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Abstract

Given k pairs of vertices (si, ti) (1 ≤ i ≤ k) of a digraph G, how can we test whether there exist k
vertex-disjoint directed paths from si to ti for 1 ≤ i ≤ k? This is NP-complete in general digraphs,
even for k = 2 [2], but for k = 2 there is a polynomial-time algorithm when G is a tournament (or
more generally, a semicomplete digraph), due to Bang-Jensen and Thomassen [1]. Here we prove that
for all fixed k there is a polynomial-time algorithm to solve the problem when G is semicomplete.



1 Introduction

Let s1, t1, . . . , sk, tk be vertices of a graph or digraph G. The k vertex-disjoint paths problem is
to determine whether there exist vertex-disjoint paths P1, . . . , Pk (directed paths, in the case of a
digraph) such that Pi is from si to ti for 1 ≤ i ≤ k. For undirected graphs, this problem is solvable
in polynomial time for all fixed k; this was one of the highlights of the Graph Minors project of
Robertson and the third author [4]. The directed version is a natural and important question, but
it was shown by Fortune, Hopcroft and Wyllie [2] that, without further restrictions on the input G,
this problem is NP-complete for digraphs, even for k = 2. This motivates the study of subclasses of
digraphs for which the problem is polynomial-time solvable.

In this paper, all graphs and digraphs are finite, and without loops or parallel edges; thus if u, v
are distinct vertices of a digraph then there do not exist two edges both from u to v, although there
may be edges uv and vu. Also, by a “path” in a digraph we always mean a directed path. A digraph
is a tournament if for every pair of distinct vertices u, v, exactly one of uv, vu is an edge; and a
digraph is semicomplete if for all distinct u, v, at least one of uv, vu is an edge. It was shown by
Bang-Jensen and Thomassen [1] that

• the k vertex-disjoint paths problem (for digraphs) is NP-complete if k is not fixed, even when
G is a tournament;

• the two vertex-disjoint paths problem is solvable in polynomial time if G is semicomplete.

We shall show:

1.1 For all fixed k ≥ 0, the k vertex-disjoint paths problem is solvable in polynomial time if G is
semicomplete.

In fact we will prove a result for a wider class of digraphs, that we define next. Let P be a path of
a digraph G, with vertices v1, . . . , vn in order. We say P is minimal if j ≤ i+1 for every edge vivj of
G with 1 ≤ i, j ≤ n. Let d ≥ 1; we say that a digraph G is d-path-dominant if for every minimal path
P of G with d vertices, every vertex of G either belongs to V (P ) or has an out-neighbour in V (P ) or
has an in-neighbour in V (P ). Thus a digraph is 1-path-dominant if and only if it is semicomplete;
and 2-path-dominant if and only if its underlying simple graph is complete multipartite. We will
show:

1.2 For all fixed d, k ≥ 1, the k vertex-disjoint paths problem is solvable in polynomial time if G is
d-path-dominant.

We stress here that we are looking for vertex-disjoint paths. One can ask the same for edge-
disjoint paths, and that question has also been recently solved for tournaments, and indeed for
digraphs with bounded independence number [3], but the solution is completely different. We do
not know a polynomial-time algorithm for the two vertex-disjoint paths problem for digraphs with
independence number two.

But we can extend 1.2 in a different way:

1.3 For all d, k ≥ 1, there is a polynomial-time algorithm as follows:
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• Input: Vertices s1, t1, . . . , sk, tk of a d-path-dominant digraph G, and integers x1, . . . , xk ≥ 1.

• Output: Decides whether there exist pairwise vertex-disjoint directed paths P1, . . . , Pk of G
such that for 1 ≤ i ≤ k, Pi is from si to ti and has at most xi vertices.

Let s1, t1, . . . , sk, tk be vertices of a digraph G. We call (G, s1, t1, . . . , sk, tk) a problem instance.
A linkage in a digraph G is a sequence L = (Pi : 1 ≤ i ≤ k) of vertex-disjoint paths, and L is
a linkage for a problem instance (G, s1, t1, . . . , s,tk) if Pi is from si to ti for each i. (With a slight
abuse of notation, we shall call k the “cardinality” of L, and P1, . . . , Pk its “members”. Also, every
subsequence of (Pi : 1 ≤ i ≤ k) is a linkage L′, and we say L “includes” L′. ) If x = (x1, . . . , xk) is
a k-tuple of integers, we say a linkage (Pi : 1 ≤ i ≤ k) is an x-linkage if each Pi has xi vertices. We
say a k-tuple of integers x = (x1, . . . , xk) is a quality of (G, s1, t1, . . . , sk, tk) if there is an x-linkage
for (G, s1, t1, . . . , s,tk). If x = (x1, . . . , xk) and y = (y1, . . . , yk), we say x ≤ y if xi ≤ yi for 1 ≤ i ≤ k;
and x < y if x ≤ y and x 6= y. We say a quality x of (G, s1, t1, . . . , sk, tk) is key if there is no quality
y with y < x. Our main result is the following:

1.4 For all d, k, there is an algorithm as follows:

• Input: A problem instance (G, s1, t1, . . . , sk, tk) where G is d-path-dominant.

• Output: The set of all key qualities of (G, s1, t1, . . . , sk, tk).

• Running time: O(nt) where t = 6k2d(k + d) + 13k.

The idea of the algorithm for 1.2 is easy described. We define an auxiliary digraph H with two
special vertices s0, t0, and prove that there is a path in H from s0 to t0 if and only if there is a linkage
for (G, s1, t1, . . . , s,tk). Thus to solve the problem of 1.2 it suffices to construct H in polynomial time.
The more general question of 1.4 is solved similarly, by assigning appropriate weights to the edges
of H.

Recently we have been able to extend 1.1 to a more general class of digraphs, namely the digraphs
whose vertex set can be partitioned into a bounded number of subsets such that each subset induces
a semicomplete digraph. The proof is by a modification of the method of this paper, but it is
considerably more difficult and not included here.

