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Abstract

We prove that for every set S of tournaments the following are equivalent:

• there exists k such that every member of S has pathwidth at most k

• there is a digraph H such that no subdivision of H is a subdigraph of any member of S

• there exists k such that for each T ∈ S, there do not exist k vertices of T that are pairwise
k-connected.

As a consequence, we obtain a polynomial-time algorithm to test whether a tournament contains
a subdivision of a fixed digraph H as a subdigraph.



1 Introduction

In this paper, all digraphs are finite, and may have loops or parallel edges. A digraph is a tournament
if it has no loops, and for every pair of distinct vertices u, v, there is exactly one edge with set of
ends {u, v}. A digraph is simple if it has no loops, and for every pair of distinct vertices u, v there
is at most one edge with tail u and head v. A digraph is semi-complete if it is simple and for every
pair of vertices u, v there is at least one edge with set of ends {u, v}.

Let G be a digraph and let V (G), E(G) denote the set of vertices and edges of G, respectively.
Let P,Q be directed paths of G such that P is from u to v and Q is from u′ to v′. Then P and Q

are internally-disjoint if V (P ) ∩ V (Q) = {u, v} ∩ {u′, v′}. Let u, v ∈ V (G). By κG(u, v) we denote
the maximum number of internally-disjoint paths from u to v in G (we often just write κ(u, v) if it
is clear which digraph we are dealing with). If uv ∈ E(G) then κ(u, v) is infinite. The vertices u, v

are k-vertex-connected (or just k-connected) if κ(u, v) ≥ k and κ(v, u) ≥ k.
Let X,Y ⊆ V (G) be disjoint. We say that X is complete to Y if xy ∈ E(G) for all x ∈ X and all

y ∈ Y . We say that X is matched to Y if |X| = |Y | and there exist edges e1, . . . , e|X| with ei = xiyi

such that x1, . . . , x|X|, y1, . . . , y|X| are all distinct. Let k be an integer and let A,B,C ⊆ V (G) be
disjoint with |A| = |B| = |C| = k. We say that (A,B,C) is a k-triple if A is complete to B, B is
complete to C, and C is matched to A.

Let G,H be digraphs. Then G is a subdivision of H if it can be obtained from H by repeatedly
deleting an edge uv, adding a new vertex w, and adding two new edges uw and wv. A digraph
G contains a subdivision of a digraph H as a subdigraph if and only if there exists a map η, with
domain V (H) ∪ E(H) that satisfies the following.

• η(v) ∈ V (G) for each v ∈ V (H)

• η(u) 6= η(v) for distinct u, v ∈ V (H)

• for each non-loop edge e = uv of H, η(e) is a path of G from η(u) to η(v)

• for each loop e of H incident with v, η(e) is a directed cycle of G passing through η(v)

• if e, f ∈ E(H) are distinct with e = uv and f = xy, then

V (η(e)) ∩ V (η(f)) = {η(u), η(v)} ∩ {η(x), η(y)}.

We call such a map an expansion of H in G.
Given a digraph D, a sequence W = [W1, . . . ,Wr] of subsets of V (D) is a path decomposition of

D if the following conditions are satisfied:

(i)
⋃r

i=1 Wi = V (D)

(ii) Wi ∩ Wk ⊆ Wj for 1 ≤ i < j < k ≤ r

(iii) for each edge uv ∈ E(D), either u, v ∈ Wi for some i or u ∈ Wi, v ∈ Wj for some i > j.

We call W1, . . . ,Wr the terms of the path decomposition. The width of a path decomposition is

max
1≤i≤r

(|Wi| − 1).

The pathwidth of D is the minimum width over all path decompositions of D.
The main result of this paper is the following.
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1.1 For every set S of semi-complete digraphs, the following are equivalent:

1. there exists k such that every member of S has pathwidth at most k

2. there is a digraph H such that no subdivision of H is a subdigraph of any member of S

3. there exists k such that for each T ∈ S, there does not exist a k-triple in T

4. there exists k such that for each T ∈ S, there do not exist k vertices of T that are pairwise
k-connected.

The proof is given in the next section. We note that the equivalence of 1.1.3 and 1.1.4 is due
to Maria Chudnovsky, Alex Scott, and the second author. We include the proof here (with the
permission of its authors) because it naturally fits into this paper and does not appear anywhere
else.

In [3] we proved a theorem of a similar flavor to 1.1 in which we showed that nine statements
were equivalent for every set S of semi-complete digraphs (and in fact for a somewhat larger class of
digraphs). One of the statements was

• there exists k such that for each T ∈ S, there do not exist k vertices of T that are pairwise
k-edge-connected.

