Disjoint paths in unions of tournaments

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton, NJ 08544, USA
Alex Scott
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544, USA
July 11, 2014; revised May 15, 2018

[^0]
Abstract

Given k pairs of vertices $\left(s_{i}, t_{i}\right)(1 \leq i \leq k)$ of a digraph G, how can we test whether there exist vertex-disjoint directed paths from s_{i} to t_{i} for $1 \leq i \leq k$? This is NP-complete in general digraphs, even for $k=2$ [4], but in [3] we proved that for all fixed k, there is a polynomial-time algorithm to solve the problem if G is a tournament (or more generally, a semicomplete digraph). Here we prove that for all fixed k there is a polynomial-time algorithm to solve the problem when $V(G)$ is partitioned into a bounded number of sets each inducing a semicomplete digraph (and we are given the partition).

1 Introduction

A linkage in a digraph G is a family $L=\left(P_{i}: 1 \leq i \leq k\right)$ of pairwise vertex-disjoint directed paths of G. (With a slight abuse of terminology, we call k the cardinality of L, and P_{1}, \ldots, P_{k} its members.) Let $s_{1}, t_{1}, \ldots, s_{k}, t_{k}$ be distinct vertices of a digraph G. We call $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$ a problem instance. A linkage $L=\left(P_{i}: 1 \leq i \leq k\right)$ in G is for the problem instance if P_{i} is from s_{i} to t_{i} for each i. The k vertex-disjoint paths problem is to determine whether there is a linkage for a given problem instance. Fortune, Hopcroft and Wyllie [4] showed that this is NP-complete, even for $k=2$. This motivates the study of subclasses of digraphs for which the problem is polynomial-time solvable.

In this paper, all digraphs are finite, and without loops or parallel edges; thus if u, v are distinct vertices of a digraph then there do not exist two edges both from u to v, although there may be edges $u v$ and $v u$. Also, by a "path" in a digraph we always mean a directed path. A digraph is a tournament if for every pair of distinct vertices u, v, exactly one of $u v, v u$ is an edge; and a digraph is semicomplete if for all distinct u, v, at least one of $u v, v u$ is an edge. Bang-Jensen and Thomassen [2] showed:
1.1 The k vertex-disjoint paths problem is NP-complete if k is not fixed, even when G is a tournament.

In an earlier paper [3] we showed:
1.2 For all fixed $k \geq 1$, the k vertex-disjoint paths problem is solvable in polynomial time if G is semicomplete.

Can this be extended to more general digraphs? One natural question is, what about digraphs with bounded stability number? (A set of vertices is stable if no edge has both ends in the set, and the stability number is the size of the largest stable set.) For the edge-disjoint directed paths problem, the bounded stability number case is solvable in polynomial time [5]. But for the vertexdisjoint problem, this extension remains out of our reach; indeed, we suspect the problem might be NP-complete for digraphs with stability number two.

In this paper we do indeed extend 1.2 to a wider class of digraphs, motivated also by an application in [1] where the result of this paper is needed. If G is a digraph, a set $C \subseteq V(G)$ is a clique of G if the subdigraph of G induced on C is semicomplete. Let us say a clique-partition for a digraph G is a partition $\left(C_{1}, \ldots, C_{c}\right)$ of $V(G)$ into cliques (we permit the C_{i} 's to be empty). Our main result is:
1.3 For all fixed k and c, there is a polynomial-time algorithm to solve the k vertex-disjoint directed paths problem in a digraph G that is given with a clique-partition $\left(C_{1}, \ldots, C_{c}\right)$. Its running time is $O\left(|V(G)|^{t}\right)$ where t is about $4(c k)^{5}$ for c, k large.

The idea of the algorithm for 1.3 is a refinement of that for 1.2 , presented in [3]. As before, we will define an auxiliary digraph H with two special sets of vertices S_{0}, T_{0}, and prove that there is a path in H from S_{0} to T_{0} if and only if there is a linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$. Thus to solve the problem of 1.3 it suffices to construct H in polynomial time. In the present context, the auxiliary digraph is more complicated than the one in [3], because it needs extra bells and whistles to accommodate the clique-partition of G.

There are two extensions of 1.2 proved in [3]. First, we were able to determine all the minimal k-tuples $\left(x_{1}, \ldots, x_{k}\right)$ such that there is a linkage in which the i th path has at most x_{i} vertices, for $1 \leq i \leq k$. We have not been able to do the same in the present context. We can determine the minimum integer x such that there is a linkage for the problem instance that uses at most x vertices in total, but we cannot control the individual path lengths.

Let P be a path of a digraph G, with vertices $v_{1} l v_{n}$ in order. We say P is minimal if $j \leq i+1$ for every edge $v_{i} v_{j}$ of G with $1 \leq i, j \leq n$. We also showed in [3] that essentially the same algorithm works for " d-path-dominant" digraphs instead of just semicomplete digraphs (these are digraphs in which every d-vertex minimal path contains a neighbour of every vertex). Again, we were not able to extend this to the present context.

2 The quest for an auxiliary digraph

Our method is to define an auxiliary digraph H, with two special sets of vertices S_{0}, T_{0}, in such a way that there is a path in H between S_{0} and T_{0} if and only if a linkage exists for ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$). We refer to the parts of this statement as the "if" direction and the "only if" direction. To make a polynomial-time algorithm, we need that (a) the number of vertices of H is at most some polynomial in $|V(G)|$, and (b) we can construct H in polynomial time without knowledge of a linkage in G.

Here are some attempts, to explain the difficulty and the way we solve it. First, we might try: let $V(H)$ be the set of all k-tuples of distinct vertices of G; let S_{0} contain just the k-tuple $\left(s_{1}, \ldots, s_{k}\right)$, and define T_{0} similarly; and say vertex $\left(u_{1}, \ldots, u_{k}\right)$ of H is adjacent in H to vertex $\left(v_{1}, \ldots, v_{k}\right)$ if $u_{i}=v_{i}$ for all i except one, and v_{i} is adjacent from u_{i} for the exceptional value. We can certainly construct this in polynomial time; and it is easy to see that "if" direction holds; but the "only if" direction fails. There might be a path from S_{0} to T_{0} in H, for which when we trace out the trajectory in G of the i th coordinate, we obtain a walk from s_{i} to t_{i} rather than a path (not a problem, we could short-cut); but worse, the trajectory of one coordinate might use vertices that also have been used by the trajectory of another coordinate. This is the main difficulty; how can we avoid it?

If $L=\left(P_{i}: 1 \leq i \leq k\right)$ is a linkage, we define $V(L)$ to be $V\left(P_{1}\right) \cup \cdots \cup V\left(P_{k}\right)$. A second attempt: let us try to somehow mark the vertices that have already been used, so that they do not get used twice. Let H consist of $k+1$-tuples, in which the first k terms are vertices of G and the last is a subset of $V(G)$. Say $\left(v_{1}, \ldots, v_{k}, D\right)$ is adjacent to $\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}, D^{\prime}\right)$ if again $v_{i}=v_{i}^{\prime}$ for all i except one, and for the last value of i, v_{i}^{\prime} is adjacent from v_{i}, and $v_{i} \notin D$, and $D \cup\left\{v_{i}\right\}=D^{\prime}$. Take $S_{0}=\left\{\left(s_{1}, \ldots, s_{k},\left\{s_{1}, \ldots, s_{k}\right\}\right)\right\}$ and T_{0} to be all terms of the form $\left\{\left(t_{1}, \ldots, t_{k}, D\right)\right\}$. Then both "if" and "only if" directions works; but H has exponential size.

This is of course still naive in several ways. One is that, if the linkage exists, we are tracing it out by walking k-tuples of vertices along its paths, but not being clever about the sequence of moves of these k-tuples. We don't need every sequence of moves of k-tuples that traces out the linkage to correspond to a path in our auxiliary digraph H - one such sequence giving a path of H would be enough - so we are being wasteful here. We could afford to remove some parts of H to make it smaller, as long as we preserve the property that every linkage in G gives us at least one path in H. And even this is wasteful - we don't need every linkage for the problem instance to give a path; we might as well just make sure that the linkages L work that have vertex set $V(L)$ as small as possible. These "minimum" linkages are nicer than general ones, so this helps.

Suppose we could generate a set \mathcal{D} of polynomially many subsets of $V(G)$, with the following
property: that for every minimum linkage L, there is a way of tracing L with k-tuples such that at each stage, the set of vertices that have been used already is a member of \mathcal{D}. This would be ideal, because then we make an auxiliary digraph with vertices of the form $\left(v_{1}, \ldots, v_{k}, D\right)$ and adjacency as before, but only using sets $D \in \mathcal{D}$, and this would all work. However, in general there is no such set \mathcal{D}; even for $k=1$ it is easy to see that there are tournaments in which every set \mathcal{D} with the property above is exponentially large.

