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Abstract

We prove that a graph does not contain as a minor a graph formed by 0-, 1-, 2- or 3-summing k
copies of K5 or K3,3, if and only if it has bounded genus.



1 Introduction

In this paper, graphs are finite and have no loops or parallel edges. By a surface we mean a non-null
compact 2-manifold without boundary. (In a companion paper [3], surfaces could have boundary,
but here we will not need that, so we might as well define it away.) The genus of an orientable
connected surface is the number of handles we add to a 2-sphere to make the surface, and the genus
of a non-orientable connected surface is the number of crosscaps we add to a 2-sphere to make it.
The genus of a general (disconnected) surface is the sum of the genera of its components. A graph
is a k-Kuratowski graph if it has exactly k components, each isomorphic to K5 or to K3,3. It is
known [3] that:

1.1 If H is a k-Kuratowski graph and Σ is a surface, then H can be drawn in Σ if and only if the
genus of Σ is at least k.

The main theorem of [3] says:

1.2 For all integers k ≥ 1, there exists n ≥ 0 such that if a graph G contains no k-Kuratowski graph
as a minor, then there exists X ⊆ V (G), with |X| ≤ n, such that G \X can be drawn on a surface
of genus less than k (and hence in which no k-Kuratowski graph can be drawn).

But that does not mean that G itself has bounded genus, and in this paper we look at the
question of what else must be excluded to guarantee that G has bounded genus. For instance, if H
is made from a k-Kuratowski graph by choosing one vertex from each component and identifying
these vertices, then H has large genus, and so it is necessary to exclude all such graphs H if we want
to have small genus. (Let us call such a graph H a (k, 1)-Kuratowski graph). Similarly, if we start
with a k-Kuratowski graph, choose two distinct vertices ui, vi from the ith component for 1 ≤ i ≤ k,
and make the identifications u1 = · · · = uk and v1 = · · · = vk, forming some graph H (deleting any
edge between these two vertices), again it is necessary to exclude all such graphs H. (We call such a
graph H a (k, 2)-Kuratowski graph). And finally, it is necessary to exclude Kk,3. (Let us call Kk,3 a
(k, 3)-Kuratowski graph, and call a k-Kuratowski graph a (k, 0)-Kuratowski graph, for convenience.)
It turns out that this is all that is necessary. We will prove:

1.3 For all k ≥ 0, there exists n ≥ 0 such that if for 0 ≤ i ≤ 3, G contains no (k, i)-Kuratowski
graph as a minor, then G has genus at most n.

We first proved this and the result of [3] in the early 1990’s, but did not write them up at that time,
because our proof was very long and complicated; and now, unfortunately (or perhaps fortunately)
that proof is forgotten. The proof given in this paper for 1.4 is certainly different, because we use a
result of [1] which was not known at that time.

(k, i)-Kuratowski graphs are in general a mix ofK5’s andK3,3’s, but if we have a (k′, i)-Kuratowski
graph with k′ ≥ 3k, it contains a (k′, i)-Kuratowski graph made purely from K5 or purely from K3,3.
When i = 2, there are two ways to piece K3,3’s together, on an edge or on a nonedge, and we could
sort them out as well. So we could state the result just in terms of these “purified” (k, i)-Kuratowski
graphs, which are shown in figure 1. We call them basic.

In fact, we will prove a stronger result that we explain next. Let w be a vertex of a graph G,
and let us partition the set of neighbours of v into two sets P,Q. Delete w and add two new vertices
u, v, where u is adjacent to the vertex in P , and v is adjacent to those in Q (and u, v have no other
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Figure 1: Basic (k, i)-Kuratowski graphs for i = 0, 1, 2, 3

neighbours). Let H be the graph we produce. We say that H is obtained from G by splitting w, and
the process is a split. Doing one split might increase or decrease the genus. It might well increase it
dramatically, but it does not decrease it by more than one. To see this, observe that if G′ is obtained
from G by one split, then G can be obtained from G′ by adding an edge (which increases genus by
at most one) and contracting the new edge (which does not increase genus at all).

In order to prove 1.3, we can first apply 1.1, and find a set X ⊆ V (G), of bounded size, such that
G \X can be drawn on a surface Σ of genus less than k. We need to show that G itself has bounded
genus, and to prove this, we will prove a stronger statement, that by a bounded number of splits,
the resultant graph G′ can be drawn in the same surface Σ. (This is a stronger statement, because
doing a bounded number of splits can only reduce genus by up to the same number, as we saw.)

Since the genus of the surface Σ is controlled just by the largest k such that G contains a k-
Kuratowski graph as a minor, we take advantage of this to get the strongest result we can. We will
prove:

1.4 For all k, `, there exists n ≥ 0 such that if no minor of G is an `-Kuratowski graph, and for
0 ≤ i ≤ 3 no minor of G is a (k, i)-Kuratowski graph, then there is a graph G′ that can be obtained
from G by at most n splits and can be drawn in a surface of genus less than `.

As we saw, in order to prove this, it suffices (because of 1.2) to prove that the result holds for
graphs G such that deleting a bounded set of vertices X makes a graph that can be drawn in Σ.
When Σ is a 2-sphere, it turns out that something stronger is true: we don’t need to do any split of
the vertices that are already drawn in Σ, we only need to split the vertices in X. More exactly:

1.5 If Σ is a 2-sphere, then for all integers k, ξ ≥ 1, there exists n ≥ 0 such that, if for 0 ≤ i ≤ 3
no minor of G is a (k, i)-Kuratowski graph, and there exists X ⊆ V (G) with |X| ≤ ξ such that G\X
can be drawn in Σ, then by at most n splits of the vertices in X, the resultant graph can be drawn in
Σ.

We have not been able to decide whether 1.5 is true when Σ is not a 2-sphere. We discuss this further
at the end of section 5.
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2 Equivalent formulations

Saying that a graph does not contain a k-Kuratowski graph as a minor, is evidently equivalent to
saying that it does not contain k nonplanar subgraphs, pairwise vertex-disjoint; and that is also
equivalent to saying that it does not contain k pairwise vertex-disjoint subgraphs, each a subdivision
of K5 or K3,3.

This suggests a different formulation of our main result, which we will explain next. A rooted
graph is a pair (H,R) where H is a graph and R ⊆ V (H). (We will only need to consider rooted
graphs where |R| ≤ 3.) A rooted graph (H,R) is flat if H can be drawn in a closed disc in such a
way that the vertices in R are drawn in the boundary of the disc.

For k ≥ 1 and for 0 ≤ i ≤ 3, a (k, i)-junction is a graph J such that for some R ⊆ V (J) with
|R| = i, there are k subgraphs H1, . . . ,Hk with union J , such that R ⊆ V (Hi) for each i, and
V (Hi ∩Hj) = R for 1 ≤ i < j ≤ k, and

• if i ∈ {0, 1} then Hi is nonplanar;

• if i = 2 then (Hi, R) is not flat; and

• if i = 3 then Hi is connected, and every vertex in R has a neighbour in V (Hi) \R.

Let us say a graph G is k-subgraph-restricted if for i = 0, . . . , 3, no subgraph is a (k, i)-junction; and
G is k-restricted if for 0 ≤ 3, no minor of G is a (k, i)-junction. Here are three possible ways to
restrict a graph G:

• For 0 ≤ i ≤ 3, no minor of G is a (k, i)-Kuratowski graph;

• G is k-subgraph-restricted;

• G is k-restricted.

Evidently, the third implies the other two. We claim that

2.1 If the first bullet holds, then the third holds with k replaced by 8k.

Proof. Suppose that G is not 8k-restricted; then it has a minor G′ that is an (8k, i)-junction for
some i ∈ {1, . . . , 3}. Let R and (H1, R), . . . , (H8k, R) be as in the definition of (8k, i)-junction. If
i = 0 or 1 then Hi is not planar, and so it has a subgraph Ji that is a subdivision of K5 or K3,3. If
k = 0, these are vertex-disjoint and so G′ has a minor which is a (k, 0)-Kuratowski graph. If i = 1,
and k of the Ji’s do not contain the vertex of R, then the same holds; and if k of them do contain
the vertex in R, then G′ has a minor which is a (k, 1)-Kuratowski graph. Next suppose that i = 2.
For 1 ≤ j ≤ 4k, since (H2j−1, R) and (H2j , R) are not flat, it follows that H2j−1 ∪H2j is not planar,
and so contains a subdivision Jj of K5 or K3,3. At least k of the Jj ’s have equal intersections with
R and the result follows easily. Finally, if i = 3 then G′ evidently contains Kk,3 as a minor. This
proves 2.1.

So, in order to prove 1.4, it suffices to prove the next result:

2.2 For every surface Σ, and all integers k, ξ ≥ 1, there exists n ≥ 0 such that, if G is k-restricted
and there exists X ⊆ V (G) with |X| ≤ ξ such that G \X can be drawn in Σ, then by at most n splits
of vertices of G, the resultant graph can be drawn in Σ.
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Returning to the three bullets above: what is much less obvious, is that if the second bullet holds,
then so do the first and third (with larger values of k, but independent of G). We will prove this in
section 6. In this sense, all three bullets above are equivalent. Consequently 2.2 implies the following
apparently much stronger statement:

2.3 For every surface Σ, and all integers k, ξ ≥ 1, there exists n ≥ 0 such that, if G is k-subgraph-
restricted and there exists X ⊆ V (G) with |X| ≤ ξ such that G \X can be drawn in Σ, then by at
most n splits of the vertices of G, the resultant graph can be drawn in Σ.

3 Two-connected apical pairs

Our main goal is to prove 2.2; and for that we may evidently assume that X is stable, because we
can handle any edges between vertices in X with a bounded number of extra splits of vertices in X.
We will first prove it when Σ is a 2-sphere, and in that case, we will show the stronger result that
only need split vertices in X. Then an application of a result of [4] will prove it in general. Thus,
the objective of most of the paper is to prove:

3.1 For all integers k, ξ ≥ 1, there exists n ≥ 0 such that, if G is k-restricted and there exists a
stable set X ⊆ V (G) with |X| ≤ ξ such that G \X is planar, then by at most n splits of vertices in
X, we can convert G to a planar graph.

If X ⊆ V (G) is a stable set and G \ X is planar, we call the pair (G,X) an apical pair, and if
X = {x}, we write (G, x) for (G, {x}). Let us say the nonplanarity of an apical pair (G,X) is the
minimum n such that G can be converted into a planar graph by splitting the vertices in X into
a set of n vertices. We frequently look at a subgraph A of G \X, and want to consider the graph
consisting of A,X and the edges between X and V (A), which we will call A + X; and again, if
X = {x} we write A+x for A+{x}. In the proofs, it often happens that we are trying to bound the
nonplanarity of (G,X), and G \X is the union of some subgraphs A1, . . . , At say; and we know that
(Ai +X,X) has bounded nonplanarity, for each i. A natural first step is to split each x ∈ X into t
vertices, where the ith vertex is adjacent only to the neighbours of x in V (Ai) (and not necessarily to
all of them, if the Ai’s overlap). When we do this for each x, we obtain t|X| vertices, which we can
partition into t subsets X1, . . . , Xt, each containing exactly one vertex that was made by splitting x,
for each x ∈ X. Briefly, we call this “splitting X into sibling-free sets”. (After splitting, the graph
we obtain might not be k-restricted any more, so it has to be treated with caution.)