We also showed that the statements from [3] are not equivalent to the statements of 1.1.
As a consequence of the theorem in [3], we obtained a polynomial-time algorithm to test whether a

semi-complete digraph T contains an immersion of a fixed digraph D (immersion is like expansion but
with vertex-disjoint paths replaced by edge-disjoint paths; for a proper definition see [3]). Similarly,
as a consequence of 1.1, we obtain a polynomial-time algorithm to test whether a semi-complete
digraph T contains an expansion of a fixed digraph D. This is the subject of Section 3. We note here
that it is important that D is semi-complete because the analogous problem for general digraphs is
NP-complete.

We need a few more definitions. For A,B ⊆ V (T ), the pair (A,B) is a separation of order l if

• A ∪ B = V (T ),

• |A ∩ B| = l, and

• there are no edges from A \ B to B \ A.

Note that for a separation (A,B) in a semi-complete digraph, the set B \ A is complete to A \ B.
We say that the set A∩B is the cut corresponding to the separation (A,B). Two separations (A,B)
and (C,D) cross unless one of the following holds:

(i) C ⊆ A and B ⊆ D

(ii) A ⊆ C and D ⊆ B.

A set of separations is cross-free if no two of its members cross.

1.2 Let G be a digraph and t ≥ 0 be a integer. Let S be a cross-free set of separations with
|S| = t. Then the members of S can be ordered (A1, B1), . . . , (At, Bt) such that A1 ⊆ · · · ⊆ At and
Bt ⊆ · · · ⊆ B1.
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Proof. For t = 1 there is nothing to prove. We proceed by induction on t. Let (A1, B1) be the
separation in S with |A1| − |B1| as small as possible. Then for all other separations (A,B) ∈ S,
A1 ⊆ A and B ⊆ B1. By induction, the members of S \(A1, B1) can be ordered (A2, B2), . . . , (At, Bt)
such that A2 ⊆ · · · ⊆ At and Bt ⊆ · · · ⊆ B2. Now (A1, B1), . . . , (At, Bt) is the desired ordering of
the members of S. This proves 1.2.

2 The main proof

In this section we prove 1.1. We begin with some definitions and preliminary results.
Let G be a digraph and let U ⊆ V (G). We say that U is a k-jungle in G if |U | = k and for all

u, v ∈ U , u and v are k-connected. A separation (A,B) of G is an l-separator of U if |U\A|, |U\B| ≥ l.
We say that U is (k, l)-separable if there exists an l-separator of U of order ≤ k.

2.1 Let T be a semi-complete digraph and let (A,B), (C,D) be separations of T . Then either
A ∪ D = V (T ) or B ∪ C = V (T ).

Proof. Let X = V (T ) \ (B ∪C), Y = V (T ) \ (A ∪D). Suppose that both X and Y are non-empty,
and let x ∈ X and y ∈ Y . Since (A,B) is a separation, yx 6∈ E(T ) and since (C,D) is a separation,
xy 6∈ E(T ). This contradicts that T is semi-complete. Therefore, one of X and Y is empty, and so
either A ∪ D = V (T ) or B ∪ C = V (T ). This proves 2.1.

2.2 Let G be a digraph and let (A,B), (A′, B′), and (C,D) be separations in G. Suppose that (A,B)
and (A′, B′) do not cross (C,D). Then (A ∩ A′, B ∪ B′) and (A ∪ A′, B ∩ B′) do not cross (C,D).

Proof. Let (X,Y ) = (A∩A′, B ∪B′) and (W,Z) = (A∪A′, B ∩B′). If A∪A′ ⊆ C and D ⊆ B ∩B′

then X,W ⊆ C and D ⊆ Y,Z, and we are done. By symmetry we may assume that A 6⊆ C so since
(A,B) and (C,D) do not cross, C ⊆ A and B ⊆ D. If C ⊆ A′ and B′ ⊆ D, then C ⊆ X,W and
Y,Z ⊆ D, and again we win. So we may assume that A′ ⊆ C and B′ ⊆ D. But then X ⊆ C ⊆ W

and Z ⊆ D ⊆ Y , and this proves 2.2.

Next, we prove that there exists a function f such that every semi-complete digraph that contains
an f(k)-jungle also contains a k-triple. We begin with some preliminary results. For an integer k,
let R(k, k) denote the Ramsey number, that is the smallest integer such that every red-blue coloring
of the edges of the complete graph on R(k, k) vertices contains a monochromatic clique of size k

(R(k, k) exists for all k by Ramsey’s theorem [4]).

2.3 Let k be an integer and let r = R(2k, 2k). Let T be a semi-complete digraph, and let A,B ⊆
V (T ) be disjoint with A = {a1, . . . , ar} and B = {b1, . . . , br}. Then there exists X ⊆ {1, . . . , r} with
|X| = k such that either aibj ∈ E(T ) for all i < j with i, j ∈ X or bjai ∈ E(T ) for all i < j with
i, j ∈ X.