2 A useful enumeration

If P is a path of a digraph G, its length is |E(P )| (every path has at least one vertex); and s(P ), t(P )
denote the first and last vertices of P , respectively. If F is a subdigraph of G, a vertex v of G\V (F )
is F -outward if no vertex of F is adjacent from v in G; and F -inward if no vertex of F is adjacent to
v in G. If F is a digraph and v ∈ V (F ), F \ v denotes the digraph obtained from F by deleting v;
if X ⊆ V (F ), F |X denotes the subdigraph of F induced on X; and F \ X denotes the subdigraph
obtained by deleting all vertices in X.

Now let L = (Pi : 1 ≤ i ≤ k) be a linkage in G. We define V (L) to be V (P1) ∪ · · · ∪ V (Pk). A
vertex v is an internal vertex of L if v ∈ V (L), and v is not an end of any member of L. A linkage
L is internally disjoint from a linkage L′ if no internal vertex of L belongs to V (L′) (note that this
does not imply that L′ is internally disjoint from L); and we say that L,L′ are internally disjoint
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if each of them is internally disjoint from the other (and thus all vertices in V (L) ∩ V (L′) must be
ends of paths in both L and L′)

Let Q,R be vertex-disjoint paths of a digraph G. A planar (Q,R)-matching is a linkage (Mj :
1 ≤ j ≤ n) for some n ≥ 0, such that

• M1, . . . ,Mn each have either two or three vertices;

• s(M1), . . . , s(Mn) are vertices of Q, in order in Q; and

• t(M1), . . . , t(Mn) are vertices of R, in order in R.

Fix d, k ≥ 1, and let L = (P1, . . . , Pk) be a linkage in a d-path-dominant digraph G. A subset
B ⊆ V (L) is said to be acceptable (for L) if

• for 1 ≤ j ≤ k, if uv is an edge of Pj and v ∈ B then u ∈ B (and so Qj = Pj |B and
Rj = Pj |(V (G) \ B) are paths if they are non-null);

• for 1 ≤ i, j ≤ k, there is no planar (Qi, Rj)-matching of cardinality (k − 1)d + k2 + 2 internally
disjoint from L.

Thus ∅ and V (L) are acceptable.

2.1 Let d ≥ 1, let (G, s1, t1, . . . , sk, tk) be a problem instance, where G is d-path-dominant, let x
be a key quality, and let L = (P1, . . . , Pk) be an x-linkage for (G, s1, t1, . . . , sk, tk). Suppose that
B ⊆ V (L) is acceptable for L and B 6= V (L). Then there exists v ∈ V (L) \ B such that B ∪ {v} is
acceptable for L.

Proof. Let A = V (G) \ B. For 1 ≤ j ≤ k, let Qj = Pj |B and Rj = Pj |A. Let qj, rj be the last
vertex of Qj and the first vertex of Rj, respectively (if they exist).

(1) For 1 ≤ j ≤ k, Pj is a minimal path of G. In particular, the only edge of G from V (Qj)
to V (Rj) (if there is one) is qjrj . Moreover, every three-vertex path from V (Qj) to V (Rj) with
internal vertex in V (G) \ V (L) uses at least one of qj, rj . Consequently, there is no planar (Qj , Rj)-
matching of cardinality three internally disjoint from L.

For suppose there is an edge uv of G such that u, v ∈ V (Pj) and u is before v in Pj , and there
is at least one vertex of Pj between u and v. If we delete from Pj the vertices of Pj strictly between
u and v, and add the edge uv, we obtain a path from sj to tj disjoint from every member of L
except Pj, and with strictly fewer vertices than Pj , contradicting that x is key. Thus Pj is induced.
Similarly there is no three-vertex path from V (Qj) to V (Rj) with internal vertex in V (G) \ V (L)
containing neither of qj, rj . The final assertion follows. This proves (1).

From (1), the theorem holds if k = 1, so we may assume that k ≥ 2.

(2) We may assume that for all i ∈ {1, . . . , k}, if Ri is non-null then for some j ∈ {1, . . . , k}
with j 6= i, there is a planar (Qi, Rj \ rj)-matching of cardinality (k − 1)d + k2 internally disjoint
from L.
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For suppose that some i does not satisfy the statement of (2). Thus Ri is non-null, and there
is no j as in (2). Since Ri is non-null, it follows that ri exists. We may assume that B ∪ {ri}
is not acceptable. Consequently, one of the two conditions in the definition of “acceptable” is not
satisfied by B ∪ {ri}. The first is satisfied since ri is the first vertex of Ri. Thus the second is
false, and so for some i′, j ∈ {1, . . . , k}, there is a planar (Pi′ |(B ∪ {ri}), Pj |(A \ {ri}))-matching of
cardinality (k − 1)d + k2 + 2 internally disjoint from L. Since there is no planar (Qi′ , Rj)-matching
of cardinality (k − 1)d + k2 + 2 internally disjoint from L, and Pj |(A \ {ri}) is a subpath of Rj, it
follows that Pi′ |(B ∪ {ri}) 6= Qi′ , and so i′ = i. Since only one vertex of Pi|(B ∪ {ri}) does not
belong to Qi, it follows that there is a planar (Qi, Rj \rj)-matching of cardinality (k−1)d+k2 inter-
nally disjoint from L. Since (k−1)d+k2 ≥ 4 (because k ≥ 2), (1) implies that j 6= i. This proves (2).

(3) We may assume that for some p ≥ 2, and for all i with 1 ≤ i < p, there is a planar (Qi, Ri+1 \
ri+1)-matching of cardinality (k−1)d+k2 internally disjoint from L, and there is a planar (Qp, R1 \
r1)-matching of cardinality (k − 1)d + k2 internally disjoint from L.

For by hypothesis, there exists i ∈ {1, . . . , k} such that Ri is non-null. By repeated application of (2),
there exist distinct h1, . . . , hp ∈ {1, . . . , k} such that for 1 ≤ i ≤ p there is a planar (Qhi

, Rhi+1
\rhi+1

)-
matching of cardinality (k − 1)d + k2 internally disjoint from L, where hp+1 = h1; and p ≥ 2 by (1).
Without loss of generality, we may assume that hi = i for 1 ≤ i ≤ p. This proves (3).

