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AbstractFor any connected surface �, we �nd explicitly an upper bound on the numberof vertices in any graph that cannot be embedded in � and is minor-minimal withthis property.



1. INTRODUCTIONIn this paper, by a surface we mean a compact, connected 2-manifold without bound-ary. An excluded minor for a surface � is a graph G that cannot be embedded in �,without isolated vertices, such that for every edge e of G, both Gne and G=e can beembedded in �. (Gne and G=e are the graphs obtained by deleting e and contractinge respectively.) Kuratowski's theorem implies that the excluded minors for the sphereare precisely K5 and K3;3 (up to isomorphism - we shall omit this henceforth), and theexcluded minors for the projective plane are given by Archdeacon's result [1] - there are35 of them. For much more complicated surfaces, one would not expect to �nd all theexcluded minors explicitly, because there are too many, and an easier task is to �nd anupper bound on their size (that is, number of vertices). Archdeacon and Huneke [2] didthis for every non-orientable surface, but for the orientable surfaces no bound has yet beenfound. That there is a bound, that is, that the number of excluded minors is �nite, wasshown by Robertson and the author in [6]; indeed, we show in [10] that for any propertyof graphs that can be characterized by excluded minors (such as having an embedding in�) the list of excluded minors is �nite.The main result of this paper is such a bound, for every surface. By the complexityof a surface � we mean twice its orientable genus if it is orientable (that is, twice thenumber of handles we must add to a sphere to obtain it), and its non-orientable genus ifit is non-orientable (that is, the number of crosscaps we must add to a sphere to obtainit). We shall show the following.(1.1) Let � be a surface of complexity g. Then every excluded minor for � has at most22k vertices, where k = (3g + 9)9.To show (1.1), we �rst show that every excluded minor for � has \tree-width" �1



14(g + 3)3 (we de�ne tree-width in section 3), and then use Thomas' theorem [12] tobound its size. Obtaining the tree-width bound occupies sections 2 and 3, and in section4 we convert it to the size bound.M. Fellows told me in 1989 that �nding an explicit bound on the tree-width of theexcluded minors for a surface � would yield an algorithm to �nd the excluded minors (see[4]). That motivated the research reported here, and I would like to express my thanksto Fellows for this idea.2. REDRAWING A GRAPHIf � is a compact 2-manifold, an O-arc in � is a subset homeomorphic to a circle,and a line is a subset homeomorphic to the closed interval [0, 1]. If X � �, its closure isdenoted by �X. A closed disc in � is a subset homeomorphic to f(x; y) : x2+ y2 � 1g, andan open disc is de�ned similarly.A drawing in a compact 2-manifold � is a pair (U; V ), where U � � is closed, V � Uis �nite, U � V has only �nitely many arc-wise connected components, called edges, andfor each edge e, either j�e� ej = 1 and �e is an O-arc, or j�e� ej = 2 and �e is a line with endsthe members of �e� e. If � = (U; V ) is a drawing, we write U(�) = U; V (�) = V , and themembers of V are the vertices of �. The arc-wise connected components of �� U(�) arethe regions of �. If every region is an open disc, � is 2-cell (in �). If � is 2-cell in �, itfollows that bd(�) � U(�) where bd(�) denotes the boundary of �. If � is a drawing in �and � � � is such that �e � � or e\� = ; for every edge e of �, then (U(�)\�; V (�)\�)is a drawing which we denote by �\�. A drawing is obviously a graph with vertices andedges as given, and we use graph-theoretic terminology for drawings in the natural way.Graphs in this paper are �nite, and may have loops or parallel edges. If G is a graph,we write H � G to denote that H is a subgraph of G. V (G) and E(G) denote the vertex-and edge-sets of a graph G. A circuit of G is a non-null connected subgraph in which2



every vertex has valency 2 (for instance, a loop forms a 1-edge circuit). A path is a non-null tree in G in which every vertex has valency � 2. In particular, paths and circuitshave no \repeated" vertices or edges. We denote by GnX the graph obtained from G bydeleting X (here X may be a vertex or an edge, or a set of vertices or edges). If H is asubgraph of G, a bridge of H in G is a connected subgraph B of G with jE(B)j 6= ; andE(B \H) = ;, such that either(i) jE(B)j = 1 and the edge of B has both ends in V (H); such bridges are calledtrivial bridges(ii) jE(B)j > 1 and B consists of a component C of GnV (H) together with alledges of G between V (C) and V (H) and their ends; these are called non-trivialbridges.An embedding (�;�) of a graph G in a compact 2-manifold � is an isomorphism � betweenG and a drawing � in �; and if (�;�) is an embedding of G in � we say that � is a drawingof G in �.Let k � 2 be an integer, and let G be a graph. A k-nest in G consists of a (k+1)-tuple(A;C1; :::; Ck), where(i) A � G(ii) C1; :::; Ck are mutually disjoint circuits of A(iii) every edge of G with an end in V (A)� V (C1) belongs to E(A)(iv) A is planar, and there is an embedding (�;�) of A in a closed disc �1, sothat for 1 � i � k the O-arc U(�(Ci)) bounds a closed disc �i � �1 with�k � �k�1 � ::: � �1, and �k � bd(�k) is a region of �.3



A circuit C of G is k-nested if there is a k-nest (A;C1; :::; Ck) in G with Ck = C. Themain result of this section is the following.(2.1) Let � be a surface of complexity g, and let G be a graph that has an embeddingin �. Let C be a (g + 2)-nested circuit of G. Then G has an embedding (�;�) in � sothat U(�(C)) bounds a region of � that is an open disc.Proof. We proceed by induction on g, and for �xed g by induction on jV (G)j + jE(G)j.Let (A;C1; :::; Cg+2) be a (g + 2)-nest in G with Cg+2 = C. From the hypothesis, A hasan embedding in a disc �1, and to simplify notation we may therefore assume that Aitself is such a drawing; that is, A is a drawing in a disc �1; U(C1) = bd(�1), and for1 � i � g + 2 �2 is the closed disc bounded by U(Ci), and �1 � �2 � ::: � �g+2 and�g+2 � U(C) is a region of A. We may assume that(1) There is no circuit C 0 6= C of A with U(C 0) � �g+1 � bd(�g+1) bounding a closeddisc �0 in �g+1 with �g+2 � �0.Subproof. If there is, then C 0 is a (g + 2)-nested circuit in G0, where G0 is obtainedfrom G by deleting all vertices and edges of A in �0 � bd(�0). Since G0 is a proper sub-graph of G, from the second inductive hypothesis G0 can be drawn in � so that C 0 boundsan open disc region; but then the remainder of G can be drawn inside this region and theresult holds. Thus we may assume (1).We may assume that(2) There is a path of A between V (C) and V (C1).4