Proof. Let H be the complete graph on r vertices with V (H) = {v1, . . . , vr}. For i < j, color
the edge vivj red if aibj ∈ E(T ) and blue otherwise. The result now follows from the definition of
Ramsey number.
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2.4 Let T be a semi-complete digraph. Let k ≥ 0 be an integer, let r = R(2k, 2k) and s = 2r.
Suppose there exist disjoint A,B,C ⊆ V (T ) with |A| = |B| = |C| = s such that A is complete to B,
B is matched to C, and C is matched to A. Then T contains a k-triple.

Proof. Let A = {a1, . . . , as}, B = {b1, . . . , bs}, and C = {c1, . . . , cs} such that bi-ci-ai is a two-edge
path for all 1 ≤ i ≤ s. The semi-complete digraph G|B has 2r vertices and therefore contains a
subdigraph which is a transitive tournament on r vertices. Hence, we may assume that bibj ∈ V (T )
for all 1 ≤ i < j ≤ r. By 2.3, and after possibly renumbering the vertices, we may assume that
either bicj ∈ E(T ) for all 1 ≤ i < j ≤ 2k or cjbi ∈ E(T ) for all 1 ≤ i < j ≤ 2k. In the former case,
let A′ = {ak+1, . . . , a2k}, B′ = {b1, . . . , bk}, and C ′ = {ck+1, . . . , c2k}; then (A′, B′, C ′) is a k-triple
in T . So we may assume that cjbi ∈ E(T ) for all 1 ≤ i < j ≤ 2k. But then let A′ = {b1, . . . , bk},
B′ = {bk+1, . . . , b2k}, and C ′ = {ck+1, . . . , c2k}; it follows that (C ′, A′, B′) is a k-triple. This proves
2.4.

2.5 Let T be a semi-complete digraph. Let k ≥ 0 be an integer and let r = R(2k, 2k). Suppose there
exist disjoint A,B,C,D ⊆ V (T ) with |A| = |B| = |C| = |D| = r such that A is matched to B, B is
complete to C, C is matched to D, and D is complete to A. Then T contains a k-triple.

Proof. By 2.3, there exists A′ ⊆ A and C ′ ⊆ C with |A′| = |C ′| = k such that either A′ is
complete to C ′ or C ′ is complete to A′. By symmetry, we may assume that A′ is complete to C ′.
Let A′ = {a1, . . . , ak}, C ′ = {c1, . . . , ck} and D′ = {d1, . . . , dk}, where D′ ⊆ D and cidi is an edge
for 1 ≤ i ≤ k. Then (D′, A′, C ′) is a k-triple. This proves 2.5.

2.6 For all integers k ≥ 0, there exists an integer m ≥ 0 such that every semi-complete digraph T

that contains an m-jungle contains a k-triple.

Proof. Let k ≥ 0 be an integer and let s be as in the statement of 2.4. Let m = 212s. Let T

be a semi-complete digraph that contains an m-jungle, and suppose that T does not contain a k-
triple. Since every tournament with m vertices contains a transitive tournament with at least log2 m

vertices, T contains a subdigraph which is a transitive tournament whose vertex set, X say, is a
12s-jungle in T . Thus X can be partitioned into (X1,X2) such that |X1| = |X2| = 6s and X1 is
complete to X2. Since X is a 12s-jungle, there are 6s pairwise vertex-disjoint paths from X2 to X1 in
T . Let R be a minimal induced subdigraph of T such that X ⊆ V (R) and there are 6s vertex-disjoint
paths from X2 to X1 in R. Thus, for every v ∈ V (R) there is a separation (A,B) of R of order 6s
such that X2 ⊆ A, X1 ⊆ B, and v ∈ A∩B (note that (X1, V (R)) and (V (R),X2) are separations of
order 6s in R). Let S be a maximal cross-free collection of separations of order 6s such that X2 ⊆ A

and X1 ⊆ B for each (A,B) ∈ S, and subject to that

⋃

(A,B)∈S

A ∩ B

is as large as possible. By 1.2, it follows that the members of S can be ordered (A1, B1), . . . , (At, Bt)
such that A1 ⊆ · · · ⊆ At and Bt ⊆ · · · ⊆ B1. For 1 ≤ q ≤ t, let Cq = Aq ∩ Bq.

(1) C1 ∪ · · · ∪ Ct = V (R).
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Suppose there exists v ∈ V (R) such that v 6∈ C1 ∪ · · · ∪ Ct. Let (A,B) be a separation of R of
order 6s such that v ∈ A ∩ B, X2 ⊆ A, X1 ⊆ B, and subject to that (A,B) crosses as few members
of S as possible. Let C = A ∩ B. Since (A,B) 6∈ S, it follows from the maximality of S that (A,B)
crosses at least one member of S; say it crosses (Ap, Bp). From 2.2 it follows that the separations
(A∩Ap, B∪Bp) and (A∪Ap, B∩Bp) cross strictly fewer members of S than (A,B). Since they both
separate X2 from X1 it follows that neither one has order less than 6s; and since the sum of their
orders is 12s, each of them has order exactly 6s. But v is in the cut of at least one of the two sepa-
rations, contrary to our choice of (A,B). Therefore, there is no such v and so C1 ∪ · · · ∪Ct = V (T ).
This proves (1).