Let us say a planar (Q,R)-matching is s-spaced if no subpath of Q with at most s vertices meets
more than one member of the matching, and no subpath of R with at most s vertices meets more
than one member of the matching.

(4) We may assume that for some p ≥ 2, and for all i with 1 ≤ i < p, there is a planar (Qi, Ri+1 \
ri+1)-matching Li, and there is a planar (Qp, R1 \ r1)-matching Lp, such that

• L1, . . . , Lp all have cardinality k;

• they are pairwise internally disjoint;

• each of L1, . . . , Lp is internally disjoint from L; and

• each of L1, . . . , Lp is (d + 1)-spaced.

For let L′
i be a planar (Qi, Ri+1 \ ri+1)-matching of cardinality (k − 1)d + k2 internally disjoint

from L, for 1 ≤ i < p, and let L′
p be a planar (Qp, R1 \ r1)-matching of cardinality (k − 1)d + k2

internally disjoint from L. We choose Li ⊆ L′
i inductively. Suppose that for some h < p, we have

chosen L1, . . . , Lh, such that

• L1, . . . , Lh all have cardinality k;

• they are pairwise internally disjoint;

• each of L1, . . . , Lh is internally disjoint from L; and

• each of L1, . . . , Lh is (d + 1)-spaced.
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We define Lh+1 as follows. The union of the sets of internal vertices of L1, . . . , Lh has cardinality at
most hk ≤ k(k − 1), and so L′

h+1 includes a planar (Qh+1, Rh+2 \ rh+2)-matching (or (Qp, R1 \ r1)-
matching, if h = p− 1) of cardinality (k− 1)d + k2 − k(k− 1) = 1+ (k− 1)(d +1), internally disjoint
from each of L1, . . . , Lh. By ordering the members of this matching in their natural order, and taking
only the ith terms, where i = 1, 1 + (d + 1), 1 + 2(d + 1) . . ., we obtain a (d + 1)-spaced matching of
cardinality k. Let this be Lh+1. This completes the inductive definition of L1, . . . , Lp, and so proves
(4).

For 1 ≤ i ≤ p, let Li = {M1
i , . . . ,Mk

i }, numbered in order; thus, if qh
i and rh

i+1 denote the first
and last vertices of Mh

i , then q1
i , . . . , q

k
i are distinct and in order in Qi, and ri+1, r

1
i+1, . . . , r

k
i+1 are

distinct and in order in Ri+1 (or in R1 if i = p). For 1 ≤ i ≤ p and 2 ≤ h ≤ k, let Qh
i be the

subpath of Pi with d vertices and with last vertex qh
i . (Thus qh−1

i does not belong to Qh
i since Li

is d-spaced, and indeed (d + 1)-spaced.) Since Pi and hence Qh
i is a minimal path of G, and G is

d-path-dominant, it follows that for 1 ≤ i ≤ p and 2 ≤ h ≤ k, rh−1
i is adjacent to or from some

vertex v of Qh
i . Since rh−1

i 6= ri, (1) implies that rh−1
i is not adjacent from any vertex of Qh

i ; and so
there is a path Rh−1

i from rh−1
i to qh

i of length at most d, such that all its internal vertices belong to
Qh

i . For 1 ≤ i ≤ p, and 1 ≤ h < k, let Sh
i be the path

qh
i -Mh

i -rh
i+1-R

h
i+1-q

h+1
i+1 ,

or
qh
p -Mh

p -rh
1 -Rh

1 -qh+1
1

if i = p; then Sh
i is a path from qh

i to qh+1
i+1 (or to qh+1

1 if i = p), of length at most d + 2. Thus

(reading subscripts modulo p) concatenating S1
i , S2

i+1, . . . , S
p−1
i+p−2 and Mp

i−1 gives a path T ′
i from

q1
i to rp

i of length at most (p − 1)(d + 2) + 2. The subpath Ti of Pi from q1
i to rp

i has length at
least (p + k − 2)(d + 1) + 2, since Li−1, Li are (d + 1)-spaced and ri is different from r1

i ; and since
p + k − 2 ≥ 2(p− 1) and d + 1 > (d + 2)/2, it follows that Ti has length strictly greater than that of
T ′

i . Let P ′
i be obtained from Pi by replacing the subpath Ti by T ′

i , for 1 ≤ i ≤ p, and let Pi′ = Pi

for p + 1 ≤ i ≤ k. Then {P ′
1, . . . , P

′
k} is a linkage for (G, s1, t1, . . . , s,tk), contradicting that x is key.

This proves 2.1.

We deduce:

2.2 Let d ≥ 1, let (G, s1, t1, . . . , sk, tk) be a problem instance where G is d-path-dominant, let x be a
key quality, and let L = (P1, . . . , Pk) be an x-linkage for (G, s1, t1, . . . , sk, tk). Let c = (k−1)d+k2+2.
Then there is an enumeration (v1, . . . , vn) of V (L), such that

• for 1 ≤ h ≤ k and 1 ≤ p, q ≤ n, if vpvq is an edge of Ph then p < q;

• for 1 ≤ h, i ≤ k and 1 ≤ p ≤ n − 1, and every cd-vertex subpath Q of Ph|{v1, . . . , vp}, and
every cd-vertex subpath R of Pi|{vp+1, . . . , vn}, there are at most c(2k + 1) vertices of G that
are both Q-outward and R-inward.

Proof. Since ∅ is acceptable for L, by repeated application of 2.1 implies that there is an enumer-
ation (v1, . . . , vn) of V (L), such that {v1, . . . , vp} is acceptable for 0 ≤ p ≤ n. We claim that this
enumeration satisfies the theorem. For certainly the first bullet holds; we must check the second.