Subproof. Suppose not, and let the component ofA containing C beG0. Since V (G0\C1) =; it follows that G0 is a component of G; let GnV (G0) = G00. Now G0 is a subgraph ofA, and hence can be drawn in a closed disc so that C bounds an open disc region. ButG00 can be drawn in �; take such a drawing, choose a closed disc in � disjoint from thedrawing of G00, and draw G0 in it in the way just described. This gives a drawing of G in� satisfying the theorem. Thus we may assume (2).Now since g+2 � 2, there is a bridge B1 of C containing C1. Therefore B1 contains allC1; C2; :::; Cg+1 since by (2) and the planarity of A, these circuits all belong to the samebridge. We may assume(3) There is no bridge B 6= B1 of C in G with V (B \A) 6= ;.Subproof. Suppose there is such a bridge. Then B is a subgraph of A since B \ C1is null; and indeed, U(B) � �g+1 � U(Cg+1). It follows that jV (B \ C)j � 1, for ifjV (B \ C)j � 2 there would be a circuit C 0 as in (1). Let G0 be obtained from G bydeleting all vertices and edges of B not in C. Then C is (g + 2)-nested in G0, and G0 isa proper subgraph of G, and so from the inductive hypothesis G0 can be drawn in � sothat C bounds an open disc region. But since B is planar (because U(B) � �g+1) we canaugment this drawing to a drawing of G with the desired property. Thus we may assume(3).Let G0 be obtained from G by deleting all edges and vertices of A in �g+1�U(Cg+1).We may assume(4) G0 cannot be drawn in � so that some non-null-homotopic O-arc F is disjoint fromthe drawing. 5



Subproof. Suppose there is such a drawing. By cutting � along F we obtain a 2-manifoldwith boundary, with one or two components. Its boundary is either one O-arc, or twodisjoint O-arcs, and by pasting discs onto these O-arcs, we obtain either(i) a surface �0 of complexity g � 1 or g � 2, or(ii) two disjoint surfaces �1;�2 of complexity g1 and g2, where g1; g2 > 0 andg1 + g2 = g.In the �rst case G0 can be drawn in �0, and since Cg+1 is (g+1)-nested in G0, there isan embedding of G0 in �0 so that Cg+1 bounds an open disc region. But then G00 can bedrawn in this region to obtain an embedding of G in �0 so that C bounds an open discregion r; and to convert this to an embedding in a surface homeomorphic to �, we choosea region r0 6= r1 and add a handle or crosscap within it appropriately. Thus in this casethe result holds.In the second case, let G1; G2 be the subgraphs of G0 drawn in �1 and �2 respectively,where Cg+1 � G1. By (2), all of C1; :::; Cg belong to G1 and so Cg+1 is (g + 1)-nested inG1. Hence G1 can be embedded in �1 so that Cg+1 bounds an open disc region. But then,as in the �rst case, we may draw the remainder of G within this region, and so G canbe embedded in �1 [ �2 so that C bounds an open disc region r. By choosing an O-arcFi � �i disjoint from the drawing (i = 1; 2), with F1 \ r = ;, and adding to �1 [ �2 acylinder with boundary F1 [ F2, we obtain an embedding of G in � so that C bounds anopen disc region. Thus we may assume (4).Take an embedding (�; �) of G in �. By (4), U(�(C)) is null-homotopic in �, and soby [3, theorem (1.7)], there is a disc � � � bounded by U(�(C)). If ��bd(�) is a regionof � we are done, and so we suppose not. If U(�(B1)) meets �� bd(�) then since B1 is abridge it follows that U(�(B1)) � �. In that case it follows that B1[C is planar, and canbe drawn in a sphere so that C bounds a region; and by (3), B1[C is a component of G.6



Take an embedding of GnV (B1 [ C) in �, choose a closed disc �0 � � disjoint from thedrawing, and embed B1 [ C in �0 so that C bounds a region. This gives an embeddingof G in � satisfying the theorem. We may therefore assume that U(�(B1)) \� � bd(�).By (3), any bridge B of C in G with U(�(B)) \� 6� bd(�) satis�es V (B \ C) = ;, andhence is a planar component of G (because U(�(B)) � �); and we may therefore changethe embedding (�; �) so that B is not drawn inside �. The result follows.We deduce(2.2) Let �;�0 be surfaces, where � has complexity g. Let G be a drawing in �0, lete 2 E(G), and suppose there are g + 2 disjoint circuits of Gne, all bounding discs in �0which include e. If Gne can be drawn in � then so can G.Proof. Let C1; :::; Cg+2 be the disjoint circuits of Gne, bounding discs �1; :::;�g+2 in�0 respectively, where �g+2 � �g+1 � ::: � �1. Let G0 be obtained from G by deletingall vertices and edges in �g+2�bd(�g+2) (and in particular, deleting e). Let A = G0\�1;then (A;C1; :::; Cg+2) is a (g+2)-nest in G0. If Gne can be embedded in �, then so can G0,and by (2.1) there is an embedding of G0 in � so that Cg+2 bounds an open disc region.Then the remainder of G can be drawn in this region, and so G can be embedded in �,as required.3. TANGLES AND DISTANCEA separation in a graph G is a pair of subgraphs (A;B) withA[B = G and E(A\B) =;; its order is jV (A \B)j. Let � � 1 be an integer. A tangle of order � in a graph G is aset T of separations of G; all of order < �, such that(i) T contains one of (A;B); (B;A), for every separation (A;B) of G of order < �7



