
SIAM J. DISCRETE MATH. c© 2012 Society for Industrial and Applied Mathematics
Vol. 26, No. 2, pp. 860–880

GROWING WITHOUT CLONING∗

MARIA CHUDNOVSKY† AND PAUL SEYMOUR‡

Abstract. A graph G is claw-free if no induced subgraph of it is isomorphic to the complete
bipartite graph K1,3, and it is prime if |V (G)| ≥ 4 and there is no X ⊆ V (G) with 1 < |X| < |V (G)|
such that every vertex of V (G) \ X with a neighbor in X is adjacent to every vertex of X. In
particular, if G is prime, then both G and Gc are connected. This paper has two main results. The
first one is that if G is a prime graph that is not a member of a particular family of exceptions, and
H is a prime induced subgraph of G, then (up to isomorphism) G can be grown from H, adding
one vertex at a time, in such a way that all the graphs constructed along the way are prime induced
subgraphs of G. A simplicial clique in G is a nonempty clique K such that for every k ∈ K the set
of neighbors of k in V (G) \ K is a clique. Our second result is that a prime claw-free graph G has
at most |V (G)| + 1 simplicial cliques, and we give an algorithm to find them all with running time
O(|V (G)|4). In particular, this answers a question of Prasad Tetali [private communication] who
asked if there is an efficient algorithm to test if a claw-free graph has a simplicial clique. Finally, we
apply our results to claw-free graphs that are not prime. Such a graph may have exponentially many
simplicial cliques, so we cannot list them all in polynomial time, but we can in a sense describe them.
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1. Introduction. All graphs in this paper are finite and simple. Let G be a
graph. For X ⊆ V (G), we denote by G|X the subgraph of G induced on X and by
G \ X the subgraph G|(V (G) \ X). We say that G|X is proper if X �= V (G). If
X = {x}, we write G \ x for G \ X . A clique in G is a set of vertices all pairwise
adjacent. Let A and B be two disjoint subsets of V (G). We say that A is complete to
B if every vertex in A is adjacent to every vertex in B and that A is anticomplete to B
if every vertex in A is nonadjacent to every vertex in B. We say that a ∈ V (G) \B is
complete (anticomplete) to B if {a} is complete (anticomplete) to B. For v ∈ V (G),
we denote by NG(v) (or N(v) when there is no danger of confusion) the set of all
neighbors of v in G. Two vertices u and v in G are twins if N(u)∪ {u} = N(v)∪ {v}
(in particular, u and v are adjacent). A homogeneous set in G is a subset X of
V (G) such that every vertex of V (G) \X with a neighbor in X is complete to X . A
homogeneous set X is nontrivial if 1 < |X | < |V (G)|. Thus if u, v ∈ V (G) are twins
and |V (G)| > 2, then {u, v} is a nontrivial homogeneous set in G. We say that G is
prime if |V (G)| ≥ 4 and G has no nontrivial homogeneous set.

For a graph G, X ⊆ V (G) is a claw (in G) if G|X is the complete bipartite
graph K1,3. A graph is said to be claw-free if no subset of its vertex set is a claw.
A simplicial clique in G is a nonempty clique K, such that for every k ∈ K, the set
N(k) \K is a clique.
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There are two main results in this paper. Our first goal is to answer a question of
Prasad Tetali [6], who asked if there is an efficient algorithm to test if a claw-free graph
has a simplicial clique. The idea is to enumerate them all. However, this is impossible
in polynomial time since the complete graph on n vertices is a claw-free graph with
2n − 1 simplicial cliques. More generally, starting with a claw-free graph, one can
replace a vertex by many copies of itself, all pairwise adjacent (thus introducing a
large set of twins), and drive the number of simplicial cliques to be exponential in
the size of the graph. But what about prime claw-free? Our first main result is the
following theorem.

1.1. A prime claw-free graph G has at most |V (G)|+1 distinct simplicial cliques.
This result is tight, since a k-edge path has k+1 vertices and k+2 simplicial cliques

(namely, all the edges and the two end vertices). We later use Theorem 1.1 to design
a polynomial time algorithm that finds a simplicial clique in a prime claw-free graph
if one exists (in fact, the algorithm finds all such cliques), answering Tetali’s question.

In order to prove Theorem 1.1, we prove a lemma about general graphs (not just
claw-free), which we consider to be the second main result of the paper and which
gives the paper its title. The lemma is about “growing” prime graphs, starting from
a prime induced subgraph and adding vertices one at a time in such a way that all
the intermediate subgraphs are prime. Before we can state the lemma precisely, we
need to define the class of obstinate graphs. Let Ok be the bipartite graph on 2k
vertices with bipartition ({a1, . . . , ak}, {b1, . . . , bk}) in which for i, j ∈ {1, . . . , k}, ai
is adjacent to bj if and only if j ≤ i. A graph G is said to be obstinate if there exists
a natural number k > 1 such that one of G,Gc is isomorphic to Ok. We observe that
all obstinate graphs are prime. We can now state the lemma.

1.2. Let G be a graph, and let H be a proper induced subgraph of G. Assume
that both G and H are prime and that G is not obstinate. Then there exists an
induced subgraph H ′ of G, isomorphic to H, and a vertex v ∈ V (G)\V (H ′) such that
G|(V (H ′) ∪ {v}) is prime.

This is closely related to a result of Boudabbous and Ille [1], but the proof we
include here is independent of [1]. We remark that the theorem would not be true if
we did not allow moving to an isomorphic copy H ′ for H . To see this, take H to be a
three-edge path with vertices a, b, c, d in order, and let V (G) \ V (H) = {e, f}, where
e is adjacent to a and c and f is adjacent to b and d.

Repeatedly applying Theorem 1.2, we obtain the following corollary.
1.3. Let G be a graph, and let H be a proper induced subgraph of G. Assume that

both G and H are prime and that G is not obstinate. Then there exists a sequence of
prime induced subgraphs G0, . . . , G|V (G)|−|V (H)| of G such that

• G0 is isomorphic to H,
• G|V (G)|−|V (H)| = G, and
• for every i ∈ {1, . . . , |V (G)| − |V (H)|}, there exists vi ∈ V (Gi) such that
Gi−1 = Gi \ vi.

