then we get a
matrix which has a single non-zero term in this row. The determinant of the minor
corresponding to this single element is, up to sign, the determinant of the matrix we
had before the stabilization. The sign change is compensated by the introduction
of ε(G), while the t-power in front of the determinant of the minor is absorbed by
the change of the quantity a(G) and the change of the size of the diagram, showing
that DG(t) remains unchanged. Other stabilizations work similarly.

Combining the above lemmas with Cromwell’s Theorem 3.1.9, the function

DG(t) is a link invariant. Therefore, if G represents the link type �L then DG(t) will
be denoted by D�L(t).

The proof of Theorem 3.3.6 will use the fact that D�L satisfies the skein relation.
We start with a definition adapting the notion of an oriented skein triple to the
grid context.

Definition 3.3.9. Let (�L+, �L−, �L0) be an oriented skein triple, as in Defini-
tion 2.4.9. A grid realization of the oriented skein triple consists of four

grid diagrams G+, G−, G0, and G′
0, representing the links �L+, �L−, �L0, and �L0

respectively. These diagrams are further related as follows: G+ and G− differ by a
cross-commutation, G0 and G′

0 differ by a commutation, and G+ and G0 differ in
the placement of their X-markings. See Figure 3.18 for a picture.

Lemma 3.3.10. Any oriented skein triple has a grid realization.

Proof. Consider the diagrams (D+,D−,D0) given by the skein triple. Approx-
imate the diagrams by horizontal and vertical segments as explained in the proof
of Lemma 3.1.3, with the additional property that in the small disk where the
diagrams differ, the approximation is as given by G+,G− and G′

0 of Figure 3.18,
while outside of the disk the three approximations are identical. Applying the com-
mutation move on the first two columns of the grid G′

0 we get G0, concluding the
argument.

Proposition 3.3.11. The invariant D�L(t) satisfies the skein relation, that is,

for an oriented skein triple (�L+, �L−, �L0) we have

D�L+
(t) − D�L−

(t) = (t
1
2 − t−

1
2 )D�L0

(t).
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G+ G0 G′
0 G−

Figure 3.18. The four grid diagrams which show up in the
skein relation.

Proof. Let (�L+, �L−, �L0) be an oriented skein triple, and let (G+,G−,G0,G
′
0) be

its grid realization, provided by Lemma 3.3.10. These grid diagrams agree in the
placements of their X- and O-markings in all but two consecutive columns, which
we think of as left-most. In these two columns of G+ we either move the two X-
markings (transforming G+ to G0), or the two O-markings (giving G′

0 from G+),
or both (realizing a cross-commutation, transforming G+ to G−). In Figure 3.18
we depict the left-most two columns of these grids.

Now, the four associated grid matrices differ only in their second columns; and
in fact, we have the relation

(3.1) det(M(G+)) + det(M(G−)) = det(M(G0)) + det(M(G′
0)).

It is straightforward to verify that

a(G−) = a(G+) = a(G0) +
1

2
= a(G′

0) −
1

2
,

ε(G+) = −ε(G−) = ε(G0) = −ε(G′
0).

Combining these with Equation (3.1) gives the skein relation for D�L(t).

Proof of Theorem 3.3.6. The Alexander polynomial for an oriented link satisfies
the skein relation (Theorem 2.4.10). In fact, it is not hard to see that the Alexander
polynomial is characterized by this relation, and its normalization for the unknot.
Since D�L(t) satisfies this skein relation (Proposition 3.3.11), and DO(t) = 1 (as can
be seen by checking in a 2 × 2 grid diagram), the result follows.

The determinant of the grid matrix can be thought of as a weighted count of
permutations, where the weight is obtained as a monomial in t, with exponent given
by a winding number. In Chapter 4, grid homology will be defined as the homology
of a bigraded chain complex whose generators correspond to these permutations,
equipped with two gradings.

3.4. Grid diagrams and Seifert surfaces

It turns out that planar grid diagrams can also be applied to study Seifert
surfaces of knots and links. Suppose that the n × n grid diagram G represents the
knot K ⊂ S3. Consider the winding matrix W(G) associated to G in the following
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way: the (i, j)th entry is the winding number of the projection of K given by the
grid G around the (j − 1, n − i)th lattice point with 1 ≤ i, j ≤ n. In the following
we describe a method which produces a Seifert surface for K based on W(G).

Let Ri (and similarly Cj) denote the n × n matrix with 1’s in the ith row (jth

column), and 0 everywhere else. Obviously, by adding sufficiently many Ri’s or Cj ’s,
or both, any integral matrix can be turned into one which has only non-negative
entries.

Definition 3.4.1. Define the complexity c(A) of a non-negative matrix A to
be the sum of all its entries: c(A) =

∑
i,j ai,j . An integral matrix A ∈ Mn(Z) with

non-negative entries is called minimal if its complexity is minimal among those
non-negative integral matrices which can be given by repeatedly adding/subtracting
Ci’s and Rj ’s to A.

The following lemma gives a criterion for minimality:

Lemma 3.4.2. The matrix A = (ai,j) ∈ Mn(Z) with non-negative entries is
minimal if and only if there is a permutation σ ∈ Sn such that ai,σ(i) = 0 for all
i ∈ {1, . . . , n}.

Proof. Suppose that there is a permutation σ with the property that ai,σ(i) = 0
for all i. Consider integers mi and ni for i = 1, . . . , n so that

A′ = A +
∑
i

niRi +
∑
i

miCi

is a matrix with non-negative entries. Since ai,σ(i) = 0, we conclude that ni +
mσ(i) ≥ 0 for all i = 1, . . . , n. Clearly,

c(A′) = c(A) +
n∑

i=1

n(ni + mσ(i)) ≥ c(A),

so the complexity of A is minimal, as claimed.
For the converse direction, let C denote the set of columns, while R the set of

rows of the given non-negative matrix A. Connect cj ∈ C with ri ∈ R if and only
if the (i, j)th entry ai,j of A is equal to zero. Let G denote the resulting bipartite
graph on 2n vertices. According to Hall’s Theorem [82] (a standard result in graph
theory) either there is a perfect matching in G, providing the desired permutation,
or there is a subset C ⊂ C such that the cardinality of the set R formed by those
elements in R which are connected to C is smaller than |C|. Now if we add the
Rj ’s with j ∈ R to A, the columns corresponding to elements of C become positive,
hence can be subtracted while keeping the matrix non-negative. Since |C| > |R|,
we reduced the complexity of A, hence it was non-minimal.

Returning to the matrix W(G), add and subtract appropriate Ri’s and Cj ’s
until it becomes a minimal, non-negative integral matrix, and denote the result by
H. (Notice that this matrix is not uniquely associated to W(G) — it depends on
the way we turned our starting matrix into a minimal, non-negative one.)

Lemma 3.4.3. Adjacent entries of H differ by at most one; i.e.

(3.2) |hi,j − hi,j+1| ≤ 1, |hi+1,j − hi,j | ≤ 1,
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where i and j are taken modulo n; e.g. we are viewing the last column as adjacent
to the first one. More generally, for each 2 × 2 block of entries in the matrix H
(viewed on the torus), there is a non-negative integer a so that the block has one of
the following five possible shapes, up to rotation by multiples of 90◦. In cases where

the center of the 2 × 2 block is unmarked, the possibilities are:
a a
a a

,
a a + 1
a a + 1

and
a a + 1

a + 1 a + 2
. In cases where the center is marked with an O or an X, the

possibilities are
a a
a a + 1

and
a a + 1

a + 1 a + 1
.

Proof. Consider a 2 × 2 block in W(G), with entries
ai,j ai,j+1

ai+1,j ai+1,j+1
. By

thinking about winding numbers, it is clear that ai,j +ai+1,j+1−ai,j+1−ai+1,j = 0
unless the corner point corresponds to an O- or X-marking, in which case ai,j +
ai+1,j+1−ai,j+1−ai+1,j = ±1. Since the expression ai,j +ai+1,j+1−ai,j+1−ai+1,j

is unchanged after the addition of Ci or Rj , we conclude that for each i and j,

(3.3) |hi,j − hi,j+1 − hi+1,j + hi+1,j+1| ≤ 1;

and for each fixed j there are at most two i for which equality holds. Moreover, for
fixed j, we can find k and 	 so that hk,j = h�,j+1 = 0. Since the entries of H are all
non-negative, it follows that |hi,j − hi,j+1| ≤ 1 for all i. The same reasoning gives
the other bound.

Combining the bounds from Equations (3.2) and (3.3), we arrive at the five
possibilities for the 2 × 2 blocks listed above.

Next we associate a surface FH ⊂ S3 to H. Consider first a disjoint union of
squares ski,j with i, j ∈ {1, . . . , n} and k ∈ {1, . . . hi,j}. Glue the right edge of ski,j

to the left edge of ski,j+1 for k ≤ min(hi,j , hi,j+1), and the bottom edge of s
hi,j−k
i,j

to the top edge of s
hi+1,j−k
i+1,j for 0 ≤ k ≤ min(hi,j , hi+1,j) − 1. The result FH is

an oriented two-manifold with boundary, equipped with an orientation-preserving
map to the torus. It is connected, since H vanishes somewhere.

Construct an embedding of FH into S3, as follows. View the grid torus as

standardly embedded in S3, and view {ski,j}
hi,j

k=1 as a collection of disjoint squares,

stacked above the (i, j)th square in the grid torus, so that sk+1
i,j is above ski,j in the

pile; see Figure 3.19. Instead of the edge identifications described earlier, we glue
the various squares together by attaching strips; see Figure 3.20. The result is an
embedding of the surface FH constructed above into S3.

Proposition 3.4.4. Suppose that the knot K ⊂ S3 is represented by the grid
diagram G. Assume that the minimal, non-negative matrix H is given by adding
and subtracting Ri’s and Cj’s to the matrix W(G) associated to G. Then, the above
embedding of the 2-complex FH is a Seifert surface of K.

Proof. We have seen that FH is a 2-dimensional connected, oriented manifold
embedded in S3. By analyzing the local behavior from Lemma 3.4.3, it follows that
the boundary of FH is isotopic to K. See Figure 3.21 for an example.
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2

3

1

i,j

Figure 3.19. Squares over the grid. In this picture, hi,j = 3.

(a) (b)

Figure 3.20. Gluing squares to construct the embedding
of FH . Neighbouring stacks of squares are glued together either
from the top (as in (a)) or from the bottom (as in (b)).

K

Figure 3.21. A portion of FH . We have illustrated here the
portion of FH over a 2 × 2 block, one square with multiplicity 2
and the others with multiplicity 1. The the knot K is drawn
thicker.

Exercise 3.4.5. Draw the local picture of the embedding of FH over a 2 × 2
block for the five possibilities listed in Lemma 3.4.3, with a = 2.

We will compute the Euler characteristic of FH via a formula for any surface-
with-boundary obtained by gluing squares, in the following sense:

Definition 3.4.6. A nearly flattened surface is a topological space F which
is obtained as a disjoint union of oriented squares, which are identified along certain
pairs of edges via orientation-reversing maps; and only edges of different squares
are identified. The resulting space F is naturally a CW complex, with 0-cells corre-
sponding to the corners in the squares (modulo identifications), 1-cells correspond-
ing to edges of the squares (possibly identified in pairs), and 2-cells corresponding
to squares. A flattened surface is a nearly flattened surface with the property
that every 0-cell which is not contained on the boundary is a corner for exactly four
rectangles.
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A flattened surface is homeomorphic to a compact two-manifold with boundary.

Lemma 3.4.7. Let F be a flattened surface. At each corner p ∈ F (i.e. each
point of F coming from some corner of some square), let np denote the number of
squares which meet at p. Let C∂F denote the set of corner points in ∂F . Then, the
Euler characteristic of F is computed as

(3.4) χ(F ) =
∑

p∈C∂F

(
1

2
− np

4

)
.

Proof. Take a sum over all the squares in F with the following weights: each
square is counted with weight 1, each edge on each square with weight − 1

2 , and each

corner (on each square) is counted with weight 1
4 . Adding up these weights, each

2-cell is counted with weight 1 (which is the contribution of each 2-cell to χ(F )),
each interior edge with total weight −1 (the contribution of the corresponding 1-
cell to χ(F )), and each boundary edge with weight − 1

2 (which is 1
2 greater than

the contribution to χ(F )), and each corner point with weight
np

4 . Since the total
contribution of each square vanishes, we conclude that

χ(F ) =
∑

p∈C∂F

(
1 − np

4

)
− 1

2
#{e ⊂ ∂F}.

Since the Euler characteristic of the boundary vanishes, and it is computed by
#{p ∈ C∂F }−#{e ⊂ ∂F}, we can subtract half this Euler characteristic to deduce
the claimed formula.

Definition 3.4.8. Given a square Q in the grid marked with an X or an O,
let θ(Q, H) denote the average of the four hi,j adjoining Q. Given a matrix H, let
θ(H) =

∑
X∈X θ(X, H) +

∑
O∈O θ(O, H).

Proposition 3.4.9. Fix a grid diagram G for a knot K with grid number n,
and let H be any minimal matrix with non-negative entries associated to W(G).
The Euler characteristic of FH is given by n − θ(H); so the genus of FH is given
by

(3.5) g(FH) =
1

2
θ(H) − n − 1

2
.

Proof. Clearly, FH is a nearly flattened surface. We can check that it is a
flattened surface by analyzing the local picture above each 2× 2 block in H. When
all four local multiplicities equal to a, the center point lifts to a different 0-cells,
none of which is contained in the boundary, and each of which appears as the
corner of exactly four rectangles. When three of the local multiplicities equal one
another, the center point lifts to a single corner point contained on the boundary
of the surface. When two of the local multiplicities are a and the other two are
a + 1, the center point lifts to a different interior 0-cells, and a single 0-cell on the
boundary, which is contained in two edges. Finally, when there are three different
local multiplicities a, a + 1, and a + 2, the center point lifts to a interior 0-cells,
and two 0-cells appearing on the boundary, and each is contained in two 1-cells.

Consider Equation (3.4), which, according to Lemma 3.4.7, computes the Euler
characteristic of FH . The boundary points for FH for which np �= 2 (i.e. for



3.4. GRIDS AND SEIFERT SURFACES 61

Figure 3.22. Isotopy of a Seifert surface. A Seifert surface
of the right-handed trefoil knot (shown on the left) is isotoped to
a disk with 1-handles attached to it (in the middle). In the final
figure, further isotopies are applied so that the projection is an
orientation preserving immersion.

which the contribution to the right-hand-side of Equation (3.4) does not vanish)
are exactly those 2n points which are marked with an O or an X; i.e. those which lie
over the center point of the 2×2 blocks where exactly three of the local multiplicities
are equal to one another. For these points, np is the sum of the local multiplicities
at the four adjacent entries. Lemma 3.4.7 gives the stated result.

By considering various grid presentations of the fixed knot K, and various ways
to turn W(G) into a minimal, non-negative matrix, the above algorithm provides
a large collection of Seifert surfaces.

Corollary 3.4.10. For a fixed grid diagram G the Euler characteristic of FH

is independent of the choice of the minimal, non-negative matrix H (obtained by
adding and subtracting rows to W(G)) used in its construction.

Proof. Observe that θ(M) grows by 2 whenever we add a row or a column to
the matrix M , and also the complexity increases by n. It follows at once from
Lemma 3.4.2 that for two minimal complexity, non-negative matrices H and H ′

derived from W(G), θ(H) = θ(H ′). By Proposition 3.4.9 the Euler characteristic
of FH can be computed from θ(H) and the grid number n, implying the claim.

The above corollary shows that each grid diagram G representing a knot K
determines an integer g(G), the associated genus of G, which is the genus of any
Seifert surface of K constructed from G by the above procedure.

Proposition 3.4.11. If K is a knot with Seifert genus g, then there is a grid
diagram G for K whose associated genus is g.

Proof. Any Seifert surface F for K can be thought of as obtained from a disk by
adding handles. After isotopy, we can think of these handles as very thin bands.
After further isotopies, we can assume that the Seifert surface immerses orientation
preservingly onto the plane; see Figure 3.22, for example. Approximate the cores of
the one-handles so that their projections consist of horizontal and vertical segments
only. Performing a further local move as in Figure 3.2, we can arrange that for all
crossings, the vertical segments are overcrossings. Approximate the result to get a
grid diagram G, and a surface F0, isotopic to the original F , which projects onto G.
The projection of the Seifert surface produces a matrix H0 all of whose coefficients
are 0, 1, and 2; the coefficients of 2 correspond to the intersections of the projections
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of the bands. We claim that the genus of the Seifert surface F is greater than or
equal to the genus associated to the grid. Indeed, the genus of F0 is computed by
the same formula as in Equation (3.5):

g(F0) =
1

2
θ(H0) −

n − 1

2
.

Lemma 3.4.2 gives a minimal complexity non-negative matrix H with

H +
∑
i

miCi +
∑
j

njRj = H0,

and
∑

i mi + ni ≥ 0. Since θ(H) + 2(
∑

mi + ni) = θ(H0), it follows that θ(H) ≤
θ(H0), and (by Proposition 3.4.9), g(FH) ≤ g(F0). Applying this reasoning to a
surface F with minimal genus (among Seifert surfaces for K), we conclude that
g(FH) = g(F0).

Exercise 3.4.12. Find a Seifert surface for the trefoil knot T2,3 with the
method above, using the grid diagram of Figure 3.3. Do the same for the figure-eight
knot, using the grid of Figure 3.1.

Examples 3.4.13. We demonstrate the above construction by two other ex-
amples. Let us first consider the Conway knot (of Figure 2.7), represented by the
grid diagram of Figure 3.4. The winding matrix W(G) is now equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 −1 −1 −1 −2 −2 −1 −1 −1
0 0 0 −1 −1 −1 −2 −3 −2 −2 −1
0 0 0 −1 0 0 −1 −2 −2 −2 −1
0 0 0 −1 0 0 0 −1 −1 −2 −1
0 0 0 −1 0 0 0 0 0 −1 0
0 0 −1 −2 −1 0 0 0 0 −1 0
0 −1 −2 −2 −1 0 0 0 0 −1 0
0 −1 −2 −2 −2 −1 −1 −1 −1 −1 0
0 −1 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Adding Ci’s to the columns with multiplicities (0, 1, 2, 2, 2, 1, 2, 3, 2, 2, 1) we get a
non-negative matrix, and then adding C1 and subtracting R6 and R11 we get a
minimal non-negative matrix. Using this matrix the construction provides a Seifert
surface of genus three for the Conway knot.

In a similar manner, we consider the Kinoshita-Terasaka knot of Figure 2.7, and
represent it by the grid diagram we get from the grid of Figure 3.4 after commuting
the first two columns. Then, after taking the winding matrix, and adding Ci’s
to the columns with multiplicities (0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 1), then adding C1 and



3.5. GRID DIAGRAMS AND THE FUNDAMENTAL GROUP 63

subtracting R8 and R10 we get the non-negative minimal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 0 0 1 0 0
1 0 0 1 1 1 0 0 1 0 0
1 0 0 1 1 2 1 1 2 1 0
1 1 1 2 2 3 2 2 2 1 0
1 1 0 1 1 2 1 1 1 1 0
1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0
1 1 1 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 0 0
1 0 0 1 0 1 1 1 2 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A simple calculation shows that the corresponding Seifert surface has genus two.

3.5. Grid diagrams and the fundamental group

A planar grid diagram determines a simple presentation of the link group
π1(S

3 \ L) of the underlying link as follows.
The generators {x1, . . . , xn} correspond to the vertical segments in the grid

diagram (connecting the O- and the X-markings). The relations {r1, . . . , rn−1}
correspond to the horizontal lines separating the rows. The relation rj is the product
of the generators corresponding to those vertical segments of the link diagram which
meet the jth horizontal line, in the order they are encountered, from left to right.
See Figure 3.23.

Lemma 3.5.1. The presentation

(3.6) 〈x1, . . . , xn | r1, . . . , rn−1〉
described above is a presentation of the link group π1(S

3 \ L) of L.

Proof. The result follows from the Seifert-Van Kampen theorem for a suitable de-
composition of the link complement into two open subsets. (See for instance [137].)
To visualize this decomposition, consider the planar grid G and assume that the
link is isotoped into the following position. In the usual coordinates (x, y, z) of R3

(with the understanding that the planar grid lies in the plane {z = 0}) we assume
that the horizontal segments of the grid presenting L are in the plane {z = 0},
while the vertical segments are in the plane {z = 1}. Over the markings X and O,
these segments are joined by segments parallel to the z-axis. The resulting polygon
in R3 is a PL representative of L.

Take X1 = {(x, y, z) ∈ R3 \ L | z > 0} and X2 = {(x, y, z) ∈ R3 \ L | z < 1},
decomposing the knot complement into two path-connected open subsets, in such
a way that X1 ∩ X2 is also path-connected. Fix the basepoint x0 on the plane
{z = 1

2}. By choosing convenient generators of the free groups π1(X1, x0) and
π1(X2, x0), the Seifert-Van Kampen theorem provides the desired presentation of
the link group π1(R3 \ L, x0) = π1(S

3 \ L, x0).

Example 3.5.2. Consider the planar grid diagram of Figure 3.3, representing
the right-handed trefoil knot T2,3. The knot group G has the presentation

〈x1, x2, x3, x4, x5 | x1x3, x1x2x3x4, x1x2x4x5, x2x5〉.
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..

x1 x2 xn

r1

r2

rn−1

Figure 3.23. The presentation of the fundamental group
of the knot complement from a grid diagram.

Since x3 = x−1
1 , x5 = x−1

2 , and x4 = x1x
−1
2 x−1

1 , G has the simpler presentation
〈x1, x2 | x1x2x1 = x2x1x2〉. Taking u = x1x2 and v = x2x1x2, the above presenta-
tion is equivalent to 〈u, v | u3 = v2〉.

Exercise 3.5.3. Using the grid diagram of Figure 3.5, find a presentation of
the link group of the Borromean rings.



CHAPTER 4

Grid homology

The aim of the present chapter is to define the chain complexes for computing

grid homology, following [135, 136]. We define three versions: G̃C(G), ĜC (G), and
GC−(G). The first of these is the simplest, and the first two are both specializations
of the last one, which in turn is a specialization of a more complicated algebraic
object GC−(G) that we will meet in Chapter 13. In this chapter, and in fact, all
the way until Chapter 8, we will consider primarily the case of knots.

This chapter is organized as follows. Section 4.1 introduces grid states, the
generators of the grid chain complexes. Differentials count rectangles in the torus,
and in Section 4.2 we describe how rectangles can connect grid states. In Sec-
tion 4.3, we define two functions, the Maslov function and the Alexander function
on grid states; these functions will induce the bigradings on the grid complexes. In

Section 4.4 we define the grid complex G̃C, the variant with the minimal amount
of algebraic structure. In Section 4.5, we give a quick overview of some of the
basic constructions from homological algebra (chain complexes, chain homotopies,
quotient complexes) which will be of immediate use. (For more, see Appendix A.)

In Section 4.6, we define further versions of the grid complex GC− and ĜC . In
Section 4.7, we interpret the Alexander function in terms of the winding number,

leading to an expression of the Euler characteristic of G̃H and ĜH in terms of
the Alexander polynomial. Section 4.8 gives some concrete calculations of grid ho-
mology. In Section 4.9, we conclude with some remarks relating the combinatorial
constructions with analogous holomorphic constructions.

4.1. Grid states

Consider a toroidal grid diagram for a knot K with grid number n, as described
in Section 3.1. Think of each square in the grid as bounded by two horizontal and
two vertical arcs. The horizontal arcs can be assembled to form n horizontal circles
in the torus, denoted α = {αi}ni=1, and the vertical ones can be assembled to form
n vertical circles, denoted β = {βi}ni=1.

Definition 4.1.1. A grid state for a grid diagram G with grid number n
is a one-to-one correspondence between the horizontal and vertical circles. More
geometrically, a grid state is an n-tuple of points x = {x1, . . . , xn} in the torus,
with the property that each horizontal circle contains exactly one of the elements
of x and each vertical circle contains exactly one of the elements of x. The set of
grid states for G is denoted S(G).

A grid state x can be thought of as a graph of a permutation; i.e. if x =
{x1, . . . , xn}, then σ = σx is specified by the property that xi = ασ(i) ∩ βi. The
correspondence between grid states and permutations is, of course, not canonical:
it depends on a numbering of the horizontal and vertical circles.

65
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Figure 4.1. A grid state in S(G). Labelling the circles from
left to right and bottom to top in this picture, the grid state cor-
responds to the permutation (1, 2, 3, 4, 5, 6) �→ (6, 4, 2, 5, 1, 3).

When illustrating the diagrams and the states, we use planar grids; that is, cut
the toroidal grid along a vertical and a horizontal circle. The square obtained by
cutting up the torus is a fundamental domain for the torus, and the induced planar
grid diagram is the planar realization of the grid diagram. Figure 4.1 illustrates a
grid state in a grid diagram for the figure-eight knot. To emphasize the side identi-
fications used in going from the planar to the toroidal grid, we repeat components
of the grid state on the left and the right edge, and the top and the bottom edge.

4.2. Rectangles connecting grid states

The chain complexes associated to a grid diagram are generated by grid states,
and their differentials count rectangles connecting states. The various versions of
the grid complex differ in how they count rectangles. We formalize the concept of
connecting rectangles, as follows.

Fix two grid states x,y ∈ S(G), and an embedded rectangle r in the torus
whose boundary lies in the union of the horizontal and vertical circles, satisfying
the following relationship. The sets x and y overlap in n − 2 points in the torus,
and the four points left out are the four corners of r. There is a further condition
stated in terms of the orientation r inherits from the torus. The oriented boundary
of r consists of four oriented segments, two of which are vertical and two of which
are horizontal. The rectangle r goes from x to y if the horizontal segments in ∂r
point from the components of x to the components of y, while the vertical segments
point from the components of y to the components of x.

More formally, if r is a rectangle, let ∂αr denote the portion of the boundary
of r in the horizontal circles α1 ∪ . . . ∪ αn, and let ∂βr denote the portion of the
boundary of r in the vertical ones. The boundary inherits an orientation from r.
The rectangle r goes from x to y if

∂(∂αr) = y − x and ∂(∂βr) = x− y,

where x−y is thought of as a formal sum of points; e.g. at points in p ∈ x∩y, the
difference cancels.

If there is a rectangle from x to y, then all but two points in x must also be in
y. This is equivalent to the condition that the associated permutations σx and σy

satisfy the property that σ−1
x · σy.

ξ associated to x and the permutation η associated to y are related by the
property that ξ · η−1 is a transposition.
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Figure 4.2. Two grid states and the four rectangles con-
necting them. Black dots appear in only one, call it x; white
dots appear in only the other one, call it y; and gray dots appear
in both. The two rectangles on the top row go from x to y, and
the other two go from y to x. The top left rectangle is empty, and
the other three are not.

For x,y ∈ S(G), let Rect(x,y) denote the set of rectangles from x to y. The
set Rect(x,y) is either empty, or it consists of exactly two rectangles, in which case
Rect(y,x) also consists of two rectangles. See Figure 4.2 for an illustration.

When we speak of a “rectangle”, we will think of it as the geometric subset of
the torus, together with the initial and the terminal grid states x and y. Thus, if
x �= x′, a rectangle from x to y is always thought of as different from a rectangle
from x′ to y′, even if their underlying polygons in the torus are the same. The
underlying polygon is called the support of the rectangle.

Label the four corners of any rectangle as northeast, southeast, northwest, and
southwest. This can be done, for example, by lifting r to the universal cover, which
inherits a preferred pair of coordinates: the horizontal direction which is oriented
eastward, and the vertical direction, which is oriented northward, following the
conventions of Section 3.2. Sometimes we refer to the northwest corner as the
upper left one, and the southeast corner as the lower right one.

If r is a rectangle from x to y, then r contains elements of x and y on its
boundary. The northeast and southwest corners of r are elements of x, called
initial corners, and the southeast and northwest corners of r are elements of y,
called terminal corners. The rectangle r might in addition contain elements of x in
its interior Int(r). Note that x ∩ Int(r) = y ∩ Int(r).

The following rectangles will play a special role in our subsequent constructions:

Definition 4.2.1. A rectangle r ∈ Rect(x,y) is called an empty rectangle if

x ∩ Int(r) = y ∩ Int(r) = ∅.
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The set of empty rectangles from x to y is denoted Rect◦(x,y).

4.3. The bigrading on grid states

The grid complexes are equipped with two gradings called the Maslov grading
and the Alexander grading, both induced by integral-valued functions on grid states
for a toroidal grid diagram. The aim of this section is to construct these functions.
Key properties of both functions are stated in the next two propositions, whose
proofs will occupy the rest of the section. We start with the Maslov function.

Proposition 4.3.1. For any toroidal grid diagram G, there is a function

MO : S(G) → Z,

called the Maslov function on grid states, which is uniquely characterized by
the following two properties:

(M-1) Let xNWO be the grid state whose components are the upper left corners
of the squares marked with O. Then,

(4.1) MO(xNWO) = 0.

(M-2) If x and y are two grid states that can be connected by some rectangle
r ∈ Rect(x,y), then

(4.2) MO(x) − MO(y) = 1 − 2#(r ∩O) + 2#(x ∩ Int(r)).

Note that MO is independent of the placement of the X-markings. There is
another function, MX defined as in Proposition 4.3.1, only using the X-markings
in place of the O-markings. Unless explicitly stated otherwise, the Maslov function
on states refers to MO; and we will usually drop O from its notation.

Definition 4.3.2. The Alexander function on grid states is defined in
terms of the Maslov functions by the formula

(4.3) A(x) =
1

2
(MO(x) − MX(x)) −

(
n − 1

2

)
.

Key properties of the Alexander function are captured in the following:

Proposition 4.3.3. Let G be a toroidal grid diagram for a knot. The function
A is characterized, up to an overall additive constant, by the following property.
For any rectangle r ∈ Rect(x,y) connecting two grid states x and y,

(4.4) A(x) − A(y) = #(r ∩ X) − #(r ∩O).

Furthermore, A is integral valued.

We prove Proposition 4.3.1 first. This is done by constructing a candidate func-
tion for MO, and verifying that it has the properties specified in Proposition 4.3.1.
The candidate function is defined in terms of a planar realization of the toroidal
grid, using the following construction.

Definition 4.3.4. Consider the partial ordering on points in the plane R2

specified by (p1, p2) < (q1, q2) if p1 < q1 and p2 < q2. If P and Q are sets of finitely
many points in the plane, let I(P, Q) denote the number of pairs p ∈ P and q ∈ Q
with p < q. We symmetrize this function, defining

J (P, Q) =
I(P, Q) + I(Q, P )

2
.



4.3. THE BIGRADING ON GRID STATES 69

Consider a fundamental domain [0, n) × [0, n) for the torus in the plane, with
its left and bottom edges included. A grid state x ∈ S(G) can be viewed as a
collection of points with integer coordinates in this fundamental domain. Similarly,
O = {Oi}ni=1 can be viewed as a collection of points in the plane with half-integer
coordinates in the fundamental domain.

During the course of our proof, we will find that MO is given by the formula

(4.5) MO(x) = J (x,x) − 2J (x,O) + J (O,O) + 1,

which we write more succinctly as

MO(x) = J (x−O,x−O) + 1,

thinking of J as extended bilinearly over formal sums and formal differences of
subsets of the plane. Correspondingly, MX is given by

MX(x) = J (x− X,x− X) + 1.

Lemma 4.3.5. Fix a planar realization of a toroidal grid diagram. The function
M(x) = J (x−O,x−O) + 1 satisfies Properties (M-1) and (M-2).

Proof. Let NW(Oi) denote the northwest corner of the square marked with Oi,
and then project it to the fundamental domain. Clearly,

M(xNWO) =#{(i, j)
∣∣NW(Oi) < NW(Oj)} − #{(i, j)

∣∣NW(Oi) < Oj}(4.6)

− #{(i, j)
∣∣Oi < NW(Oj)} + #{(i, j)

∣∣Oi < Oj} + 1.

To verify Equation (4.1), we count the number of times each pair (i, j) appears
in the four sets on the right of Equation (4.6). We break this analysis into the
following cases:

• If i �= j and neither Oi nor Oj is in the top row, then the following four
inequalities are equivalent: Oi < Oj , NW(Oi) < Oj , Oi < NW(Oj), and
NW(Oi) < NW(Oj).

• If Oj is in the top row and i �= j, then Oi < Oj is equivalent to NW(Oi) <
Oj ; while neither of Oi < NW(Oj) nor NW(Oi) < NW(Oj) can hold (since
NW(Oj) is in the bottom segment).

• If Oi is in the top row and i �= j, neither Oi < Oj nor Oi < NW(Oj) can
hold, while NW(Oi) < Oj is equivalent to NW(Oi) < NW(Oj).

• When i = j, there is exactly one Oi-marking for which NW(Oi) < Oi,
when the Oi is in the top row. Note also that the three other inequalities
Oi < Oi, Oi < NW(Oi) and NW(Oi) < NW(Oi) are never satisfied.

The total to the right-hand-side of Equation (4.6) from the first three cases are
all 0, while the last case contributes −1. It follows that M(xNWO) = 0; i.e. M
satisfies Property (M-1), as stated.

We verify that M satisfies Property (M-2), starting with the case where the
rectangle r is contained in the fundamental domain for the torus used to define M .
Label the southwest, northeast, northwest, and southeast corners of r by x1, x2,
y1, and y2 respectively. Clearly,

x = {x1, x2} ∪ p and y = {y1, y2} ∪ p,
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where p = x ∩ y. It is easy to see that

J (x,x) − J (y,y) = 1 + #{x ∈ p
∣∣x > x1} + #{x ∈ p

∣∣x > x2}
+ #{x ∈ p

∣∣x < x1} + #{x ∈ p
∣∣x < x2} − #{x ∈ p

∣∣x > y1}
− #{x ∈ p

∣∣x > y2} − #{x ∈ p
∣∣x < y1} − #{x ∈ p

∣∣x < y2}
= 1 + 2{x ∈ p

∣∣x1 < x < x2} = 1 + 2#(x ∩ Int(r)).

Above, the contribution of 1 comes from the pair x1 < x2. Similarly,

2J (x,O) − 2J (y,O) = #{Oi ∈ O
∣∣Oi > x1} + #{Oi ∈ O

∣∣Oi > x2}
+ #{Oi ∈ O

∣∣Oi < x1} + #{Oi ∈ O
∣∣Oi < x2} − #{Oi ∈ O

∣∣Oi > y1}
− #{Oi ∈ O

∣∣Oi > y2} − #{Oi ∈ O
∣∣Oi < y1} − #{Oi ∈ O

∣∣Oi < y2}
= 2#{Oi ∈ O

∣∣x1 < Oi < x2} = 2#(O ∩ r).

The above two equations imply that Equation (4.2) holds when r is contained in
the fundamental domain used to define Equation (4.5).

Next suppose that r satisfies Equation (4.2). Suppose that r′ ∈ Rect(y,x) is
the rectangle with the property that r and r′ meet along both horizontal edges, so
that, in particular, both have the same width v. Then, since every column contains
an O, and every vertical circle contains a component of x, it follows that

#(r′ ∩O) + #(r ∩O) = v

#(x ∩ Int(r′)) + #(x ∩ Int(r)) = v − 1.

These two equations, together with Equation (4.2) (for r), show that

M(y) − M(x) = 1 − 2#(r′ ∩O) + 2#(x ∩ Int(r′)),

which is the analogue of Equation (4.2) for r′.
In exactly the same manner, Equation (4.2) for r implies the same property for

the rectangle that shares two vertical edges with r.
It follows that if Equation (4.2) holds for any rectangle r ∈ Rect(x,y), then

the same holds for any other rectangle in Rect(x,y) ∪ Rect(y,x). It is easy to see
that at least one of the four rectangles in Rect(x,y)∪Rect(y,x) is contained in the
fundamental domain, for which we have already verified Equation (4.2); and hence
the function defined in Equation (4.5) satisfies Property (M-2).

Proof of Proposition 4.3.1. Lemma 4.3.5 verifies the existence of a function
that satisfies Properties (M-1) and (M-2). To see that the function is uniquely
characterized by these properties, observe that for any two grid states x and y,
there is a sequence of grid states x = x1,x2, . . . ,xk = y and rectangles ri ∈
Rect(xi,xi+1). This follows from the fact that the symmetric group is generated
by transpositions. Thus the function M(x) is uniquely determined up to an overall
additive constant by Equation (4.2). Equation (4.1) specifies this constant.

Note that Equation (4.5) specifies MO using a fundamental domain; but the
properties from Proposition 4.3.1 that uniquely characterize MO make no reference
to this choice. It follows that MO is independent of the fundamental domain.

Next, we verify Equation (4.4), characterizing the Alexander function A.
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Proof of Proposition 4.3.3. By Equation (4.2), if r ∈ Rect(x,y) is any rectangle
connecting the two grid states x and y, then

MO(x) − MO(y) = 1 − 2#(r ∩O) + 2#(x ∩ Int(r))

MX(x) − MX(y) = 1 − 2#(r ∩ X) + 2#(x ∩ Int(r))

Taking the difference of these two equations, and applying Equation (4.3), we con-
clude that Equation (4.4) holds. The function A is characterized up to an additive
constant by Equation (4.4), since we can connect any two grid states by a sequence
of rectangles.

The fact that M takes values in Z implies only that A takes values in 1
2Z. In

view of Equation (4.4), to see that the Alexander function is integral, it suffices to
show that there is one grid state x for which A(x) is integral. Taking x = xNWO,
and using Equation (4.1), it suffices to show that

(4.7) MX(xNWO) ≡ n − 1 (mod 2).

To this end, we find a sequence of grid states xi ∈ S(G) for i = 1, . . . , n, with the
following properties:

• x1 = xNWX is the grid state whose components are the northwest corners
of the squares marked with X,

• xn = xNWO,
• there is a (not necessarily empty) rectangle connecting xi to xi+1.

This sequence can be found, since the permutation that connects xNWO to xNWX

is a cycle of length n (since the grid represents a knot), and such a cycle can be
written as a product of n − 1 transpositions. By Equation (4.1), MX(x1) = 0; so
Equation (4.7) now follows from the mod 2 reduction of Equation (4.2).

Figure 4.3. Grid diagram for the 0-framed, negative
Whitehead double of the left-handed trefoil knot. The grid
state x depicted in the diagram has Maslov grading 2.

Exercise 4.3.6. Consider the grid diagram G of Figure 4.3. Show that G
represents W−

0 (T−2,3), the 0-framed, negative Whitehead double of the left-handed
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trefoil knot. Determine the Maslov and Alexander gradings of the grid state x
indicated in the diagram. This example will play a crucial role in Section 8.6.

The following result will be useful later:

Proposition 4.3.7. Let xSWO be the grid state whose components are the
lower left (SW) corners of the squares marked with O. Then, M(xSWO) = 1 − n
for any n × n grid.

Proof. Using the formula M(xSWO) = J (xSWO−O,xSWO−O)+1, we see that
almost all terms cancel in pairs, except for the n pairs Oi and their corresponding
SW (Oi). The result follows.

Exercise 4.3.8. Let G be any grid diagram, and let xSEO and xNEO, respec-
tively, be the grid state whose components are the lower resp. the upper right
corners of the squares marked with O. Compute M(xSEO) and M(xNEO).

4.4. The simplest version of grid homology

In the various grid complexes studied in the present book, the boundary maps
count certain empty rectangles. The various constructions differ in how the empty
rectangles are counted, in terms of how they interact with the X- and O-markings.
(Compare also Section 5.5, where a different construction is outlined.) The simplest
version of the grid complex is the following:

Definition 4.4.1. The fully blocked grid chain complex associated to the

grid diagram G is the chain complex G̃C(G), whose underlying vector space over
F = Z/2Z has a basis corresponding to the set of grid states S(G), and whose
differential is specified by

(4.8) ∂̃O,X(x) =
∑

y∈S(G)

#{r ∈ Rect◦(x,y)
∣∣r ∩O = r ∩ X = ∅} · y.

Here #{·} denotes the number of elements in the set modulo 2. (The subscript

on ∂̃O,X indicates the fact that the map counts rectangles that are disjoint from O
and X.)

The reader is invited to show that ∂̃2
O,X = 0. This is verified by interpreting

the terms in ∂̃2
O,X as counts of regions in the grid diagram that are compositions

of two rectangles, and then showing that such regions have exactly two different
decompositions into two rectangles, giving rise to pairwise cancelling terms in ∂̃2

O,X.
A more general fact will be proved in Lemma 4.6.7 below.

The Maslov and Alexander functions on S(G) induce two gradings on G̃C(G):

we define G̃Cd(G, s) to be the F-vector space generated by grid states x with
M(x) = d and A(x) = s. It follows quickly from Equations (4.2) and (4.4) that

the restriction of ∂̃O,X to G̃Cd(G, s) maps into G̃Cd−1(G, s). Thus, the bigrading

descends to a bigrading on the homology groups of G̃C(G). Explicitly, letting

G̃Hd(G, s) =
Ker(∂̃O,X) ∩ G̃Cd(G, s)

Im(∂̃O,X) ∩ G̃Cd(G, s)
,
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then

G̃H(G) =
⊕
d,s∈Z

G̃Hd(G, s).

A bigraded vector space X is a vector space equipped with a splitting indexed
by a pair of integers: X =

⊕
d,s∈Z Xd,s. In this language, the Maslov and Alexander

functions give G̃H(G) the structure of a bigraded vector space.

Definition 4.4.2. The fully blocked grid homology of G, denoted G̃H(G),

is the homology of the chain complex (G̃C(G), ∂̃O,X), thought of as a bigraded vector
space.

Exercise 4.4.3. Let O denote the unknot. Compute G̃H(G) for a 2 × 2 grid

for O. Compute G̃H(G) for a 3 × 3 grid for O.

The above exercise demonstrates the fact that the total dimension of the ho-
mology G̃H(G) depends on the grid presentation of the knot. In fact, the following
will be proved in Section 5.3:

Theorem 4.4.4. If G is a grid diagram with grid number n representing a knot

K, then the renormalized dimension dimF(G̃H(G))/2n−1 is an integer-valued knot
invariant; in particular, it is independent of the chosen grid presentation of K.

4.5. Background on chain complexes

Theorem 4.4.4 might seem mysterious at this point. Indeed, even the fact that

the dimension of G̃H(G) is divisible by 2n−1 is surprising. To verify this latter fact,
it is helpful to enrich our coefficient ring to a polynomial algebra and to define a
version of the grid complex over this algebra.

In the present section, we recall the necessary tools from homological algebra
needed to study this enrichment. This material is essentially standard, with small
modifications needed to accommodate the natural gradings arising in grid homology.
More details, and proofs of some of these results, are provided in Appendix A.

Fix a commutative ring K with unit, which in our applications will be either
Z, the finite field Z/pZ for some prime p, or Q. In fact, through most of this text,
we will take K = Z/2Z = F. Consider the polynomial ring R = K[V1, . . . , Vn] in n
formal variables V1, . . . , Vn. (We also allow n = 0, so that R = K.)

Definition 4.5.1. A bigraded R-module M is an R-module, together with
a splitting M =

⊕
d,s∈Z Md,s as a K-module, so that for each i = 1, . . . , n, Vi maps

Md,s into Md−2,s−1. A bigraded R-module homomorphism is a homomorphism
f : M → M ′ between two bigraded R-modules that sends Md,s to M ′

d,s for all

d, s ∈ Z. More generally, an R-module homomorphism from f : M → M ′ is said to
be homogeneous of degree (m, t) if it sends Md,s to M ′

d+m,s+t for all d, s ∈ Z.

A bigraded chain complex over R = K[V1, . . . , Vn] is a bigraded R-module
C, equipped with an R-module homomorphism ∂ : C → C with ∂ ◦ ∂ = 0 that
maps Cd,s into Cd−1,s; in particular, ∂ is a homomorphism of R-modules that is
homogeneous of degree (−1, 0).

The case where n = 1 will be of particular relevance to us. In this case, we
write the algebra R simply as K[U ]. When n = 0 and K = F, the bigraded modules
are bigraded vector spaces, the structures we encountered in Section 4.4.
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Definition 4.5.2. Let (C, ∂) and (C ′, ∂′) be two bigraded chain complexes
over R = K[V1, . . . , Vn]. A chain map f : (C, ∂) → (C ′, ∂′) is a homomorphism
of R-modules, satisfying the property that ∂′ ◦ f = f ◦ ∂. The chain map f
is called a bigraded chain map if it is also a bigraded homomorphism. More
generally, a chain map is called homogeneous of degree (m, t) if the underlying
homomorphism is bigraded of degree (m, t). An isomorphism of bigraded chain
complexes is a bigraded chain map f : (C, ∂) → (C ′, ∂′) for which there is another
bigraded chain map g : (C ′, ∂′) → (C, ∂) with f ◦ g = IdC′ and g ◦ f = IdC . If
there is an isomorphism from (C, ∂) to (C ′, ∂′), we say that they are isomorphic
bigraded chain complexes , and write (C, ∂) ∼= (C ′, ∂′).

A bigraded chain map f : C → C ′ between two bigraded chain complexes over R
induces a well-defined bigraded map on homology, denoted H(f) : H(C) → H(C ′).

If (C, ∂) and (C ′, ∂′) are bigraded chain complexes over R, and f : (C, ∂) →
(C ′, ∂′) is a chain map, we can form the quotient complex (C ′, ∂′)/Im(f), which is
also a chain complex over R. When f is homogeneous of degree (m, t), the quotient
complex is also a bigraded chain complex of R-modules.

For example, if (C, ∂) is a bigraded chain complex over R = K[V1, . . . , Vn] with
n ≥ 1, then multiplication by Vi i ∈ {1, . . . , n} is a chain map Vi : (C, ∂) → (C, ∂).
In this case, the quotient complex is denoted C

Vi
; or more suggestively C

Vi=0 . This
construction can be iterated; e.g. we can take the quotient of the chain complex by
the map Vj : C

Vi
→ C

Vi
; the corresponding quotient will be denoted C

Vi=Vj=0 .

A short exact sequence of chain complexes induces a long exact sequence on
homology, according to the following:

Lemma 4.5.3. Let (C, ∂), (C ′, ∂′), and (C ′′, ∂′′) be three bigraded chain com-
plexes over R = K[V1, . . . , Vn]. Suppose that f : C → C ′ is a chain map which is
homogeneous of degree (m, t), and g : C ′ → C ′′ is a bigraded chain map, both of
which fit into a short exact sequence

0 −−−−→ C
f−−−−→ C ′ g−−−−→ C ′′ −−−−→ 0.

Then, there is a homomorphism of R-modules δ : H(C ′′) → H(C) that is homoge-
neous of degree (−m − 1,−t), which fits into a long exact sequence

... Hd−m,s−t(C) Hd,s(C
′) Hd,s(C

′′) Hd−m−1,s−t(C) ...
H(f) H(g) δ

The proof of the above standard result is recalled in Appendix A; see
Lemma A.2.1.

Definition 4.5.4. Suppose that f, g : (C, ∂) → (C ′, ∂′) are two bigraded chain
maps between two bigraded chain complexes over R. The maps f and g are said
to be chain homotopic if there is an R-module homomorphism h : C → C ′ that
is homogeneous of degree (1, 0), and that satisfies the formula

(4.9) f − g = ∂′ ◦ h + h ◦ ∂.

In this case, h is called a chain homotopy from g to f . More generally, if
f, g : (C, ∂) → (C ′, ∂′) are two chain maps that are homogeneous of degree (m, t),
they are called chain homotopic if there is a map h : C → C ′ that is an R-module
homomorphism homogeneous of degree (m + 1, t) and satisfies Equation (4.9).
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It is easy to verify that chain homotopic maps induce the same map on
homology.

Definition 4.5.5. A chain map f : C → C ′ is a chain homotopy equiva-
lence if there is a chain map φ : C ′ → C, called a chain homotopy inverse to f ,
with the property that f ◦ φ and φ ◦ f are both chain homotopic to the respective
identity maps. If there is a chain homotopy equivalence from C to C ′, then C and
C ′ are said to be chain homotopy equivalent complexes.

Proposition 4.5.6. Let C and C ′ be two bigraded chain complexes of R =
K[V1, . . . , Vn]-modules. A chain map f : C → C ′, homogeneous of degree (m, t),
naturally induces a chain map f : C

Vi
→ C

Vi
that is also homogeneous of degree

(m, t). Moreover, if g is another chain map that is homogeneous of degree (m, t),
a chain homotopy h from f to g induces a chain homotopy h from f to g.

Proof. Any R-module homomorphism φ : C → C ′ induces an R-module ho-

momorphism φ : C
Vi

→ C′

Vi
. In this notation, the differential ∂ on C induces the

differential ∂ on C
Vi

. Also, the chain maps f , g, and the chain homotopy h induce

maps f , g, and h : C
Vi

→ C′

Vi
. The relation ∂

′ ◦ h + h ◦ ∂ = f − g is a consequence of

the relation ∂′ ◦ h + h ◦ ∂ = f − g.

4.6. The grid chain complex GC−

We now enrich the grid complex to a bigraded chain complex over the ring
R = F[V1, . . . , Vn]. Various specializations of this complex give rise to different
versions of grid homology.

To define the enrichment, it is useful to enumerate the set O = {Oi}ni=1. This
puts the O-markings in one-to-one correspondence with the generators Vi of the
polynomial algebra R. Informally, the unblocked grid complex is the R-module
generated by grid states, equipped with a differential ∂−

X counting empty rectangles
that may cross the O- but not the X-markings. The multiplicity Oi(r) of the
rectangle r at the marking Oi is defined to be either 1 or 0, depending on whether
or not r contains Oi. This multiplicity is recorded as the exponent of the formal
variable Vi. More explicitly:

Definition 4.6.1. The (unblocked) grid complex GC−(G) is the free mod-
ule over R generated by S(G), equipped with the R-module endomorphism whose
value on any x ∈ S(G) is given by

(4.10) ∂−
X x =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣r∩X=∅}

V
O1(r)
1 · · ·V On(r)

n · y.

The elements V k1
1 · · ·V kn

n ·x where x ∈ S(G) and k1, . . . , kn are arbitrary, non-
negative integers form a basis for the F-vector space GC−(G). Extend the Maslov
and Alexander functions (Proposition 4.3.1 and Definition 4.3.2) to this basis by

M(V k1
1 . . . V kn

n · x) = M(x) − 2k1 − · · · − 2kn,(4.11)

A(V k1
1 . . . V kn

n · x) = A(x) − k1 − · · · − kn.(4.12)
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These extensions equip GC−(G) with a bigrading: let GC−
d (G, s) denote the vector

subspace spanned by basis vectors V k1
1 · · ·V kn

n ·x with M(V k1
1 · · ·V kn

n ·x) = d, and

A(V k1
1 · · ·V kn

n · x) = s. If x ∈ GC−(G) lies in some GC−
d (G, s) for some d and s,

we say that x is homogeneous with bigrading (d, s) or simply homogeneous. (Note
that the element 0 is homogeneous with any bigrading.)

Remark 4.6.2. In Chapter 13, we will study another variant of the grid com-
plex, GC−(G), which has the same underlying R-module as GC−(G), a grading
induced by M , and a differential specified by

(4.13) ∂−x =
∑

y∈S(G)

∑
r∈Rect◦(x,y)

V
O1(r)
1 · · ·V On(r)

n · y.

This complex has a filtration which is a knot invariant, and its total homology is
isomorphic to F[U ]. The normalization of M specified by Equation (4.1) was chosen
so that the generator of this homology module has grading equal to zero.

Theorem 4.6.3. The object (GC−(G), ∂−
X ) is a bigraded chain complex over

the ring F[V1, . . . , Vn], in the sense of Definition 4.5.1.

We break the proof of Theorem 4.6.3 into pieces, starting with the verification
that ∂−

X ◦∂−
X = 0. To this end, it is convenient to generalize the notion of rectangles.

Recall that the circles α1, . . . , αg, β1, . . . , βg divide the torus into oriented
squares S1, . . . , Sn2 . A formal linear combination of the closures of these squares,
D =

∑
ai · Si with ai ∈ Z, has a boundary, which is a formal linear combination of

intervals contained inside α1 ∪ · · · ∪ αn ∪ β1 ∪ · · · ∪ βn. Let ∂αD be the portion of
the boundary contained in α1 ∪ · · · ∪ αn and ∂βD be the portion in β1 ∪ · · · ∪ βn.

Definition 4.6.4. Fix x,y ∈ S(G). A domain ψ from x to y is a formal
linear combination of the closures of the squares in G \ (α ∪ β), with the property
that ∂(∂αψ) = y − x and hence ∂(∂βψ) = x − y. In these equations, the two
sides represent a formal linear combinations of points; e.g. if x = {x1, . . . , xn}
and y = {y1, . . . , yn}, then x − y =

∑n
i=1(xi − yi). Denote the set of domains

from x to y by π(x,y). A domain ψ is called positive if each square in the torus
(with its orientation inherited from the torus) appears in the expression for ψ with
non-negative multiplicity.

Remark 4.6.5. The grid diagram G equips the torus with a CW -decomp-
osition, whose 0-cells are the n2 intersection points of the horizontal and the vertical
circles; its 1-cells are the 2n2 intervals on the horizontal and vertical circles between
consecutive intersections of these circles, and its 2-cells are the n2 small squares of
the grid diagram. A formal sum ψ of rectangles is a 2-chain in this CW -complex
structure. The group of 1-chains splits as the sum of the span of the horizontal
intervals and vertical intervals. The 1-chain ∂αψ is the part of ∂ψ in the span of
the horizontal intervals, so the relation ∂(∂αψ) = y− x is an equation of 0-chains.

Domains can be composed: if φ ∈ π(x,y) and ψ ∈ π(y, z), then by adding the
two underlying 2-chains we get a new domain, written φ ∗ ψ ∈ π(x, z).

Exercise 4.6.6. (a) Show that any two x,y ∈ S(G) can be connected by a
domain ψ ∈ π(x,y).
(b) Show that any two x,y ∈ S(G) can be connected by a domain ψ ∈ π(x,y)
with X ∩ ψ = ∅.
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Figure 4.4. Cases in the proof of Lemma 4.6.7. The left col-
umn illustrates the three basic types of domains ψ with N(ψ) > 0
(Cases (R-1), (R-2), and (R-3), respectively). The initial grid state
is indicated by black dots; the terminal one by the white dots. The
second and third columns show the decompositions of the domain
in the first column. The first rectangle in the decomposition is
darker than the second. The intermediate grid state is indicated
by gray dots. In the first row we consider the case of two disjoint
rectangles; these rectangles can also overlap as in Figure 4.5.

(c) If G represents a knot, show that any domain ψ ∈ π(x,y) with X ∩ ψ = ∅ is
uniquely determined by its multiplicities at the O. What if G represents a link?

The next lemma will be used to establish Theorem 4.6.3. Its proof will serve
as a prototype for many of the proofs from Chapter 5.

Lemma 4.6.7. The operator ∂−
X : GC−(G) → GC−(G) satisfies ∂−

X ◦ ∂−
X = 0.

Proof. For grid states x and z fix ψ ∈ π(x, z) and (for the purposes of this proof)
let N(ψ) denote the number of ways we can decompose ψ as a composite of two
empty rectangles r1 ∗ r2. Observe that if ψ = r1 ∗ r2 for some r1 ∈ Rect(x,y) and
r2 ∈ Rect(y, z), the following statements hold:

• ψ ∩ X is empty if and only if ri ∩ X is empty for both i = 1, 2.
• The local multiplicities of ψ, r1, and r2 at any Oi ∈ O are related by

Oi(ψ) = Oi(r1) + Oi(r2).

It follows that for any x ∈ S(G),

∂−
X ◦ ∂−

X (x) =
∑

z∈S(G)

∑{
ψ∈π(x,z)|ψ∩X=∅

}N(ψ) · V O1(ψ)
1 · · ·V On(ψ)

n · z.
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2

1

1

21, 21

2

2

11, 2

Figure 4.5. Overlapping domains counted in ∂−
X ◦ ∂−

X = 0.
Part of the domain on the left has local multiplicity two (indicated
by the darker shading). The next two pictures show the two de-
compositions of this domain as a juxtaposition of two rectangles.
The rectangles are labeled by integers 1 and 2, indicating their
order in the decomposition.

Consider a pair of empty rectangles r1 ∈ Rect◦(x,y) and r2 ∈ Rect◦(y, z), so
that r1 ∗ r2 = ψ is a domain with N(ψ) > 0. There are three basic cases (see also
Figure 4.4 for an illustration):

(R-1) x \ (x∩z) consists of 4 elements. In this case, the corners of r1 and r2 are
all distinct. There is a unique y′ ∈ S(G) and rectangles r′1 ∈ Rect◦(x,y′)
and r′2 ∈ Rect◦(y′, z) so that r1 and r′2 have the same support and r2
and r′1 have the same support. See the top row of Figure 4.4 (and also
Figure 4.5). Then, r1 ∗ r2 = r′1 ∗ r′2 and in fact N(ψ) = 2.

(R-2) x \ (x ∩ z) consists of 3 elements. In this case, the local multiplicities of
ψ are all 0 or 1 and the corresponding region in the torus has six corners,
five of which are 90◦, and one of which is 270◦. Cutting at the 270◦

corner in two different directions gives the two decompositions of ψ as a
juxtaposition of empty rectangles ψ = r1∗r2 = r′1∗r′2, where r1 ∈ π(x,y),
r2 ∈ π(y, z), r′1 ∈ π(x,y′), and r′2 ∈ π(y′, z) (with y �= y′). In particular,
N(ψ) = 2 in this case, as well. See the middle row of Figure 4.4.

(R-3) x = z. In this case, ψ = r1 ∗ r2, where r1 and r2 intersect along two edges
and therefore ψ is an annulus. Since r1 and r2 are empty, this annulus
has height or width equal to 1. Such an annulus is called a thin annulus;
see the bottom row of Figure 4.4. Thin annuli have N(ψ) = 1.

Contributions from Cases (R-1) and (R-2) cancel in pairs, since we are working
modulo 2. There are no contributions from Case (R-3), since every thin annulus
contains one X-marking in it, concluding the proof of the lemma.

Lemma 4.6.8. The differential ∂−
X is homogeneous of degree (−1, 0).

Proof. If V k1
1 · · ·V kn

n ·y appears in ∂−
X x, then there is a rectangle r ∈ Rect◦(x,y)

with r ∩ X = ∅, and Oi(r) = ki for i = 1, . . . , n. By Equations (4.2) and (4.11),

M(V k1
1 · · ·V kn

n · y) = M(y) − 2#(r ∩O) = M(x) − 1,

so the Maslov grading drops by one under the differential. Similarly, Equations (4.4)
and (4.12) give

(4.14) A(V k1
1 · · ·V kn

n · y) = A(y) − #(r ∩O) = A(x) − #(r ∩ X).

Since r ∩ X = ∅, it follows that A(V k1
1 · · ·V kn

n · y) = A(x); i.e. ∂−
X preserves the

Alexander grading.
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Proof of Theorem 4.6.3. Equations (4.11) and (4.12) ensure that multiplication
by Vi is a homogeneous map of degree (−2,−1); i.e. GC−(G) is a bigraded module
over F[V1, . . . , Vn]. The differential is defined to be an R-module homomorphism;
Lemma 4.6.8 ensures that it is homogeneous of degree (−1, 0). The theorem now
follows from Lemma 4.6.7.

The complex GC−(G) generalizes G̃C(G), since

(4.15)
GC−(G)

V1 = . . . = Vn = 0
∼= G̃C(G).

We study now further properties of GC−(G).

Lemma 4.6.9. For any pair of integers i, j ∈ {1, . . . , n} multiplication by Vi

is chain homotopic to multiplication by Vj, when thought of as homogeneous maps

from GC−(G) to itself of degree (−2,−1).

Proof. Variables Vi and Vj are called consecutive if there is a square marked by
X in the same row as Oi and in the same column as Oj . Suppose that Vi and Vj

are consecutive, and let Xi denote the X-marking in the same row as Oi and in
the same column as Oj . Define a corresponding homotopy operator that counts
rectangles that contain Xi in their interior:

(4.16) Hi(x) = HXi
(x) =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣Int(r)∩X=Xi}

V
O1(r)
1 · · ·V On(r)

n · y.

It follows immediately from Proposition 4.3.1 and Equation (4.4) that Hi is homo-
geneous of degree (−1,−1). The proof of Lemma 4.6.7 shows that 1

∂−
X ◦ Hi + Hi ◦ ∂−

X = Vi − Vj .

In this adaptation, count decompositions of domains ψ with N(ψ) > 0 and which
contain Xi (and no other X ∈ X) with multiplicity one in their interior. In addition
to the types of pairs appearing in Cases (R-1) and (R-2) of Lemma 4.6.7, there are
two thin annuli that contribute to ∂−

X ◦Hi +Hi ◦ ∂−
X , and those are the two annuli

(horizontal and vertical) through Xi. The contributions of these two annuli are
multiplication by Vi and multiplication by Vj .

For general Vi and Vj , since K is a knot there is a sequence of variables
Vi = Vn1

, . . . , Vnm
= Vj where Vnk

and Vnk+1
are consecutive. Adding the chain

homotopies, we deduce that Vi is homotopic to Vj .

Remark 4.6.10. Lemma 4.6.9 uses the fact that the grid diagram G represents
a knot, rather than a link: in general, the actions of variables corresponding to
different link components are not chain homotopic; cf. also Lemma 8.2.3. For more
on the case of links, see Section 9.1 and Chapter 11.

Definition 4.6.11. Fix some i ∈ {1, . . . , n}. The unblocked grid homology
of G, denoted GH−(G), is the homology of (GC−(G), ∂−

X ), viewed as a bigraded
module over F[U ], where the action of U is induced by multiplication by Vi.

1Note that Vi − Vj = Vi + Vj in R. We write Vi − Vj , since that expression is what shows

up when we work with Z coefficients, as in Chapter 15.
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Lemma 4.6.9 shows that the grid homology groups, thought of as bigraded
modules over F[U ], are independent of the choice of i. Lemma 4.6.9 also inspires
the following further construction:

Definition 4.6.12. Fix some i = 1, . . . , n. The quotient complex GC−(G)/Vi

is called the simply blocked grid complex , and it is denoted ĜC (G). The simply

blocked grid homology of G, ĜH (G), is the bigraded vector space obtained as

the homology of ĜC (G) = (GC−(G)/Vi, ∂
−
X ).

Remark 4.6.13. Explicitly, GC−(G)/Vn is the bigraded F-vector space with

basis V k1
1 · · ·V kn−1

n−1 · x, where k1, . . . , kn−1 are arbitrary non-negative integers and

x ∈ S(G); equipped with a differential ∂̂X,On
specified by ∂̂X,On

◦ Vj = Vj ◦ ∂̂X,On

for j = 1, . . . , n − 1, and for any x ∈ S(G),

∂̂X,On
(x) =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣r∩X=∅,On(r)=0}

V
O1(r)
1 · · ·V On−1(r)

n−1 · y.

We shall see that ĜH is a finite dimensional vector space that is independent of
the choice of i, in Corollaries 4.6.16 and 4.6.17 below. But first, we explain how to

extract the vector space ĜH (G) from G̃H(G), in terms of the following notation.
Let X and Y be two bigraded vector spaces

X =
⊕
d,s∈Z

Xd,s and Y =
⊕
d,s∈Z

Yd,s.

Their tensor product X⊗Y =
⊕

d,s∈Z(X⊗Y )d,s is the bigraded vector space, with

(4.17) (X ⊗ Y )d,s =
⊕

d1 + d2 = d
s1 + s2 = s

Xd1,s1 ⊗ Yd2,s2 .

Definition 4.6.14. Let X be a bigraded vector space, and fix integers a and b.
The corresponding shift of X, denoted X�a, b�, is the bigraded vector space that
is isomorphic to X as a vector space and given the bigrading X�a, b�d,s = Xd+a,s+b.

Let W be the two-dimensional bigraded vector space with one generator in
bigrading (0, 0) and another in bigrading (−1,−1), and let X be any other bigraded
vector space, then the tensor product X ⊗ W is identified with two copies of X,
one of which is equipped with a shift in degree:

(4.18) X ⊗ W ∼= X ⊕ X�1, 1�.
This can be iterated; for example, X ⊗ W⊗2 ∼= X ⊕ X�1, 1� ⊕ X�1, 1� ⊕ X�2, 2�.

Proposition 4.6.15. Let G be a grid diagram representing a knot. Let W be
the two-dimensional bigraded vector space, with one generator in bigrading (0, 0)
and the other in bigrading (−1,−1). Then, there is an isomorphism

(4.19) G̃H(G) ∼= ĜH (G) ⊗ W⊗(n−1)

of bigraded vector spaces, where ĜH (G) = H(GC−(G)
Vi

) for any i = 1, . . . , n.

Proof. We will prove by induction on j that

(4.20) H

(
GC−(G)

V1 = · · · = Vj = 0

)
∼= H

(
GC−(G)

V1 = 0

)
⊗ W⊗(j−1).
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We interpret W 0 as a one-dimensional vector space in bigrading (0, 0), so that the
isomorphism W⊗a ⊗ W ∼= W⊗(a+1) holds for all a ≥ 0. In the basic case where
j = 1, Equation (4.20) is a tautology.

For the inductive step, for j > 1 consider the short exact sequence
(4.21)

0 −−−−→ GC−(G)
V1=···=Vj−1=0

Vj−−−−→ GC−(G)
V1=···=Vj−1=0 −−−−→ GC−(G)

V1=···=Vj=0 −−−−→ 0.

Using Proposition 4.5.6, the chain homotopy between Vj and V1 provided by
Lemma 4.6.9, induces a chain homotopy between the chain map

Vj :
GC−(G)

V1 = · · · = Vj−1 = 0
→ GC−(G)

V1 = · · · = Vj−1 = 0

and the 0 map, so the long exact sequence on homology associated to the short exact
squence from Equation (4.21) (cf. Lemma 4.5.3) becomes a short exact sequence

0 H( GC−(G)
V1=···=Vj−1=0 ) H( GC−(G)

V1=···=Vj=0 ) H( GC−(G)
V1=···=Vj−1=0 ) 0,

where the second arrow preserves bigradings, and the third is homogeneous of
degree (1, 1). Thus, this short exact sequence of vector spaces translates into the
first isomorphism of bigraded vector spaces appearing in the following:

H

(
GC−(G)

V1 = · · · = Vj = 0

)
∼= H

(
GC−(G)

V1 = · · · = Vj−1 = 0

)
⊗ W ∼= ĜH (G) ⊗ W⊗(j−1),

and the second isomorphism follows from the inductive hypothesis. This completes
the inductive step, verifying Equation (4.20) for all j = 1, . . . , n.

In view of Equation (4.15), when j = n, Equation (4.20) gives Equation (4.19)
for i = 1. Numbering our formal variables differently, we conclude that Equa-
tion (4.19) holds for arbitrary i.

The chain complex G̃C(G) is finite dimensional over F, so its homology G̃H(G)

is also finite dimensional. Although ĜC (G) is infinite dimensional over F, Propo-
sition 4.6.15 has the following immediate consequence:

Corollary 4.6.16. For a grid diagram G with grid number n, the vector space

ĜH (G) is finite dimensional, the dimension of G̃H(G) is divisible by 2n−1, and in

fact 2n−1 · dimF ĜH (G) = dimF G̃H(G).

Corollary 4.6.17. The simply blocked grid homology

ĜH (G) = H(GC−(G)/Vi)

is independent of the choice of i = 1, . . . , n.

Proof. From Proposition 4.6.15, it follows that for i, j,

(4.22) H

(
GC−(G)

Vi

)
⊗ W (n−1) ∼= H

(
GC−(G)

Vj

)
⊗ W (n−1)

as bigraded vector spaces.
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Just as a finite dimensional vector space is determined up to isomorphism by
its dimension, a finite dimensional bigraded vector space Y is determined up to
isomorphism by its Poincaré polynomial PY , the Laurent polynomial in q and t:

(4.23) PY (q, t) =
∑
d,s∈Z

dim Yd,s · qdts.

Letting Yi = H(GC−(G))
Vi

), Equation (4.22) translates into the equation

(1 + q−1t−1)n−1 · PYi
(q, t) = (1 + q−1t−1)n−1 · PYj

(q, t),

so PYi
= PYj

, and hence H(GC−(G)
Vi

) ∼= H(GC−(G)
Vj

) as bigraded vector spaces.

Another relation among the grid homology groups is given by the following:

Proposition 4.6.18. There is a long exact sequence relating ĜH (G) and
GH−(G):

· · · → GH−
d+2(G, s + 1)

U→ GH−
d (G, s) → ĜH d(G, s) → GH−

d+1(G, s + 1) → . . .

Proof. Consider the short exact sequence

0 → GC−(G)
Vi−→ GC−(G) → ĜC (G) → 0

of bigraded chain complexes of F[Vi]-modules, where the first map is, of course,
homogeneous of degree (−2,−1). The associated long exact sequence in homology
(Lemma 4.5.3) gives the statement of the proposition.

A key feature of the grid homology groups ĜH (G) and GH−(G) is that they
are knot invariants, in the following sense.

Theorem 4.6.19. The homologies ĜH (G) and GH−(G) (the former thought
of as a bigraded F-vector space, the latter thought of as a bigraded F[U ]-module)
depend on the grid G only through its underlying (unoriented) knot K.

The proof of the above theorem will be given in Chapter 5.

4.7. The Alexander grading as a winding number

The aim of the present section is to give geometric insight into the bigrading
from Section 4.3. Byproducts include a practical formula for computing A and a
relationship between grid homology and the Alexander polynomial. The geomet-
ric interpretation of the Alexander grading rests on the following formula, which
expresses the winding number about a knot projection in terms of planar grid dia-
grams.

Lemma 4.7.1. Let G be a planar grid diagram of a knot K, let D = D(G) be
the corresponding knot projection in the plane, and let p be any point not on D.
Then, the winding number wD(p) of D around p is computed by the formula

(4.24) wD(p) = J (p,O− X).
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p+p− p +
−+

−

Figure 4.6. Winding numbers. The diagram illustrates the
equality wD(p) = I(p,O − X) (interpreting the winding number
as intersection of the knot projection with the ray p+), and at
the same time the equality wD(p) = I(O− X, p) (interpreting the
winding number as intersection with the ray p−).

Proof. If p = (x, y) is any point not contained in D, then I(p,O − X) is the
(signed) intersection number of the ray p+ from p to (+∞, y) with D: the vertical
arc connecting some O with X contributes +1 if the O lies in this upper right
quadrant and the X does not, and it contributes −1 if the X lies in this upper right
quadrant and the O does not, and it contributes 0 otherwise; i.e.

#(p+ ∩ D) = I(p,O− X).

Similarly, the intersection number of the ray p− from p to (−∞, y) with D is

#(p− ∩ D) = I(O− X, p).

Clearly, wD(p) = #(p+ ∩D) = #(p− ∩D). Average the above two equations to get
Equation (4.24).

Fix a planar realization of a toroidal grid diagram, and consider the function
A′ on the grid state x ∈ S(G) defined by

(4.25) A′(x) = −
∑
x∈x

wD(x).

As we shall see shortly, A and A′ differ by a constant (independent of the grid
state). We express this constant in terms of quantities which we have met already
in Section 3.3. To this end, recall that each of the 2n squares marked with an
X or O has 4 corners, giving us a total of 8n lattice points on the grid (possibly
counted with multiplicity, when the marked squares share a corner), which we
denote p1, . . . , p8n. The sum of the winding numbers at these points, divided by
8, was denoted by a(G) in Section 3.3. The precise relationship between A and A′

can now be stated as follows:

Proposition 4.7.2. Choose a planar realization of a toroidal grid diagram G
representing a knot K. Let D be the corresponding diagram of K. The Alexander
function A can be expressed in terms of the winding numbers wD by the following
formula:

(4.26) A(x) = −
∑
x∈x

wD(x) +
1

8

8n∑
j=1

wD(pj) −
(

n − 1

2

)
= A′(x) + a(G) − n − 1

2
.
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z1

z3 z4

z2 z2

z4

z1

z3

z1 z2

z4z3

z1 z2

z3 z4

Figure 4.7. Verification of Equation (4.28). Here are the four
cases where the distinguished square z is marked with an O. To
verify the equation, find the pairs contributing to J (z1 + · · · +
z4, X), where X is in the same row or column as z, and to J (z1 +
· · · + z4, O), where the O-marking is at z.

Proof. Summing Equation (4.24) over all the components x ∈ x, gives A′(x) =
−J (x,O− X); so

A(x) =
1

2
(MO(x) − MX(x)) −

(
n − 1

2

)
= −J (x,O− X) +

1

2
(J (O,O) − J (X,X)) −

(
n − 1

2

)
= A′(x) +

1

2
J (O + X,O− X) −

(
n − 1

2

)
.

Thus, Equation (4.26) now follows once we show that

(4.27)
1

2
J (O + X,O− X) =

1

8

8n∑
i=1

wD(pi).

To check Equation (4.27), we first verify the following: given any small square
(in a planar grid) whose center z is marked with an O or an X, if z1, . . . , z4 denote
its four corner points in the plane, then
(4.28)

J (z,O−X) =
1

4
J (z1 + z2 + z3 + z4,O−X) +

⎧⎨⎩ − 1
4 if z is marked with an O

1
4 if z is marked with an X.

Suppose for definiteness that z is marked with an O. Then, for any marking O′ ∈ O
with O �= O′,

J (z, O′) =
1

4
J (z1 + z2 + z3 + z4, O

′).

Also, for any X-marking not in the same row or column as z,

J (z, X) =
1

4
J (z1 + z2 + z3 + z4, X).

The correction of − 1
4 comes from the pairing of the X-markings in the same row

and column as z with the formal sum z1 + · · · + z4, combined with the pairing of
the O-marking on z with z1 + · · · + z4; see Figure 4.7. A similar reasoning gives
Equation (4.28) when z is marked with an X.

Equation (4.27) follows from summing up Equation (4.28) over all O- and X-
marked squares, and using Lemma 4.7.1.



4.7. THE ALEXANDER GRADING AS A WINDING NUMBER 85

Lemma 4.7.3. The sign of the permutation that connects x with xNWO is
(−1)M(x).

Proof. This is an immediate consequence of Proposition 4.3.1, combined with the
mod 2 reductions of Equations (4.1) and (4.2).

Definition 4.7.4. Let X =
⊕

d,s Xd,s be a bigraded vector space. Define the
graded Euler characteristic of X to be the Laurent polynomial in t given by

χ(X) =
∑
d,s

(−1)d dim Xd,s · ts.

The Euler characteristic of grid homology is related to the Alexander polyno-
mial, according to the following:

Proposition 4.7.5. Let G be a grid diagram for a knot K with grid number

n. The graded Euler characteristic of the bigraded vector space G̃H(G) is given by

(4.29) χ(G̃H(G)) = (1 − t−1)n−1 · ΔK(t),

where ΔK(t) is the symmetrized Alexander polynomial of Equation (2.3).

Proof. It is a standard fact that the Euler characteristic of a chain complex agrees
with that of its homology (and this fact remains true in the bigraded case). Thus,

χ(G̃H(G)) = χ(G̃C(G)) =
∑

x∈S(G)

(−1)M(x)tA(x).

By Proposition 4.7.2 (for the t-power) and Lemma 4.7.3 together with Proposi-
tion 4.3.7 (for the sign), it follows that this graded Euler characteristic agrees with∑

x

(−1)M(x)tA(x) = (−1)n−1ε(G) · det(M(G)) · ta(G) · t
1−n
2 .

The result now follows from Theorem 3.3.6.

Proposition 4.7.5 relates the Euler characteristic of G̃H(G) and the Alexander
polynomial of the underlying knot. This leads quickly to the following relationship

between the Alexander polynomial and the graded Euler characteristic of ĜH

(4.30) χ(ĜH (K)) =
∑
d,s

(−1)d dim ĜH d(K, s) · ts ∈ Z[t, t−1].

Theorem 4.7.6 ([172, 191]). The graded Euler characteristic of the simply
blocked grid homology is equal to the (symmetrized) Alexander polynomial ΔK(t):

χ(ĜH (K)) = ΔK(t).

Proof. The graded Euler characteristic of the bigraded vector space W from
Lemma 4.6.15 is χ(W ) = 1 − t−1, so the identity follows immediately from Propo-
sitions 4.7.5 and 4.6.15.
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4.8. Computations

Assuming Theorem 4.6.19, we can directly compute some of the homology
groups defined earlier in this chapter. See also Chapter 10 for more computations.

Proposition 4.8.1. For the unknot O, ĜH (O) ∼= F is supported in bigrading
(0, 0); and GH−(O) ∼= F[U ], and its generator has bigrading (0, 0).

Proof. In the 2×2 grid diagram G representing the unknot, there are exactly two
generators; call them p and q, with A(p) = 0, M(p) = 0, A(q) = −1, M(q) = −1.
The complex GC−(G) is generated over F[V1, V2] by these two generators, and its
boundary map is specified by

∂−
X (p) = 0, ∂−

X (q) = (V1 + V2) · p.

The homology of this complex is clearly isomorphic to F[U ], generated by the cycle
p; this completes the computation of GH−(O).

For ĜH (O), we can set V2 = 0, to obtain the complex over F[V1] with generators
p and q, and boundary specified by

∂−
X (p) = 0, ∂−

X (q) = V1 · p,

whose homology is F, generated by the cycle p.

With more work, one can show that the grid homology groups of the right-
handed trefoil knot K = T2,3 are given by:

ĜH d(K, s) =

{
F if (d, s) ∈ {(0, 1), (−1, 0), (−2,−1)}
0 otherwise.

(4.31)

GH−
d (K, s) =

{
F if (d, s) = (0, 1) or (d, s) = (−2k,−k) for k ≥ 1
0 otherwise.

(4.32)

In the second case, the F[U ]-module structure is determined by the property that
U : GH−

−2k(K,−k) → GH−
−2k−2(K,−k − 1) is an isomorphism for all k ≥ 1. More

succinctly, we write

GH−(K) ∼= (F[U ]/U)(0,1) ⊕ (F[U ])(−2,−1),

where the subscripts on the cyclic F[U ]-modules denote the bigradings of their
generators.

Exercise 4.8.2. Let K denote the right-handed trefoil knot.
(a) Use Figure 3.3 to verify Equation (4.31). (Hint: Show first that there are no

generators for G̃C(G) in Alexander grading greater than 1. Next, find generators

of G̃C(G) in Alexander gradings 0, 1, and −5, and apply Proposition 4.6.15.)
(b) Verify Equation (4.32). (Hint: Proposition 4.6.18 might be helpful.)

(c) Let K denote the left-handed trefoil knot. Compute ĜH (K) and GH−(K).

Remark 4.8.3. The result of Exercise 4.8.2 shows that grid homology distin-
guishes the right-handed trefoil T2,3 from its mirror T−2,3. See Proposition 7.1.2
for a general description of how homology behaves under reflection.

Restricting attention to a carefully chosen Alexander grading, we can give a
more general computation valid for all torus knots.
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Figure 4.8. Grid diagram for T−3,7. This is the diagram for
T−p,q from Exercise 3.1.5(c), when p = 3 and q = 7. The grid state
x+ is indicated by the heavy dots in the grid.

Lemma 4.8.4. Let p, q > 1 be relatively prime integers. There is a grid diagram
G for T−p,q with the following property. If x+ = xNEX is the grid state which
occupies the upper right corner of each square marked with X, then this grid state
is the unique generator with maximal Alexander grading among all generators, and

A(x+) =
(p − 1)(q − 1)

2
.

Proof. Let G be the (p + q) × (p + q) grid diagram with σO = (1, . . . , p + q) and
σX = (p + 1, p + 2, . . . , p); see Figure 4.8. (Compare also Exercise 3.1.5(c)).

Consider the associated winding matrix Mp,q = W(G). In the jth row, the
winding numbers start out zero for a while, they increase by 1’s until they reach
their maximum, then they stay constant, and then eventually they drop by 1’s.
More precisely: the left column and bottom row vanish; for j = 1, . . . , q, in the jth

row (from the top), the first q− j +1 entries are 0 and all others are positive; while
for j = q + 1, . . . , p + q − 1, the last j − q entries and the first entry are 0 and all
others are positive.

For example, for the torus knot T−3,7 from Figure 4.8, this matrix is

M3,7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 2 2 1
0 0 0 0 0 1 2 3 2 1
0 0 0 0 1 2 3 3 2 1
0 0 0 1 2 3 3 3 2 1
0 0 1 2 3 3 3 3 2 1
0 1 2 3 3 3 3 3 2 1
0 1 2 2 2 2 2 2 1 0
0 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows at once that for x+ all the winding numbers are zero, and for all
other grid states x, the sum of the winding numbers −A′(x) is positive; so by
Proposition 4.7.2, x+ is the unique grid state with maximal Alexander grading.
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Elementary computation shows that

J (x+,x+) =
p(p − 1) + q(q − 1)

2
J (O,O) =

(p + q)(p + q − 1)

2

J (x+,O) =
p2 + q2

2
MX(x+) = 1 − p − q;

so using Definition 4.3.2 we find that

A(x+) =
1

2
(MO(x+) − MX(x+)) − p + q − 1

2
=

(p − 1)(q − 1)

2
.

Proposition 4.8.5. Fix relatively prime, positive integers p and q with p, q > 1.

Some of the grid homology groups ĜH (T−p,q) are given by the following:

ĜH d(T−p,q, s) =

⎧⎪⎨⎪⎩
F if s = (p−1)(q−1)

2 and d = (p − 1)(q − 1)

0 if s = (p−1)(q−1)
2 and d �= (p − 1)(q − 1)

0 if s > (p−1)(q−1)
2 .

Proof. According to Lemma 4.8.4, ĜC (T−p,q) has no generators with Alexander

grading greater than (p−1)(q−1)
2 ; and it has a single one with Alexander grading

equal to (p−1)(q−1)
2 . The formulas in the proof of Lemma 4.8.4 also show that

M(x+) = (p − 1)(q − 1).

To give further examples, we find it convenient to encode the grid homology

by its Poincaré polynomial PK(q, t) =
∑

d,s dim ĜH d(K, s)tsqd (introduced in

Equation (1.2)). Using a direct computer computation, Baldwin and Gillam [5]
computed the grid homology of all knots with at most twelve crossings. In particu-
lar, for the eleven crossing Kinoshita-Terasaka knot KT and for its Conway mutant
C of Figure 2.7 (compare also [182, Section 5.4] and [179, Section 3]) they found
that:

(4.33) PKT (q, t) = (q−3+q−2)t−2+4(q−2+q−1)t−1+6q−1+7+4(1+q)t+(q+q2)t2,

(4.34) PC(q, t) = (q−4 + q−3)t−3 + 3(q−3 + q−2)t−2 + 3(q−2 + q−1)t−1 + 2q−1

+3 + 3(1 + q)t + 3(q + q2)t2 + (q2 + q3)t3.

(Among non-trivial knots with at most eleven crossings, these are the two knots
with Alexander polynomial equal to 1.)

Although these are not computations one would wish to perform by hand, there
are pieces which can be verified directly. For example:

Exercise 4.8.6. Consider Figure 4.9, a grid diagram for the Conway knot.
(a) Show that the grid states pictured on the figure are the only two grid states in
Alexander grading 3, and that there are no grid states in greater Alexander grading.
(b) Show that there are no empty rectangles connecting the two grid states. Use
this to verify that the coefficient in front of the t3 term in the Poincaré polynomial
PC(q, t) of the Conway knot is, indeed, (q2 + q3), as stated in Equation (4.34), and
that all higher t-powers have vanishing coefficients.
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Figure 4.9. Two grid states for the Conway knot. The
white ones appear only in one of the grid states, the black ones
appear only in the other, and the gray dots appear in both.

Figure 4.10. Two grid states for the Kinoshita-Terasaka
knot. We have exhibited here two grid states on the same grid,
with the same conventions as in Figure 4.9.

Exercise 4.8.7. Consider the grid diagram of the Kinoshita-Terasaka knot
KT from Figure 4.10. (Notice that the diagram for the Kinoshita-Terasaka knot
we gave in Figure 3.4 differs from this diagram by a single commutation.)
(a) Show that there are exactly four grid states in Alexander grading 2, and none
with Alexander grading greater than 2. (Hint: Two of the grid states in Alexander
grading 2 are pictured in Figure 4.10. Find the other two.)
(b) Show that the homology of the resulting chain complex in Alexander grading
2 has dimension 2. Use this to verify that the coefficient in front of t2 in PKT (q, t)
is (q2 + q1), and all coefficients with higher t-powers vanish, as stated in Equa-
tion (4.33).

Remark 4.8.8. For a typical grid diagram of the Kinoshita-Terasaka knot with
grid number 11, the number of generators in Alexander grading 2 is rather large. For
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the choice we gave here, there are four generators, and this makes the computation
of the grid homology in this Alexander grading easy.

4.9. Further remarks

The argument from Lemma 4.6.7 is a combinatorial analogue of the proof,
in Lagrangian Floer homology, that the Lagrangian Floer complex is, in fact, a
chain complex. The proof in that case hinges on Gromov’s compactness theorem,
together with gluing results for solutions of the relevant non-linear Cauchy-Riemann
operator. These results are key ingredients in the development of Lagrangian Floer
homology. Likewise, the combinatorial arguments from Lemma 4.6.7, although they
are much simpler, also lie at the core of grid homology. Arguments of this type will
appear throughout the text. (See for example Lemma 4.6.9 and Lemma 5.1.4.)



CHAPTER 5

The invariance of grid homology

This chapter gives a self-contained proof that the grid homology from Chapter 4
is a knot invariant. The discussion here is closely modeled on [136], with some
simplifications. Most importantly, we consider invariance for grid homology, rather
than the more general filtered version of the grid complex; we will return to the
more general setting in Chapter 13. The present version, though, is sufficient for
many topological applications, such as those given in Chapters 6, 8, and 12.

In view of Cromwell’s theorem (Theorem 3.1.9), to prove invariance, it suf-
fices to verify invariance under the grid moves: commutations and stabilizations.
Section 5.1 is devoted to the proof of commutation invariance, and Section 5.2 to
stabilization invariance. In Section 5.3, we put together the pieces and prove the
invariance statement for grid homology. We also show that grid homology is inde-
pendent of the orientation on K. In Section 5.4, we give a more detailed analysis
of the maps induced by stabilizations; this material will be used in Chapter 6.
In Section 5.5 we sketch a further variant of grid homology (due to Lipshitz); in
Section 5.6, we indicate the relationship of the present chapter with the pseudo-
holomorphic theory; and in Section 5.7 we give the reader some exercises, to con-
struct chain homotopy equivalences for stabilizations, that induce the isomorphisms
studied earlier.

5.1. Commutation invariance

In this section, we define isomorphisms on grid homology induced by commu-
tation moves. To define these maps, we introduce some notation. As in Defini-
tion 3.1.6, let G be a toroidal grid diagram, and G′ be a different grid diagram
obtained by commuting two columns of G. It will be helpful to view both diagrams
on one torus: regard all the X- and O-markings as fixed for both G and G′, and
draw two of the vertical circles (one for G, and another for G′) curved, as shown
in Figure 5.1. Let α = {α1, . . . , αn} and β = {β1, . . . , βn} denote the horizontal
and vertical circles for G. The set of horizontal circles for G′ is α = {α1, . . . , αn}
as before, but its vertical circles are γ = {β1, . . . , βi−1, γi, βi+1, . . . , βn}. Label the
vertical circles compatibly with the cyclic ordering inherited from the toroidal grid;
i.e. for k = 1, . . . , n − 1, βk+1 is the vertical circle immediately to the east of βk.

Draw the vertical circles so that βi and γi meet perpendicularly in two points,
denoted a and b, both of which miss the horizontal circles. Distinguish a and b, as
follows. The complement of βi ∪ γi in the grid torus contains two bigons, which
intersect in {a, b}. One of these bigons has a portion of βi on its western boundary
and a portion of γi on its eastern boundary. For this bigon, the intersection point
a occurs at its southern tip. We will define chain maps between the grid complexes
for G and G′ that count suitable pentagons, defined as follows.

91
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G G′

b

a

γi βi

Figure 5.1. Commutation diagram. The commutation move
indicated in the left and middle pictures is encoded in the diagram
on the right, which contains both diagrams simultaneously.

β5γ5

a

Figure 5.2. Empty pentagon. The shaded region is a pentagon
counted in the commutation map.

Definition 5.1.1. Fix grid states x ∈ S(G) and y′ ∈ S(G′). An embedded
disk p in the torus whose boundary is the union of five arcs, each of which lies in
some αj , βj , or γi, is called a pentagon from x to y′ if it satisfies the following
conditions:

• Four of the corners of p are in x ∪ y′.
• Note that each corner point x of p is an intersection of two of the curves

taken from the {αj , βj , γi}nj=1; and a small disk centered at x is divided
into four quadrants by these two curves. The pentagon p contains exactly
one of the four quadrants.

• Letting ∂αp denote the portion of the boundary of p in α1 ∪ · · · ∪ αn,

(5.1) ∂(∂αp) = y′ − x.

The set of such pentagons is denoted Pent(x,y′). (See Figure 5.2 for a picture.)

The set Pent(x,y′) is empty unless x and y′ share exactly n − 2 elements.
Moreover, Pent(x,y′) consists of at most one element. The conditions on a pentagon
ensure that its fifth corner point is at the distinguished point a.

We will also need pentagons from y′ ∈ G′ to x ∈ G, that satisfy all the
properties from Definition 5.1.1, except that Equation (5.1) is replaced by the
condition that ∂(∂αp) = x− y′. For such pentagons, the fifth corner point is at b.
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βiγi βiγi

a a

Figure 5.3. Composing pentagons and triangles. On the
left, the pentagon can be pre-composed with a triangle to get a
rectangle; on the right, the pentagon can be post-composed with
a triangle to get a rectangle.

Definition 5.1.2. The pentagon p ∈ Pent(x,y′) is said to be empty if

Int(p) ∩ x = ∅ = Int(p) ∩ y′.

The set of empty pentagons from x to y′ is denoted Pent◦(x,y′).

Define the F[V1, . . . , Vn]-module map P : GC−(G) → GC−(G′) by the formula:

(5.2) P (x) =
∑

y′∈S(G′)

∑
{p∈Pent◦(x,y′)

∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y′.

Lemma 5.1.3. The above map P is a bigraded map.

Proof. There is a one-to-one correspondence

(5.3) I : S(G′) → S(G),

the nearest point map, sending a grid state x′ ∈ S(G′) to the unique grid state
x = I(x′) that agrees with x′ in all but one component (i.e., the elements of x′ on
the generic vertical circles coincide with the corresponding elements of I(x′)).

There is a canonical small (positive) triangle from x′ to I(x′) = x, written
tx. These triangles can be composed with pentagons to obtain rectangles, via a
juxtaposition that will be still denoted by ∗. If p ∈ Pent(x,y′) then at least one of
the following holds: tx ∗ p ∈ Rect(x′,y′) or p ∗ ty ∈ Rect(x,y); see Figure 5.3.

We claim that if tx is the triangle from x′ to x = I(x′), then

(5.4) M(x) − M(x′) = −1 + 2#(tx ∩O).

To see this, choose the fundamental domain so that the triangle has the form of one
of the four triangles illustrated in Figure 5.4. In all four cases J (x,x)−J (x′,x′) =
0, J (O,O) − J (O′,O′) = −1, while J (O,x) − J (O′,x′) can be 0 or −1; and all
four cases are consistent with Equation (5.4).

Equations (5.4) and (4.2) show that if p ∈ Pent(x,y′), then

M(x) − M(y′) = −2#(p ∩O) + 2#(x ∩ Int(p)),

bearing in mind that y ∩ Int(tx) = ∅ for any triangle tx and any grid state y. This
implies that P preserves Maslov grading. Switching the roles of X and O, and using
Equation (4.3) we see that for any p ∈ Pent(x,y′)

(5.5) A(x) − A(y′) = #(p ∩ X) − #(p ∩O).
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βiγi βiγi

a a a

γi βi

a

γi βi

Figure 5.4. Triangles shift Maslov grading. The four possi-
ble types of small triangles with initial vertex at a.

Since all the pentagons counted in P have p ∩ X = ∅, it follows that P preserves
the Alexander grading.

Lemma 5.1.4. The map P defined in Equation (5.2) is a chain map.

Proof. We verify the identity ∂−
X ◦P = P ◦ ∂−

X along the lines of Lemma 4.6.7, in
this case by analyzing how pentagons and rectangles can interact.

We start by generalizing the notion of a domain from Definition 4.6.4. Cut the
grid torus along each αj , βj , and γi, to obtain a union of triangles, rectangles, and
pentagons. For x ∈ S(G) and y′ ∈ S(G′), a domain ψ from x to y′ is a formal
sum of the closures of these elementary regions, taken with integral multiplicities,
with the further property that ∂αψ, the portion of the boundary in α1 ∪ · · · ∪ αn

(thought of as a formal sum of intervals), satisfies ∂(∂αψ) = y′ − x.
Next, let N(ψ) denote the number of decompositions of ψ as a composite of an

empty rectangle (for G) followed by an empty pentagon or as an empty pentagon
followed by an empty rectangle (for G′); compare the proof of Lemma 4.6.7. Then,

(5.6) (∂−
X ◦P +P ◦∂−

X )(x) =
∑

z′∈S(G′)

∑{
ψ∈π(x,z′)

∣∣X∩ψ=∅
}N(ψ)·V O1(ψ)

1 · · ·V On(ψ)
n ·z′.

When N(ψ) > 0, then ψ satisfies one of the following three conditions:

(P-1) x \ (x∩ z′) consists of 4 points. In this case, there are exactly two decom-
positions of ψ, as r ∗ p or p′ ∗ r′, where p and p′ resp. r and r′ have the
same underlying pentagon resp. rectangle, i.e. they differ only in the grid
states they connect. This shows that N(ψ) = 2.

(P-2) x\ (x∩z′) consists of 3 points. There are two cases: either all of the local
multiplicities of ψ are 0 and 1, or some local multiplicity is 2. In the first
case, ψ has seven corners, one of them is a 270◦ corner. Cutting at this
270◦ corner in two different directions, gives two different decompositions
of ψ. Both are juxtapositions of a rectangle and a pentagon, but the pre-
cise order depends on the geometry of ψ. In the second case, ψ has a 270◦

corner at a, and cutting in both ways there gives the two decompositions
of ψ. In all cases N(ψ) = 2. Both Cases (P-1) and (P-2) are illustrated
in Figure 5.5.

(P-3) x \ (x ∩ z′) consists of 1 point. This happens when the domain ψ goes
around the torus, which in turn can happen in two ways: the composition
is either a vertical thin annulus together with a small triangle (shown
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Case (P-1) Case (P-2)

Case (P-2)

Case (P-3)(h)

Case (P-2) Case (P-2)

βi βi βi

βi βi

βi

γi γi γi
γi

γi

γi

a a a

a

b

a

a

Figure 5.5. Cases from the proof of Lemma 5.1.4. The
lower left shows a domain with some local multiplicity 2.

a

γi βi βiγi

a

βiγi

a

βiγi

a

βi

a

βi

a

γi γi

Figure 5.6. Case (P-3)(v). The diagram shows the six types
of decompositions of the region ψ1 from the proof of Lemma 5.1.4.

in Figure 5.6) or a horizontal thin annulus minus a small triangle, as in
Figure 5.5. We denote these two cases Case (P-3)(v) and Case (P-3)(h)
respectively. In Case (P-3)(v), ψ has a unique decomposition as a thin
pentagon and a thin rectangle; in Case (P-3)(h), ψ has N(ψ) = 2.

Verifying that ∂−
X ◦P (x)+P ◦∂−

X (x) = 0 now reduces to showing that the contribu-
tions coming from Case (P-3)(v) cancel in pairs, which we see as follows. Clearly,
any configuration ψ as in Case (P-3)(v) is supported in the annulus between βi−1

and βi+1, since the rectangle and the pentagon are assumed to be empty. In fact,
there are exactly two possible domains ψ1 and ψ2 as in Case (P-3)(v): one has
multiplicity 1 immediately to the east of βi−1 (and multiplicity 0 immediately to
the west of βi+1) and the other has multiplicity 1 to the west of βi+1 (and multi-
plicity 0 to the east of βi−1). In the decomposition of ψ1 we use the component of
x on βi−1, and when decomposing ψ2 we use the component of x on βi+1, cf. the
diagrams on Figure 5.6 for ψ1.



96 5. THE INVARIANCE OF GRID HOMOLOGY

β5

aa

γ5 β5γ5

Figure 5.7. Examples of hexagons. The hexagon can be on
either side of the commutation region; an example of each sides is
shown by the diagram. Both hexagons are empty.

To express the relationship between ψ1 and ψ2, we set up some notation. The
vertical circles βi−1 and βi+1 bound an annulus which lies to the east of βi−1 and to
the west of βi+1. The complement of βi ∪ γi in this annulus consists of two bigons
and two annuli; the annuli are denoted χ1 and χ2, numbered so that βi−1 meets χ1

and βi+1 meets χ2. If t′x denotes the triangle connecting x and z′ (with I(z′) = x,
in the notation of Lemma 5.1.3) with third corner b, then the support of ψ1 is the
union χ1 ∪ t′x, while the support of ψ2 is equal to χ2 ∪ t′x. Since χ1 and χ2 are
disjoint from O and X, and ψ1 − ψ2 = χ1 − χ2, it follows that ψ1 and ψ2 have the
same contribution in the right-hand-side of Equation (5.6).

Define an analogous map P ′ : GC−(G′) → GC−(G) by counting empty pen-
tagons from grid states of G′ to grid states of G; i.e. for x′ ∈ S(G′), let

(5.7) P ′(x′) =
∑

y∈S(G)

∑
{p∈Pent◦(x′,y)

∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y,

counting pentagons with one vertex at b ∈ βi ∩ γi. Next we will show that the two
maps P and P ′ are homotopy inverses of each other, via a homotopy operator that
counts suitable hexagons, defined below.

Definition 5.1.5. Fix grid states x,y ∈ S(G). An embedded disk h in the
torus whose boundary is in the union of the αj , βj (for j = 1, . . . , n) and γi is called
a hexagon from x to y if it satisfies the following conditions:

• At any of the six corner points x of h, the hexagon contains exactly one
of the four quadrants determined by the two intersecting curves at x.

• Four of the corner points of h are in x ∪ y, and the two other corners are
a and b.

• ∂(∂αh) = y − x.

Denote the set of hexagons from x to y by Hex(x,y). A hexagon h ∈ Hex(x,y) is
empty if Int(h) ∩ x = ∅ = Int(h) ∩ y. The set of empty hexagons from x to y is
denoted Hex◦(x,y). (See Figure 5.7 for an example.)
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Consider the F[V1, . . . , Vn]-module homomorphism H : GC−(G) → GC−(G),
counting certain empty hexagons: for each x ∈ S(G),

(5.8) H(x) =
∑

y∈S(G)

∑
{h∈Hex◦(x,y)

∣∣h∩X=∅}

V
O1(h)
1 . . . V On(h)

n · y.

An analogous map H ′ : GC−(G′) → GC−(G′), is defined by counting empty hex-
agons from G′ to itself.

Lemma 5.1.6. The map H : GC−(G) → GC−(G) provides a homotopy from
the bigraded chain map P ′ ◦ P to the identity map on GC−(G).

Proof. First, we show that H is homogeneous of degree (1, 0). Suppose that

V k1
1 · · ·V kn

n ·y occurs with non-zero coefficient in H(x). The corresponding hexagon
h ∈ Hex◦(x,y) can be naturally extended to a rectangle r ∈ Rect(x,y) that differs
from h by the addition of a bigon next to βi containing exactly one X and exactly
one O. Combining with Equations (4.2) and (4.4), we conclude that

M(x) − M(V
O1(h)
1 · · ·V On(h)

n · y) = −1 + 2#(x ∩ Int(h))

A(x) − A(V
O1(h)
1 · · ·V On(h)

n · y) = #(h ∩ X).

Since h is empty and h ∩ X = ∅, the claim for the grading shift follows.
The proof of the identity

(5.9) ∂−
X ◦ H + H ◦ ∂−

X = Id+P ′ ◦ P.

is similar to the proof of Lemmas 4.6.7 and 5.1.4, analyzing how empty rectangles
and empty hexagons can interact. Specifically, for ψ ∈ π(x, z) let N(ψ) denote the
number of ways of decomposing ψ as either:

• ψ = r ∗ h, where r is an empty rectangle and h is an empty hexagon;
• ψ = h ∗ r, where h is an empty hexagon and r is an empty rectangle;
• ψ = p∗p′, where p is an empty pentagon from G to G′ and p′ is an empty

pentagon from G′ back to G.

Clearly,

(∂−
X ◦H +H ◦∂−

X +P ′ ◦P )(x) =
∑

z∈S(G)

∑
{ψ∈π(x,z)

∣∣ψ∩X=∅}

N(ψ) ·V O1(ψ)
1 · · ·V On(ψ)

n ·z.

Again, there are three cases of ψ ∈ π(x, z) with N(ψ) > 0:

(H-1) x \ (x ∩ z) consists of 4 elements. In this case N(ψ) = 2, and the two
decompositions are as r1 ∗ h1 and h2 ∗ r2, where r1 and r2 are rectangles
for G, and h1 and h2 are hexagons for G with the same support.

(H-2) x \ (x∩ z) consists of 3 elements. In this case, ψ has eight corners. Either
seven of these corners are 90◦, and one is 270◦, or five are 90◦, and three
are 270◦. In the first case, cutting at the 270◦ corner in two different
directions gives the two decompositions of ψ. In the second case, the three
corners with 270◦ include both a and b. Again, N(ψ) = 2: at one of the
three corners there is a choice of two different directions for cutting, while
at the other two corners, the direction for cutting is uniquely determined.
Both Cases (H-1) and (H-2) are illustrated in Figure 5.8.
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Case (H-1) Case (H-2)

Case (H-2) Case (H-2) Case (H-2) Case (H-2)

Case (H-2) Case (H-2)

βiβiβiβi

βi βi

βi βi

γi γi

γiγiγiγi

aaaa

bbbb

a a

a b

βi

βi

γi

a

b

βi

βi

βi
βiβiβi

γi

a

b

Figure 5.8. Cases (H-1) and (H-2) from Lemma 5.1.6.

βiγi γi βiβiγiγi βiβiγiγi βi

a aa aa a

Figure 5.9. Various decompositions of Case (H-3) from
Lemma 5.1.6. The initial grid state is labeled with a black dot;
it is also the terminal grid state.

(H-3) x = z. In this case, ψ is supported inside an annulus between βi and one of
the other consecutive vertical circles. In this case N(ψ) = 1, and ψ could
have decompositions of any of the three types (that is, rectangle-hexagon,
hexagon-rectangle or pentagon-pentagon), depending on the exact place-
ment of x on βi−1, βi, and βi+1; see Figure 5.9.

For any given x, the domain ψ appearing in Case (H-3) is unique, and it contains
no markings (i.e. X ∩ ψ = O ∩ ψ = ∅). Hence, it contributes the identity map, as
illustrated in Figure 5.9, verifying the identity from Equation (5.9).

Now we are ready to prove the main result of the section:

Proposition 5.1.7. If G and G′ are two grid diagrams which differ by a com-

mutation move, then there is an isomorphsm of bigraded vector spaces ĜH (G) ∼=
ĜH (G′) and an isomorphism of bigraded F[U ]-modules GH−(G) ∼= GH−(G′).



5.2. STABILIZATION INVARIANCE 99

βiγiG G′

b

a

Figure 5.10. Common diagram for a switch.

Proof. Suppose that G and G′ differ by commuting two columns. The map
P : GC−(G) → GC−(G′) is a chain map by Lemma 5.1.4 that, by Lemma 5.1.3,
respects the gradings; and by applying Lemma 5.1.6 twice (for P ′ ◦ P and H as
stated, and for P ◦ P ′ and H ′ with the necessary minor modifications), it is a
bigraded chain homotopy equivalence.

Furthermore, a bigraded chain homotopy equivalence between GC−(G) and
GC−(G′) induces a bigraded chain homotopy equivalence on the V1 = 0 specializa-

tion ĜC (G) = GC−(G)
V1

→ ĜC (G′) = GC−(G′)
V1

.
Since a bigraded chain homotopy equivalence induces isomorphisms on homol-

ogy in both cases (ĜH and GH−), the result follows when columns are commuted.
When rows are commuted, the same result is proved by a slight modification

of the earlier proof: one has to simply rotate all pictures (such as those appearing
in the definition of Definition 5.1.1) by 90◦.

5.1.1. Invariance under switches. Recall that Definition 3.1.6 and Defini-
tion 3.1.10 define similar moves: commutations and switches. The above proof in
fact establishes invariance under both kinds of moves. As before, we draw the two
grid diagrams G and G′ connected by a switch on one torus, so that two of the
vertical circles are curved, rather than straight. When switching two columns, the
O- and the X-markings sharing a row now will be in the same square determined by
the straight lines, separated only by the curved ones, as illustrated in Figure 5.10.
With this detail understood, the pentagon counting maps as in the proof of Propo-
sition 5.1.7 induce isomorphisms on homologies, proving the following:

Proposition 5.1.8. Suppose that the two toroidal grid diagrams G and G′ dif-

fer by a switch. Then, there is an isomorphism of bigraded vector spaces ĜH (G) ∼=
ĜH (G′) and an isomorphism of bigraded F[U ]-modules GH−(G) ∼= GH−(G′).

The need to distinguish commutations and switches will arise later, in the proof
of the commutation invariance of a particular grid state, cf. Lemma 6.4.4.

5.2. Stabilization invariance

We now turn to the stabilization invariance of grid homology:
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Proposition 5.2.1. If G′ is obtained from G by stabilization, then there are
isomorphisms:

ĜH (G) ∼= ĜH (G′),(5.10)

GH−(G) ∼= GH−(G′),(5.11)

the first of which is an isomorphism of bigraded vector spaces, and the second of
which is an isomorphism of bigraded F[U ]-modules.

5.2.1. Stabilization in the fully and simply blocked theories. As a
warm-up, we will start with the easier case of the effect of stabilization on the fully

blocked homology group G̃H, from which invariance for ĜH follows quickly. We
return to the more general case of GH− in Section 5.2.3.

Proposition 5.2.2. Suppose that G′ is a stabilization of G. Then, there is an
isomorphism of bigraded vector spaces

(5.12) G̃H(G′) ∼= G̃H(G) ⊕ G̃H(G)�1, 1�.
Corollary 5.2.3. The simply blocked grid homology is invariant under sta-

bilization; that is, if the grid diagram G′ is given as a stabilization of G, then
Equation (5.10) holds.

Proof. This is an immediate consequence of Propositions 5.2.2 and 4.6.15.

We prove Proposition 5.2.2 after introducing some notation. Assume that G′

is obtained from G by a stabilization of type X:SW, in the terminology from Sec-

tion 3.1; i.e. G is gotten from G′ by destabilizing at a two-by-two square
X O

X
.

Number the O-markings so that O1 is the newly-introduced one, and O2 is the
O-marking in the row just below O1. Let c denote the intersection point of the
new horizontal and vertical circles in G′. We will find it also useful to label the two

X-markings as
X1 O1

X2
.

Decompose the set of grid states S(G′) of the stabilized diagram G′ as the
disjoint union I(G′) ∪N(G′), where I(G′) is the set of grid states x ∈ S(G′) with

c ∈ x. This decomposition splits the vector space G̃C(G′) ∼= Ĩ⊕ Ñ, where Ĩ and Ñ
denote the spans of the grid states from I(G′) and N(G′) respectively. Note that

Ñ is a subcomplex: any rectangle Rect(x,y) with x ∈ N(G′) and y ∈ I(G′) must

contain one of X1 or X2. With respect to the splitting G̃C(G′) ∼= Ĩ⊕ Ñ, the map

∂̃O,X can be written in the matrix form as

∂̃O,X =

(
∂̃I
I 0

∂̃N
I ∂̃N

N

)
,

so that ∂̃N
I : (Ĩ, ∂̃I

I) → (Ñ, ∂̃N
N) is a chain map. Proposition 5.2.2 will follow quickly

from the three statements, which we prove in the subsequent lemmas:

• The homology of the chain complex (Ĩ, ∂̃I
I) is isomorphic to G̃H(G)�1, 1�,

as a bigraded vector space (Lemma 5.2.5).

• The homology of the chain complex (Ñ, ∂̃N
N) is isomorphic to G̃H(G) as

a bigraded vector space (Lemma 5.2.6, together with Lemma 5.2.5).
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• The chain map ∂̃N
I induces the zero map in homology (Lemma 5.2.8).

As a preliminary to the first step, note that there is a one-to-one correspondence
between grid states in S(G) and those in I(G′), which takes x ∈ S(G) to the state
x ∪ {c} ∈ I(G′).

Lemma 5.2.4. For x ∈ S(G), let x′ = x ∪ {c} ∈ I(G′); then

M(x′) = M(x) − 1 and A(x′) = A(x) − 1.

Proof. Consider a fundamental domain, where the stabilization is in the upper
right corner. Using the formula of Equations (4.5), a simple calculation shows that
MO′(x′) = MO(x) − 1, and MX′(x′) = MX(x), implying A(x′) = A(x) − 1.

Lemma 5.2.5. The map ẽ : Ĩ → G̃C(G) induced by the correspondence x ∪
{c} �→ x gives an isomorphism between the bigraded chain complexes (Ĩ, ∂̃I

I) and

G̃H(G)�1, 1�.
Proof. The map ẽ is a bijection on the corresponding grid states, so it induces an

isomorphism between the vector spaces Ĩ and G̃C(G). Clearly, empty rectangles
disjoint from X ∪ O in G correspond to empty rectangles disjoint from X′ ∪ O′ in
G′. This shows that ẽ is an isomorphism of chain complexes; the grading shift was
verified in Lemma 5.2.4.