(ii) if (Ai; Bi) 2 T (i = 1; 2; 3) then A1 [A2 [ A3 6= G(iii) if (A;B) 2 T then V (A) 6= V (G).Intuitively, a tangle in G describes a piece of G that is in some sense �-connected. Forinstance, there is a 1-1 correspondence between the tangles of order 1 and the componentsof G, between the tangles of order 2 and the loopless blocks of G, and between the tanglesof order 3 and the non-trivial constituents of Tutte's decomposition of G into 3-connectedpieces. Tangles were introduced and studied in [7].Let � be a drawing in a surface �. We say X � � is �-normal if X \ U(�) � V (�).Let T be a tangle of order � � 1 in �. We say that T is respectful if for every �-normalO-arc F in � with jF \ V (�)j < �, there is a closed disc � � � bounded by F such that(� \�;� \ ���) 2 T :If there is such a disc �, it is necessarily unique, and we denote it by ins(F ). A curvein � is a continuous function � : S1 ! �, where S1 is the unit circle. We denotef�(x) : x 2 S1g by ��. It is �-normal if �� is �-normal, and its length (with respect to �)is the cardinality of the set fx 2 S1 : �(x) 2 U(�)g. If T is a respectful tangle of order �in �, and � is a �-normal curve with length < �, we de�ne ins(�) to be the union of ��and ins(F ) taken over all O-arcs F � ��. The atoms of � are the regions of �, the edgesof �, and the sets fvg (v 2 V (�)), and the set of atoms is denoted by A(�). Let T be arespectful tangle in �, and let a; b 2 A(�). If a = b we de�ne d(a; b) = 0. If a 6= b andthere is a �-normal curve � of length < � with a \ ins(�) 6= ; 6= b \ ins(�), we de�ned(a; b) to be the minimum length of such a curve. If a 6= b and there is no curve � as in(ii), we de�ne d(a; b) = �. It is shown in [8, theorem (9.1)] that d is a metric if � is 2-cell.We call d the metric of T .We need the following, from [9, theorem (9.2)].8



(3.1) Let � be a 2-cell drawing in a surface �, and let T be a respectful tangle of or-der � in �, with metric d. Let z 2 A(�), and let � be an integer with 2 � � � ��3. Thenthere is a closed disc � � � with bd(�) � U(�), such that(i) d(z; x) � �+ 2 for every x 2 A(�) with x � �(ii) d(z; x) � � for every x 2 A(�) with x 6� �� bd(�).We use (3.1) to prove the following.(3.2) Let � be a surface of complexity g, and let t � 0 and k � 2 be integers. Let �be a drawing in �, and let R be a set of regions of � with jRj � t. If � has a tan-gle of order � 2(g + 1) (t + g + 1) (3k + 4) then there is an edge e of � and k disjointcircuits of �ne, all bounding closed discs in � including e and including no member of R.Proof. We proceed by induction on jV (�)j + g. Now by [11, theorem (2.11)], somecomponent �0 of � has a tangle of order � 2(g + 1) (t + g + 1) (3k + 4), and if the resultholds for �0 then it holds for �. We may therefore assume that � is connected. Let� = 2(t+ 1) (3k + 4).Suppose �rst that there is a �-normal O-arc F with jF \ V (�)j < � which is non-null-homotopic. Let F \ V (�) = Z; then by [7, theorem (8.5)], �nZ has a tangle oforder � 2(g + 1) (t+ g + 1) (3k + 4) � � = 2g ((t+ 2) + (g � 1) + 1) (3k + 4):Let �0 be the 2-manifold obtained from � by cutting along F . By pasting discs on the(one or two) components of bd(�0), we obtain either(i) a surface �1 of complexity < g, or 9



(ii) two disjoint surfaces �1;�2 with complexity g1 and g2, such that g1; g2 < gand g1 + g2 = g.In the �rst case, �nZ is a drawing in �1; let R1 be the set of regions of �nZ in �1 thateither are inR or are not regions of � in � (there are at most two of the latter, at most onefor each of the discs pasted onto �0). Hence jR1j � t+ 2. From the inductive hypothesisthe result holds for �nZ and �1; let �1; :::;�k be the corresponding closed discs in �1.Since each �i includes no member of R1 it follows that each �i is a subset of �, and sothe result holds for � and �, as required.In the second case, let �i = (�nZ)\�i (i = 1; 2). Now (�1;�2) is a separation of �nZof order 0. By [11, theorem (2.11)], one of �1;�2 has a tangle of order � 2g((t+2)+ (g�1) + 1) (3k + 4), say �1. Let R1 be the set of regions of �1 in �1 that are either in R ornot regions of � in �; then jR1j � t+ 1, and the result follows as in the �rst case.We may therefore assume that every �-normal O-arc F � � with jF \ V (�)j < �is null-homotopic. In particular, since � � 1 every O-arc F with F \ U(�) = ; is null-homotopic, and since � is connected and non-null it follows that � is 2-cell.We claim that � has a respectful tangle of order �. If � is a sphere this is true, sinceg = 0 and therefore � has a tangle of order � 2(t+ 1) (3k + 4) = � and hence has one oforder � (take all members of the �rst tangle which have order < �), and since every tanglein a drawing in a sphere is respectful. If � is not a sphere, then the claim follows from[8, theorem (4.1)] since � is 2-cell and every �-normal O-arc F � � with jF \ V (�)j < �is null-homotopic. This proves our claim that � has a respectful tangle, T say, of order�. Let d be its metric.Choose e0 2 E(�). By [8, theorem (8.12)] there is an edge e� of � with d(e0; e�) = �.Since G is connected, there is a path P of � with �rst edge e0 and last edge e�. For0 � i � �, let ei be the last edge e of P with d(e0; e) � i. If f is the next edge of P , then10