But we are getting closer to an answer. Suppose we could find a polynomially-sized set of subsets \mathcal{D}, with the property that for every minimum linkage L, there is a way of tracing out L with k-tuples of vertices, such that for every k-tuple (v_{1}, \ldots, v_{k}) used in this tracing, there is a set $D \in \mathcal{D}$ which includes the vertices already used, and includes none of those in the remainder of $V(L)$ (and possibly contains some vertices not used by the linkage). As far as we see, this would not yet be enough, because there seems no way to define the auxiliary graph. We would take $V(H)$ to be the set of all $k+1$-tuples $\left(v_{1}, \ldots, v_{k}, D\right)$ where $v_{1}, \ldots, v_{k} \in V(G)$ and $D \in \mathcal{D}$, but how should we define adjacency in H ? If $\left(v_{1}, \ldots, v_{k}, D\right)$ is to be adjacent to $\left(v_{1}^{\prime}, \ldots, v_{k}^{\prime}, D^{\prime}\right)$ in H, we would presumably want at least that

- $v_{1}, \ldots, v_{k} \in D^{\prime}$
- $v_{i}=v_{i}^{\prime}$ for all values of i except one; and
- v_{i} is adjacent to v_{i}^{\prime} and $v_{i}^{\prime} \in D^{\prime} \backslash D$ for the exceptional value of i.

If we make this the definition of adjacency in H then "if" direction works, but the "only if" direction fails. If we impose the additional condition

- $D \subseteq D^{\prime}$
then the "only if" direction works, but the "if" direction fails.
To make the "if" direction work (for the four-bullet version of H described above), we need \mathcal{D} to have the following additional property: that, for each k-tuple $\left(v_{1}, \ldots, v_{k}\right)$ used to trace a minimum linkage L, there exists $D \in \mathcal{D}$ that intersects $V(L)$ in the set of vertices already used, such that each set D is a subset of the next. (This used to be automatic when D was just the set of vertices that has been used already; but now that D may contain vertices not in $V(L)$, we must impose it as an extra condition.) That then would work. There $i s$ indeed such a set \mathcal{D} when G is a semicomplete digraph, and that was the idea of our algorithm in [3]. Unfortunately, in the present case all we know is that G admits a clique-partition into a bounded number of cliques, and we have not been able to prove that such a set \mathcal{D} exists, and suspect that in general it does not.

Let us stop trying to trace out the linkage with k-tuples of vertices, and trace it out in a different way, suggested by 3.4. That lemma, the key result of the paper, provides, for any minimum linkage L, an enumeration of the vertices in $V(L)$, which has some useful properties. It gives a sequence of subsets of $V(L)$, starting from $\left\{s_{1}, \ldots, s_{k}\right\}$ and growing one vertex at a time until it reaches $V(L) \backslash\left\{t_{1}, \ldots, t_{k}\right\}$; and each path of the minimum linkage winds in and out of any set in this sequence only a bounded number of times. (The enumeration has some other useful properties too that will be introduced later.) We have therefore a sequence of partitions $\left(A_{h}, B_{h}\right)(h=0, \ldots, n)$ of $V(L)$; and for each (A_{h}, B_{h}), there are only at most constantly many (at most K say) "jumping" edges (edges of the linkage paths that pass from A to B or from B to A). Let J_{h} be the set of jumping edges at stage h; then we can regard the sets $J_{h}(0 \leq h \leq n)$ as tracing out the linkage
(albeit not as nicely as before: at a general stage h we will have traced some disjoint set of subpaths of each member of L, not just one initial subpath). Let us try to design an auxiliary digraph H with the sets J_{h} replacing the k-tuples of vertices. When there is a minimum linkage L in G, and we take sets of jumping edges $J_{h}(0 \leq h \leq n)$ tracing it, the corresponding vertex of H at stage h will be the pair $\left(J_{h}, D_{h}\right)$. We need D_{h} to have three properties:

- D_{h} must contain the vertices already used by the partial tracing of the linkage L (that is, $B_{h} \subseteq D_{h}$), and must not contain any vertices in A_{h} (but it is allowed to contain vertices not in $V(L)$);
- as h increases, each set D_{h} must be a subset of the next; and
- there must be a polynomially-size set \mathcal{D} of subsets of $V(G)$, containing all the sets D_{h} produced by the chosen tracing of the minimum linkage. The sets D_{h} depend on the choice of L; but, crucially, we must be able to define \mathcal{D} without knowledge of L.

It will follow from the other desirable features of 3.4 that \mathcal{D} and the sets D_{h} exist with these three properties. Then we define H to be the digraph with vertex set all the pairs (J, D) where J is a set of at most K edges and $D \in \mathcal{D}$, and define adjacency in the natural way, and it nearly works; the problem is, a path in H yields a linkage in G with k paths, all starting in $\left\{s_{1}, \ldots, s_{k}\right\}$ and ending in $\left\{t_{1}, \ldots, t_{k}\right\}$, but not necessarily linking s_{i} to t_{i} for $1 \leq i \leq k$. This used not to be a problem because we used to have k-tuples of vertices, so we could tell which vertex was supposed to belong to which path; but now we are tracing the linkage with sets of edges, and we can't tell any more which edge is supposed to be in which path. We can fix this by partitioning each set of edges into k labelled subsets and redefine the adjacency in H to respect the partitions; in other words, trace with sets of coloured edges, where the colours are $1, \ldots, k$, and we can tell from the colour of an edge which path it belongs to. Doing all this in detail is the content of the remainder of the paper.

3 The key lemma

The reduction of the linkage question to the question about finding one path in a different digraph is thus a more-or-less straightforward consequence of 3.4 , and this section is to prove that lemma. We need a few definitions first. If P is a directed path of a digraph G, its length is $|E(P)|$ (every path has at least one vertex); and $s(P), t(P)$ denote the first and last vertices of P, respectively. If F is a digraph and $v \in V(F), F \backslash v$ denotes the digraph obtained from F by deleting v; and if $X \subseteq V(F)$, $F[X]$ denotes the subdigraph of F induced on X, and $F \backslash X$ denotes the subdigraph obtained by deleting all vertices in X.

Now let $L=\left(P_{i}: 1 \leq i \leq k\right)$ be a linkage in G. The linkage L is minimum if there is no linkage $L^{\prime}=\left(P_{i}^{\prime}: 1 \leq i \leq k\right)$ in G with $\left|V\left(L^{\prime}\right)\right|<|V(L)|$ joining the same k pairs of vertices (that is, such that $s\left(P_{i}\right)=s\left(P_{i}^{\prime}\right)$ and $t\left(P_{i}\right)=t\left(P_{i}^{\prime}\right)$ for $\left.1 \leq i \leq k\right)$. A vertex v is an internal vertex of L if $v \in V(L)$, and v is not at either end of any member of L. A linkage L is internally disjoint from a linkage L^{\prime} if no internal vertex of L belongs to $V\left(L^{\prime}\right)$ (note that this does not imply that L^{\prime} is internally disjoint from L); and we say that L, L^{\prime} are internally disjoint if each of them is internally disjoint from the other (and thus all vertices in $V(L) \cap V\left(L^{\prime}\right)$ must be ends of paths in both L and L^{\prime})

Let Q, R be paths of a digraph G. A planar (Q, R)-matching is a linkage $\left(M_{j}: 1 \leq j \leq n\right)$ for some $n \geq 0$ (and we call n its cardinality), such that

- M_{1}, \ldots, M_{n} each have at most three vertices;
- $s\left(M_{1}\right), \ldots, s\left(M_{n}\right)$ are vertices of Q, in order in Q; and
- $t\left(M_{1}\right), \ldots, t\left(M_{n}\right)$ are vertices of R, in order in R.
(It is convenient not to insist that Q, R are vertex-disjoint; but in all our applications, the planar matching will be between subpaths Q^{\prime}, R^{\prime} of Q, R respectively that are vertex-disjoint.) If $X, Y \subseteq$ $V(G)$, and each M_{j} has first vertex in X and last vertex in Y, we say this planar (Q, R)-matching is from X to Y.

If P is a directed path, a subpath Q of P with $s(Q)=s(P)$ is called an initial subpath. Let $L=\left(P_{1}, \ldots, P_{k}\right)$ be a linkage for a problem instance ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$). Let $C \subseteq V(G)$ be a clique. A subset $B \subseteq C$ is said to be C-acceptable (for L) if (where $A=C \backslash B$):

- $\left\{s_{1}, \ldots, s_{k}\right\} \cap C \subseteq B$ and $\left\{t_{1}, \ldots, t_{k}\right\} \cap B=\emptyset ;$
- for all $i \in\{1, \ldots, k\}$, there is an initial subpath Q of P_{i} with $V(Q) \cap C=V\left(P_{i}\right) \cap B$; and
- for all $i, j \in\{1, \ldots, k\}$, there is no planar $\left(P_{i}, P_{j}\right)$-matching L^{\prime} from B to A of cardinality $k^{2}+k+2$ internally disjoint from L.