To relate the homology of Ĩ and Ñ, consider the linear map H̃I
X2

: Ñ → Ĩ whose
value on any x ∈ N(G′) is given by

(5.13) H̃I
X2

(x) =
∑

y∈I(G′)

#{r ∈ Rect◦(x,y)
∣∣Int(r) ∩O = ∅, Int(r) ∩ X = X2} · y,

and consider the linear map H̃O1
: Ĩ → Ñ whose value on any x ∈ I(G′) is

H̃O1
(x) =

∑
y∈N(G′)

#{r ∈ Rect◦(x,y)
∣∣Int(r) ∩ X = ∅, Int(r) ∩O = O1} · y.

Lemma 5.2.6. The map H̃I
X2

drops both the Maslov and Alexander gradings by

one, while H̃O1
increases both gradings by one. Moreover the maps H̃I

X2
and H̃O1

are chain maps, and induce isomorphisms on homology.

Proof. The grading changes of H̃I
X2

and H̃O1
follow readily from Equations (4.2)

and (4.4); and the methods in the proof of Lemma 4.6.7 shows that both maps are
chain maps.

The value of the composition H̃I
X2

◦ H̃O1
on a generator x ∈ I(G′) counts

juxtapositions r1 ∗ r2 of pairs of empty rectangles, where r1 starts at x ∈ I(G′) and
contains O1; and r2 contains X2 and terminates in some state in I(G′). By simple
geometric reasoning, for any x ∈ I(G′), there exists a unique such juxtaposition,
forming a vertical annulus of width one through O1 and X2. It follows that

(5.14) H̃I
X2

◦ H̃O1
= IdĨ .
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Consider the linear map H̃O1,X2
: Ñ → Ñ whose value on x ∈ N(G′) is given

by
(5.15)

H̃O1,X2
(x) =

∑
y∈N(G′)

#{r ∈ Rect◦(x,y)
∣∣Int(r) ∩O = O1, Int(r) ∩ X = X2} · y.

It is easy to see that this map is homogeneous of degree (1, 0). A minor adaptation
of the earlier argument shows that

(5.16) H̃O1
◦ H̃I

X2
+ H̃O1,X2

◦ ∂̃N
N + ∂̃N

N ◦ H̃O1,X2
= IdÑ.

Indeed, the left-hand-side counts domains starting and ending at states in N(G′),
that can be given as composition of two empty rectangles, with the property that
the union intersects X∪O in {X2, O1}. For most such domains ψ we have N(ψ) = 2
(as defined in the proof of Lemma 4.6.7), and hence these contributions cancel. The
exceptional cases are those domains ψ that are thin annuli containing X2 and O1.
These domains identify the left-hand side of Equation (5.16) with IdÑ.

Equations (5.14) and (5.16) show that H̃I
X2

and H̃O1
are chain homotopy equiv-

alences, verifying the lemma.

Remark 5.2.7. The identities used to prove Lemma 5.2.6 can also be derived
from the relation ∂−

X ◦ ∂−
X = 0 (Lemma 4.6.7), and the fact that HX2

(from Equa-
tion (4.16)) is a chain homotopy between multiplication by V1 and V2.

Lemma 5.2.8. The chain map ∂̃N
I : (Ĩ, ∂̃I

I) → (Ñ, ∂̃N
N) induces the trivial map

on homology.

Proof. If x, z ∈ I(G′), y ∈ N(G′), r1 ∈ Rect◦(x,y) and r2 ∈ Rect◦(y, z), it is
easy to see that x = z and r1 ∗ r2 is a thin annulus; in particular, one of r1 or

r2 contains an O-marking. It follows immediately that H̃I
X2

◦ ∂̃N
I = 0. Since H̃I

X2

induces an isomorphism in homology (Lemma 5.2.6), the lemma follows.

Proof of Proposition 5.2.2. Start with the case of destabilizations of type X:SW,

where Ñ is a subcomplex of G̃C with quotient complex Ĩ. Recalling the construction
of the long exact sequence in homology associated to the short exact sequence

0 −−−−→ Ñ −−−−→ G̃C(G′) −−−−→ Ĩ −−−−→ 0,

we find that the connecting homomophism is the map on homology induced by

∂̃N
I : Ĩ → Ñ (cf. Lemma A.2.1 from Appendix A). Since ∂̃N

I vanishes on homology
(Lemma 5.2.8), the long exact sequence reduces to the short exact sequence

0 −−−−→ H(Ñ) −−−−→ G̃H(G′) −−−−→ H(Ĩ) −−−−→ 0.

Replace H(Ĩ) and H(Ñ) by G̃H(G) (with suitable grading shifts, as needed), fol-
lowing Lemmas 5.2.5 and 5.2.6, respectively. We obtain the short exact sequence

0 −−−−→ G̃H(G) −−−−→ G̃H(G′) −−−−→ G̃H(G)�1, 1� −−−−→ 0.

Since we are we working over a field, this short exact sequence implies Equa-
tion (5.12) for stabilizations of type X:SW. Invariance under the other types of
stabilizations follows from this case, together with invariance under commutations
and switches (Propositions 5.1.7 and 5.1.8), thanks to Corollary 3.2.3.
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5.2.2. Mapping cones: an algebraic interlude. Before moving on to sta-
bilization invariance for the unblocked theory, we find it convenient to collect a few
further tools from homological algebra that will be helpful. Again, we will state
the results over some commutative base ring K with a unit, which we will choose
to be F = Z/2Z in immediate applications.

Definition 5.2.9. Let (C, ∂) and (C ′, ∂′) be two bigraded chain complexes
over R = K[V1, . . . , Vn]. A map f : C → C ′ is a quasi-isomorphism if it is a
bigraded chain map which induces an isomorphism in homology.

Note that every chain homotopy equivalence is a quasi-isomorphism.

Definition 5.2.10. Fix chain complexes (C, ∂) and (C ′, ∂′) over R and let
f : C → C ′ be a chain map. The mapping cone Cone(f : C → C ′) is the chain
complex whose underlying R-module is C ⊕ C ′, equipped with the differential

(5.17) D(c, c′) = (−∂(c), ∂(c′) + f(c)).

When C and C ′ are bigraded chain complexes over R, and the chain map f : C → C ′

is bigraded of degree (m, t), the mapping cone Cone(f : C → C ′) is a bigraded chain
complex over R, with bigrading specified by

(5.18) Cone(f : C → C ′)d,s = Cd−m−1,s−t ⊕ C ′
d,s.

For example, when f is multiplication by Vi, for all d, s ∈ Z we have an identi-
fication of K-modules:

(5.19) Cone(Vi : C → C)d,s = Cd+1,s+1 ⊕ Cd,s.

We will need the following two basic properties of mapping cones. (Both are
restated and proved in Appendix A; see Lemmas A.3.2 and A.3.8 respectively.)

Lemma 5.2.11. Let C and C ′ be two bigraded chain complexes of R-modules,
and f : C → C ′ is a chain map that is homogeneous of degree (m, t). Then, there is
a bigraded map of R-modules H(i) : H(C ′) → H(Cone(f)) and a map of R-modules
H(p) : H(Cone(f)) → H(C) that is homogeneous with degree (−m − 1,−t), all of
which fit into the long exact sequence

. . . Hd+1,s(C
′) Hd+1,s(Cone(f)) Hd−m,s−t(C) Hd,s(C

′) . . .
H(i) H(p) H(f)

Lemma 5.2.12. A commutative diagram of chain complexes of bigraded R-
modules

C
f−−−−→ C ′

φ

⏐⏐ ⏐⏐ φ′

E
g−−−−→ E′,

where the horizontal maps are homogeneous of degree (m, t) and the vertical ones
are bigraded, induces a bigraded chain map Φ: Cone(f) → Cone(g), compatible with
the long exact sequence from Lemma 5.2.11, in the sense that the following diagram
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commutes:

. . . Hd+1,s(C
′) Hd+1,s(Cone(f)) Hd−m,s−t(C) Hd,s(C

′) . . .

. . . Hd+1,s(E
′) Hd+1,s(Cone(g)) Hd−m,s−t(E) Hd,s(E

′) . . .

H(f)

H(g)

H(φ′) H(Φ) H(φ) H(φ′)

Supposing moreover that the vertical maps φ and φ′ are quasi-isomorphisms, then
it follows that Φ is a quasi-isomorphism, as well.

It is suggestive to think of the mapping cone as a kind of quotient complex. To
this end, there is the following result which we use first in Chapter 7:

Lemma 5.2.13. If f : C → C ′ is an injective chain map, then there is a quasi-
isomorphism from Cone(f) to the quotient C ′/f(C).

Proofs of the above, and the next result, which we also include for future
reference, can be found in Appendix A. (See Lemmas A.3.9 and A.3.7 respectively.)

Lemma 5.2.14. If C, C ′ are two bigraded chain complexes over R, and
f, g : C → C ′ are two chain homotopic chain maps that are homogeneous of de-
gree (m, t), then there is an isomorphism of bigraded chain complexes Cone(f) ∼=
Cone(g).

5.2.3. Stabilization in the unblocked theory. Now we study the effect of
a stabilization on the unblocked theory GH−; our goal is to verify Equation (5.11).
As in Section 5.2.1, we will consider stabilizations of type X:SW.

A little complication arises when comparing GC−(G) and GC−(G′): they are
defined over different polynomial rings. Numbering the variables suitably, we can
think of GC−(G) as defined over F[V2, . . . , Vn], while GC−(G′) is defined over
F[V1, . . . , Vn].

As a first step, we promote GC−(G) to a complex, denoted GC−(G)[V1], defined
over the base ring F[V1, . . . , Vn]. This promotion is done as follows:

Definition 5.2.15. If M is a bigraded module over F[V2, . . . , Vn], let M [V1]
denote the module over F[V1, . . . , Vn] given by

M [V1] = M ⊗F[V2,...,Vn] F[V1, . . . , Vn];

i.e. M [V1] consists of finite sums
∑

k mk ⊗ V k
1 with mk ∈ M and k ≥ 0, thought of

as an F[V1, . . . , Vn]-module, where V1 multiplies on the second factor and V2, . . . , Vn

act on the first. The bigrading is specified by declaring m⊗V k
1 to be homogeneous

of degree (d − 2k, s − k) if m ∈ M is homogeneous of degree (d, s).
If (C, ∂C) is a bigraded chain complex over F[V2, . . . , Vn], let (C, ∂C)[V1] be the

chain complex over F[V1, . . . , Vn], whose underlying F[V1, . . . , Vn]-module is C[V1],

and whose differential is specified by ∂C[V1](m ⊗ V ⊗k
1 ) = (∂Cm) ⊗ V ⊗k

1 .

The homology of GC−(G)[V1] is much larger than the homology of GC−(G).
To rectify this, we divide out in a suitable sense by V1−V2. More precisely, consider
the (degree-shifting) chain map V1 − V2 : GC−(G)[V1] → GC−(G)[V1], defined as
multiplication by V1 − V2 ∈ F[V1, . . . , Vn], and take its mapping cone.



5.2. STABILIZATION INVARIANCE 105

According to the following lemma, choosing U to be any Vi for i > 1, there is
an isomorphism of bigraded F[U ]-modules

H(Cone(V1 − V2 : GC−(G)[V1] → GH−(G)[V1])) ∼= GH−(G).

Lemma 5.2.16. Let C be a bigraded chain complex over F[V2, . . . , Vn]. Then,
there is an isomorphism of bigraded F[V2, . . . , Vn]-modules

H(Cone(V1 − V2 : C[V1] → C[V1])) ∼= H(C).

Proof. Observe that H(C[V1]) ∼= H(C)[V1], since the chain complex under-
lying C[V1] is a direct sum of infinitely many copies of C, where the ith sum-
mand consists of elements c · V i

1 with c ∈ C. It follows that the injective map
V1 − V2 : C[V1] → C[V1] induces the injective map V1 − V2 : H(C)[V1] → H(C)[V1]
on homology. Abbreviate Cone(V1 − V2 : C[V1] → C[V1]) as Cone(V1 − V2). The
long exact sequence of a mapping cone (Lemma 5.2.11) now specializes to the short
exact sequence of bigraded F[V1, . . . , Vn]-modules

0 −−−−→ H(C)[V1]
V1−V2−−−−→ H(C)[V1] −−−−→ H(Cone(V1 − V2)) −−−−→ 0;

and hence gives an isomorphism of bigraded F[V1, . . . , Vn]-modules,

H(Cone(V1 − V2)) ∼=
H(C)[V1]

V1 − V2
.

The lemma follows now from the observation that for any bigraded
F[V2, . . . , Vn]-module M , such as M = H(C), the inclusion M → M [V1] induces an

isomorphism M → M [V1]
V1−V2

of bigraded F[V2, . . . , Vn]-modules.

Thus, the key step in establishing stabilization invariance is the following:

Proposition 5.2.17. Suppose that G′ is obtained from G by a stabilization of
type X:SW. Then, there is a quasi-isomorphism of bigraded chain complexes over
F[V1, . . . , Vn] from GC−(G′) to Cone(V1 − V2).

We continue notation from Subsection 5.2.1: the grid states in S(G′) are par-
titioned into I(G′) ∪N(G′) according to whether or not the grid state contains c.
Consider the corresponding F[V1, . . . , Vn]-module splitting of GC−(G′) ∼= I ⊕ N,
where I, resp. N, is the submodule generated by grid states in I(G′), resp. N(G′).
The submodule N is in fact a subcomplex, since any rectangle Rect(x,y) with
x ∈ N(G′) and y ∈ I(G′) must contain one of X1 or X2. Thus, we can write the
differential on GC−(G′) as a 2 × 2 matrix

∂−
X =

(
∂I
I 0

∂N
I ∂N

N

)
;

i.e. GC−(G′) is the mapping cone of the chain map ∂N
I : (I, ∂I

I) → (N, ∂N
N).

Lemma 5.2.18. The natural identification of S(G) with I(G′) induces an iso-
morphism e : (I, ∂I

I) → GC−(G)[V1]�1, 1� of bigraded chain complexes over
F[V1, . . . , Vn].

Proof. The fact that e respects gradings follows immediately from Lemma 5.2.4.
Since the stabilization is of type X, the correspondence also induces a one-to-
one correspondence between empty rectangles disjoint from X in G and empty
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rectangles disjoint from X′ in G′, written r �→ r′. Moreover, for r′ ∈ Rect◦(x,y)
with x,y ∈ I(G′) we have O1(r

′) = 0 and for all i = 2, . . . , n, Oi(r
′) = Oi(r), so e is

a chain map. It follows that e is an isomorphism, since it is induced by a one-to-one
correspondence of generators.

Define HI
X2

: N → I to be the F[V1, . . . , Vn]-module homomorphism with

(5.20) HI
X2

(x) =
∑

y∈I(G′)

∑
{r∈Rect◦(x,y)

∣∣Int(r)∩X=X2}

V
O1(r)
1 · · ·V On(r)

n · y,

for all x ∈ N(G′). Note that HI
X2

is a component of the homotopy operator defined
in Equation (4.16).

We have the following analogue of Lemma 5.2.6:

Lemma 5.2.19. The map HI
X2

: (N, ∂N
N) → (I, ∂I

I)�−1,−1� is a chain homotopy
equivalence of bigraded chain complexes.

Proof. First, we verify that HI
X2

is a chain map. Consider the homotopy operator
HX2

appearing in the proof of Lemma 4.6.9. In that proof, we verified that the
operator satisfies the equation

(5.21) ∂−
X ◦ HX2

+ HX2
◦ ∂−

X = (V1 − V2).

The fact that HI
X2

is a chain map follows quickly from the above equation, and the

observation that HI
X2

is the portion of HX2
mapping N to I. The grading shift

follows as in Lemma 4.6.9.
To see that HI

X2
is an isomorphism on homology, consider the F[V1, . . . , Vn]-

module map H−
O1

: I → N determined by

H−
O1

(x) =
∑

y∈N(G′)

∑
{r∈Rect◦(x,y)

∣∣Int(r)∩X=∅,O1∈r}

V
O2(r)
2 · · ·V On(r)

n · y,

for any x ∈ I(G′); furthermore let H−
O1,X2

: N → N be determined by

H−
O1,X2

(x) =
∑

y∈N(G′)

∑
{r∈Rect◦(x,y)

∣∣Int(r)∩X=X2,O1∈r}

V
O2(r)
2 · · ·V On(r)

n · y

for any x ∈ N(G′). Note that H−
O1

and H−
O1,X2

are components of the maps ∂−
X

and HX2
, appearing as multiples of V1. These satisfy the formulas

HI
X2

◦ H−
O1

= IdI

H−
O1

◦ HI
X2

+ ∂N
N ◦ H−

O1,X2
+ H−

O1,X2
◦ ∂N

N = IdN,

which in turn follow from Equation (5.21). These identities then verify the state-
ment of the lemma.
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Proof of Proposition 5.2.17. Equation (5.21) implies the commutativity of the
square of chain maps:

(5.22)

I N

GC−(G)[V1]�1, 1� GC−(G)[V1]

∂N
I

e

V1 − V2

e ◦ HI
X2

where the vertical maps are bigraded quasi-isomorphisms by Lemmas 5.2.18
and 5.2.19, and the horizontal maps are of bidegree (−1, 0). Using Lemma 5.2.12,
this commutative square induces the claimed quasi-isomorphism from Cone(∂N

I ) =
GC−(G′) to Cone(V1 − V2).

Proof of Proposition 5.2.1. For stabilizations of type X:SW, this follows from
Proposition 5.2.17 and Lemma 5.2.16. Other stabilizations can be reduced to this
case using Corollary 3.2.3, together with the invariance under commutations and
switches (Propositions 5.1.7 and 5.1.8).

5.3. Completion of the invariance proof for grid homology

We can now assemble the ingredients of the proof of invariance. We start the
argument for oriented knots.

Theorem 5.3.1. The bigraded vector space ĜH (G) and the bigraded F[U ]-

module GH−(G) depend on the grid G only through its underlying oriented knot �K.

Proof. For a fixed toroidal grid diagram G, the vector space ĜC (G) and the
F[U ]-module structure on GC−(G) depends on a choice of Vi. By Corollary 4.6.17

and Lemma 4.6.9 respectively, ĜH (G) and GH−(G) are independent of this choice,
and depend only on the toroidal grid diagram G. Independence of the choice of the
grid diagram follows from Cromwell’s Theorem 3.1.9, together with commutation
invariance (Proposition 5.1.7) and stabilization invariance (Proposition 5.2.1).

Proposition 5.3.2. The bigraded vector space ĜH (K) and the bigraded F[U ]-
module GH−(K) are independent of the choice of orientation on K.

Proof. If G represents �K, then the grid diagram G′ obtained by reflecting G across

the diagonal represents − �K. Reflection also induces a one-to-one correspondence
φ : S(G) → S(G′). This reflection preserves the fundamental domain [0, n)× [0, n).
In addition, given any two sets P and Q in the fundamental domain, we have
J (P, Q) = J (φ(P ), φ(Q)). From these observations, it follows immediately that
M(x) = M(φ(x)) and A(x) = A(φ(x)). The reflection also identifies rectangles
of Rect◦(x,y) with rectangles of Rect◦(φ(x), φ(y)), so it follows immediately that
φ extends to an isomorphism GC−(G) → GC−(G′) of bigraded chain complexes.
The result now follows.
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Proof of Theorem 4.6.19. Combine Theorem 5.3.1 and Proposition 5.3.2.

Proof of Theorem 4.4.4. Combine Theorem 5.3.1 (for the independence from the

grid diagram of ĜH ), Proposition 5.3.2 (for the independence from the orientation

of K), and Corollary 4.6.16 (for the relationship between ĜH and G̃H).

5.4. The destabilization maps, revisited

In some applications (see Chapter 6), it will be useful to track more precisely
the isomorphisms between grid homology modules induced by the four types of
X-destabilizations, without using switch moves.

To this end, suppose that G′ is obtained from G by a single stabilization of
type X, and let c be the corresponding intersection point between the two new
curves. As we did for stabilizations of type X:SW, we partition grid states S(G′) =
I(G′) ∪N(G′), according to whether or not they contain c.

Label the markings in the stabilization region O1, X1, and X2, as follows:

X1 O1

X2

X2

O1 X1

X2

X1 O1

O1 X1

X2
,

and let O2 be the O-marking in the same row as X2.
In all cases, there is an identification between S(G) and I(G′). Letting I be the

free F[V1, . . . , Vn]-module generated by I(G′), the above one-to-one correspondence
extends to give an isomorphism of F[V1, . . . , Vn]-modules

(5.23) e : I → GC−(G)[V1].

If the stabilization is of type X:SW or X:NE, then e is a homogeneous map of degree
(1, 1), and if the stabilization is of type X:NW or X:SE, then e is bigraded. We will
also use the natural projection

(5.24) π : H(GC−(G)[V1]) ∼= GH−(G)[V1] →
GH−(G)[V1]

V1 − V2

∼= GH−(G);

between bigraded F[U ]-modules, where U acts as multiplication by any Vi with
2 ≤ i ≤ n.

For stabilizations of type X:SW, we defined a map HI
X2

in Equation (5.20).
This definition extends immediately to stabilizations of type X:NE, as well.

Proposition 5.4.1. If G′ is obtained from G by a stabilization, then there
is an isomorphism of bigraded F[U ]-modules from GH−(G′) to GH−(G). More
concretely

• If the stabilization is of type X:SW or X:NE, then N(G′) generates a
subcomplex N of GC−(G′), whose quotient complex is I. There is an
isomorphism from GH−(G′) to GH−(G) whose value on the homology
classes of cycles from the subcomplex N ⊂ GC−(G′) is the composition
of the map on homology induced by e ◦ HI

X2
(where HI

X2
is defined as in

Equation (5.20)) followed by the projection map π.
• If the stabilization is of type X:SE or X:NW, then I(G′) generates a
subcomplex I ⊂ GC−(G′). There is an isomorphism from GH−(G′) to
GH−(G) whose restriction to cycles from I is the map on homology in-
duced by e, followed by the projection map π.
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Proof. For stabilizations of type X:SW, the above was verified in the proof of
Proposition 5.2.17, combined with Lemma 5.2.16. Restricted to the subcomplex N
of GC−(G′), Proposition 5.2.17 shows that the isomorphism GH−(G′) → GH−(G)
is the map on homology induced by the chain map e ◦ HI

X2
: N → GC−(G)[V1],

followed by the map on homology induced by the inclusion i : GC−(G)[V1] →
Cone(V1 − V2), followed by the isomorphism

q : H(Cone(V1 − V2)) →
GH−(G)[V1]

V1 − V2

∼= GH−(G),

coming from Lemma 5.2.16. Since q ◦ H(i) = π, this case is complete.
The proof of Proposition 5.2.17 can be readily adapted to the case of stabiliza-

tions of type X:NE. With our labeling conventions, all the statements in the proof
of Proposition 5.2.17 remain true.

For stabilizations of type X:SE or X:NW, the modifications are more extensive.
In these two cases, the differential has the form

∂−
X =

(
∂I
I ∂I

N

0 ∂N
N

)
.

Lemma 5.2.18 is replaced by the statement that e : (I, ∂I
I) → GC−(G)[V1] is an

isomorphism of bigraded chain complexes. We will use its inverse e′. Define
HN

X2
: I → N by

(5.25) HN
X2

(x) =
∑

y∈N(G′)

∑
{r∈Rect◦(x,y)

∣∣Int(r)∩X=X2}

V
O1(r)
1 · · ·V On(r)

n · y.

Adapting the proof of Lemma 5.2.19, we see that HN
X2

: (I, ∂I
I)�1, 1� → (N, ∂N

N) is
a chain homotopy equivalence of bigraded chain complexes. Adapting the proof of
Proposition 5.2.17, the commuting square replacing Equation (5.22) is

(5.26)

N I

GC−(G)[V1]�1, 1� GC−(G)[V1]

∂I
N

HN
X2

◦ e′

V1 − V2

e′

where the vertical maps are quasi-isomorphisms. According to Lemma 5.2.12, this
square induces a quasi-isomorphism Φ: Cone(V1−V2) → GC−(G′), whose induced
map on homology fits into the commutative square:

H(I) GH−(G′)

GH−(G)[V1] H(Cone(V1 − V2)) ∼= GH−(G)

H(e′)

π

H(Φ)

Using the isomorphism H(Φ)−1, and observing that H(e′)−1 = H(e), the claims of
the proposition follow in this case, as well.
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5.5. Other variants of the grid complex

There are other versions of the grid complex. We will meet one in Chapter 13,
where we drop the condition in the differential (in Equation (4.10)) that the rect-
angles are disjoint from the X-markings.

There is a different version, dropping the condition that the rectangles are
empty. This construction was proposed and studied by Lipshitz [121]; see also [120]
for Lipshitz’s corresponding holomorphic construction. Below we describe the
boundary map in this theory, and return to the construction briefly in Section 17.2.

For a fixed integer m, modify the differential on GC−(G) to give a function

∂−
m(x) =

∑
y

∑
{r∈Rect(x,y)

∣∣Int(r)∩X=∅, |x∩Int(r)|=m}

V
O1(r)
1 · · ·V On(r)

n y;

of course, when m = 0, this is the differential ∂−
X on GC−(G). Enhance the ground

ring to Rv = F[V1, . . . , Vn, v], including a new formal variable v, and consider the
module GCbig(G) = GC−(G)[v], equipped with the differential

∂big(x) =
∞∑

m=0

vm · ∂−
m(x).

We will call this the double-point enhanced grid complex; and its homology the
double-point enhanced grid homology. The Maslov and Alexander functions induce
a bigrading on the double-point enhanced grid complex, so that multiplication by
v increases Maslov grading by two and preserves Alexander grading.

Exercise 5.5.1. (a) Verify that ∂big is a differential.
(b)∗ Verify that the double-point enhanced grid homology is a knot invariant.

5.6. On the holomorphic theory

The proof of invariance described in Sections 5.1 and 5.2 is inspired by the
(holomorphic) proof of the invariance of knot Floer homology. For example, in the
commutation invariance proof, the pentagon counting map P from Equation (5.2) is
a combinatorial realization of the map obtained by counting “pseudo-holomorphic
triangles” that appears in the handle-slide invariance of knot Floer homology; see
for example [172]. The holomorphic triangle map induces a chain homotopy equiv-
alence, and the chain homotopy is constructed by counting “pseudo-holomorphic
quadrilaterals”. The combinatorial realization of this quadrilateral-counting map
is supplied by the hexagon counting map H of Equation (5.8). Similar remarks
hold for the stabilization invariance proof. The mapping cone Cone(V1 −V2) is the
knot complex of an intermediate Heegaard diagram. The isomorphisms induced by
destabilizations count holomorphic triangles in the corresponding Heegaard triples.

5.7. Further remarks on stabilization maps

In Section 5.1, we defined homotopy equivalences between grid complexes of
grids which differ by commutation moves. In Section 5.2, we defined quasi-
isomorphisms for destabilizations. With a little extra work, we can find geomet-
rically defined homotopy inverses to these destabilization maps. Although these
maps are not necessary for the development of the theory, the reader may find it
rewarding to work them out, after some hints.
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+V1 +V1

N R

L

N

II
e e′

V1 − V2

Figure 5.11. Stabilization and destabilization maps for
type X:SW. The first and third column represent the complex
GC−(G′), and the second represents Cone(V1 − V2). The arrows
from the first to the middle column represent the destabilization
map D; the arrows from the middle to the right column repre-
sent the stabilization map S. The long horizontal arrow repre-
sents a homotopy operator. The diagonal map counts concave
hexagons. The rectangle counting maps are indicated by shaded
regions (where the rectangles meet the destabilization region).

Figure 5.12. A concave hexagon.

We start with the case of stabilizations of type X:SW, writing the summand
GC−(G)[V1]�1, 1� ⊂ Cone(V1 − V2) (i.e. the domain of V1 − V2) as L and the
summand GC−(G)[V1] ⊂ Cone(V1 − V2) (i.e. the range of V1 − V2) as R.

The quasi-isomorphism from the proof of Proposition 5.2.17 can be represented
as the left square in Figure 5.11: the two columns represent GC−(G′) and Cone(V1−
V2) respectively, and the horizontal maps are induced by the identification e and
the count of rectangles crossing X2. The two maps in this left square of Figure 5.11
provide the map D : GC−(G′) → Cone(V1 − V2).

To define a stabilization map S : Cone(V1−V2) → GC−(G′), it is useful to have
the following notion. (See Figure 5.12.)

Definition 5.7.1. An empty, concave hexagon is an element h ∈ π(x,y)
with x ∈ I(G′) and y ∈ N(G′) satisfying the following properties:

• the local multiplicities of h are all 0 or 1,
• h has six corners, five 90◦ corners and one 270◦ corner which is at c,
• h contains O1 and h ∩ X = X2,
• h is empty, in the sense that x ∩ Int(h) = ∅.

Exercise 5.7.2. Verify that GC−(G′) and Cone(V1−V2) are (bigraded) chain
homotopy equivalent chain complexes, in the following steps:
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+V1+V1

N R

L

N

II

V1 − V2

e′ e

Figure 5.13. Stabilization and destabilization maps in
type X:SE. This figure is obtained from Figure 5.11 by reflect-
ing all the pictures through the vertical circle containing c, and
reversing directions of all the arrows.

(a) Construct a stabilization map S, which is a chain map from Cone(V1 − V2) to
GC−(G′), as indicated by the second square in Figure 5.11 (where the diagonal
arrow counts empty concave hexagons).
(b) Show that the stabilization map preserves bigrading.
(c) Using the destabilization map D indicated by the left square of Figure 5.11,
show that D ◦ S induces the identity map on Cone(V1 − V2).
(d) Show that

S ◦ D + ∂−
X ◦ H−

O1,X2
+ H−

O1,X2
◦ ∂−

X = IdGC−(G′),

where, as usual, H−
O1,X2

: N → N is the map counting empty rectangles containing
O1 and X2; on Figure 5.11 this map is indicated by the lower long arrow.

For other stabilizations, the local pictures from Figure 5.11 can be rotated or
reflected. Special care must be taken, since a 90◦ rotation reverses the roles of
horizontal and vertical circles, and hence reverses the directions of the rectangles.

Exercise 5.7.3. Modify the stabilization and destabilization maps to construct
chain homotopy equivalences for stabilizations of the remaining three types X:NE,
X:SE, and X:NW. (Hint: For X:SE stabilizations, see Figure 5.13.)



CHAPTER 6

The unknotting number and τ

In the previous two chapters, we constructed knot invariants ĜH (K) and

GH−(K), and verified their invariance properties. The first invariant, ĜH (K)
is a bigraded vector space; the invariant GH−(K) comes with some extra algebraic
structure. As a vector space, GH− splits as GH−(K) =

⊕
d,s∈Z GH−

d (K, s), and
it is equipped with an endomorphism U with the property that

(6.1) U : GH−
d (K, s) → GH−

d−2(K, s − 1).

Thus, we can think of GH−(K) as an unconventionally graded F[U ]-module.
In this chapter, we turn to our first application of grid homology, showing

that the bigraded F[U ]-module structure of GH−(K) can be used to extract a
numerical invariant τ (K) for knots, which in turn gives the following lower bound
on the unknotting number u(K) of K : |τ (K)| ≤ u(K).

The invariant τ is defined in Section 6.1, where the unknotting bound is also
verified. Both the definition and the estimate rely on certain maps associated to
cross-commutations, which are constructed in Section 6.2. In Section 6.3, τ is
computed for torus knots, leading quickly to a proof of the Milnor conjecture [144]
(first proved in [106]). Our proof is inspired by Sarkar’s combinatorial proof of this
result [204]. In Section 6.4 we give a bound on τ that can be arrived at with very
little computation. This estimate is used in Section 8.6; the material in this section
is also fundamental to the constructions in Chapter 12.

6.1. The definition of τ and its unknotting estimate

Let K+ be a knot with a distinguished positive crossing and K− be the knot
with the crossing changed.

Proposition 6.1.1. There are F[U ]-module maps

C− : GH−(K+) → GH−(K−) and C+ : GH−(K−) → GH−(K+),

where C− is bigraded and C+ is homogeneous of degree (−2,−1), with

(6.2) C− ◦ C+ = U and C+ ◦ C− = U,

where U denotes the endomorphism induced by the algebra action.

We postpone the proof of Proposition 6.1.1 to Section 6.2, and give some of its
consequences now. The first consequence is a computation of the rank of GH−(K).
We start with some algebraic preliminaries.

Definition 6.1.2. Let M be a module over F[U ]. The torsion submodule
Tors = Tors(M) of M is

Tors = {m ∈ M | there is a non-zero p ∈ F[U ] with p · m = 0}.
113
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When M is bigraded, the quotient M/Tors inherits a bigrading, as well. When
M/Tors ∼= F[U ]r for some integer r (for example, when M is finitely generated), r
is called the rank of M , rk M = rkF[U ]M .

Clearly, any F[U ]-module homomorphism φ : M → N maps Tors(M) into
Tors(N).

Lemma 6.1.3. Let M and N be two modules over F[U ]. If φ : M → N and
ψ : N → M are two module maps with the property that ψ ◦ φ = U , then φ induces
an injective map from M/Tors(M) into N/Tors(N).

Proof. If φ(m) ∈ Tors(N), then there is a k with Uk ·φ(m) = 0, so ψ(Uk ·φ(m)) =
Uk+1 · m = 0, so m ∈ Tors(M).

Proposition 6.1.4. For any knot K, GH−(K) has rank 1; in fact,

GH−(K)/Tors ∼= F[U ]

is supported in bigradings (d, s) satisfying d − 2s = 0.

Proof. For the unknot O, Proposition 4.8.1 shows that GH−(O) = F[U ], whose
torsion submodule is trivial. Thus, GH−(O) = GH−(O)/Tors ∼= F[U ], supported
in bigradings d − 2s = 0. This verifies the theorem for the unknot.

Since any knot K can be connected to the unknot by a sequence of unknotting
operations, Proposition 6.1.1 and Lemma 6.1.3 gives an injective module map from
F[U ] into GH−(K)/Tors, showing that GH−(K)/Tors is non-trivial; and it also
gives an injective module map from GH−(K)/Tors to F[U ]. Since every non-trivial
submodule of F[U ] is isomorphic to F[U ], it follows that GH−(K)/Tors ∼= F[U ].
Since the maps preserve the grading M − 2A, the grading statement follows.

Proposition 6.1.4 implies that there are homogeneous, non-torsion elements in
GH−(K) for any knot. Thus, the following definition makes sense:

Definition 6.1.5. For any knot K, τ (K) is −1 times the maximal integer i
for which there is a homogeneous, non-torsion element in GH−(K) with Alexander
grading equal to i.

Remark 6.1.6. The sign in the above definition of τ is chosen to make it
agree with the original definition of τ (defined in [170] using filtrations; see also
Section 14.1).

By Proposition 6.1.1, τ cannot change much under a crossing change:

Theorem 6.1.7. If K+ is a knot with a distinguished positive crossing and K−
is the knot with the crossing changed, then 0 ≤ τ (K+) − τ (K−) ≤ 1.

Proof. Let ξ ∈ GH−(K+) be a homogeneous, non-torsion element with maximal
Alexander grading; i.e. the Alexander grading of ξ is −τ (K+). By Proposition 6.1.1
its image C−(ξ) ∈ GH−(K−) has Alexander grading −τ (K+). Equation (6.2)
ensures that C+(C−(ξ)) = U · ξ is non-torsion; it follows that C−(ξ) is non-torsion,
as C+ is a module map. The fact that C−(ξ) is a homogeneous, non-torsion element
of degree −τ (K+) immediately implies that −τ (K+) ≤ −τ (K−).
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1

2

s

t

γi βiG+ G−

Figure 6.1. Grid diagrams for crossing changes. The com-
mon diagram is shown on the right. (Compare Figure 5.1.)

Let η ∈ GH−(K−) be a homogeneous, non-torsion element with Alexander
grading −τ (K−). By Proposition 6.1.1, C+(η) is a homogeneous non-torsion ele-
ment of GH−(K+) with Alexander grading −τ (K−)−1; so −τ (K−)−1 ≤ −τ (K+).

Notice the similarity of this theorem with Proposition 2.3.9. Like the result on
signature (Corollary 2.3.10), Theorem 6.1.7 has the following consequence (which
will also be generalized from the unknotting number to the slice genus in Chapter 8):

Corollary 6.1.8. For any knot K, |τ (K)| ≤ u(K).

Proof. This follows from the fact that τ (K) changes by at most 1 under each
unknotting operation (Theorem 6.1.7) and τ (O) = 0 (Proposition 4.8.1).

We will deduce the Milnor conjecture from the above, and a computation of τ
for torus knots in Section 6.3. First, we prove Proposition 6.1.1.

6.2. Construction of the crossing change maps

Our aim here is to construct the maps C− and C+ appearing in Proposi-
tion 6.1.1, similar to the commutation maps from Section 5.1.

Let K+ be a knot with a distinguished positive crossing and K− be the knot
with the crossing changed. Represent these two knots by the grid diagrams G+

and G− that differ by a cross-commutation of columns as in Definition 3.1.12. (See
Figure 6.1, and also Figure 3.18).

Like in Section 5.1, we draw both grids G+ and G− on the same torus, thinking
of the O and X as fixed; see the right-most diagram of Figure 6.1. Start with n
horizontal circles, n−1 vertical circles, and two additional candidate vertical circles
βi and γi. The diagram G+ includes βi among its vertical circles, while G− includes
γi. Of course, we cannot draw βi and γi simultaneously as straight, since the O-
and X-markings are fixed. We draw them so that they intersect in four points.
We will need to specify two of these points in order to define the maps appearing
in Proposition 6.1.1. To this end, it will help to introduce some notation. The
complement of βi ∪ γi has five components, four of which are bigons, and each
of these bigons is marked by a single X or a single O. Since we have a cross-
commutation, the two X-marked bigons share a vertex on βi∩γi; call it t. The two
O-marked bigons also share a vertex. Label the O-markings so that O1 is above
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βi γi

s

t

Figure 6.2. A pentagon counted in the unknotting maps.
The shaded pentagon goes from the black state to the white one.

O2. The bigon labelled by O2 and one of the X-labelled bigons share a vertex; call
it s. These notational choices are indicated in Figure 6.1.

We will define maps that count pentagons containing either the vertex s or the
vertex t. Specifically, lifting the definition of empty pentagons from Definition 5.1.1
and fixing arbitrary grid states x+ ∈ S(G+) and x− ∈ S(G−), let Pent◦s(x+,x−)
denote the space of empty pentagons from x+ to x− with one vertex at s, and let
Pent◦t (x−,x+) denote the space of empty pentagons from x− to x+ with one vertex
at t. (See Figure 6.2 for an example.) Correspondingly, define the F[V1, . . . , Vn]-
module maps c− : GC−(G+) → GC−(G−) and c+ : GC−(G−) → GC−(G+) speci-
fied on x± ∈ S(G±) by

c−(x+) =
∑

y−∈S(G−)

∑
{p∈Pent◦s(x+,y−)

∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y−(6.3)

c+(x−) =
∑

y+∈S(G+)

∑
{p∈Pent◦t (x−,y+)

∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y+.(6.4)

Lemma 6.2.1. The map c− preserves bigradings, while c+ is homogeneous of
degree (−2,−1).

Proof. We verify the grading shifts by relating the pentagons counted in c−
and c+ with rectangles, as follows. The four special markings divide βi into four
segments, which we denote by A, B, C, and D, as shown in Figure 6.3. There
is a natural one-to-one correspondence between S(G+) and S(G−), associating to
x+ ∈ S(G+) the grid state x− ∈ S(G−) that agrees with x+ in n−1 components, cf.
the nearest point map of Equation (5.3). By a straightforward local computation,

(6.5) M(x−) = M(x+) +

{
1 if x+ ∩ βi ∈ B ∪C ∪D

−1 if x+ ∩ βi ∈ A.

Letting x = x+∩βi, the difference can be seen by computing the difference between
the “local Maslov contributions” J ({O1, O2}−{x}, {O1, O2}−{x}), computed for
some planar realizations of G+ and G−. See Figure 6.3 for these computations.

We classify pentagons as left and right, depending on whether they lie to
the left or to the right of the cross-commutation. Associate to each pentagon
p ∈ Pent◦(x+,y−) the rectangle r ∈ Rect◦(x+,y+) with the same local multiplici-
ties as p away from the four bigons between βi and γi. This sets up a correspondence
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(−1, 0)

(0, 0)

(0, 0)

(−1,− 1
2
) (0, 1

2
)

(−1,− 1
2
)

(−1, 0)

A

B

C

D

G−G+

(0, 1
2
)

Figure 6.3. Grading shifts for the identification of grid
states of G+ and G−. The four markings near βi for G+ and γi
for G− divide the circle into the intervals A, B, C, and D shown
here. Local Maslov and Alexander contributions for G+ and G−
are displayed next to the four intervals.

between left pentagons and certain left rectangles in G+ that contain the point s in
the boundary. The left pentagons p that are not blocked by an X-marking corre-
spond to rectangles r whose terminal generators are of types B or C. Moreover, the
local multiplicities at all the O-markings of p correspond to the local multiplicities
of r at all the O-markings. It follows now that each non-zero term in c−(x+) corre-
sponding to a left pentagon has the same Maslov grading as x+, since the terminal
corner of a pentagon cannot be of type A; cf. Equation (6.5).

To study the right pentagons, it is simplest to compare with the right rectangles
in G−. The verification that Maslov gradings are preserved in this case follows from
a similar reasoning to the case considered before, since a right pentagon cannot
correspond to a rectangle in G− whose initial corner is of type A. The Maslov
grading shift for c+ is computed similarly.

For the Alexander grading shifts, a similar argument works. Note that the
square associated to a pentagon might cross X-markings (and hence shift Alexander
gradings), but this is compensated by the local Alexander grading changes for the
types A, B, C, and D. These local computations are also displayed in Figure 6.3.

Lemma 6.2.2. The maps c− and c+ are chain maps.

Proof. The proof follows the same logic as the proof of Lemma 5.1.4. For example,
consider the equation

(6.6) ∂−
X ◦ c−(x+) + c− ◦ ∂−

X (x+) = 0.

Most of the domains contributing to the equation contribute in pairs, but there
might be two exceptional domains, each of which admit a unique decomposition.
These domains are associated to pairs x+ and x− of grid states for G+ and G−
respectively, that agree in all but one component. There are two thin annular
regions A1 and A2, both of which have exactly three corners: one corner is at s;
another corner is at the βi component of x+, and the third corner is at the γi
component of x−. (See Figure 6.4.) Both A1 and A2 have a unique decomposition
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s
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Figure 6.4. Thin regions in the verification of Equa-
tion (6.6). The annuli A1 and A2 cover none of the X-markings
precisely when the component x of x+ on βi is in the darkened arc.
There are two combinatorial types of A1 in this case, depending
on which X-labelled bigon the component x is contained in; both
are illustrated above, along with the corresponding A2.
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X
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O1
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s
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s

O2
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X
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s
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Figure 6.5. Decomposing A1. The annulus A1 can be decom-
posed as a rectangle and a pentagon, in an order dictated by the
position of x+ ∩ βi−1 relative to x+ ∩ βi. This decomposition is
exhibited for both types of A1 from Figure 6.4.

as either a juxtaposition of an empty pentagon with a vertex at s followed by an
empty rectangle in G− or as a juxtaposition of an empty rectangle in G+ followed
by an empty pentagon with a vertex at s. Moreover, A1 and A2 cross exactly the
same X- and O-markings, so their contributions to ∂−

X ◦ c−(x+) + c− ◦ ∂−
X (x+)

cancel; see Figure 6.5. (Compare the proof of Lemma 5.1.4.)
A similar argument verifies that c+ is a chain map.
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The above chain maps c− and c+ induce the maps C− and C+ on homology
appearing in the statement of Proposition 6.1.1. In order to verify Equation (6.2),
we construct chain homotopies between the composites c− ◦ c+ resp. c+ ◦ c− and
multiplication by V1 that count hexagons in the diagram. These hexagons are
required to have two consecutive vertices at s and t; or at t and s. Correspondingly,
for x−,y− ∈ S(G−), let Hex◦

s,t(x−,y−) denote the set of empty hexagons with
two consecutive corners, one at s and the next at t in the order specified by the
orientation of the hexagon; and for x+,y+ ∈ S(G+) let Hex◦

t,s(x+,y+) be the

analogous set with the order of s and t reversed. Let H− : GC−(G−) → GC−(G−)
be the F[V1, . . . , Vn]-module map whose value on any x− ∈ S(G−) is

H−(x−) =
∑

y−∈S(G−)

∑
{h∈Hex◦

s,t(x−,y−)
∣∣h∩X=∅}

V
O1(h)
1 · · ·V On(h)

n · y−.

Define another map H+ : GC−(G+) → GC−(G+), using Hex◦
t,s(x+,y+) instead.

Proof of Proposition 6.1.1. Let c− and c+ be the F[V1, . . . , Vn]-module maps
defined in Equations (6.3) and (6.4). According to Lemma 6.2.2, these maps are
chain maps. By Lemma 6.2.1, their induced maps on homology C− and C+ shift
bigradings as stated in the proposition. Hence we are left with the proof of Equa-
tion (6.2). Consider the maps H+ and H− defined above. We claim first that

H+ : GC−
d (G+, s) → GC−

d−1(G+, s − 1)(6.7)

H− : GC−
d (G−, s) → GC−

d−1(G−, s − 1).(6.8)

This is easy to see: for instance, if a hexagon h from x+ and y+ is counted in
H+, then there is a corresponding empty rectangle r from x+ and y+ that contains
exactly one X-marking, and the same number of O-markings as h.

Furthermore, these maps satisfy the homotopy formulas

∂−
X ◦ H+ + H+ ◦ ∂−

X = c+ ◦ c− + V1(6.9)

∂−
X ◦ H− + H− ◦ ∂−

X = c− ◦ c+ + V1.(6.10)

The proof of Equations (6.9) and (6.10) is analogous to the proof of Lemma 5.1.6
(see especially Equation (5.9)). Again, we analyze domains given by juxtaposing
empty rectangles and hexagons (in any order) or pairs of empty pentagons. These
cancel in pairs, except for one special thin domain which wraps around the torus.
This domain is forced to cover O1.

In a little more detail, consider Equation (6.9). There are two thin annular
regions, both containing O1, and with corners at s and t: one to the left (i.e.
meeting βi−1), and the other to the right (i.e. meeting βi+1), see Figure 6.6.
Consider a grid state x+ ∈ S(G+). There are two cases, according to whether
the component of x+ on βi is on the short arc (adjacent to the X-marked bigon)
connecting s and t or not. In the first case, consider the annular region to the right.
(See the left picture in Figure 6.6.) That annulus has a unique decomposition into
two domains which could contribute to one of ∂−

X ◦ H+, H+ ◦ ∂−
X , or c+ ◦ c−, and

the other annulus has no such decomposition. (See Figure 6.7.) In the second case
(indicated in the right picture of Figure 6.6), it is the other annulus that has a
unique decomposition. The verification of Equation (6.10) works similarly.

Equation (6.2) follows from Equations (6.9) and (6.10), by considering the
corresponding actions on homology.
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Figure 6.6. Two cases in the verification of Equation (6.9).
These are distinguished by the component of x+ on βi: if it is the
shorter arc darkened on the left picture, we consider the domain
shaded in that diagram; if it is on the longer arc darkened on the
right, we consider the domain shaded there.
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Figure 6.7. Decomposing the annulus to the right of βi, for
Equation (6.9). When x+ ∩ βi is on the short arc between s and
t, the annular region to the right of βi has a unique decomposition,
in which t is encountered before s.

6.3. The Milnor conjecture for torus knots

We turn now to a computation of τ for torus knots.

Proposition 6.3.1. For the negative (p, q) torus knot T−p,q,

τ (T−p,q) = − (p − 1)(q − 1)

2
.

Proof. Use the grid diagram for T−p,q from the proof of Lemma 4.8.4. In this
diagram the X-markings all line up on a diagonal in the torus; see Figure 4.8.



6.3. THE MILNOR CONJECTURE FOR TORUS KNOTS 121

Consider the grid state x+ that occupies the upper right corner of each square

marked with X. According to Lemma 4.8.4, its Alexander grading, (p−1)(q−1)
2 is

maximal among all grid states. We establish the following further two properties:

(1) x+ is a cycle in GC−(G), and
(2) the homology class [x+] represented by this cycle is non-torsion.

The placement of x+ ensures that for any y ∈ S(G) and any rectangle r ∈
Rect(x+,y), r contains some X-marking in its interior; Property (1) follows.

To verify Property (2), we use another specialization C ′(G) of the grid complex,
the quotient of GC−(G) by the sums of multiples of the Vi − 1:

C ′(G) =
GC−(G)

V1 = · · · = Vn = 1
.

Equivalently, C ′(G) is the chain complex generated over F by all grid states,
equipped with the differential

∂′
Xx =

∑
y∈S(G)

#{r ∈ Rect◦(x,y)
∣∣r ∩ X = ∅} · y,

thought of as a module over F[V1, . . . , Vn], with Vi · x = x for i = 1, . . . , n. Note
that C ′(G) does not inherit a bigrading. (The Z-grading on GC−(G) specified by
M −2A does descend to C ′(G), but this is not important for our present purposes.)

There is a quotient map Φ: GC−(G) → C ′(G), which is a homomorphism of
F[V1, . . . , Vn]-modules and a chain map; denote its induced map on homology by
φ : GH−(G) → H(C ′(G)). If φ(ξ) �= 0, then for all k ≥ 0, φ(Uk · ξ) = Ukφ(ξ) =
φ(ξ) �= 0; thus, ξ is a non-torsion homology class in GH−(G).

If y is any grid state for which there is an empty rectangle r ∈ Rect◦(y,x+) with
r ∩ X = ∅ (i.e. r contributes x+ to ∂′

Xy) then the other rectangle r′ ∈ Rect(y,x+)
also satisfies Int(r′) ∩ x+ = ∅ and r′ ∩ X = ∅. This follows readily from the
fact (visible from inspecting our grid diagram) that the complement of r ∪ r′ is
a union of two squares, which together contain all the X-markings and all the
components of x+. Since the differential ∂′

X makes no reference to the O-markings,
the contributions of these rectangles r and r′ cancel.

It follows that x+, thought of as an element of C ′(G), is homologically non-
trivial; and hence Property (2) follows.

By Lemma 4.8.4, x+ has maximal Alexander grading among all grid states,
so of course [x+] has maximal Alexander grading among all non-torsion homology

classes, i.e. τ (T−p,q) = −A(x+). Also by Lemma 4.8.4, A(x+) = (p−1)(q−1)
2 .

Remark 6.3.2. As we shall see in Section 6.4, the definition of x+ and Prop-
erties (1) and (2) hold in an arbitrary grid diagram for a knot.

Proposition 6.3.1, combined with the inequality of Corollary 6.1.8 gives the
following result (conjectured by Milnor [144] and first proved by Kronheimer and
Mrowka [106] using gauge theory; compare Theorem 1.2.1):

Corollary 6.3.3. The unknotting number of the (p, q) torus knot is (p−1)(q−1)
2 .

We deduce the corollary from Corollary 6.1.8, together with the following:

Lemma 6.3.4. The torus knot Tp,q can be unknotted in (p−1)(q−1)
2 crossing

changes.
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s4

s1

Figure 6.8. Part of Tp,q. We have illustrated the case where
p = 4. Observe that si and sj cross each other in this region twice.

Proof. We prove this by induction on max(p, q). Assume without loss of generality
that q > p. If p = 1, Tp,q is the unknot, where the result is clear. When p > 1,
consider a region in the standard diagram for the (p, q) torus knot with p strands,
containing one full twist. This region contains p(p − 1) crossings, and any two
strands cross in this region twice (once over, and once under). Let si denote the
ith strand from the top, as in Figure 6.8. Change half the crossings in the region so
that for all i < j, in both crossings of si with sj , the strand si is the overcrossing.
Eliminate these crossings in pairs (by isotopies), to give a diagram for the torus
knot Tp,q−p. The lemma now follows from the inductive hypothesis.

Proof of Corollary 6.3.3. Lemma 6.3.4 shows that the unknotting number

u(Tp,q) of the (p, q) torus knot satisfies u(Tp,q) ≤ (p−1)(q−1)
2 . The result of Corol-

lary 6.1.8, giving |τ (T−p,q)| ≤ u(T−p,q) = u(Tp,q), together with |τ (T−p,q)| =
(p−1)(q−1)

2 (Proposition 6.3.1) concludes the argument.

Some special cases of Corollary 6.3.3 can be proved by more traditional means.
For example, when p = 2, the corollary follows using the signature, cf. Exer-
cise 2.3.11. The bounds from the signature are, in general, weaker: 1

2σ(T3,7) = −4,
while |τ (T−3,7)| = 6 = u(T3,7).

A little extra information can be gleaned from the sign of τ : a more careful look
at the proof of Corollary 6.1.8 shows that any unknotting of the positive torus knot

Tp,q involves at least (p−1)(q−1)
2 crossing changes which change positive crossings to

negative ones. Compare this to the similar signed unknotting bound given by the
knot signature, discussed at the end of Section 2.3.

6.4. Canonical grid cycles and estimates on τ

We explain how to estimate τ (K) given a grid diagram, without computing
grid homology. This is done with the help of two distinguished grid states, which
are cycles in the grid complex, representing non-torsion classes in GH− (Proposi-
tion 6.4.8).

Definition 6.4.1. Let G be a grid diagram for a knot K, and consider the
grid chain complex GC−(G). The canonical grid states x+ = x+(G) and x− =
x−(G) ∈ S(G) are defined as follows. Each component of the grid state x+ is the
northeast corner of a square decorated with an X ∈ X, while each component of
x− is the southwest corner of a square decorated with an X ∈ X.

Lemma 6.4.2. For any grid diagram G, x+(G) and x−(G) are cycles in
GC−(G).

Proof. Suppose that y ∈ S(G) is another grid state and r ∈ Rect(x+,y). Let
x1 ∈ x+ = x+(G) denote the upper right corner of the rectangle r. By the definition
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of x+, there is an Xi in the square immediately to the lower left of x1, which is
therefore also in r. Thus, r cannot contribute a term in ∂−

X (x+). Since r was

arbitrary, it follows that ∂−
X (x+) = 0. An analogous argument applies to x− =

x−(G) (now by taking the lower left corner of r).

Remark 6.4.3. The homology classes in GH−(K) represented by x+(G) and
x−(G) will play a central role in Chapter 12: these homology classes are the “Leg-
endrian grid invariants” studied there.

Next we examine some invariance properties of these homology classes:

Lemma 6.4.4. Let G and G′ be two grid diagrams that differ by a commutation
move. Then, there is a quasi-isomorphism P : GC−(G) → GC−(G′) sending the
cycle x+(G) to x+(G′) and x−(G) to x−(G′).

Proof. We start with the case of x+, assuming that the two grids G and G′

differ by a column commutation. We continue to use notation from Section 5.1.
Notice that there is some freedom in choosing where the two curves βi and γi of
Figure 5.1 intersect each other. In the present proof we will assume that they
intersect each other outside of the squares occupied by the X-markings. For a
commutation we can always choose the distinguished curves in this way. With this
choice of curves, consider the pentagon count map P : GC−(G) → GC−(G′), as
defined in Equation (5.2).

Choose any p ∈ Pent◦(x+(G),y′) for arbitrary y′ ∈ S(G′). By the definition of
x+(G), p contains an X-marking in its upper right corner, unless the pentagon is
the unique thin pentagon from x+(G) to y′ = x+(G′) as in Figure 6.9. It follows
that P (x+(G)) = x+(G′). A similar argument shows P (x−(G)) = x−(G′).

The case of row commutations works similarly.

Remark 6.4.5. The above proof does not work for switches (cf. Definition 3.1.6)
in place of commutations. For a switch, the curves βi and γi intersect in a square
occupied by one of the X-markings, and hence either Rect◦(x+(G),x+(G′)) or
Rect◦(x−(G),x−(G′)) is empty.

We consider how the homology classes of x+ and x− transform under stabi-
lization.

Lemma 6.4.6. Let G be a grid diagram and G′ a stabilization of G.

(S-1) If G′ is obtained from G by a stabilization of type X:NW or X:SE, then
there is an isomorphism GH−(G′) ∼= GH−(G) of bigraded F[U ]-modules
that sends the homology class [x+(G′)] to [x+(G)] and the homology class
[x−(G′)] to [x−(G)].

(S-2) If G′ is obtained from G by a stabilization of type X:SW, then there is an
isomorphism GH−(G′) ∼= GH−(G) of bigraded F[U ]-modules that sends
[x+(G′)] to [x+(G)] and [x−(G′)] to U · [x−(G)].

(S-3) If G′ is obtained from G by a stabilization of type X:NE, then there is an
isomorphism GH−(G′) ∼= GH−(G) that sends [x+(G′)] to U · [x+(G)] and
[x−(G′)] to [x−(G)].



124 6. THE UNKNOTTING NUMBER AND τ
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Figure 6.9. Thin pentagons. The dark circles represent the
canonical grid states x+ and x− for the diagram G involving β,
while the white ones represent the corresponding states for the
diagram G′ involving γ. The shaded pentagons show that x±(G)
are mapped to x±(G′).

Proof. For Part (S-1), Proposition 5.4.1 gives an isomorphism GH−(G′) ∼=
GH−(G) that takes the homology class represented by a cycle ξ from the sub-
complex (I, ∂I

I) to the corresponding element e(ξ) ∈ GC−(G)[V1] (from Equa-

tion (5.23)), and projects it to GC−(G)[V1]
V1−V2

∼= GC−(G). Since the image of x±(G′) ∈
I ⊂ GC−(G′) under e is x±(G), Part (S-1) follows.

Consider now Part (S-2); that is, a stabilization of type X:SW, and continue
with the labeling conventions from Subsection 5.2.1. According to Proposition 5.4.1,
there is an isomorphism GH−(G′) ∼= GH−(G) induced by the chain map that
sends x ∈ N(G′) to HI

X2
(x) ∈ I (Equation (5.20)), followed by the isomorphism

e : I → GC−(G)[V1] induced by the identification I(G′) ∼= S(G), composed with the

quotient map to GH−(G)[V1]
V1−V2

∼= GH−(G).

Observe that in this case x+(G′) ∈ N(G′), and there is a single y ∈ I(G′) for
which there is some rectangle r ∈ Rect◦(x+(G′),y) with Int(r) ∩ X = X2. Indeed,
such a rectangle r is unique: it is a width one rectangle that wraps vertically nearly
around the torus, crossing no O-markings, and it terminates in the grid state y
with e(y) = x+(G); see the upper right diagram in Figure 6.10. This verifies that
[x+(G′)] is mapped to [x+(G)] under the identification of homologies.

Similarly, continuing the case of stabilizations of type X:SW, note that x−(G′) ∈
N(G′). There is only one rectangle in Rect◦(x−(G′),y) with y ∈ I(G′) and
Int(r) ∩ X = X2, and that is the height one rectangle which wraps horizontally
nearly around the torus, crossing the O-marking in the same row as X2; see the
lower right picture in Figure 6.10. This verifies that under the identification of
homologies, [x−(G′)] is mapped to U · [x−(G)].

The case of stabilizations of type X:NE (in Part (S-3)) follows similarly; see
the first column of Figure 6.10.

Lemmas 6.4.4 and 6.4.6 allow us to compare the cycles x+ and x− for two grid
diagrams representing isotopic knots. For crossing changes, we have the following:
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Figure 6.10. Behaviour of x+ and x− under stabilizations
of type X:NE and X:SW. The black and white states represent
canonical elements (x+ on the top row and x− on the bottom) for
the stabilized and destabilized diagrams.
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Figure 6.11. Canonical cycles and cross-commutations.

Proposition 6.4.7. Suppose that the knots K+ and K− differ by a crossing
change. Then, there are grid diagrams G+ and G− whose canonical states x±

are related by C+([x+(G−)]) = [x+(G+)] and C+([x−(G−)]) = [x−(G+)], while
C−([x+(G+)]) = U [x+(G−)] and C−([x−(G+)]) = U [x−(G−)], where C+ and C−
are the crossing change maps from Proposition 6.1.1.

Proof. Consider the maps c+ and c− for a cross-commutation, as defined
in Equations (6.3) and (6.4) respectively. There is only one empty pentagon
p ∈ Pent◦t (x

+(G−),y) with no X-marking, and that has y = x+(G+) and no
O-markings inside it. It follows that c+(x+(G−)) = x+(G+). The same argu-
ment shows that c+(x−(G−)) = x−(G+). For c−, note that the thin pentagons
connecting the canonical states of G+ to the ones of G− cover O1. (Figure 6.11
illustrates, from left to right, c+(x+(G−)) = x+(G+), c+(x−(G−)) = x−(G+),
c−(x+(G+)) = V1 · x+(G−), and c−(x−(G+)) = V1 · x−(G−) respectively).
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Proposition 6.4.8. The states x+ = x+(G) and x− = x−(G) are cycles in
GC−(G), representing non-torsion homology classes in GH−(G), with

(6.11) M(x+) = 2A(x+), M(x−) = 2A(x−).

Proof. By Lemma 6.4.2 the grid states x+ and x− are cycles.
Suppose that there is a grid diagram G for a knot K so that x+ or x− is torsion.

Then, by Lemmas 6.4.4 and 6.4.6, together with Theorem 3.1.9, the same will be
true for all grid diagrams for K. In fact, by Proposition 6.4.7, this would hold for
any grid diagram for the unknot, contradicting a straightforward computation in
a 2 × 2 grid diagram. Thus, these classes are always non-torsion. Equation (6.11)
follows from Proposition 6.1.4.

Proposition 6.4.8 has the following immediate consequence:

Corollary 6.4.9. Given any grid diagram G representing K, −A(x+(G)) ≥
τ (K) and −A(x−(G)) ≥ τ (K).

For a more conceptual interpretation of the above bounds, see Prop-
osition 12.4.2.

Exercise 6.4.10. Consider the grid diagram G of Figure 4.3 of the negative,
0-framed Whitehead double W−

0 (T−2,3) of the left-handed trefoil knot. Show that
τ (W−

0 (T−2,3)) = −1. (Hint: Note that any Whitehead double can be unknotted
with one crossing change.)



CHAPTER 7

Basic properties of grid homology

This chapter describes some of the basic properties of grid homology. Sec-

tion 7.1 verifies some symmetries of the simply blocked grid homology groups ĜH ,

and Section 7.2 relates ĜH with the Seifert genus. Section 7.3 explores the algebraic
structure of GH−(K), building on work from Chapter 6. Finally, in Section 7.4
symmetries of GH−(K) are discussed.

7.1. Symmetries of the simply blocked grid homology

Many of the familiar properties of the Alexander polynomial have analogues in
grid homology. The Alexander polynomial for a knot is a symmetric function of t.
This has the following manifestation in grid homology:

Proposition 7.1.1. If K is a knot, then for all d, s ∈ Z,

ĜH d(K, s) ∼= ĜH d−2s(K,−s).

Proof. Let G1 be a grid diagram for K, and let G2 be the new grid diagram
obtained by reversing the roles of X and O. Both G1 and G2 represent K, but with

opposite orientations. There is an isomorphism of chain complexes between G̃C(G1)

and G̃C(G2), induced by the natural identification of the grid states, which does
not respect the bigradings. Letting Mi and Ai denote Maslov and the Alexander
gradings calculated with respect to the diagram Gi for i = 1, 2, Equation (4.3),
gives

M1(x) − M2(x) = 2A1(x) + n − 1,

A1(x) + A2(x) = 1 − n.

It follows that

(7.1) G̃Hd(G1, s) ∼= G̃Hd−2s+1−n(G2,−s + 1 − n).

This symmetry, together with the relationship between G̃H and ĜH (given in

Proposition 4.6.15), implies the stated symmetry of ĜH . To see how, it is conve-
nient to express the symmetries in terms of the Poincaré polynomials

P̃G(q, t) =
∑
d,s

dim G̃Hd(G, s) · qdts and P̂G(q, t) =
∑
d,s

dim ĜH d(G, s) · qdts.

In this notation, Equation (7.1) can be expressed as the relation

P̃G1
(q, t) = (qt)1−n · P̃G2

(q, q−2t−1).

The isomorphism of Proposition 4.6.15 (applied to G1 and G2) gives the relations

(1 + q−1t−1)n−1P̂G1
(q, t) = P̃G1

(q, t) and (1 + q−1t−1)n−1P̂G2
(q, t) = P̃G2

(q, t).

127
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It follows from these equations that P̂G1
(q, t) = P̂G2

(q, q−2t−1), which in turn
gives the stated isomorphism.

The Alexander polynomial is invariant under mirroring, whereas grid homology,
by contrast, is not, as was illustrated by the computations of the grid homology
groups of the two trefoils in Exercise 4.8.2. More generally, we have the following:

Proposition 7.1.2. If K is a knot and m(K) is its mirror, then for all d, s ∈ Z,

ĜH d(K, s) ∼= ĜH 2s−d(m(K), s).

Proof. Let G be a grid diagram (with markings O and X) for K, and let G∗

be the diagram (with markings O∗ and X∗) obtained by reflecting G through a
horizontal axis. The diagram G∗ represents m(K). Reflection induces a bijection
x �→ x∗ between grid states for G and those for G∗, inducing a bijection between
empty rectangles in Rect◦(x,y) and empty rectangles in Rect◦(y∗,x∗). Thus, re-

flection induces an isomorphism of chain complexes G̃C(G∗) ∼= Hom(G̃C(G),F).
Since we are working over the field F = Z/2Z, the Universal Coefficient Theorem

in cohomology (Theorem A.5.2) gives an isomorphism G̃H(G) ∼= G̃H(G∗). By

Proposition 4.6.15, we get that ĜH (K) ∼= ĜH (m(K)).
It remains to keep track of gradings in the above isomorphism. We verify first

that

(7.2) MO(x) + MO∗(x∗) = 1 − n.

Choosing x = xNWO, MO(x) = 0 by Equation (4.1), and MO∗(x∗) = 1 − n by
Proposition 4.3.7, so Equation (7.2) follows for this choice. For arbitrary grid
states x,y, if r ∈ Rect(x,y) then r∗ ∈ Rect(y∗,x∗) and Equation (4.2) gives

MO(x) + MO∗(x∗) = MO(y) + MO∗(y∗).

Since any two grid states can be connected by a sequence of rectangles, Equa-
tion (7.2) follows for all grid states.

It follows from Equation (7.2) (along with its analogue, replacing O by X) that

(7.3) AG(x) + AG∗(x∗) = 1 − n,

which, along with Equation (7.2), identifies G̃Hd(G, s) ∼= G̃H1−n−d(G∗, 1−n− s).
Combining this with Equation (7.1), gives an isomorphism

(7.4) G̃Hd(G, s) ∼= G̃H2s−d(G
′, s),

where G′ is obtained from G∗ by switching the roles of X and O. The above iso-
morphism can be combined with Proposition 4.6.15, to give the desired symmetry:
Equation (7.4) gives the relation between the Poincaré polynomials

P̃G(q, t) = P̃G′(q−1, q2t),

Proposition 4.6.15 gives the relations

(1+q−1t−1)n−1P̂G(q, t) = P̃G(q, t) and (1+q−1t−1)n−1P̂G′(q, t) = P̃G′(q, t);

so P̂G(q, t) = P̂G′(q−1, q2t), which gives the stated symmetry.



7.2. GENUS BOUNDS 129

7.2. Genus bounds

Write the Alexander polynomial of K as ΔK(t) = a0 +
∑d

i=1 ai(t
i + t−i). By

Theorem 2.4.6, the Seifert genus of K is bounded below by the maximal i for which
ai is non-zero. In this section, we generalize this result to grid homology.

Before giving this generalization, we give a result concerning grid diagrams. In
Section 3.4, we associated to any grid diagram G a collection of Seifert surfaces.
The genus of any of these surfaces depends only on the diagram, and was called
the associated genus of G. The associated genus has the following reformulation in
terms of grid states.

Proposition 7.2.1. Let G be any grid diagram for a knot K. Its associated
genus g(G) is the maximum value of the Alexander function over all grid states
for G.

Proof. According to Proposition 4.7.2, the matrix W = W(G) computes the
Alexander grading by the formula

AW (x) = −
∑
x∈x

w(x) +
1

8

8n∑
k=1

w(pk) −
(

n − 1

2

)
.

Using a different n×n matrix W ′ in place of W(G), the right hand side still makes
sense, inducing a function AW ′ on grid states. The function AW is unchanged if
we add a row or column to W . For columns, this is true because

AW+Ci
(x) − AW (x) = −#(x ∩ Ci) +

1

8
#({pk} ∩ Ci),

and x has one component in Ci, and eight of the pk are in Ci; the case of rows
works the same.

Let H be a minimal complexity matrix obtained by adding and subtracting rows
or columns to W(G) (in the sense of Definition 3.4.1). According to Lemma 3.4.2,
the grid state x that maximizes AH has h(x) = 0 for all x ∈ x. Thus, the maximum
of the Alexander function (or equivalently, AH) over all grid states is given by

1

8

8n∑
k=1

h(pk) −
(

n − 1

2

)
;

which, by Proposition 3.4.9, computes the genus of FH .

We can now give the grid homology bound on the Seifert genus. We use the

shorthand ĜH (K, s) =
⊕

d ĜH d(K, s).

Proposition 7.2.2. For any knot K ⊂ S3, max{s
∣∣ĜH (K, s) �= 0} ≤ g(K).

Proof. For any grid diagram G, Proposition 4.6.15 and 7.2.1 give

max{s
∣∣ĜH (K, s) �= 0} = max{s

∣∣G̃H(G, s) �= 0} ≤ max{s
∣∣G̃C(G, s) �= 0} = g(G).

By Proposition 3.4.11, we can choose G so that g(K) = g(G).
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The following Seifert genera were first computed by Gabai [65]:

Lemma 7.2.3. The Seifert genus of the Kinoshita-Tersasaka knot KT is 2 and,
the Seifert genus of the Conway knot C is 3. (See Figure 2.7 for these knots.)

Proof. Proposition 7.2.2, combined with calculations from Exercise 4.8.7 and 4.8.6
give bounds 2 ≤ g(KT ) and 3 ≤ g(C) respectively; and Seifert surfaces of genus 2
and 3 for KT and C were described in Example 3.4.13.

Unlike the bound coming from the Alexander polynomial, the bound on the
Seifert genus g(K) of a knot K coming from grid homology in Proposition 7.2.2 is
sharp; see Theorem 1.3.2. The proof of this result, however, remains outside the
combinatorial framework described in this book; see also Problem 17.1.2.

7.3. General properties of unblocked grid homology

We turn to the structure of the unblocked grid homology GH−(K), which is a

module over F[U ]. Proposition 4.6.18 relates GH−(K) and ĜH (K) by a long exact
sequence
(7.5)

· · · → GH−
d+2(K, s + 1)

U→ GH−
d (K, s) → ĜH d(K, s) → GH−

d+1(K, s + 1) → . . . .

Proposition 7.3.1. For each d, s ∈ Z, GH−
d (K, s) is a finite dimensional

vector space that vanishes if either d or s is sufficiently large. Moreover, GH−(K)
is a finitely generated bigraded F[U ]-module.

Proof. Fix a grid diagram G representing K. The chain complex GC−(G) is, by
construction, a finitely generated module over F[V1, . . . , Vn], that is bigraded. Since
multiplication by Vi shifts both Maslov and Alexander gradings down, it follows
that for each d, s ∈ Z, GC−

d (G, s) is a finite-dimensional vector space that vanishes
if either d or s are sufficiently large.

The homology GH−(K) inherits these properties; in particular, GH−(K) is
finitely generated as a F[V1, . . . , Vn]-module because F[V1, . . . , Vn] is a Noether-
ian ring (see Proposition A.4.1). Since each Vi acts on GH−(K) the same way
(Lemma 4.6.9), we conclude that GH−(K) is a finitely generated module over F[U ].

We aim first to study the Euler characteristic of the unblocked invariant, and
then we return to further properties of its algebraic structure.

Let Z[t, t−1� denote the ring of formal Laurent series in t; that is an element
of Z[t, t−1� is a formal sum

∑
s∈Z ast

s, where as ∈ Z, and as = 0 for all sufficiently
large s. By Proposition 7.3.1 we can consider the graded Euler characteristic

χ(GH−(K)) =
∑
d,s

(−1)d dimF GH−
d (K, s) · ts,

which is a formal Laurent series. As noted in the proof of Proposition 7.3.1, for
each d, s ∈ Z, GC−

d (G, s) is finite dimensional, and GC−
d (G, s) = 0 if d or s is

sufficiently large. It follows that the graded Euler characteristic can be taken at
the chain level:

χ(GC−(G)) =
∑
d,s

(−1)d dimF GC−
d (K, s) · ts ∈ Z[t, t−1�;



7.3. GENERAL PROPERTIES OF UNBLOCKED GRID HOMOLOGY 131

and general properties of Euler characteristics ensure χ(GH−(K)) = χ(GC−(G)).
For the next statement, recall the expansion 1

1−t−1 =
∑

i∈Z≥0 t−i ∈ Z[t, t−1�.
Proposition 7.3.2. The graded Euler characteristic of GH−(K) is given by

χ(GH−(K)) =
ΔK(t)

1 − t−1
.

Proof. The short exact sequence

0 −−−−→ GC−(G)�2, 1� Vi−−−−→ GC−(G) −−−−→ ĜC (G) −−−−→ 0

(used in the verification of Equation (7.5); cf. the proof of Proposition 4.6.18)
implies the relation on Euler characteristics:

χ(GC−(G)) = χ(GC−(G)�2, 1�) + χ(ĜC (G))

= χ(GC−(G))t−1 + χ(ĜC (G)).

Since the graded Euler characteristic is unchanged under homology, Theorem 4.7.6

identifies χ(ĜC (K)) = ΔK(t), and the result follows.

Combining Propositions 7.3.1 and 6.1.4 with the classification of finitely gener-
ated modules over a principal ideal domain, we can bring the F[U ]-module GH−(K)
to a standard form. To describe this, we introduce some notation. Let F[U ]/Un

(d,s)

denote the bigraded cyclic torsion module whose generator g has bigrading given by
(d, s) and satisfies the relation Ung = 0 (while Un−1g �= 0); that is, F[U ]/Un

(d,s) is

isomorphic to F in bigrading (d−2i, s− i) for i = 0, . . . , n−1, and U times the non-
zero element in bigrading (d−2i, s− i) is the one in bigrading (d−2i−2, s− i−1),
provided that 0 ≤ i ≤ n − 2. Similarly, let F[U ](d,s) denote the free, rank one
F[U ]-module whose generator has bigrading (d, s).

Proposition 7.3.3. For each knot K, we can find k ≥ 0 and a set of triples
of integers {(di, si, ni)}ki=1 with ni > 0, so that

(7.6) GH−(K) ∼=
(

k⊕
i=1

F[U ]/Uni

(di,si)

)
⊕ F[U ](−2τ,−τ)

as F[U ]-modules, where τ = τ (K) from Definition 6.1.5. The bigraded vector space

ĜH (K) is determined from the above decomposition by

(7.7) ĜH (K) ∼=
(

k⊕
i=1

F(di,si) ⊕ F(di−2ni+1,si−ni)

)
⊕ F(−2τ,−τ).

Proof. According to Proposition 7.3.1, GH−(K) is a finitely generated module
over F[U ]. By the classification of finitely generated modules over a principal ideal
domain (see for example [92, Chapter 3.8]), GH−(K) splits as a direct sum of
finitely many cyclic modules, which are of the form F[U ]/p, for some polynomial
p ∈ F[U ]. The gradings force these summands to be either of the form F[U ] (i.e.
free summands), or of the form F[U ]/Un for some n > 0. (For more details, and a
proof of the classification theorem in the form we need it, see Proposition A.4.3.)

The free summand in GH−(K) is given by GH−(K)/Tors, which we showed
in Proposition 6.1.4 to be isomorphic to F[U ](2a,a); so a = −τ (K). This establishes

Equation (7.6). The structure of ĜH (K) now follows from Equation (7.5).



132 7. BASIC PROPERTIES OF GRID HOMOLOGY

Remark 7.3.4. According to Theorem 2.4.6, the value of the Alexander poly-
nomial ΔK(t) of a knot K at t = 1 equals 1. This is equivalent to the property
that the formal power series ΔK(t)/(1 − t−1) ∈ Z[t, t−1� has coefficient 1 in front
of each t−k for k sufficiently large. The fact that GH−(K) has rank one can be
thought of as the grid homology manifestation of this property.

7.4. Symmetries of the unblocked theory

We saw that simply blocked grid homology satisfies two symmetries: it is sym-
metric in the Alexander grading (Proposition 7.1.1), and it transforms in a pre-
dictable manner under mirroring (Proposition 7.1.2).

Proposition 7.1.1 does not hold in the case of GH−. In fact, it fails already on
the level of its Euler characteristic: the Euler characteristic of GH− as stated in
Proposition 7.3.2 is manifestly not symmetric under the map t �→ t−1.

Proposition 7.1.2 admits a generalization in terms of the dual complex. To
study this property, we introduce some more algebraic constructions. It will be
convenient to work with a stabilized version of GC−(G), where the various Vi

variables are set equal to one another, GC−(G)
V1=···=Vn

, i.e. the quotient of GC−(G),
divided by sums of multiples of Vi − Vi+1 for i = 1, . . . , n − 1. Equivalently, the

complex GC−(G)
V1=···=Vn

is the free module over F[U ], generated by the grid states S(G)
and equipped with the differential

(7.8) ∂c
X(x) =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣r∩X=∅}

U#(r∩O) · y.

To state the relationship between H( GC−(G)
V1=···=Vn

) and GH−(G), we use the two-

dimensional bigraded vector space W ∼= F(0,0) ⊕ F(−1,−1). Given a bigraded F[U ]-
module X, X ⊗ W is the F[U ]-module, where U acts on the X factor; i.e. there is
an isomorphism of bigraded modules over F[U ]

X ⊗ W ∼= X ⊕ X�1, 1�.
Lemma 7.4.1. Let C be a free chain complex over F[V1, . . . , Vn], and sup-

pose that multiplication by V1 is chain homotopic to V2. Then, there is a quasi-
isomorphism from C ⊗ W to C

V1−V2
of chain complexes over F[V1, . . . , Vn].

Proof. Consider Cone(V1−V2 : C → C). Since V1−V2 is chain homotopic to the 0
map, Lemma 5.2.14 gives an isomorphism C ⊗W ∼= Cone(V1−V2). Since C is free,
multiplication by V1−V2 is an injective endomorphism of C; so Lemma 5.2.13 gives
a quasi-isomorphism from Cone(V1 − V2) to C

V1−V2
. Composing with the previous

isomorphism gives the claimed quasi-isomorphism.

Iterating this gives the following:

Lemma 7.4.2. Suppose that G is a grid diagram with grid number n representing
a knot. Then, there is an isomorphism of bigraded F[U ]-modules

H

(
GC−(G)

V1 = . . . = Vn

)
∼= GH−(G) ⊗ W⊗(n−1).
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Proof. For each i = 1, . . . , n, we construct inductively a quasi-isomorphism of
F[Vi, . . . Vn]-modules

(7.9) Φi : GC−(G) ⊗ W⊗(i−1) → GC−(G)

V1 = · · · = Vi
,

where the basic case is a tautology. For the inductive step, since GC−(G) is a free

module over F[V1, . . . , Vn], the quotient GC−(G)
V1=···=Vi

is a free module over F[Vi, . . . , Vn],
Lemma 7.4.1 gives a quasi-isomorphism

GC−(G)

V1 = · · · = Vi
⊗ W → GC−(G)

V1 = · · · = Vi+1
.

Precomposing this with the isomorphism from Equation (7.9) (which holds by the
induction hypothesis) tensored with W , gives the quasi-isomorphism Φi+1 needed
to establish Equation (7.9) for all i = 1, . . . , n.

Equation (7.9) in the case where i = n gives the statement of the lemma.

We will need another algebraic construction. Suppose that C is a bigraded
chain complex over F[U ]. The dual complex of C is the complex over F[U ] whose
elements are F[U ]-module homomorphisms φ : C → F[U ]; i.e. φ(U · ξ) = U · φ(ξ),
endowed with the differential ∂∗ satisfying ∂∗φ(c) = φ(∂c). We write this complex
as Hom(C,F[U ]). This is like the usual construction of cochain complex in the
definition of cohomology, except that we will take a different grading convention.

Equip F[U ] with the bigrading for which Uk ∈ F[U ] has Maslov grading −2k and
Alexander grading −k. Endow the dual complex Hom(C,F[U ]) with the bigrading
for which a homomorphism φ : C → F[U ] has bigrading (d, s) if it is a homogeneous
map of degree (d, s); i.e. for any homogeneous element c ∈ C with bigrading
(m, t), the image φ(c) has bigrading (m + d, t + s). The homology groups of a dual
complex are related to the homology groups of the original complex, via a Universal
Coefficient Theorem; see Theorem A.5.6, whose statement uses the bigraded Ext
functor described in Section A.5.

Proposition 7.1.2 has the following analogue for GH−:

Proposition 7.4.3. If K is a knot, and m(K) is its mirror, then the homology
of the grid complex of m(K) is isomorphic to the homology of the dual complex of
K; i.e. there is an isomorphism of bigraded F[U ]-modules:

(7.10) GH−(m(K)) ∼= Hom(GH−(K),F[U ]) ⊕ Ext(GH−(K),F[U ])�1, 0�,
where the right-hand-side contains the bigraded Ext modules. More explicitly, if

GH−(K) ∼=
(

k⊕
i=1

F[U ]/Uni

(di,si)

)
⊕ F[U ](−2τ,−τ),

then

(7.11) GH−(m(K)) ∼=
(

k⊕
i=1

F[U ]/Uni

(2ni−di−1,ni−si)

)
⊕ F[U ](2τ,τ),

where τ = τ (K).

Proof. Let G be a grid complex for K, and G∗ be its horizontal reflection (as in
the proof of Proposition 7.1.2). A grid state x in G determines a map from S(G∗)



134 7. BASIC PROPERTIES OF GRID HOMOLOGY

to F[U ], defined as follows. The reflection of the grid state x (which is a grid state
for G∗) is mapped to 1, and all other grid states for G∗ are mapped to 0. It is a
straightforward exercise to verify that this map induces an isomorphism of bigraded
chain complexes:

(7.12)
GC−(G)

V1 = · · · = Vn
→ Hom

(
GC−(G∗)

V1 = · · · = Vn
,F[U ]

) �n − 1, n − 1�.
Abbreviate C = GC−(G)

V1=···=Vn
and C ′ = GC−(G∗)

V1=···=Vn
. Lemma 7.4.2 gives

(7.13) H(C) ∼= GH−(G) ⊗ W⊗(n−1) and H(C ′) ∼= GH−(G∗) ⊗ W⊗(n−1).

The Universal Coefficient Theorem (Theorem A.5.6) gives a bigraded isomorphism
which, when combined with Equation (7.13), gives

H(Hom(C ′,F[U ])) ∼= Hom(H(C ′),F[U ]) ⊕ Ext(H(C ′),F[U ])�1, 0�
∼=
(

Hom(GH−(G∗),F[U ]) ⊕ Ext(GH−(G∗),F[U ])�1, 0�)⊗ (W ∗)⊗(n−1),

where W ∗ it is the the two-dimensional vector space spanned by vectors in bigrading
(0, 0) and (1, 1). This isomorphism, together with Equations (7.12) and (7.13) and
the observation that (W ∗)⊗(n−1)�n − 1, n − 1� ∼= W⊗(n−1) gives

GH−(G) ⊗ W⊗(n−1) ∼=(
Hom(GH−(G∗),F[U ]) ⊕ Ext(GH−(G∗),F[U ])�1, 0�)⊗ W⊗(n−1).

Equation (7.10) then follows.
For Equation (7.11), the free summand F[U ](−2a,−a) of GH−(m(K)) comes

from Hom(GH−(K),F[U ]), while all the torsion summands of GH−(m(K)) come
from the isomorphism Ext(F[U ]/Un

(d,s),F[U ]) ∼= F[U ]/Un
(2n−d,n−s).

Example 7.4.4. We saw in Equation (4.32) that for the right-handed trefoil
knot GH−(T2,3) ∼= (F[U ]/U)(0,1) ⊕ F[U ](−2,−1). It follows from Proposition 7.4.3

that for the left-handed trefoil knot GH−(T−2,3) ∼= (F[U ]/U)(1,0) ⊕ F[U ](2,1).

Proposition 7.4.3 specializes to the following:

Corollary 7.4.5. Let K be knot and m(K) its mirror, then τ (m(K)) =
−τ (K).

Example 7.4.6. By Proposition 6.3.1 and Corollary 7.4.5, for the positive (p, q)

torus knot, τ (Tp,q) = (p−1)(q−1)
2 .



CHAPTER 8

The slice genus and τ

In Chapter 6, we saw that τ gives a lower bound on the unknotting number of
a knot. The aim of this chapter is to strengthen this bound from the unknotting
number to the slice genus. These bounds allow us to compute the slice genus of
torus knots, completing the proof of Theorem 1.2.1.

In view of the normal form for knot cobordisms (Proposition 2.6.11), the proof
of these genus bounds depends on two key ingredients:

• an estimate on how τ differs between two knots that can be connected by
a sequence of saddle moves; and

• an identification τ (K) = τ (K ′), in the case where Un(K) can be connected
to K ′ by exactly n saddle moves. (Recall that Un(K) denotes the disjoint
union of the knot K with n unknotted, unlinked components.)

The first of these ingredients is obtained by methods similar to those from Chap-
ter 6. To state the estimate, though, we need first to give a (fairly straightforward)
generalization of grid homology to links, which we do in Section 8.2. In Section 8.3,
we associate maps to saddle moves between the grid homologies of the correspond-
ing links. With the help of these saddle maps, we generalize τ to links, and derive
an estimate on how these numerical link invariants change under saddle moves.

For the second ingredient, in Section 8.4 we give a description of the grid
homology of Un(K) in terms of the grid homology of K. This identification is
obtained in a manner reminiscent of the stabilization invariance proof for grid
homology. With all the pieces in place, we prove the slice genus bound in Section 8.5.

In Section 8.6, we give an example of an exotic R4, a smooth four-manifold
homeomorphic but not diffeomorphic to R4. This construction uses a knot that
is topologically slice, according a deep result of Freedman, but not smoothly slice,
which we deduce using τ . We conclude with a brief comparison of slice genus and
the unknotting number in Section 8.7.

8.1. Slice genus bounds from τ and their consequences

We start by stating the main result of this chapter, and then give some of its
consequences. Unless explicitly stated otherwise, all of the surfaces in D4 or in
[0, 1] × S3 we consider are smoothly embedded.

Theorem 8.1.1. If K0 and K1 are two knots that can be connected by a genus
g cobordism in [0, 1] × S3, then |τ (K0) − τ (K1)| ≤ g.

Corollary 8.1.2. For any knot K, |τ (K)| ≤ gs(K); in particular, if K is
slice, then τ (K) = 0.

Proof. Let F be a genus-minimizing surface in D4 with K as its boundary.
Removing a small four-ball from D4 centered at a point in F gives a genus g

135
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cobordism from K to the unknot. The corollary now follows from Theorem 8.1.1
and the fact that τ (O) = 0.

In Corollary 6.3.3, we computed the unknotting number of the (p, q) torus knot.
This same quantity computes both the Seifert and the four-ball genus of this knot,
according to the following:

Corollary 8.1.3. For the (p, q) torus knot Tp,q the Seifert genus and the

four-ball genus are both equal to (p−1)(q−1)
2 .

Proof. Seifert’s algorithm (recalled in Section B.3) applied to a standard projec-

tion of Tp,q (see Figure 2.3) gives a Seifert surface of genus (p−1)(q−1)
2 . Combine

Proposition 6.3.1, Corollary 8.1.2, and the fact that gs(K) ≤ g(K) to get

(p − 1)(q − 1)

2
= |τ (T−p,q)| ≤ gs(T−p,q) = gs(Tp,q) ≤ g(Tp,q) ≤

(p − 1)(q − 1)

2
,

which, taken together, imply the corollary.

Together, Corollaries 6.3.3 and 8.1.3 give Theorem 1.2.1. To prove Theo-
rem 8.1.1, we use the normal form decomposition from Proposition 2.6.11, which
brings links into play.

8.2. A version of grid homology for links

We introduce a generalization of grid homology to oriented links, the collapsed
grid homology for links, which can be thought of as a grid homology analogue of
the one-variable Alexander polynomial. A more elaborate version, the grid ho-
mology analogue of the multi-variable Alexander polynomial, will be discussed in
Chapter 11 (along with an intermediate version, the uncollapsed grid homology.)

Let G be a grid diagram representing an oriented link �L. Consider the chain
complex GC−(G) generated freely over F[V1, . . . , Vn] by grid states, with differential

(8.1) ∂−
X x =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣r∩X=∅}

V
O1(r)
1 · · ·V On(r)

n · y.

So far this looks exactly like the definition of the unblocked grid complex of a
knot; see Definition 4.6.1. Equip the complex with the Maslov grading defined
in Equation (4.5), and normalize the Alexander function to take into account the

number of components 	 of �L, as follows:

(8.2) A(x) =
1

2
(MO(x) − MX(x)) −

(
n − 	

2

)
.

Lemma 8.2.1. For any grid state x the Alexander function A(x) is an integer.

Proof. For a link with 	 components, we claim that

(8.3) MX(xNWO) ≡ n − 	 (mod 2).

Since the permutation taking xNWO to xNWX is a product of 	 disjoint cycles in
the permutation group on n letters (see Remark 3.1.2), Equation (8.3) follows from
the fact that such a permutation can be written as a product of n−	 transpositions.
The rest of the argument is exactly as in Proposition 4.3.3.
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Definition 8.2.2. Let G be a grid diagram representing an oriented link �L.
The uncollapsed, bigraded grid complex GC−(G) of the grid diagram G is the
chain complex defined as above; i.e. with differential specified by Equation (8.1),
and bigrading specified by the Maslov and Alexander functions from Equations (4.5)
and (8.2).

Most of the definitions from Chapter 4 adapt in a straightforward way. The
proof of Lemma 4.6.9 adapts to links, to give the following:

Lemma 8.2.3. Let G be a grid diagram for an oriented link �L, and let Oi and

Oj be markings on the same component of the link �L. Then, multiplication by Vi,

thought of as an endomorphism of the bigraded grid complex GC−(G), is chain
homotopic to multiplication by Vj.

To get a homology module associated to �L that is a module over a polyno-
mial algebra in one variable, we set the V -variables corresponding to different link
components equal to each other, as follows:

Definition 8.2.4. Let G be a grid diagram representing an oriented link �L with
	 components. Choose O-markings Oj1 , . . . , Oj� lying on the 	 different components

of �L. The collapsed grid complex of the link �L is the chain complex cGC−(G),
formed as the quotient of the bigraded grid complex GC−(G):

(8.4) cGC−(G) =
GC−(G)

Vj1 = . . . = Vj�

.

The homology of cGC−(G), written cGH−(G), is called the collapsed grid ho-
mology of G. It can be viewed as a module over F[U ], where the variable U acts
as multiplication by any Vi for i ∈ {1, . . . , n}.

Theorem 8.2.5. The collapsed grid homology cGH−(�L) of �L, thought of as a

bigraded F[U ]-module, is an invariant of the oriented link �L.

Proof. Recall that cGC−(G) depends on a choice of a sequence Oj1 , . . . , Oj� ; and
its F[U ]-module structure is defined using a choice of Vi for i ∈ {1, . . . , n}.

To see that the F[U ]-module structure on the homology is independent of the
choice of Vi, Lemma 8.2.3 shows that multiplication by any Vi is chain homotopic
to multiplication by Vjk , where Ojk is chosen to be on the same component as Oi;

and this remains true in the quotient complex cGC−(G). Since all the different
Vjk are identified in cGC−(G), it follows that all the Vi’s induce chain homotopic

endomorphisms of cGC−(G).
We claim next that the homology module is also independent of the choice

of the distinguished sequence of O-markings, Oj1 , . . . , Oj� . Lemma 5.2.13 gives
a quasi-isomorphism from the iterated mapping cone of Vjk − Vjk+1

acting on

GC−(G), where k = 1, . . . , 	 − 1, to the quotient complex cGC−(G); Lemma 8.2.3
gives homotopies between Vjk − Vjk+1

and Vj′k
− Vj′k+1

(as we vary the sequence

Oj1 , . . . , Oj�); and Lemma 5.2.14 gives an isomorphism from the iterated mapping
cone for Vjk − Vjk+1

with that for Vj′k
− Vj′k+1

.

Having established that the F[U ]-module cGH−(G) depends on the grid dia-
gram only, it remains to see that it is independent of this choice, as well. This
follows from the observation that grid moves for links induce isomorphisms on col-
lapsed grid homology by the same formulas as they did for knots in Chapter 5.
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Remark 8.2.6. Another approach to get a link invariant of the 	-component

oriented link �L is to view the homology of the bigraded grid complex GC−(G) as
a module over the polynomial algebra F[U1, . . . , U�], whose variables correspond to

the various components of �L; see Definition 11.1.1. The above discussion can be
adapted to show that the resulting bigraded homology is also an invariant of the

oriented link �L. This bigraded grid homology will be further studied in Chapter 11.

8.2.1. Simply blocked grid homology for links. Using the collapsed grid
homology of links, the notion of simply blocked grid homology (of Definition 4.6.12)
extends to links. Although we will not need this version for the rest of the present
chapter, we give the construction now and compute its Euler characteristic.

Definition 8.2.7. Suppose that G is a grid diagram representing an oriented

	-component link �L, and let GC−(G) be its grid complex. Choose a sequence

Oj1 , . . . , Oj� of O-markings, one on each component of �L, and let

ĜC (G) =
cGC−(G)

Vj1 = 0
=

GC−(G)

Vj1 = · · · = Vj� = 0
.

The chain complex ĜC (G) is the simply blocked, bigraded grid complex for

the grid diagram G of �L, and its homology ĜH (G), is called the simply blocked,

bigraded grid homology for the link �L. We can also form the fully blocked

complex G̃C(G) (with Alexander grading as given in Equation (8.2)), counting
only rectangles disjoint from O,X; i.e. equivalently, this is the quotient

G̃C(G) =
GC−(G)

V1 = · · · = Vn = 0
.

The homology of this chain complex is the fully blocked grid homology of G.

The fully blocked grid homology is in practice easier to compute. It is related
to the simply blocked homology just as in the case of knots. In fact, the proof of
Proposition 4.6.15 immediately adapts to give the following:

Proposition 8.2.8. Let W be the two-dimensional bigraded vector space, with
one generator in bigrading (0, 0) and the other in bigrading (−1,−1). Then, there

is an isomorphism G̃H(G) ∼= ĜH (G) ⊗ W⊗(n−�) of bigraded vector spaces.

Proposition 8.2.9. The bigraded vector space ĜH (G) is an invariant of the

oriented link �L specified by G.

Proof. The statement follows exactly as the invariance of the collapsed grid

homology cGH−(�L). (See Theorem 8.2.5.)

Proposition 8.2.10. Let �L be an oriented link with 	 components. The Euler
characteristics of the various versions of grid homology are related to the sym-
metrized Alexander polynomial Δ�L(t) by the formulas:

χ(G̃H(�L)) = Δ�L(t) · (1 − t−1)n−1 · t
�−1
2(8.5)

χ(ĜH (�L)) = Δ�L(t) · (t 1
2 − t−

1
2 )�−1(8.6)

χ(cGH−(�L)) = Δ�L(t) · t 1
2 · (t 1

2 − t−
1
2 )�−2.(8.7)



8.3. GRID HOMOLOGY AND SADDLE MOVES 139

Proof. We have the following analogue of Proposition 4.7.2 (Equation (4.26)):

(8.8) A(x) = −
∑
x∈x

wD(x) +
1

8

8n∑
j=1

wD(pj) −
n − 	

2
= A′(x) + a(G) − n − 	

2
,

where D is the oriented link diagram defined by the grid G presenting �L. The
novelty here is the appearance of the number 	 of components in the formula; its
proof, though, is straightforward. It follows that

χ(G̃H(�L)) = χ(G̃C(G))

=
∑

x∈S(G)

(−1)M(x)tA(x) = (−1)n−1ε(G) det(M(G)) · ta(G)−n−�
2

= DG(t)(t
1
2 − t−

1
2 )n−1t

�−n
2 = Δ�L(t)(1 − t−1)n−1t

�−1
2 ,

verifying Equation (8.5). The first step uses the fact that the Euler characteris-
tic of a complex agrees with that of its homology, the second is straightforward,
the third uses Equation (8.8), the fourth is the definition of DG(t), and the fifth
uses Theorem 3.3.6. The other two equations follow from Equation (8.5), since

χ(G̃H(�L)) = χ(ĜH (�L))(1 − t−1)n−� and χ(ĜH (�L)) = χ(cGH−(�L))(1 − t−1).

8.3. Grid homology and saddle moves

We define and study maps on collapsed grid homology associated to saddle

moves. If �L′ is obtained from �L by a saddle move, and the number of components

of �L′ is one more than the number of components of �L, then we say that �L′ is

obtained from �L by a split move and �L is obtained from �L′ by a merge move.

Proposition 8.3.1. As usual, let W = F(0,0)⊕F(−1,−1). If �L′ is obtained from
�L by a split move, then there are F[U ]-module maps

σ : cGH−(�L) ⊗ W → cGH−(�L′)

μ : cGH−(�L′) → cGH−(�L) ⊗ W

with the following properties:

• σ is homogeneous of degree (−1, 0),
• μ is homogeneous of degree (−1,−1),
• μ ◦ σ is multiplication by U ,
• σ ◦ μ is multiplication by U .

We postpone the proof of the above proposition, after giving some of its imme-
diate consequences. The first application is the following generalization of Propo-
sition 6.1.4:

Proposition 8.3.2. Let �L be an 	-component link, Tors = Tors(cGH−(�L)),
and r = 2�−1. Then there is an isomorphism

(8.9) cGH−(�L)/Tors ∼= F[U ]r.

Proof. We will use the fact that any submodule of F[U ]m is of the form F[U ]k with

k ≤ m. Equation (8.9) is proved by induction on the number of components 	 of �L,
with the basic case 	 = 1 supplied by Proposition 6.1.4. Assume that Equation (8.9)
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holds for all links with 	 components. If �L′ has 	 + 1 components, there is a

saddle move connecting �L′ to �L, where �L has 	 components. Proposition 8.3.1

and Lemma 6.1.3 gives an inclusion of cGH−(�L′)/Tors into cGH−(�L)⊗W/Tors ∼=
F[U ]2r (by the induction hypothesis), showing that cGH−(�L′)/Tors ∼= F[U ]r

′
with

r′ ≤ 2�. Proposition 8.3.1 and Lemma 6.1.3 give an inclusion of cGH−(�L) ⊗
W/Tors ∼= F[U ]2r into cGH−(�L′)/Tors, showing that r′ = 2�, as claimed.

The above proposition can be used to generalize τ to links, as follows:

Definition 8.3.3. Let �L be an oriented link with 	 components. The τ-set of
�L is the sequence of integers τmin(�L) = τ1 ≤ τ2 ≤ · · · ≤ τ2�−1 = τmax(�L), defined

as follows. Choose a generating set of 2�−1 elements for cGH−(�L)/Tors, with the
property that each element is homogeneous with respect to the Alexander grading.
The τ -set obtained by multiplying the Alexander gradings of these generators by
(−1), and placing the result in increasing order.

Corollary 8.3.4. The τ -set of �L is an oriented link invariant.

Proof. Definition 8.3.3 appears to depend on a choice of basis; to show it does not,
we give an alternative, basis-independent formulation. Consider the non-torsion

quotient M = cGH−(�L)/Tors, thought of as a graded F[U ]-module induced by the
Alexander grading. Decompose M =

⊕
s∈Z Ms, where for each s, Ms is the finite

dimensional vector space spanned by elements with Alexander grading s. Form
the Poincaré series of M , PM (t) =

∑
s∈Z dim Ms · ts ∈ Z[t, t−1�, and notice that

PM (t) is a sum, over each generator ξ in cGH−(�L)/Tors of
∑∞

s=0 t−s times tA(ξ).

By Proposition 8.3.2, the τ -set of �L is the ordered list of (−1) times the exponents
appearing in the polynomial (1− t−1) · PM (t), taken with multiplicity specified by
their respective coefficients. The fact that the τ -set has r = 2�−1 elements in it
follows immediately from Proposition 8.3.2.

Since PM (t) is naturally associated to the bigraded F[U ]-module cGH−(�L),
which is a link invariant by Theorem 8.2.5, it follows that the τ -set is also an
invariant.

Remark 8.3.5. Grid homology for knots, and hence also τ , is independent of
the orientation on the knot (Proposition 5.3.2). The same is not true for links.

We will need only τmax(�L) and τmin(�L), which can be characterized as fol-

lows: τmin(�L) is (−1) times the maximal Alexander grading of any homogeneous,

non-torsion element in cGH−(�L); τmax(�L) is (−1) times the minimal Alexander

grading of any homogeneous element of cGH−(�L)/Tors that is not contained in

U · (cGH−(�L)/Tors).

Theorem 8.3.6. Let �L and �L′ be two oriented links that differ by a saddle

move, and suppose that �L′ has one more component than �L. Then,

τmin(�L) − 1 ≤ τmin(�L′) ≤ τmin(�L)(8.10)

τmax(�L) ≤ τmax(�L
′) ≤ τmax(�L) + 1.(8.11)
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Proof. Consider a non-torsion element ξ ∈ cGH−(�L)⊗W with maximal Alexan-

der grading, i.e. the Alexander grading of ξ is −τmin(�L). By Proposition 8.3.1, its

image σ(ξ) is non-torsion, and the Alexander grading of σ(ξ) is −τmin(�L), hence

−τmin(�L) ≤ −τmin(�L′). Similarly, if η ∈ cGH−(�L′) is a non-torsion element with

maximal Alexander grading −τmin(�L′), then its image μ(η) has Alexander grading

−τmin(�L′) − 1, and it is non-torsion, so −τmin(�L′) − 1 ≤ −τmin(�L). Rearranging
this gives Inequality (8.10).

To verify Inequality (8.11), consider the free F[U ]-modules

(cGH−(�L) ⊗ W )/Tors

and

cGH−(�L′)/Tors.

The split and merge maps induce F[U ]-module maps on these quotients. Pick

a homogeneous element g ∈ cGH−(�L′)/Tors with Alexander grading −τmax(�L
′)

that generates a free summand. Then μ(g) has Alexander grading −τmax(�L
′) − 1;

since σ ◦ μ = U , either μ(g) generates a free summand in cGH−(�L) ⊗ W/Tors,
or it is U -times such an element. Since the minimal Alexander grading of any

generator of a free summand in cGH−(�L) ⊗ W/Tors is −τmax(�L) − 1, it follows

that −τmax(�L
′) − 1 ≥ −τmax(�L) − 2, giving the upper bound on τmax(�L

′) from
Equation (8.11). The lower bound follows similarly.

Exercise 8.3.7. (a) The positive Hopf link H+ differs by a single saddle move
from both the unknot (which has τ = 0) and the right-handed trefoil (which has
τ = 1). Use Theorem 8.3.6 to determine τmax(H+) and τmin(H+).

(b) Let �L be an oriented link and −�L be the same link with the opposite orientation

on all of its components. Show that the τ -sets of �L and −�L coincide.
(c) Find a link with two different orientations whose associated τ -sets are different.

Having drawn consequences of Proposition 8.3.1, we turn to its proof. Let G
and G′ be two grid diagrams that differ only in the placement of their O-markings
in two distingished columns. Assume that in those two distinguished columns, the
circular ordering of the O- and the X-markings for G and G′ are as specified in
Figure 8.1; and label the distinguished O-markings O1 and O2 for G and O′

1 and
O′

2 for G′ as in the figure. As pictured there, the distinguished vertical circle βi

that separates the two markings is divided into two disjoint arcs A and B, so that
B is adjacent to the X-markings, but A is not; O1 is at the lower left end of A
while O2 is at the upper right; O′

1 is at the lower right and O′
2 is at the upper left.

If �L and �L′ differ by a saddle move, then we can find grid diagrams G and G′ as

above for �L and �L′ respectively. We need the following:

Lemma 8.3.8. If O1 and O2 are on the same component of the link specified by
G, then there is an isomorphism of bigraded F[U ]-modules

H

(
cGC−(G)

V1 = V2

)
∼= cGH−(G) ⊗ W.

Proof. Since O1 and O2 are on the same component of the link, cGC−(G)
can be viewed as a free module over F[V1, V2]. By Lemma 7.4.2, multiplication
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2 2

1 1

A

′

′

Figure 8.1. Grid diagrams for a saddle move. The arc A
is indicated by the thicker segment. The complement of A in the
circle is B.

by V1, thought of as an endomorphism of cGC−(G), is chain homotopic to V2.
Lemma 7.4.1 now applies, and provides the stated isomorphism.

Proof of Proposition 8.3.1. Identify the grid states of G and G′. The grid
states in G (and likewise in G′) are classified in two types: denote by A the set of
grid states whose component in the distinguished vertical circle βi lies in the arc A
between O1 and O2; and denote by B the set of grid states whose βi-component is
on the other arc B.

Since O1 and O2 are in different components in G′, we can choose them to be
part of the sequence of Ojk defining cGC−(G′). With this choice, multiplication
by V1 equals multiplication by V2, when thought of as endomorphisms of either

complexes cGC−(G)
V1=V2

or cGC−(G′). The resulting endomorphism is denoted by an
undecorated U .

Now we define the chain maps inducing the maps σ and μ on homology promised
in Proposition 8.3.1. These chain maps will be denoted by the same symbols σ and
μ. Define

σ :
cGC−(G)

V1 = V2
→ cGC−(G′) and μ : cGC−(G′) → cGC−(G)

V1 = V2

by

σ(x) =

{
U · x if x ∈ A
x if x ∈ B.

and μ(x) =

{
x if x ∈ A
U · x if x ∈ B.

Obviously, both composite maps σ ◦ μ and μ ◦ σ are multiplications by U .
The maps appearing in the statement of the proposition are the maps in-

duced by these chain maps on homology, composed with the identification from
Lemma 8.3.8. The proposition is proved once we show that the maps defined on
the chain level are, indeed, chain maps which have the required behaviour on bi-
gradings.

To prove that σ is a chain map, consider a rectangle r ∈ Rect(x,y) connecting
the grid states x and y. Since the X-markings are at the same positions in both
diagrams, r is disjoint from X in G exactly when it is disjoint from X in G′. It is
easy to see that if both grid states x,y are in A or both are in B, then the rectangle
r intersects {O1, O2} with the same multiplicity as it intersects {O′

1, O
′
2}, viewed as

a rectangle in either G or G′. If x ∈ A and y ∈ B, then r, thought of as a rectangle
in G, contains exactly one of O1 or O2, but it does not contain either of O′

1 or O′
2.

Similarly, if x ∈ B and y ∈ A, r contains neither O1 nor O2, but it contains exactly
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one of O′
1 or O′

2. It follows from these observations that σ is a chain map. The
map μ is a chain map by the same logic.

In comparing the Maslov gradings of x for G and G′, note that for an element
x ∈ A we have MO′(x) = MO(x) + 1, while for x ∈ B, MO′(x) = MO(x) − 1. The
Alexander gradings are given by

A(x) =
1

2
(MO(x) − MX(x)) − n − 	

2
and

A′(x) =
1

2
(MO′(x) − MX(x)) − n − 	 − 1

2
,

where 	 denotes the number of components of �L. It follows that σ and μ have the
stated behaviour on the bigradings.

8.4. Adding unknots to a link

To establish Theorem 8.1.1, we will need to understand links of the form Ud(K).
For such links, the τ -set has a very simple structure.

Lemma 8.4.1. If L is a link of the form L = Ud(K) for some knot K, then, for

any orientation �L on L, τmin(�L) = τmax(�L) = τ (K).

This lemma is a quick consequence of the following more general description of
how collapsed grid homology changes when we add an unknotted, unlinked compo-
nent:

Lemma 8.4.2. Let �L be an oriented link, and let �L′ = U1(�L). Then, there is an
isomorphism of bigraded F[U ]-modules

(8.12) cGH−(�L′) ∼= cGH−(�L)�1, 0� ⊕ cGH−(�L).

Before proving this lemma, we give a slight extension of grid diagrams which

will be useful for studying the links Ud(�L).

Definition 8.4.3. An extended grid diagram is a generalization of grid
diagrams, where now squares can be marked by both an X and an O; i.e. an
extended grid diagram satisfies Conditions (G-1) and (G-2) in Definition 3.1.1. A
square marked by both an X and O is called a doubly-marked square.

An extended grid diagram specifies an oriented link as in the case of usual grid
diagrams, with the understanding that each doubly-marked square corresponds to
an unknotted, unlinked component, oriented arbitrarily. Let G be a given extended
grid diagram. The notions of grid states, the grid complexes GC− and cGC−, and
the collapsed homology cGH− generalize immediately to the case of extended grids.

Example 8.4.4. The 1× 1 extended grid G (with an X and an O in the single
square) represents the unknot, has a single generator and ∂−

X = 0. It follows at once

that cGH−(G) ∼= F[U ]. In particular, this homology is isomorphic to GH−(O).

Example 8.4.5. The two-component unlink can be represented by a 2 × 2
extended grid diagram G, with two squares which are simultaneously marked with
an O and an X. This grid diagram has two grid states p and q, both with Alexander
grading zero. Moreover, M(p) = 0 and M(q) = −1, and the differential ∂−

X vanishes

identically. It follows that cGH−(G) is isomorphic to F[U ](0,0) ⊕ F[U ](−1,0).
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O1 z

X2

X1

Figure 8.2. Destabilizing doubly-marked squares. Destabi-
lize the 2 × 2 grid containing a doubly-marked square. We have
shaded the row and the column whose contributions cancel in
HI

O1,X1
◦ ∂I

N.