Let P1, . . . , P6s be disjoint paths from X2 to X1. Let P = {P1, . . . , P6s}. For 1 ≤ i ≤ 6s let ai

and bi be the first and second vertices of Pi, respectively, and let yi and zi be the second to last and
last vertices of Pi, respectively. We call V (Pi) \ {ai, zi} the set of internal vertices of Pi.

Let v1- · · · -vq be the vertices of Pi in order. From the minimality of R it follows that for all
1 ≤ j ≤ q, the set {vj+1, . . . , vq} is complete to {v1, . . . , vj−1}.

(2) No Cq contains internal vertices of at least s members of P.

Suppose some Cq contains internal vertices from s members of P, say vj ∈ V (Pj) for 1 ≤ j ≤ s. For
1 ≤ j ≤ s, let uj be the vertex of Pj immediately preceding vj and let wj be the vertex immediately
following vj . Let U = {u1, . . . , us}, V = {v1, . . . , vs}, and W = {w1, . . . , ws}. Then U is matched
to V , V is matched to W , and W is complete to U . Thus, by 2.4, R (and hence also T ) contains a
k-triple, a contradiction. This proves (2).

Choose q maximum such that |Cq ∩ X2| ≥ 3s. Note that q 6= t. It follows that |Cq+1 ∩ X2| < 3s.

(3) |(Cq ∩ X2) \ Cq+1| < s.

Let |(Cq ∩ X2) \ Cq+1| = l. We may assume that (Cq ∩ X2) \ Cq+1 = {a1, . . . , al}. Then from
(1) it follows that bi ∈ Cq+1 for 1 ≤ i ≤ l. Now by (2) we have that l < s. This proves (3).

From (3) and the fact that |Cq+1 ∩ X2| < 3s, it follows that |Cq ∩ X2| < 4s. So Cq contains at
most 4s vertices of X2 and by (2) it contains at most s internal vertices of members of P. It follows
that |X1 ∩ Cq| ≥ s vertices of X1. Without loss of generality, we may assume that a1 . . . , as ∈ Cq

and that zs+1, . . . , z2s ∈ Cq. Let B′ = {b1, . . . , bs} and Y ′ = {ys+1, . . . , y2s}; then since (Aq, Bq) is a
separation, B′ is complete to Y ′. Now let A′ = {a1, . . . , as} and Z ′ = {zs+1, . . . , z2s}. Note that A′

is matched to B′, B′ is complete to Y ′, Y ′ is matched to Z ′, and Z ′ is complete to A′. Consequently,
by 2.5, T contains a k-triple. This proves 2.6.

Next, we prove that if a semi-complete digraph T does not have a k-jungle for some k, then T

has pathwidth bounded by a function of k. Once again, we begin with some lemmas and definitions.

2.7 Let T be a semi-complete digraph and W ⊆ V (T ). Let (A1, B1), . . . , (At, Bt) be separations of
T of order < k with |(Aq \ Bq) ∩ W | < l for 1 ≤ q ≤ t. Then |

⋃t
q=1(Aq \ Bq) ∩ W | ≤ 2(l + k).

5



Proof. Let U =
⋃t

q=1(Aq \ Bq) ∩ W and let |U | = α. Then there exists v ∈ U with δ+
T |U (v) ≥ α−1

2 .

Since v ∈ U , it follows that there exists s such that v ∈ (As \ Bs) ∩ W . Since the order of (As, Bs)
is less than k, we conclude that δ+

T |U(v) < k + l. Hence, α ≤ 2(l + k). This proves 2.7.

Remark : We can switch the roles of Aq and Bq in the statement of 2.7.

2.8 Let T be a semi-complete digraph that does not have a k-jungle, and let W ⊆ V (T ) with
|W | ≥ 5k + 4l. Then W is (k, l)-separable.

Proof. Suppose that W is not (k, l)-separable. Let (A1, B1), . . . , (At, Bt) be the separations of T of
order < k with |(Aq \Bq)∩W | < l for all 1 ≤ q ≤ t and let (C1,D1), . . . , (Cs,Ds) be the separations
of T of order < k with |(Dq \ Cq) ∩ W | < l for all 1 ≤ q ≤ s. Note that these are all the separations
of T of order < k. Let X =

⋃t
q=1(Aq \ Bq) ∩ W and Y =

⋃s
q=1(Dq \ Cq) ∩ W . By 2.7 and the

remark, |X| ≤ 2(l + k) and |Y | ≤ 2(l + k). Let Z = W \ (X ∪ Y ). Since |W | ≥ 5k + 4l, it follows
that |Z| ≥ k and for every separation (A,B) of T of order < k either Z ⊆ A or Z ⊆ B. It follows
that Z is a k-jungle, a contradiction. This proves 2.8.