The next result is a modification of theorem 2.1 of [3].
3.1 Let $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$ be a problem instance, and let $L=\left(P_{1}, \ldots, P_{k}\right)$ be a minimum linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$. Let C be a clique of G, and suppose that $B \subseteq V(L)$ is C-acceptable for L and $B \neq(V(L) \cap C) \backslash\left\{t_{1}, \ldots, t_{k}\right\}$. Then there exists $v \in(V(L) \cap C) \backslash\left(B \cup\left\{t_{1}, \ldots, t_{k}\right\}\right)$ such that $B \cup\{v\}$ is C-acceptable for L.

Proof. Let $A=C \backslash B$. For $1 \leq i \leq k$, let r_{i} be the first vertex of P_{i} in $A \backslash\left\{t_{i}\right\}$, if there is such a vertex; and let q_{i} be the vertex immediately preceding it in P_{i}. Since L is a minimum linkage, we have:
(1) For $1 \leq i \leq k, P_{i}$ is a minimal path of G, and in particular, if r_{i} exists then the only edge of G from $V\left(P_{i}\right) \cap B$ to $V\left(P_{i}\right) \cap A$ (if there is one) is $q_{i} r_{i}$. Moreover, every three-vertex path from $V\left(P_{i}\right) \cap B$ to $V\left(P_{i}\right) \cap A$ with internal vertex in $V(G) \backslash V(L)$ uses at least one of q_{i}, r_{i}. Consequently, there is no planar $\left(P_{i}, P_{i}\right)$-matching from B to A of cardinality three internally disjoint from L.

From (1), the theorem holds if $k=1$, setting $v=r_{1}$, so we may assume that $k \geq 2$.
(2) We may assume that for all $i \in\{1, \ldots, k\}$, if r_{i} exists then for some $j \in\{1, \ldots, k\} \backslash\{i\}, r_{j}$ exists and there is a $\left(P_{i}, P_{j}\right)$-planar matching from B to $A \backslash\left\{r_{j}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L.

For let $i \in\{1, \ldots, k\}$ such that r_{i} exists. We may assume that $B \cup\left\{r_{i}\right\}$ is not C-acceptable. Consequently, one of the three conditions in the definition of " C-acceptable" is not satisfied by $B \cup\left\{r_{i}\right\}$. The first two are satisfied since r_{i} is the first vertex of P_{i} in $C \backslash B$ and $r_{i} \neq t_{i}$. Thus the third is false, and so for some $i^{\prime}, j \in\{1, \ldots, k\}$, there is a planar $\left(P_{i^{\prime}}, P_{j}\right)$-matching from $B \cup\left\{r_{i}\right\}$ to $A \backslash\left\{r_{i}\right\}$ of cardinality $k^{2}+k+2$ internally disjoint from L. Since there is no such matching from B to A, it follows that $i^{\prime}=i$, and r_{j} exists, and there is a planar $\left(P_{i}, P_{j}\right)$-matching from B to $A \backslash\left\{r_{j}\right\}$
of cardinality $k^{2}+k$ internally disjoint from L. Since $k^{2}+k \geq 4$ (because $k \geq 2$), (1) implies that $j \neq i$. This proves (2).
(3) We may assume that for some $p \geq 2$, and for all i with $1 \leq i<p$, there is a planar $\left(P_{i}, P_{i+1}\right)$ matching from B to $A \backslash\left\{r_{i+1}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L, and there is a planar $\left(P_{p}, P_{1}\right)$-matching from B to $A \backslash\left\{r_{1}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L.

For since $B \neq C \backslash\left\{t_{1}, \ldots, t_{k}\right\}$, there exists $i \in\{1, \ldots, k\}$ such that r_{i} exists. By repeated application of (2), there exist $p \geq 2$ and distinct $h_{1}, \ldots, h_{p} \in\{1, \ldots, k\}$ such that for $1 \leq i \leq p$ there is a planar $\left(P_{h_{i}}, P_{h_{i+1}}\right)$-matching from B to $A \backslash\left\{r_{h_{i+1}}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L, where $h_{p+1}=h_{1}$. Without loss of generality, we may assume that $h_{i}=i$ for $1 \leq i \leq p$. This proves (3).

Let us say a planar (Q, R)-matching is 2 -spaced if no edge of Q or R meets more than one member of the matching.
(4) We may assume that for some $p \geq 2$, and for all i with $1 \leq i<p$, there is a planar $\left(P_{i}, P_{i+1}\right)$ matching L_{i} from B to $A \backslash\left\{r_{i+1}\right\}$, and there is a planar $\left(P_{p}, P_{1}\right)$-matching L_{p} from B to $A \backslash\left\{r_{1}\right\}$, such that

- L_{1}, \ldots, L_{p} all have cardinality p
- they are pairwise internally disjoint
- each of L_{1}, \ldots, L_{p} is internally disjoint from L, and
- each of L_{1}, \ldots, L_{p} is 2-spaced.

For let L_{i}^{\prime} be a planar $\left(P_{i}, P_{i+1}\right)$-matching from B to $A \backslash\left\{r_{i+1}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L, for $1 \leq i<p$, and let L_{p}^{\prime} be a planar $\left(P_{p}, P_{1}\right)$-matching from B to $A \backslash\left\{r_{1}\right\}$ of cardinality $k^{2}+k$ internally disjoint from L. We choose $L_{i} \subseteq L_{i}^{\prime}$ inductively. Suppose that for some $h<p$, we have chosen L_{1}, \ldots, L_{h}, such that

- L_{1}, \ldots, L_{h} all have cardinality p
- they are pairwise internally disjoint, and
- each of L_{1}, \ldots, L_{h} is 2 -spaced.

We define L_{h+1} as follows. The union of the sets of internal vertices of L_{1}, \ldots, L_{h} has cardinality at most $h p \leq k(k-1)$, and so L_{h+1}^{\prime} includes a planar $\left(P_{h+1}, P_{h+2}\right)$-matching from B to $A \backslash\left\{r_{h+2}\right\}$ (or $\left(P_{p}, P_{1}\right)$-matching from B to $A \backslash\left\{r_{1}\right\}$, if $\left.h=p-1\right)$ of cardinality $k^{2}+k-k(k-1)=2 k$, internally disjoint from each of L_{1}, \ldots, L_{h}. By ordering the members of this matching in their natural order, and taking only the i th terms where $i<2 p$ is odd, we obtain a 2 -spaced matching of cardinality p. Let this be L_{h+1}. This completes the inductive definition of L_{1}, \ldots, L_{p}, and so proves (4).

Henceforth we read subscripts modulo p. For $1 \leq i \leq p$, let $L_{i}=\left\{M_{i}^{1}, \ldots, M_{i}^{p}\right\}$, numbered in order; thus, if q_{i}^{h} and r_{i+1}^{h} denote the first and last vertices of M_{i}^{h}, then $q_{i}^{1}, \ldots, q_{i}^{p}$ are distinct and in order in Q_{i}, and $r_{i+1}, r_{i+1}^{1}, \ldots, r_{i+1}^{p}$ are distinct and in order in R_{i+1}.

Since $r_{i+1}^{h} \neq r_{i+1}$, (1) implies that r_{i+1}^{h} is not adjacent from q_{i+1}^{h+1}; and so there is an edge from r_{i+1}^{h} to q_{i+1}^{h+1}, since C is semicomplete. For $1 \leq i \leq p$, and $1 \leq h<p$, let S_{i}^{h} be the path

$$
q_{i}^{h}-M_{i}^{h}-r_{i+1}^{h}-q_{i+1}^{h+1}
$$

then S_{i}^{h} is a path from q_{i}^{h} to q_{i+1}^{h+1}, of length at most 3. Thus concatenating $S_{i}^{1}, S_{i+1}^{2}, \ldots, S_{i+p-2}^{p-1}$ and M_{i+p-1}^{p} gives a path T_{i}^{\prime} from q_{i}^{1} to r_{i}^{p} of length at most $3 p-1$ (since M_{i+p-1}^{p} has at most three vertices, from the definition of a planar matching). The subpath T_{i} of P_{i} from q_{i}^{1} to r_{i}^{p} has length at least $4(p-1)+2$, since L_{i-1}, L_{i} are 2-spaced and r_{i} is different from r_{i}^{1}; and so T_{i} has length strictly greater than that of T_{i}^{\prime}. Let P_{i}^{\prime} be obtained from P_{i} by replacing the subpath T_{i} by T_{i}^{\prime}, for $1 \leq i \leq p$, and let $P_{i^{\prime}}=P_{i}$ for $p+1 \leq i \leq k$. Then $\left\{P_{1}^{\prime}, \ldots, P_{k}^{\prime}\right\}$ is a linkage for $\left(G, s_{1}, t_{1}, \ldots, s, t_{k}\right)$, contradicting that L is minimum. This proves 3.1.