The proof of 3.1 breaks into cases depending on the connectivity of G \ X. If the latter is 3-
connected, the result is easy, because of a theorem of Böhme and Mohar below. At the other extreme,
when G \X is not connected, the result can easily be deduced from the connected case. To reduce
the connected case to the 2-connected case, we use a more complicated inductive argumemt with
weightings, but that is also reasonably straightforward. In going from 2-connected to 3-connected,
however, there is an issue that causes some headaches. If (G,X) is an apical pair, and G \ X is
2-connected, and (A,B) is a 2-separation of G \X, and we know that (A + X,X) and (B + X,X)
have bounded nonplanarity, how can we get a bound on the nonplanarity of (G,X)? To do so, we
need to bound the nonplanarity of (A′+X,X) and (B′+X,X), where A′, B′ are obtained from A,B
by adding an edge joining the two vertices in A ∩ B. In this section we prove a variety of lemmas
related to this problem. Let us say an apical pair (G,X) is 2-connected if G \X is 2-connected.
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In this paper we do not permit loops or parallel edges, so we must make adjustments for that.
When we contract a set of edges, this may make loops or parallel edges, and if so, we delete all such
loops and all but one from each set of parallel edges. When we speak of “adding an edge between
u, v”, again we only add such an edge if u, v are not already adjacent.

We say a region of a drawing covers a vertex of the drawing if the region is incident with the
vertex, and covers an edge if the edge is incident with the region. We use a theorem of Böhme and
Mohar [1], that says:

3.2 For all integers k ≥ 1 there is an integer k′ ≥ 1 with the following property. Let G be a
3-connected graph drawn in the plane, and let U ⊆ V (G). Then either:

• there is a set of at most k′ regions of the drawing, together covering every vertex in U ; or

• there are two vertex-disjoint connected subgraphs A,B of G, and k distinct vertices u1, . . . , uk ∈
U and not in V (A ∪B), such that for 1 ≤ i ≤ k, ui has a neighbour in V (A) and a neighbour
in V (B).

If U is the set of neighbours of an extra vertex x, then the first outcome implies that (G+ x, x) has
nonplanarity at most k, and the second implies that G+ x contains Kk,3 as a minor. Our next task
is to prove something similar, with the single vertex x replaced by a set X of vertices with bounded
size, and with 3-connectivity replaced by 2-connectivity. But that needs a good deal of preparation.
First, we need the following lemma.

3.3 Let (G,X) be a 2-connected apical pair, such that G is planar. Let u, v ∈ V (G \X) be distinct,
and suppose that there is a planar drawing of G \X such that u, v are incident with the same region.
Then by at most 3|X|+ 64|X|2 splits of the vertices in X, we can obtain from G a graph that can be
drawn in the plane such that both u, v are incident with the same region.

Proof. Let ξ = |X|, and let H = G \X. Since H is 2-connected, and admits a drawing with u, v
incident with the same region, there is a cycle C of H containing u, v such that there is a drawing
of H in a plane with C the boundary of the infinite region.

Fix a drawing of G in a 2-sphere Σ. This gives us a (different, in general) planar drawing of H.
By an H-bridge we mean a subgraph of H which is either

• a subgraph of H consisting of one edge e and its ends, such that both ends of e are in V (C)
and e /∈ E(C), or

• a subgraph of H that is the union of a component D of H \ V (C), all vertices in C that have
a neighbour in V (D), and all edges between V (C) and V (D).

If D is an H-bridge, each vertex of C with a neighbour in V (D) is an attachment of D. Let P1, P2 be
the two paths of C between u, v. We may assume that both P1, P2 have at least two edges, because
otherwise the result is true since G is planar. Now C bounds a disc ∆ in the given drawing of G;
and each H-bridge is either inside C or outside, in the natural sense, and we call them inner and
outer respectively. Let us say an H-bridge D is major if it has an attachment not in V (P1) and
an attachment not in V (P2), and minor otherwise. Now we have four kinds of H-bridges, outer or
inner, and major or minor. Minor H-bridges fall into two types: those with all their attachments in
V (P1), and those with all attachments in V (P2). Let us call them P1-type and P2-type respectively.
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If x ∈ X, then it might have neighbours in P1 or P2, or in major H-bridges, or in minor H-bridges
of either type. But all neighbours of x lie on the same region of H, which is bounded by a cycle
since H is 2-connected. And there are at most two major H-bridges in which x has neighbours.
Consequently, we can split x into a set Yx of at most four vertices, such that:

• for each y ∈ Yx, either all neighbours of y lie in a major H-bridge, or for some i ∈ {1, 2} they
all lie in the union of Pi and minor H-bridges of Pi-type;

• let G′ be the graph produced from G by carrying out this split for all x ∈ X; then the drawing
of H can be extended to a drawing of G′.

This was a total of at most 3ξ splits so far. To simplify notation, let us replace X by the set of
vertices just obtained by splitting. We lose the hypothesis that |X| = ξ, but instead we have:

(1) |X| ≤ 4ξ; and for each x ∈ X, either all neighbours of x lie in a major H-bridge, or for
some i ∈ {1, 2} they all lie in the union of Pi and minor H-bridges of Pi-type.

So far we have been working with H-bridges, but now we need G-bridges, which are defined similarly:
either

• a subgraph of G consisting of one edge e and its ends, such that both ends of e are in V (C)
and e /∈ E(C), or

• a subgraph of G that is the union of a component D of G \ V (C), all vertices in C that have a
neighbour in V (D), and all edges between V (C) and V (D).

For G-bridges, we define major and minor, outer and inner, P1-type and P2-type, in the same way
as before. Let D1, D2 be G-bridges. Every major G-bridge D′ includes a unique major H-bridge D,
and has the same attachments as D.

Let us first see when the theorem is satisfied with no further splitting of the vertices in X. To
obtain a drawing of G with u, v both on the same region (say the infinite region), we need to redraw
all major outer bridges inside C. Minor bridges can stay where they are, or be redrawn inside C,
or be redrawn outside C, as necessary. We say two G-bridges D1, D2 conflict if C ∪D1 ∪D2 cannot
be drawn such that C bounds a region, that is, D1, D2 cannot both be redrawn inside C without
crossings. It is easy to see (although we will not use this fact) that D1, D2 conflict if and only if
either:

• there are distinct vertices c1, c2, c3, c4 of C, in order in C, such that c1, c3 are attachments of
D1 and c2, c4 are attachments of D2; or

• the sets of attachments of D1, D2 are equal, and of size three.

We define conflict for H-bridges in the same way, but no two H-bridges conflict, since H can be
drawn in the plane such that C bounds a region.

For i = 1, 2, if a, a′ ∈ V (Pi), we denote the path of Pi between them by Pi(a, a
′). If Z ⊆ V (Pi) 6= ∅,

the u-most member of Z is the vertex in Z closest (in Pi) to u, and the v-most is defined similarly.
Let H ′ be the union of C and all major outer H-bridges. A region of H ′ outside C is important if
it is incident with a vertex of V (C) \ V (P1) and incident with a vertex in V (C) \ V (P2). For each
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x ∈ X drawn outside C, there is a region of H ′ in which x is drawn, say r(x). If r(x) is important,
and is incident with at least two vertices of P1, then the u-most and v-most vertices of P1 incident
with r(x) are called important for x, and similarly in P2. Let us say a vertex is important if either it
is important for some x drawn outside C, or it equals u or v. For each x ∈ X outside of C there are
at most two important vertices for x; so there are at most 8ξ + 2 important vertices in P1 and the
same in P2.

Let the important vertices in P1 be u = a1, . . . , as = v, numbered in order, and let u = b1, . . . , bt =
v be the important vertices in P2 in order. Thus s, t ≤ 8ξ + 2.

Let us say an H-bridge or G-bridge is local if there exist i ∈ {1, . . . , s− 1} and j ∈ {1, . . . , t− 1}
such that all attachments of D belong to V (P1(ai, ai+1) ∪ P2(bj , bj+1)).

(3) If every G-bridge is local, then G can be drawn in the plane with u, v both incident with the
same region.

Let K be the “conflict graph” between G-bridges: its vertex set is the set of all G-bridges, and
two of them are adjacent in K if they conflict. Since no two inner G-bridges conflict, and the same
for outer G-bridges, it follows that K is bipartite; and it suffices to show that no component of K
contains a major outer G-bridge and a major inner G-bridge. Suppose then that there is a sequence
A1, . . . , An of G-bridges, with n even, such that A1 is outer, An is inner, and for 1 ≤ i < n, Ai
conflicts with Ai+1. So n > 2 since each major G-bridge have the same attachment sets as some
major H-bridge, and there is no conflict between H-bridges. By choosing n minimal we may assume
that A2, . . . , An−1 are minor; and since each conflicts with the next, it follows that they are all of
P1-type or all of P2-type, and so we may assume they are all of P1-type. Moreover, A1, . . . , An all
have the same i-value, since each conflicts with the next. Let i be this common i-value.

Since An is a major inner G-bridge, and An−1 conflicts with it, and no H-bridge conflicts with
a major G-bridge, it follows that there is a vertex in X that belongs to V (An−1), say x. We claim
that r(x) is important. Let a, b be the u-most and v-most attachment of An−1 in P1. If r(x) is not
important, then since r(x) is incident with at least two vertices of P1 (a and b), r(x) is not incident
with any vertex in P2; and so there is a major outer H-bridge D with attachments in both P1(u, a)
and in P1(b, v). But then D conflicts with An, a contradiction, since no two major G-bridges conflict.
This proves that r(x) is important. It follows that the u-most and v-most vertices in P1 incident with
r(x) are important vertices. But they both belong to P1(ai, ai+1); and so a1 is the u-most vertex of
P − 1 incident with r(x), and ai+1 is the v-most.

Since A1 is a major outer G-bridge, it has the same attachment set as a major outer H-bridge
A′1 say; and A′1 has two distinct attachments in P1(ai, ai+1), since it conflicts with A2. But that
contradicts that ai, ai+1 are both incident with r(x), and hence proves (3).

It need not be true that every G-bridge is local; but next we will show that we can make it true
with a few more splits.

(4) By at most 64ξ2 splits of vertices in X, making a graph G′, we can arrange that every G′-
bridge is local (without changing the set of vertices of C that are important).

Each outer G-bridge is already local, but we need to worry about inner G-bridges. Every inner
H-bridge is local, since there is no conflict between H-bridges; and if D is a major inner G-bridge,
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then it has the same attachment set as a major inner H-bridge and so is local. For each minor inner
H-bridge D of type P1, D has at least two attachments in P1 since H is 2-connected, and so, since
D is local, there is a unique i as in the definition of local; let us call it the i-value of D. (The same
holds for P2.)

Let D be a minor inner G-bridge, say of P1-type. Then D is the union of some H-bridges of
P1-type, which are local, and some vertices in X that serve to connect up the H-bridges. For each
x ∈ X drawn inside C, we can split x into at most s−1 vertices, such that for each of them, say y, all
the H-bridges in which y has neighbours have the same i-value. We can follow the same procedure
for minor inner G-bridges of P2-type. This requires max(s− 2, t− 2) splits for each vertex in X, and
since s, t ≤ 8ξ+ 2 and |X| ≤ 4ξ, this step needs at most 64ξ2 splits. The meaning of “local” depends
on which vertices of C are important, but that only depends on H and vertices of X drawn outside
C; and here we only split vertices of X inside C, so the meaning of “local” is not affected. After
these splits, the statement of (4) holds, so this proves (4).

By (3), applied to G′, it follows that G′ can be drawn in the plane with u, v both incident with
the same region. In total, starting with a set X, we did at most 3ξ splits in the first round, and then
another 64ξ2 to arrange that (4) holds. This proves 3.3.