This paper is organized as follows. In section 2 we strengthen a theorem from [2]
to obtain a structural result, Thereom 2.3, that we need for the proof of Theorem 1.1.
In section 3 we apply Theorem 2.3 to prove Theorem 1.1 assuming Theorem 1.2. The
proof of Theorem 1.2 occupies section 4. In section 5, we use Theorem 1.1 to give a
polynomial time algorithm that finds all simplicial cliques of a prime claw-free graph.
In the final section we apply our results to nonprime claw-free graphs; we find that it
is possible to “describe” all their simplicial cliques in polynomial time, although there
may be too many to list separately.
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2. Linear interval graphs revisited. Theorem 5.2 of [2] deals with the struc-
ture of claw-free graphs that admit certain types of clique cutsets. (We will define
them precisely later.) However, it turns out that that theorem can be easily strength-
ened with almost no changes to the proof. This strengthening is likely to be useful
in future applications, and we also need it in the rest of this paper. Thus modifying
Theorem 5.2 of [2] is our first goal here.

To study the structure of graphs with certain forbidden induced subgraphs, it is
often helpful to deal with objects slightly more general than graphs, which we call
“trigraphs.” This concept is also used in [2], and so we start by explaining it. In
a graph, every pair of vertices is either adjacent or nonadjacent, but in a trigraph,
some pairs may be “undecided.” For our purposes, we may assume that this set of
undecided pairs is a matching. Thus, let us say a trigraph G consists of a finite set
V (G) of vertices and a map θG : V (G)2 → {1, 0,−1}, satisfying

• for all v ∈ V (G), θG(v, v) = 0,
• for all distinct u, v ∈ V (G), θG(u, v) = θG(v, u),
• for all distinct u, v, w ∈ V (G), at most one of θG(u, v), θG(u,w) is 0.

We call θG the adjacency function of G. For distinct u, v in V (G), we say that u, v are
strongly adjacent if θG(u, v) = 1, strongly antiadjacent if θG(u, v) = −1, and semiadja-
cent if θG(u, v) = 0. We say that u, v are adjacent if they are either strongly adjacent or
semiadjacent and antiadjacent if they are either strongly antiadjacent or semiadjacent.
Also, we say that u is a (strong) neighbor of v if u, v are (strongly) adjacent and u is
an (strong) antineighbor of v if u, v are (strongly) antiadjacent. For a vertex v ∈ V (G)
we denote by N(x) the set of neighbors of x in G, and N∗(v) denotes the set of strong
neighbors of v. We denote by F (G) the set of all pairs {u, v} such that u, v ∈ V (G)
are distinct and semiadjacent. Note that a trigraph G is a graph if F (G) = ∅. We
remark that the last condition of the definition of θG means that F (G) is a matching.

Let G be a trigraph, and let A and B be two disjoint subsets of V (G). We
say that A is (strongly) complete to B if every vertex in A is (strongly) adjacent to
every vertex in B and that A is (strongly) anticomplete to B if every vertex in A
is (strongly) antiadjacent to every vertex in B. As in the graph case, if A = {a},
we will say that a is (strongly) complete or (strongly) anticomplete to B if {a} is
(strongly) complete or (strongly) anticomplete to B, respectively. If a is neither
strongly complete nor strongly anticomplete to B, then a is mixed on B. Since every
graph is a trigraph with no semiadjacent vertex pairs, the notion of being mixed makes
sense for graphs as well as trigraphs. A (strong) clique in G is a set of vertices all
pairwise (strongly) adjacent, and a (strongly) stable set is a set of vertices all pairwise
(strongly) antiadjacent. If X ⊆ V (G), we define the trigraph G|X induced on X as
follows. Its vertex set is X , and its adjacency function is the restriction of θG to X2.
We define G \X = G|(V (G) \X). A homogeneous set in G is a set of vertices X such
that every vertex of V (G) \X is either strongly complete or strongly anticomplete to
X . A trigraph G is claw-free if there do not exist four vertices a, b, c, d ∈ V (G), such
that a is complete to {b, c, d} and {b, c, d} is a stable set.

Next we repeat a few definitions from [2]. We say that G admits a 0-join (X,Y )
if X and Y are two disjoint nonempty sets with union V (G) such that X is strongly
anticomplete to Y and that G admits a 1-join (A,B,C,D) if A,B,C,D are four non-
empty pairwise disjoint subsets of V (G) such that A∪B ∪C ∪D = V (G), B ∪C is a
strong clique, A is strongly anticomplete to C∪D, andD is strongly anticomplete to B.

Let A,B ⊆ V (G). We call (A,B) a proper W-join if
• A,B are disjoint nonempty strong cliques of G and at least one of A,B has
at least two members,
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• A is a homogeneous set in G \B and B is a homogeneous set in G \A,
• no member of A is strongly complete or strongly anticomplete to B and no
member of B is strongly complete or strongly anticomplete to A.

A proper W-join (A,B) is coherent if the set of the vertices in V (G) \ (A ∪ B) that
are complete to A ∪B is a clique.

We say that G is a linear interval trigraph if the vertices of G can be numbered
v1, . . . , vn such that for all i, j with 1 ≤ i < j ≤ n, if vi is adjacent to vj , then
{vi, vi+1, . . . , vj−1} and {vi+1, vi+2, . . . , vj} are strong cliques.

A clique cutset in G is a strong clique C such that G \ C is not connected, that
is, V (G)\C can be partitioned into two nonempty sets V1, V2 such that V1 is strongly
anticomplete to V2. Let us say the clique cutset C is internal if the sets V1, V2 can be
chosen so that for i = 1, 2 either |Vi| > 1, or the unique vertex of Vi is semiadjacent
to some vertex of C. Note that this definition is different from the one in [2], for here
we allow the sets Vi to have size one.