Let P be a path of a digraph G, and let X, Y be disjoint subsets of $V(G)$. Let v_{1}, \ldots, v_{t} be distinct vertices of P, in order in P. This sequence is (X, Y)-alternating if t is even and $v_{i} \in X$ for i odd and $v_{i} \in Y$ for i even. The (X, Y)-wiggle number of P is half the length of the longest (X, Y)-alternating sequence v_{1}, \ldots, v_{t} where v_{1}, \ldots, v_{t} are in order in P. Next we need a lemma, the following:
3.2 Let $w>0$, let L be a linkage in G, and let Q_{1}, \ldots, Q_{c} each be a subpath of some member of L. Let $X_{1}, Y_{1}, X_{2}, Y_{2}, \ldots, X_{c}, Y_{c}$ be pairwise disjoint subsets of $V(L)$, such that the $\left(X_{i}, Y_{i}\right)$-wiggle number of Q_{i} is at least cw for $1 \leq i \leq c$. Then for $1 \leq i \leq c$ there is a subpath R_{i} of Q_{i}, such that the (X_{i}, Y_{i})-wiggle number of R_{i} is at least w, and the paths R_{1}, \ldots, R_{c} are pairwise vertex-disjoint.

Proof. We proceed by induction on c. If $c=1$ the result holds, so we assume that $c \geq 2$. Choose an initial subpath P_{0} of some member of L, minimal such that for some $i \in\{1, \ldots, c\}, P_{0} \cap Q_{i}$ is nonnull and the (X_{i}, Y_{i})-wiggle number of the path $P_{0} \cap Q_{i}$ is at least w. We may assume that $i=c$, that is, the (X_{c}, Y_{c})-wiggle number of $P_{0} \cap Q_{c}$ is at least w. Let $R_{c}=P_{0} \cap Q_{c}$. For $1 \leq i<c$ let $Q_{i}^{\prime}=Q_{i} \backslash V\left(P_{0}\right)$. From the minimality of P_{0}, the (X_{i}, Y_{i})-wiggle number of $P_{0} \cap Q_{i}$ is at most w, and either this number is less than w or the last vertex of P_{0} is in Y_{i}. So the (X_{i}, Y_{i})-wiggle number of Q_{i}^{\prime} is at least $w(c-1)$. The result follows from the inductive hypothesis applied to $Q_{1}^{\prime}, \ldots, Q_{c-1}^{\prime}$, since they are all disjoint from R_{c}.

Let $k, c \geq 1$ and define $z=c\left(c\left(k^{2}+k+1\right)+k+2\right)$. Now let $L=\left(P_{1}, \ldots, P_{k}\right)$ be a minimum linkage for a problem instance ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$), and let (C_{1}, \ldots, C_{c}) be a clique-partition of G. Let $B \subseteq V(G)$ and $A=V(G) \backslash B$. We say that B is acceptable if:

- $s_{1}, \ldots, s_{k} \in B$ and $t_{1}, \ldots, t_{k} \notin B$;
- for $1 \leq a \leq c, B \cap C_{a}$ is C_{a}-acceptable; and
- for all distinct a, b with $1 \leq a, b \leq c$, and for $1 \leq i \leq k$, the ($B \cap C_{b}, A \cap C_{a}$)-wiggle number of P_{i} is at most z.
3.3 Let k, c, z and $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right), L$ and $\left(C_{1}, \ldots, C_{c}\right)$ be as above. Let $B \subseteq V(L)$ be acceptable, with $B \neq V(L) \backslash\left\{t_{1}, \ldots, t_{k}\right\}$. Then there exists $v \in V(L) \backslash\left(B \cup\left\{t_{1}, \ldots, t_{k}\right\}\right)$ such that $B \cup\{v\}$ is acceptable.

Proof. Let $w=c\left(k^{2}+k+1\right)+k+2$. Let $A=V(L) \backslash B$. For $1 \leq a \leq c$, if $C_{a} \cap A \nsubseteq\left\{t_{1}, \ldots, t_{k}\right\}$, choose $r_{a} \in\left(C_{a} \cap A\right) \backslash\left\{t_{1}, \ldots, t_{k}\right\}$ such that $B \cap C_{a} \cup\left\{r_{a}\right\}$ is C_{a}-acceptable (this is possible by 3.1). Since $B \neq V(L) \backslash\left\{t_{1}, \ldots, t_{k}\right\}$, there is at least one value of $a \in\{1, \ldots, c\}$ such that r_{a} exists. Suppose that there is no $a \in\{1, \ldots, c\}$ such that r_{a} exists and $B \cup\left\{r_{a}\right\}$ is acceptable.
(1) If $1 \leq a \leq c$ and r_{a} exists, let $r_{a} \in V\left(P_{i}\right)$; then there exists $b \in\{1, \ldots, c\}$ with $b \neq a$ such that the $\left(B \cap C_{a}, A \cap C_{b}\right)$-wiggle number of P_{i} is at least z.

Let $B^{\prime}=B \cup\left\{r_{a}\right\}$. From the choice of r_{a}, it follows that $B \cap C_{b}$ is C_{b}-acceptable for $1 \leq b \leq c$; and so, since B^{\prime} is not acceptable, there exist distinct $a^{\prime}, b^{\prime} \in\{1, \ldots, c\}$, and $i \in\{1, \ldots, k\}$, such that the $\left(B^{\prime} \cap C_{b^{\prime}}, A^{\prime} \cap C_{a^{\prime}}\right.$)-wiggle number of P_{i} is at least $z+1$, where $A^{\prime}=A \backslash\left\{r_{a}\right\}$. Let $v_{1}, v_{2}, \ldots, v_{2 z+2}$ be a ($B^{\prime} \cap C_{b^{\prime}}, A^{\prime} \cap C_{a^{\prime}}$)-alternating sequence of vertices of P_{i}, in order in P_{i}. This sequence is not $\left(B \cap C_{b^{\prime}}, A \cap C_{a^{\prime}}\right.$)-alternating, since B is acceptable; and so one of $v_{1}, \ldots, v_{2 z+2}$ equals r_{a}. In particular, r_{a} belongs to one of $A^{\prime} \cap C_{a^{\prime}}, B^{\prime} \cap C_{b^{\prime}}$. Since $r_{a} \notin A^{\prime}$, it follows that $r_{a} \in B^{\prime} \cap C_{b^{\prime}}$, and so $a=b^{\prime}$. Since B is C_{a}-acceptable, we deduce that r_{a} is later in P_{i} than every vertex of P_{i} in $B \cap C_{a}$; and since $v_{1}, \ldots, v_{2 z+2}$ are in order in P_{i}, and

$$
v_{2 z+1} \in B^{\prime} \cap C_{b^{\prime}}=\left(B \cup\left\{r_{a}\right\}\right) \cap C_{a}
$$

it follows that $r_{a}=v_{2 z+1}$. Consequently $v_{1}, \ldots, v_{2 z}$ is $\left(B \cap C_{a}, A \cap C_{a^{\prime}}\right)$-alternating, and so setting $b=a^{\prime}$ satisfies the claim. This proves (1).

From (1), and 3.2, for each $a \in\{1, \ldots, c\}$ such that r_{a} exists, there is a subpath R_{a} of some member of L and $b \in\{1, \ldots, c\}$ with $b \neq a$ such that the $\left(B \cap C_{a}, A \cap C_{b}\right)$-wiggle number of R_{a} is at least w, and the paths $R_{a}(1 \leq a \leq c)$ are pairwise disjoint (if they exist). In particular, if b is as above then $C_{b} \cap A \nsubseteq\left\{t_{1}, \ldots, t_{k}\right\}$ and so r_{b} exists. Renumbering, we may assume that for some p with $2 \leq p \leq c$:

- there are paths R_{1}, \ldots, R_{p}, each a subpath of some member of L and pairwise disjoint;
- for $1 \leq a<p$, the $\left(B \cap C_{a}, A \cap C_{a+1}\right)$-wiggle number of R_{a} is at least w, and the ($\left.B \cap C_{p}, A \cap C_{1}\right)$ wiggle number of R_{p} is at least w.