An n × n extended grid diagram G is called an extended destabilization of a
grid diagram G with grid number n + 1 if the markings in the complement of the
row and column through a doubly-marked square in G agree with the markings in
the complement of a pair of consecutive rows and columns in G. In this case, there
is a distinguished 2 × 2 block in G, with all four squares marked. Adapting the
stabilization invariance proof in Proposition 5.2.1 gives the following:

Lemma 8.4.6. Let G be an extended grid diagram with a single doubly-marked
square, and suppose that G is an extended destabilization of G. Then, there is an
isomorphism of bigraded F[U ]-modules cGH−(G) ∼= cGH−(G).

Proof. Given G, there are two choices of G, corresponding to the two choices of
markings in the distinguished 2 × 2 block. Since these two grid diagrams can be
connected by a switch, it suffices to consider the case where, in the distinguished
2 × 2 square, the two O-markings are diagonal. We would like to use the destabi-
lization argument from Chapter 5 in this case. To this end, notice that proof of
Proposition 5.2.1 uses the placement of the three special markings in the distin-
guished 2×2 square (of type X:SW), but does not use significantly the fact that the
fourth square is unmarked. Thus, the proof adapts, to give a quasi-isomorphism

cGC−(G) → Cone(V1 − V2 : cGC−(G)[V1] → cGC−(G)[V1]).

Compose the induced map on homology with the F[U ]-module isomorphism

H(Cone(V1 − V2 : cGC−(G)[V1] → cGC−(G)[V1]) ∼= cGH−(G)

from Lemma 5.2.16 to get the stated isomorphism.

Assume that �L is a link of 	 − 1 components and �L′ = U1(�L). Suppose that G

is an extended grid diagram representing U1(�L), and the unlink component is rep-
resented by a square marked simultaneously by X1 and O1. Assume moreover that
there is a 2×2 box of squares, the upper left of which is the doubly-marked square,
and the lower right of which is marked X2. Number the variables so that the V -
variable corresponding to this lower row is V2. Let G be the grid diagram obtained
by deleting the row and column of the doubly-marked square; see Figure 8.2.

Lemma 8.4.7. For G and G as above, there is an isomorphism of bigraded
F[U ]-modules cGH−(G) ∼= cGH−(G)�1, 0� ⊕ cGH−(G).
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Proof. The proof of Proposition 5.2.17 applies, after suitable modifications. Let
I(G) denote the set of those generators in S(G) which have a component at the
lower right corner of the O1X1-marked square, and let N(G) be the complement of
I(G) in S(G). From the placement of the X-markings, we see that N(G) spans a
subcomplex N in GC−(G). Write the differential on GC−(G) as a 2 × 2 matrix

∂−
X =

(
∂I
I 0

∂N
I ∂N

N

)
.

There is a one-to-one correspondence between elements of I(G) and grid states
in S(G) for the destabilized diagram, inducing an isomorphism of bigraded chain
complexes e : (I, ∂I

I) → GC−(G)[V1]. (Compare Lemma 5.2.18.) Observe that the
grading shifts here are different from the case of Lemma 5.2.18 because of two
reasons: the link represented by G has one fewer component, and the O-marking
in the destablized 2 × 2 block is placed differently.

Define a map HI
O1,X1

: N → I by

HI
O1,X1

(x) =
∑

y∈I(G)

∑
{r∈Rect◦(x,y)

∣∣O1∈r,r∩X={X1}}

V
O2(r)
2 · · ·V On(r)

n · y.

We claim that HI
O1,X1

is a chain homotopy equivalence between the chain complexes

(N, ∂N
N) and (I, ∂I

I), which is homogeneous of degree (1, 0). To see this, we mark
the upper right square in the 2 × 2 block with a new marking z, and consider the
corresponding operator H−

z : I → N defined by

H−
z (x) =

∑
y∈N(G)

∑
{r∈Rect◦(x,y)

∣∣z∈r,r∩X=∅}

V
O2(r)
2 · · ·V On(r)

n · y.

The usual arguments show that HI
O1,X1

and H−
z are homotopy inverses to one

another (using a homotopy counting rectangles crossing O1 and X1 and z).
We claim that HI

O1,X1
◦ ∂N

I = 0. This follows from the fact that there are two

domains which contribute to the composite HI
O1,X1

◦ ∂N
I : the horizontal and the

vertical annuli through O1X1. Both of these contribute 1; so their contributions
cancel. This relation can be expressed by the commutative diagram:

(8.13)

I N

GC−(G)[V1] GC−(G)[V1]�1, 0�

∂N
I

e

0

e ◦ HI
O1,X1

(Compare this diagram with Equation (5.22): the grading shifts are different, and
rather than multiplication by V1−V2 along the bottom horizontal, we have the zero
map; cf. Figure 8.2.)

According to Lemma A.3.8, Equation (8.13) naturally induces a chain map

Φ: Cone(∂N
I : I → N) → GC−(G)[V1] ⊕ GC−(G)[V1]�1, 0�.

Since the vertical maps from Equation (8.13) are quasi-isomorphisms, we conclude
that Φ is a quasi-isomorphism. Specialize Φ to get a quasi-isomorphism between



146 8. THE SLICE GENUS AND τ

the quotient complexes by setting Vj1 = · · · = Vj� . Note that

GC−(G)[V1]

Vj1 = · · · = Vj�

= cGC−(G),

since V1 = Vj� ; so the stated identification follows.

Proof of Lemma 8.4.2. Suppose that the unknotted, unlinked component is
represented in a 2 × 2 box of squares. After a sequence of commutation moves,
we can arrange that the 2 × 2 box of squares shares a corner with an X-marking.
Use Lemma 8.4.6 to replace the 2 × 2 box with a doubly-marked square, without
changing the homology. Lemma 8.4.7 completes the argument.

Lemma 8.4.2 illustrates the strength of grid homology over the Alexander poly-

nomial: the Alexander polynomial of U1(�L) vanishes, since U1(�L) is a split link cf.

Exercise 2.4.12(a), while grid homology of U1(�L) remembers the grid homology

of �L.

Remark 8.4.8. Notice that we did not use any invariance property of the
grid homology of an extended grid: invariance follows from the identification of
Lemma 8.4.6, but it is not needed for the proof of Lemma 8.4.2.

Proof of Lemma 8.4.1. Apply Lemma 8.4.2 d times.

Exercise 8.4.9. (a) Let �L be a link with 	 components. Show that

0 ≤ τmax(�L) − τmin(�L) ≤ 	 − 1.

(b) For any 0 ≤ k ≤ 	−1, find an 	-component link for which τmax(�L)−τmin(�L) =

k. (Hint: To realize τmax(�L) − τmin(�L) = 	 − 1, consider an unknotting sequence
for the (p, q) torus knot, and break up each unknotting operation into a pair of
saddles. Rearrange the saddles and use Theorem 8.3.6.)

8.5. Assembling the pieces: τ bounds the slice genus

According to Proposition 2.6.11, to prove Theorem 8.1.1, there are two key
properties of τ we must verify, which we do in the following two propositions.

Proposition 8.5.1. Suppose that K1 and K2 are two knots so that K2 is
constructed from K1 by a sequence of 2g saddle moves. Then |τ (K1)− τ (K2)| ≤ g.

Proof. Let �L1 and �L2 be two links that are connected by a sequence of saddle
moves; and let m denote the number of merge moves and s the number of split moves
in this sequence. Iterating Inequalities (8.10) and (8.11) from Theorem 8.3.6 gives

τmax(�L1) ≤ τmax(�L2) + m and τmin(�L2) − m ≤ τmin(�L1). When the starting and
ending links are knots, m = s = g and of course τmax(K1) = τmin(K1) = τ (K1)
and τmax(K2) = τmin(K2) = τ (K2); so the above inequalities give the claimed
bound.

Remark 8.5.2. Since a crossing change can be factored as a sequence of two
saddle moves, Proposition 8.5.1 gives another proof of the bound u(K) ≤ |τ (K)| of
Corollary 6.1.8; but it does not give the signed refinement proved in Theorem 6.1.7.

The second ingredient in the proof of Theorem 8.1.1 is the following:
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Proposition 8.5.3. Suppose that K1 and K2 are two knots, and K2 is obtained
from Ud(K1) by exactly d saddle moves. Then τ (K1) = τ (K2).

Proposition 8.5.3 will be proved by induction on the number of saddles. The
following lemma makes the induction possible:

Lemma 8.5.4. Suppose that �L′ is a link with the property that τmax(�L
′) =

τmin(�L′); and suppose that �L is obtained from �L′ by a merge move. Then, τmax(�L) =

τmin(�L) = τmax(�L
′).

Proof. Tautologically, τmin(�L) ≤ τmax(�L). Combine this with Inequalities (8.10)

and (8.11) from Theorem 8.3.6 to get τmin(�L′) ≤ τmin(�L) ≤ τmax(�L) ≤ τmax(�L
′).

Since τmin(�L′) = τmax(�L
′), it follows that τmin(�L) = τmax(�L) = τmax(�L

′).

Proof of Proposition 8.5.3. Taking saddle moves one at a time, we obtain

a sequence of links �L1 = Ud(K1), �L2, . . . , �Ld, �Ld+1 = K2. We prove τmax(�Lk) =

τmin(�Lk) = τ (K1) by induction on k. The case where k = 1 is given by Lemma 8.4.1,
and the inductive step is by Lemma 8.5.4. The case where k = d + 1 gives
τ (K1) = τ (K2).

Proof of Theorem 8.1.1. Fix a genus g cobordism from K1 to K2. Let K ′
1 and K ′

2

be as in the statement of Proposition 2.6.11. By Proposition 8.5.3, τ (K1) = τ (K ′
1)

and τ (K2) = τ (K ′
2); by Proposition 8.5.1 |τ (K ′

1) − τ (K ′
2)| ≤ g. It follows that

|τ (K1) − τ (K2)| ≤ g.

8.6. The existence of an exotic structure on R4

Corollary 8.1.2 can be used to show the existence of an exotic structure on the 4-
dimensional Euclidean space R4. The argument uses notions from four-dimensional
topology, including the concept of smooth handlebodies (cf. [77, Chapter 4]), and
three further facts which we list below. (For related discussion see also [77, Sec-
tion 9.4].)

• By [146], any closed topological 3-manifold admits a smooth structure
which is unique up to diffeomorphism; indeed, any homeomorphism be-
tween two closed smooth 3-manifolds can be isotoped to a diffeomorphism.

• According to a result of Freedman [59, 67], any knot K ⊂ S3 with
ΔK(t) = 1 is topologically slice (as in Definition 2.6.7).

• A theorem of Freedman and Quinn [60] provides that any connected, non-
compact topological four-manifold (possibly with non-empty boundary)
admits a smooth structure.

Let XK be the smooth, compact four-manifold-with-boundary obtained by at-
taching a 4-dimensional 2-handle to D4 along K with framing 0. This means that
XK is obtained by gluing together D4 and D2 × D2, so that nd(K) ∼= S1 × D2 ⊂
S3 = ∂D4 is identified with (∂D2) × D2 = S1 × D2 using the Seifert framing
along K.

Lemma 8.6.1. For any topologically slice knot K ⊂ S3, there is a smooth 4-
manifold R = RK homeomorphic to R4 so that XK smoothly embeds into R.
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topological
slice disk

D4

D4

S4 S4

p

S4 - Int XK

XK

K

Figure 8.3. Drilling out the topological slice disk from one
of the two copies of D4 in S4. The manifold-with-boundary XK

topologically embeds into R4 = S4 − {p}.

Proof. View S4 as the union of two D4’s, drill out a tubular neighborhood of
the topological slice disk of K from one of them, and glue this neighbourhood to
the other D4. The resulting manifold is homeomorphic to XK , and it is equipped
with a topological embedding into R4 = S4 \ {p} ⊂ S4 ; see Figure 8.3. By
[60] any connected, non-compact topological four-manifold (with possibly non-
empty boundary) admits a smooth structure, so we can equip R4 \ Int XK with
a smooth structure. Since 3-manifolds admit unique smooth structures and any
homeomorphism is isotopic to a diffeomorphism [146], the identification of ∂XK

with ∂(R4\Int XK) can be isotoped to a diffeomorphism. Gluing back XK with this
diffeomorphism gives a smooth manifold R. By the choice of the gluing diffeomor-
phism, it is obviously homeomorphic to R4; and by construction, XK is smoothly
embedded into R.

Lemma 8.6.2. Let K ⊂ S3 be a knot. If XK embeds smoothly into R4, then K
is smoothly slice.

Proof. As a preliminary point, let Dε ⊂ D4 denote the ball of radius ε around the
origin in D4. It is easy to see that for any smooth map φ : D4 → R4 with non-zero
differential at the origin, for all sufficiently small ε > 0, the complement of φ(Dε)
is diffeomorphic to R4 \ D4.

Recall that XK is the union of D4 and the 4-dimensional 2-handle D2 × D2,
the latter attached to D4 by identifying the tubular neighbourhood of K ⊂ ∂D4

with (∂D2) × D2 (using the Seifert framing). For all ε > 0, there is a copy of K
in S3 ∼= ∂Dε ⊂ D4 ⊂ XK , and there is a smoothly embedded, two-dimensional
disk in XK \ Int(Dε) whose boundary is K. Thus, the image of this disk under the
embedding of XK in R4 is a slice disk for K.

Corollary 8.6.3. Suppose that K ⊂ S3 is a knot with ΔK(t) = 1 and τ (K) �=
0. Then the manifold RK from Lemma 8.6.1 is homeomorphic but not diffeomorphic
to the standard 4-dimensional Euclidean space R4.

Proof. Since ΔK(t) = 1, Freedman’s theorem [59, 67] ensures that K is topologi-
cally slice, so Lemma 8.6.1 gives a smooth four-manifold RK , homeomorphic to R4,
which contains a smoothly embedded copy of XK . Since τ (K) �= 0, Corollary 8.1.2
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ensures that the knot K is not smoothly slice, so by Lemma 8.6.2 the four-manifold
XK does not embed smoothly into R4.

Corollary 8.6.4. There is an exotic smooth structure on R4.

Proof. Consider the 0-framed negative Whitehead double W−
0 (T−2,3) of the

left-handed trefoil knot T−2,3. The Alexander polynomial of this knot is equal
to 1. In Exercise 4.3.6, we considered a grid diagram G of W−

0 (T−2,3) together
with a generator x = x−(G); a straightforward computation shows that A(x) = 1.
By Corollary 6.4.9, τ (W−

0 (T−2,3)) ≤ −1; in particular, τ (W−
0 (T−2,3)) is non-zero.

Applying Corollary 8.6.3 concludes the proof.

Remark 8.6.5. Since the Seifert genus of W−
0 (T−2,3) is equal to 1, it fol-

lows that τ (W−
0 (T−2,3)) = −1. By Corollary 7.4.5 this equation implies that

τ (W+
0 (T2,3)) = gs(W

+
0 (T2,3) = 1. (See also Section 12.4 for a more conceptual

interpretation of the above computation.) The slice genus of W−
0 (T2,3) (or equiva-

lently, of W+
0 (T−2,3)), on the other hand, is still unknown.

Remark 8.6.6. There are many other topologically slice, but not smoothly slice
knots, which can also be used to construct exotic R4’s. The methods applied here,
however, fall short of reproving the result that there are infinitely many (in fact,
uncountably many) distinct exotic R4’s. For further examples, see [77, Section 9.4].

8.7. Slice bounds vs. unknotting bounds

In Chapter 6 we discussed bounds on the unknotting number coming from τ .
In fact, τ should really be thought of as a tool for studying the four-ball genus; the
fact that it says something about the unknotting number is a consequence of the
familiar inequality gs(K) ≤ u(K).

There are other methods for studying the unknotting number, independently
from the slice genus. One particularly effective tool is Montesinos’ trick [147]: if
K ⊂ S3 has unknotting number equal to n, then the three-manifold Σ(K) obtained
as the branched double cover of S3 branched along K can be constructed by Dehn
surgery on an n-component link in S3. In particular, the abelian group H1(Σ(K);Z)
can be generated by n elements. This obstruction can be made explicit: the Goeritz
matrix for a knot gives a presentation of H1(Σ(K);Z). (See for example [18,
Theorem 8.20].)

Montesinos’ trick can be used to show that the four-ball genus and the unknot-
ting number can be arbitrarily large, as follows:

Example 8.7.1. Consider the family of slice knots Kn = #n(T2,3#T−2,3) in-
dexed by n ∈ Z≥0. Since the branched double cover of S3 along T2,3 has first
homology Z/3Z, it follows that H1(Σ(Kn);Z) ∼= (Z/3Z)2n. Montesinos’s trick
gives the inequality that u(Kn) ≥ 2n. It follows easily that u(Kn) = 2n.

Montesinos’ trick can be used effectively as a tool for bounding the unknotting
number, especially when it is combined with further obstructions to realizing Σ(K)
as surgery on an n-component link. A nice geometric construction for ruling out
knots with unknotting number equal to one is given in [79]. Other such surgery
obstructions are provided by Heegaard Floer homology, see for example [162, 176].





CHAPTER 9

The oriented skein exact sequence

The skein relation (Theorem 2.4.10) is an effective device for computing the
Alexander polynomial. The analogue of this tool for grid homology is the (oriented)
skein exact sequence, which is the subject of the present chapter.

In Section 9.1, we state the skein exact sequence, and in Section 9.2, we prove a
chain level analogue. The versions stated in Section 9.1 are deduced in Section 9.3.
In Section 9.4, we give some simple computations using the skein exact sequence.
Section 9.5 gives a further application of this tool: we describe infinite collections
of knots with the same grid homology, generalizing our earlier discussion for the
Alexander polynomial. (Compare Lemma 2.5.4.) Examples of this kind were first
described in [84]. In Section 9.6, we relate a map appearing in the skein exact
sequence with the map associated to a crossing change from Chapter 6. This
relationship will be used in Chapter 10. We conclude in Section 9.7 with a short
discussion of skein sequences in related contexts.

A skein exact sequence for knot Floer homology was first proved in [172]; we
follow here the treatment from [167].

9.1. The skein exact sequence

Recall the skein relation for the Alexander polynomial from Theorem 2.4.10;

see also Section 3.3. To set up notation, let �L+, �L−, and �L0 be three oriented
links which form a skein triple in the sense of Definition 2.4.9; see Figure 9.1. As
explained in Section 2.4, the Alexander polynomials of these three oriented links
are related by the skein relation Δ�L+

(t) − Δ�L−
(t) = (t

1
2 − t−

1
2 ) · Δ�L0

(t).

�L0
�L−�L+

Figure 9.1. Crossing conventions for the skein exact sequence.

Let 	+, 	−, and 	0 denote the number of components of �L+, �L−, and �L0

respectively. Clearly, 	+ = 	−. If the two strands at the crossing in �L+ belong
to the same component, then 	0 = 	+ + 1; otherwise 	0 = 	+ − 1.

In grid homology the above skein relation is replaced by a skein exact sequence.
Like the skein relation, this exact sequence involves oriented link invariants. There
are several versions of the skein sequence; the first variant we state (Theorem 9.1.1)
is expressed in terms of the collapsed grid homology of a link cGH− introduced in
Section 8.2. When the link has one component, this invariant is the grid homology
of that knot in the sense of Chapter 4.

151
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We will be taking the tensor product (over F) with a four-dimensional bigraded
vector space J ∼= F(0,1)⊕F(−1,0)⊕F(−1,0)⊕F(−2,−1). If X is a bigraded F[U ]-module,
then there is an isomorphism of bigraded F[U ]-modules

(9.1) X ⊗ J ∼= X�0,−1� ⊕ X�1, 0� ⊕ X�1, 0� ⊕ X�2, 1�.
Theorem 9.1.1. Let (�L+, �L−, �L0) be an oriented skein triple. Let 	 and 	0

denote the number of components of �L+ and �L0 respectively. If 	0 = 	 + 1, then
there is a long exact sequence
(9.2)

cGH−
m(�L+, s) cGH−

m(�L−, s) cGH−
m−1(

�L0, s) cGH−
m−1(

�L+, s)
f− g− h−

If 	0 = 	 − 1, there is an exact sequence
(9.3)

cGH−
m(�L+, s) cGH−

m(�L−, s) (cGH−(�L0) ⊗ J)m−1,s cGH−
m−1(

�L+, s)
f− g− h−

where J is as in Equation (9.1). In both cases, the maps f−, g−, and h− fit together
to give homomorphisms of F[U ]-modules.

For example, if �L+ = K+ and �L− = K− are knots, so that �L0 = �K0 is a
two-component link, then Equation (9.2) specializes to the exact sequence

GH−
m(K+, s) GH−

m(K−, s) cGH−
m−1(

�K0, s) GH−
m−1(K+, s)

f− g− h−

Theorem 9.1.1 has an analogue using simply blocked grid homology.

Theorem 9.1.2. Let (�L+, �L−, �L0) be an oriented skein triple, with 	, 	0, and
J as above. If 	0 = 	 + 1, then there is an exact sequence

ĜHm(�L+, s) ĜHm(�L−, s) ĜHm−1(�L0, s) ĜHm−1(�L+, s)
f̂ ĝ ĥ

If 	0 = 	 − 1, there is an exact sequence

ĜHm(�L+, s) ĜHm(�L−, s) (ĜH (�L0) ⊗ J)m−1,s ĜHm−1(�L+, s)
f̂ ĝ ĥ

It is convenient to express three-periodic long exact sequences as exact trian-
gles. (See Section A.2.) In this notation, the long exact sequence appearing in
Equation (9.2) takes the following form:

cGH−(�L+) cGH−(�L−)

cGH−(�L0)

f−

g−h−

where f− and h− are bigraded F[U ]-module maps, and g− is an F[U ]-module map
that is homogeneous of degree (−1, 0).

Taking the graded Euler characteristics of the skein exact sequences (in The-
orems 9.1.1 and 9.1.2) gives back the skein relation for the Alexander polynomial.
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Whereas the skein relation computes the Alexander polynomial of any link in a skein
triple in terms of the other two, the skein exact sequence gives only a relationship
between the grid homologies of these three links.

In the proof of the skein exact sequence, we use two closely related grid diagrams

G+ and G−, representing �L+ and �L− respectively; see Figure 9.2 or 3.18. By
changing the placements of the X-markings locally on G− and G+, we obtain two

different grid diagrams G0 and G′
0, both representing �L0, see Proposition 3.3.11.

We find it convenient to work with the uncollapsed, bigraded grid complex
from Definition 8.2.2. We construct a chain map P+,− : GC−(G+) → GC−(G−)
between these complexes, whose mapping cone, with a suitable grading shift, is
quasi-isomorphic to the mapping cone of V2 − V1 : GC−(G0) → GC−(G0), where

V1 and V2 are two formal variables corresponding to the two strands meeting in �L+;
see Theorem 9.2.1. The quasi-isomorphism between these mapping cones gives rise
to all of the exact sequences appearing in Theorems 9.1.1 and 9.1.2. The different
variations result from different algebraic specializations of the grid complexes.

9.2. The skein relation on the chain level

Let (�L+, �L−, �L0) be an oriented skein triple (as in Definition 2.4.9) and choose
a grid realization (G+,G−,G0,G

′
0) of this triple (as in Definition 3.3.9). The main

result of this section is the following chain level analogue of the skein exact sequence:

Theorem 9.2.1. Let 	 denote the number of components of �L+ (and �L−), and

let 	0 denote the number of components of �L0 (in particular, |	 − 	0| = 1). There
is a bigraded chain map P+,− : GC−(G+) → GC−(G−) of F[V1, . . . , Vn]-modules,
between the (uncollapsed) grid complexes, and a bigraded quasi-isomorphism from
the mapping cone of P+,− to

Cone(V2 − V1 : GC−(G0) → GC−(G0))�−1,
	0 − 	 − 1

2
�.

The proof of Theorem 9.2.1, will occupy the rest of this section.
The four grid diagrams, forming the grid realization of the skein triple, that

come into play in the proof are illustrated in Figure 9.2. The existence of such grid
realizations was verified in Lemma 3.3.10. We will need the additional property that
the two distinguished X-markings occur in consecutive rows; this can be arranged
by adapting the proof of Lemma 3.3.10 in a straightforward way. In two of the
diagrams, we label the two distinguished X-markings by “Y ”, as in Figure 9.2.

G+ G0 G′
0 G−

X

X

O3

O4

Y

Y

O3

O4

Y

Y

O3

O4 O4

O3

X

X

Figure 9.2. Grid diagrams for the skein exact sequence.
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βi

X1 X′
1Y1

X2

Y2

O3

O4

O1

O2

γi

c c′

Figure 9.3. Simultaneous grid diagram for a skein triple.

Draw all four diagrams simultaneously on one grid, as shown in Figure 9.3.
That figure also indicates labels on the various X- and Y -markings. As in the
proof of commutation invariance, instead of moving the O-markings (which we
think of as fixed for all four diagrams), we vary the choice of one distinguished ver-
tical circle, βi and γi. That is, all four grid diagrams G+, G−, G0, and G′

0 use the
same horizontal circles and O-markings; the grid diagram G+ uses X-markings X =
{X1, . . . , Xn} and vertical circles β = {β1, . . . , βn}; while G− uses the X-markings
X′ = {X ′

1, X2, . . . , Xn}, and vertical circles γ = {β1, . . . , βi−1, γi, βi+1, . . . βn}. Let-
ting Y = {Y1, Y2, X3, . . . , Xn}, the grid diagram G0 uses the vertical circles β and
X-markings Y, and G′

0 uses the vertical circles γ and X-markings Y.
The two distinguished X-marked squares in G+ (marked by X1 and X2) meet

at a common corner, denoted c. The two distinguished X-marked squares in G0

(marked by Y1 and Y2) also meet at c. Similarly, the two distinguished X-marked
squares in G− (marked by X ′

1 and X2) share a corner denoted c′; and the two
distinguished X-marked squares in G′

0 (marked by Y1 and Y2) also meet at c′.
As in the stabilization invariance proof, partition the grid states according

to whether or not they contain the distinguished corner. Specifically, partition
S(G+) = I(G+)∪N(G+) according to whether or not the given grid state x contains
the corner point c; and partition S(G0) = I(G0)∪N(G0) according to the same cri-
terion. Similarly, partition S(G−) = I′(G−)∪N′(G−) and S(G′

0) = I′(G′
0)∪N′(G′

0)
according to whether or not x contains the corner point c′. Think of GC−(G+) as
the mapping cone of a map ∂N

I : (I, ∂I
I) → (N, ∂N

N) that counts rectangles crossing
exactly one of the two distinguished Y -markings; and GC−(G0) as the mapping
cone of ∂I

N : (N, ∂N
N) → (I, ∂I

I) that counts rectangles crossing exactly one of the
two distinguished X-markings. Although the roles of I and N as sub- or quotient-
complexes are reversed for G+ and G0, the complexes themselves are naturally

identified. Similarly, think of GC−(G′
0) as the mapping cone of ∂N′

I′ : (I′, ∂I′

I′ ) →
(N′, ∂N′

N′ ) (counting rectangles crossing exactly one of the two distinguishedX-

markings), and GC−(G−) as the mapping cone of ∂I′

N′ : (N′, ∂N′

N′ ) → (I′, ∂I′

I′ ) (count-
ing rectangles crossing exactly one of the two distinguished Y -markings).
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Under the natural identification of grid states for G+ and G0, the Alexander
functions for G+ and G0 can be thought of as giving two different functions A+

and A0 on the same set of grid states. Similarly, identify grid states for G− and
G′

0, equipped with two different Alexander functions A− and A′
0. Consider also

the one-to-one correspondence T : I′(G′
0) → I(G+), uniquely characterized by the

property that T (x) \ (T (x) ∩ βi) = x \ (x ∩ γi).

Lemma 9.2.2. For x ∈ N(G+) = N(G0),

M+(x) = M0(x), A+(x) − 1

2
− 	

2
= A0(x) − 	0

2
;

for x ∈ N′(G−) = N′(G′
0),

M−(x) = M ′
0(x), A−(x) +

1

2
− 	

2
= A′

0(x) − 	0
2

;

for x ∈ I′(G′
0) and T (x) ∈ I(G+),

M ′
0(x) = M+(T (x)) + 1, A′

0(x) − 	0
2

= A+(T (x)) +
1

2
− 	

2
;

while for x ∈ I′(G−) and T (x) ∈ I(G0)

M−(x) = M0(T (x)) + 1, A−(x) − 	

2
= A0(T (x)) +

1

2
− 	0

2
.

Proof. This is a straightforward computation in a fundamental domain.

Lemma 9.2.3. The above identification T : I′(G′
0) → I(G+) extends to an iso-

morphism T : (I′, ∂I′

I′ ) → (I, ∂I
I) of chain complexes over F[V1, . . . , Vn].

Proof. Since G′
0 and G+ differ only in a neighborhood of βi or γi, there is a one-

to-one correspondence between rectangles connecting generators in G′
0 and those

connecting corresponding generators in G+. Under this correspondence, the local
multiplicities of the rectangles at the O- and X-markings coincide, except when the
rectangle in G+ has an edge on βi, so that its corresponding rectangle in G′

0 has an
edge on γi. Since rectangles connecting x′,y′ ∈ I′(G′

0) or x,y ∈ I(G+) do not have

edges along these distinguished curves, the contribution of a rectangle to ∂I′

I′ (x
′) is

the same as the contribution of the corresponding rectangle to ∂I
I(T (x′)); it follows

that T induces an isomorphism of chain complexes.

In the next lemma, we will verify that the following diagram commutes:

(9.4)

I

I′ N′

N I

I′

T

T

∂N′

I′

∂N
I ∂I

N

∂I′

N′

Lemma 9.2.4. Consider the composite maps ∂I
N◦∂N

I : I → I and ∂I′

N′ ◦∂N′

I′ : I′ →
I′. Both these maps are multiplication by V1 + V2 − V3 − V4.
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Proof. Consider the composition ∂I
N ◦ ∂N

I : I → I. This counts domains that can
be written as a juxtaposition of two empty rectangles, the first of which goes from
some x ∈ I(G+) to some y ∈ N(G+) and the second of which goes from y ∈ N(G+)
to some element z ∈ I(G+). For fixed initial state x, it is easy to see that there
are exactly four such domains: the two vertical annuli through the preferred two
X-markings, and the two horizontal annuli through the preferred two X-markings.
It follows that ∂I

N ◦ ∂N
I is multiplication by V1 + V2 − V3 − V4. (We are working

over F; the signs become relevant when working over Z; see Chapter 15.)

The other composition ∂I′

N′ ◦ ∂N′

I′ : I′ → I′ works the same way.

Identifying I and I′ using T , Equation (9.4) can be viewed as the chain complex

(9.5)

I′ N′

N I

∂N′

I′

∂N
I ◦ T

∂I
N

T ◦ ∂I′

N′

Lemma 9.2.5. There are bigradings for I′, N′, N, and I so that, in Equation
(9.5):

• Each edge map is homogeneous of degree (−1, 0).
• The left column, as a bigraded chain complex over F[V1, . . . , Vn], is iden-
tified with GC−(G+)�−1, 0�.

• The right column, as a bigraded chain complex over F[V1, . . . , Vn], is iden-
tified with GC−(G−).

• The top row is identified with GC−(G′
0)�0, �0−�+1

2 �.
• The bottom row is identified with GC−(G0)�−1, �0−�−1

2 �.
Proof. Consider the bigrading on I and N given by M0 +1 and A0 + �−�0+1

2 ; and

the bigrading on I′ and N′ given by M ′
0 and A′

0+ �−�0−1
2 . The top row is clearly iso-

morphic to GC−(G′
0)�0, �0−�+1

2 �, while the bottom row gives GC−(G0)�−1, �0−�−1
2 �;

in particular, the two horizontal maps in Equation (9.5) are homogeneous of degree
(−1, 0). Corresponding statements about the vertical maps follow from Lemma 9.2.3
together with Lemma 9.2.2.

Lemmas 9.2.4 and 9.2.5 together imply that the map

∂N
I ◦ T + T ◦ ∂I′

N′ : GC−(G′
0) → GC−(G0)

is a chain map of F[V1, . . . , Vn]-modules that is homogeneous of degree (−2,−1). We
compute this map, after post-composing with a commutation map, in the following
two lemmas. This computation uses the following further maps:

Let hX2
: GC−(G′

0) → GC−(G′
0) be the F[V1, . . . , Vn]-module map specified by

hX2
(x) =

∑
y∈S(G′

0)

∑
{r∈Rect◦(x,y)

∣∣(X∪Y)∩r={X2}}

V
O1(r)
1 · · ·V On(r)

n · y;



9.2. THE SKEIN RELATION ON THE CHAIN LEVEL 157

and for i = 1, 2, let hYi
: GC−(G′

0) → GC−(G′
0) be the F[V1, . . . , Vn]-module map

specified by

hYi
(x) =

∑
y∈S(G′

0)

∑
{r∈Rect◦(x,y)

∣∣Y∩r={Yi}}

V
O1(r)
1 · · ·V On(r)

n · y.

Finally, let hY = hY1
+ hY2

.

Lemma 9.2.6. The map hX2
is homogeneous of degree (−1, 0); and for i = 1, 2,

hYi
is homogeneous of degree (−1,−1). Moreover, hX2

vanishes on N′ and sends
I′ to N′; while hYi

vanishes on I′.

Proof. The grading shift properties follow quickly from Equations (4.2) and (4.4).
The other properties are clear from the local picture near the corner point c′.

Lemma 9.2.7. There is a quasi-isomorphism P : GC−(G0) → GC−(G′
0) with

the property that the following identity holds:

(9.6) P ◦
(
∂N
I ◦ T + T ◦ ∂I′

N′

)
= hX2

◦ hY + hY ◦ hX2
,

so hX2
◦ hY + hY ◦ hX2

is a chain map. Furthermore, there is a quasi-isomorphism

Cone(∂N
I ◦ T + T ◦ ∂I′

N′ : GC−(G′
0) → GC−(G0))

−→ Cone(hX2
◦ hY + hY ◦ hX2

: GC−(G′
0) → GC−(G′

0)).

Proof. The quasi-isomorphism P is the map induced by commuting the first
two columns, and is defined by counting pentagons, as in Equation (5.2). It is a
quasi-isomorphism, as we saw in Proposition 5.1.7. We verify the identity

(9.7) P ◦ T ◦ ∂I′

N′ = hX2
◦ hY

by setting up a suitable one-to-one correspondence between domains contributing
to both sides; see Figure 9.4. To this end, it is helpful to think of T as the map
counting the small triangle containing X2 in Figure 9.3.

Consider a domain contributing to P ◦T ◦∂I′

N′ . Let r1 be the rectangle contribut-

ing to ∂I′

N′ . Juxtaposing the pentagon (contributing to P ) and the triangle (con-
tributing to T ) gives a rectangle, call it r2, that contains X2 but not Y = {Y1, Y2}.
Thus, the juxtaposition r1 ∗ r2 represents a term in hX2

◦ hY . Conversely, if r1 ∗ r2
contributes to hX2

◦hY , remove the small triangle containing X2 from r2, to obtain

a pentagon p. Under this correspondence, the domain contributing to P ◦ T ◦ ∂I′

N′

coincides with r1 ∗ r2, so both contribute the same monomial in Equation (9.7).
Next, we verify the identity

(9.8) P ◦ ∂N
I ◦ T = hY ◦ hX2

.

This is also verified by setting up a one-to-one correspondence between domains
contributing to both sides. (See again Figure 9.4.) For a domain contributing to
P ◦ ∂N

I ◦ T , the distinguished corner c′ must be part of the initial generator. Since
the domain contains a rectangle contributing to ∂N

I , at least one of the Y -labelled
regions adjacent to c′ must have non-zero multiplicity. There are three possibilities:
either c′ is one of the 270◦ corners; or c′ is a 180◦ corner; or c′ is contained in the
interior of the domain.
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Y1

Y1 X1

X1

X1

Y1

Y1 Y1Y1X1 X1

X2
X2 X2

X2
Y2

Y2 Y2
X2

X2

Y2
Y2 Y2

X1
c′

c′

c

c

c

cc′

c′

c′c′

c′ c′
′

X1
′ X1

′ Y1 Y1

Y1Y1

Y2 Y2

Y2

Y2X2

X2

X2

X2

c′ c′
X1

′ X1
′

X1X1
c

Y1

Y2

X2

X1
′X1

′′

c′
X1

c
Y1

Y2

X2

X1
′

c′
X1

c
Y1

Y2

X2

X1
′

c′
Y1

Y2X2

X1
′

c′
Y1

Y2X2

X1
′

c′
Y1

Y2X2

X1
′

X1
′ X1

′X1
′

Figure 9.4. Proof of Lemma 9.2.7. In the first column, we
have domains contributing to hX2

◦ hY ; in the second we have

the corresponding domain contributing to P ◦ T ◦ ∂I′

N′ (though the
triangle representing T is left unshaded); in the third column we
have domains contributing to hY ◦ hX2

; in the fourth column, we
have domains contributing to P ◦ ∂N

I ◦ T . As usual, the heavy
shaded domain is applied first.

In the case where c′ is one of the 270◦ corners, cut the juxtaposition into two
rectangles r1 ∗ r2, where r1 contains X2 and r2 contains the Y -markings. This
decomposition gives a contribution to hY ◦ hX2

. Conversely, if r1 ∗ r2 contributes
to hY ◦ hX2

, remove the small triangle from r1 ∗ r2, and decompose the remainder
uniquely as a pentagon and a rectangle (representing ∂N

I ). Under this correspon-
dence, the domain contributing to P ◦ ∂N

I ◦ T is the same as the domain r1 ∗ r2, so
the two contributions to Equation (9.8) cancel.

Consider the degenerate case where the angle around c′ is 180◦. In this case,
the domain contributing to P ◦ ∂N

I ◦ T is an annulus of height one that passes
through X2. Let r1 ∗ r2 be the corresponding decomposition of the annulus into
rectangles. Once again, the contributions to Equation (9.8) cancel.
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There is a final case where the angle around c′ is 360◦. In this case, the domain
contributing to P ◦∂N

I ◦T is an annulus of width one, which contains c′ in its interior.
Let the corresponding domain r1 ∗ r2 be the thin, vertical annulus that contains
X2. This is the only case where the domain contributing to the left-hand-side of
Equation (9.6) is different from the corresponding one contributing to the right-
hand-side; however, both regions cover only O4, as can be seen by looking at the
last two pictures in Figure 9.4 (and comparing Figure 9.3), so their contributions
cancel.

Adding up Equations (9.8) and (9.7) gives Equation (9.6), according to which
the following square commutes:

GC−(G′
0) GC−(G0)

GC−(G′
0) GC−(G′

0)

∂N
I ◦ T + T ◦ ∂I′

N′

= P

hX2
◦ hY + hY ◦ hX2

Since P is a quasi-isomorphism, by Lemma 5.2.12 the above square induces the
stated quasi-isomorphism between mapping cones.

Lemma 9.2.8. The map hX2
◦ hY + hY ◦ hX2

: GC−(G′
0) → GC−(G′

0) is chain
homotopic, as homogeneous chain maps of degree (−2,−1), to multiplication by
V2 − V1; so there is an isomorphism

Cone(hX2
◦ hY + hY ◦ hX2

: GC−(G′
0) → GC−(G′

0))

∼= Cone(V2 − V1 : GC−(G′
0) → GC−(G′

0)).

Proof. For i = 1, 2, let hX2,Yi
: GC−(G′

0) → GC−(G′
0) be the map defined by

hX2,Yi
(x) =

∑
y∈N(G′

0)

∑
{r∈Rect◦(x,y)

∣∣r∩Y=Yi,X2∈r}

V
O1(r)
1 · · ·V On(r)

n · y,

and let hX2,Y = hX2,Y1
+ hX2,Y2

. The following identity holds:

(9.9) hX2
◦ hY + hY ◦ hX2

+ ∂N′

N′ ◦ hX2,Y + hX2,Y ◦ ∂N′

I′ + hX2,Y ◦ ∂N′

N′ = (V2 − V4).

This can be seen by considering juxtapositions of rectangles that can contribute,
and noting that the two terms that do not appear twice are the row through X2

(responsible for the V2) and the column through X2 (responsible for the V4).
Note that hX2,Yi

vanishes on I′, maps N′ to itself, and by Equations (4.2)
and (4.4)

hX2,Yi
: GC−

d (G′
0, s) → GC−

d−1(G
′
0, s − 1);

so Equation (9.9) says that hX2,Y gives a chain homotopy between hX2
◦hY +hY ◦hX2

and multiplication by V2 − V4. Since V4 is chain homotopic to V1 in GC−(G′
0), it

follows that hX2
◦ hY + hY ◦ hX2

is chain homotopic to V2 − V1. Chain homotopic
maps have isomorphic mapping cones (Lemma 5.2.14), so the lemma follows.
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Proof of Theorem 9.2.1. By Lemma 9.2.5, the two horizontal maps from Equa-
tion (9.5) together induce a bigraded chain map P+,− : GC−(G+) → GC−(G−).
Applying in succession Lemmas 9.2.5, 9.2.7, and 9.2.8 gives a quasi-isomorphism of
bigraded complexes over F[V1, . . . , Vn] from Cone(P+,− : GC−(G+) → GC−(G−))

to Cone(V2 − V1 : GC−(G′
0) → GC−(G′

0))�−1, �0−�−1
2 �. The theorem is stated in

terms of GC−(G0) instead of GC−(G′
0); but the proof of Proposition 5.1.7 gives

a quasi-isomorphism from GC−(G′
0) and GC−(G0), and hence (for example, by

appealing to Lemma 5.2.12) a quasi-isomorphism

Cone(V2 − V1 : GC−(G′
0) → GC−(G′

0)) → Cone(V2 − V1 : GC−(G0) → GC−(G0)).

Composing these quasi-isomorphisms establishes the theorem.

Exercise 9.2.9. (a) Show that (t
1
2 − t−

1
2 ) · χ(GC−(G)) = t

�
2 · Δ�L(t), for any

grid diagram G representing �L.
(b) Show that the skein relation for the Alexander polynomial is a formal conse-
quence of Theorem 9.2.1 together with part (a).

9.3. Proofs of the skein exact sequences

Having proved Theorem 9.2.1, we can quickly deduce the skein exact sequences,
as stated in the beginning of the chapter. It will be useful to have the following
algebraic observation:

Lemma 9.3.1. Let C and C ′ be two free, bigraded chain complexes over
F[V1, . . . , Vn]. Fix any non-zero, homogeneous polynomial r ∈ F[V1, . . . , Vn]. A

quasi-isomorphism φ : C → C ′ induces a quasi-isomorphism φ : C
r → C′

r , where C
r

is shorthand for the quotient complex C
rC .

Proof. Since φ is an F[V1, . . . , Vn]-module map, and C and C ′ are both free, there
is a map between the short exact sequences

0 −−−−→ C
r−−−−→ C −−−−→ C

r −−−−→ 0

φ

⏐⏐ ⏐⏐ φ

⏐⏐ φ

0 −−−−→ C ′ r−−−−→ C ′ −−−−→ C′

r −−−−→ 0.

Naturality of the associated long exact sequence (Lemma A.2.2) and the five lemma
(Lemma A.2.3) now give the result. (Compare also Proposition A.3.5.)

Proof of Theorem 9.1.1. Let 	 be the number of components in �L+. Label the

O-markings so that O2, . . . , O�+1 belong to 	 different components on �L+, so

cGC−(G+) =
GC−(G+)

V2 = · · · = V�+1
and cGC−(G−) =

GC−(G−)

V2 = · · · = V�+1
.

The quasi-isomorphism from Theorem 9.2.1 induces a quasi-isomorphism

Cone(P+,− : cGC−(G+) → cGC−(G−))

(9.10)

→ Cone

(
V2 − V1 :

GC−(G0)

V2 = · · · = V�+1
→ GC−(G0)

V2 = · · · = V�+1

) �−1,
	0 − 	 − 1

2
�,
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where P+,− is the map induced by P+,− on the collapsed grid complex. This can
be seen by applying Lemma 9.3.1 repeatedly, using

r = Vi − Vi+1

C = Cone(P+,− :
GC−(G+)

V2 = · · · = Vi
→ GC−(G−)

V2 = · · · = Vi
)

C ′ = Cone

(
V2 − V1 :

GC−(G0)

V2 = · · · = Vi
→ GC−(G0)

V2 = · · · = Vi

) �−1,
	0 − 	 − 1

2
�,

the latter two thought of as free chain complexes over F[Vi, . . . , Vn]; and using the

observation that for any bigraded chain map f : C → C ′ inducing f : C
r → C′

r ,

we have Cone(f) ∼= Cone(f)
r . This inductive procedure gives a chain map over

F[V1, . . . , Vn] of the form promised in Equation (9.10) which induces an isomorphism
on homology; and so it is a quasi-isomorphism over F[V1, . . . , Vn].

When �L0 has 	0 = 	 + 1 components, Lemma 5.2.13 identifies the homology of
the second mapping cone appearing in Equation (9.10) with the homology of

(9.11)
GC−(G0)

V1 = · · · = V�+1
= cGC−(G0).

Consider the long exact sequence on homology associated to the mapping cone

Cone(P+,− : cGC−(G+) → GC−(G−)), and substitute cGH−(�L0) (with grading
shift as specified in Equation (9.10)) in place of the homology of the mapping cone.
The resulting long exact sequence is Equation (9.2).

When �L0 has 	0 = 	 − 1 components, for G0 exactly two of the variables
V2, . . . , V�+1 belong to the same component; suppose those two variables are V2 and

V3. Then, GC−(G0)
V3=···=V�+1

= cGC−(G0). By Lemma 8.2.3, V2 is chain homotopic to V3,

so Lemma 7.4.1 gives a quasi-isomorphism from cGC−(G0) ⊗ W to the quotient
GC−(G0)

V2=V3=···=V�+1
. Instead of Equation (9.11), since V1 and V2 correspond to the same

component on �L0, Lemmas 8.2.3 and 7.4.1 give a quasi-isomorphism from the map-
ping cone Cone

(
V2 − V1 : cGC−(G0) ⊗ W → cGC−(G0) ⊗ W

)
to cGC−(G0)⊗W⊗

W . In view of the bigraded isomorphism W ⊗ W �0,−1� ∼= J , Equation (9.3)
follows from the long exact sequence for the mapping cone for P+,−, and using

cGH−(�L0) ⊗ J in place of the homology of the mapping cone.

Proof of Theorem 9.1.2. Continue notation from the proof of Theorem 9.1.1,

noting that ĜC (G) = cGC−(G)
V1

for G = G+, G−, and G0. Consider the quasi-

isomorphism of Equation (9.10), composed with the quasi-isomorphism

Cone

(
V2 − V1 :

GC−(G0)

V2 = · · · = V�+1
→ GC−(G0)

V2 = · · · = V�+1

)
→ GC−(G0)

V1 = · · · = V�+1

from Lemma 5.2.13. Divide by V1 as in Lemma 9.3.1, to get a quasi-isomorphism

Cone(P̂+,− : ĜC (G+) → ĜC (G−)) → GC−(G0)

V1 = · · · = V�+1 = 0
�−1,

	0 − 	 − 1

2
�.

When �L0 has 	0 = 	+1 components, GC−(G0)
V1=V2=···=V�+1=0 = ĜC (G0), and when �L0

has 	0 = 	−1 components, there is a quasi-isomorphism from ĜC (G0)⊗W ⊗W to
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GC−(G0)
V1=V2=···=V�+1=0 . The long exact sequences of the theorem follow from the long ex-

act sequence of the mapping cone of P̂+,− : ĜC (G+) → ĜC (G−), the identification
on homology from Equation (9.10), and the above observations.

9.4. First computations using the skein sequence

We give now a few computations using the skein exact sequence. Use notation
from Section 7.3: F[U ](d,s) is the bigraded free F[U ]-module whose generator has
bigrading (d, s) (so it is non-trivial in bigradings (d− 2i, s− i) for i ≥ 0); and F(d,s)

is the one-dimensional F-vector space supported in bigrading (d, s).
Recall (Proposition 4.8.1) that for the unknot O the grid homologies are

GH−(O) = F[U ](0,0) and ĜH (O) = F(0,0).

Combining this with Lemma 8.4.2, this immediately gives the following:

Lemma 9.4.1. For the two-component unlink L,

cGH−(L) ∼= F[U ](0,0) ⊕ F[U ](−1,0) and ĜH (L) ∼= F(0,0) ⊕ F(−1,0).

Exercise 9.4.2. Give an alternate proof of Lemma 9.4.1 using the skein exact
sequence and Proposition 8.3.2.

The skein exact sequence can be used to compute the grid homologies of the
Hopf links H+ and H− from Figure 2.8.

To this end, consider the skein exact sequence associated to the skein triple

where �L+ = H+, �L− is the two-component unlink, and �L0 is the unknot. To

compute the map g− : cGH−(�L−) → cGH−(�L0) ⊗ J , we argue as follows. Let x

denote the generator of cGH−(�L0) ⊗ J in bigrading (0, 1), and y the generator in

bigrading (−2,−1). Let a resp. b denote the elements of GH−(�L−) in bigradings

(0, 0) resp. (−1, 0). We claim that a and b map non-trivially into cGH−(�L0) ⊗ J ,

for otherwise, the rank of cGH−(�L+) (as an F[U ]-module) would be at least three,
violating Proposition 8.3.2. Moreover, y and all its multiples (in the ring F[U ]) are
in the cokernel of this map, since there is nothing in the appropriate bigrading in

cGH−(�L−) to map onto it (in view of the computation from Lemma 9.4.1). Also,
x lies in the cokernel, for the same reason; but U ·x = g−(b) (again, this is the only
possibility for grading reasons, since g−(b) is non-zero).

We conclude that

cGH−(H+) = F(0,1) ⊕ F[U ](−1,0) ⊕ F[U ](−2,−1);

the nonzero element of F(0,1) is the image of x, the free summand starting at
(−1, 0) comes from the cokernel of the map F[U ] · a into (F[U ] ⊕ F[U ])(−1,0), and
the remaining free summand is the image of y and its multiples.

It follows readily that ĜH (H+) ∼= F(0,1) ⊕ F2
(−1,0) ⊕ F(−2,−1).

Exercise 9.4.3. Use the skein exact sequence to show that

cGH−(H−) ∼= F[U ](1,1) ⊕ F[U ](0,0) ⊕ F(0,0)

ĜH (H−) ∼= F(1,1) ⊕ F2
(0,0) ⊕ F(−1,−1).

Next, we compute GH− for the right-handed trefoil knot T2,3, by putting it

into a skein triple with �L+ = T2,3, �L− the unknot O, and �L0 the Hopf link H+
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computed earlier. The map g− : cGH−(O) → cGH−(H+) is non-trivial; for oth-
erwise GH−(T2,3) would have rank three (as an F[U ]-module); but we know that
its rank is one (Proposition 7.3.3). Indeed, the nontriviality of g− implies that its
image is F[U ](−1,0), hence GH−(T2,3) = F(0,1) ⊕F[U ](−2,−1); compare Section 4.8.

Exercise 9.4.4. (a) Use the skein exact sequence to compute GH−(T−2,3) for
the left-handed trefoil knot T−2,3.

(b) Compute GH− and cGH− for all (2, n) torus knots and links.
(c) Compute GH− for the twist knots Wn from Example 2.1.5.

9.5. Knots with identical grid homologies

As an application of the skein exact sequence, we give infinite families of distinct
knots with the same grid homology [84]; compare also Lemma 2.5.4. Consider the
family K(B, k) of knots we get from the two-component unlink L by adding a k-fold
twisted band to the two components, as in Lemma 2.5.4.

Proposition 9.5.1. Let K(B, k) be a knot constructed from the two-component
unlink by adding the band B with k full twists to the unlink. Then, the grid ho-

mologies GH− and ĜH of K(B, k) are independent of k.

Proof. By Proposition 7.3.3, for all k there is a splitting of F[U ]-modules

GH−(K(B, k)) ∼= Mk ⊕ F[U ](2ak,ak),(9.12)

where ak = −τ (K(B, k)), and Mk is the torsion submodule of GH−(K(B, k)). Let
xk ∈ GH−(K(B, k)) be a generator of a non-torsion summand of GH−(K(B, k)).
Note that xk is not canonical, since the splitting of Equation (9.12) is not canonical,
but its Alexander grading ak is.

Since there is a skein triple with K− = K(B, k), K+ = K(B, k − 1), and �K0,
the 2-component unlink L, Theorem 9.1.1 gives the exact triangle:

(9.13)

GH−(K(B, k − 1)) GH−(K(B, k))

F[U ](0,0) ⊕ F[U ](−1,0)

f−

g−h−

where f− and h− are bigraded F[U ]-module maps, and g− is homogeneous of degree
(−1, 0). Let y0 and y−1 be the two generators of F[U ](0,0) ⊕ F[U ](−1,0). Exactness

of the triangle (together with the fact that GH−(K(B, j)) for j = k, k − 1 both
have rank one) implies that the maps h− and g− are non-zero maps. Since g−

respects the F[U ]-module structure, it follows that g− vanishes on the torsion part
of GH−(K(B, k)), so Im(g−) = F[U ] · g−(xk). Since a non-torsion summand for
GH− of a knot is in even Maslov grading, g− drops Maslov grading by one, and
g− is non-trivial, it follows that for some m = mk ≥ 0,

(9.14) g−(xk) = Umk · y−1.

Since g− preserves Alexander grading and A(y−1) = 0, it follows that

(9.15) −τ (K(B, k)) = A(xk) = −mk ≤ 0.
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Exactness ensures that h−(y0) is non-torsion; so there is some n = nk ≥ 0 with

(9.16) h−(y0) + Unkxk−1 ∈ Mk−1.

Since A(y0) = 0 and h− preserves Alexander grading,

(9.17) −τ (K(B, k − 1)) = A(xk−1) = nk ≥ 0.

Since both (9.15) and (9.17) hold for all k, we conclude that for all j (and in
particular, for j = k and k − 1), τ (K(B, j)) = 0.

Substituting nk = 0 into Equation (9.16) shows Coker(h−) = Mk−1, and Equa-
tion (9.14) shows Ker(g−) = Mk. Exactness shows that f− induces an identification
Mk−1

∼= Mk.
It follows that GH−(K(B, k − 1)) ∼= GH−(K(B, k)); so by Proposition 7.3.3,

ĜH (K(B, k − 1)) ∼= ĜH (K(B, k)) as well.

Remark 9.5.2. Most of the effort in the above proof goes into showing that
τ (K(B, k)) = 0. We could have appealed to Corollary 8.1.2 (or indeed Proposi-
tion 8.5.3, with K1 = K(B, k) and K2 the unknot), but we chose not to, in order
to illustrate better the skein sequence.

Recall the Kanenobu knots K(p, q) of Figure 2.18 from Section 2.4. These knots
can be constructed from the two-component unlink K(B, k) as in Proposition 9.5.1
in two different ways: either regard the region with the p full twists as a band added
to the two-component unlink, or do the same with the region of the q full twists (cf.
Figure 2.19). We compute grid homology for these knots Section 10.3; for the time
being observe that Proposition 9.5.1 has the following immediate consequence:

Lemma 9.5.3. The grid homologies GH−(K(p, q)) and ĜH (K(p, q)) are inde-
pendent of p and q.

9.6. The skein exact sequence and the crossing change map

When G+ and G− represent knots, we defined a map for the unknotting opera-
tion C− : GH−(G+) → GH−(G−) in Chapter 6. In the skein exact sequence, there
is another map f− : GH−(G+) → GH−(G−), which is induced from the chain map
P+,− : GC−(G+) → GC−(G−) of Theorem 9.2.1. We describe here the relationship
between these maps; this will be used in the proof of Theorem 10.2.4.

Assume still that the height difference between the two distinguished
X-markings in Figure 9.3 is one. Draw the horizontal circles so that exactly one of
them crosses the two X-marked bigons; see Figure 9.5. This can be done because
of the hypothesis on the height difference between the two X-markings.

Recall that P+,− counts rectangles, as specified by the horizontal arrows in
Equation (9.5). The map C− is induced by the chain map from Lemma 6.2.2
c− : GC−(G+) → GC−(G−), defined by counting pentagons with corner at s; i.e.

c−(x+) =
∑

y−∈S(G−)

∑
{p∈Pent◦s(x+,y−)

∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y−,

where x+ ∈ S(G+) and s ∈ βi ∩ γi is the northern corner point on the bigon in
T\βi∩γi containing X1. Letting s′ be the southern corner of the bigon containing X2
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(see Figure 9.5), consider the map c′− : GC−(G+) → GC−(G−) counting pentagons
with a corner at s′; i.e.

c′−(x+) =
∑

y−∈S(G−)

∑
{p∈Pent◦

s′ (x+,y−)
∣∣p∩X=∅}

V
O1(p)
1 · · ·V On(p)

n · y−.

The proof that this is a chain map follows exactly as in the proof of Lemma 6.2.2.

Proposition 9.6.1. If �L+ is a knot, we can choose P+,− = c− + c′− for the
map in Theorem 9.2.1.

Proof. To compare the two maps, draw the two grid diagrams on one grid
torus in two ways: fix the four distinguished markings and vary the vertical curve
(illustrated on the left of Figure 9.5) as was done in Chapter 6; or alternatively,
fix the vertical circle and vary all four distinguished markings (illustrated on the
right of Figure 9.5). Here, we use X1, X2, O3, and O4 to represent G+ and X ′

1,
X ′

2, O′
3, and O′

4 to represent G−. (Note that the pictures in Chapter 6 are labeled
differently from the ones here.)

Let x ∈ I and y ∈ N. There is a natural one-to-one correspondence between
r ∈ Rect◦(x,y) with X ′

1 ∈ r and p ∈ Pent◦s(x,y); and similarly, between r ∈
Rect◦(x,y) with X ′

2 ∈ r and p ∈ Pent◦s′(x,y). Together, these rectangles are the

ones counted in ∂N′

I′ : I′ → N′, the top horizontal map from Equation (9.5) (i.e. the
restriction of P+,− to I′). Similarly, there is a natural one-to-one correspondence
between r ∈ Rect◦(y,x) with X1 ∈ r and p ∈ Pent◦s(y,x); and r ∈ Rect◦(y,x)
with X2 ∈ r and p ∈ Pent◦s′(y,x). These are the rectangles counted in ∂I

N : N → I,
the bottom horizontal map from Equation (9.5) (i.e. the restriction of P+,− to N).

All pentagons not covered by the above correspondences contain X-markings
in their interior. Under the above correspondence, some Oi is contained in the
interior of the pentagon if and only if the corresponding O-marking is contained
in the interior of the corresponding rectangle. It follows that the contributions to
c− + c′− and to P+,− coincide.

βi
γi

O3

O4

s′

s

X1 X1X′1

X2X′2

O′3

O′4 O4

X2

O3

Figure 9.5. Crossing change maps and the skein sequence.
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Exercise 9.6.2. Work out the commutation invariance of grid homology from
Chapter 5, using rectangles instead of pentagons.

9.7. Further remarks

The skein exact triangle has a long history. In [54], Andreas Floer first proposed
that a gauge-theoretic Floer homology group should satisfy a related exact triangle;
see also [16]. Heegaard Floer homology was shown to satisfy an exact triangle soon
after its discovery; see for example [173, Theorem 9.1], and compare [114] for an
analogue in Seiberg-Witten theory. The exact triangle for Heegaard Floer homology
also can be applied to knot Floer homology to give an oriented skein exact sequence,
as described in [172, Theorem 10.2]. The present chapter follows the approach
from [167]. The skein exact sequence can also be seen as a consequence of an exact
triangle for singular knots; see [165, 183].

When comparing these results with the literature, the reader should be warned
that there are several natural grading conventions. For example, in [172] Maslov
gradings for links take possibly half-integer values; specifically, if M ′ is the Maslov
grading appearing there and M denotes the Maslov grading we use in this book,
then

(9.18) M ′ = M +
	 − 1

2
.



CHAPTER 10

Grid homologies of alternating knots

In Chapter 9, we studied an exact sequence relating the three links in an ori-
ented skein triple. In this chapter we develop a different unoriented skein exact
sequence, which relates grid homology groups of three links obtained from another
kind of skein triple, described as follows. Fix an unoriented link L and a projection
with a distinguished crossing, and form two more links by replacing the crossing by
its two possible resolutions, as shown in Figure 10.1. With the help of this unori-
ented skein sequence, we will compute the grid homology for alternating knots. In
fact, we will compute grid homology for a wider class of links, defined as follows.

The class Q of quasi-alternating links is the smallest set of link types with the
following two properties:

• the unknot O is in Q, and
• if L is a link that admits a diagram with a crossing whose two resolutions

L1 and L2 (as in Figure 10.1) are in Q, with detL1 +detL2 = detL, then
the link L is also in Q.

Since the links appearing in the above definition do not have natural orienta-
tions, the definition of Q hinges on the fact that the determinant of a link L is
independent of the choice of an orientation on L. (This claim will be proved in
Proposition 10.1.8.)

The unoriented skein exact sequence can be thought of as a homological re-
finement of the additivity formula for the determinant of links, which we give in
Section 10.1. In Section 10.2, we turn to the statement and proof of the unori-
ented skein exact sequence, using it to compute the grid homologies of alternating
knots in Section 10.3 in terms of their Alexander polynomials and signatures. (See
Theorem 10.3.1.)

10.1. Properties of the determinant of a link

The unoriented skein exact sequence we will see in Section 10.2 is an exact
sequence satisfied by a certain variant of grid homology. As usual, this variant
is generated by grid states; but it is given a single integral grading, called the δ-
grading, which is the difference between the earlier defined Maslov and Alexander

L L1 L2

Figure 10.1. The two resolutions L1 and L2 of a crossing.

167
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gradings:

(10.1) δG(x) = M(x) − A(x) =
MO(x) + MX(x) + n − 	

2
.

Its Euler characteristic will turn out to be related to the unnormalized determinant
of the link Det(�L) (Definition 2.3.3). The aim of the present section is to study

Det(�L). We start by expressing it in terms of grid states (Lemma 10.1.2). This
formulation has two consequences: first, it shows that the determinant of a link
is independent of its orientation, and second, it leads to an additivity formula for
the determinant for unoriented skein triples (Proposition 10.1.11); which in turn is
used to verify that alternating knots are quasi-alternating (Theorem 10.1.13).

Although both of these statements have proofs without using grid states, we
prefer the grid proofs, since these proofs will be useful for the grid homology ana-
logues.

Recall that the unnormalized determinant Det(�L) of an oriented link �L is the

value of the Alexander polynomial Δ�L(t) at t
1
2 = −i. The usual determinant

det(�L), which is the absolute value of Det(�L), satisfies

(10.2) Det(�L) = iσ(
�L) det(�L),

where σ(�L) is the signature of �L; see Proposition 2.3.6. Note that if 	 denotes the

number of components of �L, then i�−1Det(�L) is always an integer.

Example 10.1.1. For the two trefoils Det(T2,3) = −3 = Det(T−2,3). For the
Hopf links of Figure 2.8, Det(H±) = ∓2i.

Lemma 10.1.2. If G is a grid diagram representing an oriented link �L with 	
components, then

(10.3)
∑

x∈S(G)

(−1)δG(x) = 2n−1(−i)�−1Det(�L).

Proof. We saw in the proof of Proposition 8.2.10 (Theorem 4.7.5 for the case of

knots) that
∑

x∈S(G)(−1)M(x)tA(x) = (1 − t−1)n−1t
�−1
2 · Δ�L(t). (In that proof, the

left hand sum was thought of as the Euler characteristic of the fully blocked grid

complex G̃C(G).) Setting t
1
2 = −i gives Equation (10.3).

Using the above lemma, we will study the determinant of a link using grid
diagrams. To this end, it is useful to have the following:

Definition 10.1.3. For a planar grid diagram G, a marking (X or O), is called
a local maximum (of the anti-diagonal height function) if the vertical arc in the
projection containing the marking lies below the marking, and the horizontal arc
lies to its right. A local minimum is defined analogously: it is a marking whose
vertical arc lies above the marking and whose horizontal arc lies to the left. The
bridge index b(G) is the number of local maxima.

Definition 10.1.4. The writhe of a planar grid diagram G, denoted wr(G), is
the writhe of its underlying link diagram; i.e. it is the number of positive crossings
minus the number of negative crossings.
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Figure 10.2. Local maxima in a grid diagram. The two
squares that contain local maxima are shaded.

Figure 10.3. Intersecting intervals. There are four ways two
intervals can intersect in their interior in a grid; for these four ways,
−z(a, b) is the sign of the crossing of a and b.

Lemma 10.1.5. Let G be a toroidal grid diagram for an oriented link �L, and
let G be any planar realization of it. Then, J (O− X,O− X) = b(G) − wr(G).

Proof. The link projection represented by G is composed of straight vertical
and horizontal segments; let Cv and Ch denote the sets of vertical and horizontal
segments. Each such segment a ∈ Cv ∪ Ch connects a pair of markings, O(a) and
X(a). It is easy to see that

J (O− X,O− X) =
∑

a∈Cv ,b∈Ch

J ({O(a)} − {X(a)}, {O(b)} − {X(b)}).

Let z(a, b) = J ({O(a)} − {X(a)}, {O(b)} − {X(b)}). For a ∈ Cv and b ∈ Ch, it
is easy to see that z(a, b) is computed as follows. If a and b are disjoint, then
z(a, b) = 0. If a and b meet in an endpoint that is a local maximum or a local
minimum, then z(a, b) = 1

2 ; if they meet in an endpoint which is neither, then
z(a, b) = 0. Finally, if they intersect in an interior point, then z(a, b) is minus one
times the sign of the crossing of a and b. (See Figure 10.3.)

The lemma follows from this local computation, together with the observation
that the number of local maxima equals the number of local minima.

Example 10.1.6. For the picture in Figure 10.2, J (O,O) = 5, J (X,X) = 6,
J (O,X) = 4, wr(G) = −1, and b(G) = 2.

Lemma 10.1.7. Fix a toroidal grid diagram G, and let G′ be obtained by ex-
changing some of the X- and O-markings, so that G and G′ represent two different
orientations on the same underlying link. View the two different δ-gradings δG and
δG′ as functions on the same set of grid states. For any grid state x,

(10.4) δG(x) +
1

4
wr(G) = δG′(x) +

1

4
wr(G′),
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where the planar realizations G and G′ of G and G′ are associated to the same
fundamental domain in the torus. More invariantly, if L denotes the unoriented
link represented by both G and G′, and L = L1 ∪ L2 denotes the splitting where

L1 ⊂ L is the sublink where the two orientations agree, and �L1 and �L2 denote the
orientations induced from G, then

(10.5) δG(x) − δG′(x) = −	k(�L1, �L2).

Proof. Let O, X be the markings in G and O′, X′ be the markings in G′. Fix a
fundamental domain for the torus and let G and G′ be the planar realizations of G
and G′. Combining Equation (10.1) with the bilinearity of J , we have that

δG(x) − δG′(x) =
1

2
(MO(x) + MX(x) − MO′(x) − MX′(x))

=
1

2
(J (O,O) + J (X,X) − J (O′,O′) − J (X′,X′)).

Partition O = O1 ∪O2, X = X1 ∪X2, O′ = O1 ∪X2, and X′ = X1 ∪O2; i.e. X1 and
O1 are the markings that coincide for the two orientations, and X2 and O2 are the
ones that switch.

Bilinearity of J , Lemma 10.1.5, and the relation b(G′) = b(G) give

2(J (O,O) + J (X,X) − J (O′,O′) − J (X′,X′))

= J (O1 + O2 − X1 − X2,O1 + O2 − X1 − X2)

− J (O1 + X2 − X1 −O2,O1 + X2 − X1 −O2)

= J (O− X,O− X) − J (O′ − X′,O′ − X′)

= wr(G′) − wr(G).(10.6)

This completes the proof of Equation (10.4).

It is elementary to verify that 1
4 (wr(G) − wr(G′)) = 	k(�L1, �L2). For example,

if a positive crossing in G changes to a negative one in G′, then that crossing

contributes 2 to wr(G) − wr(G′), and it contributes 1/2 to 	k(�L1, �L2).

The following result is used implicitly in the definition of quasi-alternating links:

Proposition 10.1.8. Let �L and �L′ be any two different orientations on the
same underlying link L, and partition L = L1 ∪ L2, where L1 is the subset where

the two orientations agree; let �L1 and �L2 be the orientations induced from �L. Then,

Det(�L) = (−1)�k(
�L1,�L2)Det(�L′). In particular, det(�L) = det(�L′).

Proof. Letting G be a grid diagram for �L, a grid diagram for �L′ is obtained by
exchanging some of the X- and O-markings in G, so Lemma 10.1.7 can be used to
compare the two δ-gradings. Applying Equations (10.3) and (10.5), we find

2n−1(−i)�−1Det(�L) =
∑

x∈S(G)

(−1)δG(x) =
∑

x∈S(G)

(−1)δG′(x)−�k(�L1,�L2)

= 2n−1(−i)�−1Det(�L′)(−1)�k(
�L1,�L2).
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Let L be a link, and fix a diagram D = DL for it. It follows immediately from

Proposition 10.1.8 that for any orientation on L, i
wr(D)

2 · Det(�L) is independent of
the choice of orientation on L (although it depends on D).

The main goal of this section is to establish the unoriented skein relation for
the unnormalized determinant, formulated with the help of the following:

Definition 10.1.9. Consider a diagram for the link L and fix a crossing in
that diagram. We can form two further links L1 and L2, represented by the two
different resolutions of L at the chosen crossing, as specified in Figure 10.1. The
resulting triple (L, L1, L2) is called an unoriented skein triple.

Remark 10.1.10. The ordering on the three links in an unoriented skein triple
depends on the choice of a diagram. As we shall exploit in the proof of Proposi-
tion 10.1.11 below, if (L, L1, L2) form an unoriented skein triple, then we can find
different diagrams where the roles of the three links are cyclically permuted.

We now give the promised unoriented skein relation for Det:

Proposition 10.1.11. Let (L, L1, L2) be an unoriented skein triple, and choose

orientations �L, �L1, and �L2 arbitrarily on the three terms. Then, there is a relation

(10.7) i
wr(�L)

2 Det(�L) = i
wr(�L1)+1

2 Det(�L1) + i
wr(�L2)−1

2 Det(�L2),

where the writhes are computed using diagrams for �L, �L1, and �L2 that are identical
outside of a small neighborhood of the chosen crossing in L.

Proof. It is helpful to note that for any oriented skein triple (�L+, �L−, �L0),

(10.8) Det(�L+) − Det(�L−) = −2i · Det(�L0).

This is seen by setting t
1
2 = −i in the skein relation for the Alexander polynomial.

Fix a diagram �L for an oriented link with a preferred crossing, let �L0 denote

the oriented resolution, and let �Ln be any orientation on the other resolution. If

the preferred crossing is positive, write �L = �L+ and if it is negative, write �L = �L−.
Equation (10.7) is equivalent to the following two equations:

Det(�L+) = −iDet(�L0) + i
wr(Ln)−wr(L0)

2 Det(�Ln)(10.9)

Det(�L−) = iDet(�L0) + i
wr(Ln)−wr(L0)

2 Det(�Ln).(10.10)

Observe that if �L = �L+, then the unoriented skein triple is (L, L1 = Ln, L2 = L0);

if �L = �L−, the unoriented skein triple is (L, L1 = L0, L2 = Ln).
Distinguish two cases, according to whether or not the strands of L meeting

at the distinguished crossing belong to two different components. We verify Equa-
tions (10.9) and (10.10) in both cases.

Case 1: The two strands in L at the distinguished crossing belong to two
different components. By assumption, L can be given two different orientations,
�L+ and �R−, where the given crossing is oriented positively and negatively, respec-

tively. Performing the crossing change gives two further oriented links �L− and �R+.

The oriented resolution �R0 of �R± at the distinguished crossing can be thought of

as the unoriented resolution �Ln of the preferred crossing in �L±.
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�R0
�L0

�R−�L+

Figure 10.4. The two strands belong to different compo-
nents. Reversing the orientation of one of the strands in the distin-

guished positive crossing of �L+ gives �R−, whose oriented resolution

can be thought of as the unoriented resolution of �L+.

�L′
0

�L0
�L+

�L′
−

�L′
n

Figure 10.5. The two strands belong to the same compo-

nents. Starting from �L+, form its oriented resolution �L0, intro-
duce an extra pair of crossings and focus on the negative crossing,

to get the diagram �L′
−. The oriented resolution �L′

0 clearly agrees

with the original diagram �L+.

Since wr(�L±) = wr(�L0)± 1 and wr(�R±) = wr(�R0)± 1, Proposition 10.1.8 gives

Det(�R−) = i
wr(�L+)−wr(�R−)

2 Det(�L+) = i
wr(�L0)−wr(�R0)

2 +1Det(�L+)

Det(�R+) = i
wr(�L−)−wr(�R+)

2 Det(�L−) = i
wr(�L0)−wr(�R0)

2 −1Det(�L−).

Substituting these formulas back into Equation (10.8) (for the skein

triple (�R+, �R−, �R0)) gives

(10.11) Det(�L+) + Det(�L−) = 2i
wr(�R0)−wr(�L0)

2 Det(�R0),

which, when combined with Equation (10.8), verifies Equations (10.9) and (10.10).

Case 2: The two strands in L at the distinguished crossing belong

to the same component. Use a Reidemeister 2 move on the diagram for �L0, to

get a new diagram for �L0 = �L′
−, with an extra pair of crossings in it. Distinguish

the newly-introduced negative crossing, and note that the two strands meeting

there belong to different components. Observe that �L′
0 = �L+. The link �L′

n can be

thought of as reversing the orientation on one of the strands in �L′
−, and forming the

oriented resolution at the distinguished crossing. The resulting diagram for �L′
n is

a diagram for �Ln, with an extra negative crossing in it, cf. the right-most diagram

of Figure 10.5. Equation (10.10) applied to �L′
− gives

Det(�L0) = iDet(�L+) + i
wr(�Ln)−1−wr(�L+)

2 Det(�Ln)

= iDet(�L+) + i
wr(�Ln)−wr(�L0)

2 −1Det(�Ln),

and Equation (10.9) in the present case follows. Equation (10.10) follows from this
and Equation (10.8).
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The following was formulated by Przytycki [189, Theorem 7.1]; see also [133]:

Proposition 10.1.12. Let (L, L1, L2) be an unoriented skein triple, consisting
of three links all of whose determinants are non-zero. Then, the conditions (D-1)
and (D-2) below are equivalent:

(D-1) det(L) = det(L1) + det(L2)
(D-2) The following two equations hold:

σ(�L) +
wr(�L)

2
= σ(�L1) +

wr(�L1) + 1

2
(10.12)

σ(�L) +
wr(�L)

2
= σ(�L2) +

wr(�L2) − 1

2
,(10.13)

where the writhes are computed using diagrams for L, L1, and L2 that are
identical outside of a neighborhood of a crossing in L; and the orientations
are chosen arbitrarily.

Proof. Note that, by the Gordon-Litherland formula (see Corollary 2.7.10), for

any fixed projection of L, σ(�L) + wr(�L)
2 is indepedent of the orientation on L.

Substituting Equation (10.2) into Equation (10.7), we find that

(10.14) iσ(
�L)+wr(�L)

2 |Det(�L)| = iσ(
�L1)+

wr(�L1)+1
2 |Det(�L1)| + iσ(

�L2)+
wr(�L2)−1

2 |Det(�L2)|.

Condition (D-2) now immediately implies Condition (D-1).
Conversely, assume Condition (D-1). It follows from Equation (10.14) that

σ(�L) +
wr(�L)

2
≡ σ(�L1) +

wr(�L1) + 1

2
(mod 4)(10.15)

σ(�L) +
wr(�L)

2
≡ σ(�L2) +

wr(�L2) − 1

2
(mod 4).(10.16)

There are once again two cases, according to whether or not the two strands meeting
at the distinguished crossing of L belong to the same component.

Suppose that the two strands of L belong to different components. There are

two different orientations on L, written �L and �R, where the distinguished crossing is

positive and negative respectively, whose oriented resolutions �L0 and �R0 are �L2 and
�L1 respectively; see Figure 10.4. In particular, |wr(�L) − wr(�L2)| = 1 and |σ(�L) −
σ(�L2)| ≤ 1, according to Lemma 2.6.12. This, together with (10.16) implies (10.13).

A similar argument shows that |wr(�R)−wr(�L1)| = 1 and |σ(�R)−σ(�L1)| ≤ 1. Since

σ(�R) +
wr(�R)

2
= σ(�L) +

wr(�L)

2
,

Equation (10.15) implies Equation (10.12).
Suppose that the two strands of L belong to the same component, and suppose

that the crossing is positive (for any orientation on L). Choose an orientation �L on

L and let �L0 be the oriented resolution on �L. Changing the orientation of one of the

two strands in �L0 gives a different orientation �L2 with the property that �L1 can be

obtained by adding an oriented saddle to �L2, and wr(�L1) = wr(�L2); see Figure 10.6.

Lemma 2.6.12 shows that |σ(�L) − σ(�L0)| ≤ 1; and clearly |wr(�L) − wr(�L0)| = 1.
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�L2
�L+

�L0 �L1

Figure 10.6. Changing σ when the two strands belong to
the same component. This is the case where the crossing in
�L = �L+ is positive, so �L2 is a different orientation on the oriented

resolution �L0. Pictures where the crossing is negative are similar,

except then �L1 and �L2 are reversed.

Since

σ(�L0) +
wr(�L0)

2
= σ(�L2) +

wr(�L2)

2
,

we conclude from Equation (10.16) that Equation (10.13) holds.

Again, by Lemma 2.6.12, |σ(�L1) − σ(�L2)| ≤ 1; also, wr(�L1) = wr(�L2). Thus,

σ(�L1) +
wr(�L1) + 1

2
≡ σ(�L2) +

wr(�L2) − 1

2
(mod 4)

(which follows from Equations (10.15) and (10.16)) implies that

σ(�L1) +
wr(�L1) + 1

2
= σ(�L2) +

wr(�L2) − 1

2
,

which, together with Equation (10.13), gives Equation (10.12).
The case where the distinguished crossing is negative follows similarly.

Theorem 10.1.13. If L is link that admits a connected, alternating projection,
then L is quasi-alternating.

Proof. The proof proceeds by induction on the number of crossings in a connected,
alternating diagram D of L. If D has no crossings, then it represents the unknot,
which is quasi-alternating.

Consider a crossing in D. Resolve it in two ways to get diagrams D0 and Dn

for L0 and Ln. Although both D0 and Dn are alternating, one of the projections
might be disconnected. In this case, the chosen crossing is called nugatory: it can
be eliminated by untwisting the knot projection to get a new projection D′. (For
an example of a nugatory crossing, see Figure 10.7.) It is straightforward to verify
that the new projection of D′ is also a connected, alternating projection, it has one
fewer crossing, so the induction hypothesis applies.

When the chosen crossing is not nugatory, both D0 and Dn are connected, alter-
nating projections, and have fewer crossings than D. By the inductive hypothesis,
D0 and Dn represent quasi-alternating links. It remains to verify that

(10.17) det(L) = det(L0) + det(Ln).

Suppose that the crossing is positive for some orientation �L+ on L. Fix a chessboard
coloring compatible with the alternating projection, as illustrated in Figure 2.23(b).
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Figure 10.7. A nugatory crossing. The knot in the picture
is the connected sum of two trefoils, and the diagram contains a
crossing that can be eliminated by twisting one of the trefoils.

The Gordon-Litherland formula (Equation (2.10)) gives:

σ(�L+) = σ(�L0) − 1(10.18)

σ(�L+) = σ(�Ln) − 1

2
(wr(�L0) − wr(�Ln)),(10.19)

where �L0 is the oriented resolution of �L+, and �Ln is oriented arbitrarily. Since,

wr(�L+) = wr(�L0) + 1, the above two computations of the signature are equivalent
to Condition (D-2) from Proposition 10.1.12; so that proposition verifies Equa-
tion (10.17).

The case where the crossing is negative for some orientation �L− on L follows
similarly, except that now the Gordon-Litherland formula gives

σ(�L−) = σ(�L0) + 1

σ(�L−) = σ(�Ln) − 1

2
(wr(�L0) − wr(�Ln)),

which also verifies Condition (D-2) from Proposition 10.1.12.

Exercise 10.1.14. Let L be a link with a connected, alternating diagram D.
The “black graph” of D is the planar graph whose vertices correspond to the black
regions in a chessboard coloring of D, and whose edges correspond to crossings in
D: for each crossing in D, the corresponding edge in the black graph connects the
two vertices corresponding to the two black regions adjacent to the crossing. Show
that det(L) is the number of spanning trees in the black graph.

By Theorem 10.1.13, all alternating knots are quasi-alternating. Figure 10.8
shows a non-alternating but quasi-alternating knot. Links L with disconnected
projection have det(L) = 0 and so are not quasi-alternating, according to the
following:

Lemma 10.1.15. For any quasi-alternating link L, det(L) �= 0. Moreover
det(L) = 1 if and only if L is the unknot.

Proof. We inductively define the height of a quasi-alternating link L, denoted
h(L), as follows. If L is the unknot, let h(L) = 1. Otherwise the height of L is
the minimum of max(h(L1), h(L2)) + 1, over all triples (L, L1, L2) where L1 and
L2 are two quasi-alternating resolutions of L with det(L) = det(L1) + det(L2). By
induction on the height, it follows readily that |h(L)| ≤ det(L). The lemma is a
simple consequence of this inequality.
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Figure 10.8. A quasi-alternating, but non-alternating
knot. This is 947 in the standard knot tables.

Exercise 10.1.16. Verify that the knot 947 of Figure 10.8 is quasi-alternating.

10.2. The unoriented skein exact sequence

The aim of this section is to set up, state, and prove the promised unoriented

skein exact sequence. Consider the chain complex G̃C(G), equipped with its single
Z-grading δ = M − A from Equation (10.1). Write the corresponding splitting

G̃C(G) =
⊕
d∈Z

G̃Cd(G),

where G̃Cd(G) is spanned by grid states with δ-grading equal to d. The differential

∂̃O,X(x) =
∑

y∈S(G)

#{r ∈ Rect◦(x,y)
∣∣r ∩O = r ∩ X = ∅} · y

treats the two kinds of markings in the same way, so that the ungraded chain

complex G̃C(G) depends only on the underlying unoriented link specified by G.
The δ-grading, however, depends on an orientation, according to the following:

Proposition 10.2.1. Let G be a toroidal grid diagram and G′ another one
obtained by switching some of the X- and O-markings in G; let G and G′ be planar
realizations of G and G′, corresponding to the same fundamental domain. Letting
c = 1

4 (wr(G) − wr(G′)), there is an isomorphism

G̃Hδ(G) ∼= G̃Hδ+c(G
′).

Proof. The identification of grid states for G and for G′ induces an isomorphism

G̃C(G) → G̃C(G′) of vector spaces. Since ∂̃O,X treats both marking types the same
way, this identification determines a chain map, inducing an isomorphism of chain
complexes. To complete the proof, it remains to compare the δ-gradings of grid
states induced from G and G′; but this comparison was done in Lemma 10.1.7.
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The simply blocked grid complex for links ĜH (see Definitions 4.6.12 and 8.2.7)
can also be viewed as graded by δ = M − A; correspondingly, its homology is a

Z-graded vector space. This vector space is related to G̃H with its δ-grading. To
state the relationship, note that if X =

⊕
d∈Z Xd is a Z-graded vector space and W

is the two-dimensional Z-graded vector space supported in grading 0, we can form
the Z-graded tensor product X⊗W =

⊕
d∈Z(X⊗W )d, where (X⊗W )d = Xd⊕Xd.

Proposition 10.2.2. Let W be the two-dimensional vector space supported in

Z-grading equal to 0. If G is a grid diagram for �L, the δ-graded vector space G̃H(G)

is related to the δ-graded link invariant by G̃H(G) ∼= ĜH (�L) ⊗ W⊗(n−�).

Proof. This follows from Proposition 4.6.15, since the two-dimensional bigraded
vector space W appearing there is supported in δ-grading equal to zero.

Proposition 10.2.3. Let G be a grid diagram with grid number n, representing

the oriented link �L. Then, the Euler characteristic of G̃H(G), thought of as a Z-

graded vector space with grading δ, is given by χ(G̃H(G)) = 2n−1(−i)�−1Det(�L).

Proof. Since G̃C(G) is finite-dimensional,

χ(G̃H(G)) = χ(G̃C(G)) =
∑

x∈S(G)

(−1)δ(x),

so the result follows from Lemma 10.1.2.

Theorem 10.2.4. Let L, L1, and L2 be an unoriented skein triple, and let 	,
	1, and 	2 denote the number of components of L, L1, and L2 respectively. Then,
for sufficiently large m, there is an exact triangle

(10.20)
ĜH (L) ⊗ W⊗(m−�)

ĜH (L1) ⊗ W⊗(m−�1) ĜH (L2) ⊗ W⊗(m−�2)

where W is the two-dimensional Z-graded vector space supported in grading zero,

and ĜH is thought of as Z-graded, using δ. Let L3 = L, fix projections of L, L1,
and L2 that differ only around the fixed crossing of L, and fix orientations on L,
L1, and L2 arbitrarily. Then, an arrow connecting the grid homology on Li to Lj

(where j ≡ i + 1 (mod 3)) shifts grading by

(10.21)

(
	i − 	i+1

2

)
+

(
wi − wi+1

4

)
+

⎧⎨⎩ − 1
2 if i = 1

− 1
4 otherwise,

where wi is the writhe of the fixed projection of Li (i = 1, 2, 3).
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The grading shifts in Equation (10.20) can be alternatively expressed as follows:
(10.22)

ĜH (L) ⊗ W⊗(m−�)�− �
2 − w

4 �

ĜH (L1) ⊗ W⊗(m−�1)�− �1
2 − w1+1

4 � ĜH (L2) ⊗ W⊗(m−�2)�− �2
2 − w2−1

4 �−1

where the two unlabelled arrows preserve δ-grading, and the third arrow is homoge-
neous of degree −1. In the above triangle, we are using a shift operator for graded
vector spaces defined analogously to the bigraded case: given a graded vector space
X =

⊕
d Xd and a number a, X�a� =

⊕
d X�a�d is the graded vector space with

X�a�d = Xa+d. In the above triangle, the vector spaces are Z-graded, but the shifts
can be rational numbers.

Remark 10.2.5. Let G be a grid diagram for �L, and let G be some planar
realization of G. It follows from Lemma 10.1.7 that the δ-graded vector space

G̃H(G)�− �
2 − wr(G)

4 � (essentially the one appearing in the above triangle) is inde-

pendent of the chosen orientation of �L.

The proof of Theorem 10.2.4 uses the following specialization of Theorem 9.2.1

(specialized to G̃H with its δ-grading):

Theorem 10.2.6. Let �L+, �L−, and �L0 be an oriented skein triple, let 	 de-

note the number of components in �L+ (and �L−); and let 	0 denote the number of

components of �L0. Then, there is a chain map

P̃+,− : G̃C(G+) → G̃C(G−)

that preserves δ-gradings, and there is a quasi-isomorphism
(10.23)

Cone
(
P̃+,− : G̃C(G+) → G̃C(G−)

)
→
(
G̃C(G0) ⊕ G̃C(G0)

) �	 − 	0 − 1

2
�.

Proof. Let (G+,G−,G0) be a grid realization of the skein triple (�L+, �L−, �L0),
with the property that the two distinguished X-markings are in consecutive rows.

The map P̃+,− : G̃C(G+) → G̃C(G−) is obtained from the map P+,− of the proof
of Theorem 9.2.1 by specializing V1 = · · · = Vn = 0. This is the map determined by
the horizontal maps in Diagram (9.5); i.e., it is defined as a count of rectangles that
cross none of the O- and X-markings. Theorem 9.2.1 states a quasi-isomorphism
between two mapping cones. Specializing those mapping cones to V1 = · · · = Vn = 0
and collapsing the bigrading to δ = M − A gives the stated version.

We separate two cases of Theorem 10.2.4, according to whether or not the
strands crossing in L at the distinguished crossing belongs to two different com-
ponents of L. Consider first the case where they belong to different components.

Choose two different orientations �L+ and �R− on L: for �L+ the distinguished cross-

ing is positive and for �R−, the distinguished crossing is negative. Observe that �L1

and �L2 are the oriented resolutions of �R− and �L+ respectively. We will also use the

link �R+, obtained from �R− by a crossing change. (See the top line of Figure 10.9.)
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�L+

G+

�L−

G−

�L0

G0 G′
−

�R− �R+

G′
+

�Ln

Gn

Figure 10.9. Grid diagrams for an unoriented resolution.
The three grids in the left provide a grid realization (G+,G−,G0)

of the oriented skein triple (�L+, �L−, �L0). The markings in G+ are
numbered by O3 being the top, then O4 and X1, X2. The three
grids on the right describe a grid realization of the skein triple

(�R−, �R+, �R0). The diagrams G′
± are derived from G∓ by switching

O4 and X2.

Let (G+,G−,G0) be a grid realization of the skein triple (�L+, �L−, �L0). Arrange
that the distinguished markings O4, X1, and X2 are in consecutive rows. A grid

realization (G′
+,G′

−,Gn) of the skein triple (�R+, �R−, �R0) can be given as follows:
construct the grids G′

+ and G′
− from G− and G+ respectively by exchanging some

X- and O-markings, as illustrated in Figure 10.9. In fact, these exchanges are done
so that the X2- and O4-markings in both G+ and G− are exchanged to O- and
X-markings respectively in G′

− and G′
+.

The fact that X1 and X2 are in consecutive rows ensures that the map

P̃+,− : G̃C(G+) → G̃C(G−)

appearing in Theorem 10.2.6 is defined. Similarly, the fact that O4 and X1 are in
consecutive rows ensures that the analogous map

P̃ ′
+,− : G̃C(G′

+) → G̃C(G′
−)

from Theorem 10.2.6, now for the skein triple (�R+, �R−, �R0), is defined.
Define

P̃−,+ : G̃C(G−) → G̃C(G+)

to be the composition

(10.24) G̃C(G−) → G̃C(G′
+)

P̃ ′
+,−−→ G̃C(G′

−) → G̃C(G+),

where the unlabeled maps are isomorphisms induced by relabeling X- and O-
markings, appearing in the proof of Proposition 10.2.1. By Proposition 10.2.1,

P̃−,+ is a chain map that drops δ-grading by one.

Lemma 10.2.7. Let (�L+, �L−, �L0) be an oriented skein triple where the two
strands meeting at the crossing belong to different components, and let (G+,G−,G0)
be a grid realization of the triple for which O4, X1, and X2 are in consecutive rows.
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βiγi

s

s′

O3

X1

X2

O4

Figure 10.10. Simultaneous realizations of G+, G−, G
′
− and

G′
+. A simultaneous representation of G+ and G− is realized by

using the markings X1, X2, O3, and O4, and using βi and γi respec-
tively. A simultaneous representation of G′

+ and G′
− is obtained

by relabeling X2 and O4 as O- and X-markings, and using γi and
βi respectively.

Let P̃+,− : G̃C(G+) → G̃C(G−) and P̃−,+ : G̃C(G−) → G̃C(G+) be the maps as

above. Then, P̃−,+ ◦ P̃+,− and P̃+,− ◦ P̃−,+ are null-homotopic.

Proof. Suppose that �L+ is a knot. Recall that P̃+,− and P̃−,+ are defined using
rectangle counts, which can be identified with pentagon counts in a simultaneous
drawing of G+ and G− as in Chapter 6 (see also Proposition 9.6.1). In fact, we
draw the grid diagrams G+ and G− simultaneously on the same grid torus so that
the bigons containing X2 and O4 each meet exactly one horizontal circle, and the
bigon containing X1 meets no horizontal circle; see Figure 10.10.

Let c̃− be the count of pentagons based at s appearing in Equations (6.3)

and (6.4) specialized to G̃C (i.e. setting V1 = · · · = Vn = 0), and let c̃′− be the
count of pentagons based at s′. Since the bigons containing X1 and X2 meet only
one horizontal circle in Figure 10.10, we can apply Proposition 9.6.1 to conclude

that P̃+,− = c̃− + c̃′−. Since the bigons containing X2 and O4 each meet only one

horizontal circle, Proposition 9.6.1 also identifies P̃ ′
+,− with a count of pentagons

that are based at t and t′ (in Figure 10.10). Reformulated in terms of G− and G+,

this gives P̃−,+ = c̃+ + c̃′+.
In the proof of Proposition 6.1.1, it is shown that c+ ◦c− is homotopic to multi-

plication by some U variable. On the specialization to G̃C, this shows that c̃+ ◦ c̃−
is null-homotopic. It follows from the same argument that the other compositions

c̃′+ ◦ c̃−, c̃+ ◦ c̃′−, and c̃′+ ◦ c̃′− are also null-homotopic. We conclude that P̃−,+ ◦ P̃+,−
is null-homotopic.

When �L+ has more than one component, the same argument works. In par-
ticular, the maps c̃−, c̃+, c̃′−, and c̃′+, in cases where the grid diagrams represent
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links with more than one component, can be defined exactly as before. The iden-

tification P̂−,+ = c̃+ + c̃′+, from Proposition 9.6.1 is proved the same way, as is
the verifications that the four maps c̃+ ◦ c̃−, c̃′+ ◦ c̃−, c̃+ ◦ c̃′−, and c̃′+ ◦ c̃′− are
null-homotopic.

The other composition P̃+,− ◦ P̃−,+ follows similarly.

The proof of Theorem 10.2.4 will use the following algebraic construction. Let
f : X → Y and g : Y → X be two chain maps between the Z-graded chain complexes
X and Y , and suppose that f is homogeneous of degree a (i.e. f maps elements
of degree d to elements of degree d + a) and g is homogeneous of degree b. Then,
the mapping cones of f , g and f ◦ g fit into the following exact triangle (proved in
Lemma A.3.10):

Lemma 10.2.8. Suppose that the maps f and g are given as above. Then, there
is a chain map Φ: Cone(f) → Cone(g) which is homogeneous of degree −a− 1 and
whose induced map on homology fits into an exact triangle

(10.25)

H(Cone(f)) H(Cone(g))

H(Cone(f ◦ g))

−a − 1

a

where the integers next to the arrows indicate shifts in degree.

Proof of Theorem 10.2.4. As usual, there are two cases, according to whether
or not the two strands in L correspond to different components.

We consider first the case where they belong to different components. As noted
earlier (Remark 10.2.5), the triangle is independent of the choice of orientation on
L, so without loss of generality, we can assume that the crossing is positive; i.e.
�L = �L+. Take a grid realization G+, G−, G0 of the skein triple (�L+, �L−, �L0), and let

(G′
+, G′

−, Gn) be the grid realization of the skein triple (�R+, �R−, �R0 = �Ln), where
G′

+ and G′
− are derived from G− and G+ by relabeling some X- and O-marked

squares.

Consider the maps P̃+,− : G̃C(G+)→G̃C(G−) and P̃−,+ : G̃C(G−)→G̃C(G+)

derived from Theorem 10.2.6 as above. Recall that the map P̃+,− preserves δ-

grading and P̃−,+ drops it by one. According to Lemma 10.2.8, the mapping cones
of these maps fit into an exact triangle

(10.26)

H(Cone(P̃−,+)) H(Cone(P̃+,−))

H(Cone(P̃−,+ ◦ P̃+,−))

−1

(where the arrow marked with −1 shifts grading down by one).
The desired triangle is obtained by identifying the homology groups appearing

in this triangle in terms of the grid homology groups of G+, Gn, and G0, as follows.
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Theorem 10.2.6 gives quasi-isomorphisms

Cone(P̃+,−) →
(
G̃C(G0) ⊕ G̃C(G0)

)�
	 − 	0 − 1

2

�
,

Cone(P̃ ′
+,−) →

(
G̃C(Gn) ⊕ G̃C(Gn)

)�
	 − 	n − 1

2

�
.

Let wn = wr(Gn) and w0 = wr(G0). Clearly, wr(G+)−wr(G′
−) = w0−wn +2;

so by Proposition 10.2.1 and Equation (10.24),

Cone(P̃−,+) ∼= Cone(P̃ ′
+,−)

�
w0 − wn + 2

4

�
.

According to Lemma 10.2.7, the composition P̃−,+ ◦ P̃+,− is null-homotopic; so
Lemma 5.2.14 gives an isomorphism of chain complexes

Cone
(
P̃−,+ ◦ P̃+,− : G̃C(G+) → G̃C(G+)

) ∼= G̃C(G+) ⊕ G̃C(G+).

Since P̃−,+ drops δ-grading by one and P̃+,− preserves it, the above homotopy
equivalence preserves the δ-grading.

Substituting the identifications on homology given by the above
quasi-isomorphisms into the triangle from Equation (10.26), we get an exact trian-
gle:

G̃H(Gn) ⊗ W � �−�n
2 + w0−wn

4 � G̃H(G0) ⊗ W � �−�0−1
2 �

G̃H(G+) ⊗ W

−1

Rearrange the degree shifts and use w+ − w0 = 1, to get the exact triangle

G̃H(Gn) ⊗ W �− (wn+2�n+1
4

)� G̃H(G0) ⊗ W �− (w0+2�0+3
4

)�
G̃H(G+) ⊗ W �−(w++2�

4

)�
−1

By Proposition 8.2.8, G̃H(G) ∼= ĜH (G)⊗W⊗(n−�) for any grid diagram G. Substi-
tuting this back into the above triangle and readjusting the degree shifts gives the
exact triangle from Equation (10.20) with its stated grading shifts (see especially
Equation (10.22)), when the two strands of L belong to different components.

The case where the two strands in L belong to the same component can be

reduced to the previous case, as follows. Suppose �L = �L+, and let �L′
− be obtained

by adding an extra pair of crossings in the projection of �L0 (see Figure 10.5), let
�L′
0 be the oriented resolution of the newly formed negative intersection point, and

let �L′
n be be its unoriented resolution. The previous case gives a triangle

ĜH (�L′
−) ⊗ W⊗(m−�)�− �′

2 − w′

4 �
ĜH (�L′

0) ⊗ W⊗(m−�′0)�− �′0
2 − w′

0+1
4 � ĜH (�L′

n) ⊗ W⊗(m−�′n)�− �′n
2 − w′

n−1
4 �−1
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where w′ = wr(�L′
−), w′

0 = wr(�L′
0), and w′

n = wr(�L′
n). Observe that �L′

− = �L0,
�L′
0 = �L+, and �L′

n = �Ln, w′ = w0, w′
0 = w, and w′

n = wn − 1. Substituting
these back into the above triangle, we get the stated triangle with an overall shift.

(Compare Remark 10.2.5.) The case where �L = �L− follows similarly.

Equation (10.20) implies the following relation on the graded Euler character-
istic:

i�+
w
2 χ(G̃H(G)) = i�1+

w1+1
2 χ(G̃H(G1)) + i�2+

w2−1
2 χ(G̃H(G2)).

In view of Proposition 10.2.3, this formula is equivalent to the additivity formula
for Det from Proposition 10.1.11.

The grading shifts in Theorem 10.2.4 can be interpreted in terms of signatures:

Proposition 10.2.9. Let (L, L1, L2) be an unoriented skein triple with det(L)=
det(L1) + det(L2). Let L be denoted by L3 and suppose that det(L1), det(L2), and
det(L3) are all non-zero. Then, in the exact triangle from Theorem 10.2.4, the
arrow connecting the grid homology of Li to Li+1 (when considering the indices
mod 3) shifts grading by

(10.27)

(
	i − σ(Li)

2

)
−
(

	i+1 − σ(Li+1)

2

)
+

{
−1 if i = 1
0 otherwise.

Proof. Since Equation (D-1) from Proposition 10.1.12 is satisfied, we use that
proposition to conclude that

σ(�L) +
wr(�L)

2
= σ(�L1) +

wr(�L1) + 1

2

σ(�L) +
wr(�L)

2
= σ(�L2) +

wr(�L2) − 1

2
.

The stated equations now follow immediately from substituting the above equations
into the formulas given in Equation (10.21).

Remark 10.2.10. Proposition 10.2.9 also suggests that we could consider the

more invariantly formulated version of the δ-graded grid homology ĜH (L), defined

by ĜH (�L)�σ(�L)−�+1
2 �. In view of Lemma 10.1.7 and Corollary 2.7.10, this graded

vector space is an invariant of the unoriented link L. Its gradings are either integers
or half-integers, depending on the link.

10.3. Grid homology groups for alternating knots

We can now compute all version of grid homology for alternating knots.

Theorem 10.3.1 ([169]). If K is an alternating knot, then the simply blocked
grid homology of K is determined by the signature σ = σ(K) of K (from Defini-
tion 2.3.3) and the symmetrized Alexander polynomial ΔK(t) =

∑
i ai · ti by

ĜH d(K, s) =

{
F|as| if d = s + σ

2
0 otherwise.

Theorem 10.3.1 is a special case of a more general result proved below. Before
turning to the generalization, we give an immediate consequence. Theorem 10.3.1 in
fact determines also GH− for alternating knots. In the description, we abbreviate
F(d,s) = (F[U ]/U)(d,s).
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Corollary 10.3.2. Let K be an alternating knot with with signature σ =
σ(K), and symmetrized Alexander polynomial ΔK(t) =

∑
i ai · ti, and let bi =∑

j≥0 ai+j. The grid homology module GH−(K) is given by

GH−(K) ∼=

⎛⎝⊕
i> σ

2

F
|bi|
(i+σ

2 ,i)

⎞⎠⊕

⎛⎝⊕
i≤σ

2

F
|bi−1|
(i+σ

2 ,i)

⎞⎠⊕ F[U ](σ, σ2 ).

In particular, τ (K) = −σ(K)
2 .

Proof. By Equation (7.6), each summand (F[U ]/Uni)(di,si) in GH−(K) con-

tributes F(di,si) ⊕ F(di−2ni+1,si−ni) to ĜH (K), and the difference in δ-gradings of
these two elements is ni − 1. Since by Theorem 10.3.1 the simply blocked grid ho-

mology ĜH of an alternating knot is supported in a single δ-grading, it follows that
all ni = 1; i.e. U · Tors(GH−(K)) = 0. In addition, according to Theorem 10.3.1

again, we have that di − si = σ(K)
2 . The rest of the statement follows quickly from

another look at Equation (7.6) and Proposition 7.3.2.

Theorem 10.3.3. Let �L be an oriented, quasi-alternating link with 	 compo-

nents and signature σ = σ(�L), and write (t
1
2 − t−

1
2 )�−1Δ�L(t) =

∑
i αi · ti. Then,

(10.28) ĜH d(�L, s) =

{
F|αs| if d = s + σ−�+1

2
0 otherwise.

Proof. We prove that for any quasi-alternating link �L, ĜH (�L) is supported in

δ-grading equal to σ(�L)−�+1
2 , by induction on the determinant of �L. In the basic

case (where det(�L) = 1), Lemma 10.1.15 implies that �L is the unknot, so the

result is obviously true. For the inductive step, since �L is quasi-alternating, there
is an unoriented skein triple L, L1, L2, where det(L) = det(L1) + det(L2), det(L1)
and det(L2) are non-zero, and L1 and L2 are quasi-alternating. By the inductive

hypothesis, for i = 1, 2 the grid homology ĜH (�Li) is supported entirely in δ-grading

(10.29) δi =
σ(�Li) − 	i + 1

2
.

Consider the unoriented skein exact sequence from Theorem 10.2.4, with grading
shifts as interpreted in Proposition 10.2.9. In view of Equation (10.29), it follows

that the map in the exact triangle from ĜH (�L1)⊗W⊗(m−�1) to ĜH (�L2)⊗W⊗(m−�2)

is zero; so the long exact sequence gives a short exact sequence

0 −→ ĜH (�L2)⊗W⊗(m−�2) f2−→ ĜH (�L)⊗W⊗(m−�) f3−→ ĜH (�L1)⊗W⊗(m−�1) −→ 0.

Again, by the grading shift formulas from Proposition 10.2.9 and Equation (10.29)
(for i = 2), the image of f2 is contained in δ-grading σ−�+1

2 ; also, the cokernel of

f2 is contained in δ-grading σ−�+1
2 . Thus, exactness allows us to conclude that

ĜH (�L) ⊗ W⊗(m−�) is contained in δ-grading σ−�+1
2 , as needed.

We have verified that there is a sequence of integers {cs}s∈Z so that there

is an isomorphism of bigraded vector spaces ĜH (�L) ∼=
⊕

s∈Z F
cs
(s+σ−�+1

2 ,s)
. By

Proposition 8.2.10, cs = |αs|.
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Proof of Theorem 10.3.1. Apply Theorems 10.1.13 and 10.3.3.

10.3.1. Some examples. We give a few special cases of the above theorems.
The grid homologies of the (2, 2n + 1) torus knot (with n > 0) are given by

ĜH (T2,2n+1) ∼=
n⊕

s=−n

F(s−n,s), GH−(T2,2n+1) ∼= F[U ](−2n,−n) ⊕
n−1⊕
i=0

F(2i,n−2i).

For the (2, 2n) torus link,

ĜH (T2,2n) ∼= F(−2n,−n) ⊕
(

n−1⊕
s=−n+1

F2
(s−n,s)

)
⊕ F(0,n).

For positive, even n = 2k let Cn denote the two-component torus link T2,2k,
oriented so that the linking number of the strands is −k; that is, as the boundary
of an unknotted k-times twisted embedded annulus. (The Alexander polynomial

of this link was computed in Section 2.4: it is equal to k(t−
1
2 − t

1
2 ).) Obviously

C0 is the two-component unlink, while C2 is the negative Hopf link H−. When
n = 2k > 0

ĜH (Cn) ∼= Fk
(−1,−1) ⊕ F2k

(0,0) ⊕ Fk
(1,1).

For the twist knot Wn with n = 2k > 0 and the clasp given by Figure 2.6

ĜH (Wn) = Fk
(−1,−1) ⊕ F2k+1

(0,0) ⊕ Fk
(1,1) GH−(W2k) = F[U ](0,0) ⊕ Fk

(1,1) ⊕ Fk
(0,0).

For the 3-strand pretzel knot P = P (a1, a2, a3) with ai = 2bi + 1 > 0 and
C = b1b2 + b1b3 + b2b3 + b1 + b2 + b3 + 1,

ĜH (P ) ∼= FC
(0,−1) ⊕ F2C−1

(1,0) ⊕ F
(C)
(2,1), GH−(P ) ∼= F[U ](2,1) ⊕ FC−1

(2,1) ⊕ FC
(1,0).

Exercise 10.3.4. (a) Determine ĜH (Wn) for all n.
(b) Compute cGH−(T2,2n) and cGH−(Cn) for all n > 0.

(c) Express the τ -set of a quasi-alternating link �L in terms of σ(�L) and 	.

(d) For an 	-component quasi-alternating link �L, express cGH−(�L) in terms of σ,
	, and Δ.

Consider the Kanenobu knots K(p, q) of Figure 2.18 (see also Section 9.5).
When p = q = 0, the knot K(0, 0) = W2#W2; in particular, it is alternating. An
easy computation shows that ΔK(0,0)(t) = t2−6t+11−6t−1+t−2 and σ(K0,0) = 0.
By Theorem 10.3.1 and Lemma 9.5.3,

ĜH (K(p, q)) = F(2,2) ⊕ F6
(1,1) ⊕ F11

(0,0) ⊕ F6
(−1,−1) ⊕ F(−2,−2)

GH−(K(p, q)) = F(2,2) ⊕ F5
(1,1) ⊕ F5

(0,0) ⊕ F(−1,−1) ⊕ F[U ](0,0).

10.4. Further remarks

Knot Floer homology for alternating knots was computed in [169], generalizing
a result of Rasmussen [190]. Quasi-alternating links were introduced in [178]. The
definition was designed to compute a different invariant which also satisfies an
unoriented skein exact sequence, the Heegaard Floer homology of the branched
double cover of S3 along a link. The unoriented skein exact sequence for knot Floer
homology is due to Manolescu [132], and it leads quickly to the computation of
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knot Floer homology for quasi-alternating links [134]. A grid diagrammatic proof
of the unoriented skein exact sequence was given by Wong [231].

The δ-grading we are using here differs by a multiplicative constant (−1), and
an additive shift involving 	 from the one used by Manolescu [132] and Wong [231].
Also, in the present set-up, the unoriented skein exact sequence is deduced from
the oriented one. This forces an extra tensor factor of W in all three terms in the
long exact sequence, which is not present in, for example, Wong’s version [231]. In
our applications, this extra tensor factor plays no role.



CHAPTER 11

Grid homology for links

Grid homology generalizes from the case of knots to the case of oriented links
in a fairly straightforward manner. This adaptation can be made in various lev-
els of generality, some of which we have already met. One version, the collapsed

grid homology cGH−(�L) of the oriented link �L, defined in Definition 8.2.4 has the
structure of a bigraded F[U ]-module. The module is obtained from the bigraded
chain complex associated to a grid representing the link (Definition 8.2.2), setting
some of the variables equal to each other, and then taking homology. A further
refinement, the uncollapsed, bigraded link homology, is simply the homology of the
bigraded chain complex of a link; see Definition 11.1.1. In this version, the mod-
ule structure reflects the fact that we are working with a link rather than a knot:

GH−(�L) is a bigraded F[U1, . . . , U�]-module, where 	 is the number of components

of the link �L. Finally, the simply blocked grid homology ĜH (�L) of �L was introduced
in Definition 8.2.7. This version is merely a bigraded vector space over F.

In the present chapter, we describe a further refinement (of both the simply
blocked and of the uncollapsed grid homologies) whose Alexander grading is en-
hanced to take values in an 	-dimensional lattice. This enhancement reflects the
fact that, for a link with 	 components, the first homology of the link complement is

	-dimensional. For the oriented link �L we define a vector-valued Alexander function
on grid states, with values in the affine lattice H(L) ⊂ H1(S

3 \ L;Q) defined in
Definition 11.1.3. The Alexander function induces a grading by H(L) on the sim-
ply blocked and unblocked grid complexes, which, along with the Z-valued Maslov
grading, descend to the respective homologies, the former thought of as an F-vector
space and the latter as an F[U1, . . . , U�]-module, with a correspondence between the

variables and the components of �L. We denote these multi-graded grid homologies

ĜH(�L) and GH−(�L) respectively. The gradings give splittings

ĜH(�L) =
⊕

d∈Z,h∈H(L)

ĜHd(�L, h), GH−(�L) =
⊕

d∈Z,h∈H(L)

GH−
d (�L, h),

and the action of Uj on GH−(�L) drops the jth component of the Alexander multi-
grading by one and the Maslov grading by two.