An interval of the set of integers means a subset {p, p+ 1, . . . , q} for some two integers p, q with
p ≤ q, or the null set.

3.4 Let (G,X) be an apical pair, such that G is k-restricted. Suppose that there exist t ≥ 1 and
a sequence a0, . . . , at of distinct vertices of G \ X, and connected subgraphs A1, . . . , At of G \ X
with union G \ X, such that a0 ∈ V (A1), at ∈ V (At), and for 1 ≤ i < j ≤ t, if j ≥ i + 2 then
V (Ai∩Aj) = ∅, and if j = i+ 1 then V (Ai∩Aj) = {ai}. For each interval I ⊆ {1, . . . , t}, we denote⋃
i∈I Ai by A(I). Then:

• There exists M1 ⊆ {1, . . . , t} with |M1| ≤ 4k|X| such that for all x ∈ X and for every interval
I = {p, p + 1, . . . , q} of {1, . . . , t} \M1, the graph obtained from A(I) + x by adding the edges
xap−1, xaq is planar.

• There exists M2 ⊆ {1, . . . , t} with |M2| ≤ 4k
(|X|

2

)
such that for all distinct x, y ∈ X and for

every interval I = {p, p + 1, . . . , q} of {1, . . . , t} \M2, either one of x, y has no neighbour in
V (A(I)), or the graph obtained from A(I)+{x, y} by adding the edges xap−1, xaq, yap−1, yaq, xy
is planar.

• There exists M3 ⊆ {1, . . . , t} with |M3| ≤ 2k
(|X|

3

)
such that for every interval I of {1, . . . , t}\M3,

at most two members of X have a neighbour in A(I).

Proof. We prove these in order. For the first statement, let x ∈ X. We say an interval I = {p, . . . , q}
of {1, . . . , t} is {x}-good if the graph obtained from A(I) by adding the edges xap−1, xaq is planar.
Suppose there are 4k pairwise disjoint intervals that are not {x}-good, say I1, . . . , I4k, numbered
in order. For 1 ≤ j ≤ k let Hj be the interval {a, a + 1, . . . , b} where a is the smallest member
of I4j−3 and b is the largest member of I4j−1, and let Cj = A(Hj). Thus all the graphs Cj are
pairwise vertex-disjoint. We claim that for 1 ≤ j ≤ k, Cj + x is not planar. To see this, let I4j−2 be
the interval I = {p, p + 1, . . . , q}; then, since I4j−2 is not {x, y}-good, the graph Dj obtained from
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A1 A2 At−1 Ata0 ata2 at−2

X

Figure 2: The subgraphs for 3.4.

A(I) + x by adding the edges xap−1, xaq is nonplanar. Moreover, x has a neighbour in V (A(I4j−3))
(because I4j−3 is not {x}-good) and x has a neighbour in V (A(I4j−1)) similarly, and consequently
Cj + x contains Dj as a minor and hence is not planar. It follows that G contains a (k, 1)-junction,
a contradiction. Thus there do not exist 4k pairwise disjoint intervals that are not {x}-good. By
the Helly property of intervals, there exists Ix ⊆ {1, . . . , t} with |Ix,y| ≤ 4k such that every interval
containing no member of Ix,y is {x}-good. Let M1 be the union of Ix over all x ∈ X; then it satisfies
the first statement of the theorem.

For the second statement, let x, y ∈ X be distinct. We say an interval I = {p, . . . , q} of {1, . . . , t}
is {x, y}-good if either one of x, y has no neighbour in A(I), or the graph obtained from A(I)+{x, y} by
adding the edges xap−1, xaq, yap−1, yaq, xy is planar. Suppose there are 4k pairwise disjoint intervals
that are not {x, y}-good, say I1, . . . , I4k, numbered in order. For 1 ≤ j ≤ k let Hj be the interval
{a, a + 1, . . . , b} where a is the smallest member of I4j−3 and b is the largest member of I4j−1, and
let Cj = A(Hj). Thus all the graphs Cj are pairwise vertex-disjoint. We claim that for 1 ≤ j ≤ k,
(Cj+x, y, {x, y}) is not flat. To see this, let I4j−2 be the interval I = {p, p+1, . . . , q}; then, since I4j−2
is not {x, y}-good, the graph Dj obtained from A(I) by adding the edges xap−1, xaq, yap−1, yaq, xy is
nonplanar. Moreover, x, y both have a neighbour in V (A(I4j−3)) (because I4j−3 is not {x, y}-good)
and x, y both have a neighbour in V (A(I4j−1)) similarly, and consequently if we add the edge xy
to Cj + {x, y}, the graph we obtain contains Dj as a minor and hence is not planar. This proves
that (Cj + {x, y}, {x, y}) is not flat, for 1 ≤ j ≤ k. It follows that G contains a (k, 2)-junction, a
contradiction. Thus there do not exist 4k pairwise disjoint intervals that are not {x, y}-good. By
the Helly property of intervals, there exists Ix,y ⊆ {1, . . . , t} with |Ix,y| ≤ 4k such that every interval
containing no member of Ix,y is {x, y}-good. Let M2 be the union of Ix,y over all distinct x, y; then
it satisfies the second statement.

For the third statement, we say an interval J = {i, i+1, . . . , j} is tripled if there are at least three
members of X with a neighbour in V (A(J)). Suppose there are 2k

(|X|
3

)
pairwise disjoint tripled

intervals. For each of them, say I, some triple of vertices in X all have neighbours in V (A(I))
it, and so there are 2k of them that have the same triple, say {x, y, z}. Hence there are k such
intervals, say I1, . . . , Ik, such that the subgraphs A(I1), A(I2), . . . , A(Ik) are pairwise vertex-disjoint.
But then G contains a (k, 3)-junction, a contradiction. So there do not exist 2k|X|3 pairwise disjoint
tripled intervals, and hence by the Helly property of intervals, there exists M3 ⊆ {1, . . . , t} with
|M3| ≤ 2k|X|3 such that every tripled interval contains a member of M3. This proves the third
statement and so proves 3.4.

From 3.3 and 3.4 we deduce:

3.5 Let (G,X) be a 2-connected apical pair such that G is k-restricted; and let e = uv be an edge of
G \ x. Suppose that for every 2-connected subgraph A of G \ e, (A+ x, x) has nonplanarity at most
K. Then (G,X) has nonplanarity at most 300kK2|X|4.
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Proof. Let G′ = (G \X) \ e. Since G \X is 2-connected, it follows that G′ is connected, and for
each of its 2-separations (A,B) with V (A), V (B) 6= V (G′) , V (A\V (B) contains one of u, v, and
V (B) \ V (A) contains the other. Consequently there is a sequence u = a0, . . . , at = v of distinct
vertices of G′, and subgraphs A1, . . . , At of G′ with union G′, as in 3.4. Let M1,M2,M3 be as in 3.4,
and let M = M1 ∪M2 ∪M3. Thus

|M | ≤ 2k

(
|X|
3

)
+ 4k

(
|X|
2

)
+ 4k|X| ≤ 4k|X|3.

Let I1, . . . , Is be the maximal intervals included in {1, . . . , t}\M . There are at most |M |+1 of them,
and they are pairwise disjoint. For each one, say I = {p, . . . , q}, we have by (1), (2), and (3) that
at most two members of X have a neighbour in V (Ai); if two members x, y both have neighbours
in V (Ai) then the graph obtained from A(I) + {x, y} by adding the edges xap−1, xaq, yap−1, yaq, xy
is planar; and if only one member x ∈ X has a neighbour in V (A(I)) then the graph obtained from
A(I) + x by adding the edges xap−1, xaq is planar.

Suppose that x, y both have neighbours in V (A(I)), and take a planar drawing of the graph
obtained from A(I) + {x, y} by adding the edges xap−1, xaq, yap−1, yaq, xy. It follows that the graph
obtained from A(I) + {x, y} by adding the edges xap−1, xaq, yap−1, yaq can be drawn in the plane
such that the cycle x-ap−1-y-aq-x bounds a region, and so A(I) + {x, y} admits a planar drawing
with ap−1, aq on the same region.

If x ∈ X is the only member of X with a neighbour in A(I), then the graph obtained from
A(I) + x by adding the edges xap−1, xaq is planar, and so a graph obtained from A(I) + x by one
split of x is planar, and can be drawn with ap−1, aq on the same region.

For each i ∈ M , by hypothesis (Ai + X,X) has nonplanarity at most K, and Ai is 2-connected
or trivial, so by 3.3, there is a planar graph obtained from Ai + X by at most 3K + 64K2 splits
that can be drawn with ai−1, ai on the same region. For each vertex in X, let us split it into several
vertices, one for each i ∈ M , say yi and one for each interval Ij , say zj . Make yi adjacent to the
neighbours of x in V (Ai), and zj adjacent to the neighbours of x in A(Ij). It follows that by at most
3K + 64K2 splits of each yi, and at most one split of each zi, (G′, X) can be converted to a planar
graph that can be drawn with a0, at on the same region. This is a total of at most

(3K + 64K2)|M | · |X|+ t(|M |+ 1)|X|

splits. Since |M | ≤ 4k|X|3, it follows that (G,X) has nonplanarity at most

|X|+ (3K + 64K2)(4k|X|3)|X|+ (4k|X|3 + 1)|X| ≤ 300kK2|X|4.

This proves 3.5.

3.6 Let k ≥ 1, and let (G,X) be a 2-connected apical pair such that G is k-restricted. Suppose that
u, v ∈ V (G) are distinct and adjacent, joined by an edge e, and there are subgraphs A1, . . . , At of
G \X, with union G \X, each containing the edge e, such that each (Ai + X,X) has nonplanarity
at most K, and such that V (Ai ∩ Aj) = {u, v} for 1 ≤ i < j ≤ k. Then (G,X) has nonplanarity at
most kK|X|.

Proof. Let I ⊆ {1, . . . , t} be the set of i such that some vertex in X has a neighbour in V (Ai)\{u, v}.
Since G does not contain Kk,3 as a minor, it follows that |I| ≤ (k−1)|X|. For each i ∈ I, (Ai+X,X)
has nonplanarity at most K; and for each i ∈ {1, . . . , t} \ I, (Ai + X,X) has nonplanarity one.
Consequently, (G,X) has nonplanarity at most (k − 1)K|X|+ 1 ≤ kK|X|. This proves 3.6.
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We will be looking at different graphs with the same vertex sets, and it is sometimes convenient
to say “G-adjacent” to mean “adjacent in G”, and so on.

3.7 For all integers k, ξ ≥ 1 there exists an integer ` ≥ 1 such that for all integers K ≥ 1, the
following holds. Let (G,X) be a 2-connected apical pair, such that G is k-restricted and |X| ≤ ξ.
Suppose that there are separations (Ai, Bi) (i ∈ I) of G satisfying:

• Each (Ai, Bi) has order two, and (Ai +X,X) has nonplanarity at most K;

• Ai ⊆ Bj for all distinct i, j ∈ I;

• Let B =
⋂
i∈I Bi, and let H be the graph obtained from B by adding an edge between the two

vertices in Ai ∩Bi for each i ∈ I. Then either H is 3-connected or has at most three vertices.

Then (G,X) has nonplanarity at most `K2.

Let k′ be as in 3.2, with k replaced by 4kξ, and let ` = 1204k4(k′)2ξ8. We will show that ` satisfies
the theorem.