5



Thus, let 1 ≤ p ≤ n, and let B = {v1, . . . , vp} and A = {vp+1, . . . , vn}. For 1 ≤ h ≤ k, let Qh = Ph|B
and Rh = Ph|A. Now let 1 ≤ h, i ≤ k, and let Q,R be cd-vertex subpaths of Qh, Ri respectively.
Let X be the set of all vertices of G that are both Q-outward and R-inward. We must show that
|X| ≤ c(2k + 1).

(1) If x1, . . . , xc ∈ X are distinct, then there exist y1, . . . , yc ∈ V (Q), distinct and in order in
Q, such that yjxj is an edge for 1 ≤ j ≤ c.

For Q has cd vertices; let its vertices be q1, . . . , qcd in order. Let 1 ≤ j ≤ c. The subpath of Q
induced on {qs : (j − 1)d < s ≤ jd} has d vertices, and since Q is a minimal path of G and G is
d-path-dominant, and X ∩ V (Q) = ∅, it follows that xj is in- or out-adjacent to a vertex of this
subpath, say yj. Since xj ∈ X and hence is Q-outwards, it follows that xjyj is not an edge, and so
yjxj is an edge. But then y1, . . . , yc satisfy (1). This proves (1).

(2) The sets X \ V (L), X ∩ V (Qg) (1 ≤ g ≤ k) and X ∩ V (Rg) (1 ≤ g ≤ k) all have cardinal-
ity at most c − 1, and hence |X| ≤ (2k + 1)(c − 1).

For suppose that there exist distinct x1, . . . , xc ∈ X \ V (L). By (1) there exist distinct y1, . . . , yc ∈
V (Q), in order in Q, such that yjxj is an edge for 1 ≤ j ≤ c; and similarly there exist z1, . . . , zc ∈
V (R), in order in R, such that xjzj is an edge for 1 ≤ j ≤ c. But then the c paths yj-xj-zj (1 ≤ j ≤ c)
form a planar (Qh, Ri)-matching of cardinality c, internally disjoint from L, contradicting that
{v1, . . . , vp} is acceptable. Thus |X \ V (L)| ≤ c − 1. Now suppose that for some g ∈ {1, . . . , k},
there exist distinct x1, . . . , xc in X ∩ V (Rg), numbered in order in Rg. Choose y1, . . . , yc as in (1);
then the paths yjxj (1 ≤ j ≤ c) form a planar (Qh, Rg)-matching of cardinality c, internally disjoint
from L, contradicting that {v1, . . . , vp} is acceptable. Thus |X ∩ V (Rg)| ≤ c − 1, and similarly
|X ∩ V (Qg)| ≤ c − 1, for 1 ≤ g ≤ k. This proves (2).

From (2), the theorem follows.

3 Confusion and the auxiliary digraph

Let (G, s1, t1, . . . , sk, tk) be a problem instance, and let L = (M1, . . . ,Mk) be a linkage in G (not
necessarily a linkage for (G, s1, t1, . . . , sk, tk)). Let A(L) be the set of all vertices in V (G)\V (L) that
are Mj \ t(Mj)-inward for some j ∈ {1, . . . , k} such that t(Mj) 6= tj and let B(L) be the set of all
vertices in V (G) \ V (L) that are Mj \ s(Mj)-outward for some j ∈ {1, . . . , k} such that s(Mj) 6= sj.
We call |A(L) ∩ B(L)| the confusion of L ; and it is helpful to keep the confusion small, as we shall
see.

A (k,m, c)-rail in a problem instance (G, s1, t1, . . . , sk, tk) is a triple (L,X, Y ), where

• L is a linkage in G consisting of k paths (M1, . . . ,Mk) (but not necessarily a linkage for
(G, s1, t1, . . . , sk, tk));

• for 1 ≤ j ≤ k, Mj has at most 2m vertices, and if it has fewer than 2m vertices then Mj either
has first vertex sj or last vertex tj;
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• L has confusion at most c;

• X,Y are disjoint subsets of V (G) \ V (L); and

• X ⊆ A(L), Y ⊆ B(L), and X ∪ Y = A(L) ∪ B(L).

3.1 For all k,m, c ≥ 0, if (G, s1, t1, . . . , sk, tk) is a problem instance and G has n vertices then there
are at most 2cn2km(2km)k (k,m, c)-rails in (G, s1, t1, . . . , sk, tk). Moreover, for all fixed k,m, c ≥ 0,
there is an algorithm which, with input a problem instance (G, s1, t1, . . . , sk, tk), finds all its (k,m, c)-
rails in time O(n2km+1), where n = |V (G)|.

Proof. First, if L is a linkage with k paths each with at most 2m vertices, then |V (L)| ≤ 2km,
and so the number of such linkages is at most n2km(2km)k, as is easily seen. Now fix a linkage L
satisfying the first two bullets in the definition of (k,m, c)-rail; let us count the number of pairs
(X,Y ) such that (L,X, Y ) is a (k,m, c)-rail. There are none unless |A(L) ∩ B(L)| ≤ c; and in that
case, there are at most 2c possibilities for the pair (X,Y ), since X consists of A(L) \ B(L) together
with some subset of A(L) ∩ B(L), and Y = (A(L) ∪ B(L)) \ X.

For the algorithm, we first find all linkages L with k paths each with at most 2m vertices, by
examining all ordered 2km-tuples of distinct vertices of G. For each such L, we check whether it
satisfies the first three bullets in the definition of (k,m, c)-rail (this takes time O(n)); if not we
discard it and otherwise we partition A(L) ∩B(L) into two subsets in all possible ways, and output
the corresponding (k,m, c)-rails. The result follows.

Let (L,X, Y ) and (L′,X ′, Y ′) be distinct (k,m, c)-rails in G, and let L = (P1, . . . , Pk) and L′ =
(P ′

1, . . . , P
′
k). We write (L,X, Y ) → (L′,X ′, Y ′) if the following hold:

• for 1 ≤ i ≤ k, Pi ∪ P ′
i is a path from the first vertex of Pi to the last vertex of P ′

i ;

• for 1 ≤ i ≤ k, V (P ′
i ) ⊆ V (Pi) ∪ X, and V (Pi) ⊆ V (P ′

i ) ∪ Y ′; and

• X ′ ⊆ X, and Y ⊆ Y ′.