Some classical notions from knot theory have similar enhancements arising from
the fact that H1(S

3 \L) ∼= Z�. The Alexander polynomial generalizes to the multi-
variable Alexander polynomial, which is a Laurent polynomial in 	 indeterminates
t1, . . . , t�. The knot genus naturally generalizes to a function on the first cohomology
of the link complement, called the Thurston norm.

Like in the case for knots, the graded Euler characteristic of the multi-graded
grid homology of a link equals the multi-variable Alexander polynomial, up to an
overall multiplicative constant. The relation between the grid homology of a link

187
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and the Thurston norm of its complement is again similar to the case of knots: grid
homology determines the Thurston norm, as stated in Theorem 11.9.9. The proof
of that theorem, however, goes beyond the scope of this book.

The aim of this chapter is to define the multi-graded grid homology for links
and to study its properties. The generalization is stated in Section 11.1, and some
necessary proofs are given in Section 11.2. In Section 11.3 we give a few easy
computations. In Section 11.4, we study some of the symmetries of the resulting
grid homology. In Section 11.5, we recall the construction of the multi-variable
Alexander polynomial, and in Section 11.6 we relate that invariant and the Euler
characteristic of grid homology. In Section 11.7, we connect the Seifert genus of
a link with its grid homology. In Section 11.8, we give some more involved com-
putations of multi-graded link homologies. Finally, in Section 11.9 we sketch the
Thurston norm for links, and state its relationship with grid homology.

This chapter generalizes the constructions from Chapters 4 and 5; we also draw
on Sections 8.2 and 10.1 (especially Lemma 10.1.7); but the material is otherwise
independent of the previous two chapters.

11.1. The definition of grid homology for links

Fix an 	-component oriented link �L = (�L1, . . . , �L�), and let G be a toroidal

grid diagram representing �L. In Definition 8.2.2, we associated a bigraded chain
complex GC−(G) to G, generated by the grid states S(G) of G.

Definition 11.1.1. Let G be a grid diagram representing the 	-component

oriented link �L. The (uncollapsed) bigraded grid homology GH−(�L) of �L
is the homology of the bigraded grid complex GC−(G), thought of as bigraded
module over the polynomial algebra F[U1, . . . , U�]. The action by Ui is defined to

be multiplication by Vji , where Oji is an O-marking on the ith component of �L.

A straightforward adaptation of the invariance proof from Chapter 5 gives the
following result. (See also the proof of Theorem 8.2.5.)

Theorem 11.1.2. The bigraded F[U1, . . . , U�]-module GH−(�L) is an invariant

of the oriented link �L.

The present chapter concerns a refinement of the above construction, enhanced
to have an 	-dimensional Alexander multi-grading. First we clarify the Alexander
grading set. This set is an affine set on the first homology H1(S

3 \ L;Z). An

isomorphism H1(S
3 \ L;Z) ∼= Z� is specified by orienting the link �L, and ordering

its components, since the oriented meridians μ1, . . . , μ� give a basis for the free
abelian group H1(S

3 \ L;Z).

Definition 11.1.3. The Alexander grading set H(L) of a link L is the affine

space for H1(S
3\L;Z) inside H1(S

3\L;Q) consisting of elements
∑�

i=1 si ·μi, where
si ∈ 1

2Z satisfy the condition that 2si + 	k(Li, L \ Li) is an even integer.

While the definition of H(L) appears to use an orientation on L (to compute
linking numbers), it is easy to see that the grading set is independent of this choice.
As we shall see, the grading set is a natural choice for expressing symmetries of link
homology. (See Corollary 11.4.3 and Theorem 11.5.3.)

Example 11.1.4. When L is the two-component unlink, H(L) = Z ⊕ Z ⊂
Q⊕Q = H1(S

3\L;Q). When L is the Hopf link, H(L) = ( 12 +Z)⊕( 12 +Z) ⊂ Q⊕Q.
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Next, we explain the Alexander grading, with values in the Alexander grading
set.

Definition 11.1.5. Let G be a grid diagram for the oriented link �L, let G

be a planar realization of G, and let �Li denote the ith component of �L. The ith

Alexander component Ai is defined by the formula

(11.1) Ai(x) = J (x− 1

2
(X + O),Xi −Oi) −

ni − 1

2
,

where Oi ⊂ O and Xi ⊂ X are the markings on �Li, and ni denotes the number of
elements in Oi. Collect the Ai into a vector-valued Alexander function

A = (A1, . . . , A�) : S(G) →
(

1

2
Z

)�

⊂ Q�

called the Alexander vector or Alexander multi-grading .

Proposition 11.1.6. For a toroidal grid diagram G, the function A is in-
dependent of the choice of the planar realization which appears in its definition.
Furthermore, under the identification Q� ∼= H1(S

3 \ L;Q) induced by the orien-
tation and the ordering of the link components, the Alexander multi-grading takes
values in the Alexander grading set H(L) ⊂ Q� for the link. If x and y are two
grid states and r ∈ Rect(x,y), then the component Ai of A for i = 1, . . . , 	 satisfies

(11.2) Ai(x) − Ai(y) = #(r ∩ Xi) − #(r ∩Oi).

Finally, the Alexander vector is related to the Alexander function A (considered in
Chapter 8; see Equation (8.2)) by the formula:

(11.3)
�∑

i=1

Ai = A.

We construct multi-graded grid homology for links, assuming the above propo-
sition, which is proved in Section 11.2. Let G be a toroidal grid diagram representing

an 	-component link �L. Recall (Definition 8.2.2) that the uncollapsed grid complex
GC−(G) of G is a free module over the ring F[V1, . . . , Vn] generated by the grid
states S(G) and equipped with the differential

∂−
X x =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣r∩X=∅}

V
O1(r)
1 · · ·V On(r)

n · y.

The complex inherits a Maslov grading exactly as it did in the case of knots (see
Equations (4.5) and (4.11)). To equip it with the Alexander multi-grading, partition
the O-markings according to the link components, via a map π : {1, . . . , n} →
{1, . . . , 	} defined so that if Oj is on the ith link component, then π(j) = i. For

i ∈ {1, . . . , 	} the ith component Ai(V
k1
1 · · ·V kn

n x) of A(V k1
1 · · ·V kn

n x) is

(11.4) Ai(V
k1
1 · · ·V kn

n x) = Ai(x) −
∑

j∈π−1(i)

kj ,

extending the Alexander component on states from Definition 11.1.5. Let GC−(G)
be the resulting Z⊕H(L)-graded chain complex. Theorem 4.6.3 has the following
immediate generalization:
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Theorem 11.1.7. Let G be a grid diagram representing an oriented link �L.
The object (GC−(G), ∂−

X ) has the following structure:

• It is graded by Z ⊕ H(L) (the first component being the Maslov grading,
and the rest being the Alexander multi-grading); i.e. as a vector space,

GC−(G) =
⊕

d∈Z,h∈H(L)

GC−
d (G, h),

where d is the Maslov grading and h is the Alexander vector.
• It is a chain complex, i.e. ∂−

X ◦ ∂−
X = 0.

• The differential drops Maslov grading by one, and it preserves Alexander
multi-grading; i.e. for d ∈ Z and h ∈ H(L)

∂−
X : GC−

d (G, h) → GC−
d−1(G, h).

• GC−(G) is a graded module over F[V1, . . . , Vn], so that multiplication by
Vj drops Maslov grading by two and Alexander grading by μπ(j); i.e.

Vj : GC−
d (G, h) → GC−

d−2(G, h − μπ(j)).

If G represents an 	-component oriented link �L, then the Maslov grading and the
Alexander multi-grading on the chain complex GC−(G) descends to the homology.
Choose a subsequence {j1, . . . , j�} ⊂ {1, . . . , n} so that Oji is on the ith component
of the link; i.e. π(ji) = i. Define the action of F[U1, . . . , U�] on the homology of
GC−(G), so that the action of Ui is induced by multiplication by Vji .

Definition 11.1.8. The homology of GC−(G), thought of as a Z ⊕ H(L)-
graded F[U1, . . . , U�]-module, is denoted by GH−(G) and is called the multi-
graded, unblocked grid homology of the grid diagram G. Similarly, we let

ĜC(G) denote the quotient complex GC−(G)
Vj1

=···=Vj�
=0 . Its homology, thought of as a

Z⊕H(L)-graded vector space, is denoted ĜH(G) and is called the multi-graded,
simply blocked grid homology of G. Finally, homology of the chain complex

G̃C(G) = GC−(G)
V1=···=Vn=0 , thought of as a Z ⊕ H(L)-graded vector space, is denoted

G̃H(G) and called the multi-graded, fully blocked grid homology of G.

The multi-graded simply-blocked and the fully blocked grid homologies are
related by a generalization of Proposition 4.6.15. To state this, let Wi denote the
two-dimensional vector space graded by the set Z⊕H1(S

3 \L), with one generator
in grading (0, 0), and the other generator in grading (−1,−μi). If X is a vector
space graded by Z⊕H(L), we can form the tensor product X ⊗Wi, which is the
Z⊕H(L)-graded vector space X ⊗Wi

∼= X ⊕ X�1, μi�.
The proof of Proposition 4.6.15, keeping track of the multi-grading of the action

of Vj (as in Proposition 8.2.8), adapts readily to give the following:

Proposition 11.1.9. Let Wi be the two-dimensional graded vector space de-

fined above. Let G be a grid diagram representing an oriented link �L, and let

ni denote the number of O-markings in G on the ith component of �L. Then

there is an isomorphism of Z ⊕ H(L)-graded vector spaces G̃H(G) ∼= ĜH(G) ⊗⊗�
i=1 W

⊗(ni−1)
i .

Lemma 11.1.10. The Z⊕H(L)-graded homologies ĜH(G) and GH−(G), (the
former thought of as a vector space and the latter as a module over F[U1, . . . , U�]) are



11.1. THE DEFINITION OF GRID HOMOLOGY FOR LINKS 191

independent of the choice Vj1 , . . . , Vj� appearing in the definition of the
F[U1, . . . , U�]-module action.

Proof. This is a direct consequence of Lemma 8.2.3, with a little remark on grad-
ings. Consider the proof of Lemma 4.6.9 (which is adapted to prove Lemma 8.2.3).
This lemma is proved by constructing a chain homotopy H between multiplications
by Vi and Vj , in the case where Vi and Vj are consecutive, by counting rectangles
which contain a specific X-marking, see Equation (4.16). Both Vi and Vj drop the
Alexander multi-grading by μπ(i) = μπ(j), and H drops it by the same basis vector,

so Vi : GH−
d (G, h) → GH−

d−2(G, h − μπ(i)) is determined by π(i).

Theorem 11.1.11. The Z⊕H(L)-graded grid homologies ĜH(G) and GH−(G)
(the former thought of as an F-vector space, the latter thought of as a module over

F[U1, . . . , U�]) depend on the grid G only through its underlying oriented link �L.

Proof. We follow the proof of Theorem 4.6.19 from Chapter 5. Most of the
adaptation is straightforward. For example, the commutation invariance follows
directly as before, with the observation that the pentagon counting maps defined
in Section 5.1 preserve Alexander multi-gradings, as do the hexagon counting ho-
motopies.

To adapt the proof of stabilization invariance, adjust the grading shift formulas
to take into account the new gradings. For instance, there is now an identification

Cone(V1 − V2 : GC−(G) → GC−(G)) = GC−(G)�1, μj� ⊕GC−(G),

as Z ⊕ H(L)-graded modules over F[V1, . . . , Vn], where μj ∈ H1(S
3 \ L;Z) is the

meridian of the component �Lj that is being stabilized (so π(1) = π(2) = j). (This
is the generalization of Equation (5.19).) Correspondingly, consider the one-to-one
correspondence between the set of grid states for the destabilized diagram G and
the set I(G′) of those grid states for the stabilized diagram G′ which contain the
preferred point c. Lemma 5.2.4 is replaced by the statement that, under the one-
to-one correspondence, M(x′) = M(x) − 1 and A(x′) = A(x) − μj . With these
details understood, the proof of Theorem 4.6.19 (given in Section 5.3) applies.

According to the above theorem, we suppress the grid diagram from the nota-

tion of grid homology. Since ĜH(�L) is finite dimensional, we have the following:

Definition 11.1.12. The grid homology polytope B
ĜH

(�L) is the convex

hull of the set of elements h ∈ H(L) ⊂ H1(S
3 \ �L;R) ∼= R� for which ĜH(�L, h) �= 0.

In practice, grid homology is often easier to compute for those h ∈ H(L) that
lie on the boundary of the grid polytope.

The multi-graded grid homology groups refine their earlier defined bigraded
analogues (from Definition 11.1.1), in the following sense.
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Proposition 11.1.13. The multi-graded grid homology groups are related to
the bigraded constructions by the formulas

ĜH d(�L, s) =
⊕

{h∈H(L)
∣∣s1+···+s�=s}

ĜHd(�L, h)

GH−
d (�L, s) =

⊕
{h∈H(L)

∣∣s1+···+s�=s}

GH−
d (�L, h)

where h =
∑�

i=1 si · μi. The second identification is compatible with the
F[U1, . . . , U�]-module structure.

Proof. As F[U1, . . . , U�]-modules, the definitions of GC−(G) and GC−(G) are
the same. They differ in their gradings, which are related according to Proposi-

tion 11.1.6. The same argument works for ĜH .

Note that the Alexander multi-grading does not descend to a multi-grading on
the collapsed grid homology cGH− from Definition 8.2.4.

11.2. The Alexander multi-grading on grid homology

The construction of grid homology for links depends on Proposition 11.1.6,
which can be thought of as a combination of four statements (see Lemmas 11.2.1,
11.2.2, 11.2.3 and 11.2.4 below). In this section, we establish these statements, and
give a further handy formula for the Alexander multi-grading (Proposition 11.2.6).

Lemma 11.2.1. Different planar realizations of the same toroidal grid diagram
G give the same Alexander vector A from Definition 11.1.5.

Proof. Exactly as in the case of knots, Proposition 4.3.1 shows that the Maslov
grading is independent of the planar realization. Thus, it suffices to express the
functions Ai (defined in Equation (11.1)) in terms of certain Maslov gradings. To
this end, let X′ = (X \ Xi) ∪Oi and O′ = (O \Oi) ∪ Xi. Then, the identity

J (x− 1

2
(X + O),Xi −Oi) =

1

4
(MO(x) − MO′(x) − MX(x) + MX′(x))

follows immediately from Equation (4.5), together with the symmetry and bilinear-
ity of J . Thus,

(11.5) Ai =
1

4
(MO − MO′ − MX + MX′) − ni − 1

2
,

as needed.

Lemma 11.2.2. If x and y are two grid states, and r ∈ Rect(x,y), then

Ai(x) − Ai(y) = #(r ∩ Xi) − #(r ∩Oi).

Proof. This follows immediately from Equation (11.5) and Equation (4.2).
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Lemma 11.2.3. The function A takes values in the Alexander grading set H(L).

Proof. Our goal is to show that 2Ai + 	k(Li, L \ Li) ≡ 0 (mod 2). Let O, X, O′,
and X′ be as in the proof of Lemma 11.2.1. Let G′ be the grid diagram specified
by markings O′ and X′. Equation (11.5), together with Lemma 10.1.7, gives:

2Ai = δG′ − δG + MO − MO′ − ni + 1(11.6)

= 	k(Li, L \ Li) + MO − MO′ − ni + 1.

It remains to show that

(11.7) MO(x) − MO′(x) ≡ ni − 1 (mod 2).

This follows as in the proof of Proposition 4.3.3, since NW(O) and NW(O′) can be
connected by ni − 1 transpositions.

Lemma 11.2.4. The integral Alexander grading is the sum of the components
of the Alexander multi-grading, that is, Equation (11.3) holds.

Proof. Using the definition of the Ai from Equation (11.1) and the definition of
A from Equation (8.2), we get:

�∑
i=1

Ai(x) = J (x− 1

2
(X + O),X−O) −

�∑
i=1

ni − 1

2

=
1

2
(J (x−O,x−O) − J (x− X,x− X)) − n − 	

2
= A(x).

Proof of Proposition 11.1.6. The statements of the proposition are verified in
Lemmas 11.2.1, 11.2.2, 11.2.3 and 11.2.4.

We turn now to an explicit formula for the Alexander multi-grading. It will help
to have the following expression for winding numbers. Let D denote the diagram

of �L provided by a fixed planar realization of the grid G, and Di the diagram of the

component �Li. The proof of Lemma 4.7.1 adapts readily, to prove the following:

Lemma 11.2.5. Fix a planar grid diagram for an oriented link �L, and let p

be any point on the plane which is not on the projection of �L. Then, the winding

number of the diagram Di of �Li around p is computed by the formula

(11.8) J (p,Oi − Xi) = wDi
(p)

Fix a planar realization G of a grid diagram G for �L, whose associated link
diagram is D = ∪�

i=1Di. The winding numbers of Di around the components of x
are related to the Alexander vector, by the following adaptation of Proposition 4.7.2:

Proposition 11.2.6. The Alexander grading Ai can be expressed in terms of
the winding numbers wDi

by the following formula:

(11.9) Ai(x) = −
∑
x∈x

wDi
(x) +

1

8

8n∑
j=1

wDi
(pj) −

(
ni − 1

2

)
,

where {pj}8nj=1 are the corner points of the squares marked by O ∈ O or X ∈ X.
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Figure 11.1. Extended grid diagram for the two-
component unlink. The diagram admits two grid states p and
q, where p is denoted by full circles while q is denoted by hollow
circles.

Proof. This follows as in the proof of Proposition 4.7.2. Specifically, use bilinearity
of J and Lemma 11.2.5 to derive

Ai(x) = J (x− 1

2
(X + O),Xi −Oi) −

ni − 1

2

= J (x,Xi −Oi) −
1

2
J (X + O,Xi −Oi) −

ni − 1

2

= −wDi
(x) +

1

2
J (X + O,Oi − Xi) −

ni − 1

2
.

It remains to show that 1
8

∑8n
j=1 wDi

(pj) = 1
2J (X+O,Oi −Xi); and this follows in

the same manner as Equation (4.27).

11.3. First examples

11.3.1. The two-component unlink. We compute the grid homology when
�L is the two-component unlink. Arguing as in Section 8.4, grid homology for �L can
be computed using the 2 × 2 extended grid diagram from Figure 11.1.

Gradings take values in Z⊕H(�L) ∼= Z⊕ (Z⊕Z), and the diagram has two grid
states p and q, satisfying

A(p) = A(q) = (0, 0), M(p) = 0, M(q) = −1.

The differential vanishes identically, and the module GH−(�L) is isomorphic to the
free module of rank two over the ring F[U1, U2], with one generator in grading

(0, (0, 0)) and another in (−1, (0, 0)). Similarly, the vector space ĜH(�L) is the two-
dimensional vector space with generators in grading (0, (0, 0)) and (−1, (0, 0)). The
grid homology polytope of the two-component unlink consists of a single point, the

origin in R2 ∼= H1(S
3 \ �L;R) see the left of Figure 11.2.

11.3.2. The Hopf links. Consider the grid diagram for the negative Hopf
link H− pictured in Figure 11.3.

Proposition 11.3.1. ĜH(H−) is four-dimensional, spanned by vectors p, q,
r, s with Maslov grading specified by

M(p) = 1 M(q) = M(r) = 0 M(s) = −1,

and Alexander multi-grading specified by

A(p) = (
1

2
,
1

2
) A(q) = (−1

2
,
1

2
) A(r) = (

1

2
,−1

2
) A(s) = (−1

2
,−1

2
).
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(12 ,
1
2)

Figure 11.2. Some grid homology polytopes. The grid ho-
mology polytope for the two-component unlink (the origin) is on
the left; the polytope for the Hopf link (the square with corners at
(± 1

2 ,± 1
2 )) is on the right.

O 2

O 1

O 4

O 3

Figure 11.3. Grid diagram for the negative Hopf link H−.

The grid homology GH−(H−) is the multi-graded F[U1, U2]-module generated
by p, q, and r with the above multi-gradings, modulo the relation U1 · r + U2 · q = 0.

Proof. We work with the toroidal grid diagram from Figure 11.3. Using Equa-
tion (11.9), for each grid state x ∈ S(G) we have Ai(x) = −

∑
x∈x wDi

(x) − 3
2 for

i = 1, 2. Thus, looking at the matrix of winding numbers, we immediately conclude
that for each grid state x,

(11.10) −3

2
≤ Ai(x) ≤ 1

2
.

Moreover, for each h ∈ {( 12 , 1
2 ), (− 3

2 , 1
2 ), ( 12 ,− 3

2 ), (− 3
2 ,− 3

2 )}, there is a unique grid

state x with A(x) = h. For h = ( 12 , 1
2 ), (− 3

2 , 1
2 ), ( 12 ,− 3

2 ), and (− 3
2 ,− 3

2 ), the
states are (1, 2, 3, 4), (4, 3, 2, 1), (2, 1, 4, 3), and (3, 4, 1, 2) respectively. It is now
straightforward to compute

M((1, 2, 3, 4)) = 1 M((4, 3, 2, 1)) = −1 = M((2, 1, 4, 3)) M((3, 4, 1, 2)) = −3.

This argument computes G̃H(G) in these Alexander multi-gradings. Combining

with Proposition 11.1.9, it follows that ĜH(G) is 1-dimensional in Alexander multi-

gradings (±1
2 ,± 1

2 ), which, by Equation 11.10, determines ĜH(H−).

To calculate GH−(H−), consider a model multi-graded chain complex C over
F[V3, V2], with generators p, q, r, s (with multi-gradings given by the statement of
the proposition), and differential given by

∂s = V3 · r + V2 · q ∂p = ∂q = ∂r = 0.
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Consider the graded map Φ: C → GC−(G) of F[V3, V2]-modules defined by

Φ(p) = (1, 2, 3, 4)

Φ(q) = (4, 2, 3, 1) + (1, 3, 2, 4)

Φ(r) = (1, 2, 4, 3) + (2, 1, 3, 4)

Φ(s) = (3, 2, 4, 1) + (3, 1, 2, 4).

It is straightforward to check that Φ is a chain map. Consider Ĉ = C
V2=V3=0 . The

induced map Φ̂ : Ĉ → ĜC(G) is injective on homology. This follows from a direct
analysis of the four generators Φ(p), Φ(q), Φ(r), and Φ(s): none of them appear

as the boundary of a chain in ĜC(G). It follows from the above computation of

ĜH(G) that Φ̂ induces an isomorphism H(Ĉ) → ĜH(G). Thus, Φ induces an
isomorphism H(C) → GH−(G), as well; see for example Proposition A.3.5. Recall
that on GH−(G), U1 and U2 act as multiplication by V3 and V2 respectively.

See Figure 11.2 for a picture of the grid homology polytope of H−.
In a similar manner, for the positive Hopf link H+, the multi-graded chain

complex ĜC(H+) is homotopy equivalent to the four-dimensional vector space
spanned by four generators p, q, r, and s, with

A(p) = (
1

2
,
1

2
) A(q) = (−1

2
,
1

2
) A(r) = (

1

2
,−1

2
) A(s) = (−1

2
,−1

2
)

and
M(p) = 0 M(q) = M(r) = −1 M(s) = −2.

These data compute ĜH(H+).
The module GH−(H+) is generated by p, s, and t, where the gradings of p and

s are as above, and

A(t) = (−1

2
,−1

2
) M(t) = −3

modulo the relations U1 · p = U2 · p = 0.

Exercise 11.3.2. (a) Verify the above formulas for the grid homology of H+.
(b) Compute the grid homologies for the n-component unlink.

11.4. Symmetries of grid homology for links

Grid homology is an invariant of an oriented link. We study now the dependence
of the homology on the orientation; compare also Section 7.1.

Proposition 11.4.1. The grid homology modules of the oriented link �L (both

ĜH and GH−) are isomorphic to the corresponding grid homology modules of the

link −�L, in the sense that, for any h ∈ H1(S
3 \ L;Q),

ĜH(�L, h) ∼= ĜH(−�L,−h) and GH−(�L, h) ∼= GH−(−�L,−h).

Proof. Following the proof of Proposition 5.3.2, consider two grid diagrams G and

G′, for �L and −�L respectively, that differ by reflection across the diagonal. This
reflection induces an identification of grid states φ : S(G) → S(G′) that also induces
an isomorphism of grid complexes. The Maslov gradings and the components of the
two Alexander vectors are identified under φ; MO(x) = MO′(φ(x)) and AG

i (x) =

AG′

i (φ(x)) for each i = 1, . . . , 	. The Alexander grading, thought of as an element
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of H1(S
3 \ L;Q), is defined by

∑�
i=1 Ai · μi, where μi is the ith meridian. Since

the ith meridian μi for �L is (−1) times the ith meridian for −�L, the claims now
follow.

The dependence of link homology on the orientation of the individual link
components is more interesting, as follows. (Compare also Proposition 10.2.1.)

Proposition 11.4.2. Let �L be an oriented 	-component link, and let �L′ be the

oriented link obtained from �L by reversing the orientation of its ith component Li.
Then, writing h =

∑
sj · μj, we have

ĜHd(�L, h) ∼= ĜHd−2si+κi
(�L′, h),

where κi denotes the linking number of �Li with �L \ �Li.

Proof. We wish to verify that for a given (s1, . . . , s�) ∈ Q�,

(11.11) ĜHd(�L, (s1, . . . , s�)) ∼= ĜHd−2si+κi
(�L′, (s1, . . . , si−1,−si, si+1, . . . , s�)).

From a grid diagram G for �L we can obtain a grid diagram G′ for �L′ by switching
the roles of those markings that correspond to the ith component of the link, Oi and

Xi. The complexes G̃C for the two diagrams agree, but the Maslov and Alexander
gradings change as follows. Let Aj be the jth component of the Alexander multi-
grading and M = MO be the Maslov grading calculated for the grid states using
G, and let A′

j and M ′ = MO′ be computed using G′.
By a direct application of Equation (11.1) we see that

A′
j(x) =

{
Aj(x) i �= j

−Ai(x) − ni + 1 i = j.

From Equation (11.6), we also have

MO′(x) = MO(x) − 2Ai(x) + 	k(Li, L \ Li) + 1 − ni.

Putting these together, we get

(11.12) G̃Hd(G, (s1, . . . , s�)) ∼=
G̃Hd−2si+κi+1−ni

(G′, (s1, . . . , si−1,−si + 1 − ni, si+1, . . . , s�)).

To see that this induces the stated symmetry of ĜH, we resort to Poincaré
polynomials, as in the proof of Proposition 7.1.1, writing

P̃G(q, t1, . . . , t�) =
∑

dim G̃Hd(G, (s1, . . . , s�))q
dts11 · · · ts��

P̂G(q, t1, . . . , t�) =
∑

dim ĜHd(G, (s1, . . . , s�))q
dts11 · · · ts�� .

Equation (11.12) can be expressed as the relation:

qκiP̃G(q, t1, . . . , ti, . . . , t�) = (qti)
1−ni · P̃G′(q, t1, . . . , (q

−2t−1
i ), . . . , t�).
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Proposition 11.1.9 (applied to G and G′ respectively) gives

P̃G(q, t1, . . . , t�) = P̂G(q, t1, . . . , t�) ·
�∏

j=1

(1 + q−1t−1
j )nj−1

P̃G′(q, t1, . . . , t�) = P̂G′(q, t1, . . . , t�) ·
�∏

j=1

(1 + q−1t−1
j )nj−1.

These equations together give

qκiP̂G(q, t1, . . . , t�) = P̂G′(q, t1, . . . , ti−1, (q
−2t−1

i ), ti+1, . . . , t�),

verifying Equation (11.11). To see that this verifies the proposition, note that the
homology class in H1(S

3 \ L;Q) corresponding to the element (s1, . . . , s�) ∈ Q�,

for the orientation �L, agrees with the homology class corresponding to the element

(s1, . . . , si−1,−si, si+1, . . . , s�) for the orientation �L′.

Corollary 11.4.3. The simply blocked grid homology groups satisfy the sym-

metry ĜHd(�L, h) ∼= ĜHd−2
∑

si(
�L,−h), where h =

∑�
i=1 si · μi. In particular, the

grid homology polytope is preserved by the map h �→ −h.

Proof. Apply Proposition 11.4.2 successively to each component of �L, to get

ĜHd(�L, h) ∼= ĜHd−2
∑

si(−�L, h). Note that the linking number of �Li with �Lj

appears in both κi and κj , but with opposite signs; thus, the correction terms κi

do not appear in the above expression. Next, apply Proposition 11.4.1 to see that

ĜHd−2
∑

si(−�L, h) = ĜHd−2
∑

si(
�L,−h).

Finally, Proposition 7.1.2 has the following straightforward generalization to
links:

Proposition 11.4.4. If �L is an oriented link and m(�L) is its mirror, then

for all d ∈ Z and h ∈ H(�L), ĜHd(�L, h) ∼= ĜH1−d−�+2
∑

si(m(�L), h), using the

identification H(�L) ∼= H(m(�L)) that identifies an oriented meridian for �L with an

oriented meridian for m(�L).

Proof. We modify the proof of Proposition 7.1.2. If G is a grid diagram for �L,

let G∗ be the grid diagram for m(�L) obtained by reflecting G through a horizontal
axis, and let x �→ x∗ be the induced identification of grid states S(G) ∼= S(G∗).
Recall from Equation (7.2) that MO(x) + MO∗(x∗) = 1 − n. A similar argument

shows that AG
i (x)+AG∗

i (x∗) = 1−ni. Since the reflection induces an isomorphism
of complexes, it follows that

G̃Hd(G, (s1, . . . , s�)) ∼= G̃H1−n−d(G
∗, (1 − n1 − s1, . . . , 1 − n� − s�)).

But now Proposition 11.4.2 (see especially Equation (11.12)) gives an isomorphism

G̃H1−n−d(G
∗, (1 − n1 − s1, . . . , 1 − n� − s�)) ∼=

G̃H1−n−d+
∑�

i=1(2si+ni−1)(G
∗
2, (s1, . . . , s�)),
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where G∗
2 is obtained from G∗ by switching O and X. Since 1−n+

∑�
i=1(ni− 1) =

1 − 	, it follows that

G̃Hd(G, (s1, . . . , s�)) ∼= G̃H1−d−�+2
∑

si(G
∗, (s1, . . . , s�)),

which by Propositions 11.1.9 and 11.4.1 implies the corresponding isomorphism

for ĜH.

11.5. The multi-variable Alexander polynomial

In order to be able to identify the Euler characteristic of the multi-graded grid
homology, we generalize the Alexander polynomial given earlier in Section 2.4 to
the multi-variable Alexander polynomial.

Let �L be an oriented link with 	 components. Consider the link group π1(S
3\�L),

and the first homology H1(S
3 \ �L;Z) ∼= Z�, equipped with generators given by the

oriented meridians {μi}�i=1 for the components of �L. The Hurewicz homomorphism

π1(S
3 \ �L) → H1(S

3 \ �L;Z) ∼= Z� induces an isomorphism from the abelianization
of the fundamental group to the first homology. (See [83, Theorem 2A.1].)

Consider the maximal abelian cover of S3 \ �L; that is, the connected cover

p : X∞ → X = S3 \ �L with the property that the image of π1(X∞) in π1(S
3 \ �L)

is the commutator subgroup of π1(S
3 \ �L). Since the commutator subgroup is

normal, its quotient Z� acts on the covering space by deck transformations. The
induced action on the first homology of the the covering space gives a Z�-action
on H1(X∞;Z); equivalently, H1(X∞;Z) is given the structure of a module over
Z[Z�], which in turn can be thought of as the ring Λ = Z[t±1

1 , . . . , t±1
� ] of Laurent

polynomials. This module is called the Alexander module of the link �L.
The multi-variable Alexander polynomial can be extracted from the Alexander

module via the following algebraic procedure. Observe that the Alexander module is
finitely generated over the ring Λ. (See [18, Proposition 9.2]; see also Section 11.5.1
for an explicit, finite presentation.) Since Λ is a Noetherian ring, it follows that the
module has a finite presentation; i.e. there are integers m and n and a map Q that
fit into the exact sequence

Λm Q→ Λn → H1(X∞;Z) → 0.

If m < n, the Alexander polynomial is defined to be 0. Otherwise, let I denote the
ideal in Λ generated by the determinants of the n × n minors of the presentation
matrix Q. The greatest common divisor of the elements of this ideal is denoted
Δ�L(t1, . . . , t�) ∈ Λ. By its definition, Δ�L(t1, . . . , t�) is well-defined up to multipli-

cation by units, i.e. by elements of the form ±t±a1
1 · · · t±a�

� . With a little more work
(see for example [119, Theorem 6.1]), one can see that Δ�L does not depend on the
choice of the presentation of H1(X∞;Z); it is called the multi-variable Alexander

polynomial of �L. At present, this object is well-defined only up multiplication by
units; we remove most of this indeterminacy below, cf. Definition 11.5.4.

Remark 11.5.1. If M is any Λ-module with finite presentation

Λm Q→ Λn → M → 0,

let I be the ideal defined as above. The gcd of the generators of I is the order Δ0(M)
of the module M ; this notion generalizes the usual notion of the determinant of a
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presentation matrix: M is non-torsion if and only if Δ0(M) = 0. By considering
the ith elementary ideal εi generated by the (n − i) × (n − i) minors of Q, further
invariants Δi(M) can be defined.

The multivariable Alexander polynomial is related to the Alexander polynomial
defined earlier by the following result. For a proof see [119]; for an alternative
approach, one can use the grid matrix as in Section 11.5.2.

Proposition 11.5.2. If 	 = 1, the above definition gives back the Alexander
polynomial of a knot from Section 2.4, up to a multiple of ±ta. If 	 > 1, specializing
the multi-variable Alexander polynomial to t = t1 = · · · = t� gives a Laurent poly-
nomial Δ�L(t, . . . , t) in t, so that (t − 1) · Δ�L(t, . . . , t) is the Alexander polynomial
of the oriented link constructed in Section 2.4, again up to a multiple of ±ta.

The symmetry of the Alexander polynomial extends in the multi-variable case,
which we state using the following shorthand. Given two Laurent polynomials
p1(t1, . . . , t�) and p2(t1, . . . , t�), write p1

.
= p2 if there is some (a1, . . . , a�) ∈ Z� with

p1(t1, . . . , t�) = ±ta1
1 · · · ta�

� · p2(t1, . . . , t�).

Theorem 11.5.3 (Torres, [218]). For any oriented, 	-component link �L, we
have Δ�L(t1, . . . , t�)

.
= Δ�L(t−1

1 , . . . , t−1
� ). �

We do not spell out a proof of the above theorem; but it follows from some prop-
erties of grid homology we prove later (see Corollary 11.4.3 and Theorem 11.6.1).

Definition 11.5.4. By Torres’ theorem, we can multiply the earlier definition

of the multi-variable Alexander polynomial by a monomial t
a1
2
1 · · · t

a�
2

� chosen so that

the resulting Laurent polynomial in t
1
2
1 , . . . , t

1
2

� is symmetric under the operation

sending each t
1
2
i to t

− 1
2

i . The result, which is now defined up to multiplication by
±1, is called the symmetrized multi-variable Alexander polynomial of the
oriented link; it is also denoted Δ�L(t1, . . . , t�).

The above construction defined the multi-variable Alexander polynomial up to
multiplication by ±1. This indeterminacy can be removed; see [221].

11.5.1. Fox calculus. Like in the single variable case, Fox calculus can be
used to compute the multi-variable Alexander polynomial of an oriented link. For
this purpose, consider a presentation

π1(S
3 \ �L) = 〈x1, . . . , xn | r1, . . . , rm〉.

The presentation gives a surjective group homomorphism Fn → π1(S
3 \ �L), where

Fn is the free group generated by the letters x1, . . . , xn. There is an induced map

Z[Fn] → Z[π1(S
3 \ �L)] of group rings, which we compose with the map on group

rings induced by the Hurewicz homomorphism π1(S
3\�L) → H1(S

3\�L). Thinking of

the group ring of H1(S
3\�L) ∼= Z� as the ring of Laurent polynomials Z[t±1

1 , . . . , t±1
� ],

we have a map φ : Z[Fn] → Z[t±1
1 , . . . , t±1

� ].

Consider the n × m Jacobi matrix J = (Ji,j) over Z[t±1
1 , . . . , t±1

� ], where Ji,j

is obtained by applying φ to the free derivative ∂ri
∂xj

(defined in Section 2.4). The

relevance of this Jacobi matrix to the Alexander module is the following result,

which we do not prove here. (See [18, Theorem 9.10].) Recall that p : X∞ → S3 \ �L

is the connected infinite cover associated to the commutator subgroup of π1(S
3\�L).

Let x0 ∈ S3 \ �L be a fixed basepoint, and let Y∞ ⊂ X∞ denote p−1(x0).
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Theorem 11.5.5. The matrix J gives a presentation of the Alexander module
H1(X∞, Y∞;Z), thought of as a module over Λ.

The long exact sequence of the pair (X∞, Y∞) shows that the rank of
H1(X∞, Y∞;Z) as a Λ-module is at least one, and either H1(X∞;Z) is non-torsion

(in which case its order, and hence the Alexander polynomial of �L is zero), or it
is isomorphic to the torsion part of H1(X∞, Y∞;Z). By [86, Theorem 3.4], for a
Λ-module M of rank 1, and its torsion submodule T (M) we have (using notation
from Remark 11.5.1)

Δ0(T (M)) = Δ1(M).

This implies the following generalization of Theorem 2.4.16:

Corollary 11.5.6. The multi-variable Alexander polynomial is zero if m <
n − 1; otherwise it is the greatest common divisor of the (n − 1) × (n − 1) minors

of the Jacobi matrix J of �L.

The above definition of the Alexander polynomial involves computing the great-
est common divisor of all the (n− 1)× (n− 1) minors in the m× n Jacobi matrix.
When the link group is presented so that the number of generators is one big-
ger than the number of relations (as it is, for example, for a grid presentation as
in Section 3.5), one can compute the Alexander polynomial using any one of the
appropriate minors, according to the following:

Lemma 11.5.7. Let �L be a link of 	 > 1 components, and fix a presentation for
the link group of the form 〈x1, . . . , xn

∣∣r1, . . . , rn−1〉. Let Di be the (n− 1)× (n− 1)

minor of the Jacobi matrix obtained by deleting the ith column (corresponding to
the generator xi). Then, there is an i with φ(xi) − 1 �= 0 and for such an i the
Alexander polynomial can be computed by the formula

Di
.
= (1 − φ(xi)) · Δ�L.

Proof. An inductive argument on the length of a word w in the generators
x1, . . . , xn shows that the Fox derivative satisfies

w − 1 =
n∑

j=1

∂w

∂xj
· (xj − 1)

(see also [18, Proposition 9.8]). In the case where w = ri is a relation, we can apply
φ to the above formula to get that

(11.13) 0 =
n∑

j=1

φ

(
∂ri
∂xj

)
· (φ(xj) − 1).

Let {Jj}nj=1 denote the columns of the matrix J . Since Equation (11.13) holds for
each relation, it follows that

0 =
n∑

j=1

Jj · (φ(xj) − 1).
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Thus, for any 1 ≤ i < j ≤ n,

(φ(xi) − 1) · Dj = (φ(xi) − 1) · det(J1, . . . , Jj−1, Jj+1, . . . , Jn)

= det(J1, . . . , Ji−1, (φ(xi) − 1) · Ji, Ji+1, . . . , Jj−1, Jj+1, . . . , Jn)

= det(J1, . . . , Ji−1,−
∑
k �=i

(φ(xk) − 1) · Jk, Ji+1, . . . , Jj−1, Jj+1 . . . , Jn)

= ± det(J1, . . . , Ji−1, Ji+1, . . . , Jj−1, (1 − φ(xj)) · Jj , Jj+1, . . . , Jn)

= ±(φ(xj) − 1) · Di.

Since φ is surjective, there is some j for which φ(xj) �= 1. It follows from the

above formula that the rational function p = ± Dj

φ(xj)−1 is independent of such a

j. Similarly, we can choose i and j so that φ(xi) and φ(xj) are not part of the
same cyclic subgroup, so that φ(xi) − 1 and φ(xj) − 1 are relatively prime. The
above formula shows that φ(xi)− 1 divides Di; i.e. p is a Laurent polynomial, and
in fact it is the greatest common divisor of {(φ(xi) − 1) · p}ni=1; this is also the
multi-variable Alexander polynomial Δ�L as defined earlier, up to multiplication by
units.

11.5.2. Grid diagrams and the multi-variable Alexander polynomial.

When the grid diagram G represents an oriented link �L with 	 components, we
refine the grid matrix from Definition 3.3.2 to compute the multi-variable Alexander
polynomial. For k = 1, . . . , 	, let wk

i,j denote the winding number of the projection

of the kth component of the link �L around the point (i, j). The refined grid matrix
M(G) is the matrix whose (n − j, i + 1)th entry is

�∏
k=1

t
−wk

i,j

k .

(Specializing t = t1 = · · · = t� gives back the matrix M(G) of Definition 3.3.2.)

Proposition 11.5.8 ([136]). Let G be a grid diagram representing an oriented

link �L with 	 > 1, and let nj denote the number of O-markings associated to the

jth component of �L. Then, the determinant of the matrix M(G) of G is related to
the multi-variable Alexander polynomial by

detM(G)
.
=

⎛⎝ �∏
j=1

(1 − tj)
nj

⎞⎠ · Δ�L(t1, . . . , t�).

Proof. Consider the presentation of π1(S
3 \ �L) given by Equation (3.6). Apply

Fox calculus using this presentation to determine the Alexander polynomial of �L.
Notice that in each relation each generator appears at most once, and with power
+1. Map the resulting Jacobi matrix to the abelianization. The columns of the
resulting (n−1)×n matrix correspond to the generators in the presentation, which
in turn correspond to vertical segments in the link projection associated to the grid
diagram. For any i = 1, . . . , n, let Di be the (n− 1)× (n− 1) minor of this matrix,
obtained by deleting the ith column. By Lemma 11.5.7,

(11.14) Di
.
= (1 − tπ(i)) · Δ�L,
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where π : {1, . . . , n} → {1, . . . , 	} is the map which associates to a vertical segment
its corresponding link component.

To relate this quantity to det(M(G)), subtract each column from the next one
in M(G). In the resulting matrix, the elements away from the first column are
either zero (when the two neighbouring positions in the matrix are not separated

by �L) or they are some unit times t±1
π(i−1)−1 (when a component of �L separates the

entry in the (i−1)st and the ith positions). Therefore, we can factor
∏n−1

i=1 (1−tπ(i))
out from the determinant. In addition, the bottom row contains a single 1 (in its
first column) and 0’s afterwards. Consequently, up to multiplication by ±1, we can
delete the first column and the bottom row to compute the determinant. It is now
straightforward to see that

Dn(t−1
1 , . . . , t−1

� ) ·
n−1∏
i=1

(1 − tπ(i))
.
= det(M(G)).

The claimed equality now follows from Equation (11.14) and Theorem 11.5.3.

Exercise 11.5.9. (a) Show that the multi-variable Alexander polynomial of
the Hopf link H± is equal to ±1.
(b) Prove that the multi-variable Alexander polynomial of the Borromean rings B
(from the right of Figure 2.7) is given by

ΔB(t1, t2, t3) = ±(t
1
2
1 − t

− 1
2

1 )(t
1
2
2 − t

− 1
2

2 )(t
1
2
3 − t

− 1
2

3 ).

(c) Determine the multi-variable Alexander polynomial of the Whitehead link LWh

(of Figure 2.7). Compare it to the single variable polynomial of the same link.

11.6. The Euler characteristic of multi-graded grid homology

The graded Euler characteristic of a finite dimensional Z⊕H(L)-graded vector
space X is

χ(X) =
∑

d∈Z,h=(s1,...,s�)∈H(L)

(−1)dts11 · · · ts�� · dim Xd,h ∈ Z[t
± 1

2
1 , . . . , t

± 1
2

� ].

If X is a finitely generated, bigraded module over F[V1, . . . , Vn], then the graded
Euler characteristic still makes sense, as a formal Laurent series.

The Euler characteristics of the various versions of multi-graded grid homologies
can be expressed in terms of the multi-variable Alexander polynomial as follows:

Theorem 11.6.1. Let �L be an 	-component oriented link with 	 > 1, let G be

a grid diagram representing �L, and let ni be the number of O-markings on its ith

component, for i = 1, . . . , 	. Then,

χ(G̃H(G)) = ±Δ�L(t1, . . . , t�) ·
(

�∏
i=1

(1 − t−1
i )nit

1
2
i

)
,

χ(ĜH(�L)) = ±Δ�L(t1, . . . , t�) ·
(

�∏
i=1

(t
1
2
i − t

− 1
2

i )

)
,(11.15)

χ(GH−(�L)) = ±Δ�L(t1, . . . , t�) ·
(

�∏
i=1

t
1
2

i

)
.
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Here, Δ�L(t1, . . . , t�) denotes the multi-variable Alexander polynomial for �L with its

symmetric normalization Δ�L(t1, . . . , t�) = ±Δ�L(t−1
1 , . . . , t−1

� ).

Proof. Using Lemma 11.2.5 and Proposition 11.5.8, we have that

χ(G̃H(G)) = χ(G̃C(G)) =
∑

x∈S(G)

(−1)M(x)tA(x)
.
=

∑
x∈S(G)

(−1)M(x)tA
′(x)

.
= det(M(G))

.
= Δ�L(t1, . . . , t�)

(
�∏

i=1

(1 − ti)
ni

)
.

This gives the first equation, up to multiplication by a monomial in the ti.
The other two equations hinge on the relationship between the chain complex

G̃C(�L) and the other complexes. For example, the relations on the Euler charac-
teristics resulting from the short exact sequences

0 → GC−(G)

Vj1 = · · · = Vji−1
= 0

�2, μi� Vji−→

GC−(G)

Vj1 = · · · = Vji−1
= 0

→ GC−(G)

Vj1 = · · · = Vji = 0
→ 0

give the relations (
�∏

i=1

(1 − t−1
i )

)
· χ(GC−(G)) = χ(ĜC(G)),

(
�∏

i=1

(1 − t−1
i )ni−1

)
· χ(ĜC(G)) = χ(G̃C(G)).

(Compare Proposition 11.1.9.) Corollary 11.4.3 shows that χ(ĜH(�L)) is symmetric
in ti �→ t−1

i , hence Equation (11.15) follows, and the other two equations follow from
it.

Remark 11.6.2. In view of Theorem 11.6.1, Corollary 11.4.3 is a lift of Torres’
symmetry in Theorem 11.5.3 to grid homology.

11.7. Seifert genus bounds from grid homology for links

Seifert genus bounds from grid homology are generalized to links, as follows:

Proposition 11.7.1. For any 	-component link �L, let F be any (not necessarily

connected) oriented surface with ∂F = �L and with no spherical components. We
have

max{h1 + · · · + h�

∣∣ĜH(�L, (h1, . . . , h�)) �= 0} ≤ 	 − χ(F )

2
;

in particular,

(11.16) max{h1 + · · · + h�

∣∣ĜH(�L, (h1, . . . , h�)) �= 0} ≤ g(�L) + 	 − 1,

where g(�L) is the Seifert genus of �L.



11.8. FURTHER EXAMPLES 205

Proof. By Proposition 11.1.13, this is equivalent to

max{s
∣∣ĜH (�L, s) �= 0} ≤ 	 − χ(F )

2
,

whose proof proceeds as the proof of Proposition 7.2.2. For a link, Proposition 11.2.6
shows that the Alexander grading is computed by

A(x) = −
∑
x∈x

wD(x) +
1

8

8n∑
j=1

wD(pj) −
(

n − 	

2

)
(for the diagram D of �L given by the grid); compare Equation (4.26) for the case
of knots. As in the proof of Proposition 7.2.2, we pass to an equivalent, minimal-
complexity non-negative matrix W , where the elements of minimal weight have
weight equal to zero. In the case of links, the above formula shows that the actual
Alexander grading and the weight of any generator differ by a correction term

1

8

∑
k

w(pk) −
n − 	

2
,

where here w(pk) denotes the pk = (i, j) entry of the matrix W (see the proof
of Proposition 7.2.1), so the correction term computes the maximal Alexander
gradings of grid states for our diagram. As in the proof of Proposition 3.4.9, this
term is related to the Euler characteristic of the associated surface by

1

8

∑
k

w(pk) −
n − 	

2
=

	 − χ(FH)

2
.

The result follows from the proof of Proposition 3.4.11, which constructs, starting

from F , a grid diagram G and another surface FH with ∂FH = �L and no closed
components, and χ(FH) ≥ χ(F ).

Remark 11.7.2. Although we do not prove this here, just like in the case for
knots, the genus bounds from Proposition 11.7.1 are sharp, provided that the link
has no unknotted, unlinked components; see [159]. A refinement of the above result
is stated in Theorem 11.9.9.

11.8. Further examples

11.8.1. Alternating links. The following description of the grid homology
of alternating links follows from a combination of Theorems 10.3.3 and 11.6.1 and
Proposition 11.1.13:

Theorem 11.8.1. Let �L be an oriented link with 	 > 1 components that has a
connected, alternating projection. Write(

�∏
i=1

(t
1
2
i − t

− 1
2

i )

)
Δ�L(t1, . . . , t�) = ±

∑
s1,...,s�

as1,...,s�t
s1 · · · ts� ,

and let σ = σ(�L) denote the signature of �L. The multi-graded grid homology groups

of �L are determined by

ĜHd(�L, (s1, . . . , s�)) =

{
F|as1,...,s�

| if d = (
∑�

i=1 si) + σ−�+1
2

0 otherwise.



206 11. GRID HOMOLOGY FOR LINKS

L2

L1
L1

L2

Figure 11.4. The (3,−2, 2,−3) pretzel link.

11.8.2. The (3,−2, 2,−3) pretzel link. As an example, we describe now
some computations of grid homology for the (3,−2, 2,−3) pretzel link, the two-
component link pictured in Figure 11.4. (The orientation and labelling pictured

here will be used to identify H1(S
3 \ �L;Z) ∼= Z2.) This link naturally shows up

when studying the Kinoshita-Terasaka knot appearing on the left of Figure 2.7:
there is a skein triple connecting that knot, the unknot, and this pretzel link, with

the orientation �L specified in the figure.
We now study the grid homology of this link, to contrast it with the multi-

variable Alexander polynomial Δ�L(t1, t2), which is identically zero. A computer
can calculate that the Poincaré polynomial of the simply blocked grid homology is

P̂�L(q, t1, t2) =

(1 + q)t−1
1 t22 + (q + q2)t22 +

2(q−1 + 1)t−1
1 t2 + 2(1 + q)t2 +

(q−2 + q−1)t−1
1 + 3(q−1 + 1) + (1 + q)t1

+ 2(q−2 + q−1)t−1
2 + 2(q−1 + 1)t1t

−1
2

+ (q−3 + q−2)t−2
2 + (q−2 + q−1)t1t

−2
2 .

(The dimensions of the Alexander bigraded groups, i.e. the coefficients of this
Poincaré polynomial at q = 1, are also displayed on the right in Figure 11.5.)
Computing grid homology by hand at all values of h is unwieldy, although it can be
done with a computer. By contrast, the grid homology polytope can be computed
by hand, as we do in the following:

Proposition 11.8.2. The grid homology polytope for the (3,−2, 2,−3) pretzel
link is the convex hull of the six points (−1, 2), (0, 2), (1, 0), (1,−2), (0,−2), (−1, 0).

Before attacking the above, we start with some special cases.

Proposition 11.8.3. The groups ĜH(�L, (−1, 2)), ĜH(�L, (1,−2)),

ĜH(�L, (0, 2)), and ĜH(�L, (0,−2)) all have dimension two. If ĜH(�L, (s1, s2)) �= 0
then (s1, s2) satisfies the following constraints:

• |s1| ≤ 1
• |s1 + s2| ≤ 2; and equality holds iff (s1, s2) = (0,±2)
• |s1 − s2| ≤ 3; and equality holds iff (s1, s2) = ±(1,−2).



11.8. FURTHER EXAMPLES 207

A1

A2

2 2

4

2 2

2 2

44

4

6

0

0

A1

A2

Figure 11.5. Grid homology for the (3,−2, 2,−3) pretzel

link. Points in h ∈ H(�L) where the dimension ĜH(�L, h) can be
non-zero are indicated by lightly shaded dots on the left. Points
where the dimension is shown to be non-zero are indicated by solid

dots. The dimensions of ĜH(�L, h) are displayed on the right.

Figure 11.6. Two grid diagrams for the (3,−2, 2,−3). The
one on the left is G and the one on the right is G′.

The upper bounds on the grid polytope from Proposition 11.8.3 are indicated
by the shaded region on the left in Figure 11.5. The above proposition also justifies
four out of the six solid dots displayed in that picture.

The proof of the above proposition is broken up into a sequence of lemmas,
which use two different grid diagrams for the link. These diagrams are denoted G,
with

X = (7, 1, 5, 3, 4, 9, 8, 2, 6, 10), O = (4, 8, 2, 10, 1, 6, 3, 7, 9, 5)

appearing on the left in Figure 11.6; and G′, with

X = (4, 7, 2, 9, 5, 1, 8, 3, 6, 10), O = (8, 1, 6, 3, 10, 4, 2, 7, 9, 5)

appearing on the right in Figure 11.6.

Exercise 11.8.4. Show that both G and G′ above represent the (3,−2, 2,−3)
pretzel link from Figure 11.4.

Lemma 11.8.5. If ĜH(�L, (s1, s2)) �= 0, then |s1| ≤ 1.
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Figure 11.7. The (3,−2, 2,−3) pretzel link generators at
(−2, 2) in the grid G. These are the only two generators in the
given Alexander multi-grading.

Proof. On the grid diagram G, the unknot winds around a 3× 3 square of lattice
points; so for any x ∈ S(G), the sum of the winding numbers of the unknotted
component L1 around the components of x lies between 0 and 3. Using Equa-

tion (11.9), it follows that if G̃H(�L, (k1, k2)) �= 0, then −2 ≤ k1 ≤ 1. The lemma
now follows from Proposition 11.1.9.

Lemma 11.8.6. For the grid diagram G, there are exactly two generators with
−A1(x) + A2(x) ≤ 4, and those two generators are

(5, 1, 3, 2, 4, 6, 8, 9, 7, 10), (5, 1, 3, 2, 4, 10, 8, 9, 7, 6),

pictured in Figure 11.7, both with A1(x) = −2 and A2(x) = 2, and they cannot be
connected by an empty rectangle, disjoint from X and O.

Proof. Let D1 and D2 be the diagrams of the components L1 and L2 given by
the grid G. We consider the difference of winding numbers −wD1

+ wD2
(compare

Section 3.4). The matrix of these winding number differences (given on the left) is
equivalent (by adding and subtracting rows and columns of 1) to the non-negative
matrix W on the right:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 −1 −1 −1 −1 −1
0 0 0 0 −1 −1 −2 −2 −2 −1
0 0 −1 −1 −2 −2 −3 −2 −2 −1
0 1 0 0 −1 −1 −2 −1 −2 −1
0 1 0 0 −1 −1 −1 0 −1 −1
0 1 0 1 0 0 0 1 0 0
0 0 −1 0 −1 0 0 1 0 0
0 0 −1 0 0 1 1 1 0 0
0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0
2 2 2 2 1 1 0 0 0 1
3 3 2 2 1 1 0 1 1 2
2 3 2 2 1 1 0 1 0 1
1 2 1 1 0 0 0 1 0 0
0 1 0 1 0 0 0 1 0 0
1 1 0 1 0 1 1 2 1 1
1 1 0 1 1 2 2 2 1 1
1 1 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

There are exactly two states with weight equal to zero (with respect to the second
non-negative matrix). These generators can be found by visiting rows in the fol-
lowing order: 3, 4, 2, 8, 7, 9; and columns in the order 2, 1. At each stage, we
choose the unique available position in W with a 0 entry to build up a partial state.
There are two ways to complete this partial state to a grid state, giving the two
generators from the lemma.

Obviously, there are no grid states with negative weight. By Proposition 4.7.2,
this shows that for some c, the two states are the only states x with A1(x)−A2(x) ≥
c. The lemma is proved by computing the Alexander grading of the two states.
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Figure 11.8. The (3,−2, 2,−3) pretzel link generators at
(0, 2) in the grid G′. Four generators are pictured. Two empty
rectangles are shaded, inducing the maps are indicated by arrows.

Lemma 11.8.7. For the grid diagram G′, there are four generators with A(x) =
A1(x) + A2(x) ≥ 2, and those are

(2, 7, 8, 5, 1, 6, 3, 10, 4, 9), (4, 7, 8, 5, 1, 6, 3, 2, 10, 9)

(4, 7, 8, 5, 1, 6, 3, 10, 2, 9), (4, 7, 8, 5, 1, 10, 3, 2, 6, 9)

pictured in Figure 11.8, all with A(x) = 2. These generators have A(x) = (0, 2).
Moreover, the homology of the corresponding complex is two-dimensional.

Proof. The matrix of wD1
+ wD2

and an equivalent non-negative matrix are:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 0 1 0 0 0 0 −1
0 −1 −1 −1 0 −1 −1 0 0 −1
0 −1 0 0 1 0 0 1 0 −1
0 −1 0 −1 0 −1 −1 0 −1 −1
0 −1 0 −1 0 0 0 1 0 0
0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 −1 0 0 0
0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0
1 1 1 1 2 1 1 1 1 0
1 0 0 0 1 0 0 1 1 0
1 0 1 1 2 1 1 2 1 0
1 0 1 0 1 0 0 1 0 0
1 0 1 0 1 1 1 2 1 1
0 0 1 0 1 1 0 1 0 0
1 1 2 1 1 1 0 1 1 1
0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Build a grid state with weight zero, visiting columns: 5, 3, and rows 8, 2, 4, 6.
So far, each component is determined uniquely. The remaining components are
found by a straightforward case analysis. The resulting four generators (given in
the statement) obviously maximize A = A1+A2; it is straightforward to check that
they have A = 2. Looking at the picture, one finds two rectangles connecting these
generators, as pictured in Figure 11.8. The non-trivial differentials are specified by

∂̃O,X(4, 7, 8, 5, 1, 6, 3, 10, 2, 9) = (2, 7, 8, 5, 1, 6, 3, 10, 4, 9) + (4, 7, 8, 5, 1, 6, 3, 2, 10, 9)

Thus, the homology is two-dimensional, as claimed.

Proof of Proposition 11.8.3. The implication ĜH(�L, (s1, s2)) �= 0 ⇒ |s1| ≤ 1

was verified in Lemma 11.8.5. The implication ĜH(�L, (s1, s2)) �= 0 ⇒ s1 + s2 ≤ 2
with equality if and only if (s1, s2) = (0, 2) follows immediately from Lemma 11.8.7
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and the relationship between G̃H and ĜH given in Proposition 11.1.9. By

Lemma 11.8.6, G̃H(�L, (s1, s2)) �= 0 ⇒ −s1 + s2 ≤ 4 with equality if and only

if (s1, s2) = (−2, 2). It now follows from Proposition 11.1.9 that ĜH(�L, (s1, s2)) �=
0 ⇒ −s1 + s2 ≤ 3 with equality if and only if (s1, s2) = (−1, 2). Corollary 11.4.3
now completes the argument.

Exercise 11.8.8. Show that the pretzel link (3,−2, 2,−3), oriented as in Fig-
ure 11.4, has Seifert genus one; while the same pretzel link, with the orientation of
exactly one of its two components reversed, has Seifert genus two.

In Proposition 11.8.2 we computed ĜH(�L, h) for some values of h. We can
now complete the computation of the grid homology polytope:

Proof of Proposition 11.8.2. The proof follows from Proposition 11.8.3, and one

additional computation, showing that ĜH(�L, (±1, 0)) �= 0. To this end, consider
the grid states for the grid diagram G′ used to prove Lemma 11.8.7, pictured in
Figure 11.9. Consider the states

p1 = (2, 5, 8, 4, 1, 9, 3, 10, 6, 7) q1 = (2, 5, 9, 4, 1, 8, 3, 10, 6, 7)
p2 = (2, 4, 8, 5, 1, 10, 3, 9, 6, 7) q2 = (2, 5, 8, 4, 1, 10, 3, 9, 6, 7)
p3 = (4, 2, 8, 5, 1, 9, 3, 10, 6, 7) q3 = (4, 2, 8, 5, 1, 10, 3, 9, 6, 7)
p4 = (2, 4, 9, 5, 1, 8, 3, 10, 6, 7) q4 = (4, 2, 9, 5, 1, 8, 3, 10, 6, 7).

We claim that for i = 1, . . . , 4, ∂̃O,Xqi = 0 and ∂̃O,Xpi = qi + qi+1, where the
subscripts are taken modulo 4; moreover, if qi appears with non-zero multiplicity
in ∂̃O,X(x) for some grid state x, then x = pj for some j. All of these claims are
easily verified by glancing at Figure 11.9. We conclude that q1 is a homologically

non-trivial cycle, which suffices to prove that ĜH(�L, (1, 0)) �= 0.

11.9. Link polytopes and the Thurston norm

The grid homology polytope in H1(S
3\L;R) (Definition 11.1.12) is a link invari-

ant. Another link invariant, which is a polytope in the same space, is determined

by the Alexander polynomial, as follows. Let �L be an oriented 	-component link,

and label its components �L1, . . . , �L�. In the Alexander polynomial Δ�L(t1, . . . , t�)

the variable ti corresponds to �Li through its oriented meridian μi. The monomial

ta1
1 · · · ta�

� corresponds to
∑�

i=1 ai · μi ∈ H1(S
3 \ �L;R).

Definition 11.9.1. The Alexander polytope BΔ is the convex hull of all the

points h ∈ H1(S
3 \ �L;R) whose corresponding monomial has non-zero coefficient in

the multi-variable Alexander polynomial.

We describe now a third polytope: the Thurston polytope. Here we give a terse
exposition of this construction; for more, see [217]. At the end of this section, we
will spell out the relationships between these polytopes.

11.9.1. The Thurston norm. Just as the Alexander polynomial and grid
homology have multi-variable refinements, there is a further refinement of the knot
genus to the case of links, called the Thurston norm. In this section we recall
the construction of the Thurston norm and refer the reader to [217] for a detailed
account of this beautiful story; see also [19, 20, 21, 140].
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Figure 11.9. Some generators with h = (1, 0). The generators
in the left columns are, from top to bottom, denoted p1, . . . ,p4 in
the proof of Proposition 11.8.2; the generators in the right column
are labelled q1, . . . ,q4.

Let Y be a compact oriented three-manifold whose boundary is a union of tori.
The relevant case for us is when Y is the complement of a tubular neighborhood of
a link in S3, but that specialization plays no role for our immediate purposes.

Let F be a compact, oriented surface-with-boundary, and let i : (F, ∂F ) →
(Y, ∂Y ) be an embedding. The orientation on F gives rise to a fundamental class
[F, ∂F ] ∈ H2(F, ∂F ;Z), whose image a = i∗[F, ∂F ] is an element of H2(Y, ∂Y ;Z).
In this case, we say that the embedded surface F represents the homology class a ∈
H2(Y, ∂Y ;Z). (We will typically drop i from the notation, thinking of F as equipped
with an embedding.) For example, if Y is the complement of a neighborhood of
a knot K ⊂ S3, a Seifert surface for K can be thought of as a representative of a
generator of H2(Y, ∂Y ) ∼= H2(S

3, K;Z) ∼= Z. The genus of a knot is the genus of
a minimal genus representative of a generator of H2(S

3, K). Thurston generalizes
this notion, using the following:
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Definition 11.9.2. If F is a connected, oriented surface-with-boundary, the
complexity of F , denoted χ−(F ), is the quantity χ−(F ) = max{−χ(F ), 0}, where
χ(F ) denotes the Euler characteristic of the surface. If F1, . . . , Fk are the connected

components of a compact surface F , then define χ−(F ) =
∑k

i=1 χ−(Fi).

Consider the map ‖ · ‖T : H2(Y, ∂Y ;Z) → Z defined by

(11.17) ‖a‖T = inf{χ−(F ) | F is an oriented surface representing a}.

For non-negative integers n and m and a, b ∈ H2(Y, ∂Y ;Z), it can be shown that

‖na‖T = n‖a‖T and ‖na + mb‖T ≤ n‖a‖T + m‖b‖T .

(See [19, Lemma 5.8].) It follows quickly that ‖·‖T extends continuously to a convex
function, called the Thurston semi-norm , denoted ‖ · ‖T : H2(Y, ∂Y ;R) → R.

Theorem 11.9.3. (Thurston, [217, Theorem 1]) The function ‖·‖T : H2(Y, ∂Y ;R) →
R is a semi-norm that vanishes exactly on the subspace spanned by the embedded
surfaces of non-negative Euler characteristic.

The seminorm ‖ · ‖T is uniquely specified by its unit ball BT , defined by

BT = {a ∈ H2(Y, ∂Y ;R) | ‖a‖T ≤ 1}.

Obviously BT is a convex subset of H2(Y, ∂Y ;R) ∼= Rn, and it is symmetric under
the reflection a �→ −a. If ‖ · ‖T is a norm (i.e. when ‖a‖T = 0 implies that a = 0),
then BT is compact; otherwise, it is non-compact.

The next theorem places significant restrictions on the geometry of BT , stated
in terms of the naturally induced dual Thurston norm ‖ · ‖∗T . In general, a norm on
a vector space induces a norm on its dual space, defined by ‖α‖∗T = supb∈BT

α(b).
In the case at hand, Poincaré duality identifies the dual space H2(Y, ∂Y ;R)∗ ∼=
H2(Y, ∂Y ;R) ∼= H1(Y ;R). The unit ball of the dual Thurston norm makes sense
even when the Thurston semi-norm is not a norm; in this case, however, the dual
norm can take ∞ as a value.

Recall that a (possibly non-compact) subset of Rn is called a polytope if it can
be written as the intersection of finitely many half-spaces. A compact polytope is
the convex hull of finitely many points, called the vertices of the polytope.

The following result is a consequence of integrality properties of the function
‖ · ‖T :

Theorem 11.9.4. (Thurston, [217, Theorem 2]) The unit ball B∗
T of the dual

Thurston norm is a compact polytope with integral lattice points ±β1, . . . ,±βk as
vertices. The unit ball BT is a (possibly non-compact) polytope specified by BT =
{a ∈ H2(Y, ∂Y ;R) | |βi(a)| ≤ 1 (1 ≤ i ≤ k)}.

Definition 11.9.5. The unit ball of the Thurston norm of the complement Y

of a tubular neighborhood of the link �L is called the Thurston polytope of �L and
it is denoted by BT . The unit ball of its dual norm B∗

T , thought of as a norm on
H2(Y, ∂Y ;R)∗ ∼= H1(Y ;R), is called the dual Thurston polytope .

It is more convenient to work with the unit ball of the dual Thurston norm,
since that is always compact. The dual Thurston polytope determines the Thurston
norm: for a ∈ H2(Y, ∂Y ;R), it is easy to see that ‖a‖T = maxh∈B∗

T
|〈a, h〉|.
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11.9.2. Relationships between the polytopes. We now state relationships
between the three polytopes we have encountered: the Alexander polytope, the grid
polytope, and the dual Thurston polytope, all viewed as polytopes in H1(S

3\L;R).
Given two convex sets A and B in a vector space, their Minkowski sum A + B

is the set of points which can be written as a + b for some a ∈ A and b ∈ B.

Definition 11.9.6. Let �L be an oriented link. The symmetric unit hyper-

cube in H1(S
3 \ �L;R) is the convex hull of the 2� points ± 1

2μ1 + · · · + ± 1
2μ�.

Proposition 11.9.7. Let �L be a link. The Minkowski sum of the Alexander
polytope and the symmetric unit hypercube is contained inside the grid polytope.

Proof. Clearly, if the Euler characteristic of ĜH(�L, h) is non-zero, then the

group ĜH(�L, h) itself is non-trivial. Thus, the corollary follows from the rela-

tionship between ĜH(�L) and the multi-variable Alexander polynomial stated in
Theorem 11.6.1. The unit hypercube in the statement arises due to the multiplica-

tive factor of
(∏�

i=1(t
1
2

i − t
− 1

2

i )
)

appearing in Equation (11.15).

The following result of McMullen (which we have specialized here to links in S3)
generalizes the bound on the genus by the degree of the Alexander polynomial:

Theorem 11.9.8 (McMullen, [140]). If �L is a link with 	 > 1 components,
then twice the Alexander polytope is contained in the dual Thurston polytope; equiva-

lently, if a ∈ H2(S
3, �L;R) is a non-trivial homology class and PD(a) ∈ H1(S3\�L;R)

is its Poincaré dual, then 2 maxh∈BΔ
〈PD(a), h〉 ≤ ‖a‖T .

The relationship between the Thurston and the grid polytopes is expressed by
the following result, which we state without proof here.

Theorem 11.9.9 ([182]). Let �L be an oriented link which contains no com-

ponents which are both unknotted and unlinked from the rest of �L. Then, the
Minkowski sum of the dual Thurston polytope, scaled down by a factor of 2, and
the symmetric unit hypercube equals the grid homology polytope; i.e., for each

α ∈ H1(S3\�L;R), ‖PD(α)‖T+
∑�

i=1 |〈α, μi〉| = 2 max
{h∈H(L)

∣∣ĜH(L,h) �=0}
|〈α, h〉|.

One consequence of the above theorem, which was conjectured by
McMullen [140], can be viewed as a generalization of Murasugi’s theorem about
the genus of alternating knots (see Theorem 2.4.13):

Corollary 11.9.10 ([182]). If �L is an oriented link with more than one com-
ponent, and it has a connected, alternating projection, then the convex hull of the
non-zero terms in the multi-variable Alexander polynomial, scaled up by a factor of
two, gives the dual Thurston polytope.

Proof. Combine Theorem 11.8.1 with 11.9.9. Note that the unit hypercube

factor
(∏�

i=1(t
1
2

i − t
− 1

2

i )
)

appearing in Theorem 11.8.1 cancels with the hypercube

appearing in Theorem 11.9.9.
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Combining Proposition 11.8.2 with Theorem 11.9.9, we get the following:

Proposition 11.9.11. The dual Thurston polytope of the (3,−2, 2,−3) pretzel
link is the convex hull of the points (−1, 3), (1,−1), (1,−3), and (−1, 1).

See [182, Section 5.4] for a verification of Proposition 11.9.11 using the holo-
morphic theory, and [118] for a generalization.

Exercise 11.9.12. (a) Use Proposition 11.9.11 to express the Thurston poly-
tope of the (3,−2, 2,−3) pretzel link.
(b) Find minimal complexity surfaces representing the vertices of the Thurston
polytope of the (3,−2, 2,−3) pretzel link. You can appeal to Proposition 11.9.11
to show that your examples minimize complexity. (Hint: Use the grid diagrams G
and G′ from Subsection 11.8.2.)
(c)∗Find the grid homology polytope for the pretzel link (3,−2,−3, 2).



CHAPTER 12

Invariants of Legendrian and transverse knots

In this chapter we explore the connection between grid homology and contact
geometry. Contact geometry offers a fortuitous blend of flexibility (e.g. every three-
manifold admits a contact structure) and rigidity (often detected through the rich
theory of pseudo-holomorphic curves). The power of contact geometry as a tool
for studying the topology of three-manifolds has been magnified by its interaction
with gauge theory. For example, Kronheimer and Mrowka proved that all knots
have “Property P” [109] using contact structures as a stepping stone. Rudolph’s
“slice Bennequin inequality” from [202] (see Equation (12.9)) uses contact topology
to estimate the slice genus of knots. Work of Eliashberg [38], Ding-Geiges [31,
69], Eliashberg-Thurston [42] and Gabai [63] provide further connections between
contact and low-dimensional topology. Furthermore, as a tool within Floer theory,
contact geometry also plays a fundamental role; see [91, 115, 216]. Finally, contact
geometry is a rich subject in its own right; the tools of Floer homology and its
combinatorial cousins can be brought to bear on purely contact geometric questions,
as we do in the present chapter.

Informally, a contact structure on a three-manifold Y is a field of smoothly
varying oriented two-planes in the tangent space of Y that are so twisted that
there are no embedded surfaces in Y that are tangent to the two-planes. More
formally, notice that if Y is an oriented three-manifold, then any smoothly varying
oriented two-plane field ξ can be realized as the kernel of a nowhere vanishing one-
form α. In terms of this presentation, the twisting condition is the condition that
the three-form α ∧ dα vanishes nowhere. For the structure to be compatible with
the orientation of Y , we require that α ∧ dα takes positive values on all positively
oriented 3-frames. A contact three-manifold is an oriented three-manifold equipped
with a contact structure ξ that can be specified as ker α for α as above. Two contact
three-manifolds (Y, ξ) and (Y ′, ξ′) are said to be contactomorphic, and considered
equivalent, if there is an orientation-preserving diffeomorphism φ : Y → Y ′ which
identifies the contact fields; equivalently, if ξ = ker α and ξ′ = ker α′, then there is
a positive, smooth function f on Y so that φ∗(α′) = f · α.

There are natural refinements of knot theory that arise in the presence of a
contact structure. In a contact three-manifold it is natural to consider knots that
are everywhere tangent to the plane field — the Legendrian knots — and those
that are everywhere transverse to it — the transverse knots . We regard two Legen-
drian (or transverse) knots as equivalent if they are isotopic through Legendrian (or
transverse) knots. Any knot type contains Legendrian and transverse representa-
tives. Moreover, Legendrian and transverse knots have coarse numerical invariants
(Thurston-Bennequin and rotation numbers for Legendrian knots, and self-linking
numbers for transverse ones), which show that Legendrian and transverse knot the-
ories are richer than traditional knot theory. The next challenge, to go beyond these

215
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classical invariants, provides an important impetus for exploring deeper methods in
contact geometry; for example, the theory of pseudo-holomorphic disks [23, 41, 81]
provided the first tools which showed that Legendrian knots have invariants beyond
the classical ones. In the present chapter, we describe another non-classical invari-
ant for Legendrian and transverse knots, defined in the framework of grid homology.

Grid diagrams can be used to study Legendrian and transverse knots, since
a grid naturally determines a Legendrian and a transverse knot in the standard
contact R3. In fact, toroidal grid diagrams, up to the equivalence generated by

• commutation moves and stabilizations of types X:NW,X:SE,
• commutation moves and stabilizations of types X:NW, X:SE, and X:SW,
• and commutation moves and stabilizations of types X:NW, X:SE, X:SW,

and X:NE,

give models for Legendrian, transverse, and classical knot theory, respectively. (The
first of these facts is verified in Proposition 12.2.6 below; the second combines
Proposition 12.2.6 with Theorem 12.5.9 and Proposition 12.2.7; and the third is
Cromwell’s Theorem 3.1.9.)

At the same time, a grid diagram determines two distinguished grid states
(which we first met in Section 6.4), which can be thought of as generators of the grid
chain complex. Since these generators are cycles, they give rise to two distinguished
elements in grid homology. The pair of homology classes turns out to be invariant
under commutation moves and stabilizations of types X:NW and X:SE, so the pair
provides a Legendrian invariant. One of the homology classes is also invariant under
stabilizations of type X:SW, so it induces a transverse invariant.

The aim of this chapter is to introduce and study these grid invariants for
Legendrian and transverse knots. We will start in Section 12.1 by briefly recalling
the basics of Legendrian knot theory in R3 with its standard contact structure;
we relate these notions with grid diagrams in Section 12.2. In Section 12.3 the
grid invariants for Legendrian knots are defined. Section 12.4 gives applications of
the Legendrian invariants, proving, among other things, Theorem 1.2.2 from the
Introduction. In Section 12.5, we study transverse knots, and their relationship with
Legendrian knots. This is used to define the transverse invariant. In Section 12.6,
we give sample computations of transverse invariants, proving Theorem 1.2.3 from
the Introduction. Section 12.7 discusses the fairly straightforward extension of these
invariants to links. In Section 12.8 we sketch another way a grid diagram gives rise
to a transverse knot (through braids). Section 12.9 discusses related constructions
in gauge theory and Heegaard Floer homology.

The Legendrian and transverse invariants were first defined in [185]; the appli-
cations considered here are taken from [25, 102, 157, 185].

12.1. Legendrian knots in R3

We start by recalling some standard definitions from contact topology; for a
more thorough discussion see [45, 68]. Consider the one-form α = dz − y dx on
R3. The three-form α ∧ dα is the standard volume form on R3, and so the two-
plane field ξst = ker α gives a contact structure on R3. The choice of α orients
the two-plane field: since α ∧ dα vanishes nowhere, the restriction of dα gives a
non-zero two-form, and hence an orientation, on ξst = kerα. The structure ξst is
called the standard contact structure on R3. The two-plane field ξst extends to the
one-point compactification S3 (cf. [68, Proposition 2.1.8]), inducing the standard
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contact structure on S3. Just as knot theory in R3 is equivalent to knot theory in
S3, Legendrian knot theory in (R3, ξst) is equivalent to the corresponding theory in
the standard contact structure on S3; we prefer to work in (R3, ξst).

Exercise 12.1.1. Regard S3 as the unit sphere in C2 and equip it with the
(oriented) two-plane field defined by the complex lines in the tangent spaces. Show
that the resulting oriented two-plane field is a contact structure, and the stereo-
graphic projection is a contactomorphism between this contact structure (restricted
to S3 − {north pole}) and the standard contact structure on R3.

Definition 12.1.2. A Legendrian knot is a smooth knot K ⊂ R3 whose
tangent vectors are contained in the contact planes of ξst. Two Legendrian knots
are Legendrian isotopic if they can be connected by a smooth one-parameter
family of Legendrian knots.

There are two classical invariants of oriented Legendrian knots, the Thurston–

Bennequin invariant and the rotation number, defined as follows. Let �K denote a

given oriented Legendrian knot. The contact framing is the framing of �K that is
contained in the two-plane field; i.e. it is specified by rotating the tangent vector 90◦

within the two-plane field. This condition specifies the contact framing uniquely up
to isotopy. The contact framing naturally induces the following numerical invariant:

Definition 12.1.3. Let �K′ denote a push-off of �K with respect to the con-

tact framing. The Thurston–Bennequin invariant of �K, denoted tb(�K), is the

linking number 	k(�K, �K′). The Thurston-Bennequin number is independent of the

choice of orientation on �K.

The definition of the rotation number will use the following basic construction:

Definition 12.1.4. Let E be an oriented two-plane bundle over a surface-with-
boundary S, together with a trivialization along its boundary ∂S, thought of as
specified by a nowhere vanishing section σ of E|∂S → ∂S. The relative Euler
number e(E, σ) of E → S relative to σ is the signed count of zeros of any generic
section s of E → S that extends σ.

Definition 12.1.5. Let �K be an oriented, Legendrian knot. Fix a Seifert

surface Σ for �K. The restriction of ξst to Σ determines an oriented two-plane
bundle over Σ, with a trivialization along the boundary induced by tangent vectors

to the oriented knot. The rotation number r(�K) is the relative Euler number of
the two-plane field ξst over Σ, relative to the trivialization over ∂Σ.

Exercise 12.1.6. (a) Verify that the rotation number of �K is independent of
the choice of Seifert surface Σ used in its definition.
(b) Show that the sign of the rotation number depends on the choice of the orien-

tation for �K.

Legendrian knots can be conveniently studied via their front projections, de-
termined by the projection map (x, y, z) �→ (x, z). The front projection of a Leg-
endrian embedding has no vertical tangencies, and in the generic case its only
singularities are double points and cusps, locally modelled by the map t �→ (t2, t3),
cf. Section B.2.2 in the Appendix. For an example of a front projection (of the
right-handed trefoil knot in Legendrian position), see Figure 12.1. A generic front
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z

x

y

Figure 12.1. Front projection of a Legendrian trefoil knot.

projection determines the Legendrian embedding: i.e. if (x(t), y(t), z(t)) is a Leg-
endrian knot, then the curves x(t) and z(t) determine y(t) by the formula

y(t) =

{
z′(t)
x′(t) if x′(t) �= 0
z′′(t)
x′′(t) if x′(t) = 0.

In particular, at a crossing the strand with larger slope is under the strand with
smaller slope. (To make sense of this convention, recall that the front projection
is on the (x, z) plane, and note that the y axis points into this plane.) Since the
projection determines the nature of the crossing, in Legendrian knot theory it is
customary not to indicate the over- and under-crossings in front projections.

Any knot type can be represented by a Legendrian knot. This can be seen
by working directly with the projection: replace vertical tangencies by cusps and
apply a local move similar to the one from Figure 3.2 near crossings where the
strand with larger slope is over. A variation on this argument can be used to show
that K ⊂ S3 can be approximated arbitrarily closely in the C0 topology by a
Legendrian representative of K; see [45, Theorem 2.5].

Legendrian knots can be studied through their Legendrian front projections in
a way that is a natural enrichment of the way one studies ordinary knots via their
generic projections. The basic moves on Legendrian front projections, called the
Legendrian Reidemeister moves, are illustrated in Figure 12.2. A further move is
Legendrian planar isotopy; such a move is an isotopy of the front projection that
does not introduce vertical tangencies. These moves appear in the following Leg-
endrian analogue of Reidemeister’s Theorem 2.1.4. (For a proof see Section B.2.2.)

Theorem 12.1.7 (Legendrian Reidemeister theorem, Światkowski, [214]). Two
front projections correspond to Legendrian isotopic Legendrian knots if and only if
the projections can be connected by Legendrian planar isotopies and by Legendrian
Reidemeister moves (shown in Figure 12.2).

The classical invariants of an oriented Legendrian knot �K can be easily read off

from its oriented front projection D(�K) by the following formulas. Let wr(D(�K))
denote the writhe of the projection, cf. Definition 2.1.14. Then,

tb(�K) = wr(D(�K)) − 1

2
#{cusps in D(�K)}(12.1)

r(�K) =
1

2

(
#{downward-oriented cusps} − #{upward-oriented cusps}

)
.(12.2)

The terms “downward-oriented” and “upward-oriented” are self-explanatory for a
horizontal cusp; otherwise, isotop the cusp by less than 90◦ to make it horizontal.
See [68, Section 3.5] or [45, Subsection 2.6.2] for the verification of these formulas.
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Ω1 Ω2 Ω3

Figure 12.2. Legendrian analogues of the Reidemeister
moves. Ω1 has another variant obtained by rotating the picture
by 180◦. Ω2 has three further variants, depending on whether the
cusp is left or right, and whether the sign of the slope of the other
strand is positive or negative. The local crossings are not indicated,
as they are determined by the Legendrian condition.

+−

Figure 12.3. Introducing cusps. Given an arc in an oriented
Legendrian knot, as in the middle, we can introduce two cusps
locally, in two ways: left is the negative and right is the positive
stabilization.

Example 12.1.8. The Thurston-Bennequin number of the Legendrian right-
handed trefoil knot illustrated in Figure 12.1 is 1, while the rotation number (with
either orientation) is equal to 0.

Exercise 12.1.9. Find a Legendrian realization �Kp,q of the positive (p, q) torus

knot with r(�Kp,q) = 0 and tb(�Kp,q) = pq − p − q.

Legendrian knots can be locally changed by introducing two new cusps, as
shown in Figure 12.3. This operation is called Legendrian stabilization. Legendrian
stabilization leaves the knot type unchanged, but it drops the Thurston-Bennequin
number by one and changes the rotation number by +1 or −1, depending on how
the cusps are oriented. If the stabilization increases rotation number by 1, it is
called a positive stabilization, otherwise it is called a negative stabilization. See

Figure 12.3. The inverse of a stabilization is called a destabilization. If �K is an

oriented Legendrian knot, let �K+ resp. �K− denote the knots obtained by a positive
resp. negative stabilization. Stabilizations performed on different portions of the
front projections produce Legendrian isotopic knots.

Exercise 12.1.10. (a) Using the Legendrian Reidemeister moves, show that
the two Legendrian knots represented by the solid curves in Figure 12.4 are Legen-
drian isotopic.
(b) Verify that the Legendrian Reidemeister moves do not change the classical in-
variants of a Legendrian knot.
(c) Using Legendrian Reidemeister moves, show that a stabilization performed at
different portions the front projections produce Legendrian isotopic knots, provided
that the signs of the stabilizations are the same.
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Figure 12.4. Legendrian isotopic knots. The two solid curves
represent Legendrian isotopic knots. Performing the move Ω1 in-
dicated by the dashed curve, a sequence of Ω2 and Ω3 moves trans-
forms one diagram into the other.

12.1.1. Legendrian simplicity. The classical invariants of a Legendrian knot
(i.e. its knot type, Thurston-Bennequin and rotation numbers) are invariant un-
der Legendrian isotopy. It is natural to wonder whether the classical invariants
determine the Legendrian isotopy class of a knot.

Definition 12.1.11. An oriented knot type �K is Legendrian simple if for
any two oriented Legendrian knots with equal Thurston-Bennequin and rotation

numbers, both representing �K, there is a Legendrian isotopy connecting them.

Otherwise the knot type �K is called Legendrian non-simple.

Clearly, �K and − �K are Legendrian simple at the same time.
Legendrian simplicity of various knot types (including the unknot [39], torus

knots and the figure-eight knot [44, 46]) has been established using cut-and-
paste methods in contact topology, relying on convex surface theory [73] and by-
passes [90]. The first example of a Legendrian non-simple knot type was found
by Chekanov [23]. His proof associates a suitable equivalence class of differential
graded algebras to a Legendrian knot, presented by its Legendrian projection (i.e.
its projection to the (x, y)-plane; see Section B.2.2). Although the definition was
motivated by deep analytic ideas coming from contact homology [40], the presen-
tations of the algebras are combinatorial. Using these algebras, Chekanov distin-
guished two Legendrian realizations of the mirror image of the 52 knot, shown by
Figure 1.2. In [43], further extensions of this idea were used to verify Legendrian
non-simplicity for an infinite family of twist knots.

12.2. Grid diagrams for Legendrian knots

A planar grid presentation G determines an oriented Legendrian front projec-
tion, via the following construction.

Let G be a planar grid diagram representing an oriented knot �K. The projection

of �K given by the grid G has corner points, which can be classified into four types:
northwest (NW), southwest (SW), southeast (SE), and northeast (NE). Smooth
all the northwest and southeast corners of the projection, and turn the southwest
and northeast corners into cusps. To avoid vertical tangencies, tilt the diagram 45◦

clockwise. After this tilting, the cusps become horizontal, and the NE (respectively
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smooth NW and SE

cuspify NE and SW

rotate 45◦ clockwise

switch all crossings

Figure 12.5. The Legendrian knot determined by a grid
diagram. In this example we consider a grid diagram for the
left-handed trefoil knot and get a Legendrian representative of the
right-handed trefoil.

SW) corners become right (respectively left) cusps. At each crossing in the grid
diagram, the vertical strand crosses over the horizontal one, but this is opposite
to the crossing convention for a Legendrian front projection; so we reverse all the

crossings. Thus, the above algorithm turns the planar grid G of the knot �K into

an oriented Legendrian front projection representing the mirror knot m( �K).

Definition 12.2.1. Let G be a planar grid diagram. The oriented Legendrian

knot �KG represented by the Legendrian front projection constructed from G via
the above procedure is called the Legendrian knot associated to the planar
grid diagram G.

Figure 12.5 illustrates the above procedure, when G is a grid diagram for the

left-handed trefoil, and so �KG is a Legendrian representative of the right-handed
trefoil.

Remark 12.2.2. Alternatively, one could rotate the grid in the counterclock-
wise direction and smooth and cuspify the opposite corners to get a Legendrian

projection of the knot �K, rather than its mirror, as in [158]. The present conven-
tions are consistent with [126, 185]; see also [108, 175].

Although Definition 12.2.1 associates a Legendrian knot to a planar grid dia-
gram, the Legendrian knot can be thought of as associated to a toroidal diagram:

Proposition 12.2.3. All Legendrian knots associated to the various planar
realizations of a fixed toroidal grid diagram are Legendrian isotopic.

The proof of this proposition relies on the following lemma.

Lemma 12.2.4. Commutations and stabilizations of types X:NW, X:SE, O:SE,
and O:NW on a planar grid give isotopic Legendrian knots.

Proof. Each elementary move of the grid diagram listed above can be realized as
a sequence of Legendrian Reidemeister moves of the front projection. For example,
Figure 12.6 demonstrates how the four versions of an X:SE stabilization become
either a Legendrian planar isotopy or a Legendrian Reidemeister move Ω1. (The
stabilizations provide different diagrams based on the different positions of the O-
markings in the row and column of the stabilized X.) Similarly, Figure 12.7 shows a
commutation move inducing a Legendrian Reidemeister move Ω2. (A commutation
move might also involve a sequence of Legendrian Reidemeister moves Ω3.) The
verification of the statement for the further cases proceeds in a similar manner.
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Figure 12.6. The four different ways an X:SE stabilization
can appear after converting into a Legendrian front. Three
of them are Legendrian planar isotopies, while the fourth is a Leg-
endrian Reidemeister move Ω1 on the front projection.

Figure 12.7. A commutation move giving a Legendrian
Reidemeister move Ω2.

Proof of Proposition 12.2.3. Any two planar grids representing the same
toroidal grid diagram differ by a sequence of vertical and horizontal cyclic per-
mutations. In turn, by Lemma 3.2.4, a cyclic permutation can be decomposed into
a sequence of X:NW, X:SE, O:NW, O:SE (de)stabilizations and commutations.
The result now follows from Lemma 12.2.4.

Definition 12.2.5. Let G be a toroidal grid diagram for an oriented knot �K.

The Legendrian knot associated to the toroidal grid diagram , denoted �KG

is the Legendrian representative of m( �K) associated to any planar realization of G,
in the sense of Definition 12.2.1. By Proposition 12.2.3, the oriented Legendrian

knot type of �KG is well-defined.

The following converse to Lemma 12.2.4 is fundamental to the construction of
Legendrian invariants from grid diagrams. (For more details, see Section B.4.1.)

Proposition 12.2.6. Any Legendrian knot type can be represented by some
toroidal grid diagram. Two toroidal grid diagrams represent the same Legendrian
knot type if and only if they can be connected by a sequence of commutations and
(de)stabilizations of types X:NW and X:SE on the torus.

Proof. First we claim that any Legendrian front projection can be turned into
a grid diagram. Stretch the Legendrian front horizontally until no portion of the
diagram is at an angle of more than 45◦ from the horizon. After this modification
the curve can be approximated by a sequence of straight segments at an angle of
±45◦, in such a way that we do not create new cusps. After rotating by 45◦ counter–
clockwise and adjusting the segments to have consecutive integer coordinates, we
have a grid diagram corresponding to the front projection. (A slightly different
approach is explained in detail in Section B.4.1.)

Suppose next that the toroidal grids G1 and G2 can be connected by a sequence
of moves as given in the statement. By Proposition 12.2.3 and Lemma 12.2.4, the
diagrams represent the same Legendrian knot type.

For the converse direction we approximate Legendrian Reidemeister moves by
grid moves. Approximations of Legendrian planar isotopies, and the Legendrian
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Figure 12.8. Stabilizations of type X:SW, after conversion
to a Legendrian front. In each case, the Legendrian knot type
is changed by a negative stabilization.

Reidemeister moves can all be realized by a sequence of commutations and stabi-
lizations and destabilizations of the four possible types X:NW, X:SE, O:NW, and
O:SE. The moves of type O:NW and O:SE can be eliminated via Lemma 3.2.2.
For details on this approximation, see Theorem B.4.15.

The stabilizations of a grid not appearing in the above proposition also have
contact geometric interpretation:

Proposition 12.2.7. A stabilization of type X:SW (and similarly, of
type O:NE) is a negative stabilization of the corresponding Legendrian knot. In
a similar manner, stabilizatons of types X:NE and O:SW provide positive stabiliza-
tions on the Legendrian knots defined by the grid diagrams.

Proof. Figure 12.8 shows the four possible cases of stabilizations of type X:SW;
similar diagrams verify the statements for the other stabilizations.

12.3. Legendrian grid invariants

Recall the definition of the two canonical grid states x+ = x+(G) and x− =
x−(G) from Definition 6.4.1: the components of x+(G) are the northeast corners
of those squares which contain an X-marking, and the components of x−(G) are
the southwest corners of the same squares. In Section 6.4, we showed that these
states are cycles in the grid complex, so they represent homology classes in grid
homology. Our aim here is to show that these homology classes give invariants of
the underlying Legendrian knot determined by the grid.

Definition 12.3.1. Let G be a toroidal grid diagram for an oriented knot �K

and let �KG be the oriented Legendrian knot representing m( �K) associated to G (as
in Definition 12.2.5). The homology classes in GH−(K) represented by the grid
states x+(G) and x−(G) are denoted by λ+(G) and λ−(G), respectively; and these
classes are called the Legendrian grid invariants of G.

Let G be a toroidal grid diagram representing �K, and let �KG denote the induced

oriented Legendrian representative of m( �K). The bigradings of the grid states

x±(G) are expressed in terms of the classical invariants of �KG as follows:
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Theorem 12.3.2. The two cycles x+ = x+(G) and x− = x−(G) associated to
G are supported in bigradings

M(x+) = tb(�K) − r(�K) + 1, M(x−) = tb(�K) + r(�K) + 1,

A(x+) =
tb(�K) − r(�K) + 1

2
, A(x−) =

tb(�K) + r(�K) + 1

2
,

where �K = �KG. Furthermore, the homology elements λ±(G) ∈ GH−(G) represented
by the cycles x±(G) are non-torsion.

We prove the above result after a little preparation. Consider a planar real-
ization G of G. The markings of G are classified into four types, according to
whether they are northwest, southwest, southeast or northeast corners of the knot
projection: a marking is, for example, of northwest type if one of the two neigh-
bouring markings is to the south of it, and the other one is to the east. Let
xNW (and similarly, xSW , xSE , xNE) denote the number of northwest (southwest,
southest, northeast) X-markings, and define oNW , oSW , oSE , oNE similarly, now
using O-markings instead of X-markings. There are obvious relations among these:
for example, counting all upward pointing vertical segments in the projection first
according to the starting X-marking, then according to the terminal O-marking
gives:

(12.3) xSW + xSE = oNW + oNE .

The bridge index b(G) (from Definition 10.1.3) is equal to xSE + oSE (which is

the same as xNW + oNW ). The number of upward-oriented cusps of �KG is equal to
oNE + xSW , while the number of downward-oriented cusps is xNE + oSW . Thus,

the rotation number of �KG can be written as

r(�KG) =
1

2
(xNE + oSW − xSW − oNE),

compare to Equation (12.2).
With the help of Equation (12.1), we see that

(12.4) tb(�KG) + r(�KG) = wr(�KG) − oNE − xSW ,

and

(12.5) tb(�KG) − r(�KG) = wr(�KG) − xNE − oSW .

Note that the writhe wr(�KG) appearing here is the writhe of the front projection of

the Legendrian knot �KG determined by G, which is mirror to the knot projection

associated to G in Definition 10.1.4; consequently wr(�KG) = −wr(G).
Now we are ready to determine the bigradings of the Legendrian grid invariants:

Proof of Theorem 12.3.2. Consider first x−. Fix a planar realization G for G.
Recall that the Maslov grading M(x−) was computed by Equation (4.5) to be

M(x−) = J (x−,x−) − 2J (x−,O) + J (O,O) + 1 = J (x− −O,x− −O) + 1.

According to Lemma 10.1.5, with the notation introduced above, we have that

J (X−O,X−O) = −wr(G) + b(G) = −wr(G) + xSE + oSE .

Since J (x−,x−) = J (X,X), it follows that

J (x− −O,x− −O) = J (X−O,X−O) + I(X− x−,O) + I(O,X− x−).



12.3. LEGENDRIAN GRID INVARIANTS 225

In computing I(X − x−,O), notice that O-markings with type north or east
contribute −1 (and the O-markings of northeast type contribute −2), so

I(X,O) − I(x−,O) = −(oSE + oNW + 2oNE).

In a similar fashion, we get that I(O,X) − I(O,x−) = 0. Combining these obser-
vations, we find that

(12.6) J (x− −O,x− −O) = −wr(G) + xSE + oSE − (oSE + oNW + 2oNE).

By Equation (12.3), we have xSE−oNW −2oNE = −xSW −oNE , so Equation (12.6)
shows

M(x−) = J (x− −O,x− −O) + 1 = −wr(G) − xSW − oNE + 1.

Combining this with Equation (12.4), the identity wr(�KG) = −wr(G) gives the
claimed result. Proposition 6.4.8 gives

A(x−) =
1

2
M(x−),

concluding the computation of the bigrading of x−.
The argument for x+ can be reduced to the argument for x−, as follows. Let G′

denote the grid diagram obtained by rotating G through 180◦. The same rotation
induces a one-to-one correspondence between grid states, x �→ x′. Let M denote
the Maslov grading on S(G) and M ′ the Maslov grading on S(G′). We claim that
M(x) = M ′(x′); in view of Proposition 4.3.1, it suffices to show that M(xSEO) = 0,
which can be verified as in the proof of Lemma 4.3.5. Thus, M(x+) = M ′((x+)′) =

M ′(x−); and by the result for x−, M ′(x−) = tb(�K′) + r(�K′) + 1, where �K′ is the

Legendrian knot associated to G′; i.e. �K′ has front projection obtained from the

front for �K by rotation through 180◦. This 180◦ rotation preserves the writhe, and
the total number of cusps, and hence by Equation (12.1), it preserves tb; but it
switches the upward- and downward-oriented cusps, hence by Equation (12.2), it
reverses the sign of r. This argument computes M(x+) in terms of tb and r, and
A(x+) = 1

2M(x+) again follows from Proposition 6.4.8.
Finally, the fact that the elements λ±(G) are non-torsion was proved in Propo-

sition 6.4.8.

We are now ready to state the invariance properties of λ±. In fact, we already
did most of the work in Section 6.4.

Theorem 12.3.3. Suppose that the two grid diagrams G and G′ represent Leg-
endrian isotopic knots. Then, there is a bigraded isomorphism φ : GH−(G) →
GH−(G′) with φ(λ+(G)) = λ+(G′) and φ(λ−(G)) = λ−(G′).

Proof. By Proposition 12.2.6, the assumption on G and G′ implies that there
is a sequence of commutations and (de)stabilizations of types X:NW and X:SE
transforming the toroidal grid G to G′. Lemma 6.4.4 shows that the grid invariants
are taken to one another by the quasi-isomorphisms induced by commutations.
Lemma 6.4.6 Case (S-1) identifies the homology classes for type X:NW and X:SE
stabilizations. These results then conclude the proof of invariance.
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The above theorem justifies calling the homology classes λ±(G) Legendrian grid
invariants, as we did in Definition 12.3.1. Sometimes, we write the Legendrian grid

invariants as λ±(�K) ∈ GH−(K), where K is the mirror of the knot type of the

Legendrian knot �K.
Legendrian grid invariants behave in a controlled manner under stabilizations

of the Legendrian knot.

Theorem 12.3.4. Let G, G+, and G− be grid diagrams whose associated Leg-

endrian knots are �K and its stabilizations �K+ and �K−, respectively. Then, there
are bigraded isomorphisms

φ− : GH−(G) −→ GH−(G−), φ+ : GH−(G) −→ GH−(G+)

satisfying

φ−(λ+(�K)) = λ+(�K−), U · φ+(λ+(�K)) = λ+(�K+),

U · φ−(λ−(�K)) = λ−(�K−), φ+(λ−(�K)) = λ−(�K+).

Proof. By Theorem 12.3.3, it suffices to verify the statement for any choice

of G− and G+ representing �K− and �K+, respectively. By Proposition 12.2.7, we
can choose G− and G+ to be obtained from G by stabilizations of type X:SW and
X:NE, respectively. The required quasi-isomorphisms are supplied by Lemma 6.4.6:
Case (S-2) verifies it for G− and Case (S-3) for G+.

The grid states x±(G) can also be viewed as generators of the chain complex

ĜC (G) of the simply blocked theory. The corresponding homology classes are

denoted λ̂±(�K) ∈ ĜH (G); these, of course, can be thought of as the images of

λ±(G) under the canonical homomorphism GH−(G) → ĜH (G).

Theorem 12.3.5. Suppose that G and G′ are two grid diagrams whose asso-

ciated Legendrian knots are Legendrian isotopic. Then, there is an isomorphism φ̂

between ĜH (G) and ĜH (G′) that identifies the Legendrian invariants λ̂+(G) and

λ̂−(G) with λ̂+(G′) and λ̂−(G′), respectively.

Proof. Observe that the isomorphisms φ from Theorem 12.3.3 are induced by se-
quences of quasi-isomorphisms between the chain complexes GC−

(over F[V1, . . . , Vn]) and their inverses. Specializing these complexes and chain

maps to ĜC gives the isomorphism φ̂ with the stated properties.

Exercise 12.3.6. Suppose that the oriented Legendrian knot �K is the positive

stabilization of another Legendrian knot. Show that λ̂+(�K) = 0.

The disadvantage of the simply blocked theory ĜH is that it has less algebraic
structure than GH−, and hence it carries less information; its advantage is that it
is easier to compute.

In practice, when trying to decide whether or not the homology elements λ̂±(G)

vanish, it is easier to work with the fully blocked chain complex G̃C(G), which is a
finite dimensional vector space, rather than with the simply blocked chain complex

ĜC (G), which is an infinite dimensional vector space. The following lemma justifies
this simplification.
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Lemma 12.3.7. The natural map GC−(G)
V1=0 = ĜC (G) → GC−(G)

V1=···=Vn=0 = G̃C(G)
induces an injective map on homology.

Proof. We show that for all i ≥ 1, the quotient map

qi :
GC−(G)

V1 = · · · = Vi = 0
→ GC−(G)

V1 = · · · = Vi+1 = 0

is an injection on homology. (Here the case i = 1 is interpreted as ĜC (G) →
GC−(G)
V1=V2=0 .) This follows from the short exact sequence

(12.7) 0 → GC−(G)
V1=···=Vi=0

Vi+1−−−−→ GC−(G)
V1=···=Vi=0

qi−−−−→ GC−(G)
V1=···=Vi+1=0 → 0.

Since Vi+1 is homotopic to Vi (Lemma 4.6.9), which in turn acts trivially on
GC−(G)

V1=···=Vi=0 , Vi+1 acts trivially on H( GC−(G)
V1=···=Vi=0 ). Thus, the long exact sequence

associated to Equation (12.7) implies the injectivity of the map induced on homol-

ogy by the quotient map qi. The projection map ĜC (G) → G̃C(G) can be thought
of as the composition qn−1 ◦ qn−2 ◦ · · · ◦ q1, so the stated injectivity follows by the
injectivity of the map on homology induced by each qi.

Lemma 12.3.8. The Legendrian invariant λ̂+(G) resp. λ̂−(G) vanishes if and
only if the grid state x+(G) resp. x−(G) represents the trivial homology class in

G̃H(G).

Proof. The quotient map induces a chain map q : ĜC (G) → G̃C(G). The

element x+(G), thought of as a chain in G̃C(G), can be viewed as the image of

x+(G) ∈ ĜC (G) under this map q. The result now follows from Lemma 12.3.7.

Like the rotation number, the invariants λ+(�K) and λ−(�K) depend on the

orientation of the Legendrian knot. Now, if �K is an oriented Legendrian knot, we

can consider its reverse −�K, which is the same Legendrian knot, equipped with the
reversed orientation.

Lemma 12.3.9. Let G be a planar grid diagram representing �K. Then, a grid

diagram representing −�K can be obtained by reflecting G through the anti-diagonal.

Proof. Recall that the Legendrian front projection defined by a grid diagram
is given by rotating the projection 45◦ clockwise. Therefore, reflecting G through
the antidiagonal corresponds to reflecting the Legendrian front projection through
the z axis in the (x, z) plane and reversing the orientation of the knot; which in
turn corresponds to rotating the Legendrian knot 180◦ around the z axis in R3

and reversing the orientation of the knot. To complete the lemma, we prove that
rotation through 180◦ about the z axis takes any Legendrian knot to a Legendrian
isotopic knot.

To construct this isotopy, use a radially symmetric model for the standard
contact structure, with contact form (in cylindrical coordinates) given by α′ =
dz + r2dθ; i.e. dz − ydx + xdy. Consider the diffeomorphism F : R3 → R3 given
by F (x, y, z) = (x, y, z + xy

2 ). A straightforward computation verifies F ∗(α′) = α.
Clearly, rotation Rθ by θ about the z axis preserves the contact form α′; and
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F−1◦Rπ ◦F = Rπ. Thus, t �→ F−1◦Rt◦F gives an isotopy between the Legendrian
knot specified by a front projection D and the one specified by Rπ(D).

Proposition 12.3.10. If G is a grid diagram representing �K, then there is a

grid diagram G′ representing −�K and an isomorphism φ : GC−(G) → GC−(G′)
that sends the classes λ+(G) and λ−(G) to λ−(G′) and λ+(G′), respectively.

Proof. Suppose that G represent �K, and let G′ be obtained from G by reflecting

through the {x = −y} axis. By Lemma 12.3.9, G′ represents −�K. The correspond-
ing reflection induces a map on grid states, which extends to an isomorphism of
chain complexes Φ: GC−(G) → GC−(G′). This isomorphism carries the states
x−(G) and x+(G) to the states x+(G′) and x−(G′), respectively.

The above proposition can be interpreted as saying that the pair of elements
λ+(G) and λ−(G), thought of as an unordered pair of elements of GH−(G), is an
invariant of the unoriented Legendrian isotopy class of the (oriented) Legendrian
knot determined by G.

12.4. Applications of the Legendrian invariants

We give two applications of the Legendrian invariants. In one, we give ex-
amples of Legendrian non-simple knots that are distinguished by their Legendrian
invariants. In the second, we give a relationship between the classical invariants
of a Legendrian knot and τ (and hence the slice genus) of the underlying smooth
knot.

12.4.1. Legendrian non-simple knots. The first example of a pair of Leg-
endrian knots that are not Legendrian isotopic but have the same classical invariants
was found by Chekanov [23]. We reprove his result here, verifying Theorem 1.2.2

from the Introduction. The two candidate Legendrian knots �K1 and �K2 are shown
in Figure 12.9, and their corresponding grid diagrams are shown in Figure 12.10.

Note that �K1 is Legendrian isotopic to −�K1; and �K2 is Legendrian isotopic to −�K2.
(We have already met these two diagrams in Section 3.1, cf. Figure 3.6.)

Proposition 12.4.1 (Chekanov, [23]). Consider the unoriented Legendrian
knots K1 and K2 with front projections illustrated in Figure 12.9, both of topological
type m(52) (from Figure 1.2). Both Legendrian knots have tb = 1 and r = 0; but
K1 and K2 are not Legendrian isotopic.

Proof. The two Legendrian knots from Figure 12.9, each equipped with some ori-
entation, are represented by the two grid diagrams G1 and G2 shown Figure 12.10.
(The grid state x+(G1) is also shown in the picture on the left.) It is easy to show
that for all grid states x, there are no rectangles in Rect◦(x,x+(G1)) with empty
intersection with X and O. By the symmetry of the diagram, the same is true

for x−(G1), immediately implying that λ+(�K1) �= λ−(�K1). Consider next the grid
state y shown on G2 in Figure 12.10. Glancing at the figure, one can see that

∂−
X y = x+(G2) + x−(G2), which implies that λ+(�K2) = λ−(�K2).

Thus, there is no isomorphism GH−(G1) → GH−(G2) taking the unordered

pair of homology classes {λ−(�K1), λ
+(�K1)} (two classes which are distinct) to the
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Figure 12.9. Two different Legendrian representatives of
the knot m(52).

Figure 12.10. Grid diagrams for the two different Leg-
endrian representatives of the knot m(52) of Figure 12.9.
The left diagram shows the grid state x+(G1). The right diagram
shows a grid state y and the two shaded rectangles which express
∂−
X y = x+(G2) + x−(G2).

S SΩ2 Ω2

Figure 12.11. Stabilizing Figure 12.9. The sequence of dia-
grams shows that after one stabilization we can move one crossing
from left to right; stabilization moves are labelled with an “S”. Use
Exercise 12.1.10 to see that the two knots in Figure 12.9 become
Legendrian isotopic after one stabilization.

unordered pair of homology classes {λ−(�K2), λ
+(�K2)} (two classes which coincide).

By Proposition 12.3.10, it follows that K1 and K2 are not Legendrian isotopic for
any choice of orientations.

The above argument distinguishes the Legendrian knots defined by the grid
diagrams. Note that the Legendrian knots from Figure 12.9 become isotopic after
one positive or one negative stabilization; see Figure 12.11 for a pictorial proof
based on the Legendrian Reidemeister moves. The Legendrian knots in the knot
type under examination are classified in [48]: in particular, there are exactly two
distinct Legendrian knots in the knot type m(52) with tb = 1 and r = 0. (Indeed,
[48] provides a complete classification of Legendrian/transverse twist knots; see
also [163].)
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12.4.2. Bounds for τ (K) from the Legendrian invariants. Some prop-
erties of the Legendrian invariants can be used to get a bound on τ (K) (from
Definition 6.1.5) in terms of classical invariants of a Legendrian realization of K
or m(K). These bounds, stated below, were first proved by Plamenevskaya [187]
using the contact invariant in Heegaard Floer homology [175].

In the statement, we suppress orientations on our Legendrian knots: the
Thurston-Bennequin invariant is insensitive to this data and, although the rota-
tion number does depends on this choice, its absolute value does not.

Proposition 12.4.2. Let K be a Legendrian knot with knot type K. Then,

(12.8) tb(K) + |r(K)| ≤ 2τ (K) − 1.