d(e0; f) � i + 1 and d(ei; f) � 4, and so by the triangle inequality, d(e0; ei) � i � 3. (Ifthere is no such f , then ei = e� and hence d(e0; ei) = � � i� 3.)Let r 2 R. We claim there are at most 6k + 8 values of i with 0 � i � � and withd(r; ei) � 3k + 2. For suppose there are � 6k + 9. Then there are two, say i and j, suchthat j � i � 6k + 8. But thenj � 3 � d(e0; ej) � d(e0; ei) + d(ei; ej) � i+ d(ei; ej)� i+ d(r; ei) + d(r; ej) � i+ 2(3k + 2);a contradiction. Thus there are at most 6k + 8 such values of i. Since jRj � t and thereare � + 1 > t(6k + 8) values of i altogether, it follows that for some i with 0 � i ��; d(r; ei) � 3k + 2 for all r 2 R. Let e = ei.By (3.1), taking z = e and � = 3; 6; :::; 3k, there are closed discs �1; :::;�k � � suchthat for 1 � i � k(i) bd(�i) � U(�); let Ci be the circuit � \ bd(�i)(ii) d(e; x) � 3i+ 2 for every x 2 A(�) with x � �i(iii) d(e; x) � 3i for every x 2 A(�) with x 6� �i � bd(�i).From (iii) it follows that e � �i � bd(�i) for each i. Moreover, C1; :::; Ck are mutuallydisjoint; for if 1 � i < j � k and v 2 V (Ci \ Cj) say, then d(e; fvg) � 3i + 2 sincefvg � �i, and d(e; fvg) � 3j since fvg 6� �j � bd(�j), a contradiction. Finally, sinced(e; r) � 3k + 3 for each r 2 R, it follows from (ii) that each �i includes no r 2 R.A tree-decomposition of a graph G is a pair (T; (Xt : t 2 V (T ))) where T is a tree andeach Xt is a subset of V (G), such that(i) S(Xt : t 2 V (T )) = V (G), and for every edge e of G there exists t 2 V (T ) sothat Xt contains both ends of e 11



(ii) if t; t0; t00 2 V (T ) and t0 lies on the path of T between t and t00 then Xt \Xt00 �Xt0.It has width � w if jXtj � w+1 for all t 2 V (T ); and the tree-width of G is the minimumwidth of a tree-decomposition. From (3.2) we deduce(3.3) Let � be a surface of complexity g. Let G be a graph that cannot be embeddedin �, such that Gne can be embedded in � for every edge e. Then G has tree-width� 3(g + 3)2(3g + 16) � 3.Proof. Choose f 2 E(G); then Gnf can be embedded in �, and so G has a drawing� in a surface �0 of complexity g0 � g+2 (add a handle to � appropriately and draw theedge f running along the handle). By (2.2), for each edge e of G, there do not exist g+2disjoint circuits of Gne all bounding discs in �0 including e. By (3.2) (with �; g; t; k;�;Rreplaced by �0; g0; 0; g0 + 2;�; ;), G has no tangle of order � 2(g + 3)2(3g + 16). By [7,theorem (5.2)], G has tree-width at most32(2(g + 3)2(3g + 16) � 1)� 1as required.4. FROM TREE-WIDTH TO SIZENow we come to the second half of the proof. Our objective here is to prove thefollowing.(4.1) Let � be a surface of complexity g, and let G be an excluded minor for �, withtree-width < w. Then jV (G)j � (2w + 2g)p where p = Q1�h�w (12(g + h� 1))!12



From (4.1) and (3.3), our main result (1.1) follows after some arithmetic, which weleave to the reader.To prove (4.1), �rst we need the following. For X � V (G), a bridge of X in G meansa bridge of H in G, where H is the subgraph of G with V (H) = X and E(H) = ;.(4.2) Let � be a surface of complexity g, let G be a drawing in �, and let X � V (G).Let B be the set of non-trivial bridges of X in G, and suppose that for each B 2 B withjX \V (B)j � 2; B cannot be drawn in a disc with X \V (B) drawn in the boundary. ThenjBj � 2jXj + 2g � 1 unless jV (G)j = g = 0:Proof. We proceed by induction on jV (G)j+ jE(G)j+ g. We may assume that(1) X \ V (C) 6= ; for every circuit C of G with U(C) non-null-homotopic.Subproof. Suppose that C is a circuit of GnX and U(C) is non-null-homotopic. LetD be the component of GnX containing C. Then GnV (D) is a drawing in the 2-manifold�0 obtained by cutting � along U(C). By pasting discs on the components of bd(�0), weobtain either(i) a surface �1 of complexity of g1 < g, or(ii) two disjoint surfaces �1;�2 of complexity of g1 and g2, such that 0 < g1; g2 < gand g1 + g2 = g.Suppose that (i) holds. Since GnV (D) is a drawing in �1, it follows from the inductivehypothesis that X has at mostmax(2jXj+ 2g1 � 1; 0) � 2jXj + 2g � 213



bridges in GnV (D), and hence at most 2jXj+2g�1 bridges in G, and so the result holds.Now suppose that (ii) occurs. For i = 1; 2, let Gi = (GnV (D)) \ �i, let Xi = X \ �iand let Bi be the set of bridges ofXi in Gi. From the inductive hypothesis, since g1; g2 6= 0,jBij � 2jXij+ 2gi � 1 for i = 1; 2. Since jBj = jB1j+ jB2j+ 1 and g = g1 + g2, we deducethat jBj � 2jXj + 2g � 1, as required. This proves (1).We may assume that(2) G is simple, and no edge has both ends in X, and jV (B) \Xj � 3 for each B 2 B,and for B 2 B, if jV (B) \Xj = 3 then jV (B)�Xj = 1.Subproof. If there is an edge e which is a loop, or which is parallel to another edge,or with both ends in X, or with one end in X and with e 2 E(B) for some B 2 B withjV (B) \ Xj � 4, then the result follows from the inductive hypothesis applied to Gne.Also, if there exists B 2 B with jV (B) \ Xj = 3 and jV (B) �Xj � 2, let e be an edgeof B with both ends in V (B)�X; then the result follows from the inductive hypothesisapplied to G=e. This proves (2).A Kuratowski subgraph of G is a subgraph that is a subdivision of K5 or K3;3. From(1) it follows that(3) If K is a Kuratowski subgraph of G then jV (K) \Xj � 2.Subproof. Suppose that jV (K) \ Xj � 1. Since K is non-planar there is a circuit Cof K such that U(C) is non-null-homotopic, and so jV (K)\Xj = 1, V (K)\X = fxg say.By (1), there is no circuit C of Knx such that U(C) is non-null-homotopic, and so by [5,theorem (11.10)] there is a closed disc � � � with U(Knx) � �. Let C be a circuit ofKnx, chosen so that the disc �0 in � bounded by U(C) is maximal. Now there are four14