Let (G, s1, t1, . . . , sk, tk) be a problem instance, and let T be the set of all (k,m, c)-rails in
(G, s1, t1, . . . , sk, tk). Take two new vertices s0, t0, and let us define a digraph H with vertex set
T ∪ {s0, t0} as follows. Let u, v ∈ V (H). If u, v ∈ T are distinct, then uv ∈ E(H) if and only if
u → v. If u = s0 and v ∈ T , let v = (L,X, Y ) where L = (M1, . . . ,Mk); then uv ∈ E(H) if and only
if Mj has first vertex sj for all j ∈ {1, . . . , k}. Similarly, if u ∈ T and v = t0, let u = (L,X, Y ) where
L = (M1, . . . ,Mk); then uv ∈ E(H) if and only if Mj has last vertex tj for all j ∈ {1, . . . , k}. This
defines H. We call H the (k,m, c)-tracker of (G, s1, t1, . . . , sk, tk).

We shall show that with an appropriate choice of m, c, when G is d-path-dominant we can reduce
our problems about linkages for (G, s1, t1, . . . , sk, tk) to problems about paths from s0 to t0 in the
(k,m, c)-tracker. Let (G, s1, t1, . . . , sk, tk) be a problem instance, let (P1, . . . , Pk) be a linkage for
(G, s1, t1, . . . , sk, tk), and let P be a path from s0 to t0 in the (k,m, c)-tracker. Let P have vertices

s0, (L1,X1, Y1), . . . , (Ln,Xn, Yn), t0

in order, and let Lp = (Mp,1, . . . ,Mp,k) for 1 ≤ p ≤ n. We say that P traces (P1, . . . , Pk) if Pj is the
union of M1,j , . . . ,Mn,j for all j ∈ {1, . . . , k}.
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3.2 Let k,m, c ≥ 0 be integers, and let (G, s1, t1, . . . , sk, tk) be a problem instance, with (k,m, c)-
tracker H. Every path in H from s0 to t0 traces some linkage for (G, s1, t1, . . . , sk, tk).

Proof. Let P be a path of H, with vertices

s0, (L1,X1, Y1), . . . , (Ln,Xn, Yn), t0

in order, and let Lp = (Mp,1, . . . ,Mp,k) for 1 ≤ p ≤ n. For 1 ≤ p ≤ n and 1 ≤ j ≤ k, let Pp,j be the
union of M1,j , . . . ,Mp,j .

(1) For 1 ≤ p ≤ n and 1 ≤ j ≤ k, every vertex of Pp,j belongs to Yp ∪ V (Mp,j).

We prove this by induction on p. If p = 1 the claim is true, since then P1,j = M1,j . We assume then
that p > 1 and the result holds for p − 1. Let v ∈ V (Pp,j). If v ∈ V (Mp,j) then the claim is true, so
we assume not. Since v ∈ V (Pp,j), and Pp,j = Pp−1,j ∪ Mp,j, it follows that v ∈ V (Pp−1,j), and so
from the inductive hypothesis, v ∈ Yp−1 ∪ V (Mp−1,j). But since (Lp−1,Xp−1, Yp−1) → (Lp,Xp, Yp),
we deduce that Yp−1 ⊆ Yp, and V (Mp−1,j) ⊆ V (Mp,j) ∪ Yp, and so v ∈ V (Mp,j) ∪ Yp. This proves
(1).

(2) For 1 ≤ p ≤ n and 1 ≤ j ≤ k, Pp,j is a path from sj to the last vertex of Mp,j.

The claim holds if p = 1; so we assume that p > 1 and the claim holds for p − 1. Thus Pp−1,j

is a path from sj to the last vertex of Mp−1,j; and also, Mp−1,j ∪Mp,j is a path, from the first vertex
of Mp−1,j to the last vertex of Mp,j, since (Lp−1,Xp−1, Yp−1) → (Lp,Xp, Yp). We claim that every
vertex v that belongs to both of Pp−1,j,Mp,j also belongs to Mp−1,j. For suppose not; then by (1),
v ∈ Yp−1 since v ∈ V (Pp−1,j) \ V (Mp−1,j), and v ∈ Xp−1, since v ∈ V (Mp,j) \ V (Mp−1,j). This is
impossible since Xp−1 ∩Yp−1 = ∅. This proves that every vertex that belongs to both of Pp−1,j,Mp,j

also belongs to Mp−1,j. Since Mp−1,j is non-null, we deduce that Pp−1,j ∪ Mp,j is a path from sj to
the last vertex of Mp,j. This proves (2).

(3) For 1 ≤ p ≤ n, the paths Pp,1, . . . , Pp,k are pairwise vertex-disjoint.

For again we proceed by induction on p, and may assume that p > 1 and the result holds for
p − 1. Suppose that v belongs to two of the paths Pp,1, . . . , Pp,k, say to Pp,1 and Pp,2. From
the inductive hypothesis, v does not belong to both of Pp−1,1 and Pp−1,2, so we may assume that
v ∈ V (Mp,1). Now v /∈ V (Mp,2), because Lp is a linkage, and so v ∈ V (Pp−1,2). From (1) we deduce
that v ∈ Yp−1 ∪ V (Mp−1,2). But Yp−1 ⊆ Yp, and V (Mp−1,2) \ V (Mp,2) ⊆ Yp, and so v ∈ Yp; but
Yp ∩ V (Lp) = ∅ since (Lp,Xp, Yp) is a (k,m, c)-rail, a contradiction. This proves (3).

From (2) and (3) we deduce that (Pn,1, . . . , Pn,k) is a linkage L for (G, s1, t1, . . . , sk, tk). Thus P
traces L. This proves 3.2.