Proof. Let G be a grid diagram whose associated Legendrian knot is �K (whose
existence is ensured by Proposition 12.2.6). According to Proposition 6.4.8 the

elements λ−(�K) = [x−(G)] and λ+(�K) = [x+(G)] in GH−(m(K)) are both non-
torsion. The combination of this fact with the grading formula of Theorem 12.3.2
both for x+(G) and for x−(G) gives the inequality

1

2
(tb(K) + |r(K)| + 1) ≤ −τ (m(K)).

By Corollary 7.4.5, −τ (m(K)) = τ (K), so we get the stated inequality.

Proposition 12.4.2 is essentially a restatement of Corollary 6.4.9; except that
now we have replaced the grid-diagrammatic quantities there with their Legendrian
interpretations.

The combination of the above bound with the bound on the slice genus coming
from τ (see Chapter 8) gives the following “slice Bennequin inequality” first proved
using methods of gauge theory [106, 202] (generalizing an inequality discovered
by Bennequin [10], stated for the Seifert genus in place of the slice genus):

Corollary 12.4.3 (Rudolph, [202]). Let K be a Legendrian knot. Then,

(12.9) tb(K) + |r(K)| ≤ 2gs(K) − 1.

Proof. This is an immediate combination of Proposition 12.4.2 with the bound
τ (K) ≤ gs(K) from Corollary 8.1.2.

As an illustration of Corollary 12.4.3, it is easy to find a Legendrian realization
of the positive torus knot Tp,q (cf. Exercise 12.1.9) for which the slice Bennequin
inequality gives

(p − 1)(q − 1) ≤ 2gs(Tp,q);

which, combined with the elementary inequalities

2gs(Tp,q) ≤ 2g(Tp,q) ≤ (p − 1)(q − 1),

shows that

gs(Tp,q) = g(Tp,q) =
(p − 1)(q − 1)

2
.

(This is essentially a recasting of the proof of Corollary 8.1.3.)
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Figure 12.12. A Legendrian representation of W+
0 (T2,3).

For another application in the same spirit, consider the 0-framed positive
Whitehead double K = W+

0 (T2,3) of the right-handed trefoil knot T2,3. A Leg-
endrian realization K of this knot with tb(K) = 1 and r(K) = 0 is shown in Fig-
ure 12.12. Thus, Equation (12.8) gives the bound τ (K) ≥ 1, implying that K is not
smoothly slice. (This is essentially a reinterpretation of the computation appearing
in the proof of Corollary 8.6.4.)

12.5. Transverse knots in R3

Definition 12.5.1. A transverse knot is a smooth knot T ⊂ S3 whose
tangent vectors are transverse to the contact planes of ξst. Two transverse knots
are transverse isotopic if they are isotopic through transverse knots.

A transverse knot T naturally inherits an orientation from the (oriented) con-
tact distribution: a tangent vector v to the transverse knot at p ∈ T ⊂ S3 is
positive if the one-form α has positive value on it.

Recall that Legendrian knots have two classical numerical invariants; by con-
trast, transverse knots have only one:

Definition 12.5.2. Let Σ be a Seifert surface for T . The tangent space to Σ
along T and the contact distribution ξst intersect in a line field. Choose a non-
vanishing section σ of this line field along ∂Σ that everywhere points away from
Σ. Let T ′ be the push-off of T along this vector field. The self-linking number
sl(T ) of T is the linking number 	k(T , T ′).

Exercise 12.5.3. Let Σ be a Seifert surface for T and σ a trivialization of
ξst|∂Σ as above. Show that sl(T ) is the relative Euler number of the restriction of
ξst to Σ, relative to the trivialization σ; cf. Definition 12.1.4.

12.5.1. Front diagrams of transverse knots. Like in the Legendrian case,
transverse knots can be studied through their front projections, i.e., their image
under the projection map (x, y, z) �→ (x, z). We follow the discussion in [43], and
refer the reader to [43, 45] for more information.

Unlike the Legendrian case, the front projection of a knot does not determine
the transverse knot uniquely; rather, the transverse condition provides a bound on
the y(t) coordinate:

z′(t) − y(t) · x′(t) > 0.

This inequality implies that the front projection of a transverse knot satisfies the
following two constraints:
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Figure 12.13. Disallowed behaviour in a transverse knot
projection. A generic transverse front projection is not allowed
to have vertical, downward tangencies (first two pictures); the next
three crossings are also disallowed.

Figure 12.14. Examples of transverse Reidemeister moves.

• There are no vertical, downward-pointing tangencies. Indeed, at a vertical
tangency we have x′(t) = 0, so the transverse condition gives

z′(t) − y(t) · x′(t) = z′(t) > 0,

i.e. z(t) points upwards.
• At each crossing where one strand s1 = (x1(t), y1(t), z1(t)) is oriented to

the left (i.e. x′
1(t) < 0) while the other strand s2 = (x2(t), y2(t), z2(t)) is

oriented to the right (i.e. x′
2(t) > 0), if the slope of s1 is greater than the

slope of s2 (i.e.
z′
1(t)

x′
1(t)

>
z′
2(t)

x′
2(t)

), then s2 crosses over s1 (i.e. y2(t) < y1(t)).

(Recall that the y axis points into the (x, z) plane, cf. Figure 12.1.)

Figure 12.13 shows the behaviour that is excluded by these constraints. A knot
projection satisfying the above two properties specifies a transverse knot, unique
up to transverse isotopy.

Similarly to Legendrian knots, transverse knots can be studied through their
front projections. The transverse Reidemeister moves are simply those ordinary
Reidemeister 2 and 3 moves that do not contain disallowed configurations as in
Figure 12.13; see Figure 12.14 for some examples.

Theorem 12.5.4. ([43], see also [45, Theorem 2.9], [46]) Suppose that D1

and D2 are front projections of the transverse knots T1 and T2. The two transverse
knots are transverse isotopic if and only if the diagrams D1 and D2 can be connected
by a sequence of transverse Reidemeister moves and planar isotopies avoiding the
configurations of Figure 12.13.

The proof of the above result is similar to the proof of Reidemeister’s Theo-
rem 2.1.4; see Section B.2.1.

Like the Thurston-Bennequin and rotation numbers of a Legendrian knot, the
self-linking number of a transverse knot can be computed from a front projection:
suppose that T is a transverse knot with front diagram D. Then the self-linking
number of T is given by

(12.10) sl(T ) = wr(D).
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Figure 12.15. Constructing the projection of a transverse
push-off from an oriented Legendrian knot projection.
Given a Legendrian projection (top row), we construct a generic
projection for the transverse push-off (second row), via the local
modifications shown.

12.5.2. Approximation theorems. A Legendrian knot admits a transverse
approximation, according to the following:

Proposition 12.5.5. Given any oriented Legendrian knot �K, there are trans-

verse knots T = T (�K) that are arbitrarily close to �K in the C1 topology. Further-

more, there is a neighborhood of �K in the C1 topology with the property that any
two transverse knots T and T ′ in this neighborhood are isotopic through transverse
knots.

Proof. Given a Legendrian knot projection, consider the transverse knot projec-
tion by smoothing the upward cusps and introducing Reidemeister 1 moves at the
downward cusps; see Figure 12.15. Any generic front projection of a transverse knot
which is sufficiently close to the Legendrian knot (in the C1 topology) is of the form
specified by this figure. This proves the uniqueness statement of the proposition.

Conversely, by making the Reidemeister 1 loop sufficiently small and choosing
the function y(t) so that z′(t)−y(t)x′(t) > 0 is sufficiently small, we can arrange for
the transverse knot to approximate the initial Legendrian knot arbitrarily closely.
This proves the existence statement.

Definition 12.5.6. The transverse push-off T (�K) of an oriented Legendrian

knot �K is the transverse knot type which can be represented by transverse knot

arbitrarily close (in the C1 topology) to �K.

Remark 12.5.7. In [45], T (�K) is denoted �K+, and called the positive trans-
verse push-off , to distinguish it from the negative transverse push-off , which,

in our notation, would be denoted T (−�K). As a point set, the negative transverse

push-off also has representatives arbitrarily close to �K; but these representatives

are oriented oppositely to �K, and hence do not appear in any sufficiently small

neighborhood of �K in the C1 topology.

We can assume that at a crossing neither strand is vertical. We say that the
strand s1 with larger slope is upward-pointing if it points from left to right (that is,
x′
1(t) > 0 at the crossing); and the strand s−1 with smaller slope is upward-pointing

if it points from right to left (that is, x′
2(t) < 0 at the crossing). Otherwise the

strands are downward-pointing. Notice that by a transverse isotopy avoding vertical
tangencies the two strands at a crossing can be isotoped to strands with slopes +1
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Figure 12.16. Approximating a transverse projection with
a Legendrian diagram. At each Legendrian disallowed crossing,
we stabilize an upward pointing strand; when both strands point
upward, we choose one.

negative 

negative 

stabilization

stabilization

Reidemeister 2 move
Legendrian

Legendrian
Reidemeister 2 move

Figure 12.17. The approximation is unique up to negative
stabilization at a crossing of two upward pointing strands.

and −1, and in this position the definition of up/down coincides with the natural
up/down directions.

Any transverse knot T is transversely isotopic to the transverse push-off of

some oriented Legendrian knot �K, called a Legendrian approximation of T . We
construct a diagram for the Legendrian approximation by modifying the diagram
D(T ) of T as follows:

• at each isolated vertical tangency, introduce a cusp, as in the left two
pictures in Figure 12.16,

• at each crossing not allowed in a Legendrian projection, stabilize one of
the upward-pointing strands, as in the right two pictures in Figure 12.16.

There is a choice in the above procedure, at each Legendrian disallowed crossing
where both strands are oriented upward: we chose one strand for stabilization.
However, the two choices here become Legendrian isotopic once the other strand
is also negatively stabilized, as shown in Figure 12.17. Thus, if we think of the
algorithm as producing a Legendrian knot up to negative stabilizations, it becomes
well-defined. It is also straightforward to see that the transverse push-off of the
Legendrian approximation of a transverse knot T is transversely isotopic to T .

Remark 12.5.8. In keeping with the general spirit of the present work, we have
defined Legendrian approximation in terms of diagrams. A different construction
can be given using standard contact models for neighbourhoods of transverse knots
and finding the Legendrian representatives in these local models.

Analyzing the Legendrian and transverse Reidemeister moves leads to the fol-
lowing result, which is of crucial importance in our definition of the transverse
invariant. (See Section B.2.3 for a proof following [43]; see [47] for a more general
statement.)
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Figure 12.18. Approximating the transverse push-off of
the Legendrian unknot by a Legendrian knot. The first
arrow turns the Legendrian front into a transverse front, and the
second arrow approximates the transverse knot with a Legendrian
knot again. The last two arrows represent Legendrian Reidemeister
moves Ω1 and Ω2 respectively.

Figure 12.19. Stabilization of a transverse knot.

Theorem 12.5.9. (Epstein-Fuchs-Meyer, [43, Theorem 2.1]) Every transverse
knot type can be realized as the transverse push-off of some Legendrian knot type.

Moreover, two oriented Legendrian knots �K1 and �K2 become Legendrian isotopic
after some number of negative stabilizations if and only if their transverse push-offs
are transversely isotopic.

The above theorem sets up a one-to-one correspondence between transverse
knots and Legendrian knots, up to negative stabilizations. The correspondence
associates to each transverse knot a Legendrian push-off, and to each Legendrian
knot its transverse push-off. The Legendrian push-off of a transverse approximation
is a negative stabilization of a Legendrian knot; see Figure 12.18 for an illustration.

Lemma 12.5.10. If T (�K) is the transverse push-off of the oriented Legendrian

knot �K, then

(12.11) sl(T (�K))) = tb(�K) − r(�K).

Proof. Let D denote the front projection of T (�K) and let D(�K) denote the front

projection of the Legendrian knot �K. Recall that the transverse push-off introduces
Reidemeister 1 moves at down cusps (see Figure 12.15); so

sl(T (�K)) = wr(D) = wr(D(�K)) − #{down cusps in D(�K)},
which by Equations (12.1) and (12.2) is equal to tb(�K) − r(�K).

A transverse knot T also admits a stabilization T +, defined through the local
modification of the front diagram of T as given by Figure 12.19.

Exercise 12.5.11. (a) Using the interpretation of the self-linking number of a
transverse knot as the writhe of its front diagram, show that for the stabilization
T + of the transverse knot T , we have sl(T +) = sl(T ) − 2.

(b) Show that the transverse push-off T (�K+) of the positive stabilization �K+ of

a Legendrian knot �K is transverse isotopic to the transverse stabilization of the

transverse push-off T (�K) of �K.
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Grid diagrams can be used to study transverse knots, by combining Theo-
rem 12.5.9 with the material from Section 12.2. We summarize how:

• A grid diagram G uniquely specifies a transverse knot TG by taking the

transverse push-off T (�KG) of the Legendrian knot �KG given by the grid.
• Any transverse knot T can be given by this way: approximate T by a

Legendrian knot �K and take a grid representation of �K (as it is described
in Proposition 12.2.6).

• If two grids represent transversely isotopic transverse knots, then (since
the Legendrian knots given by the grids admit common negative stabi-
lizations), the grids can be transformed into each other by a sequence
of commutation moves and (de)stabilizations of types X:NW,X:SE and
X:SW.

12.5.3. Transverse invariants in grid homology. The presentation of
transverse knots through grid diagrams provides an invariant of transverse knot
types in grid homology.

Definition 12.5.12. Fix a grid diagram G, let �K be its associated Legendrian
knot, and T be its transverse push-off (as in Proposition 12.5.5). Define the trans-
verse grid invariant θ(T ) of the transverse knot T to be λ+(G) ∈ GH−(G).

The above transverse invariant is well-defined:

Theorem 12.5.13. The transverse grid invariant θ(T ) ∈ GH−
sl(T )+1(G, sl(T )+1

2 )

is an invariant of the transverse isotopy class of the transverse knot T ; i.e., if G
and G′ are two grid diagrams whose associated Legendrian knots have transversely
isotopic transverse push-offs, then there is an isomorphism

φ : GH−(G) −→ GH−(G′)

with the property that φ(θ(T )) = θ(T ′).

Proof. The gradings follow from Theorem 12.3.2 and Equation (12.11). The
invariance statement is an immediate combination of Theorem 12.5.9 and Theo-
rem 12.3.4, for negative stabilizations.

Sometimes we write θ(T ) ∈ GH−(m(K)), where K is the knot type of T . We
can also consider the transverse invariant in the simply blocked theory, to get the

invariant θ̂(T ) ∈ ĜH (m(K)); compare Theorem 12.3.5.

12.6. Applications of the transverse invariant

As a concrete application, we use the transverse invariant to distinguish trans-
versely non-isotopic knots, when the classical invariants fail to do so.

Definition 12.6.1. A smooth oriented knot type K is transversely simple if
for any two transverse representatives of K with equal self-linking numbers, there
is a transverse isotopy connecting them. Otherwise the knot type K is called
transversely non-simple .
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Figure 12.20. The two grid diagrams for Proposi-
tion 12.6.2. After appropriately stabilizing the diagram on the
right, the resulting grid diagrams provide transversely non-isotopic
transverse knots with identical classical invariants.

The first transversely non-simple knot type was found by Etnyre and Honda. In
[47] they showed that the (2, 3)-cable of the (2, 3) torus knot has a Legendrian rep-
resentative which does not maximize Thurston-Bennequin number but nonetheless
it is not the stabilization of another knot; see also [157, Proposition 5]. Trans-
versely non-simple knot types were also found by Birman and Menasco [13] by
using braid theory.

There are pairs of transverse knots with identical classical invariants, with the

property that for one the transverse invariant θ̂ ∈ ĜH vanishes while for the other
it does not. By Theorem 12.5.13 it follows that the two knots are not transversely
isotopic; and so examples of this kind verify Theorem 1.2.3 from the Introduction.
We give two such pairs presently.

We start with an example taken from [25], for which the computation turns out
to be very simple. The example gives two transverse representatives of the topo-
logical knot type m(10161), with equal classical invariants but distinct transverse
grid invariants. The examples are specified by the grid diagrams G1 and G2 shown
in Figure 12.20.

Proposition 12.6.2. Let T1 be the transverse push-off of �KG1
and T ′

2 be the

transverse push-off of the positive stabilization of �KG2
. Both T1 and T ′

2 represent
the topological knot type m(10161) (with the same orientation) and have sl(T1) =

sl(T ′
2 ) = 3; but θ̂(T1) �= 0 and θ̂(T ′

2 ) = 0. Thus, the two transverse knots are not
transversely isotopic, and the knot type m(10161) is transversely non-simple.

Proof. It is straightforward to compute that the Legendrian knots �K1 = �KG1
and

�K2 = �KG2
have

tb(�K1) − r(�K1) = 3, tb(�K2) − r(�K2) = 5;

thus, the self-linking numbers of the transverse knots T1 = TG1
and T2 = TG2

are 3
and 5 respectively; and so, sl(T ′

2 ) = 3.
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Figure 12.21. Grid diagrams G1 (left) and G2 (right) rep-
resenting distinct transverse knots with equal classical in-
variants.

By Theorem 12.3.4, θ(T +
2 ) ∈ U · GH−(K) (where K = 10161), so θ̂(T +

2 ) = 0.
Glancing at the grid diagram G1, it is clear that there is no y ∈ S(G1) and r ∈
Rect◦(y,x+(G1)) with r ∩O = r ∩ X = ∅; so θ̂(T1) ∈ ĜH (G1) is non-zero.

The above computation is deceptively simple. For a more realistic example,
we give a pair of transverse representatives for the smooth knot type of m(10132),
the mirror of the knot 10132 from [198]. These are the transverse push-offs of the
Legendrian knots specified by the grid diagrams G1 and G2 from Figure 12.21.
(This example appears in [157]; we use the grid presentation from [102].)

Proposition 12.6.3. Let T1 and T2 be the transverse push-offs of the Legen-

drian knots �K1 = �KG1
and �K2 = �KG2

from Figure 12.21. Both T1 and T2 represent
the topological knot type m(10132), both have self-linking numbers sl(T1) = sl(T2) =

−1, but θ̂(T1) = 0 and θ̂(T2) �= 0. Thus, T1 and T2 are not transversely isotopic,
and hence the knot type m(10132) is transversely non-simple.

Before giving the details of the computation, we describe the overall strategy.

Instead of working with the simply blocked grid homology ĜH , we work with the

fully blocked groups G̃H, as justified by Lemma 12.3.8. To determine whether or

not the homology class θ̂(G) is trivial, we proceed as follows. If the grid state x

appears with nonzero multiplicity in the boundary ∂̃O,X(y) of the grid state y, write
y → x. Define sets of grid states by the following inductive procedure. Let A0 = ∅
and B0 = {x+(G)}. For k = 1, 2, . . ., let

Ak = {y ∈ S(G) \ Ak−1 | y → x for some x ∈ Bk−1},

Bk = {x ∈ S(G) \ Bk−1 | y → x for some y ∈ Ak}.
Since there are finitely many grid states, this process terminates, giving the sets
A = ∪kAk and B = ∪kBk. Let A(G) and B(G) denote the linear subspaces of

G̃C(G) spanned by the grid states of A and B, respectively.

Lemma 12.6.4. Let G be a grid diagram. The homology class [x+(G)] ∈ G̃H(G)

is non-zero if and only if the chain x+(G) ∈ B(G) is not in ∂̃O,X(A(G)).
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Figure 12.22. Vanishing of the transverse invariant of

T (�K1) from Proposition 12.6.3. These grid states and rect-
angles demonstrate the vanishing of [x+(G1)] ∈ GH−(G1).

Proof. By the construction of these subsets, it follows that ∂̃O,X(G̃C(G))∩B(G) =

∂̃O,X(A(G)), and x+(G) is contained in B(G).

The above criterion is useful for grid diagrams where the sets A and B are
not too large. As we will see, in the case of the diagram G2 of Figure 12.21 this
computation is manageable: A has 12 elements, while B has 10. (As a point of
comparison, the grid diagram itself has 10! = 3628800 grid states.)

Proof of Proposition 12.6.3. It is straightforward to verify that both T1 and
T2 represent the knot type m(10132). It is easy to compute sl(T1) = sl(T2) = −1.

We claim that [x+(G1)] = 0 and [x+(G2)] �= 0 as homology classes in the

respective fully blocked grid homologies G̃H(G1) and G̃H(G2). In the light of
Lemma 12.3.8, this property is sufficient to distinguish the transverse knots.

Applying the algorithm from Lemma 12.6.4, we can find three grid states y1,
y2, and y3 with the property that

x+(G1) = ∂̃O,X(y1 + y2 + y3);

the relevant boundary maps are displayed in Figure 12.22.
For x+(G2), the computation is slightly longer. First notice that the upper

right corners of the five X-markings in the diagonal of G2 (but not in the upper
right corner of the grid) are fixed for all elements of A and B. This follows from
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the fact that no rectangle disjoint from the X-markings can have these coordinates
as initial corners, and (because of the presence of the three O-markings in the
upper right 6 × 6 subsquare) no rectangle disjoint from the O-markings can have
these coordinates as terminal corners. This property of the diagram significantly
decreases the number of potential elements in the corresponding sets A and B.

We specify grid states by their corresponding permutations. For instance,

x+(G2) = (1, 5, 4, 3, 2, 6, 7, 8, 9, 10).

Since the last 5 coordinates for all the permutations we consider are the same, we
will drop those coordinates from the descriptions of all other grid states. With this
convention, let

y1 = (1, 4, 5, 3, 2) y2 = (1, 5, 3, 4, 2) y3 = (1, 5, 4, 2, 3)
y4 = (4, 1, 5, 2, 3) y5 = (3, 5, 1, 2, 4) y6 = (2, 4, 5, 1, 3)
y7 = (2, 5, 3, 1, 4) y8 = (1, 4, 2, 5, 3) y9 = (4, 1, 2, 3, 5)
y10 = (5, 1, 2, 4, 3) y11 = (2, 4, 1, 3, 5) y12 = (5, 2, 1, 3, 4)

and

x1 = (4, 1, 5, 3, 2) x2 = (3, 5, 1, 4, 2) x3 = (2, 5, 4, 1, 3)
x4 = (4, 2, 5, 1, 3) x5 = (3, 5, 2, 1, 4) x6 = (4, 1, 2, 5, 3)
x7 = (2, 4, 1, 5, 3) x8 = (4, 2, 1, 3, 5) x9 = (5, 2, 1, 4, 3).

It is straightforward to verify that

A1 = {y1,y2,y3} A2 = {y4,y5,y6,y7} A3 = {y8,y9,y10,y11}
A4 = {y12} A5 = ∅
B0 = {x+(G2)} B1 = {x1,x2,x3} B2 = {x4,x5,x6,x7}
B3 = {x8,x9} B4 = ∅.

and in fact

∂̃O,X(y1) = x+(G2) + x1 ∂̃O,X(y2) = x+(G2) + x2 ∂̃O,X(y3) = x+(G2) + x3

∂̃O,X(y4) = x1 + x4 + x6 ∂̃O,X(y5) = x2 + x5 ∂̃O,X(y6) = x3 + x4 + x7

∂̃O,X(y7) = x3 + x5 ∂̃O,X(y8) = x6 + x7 ∂̃O,X(y9) = x6 + x8

∂̃O,X(y10) = x6 + x9 ∂̃O,X(y11) = x7 + x8 ∂̃O,X(y12) = x8 + x9.

Clearly, x+(G2) �∈ ∂̃O,X(A(G)); so [x+(G2)] �= 0 by Lemma 12.6.4.

Ng and Khandhawit [102] have fit the above knot into an infinite family of
transversely non-simple knot types that can be detected by the transverse grid in-
variant, via a computation with the same complexity as the one explained above.
Different infinite families of transversely non-simple knot types were found by
Vértesi [223], using a formula that determines the behaviour of the transverse
grid invariant under connected sum.

We will study another transversely non-simple knot type in Section 14.4; there
the verification of transverse non-simplicity will use additional structure on the
transverse invariant, defined in Section 14.3.

12.7. Invariants of Legendrian and transverse links

The previous constructions and results admit natural extensions to Legendrian
and transverse links. This section describes the mostly straightforward changes
needed for this generalization.
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The discussion from Section 12.2 readily extends to links, associating Legen-
drian links to grid diagrams.

The Thurston-Bennequin number tb( �L) and rotation number r( �L) for and ori-

ented Legendrian link �L can be defined exactly as in the case of knots (Defini-

tions 12.1.3 and 12.1.5): tb( �L) is defined as the linking number with the contact

framing, and r( �L) as the relative Euler number of ξst over a Seifert surface (with the
trivialization on the possibly disconnected boundary given by Definition 12.1.5).
The formulas for these numbers in terms of Legendrian fronts (Equations (12.1)
and (12.2)) remain valid for links. These quantities admit suitable vector-valued
extensions, as well, which we describe presently.

Definition 12.7.1. Let �L be an oriented Legendrian link with 	 components.

Let �L = (L1, . . . , L�) denote the underlying smooth (oriented) link, and let �L′ be

the push-off of �L along its contact framing. Define tbi = tbi( �L) to be the linking

number of Li with the Legendrian push-off �L′. The resulting homology class

�∑
i=1

tbi ·μi ∈ H1(S
3 \ �L;Z)

is called the Thurston-Bennequin invariant of �L.

As for knots, the Thurston-Bennequin numbers tbi for links can be computed

in terms of a generic front projection D( �L) =
⋃�

i=1 D( �L)i of �L:

tbi( �L) = wr(D( �L)i) + 	k(D( �L)i,D( �L) \ D( �L)i) −
1

2
#{cusps in D( �L)i}(12.12)

(Recall that 	k(D( �L)i,D( �L)\D( �L)i) is computed from the signed crossings of D( �L)i
with D( �L)\D( �L)i.) We can also use the front projection to define rotation numbers

ri( �L) =
1

2

(
#{downward cusps in D( �L)i} − #{upward cusps in D( �L)i}

)
.(12.13)

Remark 12.7.2. These numbers can be thought of as the components of a
homology class,

∑
ri ·μi, which can be thought of as Poincaré dual to a class

H2(S3, �L;Z) which is the relative Euler class of the two plane field ξ, relative

to the trivialization given by the tangent space of �L.

The vector of Thurston–Bennequin invariants of the individual components

of �L, together with the matrix of linking numbers, determines the Thurston–

Bennequin invariant tb( �L). The present packaging, though, is more convenient
in the upcoming formulas.

Exercise 12.7.3. (a) Check that ri( �L) is invariant under Legendrian isotopies.

(b) Show that for any Legendrian link �L, tb( �L) =
∑

i tbi( �L) and r( �L) =
∑

i ri(
�L).

(c) Compute the Thurston-Bennequin invariants of the Legendrian links (repre-
senting the torus link T2,4 and the Borromean rings B) of Figure 12.23.

Remark 12.7.4. In the Legendrian realization of the Borromean rings from
Figure 12.23, the sum of the Thurston-Bennequin invariants of the components is
−4. While each component is individually unknotted, it was shown in [145] that
there is no Legendrian representation for the link where the Thurston-Bennequin
number of each component is −1.
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(a) (b)

Figure 12.23. A Legendrian representations of (a) the T2,4

torus link and (b) the Borromean rings B.

Let G be a grid diagram and let �L be its associated oriented Legendrian
link. Definition 6.4.1 extends to the case of links, giving the pair of elements
x+(G),x−(G) ∈ GC−(G), both of which are cycles. (See the proof of Lemma 6.4.2.)

Theorem 12.7.5. Suppose that �L is a given oriented Legendrian link of 	 com-
ponents and G is a grid diagram representing it. Then, the two cycles x+ = x+(G)
and x− = x−(G), representing the homology elements λ+(G), λ−(G) ∈ GH−(G),
are supported in gradings

Ai(x
+) =

tbi( �L) − ri( �L) + 1

2
Ai(x

−) =
tbi( �L) + ri( �L) + 1

2
(12.14)

M(x+) = tb( �L) − r( �L) + 1 M(x−) = tb( �L) + r( �L) + 1.(12.15)

Moreover, if G and G′ are two different grid diagrams which represent Legendrian
isotopic oriented links, then there is an isomorphism φ : GH−(G) −→ GH−(G′) of
Z ⊕ H(L)-graded modules over F[U1, . . . , U�] with φ(λ+(G)) = λ+(G′) and
φ(λ−(G)) = λ−(G′).

Proof. This is a mostly straightforward generalization of Theorems 12.3.2
and 12.3.3. For example, Equation (12.15) is an easy adaptation of the argument
from Theorem 12.3.2. Computing the Alexander multi-gradings requires a little
extra care, as follows.

Fix a planar realization G of a toroidal grid diagram G whose associated Leg-

endrian link is �L, and let D( �L) be the Legendrian front projection associated to
G. Refine the numbers xSW , xNE , etc. to xi

SW , xi
NE (and so on), where, for ex-

ample, xi
SW is the number of those X-markings which are of type southwest and

lie on the ith component of the link. Let Xi, resp. Oi, denote the X-markings,

resp. O-markings on the ith component of the link. Let D( �L)i be the projection

of the ith component in the Legendrian front projection D( �L). Let O′
i = O \ Oi,

X′
i = X \ Xi, and D( �L)′i = D( �L) \ D( �L)i. From the definition of Ai and bilinearity

of J , it follows that

2Ai(x
−) − 1 = 2J (x− − X,Xi) − 2J (x− − X,Oi)

+ J (Xi −Oi,Xi −Oi) + J (X′
i −O′

i,Xi −Oi) − ni.

Arguing as in the proof of Theorem 12.3.2, we find that

2J (x− − X,Oi) = oiSE + oiNW + 2oiNE .
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An easy computation shows that

2J (x− − X,Xi) = ni.

The proof of Lemma 10.1.5 can be adapted to the planar subgrid Gi given by the
markings on the ith component, to give

wr(D( �L)i)=−wr(Gi)=J (Xi−Oi,Xi−Oi)−b(Gi)=J (Xi−Oi,Xi−Oi)−xi
SE−oiSE .

Using Lemma 10.1.5 for G and the diagram G′ obtained by reversing the orientation

of �Li gives

J (X′
i −O′

i,Xi −Oi) = 	k(D( �L)i,D( �L)′i).

Combining all of this, we find that

2Ai(x
−) − 1 = −(oiSE + oiNW + 2oiNE) + xi

SE + oiSE

+ wr(D( �L)i) + 	k(D( �L)i,D( �L)′i)

= wr(D( �L)i) + 	k(D( �L)i,D( �L)′i) − xi
SW − oiNE

= tb(�Li) + r(�Li),

verifying Equation (12.14) for x−. The computation for x+ follows by rotating the
grid diagram 180◦, exactly as in the proof of Theorem 12.3.2.

Legendrian invariance of λ± follows as in the proof of Theorem 12.3.3.

Let λ+( �L) and λ−( �L) denote the homology classes of x+(G) and x−(G) in the

F[U1, . . . , U�]-module GH−(�L). Theorem 12.3.4 has the following straightforward
generalization:

Theorem 12.7.6. Let �L be an oriented Legendrian link, and let �L− (respectively
�L+) denote the oriented Legendrian links obtained as a single negative (respectively

positive) stabilization of �L on the ith component. Then, there are isomorphisms

φ− : GH−(G) −→ GH−(G−), φ+ : GH−(G) −→ GH−(G+)

with the properties

φ−(λ+( �L)) = λ+( �L−) Ui · φ+(λ+( �L)) = λ+( �L+)

Ui · φ−(λ−( �L)) = λ−( �L−) φ+(λ−( �L)) = λ−( �L+).

As an application, we give two Legendrian non-isotopic links that are isotopic
as smooth links, have identical classical invariants, and have Legendrian isotopic
components (as both components of both links are isotopic to the Legendrian un-
knot).

Proposition 12.7.7. The oriented Legendrian links �L1 and �L2 with front pro-
jections given by Figure 12.24 both of topological type m(623) and having tbi = 1
and ri = 0 for i = 1, 2, are not Legendrian isotopic.

Proof. Consider the grid diagrams G1 and G2 of Figure 12.25 for the two oriented
links in Figure 12.24. Looking at the diagrams of Figure 12.25, we see that there
is no grid state y with the property that there is some r ∈ Rect◦(y,x+(G1)) with
r ∩ O = r ∩ X = ∅, so λ+(G1) �= λ−(G1). On the other hand, the grid state y
shown on G2 in Figure 12.24 has the property that ∂−

X y = x+(G2)+x−(G2), hence
λ+(G2) = λ−(G2). It follows at once that the two oriented Legendrian links are
not Legendrian isotopic.
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Figure 12.24. Two different Legendrian representatives �L1

and �L2 of the link m(623) (the mirror of 623 of [198]).

Figure 12.25. Grid diagrams G1 and G2 for �L1 and �L2. The
left diagram shows x+(G1). The right diagram shows a grid state
y with ∂−

X y = x+(G2) + x−(G2).

With more work, grid homology can be used to detect links that are transversely
non-simple; see [4]. Chongchitmate and Ng’s Legendrian knot atlas [25] gives a
conjectural Legendrian classification of knots and links with small crossing number.

12.8. Transverse knots, grid diagrams, and braids

We sketch another construction of transverse knots from grid diagrams;
see [102, 158]. A planar grid diagram naturally defines a closed braid: connect the
O- and X-markings horizontally as before, but when connecting them vertically,
always go up from the X-marking to the O-marking. When this procedure runs
out of the square in the fundamental domain (that is, when the X is above the
O-marking), connect the markings by going up and around a large circular path,
as in Figure 12.26. The picture can be slightly perturbed to eliminate horizontal
segments without introducing new local maxima or local minima. It is easy to see
that the resulting knot is isotopic to the knot associated to the grid diagram in the
sense of Chapter 3. This description presents our knot as a closed braid. A closed
braid, on the other hand, can be made into a transverse knot, by drawing it in a
sufficiently small neighborhood of the standard transverse unknot.

It can be shown that the transverse knot associated to the braid via the above
procedure is transversely isotopic to the mirror of the one given by the construction

G �→ T (�KG). See [102, Section 2.4]; see also [158] for further discussion.
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Figure 12.26. From grid diagrams to braids.

12.9. Further remarks

This chapter offers a glimpse into the deep interaction between contact ge-
ometry and Floer-type invariants in low dimensional topology. The relationship
between gauge theory and contact geometry was discovered in work of Lisca and
Matić [125] and Kronheimer and Mrowka [108], using Seiberg-Witten theory.

Kronheimer and Mrowka define a Floer homology class that is a contact invari-
ant with values in monopole Floer homology [110]. Building on work of Giroux [74],
an analogous construction in Heegaard Floer homology was defined in [175], giv-
ing an invariant of contact structures with values in the Heegaard Floer homology.
The Heegaard Floer contact invariant is useful for classifying contact structures on
specific three-manifolds; see for example [72].

The Legendrian and transverse invariants can be thought of as a variation on
this construction. Legendrian and transverse invariants in an arbitrary oriented,
contact three-manifold were defined in [126]; and they were shown to generalize
the grid invariants studied here, in work of Baldwin, Vela-Vick, and Vértesi [7].

Lenny Ng [156] has constructed another useful combinatorial invariant for
transverse knots, inspired by methods from symplectic geometry.





CHAPTER 13

The filtered grid complex

The aim of the present chapter is to endow grid homology with more structure.
We define a chain complex similar to the grid complex from Chapter 4, except
that now the Alexander function on grid states induces a filtration, rather than a
grading. While the knot invariant studied in earlier chapters is a bigraded module
over F[U ], we now get a knot invariant that is a more complicated algebraic object:
it is the filtered quasi-isomorphism type of a Z-filtered, Z-graded chain complex
over F[U ].

In Section 13.1, we formulate the relevant notions of filtered complexes and
their quasi-isomorphism types, and discuss some related algebraic operations. (For
more background on homological algebra, see Appendix A.) In Section 13.2, we
define the filtered grid complex, generalizing the construction from Chapter 4. In
Section 13.3, we explain how to adapt the invariance proof from Chapter 5 to our
present framework. This requires some more work, especially in verifying stabiliza-
tion invariance (see Lemma 13.3.13 below).

The enrichment presented here is, indeed, stronger than the grid homology
from Chapter 4. We will describe some of its applications in Chapter 14.

13.1. Some algebraic background

As mentioned above, the grid complex can be used to get more than just a
bigraded homology group; it can be used to give an equivalence class of filtered
chain complexes (over F[U ]). The aim of the present section is to explain the
meaning of this algebraic object. The impatient reader can skip to Section 13.2,
and refer back here as needed.

For the purposes of this background section, we fix a base ring K. (In the rest
of the chapter, we will consider K = Z/2Z.) Objects equipped by filtrations will be
denoted by calligraphic letters, to distinguish them from their graded or bigraded
analogues.

Definition 13.1.1. A Z-filtered, Z-graded chain complex over K is a
K-module C with the following additional structure:

• a K-module endomorphism ∂ : C → C satisfying ∂ ◦ ∂ = 0;
• a Z-grading, which is a splitting of C as a K-module C =

⊕
d∈Z Cd, that is

compatible with the differential in the sense that ∂(Cd) ⊆ Cd−1;
• a sequence of K-submodules FsC ⊂ C with FsC ⊂ Fs+1C, called the Z-
filtration , that exhausts C, in the sense that

⋃
s∈Z FsC = C;

• the filtration is compatible with the Z-grading, in the following sense:
letting FsCd = (FsC) ∩ Cd, then FsC =

⊕
d∈Z FsCd;

• the filtration is compatible with the differential, in the sense that ∂(FsC) ⊆
FsC (i.e. the FsC are subcomplexes);

247
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• the filtration is bounded below in the sense that for any given d ∈ Z, there
is an nd so that FsCd = 0 for s ≤ nd.

We will typically consider Z-filtered, Z-graded chain complexes with the fol-
lowing additional structure:

Definition 13.1.2. Fix some integer n ≥ 0. A Z-filtered, Z-graded chain
complex over K[V1, . . . , Vn] is a Z-filtered, Z-graded chain complex C equipped
with K-module endomorphisms Vi : C → C for i = 1, . . . , n that are compatible with
the above structures in the following ways:

• for all 1 ≤ i, j ≤ n, Vi and Vj commute with each other;
• each Vi is compatible with the differential, in the sense that ∂ ◦Vi = Vi ◦∂;
• each Vi is compatible with the gradings, in the sense that Vi(Cd) ⊆ Cd−2;
• each Vi is compatible with the filtration, in the sense that Vi(FsC) ⊆
Fs−1C.

The endomorphisms Vi for i = 1, . . . , n equip C with the structure of a chain
complex over K[V1, . . . , Vn]. Obviously, the case where n = 0 in Definition 13.1.2
gives back Definition 13.1.1.

The only non-standard aspect of Definition 13.1.2 is the interaction of the
grading and the filtration with the algebra action: for us, multiplication by Vi is
required to change both the grading and the filtration. This is the choice that turns
out to be natural in grid homology.

In a complex C as above, the filtration level of a non-zero element x ∈ C is the
minimal s for which x ∈ FsC ⊂ C.

Typically, our complexes will be finitely generated free modules over
K[V1, . . . , Vn]. The Alexander filtration will be specified by a function, the “Alexan-
der function”, defined on a preferred generating set {xi}mi=1 over K[V1, . . . , Vn].
There is a corresponding basis for C as a K-module, consisting of elements of the
form V k1

1 · · ·V kn
n · x, where x lies in the generating set and k1, . . . , kn are non-

negative integers. The Alexander function is extended to these K-module genera-
tors by the formula

A(V k1
1 · · ·V kn

n · x) = A(x) −
n∑

j=1

kj .

The subcomplex FsC is the span (over K) of those generators whose Alexander
function is less than or equal to s. To check that this definition gives a subcomplex,
is equivalent to verify that for each preferred generator x with A(x) = a, ∂x is in
the span of K-module generators whose Alexander function evaluates ≤ a. Clearly,
such finitely generated complexes are automatically bounded below; they are also
bounded above in the sense that FsC = C for all sufficiently large s.

Definition 13.1.3. Given a Z-filtered, Z-graded chain complex (C, ∂), the as-
sociated graded object is the chain complex

gr(C)=
⊕
d,s∈Z

(FsCd/Fs−1Cd),

equipped with the bigrading gr(C)d,s = FsCd/Fs−1Cd and differential gr(∂) : gr(C)→
gr(C) induced by ∂ : C → C; i.e. gr(∂) =

∑
d,s gr(∂)d,s is a sum of components

gr(∂)d,s : FsCd/Fs−1Cd → FsCd−1/Fs−1Cd−1.
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The result (gr(C), gr(∂)) is a bigraded chain complex over K[V1, . . . , Vn], in the sense
of Definition 4.5.1.

To formulate our knot invariant, we need a suitable equivalence relation on
filtered complexes. Before defining this, it is useful to formulate a notion of mor-
phisms.

Definition 13.1.4. Fix two Z-filtered, Z-graded chain complexes C and C′ over
K[V1, . . . , Vn]. A chain map f : C → C′ is a K[V1, . . . , Vn]-module homomorphism
with ∂′ ◦ f = f ◦ ∂. A Z-graded, Z-filtered chain map is one that satisfies the
following two additional properties:

• f(Cd) ⊆ C′
d; i.e. f is a graded map.

• f(FiC) ⊂ FiC′; i.e. f is a filtered map.

More generally, for fixed integers (m, t), a chain map f : C → C′ is said to be
homogeneous of degree (m, t) if

• f(Cd) ⊆ C′
d+m;

• f(FsC) ⊂ Fs+tC′.

Definition 13.1.5. Fix two Z-filtered, Z-graded chain complexes C and C′ over
K[V1, . . . , Vn], and fix two Z-filtered, Z-graded chain maps f : C → C′ and g : C → C′.
A filtered chain homotopy from g to f is a map h : C → C′ that satisfies the
following properties:

(h-1) h is compatible with gradings and filtrations, in the sense that h maps
FsCd into FsC′

d+1;
(h-2) h satisfies the homotopy relation ∂′ ◦ h + h ◦ ∂ = f − g;
(h-3) h is a homomorphism of K[V1, . . . , Vn]-modules.

Two maps f : C → C′ and g : C → C′ are said to be filtered chain homotopic
if there is a filtered chain homotopy between them. More generally, if f : C →
C′ and g : C → C′ are two chain maps that are homogeneous of degree (m, t), a
homogeneous chain homotopy from f to g is a map as above, except that
Condition (h-1) is replaced by the following:

(h-1′) h maps FsCd into Fs+tC′
d+m+1.

Definition 13.1.6. Two chain complexes C and C′ are said to be filtered
chain homotopy equivalent if there are maps f : C → C′ and g : C′ → C with the
property that the maps f ◦g and g◦f are filtered chain homotopic to the respective
identity maps. In this case, the map f is called a filtered chain homotopy
equivalence, and the maps f and g are said to be filtered chain homotopy inverses
of one another.

A filtered chain map f naturally induces a chain map gr(f) : gr(C) → gr(C′)
between the associated graded objects. It is easy to see that if f : C → C′ is a fil-
tered chain homotopy equivalence, then gr(f) : gr(C) → gr(C′) is a chain homotopy
equivalence between the associated graded objects.

It will be convenient to formulate another equivalence relation between chain
complexes. To formulate this notion, we find it helpful to go back first to the
bigraded context considered previously. Recall (Definition 5.2.9) that a quasi-
isomorphism is a bigraded chain map f : C → C ′ between bigraded chain complexes
that induces an isomorphism in homology.
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Definition 13.1.7. Two chain complexes (C, ∂) and (C ′, ∂′) are said to be
quasi-isomorphic if there is a chain complex (C ′′, ∂′′) and two quasi-isomorphisms
f : C ′′ → C and g : C ′′ → C ′. In this case we write (C, ∂) � (C ′, ∂′). In cases where
(C, ∂) and (C ′, ∂′) are bigraded complexes over K[V1, . . . , Vn], we require our quasi-
isomorphisms to be bigraded chain maps over K[V1, . . . , Vn].

Clearly, if there is a quasi-isomorphism f : C ′ → C, then C is quasi-isomorphic
to C ′: let C ′′ = C ′, and g be the identity map.

Example 13.1.8. Let the chain complex C be freely generated over F[U ] by two
generators x and y with bigradings (−1,−1) and (0, 0) respectively. Equip C with
the differential ∂x = U ·y. Let C ′ be the chain complex with a single generator z in
bigrading (0, 0), so that U · z = ∂z = 0. Consider the F[U ]-module map f : C → C ′

determined by f(x) = 0 and f(y) = z. Then f is a quasi-isomorphism, but there is
no non-trivial F[U ]-module map from C ′ to C.

Quasi-isomorphism is an equivalence relation. (See Proposition A.3.11.) Thus,
when considering a bigraded chain complex (C, ∂) such as GC−(G), one can con-
sider the quasi-isomorphism type of the complex.

Generalizing to the filtered case, we have the following:

Definition 13.1.9. Let C and C′ be two Z-filtered, Z-graded chain complexes.
A filtered quasi-isomorphism f : C → C′ is a Z-filtered, Z-graded chain map
whose associated graded map gr(f) induces an isomorphism on homology. Two
complexes C and C′ are said to be filtered quasi-isomorphic if there is a third
complex C′′ and filtered quasi-isomorphisms from C′′ to C and from C′′ to C′. In
this case, we write C � C′.

When C and C′ are Z-filtered, Z-graded chain complexes over K[V1, . . . Vn], the
quasi-isomorphisms are required to be Z-filtered, Z-graded chain maps of chain
complexes over K[V1, . . . , Vn].

If C is a Z-filtered, Z-graded chain complex, the filtered quasi-isomorphism
type of C is the equivalence class of C, under the equivalence relation of filtered
quasi-isomorphism.

As in the bigraded case, the third complex C′′ in Definition 13.1.9 is introduced
to make the notion of “filtered quasi-isomorphic” into an equivalence relation.

Let f : C → C′ be a filtered chain map. There is an associated mapping cone in
this context, Cone(f : C → C′), whose underlying chain complex is defined exactly
as it was in Definition 5.2.10: as a K[V1, . . . , Vn]-module, the cone is specified as
Cone(f : C → C′) = C ⊕ C′, and it is endowed with the differential from Equa-
tion (5.17). In the present case, though, we give Cone(f : C → C′) the structure of
a Z-filtered, Z-graded chain complex over K[V1, . . . , Vn], with

Fs(C ⊕ C′)d = FsCd−1 ⊕FsC′
d.

More generally, if f : C → C′ is homogeneous of degree (m, t), let

Fs(C ⊕ C′)d = Fs−tCd−m−1 ⊕ FsC′
d.

(Compare Equation (5.18).)

Exercise 13.1.10. An isomorphism φ : C → C′ between two Z-filtered, Z-
graded chain complexes over K[V1, . . . , Vn] is an invertible, Z-filtered, Z-graded
chain map whose inverse is also Z-filtered and Z-graded. If there is an isomorphism
from C to C′, we say that C and C′ are isomorphic.
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(a) Show that isomorphism in the above sense is an equivalence relation.
(b) Show that isomorphic Z-filtered, Z-graded chain complexes are filtered chain
homotopy equivalent.
(c) Show that if C and C′ are filtered quasi-isomorphic, then their homology groups
H(C, ∂) and H(C′, ∂′) are isomorphic.
(d) Show that the notion of “filtered quasi-isomorphic” is an equivalence relation.

A Z-filtered, Z-graded chain complex C over K[V1, . . . , Vn] can be viewed as a
Z-filtered, Z-graded chain complex over K[U ], where U = Vi for some i ∈ {1, . . . , n}.
We denote the resulting complex over K[U ] by (C, Vi). The relevance of the following
result in the grid context will become clear in Lemma 13.2.8.

Proposition 13.1.11. Let C be a Z-filtered, Z-graded chain complex over
K[V1, V2], and suppose that V1 and V2 are filtered chain homotopic, as maps of
degree (−2,−1). Then, the two Z-filtered, Z-graded chain complexes (C, V1) and
(C, V2) over K[U ] are filtered quasi-isomorphic.

We warm up with the bigraded analogue:

Lemma 13.1.12. Let (C, ∂) be a bigraded chain complex over K[V1, V2], and
suppose that multiplication by V1 is chain homotopic to V2, as homogeneous chain
maps of degree (−2,−1). Then the two bigraded chain complexes (C, V1) and (C, V2)
over K[U ] are quasi-isomorphic to each other.

Proof. Promote (C, ∂) to a module over K[V0, V1, V2], denoted C[V0] (as in
Definition 5.2.15); and for i = 1, 2, abbreviate Cone(V0 − Vi : C[V0] → C[V0]) to
Cone(V0 − Vi). Now,

(C, V1) ∼=
(

C[V0]

V0 − V1
, V1

)
∼=
(

C[V0]

V0 − V1
, V0

)
� (Cone(V0 − V1), V0)

∼= (Cone(V0 − V2), V0) � (
C[V0]

V0 − V2
, V2) ∼= (C, V2)

The first two of these isomorphisms are tautologies; the third quasi-isomorphism
follows from the fact that V0 − V1 is an injective endomorphism of C[V0] (cf.
Lemma 5.2.13); the fourth follows from the fact that V0 − V1 is chain homo-
topic to V0 − V2 (and chain homotopic maps have isomorphic mapping cones; see
Lemma A.3.7); and the remaining two (quasi-)isomorphisms are as before.

There are filtered analogues of the constructions going into the above proof. A
filtered complex C over R = K[V2, . . . , Vn] can be promoted to a filtered complex
over R[V1] = K[V1, . . . , Vn], denoted C[V1]. The construction is as in the bigraded
case (Definition 5.2.15), with the understanding that (m · V k

1 ) ∈ FsC[V1]d precisely
when m ∈ Fs+kCd+2k. Obviously, gr(C[V1]) ∼= gr(C)[V1]. Also, if f : C → C′ is

a filtered chain map, we can form the quotient C′

f(C) , which naturally inherits the

structure of a filtered chain complex.

Lemma 13.1.13. If f : C → C′ is a filtered chain map that is homogeneous of
degree (m, t), and which induces an injective map on the associated graded object,

then there is a quasi-isomorphism from Cone(f : C → C′) to C′

f(C) .
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Proof. Let C = gr(C) and C ′ = gr(C′). It is straightforward to see that
gr(Cone(f : C → C′)) ∼= Cone(gr(f) : C → C ′). Moreover, the quotient map

Cone(f : C → C′) → C′

f(C) induces the map Cone(gr(f) : C → C ′) → C′

gr(f)(C) , which

is a quasi-isomorphism by Lemma 5.2.13.

Proposition 13.1.14. Let C and C′ be two Z-filtered, Z-graded chain complexes,
and f, g : C → C′ be two homogeneous chain maps of degree (m, t) that are chain
homotopic. Then Cone(f) is filtered quasi-isomorphic to Cone(g).

Proof. As in the bigraded case (see Lemma A.3.7), a filtered chain homotopy
h from f to g induces a map Φh : Cone(f) → Cone(g), defined by Φh(x, x′) =
(x, x′ +h(x)). This map is easily seen to be a filtered chain map, with inverse Φ−h;
so Cone(f) is in fact filtered isomorphic to Cone(g).

Proof of Proposition 13.1.11. The two key tools in the proof of Lemma 13.1.12
are Lemmas 5.2.13 and A.3.7. Having generalized these to the filtered setting in
Lemma 13.1.13 and Proposition 13.1.14, the proof of Lemma 13.1.12 applies.

13.2. Defining the invariant

The new variant of the grid complex counts more empty rectangles in the
definition of the differential. For notational simplicity, we focus on the case of
knots, returning to the case of links in Section 14.5.

Definition 13.2.1. Let G be a toroidal grid diagram with grid number n
representing some knot K. The filtered grid complex GC−(G) is generated over
F[V1, . . . , Vn] by the same grid states S(G) as GC−(G), and it is endowed with the
differential

(13.1) ∂−x =
∑

y∈S(G)

∑
r∈Rect◦(x,y)

V
O1(r)
1 · · ·V On(r)

n · y.

Comparing this definition with the differential for the unblocked grid complex
GC−(G) (as defined in Equation (4.10)), observe that in the present case we drop
the requirement that the counted rectangles r satisfy r ∩ X = ∅. Lemma 4.6.7 has
the following generalization:

Lemma 13.2.2. The operator ∂− : GC−(G) → GC−(G) satisfies ∂− ◦ ∂− = 0.

Proof. We follow the proof of Lemma 4.6.7. The key difference with that proof
is that now we can no longer exclude Case (R-3): the presence of some X-marking
in a thin annulus does not serve to eliminate it from the counts. The proof of
Lemma 4.6.7 shows that ∂− ◦ ∂−(x) counts (with suitable Vi-powers) all the thin
annuli from Case (R-3). Indeed, for each generator x, each row of squares in the
torus determines a thin annulus starting at x, as does each column. An annulus
is counted (in the x component of ∂− ◦ ∂−(x)) with coefficient Vi, where Oi is the
O-marking in the given annulus. Thus, the contribution of the row through Oi

cancels the contribution of the column through Oi, implying ∂− ◦ ∂−(x) = 0.
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The Maslov grading on the grid complex (defined in Equations (4.5) and (4.11))
induces a grading on GC−(G). The Alexander function A (defined in Equation (4.3)
and (4.12)) defines a function on the F-generators of GC−(G). According to the
following lemma, this function induces a filtration:

Lemma 13.2.3. The differential ∂− drops Maslov grading by one, and it is
compatible with the Alexander filtration.

Proof. The proof of Lemma 4.6.8 applies, with minor modifications. If V k1
1 · · ·V kn

n ·
y appears in ∂−x, then there is a rectangle r ∈ Rect◦(x,y) with Oi(r) = ki for
i = 1, . . . , n. (We no longer require that r ∩ X = ∅.) The argument from the proof
of Lemma 4.6.8 applies, showing that ∂− drops Maslov grading by one. For the
Alexander filtration, Equation (4.14) shows that

(13.2) A(V k1
1 · · ·V kn

n · y) = A(y) − #(r ∩O) = A(x) − #(r ∩ X) ≤ A(x).

This is what is needed to see that ∂− is compatible with the Alexander filtration:
the terms appearing in ∂−x have Alexander filtration level at most A(x).

We have the following analogue of Theorem 4.6.3:

Theorem 13.2.4. The object (GC−(G), ∂−) is a Z-filtered, Z-graded chain com-
plex over F[V1, . . . , Vn], in the sense of Definition 13.1.2.

Proof. According to Lemma 13.2.2, (GC−(G), ∂−) is a complex, and according to
Lemma 13.2.3 the differential drops Maslov grading by one and is compatible with
the Alexander filtration. Equations (4.11) and (4.12) ensure that multiplication
by Vi changes Maslov gradings and Alexander filtrations as required by Defini-
tion 13.1.1. The filtration exhausts GC− by definition. In fact, the filtration is
bounded, since the complex is freely generated by the finite set S(G).

Lemma 4.6.9 has the following generalization:

Lemma 13.2.5. For any pair of integers i, j ∈ {1, . . . , n}, multiplication by Vi

is filtered chain homotopic to multiplication by Vj.

Proof. The proof of Lemma 4.6.9 adapts readily. We need only to extend the ho-
motopy operator Hi counting rectangles that cross Xi (defined in Equation (4.16))
to the filtered case, by relaxing the requirement that r ∩X = Xi to simply Xi ∈ r.
It is easy to see that these maps give the needed filtered chain homotopies.

The relationship between GC− and GC− is summarized in the following:

Proposition 13.2.6. The chain complex (GC−(G), ∂−
X ) is the graded complex

associated to the Alexander filtration on (GC−(G), ∂−).

Proof. The differentials in both ∂−
X and ∂− are suitable counts of rectangles.

Indeed, the rectangles that contribute in ∂−
X are those that contribute to ∂−, and

that satisfy the hypothesis #(X ∩ r) = 0. Looking at Equation (4.14) (cf. also
Equation (13.2)), these are precisely those terms in ∂−(x) whose Alexander level is
the same as that of x, verifying the claim in the lemma.
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Definition 13.2.7. Fix some i ∈ {1, . . . , n}. The simply blocked filtered

grid complex is the quotient complex ĜC(G) = GC−(G)
Vi

.

Lemma 13.2.8. Choose any i ∈ {1, . . . , n}. The filtered quasi-isomorphism type

of the simply blocked filtered grid complex GC−(G)
Vi

, thought of as Z-filtered, Z-graded
chain complex over F, is independent of the choice of i. Similarly, the filtered
quasi-isomorphism type of the unblocked grid complex GC−(G), thought of as a Z-
filtered, Z-graded chain complex over F[U ], where U acts as multiplication by Vi, is
independent of the choice of i.

Proof. Both statements follow from Lemma 13.2.5 and general algebraic consid-
erations. Specifically, Lemma 13.1.13 and Proposition 13.1.14 give filtered quasi-
isomorphisms for any 1 ≤ i, j ≤ n:

GC−(G)

Vi
� Cone(Vi) � Cone(Vj) �

GC−(G)

Vj
,

while Proposition 13.1.11 shows that the quasi-isomorphism type of GC−(G) is
independent of the choice of i.

Now we are ready to state the invariance result for the filtered grid complexes.
The proof of this result will be given in the next section.

Theorem 13.2.9. It G is a grid diagram representing a knot K, the filtered

quasi-isomorphism types of ĜC(G) and of GC−(G) (in the sense of Definition 13.1.9),
thought of as a Z-filtered, Z-graded chain complexes over F and F[U ] respectively,
depend on the grid G only through its underlying unoriented knot K.

13.3. Topological invariance of the filtered quasi-isomorphism type

The invariance of the filtered quasi-isomorphism type of GC−(G) is verified by
following the scheme from Chapter 5. Again, we appeal to Cromwell’s theorem
and adapt the commutation maps and stabilization maps to the filtered setting.
It turns out that the commutation maps extend in a rather straightforward way,
while the destabilization maps require some further work.

13.3.1. Commutation invariance. Suppose that G and G′ are two grid di-
agrams that differ by a commutation move, as in Figure 5.1. Extend the pentagon
counting map from Section 5.1 to a map P : GC−(G) → GC−(G′), defined by

(13.3) P(x) =
∑

y′∈S(G′)

∑
p∈Pent◦(x,y′)

V
O1(p)
1 · · ·V On(p)

n · y′.

(This is the same formula as in Equation (5.2), except now we have dropped the
requirement that p ∩ X = ∅.)

Lemma 13.3.1. The map P is compatible with the Maslov grading and the
Alexander filtration.

Proof. Adapt the argument from Lemma 5.1.3. The Maslov grading is preserved
exactly as before. To verify that P is compatible with the Alexander filtration, we
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argue as follows. Suppose that V k1
1 · · ·V kn

n y′ appears in P(x), so that there is some
p ∈ Pent◦(x,y′) with #(p ∩O) = k1 + · · · + kn. According to Equation (5.5),

A(V k1
1 · · ·V kn

n y′) = A(y′) − #(p ∩O) = A(x) − #(p ∩ X) ≤ A(x),

verifying the claim.

A straightforward adaptation of the proof of Lemma 5.1.4 now gives:

Lemma 13.3.2. P defined as in Equation (13.3) is a chain map of F[V1, . . . , Vn]-
modules.

Lemma 13.3.3. P induces the map P from Equation (5.2) on the associated
graded object.

Proof. According to the proof of Lemma 13.3.1, the terms in P preserving
Alexander filtration count exactly those pentagons for which #(p ∩ X) = 0; i.e. P
induces P on the associated graded object.

Proposition 13.3.4. If G and G′ are two grid diagrams that differ by a com-
mutation or a switch, then their associated filtered complexes GC−(G) and GC−(G′)
are filtered quasi-isomorphic, as filtered complexes over F[U ].

Proof. According to Lemmas 13.3.1 and 13.3.2, P is a filtered chain map. Since
P induces the map P on the associated graded level (Lemma 13.3.3), which is a
quasi-isomorphism by Lemma 5.1.6, it follows that P is a filtered quasi-isomorphism
between the filtered chain complexes GC−(G) and GC−(G′). These are quasi-
isomorphisms over all of F[V1, . . . , Vn], and hence over F[U ] for any U = Vi.

The above argument shows that P and the natural extension P ′ of P ′ (defined
by dropping the requirement that p ∩ X = ∅ in Equation (5.7)) are both quasi-
isomorphisms; but it does not show, for example, that they induce inverses to one
another in homology. This is true, though, according to the following exercise.
(Compare Section 13.4; see also Section A.8.)

Exercise 13.3.5. Verify that P and P ′ are filtered homotopy inverses to one
another.

13.3.2. Stabilization invariance. Our next aim is to show that if the grid
G′ is the stabilization of G, then the filtered chain complexes GC−(G′) and GC−(G)
are filtered quasi-isomorphic. Before going into the details, first we make a few
remarks about the associated graded case; that is, the case of the grid complex
considered in Section 5.2.

In Proposition 5.2.1, stabilization invariance for grid homology was stated as
an identification of the grid homology modules GH−(G′) ∼= GH−(G). As we now
recall, its proof in fact constructed quasi-isomorphisms associated to stabilization
moves, which we wish to promote to the filtered case.

For concreteness, let G′ bet obtained from G by a stabilization of type X:SW;

so there is a distinguished 2 × 2 square in G′ marked by
X1 O1

X2
. As before, let

O2 be the marking in the same row as X2, and let c be the crossing in the square.
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Consider the chain map

(13.4) D : GC−(G′) → Cone(V1 − V2 : GC−(G)[V1] → GC−(G)[V1])

defined by

D(x) = (e(x), e ◦ HI
X2

(x)),

in the notation of Proposition 5.2.17 (cf. Equation (5.22)). This map is called
the graded destabilization map. Although it was not stated this way, the proof of
Proposition 5.2.17 verifies the following:

Proposition 13.3.6. The graded destabilization map D is a bigraded quasi-
isomorphism of modules over F[V1, . . . , Vn].

To obtain a quasi-isomorphism from GC−(G′) to GC−(G) over F[V2, . . . , Vn],
compose D with the quotient map

Cone(V1 − V2 : GC−(G)[V1] → GC−(G)[V1]) →
GC−(G)[V1]

V1 − V2
,

(which is a quasi-isomorphism by Lemma A.3.9), followed by the isomorphism of

chain complexes over F[V2, . . . , Vn], GC−(G)[V1]
V1−V2

∼= GC−(G).
When constructing a filtered quasi-isomorphism for a stabilization of type

X:SW, regard the mapping cone Cone(V1 − V2 : GC−(G)[V1] → GC−(G)[V1]), as
a Z-filtered, Z-graded complex; we abbreviate it by Cone(V1 − V2). (Note that
this is the cone of V1 − V2 on all of GC−(G)[V1], whereas in Proposition 13.3.6
we were considering the cone of the induced map on the associated graded ob-
ject GC−(G)[V1].) We generalize the map of Equation (13.4) to a filtered quasi-
isomorphism D : GC−(G′) → Cone(V1 − V2), after setting up some notation.

Following Section 5.2, partition grid states for G′ into S(G′) = I(G′) ∪N(G′),
according to whether or not the grid state x contains the distinguished point c.
There is a corresponding F[V1, . . . , Vn]-module splitting of the complex GC−(G′) ∼=
I ⊕N . Unlike in Section 5.2, it is no longer true that N is a subcomplex. There is
still a one-to-one correspondence between generators in I(G′) and generators for G,
which we denote e : I(G′) → S(G); but unlike the case of Lemma 5.2.18, the map e
does not lift to a chain map.

The map D counts certain domains that terminate at states in I(G′). We
separate two types of domains: those whose oriented boundary approaches c from
the left and those whose oriented boundary approaches c from the right – type iL
and type iR, respectively. (To make the definitions uniform, think of the trivial
domain as having type iL.) Those two types of domains are organized into a map
mapping into the two different bigraded F[V1, . . . , Vn]-module summands of

Cone(V1 − V2) = GC−(G)[V1]�1, 1� ⊕ GC−(G)[V1].

The domains are defined as follows.

Definition 13.3.7. Fix x ∈ S(G′) and y ∈ I(G′). A domain p ∈ π(x,y) is
said to be into L resp. into R or, more succinctly, of type iL or type iR, if it is
trivial, in which case it is of type iL, or if it satisfies the following conditions:

(d-1) All the local multiplicities of p are non-negative.
(d-2) At each corner point in x ∪ y \ {c}, at least three of the four adjoining

squares have vanishing local multiplicities.
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Figure 13.1. Types of domains. We have listed here domains
in the stabilized diagram, labeling the initial points by dark circles,
and terminal points by empty circles. The top row lists domains
of type iL, while the bottom row lists some of type iR.

(d-3) The domain has the same local multiplicity k at three of the four squares
that share the corner c. When p is of type iL, the local multiplicity of
p at the southwest square meeting c is k − 1, while for p of type iR, the
local multiplicity of p at the southeast square containing c is k + 1.

(d-4) If the domain is of type iL, then y has 2k + 1 components that are not
in x; if the domain is of type iR, then y has 2k + 2 components that are
not in x.

The set of domains of type iL resp. iR from x to y is denoted πiL(x,y) resp.
πiR(x,y). The domains of type iL or iR are called destabilization domains ,
and the set of destabilization domains is written πD = πiL ∪ πiR.

Some destabilization domains are shown in Figure 13.1.

Definition 13.3.8. We define the complexity of a destabilization domain to
be one if it is the trivial domain; otherwise, the complexity counts the number of
horizontal segments in its boundary. For example, the rectangle from Figure 13.1
is a destabilization domain of complexity two.

Fix a non-trivial destabilization domain p from x to y. Let βi be the vertical
circle through c, and let x1 = x ∩ βi. (Note that c is a component of y, but it is
not a component of x.) The length of the horizontal segment in ∂p containing x1 is
called the innermost width of p. Similarly, let αi be the horizontal circle through
c, and xk = x∩ αi. Then, the length of the vertical segment in ∂p containing xk is
called the innermost height of p.

Exercise 13.3.9. Draw destabilization domains with complexity 9 and 10.

Note that the domains of type iL resp. iR are the destabilization domains
with odd resp. even complexity. The destabilization maps are defined by counting
domains of type iL and iR, without factors of V1, in the following sense.
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Definition 13.3.10. Let G′ be a grid diagram obtained from G by a stabiliza-
tion of type X:SW. For y ∈ I(G′), let e(y) ∈ S(G) be the corresponding state, i.e.
e(y) = y \ {c}. Consider the F[V1, . . . , Vn]-module maps

DiL : GC−(G′) → GC−(G)[V1]�1, 1� resp. DiR : GC−(G′) → GC−(G)[V1],

with

DiL(x) =
∑

y∈I(G′)

∑
p∈πiL(x,y)

V
O2(p)
2 · · ·V On(p)

n · e(y)

DiR(x) =
∑

y∈I(G′)

∑
p∈πiR(x,y)

V
O2(p)
2 · · ·V On(p)

n · e(y),

for any x ∈ S(G′). Put these together to define the filtered destabilization map

(13.5) D : GC−(G′) → Cone(V1 − V2)

D(x) = (DiL(x),DiR(x)) ∈ GC−(G)[V1]�1, 1� ⊕ GC−(G)[V1] ∼= Cone(V1 − V2),

where the latter is an isomorphism of bigraded modules (not of chain complexes).

Note that for x ∈ I(G′), DiL(x) = e(x), and DiR(x) = 0.
We have the following schematic picture for the map D, where the top row

represents GC−(G′) (with its decomposition as I ⊕N ), the bottom row represents
Cone(V1 − V2), the bottom horizontal arrow represents a portion of the boundary
operator in Cone(V1 − V2), the top horizontal arrow indicates that there are differ-
entials in GC−(G′) between I and N (both ways), and the arrows connecting the
two rows together represent D:

(13.6)

I N

GC−(G)[V1]�1, 1� GC−(G)[V1]
V1 − V2

DiR

DiL
>1

DiL
1

We have written DiL = DiL
1 +DiL

>1, where the subscript indicates the restriction on
the complexity of the domains.

Lemma 13.3.11. Let p ∈ π(x,y) be a destabilization domain of complexity k.
Then there is a sequence of states {xi}ki=1 with x1 = x and xk = y and empty

rectangles {ri}k−1
i=1 with ri ∈ Rect◦(xi,xi+1), so that p ∈ π(x,y) is the juxtaposition

r1 ∗ · · · ∗ rk−1. Among such sequences of rectangles, there is a unique one with the
property that each rectangle ri has an edge on the distinguished vertical circle βi

through c.

Proof. Consider the case where p is of type iL, so its complexity is odd. We prove
the existence result by induction on the complexity. The case where the complexity
is 1 is trivially true.

Assume the complexity k is greater than 1. Consider the two k-element subsets

{x1, . . . , xk} ⊂ x \ (x ∩ y) and {y1, . . . , yk} ⊂ y \ (x ∩ y).

Number {xj}kj=1 and {yj}kj=1 successively by the following rule: x1 is the component
of x on βi (the β-circle containing c), xj and yj share the same horizontal circle, and
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yj and xj+1 share the same vertical circle. The rest of the components {xj}nj=k+1 =

{yj}nj=k+1 of x (and of y) are ordered arbitrarily. Let s be the intersection of βi with
the horizontal circle through x2 and t be the intersection of βi with the horizontal
circle through x3. Let x2 = {y1, s, x3, . . . , xn} and x3 = {y1, y2, t, x4, . . . , xn}.

It is easy to see that there is a unique rectangle r1 with the following three
properties:

• the initial state of r1 is x,
• r1 is contained in the support of p,
• r1 has an edge on βi.

That rectangle r1 is in Rect◦(x1,x2); and there is a positive domain q from x2

to y with p = r1 ∗ q. Similarly, there is a unique rectangle r2 whose initial state is
x2, whose support is contained in the support of q, and which has an edge on βi;
and that is a rectangle r2 ∈ Rect◦(x2,x3). We can now decompose p = r1 ∗ r2 ∗ p′.
Observe that p′ is a domain whose complexity is k− 2, so the induction hypothesis
applies, verifying both existence and uniqueness of the stated decomposition.

For domains of type iR, the argument is similar.

Lemma 13.3.12. The filtered destabilization map from Definition 13.3.10 re-
spects the Maslov grading and the Alexander filtrations.

Proof. For any destabilization domain p ∈ π(x,y),

A(x) − A(V
O2(p)
2 · · ·V On(p)

n · y) = #X(p) − O1(p),

where #X(p) denotes the total multiplicity of p at all the points in X. This fol-
lows readily from Lemma 13.3.11 and the manner in which the Alexander grading
changes under rectangles (Equation (4.14)). Note that the correction from O1(p)
appears because there is no compensating V1-power in the definition of D. For each
destabilization domain p, it is straightforward to see that

X2(p) − O1(p) =

{
0 if p ∈ πiL

1 if p ∈ πiR.

Taking into account the shift in the Alexander filtrations on the mapping cone and
the comparison of the Alexander functions on G and G′ (from Lemma 5.2.4), it
follows that if p ∈ π(x,y) is a destabilization domain, then the Alexander filtration
of x minus the Alexander filtration of the contribution of p is the sum of the local
multiplicities of p at X1, X3, . . . , Xn. It follows that D is compatible with the
Alexander filtrations.

Maslov gradings are preserved by a similar argument. According to
Lemma 13.3.11, a destabilization domain p with complexity m can be written as a
composition of m−1 empty rectangles. It follows from the manner in which Maslov
gradings change under rectangles (Equation (4.2)) that

M(x) − M(V
O2(p)
2 · · ·V On(p)

n · y) = m − 1 − 2#(p ∩ O1).

When p is of type iR, the complexity m is even, and p contains O1 with multiplicity
m
2 − 1, so we conclude that the Maslov grading of x agrees with that of its image
under D, bearing in mind the Maslov grading shift in the identification between
I(G′) and S(G) from Lemma 5.2.4. The case of domains of type iL are handled
similarly.
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Most of the work in this section goes into verifying the following result, using
an argument that can be thought of a complicated variant of familiar proofs (such
as those of Lemmas 4.6.7, 5.1.4, 13.2.2, and 13.3.2). The difficulty, of course, arises
since the regions counted in the destabilization maps are more complex than the
ones considered until now.

Lemma 13.3.13. The map D from Definition 13.3.10 is a chain map.

Proof. For clarity of exposition, we distinguish the notation for differentials on
the various complexes considered in the lemma:

• ∂′ denotes the differential on the grid complex GC−(G′),
• ∂ denotes the differential on the grid complex GC−(G),
• ∂cone denotes the differential on Cone(V1−V2 : GC−(G)[V1] → GC−(G)[V1]),

so our goal is to prove

(13.7) ∂cone ◦ D = D ◦ ∂′.

To this end, we identify the terms appearing on both sides of this equation as a
weighted count of regions in the diagram G′. Recall that there is a one-to-one
correspondence e between grid states for G and those in I(G′), and that rectangles
connecting grid states in S(G) correspond to rectangles in G′ connecting the cor-
responding grid states in I(G′). So far, this is similar to the earlier stabilization
invariance proof from Chapter 5. However, there is one new feature: in the present
case, we must also consider empty rectangles in G that cross over the stabilization
region, and the corresponding rectangles in G′ contain the point c. In the proof,
we will find it convenient to label five types of rectangles in G′:

(A) rectangles that are disjoint from c and empty,
(B) rectangles that contain c as a corner and are empty,
(C) rectangles that contain c in the interior of their boundary and are empty,
(D) rectangles r with initial state x ∈ I(G′) satisfying Int(r) ∩ x = {c} (in

particular, r is non-empty in G′),
(E) rectangles that are empty, but c ∈ Int(r).

Thus, rectangles of Types (A) and (D) connecting generators of I(G′) give a
model for GC−(G). The differential of the chain complex GC−(G′) counts rectangles
of Types (A), (B), (C), and (E). (Recall that rectangles of Type (D) are non-empty.)

Equation (13.7) is verified by analyzing how these rectangles can interact with
the domains enumerated in the definition of D. The generators for Cone(V1 − V2)
are two copies of the grid states S(G) ∼= I(G′). That is, we think of generators of
Cone(V1 − V2) as grid states in I(G′), further labelled by their types, which can be
either L or R. Those labelled with L generate the summand GC−(G)[V1]�1, 1� ⊂
Cone(V1 − V2), while those labelled with R generate the summand GC−(G)[V1] ⊂
Cone(V1−V2). The differentials connecting two generators both labelled L or both
labelled R (i.e. the differential on GC−(G)[V1]�1, 1� or on GC−(G)[V1]) count rect-
angles of Type (A) or (D) in G′. There is one more type of term in the differential
∂cone, and that is the differential connecting generators labelled L to those labelled
R. We think of this term as a count of a particularly degenerate kind of domain:
one that is empty, but labelled with the algebra element V1 − V2. We call these
domains invisible.
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Next we classify the juxtapositions of domains (consisting of a rectangle and
a destabilization domain) that contribute to ∂cone ◦ D + D ◦ ∂′. The classification
records the type of rectangle and the number of shared moving corners between the
rectangle and the destabilization domain, in the following sense. If p ∈ π(x,y) is a
domain, we say that the moving corners of p is the set x∪y\ (x∩y). If p ∈ π(x,y)
and q ∈ π(y,w) are two domains, a shared moving corner is an element in the
intersection of the set of moving corners of p with the set of moving corners of q.
The juxtapositions of domains with non-zero contribution to ∂cone ◦ D +D ◦ ∂′ are
of the following eleven possible types:

(A-0) A composition p ∗ r or r ∗ p of a rectangle r of Type (A) and a domain of
p in πD with complexity ≥ 1 with no shared moving corners.

(A-1) A composition p ∗ r or r ∗ p of a rectangle r of Type (A) and a domain
p ∈ πD, with complexity > 1, with one shared moving corner.

(A-2) A composition p ∗ r or r ∗ p where r is a rectangle of Type (A), and p is
a domain in πD, with complexity ≥ 4, where r and p share two moving
corners. (For examples of pairs of domains (A-0), (A-1) and (A-2), see
the upper row of Figure 13.2.)

(A-3) A composition p ∗ r or r ∗ p where r is a rectangle of Type (A), and p is
a domain in πD with complexity ≥ 3, where r and p share three moving
corners. When this happens, the composite domain wraps around the
torus, the rectangle has height or width equal to one, and the domain p
has innermost height or width equal to one. This can happen in three
ways:

• the domain goes vertically around the torus, passing through O1;
• the domain goes horizontally around the torus, containing the row

through O1; in this case, the complexity of p is odd,
• the composite domain goes horizontally around the torus, containing

the row through O2; in this case, the complexity of p is even.
Domains of this third type are called exceptional, or of Type (A-3)e. The
first two types are ordinary, or of Type (A-3)o. (See the lower row of
Figure 13.2.)

(B-0) a composition r ∗ p, where r is a rectangle of Type (B) and p is a domain
in πD with complexity 1,

(B-3) a composition r ∗ p where r is a rectangle of Type (B) and p is a domain
with complexity 3, and r and p have three shared moving corners,

(B-4) A composition r∗p where r is a rectangle of Type (B), and p is a domain in
πD with complexity 2, and r and p share four moving corners. When this
happens, the composite domain is either a thin vertical annulus through
O1, or a thin horizontal annulus through O2. See Figure 13.3.

(C-1) A composition r ∗ p, where r is of Type (C) and p ∈ πD has complexity
≥ 2. There are three subtypes:

• r ∩ {O1, X1, X2} = {X1, O1} and p has even complexity,
• r ∩ {O1, X1, X2} = {X1},
• r ∩ {O1, X1, X2} = {X2} and p has odd complexity.

Observe that the case where O1 ∈ r is the case where the composite r ∗ p
itself looks like a destabilization domain with odd complexity. In the first
case, we call the domain of Type (C-1) exceptional, or of Type (C-1)e;
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(A-0) (A-1) (A-2)

(A-3)o

(A-2)

(A-3)o (A-3)e

Figure 13.2. Types of juxtapositions using rectangles of
Type (A). The black components are in the initial generator, the
white components are in the terminal generator, and the gray ones
are in both; darker shadings indicate regions with multiplicity two.

(B-4)

(B-4)(B-3)(B-0)

(B-0)

Figure 13.3. Types of juxtapositions using rectangles of
Type (B). We use the same conventions as in Figure 13.2.

Figure 13.4. Types of juxtapositions using rectangles of
Type (C). The first two are exceptional; all the others are ordi-
nary.

otherwise, we call it ordinary, or of Type (C-1)o. See Figure 13.4. When
r ∩ {O1, X1, X2} = {X1}, we let δ denote the innermost width of p; oth-
erwise, it is the innermost height.
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(D-1)e(D-1)o(D-1)o(D-0)

Figure 13.5. Compositions involving a rectangle of Type (D).

(D-0) A composition p∗r, where r is of Type (D), and p is in πD with complexity
≥ 1, and p and r have no shared moving corners.

(D-1) A composition p ∗ r, where r is of Type (D), p is a destabilization domain
with complexity ≥ 2, and p and r share one moving corner. In this case,
the composite domain must wrap around the torus, and it contains a thin
(horizontal or vertical) annulus that goes through O1; or it contains a thin
horizontal annulus that goes through O2. When the annulus goes through
O1, we call the domain ordinary, or of Type (D-1)o; when it goes through
O2, we call it exceptional, or of Type (D-1)e. See Figure 13.5.

(I) A domain p of type iL, multiplied by the weight V1 − V2. This can be
thought of as a decomposition of the domain as p∗i, where i is an invisible
domain counted in the differential of the mapping cone.

All of the above types of juxtapositions contain a destabilization domain p.
We define the complexity of a juxtaposition to be complexity of p. Note that
configurations of Type (I) always have odd complexity, and they always land in R.
For all the other types, the target is in L if and only if the complexity is odd.

It is easy to see that we have enumerated all possible pairs of domains with
non-trivial contribution to ∂cone ◦D+D◦∂′. In particular, we claim that rectangles
of Type (E), which count in the differential for GC−(G′), cannot be followed by a
domain p from πD: the geometry forces some component of the initial state to lie
in the interior of r or some component of the terminal state to lie in p.

The verification of Equation (13.7) amounts to seeing how the contributions
of juxtaposed domains in the above classification can be paired off. We will verify
that contributions of Type (A-0) and those of Type (A-1) cancel in pairs. The
remaining cancellations are summarized in the following table; contributions from
each row cancel with each other:

(D-0)m>1 (A-2)m+2

(D-0)m=1 (B-3)m=3

(B-4)m=2 (I)m=1

(B-0)m=1 (A-3)om=3
δ=1(C-1)om>1 (D-1)om
δ>1(C-1)om>1 (A-3)om+2
δ=1(C-1)em=2k (D-1)em=2k (I)m=2k+1
δ>1(C-1)em=2k (A-3)em=2k+2
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(B-3) (D-0)
(A-2) (D-0)

Figure 13.6. Contributions of (A-2) and (B-3) cancel con-
tributions of (D-0). The degenerate case of Type (D-0) where
the destabilization domain p has complexity 1 is shown in the left;
the generic case is in the right.

In the above table, the subscript represents the complexity of the composite
domain.

We verify the above cancellation scheme as follows.
Contributions of Type (A-0) cancel in pairs: for each such decomposition r ∗ p,

there is an alternative decomposition p′ ∗r′ of the same type, where the order of the
rectangle and the destabilization domain are reversed. (This is reminiscent of how
the contributions of disjoint rectangles cancel in pairs in Case (R-1) of the proof of
Lemma 4.6.7.)

Contributions of Type (A-1) also cancel in pairs. For this, we observe that the
composite domain has a single corner (other than possibly c) with a 270◦ angle.
Cutting this domain in two different ways gives two different decompositions of the
same domain as a juxtaposition of domains of Type (A-1). (This is reminiscent of
how the contributions of rectangles sharing one corner cancel in pairs in Case (R-2)
of the proof of Lemma 4.6.7.)

Compositions r∗p or p∗r of Type (A-2), where p has complexity m ≥ 4, cancel
with compositions p′ ∗ r′ of Type (D-0), where now p′ has complexity m − 2. The
remaining domains p′ ∗ r′ of Type (D-0) with complexity m = 1 cancel with the
decomposition of Type (B-3). See Figure 13.6 for both cancellations.

For the remaining cases, we explain how to group juxtapositions so that their
contributions cancel. As we shall see, these pairings do not occur simply as pairs of
alternate decompositions of the same domain. Nonetheless, the different composite
domains differ by thin annuli. In verifying that the contributions cancel, the reader
should bear in mind that destabilization domains do not contribute powers of V1

(even if the domain crosses O1); and domains of Type (I) contribute V1 − V2 (even
though the domain contains neither O1 nor O2).

With the preceding understood, the contributions of Type (I) with complexity
= 1 are clearly cancelled by the contributions of the two domains of Type (B-4).

Contributions of Type (B-0) cancel the complexity 3 contributions of
Type (A-3). When c is the lower right resp. upper left corner of the rectangle
in the Type (B-0) decomposition, the corresponding destabilization domain in the
Type (A-3) juxtaposition has innermost width resp. height equal to one. The order
of the rectangle and the destabilization domain in the Type (A-3) decomposition
depends on the placement of the components of the initial generator x in the column
or row through O1. See Figure 13.7 for an illustration.

It remains to verify that contributions r ∗ p of Type (C-1) cancel with contri-
butions of Type (D-1) or (A-3), with possible contributions of Type (I).
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(B-0) (A-3) (B-0) (A-3)

Figure 13.7. Contributions of (B-0) cancel contributions
of (A-3) with complexity 3. We have drawn cases where the
rectangle in the Type (B-0) decomposition has lower right corner
at c. The placement of the initial generator in the column imme-
diately to the right of O1 determines the order of the polygons, as
indicated. Similar pictures can be drawn when the rectangle has
upper left corner at c; in these cases, the domain of Type (A-3)
contains a horizontal annulus through O1.

We start with the subcase where r ∗p is of Type (C-1)o and r∩{O1, X1, X2} =
{X2}. In this case, the domain underlying r ∗ p has a unique decomposition that
contributes to ∂cone ◦D+D◦∂′. Form a new domain by adding the thin annulus of
height one through O1. We claim that this new domain has a unique decomposition
that contributes to ∂cone ◦ D + D ◦ ∂′, and that cancels the contribution of r ∗ p.
In cases where the innermost height of p is 1 (i.e. δ = 1), the decomposition is of
Type (D-1); for more general p, the decomposition is of Type (A-3), and the order
(of the rectangle and the domain) is determined by the positions of the generator
in the newly added row. If m denotes the complexity of the decomposition of
Type (C-1), then the complexity of a corresponding decomposition of Type (D-1) is
also m; while a corresponding decomposition of Type (A-3) is m+2. See Figure 13.8
for an illustration.

When r ∩ {O1, X1, X2} = {X1}, the same argument works, after adding a
vertical (rather than a horizontal) thin annulus through O1 to the original domain
r ∗ p. This completes the case where r ∗ p is of Type (C-1)o.

When r ∗ p is of Type (C-1)e, the domain underlying r ∗ p itself looks like a
destabilization domain of type iL; i.e. it has another contribution to ∂cone ◦ D +
D ◦ ∂′, when viewed as a decomposition of Type (I). (Note that this contribution
of Type (I) has complexity ≥ 3.) We can also construct an alternate domain by
adjoining the horizontal, height one annulus through O2. When the innermost
height δ of p is one, the new domain has a unique decomposition of Type (D-1)e;
when δ > 1, the new domain has a unique decomposition of Type (A-3)e. Now
the three different contributions (of Types (C-1)e, (D-1)e or (A-3), and (I)) cancel.
See Figure 13.9. This argument concludes the case analysis and proves that the
destabilization map D of Definition 13.3.10 is a chain map, as claimed.

Exercise 13.3.14. (a) Draw a domain of Type (C-1)e with complexity 4. Find
the cancelling contribution.
(b) Draw a complexity 5 domain. Find all the rectangles that can be added to it
to give a composite domain of Type (A-2). Identify the cancelling domains.
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(C-1) (D-1)

(C-1) (A-3)

(C-1) (A-3)

Figure 13.8. Contributions of (C-1)o cancel contributions
of (D-1)o or (A-3)o. In the pictures, for r ∗ p of Type (C-1),
we have drawn the case where r ∩ {O1, X1, X2} = {X2} and the
complexity of p is 3.

(C-1) (D-1) (I)

(C-1) (A-3) (I)

Figure 13.9. Cancellation of (C-1)e with contributions
of (D-1)e, (A-3)e, and (I) with complexity > 1.

(c) Draw a complexity 6 composite domain of Type (A-3)e. Find the cancelling
composite domains.

Lemma 13.3.15. The filtered destabilization map D from Definition 13.3.10
induces the destabilization map D from Proposition 13.3.6 on the associated graded
level.

Proof. By Lemma 13.3.12, the map on the associated graded level induced by D
counts destabilization domains that do not go through X1, X3, . . . , Xn. It is easy to
see that these destabilization domains have complexity ≤ 2; and hence, that these
are the domains counted in the destabilization map D (cf. Equation (13.4)).

We now have the following generalization of Proposition 5.2.1:
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Proposition 13.3.16. Label the O-markings in G by {2, . . . , n}, and fix some
i ∈ {2, . . . , n}. Suppose that G′ is obtained form G by stabilization. Then, there
is a filtered quasi-isomorphism from GC−(G′) to GC−(G), viewing both as chain
complexes over F[Vi].

Proof. We start with the case of stabilizations of type X:SW. The filtered
destabilization map D : GC−(G′) → Cone(V1 − V2) of Definition 13.3.10 is a graded
and filtered chain map according to Lemmas 13.3.12 and 13.3.13, and it is a quasi-
isomorphism over F[V2, . . . , Vn] by Lemma 13.3.15 and Proposition 13.3.6.

Apply Lemma 13.1.13 with f = V1 − V2, to get a a filtered quasi-isomorphism

(13.8) Cone(V1 − V2) →
GC−(G)[V1]

V1 − V2
.

Finally, there is an isomorphism of filtered chain complexes

(13.9)
GC−(G)[V1]

V1 − V2

∼= GC−(G)

over F[V2, . . . , Vn]. The desired filtered quasi-isomorphism is obtained by composing
the filtered quasi-isomorphisms induced by D with the quasi-isomorphisms from
Equations (13.8) and (13.9), and then restricting to the subring F[Vi].

As usual, we can use switches to reduce all stabilizations to the above case.
(See Corollary 3.2.3 and Proposition 13.3.4.)

13.3.3. The invariance statement. We can synthesize the above results to
get the invariance of the quasi-isomorphism type of the grid complex:

Proof of Theorem 13.2.9. Both the construction of ĜC(G) and the restriction of
GC−(G) to a module over F[U ] involve choosing some i ∈ {1, . . . , n}. Lemma 13.2.8
proves that the filtered quasi-isomorphism types of the complexes are independent
of this choice; i.e. they depend only on the underlying toroidal grid diagram G.

Combine Cromwell’s Theorem 3.1.9, commutation invariance (Propo-
sition 13.3.4), and stabilization invariance (Proposition 13.3.16) to see that the
filtered quasi-isomorphism type GC−(G) depends on the underlying oriented knot

only. By the five lemma, if GC−(G) is quasi-isomorphic to GC−(G′), then GC−(G)
U

is quasi-isomorphic to GC−(G′)
U . (Compare Proposition A.3.5.) To see the indepen-

dence of the choice of orientation, reflect across the diagonal, as in the proof of
Proposition 5.3.2.

Definition 13.3.17. For a knot K let G be a grid diagram representing K. The
filtered quasi-isomorphism type of the Z-filtered, Z-graded F[U ]-module GC−(G) is
called the filtered grid invariant of K and it is denoted by GC−(K). Similarly,
the filtered quasi-isomorphism type of the Z-filtered, Z-graded chain complex (over

F) ĜC(G) is the simply blocked filtered grid invariant of K, and it will be

denoted by ĜC(K).
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13.4. Filtered homotopy equivalences

The filtered grid invariant as defined above is the filtered quasi-isomorphism
type of GC−(G) for any grid diagram for K, where multiplication by U is defined
to be multiplication by Vi for any i = 1, . . . , n. In the above topological invariance
proof, we gave filtered quasi-isomorphisms between the grid complexes for vari-
ous choices: varying the choice of Vi, performing commutation moves on G, and
performing stabilization moves.

Our aim here is to promote these filtered quasi-isomorphisms to explicit filtered
chain homotopy equivalences. Although this is not strictly needed to set up the
theory (see Section A.8), the explicit forms of the maps can be useful for compu-
tations. In Section 13.4.1, we show that different choices of Vi give filtered chain
homotopic grid complexes. Filtered homotopy equivalences for commutation moves
are supplied by the pentagon counting maps from Section 13.3.1; to see they are
homotopy equivalences, extend the hexagon counting homotopies from Section 5.1
in a straightforward manner. The more interesting stabilization maps are sketched
in Section 13.4.2.

13.4.1. Varying the choice of Vi. We construct homotopy equivalences be-
tween the grid complexes, thought of as chain complexes over the polynomial alge-
bra with variables Vi, for various choices of i.

Let HOi
: GC−(G) → GC−(G) be the map

HOi
(x) =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)

∣∣Oi∈r}

V
O1(r)
1 · · · · V Oi−1(r)

i−1 · V Oi+1(r)
i+1 · · ·V On(r)

n · y,

There is a similar operator HXi
, counting rectangles that contain the X-marking

Xi (which is in the same row as Oi). If Oj is in the same column as Xi (i.e.
Vi and Vj are consecutive, as in the proof of Lemma 4.6.9), consider the map

f : (GC−(G), Vi) → (GC−(G), Vj) determined on grid states by the formula

(13.10) φ(x) = x−HXi
◦ HOi

(x)

and the relations φ(Vk · ξ) = Vk · φ(ξ) for k �= i and φ(Vi · ξ) = Vj · φ(ξ). This map
was introduced and studied by Sarkar [203]. We prove here the following:

Proposition 13.4.1. Let (GC−(G), Vi) be the grid complex of a knot, thought
of as a module over F[U ], where U acts as Vi. If Vi and Vj are consecutive, the

map f defined above gives a filtered homotopy equivalence from (GC−(G), Vi) to
(GC−(G), Vj). Thus, the filtered chain homotopy type of (GC−(G), Vi) is indepen-
dent of the choice of i.

Proof. Let (C, ∂) = (GC−(G), ∂−). Number the variables so that V1 and V2 are
consecutive. Any element of c ∈ C can be uniquely written as a sum

∑
ckV

k
1 , where

ck are in the F[V2, . . . , Vn]-submodule C1 of C generated by grid states. Define a
filtered F[V2, . . . , Vn]-module map h : C → C by

h(
∑

ckV
k
1 ) =

∑
p+q=k−1

V p
1 V q

2 ck,

where ck ∈ C1. It is elementary to verify that

h ◦ V1 − V2 ◦ h = Id .
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Let H = HX1
be the operator from Lemma 13.2.5 satisfying

∂ ◦ H + H ◦ ∂ = V1 − V2.

Consider the map φ : C → C defined by

(13.11) φ = IdC −∂ ◦ H ◦ h −H ◦ h ◦ ∂.

Obviously, φ is a chain map; and

φ ◦ V1 − V2 ◦ φ = (V1 − V2) − ∂ ◦ H ◦ (h ◦ V1 − V2 ◦ h) −H ◦ (h ◦ V1 − V2 ◦ h) ◦ ∂

= (V1 − V2) − ∂ ◦ H −H ◦ ∂ = 0;

i.e. φ can be viewed as a filtered chain map φ : (C, V1) → (C, V2) over F[U ].
We show that a homotopy inverse to φ is given by ψ : C → C defined by

ψ = IdC +∂ ◦ H ◦ h′ + H ◦ h′ ◦ ∂,

where h′ is defined like h, with the roles of V1 and V2 reversed, so that

h′ ◦ V2 − V1 ◦ h′ = Id .

The same reasoning as before shows that ψ ◦ V2 − V1 ◦ ψ = 0.
Letting

K = −H ◦ h + H ◦ h′ −H ◦ h′ ◦ ∂ ◦ H ◦ h −H ◦ h′ ◦ H ◦ h ◦ ∂,

it is straightforward to verify that

∂ ◦ K + K ◦ ∂ = ψ ◦ φ − Id;

i.e. ψ ◦ φ is chain homotopic to the identity. We want to check that ψ ◦ φ is
homotopic to the identity as a chain map over F[V1]. For any endomorphism f , let
[f, V1] = f ◦ V1 − V1 ◦ f . Observe that

[H ◦ h, V1] = (V2 − V1) ◦ H ◦ h + H
[H ◦ h′, V1] = 0

[H ◦ h′ ◦ ∂ ◦ H ◦ h, V1] = H ◦ ∂ ◦ H ◦ h + H ◦ h′ ◦ ∂ ◦ H
= −H ◦H ◦ ∂ ◦ h + (V1 − V2) ◦ H ◦ h + H ◦ h′ ◦ ∂ ◦ H

[H ◦ h′ ◦ H ◦ h ◦ ∂, V1] = H ◦H ◦ h ◦ ∂ + H ◦ h′ ◦ H ◦ ∂

and hence

−[K, V1] = H + H ◦H ◦ (h ◦ ∂ − ∂ ◦ h) + H ◦ h′ ◦ (V1 − V2)

= H ◦H ◦ (h ◦ ∂ − ∂ ◦ h).

The same considerations as in the proof of Lemma 13.2.2 show that H◦H = 0: that
operator counts decompositions of regions that cover the distinguished X marking
twice, and those decompositions come in pairs. Thus, K commutes with V1, as
needed. Also, φ ◦ ψ is homotopic to the identity map by the same reasoning.

Note that for each grid state x, h(x) = 0 and h(∂x) = HO1
(x), so Equa-

tion (13.10) follows from Equation (13.11).
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Figure 13.10. Examples of stabilization domains. The up-
per row shows examples of elements of type oL, the lower row
examples of type oR.

13.4.2. Filtered stabilization maps. In the proof of stabilization invari-
ance, we constructed filtered destabilization maps for stabilizations of type X:SW,
and proved that they are filtered quasi-isomorphisms. Here we invite the interested
reader to construct explicit homotopy inverses for these destabilization maps, giv-
ing hints along the way. This discussion is a filtered generalization of Section 5.7;
other stabilizations will be considered in Section 14.3.

The stabilization maps for X:SW stabilizations are defined by counting domains
which go out of L or out of R, in the following sense.

Definition 13.4.2. Fix x ∈ I(G′) and y ∈ S(G′). A domain p ∈ π(x,y) is
said to be out of L resp. out of R or, more succinctly, of type oL or oR, if it is
trivial, in which case it is of type oL, or it satisfies the following conditions:

(s-1) All the local multiplicities of p are non-negative.
(s-2) At each corner in x ∪ y \ {c}, at least three of the four adjoining squares

have vanishing local multiplicities.
(s-3) In a neighborhood of c, the local multiplicities in three of the adjoining

squares are the same number k. When p has type oL, the domain has
local multiplicity k − 1 at the northwest square meeting c; when p is of
type oR, it has multiplicity k + 1 at the northeast square meeting c.

(s-4) If the domain has type oL, then y has 2k + 1 coordinates not in x; if the
domain has oR, then y has 2k + 2 coordinates not in x.

The set of domains of type oL resp. oR from x to y is denoted πoL(x,y) resp.
πoR(x,y). Domains of type oL or oR are called stabilization domains.

Stabilization domains look like destablization domains as in Definition 13.3.7,
reflected through a horizontal axis. See Figure 13.10.
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Definition 13.4.3. Consider the maps

SoL : GC−(G)[V1]�1, 1� → GC−(G′) and SoR : GC−(G)[V1] → GC−(G′),

defined by

SoL(x) =
∑

y∈S(G′)

∑
p∈πoL(e′(x),y)

V
O2(p)
2 · · ·V On(p)

n · y,

SoR(x) =
∑

y∈S(G′)

∑
p∈πoR(e′(x),y)

V
O2(p)
2 · · ·V On(p)

n · y,

where e′ : S(G)
∼=−→ I(G′) is the identification of grid states (i.e. it is the inverse of

the map e considered earlier).
These maps can be assembled to form a map Cone(V1 − V2) → GC−(G′), spec-

ified by the following diagram:

I N

GC−(G)[V1]�1, 1� GC−(G)[V1]

∂−

V1 − V2

SoR
SoL
>1SoL

1

(where the top row specifies Cone(V1 − V2) and the bottom specifies GC−(G′)).

Exercise 13.4.4. (a) Show that the stabilization map is a chain map that
respects the Maslov gradings and Alexander filtrations.
(b)∗If G′ is obtained from G by a stabilization of type X:SW, find a map

K : GC−(G′) → GC−(G′)

so that

D ◦ S = Id

S ◦ D + ∂ ◦ K + K ◦ ∂ = Id,

verifying that the stabilization and destabilization maps are homotopy inverses of
one another.

Stabilization maps for other types of stabilizations will be discussed in Sec-
tion 14.3.





CHAPTER 14

More on the filtered chain complex

The aim of this chapter is twofold: to make the filtered invariant introduced
in the last chapter more concrete, and to develop some of the applications of this
new structure. In Section 14.1, we explain how to extract numerical invariants
from the filtered quasi-isomorphism type, some of which go beyond the information
present in the grid homology groups. One of the results from this section (Propo-
sition 14.1.1) presents certain constraints on the filtered quasi-isomorphism type
of GC−. In Section 14.2 these constraints (combined with computations of grid
homology groups) are used to explicitly determine the quasi-isomorphism type of
GC− for certain specific knots. In Section 14.3 we use the filtration to give more
structure to the Legendrian and transverse invariants defined in Chapter 12. In
Section 14.4, we show how this extra structure can be used in practice to distin-
guish Legendrian and transverse knots. In Section 14.5, we make a few remarks on
the generalization of the filtered invariant to the case of links. Section 14.6 contains
a brief account of the relationship between the constructions described here and the
pseudo-holomorphic theory.

14.1. Information in the filtered grid complex

We have so far defined the filtered quasi-isomorphism type of the grid complexes

ĜC(G) and GC−(G), which are both topological invariants of knots. One might
wonder how to make these refined invariants more concrete: i.e. what is a reasonable
invariant of a filtered quasi-isomorphism type of a complex?

We will construct numerical invariants from the filtered quasi-isomorphism type
by looking at the interplay of two extremes. In one extreme, we can take the
homology of the associated graded object, but that simply recaptures the grid
homology groups from Chapter 4. In the other extreme, we can take the homology
of the total object. This is a knot invariant, since the filtered quasi-isomorphism
type of GC−(G) is a knot invariant (Theorem 13.2.9), and the homology groups of
filtered quasi-isomorphic chain complexes are isomorphic (by Proposition A.6.1).
That group loses the (Alexander) filtration, but it still retains a (Maslov) grading.
Since the homology ignores the X-markings entirely, it is independent of the knot,
and we have the following:

Proposition 14.1.1. For any knot K and any grid diagram G representing K,

H(ĜC(G)) ∼= F, supported in Maslov grading 0; and similarly H(GC−(G)) ∼= F[U ],
where the generator corresponding to 1 ∈ F[U ] has Maslov grading equal to 0.

Proof. If we forget the filtration on GC−(G), the resulting chain complex is
independent of the placement of X. By moving around the X-markings, we can
find a new grid diagram with the same grid number as G, and indeed with the same

273
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placement of the O-markings, but representing the unknot. Such a diagram G′ can
be found by placing X-markings immediately south of each O-marking. It follows

that H(GC−(G)) ∼= H(GC−(G′)) and H(ĜC(G)) ∼= H(ĜC(G′)). By the invariance
of H(GC−(G)), the result now follows from a calculation in a 2 × 2 grid diagram
for the unknot.

The above proposition is a homological lift of the fact that ΔK(1) = 1: we have

a homology group ĜH (K) endowed with an Alexander grading and, after taking
homology with respect to differentials which collapse the Alexander grading, we ob-

tain a complex ĜC(G) whose homology is one-dimensional. (The above proposition
is in a certain sense dual to Proposition 6.1.4; see Lemma 14.1.9.)

Proposition 14.1.1 suggests the following numerical invariant of knots K:

(14.1) t(K) = min{s
∣∣ the image of H(FsĜC) in H(ĜC) ∼= F is non-zero}.

By Theorem 13.2.9 (and the fact that the right-hand-side is canonically associated

to the filtered quasi-isomorphism type of ĜC; see Corollary A.6.5), this is a knot
invariant. It is, however, one we have seen already:

Proposition 14.1.2. The invariants t(K) and τ (K) are the same.

We will return to the proof of the above proposition at the end of this section.
So far, we have shown how the filtered object can be used to reformulate objects

which we have already met; but the filtered theory contains new information, as
well. For instance, there is the following naturally defined infinite sequence of
invariants {τi}i∈Z≥0 defined in the spirit of τ (as reformulated in Equation (14.1)).

Definition 14.1.3. Let {τi}∞i=0 be the knot invariants defined as follows:

(14.2) τi(K) = min{s
∣∣ the image of H(FsGC−) in H(GC−) ∼= F[U ] contains U i}.

It is convenient to repackage the information contained in the above τi, defining
knot invariants {hk}k∈Z by

(14.3) hk(K) = dimF Coker(H(Fk(GC−)) → H(GC−)).

Example 14.1.4. For the unknot, hk(O) = max(−k, 0).

The hk can be expressed in terms of the τi, according to the following:

Exercise 14.1.5. (a) Show that hk+1 ≤ hk ≤ hk+1 + 1.
(b) Show that hk(K) = #{i

∣∣τi > k}.

The invariants hk are the “local h-invariants” considered by Rasmussen in [191,
192] (compare also [61]). The invariant τ0 is called ν+ in [89]. Work of Rasmussen
shows that τ0 gives slice genus bounds, generalizing the bounds from τ . Work of
Hom and Wu [89] give examples of knots where the τ0-bounds are stronger than
the τ -bounds.

Exercise 14.1.6. (a) Show that for all i ∈ Z, rkF[U ]H(FiGC−) = 1.
(b) Define h′

i to be the maximal Maslov grading of any homogeneous, non-torsion
generator in H(FiGC−). Show that −h′

i = 2hi.
(c) Show that if K+ and K− are two knots that differ by a crossing change, then
0 ≤ hi(K+) − hi(K−) ≤ 1.
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The filtered quasi-isomorphism type provides further information beyond what
was discussed above. A useful packaging of this information is given in the form
of the spectral sequence of a filtration, as follows. Given a filtered complex such as
GC−(G), form its associated graded object which, in this case, is GC−(G). That
in turn is equipped with a map ∂−

1 : GC−
d (G, s) → GC−

d−1(G, s − 1) induced by

the part of the differential of GC−(G) that drops filtration level by exactly one.
In the present case, this map counts rectangles that cross exactly one X ∈ X.
This map induces a map δ−1 on homology, with the property that δ−1 ◦ δ−1 = 0.
Take the homology of GH−(G) with respect to δ−1 , to get a new graded F[U ]-
module, denoted E2. In fact, this procedure can be iterated to obtain a sequence of
chain complexes Ei, equipped with differentials δ−i , whose homology is the module
underlying the next complex Ei+1. A sequence of complexes with this property is
called a spectral sequence and the terms Ei are called its pages. A filtered complex
naturally gives rise to such a spectral sequence, which is an invariant of the filtered
quasi-isomorphism type of the initial complex. In view of this general construction,
combined with the invariance of the filtered quasi-isomorphism type of GC−(G)
(Theorem 13.2.9), each page in the spectral sequence for the filtered grid complex
is a knot invariant.

In the interest of simplicity we will avoid the explicit use of spectral sequences
throughout the rest of this book, although the techniques from Section 14.4 can be
interpreted in this language. For more on spectral sequences, see [139].

14.1.1. The identification of t(K) with τ (K). We establish a symmetry
of the grid complex generalizing Proposition 7.1.1, and use it to prove Proposi-
tion 14.1.2.

To formulate the symmetry, think of a Z-filtered complex C over F[U ] as
equipped with two filtrations. One of these is given by the original Z-filtration,
which we now call the initial filtration. The second, the algebraic filtration, is
induced by powers of U ; i.e. it corresponds to the sequence of subcomplexes

· · · ⊂ UmC ⊂ Um−1C ⊂ . . . C.

To describe a filtration that increases in the parameter, we say that UmC is the
part of C with algebraic filtration level −m. We make the further assumption that
C is freely and finitely generated over F[U ]. Consider the complex C⊗F[U ]F[U, U−1],
which inherits both the algebraic and the initial filtrations. The original complex
C can be thought of as the subcomplex of C ⊗F[U ] F[U, U−1] generated by elements
whose algebraic filtration level is ≤ 0.

Definition 14.1.7. Let C be a Z-filtered, Z-graded complex that is a free,
finitely-generated chain complex over F[U ]. The conjugate complex C is the
subcomplex of C ⊗F[U ] F[U, U−1] with initial filtration ≤ 0, equipped with the Z-

filtration induced by the algebraic filtration of C. The conjugate complex C inherits
its Z-grading from C ⊗F[U ] F[U, U−1].

Note that C is also finitely generated over F[U ].

Exercise 14.1.8. Consider the free bigraded F[U ] module generated by three
elements x−1, x0, and x1 with bigradings specified by M(xi) = i− 1 and A(xi) = i
for i = −1, 0, 1. We will consider three different differentials on this module, ∂1,
∂2, and ∂3. The three differentials will be distinguished by ∂ix0. For i = 1, 2, and
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3, ∂i(x1) = ∂i(x−1) = 0 and

∂1(x0) = U · x1 ∂2(x0) = x−1 ∂3(x0) = U · x1 + x−1.

(a) Show that (C, ∂1) is filtered quasi-isomorphic to the conjugate of (C, ∂2).
(b) Show that (C, ∂1) is not filtered quasi-isomorphic to (C, ∂2).
(c) Show that (C, ∂3) is filtered quasi-isomorphic to its own conjugate.

The following symmetry of the filtered grid invariant is stated in terms of the

specialization GC−(G)
V1=···=Vn

of GC−(G). In the statement, we adapt the shift operator
to the Z-graded, Z-filtered setting, as follows. If C is a Z-graded, Z-filtered complex,
then C�a, b� = C′ is the filtered complex with FsC′

d = Fs+bCd+a.

Lemma 14.1.9. If G is a grid diagram with grid number n representing a knot,

then the conjugate of GC−(G)
V1=···=Vn

is filtered quasi-isomorphic to GC−(G)
V1=···=Vn

�1−n, 1−n�.
Proof. Let G1 = G. Explicitly, C1 = GC−(G1)

V1=···=Vn
is the chain complex generated

freely over F[U ] by S(G1) and equipped with the differential

∂1x =
∑

y∈S(G1)

∑
r∈Rect◦(x,y)

U#(O∩r) · y,

where U is equal to V1 = . . . = Vn.
Switching the roles of X and O, we obtain a new grid diagram G2 and a new

complex C2 = GC−(G2)
V1=···=Vn

with the same generators S(G2) ∼= S(G1). For i = 1, 2, let

Ai : S(G1) ∼= S(G2) → Z be the Alexander function induced by Gi. As we saw in
the proof of Proposition 7.1.1,

(14.4) M1(x) − M2(x) = 2A1(x) + n − 1 and A1(x) + A2(x) = 1 − n.

The differential on C2 can be interpreted as

∂2x =
∑

y∈S(G2)

∑
r∈Rect◦(x,y)

U#(X∩r) · y,

where the X are as in G1.
Consider the homomorphism of F[U ]-modules φ : C2 → C1⊗F[U ] F[U, U−1] that,

for each x ∈ S(G2), is given by φ(x) = UA1(x) ·x. Let E ⊂ C1⊗F[U ]F[U, U−1] be the
subcomplex generated by elements of Alexander filtration level ≤ 0; i.e. this is the
conjugate complex for C1. For each x ∈ S(G1), the A1-Alexander filtration level of
UA1(x) ·x is equal to zero, so φ maps C2 into E . The elements of the form UA1(x) ·x
form a basis (over F) of all elements in E with vanishing Alexander filtration, so φ
is an isomorphism of F[U ]-modules onto E . To see that φ is a chain map, observe
that

∂1(U
A1(x)x) =

∑
y∈S(G1)

∑
r∈Rect◦(x,y)

U#(O∩r)−A1(y)+A1(x)(UA1(y)y)

=
∑

y∈S(G1)

∑
r∈Rect◦(x,y)

U#(X∩r)(UA1(y)y),

(where the last equality follows by Equation (4.4)); so φ induces an isomorphism
of chain complexes C2 ∼= E .