Let F be the set of edges uv of H such that for some i ∈ I, V (Ai ∩ Bi) = {u, v}r. For each
e = uv ∈ F , let Ie be the set of i ∈ I such that V (Ai ∩ Bi) = {u, v}. Let Ae =

⋃
i∈Ie Ai and

Be =
⋂
i∈Ie Bi, and let Ce be obtained from Ae by adding the edge e. For each i ∈ Ie, (Ai+X,X) has

planarity at most K, by hypothesis, and so by 3.5, (A′i+X,X) has nonplanarity at most 300kK2|X|4,
where A′i is obtained from Ai by adding the edge e = uv. Thus (Ce + x, x) has nonplanarity at most
k(300kK2|X|4)|X| ≤ 300k2K2|X|5 by 3.6.

Let G′ be the graph obtained from H by adding the vertices of X, such that for each x ∈ X,

• x is G′-adjacent to each vertex in B that is G-adjacent to x; and

• x is G′-adjacent to both ends of each edge e = uv ∈ E(F ) such that for some i ∈ I, V (Ai∩Bi) =
{u, v} and x is G-adjacent to a vertex in V (Ai) \ V (Bi).

(1) There is a set of at most k(k′)2|X| regions of H together covering all vertices of H G-adjacent
to a vertex in X, and covering all edges in F .

Let us apply 3.2 to G′, with k replaced by 4k|X|, and with U the set of vertices of H adjacent
in G to a vertex in X. Suppose first that there are two vertex-disjoint connected subgraphs P,Q of
H, and 4k|X| distinct vertices y1, . . . , y4k|X| of V (H)\V (P ∩Q), all in U , and each with a neighbour
in V (P ), and a neighbour in V (Q). Since each yi has a neighbour in X, some 4k of them have the
same neighbour; say y1, . . . , y4k are all adjacent in G′ to x ∈ X. Since H is planar, the four-colour
theorem implies that we may choose k of y1, . . . , y4k pairwise nonadjacent, say y1, . . . , yk. In partic-
ular, no two of them are ends of the same edge in F . For 1 ≤ i ≤ k, yi is G′-adjacent to x, and hence
either yi is G-adjacent to x, or there is an edge e ∈ F incident with yi such that x has a G-neighbour
in V (Ae) \ V (Be). But then G has a Kk,3 minor (because no two different vertices yi use the same
e ∈ F ) and the theorem holds.

Thus, by 3.2, we may assume that there is a set of at most k′ regions of H, say R1, . . . , Rt where
t ≤ k′, together covering U . In particular, for every e ∈ F , both ends of e are incident with one of
these regions. Let F1 be the set of edges e = uv in F , such that none of R1, . . . , Rt is incident with
e. Since H is 3-connected, it follows that none of R1, . . . , Rt is incident with both u, v. Hence we
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may assume that there is a set F2 ⊆ F1 with |F2| ≥ |F1|/t2, such that for each e ∈ F2, one end of e is
incident with R1, the other end is incident with R2, and e is incident with neither of these regions.
For each e ∈ F2, there exists x ∈ X with a neighbour in V (Ae) \V (Be), so there exists F3 ⊆ F2 with
|F3| ≥ |F2|/|X| and x ∈ X such that x has a neighbour in V (Ae) \V (Be) for each e ∈ F3. Let C1, C2

be the cycles of G \ X forming the boundaries of R1, R2 respectively. They might intersect, but if
their intersection is non-null then it is either just one vertex or an edge; so in each case C1 \ V (C2)
and C2 \ V (C1) are connected and vertex-disjoint. Since for each e ∈ F3, there is an edge between
V (Ae) \ V (Be) and each of {x}, Ci \ V (Cj) and Cj \ V (Ci), we may assume that |F3| < k, since
otherwise G has a Kk,3 minor. Hence |F1| ≤ t2(k − 1)|X|; and so the regions R1, . . . , Rt, with an
additional t2(k − 1)|X| regions, will suffice to cover all neighbours of x in G. Since t ≤ k′ and so
k′ + t2(k − 1)|X| ≤ k(k′)2|X|, this proves (1).

Let R1, . . . , Rs be regions as in (1), where s ≤ k(k′)2|X|. Let us split X into s sibling-free subsets
X1, . . . , Xs, such that for 1 ≤ r ≤ s, each vertex in Xr is adjacent only to vertices in V (H) that
are incident with Rr, and to vertices in V (Ae) for some e ∈ F incident with Rr. Moreover, we can
arrange this splitting such that for each e ∈ F , at most one of X1, . . . , Xr contains vertices with a
neighbour in V (Ae). We need to do some further splitting of the vertices in Xr to insert them into
the drawing. (Not quite: we will also have to change the drawing of some of the individual subgraphs
Ae to accommodate the extra vertices.)

Fix r with 1 ≤ r ≤ s, and let C be the cycle of H that forms the boundary of the region Rr. For
each edge e ∈ E(C), if e /∈ F let Ae be the subgraph of G consisting of e and its ends. (Ae is already
defined if e ∈ F .) For each path P of C, let A(P ) denote

⋃
e∈E(P )Ae.

Since H is 3-connected, H \V (C) is connected and every vertex of C is adjacent in H to a vertex
in V (H \ V (C)). Not all edges of H are edges of G; but for every edge e = uv of H that is not in
E(G), there is a path of Ae between u, v. Consequently, letting W = G \ (V (C) ∪ X), we deduce
that W is connected. and every vertex in V (C) is G-adjacent to a vertex in V (W ).

(2) There exists M1 ⊆ E(C) with |M1| ≤ 2k
(|X|

2

)
such that for each path P of C \M1, at most

one member of X has a neighbour in A(P ).

Suppose there are 2k
(|X|

2

)
pairwise vertex-disjoint paths of C such that for each of them, say P ,

there are two members of X with a neighbour in A(P ). Then for some distinct x, y ∈ X, there are
2k vertex-disjoint subpaths of C such paths P such that x, y both have a neighbour in A(P ); and for
some k of these paths P , the subgraphs A(P ) are pairwise vertex-disjoint. But then, by contracting
W to a single vertex, we obtain a Kk,3 minor, a contradiction. So there do not exists 2k

(|X|
2

)
such

subgraphs of C. Subpaths of a cycle do not have the Helly property, but they do with an additive
error of one; so (2) follows.

(3) There exists M2 ⊆ E(C) with |M2| ≤ 4k|X| such that for each path P of C \ M2 and each
x ∈ X, (A(P ) + x, {u, v, x}) is flat, where u, v are the ends of P .

Let x ∈ X. We say a subpath of P of C is x-bad if (A(P ) + x, {u, v, x}) is not flat, where u, v
are the ends of P . It follows that x has a neighbour in V (A(P )) for each x-bad path P . Let Q be a
path of C that includes two vertex-disjoint x-bad paths P1, P2, and let J be obtained from A(Q) +x
by adding a vertex w adjacent to each vertex of Q. Let u, v be the ends of P1. Since u, v, x all have
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a neighbour in the connected graph A(P2)) +w, and since (A(P1) +x, {u, v, x}) is not flat, it follows
that J is not planar. Consequently, if there are 4k vertex-disjoint x-bad paths, there are 2k x-bad
paths P such that the graphs A(P ) are pairwise vertex-disjoint; and by pairing them in consecutive
pairs, and contracting W to a single vertex w, and applying the observation just made, we obtain
a minor of G that contains a (k, 2)-junction, a contradiction. From the “near-Helly” property of
subpaths of a cycle, this proves (3).

Choose M1.M2 as in (2), (3), not both empty, and let M = M1 ∪M2. Thus |M | ≤ 2k
(|X|

2

)
+

4k|X| ≤ 4k|X|2. As we saw earlier, (Ce + X,X) has nonplanarity at most 300k2K2|X|5 for each
e ∈M , and hence the same is true for (Ce+Xr, Xr). For each path P of C \M , there is at most one
vertex x ∈ Xr with a neighbour in A(P ), and if so then (A(P )+x, {u, v, x}) is flat, where u, v are the
ends of P . Let us split each x ∈ Xr into at most 8k|X|2 vertices (one assigned for each e ∈M , and
one for each component of C \M), and then splitting further the vertices assigned to each e ∈ M
into a set of at most 300k2K2|X|5 vertices, and repeating for 1 ≤ r ≤ s, we convert G into a planar
graph. Since s ≤ k(k′)2|X|, this shows that (G,X) has nonplanarity at most

(k(k′)2|X|)(4k|X|2(300k2K2|X|5) + 4k|X|2) ≤ 1204k4(k′)2K2|X|8 ≤ `K2.

This proves 3.7.

We deduce:

3.8 Let k, ξ ≥ 1, and let ` ≥ 900kξ4 be as in 3.7; then for all integers K ≥ 1, the following holds.
Let (G,X) be a 2-connected apical pair such that G is k-restricted and |X| ≤ ξ. Suppose that for
every 2-separation (A,B) of G \ X, one of (A + X,X), (B + X,X) has nonplanarity at most K.
Then (G,X) has nonplanarity at most `K2.

Proof. We may assume that (G,X) has nonplanarity more than 900kK2|X|4, since ` > 900kξ4.
Let us say a 2-separation (A,B) of G \X is oriented if (A+X,X) has nonplanarity at most K and
V (B) 6= V (G) \ {X}; and (A,B) is extreme if there is no oriented 2-separation (A′, B′) with A ⊆ A′
and B′ ⊆ B such that (A,B) 6= (A′, B′). Let {(Ai, Bi) : i ∈ I} be the set of all extreme 2-separations.

(1) If i, j ∈ I are distinct, then Ai ⊆ Bj and Aj ⊆ Bi.

We take i = 1, j = 2 for simplicity. Suppose that the separation (A1 ∪ A2, B1 ∩ B2) has order
at least three. Then (A1 ∩ A2, B1 ∪ B2) has order at most one, and so V (B1 ∪ B2) = V (G) \ X.
Since (A1∩A2, B1∪B2) has order at most one, we may assume from the symmetry between (A1, B1)
and (A2, B2) that A1 ∩ B1 ⊆ B2. If also A2 ∩ B2 ⊆ B1, then A1 ⊆ B2 and A2 ⊆ B1 as required,
so we assume that V (A2 ∩ B2) \ V (B1) is nonempty, and consequently has exactly one vertex,
and A1 ∩ B1 ∩ A2 ∩ B2 is null. Since (A1 ∩ B2, B1 ∪ A2) has order at most one, it follows that
V (B2) = V (G) \X, a contradiction.

Thus (A1∪A2, B1∩B2) has order at most two. We claim that ((B1∩B2)+X,X) has nonplanarity
at most K. If (A1 ∪ A2, B1 ∩ B2) has order at most one, then B1 ∩ B2 has at most one vertex and
the claim is trivial; and if (A1 ∪ A2, B1 ∩B2) has order exactly two, then since (A1, B1) is extreme,
it follows that ((A1 ∪A2) +X,X) does not have nonplanarity at most K, and so ((B1 ∩B2) +X,X)
has nonplanarity at most K from the hypothesis.
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From the symmetry between (A1, B1) and (A2, B2), and since the sum of the orders of (A1 ∪
B2, A2 ∩ B1) and (A1 ∩ B2, A2 ∪ B1) is four, we may assume that (A1 ∪ B2, A2 ∩ B1) has order at
most two. Let us define C1 = A1, C2 = B1 ∩ A2, C3 = B1 ∩B2. Then (Ci +X,X) has nonplanarity
at most K for i = 1, 2, 3; and C1 + X,C2 + X,C3 + X have union G, and each of the separations
(C1, C2 ∪C3), (C2, C1 ∪C3), (C3, C1 ∪C2) has order two. Let W be the set of vertices in at least two
of C1, C2, C3. Every vertex in W belongs to at least two of V (C1 ∩ (C2 ∪ C3)), V (C2 ∩ (C1 ∪ C3)),
V (C3 ∩ (C1 ∪ C2)), and so |W | ≤ 3.