An antinet is a trigraph with six vertices a1, a2, a3, b1, b2, b3 such that {a1, a2, a3}
is a stable set, ai, bi are antiadjacent for i = 1, 2, 3, and all other pairs are adjacent. A
strong antinet is a trigraph with six vertices a1, a2, a3, b1, b2, b3 such that {a1, a2, a3}
is a strongly stable set, ai, bi are strongly antiadjacent for i = 1, 2, 3, and all other
pairs are strongly adjacent.

The following is a definition from [3] that plays an important role in the structure
theory of claw-free graphs. We say that a trigraph H is a thickening of a trigraph G
if for every v ∈ V (G) there is a nonempty subset Xv ⊆ V (H), all pairwise disjoint
and with union V (H), satisfying the following:

• for each v ∈ V (G), Xv is a strong clique of H ;
• if u, v ∈ V (G) are strongly adjacent in G, then Xu is strongly complete to
Xv in H ;

• if u, v ∈ V (G) are strongly antiadjacent inG, thenXu is strongly anticomplete
to Xv in H ;

• if u, v ∈ V (G) are semiadjacent in G, then Xu is neither strongly complete
nor strongly anticomplete to Xv in H .

Let us say that H is a proper thickening of G if in addition
• if u, v ∈ V (G) are semiadjacent in G, then every vertex in Xu has both a
neighbor and an antineighbor in Xv in H .

This is a slight variant of a useful lemma from [2].
2.1. Let G be a claw-free trigraph and let C be a clique cutset in G. Let V1, V2

be a partition of V (G) \ C such that V1, V2 �= ∅ and V1 is anticomplete to V2. Then
• if a vertex u ∈ C has both a neighbor in V1 and a neighbor in V2, then
N(u) ∩ V1 and N(u) ∩ V2 are strong cliques, and

• for all u, v ∈ C, either N(u) ∩ V1 ⊆ N∗(v) ∩ V1 or N(u) ∩ V2 ⊆ N∗(v) ∩ V2.
Proof. Suppose that for some vertex u ∈ C with both a neighbor in V1 and

a neighbor in V2, there exist two antiadjacent vertices x, y in N(u) ∩ V1. Let z ∈
N(u) ∩ V2. But now {u, x, y, z} is a claw in G, a contradiction. This proves the first
assertion of the theorem.

For the second, assume that there exist v1 ∈ (N(u) \ N∗(v)) ∩ V1 and v2 ∈
(N(u)\N∗(v))∩V2. Since C is a clique, u is adjacent to v. But then {u, v, v1, v2} is a
claw, a contradiction. This proves the second assertion of the theorem and completes
the proof of Theorem 2.1.

Next we prove the main result of this section, which is a strengthening of The-
orem 5.2 of [2]. The proof is very similar to that in [2], and we apologize to the
reader for repeating it. For an integer k ≥ 4, a hole of length k in a trigraph T is a
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subtrigraph of T with vertices v1, . . . , vk, such that for 1 ≤ i < j ≤ k the pair vivj is
adjacent if j − i = 1, the pair v1vk is adjacent, and all other pairs are antiadjacent.

2.2. Let G be a claw-free trigraph with an internal clique cutset such that G
does not admit twins, a 0-join, or a 1-join. Then every hole in G has length four;
if there is a 4-hole, then G admits a coherent proper W-join, and otherwise G is a
linear interval trigraph or a strong antinet.

Proof. Let G be a claw-free trigraph admitting an internal clique cutset, such that
G does not admit twins, a 0-join, or a 1-join. Suppose first that G has no hole. We
may assume that G is not a linear interval trigraph. It follows from Theorem 4.1 in
[2] that G is an antinet. We claim that G is a strong antinet. Let a1, a2, a3, b1, b2, b3
be as in the definition of an antinet. Since {b3, a1, a2, b2} is not a claw in G, it
follows that a1 is strongly adjacent to b2, and similarly ai is strongly adjacent to bj
for all i �= j ∈ {1, 2, 3}. Since a1-b2-b1-b3-a1 is not a hole in G, it follows that b2 is
strongly adjacent to b3, and from the symmetry {b1, b2, b3} is a strong clique. Since
{b1, a1, a2, a3} is not a claw in G, we deduce that a1 is strongly antiadjacent to b1,
and similarly ai is strongly antiadjacent to bi for i = 2, 3. Finally, since a1-a2-b1-b2-a1
is not a hole, it follows that a1 is strongly antiadjacent to a2, and, from the symmetry,
{a1, a2, a3} is a strongly stable set. This proves that G is a strong antinet. Hence
we may assume that there is a hole H in G. Choose H with length at least five if
possible.

Let us say a clique-separation in G is a triple (C, V1, V2) such that
• C is a strong clique of G, and (V1, V2) is a partition of V (G) \ C,
• V1 is strongly anticomplete to V2, and
• V (H) ∩ V2 = ∅.

(1) There is a clique-separation (C, V1, V2) in G with the following properties:
• either |V2| > 1, or |V2| = 1 and the unique vertex of V2 is semiadjacent to
some vertex of C, and

• subject to that |V2| is maximum, and
• C �= ∅, and every vertex in C has a neighbor in V1 and a neighbor in V2.

For since G admits an internal clique cutset, there is a triple (C, V1, V2) satisfying
the first and second conditions in the definition of a clique-separation and such that
for i = 1, 2 either |Vi| > 1 or the unique vertex of Vi is semiadjacent to some vertex of
C. Since C is a strong clique, it follows that V (H) has an empty intersection with one
of V1, V2. Hence (possibly after exchanging V1, V2), it follows that G contains a clique-
separation (C, V1, V2), where either |V2| > 1 or the unique vertex of V2 is semiadjacent
to some vertex of C. Choose such a clique-separation (C, V1, V2) with |V2| maximum,
and subject to that, with C minimal. Since G does not admit a 0-join, it follows that
C �= ∅. Let c ∈ C. If c has no neighbor in V2, then (C \ {c}, V1 ∪ {c}, V2) is also a
clique-separation with |V2| maximum, contradicting the minimality of C; and if c has
no neighbor in V1, then c /∈ V (H) (since every vertex in V (H) ∩ C has a neighbor in
V (H) \ C ⊆ V1, because C is a strong clique), and therefore (C \ {c}, V1, V2 ∪ {c}) is
a clique-separation contradicting the maximality of |V2|. This proves (1).