cases, depending whether K is a subdivision of K5 or of K3;3, and whether x has valency2 or > 2 in K. In each case it is easy to check that however Knx is drawn in �, someneighbour of x belongs to �0 � U(C). Hence x 2 �0 � U(C), and so U(K) � �0, whichis impossible since K is non-planar. This proves (3).Let B 2 B with jV (C) \Xj � 2. If jV (B) \Xj � 1 then from (3) and Kuratowski'stheorem, B is planar contrary to hypothesis. Thus jV (B)\Xj = 2, V (B)\X = fx1; x2gsay. Let B+ be obtained from B by adding a new edge f to B with ends x1; x2. Byhypothesis, B+ is non-planar, and so by Kuratowski's theorem, B+ has a Kuratowskisubgraph K. By (3), fx1; x2g � V (K), and we may choose K so that Knfx1; x2g isconnected. If E(B) 6� E(K), the result follows from the inductive hypothesis applied tothe graph obtained from G by deleting all vertices and edges of B not in K. We mayassume therefore that E(B) � E(K), and so E(K) = E(B) or E(B)[ffg. If some vertexv of K has valency 2 in K, let e 2 E(B) be incident with v; then the result follows fromthe inductive hypothesis applied to G=e. We may therefore assume that K is isomorphicto K5 or to K3;3. IfK is isomorphic to K5, then x1; x2 are adjacent inK, and so f 2 E(K)since x1; x2 are not adjacent in B. In this case, B has three vertices di�erent from x1; x2,and they are mutually adjacent and are all adjacent to both x1 and x2; and we say B isof type 1. In this case, de�ne l(e) for each edge e of B by: l(e) = 2 if e has an end in X,and l(e) = 4 if e has no end in X.The second possibility is that K is isomorphic to K3;3, and then possibly f 2 E(K)and possibly f 62 E(K). If f 2 E(K), we say B is of type 2; B has four vertices a; b; c; ddi�erent from x1; x2, and eight edges ab; bc; cd; da; ax1; cx1; bx2; dx2. For e 2 E(B), wede�ne l(e) = 1 if e has an end in X, and l(e) = 3 if e has no end in X. If f 62 E(K),we say B is of type 3; B has four vertices a; b; c; d di�erent from x1; x2, and nine edgesax1; bx1; cx1; ax2; bx2; cx2, ad; bd; cd. For e 2 E(B), we de�ne l(e) = 2.Thus, there are altogether three types of bridges B with jV (B) \ Xj = 2. If B 2 B15



with jV (B) \Xj 6= 2, then by (2) jV (B) \Xj = 3, V (B) \X = fx1; x2; x3g say, and Bhas only one vertex a 6= x1; x2; x3, and has just three edges ax1; ax2; ax3. In this case wesay B has type 4, and we de�ne l(e) = 2 for each edge of B.Since every edge of G belongs to E(B) for some (unique) B 2 B by (2), we havede�ned l(e) for each e 2 E(B). Let there be qi members of B of type i for i = 1; 2; 3; 4.Then jV (G)j = jXj+ 3q1 + 4q2 + 4q3 + q4jE(G)j = 9q1 + 8q2 + 9q3 + 3q4:But we may assume that G is non-null, and so by Euler's formula, if G has p regions,then jV (G)j � jE(G)j+ p � 2 � g:(Note that equality need not hold here since G may not be 2-cell.) On substitution, weobtain(4) p � 2 � g � jXj+ 6q1 + 4q2 + 5q3 + 2q4:In particular, if p � 1 then by (4),jBj = q1 + q2 + q3 + q4 � 6q1 + 4q2 + 5q3 + 2q4 � jXj + g � 1 � 2jXj + 2g � 1as required, and so we may assume that jRj = p � 2.Now let B 2 B of type 1 or 2, and let CB be the circuit Bn(V (B) \ X). By (1),U(CB) is null-homotopic, and so by [3, theorem (1.7)] there is a closed disc � � �with bd(�) = U(CB). Let G0 = GnV (CB), G1 = G0 \ (� � �), X1 = X \ (� � �),G2 = G0\� and X2 = X \�, and let Bi be the set of bridges of Xi in Gi (i = 1; 2). ThenjB = jB1j + jB2j + 1. Since B has type 1 or 2, not both vertices in X \ V (B) are drawn16



within �, and so V (G1) 6= ;. If also V (G2) 6= ;, then from the inductive hypothesis,jBj � 2jX1j + 2g � 1 and jB2j � 2jX2 � 1, and so jBj � 2jXj + 2g � 1 as required. Wemay therefore assume that V (G2) = ;, and so U(CB) bounds a region of G.For each region r of G, let l(r) denote the sum of l(e), taken over all edges e of Gincident with r and counting twice those edges e incident with no other region. Nowevery circuit C of G satis�es Pe2E(C) l(e) � 8, from the de�nition of l. Moreover, � isconnected and p � 2, and so for every region r there is a circuit C of G such that everyedge of C is incident with r. Consequently l(r) � 8 for every region r of G, and l(r) � 12for at least q1 + q2 regions of G, namely those bounded by U(CB) where B 2 B has type1 or 2. Thus, denoting the set of all regions by R,Xr2R l(r) � 8R + 4(q1 + q2) � 8(2� g � jXj) + 52q1 + 36q2 + 40q3 + 16q4by (4). Now for each B 2 B, Pe2E(B) l(e) = 24; 16; 18 or 6 depending whether B has type1, 2, 3 or 4; and so Xe2E(G) l(e) = 24q1 + 16q2 + 18q3 + 6q4:But Pr2R l(r) = 2Pe2E(G) l(e); and on substitution we deduce that8(2 � g � jXj) + 4q1 + 4q2 + 4q3 + 4q4 � 0;that is, jBj � 2jXj+ 2g � 4, as required.(4.3) Let � be a surface of complexity g, let G be an excluded minor for �, and letX � V (G). If B is a non-trivial bridge of X in G with jV (B) \Xj � 2 then B cannot bedrawn in a closed disc with V (B) \X on the boundary.Proof. Let A = Gn(V (B) � X), and let A+ = A if jX \ V (B)j � 1, and let A+ beobtained from A by adding an edge joining the two vertices in X \ V (B) if there are two17