If |W | = 3, we may number X = {w1, w2, w3} such that w1 ∈ V (C2 ∩ C3), w2 ∈ V (C1 ∩ C3)
and w3 ∈ V (C1 ∩ C2). Let D1 be the graph obtained from C1 by adding the edge w2w3, and define
D2, D3 similarly. By 3.5, (Di + X,X) has nonplanarity at most 300kK2|X|4 for i = 1, 2, 3; and so
by splitting X into three sibling-free sets, one for each of D1, D2, D3, we deduce that (G,X) has
nonplanarity at most 900kK2|X|4, a contradiction.

If |W | = 2, let W = {u, v}; then for i = 1, 2, 3, either u, v ∈ V (Ci), or |V (Ci)| ≤ 1. If
u, v ∈ V (Ci) let Di be obtained from Ci by adding the edge uv, and otherwise Di = Ci. Again, by
3.5, (Di+X,X) has nonplanarity at most 300kK2|X|4 for i = 1, 2, 3; and so (G,X) has nonplanarity
at most 900kK2|X|4, a contradiction. This proves (1).

Let B =
⋂
i∈I Bi, and let H be the graph obtained from B by adding an edge between the two

vertices in Ai ∩Bi for each i ∈ I.

(3) Either H is 3-connected or |H| ≤ 3.

If not then there is a separation (P,Q) of H of order at most two, with V (P ), V (Q) 6= V (H).
Let I1 be the set of i ∈ I such that uv ∈ E(P ) where V (Ai ∩ Bi) = {u, v}, and let P ′ be the
union of P ∩ G and Ai for all i ∈ I1, Define Q′ similarly. Then (P ′, Q′) is a 2-separation of G \X,
and so we may assume that (P ′, Q′) is oriented. Hence there exists i ∈ I such that P ′ ⊆ Ai and
Bi ⊆ Q from the definition of I. From the definition of H, it follows that V (H) ⊆ V (Bi), and so
V (P ) ⊆ V (Bi) ⊆ V (Q′). But then V (P ) ⊆ V (Q) and so V (Q) = V (H), a contradiction. This proves
(3).

But then the result follows from 3.7. This proves 3.8.

4 Weightings of apical pairs

If X ⊆ V (G), we denote by σ(X,G) the maximum t such that there are subgraphs H1, . . . ,Ht of G,
such that

• every vertex in more than one of these subgraphs is in X;

• for each i, |V (Hi) ∩X| ≤ 3; and

• for each i, if |V (Hi)∩X| ≤ 2 then Hi is nonplanar, and if |V (Hi)∩X| = 3 then Hi and Hi \X
are both connected.

If v ∈ V (G) \ X, σ(X, v,G) denotes the maximum t such that there are t nonplanar subgraphs
H1, . . . ,Ht of G, such that
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• v ∈ V (Hi) for 1 ≤ i ≤ t;

• every vertex in more than one of these subgraphs is in X ∪ {v}; and

• for each i, Hi is nonplanar and |V (Hi) ∩X| ≤ 2.

Our present goal is to prove 2.2 when Σ is a 2-sphere, but for inductive purposes we need to
introduce weights. Let k ≥ 1 be an integer. A k-weighting for an apical pair (G,X) is a pair (α, β)
where α ≥ 0 is an integer, and β is a map from V (G) \X to the set of nonnegative integers, such
that

• G is k-restricted;

• σ(X,G \Z) < k|X|3−α− |Z| for every Z ⊆ V (G) \X such that β(v) > 0 for each v ∈ Z (and
consequently α < k|X|3, and there are fewer than k|X|3 vertices v with β(v) > 0);

• σ(X, v,G) < k|X|2 − β(v) for each v ∈ V (G) \X (and consequently β(v) < k|X|2).

The cost of a weighting (α, β) is

k3|X|6 − k2|X|5α−
∑

v∈V (G)\X

β(v).

Every weighting has cost between 1 and k3|X|6.

4.1 Let (G,X) be an apical pair that admits a weighting (α, β) of cost c. Let A be a subgraph of
G \X, such that either

• there is a connected subgraph H of G \ X, vertex-disjoint from A, such that at least three
member of X have a neighbour in V (H); or

• there is a nonplanar subgraph H of G with at most one vertex in V (A) and at most two vertices
in X; or

• there exists w ∈ V (G) \ (V (A) ∪X) such that β(w) > 0.

Then the apical pair (A,X) admits a weighting with cost less than c.

Proof. Suppose first that there exists A′ vertex-disjoint from A, satisfying the first or second bullet,
or there exists w satisfying the third bullet. Define α′ = α+ 1 and β′(v) = β(v) for each v ∈ V (A).
We claim that (α′, β′) is a weighting for (A,X). To show this, we must check the three conditions in
the definition of a weighting. The first and third are clear. For the second, we must check that for
every Z ⊆ V (A) \X such that β(v) > 0 for each v ∈ Z, σ(X,A \ Z) < k|X|3 − α′ − |Z|. If w exists,
then, setting Z ′ = Z ∪ {w},

σ(X,A \ Z) ≤ σ(X,G \ Z ′) < k|X|3 − α− |Z ′| = k|X|3 − α′ − |Z|

as required. If H exists, then

σ(x,A \ Z) + 1 ≤ σ(x,G \ Z) < k|X|3 − α− |Z|
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as required. So (α′, β′) is a weighting for (A, x). We claim its cost is less than that of (α, β), and
this is true since ∑

v∈V (G)\V (A)

β(v) < k2|X|5 = k2|X|5(α′ − α).

Next suppose that β(v) = 0 for all v ∈ V (G)\(V (A)∪{x}), and there is no H as in the case above.
Consequently there is a nonplanar subgraph H of G with at most two vertices in X and exactly one
in V (A), say a. Define β′(a) = β(a) + 1, and β′(v) = β(v) for each v ∈ V (A) \ {a}. We claim that
(α, β′) is a weighting for (A,X). To show this, we must check the three conditions in the definition
of a weighting. The first is clear. For the second, we must check that σ(X,A \Z) < k|X|3 − α− |Z|
for every Z ⊆ V (A) such that β′(v) > 0 for each v ∈ Z. This is true if a /∈ Z, so we assume that
a ∈ Z. But then, since H exists and contains at most two vertices of X, we have

σ(X,A \ Z) + 1 ≤ σ(X,G \ (Z \ {a})) < k|X|3 − α− (|Z| − 1)

as required. For the third condition, we must check that σ(X, v,A) < k|X|2−β′(v) for each v ∈ V (A).
This is true if v 6= a since then β′(v) = β(v), so we assume that v = a. But then, since H contains
a and at most two vertices of X, we have

σ(X, a,A) + 1 ≤ σ(X, a,G) < k|X|2 − α− (|Z| − 1)

as required. This proves that (α, β′) is a weighting for (A,X). But its cost is one less than the cost
of (α, β), since β(v) = 0 for all v ∈ V (G) \ (V (A) ∪X). This proves 4.1.

Now we are ready to prove the main theorem of this section. We want to prove that if (G,X)
is a 2-connected apical pair and G is k-restricted then (G,X) has bounded nonplanarity, but for
inductive purposes, we prove a stronger statement:

4.2 Let k, ξ ≥ 1 be integers. Then for all c ∈ {0, . . . , k3ξ6}, there exists f(c) (with f(c) ≥ f(c−1) if
c ≥ 1) with the following property. If (G,X) is a 2-connected apical pair, with |X| ≤ ξ, that admits
a weighting with cost c, then (G,X) has nonplanarity at most f(c).

Proof. Let ` ≥ 900kξ4 be as in 3.7. We proceed by induction on c (with k, ξ fixed). We take
f(0) = 0, which works since no weighting of an apical pair has cost zero; so we may assume that
c > 0 and f(c− 1) exists. Let f(c) = max(`f(c− 1)2, 90000k5`ξ11). We will prove that f(c) satisfies
the theorem.

If for every 2-separation (A,B) of G, one of (A + X,X), (B + X,X) has nonplanarity at most
f(c − 1), then the claim follows from 3.8. So we may assume that there is a 2-separation (B1, B2)
of G \ X such that (B1 + X,X), (B2 + X,X) both have nonplanarity more than f(c − 1). Let
V (B1 ∩ B2) = {u, v}. From 4.1, for i = 1, 2 and for every connected subgraph A of Bi \ {u, v}, at
most two vertices in X have a neighbour in V (A); and for i = 1, 2, every nonplanar subgraph of
Bi + X with at most two vertices in X contains both u and v. Choose t ≥ 2 maximum such that
there are t subgraphs A1, . . . , At of G, each with at least three vertices, and each containing both
u, v and otherwise vertex-disjoint, with union G \X. It follows that Ai \ {u, v} is connected for each
i, from the maximality of t. For i = 1, . . . , t, let Ci be obtained from Ai by adding the edge e = uv.

(1) For 1 ≤ i ≤ t, there is no 2-separation (P,Q) of Ci such that either
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• there is a nonplanar subgraph P ′ of P +X with at most two vertices in X, or

• there is a connected subgraph P ′′ of P vertex-disjoint from Q, such that at least three vertices
in X have a neighbour in P ′′;

and the same for Q.

Suppose that such a separation exists. We may assume that e ∈ E(Q). If P ′′ as above exists,
then P ′′ is a connected subgraph of one of B1 \{u, v}, B2 \{u, v}, which is impossible from the prop-
erties of B1, B2. Thus P ′ exists, and is a subgraph of Ai +X, and hence of one of B1 +X,B2 +X.
Since P ′ is nonplanar and V (P ′∩X) ≤ 2, it follows that u, v ∈ V (P ′), from the properties of B1, B2;
and so u, v ∈ V (P ). But u, v ∈ V (Q), and so V (P ∩ Q) = {u, v}, contradicting that Ci \ {u, v} is
connected. This proves (1).

(2) For 1 ≤ i ≤ t, and every 2-separation (P,Q) of Ci, let P ′, Q′ be obtained from P,Q respec-
tively by adding the edge pq, where V (P ∩ Q) = {p, q}. Then one of (P ′ + X,X), (Q′ + X,X) has
nonplanarity at most 300k2|X|5.

From (1), we may assume that there is no nonplanar subgraph of P + X with at most two ver-
tices in X, and there is no connected subgraph of P \ {p, q} vertex-disjoint from Q, and containing
neighbours of at least three members of X. Let L1, . . . , Ls be the components of P \ {p, q}, and for
1 ≤ r ≤ s let Mr be the subgraph of P induced on Li ∪ {p, q}. It follows that Mr +X is planar for
1 ≤ r ≤ s; and so from 3.5 with K = 1, if M ′r denotes the graph obtained from Mr by adding the
edge pq, then (M ′r + X,X) has nonplanarity at most 300k|X|4. Hence from 3.6, (P ′ + X,X) has
nonplanarity at most 300k2|X|5. This proves (2).

for 1 ≤ i ≤ t, From (2) and 3.8 with K = 300k2|X|5, (Ci + X,X) has nonplanarity at most
`(300k2|X|5)2, for 1 ≤ i ≤ t. By 3.6 with K = `(300k2|X|5)2, (G,X) has nonplanarity at most
k(`300(k2|X|5)2)|X| ≤ 90000k5`|X|11 ≤ f(c). This proves 4.2.