Let (A,B), (C,D) be separations of T that do not cross and suppose they have orders i, j,
respectively. Without loss of generality, suppose that A ⊆ C and D ⊆ B. We say that (A,B) and
(C,D) are θ-close if (B \ A) ∩ (C \ D) < θ|i − j|.

For an integer θ > 0, a bundle in T of order θ is a cross-free set B of separations of T , each of
order < θ, such that

(i) no two members of B are θ-close

(ii) if (A,B) is a separation of T of order i < θ then one of the following holds:

(a) (A,B) ∈ B

(b) (A,B) crosses some (C,D) ∈ B of order ≤ i

(c) (A,B) is θ-close to some (C,D) ∈ B of order ≤ i.

We refer to these as the first and second (bundle) axioms.

Next, we prove some results about bundles.

2.9 Let T be a semi-complete digraph with V = V (T ), and let B be a bundle in T . Then (∅, V ), (V, ∅) ∈
B.

Proof. Note that (∅, V ) and (V, ∅) are separations of order zero, and they do not cross and are
not θ-close to each other or any other separations of order 0. It now follows from the second bundle
axiom that (∅, V ), (V, ∅) ∈ B.

2.10 Let T be a semi-complete digraph and let θ > 0 be an integer. Then T contains a bundle of
order θ.
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Proof. Let (A1, B1), . . . , (At, Bt) be a list of all the separations of T of order < θ such that for all
1 ≤ p < q ≤ k, the order of (Ap, Bp) is at most that of (Aq, Bq) and with {(A1, B1), (A2, B2)} =
{(∅, V (T )), (V (T ), ∅)}.

We create a bundle in T of order θ as follows. Let B1 = {(A1, B1)}. For 2 ≤ q ≤ k, inductively
let Bq = Bq−1 ∪ {(Aq, Bq)} if (Aq, Bq) does not cross and is not θ-close to any members of Bq−1, and
let Bq = Bq−1 otherwise. Then it is clear that Bk is a bundle of order θ in T . This proves 2.10.

We now prove part of 1.1, the following.

2.11 If T has pathwidth ≥ 4θ2 + 7θ then T has a θ-jungle.

Proof. Suppose that T does not have a θ-jungle. By 2.10, T has a bundle B of order θ. Let
(A1, B1), . . . , (At, Bt) be all the members of B, ordered such that A1 ⊆ · · · ⊆ At and Bt ⊆ · · · ⊆ B1

(such an ordering exists by 1.2). Note that by 2.9, (A1, B1) = (∅, V ) and (At, Bt) = (V, ∅). For
1 ≤ q ≤ t, let Cq = Aq ∩ Bq. Next, for 1 ≤ q ≤ t − 1, let Xq = (Aq+1 \ Bq+1) ∩ (Bq \ Aq) and let
Wq = Xq ∪ Cq ∪ Cq+1. Then W = [W1, . . . ,Wn−1] is a path decomposition of T .

Since T has pathwidth ≥ 4θ2 + 7θ and |Cq| < θ for all 1 ≤ q ≤ t, it follows that |Xp| > 4θ2 + 5θ
for some 1 ≤ p ≤ t. By 2.8, Xp is (θ, θ2)-separable. Hence, there exists a separation (C,D) of T

of order < θ such that |Xp \ C|, |Xp \ D| ≥ θ2, and let (C,D) be such a separation that crosses as
few members of B as possible. Note that (C,D) 6∈ B since Xp 6⊆ C and Xp 6⊆ D. Let d be the order
of (C,D). Then by the second bundle axiom, either (C,D) crosses a member of B of order ≤ d or
(C,D) is θ-close to a member of B of order ≤ d.

(1) (C,D) crosses a member of B of order ≤ d.

Suppose not. Then (C,D) is θ-close to some (A,B) ∈ B of order e ≤ d. Suppose that A ⊆ C

and D ⊆ B. Then (B \ A) ∩ (C \ D) < θ(d − e) < θ2. Since (A,B) ∈ B, it follows that either
Xp ⊆ A \ B or Xp ⊆ B \ A. In the former case, it follows that Xp ⊆ A ⊆ C contradicting the fact
that |Xp \ C| > 0. In the latter case it follows that

|(B \ A) ∩ (C \ D)| ≥ |Xp ∩ (C \ D) ≥ θ2,

a contradiction. The case when C ⊆ A and B ⊆ D is analogous. This proves (1).

We may assume that (C,D) crosses some (Aq, Bq) ⊆ B of order ≤ d with q ≤ p (the case where q > p

is analogous). Let (Ar, Br) ∈ B be a separation of order ≤ d that crosses (C,D) with r as small as
possible.

(2) Br ∪ C = V (T ) and |D \ Br| < θ.