Consequently the $\left(A \cap C_{a+1}, B \cap C_{a}\right)$-wiggle number of R_{a} is at least $w-1$. For $1 \leq a \leq p$, choose vertices $x_{a}^{1}, y_{a}^{1}, \ldots, x_{a}^{w-1}, y_{a}^{w-1}$ in order in R_{a} and $\left(A \cap C_{a+1}, B \cap C_{a}\right)$-alternating (henceforth we read subscripts modulo p). Thus $x_{a}^{1}, x_{a}^{2}, \ldots, x_{a}^{w-1} \in A \cap C_{a+1}$, and $y_{a}^{1}, y_{a}^{2}, \ldots, y_{a}^{w-1} \in B \cap C_{a}$. Since B is C_{a}-acceptable, there is no planar $\left(R_{a}, R_{a-1}\right)$-matching of cardinality $k^{2}+k+2$ from $B \cap C_{a}$ to $A \cap C_{a}$ internally disjoint from L; and in particular, since $x_{a-1}^{1}, x_{a-1}^{2}, \ldots, x_{a-1}^{w-1} \in A \cap C_{a}$ and $y_{a}^{1}, y_{a}^{2}, \ldots, y_{a}^{w-1} \in B \cap C_{a}$, it follows that y_{a}^{i} is adjacent to x_{a-1}^{i} for at most $k^{2}+k+1$ values of i. Since C_{a} is semicomplete, it follows that y_{a}^{i} is adjacent from x_{a-1}^{i} for all except $k^{2}+k+1$ values of i. Hence there exists $I \subseteq\{1, \ldots, w-1\}$ of cardinality at least $w-1-c\left(k^{2}+k+1\right)=k+1$, such that y_{a}^{i} is adjacent from x_{a-1}^{i} for all $i \in I$ and $a \in\{1, \ldots, p\}$. Renumbering, and using the fact that $k+1 \geq p+1$, it follows that for $1 \leq a \leq p$, there exist $u_{a}^{1}, v_{a}^{1}, \ldots, u_{a}^{p}, v_{a}^{p}$ in order in R_{a} and $\left(A \cap C_{a+1}, B \cap C_{a}\right)$-alternating, such that v_{a}^{i} is adjacent from u_{a-1}^{i} for all i, a with $1 \leq i \leq p$ and $1 \leq a \leq p$, and in addition u_{1}^{1}, v_{1}^{1} are not consecutive vertices of R_{1}.

For $1 \leq a \leq p$ and $1 \leq i<p$, let T_{a}^{i} be the subpath of R_{i} with first vertex v_{a}^{i} and last vertex u_{a}^{i+1}. Then for $1 \leq a \leq p$,

$$
u_{a}^{1}-v_{a+1}^{1}-T_{a+1^{-}}^{1} u_{a+1^{-}}^{2} v_{a+2^{2}}^{2}-T_{a+2^{-}}^{2} \cdots-T_{a-1}^{p-1}-u_{a-1^{-}}^{p} v_{a}^{p}
$$

is a directed path from u_{a}^{1} to v_{a}^{p}, say M_{a}. For $1 \leq a \leq c$ let R_{a}^{\prime} be the subpath of R_{a} from u_{a}^{1} to v_{a}^{p}. The paths M_{1}, \ldots, M_{p} are pairwise disjoint, and

$$
V\left(M_{1}\right) \cup \cdots \cup V\left(M_{p}\right) \subseteq V\left(R_{1}^{\prime}\right) \cup \cdots \cup V\left(R_{p}^{\prime}\right)
$$

Moreover, the sum of the lengths of M_{1}, \ldots, M_{p} is less than that of $R_{1}^{\prime}, \ldots, R_{p}^{\prime}$, since u_{1}^{1}, v_{1}^{1} are not consecutive vertices of R_{1}. Hence if we take the linkage L and replace each subpath R_{a}^{\prime} by M_{a} for $1 \leq a \leq p$, we obtain another linkage for the same problem instance using fewer vertices, contradicting that L is minimum. Thus the assumption immediately before (1) must have been false. This proves 3.3.

We deduce:
3.4 Let $k, c, z,\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right),\left(C_{1}, \ldots, C_{c}\right)$, and $L=\left(P_{1}, \ldots, P_{k}\right)$ be as in 3.3. Then there is an enumeration $\left(v_{1}, \ldots, v_{n}\right)$ of $V(L) \backslash\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$, such that for $0 \leq h \leq n$, if B denotes $\left\{s_{1}, \ldots, s_{k}\right\} \cup\left\{v_{i}: 1 \leq i \leq h\right\}$ and $A=V(L) \backslash B$, then

- for $1 \leq a \leq c, B \cap C_{a}$ is C_{a}-acceptable;
- the (B, A)-wiggle number of each member of L is at most $c(c-1)(z+1)+1$.

Proof. Since $\left\{s_{1}, \ldots, s_{k}\right\}$ is acceptable, repeated application of 3.3 implies that there is an enumeration $\left(v_{1}, \ldots, v_{n}\right)$ of $V(L) \backslash\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$, such that for $0 \leq h \leq n$, if B denotes $\left\{s_{1}, \ldots, s_{k}\right\} \cup\left\{v_{i}: 1 \leq i \leq h\right\}$ and $A=V(L) \backslash B$, then

- for $1 \leq a \leq c, B \cap C_{a}$ is C_{a}-acceptable;
- for all distinct a, b with $1 \leq a, b \leq c$, and for $1 \leq i \leq k$, the ($B \cap C_{b}, A \cap C_{a}$)-wiggle number of P_{i} is at most z.

We claim that this enumeration satisfies the theorem. For let h, B, A be as in the theorem, let $1 \leq i \leq k$, and let t be the (B, A)-wiggle number of P_{i}. Consequently there are $t-1$ edges of P_{i}, say $a_{1} b_{1}, \ldots, a_{t-1} b_{t-1}$, such that $a_{j} \in A$ and $b_{j} \in B$ for $1 \leq j \leq t-1$. For each such j, let $p_{j}, q_{j} \in\{1, \ldots, c\}$ such that $a_{j} \in C_{p_{j}}$ and $b_{j} \in C_{q_{j}}$. Since $a_{j} \in A$ and $b_{j} \in B$, and $a_{j} b_{j}$ is a directed edge of P_{i}, it follows (since B is $C_{p_{j}}$-acceptable) that $p_{j} \neq q_{j}$. There are only $c(c-1)$ possibilities for the pair $\left(p_{j}, q_{j}\right)$, and for each one of them, say (p, q), there are at most $z+1$ values of j with $\left(p_{j}, q_{j}\right)=(p, q)$, since the $\left(B \cap C_{q}, A \cap C_{p}\right)$-wiggle number of P_{i} is at most z. Hence there are at most $c(c-1)(z+1)$ values of j in total, and so $t \leq c(c-1)(z+1)+1$, and this enumeration satisfies the theorem. This proves 3.4.

4 Enlarging on history

In this section we define the sets D_{h} and \mathcal{D} discussed at the end of section 2 , and use 3.4 to prove they have the properties we need. Let G be a digraph, and $\left(C_{1}, \ldots, C_{c}\right)$ a clique-partition of G, and let s be some positive integer. If X is a sequence of vertices of G we define $V(X)$ to be the set of terms of X. Let \mathcal{A} be a set of sequences of vertices of G. We define \mathcal{A}^{+}to be the set of $v \in V(G)$ such that for some $X \in \mathcal{A}$, there exists $a \in\{1, \ldots, c\}$ such that $\{v\} \cup V(X) \subseteq C_{a}$ and either

- $v \in V(X)$, or
- $v \notin V(X)$ and X has length s and v is adjacent from the last $s-1$ vertices of X.
(Thus, the order of the terms in $X \in \mathcal{A}$ does not matter, except it matters which term is first.) Similarly, we define \mathcal{A}^{-}to be the set of vertices v such that for some $X \in \mathcal{A}$, there exists $a \in\{1, \ldots, c\}$ such that $\{v\} \cup V(X) \subseteq C_{a}$ and either
- $v \in V(X)$, or
- $v \notin V(X)$ and X has length s and v is adjacent to the first $s-1$ vertices of X.

Now let $r, s, t \geq 0$ be integers. A subset D of $V(G)$ is said to be (r, s, t)-restricted if there are sets \mathcal{A}, \mathcal{B} of sequences of vertices of G, satisfying the following:

- every member of \mathcal{A} and every member of \mathcal{B} has length at most s;
- $|\mathcal{A}|,|\mathcal{B}| \leq r ;$
- $\left|\mathcal{B}^{+} \cap \mathcal{A}^{-}\right| \leq t$; and
- $\mathcal{B}^{+} \backslash \mathcal{A}^{-} \subseteq D$, and $D \subseteq \mathcal{B}^{+}$.

Thus, for any constants r, s, t there are only polynomially many (r, s, t)-restricted subsets D of $V(G)$. For suitable r, s, t the set of all (r, s, t)-restricted subsets will be the set \mathcal{D} that we need.

We observe:
4.1 Let L be a minimum linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$, let $\ell \geq 3$, let C be a clique, let Q^{\prime} be a subpath of some member of L, let Q be a subpath of Q^{\prime}, with $|C \cap V(Q)| \geq \ell$, and let $v \in C \backslash V(L)$ be adjacent from the last ℓ vertices of Q in C. Then v is adjacent from the last ℓ vertices of Q^{\prime} in C.