For a vertex c ∈ C and for i = 1, 2, let Ni(c) be the set of neighbors of c in
Vi, and let N∗

i (c) be the set of strong neighbors of c in Vi. Let J be the digraph
with V (J) = C and edge set all pairs (u, v) with u, v ∈ C (possibly equal) such that
N1(v) �⊆ N∗

1 (u). Since C is nonempty, there is a strong component of J that is a “sink
component”; that is, there exists X ⊆ C such that

• X is nonempty and J |X is strongly connected,
• there is no edge (u, v) ∈ E(J) with u ∈ X and v /∈ X .
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(2) For all distinct u, v ∈ X, N2(u) = N∗
2 (u) = N2(v) = N∗

2 (v).
Since X is strongly connected, there is a directed path of J from u to v, say,

u = v1- . . . -vk = v. For 1 ≤ i < k, since (vi, vi+1) ∈ E(J), it follows that N1(vi+1) �⊆
N∗

1 (vi), and therefore N2(vi+1) ⊆ N∗
2 (vi) by the second statement of Theorem 2.1.

Consequently N2(v) ⊆ N∗
2 (u). Similarly N2(u) ⊆ N∗

2 (v). This proves (2).
Let Z =

⋂
x∈X N∗

1 (x).
(3) X �= C.
For suppose that X = C. Choose c ∈ C, and let Y = N2(c). By (1) and Theorem

2.1, Y is a strong clique. There are two cases, depending on whether N2(c
′) =

N∗
2 (c

′) = Y for all c′ ∈ C. Suppose first that N2(c
′) = N∗

2 (c
′) = Y for all c′ ∈ C.

Then C∪Y is a strong clique. If V2 = Y , then since G admits no twins, it follows that
|V2| = |Y | = 1, and yet the unique vertex of Y is not semiadjacent to any vertex of C,
a contradiction. Thus V2 �= Y . But now (V1, C, Y, V2 \ Y ) is a 1-join, a contradiction.
Thus we may assume that there exists c′ ∈ C with one of N2(c

′), N∗
2 (c

′) different from
Y . By (2), |C| = 1, and so c′ = c and N2(c) �= N∗

2 (c). Hence N1(c) = N∗
1 (c) = Z

(since c is semiadjacent to a member of V2 and F (G) is a matching), and by (1)
and Theorem 2.1, Z is a strong clique and therefore so is Z ∪ C. But Z �= V1,
because G|(V1 ∪ C) contains a hole and therefore V1 ∪ C is not a strong clique, and
so (V1 \ Z,Z,C, V2) is a 1-join, a contradiction. This proves (3).

(4) X ∪ Z is a strong clique, and N1(c) ⊆ Z for every vertex c ∈ C \X, and H
is a 4-hole, and V (H) consists of two vertices of C \X and two vertices of Z.

For (1) and the first statement of Theorem 2.1 imply that Z is a strong clique, and
therefore X ∪ Z is a strong clique. Let c ∈ C \X and x ∈ X . Since (x, c) /∈ E(J), it
follows that N1(c) ⊆ N∗

1 (x). Since this holds for all x ∈ X , we deduce that N1(c) ⊆ Z.
From (3) and the maximality of |V2|, (X ∪ Z, V1 \ Z, V2 ∪ (C \ X)) is not a clique-
separation of G, and so V (H) ∩ (C \ X) �= ∅. Let H have vertices h1- . . . -hn-h1 in
order, where h1 ∈ C \X . Then h2, hn ∈ C ∪N1(h1) ⊆ C ∪Z, and since C,Z are both
strong cliques and h2, hn are antiadjacent, we may assume that h2 ∈ C and hn ∈ Z.
Since h2, hn are antiadjacent, and X ∪ Z is a strong clique, it follows that h2 /∈ X ,
and so h2 ∈ C \X . Thus by the same argument h3 ∈ Z. Since h3, hn ∈ Z and Z is a
strong clique, it follows that n = 4, and so H is a 4-hole. This proves (4).

Let us say a step is a 4-hole consisting of two vertices of C \X and two vertices
of Z. We have seen that H is a step. We say a pair (A,B) is a step-connected strip if
A ⊆ Z and B ⊆ C\X , and for every partition (P,Q) of A or of B with P,Q nonempty,
there is a step S with V (S) ⊆ A ∪ B, and with P ∩ V (S) �= ∅ and Q ∩ V (S) �= ∅.
Certainly the pair (V (H) ∩ Z, V (H) ∩ (C \X)) is a step-connected strip, so we may
choose a step-connected strip (A,B) with V (H) ⊆ A ∪B and with A ∪B maximal.

(5) Every vertex in V (G) \ (A ∪ B) is either strongly complete or strongly anti-
complete to A and either strongly complete or strongly anticomplete to B. Moreover,
the set of vertices V (G) \ (A ∪B) that are complete to A ∪B is a strong clique.

The proof of (5) is identical to that in Theorem 5.2 of [2], and we omit it.
From (4), H has length four, and so no hole of G has length more than four; and

from (5), G admits a coherent proper W-join. This proves Theorem 2.2.
Now we strengthen Theorem 2.2 further.
2.3. Let G be a claw-free trigraph with an internal clique cutset such that G

does not admit twins, a 0-join, or a 1-join. Then either G is a thickening of a linear
interval trigraph or G is a strong antinet.