The next result is a kind of partial converse; but we have to choose m, c carefully, and we need
G to be d-path-dominant, and the proof only works for linkages that realize a key quality.
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3.3 Let d, k ≥ 1 be integers, and let

c = ((k − 1)d + k2 + 2)(2k + 1)k2

m = ((k − 1)d + k2 + 2)d + 1.

Let (G, s1, t1, . . . , sk, tk) be a problem instance where G is d-path-dominant, let x be a key qual-
ity, and let (P1, . . . , Pk) be an x-linkage for (G, s1, t1, . . . , sk, tk). Let H be the (k,m, c)-tracker of
(G, s1, t1, . . . , sk, tk). Then there is a path in H from s0 to t0 tracing (P1, . . . , Pk).

Proof. Let L = (P1, . . . , Pk). By 2.2, there is an enumeration (v1, . . . , vn) of V (L), such that

• for 1 ≤ j ≤ k and 1 ≤ p, q ≤ n, if vpvq is an edge of Pj then p < q;

• for 1 ≤ i, j ≤ k and 1 ≤ p ≤ n− 1, and every (m− 1)-vertex subpath Q of Pi|{v1, . . . , vp}, and
every (m−1)-vertex subpath R of Pj |{vp+1, . . . , vn}, there are at most ((k−1)d+k2+2)(2k+1)
vertices of G that are both Q-outward and R-inward.

For each v ∈ V (L), let φ(v) = i where v = vi; thus φ is a bijection from V (L) onto {1, . . . , n}.
For all p ∈ {0, . . . , n} and all j ∈ {1, . . . , k}, if φ(sj) ≤ p, let Qp,j be the maximal subpath of Pj

with at most m vertices and with last vertex vq, where q ≤ p is maximum such that vq ∈ V (Pj). If
φ(sj) > p, let Qp,j be the null digraph. Similarly, if φ(tj) > p, let Rp,j be the maximal subpath of Pj

with at most m vertices and with first vertex vr, where r > p is minimum such that vr ∈ V (Pj). If
φ(tj) ≤ p, let Rp,j be the null digraph. Thus, if Qp,j, Rp,j are both non-null, then t(Qp,j) and s(Rp,j)
are consecutive in Pj .

For all p ∈ {0, . . . , n} and all j ∈ {1, . . . , k}, let Mp,j be the subpath of Pj defined as follows: if
both Qp,j, Rp,j are non-null, Mp,j consists of Qp,j ∪Rp,j together with the edge of Pj from t(Qp,j) to
s(Rp,j), while if one of Qp,j, Rp,j is null, Mp,j equals the other (not both can be null). We see that,
for all p, j, Mp,j has at most 2m vertices; and either it has exactly 2m, or its first vertex is sj , or its
last vertex is tj. For all p ∈ {0, . . . , n}, let Lp be the linkage (Mp,1, . . . ,Mp,k).

(1) For all p ∈ {0, . . . , n}, Lp has confusion at most c.

Let v ∈ A(Lp) ∩ B(Lp), where A(Lp), B(Lp) are as in the definition of confusion. Thus there exists
j ∈ {1, . . . , k} such that v is Mp,j \ t(Mp,j)-inward and t(Mp,j) 6= tj . Since t(Mp,j) 6= tj , it follows
from the choice of Rp,j that Rp,j has exactly m vertices. Moreover, v is Rp,j \ t(Rp,j)-inward, since v
is Mp,j \t(Mp,j)-inward. Similarly, there exists i ∈ {1, . . . , k} such that v is Qp,i\s(Qp,i)-outward and
Qp,i has m vertices. For each choice of i, j ∈ {1, . . . , k}, there are at most ((k − 1)d + k2 + 2)(2k + 1)
vertices that are both Qp,i\s(Qp,i)-outward and Rp,j \t(Rp,j)-inward, from the choice of the enumera-
tion (v1, . . . , vn). Consequently in total there are only c possibilities for v, and so |A(Lp)∩B(Lp)| ≤ c.
This proves (1).

(2) For 0 ≤ p ≤ n and each v ∈ V (L) \ V (Lp), if φ(v) > p then v ∈ A(Lp), and if φ(v) ≤ p
then v ∈ B(Lp).

For let v ∈ V (Pj) say. Assume first that φ(v) > p. Since v /∈ V (Lp), it follows that Mp,j does
not have last vertex tj; and since x is key, v is not adjacent from any vertex in Mp,j except possibly

9



t(Mp,j). Consequently v is Mp,j \ t(Mp,j)-inward, and hence belongs to A(Lp). Similarly, if φ(v) ≤ p
then v ∈ B(Lp). This proves (2).

For all p ∈ {0, . . . , n}, define Xp, Yp as follows:

Xp = {v ∈ V (L) \ V (Lp) : φ(v) > p} ∪ (A(Lp) \ B(Lp))

Yp = (A(Lp) ∪ B(Lp)) \ Xp.

(3) For all p ∈ {0, . . . , n}, (Lp,Xp, Yp) is a (k,m, c)-rail.

From (1), it suffices to check that

• Xp, Yp are disjoint subsets of V (G) \ V (Lp);

• Xp ⊆ A(Lp), Yp ⊆ B(Lp); and

• Xp ∪ Yp = A(Lp) ∪ B(Lp).

Certainly they are disjoint, and have union A(Lp) ∪ B(Lp). Moreover, from (2), Xp ⊆ A(Lp). It
remains to show that Yp ⊆ B(Lp). Let v ∈ Yp. Thus v ∈ A(Lp) ∪ B(Lp); and v /∈ A(Lp) \ B(Lp),
since v /∈ Xp. Consequently v ∈ B(Lp) as required. This proves (3).

(4) For all p ∈ {0, . . . , n − 1}, and all j ∈ {1, . . . , k}, Mp,j ∪Mp+1,j is a path from the first vertex of
Mp,j to the last vertex of Mp+1,j.