Proof. Let the vertices of Q^{\prime} in C in order be y_{1}, \ldots, y_{m} say, and let the last ℓ vertices of Q in C be x_{1}, \ldots, x_{ℓ} in order. Thus $m \geq \ell$, since x_{1}, \ldots, x_{ℓ} is a subsequence of y_{1}, \ldots, y_{m}. Let $j \in\{m-\ell+1, \ldots, m\}$. We claim that y_{j} is adjacent to v. For suppose not; then y_{j} is different from all of x_{1}, \ldots, x_{ℓ}, and since x_{1}, \ldots, x_{ℓ} are ℓ consecutive terms of the sequence y_{1}, \ldots, y_{m}, and there are at most $\ell-1$ terms of this sequence after y_{j}, it follows that x_{1}, \ldots, x_{ℓ} all come before y_{j}. In particular, x_{1} equals some y_{g} where $g \leq j-\ell$. Now v is adjacent from $x_{1}=y_{g}$, and not adjacent from y_{j}. Since $v, y_{j} \in C$, it follows that v is adjacent to y_{j}; but then replacing the subpath of P_{i} between y_{g}, y_{j} by the path with three vertices $y_{g}-v-y_{j}$ contradicts that L is a minimum linkage, since $\ell \geq 3$. This proves 4.1.

If P is a path of G, and $C \subseteq V(G)$ and s is an integer, by the first up-to-s vertices of P in C we mean the sequence which consists of the first s vertices of P in C, if there are s such vertices, and otherwise the sequence consisting of all vertices of P in C, in either case in their order in P. We define the last up-to-s similarly.

Next we define the sets D_{h}. Let $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$ be a problem instance, where G admits a clique-partition $\left(C_{1}, \ldots, C_{c}\right)$, and let L be a linkage for this problem instance. Let $s=k^{2}+k+3$. Let $\left(v_{1}, \ldots, v_{n}\right)$ be an enumeration of $V(L) \backslash\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$, and for $0 \leq h \leq n$, let B_{h} denote $\left\{s_{1}, \ldots, s_{k}\right\} \cup\left\{v_{i}: 1 \leq i \leq h\right\}$ and $A_{h}=V(L) \backslash B_{h}$. For $0 \leq h \leq n$, let J_{h} be the set of edges of G that belong to a member of L and have one end in A_{h} and the other in B_{h}. The union of the members of L is a digraph consisting of k disjoint paths, and if we delete J_{h} from this digraph, we obtain a digraph which is also a disjoint union of paths, each with vertex set included in one of A_{h}, B_{h}. Let \mathcal{Q}_{h} be the set of these paths which are included in B_{h}, and \mathcal{R}_{h} the set included in A_{h}. Let \mathcal{A}_{h} be the set of all sequences X such that for some $R \in \mathcal{R}_{h}$ and some $a \in\{1, \ldots, c\}, X$ is the first up-to-s vertices of R in C_{a}. Similarly, let \mathcal{B}_{h} be the set of all sequences X such that for some $Q \in \mathcal{Q}_{h}$ and $a \in\{1, \ldots, c\}, X$ is the last up-to-s vertices of Q in C_{a}. We define $D_{h}=\left(\mathcal{B}_{h}^{+} \backslash \mathcal{A}_{h}^{-}\right) \cup B_{h}$.

We claim:
4.2 Let $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right),\left(C_{1}, \ldots, C_{c}\right), L,\left(v_{1}, \ldots, v_{n}\right)$, and $A_{h}, B_{h}(0 \leq h \leq n)$ be as above, and let $w \geq 0$. Suppose that

- L is a minimum linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$;
- for $1 \leq a \leq c, B_{h} \cap C_{a}$ is C_{a}-acceptable; and
- the $\left(A_{h}, B_{h}\right)$-wiggle number of each member of L is at most w.

Let $r=c k w, s=k^{2}+k+3, t=2 c s k w+c(2 w+1) k^{2}\left(k^{2}+k+1\right)$, and for $0 \leq h \leq n$ let D_{h} be as above. Then
(a) $B_{h} \subseteq D_{h}$ and $A_{h} \cap D_{h}=\emptyset$ for $0 \leq h \leq n$;
(b) $D_{h} \subseteq D_{h+1}$ for $0 \leq h<n$; and
(c) D_{h} is (r, s, t)-restricted for $0 \leq h \leq n$.

Proof. Let $0 \leq h \leq n$. Since the $\left(A_{h}, B_{h}\right)$-wiggle number of each member of L is at most w, there are at most $2 w-1$ edges of each member of L in J_{h}, and the sets $\mathcal{Q}_{h}, \mathcal{R}_{h}$ defined in the definition of D_{h} both have at most $k w$ members. Thus the sets $\mathcal{A}_{h}, \mathcal{B}_{h}$ both have cardinality at most $c k w=r$.
(1) $\left|\mathcal{B}_{h}^{+} \cap \mathcal{A}_{h}^{-}\right| \leq t$.

There are at most $k w$ choices for $Q \in \mathcal{Q}_{h}$, and for each there are at most c choices for the sequence of the last up-to-s vertices of C_{a} in Q, one for each $a \in\{1, \ldots, c\}$; and each such sequence has at most s terms. Thus there are at most $c s k w$ vertices which belong to the sequence of the last up-to-s members in some C_{a} of some path $Q \in \mathcal{Q}_{h}$. Similarly there are at most cskw vertices that belong to the first up-to-s members of some C_{a} in some $R \in \mathcal{R}_{h}$, a total of at most $2 c s k w$. For every other vertex $v \in \mathcal{B}_{h}^{+} \cap \mathcal{A}_{h}^{-}$, choose $a \in\{1, \ldots, c\}$ such that $v \in C_{a}$; then
$(*)$ there exists $Q \in \mathcal{Q}_{h}$ such that $\left|C_{a} \cap V(Q)\right| \geq s$, and v is not among the last $s-1$ vertices of C_{a} in Q, and is adjacent from each of the last $s-1$; and there exists $R \in \mathcal{R}_{h}$ such that $\left|C_{a} \cap V(R)\right| \geq s$, and v is not among the first $s-1$ vertices of C_{a} in R, and v is adjacent to each of the first $s-1$.

Let us fix $a \in\{1, \ldots, c\}$, and count the number of vertices $v \in C_{a}$ satisfying (*). Such vertices v might belong to A_{h} or to B_{h} or to neither, and we count the three types separately. First, suppose that $v \in A_{h}$. Thus v belongs to some member P_{i} of L; and there are only k choices for i. For each $Q \in \mathcal{Q}_{h}$ containing at least s vertices in C_{a}, let X be the set of the last $s-1$ such vertices of C_{a} in Q; there are at most $k^{2}+k+1$ vertices in $C_{a} \cap V\left(P_{i}\right) \cap A_{h}$ that are adjacent from every vertex in X, since B_{h} is C_{a}-acceptable. Since there are only $k w$ choices of Q, it follows that there are at most $w k\left(k^{2}+k+1\right)$ vertices $v \in C_{a} \cap V\left(P_{i}\right) \cap A_{h}$ satisfying $(*)$; and summing over $1 \leq i \leq k$, we deduce there are at most $w k^{2}\left(k^{2}+k+1\right)$ vertices $v \in C_{a} \cap A_{h}$ satisfying (*). Similarly there are at most that many in $C_{a} \cap B_{h}$.

Finally, we must count the number of $v \in C_{a} \backslash V(L)$ satisfy $(*)$. By 4.1, if $v \in C_{a} \backslash V(L)$ and is adjacent from the last $s-1$ vertices of $C_{a} \cap B_{h}$ in some subpath of P_{i}, then v is also adjacent from the last $s-1$ vertices of $C_{a} \cap B_{h}$ in P_{i}. We deduce that if $v \in C_{a} \backslash V(L)$, and v satisfies (*), then for some $i, j \in\{1, \ldots, k\}, v$ is adjacent from the last $s-1$ vertices of P_{i} in $B_{h} \cap C_{a}$, and adjacent to the first $s-1$ vertices of P_{j} in $A_{h} \cap C_{a}$ (similarly). For any choice of i, j there are at most $k^{2}+k+1$ such vertices v, because B_{h} is C_{a}-acceptable. (This is where we use paths of length two in the definition of a planar matching.) Consequently there are at most $k^{2}\left(k^{2}+k+1\right)$ such vertices $v \in C_{a} \backslash V(L)$ total.

Altogether, we have shown that there are at most $2 w k^{2}\left(k^{2}+k+1\right)+k^{2}\left(k^{2}+k+1\right)$ vertices $v \in C_{a}$ satisfying $(*)$, and summing over $a \in\{1, \ldots, c\}$ and adding back the $2 c s k w$ from the start of the argument, the claim follows. This proves (1).
(2) $A_{h} \subseteq \mathcal{A}_{h}^{-}$and $B_{h} \subseteq \mathcal{B}_{h}^{+}$.

Let $v \in A_{h}$; then v belongs to $V(L)$, and hence to some member of L, and therefore to some member of \mathcal{R}_{h}, say R. Choose $a \in\{1, \ldots, c\}$ with $v \in C_{a}$, and let $X \in \mathcal{A}_{h}$ be the sequence of the first up-to- s vertices of R in C_{a}. If $v \in V(X)$ then $v \in \mathcal{A}_{h}^{-}$as required, so we may assume not; and so there are more than s vertices of R in C_{a}, and X has exactly s terms. Let the vertices of X be x_{1}, \ldots, x_{s} in order. Then $x_{1}, \ldots, x_{s}, v \in C_{a}$, and x_{i} is not adjacent to v for $1 \leq i<s$, since R is a minimal path of G (because the members of L are minimal paths). Thus v is adjacent to x_{1}, \ldots, x_{s-1}, and hence $v \in \mathcal{A}_{h}^{-}$as required. Similarly $B_{h} \subseteq \mathcal{B}_{h}^{+}$. This proves (2).
(3) $B_{h} \subseteq D_{h}, A_{h} \cap D_{h}=\emptyset$ and $D_{h} \subseteq \mathcal{B}_{h}^{+}$.