Proof. Suppose not, and let G be a counterexample to Theorem 2.3 with |V (G)|
minimal. By Theorem 2.2, G admits a coherent proper W-join (A,B). Let C be



866 MARIA CHUDNOVSKY AND PAUL SEYMOUR

the set of vertices of V (G) \ (A ∪ B) that are strongly complete to A and strongly
anticomplete to B, D the set of vertices of V (G) \ (A∪B) that are strongly complete
to B and strongly anticomplete to A, E the set of vertices of V (G) \ (A∪B) that are
strongly complete to A∪B, and F the set of vertices of V (G)\(A∪B) that are strongly
anticomplete to A ∪ B. Then V (G) = A ∪ B ∪ C ∪ D ∪ E ∪ F . Let G′ be obtained
from G \ (A∪B) by adding two new vertices a and b such that a is strongly complete
to C ∪ E and strongly anticomplete to D ∪ F , b is strongly complete to D ∪ E and
strongly anticomplete to C ∪ F , and a is semiadjacent to b. Then |V (G′)| < |V (G)|.

(1) G′ admits an internal clique cutset.
Let P be an internal clique cutset in G, and let V1, V2 be a partition of V (G) \P

such that for i = 1, 2 either |Vi| > 1 or the unique vertex of Vi is semiadjacent to some
vertex of P . If possible, choose P disjoint from one of A,B. We may assume that
every vertex of P has both a neighbor in V1 and a neighbor in V2. Suppose first that
A ⊆ P . Since no vertex of B is strongly complete to A, it follows that P ∩ B = ∅,
and since B is a clique, we may assume from the symmetry that B ⊆ V1. But then
P ′ = (P \ A) ∪ {a} is a clique cutset in G′, (V ′

1 , V2) (where V ′
1 = (V1 \ B) ∪ {b}) is

a partition of V (G′) \ P ′, b ∈ V ′
1 is semiadjacent to a ∈ P and either |V2| > 1 or the

unique vertex of V2 is semiadjacent to some vertex of P \{a}, and therefore G′ admits
an internal clique cutset. Thus we may assume that A \ P �= ∅ and B \ P �= ∅.

Next suppose that (A ∪ B) ∩ P = ∅. Since A is a strong clique, we may assume
that A ⊆ V1. Since every vertex of A has a neighbor in B, and since B is a strong
clique, it follows that B ⊆ V1. But now, letting V ′

1 = (V1\(A∪B))∪{a, b}, we observe
that V ′

1 , V2 is a partition of V (G′) \ P into two nonempty sets, |V ′
1 | > 1, and either

|V2| > 1 or the unique vertex of V2 is semiadjacent to some vertex of P . Consequently
G′ admits an internal clique cutset. Thus we may assume that A ∩ P �= ∅.

Since A \ P �= ∅, and since A is a strong clique, we may assume that A ∩ V1 �= ∅
and A ∩ V2 = ∅. Since A ∩ V1 is strongly anticomplete to V2 \ B, it follows that
A ∩ P is strongly anticomplete to V2 \ B, and therefore, since every vertex of P has
a neighbor in V2, we deduce that B ∩ V2 �= ∅. Then B ∩ V1 = ∅. Since every vertex
of A has a neighbor in B, and A ∩ V1 is strongly anticomplete to B ∩ V2, it follows
that B ∩ P �= ∅. Now from the symmetry, B ∩ P is strongly anticomplete to V1 \ A.
Also, since A is a homogeneous set in V (G)\B, it follows that P \ (A∪B) is strongly
complete to A. Similarly, P \ (A ∪ B) is strongly complete to B. We observe that
X = (A∪P ) \B is a strong clique, and (V1 \A, V2 ∪B) is a partition of V (G) \X . It
follows from the choice of P that X is not an internal clique cutset in G. Since V2∪B
is strongly anticomplete to V1 \A, it follows that |V1 \A| ≤ 1 and no vertex of V1 \A
is semiadjacent to a vertex of X .

We claim that V1 \ A is strongly complete to A. Suppose not. Then V1 \ A �= ∅;
let u1 be the unique vertex of V1 \A. Since (A,B) is a proper W-join, u1 is strongly
anticomplete to A, and since G is connected, it follows that u1 has a neighbor in
(A ∪ P ) \ B. But this contradicts the first statement of Theorem 2.1, since p ∈
P \ (A∪B) is strongly complete to A. This proves that V1 \A is strongly complete to
A. Similarly, |V2 \ B| ≤ 1, no vertex of V2 \ B is semiadjacent to a vertex of X , and
V2 \B is strongly complete to B. Let T ′

1 be the set of vertices of P \ (A∪B) that have
a neighbor in V1 \A and T ′

2 the set of vertices of P \ (A ∪B) that have a neighbor in
V2 \B. Define T1 = T ′

1 \T ′
2, T2 = T ′

2 \T ′
1, Y = T ′

1 ∩T ′
2, and Z = P \ (A∪B ∪T ′

1 ∪T ′
2).

By the second assertion of Theorem 2.1, at least one of the sets Y, Z is empty.
Let S be the trigraph with vertex set {v1, v2, v3, v4, v5, v6, v7}, where the pairs

v1v2, v1v3, v2v3, v2v4, v3v4, v3v5, v4v5, v4v6, v5v6, v5v7, v6v7
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are strongly adjacent, and if Y �= ∅, also the pairs

v1v4, v4v7

are strongly adjacent, the pairs

v2v5, v3v6

are semiadjacent, and all other pairs are strongly antiadjacent. Let Xv1 = V1 \
A,Xv2 = A ∩ V1, Xv3 = T1 ∪ (A ∩ P ), Xv4 = Y ∪ Z,Xv5 = T2 ∪ (B ∩ P ), Xv6 =
B∩V2, Xv7 = V2 \B. Then S is a linear interval trigraph. The sets Xv2 , Xv3 , Xv5 and
Xv6 are nonempty, and either Xv4 = Y or Xv4 = Z. Moreover, if Xv4 = Y , then Xv4