We deduce:

4.3 Let k, ξ ≥ 1 be integers. Then there exists τ2 such that if (G,X) is a 2-connected apical pair,
and |X| ≤ ξ and G is k-restricted, then (G,X) has nonplanarity at most τ2.

Proof. Let τ2 = f(k3ξ6) where f is as in 4.2. If (G,X) is a 2-connected apical pair, let α = 0
and β(v) = 0 for each v ∈ V (G). We claim that (α, β) is a weighting. To see this, we must check
that σ(X,G \ Z) < k|X|3, which is true since G is k-restricted; and that for each v ∈ V (G) \ {x},
σ(X, v,G) < k|X|2, which is also true for the same reason. Since this weighting has cost k3|X|6, the
result follows from 4.2. This proves 4.3.

Next we will replace “2-connected” by “connected”, by proving the following:

4.4 Let k, ξ ≥ 1 be integers. Then for all c ∈ {0, . . . , k3ξ6}, there exists f(c) (with f(c) ≥ f(c−1) if
c ≥ 1) with the following property. If (G,X) is an apical pair such that G\X connected and |X| ≤ ξ,
that admits a weighting with cost c, then (G,X) has nonplanarity at most f(c). Consequently there
exists τ1 such that, if (G,X) is an apical pair, and |X| ≤ ξ and G \ X is connected and G is
k-restricted, then (G,X) has nonplanarity at most τ1.
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Proof. Again, the proof is by induction on c, and we may assume that c > 0, and f(c−1) exists. Let
τ2 be as in 4.3, and let f(c) = max(2f(c−1), τ2+kξ2). We may assume that (G,X) has nonplanarity
more than 2f(c− 1), and so:

(1) For every 1-separation (A,B) of G \X, one of A+X,B +X is planar and the other is not.

If both A+X,B+X are nonplanar, then by 4.1, both (A+X,X) and (B+X,X) admits weightings
with cost less than c, and so both have nonplanarity at most f(c−1). Hence (G,X) has nonplanarity
at most 2f(c− 1), a contradiction. If both A+X,B +X are planar, then (G,X) has nonplanarity
at most two, a contradiction. This proves (1).

Say a 1-separation (A,B) of G \X is oriented if (A+X,X) is planar and V (B) 6= V (G) \ {X},
and A \ V (B) is connected; and (A,B) is extreme if there is no oriented 1-separation (A′, B′) with
A ⊆ A′ and B′ ⊆ B such that (A,B) 6= (A′, B′). Let {(Ai, Bi) : i ∈ I} be the set of all extreme
1-separations, and let V (Ai ∩Bi) = {vi} for each i ∈ I.

(2) Ai ⊆ Bj for all distinct i, j ∈ I.

If vi = vj then the claim is clear, so we assume that vi 6= vj . Suppose that vj ∈ V (Ai). Since
Bi is connected and does not contain vj , it is a subgraph of one of Aj , Bj , and not Aj since Bi is
nonplanar. So Bi ⊆ Bj , and hence Aj ⊆ Ai, contrary to the extremeness of (Aj , Bj). So vj ∈ V (Bi)
and similarly vi ∈ V (Bj). Thus Aj ⊆ Bi and Ai ⊆ Bj . This proves (2).

Let B be the intersection of all the graphs Bi (i ∈ I).

(3) B is either 2-connected or has at most two vertices.

If there is a separation (P,Q) of B with order at most one with V (P ), V (Q) 6= V (B), let P ′ be
the union of P and all Ai with i ∈ I such that vi ∈ V (P ), and let Q′ be the union of Q with all
Ai such that vi /∈ V (P ). It follows that (P,Q) is a separation of G of order at most one, with
V (P ), V (Q) 6= V (G); and so it has order 1. By (1), we may assume that Q is nonplanar and P is
planar, and by replacing P by a subgraph, we may therefore assume that (P,Q) is oriented. Hence
there exists i ∈ I with P ⊆ Ai; but P ⊆ B ⊆ Bi, which is impossible. This proves (3).

Thus G is the union of B and all the graphs Ai (i ∈ I). Let J1 be the set of all j ∈ I such that
for some x ∈ X, the rooted graph (Aj +x, {x, vj}) is not flat; that is, the graph obtained from Aj by
adding an edge xvj is not planar. It follows that |J1| < k|X|, because otherwise the graph obtained
from G by contracting B to a single vertex contains a (k, 2)-junction.

Let J2 be the set of all j ∈ I such that at least two vertices in X have a neighbour in V (Av)\{v}.
It follows that |J2| ≤ k

(|X|
2

)
, since otherwise by contracting each subgraph Av \ {v} to a vertex, and

contracting B to a vertex, we obtain a graph that has a Kk,3 minor.
If j ∈ I and no vertex in X has a neighbour in V (Av)\{v}, then we may delete Ai \{vi}; because

if the theorem is true for the graph with this subgraph deleted, then it is true for G. Similarly, if
j ∈ I and there is exactly one vertex x ∈ X with a neighbour in V (Av) \ {v}, then (Ai + x, {vi, x})
is flat, and so we may contract Ai to an edge xvi; again, because if the theorem is true for the
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smaller graph then it is true for the original. Thus we may assume that I = J1 ∪ J2, and hence
|I| ≤ k|X|+ k

(|X|
2

)
≤ k|X|2.

Let us split X into |I|+ 1 sibling-free sets of vertices Xi (i ∈ I) and Y say, where for each i ∈ I,
vertices in Xi only have neighbours in V (Ai) \ {vi}, and vertices in Y only have neighbours in V (B).
For each i ∈ I, Ai +Xi is planar, since Ai +X is planar. But (B +X,X) has planarity at most τ2,
by 4.3. Hence, adding, we deduce that (G,X) has nonplanarity at most |I| + τ2. Since |I| ≤ kξ2,
this proves 4.4.

Finally, we can prove 3.1, which we restate:

4.5 Let k, ξ ≥ 1 be integers. There exists τ0 such that if (G,X) is an apical pair and G is k-
restricted, then (G,X) has nonplanarity at most τ0.

Proof. Let τ1 be as in 4.4, and let τ0 = kξ3τ1. Let Ai (i ∈ I) be the components of G \ x. Let
J1 be the set of i ∈ I such that Ai + x is nonplanar for some x ∈ X. Then as usual, |J1| ≤ k|X|.
Let J2 be the set of j ∈ I such that exactly two vertices x, y ∈ X have a neighbour in V (Ai), and
(Ai + {x, y}, {x, y}) is not flat. Again, as usual |J2| ≤ k

(|X|
2

)
. Let J3 be the set of i ∈ I such that at

least three vertices in X have a neighbour in V (Ai). Thus. |J3| ≤ k
(|X|

3

)
.

We claim that if i ∈ I \ (J1 ∪ J2 ∪ J3) then Ai may be deleted. This is clear if no vertex in X
has a neighbour in V (Ai); and we know that at most two vertices in X have such a neighbour. If
there is only one, say x, then Ai + x is planar, so deleting Ai does not change the nonplanarity of
(G,X). Similarly if x, y ∈ X both have a neighbour in V (Ai) then (Ai + {x, y}, {x, y}) is flat, so
again deleting Ai does not change the nonplanarity of (G,X).

So we may assume that I = J1 ∪ J2 ∪ J3, and hence |I| ≤ kξ3. Let us split X into |I| sibling-free
subsets XI (i ∈ I), where vertices in Xi only have neighbours in V (Ai). Since each (Ai +Xi, Xi) has
nonplanarity at most τ1, it follows that (G,X) has nonplanarity at most |I|τ1 ≤ kξ3τ1. This proves
4.5.

5 General surfaces

Now let us deduce 2.2 from 3.1. This will be via an application of a theorem from [4], and needs
some definitions. Let G be a graph drawn in a connected surface Σ. We denote by U(G) the set of
points of Σ that belong to the drawing (that is, either belong to V (G) or belong to some edge of
G). A subset of Σ homeomorphic to a circle is called an O-arc, and a subset F of Σ is G-normal
if F ∩ U(G) ⊆ V (G). If Σ is not a 2-sphere, there is an O-arc that is not null-homotopic in Σ,
and it can be chosen to be G-normal. We say G is θ-representative, where θ ≥ 1 is an integer, if
|F ∩V (G)| ≥ θ for every G-normal O-arc F . If G is θ-representative, then for every G-normal O-arc
F with |F ∩V (G)| < θ, there is a closed disc in Σ with boundary F (unique, since Σ is not a sphere),
and we denote it by ins(F ).

It is proved in theorem (4.1) of [5], that in these circumstances, there is associated a “θ-respectful
tangle” iof order θ in G; and consequently, by the discussion in section 9 of that paper, there is a
distance function d defined on the set of “atoms” of G, where an atom is either a vertex, an edge
or a region. We call d the θ-restraint distance function of G. Roughly, the distance between two
atoms a, b is the minimum t < θ such that some (possibly self-intersecting) G-normal closed curve
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“surrounds” both a, b and passes through at most t vertices, if there is such a curve, and θ otherwise.
“Surrounds an atom a” means either the curve passes through a, or includes an O-arc F with a in
ins(F ). See [5] for the exact definition.

We need:

5.1 Let Σ be a connected surface, not a 2-sphere, and let k ≥ 1 be an integer. Then there exists
θ ≥ 1 with the following property. Let G be a φ-representative graph drawn in Σ, for some φ ≥ θ,
and let U ⊆ V (G) with |U | = k. Let d be the φ-restraint distance function of G, and suppose that
d(u, v) ≥ θ for all distinct u, v ∈ U . Then for each u ∈ U there is a path Pu of G with ends u and
pu say, pairwise vertex-disjoint, and there are two vertex-disjoint connected subgraphs A,B of G,
vertex-disjoint from each of the paths Pu, such that for each u ∈ U , pu has a neighbour in V (A) and
a neighbour in V (B).

Proof. Choose θ ≥ 7 some large number (we will say how large later). Let G be a φ-representative
graph drawn in Σ, for some φ ≥ θ. Let d be the φ-restraint distance function of G. Since φ ≥ 1, the
drawing is 2-cell (that is, each region is homeomorphic to an open disc), and G is connected.

(1) For each u ∈ U , there is a G-normal O-arc F with |F ∩ V (G)| ∈ {2, 3}, such that:

• u ∈ ins(F );

• if |F ∩ V (G)| = 2 then there is a connected subgraph A of G ∩ F with u ∈ V (A) such that
F ∩ V (A) = ∅, and both vertices in F have a neighbour in V (A);

• if |F∩V (G)| = 3, there is a connected subgraph A of G∩F with u ∈ V (A) such that |F∩V (A)| =
1, and both vertices in F \ V (A) have a neighbour in V (A);

• there is no G-normal O-arc F ′ with inf(F ) ⊆ ins(F ′) and |F ′ ∩ V (G)| < |F ∩ V (G)|.

There is an O-arc that passes through u and no other vertex; so we may choose a G-normal O-arc
F1 with x ∈ ins(F1) and |F1 ∩ V (G)| ≤ 1, with G ∩ ins(F1) maximal. It follows that G ∩ inf(F1) is
connected. From the maximality of G ∩ ins(F1), there is an edge of G with one end in ins(F1) and
the other not in ins(F1); and such edges come in a natural linear order, from the drawing. Let e = ab
be the first such edge, where a ∈ F1. There is a G-normal O-arc that passes through both a, b and
no other vertex, and bounds a disc that includes ins(F1)∪ e. (We recall that e is a subset of Σ.) Let
F2 be a G-normal O-arc with ins(F1) ∪ e ⊆ ins(F2) and |F1 ∩ V (G)| ≤ 2, with G ∩ ins(F2) maximal.
The maximality of G ∩ ins(F1) implies that |F1 ∩ V (G)| = 2. There are two vertex-disjoint paths
between {a, b} and F , from the maximality of G∩ ins(F1) and Menger’s theorem. If a /∈ F2 then (1)
is satisfied, so we assume that a ∈ F2.