Compare gradings using Equation (14.4). Since

M1(φ(x)) = M1(U
A1(x)(x)) = M1(x) − 2A1(x) = M2(x) + n − 1,
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and the algebraic filtration level A of UA1(x) · x is given by

A(UA1(x) · x) = −A1(x) = A2(x) + n − 1,

φ induces a Z-graded, Z-filtered isomorphism Φ: C2�1 − n, 1 − n� → C1
. Since

G2 represents K with the reversed orientation, Theorem 13.2.9 shows that C1 =
GC−(G1)
V1=...=Vn

is filtered quasi-isomorphic to C2 = GC−(G2)
V1=...=Vn

.

Remark 14.1.10. A version of Lemma 14.1.9 holds without the V1 = · · · = Vn

specialization; i.e. GC−(G) is filtered quasi-isomorphic to its own conjugate. But
the above version is sufficient for our present purposes.

The symmetry was stated in terms of the specialization GC−(G)
V1=···=Vn

. To draw
conclusions about the unspecialized theory, we establish a relationship between the
specialization and GC−(G), generalizing Proposition 4.6.15. To state this relation-
ship, consider the two-dimensional vector space W with one generator in grading
zero and filtration level 0, and another one in grading −1 and filtration level −1.
We will tensor the Z-filtered, Z-graded complex C over F[U ] with W , to get a new
graded and filtered complex C ⊗W , with

Fi(C ⊗W)d = FiCd ⊕Fi+1Cd+1.

Lemma 14.1.11. Let G be a grid diagram representing some knot K. Then,
there are filtered quasi-isomorphisms

GC−(G)

V1 = · · · = Vn
� GC−(G) ⊗W⊗(n−1)(14.5)

GC−(G)

V1 = · · · = Vn = 0
� ĜC(G) ⊗W⊗(n−1),(14.6)

where W is the two-dimensional graded and filtered vector space described above.

Proof. This is a straightforward adaptation of Lemma 7.4.2 to the filtered context,
taking into account Lemma 13.2.5 (the filtered analogue of Lemma 4.6.9). For ex-
ample, setting V1 = V2 corresponds up to quasi-isomorphism to taking the mapping
cone of multiplication by V1 −V2 (see Equation (13.8)). Now, Lemma 13.2.5 states
that V1 − V2 is filtered homotopic to the zero map, so the mapping cone in turn is
filtered quasi-isomorphic to GC−(G)⊗W ; i.e. we have a filtered quasi-isomorphism

GC−(G)

V1 = V2
� GC−(G) ⊗W .

Iterating this argument for the other relations V2 = · · · = Vn, the quasi-isomorphism
from Equation (14.5) follows. Further setting V1 = 0 gives the quasi-isomorphism
from Equation (14.6).

We will also use the following formalities. Suppose that C is a Z-filtered chain

complex over F[U ]. There is an induced Z-filtration on Ĉ = C/U , which we denote

by F̂s ⊂ Ĉ. When Ĉ has non-zero homology, let t(C) be the minimal s so that the

map on homology induced by F̂s ⊂ Ĉ is non-trivial. Similarly, consider gr(C). When
H(gr(C)) contains non-torsion elements, let τ (C) be −1 times the maximal grading
(induced by the filtration) of any homogeneous, non-torsion element in H(gr(C)).
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These notions are natural generalization of the knot invariants we saw earlier; i.e.
τ (K) = τ (GC−(G)) and t(K) = t(GC−(G)).

Lemma 14.1.12. Let C be a Z-filtered chain complex over F[U ] that is free, and
finitely generated as an F[U ]-module, and let C be the conjugate complex. Then,

H(C/U) ∼= H( gr(C)U−1 ), and if that vector space is non-zero, then t(C) = τ (C).

Proof. Let C′ = C ⊗F[U ] F[U, U−1] with its algebraic and initial filtrations induced
from C. Given x, y ∈ Z, let Fx,∗(C) ⊂ C′ be the subcomplex with algebraic filtration
level ≤ x; F∗,y(C) ⊂ C′ be the subcomplex with initial filtration level ≤ y; Fx,y(C) =
Fx,∗(C) ∩ F∗,y(C).

In this notation,

(14.7)
C
U

∼=
F0,∗(C)

F−1,∗(C)
.

Fy(
C
U ) =

F0,y(C)
F−1,y(C) , and the inclusion Fy(

C
U ) ⊂ C

U is the map
F0,y

F−1,y
→ F0,∗

F−1,∗
. Thus,

(14.8) t(C) = min

{
y
∣∣∣H (

F0,y

F−1,y

)
→ H

(
F0,∗
F−1,∗

)
is non-trivial

}
.

Similarly, gr(C) =
⊕

y
F0,y

F0,y−1
,

(14.9)
gr(C)

U − 1
∼=

F∗,0(C)

F∗,−1(C)
,

and multiplication by Uy induces an isomorphism
F0,y

F0,y−1

∼= F−y,0

F−y,−1
which, when

composed with the inclusion
F−y,0

F−y,−1
⊂ F∗,0

F∗,−1
, gives the map gr(C) → gr(C)

U−1 . By the

universal coefficient theorem, a homology class in gr(C) is non-torsion if and only

if its image in H( gr(C)U−1 ) is non-zero, so

(14.10) τ (C) = −max

{
y
∣∣∣H (

F−y,0

F−y,−1

)
→ H

(
F∗,0
F∗,−1

)
is non-trivial

}
.

Since Fx,y(C) = Fy,x(C), the first statement follows from Equations (14.7) and (14.9),
and the second follows from Equations (14.8) and (14.10).

Proof of Proposition 14.1.2. Let C = GC−(G)
V1=···=Vn

. Apply, in order Equation (14.5),

Lemmas 14.1.12, 14.1.9, and Equation (14.6) to get:

τ (K) = τ (C) = t(C) = t(C) + n − 1 = t(GC−(G)) = t(K).

14.2. Examples of filtered grid complexes

A tidy description of the quasi-isomorphism type of GC−(G) is supplied by the
following lemma:

Lemma 14.2.1. GC−(G) and ĜC(G) are filtered quasi-isomorphic to filtered
complexes that are free modules (over F[U ] and F respectively) with rank

dimF ĜH (K).
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Proof. Clearly, GC−(G) is a finitely generated, free module over F[V1, . . . , Vn].
Thanks to Lemma 13.2.5, we can apply Proposition A.7.2 to get the result for

GC−(G). The result for ĜC(G) now follows formally.

With the help of the above lemma, in some cases the knowledge of grid ho-
mology, combined with Proposition 14.1.1, suffices to determine the filtered quasi-
isomorphism type of the grid complex.

14.2.1. The trefoil. Consider the right-handed trefoil knot T2,3. By Equa-

tion (4.31) and Lemma 14.2.1, there is a representative for GC−(T2,3) generated by
three generators, denoted x−1, x0, and x1, so that M(xi) = i − 1 and A(xi) = i

for for i = −1, 0, 1. We claim that GC−/U (representing ĜC(T2,3)) is the filtered
complex with these three generators, and with differential given by

∂̂(xi) =

{
x−1 if i = 0
0 otherwise.

To see this, we argue as follows. There are three possible differentials that are

compatible with the Maslov gradings and with (∂̂)2 = 0:

∂̂1(xi) ≡ 0;

∂̂2(xi) =

{
x0 if i = 1
0 otherwise;

∂̂3(xi) =

{
x−1 if i = 0
0 otherwise;

The first of these has three-dimensional homology; the second has one-dimensional
homology supported in Maslov grading −2. By Proposition 14.1.1, neither can

represent ĜC(T2,3). Thus, the only remaining candidate is the third, which was the
stated answer.

We can extend the above argument to give a computation of GC−(T2,3). Specif-

ically, there are only two extensions of the above complex (ĜC(T2,3), ∂̂) that are
compatible with the Maslov grading: either ∂−x0 = U · x1 + x−1, or ∂−x0 = x−1.
The second of these answers is incompatible with the computation of GH−(T2,3)
displayed in Equation (4.32).

To summarize, we have shown that GC−(T2,3) has three generators x1, x0,
and x−1, with M(xi) = i − 1 and A(xi) = i for i = −1, 0, 1; equipped with the
differential

(14.11) ∂−xi =

{
U · x1 + x−1 if i = 0
0 otherwise.

This complex and the next two are illustrated in Figure 14.2.2.

Exercise 14.2.2. Show that

hi(T2,3) =

⎧⎨⎩ 1 if i = 0
0 if i > 0
−i if i < 0.

For the left-handed trefoil knot T−2,3, the complex GC−(T−2,3) is generated by
three generators y−1, y0, and y1 with A(yi) = i and M(yi) = i + 1, and differential

∂−y1 = y0 ∂−y−1 = U · y0 ∂−y0 = 0.
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Exercise 14.2.3. Show that for the left-handed trefoil knot, hi(T−2,3) =
max(0,−i).

14.2.2. The figure-eight knot. For the figure-eight knot W2, the complex
GC−(W2) has five generators, which we label a, b, c, d, and e, with gradings

M(b) = 1 M(a) = M(c) = M(e) = 0 M(d) = −1,

filtration specified by A(x) = M(x) for x ∈ {a, . . . , e}; and differential given as

∂−a = U · b + d ∂−b = c ∂−d = U · c ∂−c = ∂−e = 0.

Like for the unknot, hi(K) = max(0,−i).

Exercise 14.2.4. Verify that GC−(W2) has the stated form.

We can illustrate the filtered quasi-isomorphism type GC−(K) of a knot K in the
plane as follows. Consider a representative of GC−(K) provided by Lemma 14.2.1:

start with a homogeneous generating set for ĜH (K), and form all the translates
by U i (i ∈ Z) to get a homogeneous generating set for GC−(K) ⊗F[U ] F[U, U−1]
over F. Place these generators on lattice points in the plane, so that the horizontal
coordinate records the algebraic filtration level of the generator (i.e. −1 times the
U -power), and the vertical coordinate records the Alexander filtration. The U -
action is represented by a translation of the generators in the direction (−1,−1).
The non-trivial components of ∂−(U i · x) for a homogeneous generator U i · x (with

x ∈ ĜH (K) homogeneous generator) are indicated by arrows pointing from the
lattice point of U i · x.

In this picture the complex GC−(K) corresponds to the left half plane. To get
the associated graded object GC−(K), we keep only those differentials in GC−(K)

that correspond to horizontal arrows; to get ĜC(K), we keep only those lattice
points that lie on the vertical axis, together with the vertical arrows that connect
them. Note that, in general, the Maslov grading is missing from this picture.
However, for each of the above three examples, there is a constant c with the
property that if a lattice point is supported at coordinates (x, y), then its Maslov
grading is given by x + y + c. (For the three examples, the constants are −1, +1,
and 0 respectively.)

14.2.3. Grid complexes for alternating knots. By building on Theo-
rem 10.3.1, models for the filtered quasi-isomorphism type of any alternating knot
K can be extracted explicitly from its signature and Alexander polynomial.

Exercise 14.2.5. (a) Let n ≥ 1 be an integer. Describe a model complex, as
in Lemma 14.2.1, for GC−(T2,2n+1). .

(b) For integers n ≥ 1, describe a model complex for GC−(T−2,2n+1).

(c)∗Let K be an alternating knot. Describe the model complex of GC−(K) in terms
of σ(K) and ΔK(t).

Torus knots are another general class of knots for which the filtered quasi-
isomorphism type can be explicitly described; but this computation uses the holo-
morphic perspective (see Theorem 16.2.6).
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T2,3 T−2,3 W2

y

x

Figure 14.1. Filtered chain complexes for the right- and
left-handed trefoil knots, and the figure-eight knot. We
have drawn here a finite portion of models for GC− ⊗ F[U, U−1].
(The pictures are periodic with diagonal translation.) The x axis
represents the algebraic filtration (negative of the U power), the y
axis represents the Alexander filtration.

14.3. Refining the Legendrian and transverse invariants: definitions

The aim of the present section is to show how the filtered quasi-isomorphism
type can be used to place extra structure on the Legendrian and transverse invari-
ants from Chapter 12. Applications of this strengthening will be given in the next
section. To formulate this extra structure, we give the following:

Definition 14.3.1. Fix chain complexes C and C ′. An isomorphism
φ : H(C) → H(C ′) is said to be covered by a quasi-isomorphism if there
is a third chain complex C ′′, and a pair of quasi-isomorphisms f : C ′′ → C and
g : C ′′ → C ′, so that φ satisfies φ = H(g) ◦ H(f)−1. More generally, if C and C′

are Z-filtered chain complexes, an isomorphisms φ : H(gr(C)) → H(gr(C′)) is said
to be covered by a filtered quasi-isomorphism if there is a Z-filtered complex
C′′ and a pair of filtered quasi-isomorphisms F : C′′ → C and G : C′′ → C′ so that
φ = H(gr(G)) ◦ H(gr(F ))−1.

Our aim in this section is to give the following refinements of Theorems 12.3.3
and 12.3.4, which are proved in Subsection 14.3.2:

Theorem 14.3.2. If G and G′ represent Legendrian isotopic knots, then there is
an isomorphism φ : GH−(G) → GH−(G′) of bigraded F[U ]-modules that is covered
by a filtered quasi-isomorphism, with φ(λ+(G)) = λ+(G′) and φ(λ−(G)) = λ−(G′).

Theorem 14.3.3. Let G, G+, and G− be grid diagrams whose associated Leg-

endrian knots are �K and its stabilizations �K+, and �K− respectively. Then, there
are isomorphisms

φ− : GH−(G) −→ GH−(G−), φ+ : GH−(G) −→ GH−(G+)

covered by filtered quasi-isomorphisms, that satisfy

φ−(λ+(�K)) = λ+(�K−), U · φ+(λ+(�K)) = λ+(�K+),

U · φ−(λ−(�K)) = λ−(�K−), φ+(λ−(�K)) = λ−(�K+).
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14.3.1. Filtered stabilization maps. In the proofs of Theorems 12.3.3 and
12.3.4 we investigated how the canonical cycles transformed under maps induced by
the four types of stabilization of type X. For their generalizations, Theorems 14.3.2
and 14.3.3, we need to describe four filtered quasi-isomorphisms that lift the iso-
morphisms on homology (studied in Proposition 5.4.1).

We start by stating simpler versions for the grid complex GC−. Following
notation from Section 5.4, we have the following slightly stronger form of Proposi-
tion 5.4.1, which was actually proved in the original proof of that proposition:

Proposition 14.3.4. Let G′ be obtained from G by stabilization.

• Suppose the stabilization is of type X:SW or X:NE, so that GC−(G′) =
Cone(∂N

I : I → N). Then, the commutative square of chain maps

I N

GC−(G)[V1]�1, 1� GC−(G)[V1]

∂N
I

e

V1 − V2

e ◦ HI
X2

induces a quasi-isomorphism D : GC−(G′) → Cone(V1 − V2).
• Suppose that the stabilization is of type X:SE or X:NW, so that GC−(G′)=

Cone(∂I
N : N → I). Then, the commutative square

N I

GC−(G)[V1]�1, 1� GC−(G)[V1]

∂I
N

HN
X2

◦ e′

V1 − V2

e′

induces a quasi-isomorphism S : Cone(V1 − V2) → GC−(G′).

Compose the quasi-isomorphism from Lemma A.3.9 with an isomorphism of
chain complexes over F[V2, . . . , Vn] to obtain the quasi-isomorphism over
F[V2, . . . , Vn]

Cone(V1 − V2) →
GC−(G)[V1]

V1 − V2

∼= GC−(G).

The map on homology induced by this quasi-isomorphism can be composed with
the map on homology induced by D or the inverse of the map on homology induced
by S from Proposition 5.4.1 to give an isomorphism GH−(G′) ∼= GH−(G) covered
by a quasi-isomorphism.

We now turn to the filtered chain complexes GC−. Filtered quasi-isomorphisms
for destabilizations of type X:SW were constructed in Section 13.3. The stabi-
lization maps (counting domains specified by Definition 13.4.2) were described in
Section 13.4.2. For stabilizations of type X:SE, we describe stabilization maps,
defined by counting domains which go out of L or out of R, defined as follows:

Definition 14.3.5. Suppose that G′ is obtained from G by a stabilization of
type X:SE. Fix x ∈ I(G′) and y ∈ S(G′). A domain p ∈ π(x,y) is said to be of
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type oL or oR, if it satisfies the conditions specified in Definition 13.4.2, except
that Property (s-3) is replaced with

(s-3)’ The domain has the same local multiplicity k at three of the four squares
that share the corner c. When p has type oL, the domain has multiplicity
k− 1 at the the southeast square containing c, while for p of type oR, the
domain has local multiplicity k + 1 at the southwest square containing c.

The set of domains of type oL resp. oR from x to y is denoted πoL(x,y) resp.
πoR(x,y).

The domains encountered by the above definition are obtained by reflecting the
domains in Figure 13.1 through a vertical axis; specifically, the reflection carries
domains of type iL and iR to domains of type oL and oR respectively.

Definition 14.3.6. Consider the maps

SoL : GC−(G) → GC−(G′) and SoR : GC−(G)�1, 1� → GC−(G′),

defined by

SoL(x) =
∑

y∈S(G′)

∑
p∈πoL(e′(x),y)

V
O2(p)
2 · · ·V On(p)

n · y,

SoR(x) =
∑

y∈S(G′)

∑
p∈πoR(e′(x),y)

V
O2(p)
2 · · ·V On(p)

n · y,

where e′ : S(G)
∼=−→ I(G′) is the identification of grid states.

The filtered stabilization map is the map S : Cone(V1 − V2) → GC−(G′)
given in terms of the splitting of filtered F[V1, . . . , Vn]-modules

Cone(V1 − V2) ∼= GC−(G)[V1]�1, 1� ⊕ GC−(G)[V1],

by S = (SoR,SoL).

More generally:

Definition 14.3.7. Suppose that G′ is obtained form G by a stabilization. We
define maps between GC−(G′) and Cone(V1 − V2) in the following cases.

• If G′ is obtained from G by a stabilization of type X:SW, then define
D : GC−(G′) → Cone(V1 − V2) as in Definition 13.3.10.

• If the stabilization is of type X:NE, define D : GC−(G′) → Cone(V1 − V2)
as in Definition 13.3.10, only now modifying the definitions of the domains
as follows: define domains to be of type iR as in Definition 13.3.7 except
now it is the northwest square with corner c whose local multiplicity is
one bigger than the other three, and define domains to be of type iL as
in Definition 13.3.7 except now the northeast square meeting c has one
smaller local multiplicity than the other three.

• If G′ is obtained from G by a stabilization of type X:SE, then define
S : Cone(V1 − V2) → GC−(G′) as in Definition 14.3.6.

• If G′ is obtained from G by a stabilization of type X:NW, then define
S : Cone(V1 − V2) → GC−(G′) as in Definition 13.4.3, only now modifying
the definitions of the domains as follows: define domains to be of type oR
as in Definition 14.3.5, except now it is the northeast square with corner
c whose local multiplicity is k + 1, and define domains to be of type oL
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as in Definition 14.3.5, except now it is the northwest square with corner
c that has multiplicity k − 1.

More succinctly, the domains for X:NE are obtained by rotating the domains for
X:SW by 180◦, while the domains for X:NW are obtained by rotating the domains
for X:SE by 180◦.

Lemma 14.3.8. The maps D and S from Definition 14.3.7 are filtered chain
maps.

Proof. For stabilizations of type X:SW, the result is Lemma 13.3.13; the other
cases are proved in the same way, noting the relationship between the domains.

Lemma 13.3.15 has the following straightforward generalization:

Lemma 14.3.9. Let D and S be the functions from Proposition 14.3.4. On the
associated graded level, the map D induces D; and S induces S.

Exercise 14.3.10. In Section 13.4, we described the homotopy inverse to the
destabilization map of type X:SW. Find homotopy inverses to destabilization maps
of type X:NE and the stabilization maps of type X:NW and X:SE.

14.3.2. Refined Legendrian and transverse invariants. We can now
prove the refined Legendrian and transverse invariance theorems:

Proof of Theorem 14.3.2. The isomorphisms on homology induced by commu-
tations, which preserve the Legendrian invariants according to Lemma 6.4.4, are
covered by filtered quasi-isomorphisms according to the proof of Proposition 13.3.4.

The isomorphisms on homology induced by Legendrian stabilizations (i.e. of
type X:SE and X:NW), which preserve the Legendrian invariants by Lemma 6.4.6,
are covered by filtered quasi-isomorphisms by Lemma 14.3.9.

The result now follows from Proposition 12.2.6.

Proof of Theorem 14.3.3. Consider the isomorphisms φ± on homology induced
by the stabilization identifications (as in Proposition 5.4.1). According to Theo-
rem 12.3.4, these transform the transverse invariants as stated; by Lemma 14.3.9
they are covered by filtered quasi-isomorphisms.

As usual, it is often easier to work with ĜH . The analogues of Theorems 14.3.2
and 14.3.3 hold in this context, as well:

Corollary 14.3.11. If G and G′ represent Legendrian isotopic knots, then

there is an isomorphism φ̂ : ĜH (G) → ĜH (G′) that is covered by a filtered quasi-

isomorphism, with φ̂(λ̂+(G)) = λ̂+(G′) and φ̂(λ̂−(G)) = λ̂−(G′).

Proof. By the five lemma, a quasi-isomorphism C → C′ between free chain

complexes over F[U ] induces a quasi-isomorphism C
U → C′

U . Thus, the result follows
immediately from Theorem 14.3.2.

Corollary 14.3.12. If G, G+, and G− are grid diagrams whose associated

Legendrian knots are �K and its stabilizations �K+, and �K− respectively, then there
are isomorphisms

φ̂− : ĜH (G) −→ ĜH (G−), φ̂+ : ĜH (G) −→ ĜH (G+)
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covered by filtered quasi-isomorphisms, that satisfy

φ̂−(λ̂+(�K)) = λ̂+(�K−), 0 = λ̂+(�K+),

0 = λ̂−(�K−), φ̂+(λ̂−(�K)) = λ̂−(�K+).

Proof. As in the proof of Corollary 14.3.11, we specialize quasi-isomorphisms over
F[U ] (in this case, induced by Theorem 14.3.3) to U = 0. The corollary follows, with

the observation that λ±(�K±) being U -times another homology class is equivalent

to the condition that the induced invariant in ĜH is trivial.

14.4. Applications of the refined Legendrian and transverse invariants

According to Theorem 12.3.3, if K1 and K2 are two Legendrian isotopic knots,
then their Legendrian invariants are identified via an isomorphism between their
associated grid homology groups. Theorem 14.3.2 lifts the isomorphism from Theo-
rem 12.3.3 to a filtered quasi-isomorphism of the filtered complexes; Theorem 14.3.3
lifts the corresponding isomorphism for the transverse invariant. This extra con-
straint allows us to use further algebraic properties of the Legendrian invariants
to give stronger obstructions to Legendrian and transverse isotopy. We start with
some generalities.

Definition 14.4.1. Let C be a Z-filtered, Z-graded chain complex, and fix a
positive integer j. Let ξ ∈ H(Fi/Fi−1) be an element in the homology of the
associated graded object. We say that ξ represents a cycle to order j (for j ≥ 1
and integer) if there is some x ∈ FiC with the following two properties:

• ∂x ∈ Fi−j , and
• the induced element [x] ∈ Fi/Fi−1, which is a cycle in the associated

graded object by the previous condition, represents the homology class ξ.

Any homology class ξ represents a cycle to order 1. The condition that a class
is a cycle to order 2 is invariant under quasi-isomorphisms:

Proposition 14.4.2. Let C and C′ be two Z-filtered, Z-graded chain com-
plexes and φ : H(gr(C)) → H(gr(C′)) be an isomorphism between the homologies
of their associated graded objects that is covered by a quasi-isomorphism. Then,
ξ ∈ H(gr(C)) represents a cycle to order 2 if and only if φ(ξ) does.

The above proposition will follow quickly from the next lemma, which is phrased
in terms of the connecting homomorphism δ : H(Fi/Fi−1) → H(Fi−1/Fi−2) asso-
ciated to the short exact sequence

0 −−−−→ Fi−1/Fi−2 −−−−→ Fi/Fi−2 −−−−→ Fi/Fi−1 −−−−→ 0.

Lemma 14.4.3. A homology class ξ ∈ H(Fi/Fi−1) represents a cycle to order
2 if and only if ξ is contained in the kernel of δ.

Proof. This follows quickly from the definition of the connecting homomorphism
(which in turn is recalled in the proof of Lemma A.2.1).
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Proof of Proposition 14.4.2. If Φ is a quasi-isomorphism from C to C′ then the
naturality of the connecting homomorphism (cf. Lemma A.2.2) gives a commutative
square

H( FiC
Fi−1C )

δ−−−−→ H(Fi−1C
Fi−2C )

φ

⏐⏐ ⏐⏐ φ

H( FiC′

Fi−1C′ )
δ′−−−−→ H(Fi−1C′

Fi−2C′ ),

where the vertical maps are the isomorphisms induced by the quasi-isomorphism.
In particular, the kernel of δ and the kernel of δ′ are identified. The result now
follows from Lemma 14.4.3.

With the help of Proposition 14.4.2, the results of Chapter 12 obstructing
Legendrian (and transverse) isotopies can be strengthened to:

Corollary 14.4.4. If �K1 and �K2 are Legendrian isotopic knots, then

• λ+(�K1) is a cycle to order 2 if and only if λ+(�K2) is a cycle to order 2;

• λ̂+(�K1) is a cycle to order 2 if and only if λ̂+(�K2) is a cycle to order 2.

Similar remarks hold for λ− in place of λ+. Also, if T1 and T2 are transverse
isotopic knots, then

• θ(T1) is a cycle to order 2 if and only if θ(T2) is a cycle to order 2;

• θ̂(T1) is a cycle to order 2 if and only if θ̂(T2) is a cycle to order 2.

Proof. For the Legendrian invariants λ+ and λ− combine Proposition 14.4.2 with
Theorem 14.3.2. For the transverse case, in addition, appeal to Theorem 14.3.3 (cf.

Theorem 12.5.13 regarding the definition of θ). For λ̂+, appeal to Corollary 14.3.11
in the Legendrian and Corollary 14.3.12 in the transverse case.

For computations in ĜC , it is in practice preferable to work with G̃C; compare
Lemma 12.3.8. This is justified by the following:

Lemma 14.4.5. An element ζ ∈ ĜC (G) is a cycle to order 2 if and only if its

image in G̃C(G) is a cycle to order 2.

Proof. Lemma 14.1.11 gives a filtered quasi-isomorphism

GC−(G)

V1 = · · · = Vn = 0
� ĜC(G) ⊗W⊗(n−1).

Following the proof of that lemma, we see that the filtered quasi-isomorphism carries

the projection ĜC(G) = GC−(G)
V1=0 → GC−(G)

V1=···=Vn=0 to the inclusion of ĜC(G) into a

direct summand in ĜC(G) ⊗W⊗(n−1).

We illustrate Corollary 14.4.4 with a specific example from [157]: we give
two transverse pretzel knots that are smoothly isotopic, have the same self-linking
numbers, and have non-vanishing transverse invariants; but the knots are not
transverse isotopic. Let K1 and K2 be the Legendrian P (−4,−3, 3) pretzel knots
shown in Figure 14.2. Both of these knots represent the knot type m(10140), have
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Figure 14.2. Two Legendrian realizations (K1 on the left,
and K2 on the right) of the pretzel knot P (−4,−3, 3).

tb = −1 and r = 0, and thus their positive transverse push-offs (for either ori-
entation) have self-linking number −1. We can represent both of these Legen-
drian knots by grid diagrams with grid number 9, with X1 = (9, 8, 1, 4, 6, 5, 7, 2, 3)
and O1 = (4, 2, 5, 7, 9, 8, 3, 6, 1) for K1 and X2 = (9, 8, 2, 4, 6, 5, 3, 7, 1) and O2 =
(4, 3, 5, 7, 9, 8, 1, 2, 6) for K2.

Proposition 14.4.6. The transverse push-offs T (�K1) and T (�K2) of the Leg-

endrian knots �K1 and �K2 are not transversely isotopic.

Proof. Applying the algorithm from Lemma 12.6.4 (and Lemma 12.3.8, to com-

pute in G̃H), we find that the transverse invariants θ̂(�K1) and θ̂(�K2) are both
non-zero. The invariants are distinguished by

δ̂1(θ̂(T (�K1)) = δ̂1(λ̂
+(K1)) = 0 and δ̂1(θ̂(T (�K2))) = δ̂1(λ̂

+(K2)) �= 0.

In fact, to do these computations in practice, we use G̃H (cf. Lemma 14.4.5), and

the induced connecting homomorphism δ̃1 : G̃H(G, s) → G̃H(G, s − 1), which is
induced by the chain map

∂̃1(x) =
∑

y∈S(G)

#{r ∈ Rect◦(x,y)
∣∣r ∩O = ∅, #(r ∩ X) = 1} · y.

To establish non-triviality of δ̃1, we slightly modify the algorithm from
Lemma 12.6.4 to start with B0 consisting of the set of grid states appearing in

∂̃1(θ(T (�Ki)). (This application of Lemma 12.6.4 involves hundreds of grid states.
Although one would not wish to perform these by hand, a computer can handle
them easily.)

14.5. Filtrations in the case of links

It is routine to adapt the grid homology for links to the filtered context. We
will sketch the construction here, and leave the details to the interested reader.

The primary challenge is the formulation: we must speak of complexes which
are H-filtered, Z-graded complexes over F[U1, . . . , U�], where H ⊂ Q� is an affine

space for Z�, and it plays the role of H(�L) (the Alexander grading set, from
Definition 11.1.3). We give the following straightforward generalization of Defi-
nition 13.1.1:
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Definition 14.5.1. Let H ⊂ Q� be an affine space for Z�, and write {ei}�i=1

for the standard basis of Z�. We can think of H as partially ordered, where h1 ≥ h2

if there are non-negative integers a1, . . . , a� so that

h1 = h2 +

�∑
i=1

ai · ei.

An H-filtered, Z-graded chain complex (C, ∂) over F[V1, . . . , Vn] is a vector
space, equipped with the following additional structures:

• an endomorphism ∂ : C → C, called the differential , satisfying the rela-
tion ∂ ◦ ∂ = 0;

• a Z-grading , which is a splitting of C as a vector space C =
⊕

d∈Z Cd
which is compatible with the differential, in the sense that ∂Cd ⊆ Cd−1;

• a collection of vector subspaces {FhC ⊂ C}h∈H, called the H-filtration,
which satisfy the following further properties:

– they are ascending; i.e. if h ≤ h′, then FhC ⊆ Fh′C,
– they are graded; i.e. if FhCd=(FhC) ∩ Cd, then FhC=

⊕
d∈Z FhCd,

– they exhaust C; i.e.
⋃

h∈H FhC = C,
– they are bounded below in the sense that for any given d ∈ Z, there

is an hd so that FhCd = 0 for h ≤ hd,
– they are compatible with the differential; i.e. ∂FhC ⊂ FhC;

• a map π : {1, . . . , n} → {1, . . . , 	}
• endomorphisms Vi for i = 1, . . . , n that commute with one another, are

compatible with the differential in the sense that ∂ ◦ Vi = Vi ◦ ∂ for
i = 1, . . . , n, and that respect the grading and filtration, in the sense that
Vi · Cd ⊂ Cd−2 and Vi · FhC ⊂ Fh−eπ(i)

C.

Definition 14.5.2. Suppose that �L is an oriented link with Alexander grading

set H(�L) given by Definition 11.1.3, and fix a grid diagram G representing �L,

with grid number n. The multi-filtered grid complex GC−(G) of G is the
F[V1, . . . , Vn]-module freely generated by grid states S(G), equipped with its usual

Maslov Z-grading induced by M , an Alexander multi-filtration with values in H(�L)
induced by the Alexander vector (Definition 11.1.5), and the differential ∂− defined
in Equation (13.1).

Theorem 13.2.4 has the following adaptation to the case of links:

Theorem 14.5.3. If �L is an oriented link with 	 components and G is a grid

diagram with grid number n representing �L, then GC−(G) is an H(�L)-filtered, Z-
graded chain complex over F[V1, . . . , Vn], in the sense of Definition 14.5.1.

For an invariance statement, we generalize the notion of “filtered quasi-
isomorphism” (from Definition 13.1.9). An H-filtered, Z-graded chain complex
C has an associated graded object, which inherits a grading by Z⊕H:

gr(C) =
⊕

d∈Z,h∈H

FhCd⋃
h′<h Fh′Cd

.

Definition 14.5.4. An H-filtered, Z-graded quasi-isomorphism f : C → C′

is an H-filtered, Z-graded chain map whose associated graded map gr(f) induces
an isomorphism on the homology of the associated graded object. Two complexes
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C and C′ are said to be filtered quasi-isomorphic if there is a third complex C′′

and filtered quasi-isomorphisms from C′′ to C and from C′′ to C′.

Theorem 13.2.9 has the following straightforward generalization to the case of
links:

Theorem 14.5.5. Fix an oriented link �L. For any grid diagram G representing
�L, choose a sequence Vi1 , . . . Vi� , one on each component. Then, the filtered quasi-

isomorphism type of GC−(G) (in the sense of Definition 14.5.4), over F[U1, . . . , U�]
where Uj acts as multiplication by Vij , is independent of the choice of G; and the
homology of its associated graded object is the multi-graded, unblocked grid homology

GH−(�L) from Chapter 11.

Example 14.5.6 (The two-component unlink). The example of the two-
component unlink L from Section 11.3 can be enriched as follows. A model for
GC−(L) is generated by two generators p and q with A(p) = A(q) = (0, 0) and
M(p) = 0, M(q) = −1. The differential is determined by

∂−q = U1 · p + U2 · p ∂−p = 0.

Example 14.5.7 (The Hopf link H−). The example of the negative Hopf link

H− from Section 11.3 can be enriched as follows. GC−(H−) is generated by four
generators p, q, r, and s, with

A(p) = (
1

2
,
1

2
) A(q) = (−1

2
,
1

2
) A(r) = (

1

2
,−1

2
) A(s) = (−1

2
,−1

2
)

M(p) = 1 M(q) = M(r) = 0 M(s) = −1;

and differential determined by

∂−p = q + r ∂−q = 0 = ∂−r ∂−s = U1 · r + U2 · q.

Example 14.5.8 (The Hopf link H+). The example of the positive Hopf link

H+ from Section 11.3 can be enriched as follows. GC−(H+) is generated by four
generators p, q, r, and s, with

A(p) = (
1

2
,
1

2
) A(q) = (−1

2
,
1

2
) A(r) = (

1

2
,−1

2
) A(s) = (−1

2
,−1

2
)

M(p) = 0 M(q) = M(r) = −1 M(s) = −2;

and differential determined by

∂−p = 0 = ∂−s ∂−q = U1 · p + s ∂−r = U2 · p + s

Exercise 14.5.9. Verify the above descriptions of GC− for the two-component
unlink and the two Hopf links.

14.6. Remarks on three-manifold invariants

We have seen in this chapter certain aspects of grid homology which tie in with
more general constructions in Heegaard Floer homology.

Proposition 14.1.1 states that the total homology of the filtered chain complex
is independent of the knot. This generalizes neatly to null-homologous knots in
more general three-manifolds: in that case, the knot filtration is a filtration on the
Heegaard Floer complex of the ambient three-manifold; i.e. its total homology is
the Heegaard Floer homology of the ambient three-manifold. From this perspective,
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Proposition 14.1.1 illustrates the fact that the Heegaard Floer homology of S3 is
particularly simple.

As a more subtle point, the homology groups of the filtered pieces FsGC−

also have interpretations in terms of Heegaard Floer homology groups for closed
three-manifolds. Indeed, the homology of FsGC− is a summand of the Heegaard
Floer homology of the three-manifold obtained by any sufficiently large surgery on
K ⊂ S3. The invariants hs from Equation (14.3), measure the absolute grading
of a canonically defined homology class in this Heegaard Floer homology group.
The inclusion map on homology H(FsGC−) → H(GC−) (which is also measured by
the hs) is a four-manifold invariant, associated to the four-dimensional cobordism
defined by attaching a two-handle to S3 × [0, 1] along the knot.

It follows from work of Rasmussen [191, Corollary 7.4] that

min{s
∣∣hs = 0} ≤ gs(K).

This inequality generalizes the bound given by τ (K); see [89, Proposition 2.3].



CHAPTER 15

Grid homology over the integers

In the previous chapters we defined and worked with versions of grid homolo-
gies and filtered complexes over F or F[U ] (or even F[U1, . . . , U�]), where F ∼= Z/2Z
denotes the field with two elements. The advantages of working mod 2 are that
computations are simpler and the definition of the complexes are more straight-
forward. In fact, this apparently simpler theory is sufficient for the topological
applications stated in Section 1.2.

The aim of the present chapter is to explain how to lift the grid complexes to
complexes with integer coefficients. In this construction, we associate a sign ±1 to
each rectangle in a compatible way, via a sign assignment, and define the differential
to be the signed count of rectangles. Although the sign assignment represents a
further choice in the construction of the grid complex, the associated homology
groups turn out to be independent of this choice, giving knot invariants.

In Section 15.1 we formalize the properties of a sign assignment and then use
sign assignments to lift the grid complex to the integers. In Section 15.2 we verify
the relevant existence and uniqueness results for sign assignments for grid diagrams,
except for a technical fact about the “spin group” that is verified in a later section.
In Section 15.3 we prove the invariance properties of the grid homology groups
over Z. In Chapter 13, we defined a refinement of grid homology to the filtered
quasi-isomorphism type of a filtered complex. In Section 15.4, we describe how to
lift that construction to Z, and establish invariance properties of this sign-refined
filtered complex. In Section 15.5, we sketch integral lifts of some of the other
constructions from this book. In Section 15.6 we use the theory over Z to define
further numerical invariants of knots, that are variants of τ (K) over Z/pZ for any
prime p. In Section 15.7 we complete the existence statement from Section 15.2,
using properties of quaternions. Finally in Section 15.8 we close with some further
remarks on grid homology over Z.

The sign refinement for grid homology was first constructed in [136]; our dis-
cussion here follows ideas of Gallais [66], see also [166]. Knot Floer homology has
an analogous lift over Z, defined by consistently orienting the appropriate moduli
spaces. In all known cases (including alternating knots, torus knots, and knots
with small crossing number), the grid homology is a free Z-module, and hence it is
determined by its Z/2Z specialization. This is unlikely to hold in general: the sign
refinement is expected to contain further interesting information about knots. (See
also Section 15.6 and Problem 17.2.8.)

15.1. Signs assignments and grid homology over Z

The grid complex is lifted to Z by consistently associating signs to the rectangles
counted by the boundary map, so that the associated signed count of rectangles
still gives a differential. Our immediate aim is to formalize such sign assignments.

291
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Fix a grid diagram G. Although we will need to associate signs only to empty
rectangles in G, it will be convenient to associate them to all rectangles. Following
Section 4.4, if x and y are any two grid states, the set of rectangles Rect(x,y) from
x to y is either empty, or it contains exactly two elements, in which case Rect(y,x)
also contains exactly two elements. Let Rect(G) =

⋃
x,y∈S(G) Rect(x,y).

Definition 15.1.1. Fix rectangles r1 ∈ Rect(x,y) and r2 ∈ Rect(y, z) and
r′1 ∈ Rect(x,w) and r′2 ∈ Rect(w, z) with y �= w, and suppose that the domain
associated to the composition r1 ∗ r2 (in the sense of Definition 4.6.4) is the same
as the domain associated to r′1 ∗ r′2. We call the two pairs of rectangles (r1, r2) and
(r′1, r

′
2) alternative pairs if one of the two following conditions holds: either the

eight corners of r1 and r2 are distinct; or the intersection of r1 and r2 is an interval.
(These are the pairs of rectangles we have to take into account when proving ∂2 = 0,
cf. Cases (R-1) and (R-2) in the proof of Lemma 4.6.7.)

Consider next the case where there is a rectangle r1 ∈ Rect(x,y) and another
rectangle r2 ∈ Rect(y,x). In this case the support of r1 ∗ r2 is an annulus. We
distinguish two subcases, according to whether the annulus is horizontal or vertical.

Definition 15.1.2. A sign assignment for the grid diagram G is a function
S : Rect(G) → {±1} satisfying the following properties:

(1) if (r1, r2) and (r′1, r
′
2) are alternative pairs of rectangles, then

S(r1) · S(r2) = −S(r′1) · S(r′2);

(2) if (r1, r2) is a pair of rectangles forming a horizontal annulus, then

S(r1) · S(r2) = 1;

(3) if (r1, r2) is a pair of rectangles forming a vertical annulus, then

S(r1) · S(r2) = −1.

Remark 15.1.3. Notice that the set Rect(G), and any sign assignment on it is
insensitive to the placement of the O- and X-markings. Indeed, the only relevant
information about the grid in the definition of a sign assignment is its size.

Given a sign assignment S : Rect(G) → {±1} and a function g : S(G) → {±1},
we define a new function Sg : Rect(G) → {±1} by

Sg(r) = g(x) · S(r) · g(y),

for r ∈ Rect(x,y). It is easy to see that Sg is also a sign assignment.

Definition 15.1.4. A function g : S(G) → {±1} on the set S(G) of grid states
is called a gauge transformation . Multiplication in {±1} ∼= Z/2Z naturally
gives the set of gauge transformations a group structure, identifying it with the
direct sum of n! many copies of Z/2Z. The map (g, S) �→ Sg induces an action
of the group of gauge transformations on the set of sign assignments. For a gauge
transformation g the signs assignments S and Sg are called gauge equivalent .

The construction of grid homology to Z hinges on the following:

Theorem 15.1.5. For any grid diagram G, there exits a sign assignment, and
it is unique up to gauge equivalence.
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Exercise 15.1.6. (a) For a 2 × 2 grid diagram, there are two grid states and
four rectangles. Show that a sign assignment is uniquely determined by its value on
one of the four rectangles. Show that the two sign assignments are gauge equivalent.
(b) Consider a 3 × 3 grid diagram. Construct a sign assignment for G. Show that
any two sign assignments on a 3 × 3 grid are gauge equivalent.
(c) Show that any sign assignment is uniquely determined by its values on empty
rectangles.

Theorem 15.1.5 is proved in Section 15.2. We explain now how a sign assign-
ment S can be used to lift the definition of the grid complex to a chain complex
with coefficients in Z[V1, . . . , Vn], starting with the lift of the chain complex GC−(G)
from Chapter 4, when G represents a knot. The modifications for lifting grid homol-
ogy for links (from Chapter 11) and the filtered chain complex (from Chapter 13)
will be given in Sections 15.5 and 15.4, respectively.

Let G be a toroidal grid diagram with grid number n representing a knot K,
and let RZ = Z[V1, . . . , Vn] be the polynomial ring in n variables, now with integer
coefficients. Let GC−(G;Z) denote the RZ-module freely generated by the grid
states of G. Given a sign assignment S on G, we define the endomorphism

(15.1) ∂−
X,Sx =

∑
y∈S(G)

∑
{r∈Rect◦(x,y)|r∩X=∅}

S(r) · V O1(r)
1 · · ·V On(r)

n · y.

The mod 2 reduction of the above formula gives the differential ∂−
X on the grid

complex from Equation (4.10).

Lemma 15.1.7. The operator ∂−
X,S satisfies ∂−

X,S◦∂
−
X,S =0; i.e. (GC−(G;Z), ∂−

X,S)
is a chain complex.

Proof. The proof of this result follows the proof of Lemma 4.6.7, taking signs
into account. The contributions to ∂−

X,S ◦ ∂−
X,S from Cases (R-1) and (R-2) (in the

notation of the proof of Lemma 4.6.7) cancel in pairs, since for the alternative pairs
(r1, r2) and (r′1, r

′
2), we have S(r1) · S(r2) + S(r′1) · S(r′2) = 0. Since the boundary

operator counts rectangles disjoint from X, Case (R-3) does not occur.

Definition 15.1.8. The bigraded chain complex

GC−
S (G;Z) = (GC−(G;Z), ∂−

X,S),

is called the sign-refined grid complex of the grid diagram G.

Just as in the case with coefficients in F, the Maslov and Alexander functions
induce a bigrading on the RZ-module GC−(G;Z). As before (see Lemma 4.6.8),
the differential ∂−

X,S respects this bigrading.
Actions by the various Vi variables are homotopic to one another as bigraded

module maps, as shown by the following straightforward adaptation of Lemma 4.6.9.

Lemma 15.1.9. Suppose that the grid diagram G gives rise to a knot K, and
S is a fixed sign assignment on G. Then, on the chain complex GC−

S (G;Z), as a
module over Z[V1, . . . , Vn], multiplication by Vi is chain homotopic to multiplication
by Vj.
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Proof. As in the proof of Lemma 4.6.9, it suffices to consider the case where Vi

and Vj correspond to consecutive O-markings Oi and Oj , for which there is some
X-marking Xi in the same row as Oi and the same column as Oj . The homotopy
operator of Equation (4.16) lifts to the sign refined version

(15.2) Hi,S(x) =
∑

y∈S(G)

∑
{r∈ Rect◦(x,y)

∣∣r∩X=Xi}

S(r) · V O1(r)
1 · · ·V On(r)

n · y.

As in the proof of Lemma 4.6.9, terms in the sum ∂−
X,S ◦ Hi,S + Hi,S ◦ ∂−

X,S count

alternative pairs of rectangles (which cancel pairwise in the sum) and the two annuli
with width one and height one through Xi. The horizontal thin annulus through
Xi contributes Vi · x while the vertical one through Xi contributes −Vj · x; so

(15.3) Hi,S ◦ ∂−
X,S + ∂−

X,S ◦ Hi,S = Vi − Vj ,

as needed.

To define the chain complex GC−
S (G;Z), we must choose a sign assignment

S. As the next proposition shows, the isomorphism type of the chain complex is
independent of this choice.

Proposition 15.1.10. Given any two sign assignments S1 and S2 for the grid
diagram G, there is an isomorphism (GC−(G;Z), ∂−

X,S1
) ∼= (GC−(G;Z), ∂−

X,S2
) of

bigraded chain complexes over Z[V1, . . . , Vn].

Proof. By the uniqueness statement in Theorem 15.1.5, there is a gauge trans-
formation g : S(G) → {±1} so that S2 = Sg

1 . Since S2(r) = g(x) · S1(r) · g(y), the
RZ-module homomorphism f : (GC−(G;Z), ∂−

X,S1
) → (GC−(G;Z), ∂−

X,S2
), whose

value on a grid state x ∈ S(G) is f(x) = g(x) · x, is a chain map, giving the stated
isomorphism.

The isomorphisms on grid homology over F associated to grid moves in Chap-
ter 5 can be lifted to integer coefficients, proving the following invariance of the
homology H(GC−(G;Z), ∂−

X,S), which extends Theorem 4.6.19:

Theorem 15.1.11. Let K be a knot, choose a grid diagram G with grid number
n representing K, a sign assignment S for G, and some integer i ∈ {1, . . . , n}. The
simply blocked grid homology ĜH (G;Z) = H(

GC−
S (G;Z)

Vi
), thought of as a bigraded

abelian group, and the unblocked grid homology GH−(G;Z) = H(GC−
S (G;Z)),

thought of as a bigraded Z[U ]-module, where the U-action is given by multiplication
by Vi, are both invariants of the unoriented knot K.

Definition 15.1.12. Let K be a knot, and choose G, S, and i as in Theo-
rem 15.1.11. The homology of GC−

S (G;Z), thought of as a bigraded module over
Z[U ], where the U -action is induced by multiplication by Vi, is called the sign-
refined (unblocked) grid homology of K; and it is denoted GH−(K;Z). The
homology of GC−

S (G;Z)/Vi, thought of as a bigraded abelian group, is called the

sign-refined simply blocked grid homology of K; and it is denoted ĜH (K;Z).

Theorem 15.1.11 is proved in Section 15.3, after we construct the sign assign-
ments for rectangles used to define the grid complex over Z.
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Exercise 15.1.13. Show that for the unknot O, ĜH (O;Z) ∼= Z(0,0), and

GH−(O;Z) ∼= Z[U ](0,0), adapting notation from Section 7.3.

15.2. Existence and uniqueness of sign assignments

The aim of this section is to prove Theorem 15.1.5. Our treatment (based on
Gallais’ approach in [66]) uses a little bit of group theory for the symmetric group.
We start with the following standard terminology of group theory.

Definition 15.2.1. Let K be an abelian group and G, H be groups. The group
H is a central extension of G by K if the groups fit into a short exact sequence

1 → K
i−→ H

p−→ G → 1

with the property that K is a subgroup of the center Z(H) of H.

We recall the relevance of the symmetric group Sn to the study of grid states
and the rectangles that connect them. Fix a toroidal grid diagram G with grid
number n. Fix a labeling of the horizontal circles by α = {α1, . . . , αn} and the
vertical circles by β = {β1, . . . , βn}, both of which are numbered compatibly with
the cyclic ordering on the torus. As explained in Section 4.1, this data specifies a
one-to-one correspondence x �→ σx between grid states and elements of Sn: the
permutation σx maps i to j if the component of x on the ith vertical circle βi is on
the jth horizontal circle αj . For two grid states x,y the set Rect(x,y) is non-empty
if and only if σ−1

x σy is a transposition, in which case Rect(x,y) contains exactly two
elements (and Rect(y,x) also contains two elements). Thus, the set of rectangles
starting at x is in two-to-one correspondence with the set of transpositions in Sn.

We will study a group S̃n, called the spin extension of the symmetric group,
that is twice as big as Sn, constructed presently. To avoid degenerate cases, we
always assume that n ≥ 2. Consider the n vectors (v1, . . . , vn) in Rn defined by

(15.4) vi = nei −
n∑

k=1

ek,

where ei are the standard basis vectors for Rn. Embed Sn into the group of
rigid rotations SO(n) of Rn as the subgroup that permutes the vectors v1, . . . , vn.
Recall [29] that there is a unique connected topological group, the spin group, that
fits into a short exact sequence

(15.5) {1} −−−−→ Z/2Z −−−−→ Spin(n)
p−−−−→ SO(n) −−−−→ {1},

where Z/2Z is contained in the center of Spin(n). For n = 2, SO(2) = S1 (the
group of unit complex numbers) and Spin(2) = S1, where p : S1 → S1 is the map
z �→ z2. For n ≥ 3, an element in Spin(n) can be viewed as a homotopy class of
paths (with fixed endpoints) in SO(n), starting at the identity element. (Recall that

π1(SO(n)) = Z/2Z once n ≥ 3.) Now, S̃n is the preimage of Sn ⊂ SO(n) under p.

By its construction, S̃n is a central extension of Sn by Z/2Z, so |S̃n| = 2n!.

We will give a set of generators for S̃n that are in one-to-one correspondence
with rectangles starting from x. Before doing this, we recall some familiar prelimi-
naries about the symmetric group Sn.

Let τi,j ∈ Sn with 1 ≤ i < j ≤ n denote the transposition that switches i and
j. The following result is standard.
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Proposition 15.2.2. The symmetric group Sn on n letters admits a presen-
tation with generators {τi,j | 1 ≤ i < j ≤ n} (where τi,j is the transposition of the
ith and the jth letters), and relations

(1) τ2
i,j = 1 for 1 ≤ i < j ≤ n,

(2) τi,j · τk,l = τk,l · τi,j for any 1 ≤ i, j, k, l ≤ n satisfying {i, j} ∩ {k, l} = ∅,
(3) τi,j · τj,k · τi,j = τj,k · τi,j · τj,k = τi,k for any 1 ≤ i < j < k ≤ n distinct

indices.

Proof. The fact that τi,j generate Sn is well known. Also, simple computation
shows that transpositions satisfy items (1)-(3) of the proposition. It follows that
there is a surjective homomorphism from Γn, the group with generators and rela-
tions stated in the proposition, to the symmetric group Sn. By induction on n we
will prove that this surjection is an isomorphism.

The base case n = 2 is obvious. For the inductive step, suppose that Γn
∼= Sn,

and consider the subgroup H ⊂ Γn+1 generated by τi,j with 1 ≤ i < j ≤ n. By the
inductive hypothesis, H is a quotient of Sn, so that H is a finite group with

(15.6) |H| ≤ n!

Label n + 1 of the left cosets of H in Γn+1 as

Ln+1 = H, Ln = τn,n+1 · H, . . . Li = τi,n+1 · H, . . . L1 = τ1,n+1 · H.

(We have not yet verified that these are distinct or exhaustive; but it will follow
from the proof.) It follows immediately from the relations that left translation by
τi,j permutes the cosets L1, . . . , Ln+1. (In fact, τi,j permutes Li and Lj and fixes all
other Lk for k �= i, j.) Since by definition the τi,j generate Γn+1, we conclude that
left translation by any element of Γn+1 permutes the L1, . . . , Ln+1; in particular,
the index of H in Γn+1 is bounded:

(15.7) [Γn+1 : H] ≤ n + 1.

Equations (15.6) and (15.7) show that Γn+1 is a finite group with

|Γn+1| ≤ (n + 1)! = |Sn+1|,
forcing the surjection from Γn+1 to Sn+1 to be an isomorphism, as claimed.

We would like to give explicit lifts of the τi,j in S̃n. We do this with the help
of the following geometric construction involving the groups SO(n) and Spin(n).

Definition 15.2.3. Given a 2-plane P in Rn, there is a well-defined 180◦

rotation RP of that plane, fixing its orthogonal complement. Fixing an orientation

on P gives an associated spin rotation , R̃P ∈ Spin(n), which is the element
associated to the path {rt}t∈[0,π] in SO(n), where rt rotates P (with respect to the
fixed orientation) through an angle of t.

We will use the following lemma, whose proof is relegated to Section 15.7:

Lemma 15.2.4. Let z ∈ Spin(n) be the generator of Ker p of the short exact
sequence of Equation (15.5). For any oriented two-dimensional subspace P , the

spin rotation R̃P satisfies

(15.8) R̃2
P = z.
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When u1, u2, w are three unit orthogonal vectors in Rn, then

(15.9) R̃〈u1,w〉 · R̃〈u2,w〉 = z · R̃〈u2,w〉 · R̃〈u1,w〉,

where the plane 〈ui, w〉 is oriented so that ui and w form a positive basis.
When u1, u2, w are three unit vectors so that u1 and u2 meet at an angle of 2π

3
and w is orthogonal to both u1 and u2, then

(15.10) R̃〈u1,w〉 · R̃〈u2,w〉 · R̃〈u1,w〉 = R̃〈u1+u2,w〉.

For fixed i, j ∈ {1, . . . , n}, consider the plane P spanned by vi−vj = n(ei− ej)
and

∑n
k=1 ek, where vi are as in Equation (15.4). The 180◦ rotation around P

clearly fixes vk for k �= i, j, and it switches vi and vj . Thus, when i < j, this
rotation realizes the element τi,j , thought of as an element of SO(n). Orient P by
taking the ordered basis vi − vj and

∑n
k=1 ek, and let τ̃i,j be the corresponding

element of Spin(n). The element τ̃j,i corresponds to the same plane, now with the

orientation given by vj − vi and
∑n

k=1 ek. The elements τ̃i,j ∈ S̃n ⊂ Spin(n) are
called generalized transpositions.

Proposition 15.2.5. The spin extension S̃n of Sn has by the following group
presentation: the generators are τ̃i,j (1 ≤ i �= j ≤ n) and z, which are subject to
the following relations:

• z2 = 1 and z is central, that is, z · τ̃i,j = τ̃i,j · z for all i �= j,
• τ̃2

i,j = z and τ̃i,j = z · τ̃j,i for 1 ≤ i �= j ≤ n,
• for 1 ≤ i, j, k, l ≤ n satisfying {i, j} ∩ {k, l} = ∅,

(15.11) τ̃i,j · τ̃k,l = z · τ̃k,l · τ̃i,j ,
• For any three distinct integers 1 ≤ i, j, k ≤ n,

(15.12) τ̃i,j · τ̃j,k · τ̃i,j = τ̃j,k · τ̃i,j · τ̃j,k = τ̃i,k.

Remark 15.2.6. Notice that transpositions τi,j ∈ Sn are indexed by pairs of
integers with i < j, while generalized transpositions τ̃i,j are indexed by pairs of
integers with i �= j.

Proof. We verify first that the stated relations hold for τ̃i,j and z as defined above.
By construction, z is central and it satisfies z2 = 1. The other relations follow from
Lemma 15.2.4: specifically, τ̃2

i,j = z follows from Equation (15.8), the third relation

follows from Equation (15.9) (with u1 = vi − vj and u2 = vk − vl, w =
∑n

m=1 em),
and the fourth relation follows from Equation (15.10) (with u1 = vi−vj , u2 = vj−vk
and w =

∑n
m=1 em). Since the generators τ̃i,j project to a generating set of Sn; it

follows that τ̃i,j and z generate S̃n.

Let Γ̃m be the group defined with the generators z and τ̃i,j and relations given

in the proposition. Since the corresponding generators of S̃n satisfy the stated

relations, there is a surjection Γ̃n → S̃n. We will apply the logic of the proof of
Proposition 15.2.2 to show that

(15.13) Γ̃n
∼= S̃n.

The proof is by induction on n. The base case n = 2 is easy: Γ̃2
∼= Z/4Z ∼= S̃2.

Next, suppose that Γ̃n
∼= S̃n, and consider the group Γ̃n+1. Let H̃ be the subgroup

of S̃n+1 generated by τ̃i,j with 1 ≤ i, j ≤ n. Since the generators of H̃ satisfy the
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relations from S̃n, it follows that H̃ is a quotient of S̃n; so it is a finite group with

|H̃| ≤ 2n!. As in the proof of Proposition 15.2.2, by considering the action of the

τ̃i,j on the coset space, we find that [Γ̃n+1 : H̃] ≤ n + 1. It follows that Γ̃n+1 is

a finite group with at most 2(n + 1)! elements. Since Γ̃n+1 surjects onto S̃n+1, a
group with 2(n + 1)! elements, we conclude that the surjection is an isomorphism,
establishing the inductive step needed to prove Equation (15.13).

Maps in the central extension

(15.14) 1 → Z/2Z
i−→ S̃n

p−→ Sn → 1,

can be written in terms of the above generating sets: i takes the generator of Z/2Z
to z, and p is the homomorphism with

p(τ̃i,j) =

{
τi,j if i < j,
τj,i if j < i.

A function γ : Sn → S̃n is called a section of p : S̃n → Sn if p ◦ γ = idSn
.

Define
Secn = {γ : Sn → S̃n | p ◦ γ = idSn

}.
Remark 15.2.7. In the special case where a central extension admits a section

that is also a group homomorphism, the extension is called a split extension. Al-

ready in the case where n = 2, S̃n
∼= Z/4Z, so the spin central extension is not

split.

The proof of Theorem 15.1.5 proceeds by giving a correspondence between
sections (whose existence and uniqueness properties are obvious; see Lemma 15.2.8)
and sign assignments (see Propositions 15.2.12 and 15.2.13).

Lemma 15.2.8. The group of maps g : Sn → Z/2Z acts transitively and freely
on Secn.

Proof. Think of a map g : Sn → Z/2Z as a map into {1, z}, the center of S̃n.
With this understanding, a section γ ∈ Secn can be multiplied (pointwise) with
the map g to give a new section. This operation gives the required transitive, free
group action of the abelian group of maps Sn → Z/2Z on the set of sections.

For any two grid states x and y for which the set Rect(x,y) is non-empty, there
is a unique transposition τi,j = σ−1

x · σy connecting the states, but there are two
rectangles from x to y. We define now a one-to-one correspondence between the

two rectangles and the two lifts τ̃i,j and τ̃j,i = z · τ̃i,j of τi,j ∈ Sn in S̃n:

Definition 15.2.9. For r ∈ Rect(x,y), the generalized transposition cor-
responding to r, denoted by τ̃(r), is τ̃i,j , where the southwest corner of r is on βi

and the northeast corner is on βj .

Let T̃ denote the set {τ̃i,j
∣∣1 ≤ i �= j ≤ n} of generalized transpositions in S̃n.

For a fixed grid state x ∈ S(G), the assignment r �→ τ̃ (r) induces a bijection

(15.15) τ̃ :
⋃
y

Rect(x,y) → T̃ .

Moreover, if Rect(x,y) is non-empty, then for the two rectangles r, r′ ∈ Rect(x,y),
τ̃(r) = z · τ̃ (r′).
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Lemma 15.2.10. The correspondence r �→ τ̃(r) from Definition 15.2.9 satisfies
the following identities:

• if (r1, r2) and (r′1, r
′
2) are alternative pairs of rectangles, then

(15.16) τ̃(r1) · τ̃ (r2) = z · τ̃ (r′1) · τ̃(r′2),

• if (r1, r2) is a pair of rectangles forming a horizontal annulus then

(15.17) τ̃ (r1) · τ̃(r2) = 1,

• if (r1, r2) is a pair of rectangles forming a vertical annulus then

(15.18) τ̃ (r1) · τ̃ (r2) = z.

Proof. Suppose first that for the alternative pairs (r1, r2) and (r′1, r
′
2), the rect-

angles r1 and r2 do not share sides. Let τ̃(r1) = τ̃i,j and τ̃(r2) = τ̃k,�. Since r1
and r2 have distinct sides, {i, j} ∩ {k, l} = ∅. Since the support of r′1 is the same
as the support of r2, it follows that τ̃ (r′1) = τ̃k,� and τ̃ (r′2) = τ̃i,j , as well. In this

case, Equation (15.16) is an immediate consequence of the relation in S̃n from
Equation (15.11).

Next consider the alternative pairs (r1, r2) and (r′1, r
′
2), where r1 and r2 (and

hence r′1 and r′2) share a side. Let r1 correspond to the element τ̃i,j . For the further
three elements in the alternative pairs there are eight combinatorially distinct pos-
sibilities, corresponding to the following choices: either terminal corner of r1 can
be an initial corner for r2, the rectangles r1 and r2 can meet along a horizontal or
vertical segment, and this segment can be properly contained in an edge of exactly
one of r1 or r2. After possibly switching the roles of (r1, r2) and (r′1, r

′
2), we are left

with the four cases illustrated in Figure 15.1. Equation (15.16) in these four cases
reduce to the identities:

(1) τ̃i,j · τ̃j,k = z · τ̃i,k · τ̃i,j , (2) τ̃i,j · τ̃j,k = z · τ̃j,k · τ̃i,k,
(3) τ̃i,j · τ̃k,j = z · τ̃k,j · τ̃i,k, (4) τ̃i,j · τ̃i,k = z · τ̃j,k · τ̃i,j ;

which in turn follow from the relations z2 = 1, τ̃2
i,j = z, and Equation (15.12).

Suppose now that the two rectangles (r1, r2) form a horizontal annulus. Let
r1 ∈ Rect(x,y) correspond to τ̃i,j . Then the rectangle r2 ∈ Rect(y,x) corresponds

to the element τ̃j,i = τ̃−1
i,j , and hence Equation (15.17) follows.

(1) (2) (3) (4)
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Figure 15.1. The four basic combinatorial possibilities for
domains given by composing two rectangles which share
a side.
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Suppose finally that the rectangles (r1, r2) form a vertical annulus. As before,
suppose that r1 ∈ Rect(x,y) corresponds to τ̃i,j . Then the rectangle r2 ∈ Rect(y,x)
also corresponds to τ̃i,j . Equation (15.18) follows from the relation τ̃2

i,j = z.

Definition 15.2.11. A section γ ∈ Secn and a sign assignment S are com-
patible if for any pair of grid states x,y and any rectangle r ∈ Rect(x,y),

γ(σy) =

{
γ(σx) · τ̃(r) if S(r) = +1
z · γ(σx) · τ̃ (r) if S(r) = −1.

Equivalently, thinking of {±1} as the subgroup of S̃n generated by the element z,

(15.19) γ(σy) = γ(σx) · τ̃(r) · Sγ(r).

Proposition 15.2.12. Given any section γ, there is a unique sign assignment
S compatible with γ. Moreover, if γ and γ′ differ by an overall translation by z,
then their compatible sign assignments coincide.

Proof. For a fixed section γ, Equation (15.19) clearly specifies the function
Sγ : Rect(G) → {±1} uniquely.

The fact that Sγ is a sign assignment follows from Lemma 15.2.10. For example,
suppose that (r1, r2) and (r′1, r

′
2) are alternative pairs of rectangles; let x be the

initial state of r1 (and r′1) and z be the terminal state of r2 (and r′2). Applying
Equation (15.19) four times, we see that

γ(σx) · τ̃(r1) · τ̃(r2) · Sγ(r1) · Sγ(r2) = γ(σz) = γ(σx) · τ̃(r′1) · τ̃ (r′2) · Sγ(r′1) · Sγ(r′2).

The desired relation Sγ(r1) · Sγ(r2) = −Sγ(r′1) · Sγ(r′2) now follows from Equa-
tion (15.16). The remaining two relations for a sign assignment follow similarly
from the other two cases of Lemma 15.2.10 (given in Equations (15.17) and (15.18)).

The sign assignment Sγ is compatible with the section γ by construction. It is
also clear from the construction that Sz·γ = Sγ .

Proposition 15.2.13. If S is a sign assignment, then there are exactly two
sections that are compatible with S.

Proof. We will show first that the value of γ at the permutation σx (for a fixed
grid state x), and compatibility with S, determine the value of γ uniquely at all
permutations of the form σy = σx · τ , where τ is some transposition.

Let r and r′ denote the two rectangles in Rect(x,y). We claim that for either
choice of γ(σx) ∈ p−1(σx)

(15.20) γ(σx) · τ̃(r) · S(r) = γ(σx) · τ̃ (r′) · S(r′).

This is true because τ̃(r) = z · τ̃ (r′), and also S(r) = −S(r′), since S is a sign
assignment and there is some other rectangle r′′ ∈ Rect(y,x) with the property
that r and r′′ form a vertical annulus and r′′ and r′ form a horizontal one. Thus,
given γ(σx), compatibility forces us to define

γ(σy) = γ(σx) · τ̃ (r) · S(r) = γ(σx) · τ̃ (r′) · S(r′).

Since transpositions generate the symmetric group, it follows readily (by mov-
ing around the role of x) that the value of γ at σx (and compatibility with S)
determines the value of the section γ at all elements of Sn. Concretely, given any
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σy ∈ Sn, factor σ−1
x · σy into transpositions τi1,j1 · · · τim,jm . There are grid states

x = x1,x2, . . . ,xm+1 = y uniquely determined by the equations σxk+1
= σxk

·τik,jk .
Choose a sequence of rectangles rk ∈ Rect(xk,xk+1) with k = 1, . . . , m and define

(15.21) γ(σy) = γ(σx) ·
(

m∏
k=1

τ̃(ri)

)
·
(

m∏
k=1

S(ri)

)
.

Equation (15.20) shows that the right-hand-side is independent of the 2m choices
of rectangles rk ∈ Rect(xk,xk+1) for k = 1, . . . , m. However, the right-hand-
side a priori depends on the factorization σ−1

x · σy = τi1,j1 · · · τim,jm . So to see
that Equation (15.21) is consistent, we must show that the right-hand-side is also
independent of the factorization.

Now, according to Proposition 15.2.2, any two factorizations of a fixed element
of the symmetric group can be connected by a sequence of the following three moves
(and their inverses) (1) insert τ2

i,j in the sequence, (2) replace consecutive letters in
the sequence τi,j · τk,� by τk,� · τi,j (provided {i, j}∩{k, 	} = ∅), (3) replace τi,j · τj,k
by τi,k · τi,j (with 1 ≤ i, j, k ≤ n distinct), or τj,k · τi,j by τi,k · τj,k (again, with
1 ≤ i, j, k ≤ n distinct).

In Case (1), suppose we have two sequences, and one is obtained from the
other by inserting τ2

i,j . Lift τ2
i,j = τi,j · τi,j to two rectangles r1 and r2, which form

a horizontal annulus. It follows at once that τ̃(r1) · τ̃ (r2) = 1 and S(r1) ·S(r2) = 1,
and hence (choosing all other rectangles the same) the two possible values of γ(σy)
specified by Equation (15.21) using the two sequences coincide.

In the other cases, we can find alternative pairs of rectangles (r1, r2) and (r′1, r
′
2),

that correspond to exchanging the products of transpositions. In all these cases,

τ̃ (r1) · τ̃(r2) · S(r1) · S(r2) = τ̃(r′1) · τ̃(r′2) · S(r′1) · S(r′2)

in view of Lemma 15.2.10. It follows that the two possible values of γ(σy) computed
on the right-hand-side of Equation (15.21) coincide under this replacement, as well.

Thus, having fixed S and the value γ(σx) for some fixed grid state x, Equa-

tion (15.21) specifies uniquely a function γ : Sn → S̃n. It follows immediately from
its definition that γ is a section and it is compatible with S. The two choices for
γ correspond to the two possible values of γ(σx); and these two sections are easily
seen to differ by an overall translation by z.

Proof of Theorem 15.1.5. For the existence statement, consider a section
γ ∈ Secn (which obviously exists) and take the corresponding sign assignment
Sγ provided by Proposition 15.2.12.

For the uniqueness statement (up to gauge equivalence), consider two sign as-
signments S1 and S2. Proposition 15.2.13 allows us to choose sections γ1 and
γ2 so that γi is compatible with Si for i = 1, 2. Lemma 15.2.8 gives a func-
tion v : Sn → {±1} with the property that γ1 = v · γ2. Under the identification
S(G) ∼= Sn, v corresponds to a gauge transformation g. The uniqueness statement
in Proposition 15.2.12 shows that the sign assignment S1 compatible with γ1 coin-
cides with the sign assignment corresponding to v · γ2. Since the sign assignment
corresponding to v · γ2 is equal to Sg

2 , it follows that S1 = Sg
2 , concluding the proof

of uniqueness.
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15.3. The invariance of grid homology over Z

Our aim now is to show that the sign-refined grid homology, thought of as a
bigraded module over Z[U ], is a knot invariant. This result was stated in Theo-
rem 15.1.11.

Since we already verified that these groups are independent of the choice of
sign assignments (Proposition 15.1.10), by Cromwell’s theorem, it remains to verify
that grid moves induce isomorphisms on grid homology with integer coefficients.
We will start with the invariance under commutation moves, and consider the effect
of stabilizations afterwards.

15.3.1. Commutation invariance. Suppose that G,G′ are two grid dia-
grams differing by a commutation or a switch, and S is a fixed sign assignment
on G, which can be naturally viewed also as a sign assignment on G′.

Proposition 15.3.1. If G and G′ are two grid diagrams which differ by a
commutation or a switch, and S is a sign assignment on G and on G′, then there
is an isomorphism of bigraded Z[U ]-modules

H(GC−(G;Z), ∂−
X,S) ∼= H(GC−(G′;Z), ∂−

X′,S).

In the proof we will use a sign-refined version of the pentagon counting map of
Section 5.1, so we need to explain how to associate a sign to a pentagon. We focus
on the case of column commutations, and return to the modifications needed for
row commutations at the end of this subsection.

For fixed grid states x ∈ S(G) and y′ ∈ S(G′), and a pentagon p ∈ Pent(x,y′),
there is a naturally associated rectangle R(p) ∈ Rect(x,y), where y = I(y′) (as
in Equation (5.3)). The rectangle R(p) is determined by the property that all of
its local multiplicities away from the two bigons (between βi and γi) agree with
those of p. Informally, this map straightens the pentagon p into the rectangle
R(p), cf. Figure 15.2. Given p′ ∈ Pent(y′,x), there is a similarly defined R′(p′) ∈
Rect(y′,x′), where I(x′) = x.

Note that for any pentagon p ∈ Pent(x,y′), the associated rectangle R(p)
contains a segment of βi on its boundary, so it lies either to the right or to the left
of βi. We call such pentagons right pentagons or left pentagons, respectively.

Definition 15.3.2. Fix p ∈ Pent(x,y′). The sign of p, denoted Spent(p), is

(−1)M(x)+1S(R(p)) if p is a left pentagon and (−1)M(x)S(R(p)) if p is right.

R

Figure 15.2. Straightening a pentagon to a rectangle. By
this operation, we can apply the sign assignments defined for rect-
angles and (after suitable modification) we can equip pentagons
with signs.
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The RZ-module map PS : GC−
S (G;Z) → GC−

S (G′;Z) is specified by its value
on any grid state x ∈ S(G) by the formula

(15.22) PS(x) =
∑

y′∈S(G′)

∑
{p∈Pent◦(x,y′)|p∩X=∅}

Spent(p) · V O1(p)
1 · · ·V On(p)

n · y′.

Lemma 15.3.3. The map PS : GC−
S (G;Z) → GC−

S (G′;Z) is a chain map.

Proof. Let ∂−
X,S and ∂−

X′,S be the differentials for GC−
S (G;Z) and GC−

S (G′;Z),

respectively. In the verification of the claimed identity PS ◦ ∂−
X,S = ∂−

X′,S ◦ PS , we
need to analyze the interaction of pentagons and rectangles — now with signs. As
in the proof of Lemma 5.1.4, we distinguish three cases:

The analogue of (P-1) of Lemma 5.1.4 works with minor changes, and pro-
vides the desired result. Indeed, the domain of the composition r ∗ p admits a
unique alternate decomposition as p′ ∗ r′, and the corresponding pairs (r, R(p)) and
(R′(p′), r′) provide alternative pairs of rectangles, hence we get

S(r) · S(R(p)) + S(R′(p′)) · S(r′) = 0.

Since the initial grid states of p and p′ have Maslov gradings of different parity,
and the pentagons are either both right pentagons or both left pentagons, it follows
that the contributions cancel in PS ◦∂−

X,S −∂−
X′,S ◦PS , proving the desired equality.

The analogue of (P-2) of Lemma 5.1.4 gives two different decompositions of
the same domain as a pentagon and a rectangle (possibly in either order). After
straightening the pentagons in the decomposition, either we get alternative pairs
of rectangles or we get the same two pairs of rectangles. When straightening the
pentagons gives alternative pairs of rectangles, both pentagons are on the same side,
and hence their contributions cancel in PS ◦ ∂−

X,S − ∂−
X′,S ◦ PS . When straightening

the pentagons gives the same two rectangles, the decompositions have the form r∗p
and p′∗r′, and the two pentagons p and p′ are on opposite sides of the commutation
(i.e. one is a left pentagon and the other is a right pentagon; see Figure 15.3 for an
example); so their contributions to PS ◦ ∂−

X,S − ∂−
X′,S ◦ PS cancel.

In Case (P-3)(h), the domain has two decompositions, of the form r ∗ p and
p′ ∗ r′, whose straightenings give the same decomposition of a horizontal annulus.

R

R

Figure 15.3. A domain that needs special attention in case
(P-2) in the proof of Lemma 15.3.3. This domain has two
different decompositions into a pentagon and a rectangle, but after
applying the straightening map, the two decompositions become
the same. In this case the two pentagons are necessarily on different
sides of the commutation.
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Since the pentagons are on opposite sides of the commutation, the contributions to
PS ◦ ∂−

X,S − ∂−
X′,S ◦ PS cancel.

Finally, in the analogue of (P-3)(v) of Lemma 5.1.4, the proof of that lemma
shows that if the domain p ∗ r (or r ∗ p) admits a unique decomposition as a juxta-
position of a rectangle and a pentagon, then there is a unique similar domain with
a unique decomposition p′ ∗ r′ or r′ ∗ p′, now on the other side of the commutation.
Observe that, for the two juxtapositions, the straightening of the pentagon and the
rectangle gives decompositions of two vertical annuli, and hence the product of the
signs of their straightenings are the same. It follows now that the contributions to
PS ◦ ∂−

X,S − ∂−
X′,S ◦ PS , once again, cancel.

The same basic idea provides a map from GC−
S (G′;Z) to GC−

S (G;Z) as follows.
Given a pentagon p ∈ Pent(x′,y), its induced sign Spent(p) is defined as in Defi-

nition 15.3.2; and define P ′
S : GC−

S (G′;Z) → GC−
S (G;Z) as in Equation (15.22).

The argument from Lemma 15.3.3 shows that P ′
S is a chain map. The proof

of Lemma 5.1.3 shows that the maps PS and P ′
S both preserve the Maslov and

Alexander gradings.
In order to complete the proof of Proposition 15.3.1, we show that PS and

−P ′
S are homotopy inverses of one another. As in Section 5.1, the homotopies

count hexagons, but now they do so as follows. To associate signs to hexagons,
observe that to each hexagon h ∈ Hex(x,y) for x,y ∈ S(G) (in the sense of Def-
inition 5.1.5), there is a naturally associated rectangle R(h) ∈ Rect(x,y), whose
local multiplicities away from the two bigons agree with those of h. This operation
induces a one-to-one correspondence between hexagons and rectangles that have a
boundary arc along βi, which crosses the marked points b and a in that order.

With this understood, we define Shex(h) = S(R(h)), and consider

(15.23) HS(x) =
∑

y∈S(G)

∑
{h∈Hex◦(x,y)|h∩X=∅}

Shex(h) · V O1(h)
1 . . . V On(h)

n · y.

Lemma 15.3.4. The maps

PS : GC−
S (G;Z) → GC−

S (G′;Z)

and

−P ′
S : GC−

S (G′;Z) → GC−
S (G;Z)

are homotopy inverses of one another.

Proof. We show that the map of Equation (15.23) provides a chain homotopy
between −P ′

S ◦ PS and IdGC−
S (G;Z); that is,

(15.24) IdGC−
S (G;Z) + P ′

S ◦ PS + HS ◦ ∂−
X,S + ∂−

X,S ◦ HS = 0.

The terms appearing in P ′
S ◦ PS + HS ◦ ∂−

X,S + ∂−
X,S ◦ HS are in one-to-one

correspondence with decompositions of domains consisting of two rectangles, where
the composite domain contains an arc in βi along its boundary that crosses both b
and a in that order. (This correspondence is set up using the straightening maps
for pentagons and hexagons; for example, for a domain p′ ∗ p counted in P ′

S ◦ PS ,
the corresponding domain is R(p′) ∗ R(p).)

Grouping juxtapositions according to their underlying domains when N(ψ) = 2
(as in the proof of Lemma 5.1.6), there are two cases: the two decompositions give
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alternative pairs of rectangles after straightening or the two decompositions give
the same pair of rectangles. In the first case there are either 0 or 2 pentagons, and
they appear on the same side. In the second case, each decomposition contains one
pentagon, and the two pentagons are on opposite sides. It is easy to see that in
both cases, the signs cancel.

The remaining term with N(ψ) �= 0 corresponds to the thin vertical annulus,
which has a unique decomposition, and its contribution is cancelled by the identity
map appearing in Equation (15.24).

The fact that −PS ◦P ′
S is homotopic to the identity is verified analogously, now

counting hexagons that connect x′,y′ ∈ S(G′).

Proof of Proposition 15.3.1. Suppose that G and G′ differ by a commutation of
two columns. According to Lemma 15.3.3 the maps PS and −P ′

S are chain maps;
and by Lemma 15.3.4, they are chain homotopy inverses of each other. Thus, they
both induce isomorphisms on homology.

In the case of row commutations, sign assignments for pentagons (Defi-
nition 15.3.2) use the notions of “up pentagons” and “down pentagons” in place
of “left pentagons” and “right pentagons”; i.e. the sign of a pentagon is the sign
of its straightened rectangle times (−1)M(x) for an up and (−1)M(x)+1 for a down
pentagon. These sign assignments are used to define maps PS : GC−

S (G;Z) →
GC−

S (G′;Z) and P ′
S : GC−

S (G′;Z) → GC−
S (G;Z) for row commutations. Adapting

the proof of Lemma 15.3.4, we verify that these maps are homotopy inverses of one
another. The signs in the analogue of Equation (15.24) are modified, as follows:

IdGC−
S (G;Z) − P ′

S ◦ PS + HS ◦ ∂−
X,S + ∂−

X,S ◦ HS = 0.

With these remarks in place, it follows that the sign refined grid homology is in-
variant under row commutations.

Since the argument works for switches equally well, the proof of the proposition
is complete.

15.3.2. Stabilization invariance. Suppose that G is a given grid diagram
and G′ is a grid diagram obtained by a stabilization on G. Let SG′ be a sign
assignment on G′. This sign assignment can be restricted to give a sign assignment
on G as follows. Recall from Section 5.2 that there is a one-to-one correspondence
between generators x ∈ S(G) and generators x′ ∈ I(G′) ⊂ S(G′) with c ∈ x′.
Similarly, rectangles r ∈ Rect(x,y) for G are in natural one-to-one correspondence
with rectangles r′ ∈ Rect(x′,y′) connecting x′,y′ ∈ I(G′) in G′. Define SG(r) to
be SG′(r′). It is easy to see that the function SG : Rect(G) → Z defined in this way
is a sign assignment. For simplicity, we will denote both SG′ and SG by S.

Proposition 15.3.5. Suppose that G′ is given by a stabilization of the grid
diagram G. Let S be a fixed sign assignment on G′, inducing a sign assignment
(also denoted by S) on G. Then, the homology groups of (GC−(G;Z), ∂−

S ) and

(GC−(G′;Z), ∂−
S ) are isomorphic as bigraded Z[U ]-modules.

Proof. The proof of Proposition 5.2.1 carries over with minor modifications. For
instance, in the case of stabilizations of type X:SW, there is a quotient complex
I ⊂ GC−

S (G′;Z) generated by the grid states in I(G′), with induced differential
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∂I
I,S . We can replace Lemma 5.2.18 by the statement that the natural one-to-one

correspondence between I(G′) and S(G) induces an isomorphism

eZ : (I, ∂I
I,S) → GC−

S (G;Z)[V1]�1, 1�
of bigraded chain complexes. This statement in turn follows immediately from our
definition of the induced sign assignment on G.

Note that the stabilization invariance proof follows from the homotopy formula
connecting multiplication by V1 with multiplication by V2. For instance, in the
proof of Proposition 5.2.17 (again, in the case of X:SW stabilizations), there was
a commutative square (Equation (5.22)), which is now replaced by the following
diagram

(15.25)

(I, ∂I
I,S) (N, ∂N

N,S)

(GC−
S (G;Z)[V1]�1, 1�,−∂−

X ) (GC−
S (G;Z)[V1], ∂

−
X )

∂N
I,S

eZ
V1 − V2

eZ ◦ HI
X2,S

where the operator HI
X2,S

is the natural modification of HI
X2

, incorporating the
sign assignment in the usual manner:

(15.26) HI
X2,S(x) =

∑
y∈I(G′)

∑
{r∈Rect◦(x,y)

∣∣r∩X=X2}

S(r) · V O1(r)
1 · · ·V On(r)

n · y.

This square is not a commutative square: rather it is a chain complex, in the
following sense. Each of the edge maps anti-commutes with the differential, and
the two compositions of the edge maps add up to zero (rather than being equal).
This latter fact follows from Equation (15.3).

Anti-commutativity of the square can be interpreted as the statement that the
map

DS : GC−
S (G′) → Cone(V1 − V2).

defined by

(15.27) DS(x) = (−1)M(x)(eZ(x), eZ ◦ HI
X2,S(x))

is a chain map.
The first vertical arrow in Equation (15.25) induces a quasi-isomorphism; the

second vertical map is also a quasi-isomorphism by Equation (15.3); so the map
DS is a quasi-isomorphism by Lemma 5.2.12.

Any stabilization can be reduced to one of type X:SW by commutations and
switches, so the general case is reduced to the above case via Proposition 15.3.1.

Definition 15.3.6. The map defined in Equation (15.27), giving a quasi-
isomorphism from GC−

S (G′) to the sign-refined mapping cone of the chain map

V1 − V2 : GC−
S (G)[V1] → GC−

S (G)[V1],

is called the sign-refined destabilization map.

The sign-refined destabilization map is the chain map induced from the diagram
in Equation (15.25). The proof of the above proposition in fact shows that the sign-
refined destabilization map is a quasi-isomorphism of Z[V2, . . . , Vn]-modules, and
in particular it induces an isomorphism of Z[U ]-modules in homology.
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15.3.3. Completion of the invariance proof. As usual, the invariance
proof is given in two steps: first, proving that grid homology is an oriented knot
invariant, and then observing that it is independent of the orientation.

Proposition 15.3.7. The grid homology module GH−(G;Z), as a bigraded
module over Z[U ], depends on the grid G only through its underlying oriented

knot �K.

Proof. Recall that the bigraded isomorphism type of GC−
S (G;Z) is independent

of the choice of sign assignment, by Proposition 15.1.10 (so we suppress S from the
notation). Lemma 15.1.9 shows that the quasi-isomorphism type of GC−(G;Z),
as a module over Z[U ], is independent of the choice of Vi. Thus, invariance of
the bigraded grid homology module GH−(G;Z) follows from Cromwell’s theorem
(Theorem 3.1.9), together with the fact that the module is invariant under commu-
tations (by Propositions 15.3.1), and stabilizations (by Proposition 15.3.5).

Independence of orientation is verified in the following:

Proposition 15.3.8. The grid homology GH−(K;Z) is independent of the
choice of orientation on K.

Proof. Consider a grid diagram G representing the oriented knot �K. As in
Proposition 5.3.2, the grid G′ obtained by reflecting G across the diagonal provides

a diagram for − �K. The map φ on grid states induced by this reflection induces
a module isomorphism GC−(G;Z) → GC−(G′;Z). The map φ can be used to
identify Rect◦(x,y) with Rect◦(φ(x), φ(y)) for any pair of grid states x,y ∈ S(G).
We want to define a sign assignment for G′ by pulling back the sign assignment S
of G by this identification. The pull-back, however, is not quite a sign assignment:
it does satisfy the first property of Definition 15.1.2, but since reflection switches
horizontal and vertical, for rectangles forming an annulus, the product of values of
the pull-back are the opposite to what they would be for a sign assignment. To
remedy this, consider instead the function S′ on the rectangles of G′

S′(φ(r)) = (−1)X(r)+#(Int(r)∩x) · S(r),

for all r ∈ Rect(x,y). It is easy to see that S′ is a sign assignment on G′, and hence
that the function x �→ φ(x) defines an isomorphism between the chain complexes
GC−

S (G;Z) and GC−
S′(G′;Z), concluding the proof.

Proof of Theorem 15.1.11. Invariance of GH−(G;Z) is an immediate conse-
quences of Propositions 15.3.7 and 15.3.8.

Since invariance of GH− is proved by a sequence of quasi-isomorphisms, invari-

ance of ĜH follows formally: a quasi-isomorphism between two free chain complexes
over Z[U ] induces a quasi-isomorphism between their U = 0 specializations, by the
five lemma. (See Proposition A.3.5 for more details.)

Exercise 15.3.9. (a) Compute ĜH (T2,3;Z) and GH−(T2,3;Z).

(b)∗ Let K be an alternating knot. Express the modules ĜH (K;Z) and GH−(K;Z)
in terms of the Alexander polynomial and the signature of K.
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15.4. Invariance in the filtered theory

We construct the sign-refined version of the filtered grid invariant from Chap-
ter 13.

Fix a grid diagram G representing an oriented knot �K and a sign assignment
S on it. Let GC−

S (G) be the free Z[V1, . . . , Vn]-module generated by grid states,
equipped with the Maslov grading and the Alexander filtration of Chapter 13, and
consider the Z[V1, . . . , Vn]-module endomorphism specified on grid states x ∈ S(G)
by

(15.28) ∂−
S x =

∑
y∈S(G)

∑
r∈Rect◦(x,y)

S(r) · V O1(r)
1 · · ·V On(r)

n · y

(the lift of Equation (13.1)).

Lemma 15.4.1. The operator ∂−
S satisfies ∂−

S ◦∂−
S = 0; i.e. the pair GC−

S (G;Z) =

(GC−(G;Z), ∂−
S ) is a chain complex.

Proof. The proof of the lemma follows the same line of reasoning as the proof
of Lemma 15.1.7. Indeed, for Cases (R-1) and (R-2) of Lemma 4.6.7 the same
argument applies.

Now, however, we must consider also Case (R-3) (in the notation of
Lemma 13.2.2). In the proof of Lemma 13.2.2, the contributions to (∂−)2 cancel
mod 2, since the contribution from the vertical thin annulus through an O-marking
Oi cancels with the contribution of the horizontal thin annulus through the same
marking. This cancellation also holds over the integers, by the axioms of a sign
assignment.

Actions by the various Vi variables corresponding to different O-markings are
filtered chain homotopic to one another, by the following straigthforward general-
ization of Lemma 15.1.9, verified using the homotopy operator:

(15.29) Hi,S(x) =
∑

y∈S(G)

∑
{r∈ Rect◦(x,y)

∣∣Xi∈r∩X}

S(r) · V O1(r)
1 · · ·V On(r)

n · y.

View the filtered chain complex GC−
S (G;Z), as a module over Z[U ], where

multiplication by U is defined to be multiplication by some fixed Vi. In the rest
of the section we will show that the filtered quasi-isomorphism type of this chain

complex depends only on �K, and is independent of the chosen sign assignment and

the grid diagram representing �K.

Theorem 15.4.2. Let �K be an oriented knot and G be a grid diagram that

represents �K. The filtered quasi-isomorphism type of GC−
S (G;Z), thought of as a

Z-filtered, Z-graded chain complex over Z[U ], is an invariant of the oriented knot
�K. Similarly, the filtered quasi-isomorphism type of ĜCS(G;Z), thought of as a

Z-filtered, Z-graded chain complex, is an invariant of the oriented knot �K.

The filtered chain complex over the integers is independent of the choice of
the sign assignment: for two sign assignments S1 and S2 the map f of Proposi-
tion 15.1.10 induces an isomorphism between GC−

S1
(G;Z) and GC−

S2
(G;Z).

Independence from the choice of the grid diagram follows from an adaptation
of our earlier arguments with coefficients in F = Z/2Z: we verify commutation
invariance first and then the rather more involved stabilization invariance.
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Proposition 15.4.3. If G,G′ are two grid diagrams differing by a commuta-
tion or a switch, and S is a fixed sign assignment on G (and hence on G′), then
GC−

S (G;Z) and GC−
S (G′;Z) are filtered quasi-isomorphic chain complexes.

Using the extension of a sign assignment to pentagons (as described in Defini-
tion 15.3.2) we get the map

PS : GC−
S (G;Z) → GC−

S (G′;Z)

specified on the grid state x ∈ S(G) by the formula

PS(x) =
∑

y′∈S(G′)

∑
p∈Pent◦(x,y′)

Spent(p) · V O1(p)
1 · · ·V On(p)

n · y′.

Proof of Proposition 15.4.3. A simple adaptation of Lemma 15.3.3 shows that
PS is a chain map. The proof of Lemma 13.3.1 shows that PS respects the grading
and the filtration; and the argument from Lemma 13.3.3 shows that PS induces
the map PS on the associated graded object, which in turn is a quasi-isomorphism,
according to Lemma 15.3.4.

Next we turn to the invariance under stabilizations. Suppose that the grid
diagram G′ is given as a stabilization of type X:SW on G and S is a sign assignment
on G′ inducing a sign assignment (also denoted by S) on G.

Lemma 15.4.4. Suppose that the grids G,G′ and the sign assignment S are as
above. Then, the filtered chain complex GC−

S (G′;Z) is quasi-isomorphic to

GC−
S (G;Z).

For the proof of this result, we define a sign-refined destabilization map

DS : GC−
S (G′;Z) → (ConeS(V1 − V2);Z),

and we check that it is a filtered quasi-isomorphism. The key point here is to
associate signs to the destabilization domains p ∈ πiL(x,y) ∪ πiR(x,y) from Defi-
nition 13.3.7.

Definition 15.4.5. Let p be a destabilization domain. The canonical decom-
position of a domain p is a factorization p = r1 ∗ · · · ∗ rk−1 into empty rectangles
with the property that each rectangle rj meets the distinguished (destabilized)
circle βi in the side of the rectangle.

1

2

1

1,3

1
2

3

1

1,3 3

12

2,4

2

4

Figure 15.4. Canonical decompositions. We have illustrated
here canonical decompositions of destabilization domains with
complexity 3, 4, and 5. The rectangles in the decomposition are
labelled by their order, and each region is marked by a sequence of
integers representing the rectangles that contain the region; thus,
the local multiplicity of p at a region is the number of labels it has.
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The existence and uniqueness of canonical decompositions was verified in
Lemma 13.3.11. If p is a destabilization domain, define the sign of p as follows:
S(p) = 1 if p has complexity 1, and if p has complexity k > 1,

(15.30) S(p) =
k−1∏
i=1

S(ri),

where p = r1 ∗ · · · ∗ rk−1 is its canonical decomposition.

Definition 15.4.6. Fix a sign assignment S for G′ and extend the sign assign-
ment to destabilization domains as above. The maps

DiL
S (x) =

∑
y∈I(G′)

∑
p∈πiL(x,y)

(−1)M(x) · S(p) · V O2(p)
2 · · ·V On(p)

n · e(y)

DiR
S (x) =

∑
y∈I(G′)

∑
p∈πiR(x,y)

(−1)M(x) · S(p) · V O2(p)
2 · · ·V On(p)

n · e(y),

are components of the sign-refined destabilization map

DS : GC−
S (G′;Z) → ConeS(V1 − V2)

DS(x) = (DiL
S (x),DiR

S (x)) ∈ GC−
S (G;Z)[V1]�1, 1�⊕GC−

S (G;Z)[V1] ∼= ConeS(V1−V2),

where the latter is an isomorphism of filtered modules.

We would like to verify that DS is a chain map. To this end, it is useful to have
the following:

Definition 15.4.7. Let r be a rectangle, and suppose that r can be realized as
the juxtaposition of three rectangles r = r1 ∗ r2 ∗ r3; in this case, one of the edges
of r2 is the union of an edge e of r1 and an edge of r3. If the edge e is horizontal
resp. vertical, we call the factorization r = r1 ∗ r2 ∗ r3 of horizontal type resp. of
vertical type. For examples of such factorizations, see Figure 15.5.

Lemma 15.4.8. Suppose that r factors into three rectangles r = r1 ∗ r2 ∗ r3. If
the factorization is of horizontal type, then S(r) = −S(r1) ·S(r2) ·S(r3), and if the
factorization is of vertical type, then S(r) = S(r1) · S(r2) · S(r3).

Proof. Suppose that e is horizontal. Choose r4 so that r and r4 form a horizontal
annulus, so that S(r) · S(r4) = 1, and consider the juxtaposition of rectangles
r1 ∗ r2 ∗ r3 ∗ r4. Replace (r3, r4) by the alternative pair (r′3, r

′
4), then notice that

(r2, r
′
3) and (r1, r

′
4) form horizontal annuli; thus S(r1) · S(r2) · S(r3) · S(r4) = −1,

verifying that S(r) = −S(r1) · S(r2) · S(r3), as claimed.

3

2

1

1

2

3

1

2

3 1

2

3

Figure 15.5. Factoring rectangles. The left two pictures are
horizontal type factorizations of the larger rectangle; the right two
pictures are vertical type factorizations of the larger rectangle.
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When e is vertical, we can replace (r1, r2) with an alternative pair (r′1, r
′
2), so

that r = r′1 ∗ r′2 ∗ r3 and r′2 meets r′1 and r3 in a horizontal edge, so we have reduced
to the previous case.

Lemma 15.4.9. The sign-refined destabilization map

DS : GC−
S (G′;Z) → ConeS(V1 − V2)

of Definition 15.4.6 is a chain map.

Proof. The proof follows the logic of Lemma 13.3.13. The key point is to
show that the cancellation of terms modulo two verified in that proof still hold
with signs. In that proof, we investigated various juxtapositions involving one
destabilization domain and a rectangle. For each such juxtaposition, we found either
one other juxtaposition with the same contribution, or two other juxtapositions
(where one of the juxtapositions is of Type (I)) so that the contributions of all three
together cancel. In the present proof, we will show that within these groupings, the
contributions also cancel with sign.

To help with the verification, we set some notation. Recall the natural splitting
of the Z[V1, . . . , Vn]-modules:

ConeS(V1−V2 : GC−
S (G;Z)[V1] → GC−

S (G;Z)[V1]) ∼= GC−
S (G;Z)[V ]�1, 1�⊕GC−

S (G;Z).

There is also a Z[V1, . . . , Vn]-module splitting of GC−
S (G′;Z) as I ⊕N . In terms of

the above two splittings, the destabilization map and the differentials on GC−
S (G′;Z)

and on ConeS(V1−V2 : GC−
S (G;Z)[V1] → GC−

S (G;Z)[V1]) can be represented by the
2 × 2 matrices:(

DiL
1,S DiL

>1,S

0 DiR
S

) (
∂I
I,S ∂I

N,S

∂N
I,S ∂N

N,S

) (
−∂−

S 0
V1 − V2 ∂−

S

)
.

(For the destablization map, we are using notation from Equation (13.6).) Thus,
the lemma is equivalent to the vanishing of the operator

GC−
S (G′;Z) → ConeS(V1 − V2 : GC−

S (G;Z)[V1] → GC−
S (G;Z)[V1])

specified by the 2×2 matrix (suppressing the sign assignment S from the notation):
(15.31)(

−∂− ◦ DiL
1 −DiL

1 ◦ ∂I
I −DiL

>1 ◦ ∂N
I −∂− ◦ DiL

>1 −DiL
1 ◦ ∂I

N −DiL
>1, ◦ ∂N

N

(V1 − V2) · DiL
1 −DiR ◦ ∂N

I (V1 − V2) · DiL
>1 + ∂− ◦ DiR −DiR ◦ ∂N

N

)
.

Juxtapositions of domains give contributions to the above matrix. These con-
tributions are grouped together to cancel. Most of the groupings involve pairs of
juxtapositions of a rectangle and a destabilization domain. In those pairings, the
order of the rectangle can be different (i.e. the two juxtapositions have the form
r ∗ p and p′ ∗ r′); or the same (i.e. the two juxtapositions have the form r ∗ p and
r′ ∗ p′; or p ∗ r and p′ ∗ r′). To show that the contributions of the pairs cancel, we
will prove the following: if the juxtapositions are of the form r ∗ p and r′ ∗ p′, then

(15.32) S(r) · S(p) = −S(r′) · S(p′);

if they are of the form p ∗ r and p′ ∗ r′, then

(15.33) S(p) · S(r) = −S(p′) · S(r′);
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and if they are of the form r ∗ p and p′ ∗ r′, then

S(r) · S(p) =

{
S(p′) · S(r′) if p and p′ are of type iL

−S(p′) · S(r′) if p and p′ are of type iR.

The above equation can be more succinctly reformulated as follows: if p has com-
plexity m, then

(15.34) S(r) · S(p) = (−1)m−1S(p′) · S(r′).

Equations (15.32), (15.33), and (15.34) will be proved using the following
method. Consider the two sequences of rectangles obtained by taking the rec-
tangle and the canonical decomposition of the destabilization domain, taken in the
specified order. (Recall that this canonical decomposition was used in the definition
of the sign associated to a destabilization domain, cf. Equation (15.30).) We will
exhibit a sequence of moves transforming one sequence into the other, where each
move is one of the following three types:

• Rectangle swaps. Replace some pair of consecutive rectangles in a sequence
by their alternative pair of rectangles, in the sense of Definition 15.1.1.

• Rectangle merges. Replace some sequence of three consecutive rectangles
ri, ri+1, ri+2 in a sequence by a single rectangle r′, in the case where
r′ = ri ∗ ri+1 ∗ ri+2. As in Lemma 15.4.8, there are two different kinds
of such moves, which can be horizontal type rectangle merges and vertical
type rectangle merges.

• Annulus moves. Between two rectangles in the sequence, insert a factor-
ization of a thin horizontal or vertical annulus (as a juxtaposition of two
rectangles).

The signs attached to the two sequences differ by the parity of the number of rec-
tangle swaps, horizontal type rectangle merges, and vertical annulus moves needed
in the sequence of moves. The equations are verified by keeping track of this parity.
To this end, we introduce some notational shorthand for the above moves. Write

si : r1 ∗ · · · ∗ rn → r′1 ∗ · · · ∗ r′n

if the sequence of rectangles (r′1, . . . , r
′
n) is obtained from the sequence (r1, . . . , rn)

by swapping the ith pair of rectangles. Similarly, write

mh
i : r1 ∗ · · · ∗ rn → r1 ∗ . . . ri−1 ∗ r′ ∗ ri+3 ∗ · · · ∗ rn

if r′ = ri ∗ ri+1 ∗ ri+2 is a horizontal type rectangle merge; or replace the symbol
with mv

i if it is a vertical type rectangle merge. Finally, write

ahi : r1 ∗ · · · ∗ rn → r1 ∗ · · · ∗ ri−1 ∗ q1 ∗ q2 ∗ ri ∗ · · · ∗ rn

if q1 ∗ q2 is a factorization of a thin horizontal annulus, whose initial state is the
initial state of ri; or replace the symbol with avi if it is a vertical one. When moves of
the above types are in succession, we write words representing operations separated
by asterisks, in the order they are performed from left to right.

We now verify the above signed cancellations, going through the various cases
covered in the proof of Lemma 13.3.13.

Domains of Type (A-0) cancel in pairs. Observe that in this case, one
of these domains is of the form r ∗ p and the other is of the form p′ ∗ r′, where r
and r′ have the same underlying two-chain, and p and p′ have the same underlying
two-chain. Suppose that p has complexity m and let p = r1 ∗ · · · ∗ rm−1 be its
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canonical decomposition. Consider the sequence of rectangles (r, r1, . . . , rm−1).
We can successively swap each pair of rectangles, starting with the first pair, and
moving along until each pair has been swapped exactly once. The resulting sequence
of rectangles is (r′1, . . . , r

′
m−1, r

′), obtained from the canonical decomposition of
p′ = r′1 ∗ · · · ∗ r′m−1; or, more succinctly

s1 ∗ · · · ∗ sm−1 : r ∗ p → p′ ∗ r′

Since there were m − 1 rectangle swaps, Equation (15.34) follows in this case.

Domains of Type (A-1) cancel in pairs. A juxtaposition of Type (A-1)
can be either of the form r ∗ p or p ∗ r, and two such pairings with either form can
be paired off with one another. When one of the pairings is of the form r ∗ p and
the other is of the form p′ ∗ r′, the verification of the cancellation proceeds exactly
as in the case of Type (A-0); i.e., we can write

s1 ∗ · · · ∗ sm−1 : r ∗ p → p′ ∗ r′;

see the top row of Figure 15.6.
When r ∗ p is paired with r′ ∗ p′, let p = r1 ∗ · · · ∗ rm−1 be the canonical

decomposition, and consider the first i with the property that r and ri share an
edge. Connect

s1 ∗ · · · ∗ si−1 ∗ si ∗ si−1 ∗ · · · ∗ s1 : r ∗ p → r′ ∗ p′;

see the bottom row of Figure 15.6 for an example. Note that there are 2i− 1 swaps
in the above sequence, verifying Equation (15.32). When p ∗ r is paired with p′ ∗ r′,
let p = r1 ∗ · · · ∗ rm−1 be the canonical decomposition. Consider the first i with the
property that r and ri share an edge. Equation (15.33) follows from the sequence

sm−1 ∗ · · · ∗ si+1 ∗ si ∗ si+1 · · · ∗ sm−1 : p ∗ r → p′ ∗ r′.

Juxtapositions of Type (A-2)m≥4 cancel with those of Type (D-0)m−2.
To verify that they cancel with sign, note that juxtapositions of Type (D-0) are al-
ways of the form p′∗r′, while there are two types of juxtapositions of Type (A-2)m+2:
p ∗ r and r ∗ p. We analyze the two subcases separately.
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Figure 15.6. Cancellation of terms of Type (A-1). In the
top row we have sequences connecting r ∗ p and p′ ∗ r′, both of
Type (A-1); in the bottom row we have a sequence connecting r∗p
with r′∗p′. The union of squares decorated with i give the support
of the rectangle ri.
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Figure 15.7. Cancellation of terms of Type (A-2). The first
of these is a special subcase of connecting r ∗p to p′ ∗r′; the second
two are generic subcases.

If the juxtaposition of Type (A-2) has the form r ∗ p, consider the canonical
decomposition p = r1∗· · ·∗rm−1. When both r1 and r2 meet r, the three rectangles
r, r1, and r2 form the vertical type decomposition of another rectangle. In this case,
we can connect

mv
1 ∗ s1 ∗ · · · ∗ sm−3 : r ∗ p → p′ ∗ r′;

see the first line of Figure 15.7. When r does not meet both r1 and r2, consider the
first ri in the above decomposition which meets r, and connect

s1 ∗ · · · ∗ si ∗mv
i+1 ∗ si+1 ∗ · · · ∗ sm−3 : r ∗ p → p′ ∗ r′;

see the second line of Figure 15.7. In this process, we have done a total of m − 3
swaps and a vertical type rectangle merge, verifying Equation (15.34).

If the juxtaposition of Type (A-2) has the form p∗r, let ri be the first rectangle
in the canonical decomposition of p that meets r along an edge. We now connect
the two sequences:

sm−1 ∗ · · · ∗ si+3 ∗ si ∗mh
i+1 ∗ si ∗ · · · ∗ sm−3 : p ∗ r → p′ ∗ r′;

see the third line of Figure 15.7. The total number of swap moves connecting these
sequences is 2m − 2i − 4, and there is another horizontal rectangle merge, hence
Equation (15.33) follows. This completes the verification that terms of Type (A-2)
with m ≥ 4 cancel terms of Type (D-0) with complexity m − 2.

Terms of Type (B-4)m=2 cancel terms of Type (I)m=1. This is straight-
forward: terms of Type (B-4)m=2 are obtained as (−1)M(x)−1 times the sum of
the contribution of the vertical annulus, which is −V1, with the sum of the hori-
zontal one, which is V2; while the contribution of Type (I)m=1 is (−1)M(x) times
(V1 − V2) · x. (Note that this was a grouping of three terms, rather than the usual
two.)

Terms of Type (B-0)m=1 cancel terms of Type (A-3)om=3. Let r ∗ p be
the term of Type (B-0)m=1 (so that p is the trivial domain). When the term of
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Figure 15.8. Cancellation of terms of Types δ=1(C-1)om≥2 with (D-1)om.

Type (A-3)om=3 is of the form r′ ∗ p′, connect

av1 : r ∗ p → r′ ∗ p′ or ah1 ∗ s2 : r ∗ p → r′ ∗ p′,

depending on whether r goes through X1 or X2; here the annulus goes through O1.
When the term of Type (A-3)om=3 is of the form p′ ∗ r′, connect

av1 ∗ s2 : r ∗ p → p′ ∗ r′ or ah2 ∗ s1 ∗ s2 : r ∗ p → p′ ∗ r′,

again depending on whether r goes through X1 or X2; the annulus is also as above.
These sequences verify the claimed cancellations.

Terms of Type (D-0)m=1 cancel terms of Type (B-3)m=3. Interpret the
decomposition of Type (B-3) as the vertical type decomposition of the rectangle
appearing in the Type (D-0)m=1 decomposition, and apply Lemma 15.4.8.

Terms of Type δ=1(C-1)om≥2 cancel terms of Type (D-1)om. The first is

of the form r ∗ p and the second is of the form p′ ∗ r′. When r and p meet along a
horizontal edge, connect

s1 ∗ · · · ∗ sm−2 ∗ ahm−1 ∗mh
m : r ∗ p → p′ ∗ r′,

where ahm−1 refers to a move involving the horizontal annulus through X1; see the
top line of Figure 15.8 for an illustration. During these moves, we make m− 1 sign
changes, verifying Equation (15.34).

When r and p meet along a vertical edge, connect

av1 ∗mv
2 ∗ s2 ∗ · · · ∗ sm−1 : r ∗ p → p′ ∗ r′,

where the annulus goes through X2; see the second line of Figure 15.8. Equa-
tion (15.34) follows once again.

Terms of Type δ>1(C-1)om≥2 cancel those of Type (A-3)om+2. The first

term is of the form r ∗ p, while the second can be either r′ ∗ p′ or p′ ∗ r′. When the
second term has the form r′ ∗p′, and r and p meet along a horizontal edge, connect
the sequences

s1 ∗ · · · ∗ sm−1 ∗ ahm+1 ∗ sm ∗ · · · ∗ s1 : r ∗ p → r′ ∗ p′,

where ahm+1 inserts the factorization of the horizontal annulus through X1; see the
first line of Figure 15.9. When the second term has the form r′ ∗ p′ and r and p
meet along a vertical edge, connect

av1 : r ∗ p → r′ ∗ p′;

see the second line of Figure 15.9. In both cases, Equation (15.32) follows.
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Figure 15.10. Cancellation of terms of Type δ>1(C-1)om≥2

and (A-3)om+2 of the form p′ ∗ r′.

When the second term has the form p′ ∗r′, and r and p meet along a horizontal
edge, connect

s1 ∗ · · · ∗ sm−1 ∗ ahm+1 ∗ sm ∗ sm+1 : r ∗ p → p′ ∗ r′,

where ahm+1 again involves the horizontal annulus through X1; as illustrated in the
first line of Figure 15.10. When the second term has the form p′ ∗ r′ and r and p
meet along a vertical edge, connect

av1 ∗ s2 ∗ · · · ∗ sm+1 : r ∗ p → p′ ∗ r′,

where av1 involves the vertical annulus through X2; see the second line of Fig-
ure 15.10.

Some terms of Type (I)m=2k+1 cancel terms of Type δ=1(C-1)em=2k

and those of Type (D-1)em=2k. Write the three terms as p, r′ ∗ p′, and p′′ ∗ r′′

respectively. Connect

s2k−1 ∗ · · · ∗ s1 : p → r′ ∗ p′,

as illustrated in Figure 15.11. This shows the cancellation of the contribution of
the part of the Type (I) involving V1 with the contribution of Type (C-1). Next,
connect

ah2k−1 ∗mv
2k : p → p′ ∗ r′,



15.4. INVARIANCE IN THE FILTERED THEORY 317

Type (I)
5

Type (I)
5

Type (I)
5

3 swaps

3 swaps

3 swaps

4 swaps

2 swaps

Type (C-1)
4
e

Type (D-1)
4
e

Type (A-3)
6
e

Type (A-3)
6
e

Type (C-1)
4
e

Type (C-1)
4
e

vertical merge

horizontal annulus

horizontal annulus

Figure 15.11. Cancellation of terms of Type (I)m=2k+1

with one of Type (C-1)em=2k and one of Type (D-1)em=2k

or (A-3)em=2k+2.

where ah2k−2 corresponds to the horizontal annulus through X2; see Figure 15.11.
There is no sign change in this path, giving the remaining cancellation. (See the
top row of Figure 15.11.)