such vertices. Now A+ is isomorphic to a proper minor of G, and so can be drawn in �.If B can be drawn in a disc with V (B)\X on the boundary, we may convert the drawingof A+ to one of G, a contradiction. The result follows.(4.4) Let L be a drawing in a surface � of complexity g. Suppose that jE(L)j � 2and L is simple. Then jE(L)j � 3(jV (L)j+ g � 2):Proof. Let L have p regions. Since L is simple and jE(L)j � 2, every region is inci-dent with � 3 edges (counting an edge twice if the region is incident with it on bothsides). Hence 3p � 2jE(L)j: But by Euler's formula,jV (L)j � jE(L)j+ p � 2� g(equality need not hold since L may not be 2-cell), and sojV (L)j � 13 jE(L)j � 2� g:The result follows.We need to look at several di�erent kinds of drawings in a surface �, but in each casewe say two such drawings are equivalent if there is a homeomorphism of � to itself takingone to the other.(4.5) Let � be a surface; and let n � 1;m � 0 be integers. There are at most21�n � (2m)!(m� n+ 1)!equivalence classes of pairs (�; �) where � is a 2-cell drawing in � with n vertices and medges, and � is a linear order of V (�). 18



Proof. The number �1 of equivalence classes of pairs (�; �) as in the theorem is at mostthe number �2 of equivalence classes of triples (�; �; T ) where �; � are as before and T isa spanning tree of �, because every 2-cell drawing is connected.Given some (�; �; T ) as above, we may regard � as a bijection from V (G) into f1; :::; ng.Let v0 2 V (G) with �(v0) = n. For every edge e of T , de�ne �(e) = �(v) where v is theend of e in the component of Tne not containing v0. Thus � yields a bijection from E(T )to f1; :::; n� 1g.Given some (�; �; T ) and v0 as above, we de�ne its signature as follows. Choose aclosed disc � � � with U(T ) � � � bd(�) so that e 6� � and je \ bd(�)j = 2 forevery e 2 E(�) � E(T ). Let H be the drawing with U(H) = U(�) \ � and V (H) =V (T ) [ (U(�) \ bd(�)); then H is a tree drawn in �. Choose a closed walk W of Hfollowing the boundary of the unique region of H in �, starting at v0; thus, every edgeof H occurs twice in W . Let S1 be the sequence of edges in W . Every edge of H that isnot an edge of T occurs in two consecutive positions in S1. Let S2 be obtained from S1by deleting the �rst occurrence of each edge of H not in E(T ) and replacing its secondoccurrence by the edge of � including it. Then every edge of � occurs exactly twice in S2.Take a bijection � : E(�) � E(T )! fn; :::;mg. Let S2 be e1; :::; e2m. For 1 � i � 2m, ifei 2 E(T ) let �i = �(ei). If ei 62 E(T ) let �i = �(ei) if the unique O-arc in U(T ) [ feigis orientation-preserving, and �i = ��(ei) if it is orientation-reversing. The sequence�1; :::; �2m is a signature of (�; T; �).Since there are (m�n+1)! choices for �, it follows that (�; �; T ) has at least (m�n+1)!signatures. But from a knowledge of a signature (and n) one can reconstruct (�; �; T )up to equivalence, as we can see as follows. By taking the subsequence of the signatureconsisting of those terms which are non-negative and at most n�1, we obtain the sequenceof edges of W , where the edges are named by their values under �. From this we can19



reconstruct (T; �) up to equivalence. But from the signature we can also reconstruct thecyclic order around v of the edges of � incident with each vertex v, corresponding tosome �xed orientation of �. Since we know which edges e in E(�) � E(T ) give rise toorientation - reversing circuits in T + e; we may reconstruct the entire \rotation scheme"of � and hence reconstruct �, since it is 2-cell.We deduce that (m � n + 1)!�2 � �3, where �3 is the number of sequences of length2m in which every term is equal to exactly one other term, and every term lies inf1; 2; :::;mg [ f�m; 1�m; :::;�ng;and for i � n not both i and �i occur in the sequence. There are 21�n(2m)! suchsequences, and so �3 � 21�n(2m)!. Hence�1 � �2 � �3(m� n+ 1)! � 21�n(2m)!(m� n+ 1)!as required.A template in � is a triple (�; �;R), where � is a drawing in �( not necessarily 2-cell),� is a linear order of V (�), and R is a subset of the set of regions of �, and every edge of� is incident with two distinct regions.(4.6) Let � be a surface of complexity g, and let n � 1; p � 1 be integers. There are atmost (2n + 2p + 2g)! � 2 equivalence classes of templates (�; �;R) such that jV (�)j = nand � has � p regions.Proof. Let �i be the set of all templates (�; �;R) such that jV (�)j = n and � hasexactly i regions, and let �i be the union of �i equivalence classes. Let (�; �;R) 2 �i. Byadding edges to � we may obtain a 2-cell drawing �0 in � with i regions; and the edges of�0 not in � are precisely the edges of �0 incident with only one region. Since for each �; �there are 2i choices for R, it follows that �i � 2i�i where �i is the number of equivalence20



classes of pairs (�; �), where � is a 2-cell drawing in � with n vertices and i regions, and� is a linear order of V (�). By Euler's formula, jE(�)j = n+ g + i� 2. By (4.5),�i � 21�n (2n+ 2g + 2i� 4)!(g + i� 1)!and so �i � 21+i�n (2n + 2g + 2i� 4)!(g + i� 1)! :It follows easily that X1�i�p�i � (2n + 2p + 2g)!� 2as required. (The �2 is for later convenience.)Let � be a drawing in a surface �, and let X � V (�). A drawing H separates � at Xif (i) V (H) = X and U(H) \ U(�) = X(ii) every region of H intersects exactly one bridge of X in �, and(iii) every edge of H is incident with two distinct regions of H.(4.7) Let � be a 2-cell drawing in � with E(�) 6= ;, and let X � V (�). Then there is adrawing H that separates � at X.Proof. Certainly there is a drawing K in � with V (K) = X and U(K)\ U(�) = X, suchthat every region of � [K is incident with an edge of �; for taking U(K) = V (K) = Xis one such drawing, since E(�) 6= ;. For any such K the drawing � [ K has at most2jE(�)j regions, since each is incident with an edge of � and every edge of � is incidentwith � 2 such regions. Consequently, by Euler's formula, jE(K)j is bounded above by afunction of � and �. We may therefore choose K maximal with the properties speci�edabove. 21