We recall that $D_{h}=\left(\mathcal{B}_{h}^{+} \backslash \mathcal{A}_{h}^{-}\right) \cup B_{h}$. Consequently $B_{h} \subseteq D_{h}$, and from (2), $D_{h} \subseteq \mathcal{B}_{h}^{+}$. Since $A_{h} \cap B_{h}=\emptyset$ and $A_{h} \subseteq \mathcal{A}_{h}^{-}$by (2), it follows that $A_{h} \cap D_{h}=\emptyset$. This proves (3).

Assertion (a) of the theorem follows from (3), and (c) from (1) and (3). We still need to show (b). Let $0 \leq h<n$; we must show that $D_{h} \subseteq D_{h+1}$. Let $v \in D_{h}$; we will show that $v \in D_{h+1}$. If $v \in B_{h}$ then $v \in B_{h+1} \subseteq D_{h+1}$ as required, so we assume that $v \notin B_{h}$. Certainly $v \notin A_{h}$ by (3) since $v \in D_{h}$; so $v \notin V(L)$. Since $v \in D_{h}$, it follows that $v \in \mathcal{B}_{h}^{+} \backslash \mathcal{A}_{h}^{-}$, and in particular there exist
$Q \in \mathcal{Q}_{h}$ and $a \in\{1, \ldots, c\}$ such that $v \in C_{a}$, and $\left|C_{a} \cap V(Q)\right| \geq s$, and v is adjacent from the last $s-1$ vertices of C_{a} in Q. Let Q be a subpath of $P_{i} \in L$, and let Q^{\prime} be the maximal subpath of P_{i} including Q such that all its vertices are in B_{h+1}. By 4.1, v is adjacent from the last $s-1$ vertices of C_{a} in Q^{\prime}; and so $v \in \mathcal{B}_{h+1}^{+}$. It remains to show that $v \notin \mathcal{A}_{h+1}^{-}$; so, suppose it is. Then by the same argument with A_{h} exchanged with B_{h+1}, and A_{h+1} exchanged with B_{h} (and $h, h+1$ exchanged) it follows that $v \in \mathcal{A}_{h}^{-}$, a contradiction. This proves assertion (b) of the theorem, and so completes the proof of 4.2.

5 The auxiliary digraph

Let $k, c \geq 1$ and let r, s, t, w be as in 4.2. Let $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$ be a problem instance, where G admits a clique-partition $\left(C_{1}, \ldots, C_{c}\right)$. Let \mathcal{D} be the set of all (r, s, t)-restricted subsets of $V(G)$. A coloured edge means a pair (e, i) where $e \in E(G)$ and $1 \leq i \leq k$, and we will abuse this terminology a little, speaking of coloured edges as though they are edges (for instance, we speak of the head of a coloured edge (e, i) meaning the head of e, and so on). We call i the colour of the coloured edge. Let \mathcal{E} be the set of all sets Y of coloured edges of cardinality at most $2 w-1$, such that

- no two members of Y have the same head or the same tail, and
- every two members of Y that share an end have the same colour;
- no coloured edge in Y has head in $\left\{s_{1}, \ldots, s_{k}\right\}$ or tail in $\left\{t_{1}, \ldots, t_{k}\right\}$; and
- for $1 \leq i \leq k$, every coloured edge with tail s_{i} has colour i, and every coloured edge with head t_{i} has colour i.

The auxiliary digraph H will have vertex set all pairs (Y, D) where $Y \in \mathcal{E}$ and $D \in \mathcal{D}$ and every coloured edge in Y has exactly one end in D.

Now we define its adjacency. Let $(Y, D),\left(Y^{\prime}, D^{\prime}\right) \in V(H)$ be distinct. We say that (Y, D) is adjacent to $\left(Y^{\prime}, D^{\prime}\right)$ in H if $D \subseteq D^{\prime}$, and there are exactly two coloured edges that belong to $\left(Y \backslash Y^{\prime}\right) \cup\left(Y^{\prime} \backslash Y\right)$, and they form a two-edge path with middle vertex in $D^{\prime} \backslash D$.

That defines H. Now let S_{0} be the set of all vertices (Y, D) of H such that $|Y|=k$ and every coloured edge in Y has tail in $\left\{s_{1}, \ldots, s_{k}\right\}$, and let T_{0} be the set of all (Y, D) such that $|Y|=k$ and every coloured edge in Y has head in $\left\{t_{1}, \ldots, t_{k}\right\}$. We claim:
5.1 Let $k, c \geq 1$, and let r, s, t, w be as in 4.2. Let $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$ be a problem instance, where G admits a clique-partition $\left(C_{1}, \ldots, C_{c}\right)$, and let \mathcal{D}, \mathcal{E} and H, S_{0}, T_{0} be as above. Then there is a path in H from a vertex in S_{0} to a vertex in T_{0} if and only if there is a linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$.

Proof. We observe first (the proof is clear and we omit it):
(1) If there is a directed path in H from (Y, D) to $\left(Y^{\prime}, D^{\prime}\right)$ then $D \subseteq D^{\prime}$.

Suppose that there is a path in H from S_{0} to T_{0}, with vertices $\left(Y_{1}, D_{1}\right), \ldots,\left(Y_{n}, D_{n}\right)$ say, in order. Let $Y=Y_{1} \cup \cdots \cup Y_{n}$; thus Y is a set of coloured edges. We need to show that Y includes the edge set of a linkage for ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$).
(2) If $(e, i) \in Y$ and $1 \leq h \leq n$, and exactly one end of e is in D_{h}, then $(e, i) \in Y_{h}$.

For let $(e, i) \in Y_{h^{\prime}}$ where $1 \leq h^{\prime} \leq n$; and choose h^{\prime} with $\left|h-h^{\prime}\right|$ minimum. Let e have ends u, v, and suppose that $h \neq h^{\prime}$. Now exactly one end of e belongs to $D_{h^{\prime}}$, and exactly one to D_{h}, and one of $D_{h}, D_{h^{\prime}}$ is a subset of the other by (1); and so it is the same end v say of e that lies in both $D_{h}, D_{h^{\prime}}$, and u belongs to neither of them. If $h^{\prime}<h$ let $h^{\prime \prime}=h^{\prime}+1$, and if $h^{\prime}>h$ let $h^{\prime \prime}=h^{\prime}-1$. Since one of $D_{h}, D_{h^{\prime}}$ is a subset of $D_{h^{\prime \prime}}$ (by (1)) it follows that $v \in D_{h^{\prime}}$; and since $D_{h^{\prime \prime}}$ is a subset of one of $D_{h}, D_{h^{\prime}}$ (by (1) again) it follows that $u \notin D_{h^{\prime \prime}}$. But this contradicts the minimality of $\left|h^{\prime}-h\right|$. Consequently $h=h^{\prime}$, and the claim holds. This proves (2).
(3) If $(e, i),\left(e^{\prime}, i^{\prime}\right) \in Y$ share an end then $i=i^{\prime}$, and these edges form a two-edge path.

Choose h with $1 \leq h \leq n$ such that $(e, i) \in Y_{h}$, and choose h^{\prime} similarly for $\left(e^{\prime}, i^{\prime}\right)$; and in addition choose h, h^{\prime} with $\left|h-h^{\prime}\right|$ minimum. If $h=h^{\prime}$, then $(e, i),\left(e^{\prime}, i^{\prime}\right)$ are both in Y_{h}, and since they share an end, it follows that $i=i^{\prime}$ and the edges form a two-edge path, from the definition of \mathcal{E}. Thus we may assume that $h<h^{\prime}$. Now $D_{h} \subseteq D_{h^{\prime}}$ by (1), and since one end of e belongs to D_{h}, it follows that at least one end of e is in $D_{h^{\prime}}$; and since $(e, i) \notin Y_{h^{\prime}},(2)$ implies that both ends of e are in $D_{h^{\prime}}$. Similarly, neither end of e^{\prime} is in D_{h}; and so the common end of e, e^{\prime} belongs to $D_{h^{\prime}} \backslash D_{h}$. Let e have ends u, v, and let e^{\prime} have ends v, w, where $u \in D_{h}, v \in D_{h^{\prime}} \backslash D_{h}$, and $w \notin D_{h^{\prime}}$. Now $u \in D_{h+1}$ since $D_{h} \subseteq D_{h+1}$; and since $(e, i) \notin Y_{h+1}$, (2) implies that $v \in D_{h+1}$. Consequently $\left(e^{\prime}, i^{\prime}\right) \in Y_{i+1}$ by (2), and hence $h^{\prime}=h+1$ from the minimality of $\left|h-h^{\prime}\right|$. But now the claim follows from the definition of adjacency in H. This proves (3).
(4) Every vertex of G incident with exactly one coloured edge in Y belongs to $\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$.