The remaining terms of Type (I) cancel with terms of
Type δ>1(C-1)em=2k and those of Type (A-3)em=2k+2. Write the terms as
p, r′ ∗ p′, and p′′ ∗ r′′ or r′′ ∗ p′′ respectively. Connect

s2k−1 ∗ · · · ∗ s1 : p → r′ ∗ p′,

as illustrated in Figure 15.11. This readily verifies that the multiple of V1 in
Type (I) cancels with the corresponding contribution of Type δ>1(C-1)e. When
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the Type (A-3) juxtaposition is of the form r′′ ∗ p′′, connect

ah2k+1 ∗ s2k ∗ · · · ∗ s1 : p → r′′ ∗ p′′,

where now ah2k+1 corresponds to the horizontal annulus through X2; see the second
row of Figure 15.11. If the Type (A-3) juxtaposition is of the form p′′ ∗ r′′, connect

ah2k+1 ∗ s2k ∗ s2k+1 : p → p′′ ∗ r′′,

where again ah2k+1 corresponds to the horizontal annulus through X2; see the third
row of Figure 15.11. This argument concludes the proof of Lemma 15.4.9.

Proof of Lemma 15.4.4. Since the chain map DS induces the sign-refined desta-
bilization map DS (from Definition 15.3.6) on the associated graded level, and the
latter map is a quasi-isomorphism, it follows that for type X:SW stabilization the
filtered chain complexes GC−

S (G;Z) and GC−
S (G′;Z) are quasi-isomorphic.

Proof of Theorem 15.4.2. The proof follows the usual strategy. Lemma 15.1.9
implies the independence of the choice of Vi in defining the Z[U ]-module struc-
ture. The proof of Proposition 15.1.10 shows that the complex is independent of
the choice of signs assignments. Invariance under commutations and switches was
proved in Proposition 15.4.3. Invariance under X:SW stabilization is verified in
Lemma 15.3.5, and the invariance under other stabilizations are reduced to this
case by the invariance under commutations and switches. This verifies that grid
homology gives an oriented knot invariant.

Orientation dependence of the filtered chain complex is expressed as follows:

Proposition 15.4.10. Let GC−( �K)′ be the filtered chain complex over Z[U ],

where the action of U is induced by −Vi. Then GC−( �K)′ is quasi-isomorphic to

GC−(− �K).

Proof. As in Proposition 15.3.8, if G is a grid diagram representing �K, then its

reflection G′ represents − �K. If S is a sign assignment for G used to define GC−( �K),
then for Rect◦(x,y)

S′′(φ(r)) = (−1)O(r)+#(Int(r)∩x) · S(r)

defines a sign assignment for G′ where φ : G → G′ is the reflection map. (Note
that this differs from the one used in the proof of Proposition 15.3.8.) The map
x �→ φ(x) extends uniquely to a linear map Φ: GC−

S (G) → GC−
S′′(G′) satisfying

(15.35) Φ(Vi · ξ) = −Vi · Φ(ξ),

for all i = 1, . . . , n and ξ ∈ GC−
S (G). Clearly, Φ is an isomorphism of filtered chain

complexes over Z, so Equation (15.35) gives the needed isomorphism GC−
S (G) ∼=

GC−
S′′(G′)′ of filtered chain complexes over Z[U ].

Exercise 15.4.11. Show that for any knot K, H(ĜC(K;Z)) ∼= Z is supported
in (Maslov) grading 0; and H(GC−(K;Z)) ∼= Z[U ], whose generator has grading 0.
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15.5. Other grid homology constructions over Z

Many of the earlier constructions given in this book have integral lifts, some of
which can be done with fairly little effort.

For instance, for an oriented link �L we can form the collapsed grid complex

cGC−
S (�L;Z) =

GC−
S (�L;Z)

Vi1 = · · · = Vi�

.

The homology of this chain complex, the sign-refined, collapsed grid homology

cGH−(�L;Z), thought of as a bigraded module over Z[U ], is a link invariant. The
skein sequence from Chapter 9 has a straightforward integral lift:

Theorem 15.5.1. Let (�L+, �L−, �L0) be an oriented skein triple as in Figure 9.1.

If the two strands meeting at the distinguished crossing in �L+ belong to the same
component, then there is an exact triangle of Z[U ]-modules

cGH−(�L+;Z) cGH−(�L−;Z)

cGH−(�L0;Z)

f−

g−h−

If the strands at �L+ belong to different components, there is a triangle

cGH−(�L+;Z) cGH−(�L−;Z)

cGH−(�L0;Z) ⊗ J

f−

g−h−

where J is the free abelian group of rank four with one generator in bigrading
(0, 1) one in bigrading (−2,−1), and two generators in bigrading (−1, 0). In both
diagrams, f− and h− are bigraded homomorphisms of Z[U ]-modules, and g− is a
homomorphism of Z[U ]-modules that is homogeneous of degree (−1, 0).

Proof. We follow the proof of Theorem 9.1.1. In particular, the methods from
Chapter 9 (more specifically, Lemma 9.2.4, whose statement remains true over Z)
show that the following diagram of chain complexes

(15.36)

I′ N′

N I

∂N′

I′

∂N
I ◦ T

∂I
N

−T ◦ ∂I′

N′

with the understanding that the complexes and maps are the Z-lifts of the complexes
and maps from Chapter 9. The left column of Equation (15.36) is isomorphic to
cGC−(G+;Z), the right is isomorphic to cGC−(G−;Z), the top row is isomorphic
to cGC−(G′

0;Z) and the bottom is isomorphic to cGC−(G0;Z). Moreover, the
above 2 × 2 complex is isomorphic to the mapping cone of the chain map

(−1)M (∂N′

I′ ◦ T − T ◦ ∂I′

N′) : GC−(G′
0) → GC−(G0),
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where M denotes the Maslov grading of the output in GC−(G0).
The proof of Lemma 9.2.7 verifies the following sign-refined analogue of Equa-

tion (9.6):

(−1)MP ◦
(
∂N
I ◦ T − T ◦ ∂I′

N′

)
= hY ◦ hX2

+ hX2
◦ hY .

In the proof of Lemma 9.2.7, we gave a correspondence between juxtapositions
contributing to the left and those contributing to the right; see Figure 9.4. In
the present case, each rectangle and pentagon comes with a sign, and under the
correspondence, the signs work out. For instance, in the terms for the composite
map −(−1)MP ◦ T ◦ ∂I′

N′ , all the pentagons are left pentagons; see the second
column of the figure. The sign of a left pentagon is (−1)M+1 times the sign of
its straightening, and their straightenings give exactly the terms in hX2

◦ hY ; see
the first column of Figure 9.4. When verifying (−1)MP ◦ ∂I

N ◦ T = hY ◦ hX2
we

compare terms in the fourth and the third column of Figure 9.4. In the first row of
the figure, after straightening the pentagon, we get an alternative pair of rectangles,
which is compensated with the left pentagon, carrying an extra sign. In the other
three cases, the pentagon is on the right, and their contributions are evidently the
same.

Since Lemma 9.2.8 holds with Z coefficients, the theorem follows.

In another direction, the multi-graded grid homology group GH−(�L) of an 	-

component oriented link �L (defined in Chapter 11 over the ring F[U1, . . . , U�]) can
be lifted to the ring Z[U1, . . . , U�]. Suppose that the grid diagram G represents
�L, and fix a sign assignment S. The formula of Equation (15.1) gives a boundary
map in the case of links, as well. This differential is compatible with the Alexander
multi-grading defined in Definition 11.1.5. The proof of Lemma 15.1.9 now gives ho-
motopies between the actions of variables Vi and Vj provided that they correspond

to O-markings Oi and Oj on the same component of �L. Thus, the homology groups

of GC−
S (G;Z) = (GC−(G;Z), ∂−

X,S) naturally inherit the structure of a multi-graded

module over Z[U1, . . . , U�], where the Alexander multi-grading takes values in the
Alexander grading set of Definition 11.1.3. We denote the complex with this ex-
tra structure by GC−

S (G;Z). Adapting the arguments from Propositions 15.1.10,
15.3.1 and 15.3.5 to the multi-graded context gives the following:

Theorem 15.5.2. Suppose that the grid diagram G represents the oriented link
�L of 	 components. Let S be a chosen sign assignment on G. Then the homology
GH−(G;Z) of GC−

S (G;Z), thought of as a multi-graded Z[U1, . . . , U�]- module, is

an invariant of the oriented link �L.

In a similar manner, the multi-filtered grid complex of a link from Section 14.5
can be lifted to an H(L)-filtered, Z-graded chain complex GC−(G;Z) over
Z[U1, . . . , U�], by using the differential from Equation (15.28). Simple adapta-
tions of our previous arguments show that the filtered chain homotopy type of
this graded, H(L)-filtered chain complex over Z[U1, . . . , U�] is an invariant of the

oriented link �L.

Exercise 15.5.3. ∗ Use sign assignments to define a natural Z lift of the double-
point enhanced grid complex from Section 5.5, and prove its homology is a knot
invariant.
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15.6. On the τ -invariant

Let p be a prime number, and consider the ring Fp = Z/pZ. It follows quickly

from Theorem 15.1.11 that the homology of the chain complex GC−
S (G;Z) ⊗Z Fp

is a knot invariant. We denote this homology by GH−(K;Fp); in the case where
p = 2, this is exactly the grid homology from Chapter 4. An analogous construction
can be done with Q in place of Fp, giving the invariant GH−(K;Q).

Since Fp[U ] is a principal ideal domain, GH−(G;Fp) is a finite sum of cyclic
modules. The argument from Proposition 6.1.4 shows that if G represents a knot,
there is a single free summand in GH−(G;Fp), and its generator has bigrading
(−2t,−t) for some integer t. Define τ (K;Fp) to be this integer t. Note that τ (K;F2)
is τ (K) as defined in Definition 6.1.5. A similar construction can be given using
the rationals Q in place of Fp, giving τ (K;Q). By repeating the discussion from

Chapter 8, using GH−(K;Fp) or GH−(K;Q) in place of GH−(K) we get:

Theorem 15.6.1. For each prime p, τ (K;Fp) gives a bound on the slice genus
gs(K) of K: |τ (K;Fp)| ≤ gs(K). Similarly, |τ (K;Q)| ≤ gs(K).

One might wonder if this construction provides new genus bounds beyond the
one we have from τ (K). At the writing of this book, for all the computed examples,

the invariants ĜH (K;Z) and GH−(K;Z), thought of as bigraded abelian groups,

are free. For these knots K, ĜH (K;F) and GH−(K;F) immediately determine the

abelian groups ĜH (K;Z) and GH−(K;Z), and hence, by the universal coefficient
theorem, all the further specializations. Even for these knots, though, the F[U ]-
module structure on GH−(K;F) does not determine the Z[U ]-module structure on
GH−(K;Z) (or the Fp[U ]-module structure for other p).

We give an example that illustrates this algebraic subtlety. In this formal
setting, for a bigraded chain complex C over Z[U ], let τ (C;Fp) (resp. τ (C;Q)) be
minus one times the maximal Alexander grading of any homogeneous non-torsion
element in the homology group H(C ⊗Z Fp) (resp. H(C ⊗Z Q)), thought of as a
module over Fp[U ] (resp. Q[U ]).

Example 15.6.2. Consider the graded chain complex C over Z[U ] with three
generators, x1, x2, and x3, with A(xi) = i for i = 1, . . . , 3, and differential specified
by ∂x1 = 2U · x2 + U2 · x3, ∂x2 = 0, and ∂x3 = 0. A straightforward computation
shows that the homology H(C), thought of as a module over Z[U ], has two gener-
ators x2 and x3 satisfying the relation 2Ux2 + U2x3 = 0; in particular, it is free
as a Z-module. Similarly, the homology H(CU ) ∼= Z3 is a free Z-module. However,
τ (C;Q) = −3 = τ (C,Fp) for all p �= 2, and τ (C,F2) = −2.

At the moment, very little is known about τ (K;Fp) for p �= 2, see Prob-
lems 17.2.10 and 17.2.11. In particular, there is no known knot K with τ (K;Fp) �=
τ (K;Fq) for two primes p �= q.

15.7. Relations in the spin group

Our aim in this section is to verify Lemma 15.2.4. We will use an explicit model
for the group Spin(3), based on the quaternion algebra H.

Recall that the quaternion algebra H is the four-dimensional non-commutative
algebra over R with generators 1, i, j, and k, subject to the relations:

i2 = j2 = k2 = −1; i · j = −j · i = k; j · k = −k · j = i; k · i = −i · k = j.
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A typical quaternion q has the form q = a + bi + cj + dk, where a, b, c, d are real
numbers. The real part Re(q) of the quaternion q is the component a. When q has
Re(q) = 0, the quaternion q is called purely imaginary.

There is a conjugation action on the quaternions, defined by

a + bi + cj + dk = a − bi− cj− dk.

The norm of a quaternion is the real number |q| = q ·q. More generally, the standard
Euclidean metric on H ∼= R4 can be described as the map sending p, q ∈ H to
Re(p · q). Quaternions with |q| = 1 are called unit quaternions. The space of unit
quaternions is naturally identified with the three-sphere S3.

If q is a unit quaternion and h is a purely imaginary one, it is easy to check that
q ·h·q is purely imaginary as well, with the same norm as h. Using the identification
between purely imaginary quaternions and R3, the map (q, h) �→ q · h · q specifies
the double cover from the space of unit quaternions to SO(3).

Given a unit, purely imaginary quaternion q, let q⊥ be its orthogonal comple-
ment in R3. This two-plane inherits a natural orientation, and hence it determines

the spin rotation R̃q⊥ as in Definition 15.2.3.

Lemma 15.7.1. Let q be a unit, purely imaginary quaternion. Then,

(15.37) R̃q⊥ = q.

Moreover, if q1 and q2 are two unit quaternions, then

(15.38) R̃q⊥1
· R̃q⊥2

= R̃(q1·q2)⊥ .

Proof. Let q = i. Consider the path t �→ eti in the unit quaternions with
t ∈ [0, π

2 ]. This path projects to the path v �→ eti · v · e−ti in SO(3), which fixes

i and sends j to e2ti · j. Thus, the path in SO(3) rotates by an angle of 2t in the

j-k plane. It follows that the endpoint i of the path gives a model for R̃i⊥ . The
above computation remains valid when i and j are replaced by any two orthogonal
quaternions q and q′.

For the second statement, observe that the curve t �→ etq1 in the unit quater-
nions, parameterized by t ∈ [0, π

2 ], connects 1 to q1; and t �→ etq2 connects 1 to

q2; so the curve t �→ etq1etq2 , whose endpoint specifies R̃q⊥1
· R̃q⊥2

, connects 1 to
q1 · q2.

Proof of Lemma 15.2.4. To see Equation (15.8), observe that the oriented plane
P lies in some R3 ⊂ Rn. View R3 as the purely imaginary quaternions, and realize

R̃P as R̃q⊥ for some purely imaginary unit quaternion q. By Equation (15.37), R̃q⊥

corresponds to q, and by Equation (15.38), R̃2
P is represented by q2, which in turn

equals −1, since q is a unit, purely imaginary quaternion, verifying Equation (15.8).
To verify Equation (15.9), note that the vectors u1, u2, w span a three-

dimensional subspace in Rn. Thus, it suffices to show that Equation (15.9) holds
in Spin(3). After rotating, we can assume that u1 = i, u2 = j, and w = k. By

Equation (15.37), R̃〈u1,w〉 corresponds to −j and R̃〈u2,w〉 corresponds to i, so by
Equation (15.38), Equation (15.9) is equivalent to the relation i · j = −j · i.

For Equation (15.10), again we can consider the span of u1, u2, w, identified
with the purely imaginary quaternions. After rotating, we can assume that u1 = i,

u2 = i · e
2π
3 j, and w = j. Using Equation (15.37), R̃〈u1,w〉 corresponds to the



15.8. FURTHER REMARKS 323

quaternion k; R̃〈u2,w〉 corresponds to k · e
2π
3 j; and R̃〈−u1−u2,w〉 corresponds to

k · e− 2π
3 j. The relation k · k · e 2π

3 j · k = −k · e−2π
3 j in H gives

R̃〈u1,w〉 · R̃〈u2,w〉 · R̃〈u1,w〉 = z · R̃〈−u1−u2,w〉 = R̃〈u1+u2,w〉.

15.8. Further remarks

Theorem 15.1.5 was proved in [136], using a slightly different construction for
sign assignments. For that construction, consider a fundamental domain for the
grid, and first consider a rectangle r ∈ Rect(x,y) that has connected support in
the fundamental domain, with corners given by the coordinates (i, a), (i + 1, h) (as
part of the initial grid state x) and (i + 1, a), (i, h) (as part of the terminal grid
state y). In particular, r is of width one. Define the value of the function S on
r ∈ Rect(x,y) by the formula (−1)I(r), where I(r) is given by

(15.39) I(r) = I(x, {(x1, x2) ∈ x | x2 ≤ h}).
Using the defining properties of a sign assignment, this function extends uniquely
to a sign assignment for empty rectangles; compare also [166].

The interpretation of sign assignments in terms of S̃n is due to Gallais [66].
He also gives the following slightly different construction of the chain complex. Let

S̃(G) be the set of pairs x̃ = (x, σ̃) ∈ S(G)× S̃n with σx = p(σ̃). There is a natural

quotient q : S̃(G) → S(G) sending (x, σ̃) to x, which is a 2 : 1 map. The set S̃(G)
admits an action by Z/2Z, translating by z on the second factor. Also, Z/2Z acts
on the polynomial ring Z[V1, . . . , Vn], so that the non-trivial element multiplies by
−1. Thus, we can form the Z[V1, . . . , Vn]-module

Z[V1, . . . , Vn] ×Z/2Z S̃(G) =
Z[V1, . . . , Vn] × S̃(G)

Z/2Z
,

where the action by Z/2Z is diagonal on both factors. This module inherits an

action by S̃n. It can be equipped with an endomorphism

∂x̃ =
∑

ỹ∈S̃(G)

∑
r∈Rect◦(q(x̃),q(ỹ))

V
O1(r)
1 · · ·V On(r)

n · ỹ · τ̃ (r),

where τ̃ is the map from Equation (15.15). By Lemma 15.2.10, combined with the
considerations in the proof of Lemma 13.2.2, we get that ∂2 = 0. By the usual
arguments showing independence under grid moves, the homology, thought of as a
bigraded Z[U ]-module, can be shown to be an invariant.

In this set-up a section γ ∈ Secn induces an isomorphism of free Z[V1, . . . , Vn]-

modules Z[V1, . . . , Vn] ⊗ S(G) → Z[V1, . . . , Vn] ⊗Z/2Z S̃(G), that identifies this con-

struction with the chain complex GC−
S (K;Z) defined using the sign assignment S

compatible with γ.





CHAPTER 16

The holomorphic theory

Grid homology is a special case of a holomorphic construction of knot Floer
homology. The purpose of this chapter is to highlight some of the key features of
this more general construction. Before giving the definition in Section 16.2, we
start in Section 16.1 with a combinatorial representation of three-manifolds (and
knots) via Heegaard diagrams, closely related to grid diagrams. In Section 16.3, we
describe the generalization to links. Finally, in Section 16.4 we explain how the
holomorphic construction generalizes grid homology.

16.1. Heegaard diagrams

An oriented handlebody is an oriented three-manifold-with-boundary obtained
by attaching three-dimensional one-handles to a three-ball. It is a classical result in
three-manifold topology that any closed, connected, oriented three-manifold can be
decomposed along a separating surface Σ as a union of two handlebodies [195, 212];
see also [207]. Such a decomposition is called a Heegaard decomposition.

A Heegaard decomposition can be specified by a combinatorial object, called a
Heegaard diagram, which we describe presently. Let Σ be a closed, oriented surface
of genus g, and fix a g-tuple of homologically linearly independent, mutually disjoint
curves γ = {γ1, . . . , γg}; equivalently, assume that Σ\(∪g

i=1γi) is a connected, planar
surface. We call such a collection of curves a system of attaching circles. A system
of attaching circles specifies a handlebody with boundary Σ: the circles γi bound
mutually disjoint, embedded disks Di in the handlebody.

A Heegaard diagram is an oriented surface Σ, called the Heegaard surface,
equipped with two systems of attaching circles α = {α1, . . . , αg} and
β = {β1, . . . , βg}. We sometimes abbreviate the data by H = (Σ,α,β). The
associated three-manifold Y and its Heegaard splitting consists of the handlebodies
Uα and −Uβ , specified by the g-tuples α and β, glued to Σ.

Any closed, connected, oriented three-manifold can be specified by a Heegaard
diagram, and two Heegaard diagrams for the same three-manifold can be connected
by a sequence of standard moves [195, 207, 212].

Example 16.1.1. Consider the Heegaard diagram (Σ, {α}, {β}) where Σ is the
two-dimensional torus, and the simple closed curves α and β intersect (transversely)
in a single point. This Heegaard diagram specifies the three-sphere S3.

To specify a knot K in Y , fix two basepoints w and z in Σ, that are disjoint
from all the αi and the βj . These two points specify a knot as follows: connect w to
z by a smoothly embedded, unknotted arc inside Uα. Here the term “unknotted”
should be interpreted as follows: the complement of the attaching disks for the αi

in Uα is a three-ball, w and z specify two points on the boundary of that three-ball,
and our path is an unknotted arc in that three-ball. Next, connect z and w by an

325
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β

β

β β

Figure 16.1. The choice of the β-curve at a crossing of the
projection. The two possible choices of β reflect the two possible
crossings (under- or over-crossing).

analogous curve in Uβ . The union of these two unknotted arcs specifies a knot in
Y . In some sense (made precise in Example 16.3.2) the w marking is analogous
to the O-marked square in a grid diagram, and the z marking is analogous to the
X-marked square in a grid diagram.

A doubly-pointed Heegaard diagram for a knot K ⊂ Y is a Heegaard diagram
(Σ,α,β, w, z) with the property that (Σ,α,β) specifies Y , and the two basepoints
w and z together specify the knot K ⊂ Y .

Every pair (Y, K), where Y is a closed, connected, oriented three-manifold, and
K ⊂ Y is a knot can be represented by a doubly-pointed Heegaard diagram. There
is a set of standard moves that can be used to connect any two doubly-pointed
Heegaard diagrams for the fixed pair (Y, K); see [172].

Example 16.1.2. Let K ⊂ R3 ⊂ S3 be a given knot and fix a projection of K
to a generic plane P ⊂ R3. We can associate a Heegaard diagram for (S3, K) to
this projection as follows. Consider a small neighborhood of the projection in R3.
The closure of this neighborhood will be the β-handlebody Uβ ; its complement in
S3 is also a handlebody, denoted by Uα. The Heegaard surface Σ is the oriented
boundary of Uα. If the projection has n crossings, the genus g of Σ is n+1. Observe
that Σ intersects the plane containing the projection in g + 1 simple closed curves.
Choose g of these curves, and call them α1, . . . , αg. For each crossing choose a
curve βi supported in a neighborhood of this crossing as indicated in Figure 16.1.
Finally, take βg to be a meridian of the knot that meets only one of the αj . Pick
z, w on two sides of βg. It is straightforward to see that the resulting Heegaard
diagram represents the knot K in S3. See Figure 16.2 for a picture of this diagram,
in the case where K is the left-handed trefoil knot.

Example 16.1.3. Let Σ be the torus, and choose two embedded curves α and
β whose signed intersection number is 1. Place two basepoints w and z in their
complement. The resulting diagram (Σ, {α}, {β}, w, z) represents a knot in S3. The
knots that can be represented by such diagrams are called (1, 1) knots.
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α4

w
β4

β3 α2

α3

β1

α1

β2

z

Figure 16.2. Doubly-pointed Heegaard diagram for the
left-handed trefoil.

z

w w

z z

w

β

αα

β

α

β

Figure 16.3. Some (1, 1) diagrams. We have here pictures for
the figure-eight knot41, and the torus knots T2,5 and T3,4, respec-
tively.

See Figure 16.3 for some pictures. The class of (1, 1) knots includes for example
all 2-bridge knots and all torus knots. See [32] for the generalization of the notion
of (1, 1) knots; and see [24] for a parametrization of (1, 1) knots. For more on
doubly-pointed Heegaard diagrams, see [169, 172].

Exercise 16.1.4. (a) Show that any torus knot has a (1, 1) diagram.
(b) Draw a (1, 1) diagram for the (4, 5) torus knot.
(c) Show that all twist knots are (1, 1) knots.

16.2. From Heegaard diagrams to holomorphic curves

One can associate a chain complex to a Heegaard diagram, with the help of
Lagrangian Floer homology, a construction from symplectic geometry discovered by
Andreas Floer [50]; see also [62, 210]. We sketch this construction in the special
case relevant to us.

If Σ is a two-manifold, equipped with a complex structure (a Riemann sur-

face), one can consider its d-fold symmetric product Symd(Σ), which is the space
of unordered d-tuples of points on Σ counted with multiplicity. This symmetric
product can be thought of as the quotient of the d-fold Cartesian product Σ×d of
Σ, divided out by the action of the symmetric group Sd on d letters. Although
the action is not free, this quotient nonetheless inherits from Σ the structure of a
smooth, d-dimensional complex manifold (and hence a 2d-dimensional real mani-

fold). Locally, the complex structure on Symd(Σ) is supplied by the fundamental

theorem of algebra, which identifies Symd(C) with Cd (i.e. a monic polynomial of
degree d is uniquely determined either by its unordered d-tuple of roots or by its
ordered d-tuple of coefficients). See [128] for more on the symmetric product of a
Riemann surface.
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Starting from a genus g Heegaard diagram H = (Σ,α,β) for Y , consider the
g-fold symmetric product of Σ, equipped with the pair of submanifolds

Tα = α1 × · · · × αg and Tβ = β1 × · · · × βg,

which are two smoothly embedded, g-dimensional tori in Symg(Σ). We will always
assume that the α- and the β-curves intersect transversely in Σ, and hence that the
two tori intersect transversely in Symg(Σ). In particular, the intersection Tα ∩ Tβ

consists of finitely many points.
Let S(H) denote the set of intersection points Tα ∩ Tβ; equivalently,

Tα ∩ Tβ =
⋃

σ∈Sg

g∏
i=1

ασ(i) ∩ βi.

There is a chain complex whose generators are the intersection points of these two
tori and whose differential uses a complex structure J on Symg(Σ) (which in turn
is induced from the choice of a complex structure on Σ). The differential counts
holomorphic strips, in the following sense:

Definition 16.2.1. A holomorphic strip connecting x,y ∈ S(H) is a con-
tinuous map u : [0, 1] × R → Symg(Σ) satisfying the following conditions:

(HS-1) u maps {0} × R into Tβ,
(HS-2) u maps {1} × R into Tα,
(HS-3) The one-parameter family of paths ut = u|[0,1]×{t} converges uniformly to

the constant path at x resp. y as t → −∞ resp. +∞.
(HS-4) u is holomorphic; i.e. u satisfies the Cauchy-Riemann equations

∂u

∂s
+ Ju(s+it)

∂u

∂t
= 0.

Note that the strip [0, 1] × R is conformally equivalent to the unit disk. This
equivalence identifies holomorphic strips with holomorphic disks. We use the two
notions interchangeably.

A Whitney disk is a map that satisfies Properties (HS-1)-(HS-3) of the condi-
tions in Definition 16.2.1. Whitney disks can be collected into homotopy classes:
two Whitney disks from x to y are homotopic if there is a continuous, one param-
eter family of Whitney disks from x to y that connects the given two Whitney
disks. We let π(x,y) denote the space of homotopy classes of Whitney disks from
x to y. There is a natural juxtaposition map π(x1,x2) × π(x2,x3) → π(x1,x3);
the juxtaposition of φ1 and φ2 is written φ1 ∗ φ2.

The algebraic topology of Whitney disks can be concretely understood in terms
of the Heegaard diagram. To explain this, note that the α- and the β-curves divide
Σ into path-connected components, which we label D1, . . . ,Dm, i.e.

Σ \ (α ∪ β) = D1

∐
· · ·

∐
Dm.

Definition 16.2.2. A domain ψ from x to y is a formal linear combination of
the D1, . . . ,Dm, thought of as a two-chain ψ =

∑m
i=1 ai · Di with ai ∈ Z, satisfying

the property that the portion of ∂ψ inside α1 ∪ · · · ∪ αg, which we write as ∂αψ, is
a one-chain with

∂(∂αψ) = y − x =
∑
y∈y

y −
∑
x∈x

x.

Defining ∂βψ analogously, it follows that ∂(∂βψ) = x− y.
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Domains can be composed: if φ is a domain from x to y, and ψ is a domain
from y to z, then their sum is a domain from x to z.

A Whitney disk u induces a domain in the above sense, according to the follow-
ing construction. For any point p ∈ Σ\(α∪β), let np(u) be the algebraic intersection

number of u with the submanifold {p} × Symg−1(Σ) ⊂ Symg(Σ). For any Di, let
ni(u) denote nq(u) for any q ∈ Di. Observe that ni(u) is independent of the choice
of q ∈ Di; and it is called the local multiplicity of u at Di. We can put these local
multiplicities together to give a domain associated to u: u �→

∑
i ni(u) · Di. Ho-

motopic Whitney disks induce the same domain; and if D(φ) denotes the domain
associated to the homotopy class φ, then D(φ ∗ ψ) = D(φ) + D(ψ). In fact, when
g > 2, the map φ �→ D(φ) gives a one-to-one correspondence between homotopy
classes of Whitney disks and domains from x to y. A key property we will use is
the following positivity:

Lemma 16.2.3. ([174, Lemma 3.2]) The local multiplicities of a holomorphic
strip are all non-negative.

Holomorphic strips can be naturally collected into moduli spaces, indexed by
φ ∈ π(x,y). These moduli spaces are denoted by M(φ). Vertical translation of
the strip induces an action of R on M(φ). There is a function μ : π(x,y) → Z, the
Maslov index, that measures the expected dimension of the moduli space M(φ); see
for instance [51, 197]. The Maslov index satisfies the following two key properties:

(1) μ(φ1 ∗ φ2) = μ(φ1) + μ(φ2), and
(2) if M(φ) is a smooth manifold in a neighborhood of some u ∈ M(φ) (in a

suitable technical sense), then its dimension is computed by μ(φ).

With these preliminaries, we can sketch the construction of the knot Floer
complex. Fix a Heegaard diagram H = (Σ,α,β, w, z) for (Y, K). Although the
construction of knot Floer homology can be set up for any closed, oriented, con-
nected three-manifold Y , the case of non-trivial first homology H1(Y ;Z) requires
special attention. For simplicity of exposition, we assume that Y is an integral
homology sphere, meaning that H1(Y ;Z) = 0. In fact, the case of primary interest
in this book is when Y ∼= S3.

Let ĈFK(H) be the finite dimensional F-vector space generated by S(H). There

is a differential ∂̂K on ĈFK(H) with the property that the coefficient of y ∈ S(H)

in ∂̂Kx counts points (mod 2) in the zero-dimensional moduli spaces M(φ)/R (i.e.
only for those φ for with μ(φ) = 1) that satisfy the further constraints that nz(φ) =
nw(φ) = 0. Explicitly:

(16.1) ∂̂Kx =
∑

y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1,nw(φ)=nz(φ)=0}

#

(
M(φ)

R

)
y.

In the above formula, the point counts in the moduli spaces are to be taken only
mod 2, so that these homology groups are defined over F = Z/2Z. Lifting to a
chain complex over Z can be defined with more work, using orientation systems on
the moduli spaces [174], see also [62, 210].

In the above discussion, we have pretended that the moduli spaces of holomor-
phic strips M(φ) with μ(φ) = 1 are always 1-dimensional manifolds. This is not
true in general: to ensure the necessary transversality properties, we relax the no-
tion of holomorphicity. This is a standard practice in symplectic geometry [81] (and
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Lagrangian Floer homology [50, 55, 161]) where one fixes an open set of almost-
complex structures that are suitably compatible with a given symplectic structure,
and then considers perturbed-holomorphic curves satisfying the equation

∂u

∂s
+ J(s)u(s+it)

∂u

∂t
= 0,

where now {J(s)}s∈[0,1] is a generic path of such almost complex structures. Such
maps are called pseudo-holomorphic strips.

We wish to apply Gromov’s compactness theorem to show that the point counts
appearing in the right-hand-side of Equation (16.1) are finite. Gromov’s compact-
ness applies when there are energy bounds on the curves. When fixing a homotopy
class of pseudo-holomorphic strips with Lagrangian boundary condition, these en-
ergy bounds come for free [81]. In [174], the energy bounds came from a related
mechanism, after lifting to the cartesian product; another approach, choosing a
suitable symplectic form on the symmetric product, was found by T. Perutz [186].
Moreover, the condition that b1(Y ) = 0 provides a universal energy bound on all
homotopy classes with Maslov index one, ensuring that the sum appearing on the
right-hand-side in Equation (16.1) has finitely many terms.

It is a surprisingly subtle analytic fact (which is fundamental to Lagrangian

Floer homology) that the resulting map ∂̂K is, indeed, a differential; i.e. that

(∂̂K)2 = 0 holds. The proof is achieved by considering, for each pair of generators
x and z and for each non-negative domain φ ∈ π(x, z) with μ(φ) = 2, and nw(φ) =
nz(φ) = 0 the moduli space M(φ)/R. There is a structure theorem describing
the compactification of M(φ)/R; see [52, 55, 62, 174]. Specifically, it is proved
that there is a one-dimensional compact manifold-with-boundary whose interior is
M(φ)/R, and whose boundary is identified with⋃

y

⋃
{

φ1 ∈ π(x,y)
φ2 ∈ π(y, z)

∣∣ μ(φ1) = μ(φ2) = 1, φ1 ∗ φ2 = φ,
nz(φ1) = nz(φ2) = nw(φ1) = nw(φ2) = 0

}
(
M(φ1)

R

)
×
(
M(φ2)

R

)
.

The structure theorem consists of several steps: a transversality argument, show-
ing that M(φ)/R is a smooth manifold; a Gromov compactness argument, that
compactifies the moduli space; and a gluing argument that identifies its boundary

as
(

M(φ1)
R

)
×
(

M(φ2)
R

)
with φ1 ∗ φ2 = φ. Further restrictions can be placed on

φ1 and φ2 when M(φ1) and M(φ2) are non-empty: Additivity of the Maslov in-
dex under juxtaposition ensures that μ(φ1) + μ(φ2) = 2, and transversality again
ensures μ(φi) ≥ 1, forcing μ(φ1) = 1 = μ(φ2). Similarly, additivity of nw gives
nw(φ1) + nw(φ2) = 0, while Lemma 16.2.3 gives nw(φi) ≥ 0, so we can conclude
nw(φ1) = 0 = nw(φ2). Similarly, nz(φ1) = nz(φ2) = 0. Since a compact one-
manifold has an even number of boundary points, we can conclude that∑
y

∑
{

φ1 ∈ π(x,y)
φ2 ∈ π(y, z)

∣∣ μ(φ1) = μ(φ2) = 1, φ1 ∗ φ2 = φ,
nz(φ1) = nz(φ2) = nw(φ1) = nw(φ2) = 0

}#
(
M(φ1)

R

)
·#
(
M(φ2)

R

)
= 0.

Adding up the left-hand-side over all φ ∈ π(x, z) with μ(φ) = 2 computes the z

component of ∂̂2
K(x), so ∂̂K ◦ ∂̂K = 0.

It turns out that the homology of this chain complex is independent of the
analytic choices made in its construction. This is again familiar in Lagrangian
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Floer homology. More surprising is the fact that the homology groups turn out to
be independent of the choice of the Heegaard diagram going into their construction,
and the homology depends only on the underlying pair (Y, K).

The chain complex is bigraded, with bigrading determined by functions M and
A (the Maslov and Alexander gradings) on the generators satisfying the property
that for fixed x,y ∈ S(H) and φ ∈ π(x,y), the following relations hold:

M(x) − M(y) = μ(φ) − 2nw(φ)(16.2)

A(x) − A(y) = nz(φ) − nw(φ).(16.3)

These equations determine M and A up to overall translations. When Y ∼= S3, this
indeterminacy can be removed as follows.

We start with the indeterminacy in M . Observe that the differential in Equa-
tion (16.1) can be modified, to allow disks to cross z; i.e. we can consider

(16.4) ∂̂x =
∑

y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1,nw(φ)=0}

#

(
M(φ)

R

)
y.

(Compare the simply-blocked grid complex ĜC(G) from Definition 13.2.7.) This
complex no longer depends on the knot, as it refers to only one of the two basepoints.

In general, the homology of this complex is the Heegaard Floer homology ĤF of the
ambient closed three-manifold Y . In the case at hand, where Y ∼= S3, the homology
turns out to be one-dimensional. The complex retains its relative grading from M ;
and so, we can pin down the additive indeterminacy of M by requiring that the
one-dimensional homology is supported in Maslov grading 0.

Next, we study A. It turns out that the graded Euler characteristic

(16.5)
∑
d,s

(−1)d dimF ĈFKd(K, s)ts =
∑

x∈S(H)

(−1)M(x)tA(x)

agrees, up to an overall multiple of some power of t, with the (symmetrized) Alexan-
der polynomial of K ⊂ S3. The additive indeterminacy of A is eliminated by the
requirement that this Euler characteristic is symmetric in t; or, equivalently, by the
condition that, for each s ∈ Z,

#{x ∈ S(H)
∣∣A(x) = s} ≡ #{x ∈ S(H)

∣∣A(x) = −s} (mod 2).

With these grading conventions, we have the following:

Theorem 16.2.4. The homology of the chain complex (ĈFK(H), ∂̂K) is a bi-
graded F-vector space, which is an invariant of the knot K.

The bigraded homology group H(ĈFK(H), ∂̂K) considered in the above theo-

rem is called the knot Floer homology of K, and it is denoted ĤFK(K).
There are several variations on this theme, as should be clear by now from the

analogy with grid homology. For example, one could consider the chain complex
CFK−(H) over F[U ] freely generated by S(H), and equipped with the differential

(16.6) ∂−
Kx =

∑
y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1,nz(φ)=0}

#

(
M(φ)

R

)
Unw(φ)y.

Specializing U = 0 recaptures ĈFK(H). Taking homology, we obtain the knot
invariant HFK−(K), which is a module over F[U ].
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In a similar vein, consider the F[U ]-module CF−(H) generated freely by S(H)
and equip it with a differential ∂− counting even more disks, defined by

(16.7) ∂−x =
∑

y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1}

#

(
M(φ)

R

)
Unw(φ)y.

The homology of the resulting chain complex does not depend on the chosen knot
K (since its definition does not use the second basepoint z at all); it is the Heegaard
Floer homology HF− of S3, which in turn is isomorphic to F[U ]. (Compare the
filtered grid complex GC−(G) from Definition 13.2.1.) The Alexander grading A
defined above induces a Z-filtration on CF−(H). The filtered chain homotopy type
of the resulting filtered chain complex is a knot invariant; the knot Floer homology
group HFK−(K) is the homology of the associated graded object.

It is, in general, difficult to compute the knot Floer homology directly from
its definition. In some cases, computations can be done with a fortuitous choice of
Heegaard diagram. For instance, the Heegaard diagram from Example 16.1.2 can
be used to give an easy computation of the knot Floer homology for alternating
knots in terms of their Alexander polynomials and signatures, cf. Theorem 10.3.1;
see [169].

Exercise 16.2.5. (a) Find the generators for the chain complex associated to
the Heegaard diagram from Figure 16.2. Compute their Alexander gradings.

(b)∗ Show that for an alternating knot K, dim ĤFK(K) = det(K).

Torus knots form another class of knots for which knot Floer homology groups
can be computed easily. Let (p, q) be a pair of relatively prime, positive integers,
and let Tp,q denote the (p, q) torus knot. Recall that the (symmetrized) Alexander

polynomial ΔTp,q
(t) of Tp,q is given by t

pq−p−q+1
2 ΔTp,q

(t) = (tpq−1)(t−1)
(tp−1)(tq−1) .

Theorem 16.2.6. Let Tp,q ⊂ S3 be the positive (p, q) torus knot, and write

its (symmetrized) Alexander polynomial as ΔTp,q
(t) = (−1)k

∑k
i=−k(−1)itni for

some increasing sequence of integers {ni}ki=−k. Consider the associated sequence of

integers {δi}ki=−k inductively defined by

δi =

⎧⎨⎩ 0 if i = k,
δi+1 − 2(ni+1 − ni) + 1 if k − i is odd,
δi+1 − 1 if k − i > 0 is even.

Then, ĤFK(Tp,q) ∼=
⊕k

i=−k F(δi,ni).

While the proof of the above theorem from [177] uses the relationship between
knot Floer homology and Heegaard Floer homology, a more direct way to study
knot Floer homology for torus knots uses their (1, 1) diagrams, where the differential
on the chain complex is combinatorial, as we shall describe presently.

Holomorphic disk counting in a (1, 1) diagram for a knot can be done as follows
(cf. [172, Section 6.2]). Start from a (1, 1) diagram for a knot, and fix a homotopy
class of disks φ ∈ π(x, y) in the torus. In a sufficiently small neighborhood of
each corner point x and y, the curves α and β divide the neighborhood into four
quadrants. Suppose that at both corner points x and y the local multiplicity of φ
is zero at three of the four quadrants (and hence 1 at the remaining one). Suppose
moreover that the lift of φ to the universal cover R2 is an embedded disk. Then,
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Figure 16.4. Lifting disks. The homotopy class indicated on
the left (where the darker shaded region has multiplicity 2 and the
lighter one multiplicity 1) can be lifted to the universal cover to
give the embedded disk on the right.

μ(φ) = 1 and, by the Riemann mapping theorem, φ has a unique holomorphic
representative up to translation. See Figure 16.4.

Exercise 16.2.7. (a) Verify Theorem 16.2.6 for T3,4 using its (1, 1) diagram
given in Figure 16.3.
(b) More generally, verify Theorem 16.2.6 for T3,3n+1 using its (1, 1) diagram.
(c)∗Prove Theorem 16.2.6.

16.3. Multiple basepoints

To bridge the above construction with grid diagrams, and even to consider links
with more than one component, we must broaden the types of Heegaard diagrams
we use. In the notion of doubly-pointed Heegaard diagrams, we considered knots
that meet the Heegaard surface in exactly two points, so that the surface divides the
knot into two unknotted arcs in the handlebodies. This notion can be generalized
to allow for diagrams representing a knot that is divided into 2n unknotted arcs by
the Heegaard surface.

Definition 16.3.1. A 2n-pointed Heegaard diagram is a surface Σ of genus
g equipped with two (g + n − 1)-tuples of pairwise disjoint, embedded, closed
curves {α1, . . . , αg+n−1} and {β1, . . . , βg+n−1}, and two n-tuples of basepoints
w = w1, . . . , wn and z = z1, . . . , zn, satisfying the following conditions:

• α = {α1, . . . , αg+n−1} spans a g-dimensional subspace in H1(Σ); equiva-
lently, Σ\α decomposes as a disjoint union of n connected sets A1, . . . , An

and each Ai is a planar surface.
• The analogous property holds for β = {β1, . . . , βg+n−1}, so that Σ \ β

decomposes as a disjoint union of planar surfaces B1, . . . , Bn.
• Each component Ai contains exactly one of the basepoints in w, which

we label wi.
• Each component Bj contains exactly one of the basepoints in w.
• Each component Ai contains exactly one of the basepoints in z.
• Each component Bj contains exactly one of the basepoints in z.

A 2n-pointed Heegaard diagram gives rise to a three-manifold Y , together with

an oriented link �L in Y as follows. Start from [−1, 1] × Σ, and attach three-
dimensional 2-handles along copies of the α-curves in {−1} × Σ, and then attach
three-dimensional 2-handles along the copies of the β-curves in {1}×Σ. The result
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has 2n S2-boundaries, which we can close off with 2n three-dimensional 3-handles
to get the closed three-manifold Y . Connecting the basepoints that share compo-
nents Ai (or Bj) in the handlebody given by the α-curves (β-curves, resp.) with
unknotted, unlinked arcs, we get an embedded closed one-manifold L in Y . Next,
orient the link L so that the portions of the link in the α-handlebody point away
from the w-basepoints and into the z-basepoints. Depending on the combinatorics

of the curves and basepoints, the resulting oriented one-manifold �L can have as
many as n components. Indeed, any oriented link in any three-manifold can be
presented by some 2n-pointed Heegaard diagram.

Example 16.3.2. A basic example of a 2n-pointed Heegaard diagram is given
by a toroidal grid diagram. The grid torus provides the Heegaard surface, the
horizontal and vertical circles are the α- and β-curves, the O-markings correspond
to the basepoints w and the X-markings correspond to the basepoints z.

When working with multi-pointed Heegaard diagrams, we consider the chain
complex CFK−(H) freely generated by the elements of Tα ∩ Tβ over the ring
F[V1, . . . , Vn]. The variable Vi corresponds to the basepoint wi ∈ w.

In the differential we count disks in Symg+n−1(Σ), and consider
(16.8)

∂−
�L
x =

∑
y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1,nz1
(φ)=...=nzn (φ)=0}

#

(
M(φ)

R

)
·V nw1

(φ)
1 · · ·V nwn (φ)

n ·y.

In the case where the diagram represents a knot, the homology of this complex is
isomorphic to HFK−(K) of Theorem 16.4.1, where the action by U is defined to be
multiplication by any Vi.

The multi-pointed setting allows us to consider also links with more than one
components. To ensure finite sums in Equation (16.8), we need the diagram to
have the additional admissibility requirement: if P =

∑
aiAi + biBi is a non-zero

two-chain with nwi
(P ) = nzi(P ) = 0 for all i = 1, . . . , n, then there are points p

and q where the local multiplicity of P is positive and negative respectively. (A
Heegaard diagram derived from a grid automatically satisfies this property.)

With this constraint, Equation (16.8) specifies a differential. If an 	-component,

oriented link �L = (L1, . . . , L�) is represented by a 2n-pointed diagram, then the
chain complex is naturally an F[V1, . . . , Vn]-module, while the homology inherits the
structure of a module over the ring F[U1, . . . , U�], where Ui acts by multiplication

by some Vji corresponding to the ith component �Li of the link �L. The homology
of the resulting chain complex, thought of as a module over F[U1, . . . , U�], is an

invariant of the underlying oriented link �L ⊂ S3, and it is called the link Floer

homology HFL−(�L) of �L. We can further specialize the complex, setting Vj1 =

· · · = Vj� = 0, to get a simpler version of link Floer homology, ĤFL(�L). For a link
�L the Alexander grading naturally takes values in the Alexander grading set H(�L)
from Definition 11.1.3. For more on this construction, see [180].

Through an appropriate Euler characteristic, link Floer homology computes the

multi-variable Alexander polynomial. To state this result, for a given h ∈ H(�L),
we let Th denote the monomial in t1, . . . , t�, specified so that the exponent of ti is
the coefficient of μi in h.
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Theorem 16.3.3. ([180, Theorem 1.3]) Let �L be an oriented 	-component link

in S3 with 	 > 1, and consider the identification H1(S
3 − �L;Z) ∼= Z� as in Equa-

tion 2.1. Then,∑
h∈H

χ(ĤFL∗(�L, h)) ·Th = ±
�∏

i=1

(t
1
2

i − t
− 1

2

i ) · Δ�L(t1, . . . , t�),

where Δ�L denotes the (symmetrized) multi-variable Alexander polynomial of �L.

By considering the boundary map

∂−x =
∑

y∈S(H)

∑
{φ∈π(x,y)

∣∣μ(φ)=1}

#

(
M(φ)

R

)
· V nw1

(φ)
1 · · ·V nwn (φ)

n · y

we get a chain complex associated to the multi-pointed Heegaard diagram whose

homology is independent of the choice of the link �L. The multi-valued Alexander
function equips this chain complex with a multi-filtration. The multi-filtered chain
homotopy type of the resulting multi-filtered, Z-graded chain complex is a link

invariant. This invariant, denoted CFK−,∗(�L) in [180], corresponds to the filtered

link invariant GC−(�L) from Section 14.5. The link Floer homology group HFL−(�L)
is the homology of the associated graded object of the multi-filtered chain complex

CFK−,∗(�L).

16.4. Equivalence of knot Floer homology with grid homology

In the case where the 2n-pointed Heegaard diagram H for a knot K is a grid
diagram G (cf. Example 16.3.2), the differential on the knot Floer complex, which
appears to depend on analytic choices, turns out to agree with the differential on
the grid complex, according to the following:

Theorem 16.4.1 ([135]). If H is a Heegaard diagram induced from a grid di-
agram G, then the chain complex (CFK−(H), ∂−

K) is isomorphic to (GC−(G), ∂−
X ).

In a similar vein, the filtered complex (CFK−,∗(H), ∂−) is isomorphic to
(GC−(G), ∂−).

The key step in the proof of this result is the following explicit determination
of the corresponding moduli space.

Lemma 16.4.2. Fix a Heegaard diagram H derived from a grid diagram G as
in Example 16.3.2. If φ ∈ π(x,y) is a homotopy class whose associated domain is

an empty rectangle, then μ(φ) = 1 and #(M(φ)
R

) = 1.

Proof. The lemma is verified using the following interpretation of holomorphic
disks in the symmetric product. A holomorphic disk in Symd(Σ) can be viewed as
the following collection (F, P, f) of data: (1) a surface-with-boundary F , equipped
with a complex structure, (2) a degree-d holomorphic map P : F → D, where
D is the standard disk in C, and (3) a holomorphic map f : F → Σ. See [174,
Lemma 3.6]; see also [120] for a development of the entire theory from this per-
spective. In this correspondence, the domain D of the holomorphic disk can be
thought of as the two-chain induced by the map f from F to Σ.

Consider the case where R ⊂ Σ is an empty rectangle, and d = 2. By the
Riemann mapping theorem, the rectangle R is conformally equivalent to the (closed)
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upper half plane H (with its point at infinity), via an equivalence that carries its
four corners to the four real numbers y1 < x1 < y2 < x2 (in this order). Since
by our assumption R appears with multiplicity 1 in the domain associated to the
holomorphic strip, the map f is a conformal equivalence, so we can choose H to be
F .

Consider the map Q : H → H given by the formula

(16.9) Q(z) =
(z − x1)(z − x2)

(z − y1)(z − y2)
.

Post-composing Q with a conformal equivalence K : H → D, sending 0 ∈ H to −i
and ∞ ∈ H to i gives P = K ◦Q : F = H → D. The conformal equivalence from F
to R supplies the needed map f . The map Q above is the unique branched double
cover H → H that vanishes on x1 and x2 and sends y1 and y2 to infinity. The map
P is not unique, since K is characterized only up to an R action. This shows that
M(φ)

R
consists of one point.

More generally, when R ⊂ Σ is an empty rectangle, and d > 2, we take F to be
the disjoint union of d− 1 disks, one of which we think of as H, and the others are
d − 2 copies of D. On H we use the map as before; the other components D are
mapped by f to constant points in Σ, and they are mapped by P by the identity
map to D.

The lemma is verified after one shows that the single holomorphic disk ex-
hibited above is transversally cut out in its moduli space; see for example [174,
Proposition 3.9].

A domain is called positive if its local multiplicities are all non-negative, and at
least one of them is positive. We will deduce Theorem 16.4.1 from Lemma 16.4.2
and the following factorization result for positive domains:

Proposition 16.4.3. Let G be a grid diagram, fix x,y ∈ S(G), and let ψ ∈
π(x,y) be a positive domain. Then, there is a sequence of grid states {xi}ki=1 with

x1 = x and xk = y, and empty rectangles {ri}k−1
i=1 , with ri ∈ Rect◦(xi,xi+1), so

that ψ = r1 ∗ · · · ∗ rk−1.

Proof. We prove this statement by induction on the total multiplicity of ψ. Given
a positive domain ψ, we will give an algorithm for finding a (not necessarily empty)
rectangle r and another non-negative domain ψ′ with ψ = r ∗ ψ′ or ψ′ ∗ r. Since a
non-empty rectangle can be expressed as a juxtaposition of empty rectangles (see
Figure 15.1), the result will follow.

Choose a vertical annulus where some local multiplicity is non-zero. If the local
multiplicities of ψ are all positive, we can decompose the annulus as a juxtaposition
of two rectangles r1 ∗ r2 from x to x, and then write ψ = r1 ∗ r2 ∗ ψ′.

After applying the same logic to the rows instead of the columns, we can assume
that ψ has the property that each row and each column has some square where the
local multiplicity is zero.

For i = 1, . . . , n, consider ai = (∂ψ) ∩ αi. For a general domain, ai is an
immersed interval in αi. Since each row has a square where the local multiplicity of
ψ is zero, it follows that ai is either trivial or it is an embedded, oriented interval.
We call the pair of α-circles (αi, αj) an admissible pair if the following holds:
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A A A AA

B

B

aj aj aj aj

aiaiaiai

Figure 16.5. The four types of admissible pairs. When
(αi, αj) has minimal height; the intervals can overlap in one of
the four ways pictured. In all four cases, (by minimality) the re-
gion labelled A cannot meet any other ak. In the first two cases,
that region forms a rectangle that can be factored off (on the left
or the right, respectively). In the third and fourth cases, the region
B can meet other ak; but (by minimality) all the arcs that meet
B are oriented in the same direction as aj and ai, respectively.
Thus, ψ has positive local multiplicities in A ∪ B, and hence that
region, thought of as a rectangle, can be factored off, leaving a
non-negative domain.

• both ai and aj are intervals, ai is oriented from east to west and aj is
oriented from west to east, and the horizontal projections prh(ai) and
prh(aj) have non-trivial overlap.

If a given vertical annulus has local multiplicity zero somewhere and non-zero some-
where else, then there are two oppositely oriented intervals ai and aj that meet the
given vertical annulus. In particular, the set of admissible pairs is non-empty.

Let (αi, αj) be an admissible pair. Draw them in a fundamental domain so
that αi is above αj . Then the height of (αi, αj) is the height of αi minus the height
of αj . Let (αi, αj) be an admissible pair with minimal height, which exists by the
above considerations. Let ai be an arc from xi to yi and aj be an arc from xj to yj .
There are four cases, as illustrated in Figure 16.5; and in each case, we can factor
off a rectangle. Induction on the total multiplicity then concludes the proof.

Proof of Theorem 16.4.1. First observe that the grid states generating GC−(G)
correspond to intersection points between Tα and Tβ. The desired isomorphism

CFK−(H) ∼= GC−(G) of chain complexes identifies the boundary maps as follows.
By Lemma 16.2.3, the domain φ associated to a holomorphic strip has non-

negative local multiplicities everywhere. Domains with zero local multiplicities
everywhere correspond to constant maps, which have μ(φ) = 0, and so they are not
counted in the differential. Any other such domain φ can be factored as φ = φ1 ∗
· · · ∗ φm, where φi are all empty rectangles. Since μ is additive under composition,
and by Lemma 16.4.2 we have μ(φi) = 1, we conclude that m = μ(φ). Since the
holomorphic strips counted in the differential have Maslov index 1, we conclude
that only empty rectangles are counted in the differential. Lemma 16.4.2 ensures
that each such rectangle is counted in the differential, completing the identification
of the differential in CFK−(H) with the differential in GC−(G).

Since the Maslov and Alexander gradings transform the same in both theories,
when the homotopy class φ corresponds to an empty rectangle, it follows that the
identification of complexes respects relative bigradings. In fact, the identification
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respects absolute bigradings, since in both theories, the Alexander grading is nor-
malized to be symmetric, and the Maslov grading is normalized using the total
homology of the complexes.

The analogue of Theorem 16.4.1 holds for links, as well, with minor changes.

16.5. Further remarks

A key property of knot Floer homology is that it is related to the Heegaard
Floer homology groups of three-manifolds obtained as surgeries on knots. More
precisely, in [181, 184], the Heegaard Floer homology groups of surgeries on K are
described in terms of the filtration induced by the knot (denoted CFK−,∗ in the
context of Heegaard Floer homology, generalizing the filtered complex GC− from
Chapter 13). See also [172, 191].

This interplay can be used to study both questions within knot theory and
surgery problems. For example, Heegaard Floer homology can be used to study
unknotting numbers of knots [176]. It can also be used to give obstructions on
knots admitting lens space surgeries [80, 177, 192]; see also [114].



CHAPTER 17

Open problems

In this chapter we collect open problems that are naturally related to grid
diagrams and grid homologies. We have divided these problems into two sections:
in Section 17.1, we collected problems about grid diagrams and grid homology, and
in Section 17.2, we discuss problems in knot Floer homology. Some of the problems
in Section 17.1 have already been solved using the holomorphic theory; in that
case, we are asking for a proof within the framework of grid homology (i.e. without
appealing to the equivalence with the holomorphic theory).

17.1. Open problems in grid homology

Unknot detection. Knot Floer homology is known to detect the unknot.
(See Theorem 1.3.1.) From the equivalence between grid homology and knot Floer
homology, it follows that grid homology detects the unknot.

Problem 17.1.1. Use grid diagrams directly to show that grid homology de-

tects the unknot; that is, show that a knot K ⊂ S3 with ĜH (K) = F is the
unknot.

Seifert genus. In fact, knot Floer homology (and therefore grid homology)
detects the Seifert genus of a knot. (See Theorem 1.3.2.) Once again, the proof of
this result relies on the holomorphic version of the theory.

Problem 17.1.2. Without appealing to the equivalence with the holomorphic
theory, show that grid homology detects the Seifert genus of a knot; that is, for any
knot K ⊂ S3,

g(K) = max{s | ĜH ∗(K, s) �= 0}.

Note that Dynnikov [37] has an algorithm for detecting the unknot using grid
diagrams. This result prompts the following question:

Problem 17.1.3. Is there a direct algorithm for detecting knot genus using
grid diagrams, in the spirit of Dynnikov’s unknot detection algorithm?

An optimistic version of the above is the following question: if G is a grid
diagram for a knot K whose associated genus is minimal among all grid diagrams
G′ that differ from G by sequences of commutation moves, does it follow that
either (1) G can be destabilized after a sequence of commutation moves or (2) the
associated genus of G agrees with the Seifert genus of K?

Fiberedness. In a similar vein, Theorem 1.3.3 shows that knot Floer homology
detects whether or not a knot is fibered. The proof relies on the holomorphic
definition of knot Floer homology.

339
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Problem 17.1.4. Without appealing to the equivalence with the holomorphic
theory, show that grid homology detects fiberedness of a knot; that is, any knot K

of genus g(K) is fibered if and only if dim ĜH (K, g(K)) = 1.

A few easier, related problems along these lines are the following.

Problem 17.1.5. Suppose that K is a fibered knot with genus g(K). Is there
a grid diagram G with the property that there is a unique grid state in Alexander
grading s = g(K) and no grid states in any larger grading?

For torus knots, a grid diagram with the above property was given in
Lemma 4.8.4.

Problem 17.1.6. Show directly that if G is a grid diagram with a unique grid
state x in some grading s and no grid states in any larger grading, then K is fibered.

A theorem of Stallings [213] states that K is fibered if and only if the com-
mutator subgroup of π1(S

3 \ K) is finitely generated. Perhaps the presentation of
π1(S

3 \ K) described in Lemma 3.5.1 is useful in considering these questions.

Computations. For knots with sufficiently small grid number, grid homology
can be explicitly computed, especially with the help of a computer. Computations
of the grid homology groups of infinite families of knots is typically harder. Grid
homology groups of certain infinite families of knots were computed in Chapters 9
and 10.

An important infinite family one might wonder about is the case of torus knots.
According to Theorem 16.2.6, the knot Floer homology for a positive torus knot
can be computed directly from the Alexander polynomial of the knot. That formula
can be proved either by working with a suitable genus-1 Heegaard diagram, or by
appealing to more abstract principles [177].

Problem 17.1.7. Compute the grid homology of the torus knot Tp,q purely
within the framework of grid homology.

Naturality. We have shown that two grid diagrams representing isotopic knots
have isomorphic grid homology groups.

Problem 17.1.8. Does an isotopy between two knots induce a well-defined
isomorphism between the corresponding unblocked grid homology groups?

There are analogous questions for the simply blocked theory, which involves
choosing a particular point p on the knot (corresponding to the special Oi marking
in the diagram). In this case, one would expect pointed isotopies to induce maps
between the simply blocked invariants.

To put this into context, for i = 1, 2, let (S3, Ki, pi) be a knot equipped with
a basepoint pi ∈ Ki. In [98], it is shown that a diffeomorphism from S3 to itself
carrying K1 to K2 and p1 to p2 induces a well-defined isomorphism between the

corresponding knot Floer homology groups ĤFK. Sarkar [203] has defined and
computed the action of moving the basepoint around the knot.

Maps associated to knot cobordisms.

Problem 17.1.9. Does an oriented knot cobordism from K1 to K2 induce a
map between the corresponding grid homology groups?
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As noted earlier, it is natural to expect that the surfaces appearing above also
should have some additional structure.

Candidate maps associated to one-handles appear in Chapters 8 and 9; compare
also [95].

As a special case, a slice disk should induce an element of knot Floer homology.

Problem 17.1.10. Can knot Floer homology be used to distinguish pairwise
non-isotopic slice disks for a given knot?

In a different direction:

Problem 17.1.11. Does an unoriented knot cobordism from K1 to K2 induce
a map between the corresponding simply blocked grid homology groups?

Candidate maps associated to one-handles, in a sufficiently stabilized setting,
appear in the unoriented skein exact sequence from Chapter 10.

Spectrum-valued refinement.

Problem 17.1.12. Is there a space X�L that can be associated to an oriented

link �L, that is functorial under oriented saddle moves, and whose singular homology

coincides with ĜH (�L)?

Since the Maslov grading can take negative values, we need to have a variant
of spaces that have homology in negative dimension. Such a generalized version of
a space exists in algebraic topology: it is called a spectrum, see for example [227].

In [205], Sarkar constructed spaces that correspond to certain quotient com-

plexes of G̃C(G). Sarkar conjectures that these could be fit together in a natural
way to construct the spectrum asked for in Problem 17.1.12. More generally, one
might hope to find a spectrum X−

K with an S1-action, whose S1-equivariant coho-

mology is GH−(K). A further challenge would be to find a filtration on a spectrum,
generalizing the filtered quasi-isomorphism type from Chapter 13.

Note that for Seiberg-Witten theory, and Y a rational homology three-sphere,
Manolescu [130] constructed an S1-spectrum whose S1-equivariant cohomology is
monopole Floer homology. This construction uses analysis of the Seiberg-Witten
monopole equations; see also [129].

In a different direction, Lipshitz and Sarkar [122] constructed a spectrum as-
sociated to Khovanov homology.

17.2. Open problems in knot Floer homology

Knot Floer homology and the fundamental group. It would be very
interesting to find a concrete relationship between the fundamental group of the
complement of a knot and its knot Floer homology. One possible relationship
is provided by a conjecture of Kronheimer and Mrowka [111], stating that the
dimension of knot Floer homology (with coefficients in a field of characteristic zero)
is equal to the dimension of instanton knot Floer homology [53]. Note that Floer’s
instanton homology is related to certain SO(3) representations of the fundamental
group of the knot complement. For other connections between Heegaard Floer
homology and the fundamental group, see [15].

The Fox-Milnor condition. Many of the properties of knot Floer homology
are lifts or generalizations of various familiar properties of the Alexander polyno-
mial. Conspicuously missing from this list is the Fox-Milnor condition: if K is a slice
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knot, then there is a polynomial f in t with the property that ΔK(t) = f(t) ·f(t−1).
One might think that this generalizes to the statement that if K is a slice knot, then

ĈFK(K) ∼= C ⊗C∗ for some chain complex C, where C∗ denotes the dual complex
of C. This would, in turn, imply that the total rank of the knot Floer homology
of a slice knot is a perfect square. In fact, this is not the case. For example, the
Kinoshita-Terasaka knot of Figure 2.7 is slice, but its total homology, which can
be computed using grid diagrams, has rank 33 (see Equation (4.33)). This leaves
open a vague question:

Problem 17.2.1. What can be said about the structure of knot Floer homology
for smoothly slice knots?

One might also hope to derive clues about potentially differentiating slice and
ribbon knots (cf. Remark 2.6.3). This leads to the following (similarly vague)
problem:

Problem 17.2.2. What can be said about the structure of knot Floer homology
for ribbon knots?

In a slightly different direction, a knot K is called doubly slice if there is an
unknotted embedding of S2 in S4 whose intersection with an equatorial S3 is K.

Problem 17.2.3. What can be said about the structure of knot Floer homology
for a doubly slice knot?

Counting more holomorphic curves. Knot Floer homology is defined as a
version of Lagrangian Floer homology in the g-fold symmetric product. As such, it
counts holomorphic disks in this symplectic manifold.

Problem 17.2.4. Can moduli spaces of curves with genus g > 0 (and bound-
aries in Tα and Tβ) be used to construct stronger knot invariants than knot Floer
homology?

In [120], Lipshitz reformulates Heegaard Floer homology, so that the holomor-
phic curves counted in the differential correspond to embedded curves in [0, 1] ×
R × Σ. Lipshitz also formulates a version that counts curves with double-points,
and includes a power series variable that records the number of double-points.

For grid diagrams, Lipshitz rephrases this in concrete terms, as described in
Section 5.5. It remains an open problem to see if the double-point enhancement
gives more information:

Problem 17.2.5. For every knot K, is the double-point enhanced grid homol-
ogy isomorphic to GH−(K)[v] (in the notation of Definition 5.2.15)?

For more on this proposed homology theory, see [120, 121].

Mutations. First, recall the operation of (Conway) mutation: suppose that
K is a knot with a projection with a distinguished disk whose boundary circle
meets the projection in four points, that we think of as equally spaced around the
boundary circle. Let K ′ be the new knot obtained by cutting out the disk, rotating
it 180◦ in the plane, and then regluing it. It is known that the Alexander polynomial
is mutation invariant, that is, if K ′ is a mutant of K then ΔK′(t) = ΔK(t).

Knot Floer homology is not mutation invariant: the Conway and the Kinoshita-
Terasaka knots (shown in Figure 2.7) are mutants, but the knot Floer homologies of
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these two knots are different. (See Exercises 4.8.6 and 4.8.7.) More conceptually, the
genera of the knots are different, so by Theorem 1.3.2 their knot Floer homologies
cannot be isomorphic as bigraded groups. The total dimensions of the knot Floer
homologies, however, are the same. In fact, if we collapse the Maslov grading M and
Alexander grading A on knot Floer homology to a single grading δ = M − A, the
δ-graded grid homology groups of the Kinoshita-Terasaka and the Conway knots
are the same. More generally, Baldwin and Levine [6] conjecture an affirmative
answer to the following question:

Problem 17.2.6. Is the δ-graded knot Floer homology invariant under muta-
tion?

Related questions can be asked for Khovanov homology; see [14, 225]. An
analogous problem can be considered for genus 2 mutations; see [148].

Linking and link Floer homology. The linking number places restrictions

on link Floer homology. For example, if L is a link with two components, and �L is

any orientation on L, the δ-graded link Floer homology of �L, and the linking number

of the two components, determine the link Floer homology ĤFL(L) of L, endowed
with any of its four possible orientations. (See for example Proposition 10.2.1.)

There are higher order obstructions to linking, due to Milnor [141], which can
be reexpressed in terms of Massey products [138, 188].

For example, let �L = �L1 ∪ �L2 ∪ �L3 be an oriented link with three components,

and suppose that the linking numbers of any two components of �L vanishes. (An
example to keep in mind here is the Borromean rings.) Then, there are Seifert

surfaces Fi for �Li with Fi ∩ �Lj = ∅ for i �= j. The triple Milnor invariant is
obtained as a signed number of triple points in F1 ∩ F2 ∩ F3; see [26].

Problem 17.2.7. Do the Milnor invariants place algebraic restrictions on the
structure of link Floer homology?

Torsion in knot Floer homology. Consider knot Floer homology with
integer coefficients.

Problem 17.2.8. Is there a knot K with the property that the abelian group

ĤFK(K;Z) has torsion?

Concordance invariants. The invariant τ (K) can be computed once one
calculates GH−(G). It is natural to wonder if τ (K) is easier to compute than knot
Floer homology. For example:

Problem 17.2.9. Is there a direct way to compute the parity of τ (K) for a
knot?

Of course, such a computation would lead to a computation of τ , just as one
can compute the signature of a knot K from the Alexander polynomials of all the
knots in an unknotting sequence; see Remark 2.3.12.

Using integer coefficients, we defined τ (K,Q) and, for each prime p, an invariant
τ (K;Z/pZ) in Section 15.6.

Problem 17.2.10. Exhibit a knot K and two primes p and q, for which
τ (K;Z/pZ) �= τ (K;Z/qZ); or a knot K and a prime p for which τ (K;Z/pZ) �=
τ (K;Q).
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Note that Problem 17.2.8 is independent of Problem 17.2.10. (See Exam-
ple 15.6.2.)

As a point of comparison, Khovanov homology can also be used to construct
an invariant s(K) similar to τ (K). Just as τ has a collection of variations, indexed
by prime numbers p, there is also a corresponding collection of s invariants. The
fact that the Q-version and the Z/2Z-version of these s invariants can be different
has been verified by C. Seed, using his program Knotkit. (For the 14-crossing knot
K = 14n19265, s with coefficients in Z/2Z is different from s with coefficients in
Q.) For more questions along these lines for Khovanov homology, see Section 6
of [123].

We formulate an optimistic variant of Problem 17.2.10 in terms of the smooth
concordance group of knots, the group C of equivalence classes of knots, where
K1 ∼ K2 if K1#m(−K2) is a slice knot. (Addition in this group is defined by
taking connected sum.) It follows from a Künneth principle that τ (K,Z/pZ) is
additive under connected sums; since it vanishes for slice knots (Theorem 15.6.1),
it follows that for each prime p, the map K �→ τ (K;Z/pZ) induces a homomorphism
τZ/pZ : C → Z from the smooth concordance group to the integers. Similarly, K �→
τ (K;Q) induces a homomorphism τQ from the smooth concordance group to the
integers.

Problem 17.2.11. Is the infinite collection of homomorphisms τZ/pZ, indexed
by primes p, together with τQ linearly independent, as homomorphisms from the
smooth concordance group to the integers?

Knot Floer homology in fact can be used to construct infinitely many linearly
independent homomorphisms from the concordance group C to Z. The first such
construction is due to Hom [88]. We will describe a different method from [164]
which rests on a simple modification of the construction of τ .

As a preliminary step, take a rational number t ∈ [0, 2], and consider the
module GCt(G) over the algebra F[vt, v2−t] generated freely by grid states. Equip
the module GCt(G) with a grading induced by grt(v

tmx) = M(x) − tA(x) − tm.
For a rectangle r ∈ Rect(x,y), let X(r) denote the number of X-markings in r,
and let O(r) denote the number of O-markings in r. Consider the F[vt]-module
endomorphism specified by

(17.1) ∂tx =
∑

y∈S(G)

∑
{r∈Rect◦(x,y)}

#

(
M(φ)

R

)
vtX(r)+(2−t)O(r)y.

Obviously, multiplication by v drops grt by one; it is also fairly easy to see that
the endomorphism ∂t is a differential that drops the grading grt by 1.

Although the homology of GCt(G) is not a knot invariant (because of stabi-

lizations; i.e. like G̃H(G), there is an extra factor of a two-dimensional vector
space, taken to the (n − 1)st tensor power, where n is the grid number of the di-
agram G), we can define ΥK(t) to be the maximal grt of any grt-homogeneous,
non-torsion class in H(GCt(G)). According to [164], for each rational number
t ∈ [0, 2], that quantity is a knot invariant. The function ΥK(t) can be naturally
extended to a piecewise linear, continuous function on [0, 2]; and indeed, Υ gives a
homomorphism from the smooth concordance group of knots to the vector space of
real-valued, piecewise linear, continuous functions on [0, 2]. Thus, Υ gives plenty
of room to detect infinitely many linearly independent knots.
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Using sign assignments as in Chapter 15, the construction of Υ can be adapted
to coefficients in Z, and hence specialized once again to Z/pZ and Q. There are
natural analogues of Problem 17.2.10, and more optimistically, Problem 17.2.11 for
the resulting functions on [0, 2], where ΥK(t;Z/pZ) and ΥK(t;Q) play the roles of
the integers τ (K;Z/pZ) and τ (K;Q).

Transverse invariants. The transverse invariant of a link gives an invariant
in grid homology. As in Section 14.3, viewing grid homology as the associated
graded object for the filtered knot invariant, the transverse invariant inherits extra
structures.

Recall the language of Definition 14.4.1: the transverse invariant is said to be
a cycle to order n if there is a chain x ∈ GC−(G) with the following properties:

• if a = sl(T )+1
2 , then x ∈ FaGC−(G);

• the projection of x to GC−(G, sl(T )+1
2 ) is a cycle, and it represents θ(T ) ∈

GH−(G, sl(T )+1
2 );

• ∂x ∈ Fa−nGC−(G).

Problem 17.2.12. Given n ≥ 1, is there a transverse knot T whose invariant
θ(T ) can be represented by a cycle to order n but not n + 1?

An example with n = 1 is given in Proposition 14.4.6.
Given k, knot types with k distinct transverse representatives with the same

self-linking number are found in [48]. Different examples would be supplied by an
affirmation of the following:

Problem 17.2.13. Given any n > 2, is there an n-tuple of transverse knots
T1, . . . , Tn that are smoothly isotopic, and with the same self-linking number, so
that θ(Ti) can be represented by a cycle to order i but not i + 1?

Module realization in knot Floer homology.

Problem 17.2.14. Characterize the graded F[U ]-modules that arise as knot
Floer homology groups of knots.

Problem 17.2.15. Which graded F[U ]-modules arise as knot Floer homology
groups of more than one knot?

Note that the unknot is the only knot that has ĤFK of rank one [171]. A
theorem of Ghiggini [71] (see also Theorem 1.3.3) implies that the trefoil knots
and the figure-eight knot are uniquely characterized by their knot homologies. On
the other hand, infinitely many knots with the same knot Floer homology modules
were described in Section 9.5; see also [84].

The obvious generalization of these problems is the following:

Problem 17.2.16. Characterize the multi-graded F[U1, . . . , U�]-modules that
arise as link Floer homology groups of links.

A simpler question can be asked: what polytopes arise as grid homology poly-
topes? This is equivalent to the question of characterizing Thurston polytopes of
links in R3.

Axiomatic characterizations of Floer homology. Let W be the two-
dimensional bigraded vector space with one generator in bigrading (0, 0) and an-
other in bigrading (−1,−1), and J be the four-dimensional bigraded vector space
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with one generator in bigrading (0, 1), one in (−2,−1), and two generators in bi-
grading (−1, 0).

Definition 17.2.17. Let H(�L) be an oriented link invariant, which has the form
of a bigraded module over F[U ]. We say that H satisfies the oriented skein exact

sequence if for each oriented skein triple (�L+, �L−, �L0), there are exact triangles of
bigraded F[U ]-modules (with grading shifts indicated on the arrows):

H(�L+) H(�L−)

H(�L0)

(−1, 0)

if the two strands at the distinguished crossing of �L+ belong to the same component;
and

H(�L+) H(�L−)

H(�L0) ⊗ J

(−1, 0)

if the two strands at the distinguished crossing of �L+ belong to different compo-
nents.

Problem 17.2.18. Are there any bigraded link invariants H, other than col-
lapsed grid homology, that satisfy the following two properties:

• with Un denoting the n-component unlink, H(Un) ∼= F[U ] ⊗ W⊗n−1, and
• H satisfies the oriented skein sequence?

Analogous questions can be asked for the simply blocked grid homology, and
coefficients in Z in place of F.

Note that Khovanov and Khovanov-Rozansky have constructed other homol-
ogy theories for knots [103, 104, 105] that satisfy similar skein exact sequences;
compare also [131, 211]. There are various conjectures relating these invariants
to knot Floer homology. There is a conjectured spectral sequence from reduced

Khovanov homology to ĤFK, see [193]; and from reduced HOMFLY homology to

ĤFK, see [36].



APPENDIX A

Homological algebra

For the sake of completeness, in this appendix we recall some basic notions
and constructions of homological algebra. In fact, our discussion is slightly non-
standard: the gradings natural in grid homology are somewhat different from the
gradings that come up naturally in algebraic topology. We start with basics of chain
complexes and their homologies in Sections A.1. In Section A.2 we describe exact
triangles, and in Section A.3 we discuss mapping cones. In Section A.4 we describe
the structure of the homology groups over the ring F[U ]. In Section A.5 we describe
the relationship between a complex and its dual. In Section A.7 we discuss minimal
models of filtered chain complexes; this result gives economical chain complexes
which represent a fixed filtered quasi-isomorphism type. Finally, in Section A.8 we
discuss the relation between chain homotopies and quasi-isomorphisms.

This appendix is intentionally brief; for a more detailed discussion of the topics
the reader is advised to turn to [70, 83, 200].

A.1. Chain complexes and their homology

Let K denote either the finite field Z/pZ for some prime p ∈ N, or Q or the ring
Z. In the following, R will denote the polynomial ring K[V1, . . . , Vn] of n variables.
We include the n = 0 case with the understanding that in this case R = K. In
particular, R is a field if n = 0 and K is not Z; and R is a principal ideal domain
(PID) if either n = 0, or n = 1 and K is not Z.

Definition A.1.1. A chain complex is an R-module C, equipped with an
R-module homomorphism ∂ : C → C with the property that ∂ ◦ ∂ = 0. The map
∂ is called the boundary map or the differential for C. A cycle is an element
z ∈ C with ∂z = 0 and a boundary is an element b of the form b = ∂a for some
a ∈ C; i.e. the cycles are the elements in the kernel Ker∂, and the boundaries are
the elements in the image Im∂.

An R-submodule C ′ ⊂ C of a chain complex (C, ∂) is a subcomplex if
∂(C ′) ⊂ C ′. In this case, the pair (C ′, ∂|C′) is a chain complex. Similarly, if
(C ′, ∂|C′) is a subcomplex, the quotient module C/C ′ inherits a boundary operator
∂C/C′ , induced from ∂. The pair (C/C ′, ∂C/C′) is the quotient complex of C by C ′.

The condition ∂2 = 0 says Im∂ ⊂ Ker∂, so we can make the following definition:

Definition A.1.2. The homology H(C, ∂) of the chain complex (C, ∂) is the
quotient R-module Ker∂/Im∂.

In standard homological algebra, it is customary to consider Z-graded chain
complexes, where the differential ∂ drops grading by 1 and where the action of
the ring R preserves gradings. Such a complex admits a direct sum splitting C =⊕

d∈Z Cd, so that Cd is an R-submodule for all d. In this case, the homology H(C)

347
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inherits a grading, where Hd(C) is the cycles modulo the boundaries in Cd. In the
present volume, we consider a mild variation of this, where the action of the ring
R = K[V1, . . . , Vn] changes the grading on the chain complex. In fact, quite often
our complexes come naturally with two different gradings (see Theorem 4.6.3, for
example). We formalize this in the following:

Definition A.1.3. Throughout this book, a bigraded chain complex over
K[V1, . . . , Vn] is a chain complex (C, ∂) over K, equipped with endomorphisms
Vi : C → C for i = 1, . . . n, called the algebra actions , and a splitting C =⊕

(d,s)∈Z⊕Z Cd,s, satisfying the following compatibility conditions:

• for i = 1, . . . , n, ∂ ◦ Vi = Vi ◦ ∂;
• for all i, j ∈ {1, . . . , n}, Vi ◦ Vj = Vj ◦ Vi;
• ∂ maps Cd,s to Cd−1,s;
• Vi maps Cd,s to Cd−2,s−1.

The first grading is called the Maslov grading , and the second the Alexander
grading . The actions can be viewed as endowing C with the structure of a module
over K[V1, . . . , Vn]. The condition that ∂ commutes with Vi is equivalent to the
condition that ∂ is a K[V1, . . . , Vn]-module homomorphism.

Remark A.1.4. The above definition of bigraded complexes fits naturally into
a more general framework of bigraded complexes over a bigraded ring. For this
purpose, consider the polynomial ring K[V1, . . . , Vn] to be bigraded, so that Vi has
bigrading (−2,−1). Our bigraded complexes, then, are bigraded complexes over
this bigraded ring, equipped with a differential which has bigrading (−1, 0).

When n = 0, Definition A.1.3 specializes to a bigraded complex over K. Of
particular relevance to us is the case when n = 1, in which case we often denote the
single variable by U . According to Theorem 4.6.3, the grid complex is a bigraded
complex as above with K chosen to be F = Z/2Z. In Chapter 11 (see especially
Theorem 11.1.7), the Alexander grading set is also enlarged. In Chapter 13, the
Alexander grading is relaxed to an Alexander filtration. In Chapter 15, K is no
longer the field F, but the ring Z of integers.

For a bigraded chain complex, the homology H(C) inherits both the structure
of a K[V1, . . . , Vn]-module, and a bigrading compatible with that action. The por-
tion of H(C) in bigrading (d, s) is given by the quotient of the cycles in C by the
boundaries in bigrading (d, s), and multiplication by Vi on C induces a correspond-
ing action on H(C).

Let (C, ∂) and (C ′, ∂′) be two chain complexes over R. An R-module map
f : C → C ′ is a chain map if it commutes with the boundary operators, that is,
for every c ∈ C, f(∂c) = ∂′f(c). If C and C ′ are bigraded complexes over R as in
Definition A.1.3, then a bigraded chain map is a chain map f that maps Cd,s into
C ′

d,s ⊂ C ′. More generally, if C and C ′ are as above, f : C → C ′ is a chain map,

and there is a pair of integers (m, t) so that f maps Cd,s into C ′
d+m,s+t, then we

say that f is a homogeneous map with bidegree (m, t).
Suppose that C is a bigraded chain complex over R, and fix integers m, t. The

(m, t)-shift of C is the bigraded chain complex C�m, t� defined by C�m, t�d,s =
Cd+m,s+t. A chain map from C to C ′ that is homogeneous of degree (m, t) is the
same as a bigraded chain map from C to C ′�m, t�.

A chain map f : C → C ′ maps cycles to cycles and boundaries to boundaries,
and so it induces an R-module map H(f) : H(C, ∂) → H(C ′, ∂′) on the homology
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modules. When C and C ′ are bigraded complexes over R and f : C → C ′ is a
bigraded chain map, the induced map H(f) respects the induced bigrading on the
homology modules.

Given two bigraded chain maps f : (C, ∂) → (C ′, ∂′) and g : (C ′, ∂′) → (C ′′, ∂′′),
their composite g ◦f is another bigraded chain map, whose induced map on homol-
ogy satisfies

(A.1) H(g ◦ f) = H(g) ◦ H(f).

The identity map IdC is a chain map that induces the identity map on H(C, ∂).
Consequently, an isomorphism between two chain complexes obviously induces an
isomorphism between the corresponding homology modules. More generally:

Definition A.1.5. Let (C, ∂) and (C ′, ∂′) be two chain complexes. A chain
map f : C → C ′ is a quasi-isomorphism if it induces an isomorphism on homol-
ogy. Two chain complexes (C, ∂) and (C ′, ∂′) are said to be quasi-isomorphic
if there is a chain complex (C ′′, ∂′′) and two quasi-isomorphisms f : C ′′ → C and
g : C ′′ → C ′. In cases where (C, ∂) and (C ′, ∂′) are bigraded complexes over R, we
require our quasi-isomorphisms to be bigraded maps over R.

Special kinds of quasi-isomorphisms are supplied by the following:

Definition A.1.6. Suppose that f, g : (C, ∂) → (C ′, ∂′) are two chain maps
between two chain complexes over R. The maps f and g are said to be chain
homotopic if there is an R-module map h : C → C ′ satisfying

f − g = ∂′ ◦ h + h ◦ ∂.

A map f : (C, ∂) → (C ′, ∂′) is a chain homotopy equivalence if there is a map
g : (C ′, ∂′) → (C, ∂) so that f ◦g and g◦f are both chain homotopic to the respective
identity maps IdC′ and IdC .

Lemma A.1.7. Let (C, ∂) and (C ′, ∂′) be chain complexes. Then chain homo-
topic maps from C to C ′ induce the same map in homology. Consequently, a chain
homotopy equivalence is a quasi-isomorphism.

Proof. Suppose that z ∈ C is a cycle. By definition, H(f)([z]) = [f(z)], hence

H(f)([z]) = [g(z) + ∂′(h(z)) + h(∂(z))] = [g(z)] = H(g)([z]),

since ∂(z) = 0 and g(z) and g(z)+∂′(h(z)) are homologous. Thus, a chain homotopy
equivalence is a quasi-isomorphism in view of Equation (A.1).

Note that not every quasi-isomorphism is a chain homotopy equivalence; com-
pare Example 13.1.8, and see Proposition A.8.1. The definition of chain homotopy
equivalence extends to the bigraded setting as follows.

Definition A.1.8. Suppose that (C, ∂) and (C ′, ∂′) are two bigraded chain
complexes over R. Suppose that f, g : C → C ′ are two chain maps of degree (m, t).
We say that f and g are chain homotopic as homogeneous maps of degree
(m, t) if there is an R-module map h : C → C ′ that sends Cd,s to C ′

d+m+1,s+t with

(A.2) ∂′ ◦ h + h ◦ ∂ = f − g.



350 A. HOMOLOGICAL ALGEBRA

A.2. Exact sequences

A sequence {Ci}i∈Z of R-modules equipped with R-module maps f i : Ci →
Ci+1 is called an exact sequence of R-modules if Imf i = Kerf i+1. A special case
is when C is a short exact sequence, that is, Ci = 0 unless i = 1, 2, 3. In this case
the maps f1 : C1 → C2 and f2 : C2 → C3 satisfy that

• f1 is injective,
• f2 is surjective, and
• Imf1 = Kerf2.

An exact triangle is a 3-periodic exact sequence; i.e. in which there are three R-
modules C1, C2, and C3, and maps f1 : C1 → C2, f2 : C2 → C3 and f3 : C3 → C1,
with Ker(f i) = Im(f i−1), where Ci = Ci+3 and f i = f i+3.

An exact sequence of chain complexes (Ci, ∂i) over R is an exact sequence of
R-modules, where the maps f i : Ci → Ci+1 are also chain maps.

A short exact sequence of chain complexes induces a long exact sequence in
homology, according to the following standard result. (See also [83, Theorem 2.16].)

Lemma A.2.1. To each short exact sequence of chain complexes of R-modules

0 → (C, ∂)
f→ (C ′, ∂′)

g→ (C ′′, ∂′′) → 0,

there is an associated R-module homomorphism δ : H(C ′′, ∂′′) → H(C, ∂), called
the connecting homomorphism, such that

H(C, ∂) H(C ′, ∂′)

H(C ′′, ∂′′)

H(f)

H(g)δ

is an exact triangle. Moreover, if the three complexes are bigraded complexes
of R-modules, and f and g are homogeneous R-module homomorphisms of de-
gree (m1, t1) and (m2, t2) respectively, then δ is a homogeneous map with degree
(−m1 − m2 − 1,−t1 − t2).

Proof. Given a homology class x ∈ H(C ′′, ∂′′), define δ(x) as follows. Pick a
cycle c′′ ∈ C ′′ representing x, and find c ∈ C and c′ ∈ C ′ so that

(A.3) g(c′) = c′′ and f(c) = ∂′c′.

The element c′ can be found since g is surjective; the element c can be found since

g(∂′c′) = ∂′′(g(c′)) = ∂′′(c′′) = 0;

i.e. ∂c′ ∈ Ker(g) = Im(f). Moreover, the element c is a cycle since

f(∂c) = ∂′(f(c)) = ∂′(∂′c′) = 0,

and f is injective. We then define δ(x) to be the homology class represented by
c. We made three choices above: the cycle c′′ representing x, the choice of c′ with
g(c′) = c′′, and the choice of c with f(c) = ∂c′. It is straightforward to verify that
different choices result in homologous cycles c ∈ C; i.e. δ is a well defined map in
homology. Furthermore, the map δ is an R-module map. For example, for fixed
cycle c′′, if the elements c ∈ C and c′ ∈ C ′ solve Equations (A.3), then for the cycle
r · c′′, the elements r · c and r · c′ solve the corresponding version of Equation (A.3).
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In the bigraded case, if c′′ is supported in bigrading (d, s), then we can find c′ in
bigrading (d−m2, s− t2), and hence c in bigrading (d−m1 −m2 − 1, s− t1 − t2).

Next, we verify exactness of the triangle at H(C ′). The exactness of the short
exact sequence ensures that g ◦ f = 0, and hence H(g) ◦ H(f) = 0; i.e.

(A.4) ImH(f) ⊆ KerH(g).

We must check that this inclusion is an equality. An element in KerH(g) is rep-
resented by an element c′ ∈ C ′ with ∂′c′ = 0 and g(c′) = ∂′′c′′ for some c′′ ∈ C ′′.
Since g is surjective, there is some c′2 with g(c′2) = c′′. Thus,

c′ − ∂′c′2 ∈ Ker(g) = Im(f)

so we can find c ∈ C with f(c) = c′ − ∂′c′2. Since f is injective, it follows that
c is a cycle; and so [c′] = H(f)([c]). Since [c′] ∈ KerH(g) is arbitrary, we have
verified that KerH(g) ⊆ ImH(f) which, together with Equation (A.4), implies that
KerH(g) = ImH(f). Exactness at the other two terms can be verified by a similar
diagram chase.

A further elaboration on the proof of Lemma A.2.1 is the following:

Lemma A.2.2. The connecting homomorphism is natural, in the sense that for
a map of short exact sequences of chain complexes, i.e. for a commutative diagram

0 −−−−→ C
f−−−−→ C ′ g−−−−→ C ′′ −−−−→ 0

φ

⏐⏐ φ′
⏐⏐ φ′′

⏐⏐ 
0 −−−−→ B

f ′

−−−−→ B′ g′

−−−−→ B′′ −−−−→ 0

(where the rows are exact sequences and the squares commute), the following dia-
gram commutes

H(C ′′)
δ−−−−→ H(C)

H(φ′′)

⏐⏐ ⏐⏐ H(φ)

H(B′′)
δ′−−−−→ H(B)

where the maps δ and δ′ are the connecting homomorphisms for the two short exact
sequences.

Proof. The proof is a straightforward application of the definition of the connect-
ing homomorphism (Equation (A.3)).

The above naturality gives a useful method for establishing isomorphisms be-
tween modules (see for example Lemma A.3.9 below), when combined with the
following five lemma:

Lemma A.2.3 (Five lemma). Suppose that the diagram

C1 f1−−−−→ C2 f2−−−−→ C3 f3−−−−→ C4 f4−−−−→ C5

α1

⏐⏐ α2

⏐⏐ α3

⏐⏐ α4

⏐⏐ α5

⏐⏐ 
B1 g1−−−−→ B2 g2−−−−→ B3 g3−−−−→ B4 g4−−−−→ B5

is commutative, the two rows are exact and α1, α2, α4 and α5 are isomorphisms.
Then, the homomorphism α3 is an isomorphism.
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Proof. A standard diagram chase shows that (a) if α2 and α4 are surjective and
α5 is injective then α3 is surjective, and (b) if α2 and α4 are injective and α1 is
surjective then α3 is injective. The lemma then easily follows. For more details,
see [83, page 129].

A.3. Mapping cones

We recall now the mapping cone construction from homological algebra. For
more on this construction, see [226, Chapter 1.5].

Definition A.3.1. Let (C, ∂) and (C ′, ∂′) be two chain complexes over R and
let f : C → C ′ be a chain map. The mapping cone Cone(f : C → C ′) = Cone(f)
is the chain complex whose underlying module is C ⊕ C ′, and whose differential is

(A.5) D(c, c′) = (−∂(c), ∂(c′) + f(c)).

There are variants of this construction in the presence of gradings. For instance,
if the complexes C and C ′ are graded, so that f : C → C ′ preserves gradings, then
Cone(f) is graded, by

Cone(f)d = Cd−1 ⊕ C ′
d.

With this convention, the differential

Dd(c, c
′) = (−∂d−1c, ∂

′
d(c

′) + fd−1(c))

drops grading by one. More generally, if (C, ∂) and (C ′, ∂′) are two bigraded com-
plexes over R, and f : C → C ′ is a chain map that is homogeneous of bidegree (m, t),
then Cone(f) is a bigraded chain complex, with the differential of Equation (A.5)
and bigrading given by

Cone(f)d,s = Cd−m−1,s−t ⊕ C ′
d,s.

Lemma A.3.2. Let C and C ′ be bigraded chain complexes, and f : C → C ′ be
a bigraded chain map. Then there is a long exact sequence

. . . −→ Hd,s(C)
H(f)−→ Hd,s(C

′) −→ Hd,s(Cone(f)) −→ Hd−1,s(C) −→ . . .

If f is a homogeneous map of bidegree (m, t), then we have the long exact sequence
with the following degree shifts

... → Hd,s(C)
H(f)−→ Hd+m,s+t(C

′) −→ Hd+m,s+t(Cone(f)) −→ Hd−1,s(C) → ...

Proof. For any chain map f : C → C ′ there is a short exact sequence of chain
complexes

(A.6) 0 −→ C ′ i−→ Cone(f)
p−→ C −→ 0,

where the maps are defined by i(c′) = (0, c′) and p(c, c′) = (−1)dc, when c ∈ Cd,s. It
follows immediately from Equation (A.5) (and the choice of the sign in the definition
of p) that i and p are chain maps, and it is easy to verify that they fit into the
above short exact sequence. The grading shifts on the mapping cone are set up so
that i preserves bigrading and p shifts it by (−1, 0).

The long exact sequence appearing in the statement of the lemma follows from
the long exact sequence associated to the above short exact sequence, once we verify
that the connecting homomorphism in this associated long exact sequence is the
map induced by f on homology, times (−1)d.
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To this end, recall the definition of the connecting homomorphism δ from
Lemma A.2.1: given a cycle c1 ∈ Cd,s, find c2 ∈ Coned+1,s(f) and c3 ∈ C ′

d,s

with:

q(c2) = c1 and i(c3) = ∂c2.

It follows that c3 is a cycle; and in fact δ([c1]) is represented by this cycle. By
choosing c2 = ((−1)dc1, 0) and c3 = (−1)df(c1), the connecting homomorphism is
immediately seen to be equal to the map (−1)dH(f) induced by f on homology.
We stated the exact sequence in the lemma without the factor of (−1)d. This is
justified, since the kernel (and the image) of (−1)dH(f) coincides with the kernel
(and the image) of H(f), hence the exactness in the lemma follows.

If f is of bidegree (m, t), the same argument provides the long exact sequence
with the indicated degree shifts.

This lemma has the following immediate corollary:

Corollary A.3.3. A map f is a quasi-isomorphism if and only if Cone(f)
has trivial homology.

As an application, we have the following result, which we state after a definition.

Definition A.3.4. A bigraded chain complex C of R-modules is bounded
above if for all sufficiently large d, Cd,s = 0.

For example, if the bigraded chain complex C is finitely generated as an R-
module, then C is bounded above. If C is a bigraded chain complex that is bounded
above, then H(C) is bounded above, as well.

If C is a bigraded chain complex over R = K[V1, . . . , Vn] with n > 0, we can
construct the quotient complex C

V1·C , a bigraded chain complex over R, which we

abbreviate C
V1

.

Proposition A.3.5. Let C and C ′ be two bigraded chain complexes over R =
K[V1, . . . , Vn] with n ≥ 1, and suppose that C and C ′ are both free modules that are
bounded above. A bigraded chain map f : C → C ′ is a quasi-isomorphism if and

only if it induces a quasi-isomorphism f : C
V1

→ C′

V1
over R.

Before proving this result, we establish the following:

Lemma A.3.6. Let C be a free, bigraded chain complex over R = K[V1, . . . , Vn]
with n ≥ 1; and suppose that C is bounded above. Then H(C) �= 0 iff H( C

V1
) �= 0.

Proof. Since C is free, there is a short exact sequence

0 −−−−→ C
V1−−−−→ C −−−−→ C

V1
−−−−→ 0.

From the associated long exact sequence, it follows that H(C) = 0 implies that
H( C

V1
) = 0. In the other direction, we use the fact that H(C) is bounded above; so

if H(C) �= 0, there must be some homogeneous, non-zero element ξ with maximal
Maslov grading. This element cannot be in the image of V1, and hence it must
inject into H( C

V1
).
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Proof of Proposition A.3.5. Observe that

Cone(f : C → C ′)

V1

∼= Cone(f :
C

V1
→ C ′

V1
).

The map f is a quasi-isomorphism ⇐⇒ H(Cone(f)) = 0 (by Corollary A.3.3)

⇐⇒ H(Cone(f)
V1

) = 0 (by Lemma A.3.6) ⇐⇒ H(Conef : C
V1

→ C′

V1
) = 0 (by the

above isomorphism) ⇐⇒ f is a quasi-isomorphism (by Corollary A.3.3).

The long exact sequence of a mapping cone is natural in the following sense:

Lemma A.3.7. If two bigraded chain maps f, g : C → C ′ between bigraded com-
plexes of R-modules are chain homotopic, then their mapping cones are isomorphic.

Proof. If ∂′ ◦ h + h ◦ ∂ = f − g, define a map Φh : Cone(f) → Cone(g) by
Φh(x, x′) = (x, h(x) + x′), and define Φ−h : Cone(g) → Cone(f) analogously, by
Φ−h(y, y′) = (y,−h(y) + y′). It is straightforward to check that Φh and Φ−h are
chain maps, with Φ−h ◦ Φh = IdCone(f) and Φh ◦ Φ−h = IdCone(g).

More generally, maps between mapping cones can be induced as follows:

Lemma A.3.8. Let C, C ′, E, E′ be four bigraded chain complexes, and suppose
that there are chain maps fitting into the square

C
f−−−−→ C ′

φ

⏐⏐ ⏐⏐ φ′

E
g−−−−→ E′,

that commutes up to homotopy; i.e. the map φ′ ◦ f is chain homotopic to g ◦ φ.
Suppose moreover that φ and φ′ are bigraded maps, f and g are homogeneous of
bidegree (m, t), and the homotopies are compatible with these gradings. Then, there
is an induced bigraded chain map Φ: Cone(f) → Cone(g) that fits into the following
commutative diagram of short exact sequences

(A.7)

0 −−−−→ C ′ i−−−−→ Cone(f)
q−−−−→ C −−−−→ 0

φ′
⏐⏐ Φ

⏐⏐ ⏐⏐ φ

0 −−−−→ E′ j−−−−→ Cone(g)
p−−−−→ E −−−−→ 0.

If φ and φ′ are quasi-isomorphisms, then so is Φ.

Proof. By hypothesis, there is a map h : C → E′ with

(A.8) ∂E′ ◦ h + h ◦ ∂C = φ′ ◦ f − g ◦ φ.

We can now define a bigraded map Φ(c, c′) = (φ(c), h(c)+ ψ′(c′)). The verification
that this is a chain map easily follows from Equation (A.8). Commutativity of
Equation (A.7) is straightforward.
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Suppose that φ and φ′ are quasi-isomorphisms and that (m, t) = (0, 0). Con-
sider the diagram

... Hd,s(C) Hd,s(C
′) Hd,s(Cone(f)) Hd−1,s(C) ...δ

... Hd,s(E) Hd,s(E
′) Hd,s(Cone(g)) Hd−1,s(E) ...δ′

H(φ) H(φ′) H(Φ) H(φ)

whose rows are the long exact squences from Lemma A.2.1. The squares involving
δ commute by Lemma A.2.2; the other squares obviously commute; so H(Φ) is an
isomorphism by the five lemma (Lemma A.2.3). The case of general (m, t) follows
with minor notational changes.

The mapping cone of f : C → C ′ can be thought of as a type of quotient of C ′

by C, according to the following:

Lemma A.3.9. If f : C → C ′ is an injective chain map, then there is a quasi-

isomorphism φ : Cone(f) → C′

f(C) . This is compatible with gradings: when C and

C ′ are bigraded chain complexes over R and f is a bigraded chain map, then φ is
a quasi-isomorphism of bigraded chain complexes over R.

Proof. For notational convenience, we write out the case where C and C ′ are

Z-graded, and f is a Z-graded chain map. Consider C ′′ = C′

f(C) and form the short
exact sequence

(A.9) 0 −→ C
f−→ C ′ q−→ C ′′ −→ 0,

with q : C ′ → C ′′ = C′

f(C) being the projection. Define a chain map φ : Cone(f) →
C ′′ by the formula φ(c, c′) = q(c′). To verify that it is a quasi-isomorphism, we
fit together the long exact sequences associated to the short exact sequences in
Equations (A.6) and in (A.9), as in the following diagram:
(A.10)

Hd+1(C
′) Hd+1(Cone(f)) Hd(C) Hd(C

′)

Hd+1(C
′) Hd+1(C

′′) Hd(C) Hd(C
′)

H(i) H(p) (−1)dδ

H(q) (−1)d+1δ′ H(f)

Id H(φ) Id Id

(Note that we multiplied the coboundary map with a (−1)d to make the rightmost
square commute; this does not affect exactness.) Here, δ′ : Hd+1(C

′′) → Hd(C) is
the connecting homomorphism for the short exact sequence from Equation (A.9).
Once we verify that the squares appearing above commute, the verification that φ
induces an isomorphism in homology follows from the five lemma (Lemma A.2.3).
Commutativity of the left-most square is straightforward: indeed, even on the chain
level, it is true that φ ◦ i = p. Commutativity of the rightmost square was verified
in the proofs of Lemma A.3.2.
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Commutativity of the middle square follows once again from a careful look at
the definition of the connecting homomorphism. A cycle in Coned+1(f) is a pair
(c, c′) with ∂c = 0 and ∂c′ = −f(c). Now φ(c, c′) = q(c′) and δ′[q(c′)] is defined by
finding some cycle c1 representing [q(c′)], and next finding c2 ∈ Cd+1 and c3 ∈ Cd

so that
q(c2) = c1 and f(c3) = ∂c2.

Then, c3 represents [δ′q(c′)]. Let c1 = q(c′), c2 = c′, and c3 = −c. With these
choices it immediately follows that (−1)d+1δ′[q(c′)] = (−1)dc = p(c, c′), as needed.
The bigraded case follows similarly.

The next lemma establishes an exact triangle that contains the homologies of
the mapping cones of two maps and their composite. (We will use this result only
in the graded setting, so we formulate it in this generality.)

Lemma A.3.10. Suppose that C, C ′, and C ′′ are three Z-graded chain com-
plexes, and f : C ′ → C ′′ and g : C → C ′ are chain maps that are homogeneous of
degrees a and b respectively. Then, there is a chain map Φ: Cone(f) → Cone(g)
which is homogeneous of degree −a − 1 and whose induced map on homology fits
into an exact triangle

(A.11)

H(Cone(f)) H(Cone(g))

H(Cone(f ◦ g))

−a − 1

a

where the integers indicate shifts on degree.

Proof. Define Φ: Cone(f)d → Cone(g)d−a−1 by Φ(c′, c′′) = (−1)d(0, c′) ∈
Cone(g)d−a−1.

Obviously, Φ is a chain map which is homogeneous of degree −a−1. According
to Lemma A.3.2, we have now an exact triangle:

(A.12)

H(Cone(f)) H(Cone(g))

H(Cone(Φ))

−a − 1

a

We will denote elements of Cone(Φ) by quadruples ((c′1, c
′′), (c, c′2)), where

(c′1, c
′′) ∈ Cone(f) and (c, c′2) ∈ Cone(g). Thus, the differential is given by

D((c′1, c
′′), (c, c′2)) = ((∂′c′1,−f(c′1) − ∂′′(c′′)), (−∂c, (−1)dc′1 + g(c) + ∂′c′2)).

Consider the map α : Cone(f ◦ g) → Cone(Φ) defined by the formula

α(c, c′′) = (((−1)d−a+1g(c), (−1)d−ac′′), (c, 0)),

when c′′ is homogeneous of degree d; and the map β : Cone(Φ) → Cone(f ◦ g)
defined by

β((c′1, c
′′), (c, c′2)) = (c, (−1)dc′′ − f(c′2))

when c′2 is homogeneous of degree d. Define h : Cone(Φ) → Cone(Φ) by

h((c′1, c
′′), (c, c′2)) = ((−1)d+1c′2, 0), (0, 0)),
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when c′2 is homogeneous of degree d. The map α is homogeneous of degree −a, β is
homogeneous of degree a, and h is homogeneous of degree a+1. It is straightforward
to verify the identities:

0 = IdCone(f◦g)−β ◦ α,

D ◦ h + h ◦ D = IdCone(Φ) −α ◦ β.

Thus, we have a homotopy equivalence

Cone(Φ)�a� � Cone(f ◦ g).

The exact triangle of Diagram (A.11) is obtained from Diagram (A.12) by
applying the above substitution on homology and the appropriate grading shifts.

We can use mapping cones to show that the notion of “quasi-isomorphic chain
complexes” (in the sense of Definition A.1.5) is an equivalence relation.

Proposition A.3.11. If A and B are quasi-isomorphic chain complexes and B
and C are quasi-isomorphic chain complexes, then A and C are quasi-isomorphic.

Proof. By hypothesis, there are chain complexes A′ and B′, and quasi-
isomorphisms f : A′ → A, f ′ : A′ → B, g : B′ → B, and g′ : B′ → C. Consider
the map F : A′ ⊕ B′ → B defined by F (a′, b′) = f ′(a′) − g(b′). It remains to
check that the map h : Cone(F ) → A�−1� defined by h((a′, b′), b) = (−1)d · f(a′),
where d denotes the degree of a′ and b′, is a quasi-isomorphism; as is the map
h′ : Cone(F ) → C�−1� defined by h((a′, b′), b) = (−1)d · g′(b′). To see this, consider
the mapping cone of h. There is a natural short exact sequence of chain complexes

0 −−−−→ Cone(g) → Cone(h) → Cone(f) −−−−→ 0,

where, by Corollary A.3.3 we have H(Cone(g)) = H(Cone(f)) = 0. By Lemma A.3.2
this implies H(Cone(h)) = 0 so, again by Corollary A.3.3, h is a quasi-isomorphism.
The other map h′ is a quasi-isomorphism by a similar argument.

A.4. On the structure of homology

Proposition A.4.1. If C is a finitely generated chain complex over the ring
R = K[V1, . . . , Vn], then its homology H(C) is also a finitely generated R-module.

Proof. It is a basic result in commutative algebra (Hilbert’s Basis theorem; see for
example [3, Theorem 7.5]) that R = K[V1, . . . , Vn] is a Noetherian ring. This means
that every ideal is finitely generated. It follows that every submodule of a finitely
generated module is also finitely generated (see for instance [3, Theorem 6.4]). In
particular, the submodule of cycles in C is finitely generated. Since the quotient of
a finitely generated module is finitely generated, H(C) is finitely generated, too.

Proposition A.4.1 applies to show that grid homology with coefficients in R =
K[V1, . . . , Vn] is finitely generated. For the rest of the present section it is crucial
to work with the special case where K is a field (either Z/pZ or Q), and where
R = K[U ] is a polynomial algebra over the field K in a single variable.

We now state a structure theorem for bigraded modules which is relevant to the
structure of grid homology. This result is a variant of the classification theorem for
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modules over a principal ideal domain, paying special attention to gradings. The
statement will use the following notational shorthand. Let K[U ]/Un

(d,s) denote the

bigraded cyclic K[U ]-module whose generator g has bigrading (d, s). (Note that
the non-zero, homogeneous elements of this module have bigradings (d − 2i, s − i)
for i = 0, . . . , n − 1.) Furthermore, let K[U ](d,s) denote the bigraded free module
of rank one, whose generator has Maslov grading d and Alexander grading s. The
proof will use the following notion:

Definition A.4.2. Let X be a bigraded K[U ]-module. An element ξ ∈ X
is called U-torsion , or simply torsion , if for all sufficiently large integers n,
Un · ξ = 0. Let Tors(X) ⊂ X denote the subset of torsion elements.

Proposition A.4.3. Suppose that K is a field, and X is a finitely generated,
bigraded K[U ]-module in the sense of Definition A.1.3. Then, there are collections
of triples of integers {(di, si, ni)}ki=1 and pairs of integers {(δj , σj)}Nj=1 so that

(A.13) X ∼=
(

k⊕
i=1

K[U ]/Uni

(di,si)

)
⊕

⎛⎝ N⊕
j=1

K[U ](δj ,σj)

⎞⎠ .

Proof. Observe first that X/UX is a finite dimensional vector space over K, since
X is finitely generated. We prove Equation (A.13) by induction on the dimension
of the vector space X/UX.

If the module X is non-zero, then any homogeneous element x ∈ X with
maximal Alexander grading induces a non-zero element of X/UX. It follows that
if X/UX = 0, then X = 0.

If X is non-zero, choose some homogeneous element x in X with maximal
Alexander grading a. Consider the cyclic module K[U ] · x generated by x. This
submodule is either isomorphic to K[U ], or it is identified with K[U ]/p(U), where
p(U) is the polynomial of minimal degree for which p(U) · x = 0. In the latter
case, we claim that p(U) = U i for some i: for otherwise we could write p(U) =
U i+U i+1q(U) with q �= 0. Since U ix has Alexander grading a−i while U i+1q(U) is
a sum of terms of Alexander grading < a−i, it follows that U i ·x = 0, contradicting
minimality of the degree of p(U).