From the maximality of G∩ ins(F2), there is an edge ac with c /∈ ins(F2); and by taking the first
such edge, we deduce that there is a G-normal O-arc F3 with u ∈ F3 and ins(F2) ⊆ ins(F3) and
|F1 ∩ V (G)| = 3, such that the third bullet of (1) is satisfied. From the maximality of G ∩ ins(F2),
the fourth bullet is also satisfied. This proves (1).

For each u ∈ U , let Fu be an O-arc as in (1). Since θ ≥ 7, and d(u, x) ≤ 3 for all x ∈ ins(Fu), it
follows that the closed discs ins(F (u)) (u ∈ U) are pairwise disjoint. For each u ∈ U , if |Fu∩V (G)| = 2
let Fu ∩ V (G) = {pu, qu}, and if |Fu ∩ V (G)| = 3, let A be as in the third bullet of (1) and let pu, qu
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be the two vertices in F \ V (A). By theorem (5.9) of [4], applied to the manifold (with boundary)
Σ′ obtained by deleting the interiors of the discs ins(F ′u) (u ∈ U), if θ is sufficiently large in terms
of Σ, k (independent of G), there are two vertex-disjoint trees A,B of G ∩Σ′, where for each u ∈ U ,
pu ∈ V (A) and qu ∈ V (B), and neither of A,B has any other vertex in F . This proves 5.1.

We deduce:

5.2 Let Σ be a connected surface, not a 2-sphere, and let k, ξ ≥ 1 be integers. Then there exist
n, φ ≥ 0 with the following property. Let G be a k-restricted graph, and let X ⊆ V (G) be stable, with
|X| ≤ ξ. Suppose that G \X is drawn in Σ and is φ-representative. Then, by at most n splits of the
vertices in X, we can convert G to a graph that can be drawn in Σ.

Proof. Let τ0 be as in 3.1. Let θ be as in 5.1 with k replaced by kξ. Define tkξ = θ, and inductively
ti = 2ti+1 + 10 for i = kξ − 1, kξ − 2, . . . , 0. Define φ = t0. Now let n = kξτ0. Now let G,X be as in
the theorem. Let W be the set of vertices in G \X with a neighbour in X. Let d be the φ-restraint
distance function defined by G \X. Suppose first that there exists U ⊆ W with |U | = kξ, pairwise
with distance at least θ. Then there is a subset U ′ ⊆ U with |U ′| = k, all with a common neighbour
in |X|; and by 5.1, G contains a Kk,3 minor, a contradiction. So there is no such U .

Let us say that U ⊆ W is pivotal if |U | ≤ kξ and the vertices in U are pairwise at distance at
least t|U |. Certainly ∅ is pivotal; choose a maximal pivotal set U . Thus |U | < kξ, as we saw above.
From the maximality of U , for every vertex w ∈W \U , there exists u ∈ U such that d(u,w) < t|U |+1.
For each u ∈ U , let Wu be the set of w ∈W such that d(u,w) < t|U |+1. From the maximality of U , it
follows that

⋃
u∈U Wu = W . Moreover, for all distinct u, u′ ∈ U , since d(u, u′) ≥ t|U | ≥ 2t|U |+1 + 10,

the sets Wu (u ∈ U) are pairwise disjoint, and if w ∈Wu and w′ ∈Wu′ then d(w,w′) ≥ 10.
Let u ∈ U . Since 2 ≤ κ ≤ φ− 3, by theorem (9.2) of [6], there is a cycle C of G \X that bounds

a closed disc ∆ in Σ, such that:

• d(a, u) ≤ κ+ 2 for every atom with a ⊆ ∆;

• d(a, u) ≥ κ+ 1 for every atom with a 6⊆ ∆.

Similarly, since 2 ≤ κ− 3 ≤ φ− 3, there is a cycle C ′ bounding a disc ∆′, such that d(a, u) ≤ κ− 1
for every atom with a ⊆ ∆′, and d(a, u) ≥ κ−2 for every atom with a 6⊆ ∆′. Consequently Wu ⊆ ∆′,
since t|U |+1−1 < κ−2. Moreover, every vertex w in ∆ with a neighbour in X satisfies d(u,w) ≤ κ+2,
and so d(u′, w) ≥ t|U |− (κ−2) ≥ t|U |+1 for each u′ ∈ U \{u}. Consequently every such vertex belong
to Wu.

If a is a vertex or edge of C, then d(a, a′) ≤ 2 for some region a′ not included in ∆; and since
d(u, a′) ≥ κ+ 1, it follows that d(u, a) ≥ κ− 1. Consequently C,C ′ are vertex-disjoint.

Let Z be the component of G∩∆1 that contains C and hence contains u, and let H = G[V (C∪Z)].
Thus H is planar, and C bounds a region in every planar drawing of H, since Z is connected. But
(H + X,X) has planarity at most τ0, by 3.1; and so by splitting the vertices in X into a set X ′

of at most τ0 vertices, we can convert H + X into a planar graph H ′. All vertices in V (H) that
are G-adjacent to a vertex in X belong to V (Z); and so there is a planar drawing of H ′ such that
C bounds a region of it. Consequently, by splitting X into at most τ0 vertices, we can convert
(G ∩∆) +X into a planar graph that can be drawn such that C bounds a region.

Let us write ∆u = ∆ and Cu = C. Let us split X into |U | sibling-free subsets Xu (u ∈ U), where
for each u ∈ U , vertices in Xu only have neighbours in ∆u. Then by splitting each Xu into at most
τ0 vertices, we can convert G to a graph that can be drawn in Σ. This proves 5.2.
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Finally, we can prove 2.2, which we restate:

5.3 For every surface Σ, and all integers k, ξ ≥ 1, there exists n(Σ, k, ξ) ≥ 0 such that, if G is
k-restricted and there is a stable subset X ⊆ V (G) with |X| ≤ ξ such that G \X can be drawn in Σ,
then by splitting the vertices in X into at most n(Σ, k, ξ) vertices total, the resultant graph can be
drawn in Σ.

Proof. We proceed by induction on the maximum genus of components of Σ, and with this maximum
genus fixed, by induction on the number of components of Σ. Thus, let Σ be a surface. Suppose first
that Σ is not connected, and let Σ1, . . . ,Σt be its components. From the second inductive hypothesis,
n(Σi, k, ξ) exists for 1 ≤ i ≤ t. Define n(Σ, k, ξ) =

∑
1≤i≤t n(Σi, k, ξ). Let G,X be as in the theorem.

Let us split the vertices of X X into t sibling-free sets X1, . . . , Xt, where for 1 ≤ i ≤ t, all neighbours
of each vertex in Xi belong to Σi. By splitting each set Xi into n(Σi, k, ξ) vertices, we deduce that
the result holds for Σ, k, ξ.

Thus we may assume that Σ is connected. By 3.1 we may assume that Σ is not a 2-sphere. Let
n, φ be as in 5.2. Now let G,X be as in the theorem. Let n′ be the maximum of n(Σ′, k, ξ + φ)
over all surfaces Σ′ with at most two components, both of genus strictly less than that of Σ. Define
n(Σ, k, ξ) = max(n, n′). If G \X is φ-representative, the result holds by 5.2. Thus we assume there
is a non-null-homotopic (G \x)-normal O-arc F in Σ with |F ∩V (G)| < φ. By cutting the surface Σ
along F , we obtain a manifold with boundary, iwith one or two components, and its boundary also
has one or two components. Let us paste a disc onto each component of the boudary: we obtain a
surface Σ′ with at most two components, and each of its components has genus strictly less than the
genus of Σ. Let X ′ = F ∩ V (G). Then G \ (X ∪X ′) is drawn in Σ′; and so by splitting X ∪X ′ into
at most n′ vertices, the graph we obtain can be drawn in Σ′ and hence in Σ. This proves 5.3.

It is annoying that we were not able to extend 3.1 to the nonspherical case. Let us sketch two
approaches to this:

• The proof of 5.3 is neat, via 5.2, but the approach only works when the drawing has large
representativity. If it has small representativity, one naturally cuts along the corresponding
curve and tries to use induction on genus somehow. In the proof above, we removed the vertices
in F from the drawing, and this is how vertices in the surface end up being split. We could
instead cut Σ along F , splitting each vertex in F into two vertices in the natural way, so that
they stay in the manifold; apply induction to the simpler surface(s) we obtain, and then sew
the original surface back together again. This works well if cutting along F disconnects the
surface, but it might not; and in that case the new graph might not be k-restricted, and not
even k′-restricted for any bounded value of k′. We don’t see how to get past that.

• Here is a second approach, which might well work but which will need a lot more writing. One
could abandon hope of using 5.3, and try a method like that of 3.1. That all seems to work,
and one can reduce the problem to the case when G \ X is 3-connected, and the drawing of
G \X is 1-representative. (Not 3-representative, unfortunately.) To finish it off, we need the
analogue of 3.2 for such drawings, but this has not been proved.

6 Kuratowski subdivisions

In this section we prove a result promised earlier:
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6.1 For all k ≥ 1 there exists an integer k′ ≥ 1 such that if G is k-subgraph-restricted, then G
contains no (k′, j)-Kuratowski graph as a minor for j ∈ {0, . . . , 3}.

We need the following lemma (logarithms are to base two):

6.2 Let T1, . . . , Tt be trees, each with maximum degree less than d, where d ≥ 2 is an integer, and
for 1 ≤ i ≤ n and 1 ≤ s ≤ t let vsi ∈ V (Ts), all different. Suppose that n ≥ 3dt log(2k). Then for
1 ≤ s ≤ t there are k pairwise vertex-disjoint subtrees Ssi (1 ≤ i ≤ k) of Ts, and pairwise disjoint
subsets X1, . . . , Xk of {1, . . . , n}, each of cardinality three, such that vsi ∈ V (Ssi ) for 1 ≤ i ≤ k and
1 ≤ s ≤ t.

Proof. We begin with:

(1) If T is a tree with |T | ≥ 2 and with maximum degree less than d, and P ⊆ V (T ), then there is
an edge e such that both components T ′ of T \ e satisfy |P ∩ V (T ′)| ≥ (|P | − 1)/(d− 1).

For each vertex v of G, there is a component C of T \ v that contains at least (|P | − 1)/(d − 1)
vertices of P ; let e be the edge between v and this component, and call (v, e) a good pair. Thus there
are |T | good pairs, and so some edge belongs to two of them, and hence satisfies the claim. This
proves (1).

If A,B are subtrees of a tree T , vertex-disjoint and with V (T ) = V (A) ∪ V (B), we call them
complementary subtrees.

(2) Suppose that n ≥ dt. Then for 1 ≤ s ≤ t, there are complementary subtrees As, Bs of Ts
and two disjoint subsets X,Y of {1, . . . , n}, such that |X|, |Y | ≥ n/dt, and for 1 ≤ s ≤ t, ti ∈ V (As)
for each i ∈ X, and ti ∈ V (Bs) for each i ∈ Y .