By 2.1 either Ar ∪ D = V (T ) or Br ∪ C = V (T ). Since r < p it follows that Ar ∩ Xp = ∅. Also,
since |(C \ D) ∩ Xp| > 0 it follows that Xp 6⊆ D. Therefore, Xp 6⊆ Ar ∪ D and so Ar ∪ D 6= V (T ).
Hence, Br ∪C = V (T ), and so the first part of (2) holds. Consequently, D \Br = (C ∩ D) \Br and
so |D \ Br| ≤ |D ∩ C| < θ. This proves (2).

Let e be the order of (Ar, Br); then e ≤ d. Then (Ar ∪ C,Br ∩ D) is a θ2-separator of Xp and
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by 2.2 it crosses strictly fewer members of B of order ≤ d than (C,D). Hence, from the way we chose
(C,D) we conclude that (Ar ∪C,Br ∩D) has order > d. It follows that (C ′,D′) = (C ∩Ar,D ∪Br)
has order f < e.

(3) For all (Aq, Bq) ∈ B of order ≤ f , the separations (C ′,D′) and (Aq, Bq) do not cross.

For q ≥ r, we have C ′ ⊆ Ar ⊆ Aq and Bq ⊆ Br ⊆ D′, and hence (C ′,D′) and (Aq, Bq) do not
cross. For q < r, it follows from our choice of (Ar, Br) that (Aq, Bq) and (C,D) do not cross since
the order of (Aq, Bq) is ≤ d. Hence, by 2.2, (Aq, Bq) and (C ′,D′) do not cross. This proves (3).

(4) (C ′,D′) 6∈ B.

By (2), C ∪ Br = V (T ) and so C ′ ∪ Br = V (T ). It follows that (D′ \ C ′) ∩ (Ar \ Br) = ∅ and
so since f < e, (C ′,D′) is θ-close to (Ar, Br). Therefore, (C ′,D′) 6∈ B. This proves (4).

From (3), (4) and the second bundle axiom, it follows that (C ′,D′) is θ-close to some (As, Bs) ∈ B
of order g ≤ f .

(5) s < r.

First, we know that s 6= r since the order of (Ar, Br) is e > f . Now suppose that s > r. Then
C ′ ⊆ Ar ⊆ As. Let Y = (D′ \ C ′) ∩ (As \ Bs). It follows from the definition of θ-close that
|Y | < θ(f − g). Let Z = (Br \ Ar) ∩ (As \ Bs). Since Br \ Ar ⊆ D′ \ C ′, we conclude that Z ⊆ Y .
But then

|Z| ≤ |Y | < θ(f − g) < θ(e − g),

implying that (Ar, Br) and (As, Bs) are θ-close. But (Ar, Br) and (As, Bs) are both members of B,
a contradiction. This proves (5).

Next, we show that As ⊆ C ′. Let R = (Bs \ As) ∩ (Ar \ Br). Then |R| > 0 since (As, Bs) and
(Ar, Br) are not θ-close. Since Br ∪ C ′ = V (G), it follows that Ar \ Br ⊆ C ′ and so R ⊆ C ′. But
R 6⊆ As and so C ′ 6⊆ As. Consequently, As ⊆ C ′ since (As, Bs) and (C ′,D′) do not cross.

Let Q = (Bs \ As) ∩ (C ′ \ D′). Then since (As, Bs) and (C ′,D′) are θ-close, it follows that
|Q| < θ(f − g); and since (As, Bs) and (Ar, Bs) are not θ-close, it follows that |R| ≥ θ(e− g). Hence,
|Q \ R| > θ. But

Q \ R ⊆ (Ar \ Br) \ (C ′ \ D′) ⊆ D′ \ Br = D \ Br

and |D \ Br| < θ by (2), a contradiction. We conclude that T has a θ-jungle and this proves 2.11.

We convert 2.11 to an algorithm as follows:

2.12 There is an algorithm with running time O(nθ+1), which, given as input a semi-complete
digraph T on n vertices and an integer θ ≥ 0, outputs either a true statement that T has a θ-jungle
or a path decomposition of T with width ≤ 4θ2 + 7θ.
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Proof. We may assume that θ ≥ 2. Construct a list (A1, B1), . . . , (At, Bt) of all the separations of
T of order < θ such that for all 1 ≤ p < q ≤ t, the order of (Ap, Bp) is at most that of (Aq, Bq). This
can be done in time O(nθ+1) by listing all subsets X of V (T ) of size at most θ − 1 and then finding
all separations of order zero of T \ X.

We construct a bundle in T of order θ as in the proof of 2.10. Next, as in the proof of 2.11,
for 1 ≤ q ≤ t − 1, let Xq = (Aq+1 \ Bq+1) ∩ (Bq \ Aq) and let Wq = Xq ∪ Cq ∪ Cq+1. Then
W = [W1, . . . ,Wt−1] is a path decomposition of T . If the width of W is at most 4θ2 + 7θ, then
output W . Otherwise, by 2.11, T has a θ-jungle, so output this statement.