is strongly complete to Xv1 ∪Xv7 , and if Xv4 = Z, then Xv4 is strongly anticomplete
to Xv1∪Xv7 . Now let T ⊆ {v1, v7, v4} be the set of all vi such that Xvi = ∅. Then Xvi

is a nonempty strong clique for every vi ∈ S \ T . Moreover, for i, j ∈ {1, . . . , 7}, if vi
is strongly complete to vj , then Xvi is strongly complete to Xvj , and if vi is strongly
anticomplete to vj , then Xvi is strongly anticomplete to Xvj . Next we claim that the
pairs Xv2Xv5 and Xv3Xv6 are neither strongly complete nor strongly anticomplete.
From the symmetry, it is enough to show that Xv2 is not strongly complete and not
strongly anticomplete to Xv5 . Since (A,B) is a proper W -join in G, it follows that
no vertex in B ∩ P is strongly complete to A, and no vertex of A ∩ V1 is strongly
anticomplete to B. This implies that B ∩ P is not strongly complete to A ∩ V1, and
A∩V1 is not strongly anticomplete out B∩P , which proves the claim. Consequently,
G is a thickening of S \T , contrary to the fact that G is a counterexample to Theorem
2.3. This proves (1).

For X ⊆ V (G′) let

L(X) =

⎧⎪⎪⎨
⎪⎪⎩

X if a, b �∈ X,
(X \ {a}) ∪ A if a ∈ X and b �∈ X,
(X \ {b}) ∪B if b ∈ X and a �∈ X,

(X \ {a, b}) ∪A ∪B if a, b ∈ X.

(2) G′ does not admit a 0-join or a 1-join or twins.
If G′ admits a 0-join (X,Y ), then L(X), L(Y ) is a partition of V (G) with L(X)

strongly anticomplete to L(Y ). Consequently, G admits a 0-join, a contradiction.
This proves that G′ does not admit a 0-join. If G′ admits a 1-join (P,Q,R, S), then
L(P ), L(Q), L(R), L(S) is a 1-join in G, and therefore G′ does not admit a 1-join.
Finally, if u, v are twins in G′, then {u, v} ∩ {a, b} = ∅, since a is semiadjacent to b;
and therefore u, v are twins in G. Thus G′ does not admits twins. This proves (2).

By the minimality of |V (G)|, one of the outcomes of Theorem 2.3 holds for G′.
Since no two vertices of a strong antinet are semiadjacent, we deduce that G′ is a
thickening of a linear interval trigraph, say, S. Let {Xv}v∈V (S) be the subsets of
V (G′) as in the definition of a thickening. Since a is semiadjacent to b, it follows that
there exist two vertices u, v ∈ V (S) such that a ∈ Xu, b ∈ Xv and u is semiadjacent to
v. But now G is a thickening of S with subsets {L(Xv)}v∈V (S). This proves Theorem
2.3.

We finish this section with a lemma that refines Theorem 2.3 further.
2.4. Let G be a thickening of a linear interval trigraph F . Then there exists a

linear interval trigraph F ′ such that G is a proper thickening of F ′.
Proof. Let F ′ be a linear interval trigraph such that G is a thickening of F ′ and

subject to that with |V (F ′)| maximum. Let the vertices of F ′ be numbered v1, . . . , vn
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as in the definition of a linear interval trigraph. For i ∈ {1, . . . , n} let Xi = Xvi be
a subset of V (G) as in the definition of a thickening. We may assume that for some
1 ≤ i < j ≤ n, vi is semiadjacent to vj , but some x ∈ Xi is either strongly complete
or strongly anticomplete to Xj . This in particular implies that |Xi| ≥ 2. Suppose
first that x is strongly complete to Xj . Let F ′′ be the trigraph obtained from F ′

by adding a new vertex v′i and making v′i be strongly adjacent to N∗(vi) ∪ {vi, vj}
and strongly antiadjacent to all the remaining vertices of V (F ′). Then F ′′ is a linear
interval trigraph, ordering the vertices

v1, . . . , vi, v
′
i, vi+1, . . . , vn,

and G is a thickening of F ′′, where we replace Xi with Xi \{x} and define Xv′
i
= {x},

contrary to the choice of F ′. This proves that x is strongly anticomplete to Xj . Let
F ′′ be the trigraph obtained from F ′ by adding a new vertex v′i and making v′i be
strongly adjacent to N∗(vi) ∪ {vi} and strongly antiadjacent to all the remaining
vertices of V (F ′). Then F ′′ is a linear interval trigraph, ordering the vertices

v1, . . . , vi−1, v
′
i, vi, . . . , vn,

and G is a thickening of F ′′, where we replace Xi with Xi \{x} and define Xv′
i
= {x},

again contrary to the choice of F ′. This proves Theorem 2.4.

3. The proof of Theorem 1.1. The results in this section are about graphs
only, though we do use trigraphs in some of the proofs. Our current goal is to prove
Theorem 1.1 assuming Theorem 1.2. We start with some definitions. Let G be a
graph. A connected component of G is a maximal nonnull connected subgraph of G.
A vertex v ∈ V (G) is simplicial if N(v) is a clique. Let s(G) denote the number of
simplicial cliques in G. We start with an easy lemma.

3.1. Let G be a claw-free graph, and let X be a nontrivial homogeneous set in
G. Let C be the set of vertices of V (G) \ X that are complete to X and A the set
of vertices of V (G) \X that are anticomplete to X. If X is not a clique, then A is
anticomplete to X ∪ C, and one of G,Gc is not connected.

Proof. Let x1, x2 ∈ X be nonadjacent. Since {c, x1, x2, a} is not a claw for
any c ∈ C and a ∈ A, it follows that C is anticomplete to A. This proves the
first assertion of the theorem. We may assume that A = ∅, for otherwise G is not
connected. But then V (G) \X = C �= ∅, and thus Gc is not connected. This proves
Theorem 3.1.