We claim that for every region s of K, s \ U(B) 6= ; for exactly one bridge B of Xin �. If s is a region of �[K it is not incident with any edge of �, a contradiction. Thuss is not a region of � [K, and so s includes a vertex or edge of �. Hence s \ U(B) 6= ;for at least one bridge B of X in �. Suppose that there is more than one such bridge. Itfollows that there is a region r of �[K with r � s, and two edges e; f of � both incidentwith r, belonging to di�erent bridges of X in �. Now � is 2-cell and hence so is � [K,and therefore r is an open disc; letv0; e1; v1; e2; :::; ek; vk = v0be a closed walk of � [K following the perimeter of r. We may assume that ei = e andek = f , say, where 1 � i < k. Consequently one, p say, of v0; v1; :::; vi�1 belongs to Xand so does one, q say, of vi; vi+1; :::; vk�1, since e and f belong to di�erent bridges of Xin �. Add to K an edge with ends p; q drawn in r, forming a drawing K 0 so that one ofthe two new regions of K 0 is incident with e and the other with f . This contradicts themaximality of K, and proves our claim that every region of K meets exactly one bridgeof X in �.Delete every edge of K that is incident with only one region, forming H; then Hseparates � at X, as required.(4.8) Let � be a surface of complexity g, and let G be an excluded minor for �. Let(A1; B1); :::; (Ak; Bk) be a sequence of separations of G, all distinct and of the same ordern say, such that(i) A1 � A2 � ::: � Ak and Bk � Bk�1 � ::: � B1(ii) for 1 � i < k there are n disjoint paths of Bi \Ai+1 between V (Ai \ Bi) andV (Ai+1 \Bi+1), and 22



(iii) for 1 � i � k, no two vertices in V (Ai \Bi) are adjacent in Bi.Then k < (12(n + g))!Proof. First suppose that n = 0. By (4.2) and (4.3) with X = ;; G has � 2g � 1components. Hence k � 2g � (12g)!� 1 as required. Thus we may assume that n � 1.For 1 � i � k, let V (Ai \Bi) = fv1i ; :::; vni g, numbered so that for 1 � i < k there aren disjoint paths of Bi\Ai+1 with ends vji ; vji+1 for 1 � j � n. For 1 � i � k, let Ai be theset of all templates (�; �;R) in � such that jV (�)j = n and Bi can be drawn in � withinV (�) [ Sfr : r 2 Rg in such a way that for 1 � j � n, the jth term of � represents vji .(1) For 1 � i < k, Ai � Ai+1.Subproof. Let (�; �;R) 2 Ai, and take a drawing of Bi as above. Let P1; :::; Pn bedisjoint paths of Bi \ Ai+1 where Pj has ends vji ; vji+1 for 1 � j � n. By contractingthe edges of P1; :::; Pn and deleting all other vertices and edges of Bi \Ai+1, we obtain adrawing of Bi+1 within V (�) [ Sfr : r 2 Rg such that the jth term of � represents vji+1for 1 � j � n. Hence (�; �;R) 2 Ai+1.(2) For 1 � i < k, Ai 6= Ai+1.Subproof. Suppose that Ai = Ai+1. Let P1; :::; Pn be disjoint paths of Bi \ Ai+1,where Pj has ends vji ; vji+1 for 1 � j � n. Let G0 be obtained from G by contract-ing all edges in P1; :::; Pn and deleting all other vertices and edges in Bi \ Ai+1. Since(Ai; Bi) 6= (Ai+1; Bi+1) it follows that G0 is not isomorphic to G, and so G0 can be drawnin �. Let � be a drawing of G0 in �. It follows that there is a separation (�1;�2) of� with V (�1 \ �2) = fx1; :::; xng say, such that there is an isomorphism � : Ai ! �123



with �(vji ) = xj (1 � j � n), and an isomorphism � : Bi+1 ! �2 with �(vji+1) = xj(1 � j � n). Let X = fx1; :::; xng. We claim that there are at most 5(n + g) bridges ofX in �. For if C is a non-trivial bridge of X in �, then C is a non-trivial bridge of X inone of �1;�2, and therefore is isomorphic to either a non-trivial bridge of V (Ai \ Bi) inG or of V (Ai+1 \Bi+1) in G. It follows from (4.3) that if jV (C) \Xj � 2 then C cannotbe drawn in a closed disc with V (C) \X on the boundary. By (4.2), there are at most2n + 2g � 1 non-trivial bridges of X in �. Let us bound the number of trivial bridges.Let L be the restriction of � to X. From hypothesis (iii) and the fact that G is simple, itfollows that L is simple. From (4.4),jE(L)j � max(1; 3(n+ g � 2)) � 3n+ 3g + 1:Consequently there are at most 5(n + g) bridges of X in �, as claimed.By (4.5) there is a drawing H that separates � at X. Since every region of H meetsa bridge B of X in �, and hence includes U(B) � X, it follows that H has � 5(n + g)regions. Let � be the linear order x1; x2; :::; xn of V (H), and let R be the set of regionsof H that meet U(�2). Then (H;�;R) is a template, and (H;�;R) 2 Ai+1 by de�nitionof Ai since �2 is a drawing of Bi+1. Since Ai = Ai+1 it follows that (H;�;R) 2 Ai,and so there is a drawing �02 of Bi in � and an isomorphism � 0 : Bi ! �02, such thatU(�02) � X[S(r : r 2 R) and � 0(vji ) = xj (1 � j � n). We claim that U(�1)\U(�02) = X;for if y 2 U(�1) \ U(�02) �X, then y belongs to a bridge of X in �1, and hence y 2 r0for some region r0 of H which meets a bridge of X in �1. Since r0 meets only one bridgeof X, it follows that r0 62 R, contradicting that U(�02) � X [ S(r : r 2 R). This provesthat U(�1) \ U(�02) = X, and so �0 = (U(�1) [ U(�02), V (�1) [ V (�02)) is a drawing in �.But let �0(x) = �(x) for x in Ai, and �0(x) = � 0(x) for x in Bi; then �0 is an isomorphismbetween G and �0, a contradiction since G cannot be drawn in �. This proves (2).Now for each i;Ai is a union of equivalence classes of templates (H;�;R) such thatjV (H)j = n andH has � 5(n+g) regions. There are, by (4.6), at most (12(n+g))!�2 such24