Proof of 1.1. By 2.6 it follows that 1.1.3 implies 1.1.4 and by 2.11 it follows that 1.1.4 implies 1.1.1.
Therefore, it suffices to prove that 1.1.1 implies 1.1.2 and that 1.1.2 implies 1.1.3.

(1) For every digraph H there is an integer k ≥ 0 such that every semi-complete digraph that contains
an k-triple also contains a subdivision of H as a subdigraph. In particular, 1.1.2 implies 1.1.3.

Let V (H) = {h1, . . . , hr} and E(H) = {e1, . . . , es}; let k = max(r, s). We claim that this value
of k satisfies (1). Let T be a semi-complete digraph and let (A,B,C) be an k-triple in T . Let
A = {a1, . . . , ak}, B = {b1, . . . , bk}, and C = {c1, . . . , ck} such that ciai ∈ E(T ). For 1 ≤ i ≤ r define
η(hi) = bi. For 1 ≤ p ≤ s, let η(ep) be the directed path

η(hi) = bi-cp-ap-bj = η(hj),

where ep = hihj . It is easy to check that η is an expansion of H in G.

It remains to show that 1.1.1 implies 1.1.2. Let T be a semi-complete digraph and suppose that
the pathwidth of T is at most k. We will show that there exists a digraph H such that T does not
contain a subdivision of H.

Let T1, T2, T3 be transitive tournaments, each with k + 1 vertices and let H be obtained from
T1 ∪T2 ∪T3 by making V (Ti) complete to V (Ti+1) for i = 1, 2, 3, where the subscripts are to be read
modulo 3. Suppose that T contains a subdivision of H and let η be an expansion of H in T . Notice
that V (T1) is a set of k + 1 vertices of H that are pairwise (k + 1)-connected. Let U = η(V (T1)).
Then U is a (k + 1)-jungle in T . Let [W1, . . . ,Wr] be a path decomposition of T of width at most
k. It follows that there exist 1 ≤ i, j ≤ r and u, v ∈ U such that u ∈ Wi \ Wj and v ∈ Wj \ Wi.
Without loss of generality, we may assume that i < j. Then there exists a set X ⊆ V (T )\{u, v} with
|X| ≤ k such that every path from u to v contains a vertex of X. But u and v are k + 1-connected,
a contradiction. Therefore, T does not contain a subdivision of H. This proves that 1.1.1 implies
1.1.2 and completes the proof of 1.1.

We note here that in [5], Thomassen proved the equivalence of 1.1.2 and 1.1.4 without mentioning
1.1.1 or 1.1.3.

3 Testing for a subdivision

In this section we use 2.12 to give a polynomial-time algorithm to test whether a fixed digraph H is
topologically contained in a given semi-complete digraph T . As mentioned in the introduction, it is
important that T is semi-complete, since for general digraphs the analogous problem is NP-complete.
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We note that the algorithmic question of this section can also be solved by repeatedly running the
algorithm in [1], which solves the vertex-disjoint paths problem in semi-complete digraphs. We
present our algorithm because it is shorter and we believe it to be of interest in its own right.

The idea of our algorithm is as follows. Choose k as in 1.1 such that every digraph with a k-jungle
contains a subdivision of H. Now given as input a semi-complete digraph T , run 2.12 on T with this
value of k. If the output is a k-jungle, then we output that T contains a subdivision of H and we
are done. Otherwise, we get a path decomposition of T with width at most 4k2 + 7k; we can now
use this decomposition to test for a subdivision of H using dynamic programming. The remainder
of this section is devoted to explaining the dynamic programming in more detail.

We begin with some notation and a consequence of a result from [1].
Let G be a digraph and let P1, . . . , Pk be pairwise disjoint directed paths of G. If Pi is from ai

to bi for 1 ≤ i ≤ k, then the set of pairs

{(a1, b1), . . . , (ak, bk)}

is feasible in G.
Now let (v1, . . . , vn) be some enumeration of V (G) and let H = P1 ∪ · · · ∪ Pk. Then (P1, . . . , Pk)

is t-cohesive (with respect to this enumeration) if H|{vi+1, . . . , vn} is the disjoint union of at most t

directed paths for 0 ≤ i ≤ n. The set of pairs {(a1, b1), . . . , (ak, bk)} is then t-cohesively feasible with
respect to the given enumeration. Note that if a set T of pairs is t-cohesively feasible then |T | ≤ t.
The following is a consequence of a result that appears in [1].

3.1 For all t there is an algorithm as follows:

• Input: A digraph G and an enumeration (v1, . . . , vn) of its vertex set.

• Output: The set of all sets of pairs that are t-cohesively feasible in G (with respect to the
given enumeration).

• Running time: O(n3t+4).