Next we deal with obstinate graphs.
3.2. Let G be claw-free and obstinate. Then one of the following holds:
• G is isomorphic to O2. Let V (G) = {a1, a2, b1, b2} as in the definition of O2.
Then the simplicial cliques of G are

{{a1}, {a1, b1}, {a2, b1}, {a2, b2}, {b2}},

and, in particular, s(G) = |V (G)| + 1.
• Gc is isomorphic to Ok with k ≥ 3. Let V (G) = {a1, . . . , ak, b1, . . . , bk} as

in the definition of Ok. Let Ai = {ai, . . . , ak}, Bi = {b1, . . . , bi}. Then the
simplicial cliques of G are

A1, . . . , Ak, B1, . . . , Bk,

and in particular s(G) = |V (G)|.
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Proof. Since G is obstinate, G or Gc is isomorphic to Ok for some natural
number k ≥ 2. Suppose first that G = Ok for some natural number k ≥ 2. Let
a1, . . . , ak, b1, . . . , bk be as in the definition of Ok. Since G is claw-free and ak is com-
plete to {b1, . . . , bk}, it follows that k = 2. But now G is a three-edge path a1-b1-a2-b2,
and the first outcome of the theorem holds.

Next assume that Gc = Ok for some k ≥ 2. If k = 2, then G is a 3-edge path,
and so G is isomorphic to O2, and the theorem holds. So we may assume that k ≥ 3.
Let a1, . . . , ak, b1, . . . , bk be as in the definition of Ok. Let A = {a1, . . . , ak} and
B = {b1, . . . , bk}. First we will enumerate all simplicial cliques in G that meet A. Let
K be a simplicial clique in G with K ∩ A �= ∅. Then b1 �∈ K.

First we claim that ak ∈ K. Suppose not. Choose j so that aj ∈ K. Since aj is
complete to {ak, bj+1, . . . , bk}, and ak is anticomplete to B, the fact that N(aj) \K
is a clique implies that {bj+1, . . . , bk} ⊆ K. Since aj is anticomplete to {b1, . . . , bj},
it follows that b1, . . . , bj �∈ K. This implies that K ∩ {a1, . . . , ak} = {aj}. Let
p ∈ {1, 2} \ {j}. Then ap, b1 �∈ K, and bk is adjacent to both ap, b1, contrary to the
fact that K is a simplicial clique. This proves that ak ∈ K.

Since K is a clique, and ak is anticomplete to B, it follows that K ⊆ A. If
there exist 1 ≤ i < j < k such that ai ∈ K and aj �∈ K, then aj , bj ∈ N(ai) \ K,
which is a contradiction since aj is nonadjacent to bj. Therefore, K = At for some
t ∈ {1, . . . , k}. Moreover, we observe that At is a simplicial clique in G for every
t ∈ {1, . . . , k}. Consequently,

A1, . . . , Ak

is the complete list of simplicial cliques in G meeting A (and none of them meet B).
From the symmetry,

B1, . . . , Bk

is the complete list of simplicial cliques in G meeting B (and none of them meet A).
Therefore, s(G) = |V (G)| = 2k, and Theorem 3.2 holds.

Proof of Theorem 1.1. The proof is by induction on |V (G)|. Let |V (G)| = n.
(1) We may assume that n ≥ 4 and both G and Gc are connected.
Since G is prime, it follows that n ≥ 4. Consequently, again using the fact that

G is prime, we deduce that both G and Gc are connected. This proves (1).
From now on, we assume in view of (1) that n ≥ 3 and both G and Gc are

connected.
(2) If G has a simplicial vertex v such that G\v is prime, then the theorem holds.
Let v be a simplicial vertex of G. Let N = N(v), M = V (G) \ (N ∪ {v}). Let

G′ = G\ v. Then N is a clique. Inductively, s(G′) ≤ n. Let T be the set of all cliques
K of G with v ∈ K such that both K and K \ v are simplicial cliques in G. Now, if
K �= {v} is a simplicial clique of G, then K \ v is a simplicial clique of G′, and so

s(G) ≤ s(G′) + 1 + |T | ≤ n+ 1 + |T |.
We observe that if some u ∈ N is anticomplete to M , then {u, v} is a nontrivial
homogeneous set in G, contrary to the fact that G is prime. This implies that every
vertex of N has a neighbor in M , and therefore, since v is anticomplete to M , no
subset of N is a simplicial clique of G. Consequently, T = ∅. This proves (2).

(3) If G admits a 1-join, then the theorem holds.
Let (A,B,C,D) be a 1-join. Assume first that some vertex v ∈ B∪C is anticom-

plete to A ∪ D. Then N(v) = (B ∪ C) \ {v}, and therefore v is simplicial. Since G
is connected, both B \ {v} and C \ {v} are nonempty. We claim that G \ v is prime.
Suppose not, and let X be a nontrivial homogeneous set in G \ v. Write N = B ∪C,
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and M = A ∪ D. Since X is not a nontrivial homogeneous set in G, it follows that
both X ∩M and X ∩N are nonempty. Let M1 be the set of vertices of M \X that
are complete to X and M2 be the set of vertices of M \X that are anticomplete to
X . Then M \ X = M1 ∪ M2. Since N is a clique, N \ X is complete to X . Since
X ∪ {v} is not a homogeneous set in G, it follows that M1 �= ∅. If M2 = ∅, then
M = (M ∩X) ∪M1, and therefore, since M1 is complete to X , we deduce that M is
connected, contrary to the fact that M = A∪D. This proves that M2 �= ∅. Now, since
G is prime, it follows that M2 is not anticomplete to V (G) \M2, and thus Theorem
3.1 applied in G \ v implies that X is a clique. Consequently, X ∩M is complete to
N , contrary to the fact that A is anticomplete to C and D to B. This proves that
G \ v is prime. Now (3) follows from (2). Thus we may assume that every vertex of
B has a neighbor in A and every vertex of C has a neighbor in D.