Next, let X ′ = X/(K[U ] · x). The natural projection from X/U to X ′/UX ′ is
surjective, and its kernel is generated by x; so dim(X ′/UX ′) = dim(X/U)− 1, and
hence by induction Equation (A.13) applies to X ′. The generators of the cyclic
summands in X ′ can be lifted to homogeneous elements {yi}mi=1 of X. Depending
on whether or not a generator in X ′ is torsion, for the lifts yi we have either
Uniyi ∈ K[U ] · x (for some positive integer ni) or (K[U ] · yi) ∩ (K[U ] · x) = {0}. In
the first case, either Uniyi = 0 or Uniyi = Ukix. Let I be the set of those indices
i ∈ {1, . . . , m} for which Uniyi = Ukix �= 0. Observe that for all i ∈ I, ki ≥ ni,
following from the maximality of the Alexander grading of x. Next define elements
{xi}m+1

i=1 in X by:

xi =

⎧⎨⎩
yi if i ≤ m and i �∈ I
yi − Uki−nix if i ∈ I
x if i = m + 1.

It is straightforward to verify that these elements generate X, and each generates
a distinct cyclic summand of the stated form.
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The isomorphism from Equation (A.13) is not canonical. A more canonical
formulation can be given, in terms of the torsion modules from Definition A.4.2, as
follows. Note that the set Tors(X) ⊂ X is a K[U ]-submodule, and forms the first
direct summand in Equation (A.13).

Corollary A.4.4. Let X be a finitely generated bigraded module over K[U ],
and Tors(X) ⊂ X its torsion submodule. Then, the quotient X/Tors(X) is isomor-
phic to K[U ]N for some N .

Definition A.4.5. The number of free summands in a finitely generated mod-
ule X (i.e. the quantity N appearing in Equation (A.13) and in Corollary A.4.4),
is called the rank of the module.

A.5. Dual complexes

Let X be a module over R = K[V1, . . . Vn]. We can consider the dual mod-
ule HomR(X,R) of R-module morphisms. This notion can be extended to chain
complexes as follows. Let (C, ∂) be a chain complex over the ring R, then its dual
module HomR(C,R) inherits a boundary map ∂̌ : HomR(C,R) → HomR(C,R),
defined as follows. Given φ : C → R, the homomorphism ∂̌(φ) is the homomorphism
whose value on c ∈ C is the value of φ on ∂c; i.e. ∂̌(φ)(c) = φ(∂c). The relation
∂2 = 0 dualizes readily to give ∂̌2 = 0. The chain complex (HomR(C,R), ∂̌) is
called the dual complex of (C, ∂).

Example A.5.1. If (C, ∂) is a finitely generated, free R-module, given with a
basis {xi}Ni=1, then the differential ∂ is specified by the matrix A = (ai,j) so that

∂xi =
N∑

i,j=1

ai,jxj .

In this case, the dual complex is generated by {x∗
i }Ni=1, with x∗

i (xj) = δij ; and the

differential ∂̌ is specified by the transpose of A:

∂̌x∗
i =

N∑
i,j=1

aj,ix
∗
j .

Suppose now that (C, ∂) is a bigraded chain complex. The dual complex
HomR(C,R) inherits a bigrading from the complex C. We explain this in the
case where R = K[U ], which we think of now as a bigraded R-module, where the
element Um has bigrading (−2m,−m). This induces a bigrading on the dual mod-
ule: an element φ ∈ HomR(C,R) has bigrading (m, t) if φ maps Cd,s to Rd+m,s+t.
With this convention, the dual of a bigraded chain complex C over K[U ] is also
a bigraded chain complex over K[U ], and the induced differential on HomR(C,R)
drops grading by one, just as the differential for C did.

Note that the dual complex is equivalent to the usual notion of cohomology,
with the understanding that the grading conventions differ by an overall multipli-
cation by −1. We choose our grading conventions exactly so that the dual of a
bigraded complex is also bigraded in the same sense.

The Universal Coefficient Theorem (for cohomology) provides the link between
the homology of a chain complex and the homology of its dual. To state it, consider
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the pairing HomR(C,R) ⊗R C → R given by the formula (f, c) �→ f(c). This de-
scends to homology, giving the Kronecker pairing H(HomR(C,R), ∂̌)⊗RH(C, ∂) →
R; and hence a duality map

(A.14) H(HomR(C,R), ∂̌) → HomR(H(C, ∂),R).

The Universal Coefficient Theorem can be conveniently formulated when R is either
a field of a principal ideal domain. When R is a field (i.e, n = 0 and K is Z/pZ
or Q), the duality map is an isomorphism, according to the following.

Theorem A.5.2. If R is a field, then for a chain complex (C, ∂),

H(HomR(C, ∂), ∂̌) ∼= HomR(H(C, ∂),R).

If R is a PID, any module X over R can be fit into a short exact sequence
(called a free resolution)

(A.15) 0 −−−−→ F 2 r−−−−→ F 1 p−−−−→ X −−−−→ 0,

where F 1 and F 2 are free R-modules. Dualizing r gives a map r∗ : HomR(F 1,R) →
HomR(F 2,R), whose kernel is identified with HomR(X,R), and whose cokernel,
denoted Ext(X,R), turns out to be independent of the choice of the resolution.
(This module is also denoted Ext1(X;R) in some texts.)

Example A.5.3. The following are the only Ext groups which will be of rele-
vance in this text:

(1) If X is a free module, then we can take F 1 = X and F 2 = 0. Thus,
Ext(X,R) = 0.

(2) If R is a field, then any R-module is free, so Ext(X,R) = 0.
(3) Ext(X ⊕ Y,R) = Ext(X,R) ⊕ Ext(Y,R).
(4) Let R = K[U ] and X = K[U ]/Un for some n. Then, we can take F 1 =

F 2 = K[U ], and r to be the map which is multiplication by Un. In this
case, Ext(K[U ]/Un,K[U ]) ∼= K[U ]/Un.

In fact, we will use a refinement of the Universal Coefficient Theorem, in the
case where C is a bigraded chain complex over K[U ], in the sense of Definition A.1.3.

As a first step, observe that if X is a bigraded module over K[U ], then the
Ext modules also inherit the structure of a bigraded module over K[U ]. To define
the bigrading, consider first a free resolution (Equation (A.15)) so that F 1 ane F 2

are bigraded, and the maps p and r preserve bigradings. Such a resolution can be
formed by the following tautological construction: F 1 is the free module over F[U ]
whose generating set is the set of homogeneous, non-zero elements of X. This comes
equipped with a canonical bigraded map p : F 1 → X. Its kernel is a free module
since K[U ] is a principal ideal domain (hence any submodule of a free module is
free), and it is bigraded, since p is bigraded.

Armed with these bigradings, the cokernel of

r∗ : HomR(F 1,R) → HomR(F 2,R),

which is Ext(X,R), naturally inherits a bigrading.

Example A.5.4. Consider the bigraded K[U ]-module X = K[U ]/Un
(d,s). Then,

there is an isomorphism of bigraded modules over K[U ]

Ext(X,K[U ]) ∼= K[U ]/Un
(2n−d,n−s).
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Example A.5.5. Consider the bigraded K[U ]-module X = K[U ](d,s), whose
generator has bigrading (d, s). Then, there is an isomorphism of bigraded K[U ]-
modules

HomR(X,K[U ]) = Hom(X,K[U ]) ∼= K[U ](−d,−s).

Theorem A.5.6. If C is a bigraded complex of free modules over K[U ], then
there is an isomorphism of bigraded modules

(A.16) H(Hom(C,K[U ])) ∼= Hom(H(C),K[U ]) ⊕ Ext(H(C),K[U ])�1, 0�.
More explicitly, writing

H(C) ∼=
(

k⊕
i=1

K[U ]/Uni

(di,si)

)
⊕

⎛⎝ N⊕
j=1

K[U ](δj ,σj)

⎞⎠ ,

we have that
(A.17)

H(Hom(C,K[U ])) ∼=
(

k⊕
i=1

K[U ]/Uni

(2ni−di−1,ni−si)

)
⊕

⎛⎝ N⊕
j=1

K[U ](−δj ,−σj)

⎞⎠ .

Proof. The usual Z-graded Universal Coefficient Theorem (see for example [83,
Chapter 3.1]) adapts to prove Equation (A.16), as follows. Consider the subcomplex
Z ⊂ C of cycles and the subcomplex B ⊂ C of boundaries. Since C is free, so are
B and Z; so the short exact sequence

(A.18) 0 −−−−→ B
i−−−−→ Z −−−−→ H(C) −−−−→ 0

is a free resolution of H(C). There is a short exact sequence of bigraded chain
complexes

(A.19) 0 −−−−→ Z −−−−→ C −−−−→ B�−1, 0� −−−−→ 0.

Since B is free, the above short exact sequence dualizes to a short exact sequence
of chain complexes

0 Hom(Z,K[U ]) Hom(C,K[U ]) Hom(B�−1, 0�,K[U ]) 0.

Here the boundary maps on Hom(Z,K[U ]) and Hom(B�1, 0�,K[U ]) are identically
zero. The long exact sequence in homology gives the short exact sequence
(A.20)

0 Hom(H(C),K[U ]) H(Hom(C,K[U ])) Ext(H(C),K[U ]�1, 0� 0,

since dualizing Equation (A.18) we get that Hom(H(C),K[U ]) ∼= Ker(i∗), and

Hom(B�−1, 0�,K[U ])

Hom(Z�−1, 0�,K[U ])
∼=

Hom(B,K[U ])

Hom(Z,K[U ])
�1, 0� ∼= Ext(H(C),K[U ])�1, 0�,

in view of our grading conventions on the dual complex (which are opposite to
the usual one on cohomology). As usual, a splitting of Equation (A.19) provides
a chain map C → Z which, when composed with the quotient map to H(C),
dualizes to a map Hom(H(C),K[U ]) → H(Hom(C),K[U ]) that provides a splitting
of Equation (A.20).
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The graded isomorphism of Equation (A.17) comes from our computation of
the bigraded Ext for the relevant modules (see Examples A.5.3, A.5.4 and A.5.5).

Remark A.5.7. Note that if the ground ring is not a PID, much of the ho-
mological algebra discussed above is slightly more complicated: finitely generated
modules might not decompose as direct sums of cyclic modules; and the universal
coefficient theorem is much more involved [226]. This is already relevant for rings
appearing in grid homology, such as Z[U ] (as in Chapter 15) or K[U1, . . . , Un], n ≥ 2
(as in Chapter 11).

A.6. On filtered complexes

In Chapter 13, grid diagrams are used to go beyond a bigraded homology
group; they are used to define a quasi-isomorphism class of Z-filtered, Z-graded
chain complexes, in the sense of Definition 13.1.1. We refer the reader back to
Section 13.1 for the necessary definitions and algebraic constructions. The filtered
complexes we consider in this section will be defined over K[V1, . . . , Vn]; K can be
any base ring.

Let C and C′ be two Z-filtered, Z-graded chain complexes over K[V1, . . . , Vn],
and let φ : C → C′ be a filtered chain map, in the sense of Definition 13.1.4. Such a
map induces a bigraded chain map gr(φ) on the associated graded chain complex;
and φ is called a filtered quasi-isomorphism when gr(φ) is a quasi-isomorphism.

Proposition A.6.1. Let φ : C → C′ be a filtered quasi-isomorphism. Then, φ
induces isomorphisms H(FiC) ∼= H(FiC′) and H(C) ∼= H(C′).

The proof will follow from the following special case:

Lemma A.6.2. If C is a filtered complex with H(gr(C)) = 0, then H(FiC) = 0
and H(C) = 0.

Proof. Fix an integer d. We show that Hd(FiC) = 0 by increasing induction on
i. The case where i is small is always true, because our filtered complexes are
assumed to be bounded below; i.e. for sufficiently small i, FiCd = 0. For the

inductive step, assume that Hd(FiC) = 0, and note that Hd(
Fi+1C
FiC ) = 0, by the

hypothesis that H(gr(C)) = 0. Thus, the vanishing of Hd(Fi+1C) follows from the
long exact sequence associated to the short exact sequence

0 −−−−→ FiC −−−−→ Fi+1C −−−−→ Fi+1C
FiC −−−−→ 0.

Proof of Proposition A.6.1. The filtered mapping cone of φ, Cone(φ), is the
mapping cone of φ endowed with the filtration where

(A.21) FiCone(φ) ∼= Cone(φ|FiC).

Observe that there is an isomorphism of chain complexes gr(Cone(φ)) ∼=
Cone(gr(φ)). By Corollary A.3.3, H(Cone(gr(φ))) = 0, and hence by Lemma A.6.2,

H(FiCone(φ)) = 0 = H(Cone(φ)).

In view of Equation (A.21), Corollary A.3.3 ensures that φ induces isomorphisms
H(FiC) ∼= H(FiC′). Similarly, H(Cone(φ)) = 0 implies that H(C) ∼= H(C′).
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Remark A.6.3. Recall that our filtered complexes are required to be bounded
below, by definition. Without this hypothesis, the conclusion of Proposition A.6.1
does not hold. For example, consider the filtered complex C generated over K by
two sequences of elements {xi, yi}i≤0, with xi ∈ FiC1 \Fi−1C1, yi ∈ FiC0 \Fi−1C−1,
and with a differential ∂xi = yi + yi−1. Clearly, H(gr(C)) = 0, but H(C) ∼= K.

As a corollary to the above discussion, there are numerical invariants associated
to the filtered quasi-isomorphism types of filtered complexes. Suppose that C is a
Z-filtered, Z-graded chain complex over F, and suppose that H(C) is finite dimen-
sional. Then, we claim that for sufficiently small i, the image of H(Ci) in H(C) is
trivial: H(C) is finite dimensional, so since the filtration is bounded below, we can
choose i small enough that for each d for which Hd(C) �= 0, FiCd = 0. Similarly,
for i sufficiently large, H(Ci) → H(C) is non-trivial; if z ∈ C is a non-trivial cycle
representing some homology class, then since the filtration exhausts C, we know
that z ∈ FiC for sufficiently large i; i.e. [z] ∈ H(C) is the image of a homology class
in H(FiC). Thus, we can make the following;

Definition A.6.4. Let t(C) be the minimal i so that H(FiC) → H(C) is non-
zero.

Corollary A.6.5. Suppose that C and C′ are quasi-isomorphic complexes, and
that H(C) ∼= H(C′) �= 0. Then, t(C) = t(C′).

Proof. It suffices to show that if φ : C → C′ is a filtered quasi-isomorphism, then
t(C) = t(C′). To this end, consider the commutative square

H(FsC)
H(is)−−−−→ H(C)

H(φ|FsC)

⏐⏐ ⏐⏐ H(φ)

H(FsC′)
H(i′s)−−−−→ H(C′),

where the horizontal maps are induced by inclusions. Both vertical maps are iso-
morphisms by Proposition A.6.1, so H(is) is non-trivial exactly when H(i′s) is.

Exercise A.6.6. Let C be a Z-filtered, Z-graded chain complex over F[U ], and
suppose that H(C) ∼= F[U ]. For any integer i ≥ 0, let

τi(C) = min{s
∣∣ the image of H(FsGC−) in H(GC−) ∼= F[U ] contains U i}.

Show that if C′ is a Z-filtered, Z-graded chain complex over F[U ] that is filtered
quasi-isomorphic to C, then for all i, τi(C) = τi(C′).

A.7. Small models for filtered grid complexes

There are infinitely many different chain complexes in a fixed quasi-isomorphism
class of a Z-filtered, Z-graded chain complex; and the chain complexes coming from
the filtered grid complex tend to have many generators. Thus, it is useful to get
an economical complex representing a fixed filtered quasi-isomorphism class. Such
model complexes were used in Section 14.2 to describe examples.

In Section 14.2 we represented GC−( �K) (the filtered quasi-isomorphism class

of the filtered chain complexes GC−(G) for grid diagrams representing �K) by a free
chain complex over F[U ] whose rank coincides with the dimension of the F-vector
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space ĜH ( �K). The existence of such a representative was stated in Lemma 14.2.1.
Our aim here is to prove that lemma, after restating the result in more abstract
terms. For this purpose, throughout this section we fix a field K. We start with a
special case.

Lemma A.7.1. Fix a field K, and let C be a Z-filtered, Z-graded chain complex
over K[U ] that is a finitely generated, free module over K[U ]. Then, C is filtered
homotopy equivalent to a free, finitely generated chain complex C′ over K[U ] whose

induced differential on gr(C
′

U ) vanishes; i.e. dimK H(gr(C
′

U )) = dimK gr(C
′

U ).

Proof. Suppose that the differential on gr( C
U ) does not vanish. This means that

there is a basis {[xi]
m
i=1} for gr( C

U ) so that ∂[x1] = [x2] with [x2] �= 0. Find lifts
xi of the [xi]; i.e. if [xi] ∈ Fai

/Fai−1, choose xi ∈ Fai
whose projection is [xi].

Clearly, {xi}mi=1 generate C as a K[U ]-module. Thus, there is a K[U ]-module map
T : C → C defined by

T (xi) =

{
x1 if i = 2
0 otherwise.

The map T is a filtered map; and so φ = Id−∂T−T∂ is a filtered chain map. Clearly
T 2 = 0, and so it follows that φ◦T = T ◦φ; hence the subcomplex φ(C) of C is chain
homotopy equivalent to C. Note that φ(x1) = 0, and so the dimension of gr(φ( C

U ))

is smaller than the the dimension of gr( C
U ). This procedure must terminate at some

point, giving a chain homotopy equivalent subcomplex C′ whose rank agrees with

H(gr(C
′

U )).

Proposition A.7.2. Fix a field K and let C be a Z-filtered, Z-graded chain
complex over K[U ], that is a free module over K[U ], and suppose that H(gr( C

U ))
is a finite dimensional K-vector space. Then, C is filtered homotopy equivalent to
a chain complex C′ that is a finitely generated, free module over K[U ] whose rank
coincides with dimK H(gr( C

U )).

Proof. If C is infinitely generated, choose a generating set {[xi]
∞
i=1} of gr( C

U ),
and fix some integer d ≥ 0. By boundedness, there are only finitely many xi with
grading ≥ d. Using the method from Lemma A.7.1, we can find a sequence of
filtered subcomplexes C(i) of C, with the following properties:

• C(i) ⊆ C(i+1)

• C(i) = C for sufficiently large i,

• gr(C
(i)

U ) has vanishing differentials in all gradings ≥ i.

• There are maps T (i) : C(i) → C(i), with T (i)◦φ(i) = φ(i)◦T (i), so that C(i−1)

is the image of φ(i) : C(i) → C(i) by the map φ(i) = Id−∂ ◦ T (i) − T (i) ◦ ∂.

• For any fixed d, i ≤ d − 1, T (i) vanishes on C(i)
d .

It follows from the above properties that the inclusion of C(i−1) in C(i) is a filtered

chain homotopy equivalence. For each d, T (i) vanishes on C(i)
d for all but finitely

many i; and so, φ(i)|C(i) is the identity map for all but finitely many i. Thus, for

a fixed d, there is an id so that C(id)
d = C(id−1)

d = . . . , so can form the infinite

composite φ = · · · ◦φ(i) ◦φ(i+1) ◦ . . . . The image of φ is our desired subcomplex.
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A.8. Filtered quasi-isomorphism versus filtered homotopy type

In Section 13.1, we discussed two equivalence relations on filtered chain com-
plexes: filtered quasi-isomorphism, and filtered chain homotopy equivalence. Two
filtered homotopy equivalent complexes are necessarily filtered quasi-isomorphic
(Exercise 13.1.10), but filtered quasi-isomorphic complexes need not be filtered
chain homotopy equivalent (Example 13.1.8). Since our grid complexes are free
modules over K[V1, . . . , Vn], this distinction disappears, according to the present
results.

Throughout this section, we fix once again K to be a field. We show the
following:

Proposition A.8.1. Let C and C′ be two Z-filtered, Z-graded chain complexes
over K[U ]. Then, these complexes are filtered chain homotopy equivalent over K[U ]
if and only if they are filtered quasi-isomorphic over K[U ].

We return to the proof after reducing to a special case (where C′ = 0).

Definition A.8.2. A Z-graded, Z-filtered chain complex C over a ring R is
chain contractible if there is an R-module homomorphism H : C → C, the con-
traction map, that raises grading by 1 and satisfies the equation ∂◦H+h◦∂ = IdC ,
so that C is filtered chain homotopy equivalent to the trivial chain complex 0.

Lemma A.8.3. Let f : C → C′ be a Z-filtered, Z-graded chain map between two
Z-filtered, Z-graded chain complexes over K[V1, . . . , Vn]. Then, Cone(f) is con-
tractible if and only if f is a filtered chain homotopy equivalence.

Proof. Recall that Cone(f) is the direct sum C⊕C′, equipped with the differential

D =

(
−∂ 0

f ∂′

)
.

A null-homotopy H : Cone(f) → Cone(f) of the identity map satisfies the equation

(A.22) D ◦ H + H ◦ D − IdC⊕C′ = 0.

Writing H in its components, we get H =

(
h g
i h′

)
, where g : C′ → C, h : C → C,

h′ : C′ → C′. Equation (A.22) can be interpreted as the vanishing of a 2× 2 matrix;
i.e. it gives four relations; and three of these are:

∂ ◦ g − g ◦ ∂′ = 0, −∂ ◦h− h ◦ ∂ = IdC −g ◦ f, ∂′ ◦ h′ + h′ ◦ ∂′ = IdC′ −f ◦ g.

In words, g is a chain map, and f and g are homotopy inverses to one another. In
particular, f is a homotopy equivalence.

Conversely, given f , g, h, and h′ satisfying the above, it follows that if we let

H =

(
h g
0 h′

)
,

then Φ = D ◦H + H ◦D is a lower triangular chain map, and hence invertible, and
so Φ−1 ◦ H is the desired contraction.

Lemma A.8.4. Let C be a Z-filtered, Z-graded chain complex that is free over
K[U ], where K is a field. If H(gr(C)) = 0, then C is filtered homotopy equivalent
over K[U ] to the 0 complex.
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Proof. This is an immediate consequence of Proposition A.7.2: under our present
hypotheses, the subcomplex is the 0 complex.

Proof of Proposition A.8.1 One direction is easy: a filtered homotopy equiv-
alence f induces a homotopy equivalence on the associated graded level, which is
therefore a quasi-isomorphism, and so f is a filtered quasi-isomorphism.

For the converse direction, recall that for any filtered chain map

H(gr(Cone(f))) ∼= H(Cone(gr(f))),

so if f a quasi-isomorphism, then H(Cone(gr(f)) = 0 by the long exact sequence
for the mapping cone of gr(f). Thus, by Lemma A.8.4, we conclude that Cone(f)
is chain contractible over K[Vi]. The result now follows from Lemma A.8.3.



APPENDIX B

Basic theorems in knot theory

This appendix covers some of the foundational material on knot theory used in
this book. We start, in Section B.1, with a classical theorem of Reidemeister that
characterizes, via local moves, those link diagrams that represent isotopic links. In
Section B.2, we discuss the analogue of this theorem in the contact context, for
transverse and Legendrian knots and links. In Section B.3 we prove the theorem of
Reidemeister-Singer that relates different Seifert surfaces for the same link. Next,
we prove Cromwell’s theorem in Section B.4 that characterizes, via local moves,
those grid diagrams that represent isotopic links. The Legendrian version of this
theorem is also proved in this section. Finally, in Section B.5 we define the normal
form of a cobordism between knots, and show that any cobordism can be isotoped
to such a form.

B.1. The Reidemeister Theorem

The Reidemeister Theorem 2.1.4 allows us to study knots and links in R3 in
terms of their diagrams. We restate this theorem as follows:

Theorem B.1.1 (Reidemeister, [196]). Two link diagrams represent equivalent
links if and only if these diagrams can be transformed into each other by a finite
sequence of Reidemeister moves (shown on Figure 2.2) and planar isotopies.

One direction of the equivalence in the theorem is straightforward: Reidemeis-
ter moves and planar isotopies clearly preserve the isotopy type of the link.

There are a number of proofs of this fundamental result; below we will describe
a proof using singularity theory from [199]. (For a proof of the piecewise linear
version of the theorem, see [18].) Throughout the discussion, we will assume famil-
iarity with standard transversality results in differential topology, as presented, for
example in [87, 151]. We will concentrate on the case of knots; the general case of
links can be proved along the same lines.

Suppose that two knots K0 and K1 are smoothly isotopic. An isotopy gives
rise to a one-parameter family of knot diagrams. Keeping track of the isotopy
parameter, this gives a map from the two-manifold [0, 1]×S1 to the three-manifold
[0, 1] × R2. A key local result we will use is the following theorem of Whitney:

Theorem B.1.2 (Whitney, [228]). Let W be a smooth two-manifold and Y a
smooth three-manifold. Any smooth map g0 : W → Y can be approximated arbi-
trarily closely (in the C2 topology) by a smooth map g : W → Y with the following
property. Around each point p ∈ W , there are local coordinates (x, y) so that p cor-
responds to (0, 0), and there are local coordinates (u, v, z) around g(p) ∈ Y , so that
(0, 0, 0)

367
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Figure B.1. The Whitney umbrella. It is the image of the
singularity (x, y) �→ (x2, xy, y).

corresponds to g(p), with respect to which the function g has the form

• (x, y) �→ (x, y, 0) or
• (x, y) �→ (x2, xy, y).

More intrinsically, consider the Jacobian Jg(p) : TpW → Tg(p)Y of g at p ∈ W .
Points of the first kind are those for which the Jacobian is injective; at those points
g is an immersion. Points of the second kind are the singular points of g, where the
Jacobian has 1-dimensional kernel. Note that for a generic choice of g (as above),
the rank of Jg(p) is non-zero for all p ∈ W . Thus, Whitney’s theorem gives a
canonical form for the neighborhood of the singular points of g; such a singularity
is called a Whitney umbrella. Its image is the locus of points (u, v, z) ∈ R3 with
v2 − uz2 = 0 (and u ≥ 0); see Figure B.1. A proof of Theorem B.1.2 is given in
Subsection B.1.2.

Suppose that D0 and D1 are diagrams of the smoothly embedded knots K0 and
K1, and assume that the two knots are isotopic. Regard the isotopy as a smoothly
embedded surface-with-boundary f : [0, 1] × S1 → [0, 1] × R3 with the following
properties:

• Im(f) ∩ ({i} × R3) = {i} × Ki for i = 0, 1, and
• the intersection f([0, 1] × S1) ∩ ({t} × R3) is transverse for all t ∈ [0, 1].

Let pr1 : [0, 1]×R3 → [0, 1] denote the projection onto the first factor. The second
condition above is equivalent to requiring that pr1 ◦ f : [0, 1] × S1 → [0, 1] has no
critical points; it is clearly an open condition.

Extend the projection map π : R3 → R2 defining the knot diagram to the map
P = Id × π : [0, 1] × R3 → [0, 1] × R2. Compose the embedding f of the annulus
[0, 1]×S1 with P to get a map φ = P ◦ f : [0, 1]× S1 → [0, 1]×R2. Theorem B.1.1
is proved by applying Theorem B.1.2 to this map φ, as follows.

Proof of Theorem B.1.1. Consider two isotopic knots K0, K1 with the isotopy
f : [0, 1] × S1 → [0, 1] × R3 between them, and with knot diagrams D0 and D1,
and let φ : [0, 1] × S1 → [0, 1] × R2 be the map defined as above. Since P is a
submersion, φ can be put into general position by slightly perturbing the map f ,
so that it remains an isotopy between K0 and K1.

Theorem B.1.2 shows that there are finitely many points B ⊂ [0, 1] × S1 with
a Whitney umbrella singularity, away from which the map is an immersion. By a
further general position argument, we can assume that every point in [0, 1] × R2

has at most three preimages. In fact, we can arrange that φ has only finitely many
triple points T (i.e. points in [0, 1]×R2 with three preimages), and a union of one-
dimensional submanifolds D ⊂ [0, 1] × R2 of double points. The closure of the set
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Figure B.2. The Whitney umbrella and the first Reide-
meister move. We can assume that the singularity is transverse
to the projection.

of double points includes the set of triple points and the set of Whitney umbrella
singularities; its boundary also includes the double points D ∩ ({i} ×R2) (i = 0, 1)
of the two original knot diagrams D0 and D1.

Regard the intersections φ([0, 1]×S1)∩ ({t}×R2) as a one-parameter family of
knots diagrams. Again, by general position, there are finitely many special t ∈ [0, 1]
where these diagrams are not generic, and where exactly one of the following occurs:

• φ−1({t} × R2) contains a Whitney umbrella singularity;
• φ−1({t} × R2) contains a triple point;
• {t} × R2 is tangent to D.

Consider 0 ≤ t1 < t2 ≤ 1, and suppose that there are no special values of
t ∈ [t1, t2]. In this case, the knot projections at t1 and t2 are planar isotopic.

Assume next that the interval [t1, t2] contains a single special value, which
corresponds to a Whitney umbrella singularity. Furthermore, assume that at that
value t the slice {t}×R2 is transverse to the one-dimensional image of the Jacobian.
Then the diagrams {t1}×R2 and {t2}×R2 differ by a single Reidemeister 1 move;
see Figure B.2. For example, intersecting the surface v2 − uz2 = 0 with the one-
parameter family of planes {u = z + a} with |a| < ε < 1, gives the one-parameter
family of plane curves given by the parametric equation v2 − z2(z + a) = 0 with
z+a ≥ 0, and these plane curves at a = −ε and a = ε differ by a local Reidemeister
1 move.

As the {t} × R2 slice passes through a point of tangency with D, the knot
projection undergoes a Reidemeister 2 move; see Figure B.3.

A triple point is locally modelled on three intersecting planes; intersecting
the surface with transverse level sets immediately before and immediately after
the triple point gives two diagrams that differ by a Reidemeister 3 move. This
completes the proof of Reidemeister’s theorem.

B.1.1. Morse functions. The above proof involves a careful analysis of the
possible local forms of generic functions, as described in Theorem B.1.2. A similar
analysis appears in Morse theory, where one considers real-valued functions on n-
dimensional manifolds. Although we do not use Morse theory for the proof of
Whitney’s Theorem B.1.2, since we will use facts on Morse functions later, we
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Figure B.3. The double point set of the projection. When
crossing the double point set with a plane, we get crossings in the
knot projection. When the plane {t}×R2 is tangent to the double
point set, we get a Reidemeister 2 move.

recall here some of the basic notions of this theory; for a thorough treatment of this
beautiful subject, see [142, 143], cf. also [77].

Let f : M → R be a smooth function on a compact, n-dimensional manifold.
A critical point of f is a point p ∈ M where the Jacobi matrix, written in a local
coordinate system (x1, . . . , xn) as Jf (p) = ( ∂f

∂x1
(p), . . . , ∂f

∂xn
(p)), is zero. A critical

point p corresponding to (0, . . . , 0) in the coordinate system (x1, . . . , xn) is called
non-degenerate if the Hessian matrix

H(f)(p) =

(
∂2f

∂xi∂xj
(p)

)
has non-zero determinant. (This property is independent of the choice of local
coordinate system around p.) A function is called a Morse function if every critical
point is non-degenerate. Morse functions form an open and dense set among smooth
functions [143, Theorem 2.7].

The Morse Lemma [142, Lemma 2.2] states that around each non-degenerate
critical point p, there are local coordinates (x1, . . . , xn) around p, so that (0, . . . , 0)
corresponds to p and

f(x1, . . . , xn) = f(p) −
λp∑
i=1

x2
i +

n∑
i=λp+1

x2
i ,

for some integer λp. The integer λp is the index of f at a critical point p, and it is
independent of the chosen local coordinate system.

B.1.2. The proof of Theorem B.1.2. In our presentation we will follow
Whitney’s original argument from [228]; for a more modern treatment see [75,
Theorem VI.4.6].

Since the theorem concerns the local behaviour of a generic map between a two-
and a three-dimensional manifold, we will concentrate on maps g : R2 → R3 with
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g(0, 0) = (0, 0, 0), which we abbreviate g : (R2, 0) → (R3, 0). For a generic choice of
g the Jacobian is not equal to the zero matrix (which is of codimension six among
all 2 × 3 matrices) in any point p, hence rk Jg(p) is at least 1 for all p ∈ R2.

The Jacobian Jg(0) of g at the origin is a 2×3 matrix, and if its rank is 2, then
the implicit function theorem gives coordinate systems where g(x, y) = (x, y, 0). In
the following we will examine the case when rk Jg(0) = 1.

Choose a coordinate system (x, y) so that ∂g
∂x (0) = (0, 0, 0). Consider the 3× 3

matrix

(B.1) Qg(0) =

⎛⎜⎝
∂g1
∂y (0) ∂2g1

∂x2 (0) ∂2g1
∂x∂y (0)

∂g2
∂y (0) ∂2g2

∂x2 (0) ∂2g2
∂x∂y (0)

∂g3
∂y (0) ∂2g3

∂x2 (0) ∂2g3
∂x∂y (0)

⎞⎟⎠ .

Lemma B.1.3. For g : (R2, 0) → (R3, 0) with rk Jg(0) = 1 there are functions
h arbitrarily close to g (in the C2 topology) with Jg(0) = Jh(0) and detQh(0) �= 0.
If detQg(0) �= 0 then there is an open neighbourhood U of 0 ∈ R2 with the property
that rk Jg(p) = 2 for p ∈ U \ {0}.

Proof. Let gi (i = 1, 2, 3) denote the coordinate functions of g. Choose a
coordinate system (x, y) around 0 so that ∂

∂x spans the kernel of Jg(0); i.e. for i=1,
. . . , 3,

(B.2)
∂gi
∂x

(0, 0) = 0.

Since rk Jg(0) = 1, there is a linear transformation of the target so that

(B.3) (
∂g1
∂y

(0, 0),
∂g2
∂y

(0, 0),
∂g3
∂y

(0, 0)) = (0, 0, 1).

Now either adding ε · x2 to g1 or δ · xy to g2 (or both) for sufficiently small ε and
δ, we get a function h close to g with Jh(0) = Jg(0) and det Qh(0) �= 0.

For the second statement, let V be a neighborhood of the origin so that for
p ∈ V , detQg(p) �= 0. Let Lp denote the line spanned by the first column of Qg(p)
and let Tp be the plane spanned by the second and third columns, all viewed as
vectors in R3. The condition on Qg(p) ensures that for p ∈ V , the line Lp and
the plane Tp span R3; in fact, after passing to a smaller neighborhood V ′ ⊂ V
of 0 if needed, we can assume that for p, p′ ∈ V ′ the line Lp and the plane Tp′

intersect transversely. For such a sufficiently small neighborhood (by the mean

value theorem) the vector (∂gi∂x (p′)− ∂gi
∂x (0))3i=1 is in a plane close to Tp′ , and hence

is not in Lp′ . Since ∂gi
∂x (0) = 0 for i = 1, 2, 3, this shows that (∂gi∂x (p′))3i=1 and

(∂gi∂y (p′))3i=1 are linearly independent, hence rk Jg(p
′) = 2, concluding the proof.

Proof of Theorem B.1.2. Suppose that g : W 2 → Y 3 is a generic map, hence by
our discussion above we can assume that rk Jg(w) > 0 for every point w of W . If
this rank is equal to 2, then the implicit function theorem concludes the proof and
shows that locally g is of the form (x, y) �→ (x, y, 0). If the rank is equal to 1 at a
point w ∈ W , then again by genericity (and by Lemma B.1.3) we can assume that
the determinant of Equation (B.1) is non-zero and w has a neighbourhood U with
rk Jg(p) = 2 for all p ∈ U \ {w} (that is, w is isolated).
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Since we are working on coordinate charts, from now on we will work with g
as a function (R2, 0) → (R3, 0). As in the proof of Lemma B.1.3, we can choose
our local coordinates (x, y) on R2 so that Equation (B.2) and (B.3) holds. By
the implicit function theorem, we can choose our coordinate system on R3 so that

g3(x, y) = y. The non-degeneracy of Qg(0) then implies that one of ∂2gi
∂x2 (0) for

i = 1, 2 is non-zero. Changing coordinates on R3 if necessary, we can arrange that

(B.4)
∂2g1
∂x2

(0, 0) �= 0.

In the next step we apply a coordinate transformation so that g1(x, y) = x2.

To achieve this, let F (x, y) = ∂g1
∂x (x, y), and consider the function x = φ(y) solving

(B.5) F (φ(y), y) = 0

in a neighborhood of the origin. This solution can be found using the implicit
function theorem, thanks to Equation (B.4). Consider the coordinate change on
R2 specified by

x′ = x − φ(y), y′ = y.

In this new coordinate system, by the chain rule, Equation (B.3), and Equa-
tion (B.5),

∂g1
∂x′ (0, y′) =

∂g1
∂x

(φ(y′), y′) = 0.

Thus, when expanding g1 in x′ we get g1(x
′, y′) = ψ0(y

′) + (x′)2ψ2(x
′, y′). By

Equation (B.4), it follows that ψ2(0, 0) �= 0. With the coordinate change

x′′ = |ψ2(x
′, y)| 12 · x′, y′′ = y′

on R2, and the coordinate change

g′1 = g1 − ψ0(g3), g′2 = g2 g′3 = g3,

on R3, after dropping primes, we get new coordinate systems where

g1(x, y) = x2, g3(x, y) = y.

It remains to bring g2 to the required form.
Since detQg(0) �= 0, the third column of the matrix from Equation (B.1) must

be non-zero; but the top and the bottom entry clearly vanish, so it follows that
∂2g2
∂x∂y (0) �= 0; while ∂g2

∂x (0, 0) and ∂g2
∂y (0, 0) = 0 by Equations (B.2) and (B.3). It

follows that g2(x, y) can be written as

g2(x, y) = xy + R(x, y),

where ∂R
∂x (0, 0) = ∂R

∂y (0, 0) = ∂2R
∂x∂y (0, 0) = 0. Let g′2 = g2 − R(0, g3). Observe

that R(x, y) − R(0, y) is divisible by x, so dropping primes, we get g2(x, y) =
x(y + R1(x, y)). Let

R2(x, y) =
R1(x, y) + R1(−x, y)

2
and R3(x, y) =

R1(x, y) − R1(−x, y)

2
,

so

R1(x, y) = R2(x, y) + R3(x, y),

with R2(−x, y) = R2(x, y) and R3(x, y) = −R3(−x, y).
Solve the implicit equation

y + R2(x, y) = 0
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for y = y(x). Since ∂g2
∂y (0, 0) = 0, it follows that the above implicit equation has

a solution. By the symmetry x �→ −x and local uniqueness, this solution can be
written as y = η(x2), for a smooth function η. Define

ζ(x2) = xR3(x, η(x2)),

and consider the new coordinates

x′ = x, y′ = y − η(x2), g′1 = g1, g′2 = g2 − ζ(g1), g′3 = g3 − η(g1).

Once again, this is a valid coordinate transformation, which keeps the shape of g1
and g3, and rewrites g2 (again, after dropping primes) as g2(x, y) = x(y +R4(x, y))
with R4(x, 0) = 0, hence

g2(x, y) = xy(1 + R5(x, y)).

Decomposing R5(x, y) = P (x2, y) + xQ(x2, y) into its even and odd parts in x
(as we did with R1), we find

(B.6) g2(x, y) = xy(1 + P (x2, y)) + x2yQ(x2, y).

The coordinate transformation g2 = g2 − g1g3Q(g1, g3) can be used to eliminate
second term in Equation (B.6), hence we are left with g2(x, y) = xy(1 + P (x2, y)).

Let G(x, y) = P (x,y)
1+P (x,y) and apply the following coordinate transformation:

g′1 = g1, g′2 = g2 − G(g1, g3)g2, g′3 = g3.

Since G(0, 0) = 0, this last transformation still gives coordinates on R3, and now

g′2(x, y) = g2(x, y) · (1 − G(x2, y)) = g2(x, y) · 1

1 + P (x2, y)
= xy,

hence (after dropping primes) we get the desired from of g = (g1, g2, g3) around the
origin.

B.2. Reidemeister moves in contact knot theory

Recall that Legendrian and transverse knots can also be dealt with via their
(front) projections, and there is a similar set of Reidemeister moves for these dia-
grams. In this section we adapt the argument from the smooth case to prove these
analogues of the Reidemeister theorem in the contact case.

B.2.1. Transverse Reidemeister moves. Since the transverse condition is
open, we can assume that the transverse isotopy between two transverse knots has
only generic singularities. This leads quickly to the verification of the transverse
Reidemeister theorem:

Proof of Theorem 12.5.4. Suppose that T1 and T2 are two transversely isotopic
transverse knots, with front diagrams D1 and D2. Let f : [0, 1] × S1 → [0, 1] × R3

be the surface given by the transverse isotopy. Since transversality is an open
condition, if we take a small perturbation of f , we can assume that the composition
of f with the projection map P from Section B.1 is a generic map φ = P ◦f : [0, 1]×
S1 → [0, 1] × R2.

Recall that the self-linking number of a transverse knot is equal to the writhe
of its front projection, so Reidemeister 1 moves (which change the writhe) cannot
occur in the diagram-change along a transverse isotopy. This shows that the pro-
jection of a transverse isotopy cannot have Whitney umbrella singularities, and so
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for transverse knots we need only two types of Reidemeister moves: the adapta-
tions of the second and of the third Reidemeister moves of Figure 2.2, as given in
Figure 12.14. (Configurations from Figure 12.13 are disallowed by the transverse
condition.)

While transverse isotopies do not contain Reidemeister 1 moves, the converse
is not true: an isotopy between two transverse knots giving a map without any
Whitney umbrella singularity is not necessarily a transverse isotopy. In fact, using
results from [219], two transverse representatives of the same knot type with the
same self-linking number always can be connected by a smooth isotopy whose pro-
jection has no Whitney umbrella singularities, so their diagrams can be connected
by a sequence of Reidemeister 2 and 3 moves and planar isotopies. As the trans-
versely non-simple knot types demonstrate, such an isotopy may not be a transverse
isotopy, and so the planar isotopies or the Reidemeister moves involve disallowed
configurations (shown by Figure 12.13).

B.2.2. Legendrian Reidemeister moves. Since the Legendrian condition is
not open, the appropriate adaptation of Reidemeister’s theorem requires additional
care. Our treatment here follows the discussion of Światkowski [214]. We start by
restating the theorem:

Theorem B.2.1 (Światkowski, [214]). Two front projections correspond to Leg-
endrian isotopic Legendrian links if and only if the projections can be connected by
Legendrian planar isotopies and by Legendrian Reidemeister moves (shown in Fig-
ure 12.2).

This subsection is devoted to a proof of this result; although the theorem holds
for links, for simplicity in the proof we will deal with the case of knots only.

First we make more precise what we mean by generic Legendrian knot.

Definition B.2.2. A Legendrian knot K is front generic if its front projection
(projection to the (x, z) plane) has the following properties:

(fg-1) The only singularities of the projection are cusps, which can be given as
t �→ (t2, t3) in appropriate local coordinates;

(fg-2) the vertices of the cusps are distinct and are not on any other strand of
the projection;

(fg-3) the strands of the projection meet transversely, without triple intersec-
tions.

As in Section 12.1, we denote the coordinate functions of a parametrization of

the given Legendrian knot �K by x(t), y(t), z(t). The Legendrian condition can be
expressed as

(B.7) z′(t) = y(t) · x′(t).

Lemma B.2.3. Suppose that �K is an oriented Legendrian knot. The front pro-

jection of �K has singularities only as described in Property (fg-1) if and only if x(t)
is a Morse function.

Proof. Notice first that the projection has a singularity at t if x′(t) = 0, since
by Equation (B.7), this implies z′(t) = 0. If all singularities have the local form
described in Property (fg-1), then x′′(t) �= 0 at the critical points of x, and hence
x(t) is obviously Morse.
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Conversely, suppose that x(t) is Morse, so at a critical point in local coordinates
it is equal to t2. (In these coordinates, the critical point corresponds to t = 0.) From
Equation (B.7) we have

z′′(t) = y′(t) · x′(t) + y(t) · x′′(t),

which at the singular point t = 0 (that is, at a critical point of x(t)) gives z′′(0) =
y(0) · x′′(0). If we choose the line parallel to the x axis, passing through the singu-

larity as the first coordinate axis and the line with slope y(0) = z′′(0)
x′′(0) (also passing

through the singularity) as the second coordinate axis around the singularity, we
get a local coordinate system in the (x, z) plane such that the projection is given by
the map t �→ (t2, f(t)), with f(0) = f ′(0) = f ′′(0) = 0. Since x′(0) = z′(0) = 0 im-

plies y′(0) �= 0 (since �K is given by a smooth embedding), we have that f ′′′(t) �= 0,
so f(t) can be written as t3(1 + h(t)) with h(0) = 0. Decompose h(t) into even
and odd parts, as in the proof of Theorem B.1.2 so that h(t) = g1(t

2) + tg2(t
2).

Then, f(t) = t3(1 + g1(t
2)) + t4g2(t

2). The second term is a function of the first
coordinate, hence can be easily eliminated, leaving us with f(t) = t3(1 + g1(t

2)).

With the function F (t) = g1(t)
1+g1(t)

the new local coordinate

fnew(t) = f(t) − F (t) · f(t)

shows that the singularity can be written in the form t �→ (t2, t3).

Front generic Legendrian knots form an open and dense set among Legendrian
knots. In verifying this statement, we will use another projection of a Legendrian
knot (usually called the Legendrian projection): the projection to the (x, y)-plane.
Since all contact planes embed under the differential of this projection, it can be
shown that (unlike the front projection, containing cusps) the Legendrian projection
of a smooth Legendrian knot is a smooth immersion. Since the form dz − ydx
vanishes on the tangents of a Legendrian knot, the third coordinate function z(t)
can be recovered from the Legendrian projection by the formula

z(t) = z0 +

∫ t

0

y(θ)x′(θ)dθ.

Such a lift is not uniquely determined by the Legendrian projection (since it depends
on the choice of z0); also, not every smooth, immersed closed curve in the (x, y)
plane gives rise to a Legendrian knot. Indeed, by choosing z0 over a point (x0, y0)
of the immersed closed curve, and parametrizing the diagram in the (x, y)-plane by
[0, 2π] (with the understanding that 0 and 2π both map to (x0, y0)), the value z(2π)
is not necessarily equal to z0. If the integral from 0 to 2π vanishes, the diagram
lifts to a closed, immersed curve, which furthermore is embedded if the two z-
coordinates over any double points are different; see also [45]. This construction
will be used in the proof of the next lemma, which justifies Definition B.2.2.

Lemma B.2.4. ([214, Theorem A]) The set of front generic Legendrian knots
is open and dense in the set of all Legendrian knots.

Proof. First we would like to arrange that the front projection has only cusp
singularties. Let λ : S1 → R be a Morse function close to x(t). Using the curve C =
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(x0, z0) (x0, z0)

(λ(2π − ε), z(2π − ε))

Figure B.4. Closing up the front projection after replacing
x(t) by a nearby Morse function λ(t).

(λ(t), y(t)) in the (x, y)-plane as a Legendrian projection, we recover a Legendrian
arc, with z-coordinate function (for t ∈ [0, 2π]) given by

(B.8) z(t) = z0 +

∫ t

0

y(θ)λ′(θ)dθ.

Suppose that the function λ is sufficiently close to x(t) and choose the point
(x0, y0, z0) on the Legendrian knot so that at this point the t-derivative of the
z-coordinate is non-zero. Then the point (x0, y0, z0) maps to a smooth point in the
front projection, and we can close up the front diagram with a local modification
near this image, as shown in Figure B.4. In this procedure we take the curve given
by the integral for the values t ∈ [0, 2π − ε] and close up the resulting front pro-
jection. This then defines a Legendrian knot which is close to the given one and
satisfies Property (fg-1) of Definition B.2.2.

The resulting front diagram now has the required cusp singularities. The
smooth segments can be easily isotoped in the (x, z) plane using standard transver-
sality arguments for maps of intervals to the plane.

Since Morse functions form an open and dense subset of all C∞ functions, and
the further properties (not having triple intersections and cusps on other branches)
are also open and dense, the claims of the statement follow.

Notice that the above procedure provides a Legendrian isotopy from any Leg-
endrian knot to one which is front generic: just connect the function x(t) to the
chosen Morse function λ(t) with a family of functions λs(t) (with x(t) = λ0(t) and
λ(t) = λ1(t)) such that λs(t) is Morse for s > 0, and do the final deformation (of
closing the Legendrian arcs) parametrically.

In the next step we clarify what we mean by a generic isotopy in the Legendrian
context. Suppose that H is a Legendrian isotopy between two Legendrian knots.
The first step in achieving a generic front was to modify the coordinate function
x(t) to be generic (simply meaning Morse). For an isotopy, the similar step requires
the genericity of a map F : R2 → R2 derived from the first coordinate function of
the isotopy, cf. Definition B.2.7. The following classification result of Whitney
(similar in spirit to Theorem B.1.2) will be of crucial importance.

Theorem B.2.5 (Whitney, [229]). Let W and X be two smooth two-dimensional
manifolds. A map g0 : W → X can be approximated arbitrarily close (in the C2

topology) with a smooth map g : W → X with the following property: around each
point p ∈ W there are local coordinates (x, y) (so that p corresponds to (0, 0)) and
local coordinates (u, v) around g(p) in such a way that g has the form

• (x, y) �→ (x, y) so g is a local diffeomorphism near p or
• (x, y) �→ (x2, y) so p is a fold point of g or
• (x, y) �→ (xy + x3, y) so p is a simple cusp.
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Remark B.2.6. The proof of the above theorem can be given by adapting the
methods of the proof of Theorem B.1.2. Indeed, for a generic map g : R2 → R2

we can assume that the rank of the Jacobian Jg is non-zero at every point. At
points when rk Jg = 2, we have a local diffeomorphism, providing the first case
in Theorem B.2.5. If rk Jg(p) = 1 at a point p (say, p = 0), we can choose
coordinates (x, y) so that x spans the kernel of Jg(0), and the coordinate functions

can be chosen so that g2(x, y) = y. Assuming ∂2g1
∂x2 (0) �= 0, the argument from the

proof of Theorem B.1.2 normalizing the first coordinate function there (see text
around Equation (B.5)) shows that, after appropriate coordinate changes, we get
(x, y) �→ (x2, y), the second option of the theorem; see [229, Section 15]. In the

final case, when ∂2g1
∂x2 (p) = 0, by genericity we can assume that ∂3g1

∂x3 (p) �= 0, and a
slightly longer argument (again, in the spirit of the proof of Theorem B.1.2, detailed
in [229, Section 16]) concludes the proof of Theorem B.2.5. (For a more modern
treatment of this result see [75, Chapter VI, Section 2].)

Definition B.2.7. Suppose that H = H(s, t) is a Legendrian isotopy between

the two Legendrian knots �K1 and �K2 and write H = (Hx, Hy, Hz), where the
components denote the coordinate functions (now from S1 × [0, 1] to R). The
isotopy H is a front isotopy if it satisfies the following conditions:

• The singularities of the map F : S1 × [0, 1] → R2 given by F (s, t) =
(Hx(s, t), t) are folds and simple cusps,

• the double point set D of the composition φ = P ◦ H of H with P =
Id × π (where π : R3 → R2 is the projection to the (x, z) plane) is a one-
dimensional submanifold and the restriction of the projection pr1 to [0, 1]
is a Morse function,

• the triple points of the map φ are isolated, and
• the values of the projection pr1 at the cusp singularities, at the critical

points of pr1 on D and on the triple points are all distinct.

Proposition B.2.8. ([214, Lemma 3.3]) If �K1 and �K2 are Legendrian iso-

topic Legendrian knots with generic fronts, then there is a front isotopy between �K1

and �K2.

Proof. The proof is similar in spirit to the proof of Lemma B.2.4. Let H be a

Legendrian isotopy between �K1 and �K2 and suppose that H = (Hx, Hy, Hz) are the
coordinate functions of the isotopy. Consider the function F (s, t) = (Hx(s, t), t),
mapping from S1 × [0, 1] to R2. Consider a generic perturbation F1 of this map,
which (by an appropriate coordinate transformation) can be assumed to be of the
form F1(s, t) = (Gx(s, t), t).

The pair (Gx, Hy) now provides a family of closed curves (parametrized by
t ∈ [0, 2π]) on the (x, y) plane, hence we can use the integral formula of Equa-
tion (B.8) to lift this planar isotopy to an isotopy of knots in the three-space. The
same problem as in the proof of Lemma B.2.4 arises: the resulting Legendrian
curves might not close up. By performing the same closing operation (possibly in
different places), we get an isotopy which now satisfies the first constraint given in
Definition B.2.7. The usual genericity arguments conclude the proof.

We can now prove the Legendrian Reidemeister theorem.
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Proof of Theorem 12.1.7. As always, one direction of the theorem is easy: if two
front projections differ by Legendrian Reidemeister moves and Legendrian planar
isotopies, then the corresponding two knots are Legendrian isotopic.

Suppose now that two Legendrian knots are isotopic via a Legendrian isotopy
H. By Lemma B.2.4 we can assume that the knots are front generic, and by
Proposition B.2.8 we can assume that the isotopy is a front isotopy.

Suppose that (s0, t0) ∈ S1 × [0, 1] is a point where the function F (s, t) =
(Hx(s, t), t) has a simple cusp singularity (here s ∈ S1 and t ∈ [0, 1]). By Theo-
rem B.2.5 the local model of the map F at such a point is given by (st + s3, t).

Since
∂Hy(s,t)

∂s is non-zero at such a cusp point (as the Legendrian projection to the

(x, y) plane is still an immersion), we get that the ratio ∂Hz(s,t)
∂s /∂Hx(s,t)

∂s is mono-
tone there, providing a local model which shows that near the point (s0, t0) the
diagrams given by the slices {t} × R2 undergo a Legendrian Reidemeister 1 move.
Indeed, the slice with {t} × R2 gives the x-coordinate function s �→ st + s3, which
has no critical point for t > 0 and two critical points (giving rise to two cusps in
the front projection) for t < 0.

As in the smooth case, we need to examine the points where {t}×R2 is tangent
to the double point set D. It is easy to see that in these points only a smooth point
and a cusp can meet: by our genericity assumption two cusps cannot project to the
same point, and two smooth branches of the projection cannot be tangent to each
other, since then the Legendrian knot in the isotopy has a self-intersection. This
means that the tangencies of the double point set give Legendrian Reidemeister 2
moves, as shown by Figure 12.2.

We can handle the case when the plane {t} × R2 crosses a triple point exactly
as in the smooth case, providing the Legendrian Reidemeister 3 moves.

B.2.3. Approximations. In Section 12.5.2 we described how to approximate
Legendrian knots by transverse knots, and conversely, transverse knots by Legen-
drian ones. We constructed the transverse push-off of a Legendrian knot, giving a
transverse knot unique up to transverse isotopy associated to the Legendrian knot.
(See Proposition 12.5.5.) A concrete description of this operation in terms of front
projections is illustrated in Figure 12.15. Similarly, we explained how to construct
a Legendrian approximation of a given transverse knot. The construction was de-
fined in terms of front projections, using an algorithm which transformed a front
projection of the transverse knot to the front projection of a Legendrian knot. This
algorithm constructs a diagram that is defined uniquely up to negative stabilization.

According to Theorem 12.5.9, these constructions are inverses to one another,
giving a one-to-one correspondence between transverse isotopy classes of transverse
knots and equivalence classes of Legendrian isotopy classes of Legendrian knots
modulo negative stabilization. Our present goal is to prove Theorem 12.5.9. The
arguments below are based on [43, Section 2]. (Note that our convention differs
from the one of [43]: we work with the contact structure given by the one-form
α = dz−ydx, while in the reference the contact structure is given by ydx−dz = −α,
giving different orientations in certain statements.)

Proposition B.2.9. Suppose that the two transverse knots T1 and T2 are trans-
verse isotopic. Then their Legendrian approximations become isotopic after suitable
negative stabilizations.
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Proof. Consider front projections D(T1) and D(T2) of T1 and T2. The algorithm

described in Section 12.5.2 provides diagrams D(�K1) and D(�K2) of the Legendrian
approximations, both determined up to negative stabilizations and Legendrian pla-
nar isotopy.

Since the two transverse knots are transverse isotopic, by the transverse Reide-
meister theorem there is a sequence of transverse Reidemeister moves and transverse
planar isotopies (so avoiding the disallowed configurations of Figure 12.13) trans-
forming one diagram into the other. We will show that the Legendrian approxima-
tions of the diagrams are Legendrian isotopic, possibly after negative stabilizations.

A transverse planar isotopy either directly translates to a Legendrian planar
isotopy, or it introduces a vertical tangency (pointing necessarily up), or it con-
tains an isolated moment where a non-vertical segment crosses a vertical one, see
Figure B.5. The figure also shows how these moves translate to Legendrian iso-
topies and negative stabilizations. In the first move (pictured on the left part of
Figure B.5) there is one further case to analyze (when the strand points up and to
the left), while in the second move (shown on the right part of Figure B.5) there are
eight possibilities (depending on the orientation of the horizontal segment, the na-
ture of the crossing, and direction of the vertical segment; i.e. whether the extremal
point is on the left or the right). In the figure we only show one case, the remaining
ones can be handled by similar means. The diagrams show how the Legendrian
approximations of the results of the transverse planar isotopies can be realized by
Legendrian Reidemeister moves and negative stabilizations.

In a similar manner, a transverse Reidemeister 2 move translates to a Legen-
drian Reidemeister 2 move — after possibly applying negative stabilizations. There
are eight cases here, depending on the orientations of the strands and on the choice
of the over-passing strand, but two of them contains a (transversally) disallowed

isotopy

transverse

Legendrian 

negative
stabilization

transverse

isotopy

Legendrian 

Reidemeister
moves

Figure B.5. Transverse planar isotopies and Legendrian
approximations. On the left a transverse isotopy introducing
(upward pointing) vertical tangencies is translated into negative
stabilizations of the Legendrian approximation. On the right (one
case of) an exchange of a vertical tangency and an intersection
point is translated to the Legendrian approximation. The seven
further cases are handled similarly.
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Disallowed

Legendrian

Reidemeister 2

Legendrian

Legendrian

Reidemeister 2

Reidemeister 2

move

move

move

Figure B.6. Reidemeister 2 moves and Legendrian ap-
proximations. In the left we show four cases of the eight pos-
sible transverse Reidemeister 2 moves (one of which is disallowed),
and on the right their Legendrian approximations, which require
the application of a negative stabilization and a Legendrian Rei-
demeister 2 move.

LegendrianLegendrian 

approximation Reidemeister 2 
move

Figure B.7. The effect of a transverse Reidemeister 3
move on the Legendrian approximation in case p = 1. The
left diagram shows the transverse projection, the middle one de-
picts the front projection of the Legendrian approximation and
(after a Legendrian Reidemeister 2 move) we get a new diagram
in which a Legendrian Reidemeister 3 move can be performed (in-
dicated by the gray triangle); just as in the p = 0 case.

portion. Figure B.6 verifies the statement for four cases; simple modifications pro-
vide the result for the remaining configurations.

In a transverse Reidemeister 3 move we have three crossings; let p denote the
number of crossings that are disallowed in a Legendrian front projection (so in the
Legendrian approximation, a negative stabilization is needed; see Figure 12.16).
We will group the various configurations according to the value of p.

If p = 0 then the transverse Reidemeister 3 move translates directly into a
Legendrian Reidemeister 3 move on the Legendrian approximation.

When p = 1, then when translating the transverse diagram to a Legendrian
diagram, we need to apply the modification of Figure 12.16 at one of the crossings.
This case can be reduced to the p = 0 case by a Legendrian Reidemeister 2 move.
This is illustrated in Figure B.7 in one case; the further p = 1 possibilities can be
handled similarly.

When p = 2, let s denote the strand passing through the two crossings disal-
lowed in the Legendrian front diagram. In turning the transverse diagram into the
Legendrian front, we need to stabilize twice. Depending on the local configuration
there are two cases. When s points from left to right, we stabilize it twice, while if
it points from right to left, we stabilize on the other two strands. In both cases a
Legendrian Reidemeister 2 move reduces the problem to the p = 0 case, concluding
the argument. For illustration, see Figure B.8.
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Legendrian 

approximation Legendrian 

Reidemeister 2
move

Legendrian 

approximation
moves

Reidemeister 2

Legendrian 

Figure B.8. The effect of a transverse Reidemeister 3
move on the Legendrian approximation in case p = 2. The
two cases (depending on the orientation of the strand s containing
the two crossings) are given in the two rows.

Legendrian 

Reidemeister 2
move

Legendrian 

Reidemeister 2
move

approximation

Legendrian 

Legendrian 

approximation

Figure B.9. The effect of a transverse Reidemeister 3
move on the Legendrian approximation in case p = 3. We
choose a strand on which two modifications of Figure 12.16 can
be applied, and then apply appropriate Legendrian Reidemeister
moves to reduce the problem to the p = 0 case.

Finally we consider the case when p = 3. It is easy to see that we can always
choose the three negative stabilizations in such a way that one of the strands is
stabilized twice. Once again, a Legendrian Reidemeister 2 move reduces to the
p = 0 case; see Figure B.9.

Proof of Theorem 12.5.9. Consider the front diagram D(T ) of the transverse
knot T . Approximate it by a Legendrian diagram (as shown in Figure 12.16) and
then consider the transverse push-off (as shown in Figure 12.15). In this way get a
transverse front diagram transverse planar isotopic to D(T ), verifying the existence
statement of the theorem.

One direction of the equivalence is simple. Indeed, if two Legendrian knot di-
agrams differ by a single negative stabilization, then their transverse push-offs are
transverse isotopic, since in the diagram the smoothing of the new cusps can be
straightened by a transverse planar isotopy. Furthermore, if two Legendrian knots
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Figure B.10. The effect of a Legendrian Reidemeister 1
move on the transverse push-off. The Legendrian move gives
rise to a transverse Reidemeister 2 move. Similar diagrams show
the change for the other orientation of the strand.

are Legendrian isotopic, then their transverse push-offs are transverse isotopic. In-
deed, a Legendrian planar isotopy translates to a transverse planar isotopy, the
Legendrian Reidemeister 2 and 3 moves immediately translate to transverse Rei-
demeister moves while the transformation of a Legendrian Reidemeister 1 move
requires a transverse Reidemeister 2 moves, as shown in Figure B.10. (An alterna-
tive argument was given in the proof of Proposition 12.5.5.)

The proof of the converse direction is the content of Proposition B.2.9.

B.3. The Reidemeister-Singer Theorem

In Chapter 2 we met three invariants of knots and links derived using an aux-
iliary choice of a Seifert surface for K: the Alexander polynomial, the signature
and the determinant. The independence of these quantities from the choice of the
Seifert surface was established using the Reidemeister-Singer Theorem, which re-
lates various Seifert surfaces of a given link. This section is devoted to the proof of
this theorem; our approach here follows [9].

Fix an oriented link �L. From a Seifert surface Σ of �L further Seifert surfaces
can be obtained by stabilizing Σ (see Figure 2.12): fix an arc in R3 connecting two
points in Σ, approaching it from the same side, called a stabilizing arc, and attach
a handle to Σ supported in a neighborhood of this path, to obtain a stabilization
Σ′ of Σ. Also, we say that Σ is a destabilization of Σ′. With this language in place,
we can state the Reidemeister-Singer Theorem:

Theorem B.3.1 (Reidemeister-Singer, [195, 212]). Any two Seifert surfaces
of a given link in S3 become ambient isotopic after an appropriate sequence of
stabilizations and destabilizations.

We describe first an important ingredient in this proof, Seifert’s algorithm for

constructing a Seifert surface associated to a link diagram for an oriented link �L.
This algorithm proceeds as follows. Form the oriented resolution of each crossing
in the diagram. The resulting configuration on the plane will consist of a collection
of disjoint oriented circles, called Seifert circles (or Seifert circuits). Regard the
plane as the subset {z = 0} ⊂ R3, and lift each disk bounded by a Seifert circle to
a parallel copy of the disk in R3, lifting those disks contained inside k ≥ 0 nested
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Figure B.11. Seifert’s algorithm. The knot diagram on the
left is resolved to obtain the collection of Seifert circles in the mid-
dle (where the crossing points are still indicated by dotted lines),
which are turned into a Seifert surface as illustrated on the right.

Figure B.12. Crossings of bands in the projection. By at-
taching an appropriate tube, locally we can turn the surface to an
algorithmic surface.

Seifert circles into the affine plane {z = k}. Restore the crossings by attaching half-
twisted bands that connect various translated disks, as specified by the crossings in
the given diagram. This procedure gives a possibly disconnected, oriented surface
with the given link as oriented boundary. We call such a surface an algorithmic
surface. See Figure B.11 for an example. It is straightforward to see that this
surface can be stabilized to get a Seifert surface.

Lemma B.3.2. Any Seifert surface of a given oriented link �L can be isotoped
and stabilized until it is an algorithmic surface.

Proof. Consider a Seifert surface Σ for the link �L. Since a Seifert surface is
connected, Σ can be realized as a single disk D, and a union of bands attached
along the boundary of D. We can isotop Σ so that the disk projects injectively
to the plane, and we can think of the bands as thin neighborhoods of their core
curves, which core curves immerse into the plane minus the image of D. (Compare
the proof of Proposition 3.4.11.) By general position, the core curves intersect
each other in double points. By shrinking the bands and then twisting them if
necessary, we can assume that projections of the bands meet each other in squares
that immerse into the plane with opposite orientation, as shown in Figure B.12.

Stabilize Σ′ at each crossing between the bands, as shown on the right diagram
of Figure B.12. The resulting surface Σ′ is the algorithmic surface Σalg associated
to the projection of ∂Σ′.

A link diagram naturally gives rise to another surface in R3 whose boundary is
�L, the black surface (Definition 2.7.1), obtained by gluing the black domains in the
chessboard coloring together along half-twisted bands to restore the crossings. In

Section 2.7, a diagram is called special if Fb is a Seifert surface for �L. The above
proof gives the following result of independent interest, which was stated earlier as
Lemma 2.7.6:
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Figure B.13. Three different orientation types for Reide-
meister 2 moves. Perform a Reidemeister 2 move locally in the
square. The middle and the one on the right are “oppositely ori-
ented” as in Lemma B.3.5.

Proposition B.3.3. Any link �L admits a special diagram.

Proof. For the projection D constructed in the proof of Lemma B.3.2, Σalg(D)
is Fb.

Returning to the proof of the Reidemeister-Singer theorem, it remains to check
that the algorithmic surfaces change by isotopies, stabilizations, and destabiliza-
tions under the various Reidemeister moves. We start with some special cases.

Lemma B.3.4. If D and D′ are two knot projections that differ by a Reidemeis-
ter 1 move, then their algorithmic surfaces Σalg(D) and Σalg(D′) are isotopic.

Proof. Suppose that D′ has one more crossing than D. Observe that Σalg(D′)
is obtained from Σalg(D) by adding one more disk, connected to Σalg(D) by a half
twisted band. Untwist the band to get the isotopy to Σalg(D).

Lemma B.3.5. Suppose that D′ is obtained from D by a single Reidemeister 2
move supported over a disk U , so that the two strands crossing each other (twice)
are oriented oppositely. (See Figure B.13.) Then their respective algorithmic sur-
faces Σalg(D) and Σalg(D′) are either isotopic, or they become isotopic after a
stabilization.

Proof. Label the diagrams so that D′ has two more crossings than D. Consider
a disk U in the link diagram that meets the two strands in D, oriented oppositely.
There are four combinatorially distinct cases, according to how the two arcs close
up in the Seifert circles: (1) the two arcs are part of the same Seifert circle that
bounds a disk D meeting U in one component, (2) the two arcs are part of the same
Seifert circle that bounds a disk D meeting U in two components, (3) the two arcs
are part of two distinct Seifert circles that are not nested, and finally (4) the two
arcs are part of two distinct Seifert circles that are nested. See Figure B.14.

In case (1), Σalg(D) and Σalg(D′) are isotopic, via an isotopy that introduces
two canceling twists in the band corresponding to D, as illustrated in the top row
of Figure B.15. In cases (2)-(4), Σalg(D) can be stabilized to obtain a surface which
is isotopic to Σalg(D′). The local pictures for cases (2) and (3) look the same, as in
the second row of Figure B.15; the local picture for case (4) is shown in the third
row of Figure B.15.
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(1)

(4)

(3)(2)

Figure B.14. Cases of Reidemeister 2 moves with oppo-
sitely oriented strands. We separate how the two local arcs
complete to Seifert circles, as shown.

s

s

Figure B.15. Algorithmic surfaces and Reidemeister 2
moves. We have indicated sequences of isotopies and stabiliza-
tions that connect algorithmic surfaces under oppositely oriented
Reidemeister 2 moves. Unmarked arrows between pictures indi-
cate isotopies, and those labelled with “S” indicate stabilizations.
Stabilizing arcs are indicated before each stabilization.

Suppose that D′ is obtained from D by a Reidemeister 3 move supported over
a disk U containing the three strands with three crossings. The oriented resolution
of the three crossings give three disjoint strands in D (and possibly a further circle).
The strands are said to be compatibly oriented if the three incoming ends of the
strands in U (and hence also the three out-going ends) are consecutively ordered
in the cyclic ordering of ∂U . Clearly, the three strands for D in U are oriented
compatibly if an only if the corresponding three strands for D′ in U are oriented
compatibly. In this case, we call the Reidemeister move compatibly oriented; oth-
erwise, we say it is incompatibly oriented. See Figure B.16.

Locally, inside U , if we consider an unoriented Reidemeister 3 move, there are
8 different orientations we could introduce, corresponding to the orientations of the
3 strands. Of these 8 orientations, 6 are compatibly oriented, and 2 are not.

Lemma B.3.6. If D and D′ differ from each other by a compatibly oriented
Reidemeister 3 move, then the surfaces Σalg(D) and Σalg(D′) are isotopic.
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Figure B.16. Compatibly oriented Reidemeister 3 moves.
The first two are compatibly oriented; the last one is not.

Figure B.17. Sliding bands to effect Reidemeister 3 moves.
In the picture we perform a coherently oriented Reidemeister 3
move on the diagram (in the first picture). We have circled the
crossing whose associated band, in the algorithmic surface (second
picture) is to be slid over the other two bands (as indicated by the
two arrows of the second picture), to give the algorithmic surface
(third picture) for the diagram after the Reidemeister move (fourth
picture).

Proof. Seifert’s algorithm starts from a collection of disks that bound the oriented
resolution D0 of D. D0 meets U in three parallel, compatibly oriented strands. First
add bands for the crossings outside U , and then attach three half-twisted bands
to reintroduce the three crossings in U . Sliding one of these three bands across
the other two gives the isotopy between Σalg(D) and Σalg(D′). We can identify
the moving band as follows. Thinking of the strands as pointing upwards, there
is a middle strand and two strands that cut across it, that we call cross strands.
We claim that at least one of the two cross strands crosses the other two strands
with the same sign. (If this were not the case, the diagram in D ∩ U would be
alternating, and hence the Reidemeister 3 move would not be possible.) Slide the
band for the remaining crossing over the two bands attached to this cross strand.
See Figure B.17.

Proof of Theorem B.3.1. Lemma B.3.2 reduces the problem to show that any
two algorithmic surfaces become isotopic after stabilizations. Theorem B.1.1 fur-
ther reduces to the verification that algorithmic surfaces remain isotopic, up to
stabilizations, under the three Reidemeister moves.

Isotopy invariance of the algorithmic surface up to stabilizations, for most cases
of the Redemeister moves, was verified in Lemmas B.3.5, B.3.5 and B.3.6. The
remaining two cases, i.e. Reidemeister 2 moves where the strands are oriented in
the same direction and incompatibly oriented Reidmeister 3 moves, can be reduced
to the earlier cases, as illustrated in Figure B.18.
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Figure B.18. Reducing moves. Expressing the remaining Rei-
demeister moves in terms of those studied previously.

B.4. Cromwell’s Theorem

In this section we give a proof of Cromwell’s Theorem 3.1.9 that identifies the
local moves needed to connect any two grid diagrams representing isotopic links.
Our proof is similar in spirit to Dynnikov’s proof [37].

Recall that the grid moves on a planar grid diagram refer to the commuta-
tion moves (Definition 3.1.6) and the stabilizations and destabilizations (Defini-
tion 3.1.7).

Theorem B.4.1 (Cromwell, [27]). Two planar grid diagrams represent equiv-
alent links if and only if there is a finite sequence of grid moves that transform one
into the other.

We will prove Theorem B.4.1 by approximating knot projections by grid dia-
grams. More formally:

Definition B.4.2. Let D be a diagram for an oriented link. A grid approx-
imation to D is a planar grid diagram whose associated oriented link diagram is
planar isotopic to D.

A key step in the proof is the following proposition, which we prove after some
preparatory lemmas and definitions.

Proposition B.4.3. Any diagram for an oriented link has a grid approxima-
tion. Furthermore, this grid approximation is unique up to grid moves.

We study knot diagrams via their projection to the y-axis R ⊂ R2.

Definition B.4.4. The projection of a diagram D to the y axis has two kinds
of special points: critical points and crossings between two arcs. A diagram D is
called a bridge diagram if the following conditions are met:

• crossings are not critical points of the projection;
• the critical points of the projection are isolated minima and maxima;
• no two special points project to the same value.

A diagram D in general position is a bridge diagram; in particular, any diagram
can be approximated by an arbitrarily small (C2) perturbation by bridge diagrams.
The special points in a bridge diagram inherit an ordering induced by their y values.

Definition B.4.5. A planar grid diagram G is called bridge-like if the fol-
lowing conditions are satisfied:

• Each horizontal segment contains at most one crossing.
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• A horizontal segment is a local maximum or a local minimum if and only
if it contains no crossings.

Tilting the horizontal segments without introducing new local minima or max-
ima and then smoothing out the corners transforms a bridge-like grid diagram into
a bridge diagram. The resulting bridge diagram is called the smoothing of the given
bridge-like grid diagram.

Conversely, given a bridge diagram, we will construct a bridge-like grid diagram
in Lemma B.4.10. This construction will involve an intermediate object.

Definition B.4.6. A pre-grid diagram is a planar diagram with the following
properties:

• all the arcs are composed of vertical or horizontal segments, and
• all the vertical segments cross over the horizontal ones.

It is called generic if all the horizontal segments project to different y values,
and all the vertical segments project to different x values. Two generic pre-grid
diagrams D0 and D1 are said to be combinatorially equivalent if they can be
connected by a one-parameter family of generic pre-grid diagrams.

Obviously, a grid diagram gives a generic pre-grid diagram in the above sense.

Lemma B.4.7. For each generic pre-grid diagram E , there is a unique grid
diagram whose associated projection is combinatorially equivalent to D. Moreover,
if two generic pre-grid diagrams can be connected by a one-parameter family of (not
necessarily generic) pre-grid diagrams with the same number of segments, then their
associated grid diagrams differ by commutation moves.

Proof. If E is a generic pre-grid diagram, it has n horizontal segments, whose
y-coordinates are y1 < · · · < yn and n vertical segments, whose x-coordinates are
x1 < · · · < xn. Move the horizontal segment whose y-coordinate is yi to one whose
y-coordinate is i − 1

2 . Move the vertical ones to half-integral coordinates similarly.
The result is a grid diagram.

In a generic one-parameter family of pre-grid diagrams, there are finitely many
values where two horizontal arcs project to the same y-coordinate, or two vertical
ones project to the same x-coordinate. As we pass through each of these values,
the associated grid diagrams undergo a single commutation move.

Lemma B.4.8. Given any planar grid diagram G, there is a bridge-like grid
diagram G′ that can be obtained from G by a finite sequence of grid moves.

Proof. The diagram G is not bridge-like if (1) there are horizontal segments that
are local maxima or local minima that contain crossings; or (2) there are horizontal
segments that contain no crossings that are not local maxima or minima; or (3)
there are horizontal segments that contain more than one crossing.

Segments of the first kind can be stabilized so that they become two segments,
where one is a local maximum or local minimum and the other contains the cross-
ings. Segments of the second kind can be stabilized so that they become two seg-
ments, one of which is a local maximum and the other which is a local minimum.
Segments of the third kind can be eliminated as follows. Suppose a horizontal seg-
ment contains k crossings. Stabilize k − 1 times at one of the two corners of this
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Figure B.19. Turning a grid diagram into a bridge-like
grid diagram.

segment, and then commute the newly-created short vertical segments so that they
separate the crossings. These three steps are illustrated in Figure B.19.

We are now ready to associate a bridge-like grid diagram to a bridge diagram.
To express the uniqueness of this construction, it is useful to have the following:

Definition B.4.9. Two bridge diagrams D0 and D1 are bridge isotopic if
they can be connected by a smoothly varying one-parameter family {Ds}s∈[0,1] of
bridge diagrams.

Lemma B.4.10. Given a bridge diagram D, there is a bridge-like grid diagram
whose smoothing is bridge isotopic to D; and any two such bridge-like grid diagrams
can be connected by a sequence of commutation moves.

Proof. Associate first to any bridge diagram D a pre-grid diagram E , as follows.
Decompose D into vertical slices y0 < y1 < . . . < yn so that D projects to [y0, yn]
and each interval [yi, yi+1] contains the y coordinate of at most one special point.
The diagram E is built out of pieces constructed from the slices R × [yi, yi+1], as
follows. If there are no special points in R × [yi, yi+1], replace the segments in D
by vertical segments; otherwise replace it with a planar isotopic picture containing
exactly one horizontal segment and all other vertical segments, with the constraint
that vertical segments cross over horizontal ones. See Figure B.20. Fit the pieces
together, starting from the bottom piece, and successively attaching higher pieces,
stretched horizontally as needed so that the vertical strands going off the bottom
of the new piece match with the vertical strands going off the top of the previous
one. The resulting pre-grid diagram E might not be generic (different horizontal

Figure B.20. Approximating a bridge diagram by a grid diagram.

arcs have distinct y values by construction; but different vertical arcs need not
have distinct x values); but it has a small perturbation E ′ that is. Let G be a grid
diagram whose associated projection is combinatorially equivalent to the generic
pre-grid diagram E ′; this exists by Lemma B.4.7. If E ′ is sufficiently close to E , the
smoothing of G is bridge isotopic to D, verifying the existence statement in our
lemma.
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Figure B.21. The three types of bridge moves needed to
connect bridge diagrams. Top left is a birth/death move; top
right is a crossing slide; the bottom row shows two of the 16 possible
special point commutations (between crossings and critical points).

The grid diagram G constructed above is uniquely defined up to commutation
moves (independent of the choice of E ′) according to Lemma B.4.7. In fact, if G is
any bridge-like grid diagram whose smoothing is bridge isotopic to D, the diagram G
itself can be obtained from the above procedure. The claimed uniqueness statement
(up to commutations) follows.

Lemma B.4.10 associates to a bridge isotopy class of bridge diagram a grid
diagram, determined uniquely up to commutation moves. We will now examine
how the bridge isotopy class changes under a generic planar isotopy. Note that
under a planar isotopy the number of crossings does not change, but the maxima
and minima can interact with each other, or with the crossings, and the ordering
on the special points can change. We formalize these changes as follows:

Definition B.4.11. Two bridge diagrams D1 and D2 are said to be related by
a bridge move if D2 is obtained from D1 by one of the three possible moves:

• creation of a pair of a local maximum and a local minimum, or the can-
cellation of such a pair; either is called a birth/death move,

• sliding a crossing through a minimim or maximum, called a crossing
slide,

• commuting a pair of special points (each of which can be a maximum,
minimum, or a crossing), called a special point commutation .

See Figure B.21 for illustrations of these bridge moves.

Lemma B.4.12. Any two planar isotopic knot diagrams can be transformed into
each other by a finite sequence of bridge moves.

Proof. Fix two bridge diagrams D0 and D1. By hypothesis, these two bridge
diagrams can be connected by a planar isotopy {Ds}s∈[0,1]. It follows from a general
position argument that if the planar isotopy {Ds}s∈[0,1] is chosen generically, then
there are finitely many values of s ∈ (0, 1) for which Ds is not a bridge diagram; at
each of these special values, for sufficiently small ε, the bridge diagrams Ds−ε and
Ds+ε are related by one of the bridge moves enumerated in Definition B.4.11.
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Figure B.22. Realizing bridge moves as grid moves. In
the top row, we realize a birth/death move as grid moves; in the
bottom, we realize a cross slide. In the top row, we mark the
break points by X- and O-markings arbitrarily; in the bottom
row, these markings are dropped. Arrows marked with c indicate
commutation moves, and those with s indicate stabilizations. Note
that the fourth step in the second row is a repeated application of
commutation moves.

Proof of Proposition B.4.3. First isotop the diagram to a bridge diagram (which
is unique up to bridge moves). Lemma B.4.10 associates to each bridge diagram
D a grid diagram G, which is well-defined up to commutation moves. We claim
that if D1 and D2 are planar isotopic diagrams, then their associated planar grid
diagrams can also be connected by a sequence of commutation and stabilization
moves. Lemma B.4.12 reduces this to a verification in the case where D1 and D2

are related by a birth/death move, a crossing slide, or a special point commutation,
where the verification is easy. The first two are illustrated in Figure B.22; special
point commutations can be readily realized by commutation moves.

In effect, we have now defined a map F which associates to a link diagram D
modulo planar isotopies a grid diagram F (D), modulo grid moves. To complete
the proof, we verify that if G is a grid diagram, and D(G) is its associated link
diagram, then F (D(G)) and G are equivalent under grid moves. In the special case
where G is bridge-like, this follows from Lemma B.4.10. The general case can be
reduced to this case by Lemma B.4.8.

Proof of Theorem B.4.1. It is straightforward to see that grid moves represent
equivalent links: a commutation give rise to either a planar isotopy or a sequence of
Reidemeister 2 and 3 moves; while a stabilization gives either a planar isotopy or a
Reidemeister 1 move. Turning to the converse direction, in view of Theorem B.1.1
and Proposition B.4.3, it suffices to show that if D1 and D2 differ by any Reide-
meister move, we can find grid approximations to D1 and D2 that differ by grid
moves. This is illustrated in Figure B.23.

Remark B.4.13. Cromwell’s original proof [27] uses the interpretation of grid
diagrams as braids. (See Section 12.8.) A theorem of Markov [11] (see also [220])
gives the basic moves that connect braids that determine isotopic links. Cromwell’s
proof then follows Markov’s moves with grid moves.

B.4.1. Legendrian knots and Cromwell’s theorem. The methods de-
scribed above can be adapted to the Legendrian context. According Theorem 12.1.7,
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Figure B.23. Reidemeister moves in grid diagrams. Each
move can be realized by (de)stabilizations and commutations.

Legendrian knots and links can be studied via their front projection, using the Leg-
endrian Reidemeister moves (shown in Figure 12.2).

Adapting the proof of Cromwell’s theorem in combination with the above result,
we can express Legendrian knot theory in S3 in terms of grid diagrams. (As usual,
we will discuss the case of knots; the general case requires only minor modifications.)

It will be useful to have the following terminology:

Definition B.4.14. For a planar grid diagram, we call commutation moves
and (de)stabilizations of type X:NW, X:SE, O:SE, and O:NW Legendrian grid
moves .

As explained in Chapter 12, a planar grid diagram can be used to construct a
Legendrian front projection. The adaptation of Theorem B.4.1 to the Legendrian
case states:

Theorem B.4.15. The Legendrian knots �K1 and �K2 associated to the planar
grid diagrams G1 and G2 are Legendrian isotopic if and only if G1 and G2 can be
connected by a sequence of Legendrian grid moves.

The proof is given after some preliminaries. We start by showing how to asso-
ciate a grid diagram to a Legendrian front projection. Recall from Definition B.2.2
that a Legendrian front projection has two kinds of special points: cusps and cross-
ings. A Legendrian knot was called front generic if its singularities are cusps, no
cusp is on another branch, and different branches meet transversally, without triple
intersections.

Start from a generic front projection, which we denote by D�K, and rotate it 90◦,
so that the left cusps become local minima and the right cusps become local max-
ima, which we now smooth out. Switch all the crossings (note that a grid diagram
G associates a Legendrian knot in the mirror of the knot type represented by G, cf.
Definition 12.2.1). The result is a bridge diagram, in the sense of Definition B.4.4.
In a typical bridge diagram, there are two types of allowed crossings; but in the
bridge diagram arising from a Legendrian front projection, there is only one type
of allowed crossing. Lemma B.4.10 in turn associates to the bridge diagram a grid
diagram, unique up to commutation moves.

Lemma B.4.16. If D1 and D2 are two front generic projections of Legendrian
knots that differ by a Legendrian planar isotopy, then their associated grid diagrams
G1 and G2 differ by a sequence of commutations.

Proof. If two Legendrian front projections are Legendrian planar isotopic, then
their associated bridge diagrams differ by a sequence of special point commutations,
in the sense of Definition B.4.11: none of the other two types of bridge moves can
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c s

Figure B.24. Eliminating horizontal segments that are not
local maxima or minima. Eliminate crossingless intervals (with
northwest and southeast corners) by a sequence of commutation
moves and a (Legendrian) destabilization.

occur. These special point commutations can be followed by commutation moves
in the associated grid diagrams, as in the proof of Proposition B.4.3.

Observe that the construction of a grid diagram from a Legendrian knot pro-
jection produces a bridge-like grid diagram. In fact, it is a special bridge-like grid
diagram, in the following sense (compare with Definition B.4.5):

Definition B.4.17. A grid diagram G is called Legendrian bridge-like if
the following conditions are satisfied:

• A horizontal segment with a southwest corner on it is a local minimum,
and one with a northeast corner on it is a local maximum.

• Each horizontal segment contains at most one crossing.
• A horizontal segment is a local maximum or a local minimum if and only

if it contains no crossings.

We will need the following refinement of Lemma B.4.8:

Lemma B.4.18. For any grid diagram G, there is a Legendrian bridge-like dia-
gram G′ that can be obtained from G by a finite sequence of Legendrian grid moves.

Proof. We adapt the proof of Lemma B.4.8. At each southwest corner in G
that either contains crossings or is not a local minimum, we can stabilize G in a
Legendrian manner, so that the new southwest corner occurs at a local minimum
without crossings. Further Legendrian stabilizations can be done to ensure that
the northeast corners are at local maxima, without crossings.

Next, we eliminate the horizontal segments that are not local maxima or local
minima and that contain no crossings. Note that the corners of these segments are
northwest and southeast. In the proof of Lemma B.4.8, we stabilized to eliminate
these segments; but such a stabilization is not Legendrian, so we eliminate them
now differently. If the horizontal segment is of length one, then we apply row
commutations and commute it down until it meets the other marking in the column
of its left endpoint. A Legendrian destabilization of X:SE or O:SE eliminates this
horizontal segment; see Figure B.24.

If the segment has length d > 1, we can reduce d by commutation moves
as follows. Suppose that the right endpoint of the horizontal segment connects
to a vertical segment above the horizontal segment, so the left endpoint connects
to a vertical segment below the horizontal. Take the leftmost vertical segment
above the horizontal segment, if it exists. Apply repeated commutation moves to
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this segment, moving it to the left, until it is no longer above the distinguished
horizontal segment, to reduce to a case where the horizontal segment has length
less than d. If there is no leftmost vertical segment above the horizontal segment,
take a rightmost vertical segment below the horizontal segment, and commute it to
the right to reduce d. Note that if there is no vertical segment above or below the
given horizontal one, then d = 1.

Eliminating all the horizontal segments with no crossings that are not maxima
or minima, we obtain a new grid diagram G′, which still may have horizontal
segments that have more than one crossing. These segments are eliminated as in
the proof of Lemma B.4.8 by stabilizations and commutations. Since the endpoints
of these segments are northwest and southeast corners, the stabilizations we use
are Legendrian.

With these preliminaries in place, we turn to the proof of the Legendrian ana-
logue of Cromwell’s theorem:

Proof of Theorem B.4.15. Any oriented Legendrian knot �K admits a generic
front projection; fix one and call it D�K. Lemma B.4.16 associates a grid diagram,
up to commutation moves, to a Legendrian front projection, up to Legendrian pla-
nar isotopies. As the diagram undergoes Legendrian Reidemeister moves, observe
that the associated grid diagram undergoes Legendrian grid moves: Reidemeister 2
and 3 moves can be realized by commutation moves, and Legendrian Reidemeister 1
moves are realized by Legendrian stabilizations and destabilizations. (Compare Fig-
ure B.23.) Thus, by Theorem 12.1.7, we have defined a map f from Legendrian
knots (up to isotopy) to grid diagrams, up to Legendrian grid moves.

In the other direction, Definition 12.2.1 associates a Legendrian knot to a planar
grid diagram, and Lemma 12.2.4 shows that this descends to a well-defined map g
from grid diagrams up to Legendrian grid moves to Legendrian knots.

We verify that these two maps are inverses to one another. The fact that �K
is Legendrian isotopic to g(f(�K)) is straightforward. It remains to see that for a
planar grid diagram G, f(g(G)) is equivalent to G under Legendrian grid moves.
If G is Legendrian bridge-like in the sense of Definition B.4.17, then its associated
Legendrian projection has the property that its associated grid diagram (according
to Lemma B.4.16) differs from G by commutation moves. Thus, f(g(G)) and G are
equivalent, as desired. Lemma B.4.18 reduces the general case to this special case,
concluding the proof.

B.5. Normal forms of cobordisms between knots

In the proof of the slice genus bound provided by the knot signature and by
the τ -invariant (Theorem 2.6.6 and Corollary 8.1.2 respectively) the normal form
theorem (stated as Proposition 2.6.11 in Section 2.6) played a crucial role. In this
section we verify Proposition 2.6.11, which we restate below:

Proposition B.5.1. Suppose that two knots K1, K2 ⊂ S3 can be connected by
a genus g oriented cobordism W ⊂ [0, 1] × S3. Then, there are knots K ′

1, K
′
2 ⊂ S3

and integers b and d with the following properties:

(1) Ub(K1) can be obtained from K ′
1 by b simultaneous oriented saddle moves.

(2) K ′
1 and K ′

2 can be connected by a sequence of 2g oriented saddle moves.
(3) Ud(K2) can be obtained from K ′

2 by d simultaneous oriented saddle moves.
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Recall that Un(K) is the (n + 1)-component link with one component K and
n further unknotted, unlinked components; the definition of oriented saddle moves
(and simultaneous oriented saddle moves) was given in Definition 2.6.10.

In the proof of Proposition B.5.1 we will appropriately isotop the surface W
in [0, 1] × S3. We will appeal to standard arguments and concepts from Morse
theory [142]. (See also Section B.1.1.)

Let f : M → R be a Morse function on a compact n-dimensional manifold M ,
and suppose that for some value c ∈ R the level set f−1(c) contains a unique critical
point of index λ. Then for sufficiently small ε the sublevel set f−1((−∞, c+ ε]) can
be constructed by adding an n-dimensional λ-handle to f−1((−∞, c − ε]); see for
example [142, Theorem 3.1]. For the definition of a λ-handle in general, see [77,
Definition 4.1.1].

In fact, we will need this result only in dimension n = 2. In this case, the
Morse lemma shows that we can find local coordinates (x1, x2) in a local chart
U = (x1, x2) around a critical point p, corresponding to x1 = x2 = 0, with respect
to which the function takes the form

• f(x) = c + x2
1 + x2

2 and so c = f(p) is a local minimum, or
• f(x) = c − x2

1 − x2
2 and so f(p) is a local maximum, or

• f(x) = c − x2
1 + x2

2. In this case, f−1((−∞, c + ε]) is obtained from
f−1((−∞, c − ε]) by attaching a 2-dimensional 1-handle, that is, a band.

A Morse function is called self-indexing if its value at any critical point is equal to its
index. As [143, Theorem 4.8] shows, every smooth manifold admits a self-indexing
Morse function.

We will need a variant of the above theory, associated to cobordisms between
knots in the product of an interval with S3. To make notation somewhat simpler,
from now on the cobordism between the copies of S3 containing K1 and K2 will be
identified with [−1, 3]×S3. The embedding of W into [−1, 3]×S3, followed by the
projection onto the [−1, 3] factor defines a function, fW : W → [−1, 3].

Definition B.5.2. The cobordism W ⊂ [−1, 3] × S3 is in normal form if
the function fW is Morse and it maps all the index-0 critical points on W to 0, the
index-1 critical points to 1, and the index-2 critical points to 2; that is, fW is a
self-indexing Morse function on W .

Lemma B.5.3. ([100, Theorem 13.1.8], see also [101]) A smooth cobordism W
can be isotoped into normal form.

Proof. We start by dealing with index-0 (and symmetrically index-2) critical
points of fW . We can assume that all critical points map into the interval [0, 2].
For an index-0 critical point (if it is not already in f−1

W (0)) consider an arc in
[0, 2] × S3 starting at the critical point and ending in {0} × S3, chosen so that the
restriction of the the projection function to the arc has no critical points, and away
from its starting point the arc is disjoint from W . (The existence of such an arc
follows from a general position argument.) There is a local isotopy of W supported
in a neighborhood of the arc that pushes the critical point down into {0} × S3.
Index-2 critical points can be handled symmetrically by arcs starting at the critical
point and ending in {2} × S3.

Next we deal with the index-1 critical points. Our aim is to show that two
index-1 critical points can be pushed into the same level. Suppose that t1 < t2
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(a) (c)

(b)

t0 + ε

t0 − ε

t0

t0 + ε

t0

t0 − ε

Figure B.25. Turning a cobordism into normal form. The
figure in (a) shows how an index-1 critical point can be converted
to a saddle band. Figures in (b) and (c) show how to arrange that
the transported bands become disjoint from the bands in the new
level. In (b) and (c) the lighter shading denotes the transported
band from level t1.

are two levels containing index-1 critical points with the additional property that
f−1
W ((t1, t2)) contains no critical points. By isotoping W we replace the critical

points by embedded bands, called saddle bands, as shown by Figure B.25(a). Isotop
the surface so that the entire band is in a level set. (After this isotopy, the projection
is no longer Morse.)

After this modification, the cobordism becomes trivial between the levels t1
and t2, since there are no critical values between t1 and t2. This means that after
an isotopy (keeping f−1

W ((−∞, t1]) fixed) it can be assumed that the cobordism is
the product cobordism between these two levels. Along the product cobordism,
however, we can transport the saddle bands from level t1 to t2. If a transported
band (from level t1) is disjoint from all the bands in level t2, then it will serve
as a saddle band there (and can be converted back to an index-1 critical point,
now on level t2). It can happen, however, that a transported band B intersects
some other bands in level t2. The band we wish to transport can be viewed as a
slight two-dimensional thickening of its one-dimensional core arc, so we examine
how the core arc of the band can meet the other bands. The intersection is either
at an endpoint of the core arc, or at an interior point. In case the intersection is
at an endpoint, isotop the transported band slightly away, as illustrated in Fig-
ure B.25(b). In case the intersection point is an interior point of the core, we isotop
the transported band (and hence the cobordism W ) as indicated in Figure B.25(c).
After these modifications we have a cobordism isotopic to the original one with the
additional property that all index-1 critical points from level t1 are moved to level
t2. Repeating this procedure for all the finitely many critical points of index 1, we
get a surface isotopic to the original cobordism with the desired properties.
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Exercise B.5.4. Using the normal form, show that a knot K is slice if and only
if there is a ribbon knot R such that K#R is ribbon. (For the definition of slice and
ribbon knots see Section 2.4; cf. the slice-ribbon conjecture from Remark 2.6.3.)

Proposition B.5.1 now follows from a slight modification of the normal form:

Proof of Proposition B.5.1. Suppose that W ⊂ [−1, 3] × S3 is a cobordism
between the knots K1 and K2, and assume (by Lemma B.5.3) that it is in normal
form. Then the link f−1

W (0.1) can be identified with Ub(K1) (for some b ∈ N) and

similarly f−1
W (1.9) can be identified with Ud(K2) (for some d ∈ N), where b and

d are given by the number of index-0, resp. index-2 critical points of the Morse
function fW . Index-1 critical points define bands (i.e. 1-handles), and since W is
connected, there are b index-1 critical points such that the corresponding handles
turn f−1

W (0.1) = Ub(K1) into a knot K ′
1, and there are d further index-1 critical

points such that the corresponding handles turn f−1
W (1.9) = Ud(K2) into a knot K ′

2.
Transporting the b index-1 critical points which connect Ub(K1) to level 0.2, and
the d index-1 critical points making Ud(K

′
2) connected to level 1.8, and denoting

the resulting Morse function by gW , the level sets g−1
W (0.5) and g−1

W (1.5) provide
the desired knots K ′

1 and K ′
2. (Note that since all the transported index-1 critical

points are on levels 0.2 or 1.8, we get simultaneous saddle moves from them.) The
remaining index-1 critical points provide a sequence of n oriented saddle bands
between K ′

1 and K ′
2. Since the Euler characteristic of F , which we assumed to be

−2g, is given by b + d minus the total number of saddles, it follows that there are
n = 2g saddles in the sequence of 1-handles from K ′

1 to K ′
2, completing the proof

of the proposition.
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[134] C. Manolescu and P. Ozsváth. On the Khovanov and knot Floer homologies of quasi-

alternating links. In Proceedings of Gökova Geometry-Topology Conference 2007, pages
60–81. Gökova Geometry/Topology Conference (GGT), Gökova, 2008.
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[177] P. Ozsváth and Z. Szabó. On knot Floer homology and lens space surgeries. Topology,

44(6):1281–1300, 2005.
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vector space, 73

black

graph, 175

surface, 37

Borromean rings, 45

bridge index, 168

canonical decomposition

domain, 309

central extension, 295

chain

complex, 347

Z-filtered, 247
Z-filtered chain homotopy, 249

bigraded, 348

conjugate, 275
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sign assignment, 300
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of surfaces, 211
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connecting homomorphism, 350
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structure, 215
standard, 216

cross-commutation, 48, 56, 115
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cyclic permutation, 49
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graded, 256

sign-refined, 310
determinant, 22
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dual complex, 133

Euler characteristic, 85

graded, 130
exact

sequence, 350

triangle, 152
exotic R4, 147

extended grid diagram, 143
extension

non-split, 298
spin, 297

factorizaton
horizontal type, 310

vertical type, 310
figure-eight knot, 16, 66

filtered
chain homotopy equivalent, 249

quasi-isomorphism type, 250
stabilization map, 283

filtration
algebraic, 275
initial, 275

level, 248
five lemma, 352

flattened surface, 59
nearly, 59

four-ball genus, 33
Fox calculus, 29

Fox-Milnor condition, 33, 341
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contact, 217

front projection, 217
fundamental domain, 66

gauge transformation, 292

genus
four-ball, 33

Seifert, 21, 339
slice, 33

graded Euler characteristic, 130
grid

bridge index, 168

complex
bigraded, 137

collpased, 137
double-point enhanced, 110

filtered, 252
fully blocked, 72
multi-filtered, 288

sign-refined, 293
simply blocked, 80, 138

simply blocked, filtered, 254
unblocked, 75

diagram, 43
Borromean rings, 45

Conway knot, 44

extended, 143

fundamental group, 63

Kinoshita-Terasaka knot, 44

planar, 43, 168

toroidal, 49

trefoil knot, 44

homology, 73

collapsed, 136, 137

double-point enhanced, 110

fully blocked, 73, 138

Kanenobu knot, 185

of mirror, 133

polytope, 191

pretzel knot, 185

quasi-alternating link, 184

sign-refined, 294

simply blocked, 80, 190

simply blocked, bigraded, 138

structure of, 131

symmetry of, 132

torus knot, 185

twist knot, 185
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uncollapsed, 188

index, 43

invariant

Legendrian, 223

transverse, 236

Legendrian

knot, 221

matrix, 52

move, 47

commutation, 46

cross-commutation, 48

cyclic permutation, 49

destabilization, 47

stabilization, 46

number, 43

planar realization, 49

state, 65

xNWO ,xSWO , 68

writhe, 168

handlebody, 325

Heegaard

decomposition, 325

diagram, 325

(1,1), 326

doubly-pointed, 326

multi-pointed, 334

Hessian, 370

hexagon, 96

empty, 96

holomorphic strip, 328

homogeneous element, 76

homology, 347

Hopf link, 17
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swicth, 99

knot, 13
(1,1), 326
alternating, 18, 29, 40, 174

Conway, 17
determinant, 22

diagram, 14
equivalence, 13

fibered, 18
figure-eight, 16, 66

group, 14
Kanenobu, 31, 164, 185
Kinoshita-Terasaka, 17

Legendrian, 215
pretzel, 15

ribbon, 32, 33
signature, 22, 34

slice-ribbon conjecture, 33
torus, 15, 340
transverse, 215

trefoil, 15
twist, 16

knot Floer homology, 331

Legendrian
grid invariant, 123, 223

isotopy, 217
knot, 217

associated to a planar grid, 221
destabilization, 219
stabilization, 219

non-simple, 220
Reidemeister theorem, 218, 374

simple, 220
link, 13

alternating, 18
determinant, 23

diagram, 14
equivalence, 13
grid homology, 136

group, 14
quasi-alternating, 167

signature, 25
split, 23

link Floer homology, 333
linking number, 20

map, homogeneous, 348
mapping cone, 100, 103, 352

Maslov
function, 68

grading, 68, 331, 348
merge move, 139

Milnor Conjecture
torus knots, 121

module

rank of, 359

moduli space, 329

Morse

function, 370

theory, 370

move

commutation, 91

destabilization, 47

merge, 139
saddle, 35

split, 139

stabilization, 46, 100

switch, 99

multi-filtered grid complex, 288

mutation, 342

nearest point map, 93, 116

nondegenerate critical point, 370

normal form, 35, 395

nugatory crossing, 174

pair, alternative, 292

pentagon, 92, 116

empty, 93

pesudo-holomorphic strip, 330

planar realization, 49, 66

polytope

Alexander, 210

grid homology, 191

Thurston, 212

pretzel knot, 15, 185

quasi-alternating link, 167, 174

grid homology, 184

quasi-isomorphism, 103, 349

filtered, 250

quaternion, 321

rank, 359

module, 114

rectangle, 66
empty, 67

merge, 312

swap, 312

Reidemeister move, 14, 367

Legendrian, 218

transverse, 232

ribbon

knot, 32

singularity, 36

rotation number, 217

saddle move, 35, 139
Seifert

form, 22

framing, 30

genus, 21

Conway, 130
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Kinoshita-Terasaka, 130

matrix, 22

surface, 20, 57

Conway knot, 62

Kinoshita-Terasaka knot, 62

stabilization, 20, 382

Seifert’s algorithm, 382

shift, 80

sign assignment, 292

sign-refined

destabilization, 310

grid

complex, 293

homology, 294

signature, 22

skein

exact sequence, 151

relation, 27, 151

sequence

sign-refined, 319

unoriented, 176

triple, 55, 319

grid realization, 55

oriented, 27

unoriented, 171

slice

Bennequin inequality, 230

disk, 33

genus, 33

torus knot, 136

surface, 32

topologically, 34, 147

slice-ribbon conjecture, 33, 397

special diagram, 38, 384

spectral sequence, 275

spin

extension, 297

group, 295, 321

rotation, 296

split move, 139

stabilization, 20, 46, 110, 219, 382

map, 110

filtered, 283

types, 47

surface

algorithmic, 383

Seifert, 20

slice, 32

switch, 48, 123

symmetric

group, 295

spin extension, 298

product, 327

τ (tau-invariant)

τ -set, 140

estimate, 126

of a knot, 113, 114, 321

of a link, 140
of mirror, 134

Thurston
norm, 212
polytope, 212
semi-norm, 212

Thurston-Bennequin invariant, 217

topologically slice, 34, 147
toroidal grid diagram, 49
torsion, 343, 358

U-torsion, 358
submodule, 114

torus
knot, 15, 87, 163, 185

τ , 120
negative, 15

link, 15, 185
transposition, 295

generalized, 297
transverse

grid invariant, 236
isotopy, 231
knot, 231
push-off, 233
Reidemeister theorem, 232

transversely
non-simple, 236
simple, 236

trefoil, 86, 163
Whitehead double of, 149

twist knot, 16, 163, 185

uncollapsed grid homology, 188
unknotting

bound, 25, 115
signed, 25, 122

number, 24, 113
unnormalized determinant, 22, 168
unoriented skein triple, 171

Whitehead double, 30, 149
Whitney

disk, 328
umbrella, 368

winding number, 52
writhe, 20, 168


	Chapter 1. Introduction
	1.1. Grid homology and the Alexander polynomial
	1.2. Applications of grid homology
	1.3. Knot Floer homology
	1.4. Comparison with Khovanov homology
	1.5. On notational conventions
	1.6. Necessary background
	1.7. The organization of this book
	1.8. Acknowledgements

	Chapter 2. Knots and links in 𝑆³
	2.1. Knots and links
	2.2. Seifert surfaces
	2.3. Signature and the unknotting number
	2.4. The Alexander polynomial
	2.5. Further constructions of knots and links
	2.6. The slice genus
	2.7. The Goeritz matrix and the signature

	Chapter 3. Grid diagrams
	3.1. Planar grid diagrams
	3.2. Toroidal grid diagrams
	3.3. Grids and the Alexander polynomial
	3.4. Grid diagrams and Seifert surfaces
	3.5. Grid diagrams and the fundamental group

	Chapter 4. Grid homology
	4.1. Grid states
	4.2. Rectangles connecting grid states
	4.3. The bigrading on grid states
	4.4. The simplest version of grid homology
	4.5. Background on chain complexes
	4.6. The grid chain complex \GCm
	4.7. The Alexander grading as a winding number
	4.8. Computations
	4.9. Further remarks

	Chapter 5. The invariance of grid homology
	5.1. Commutation invariance
	5.2. Stabilization invariance
	5.3. Completion of the invariance proof for grid homology
	5.4. The destabilization maps, revisited
	5.5. Other variants of the grid complex
	5.6. On the holomorphic theory
	5.7. Further remarks on stabilization maps

	Chapter 6. The unknotting number and 𝜏
	6.1. The definition of 𝜏 and its unknotting estimate
	6.2. Construction of the crossing change maps
	6.3. The Milnor conjecture for torus knots
	6.4. Canonical grid cycles and estimates on 𝜏

	Chapter 7. Basic properties of grid homology
	7.1. Symmetries of the simply blocked grid homology
	7.2. Genus bounds
	7.3. General properties of unblocked grid homology
	7.4. Symmetries of the unblocked theory

	Chapter 8. The slice genus and 𝜏
	8.1. Slice genus bounds from 𝜏 and their consequences
	8.2. A version of grid homology for links
	8.3. Grid homology and saddle moves
	8.4. Adding unknots to a link
	8.5. Assembling the pieces: 𝜏 bounds the slice genus
	8.6. The existence of an exotic structure on ℝ⁴
	8.7. Slice bounds vs. unknotting bounds

	Chapter 9. The oriented skein exact sequence
	9.1. The skein exact sequence
	9.2. The skein relation on the chain level
	9.3. Proofs of the skein exact sequences
	9.4. First computations using the skein sequence
	9.5. Knots with identical grid homologies
	9.6. The skein exact sequence and the crossing change map
	9.7. Further remarks

	Chapter 10. Grid homologies of alternating knots
	10.1. Properties of the determinant of a link
	10.2. The unoriented skein exact sequence
	10.3. Grid homology groups for alternating knots
	10.4. Further remarks

	Chapter 11. Grid homology for links
	11.1. The definition of grid homology for links
	11.2. The Alexander multi-grading on grid homology
	11.3. First examples
	11.4. Symmetries of grid homology for links
	11.5. The multi-variable Alexander polynomial
	11.6. The Euler characteristic of multi-graded grid homology
	11.7. Seifert genus bounds from grid homology for links
	11.8. Further examples
	11.9. Link polytopes and the Thurston norm

	Chapter 12. Invariants of Legendrian and transverse knots
	12.1. Legendrian knots in \R³
	12.2. Grid diagrams for Legendrian knots
	12.3. Legendrian grid invariants
	12.4. Applications of the Legendrian invariants
	12.5. Transverse knots in \R³
	12.6. Applications of the transverse invariant
	12.7. Invariants of Legendrian and transverse links
	12.8. Transverse knots, grid diagrams, and braids
	12.9. Further remarks

	Chapter 13. The filtered grid complex
	13.1. Some algebraic background
	13.2. Defining the invariant
	13.3. Topological invariance of the filtered quasi-isomorphism type
	13.4. Filtered homotopy equivalences

	Chapter 14. More on the filtered chain complex
	14.1. Information in the filtered grid complex
	14.2. Examples of filtered grid complexes
	14.3. Refining the Legendrian and transverse invariants: definitions
	14.4. Applications of the refined Legendrian and transverse invariants
	14.5. Filtrations in the case of links
	14.6. Remarks on three-manifold invariants

	Chapter 15. Grid homology over the integers
	15.1. Signs assignments and grid homology over \Z
	15.2. Existence and uniqueness of sign assignments
	15.3. The invariance of grid homology over \Z
	15.4. Invariance in the filtered theory
	15.5. Other grid homology constructions over \Z
	15.6. On the 𝜏-invariant
	15.7. Relations in the spin group
	15.8. Further remarks

	Chapter 16. The holomorphic theory
	16.1. Heegaard diagrams
	16.2. From Heegaard diagrams to holomorphic curves
	16.3. Multiple basepoints
	16.4. Equivalence of knot Floer homology with grid homology
	16.5. Further remarks

	Chapter 17. Open problems
	17.1. Open problems in grid homology
	17.2. Open problems in knot Floer homology

	Appendix A. Homological algebra
	A.1. Chain complexes and their homology
	A.2. Exact sequences
	A.3. Mapping cones
	A.4. On the structure of homology
	A.5. Dual complexes
	A.6. On filtered complexes
	A.7. Small models for filtered grid complexes
	A.8. Filtered quasi-isomorphism versus filtered homotopy type

	Appendix B. Basic theorems in knot theory
	B.1. The Reidemeister Theorem
	B.2. Reidemeister moves in contact knot theory
	B.3. The Reidemeister-Singer Theorem
	B.4. Cromwell’s Theorem
	B.5. Normal forms of cobordisms between knots

	Bibliography
	Index
	surv-208-cover.pdf
	Peter S. Ozsvath, Andras I. Stipsicz, and Zoltan Szabo