For 1 ≤ s ≤ t, we construct a complementary pair As, Bs of subtrees of Ts, such that there are
disjoint subsets Xs, Ys of {1, . . . , n}, such that |Xs|, |Ys| ≥ n/ds, and for 1 ≤ r ≤ s, ti ∈ V (Ar)
for each i ∈ Xs, and ti ∈ V (Br) for each i ∈ Ys. By (1), the statement is true for s = 1, since
(n − 1)/(d − 1) ≥ n/d. We proceed by induction on s. Thus we assume that s ≥ 2 and the re-
sult holds for s − 1. By (1) applied to Ts, there are complementary subtrees As, Bs of Ts and a
partition (C,D) of Xs−1 such that |C|, |D| ≥ (|Xs−1| − 1)/(d − 1) ≥ |Xs−1|/d, and ti ∈ V (As) for
each i ∈ C, and ti ∈ V (Bs) for each i ∈ D. One of V (As), V (Bs) contains at least half the vertices
{vsi : i ∈ Ys−1}, and so by exchanging As, Bs if necessary we may assume that there exists Ys ⊆ Ys−1
with |Ys| ≥ |Ys−1|/2 such that vsi ∈ Bs for each i ∈ Ys. Thus for 1 ≤ r ≤ s, ti ∈ V (Br) for each
i ∈ Ys. Moreover, let Xs = C; then for 1 ≤ r ≤ s, ti ∈ V (Ar) for each i ∈ Xs. Finally, we observe
that |Xs| = |C| ≥ |Xs−1|/d ≥ n/ds, and |Ys| ≥ |Ys−1|/2 ≥ n/(2ds−1) ≥ n/ds, and so the inductive
definition is complete. This proves (2).

(3) Suppose that c ≥ 1 is an integer and n ≥ dct. Then for 1 ≤ s ≤ t, there are 2c pairwise
vertex-disjoint subtrees Ss(1), . . . , Ss(2

c)i of Ts, and 2c pairwise disjoint subsets X(1), . . . , X(2c) of
{1, . . . , n}, all of size at least n/dct, such that vsi ∈ Ss(i) for 1 ≤ s ≤ t and 1 ≤ j ≤ 2c.

The proof is by induction on c, and it is true by (2) when c = 1. Suppose that c > 1 and the
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result holds for c − 1. Let X,Y and As, Bs for 1 ≤ i ≤ t be as in (2). The result follows from the
inductive hypothesis, applied to the trees A1, . . . , At and the set X, and applied to B1, . . . , Bt and
the set Y . This proves (3).

Let c be the smallest integer with 2c ≥ k; so 2c < 2k and therefore dc < dlog(2k). By (3), if
n ≥ 3(2k)t log d, the theorem holds. This proves 6.2.

6.3 For all integers k ≥ 1 there exists an integer k′ ≥ 1, such that if G is k-retricted then G does
not contain Kk′,3 as a minor.

Proof. Define f(k, 0) = k, and for t = 1, 2, 3 inductively define f(k, t) = d3f(k, t − 1)1+t log(2k)e.
We will show that taking k′ = f(k, 3) satisfies the theorem. Since G contains Kk′,3 as a minor,
there are three subtrees T1, T2, T3 of G, and k′ connected subgraphs C1, . . . , Ck′ of G, such that
T1, T2, T3, C1, . . . , Ck′ are pairwise vertex-disjoint, and for 1 ≤ i ≤ k′ the result holds. Let t be
the number of T1, . . . , T3 that have more than one vertex; we will prove, by induction on t, that if
k′ ≥ f(k, t), then for some j ∈ {3− t, . . . , 3}, G contains a (k, j)-junction as a subgraph.

If t = 0 the result is true, since f(k, 0) = k. Thus we may assume that 1 ≤ t ≤ 3, and T1, . . . , Tt
have more than one vertex, and Tt+1, . . . , T3 have only one.

For 1 ≤ i ≤ k′ and 1 ≤ s ≤ t let vsi ∈ V (Ts) have a neighbour in V (Ci). If some f(k, t − 1)
of the vertices tsi are equal (where 1 ≤ i ≤ k′ and 1 ≤ s ≤ t), then the result follows from the
inductive hypothesis; so we may assume that there exists |I| ⊆ {1, . . . , k′} with |I| ≥ k′/f(k, t − 1)
such that the vertices tsi are all distinct, for i ∈ I and 1 ≤ s ≤ t. We may assume that for 1 ≤ s ≤ 3,
every leaf of Ts equals vsi for some i ∈ {1, . . . , k′}, because otherwise this leaf can be deleted. If
some vertex v of T1 has degree at least f(k, t − 1), then the result follows from the induction on t,
replacing T1 by the one-vertex tree with vertex v, and choosing a subset I ′ ⊆ I with cardinality at
least f(k, t− 1), such that the vertices t1i (i ∈ I ′) all belong to different components of T1 \ v. Thus
we may assume that T1, and similarly T1, . . . , Tt all have maximum degree at most f(k, t − 1) − 1.
But |I| ≥ f(k, t)/f(k, t − 1) ≥ 3(2k)t log f(k,t−1), and so by 6.2, for 1 ≤ s ≤ t there are k pairwise
vertex-disjoint subtrees Ssi (1 ≤ i ≤ k) of Ts, and pairwise disjoint subsets X1, . . . , Xk of {1, . . . , n},
each of cardinality three, such that vsi ∈ V (Ssi ) for 1 ≤ i ≤ k and 1 ≤ s ≤ t. Consequently G contains
a (k, 3− t)-junction as a subgraph. This proves 6.3.

For the next case we need the following lemma:

6.4 For all integers a, b, c, d ≥ 1, let n ≥ abcd. If T1, . . . , Tn are subtrees of a tree T , each with
maximum degree at most d, then either there are a of T1, . . . , Tn that are pairwise vertex-disjoint, or
there is an edge of T that belongs to b of T1, . . . , Tn, or there is a vertex v ∈ V (T ) and c of T1, . . . , Tn
that pairwise intersect exactly in {v}.

Proof. We may assume that there do not exist a of T1, . . . , Tn that are pairwise vertex-disjoint,
and so there is a subset X ⊆ V (T ) with |X| < a such that each Ti contains a vertex in X. Hence
there exist v ∈ X and I ⊆ {1, . . . , n} with |I| ≥ n/(a− 1) ≥ bcd such that v ∈ V (Ti) for each i ∈ I.
We may assume that no edge of T belongs to b of T1, . . . , Tn. Since each Ti has maximum degree at
most d, it contains at most d edges of T incident with v, and so shares more than one vertex with
at most (b − 1)d other trees Tj(j ∈ I). Hence there exists J ⊆ I with |J | ≥ |I|/((b − 1)d + 1) such
that the trees in J pairwise intersect in exactly v. Since |I|/((b− 1)d+ 1) ≥ c, this proves 6.4.
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A near-K graph rooted at {u, v} is a graph H with u, v ∈ V (H), distinct and nonadjacent, such
that either H is a subdivision of K5 or K3,3, or adding the edge uv to H makes a subdivision of K5

or K3,3.

6.5 For all integers k ≥ 1 there exists an integer k′ ≥ 1, such that if G is k-subgraph-restricted,
then G contains no (k′,m)-Kuratowski graph for m = 0, 1, 2, 3 as a minor.

Proof. Let G be k-subgraph-restricted, and suppose that G contains a (k′,m)-Kuratowski graph as
a minor, where km is some large function of m, k to be decided later. If m = 0 then taking km = k
works, and if m = 3 then the result is true by 6.3, so we may assume that m ∈ {1, 2}. Hence,
there are vertex-disjoint trees Tj(1 ≤ j ≤ m) in G, with union T0 say, and for 1 ≤ i ≤ k′ there is a
connected subgraph Di including T0, such that Di ∩Di′ = T0 for 1 ≤ i < i′ ≤ k′; and for 1 ≤ i ≤ k′,
if we start with Di and contract each tree Tj to a single vertex tj , we obtain a near-K graph rooted
at {t1, t2} if m = 2, or a subdivision of K5 or K3,3 if m = 1. We need to show that if km is a large
enough function of m, k then this is impossible.

For 1 ≤ i ≤ km and 1 ≤ j ≤ m, if m = 1 there are two, three or four edges of Di between V (Ci)
and V (Tj), and if m = 2 there are one, two or three such edges. We call these edges (i, j)-connectors.
There is a subset I ⊆ {1, . . . , km} with |I| ≥ km/9 such that for all j ∈ {1, . . . ,m}, there exists di
such that there are exactly di (i, j)-connector for all i ∈ I. We need to replace the trees Tj that have
more than one vertex with something else, but Tj ’s with only one vertex are good for us. We may
assume that T1 has more than one vertex; so let m′ = 1 if m = 1, or if |T2| = 1, and otherwise let
m′ = 2. If m′ = 2 let us number such that d1 ≤ d2.

Thus the possibilities for the sequence d1, . . . , dm′ are

(1), (1, 1), (2), (1, 2), (3), (1, 3), (2, 2), (4), (2, 3), (3, 3)

and we will prove the result for each such sequence, in order from left to right. For 1 ≤ j ≤ m′ and
each i ∈ I let Ti,j be the minimal subtree of Tj containing an end of each (i, j)-connector. There are
too many cases, all very similar, to write them all out carefully, so we will just sketch the arguments.

For (1), each Ti,1 has only one vertex ti say, and if many of them are equal, we can replace T1 by
a one-vertex tree and win. So we may choose a large I ′ ⊆ I such that the vertices ti(i ∈ I ′) are all
different, and then we win by applying 6.2.

For (1, 1) the same approach either replaces Ti by a one-vertex tree, or reduces it to the (1) case
with an application of 6.2.

For (2), we apply 6.4 to T1 and the paths Ti,1. If many of them share the same edge, then we
reduce the problem to the (1, 1) case by deleting the edge. If many pairwise intersect in the same
vertex, we reduce T1 to a one-vertex tree.

So we may assume that many of them (say Ti,1 for i ∈ I ′) are pairwise vertex-disjoint. If m = 1,
we win, so we assume m = 2 and |T2| = 1. Let A be the set of all subtrees of T1 that include two of
the trees Ti,1(i ∈ I ′). If many members of A are pairwise disjoint, we win, and otherwise, there is a
vertex v of T1 such that many components of T1 \ v contain some Ti,1 with i ∈ I ′. In that case we
can replace T1 by a one-vertex tree with vertex v, and add to Ci a minimal subtree of T1 including
Ti,1 and v.

For (1, 2), let Ti,1 have one vertex ti,1. If many of the Ti,1’s are equal we win, so we may assume
they are all different; but then applying 6.2 to T1 works as before.
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For (3), we apply 6.4 and win in each case immediately.
For (1, 3) we apply 6.2 to T1 as before. (In this case we don’t need to partition into triples; a

partition into pairs would be good enough, but triples also works.)
For (2, 2) and (2, 3), we follow the same procedure as in the (2) case.
For (4), it follows that m = 1. We apply 6.4. If many of the trees share an edge we reduce to the

(2, 2) or (1, 3) case, and in the other two outcomes of 6.4 we win immediately.
For (3, 3), we use the same method as for (2). We may assume that the trees Ti,1(i ∈ I ′) are

pairwise vertex-disjoint, by 6.2, where I ′ ⊆ I is as large as we want. Let A be the set of all subtrees
of T1 that include two of the trees Ti,1(i ∈ I ′). If many members of A are pairwise disjoint, we win
by reducing to the (3) case, and otherwise, there is a vertex v of T1 such that many components of
T \ v contain some Ti,1 with i ∈ I ′. In that case, as before, we can replace T1 by a one-vertex tree
with vertex v, and add to Ci a minimal subtree of T1 including Ti,1 and v. This proves 6.5.
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