For Mp,j,Mp+1,j are both subpaths of Pj, and we may assume they are distinct, and so vp+1 ∈ V (Pj).
Hence, since m > 0, vp+1 is the first vertex of Rp,j, and the last vertex of Qp+1,j; and so Mp,j∪Mp+1,j

is a path. Moreover, it follows from the definition of the paths Mp,j that Mp,j ∪ Mp+1,j is a path
from the first vertex of Mp,j to the last vertex of Mp+1,j. This proves (4).

(5) For all p ∈ {0, . . . , n − 1}, and all j ∈ {1, . . . , k}, A(Lp+1) ⊆ A(Lp) ∪ V (L) and B(Lp) ⊆
B(Lp+1) ∪ V (L).

For let v ∈ A(Lp+1). We need to prove that v ∈ A(Lp)∪V (L), and so we may assume that v /∈ V (L).
Choose j with 1 ≤ j ≤ k such that v is Mp+1,j \ t(Mp+1,j)-inward and t(Mp+1,j) 6= tj. Consequently
t(Mp,j) 6= tj, and so if v is Mp,j \ t(Mp,j)-inward then v ∈ A(Lp) as required, so we may assume
that v is adjacent from some vertex of Mp,j. In particular, Mp,j 6= Mp+1,j and so vp+1 ∈ V (Pj),
and vp+1 = s(Rp,j) = t(Qp+1,j). Moreover, since s(Mp,j) is the only vertex of Mp,j that may not
belong to Mp+1,j, we deduce that s(Mp,j) is adjacent to v, and s(Mp,j) does not belong to Mp+1,j.
Consequently s(Mp+1,j) 6= sj, and so Qp+1,j has m vertices. Since v is Mp+1,j \ t(Mp+1,j)-inward,
and G is d-path-dominant, and Mp+1,j \ t(Mp+1,j) is a minimal path of G, and it has m − 1 ≥ d + 2
vertices, there is a subpath of Mp+1,j \ t(Mp+1,j) with d vertices, not containing the first or second
vertex of Mp+1,j \ t(Mp+1,j); and so v is adjacent to some vertex w of Mp+1,j \ t(Mp+1,j) different
from its first and second vertices. But v is adjacent from u, so by replacing the subpath of Pj be-
tween u and w by the path u-v-w, we contradict that x is key. This proves that v ∈ A(Lp), and so
A(Lp+1) ⊆ A(Lp) ∪ V (L). Similarly B(Lp) ⊆ B(Lp+1) ∪ V (L). This proves (5).

10



(6) For all p ∈ {0, . . . , n − 1}, Xp+1 ⊆ Xp, and Yp ⊆ Yp+1.

Let v ∈ Xp+1. Suppose first that v /∈ V (L). Then v ∈ A(Lp+1)\B(Lp+1). By (5), v ∈ A(Lp)\B(Lp),
and so v ∈ Xp as required. Thus we may assume that v ∈ V (L). Since v ∈ Xp+1, it follows that
either φ(v) > p + 1, or v /∈ B(Lp+1). If φ(v) > p + 1, then since v /∈ V (Lp+1), it follows that
v /∈ V (Lp), and hence v ∈ Xp from the definition of Xp. Thus we may assume that φ(v) ≤ p + 1 and
v /∈ B(Lp+1), contrary to (2). This proves that Xp+1 ⊆ Xp.

For the second inclusion, let v ∈ Yp. Suppose first that v /∈ V (L). Then v ∈ B(Lp); and so
v ∈ B(Lp+1) by (5), and hence v ∈ Yp+1 as required. Thus we may assume that v ∈ V (L). Since
v ∈ Yp, it follows that φ(v) ≤ p. Now v /∈ V (Lp), and therefore v /∈ V (Lp+1). But φ(v) ≤ p + 1, and
so by (2), v ∈ B(Lp+1), and consequently v /∈ Xp+1. Thus v ∈ Yp+1, as required. This proves that
Yp ⊆ Yp+1, and so proves (6).

(7) For all p ∈ {0, . . . , n − 1}, and all j ∈ {1, . . . , k}, V (Pp+1,j) ⊆ V (Pp,j) ∪ Xp, and V (Pp,j) ⊆
V (Pp+1,j) ∪ Yp+1.

To prove the first assertion, let v ∈ V (Pp+1,j) \ V (Pp,j). It follows that φ(v) > p; but then v ∈ Xp

from the definition of Xp. For the second assertion, let v ∈ V (Pp,j) \ V (Pp+1,j); then φ(v) ≤ p + 1,
and so v ∈ B(Lp+1) by (2). Consequently v /∈ Xp+1, and so v ∈ Yp+1 as required. This proves (7).

(8) For all p ∈ {0, . . . , n − 1}, (Lp,Xp, Yp) → (Lp+1,Xp+1, Yp+1).

This is immediate from (4), (6) and (7).

Now (L1,X1, Y1), . . . , (Ln,Xn, Yn) are not necessarily all distinct. But we have:

(9) For all p, r with 0 ≤ p ≤ r ≤ n, if (Lp,Xp, Yp) = (Lr,Xr, Yr), then (Lp,Xp, Yp) = (Lq,Xq, Yq) for
all q with p ≤ q ≤ r.

For (6) implies that Xq ⊆ Xp, and Xr ⊆ Xq, and so Xp = Xq, and similarly Yp = Yq. If some
vertex v belongs to V (Lq) \ V (Lp), then by (7) and (6), v ∈ Xp = Xq, a contradiction. Similarly, if
v ∈ V (Lp) \ V (Lq) then v ∈ Yq = Yp, a contradiction. This proves (9).

(10) For all j ∈ {1, . . . , k}, M0,j has first vertex sj, and Mn,j has last vertex tj.

This follows from the definitions of M0,j and Mn,j.

We recall that H is the (k,m, c)-tracker, with two special vertices s0, t0. Now (10) implies that
s0 is adjacent to (L1,X1, Y1) in H, and (Ln,Xn, Yn) is adjacent to t0. From (8) and (9), there is a
subsequence of the sequence

s0, (L1,X1, Y1), . . . , (Ln,Xn, Yn), t0,

which lists the vertex set in order of a path of H from s0 to t0. By 3.2, this path traces some linkage
L′ for (G, s1, t1, . . . , sk, tk). But for all j ∈ {1, . . . , k}, M0,j ,M1,j , . . . ,Mn,j are all subpaths of Pj ;
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and since their union is a path from sj to tj , it follows that their union is Pj . Hence L′ = L. This
proves 3.3.