A path decomposition W = [W1, . . . ,Wr] is nice if W1 = Wr = ∅ and for all i with 2 ≤ i ≤ r,
|(Wi \ Wi−1) ∪ (Wi−1 \ Wi)| = 1. Note that for a digraph G a nice path decomposition has exactly
2|V (G)| + 1 terms. The following is immediate.

3.2 Let G be a digraph with n vertices. For every k > 0, there is an algorithm which given a path
decomposition of G that has width at most k and such that no two consecutive terms are equal, finds
a nice path decomposition of G that has width at most k in O(n) time.

We can associate a vertex ordering with a nice path decomposition as follows. Let W =
[W1, . . . ,Wr] be a nice path decomposition. For each v ∈ V (G), there exists a unique i such that
v ∈ Wi and v 6∈ W1 ∪ · · · ∪ Wi−1. We say that i is the index of v. It is clear that no two vertices
have the same index and so there is a unique increasing index enumeration of V (G) with respect to
the decomposition W .

We need the following.
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3.3 Let G be a digraph and let W be a nice path decomposition of G that has width at most k. Let
(v1, . . . , vn) be the increasing index enumeration of V (G) with respect to W , and let P1, . . . , Pm be
vertex-disjoint paths in G. Then (P1, . . . , Pm) is (k + m)-cohesive with respect to the enumeration
(v1, . . . , vn).

Proof. Let Ai = {vi+1, . . . , vn} and let Gi = G|Ai. We need to show that for all 0 ≤ i ≤ n − 1,
H|Ai is the disjoint union of at most k + m directed paths, where H = P1 ∪ · · · ∪ Pm.

From the definition of nice path decomposition and increasing index enumeration, it follows that
there exist at most k vertices in V (G)\Ai with outneighbors in Ai. Let X be the set of such vertices.
For 1 ≤ j ≤ m, let |X ∩ V (Pj)| = xj. Then Pj |Ai is the disjoint union of at most xj + 1 directed
paths. Since

H|Ai =
m⋃

j=1

Pj |Ai

it follows that H|Ai is the disjoint union of at most m +
∑m

j=1 xj = m + k directed paths. This
proves 3.3.

As a consequence of 3.3 we can solve in polynomial time the vertex-disjoint paths problem in
digraphs with bounded pathwidth. We use this to obtain a polynomial-time algorithm to test for a
subdivision of a fixed digraph, also in digraphs with bounded pathwidth.

Let G,H be digraphs. Let η be an expansion of H in G. The frame of η is a map φ such that

• φ(v) = η(v) for each v ∈ V (H)

• for each e ∈ E(H) with e = uv, φ(e) = (x, y), where x = η(u) and y = η(v).

We now have:

3.4 For each digraph H with |V (H)| = r and |E(H)| = s and every integer k ≥ 0, there exists an
algorithm as follows:

• Input: A digraph G with n vertices and a path decomposition W of G that has width at most
k and such that no two consecutive terms are equal.

• Output: The set of all frames of expansions of H in G.

• Running time: O(nk+rs).

Proof. Let V (H) = {h1, . . . , hr}. For every injective map φ from V (H) to V (G) do the following:
For 1 ≤ i ≤ r, replace the vertex φ(hi) by a set Xi such that

• |Xi| is the number of edges incident with hi, counting loops twice

• Xi is complete to all the outneighbors of φ(hi) and complete from all the inneighbors of φ(hi).

Let the resulting digraph be G′. Then we use W to obtain a path decomposition of G′ of width at
most k + (r − 1)s, and we can run 3.2 on it to obtain a nice path decomposition W ′. Compute the
increasing index enumeration of V (G′) with respect to W ′. Let this enumeration be (v1, . . . , vm).
Run 3.1 with t = k + rs and with input G′ and this enumeration. For each set of pairs outputted by
the algorithm, we determine whether in G it corresponds to a frame of an expansion of H in constant
time (after identifying all the vertices in Xi for each 1 ≤ i ≤ r). Moreover, by 3.3, every frame of an
expansion of H will arise in such a way. This proves 3.4.
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Finally, we have the main result of this section.

3.5 Let H be a digraph with |V (H)| = r and |E(H)| = s. Let m = 2r(r+2), p = R(2m, 2m), and
θ = 212·2p

. Then there is an algorithm with running time O(nrs+4θ2+7θ), which given as input a
semi-complete digraph T with |V (T )| = n outputs yes or no, depending on whether there exists a
subdivision of H in T .

Proof. Let θ be as in the statement of the theorem. Then every semi-complete digraph that contains
a θ-jungle contains a subdivision of H. Run 2.12 with input T and θ. If the output is a θ-jungle,
return that a subdivision exists. Otherwise, run 3.4 on the outputted pathwidth decomposition (of
width at most 4θ2 + 7θ). If 3.4 returns at least one frame of a subdivision, return that a subdivision
exists. Otherwise, return that a subdivision does not exist.

We note that we can modify the algorithm to actually return a subdivision if one exists, instead
of just a yes answer. We omit the details.
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