For suppose that $v \in V(G) \backslash\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$ is incident with exactly one coloured edge $(e, i) \in Y$. Let the other end of e be u. There are three cases, depending whether $u \in\left\{s_{1}, \ldots, s_{k}\right\}$, $u \in\left\{t_{1}, \ldots, t_{k}\right\}$, or neither. Suppose first that $u \in\left\{s_{1}, \ldots, s_{k}\right\}$. Then $(e, i) \in Y_{1}$; and $(e, i) \notin Y_{n}$ since $v \notin\left\{t_{1}, \ldots, t_{k}\right\}$. Choose $h<n$ maximum such that $(e, i) \in Y_{h}$. From the maximality of h, $(e, i) \notin Y_{h+1}$, and so by (2) $u, v \in D_{h+1}$. From the definition of adjacency in H, there is another edge $(f, i) \in Y$ forming a two-edge path with (e, i), such that the common end of e, f is not in D_{h}. But $u \in\left\{s_{1}, \ldots, s_{k}\right\} \subseteq D_{h}$, and v is not incident with any other edge in Y, a contradiction. The argument is analogous if $u \in\left\{t_{1}, \ldots, t_{k}\right\}$ and we omit it. Finally suppose that $u \notin\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$. Thus $(e, i) \notin Y_{1}, Y_{n}$; choose $h<h^{\prime}<h^{\prime \prime}$ with $h^{\prime \prime}-h$ minimum such that $(e, i) \notin Y_{h} \cup Y_{h^{\prime \prime}}$ and $(e, i) \in Y_{h^{\prime}}$. From the minimality of $h^{\prime \prime}-h$ it follows that $(e, i) \in Y_{h+1}$; and from the definition of adjacency in H, there is an edge (f, i) of Y that makes a two-edge path with (e, i), such that the common end of e, f is in $D_{h+1} \backslash D_{h}$. Since v is not incident with any other edge in Y, this common end is u, so $u \in D_{h+1} \backslash D_{h}$. But similarly, $u \in D_{h^{\prime \prime}} \backslash D_{h^{\prime \prime}-1}$, and this is impossible since $D_{h+1} \subseteq D_{h^{\prime \prime}-1}$ by (1). This proves (4).

From (3), no three edges in Y share an end (because this end would be the head of two of them or the tail of two, contrary to (3)). Thus the digraph formed by Y is the disjoint union of directed paths and directed cycles, and we call these "components" of Y. The edges in each component all have the same colour, by (3). Each path component has first vertex in $\left\{s_{1}, \ldots, s_{k}\right\}$ and last vertex
in $\left\{t_{1}, \ldots, t_{k}\right\}$, by (4). Moreover, for $1 \leq i \leq k$, some edge in $Y_{1} \subseteq Y$ has tail s_{i} and colour i (from the definition of S_{0}); and since no edge in Y has head s_{i}, it follows that s_{i} is the first vertex of a path component P_{i} of Y in which all edges have colour i. The last vertex of this component is in $\left\{t_{1}, \ldots, t_{k}\right\}$, and is therefore t_{i} since the last edge has colour i. Consequently $\left(P_{1}, \ldots, P_{k}\right)$ is a linkage for ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$). This proves the "only if" part of the theorem.

Now we turn to the "if" part. We assume there is a linkage for ($G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}$), and must prove there is a path in G from S_{0} to T_{0}. Let $L=\left(P_{1}, \ldots, P_{k}\right)$ be a minimum linkage. Let v_{1}, \ldots, v_{n} be as in 3.4. For $0 \leq h \leq n$, let $B_{h}=\left\{s_{1}, \ldots, s_{k}\right\} \cup\left\{v_{i}: 1 \leq i \leq h\right\}$ and $A_{h}=V(L) \backslash B_{h}$; and let D_{h} be as defined immediately before 4.2 . Let J_{h} be the set of edges of $P_{1} \cup \cdots \cup P_{k}$ with one end in A_{h} and the other in B_{h}, and let $Y_{h}=\left\{(e, i): e \in J_{h} \cap E\left(P_{i}\right)\right\}$. We claim that

- $\left(Y_{h}, D_{h}\right) \in V(H)$ for $0 \leq h \leq n$;
- for $0 \leq h<n,\left(Y_{h}, D_{h}\right)$ is adjacent in H to $\left(Y_{h+1}, D_{h+1}\right)$; and
- $\left(Y_{0}, D_{0}\right) \in S_{0}$, and $\left(Y_{n}, D_{n}\right) \in T_{0}$.

To see the first claim, note that D_{h} is (r, s, t)-restricted by 4.2 ; and $Y_{h} \in \mathcal{E}$ since L is a linkage. Also the third claim follows. For the second, let $0 \leq h<n$. By 4.2, $D_{h} \subseteq D_{h+1}$. Let (e, i) be a coloured edge that belongs to exactly one of Y_{h}, Y_{h+1}. It follows that $e \in E\left(P_{i}\right)$, and hence has both ends in $V(L)$; and since e belongs to exactly one of J_{h}, J_{h+1}, some end v of e belongs to $D_{h+1} \backslash D_{h}$. Thus $v \in D_{h+1} \cap V(L)=B_{h+1}$, and $v \in V(L) \backslash D_{h}=A_{h}$, by 4.2. Hence $v=v_{h+1}$ since $B_{h+1}=B_{h} \cup\left\{v_{h+1}\right\}$. Now $v \notin\left\{s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}\right\}$, and so there is a two-edge subpath Q of P_{i} with middle vertex v. Since $B_{h+1}=B_{h} \cup\{v\}$, it follows that the other edge of Q also belongs to exactly one of J_{h}, J_{h+1}; and no other edges have this property, since we have shown that every edge in exactly one of J_{h}, J_{h+1} is incident with $v=v_{h+1}$, and no other edges in $P_{1} \cup \cdots \cup P_{k}$ are incident with v. This completes the proof of the second bullet above, and so proves the "if" half of the theorem, and hence completes the proof of 5.1.

Let us figure out the running time. Checking whether the path in H exists can be done in time $O\left(|V(H)|^{2}\right)$ (for instance by breadth-first search), which is also the time needed to construct H; so we just need to estimate $|V(H)|$. We recall that $z=c\left(c\left(k^{2}+k+1\right)+k+2\right), w=c(c-1)(z+1)+1$, $r=c k w, s=k^{2}+k+3$, and $t=2 c s k w+c(2 w+1) k^{2}\left(k^{2}+k+1\right)$; and let $n=|V(G)|$. Now H has at most $|\mathcal{D}| \cdot|\mathcal{E}|$ vertices, and $|\mathcal{D}| \leq n^{2 r s} 2^{t}$, and $|\mathcal{E}| \leq\left(n^{2} k\right)^{2 w-1}$. Hence $|V(H)|^{2}=O\left(n^{4 r s+8 w}\right)$, and this exponent is about $4(c k)^{5}$ for large c, k.

Finally, we remark that every p-vertex path from S_{0} to T_{0} in H gives a linkage in G using at most $p-1+2 k$ vertices; and every minimum linkage in G with $p-1+2 k$ vertices gives a p-vertex path in H. Thus if we check for the shortest path in H from S_{0} to T_{0}, we can determine the minimum number of vertices in a linkage for $\left(G, s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right)$, as mentioned in the introduction.

References

[1] J. Bang-Jensen, T.M. Larsen and A. Maddaloni, "Disjoint paths in decomposable digraphs", J. Graph Theory 85 (2017), 545-567.
[2] Jørgen Bang-Jensen and Carsten Thomassen, "A polynomial algorithm for the 2-path problem for semicomplete digraphs", SIAM Journal on Discrete Mathematics 5 (1992), 366-376.
[3] M. Chudnovsky, A. Scott and P. Seymour, "Disjoint paths in tournaments", Advances in Math. 270 (2015), 582-597.
[4] S. Fortune, J. Hopcroft and J. Wyllie, "The directed subgraphs homeomorphism problem", Theoret. Comput. Sci. 10 (1980), 111-121.
[5] Alexandra Fradkin and Paul Seymour, "Edge-disjoint paths in digraphs with bounded independence number", J. Combinatorial Theory, Ser. B, 110 (2015), 19-46.
[6] N. Robertson and P. D. Seymour, "Graph minors. XIII. The disjoint paths problem", J. Combinatorial Theory, Ser. B, 63 (1995), 65-110.

[^0]: ${ }^{1}$ Supported by NSF grant DMS-1265803.
 ${ }^{2}$ Supported by NSF grant DMS-1265563 and ONR grant N00014-14-1-0084.