4 The algorithm

Next, we need a polynomial algorithm to solve a kind of vector-valued shortest path problem. If
n ≥ 0 is an integer, Kn denotes the set of all k-tuples (x1, . . . , xk) of nonnegative integers such that
x1 + · · · + xk ≤ n.

4.1 There is an algorithm as follows:

• Input: A digraph H, and distinct vertices s0, t0 ∈ V (H); an integer n ≥ 0; and for each edge
e of H, a member l(e) of Kn.

• Output: The set of all minimal (under component-wise domination) vectors l(P ), over all
paths P of H from s0 to t0; where for a path P with edge set {e1, . . . , ep}, l(P ) = l(e1) + · · ·+
l(ep).

• Running time: O(nk|V (H)||E(H)|).

Proof. Let Q0(s0) = {(0, . . . , 0)}, and let Q0(v) = ∅ for every other vertex v of D. Inductively, for
1 ≤ i ≤ |V (H)|, let Qi(v) be the set of minimal vectors in Kn that either belong to Qi−1(v) or are
expressible in the form l(e) + x for some edge e = uv of H and some x ∈ Qi−1(u).

Now here is an algorithm for the problem:

• For i = 1, . . . , |V (H)| in turn, compute Qi(v) for every v ∈ V (H).

• Output Q|V (H)|(t0).

It is easy to check that this output is correct, and we leave it to the reader. To compute Qi(v)
at the ith step takes time O(nk)d−(v), where d−(v) is the in-degree of v in H (since Kn has at most
(n + 1)k members), and so the ith step in total takes time O(nk|E(H)|). Thus the running time is
O(nk|V (H)||E(H)|).

Finally, we can give the main algorithm, 1.4, which we restate.

4.2 For all d, k ≥ 1, there is an algorithm as follows:

• Input: A problem instance (G, s1, t1, . . . , sk, tk) where G is d-path-dominant.

• Output: The set of all key qualities of (G, s1, t1, . . . , sk, tk).

• Running time: O(nt) where t = 6k2d(k + d) + 13k.

Proof. Here is the algorithm.
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• Compute the (k,m, c)-tracker H, where

c = ((k − 1)d + k2 + 2)(2k + 1)k2

m = ((k − 1)d + k2 + 2)d + 1.

• For each edge e = uv of H, define l(e) as follows:

– if u = s0 and v = (L,X, Y ) where L = (M1, . . . ,Mk), let l(e) = (|V (M1)|, . . . , |V (Mk)|);

– if u = (L,X, Y ) where L = (M1, . . . ,Mk), and v = (L′,X ′, Y ′) where L′ = (M ′
1, . . . ,M

′
k),

let l(e) = (|V (M ′
1) \ V (M1)|, . . . , |V (M ′

k) \ V (Mk)|);

– if v = t0 let l(e) = (0, . . . , 0).

• Run the algorithm of 4.1 with input H, s0, t0, l.

• Output its output.

To see its correctness, we must check that every key quality is in the output, and everything in the
output is a key quality. We show first that every vector in the output is a quality. For let x be in
the output, and let P be a path in H from s0 to t0 with l(P ) = x. By 3.2, P traces some linkage
L = (P1, . . . , Pk) for (G, s1, t1, . . . , sk, tk); and so (|V (P1)|, |V (P2)|, . . . , |V (Pk)|) = l(P ) = x. Hence
x is a quality.

Next, we show that every key quality is in the output. For let x be a key quality. Let L be an
x-linkage for (G, s1, t1, . . . , sk, tk). By 3.3, there is a path P of H from s0 to t0 tracing L; and hence
l(P ) = x (where l(P ) is defined as in the statement of 4.1). Thus the output of 4.1 contains a vector
dominated by x. But x does not dominate any other quality, since it is key; and since every member
of the output is a quality, it follows that x belongs to the output.

Third, we show that every member of the output is key. For let x be in the output, and suppose
it is not key. Hence x dominates some other quality, and hence dominates some other key quality y
say. Consequently y is in the output. But no two members of the output dominate one another, a
contradiction. This proves that every member of the output is key, and so completes the proof that
the output of the algorithm is as claimed.

Finally, for the running time: by 3.1, we can find all (k,m, c)-rails in time O(n2km+1); and since
there are at most O(n2km) of them (by 3.1), we can compute H and the function l in time O(n4km).
Then running 4.1 takes time O(nk|V (H)|3), and hence time at most O(n6km+k). Thus the total
running time is O(n6km+k). Since m = ((k − 1)d + k2 + 2)d + 1, the running time is O(nt) where

t = 6k(k − 1)d2 + 6k(k2 + 2)d + 7k = 6k2d2 + 6k3d + 12kd + 7k − 6kd2 ≤ 6k2d(k + d) + 13k

as claimed. This proves 4.2.

References

[1] Jørgen Bang-Jensen and Carsten Thomassen , “A polynomial algorithm for the 2-path problem
for semicomplete digraphs”, SIAM Journal on Discrete Mathematics 5 (1992), 366–376.

13



[2] S.Fortune, J.Hopcroft and J.Wyllie, “The directed subgraphs homeomorphism problem”, The-
oret. Comput. Sci. 10 (1980), 111–121.

[3] Alexandra Fradkin and Paul Seymour, “Edge-disjoint paths in digraphs with bounded
independence number”, J. Combinatorial Theory, Ser.B, in press, 2014 (DOI:
10.1016/j.jctb.2014.07.002).

[4] N. Robertson and P.D. Seymour, “Graph minors. XIII. The disjoint paths problem”, J. Com-
binatorial Theory, Ser. B, 63 (1995), 65–110.

14