equivalence classes; and from (1) and (2) we deduce that k � (12(n+g))!�1 as required.(4.9) Let n � 0, and let x1; :::; xk be a sequence of integers with 0 � xi � n for each i.For 1 � h � n let kh � 0 be an integer, and suppose that for all h with 0 � h � n theredo not exist j1; j2 with 1 � j1 � j2 � k such that(i) xi � h for all i with j1 � i � j2, and(ii) xi = h for at least kh values of i with j1 � i � j2.Then k < k0k1:::kn.Proof. We proceed by induction on n. If n = 0 then x1 = ::: = xk = 0 and so since(i), (ii) do not hold with h = 0, j1 = 1 and j2 = k, it follows that k < k0 as required.We assume then that n � 1. From the inductive hypothesis applied to the subsequenceof x1; :::; xk consisting of all terms < n, we deduce that there are at most t � 1 suchterms where t = k0k1:::kn�1. By an interval we mean a set fj1; j1 + 1; j1 + 2; :::; j2g with1 � j1 � j2 � k such that(i) xi = n for all i with j1 � i � j2(ii) either j1 = 1 or xj1�1 < n, and(iii) either j2 = n or xj2+1 < n.Between any two intervals there is a term with value < n, and so there are � t intervals.Since (i), (ii) do not hold with h = n, it follows that j2 � j1 � kn � 1 for every intervalfj1; :::; j2g. But every term with value n belongs to an interval, and so there are at mostt(kn � 1) such terms. Since there are � t� 1 with value < n it follows thatk � t(kn � 1) + t� 1 = k0k1:::kn � 125



as required.Proof of (4.1)Now G has tree-width < w, and so it has a tree-decomposition (T; (Xt : t 2 V (T )))such that jXtj � w for all T 2 V (T ). Choose t0 2 V (T ). For every e 2 E(T ), let Te; T ebe the two components of Tne where t0 2 V (Te). Let Xe = S(Xt : t 2 V (Te)) andde�ne Xe similarly. Let Ae be the subgraph of G with vertex set Xe and edges all edgesof G with both ends in Xe; and let Be be the subgraph of G with vertex set Xe andedges all edges of G with an end in Xe � Xe. Then (Ae; Be) is a separation of G withV (Ae \ Be) = Xe \Xe. Now by the theorem of [12], we may choose (T; (Xt : t 2 V (T )))and t0 so that the following holds:(1) (i) jXtj � w for all t 2 V (T ).(ii) If e; f 2 E(T ) and f lies on the path of T between t0 and e, and jV (Ae \ Be)j =jV (Af \Bf )j = n say, then either there are n disjoint paths of Bf \Ae between V (Ae\Be)and V (Af \ Bf), or there is an edge g of T, in the path of T between e and f, so thatjV (Ag \Bg)j < n.Choose (T; (Xt : t 2 V (T ))) and t0 satisfying (1) with jV (T )jminimum. It follows that(2) Ae 6= G for every e 2 E(T ).Subproof. If Ae = G then (Te; (Xt : t 2 V (Te))) is a tree-decomposition of G, stillsatisfying (1), with jV (Te)j < jV (T )j, contrary to the choice of T .(3) If e; f 2 E(T ) are distinct and f lies on the path of T between t0 and e, then(Ae; Be) 6= (Af ; Bf ). 26



Subproof. Suppose that (Ae; Be) = (Af ; Bf). Construct T 0 from T e [ Tf by addingan edge joining the end of e in V (T e) to the end of f in V (Tf); then (T 0; (Xt : t 2 V (T 0)))still satis�es (1) and jV (T 0)j < jV (T )j, a contradiction. This proves (3).(4) For each e 2 E(T ), (Ae; Be) has order < w.Subproof. Let e have ends t1; t2, where t1 is between t0 and t2. Then V (Ae \ Be) =Xe\Xe = Xt1 \Xt2. But by (3), Xt1 6= Xt2 and so jXt1 \Xt2 j < w, since jXt1 j; jXt2j � w.This proves (4).(5) Every vertex of T has valency � 2w + 2g.Subproof. Let t 2 V (T ). For each edge e 2 E(T ) incident with t and not in the pathbetween t0 and t; Ae 6= G by (2), and so Xe 6= V (G). Consequently there is a non-trivialbridge Ce of Xt in G with V (Ce) \ Xe 6� Xt. If e; f 2 E(T ) are distinct and both in-cident with t and are not in the path between t0 and t, then Ce 6= Cf , for otherwiseCen(Xt \V (Ce)) is a connected subgraph of G meeting both Xe and Xf and not meetingXt which is impossible. Thus all the bridges Ce are distinct. By (4.2), t has valency� 2jXj+ 2g � 2w + 2g. This proves (5).(6) Every path of T starting from t0 has < Q1�h�w(12(g + h� 1))! edges.Subproof. Let P be a path of T starting from t0, with k edges e1; :::; ek in order. For1 � i � k, let Ai = Aei; Bi = Bei , and xi = jV (Ai \ Bi)j. For 0 � h � w � 1, letkh = (12(g + h))!. By (4.8) and (1)(ii) the sequence x1; :::; xk satis�es the hypothesis of(4.9) (taking n = w � 1). It follows from (4.9) that k < Q0�h�w�1 (12(g + h))!. This27



proves (6).Let d = 2w + 2g and p = Q1�h�w(12(g + h � 1))!. Since G is non-planar and hastree-width < w, it follows that w � 4, and hence d � 8 and p � 36! Now every vertexhas valency � d and every path starting from t0 has < p edges, and sojV (T )j � 1 + d + d(d� 1) + :::+ d(d � 1)p�2:Since p � 4 and d � 3, we deduce thatjV (T )j � 1 + d((d � 1)p�1 � 1)(d� 2)�1 � d(d � 1)p�1(d� 2)�1� d3(d � 2)(d� 1)p�4(d� 2)�1 � dp�1:Consequently jV (G)j � wjV (T )j � dp; as required.
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