Let b ∈ B and c ∈ C. Chose a ∈ A adjacent to b, and d ∈ D adjacent to c. Define
G1 = G|(A∪B∪{c, d}) and G2 = G|(C ∪D∪{a, b}). Then both G1 and G2 are claw-
free. We claim that both G1 and G2 are prime. Suppose not; then from the symmetry
we may assume that there is a nontrivial homogeneous set X in G1. If {c, d}∩X = ∅,
then X is a nontrivial homogeneous set in G, contrary to the fact that G is prime. So
we may assume that at least one of c, d belongs to X . Suppose first that c �∈ X . Then
d ∈ X . Since c is adjacent to d and anticomplete to A, it follows that X ∩ A = ∅,
and therefore there is a vertex b′ ∈ B ∩ X . But b′ has a neighbor a′ ∈ A, which is
nonadjacent to d, contrary to the fact that X is a homogeneous set. Thus c ∈ X , and
since c is the unique neighbor of d in G1, it follows that d ∈ X . Since B is complete
to c and anticomplete to d, it follows that B ⊆ X . Since d is anticomplete to A, we
deduce that V (G1) \X is anticomplete to X . But V (G1) \X = A \X , and therefore
A \X is anticomplete to B ∪ C ∪ D ∪ (A ∩ X) in G, contrary to the fact that G is
prime. This proves that both G1 and G2 are prime.

Let |V (Gi)| = ni. By the inductive hypothesis, s(Gi) ≤ ni + 1 for i = 1, 2.
Since B is a clique cutset in G, and every vertex of B is complete to C and has a
neighbor in A, it follows from Theorem 2.1 that NG1(v)∩A is a clique for every v ∈ B.
Consequently, B ∪{c} is a simplicial clique in G1. We observe that {d} and {c, d} are
also simplicial cliques of G1. This implies that the number of simplicial cliques of G1

that are also cliques of G|(A ∪ B) is at most s(G1) − 3 ≤ ni − 2 = |A| + |B|. From
the symmetry, the number of simplicial cliques of G2 that are also simplicial cliques
of G|(C ∪D) is at most |C|+ |D|. Let t be the number of simplicial cliques of G that
meet both A ∪B and C ∪D. We observe that if K ⊆ A ∪ B is a simplicial clique of
G, then K is a simplicial clique of G1, and if K ⊆ C ∪D is a simplicial clique of G,
then K is a simplicial clique of G2. Consequently,

s(G) ≤ |A|+ |B|+ |C|+ |D|+ t.

It is therefore enough to show that t ≤ 1. Indeed, let K be a clique of G such that
K �⊆ A∪B and K �⊆ C ∪D. Since K is a clique, it follows that K ⊆ B ∪C, and both
K ∩ B and K ∩ C are nonempty. Suppose B \K �= ∅, and choose b′ ∈ B \K. Let
c′ ∈ K ∩C, and let d′ ∈ D be a neighbor of c′. But now b′, d′ ∈ N(c′)\K, contrary to
the fact that K is a simplicial clique. Thus B ⊆ K, and from the symmetry C ⊆ K.
Consequently K = B ∪ C and t ≤ 1. (In fact, Theorem 2.1 implies that B ∪ C is a
simplicial clique of G, and so t = 1.) This proves (3).

In view of (3) and Theorem 3.2 we may assume that G does not admit a 1-join,
and that G is not obstinate. Since both G and Gc are connected, it follows that there
exists an induced subgraph of G, isomorphic to the 3-edge path. Let H be such a
subgraph. We observe that H is prime. By Theorem 1.3, there exists v ∈ V (G) such
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that G \ v is prime. By (2), we may assume that v is not simplicial. Let N = N(v),
M = V (G) \ (N ∪ {v}), and G′ = G \ v. Inductively, s(G′) ≤ n. Let T be the set of
all cliques K of G with v ∈ K, such that both K and K \ v are simplicial cliques in
G. Since if K is a simplicial clique of G, then K \ v is a simplicial clique of G′ (since
{v} is not a simplicial clique in G because v is not a simplicial vertex), it follows that

s(G) ≤ s(G′) + |T |.

It is therefore enough to prove that |T | ≤ 1. We may assume that T �= ∅, for otherwise
the theorem holds.

(4) G is an antinet or a thickening of a linear interval trigraph.
Let K ∈ T . ThenK\{v} ⊆ N . Since v is complete to K\{v} and anticomplete to

M , and since K \ {v} is a simplicial clique of G, it follows that K \ {v} (and therefore
K) is anticomplete to M . Since K is a simplicial clique of G, it follows that N \K is
a clique. Since Gc is connected, we deduce that M �= ∅, and consequently N \K is a
clique cutset in G. If |M | > 1, then since G is connected and does not admit a 1-join,
it follows from Theorem 2.3 (regarding G as a trigraph with no semiadjacent pairs
of vertices) that G is an antinet or a thickening of a linear interval trigraph. So we
may assume that |M | = 1. Let m be the unique vertex of M . Let N1 = N(m) ∩N ,
N2 = N \ (K ∪N1). Let K1 be the set of vertices of K \ {v} with a neighbor in N1,
and let K2 = K \ (K1∪{v}). By the second assertion of Theorem 2.1, K1 is complete
to N2. Let F be the trigraph with vertex set {v1, v2, v3, v4, v5, v6} such that the pairs

v1v2, v2v3, v2v4, v3v4, v3v5, v4v5, v4v6, v5v6

are strongly adjacent, the pair

v2v5

is strongly adjacent if K1 is complete to N1 and semiadjacent otherwise, the pair

v3v6

is strongly adjacent if K2 is complete to N2 and semiadjacent otherwise, and all other
pairs are strongly antiadjacent. Then F is a linear interval trigraph. Now setting

Xv1 = M,Xv2 = N1, Xv3 = N2, Xv4 = {v}, Xv5 = K1, Xv6 = K2,

we observe that G is a thickening of an induced subgraph of F . This proves (4).
We observe that if G is an antinet, then |V (G)| = s(G) = 6, and so in view of (4)

and by Theorem 2.4, we may assume from now on that G is a proper thickening of
a linear interval trigraph. Let F be a linear interval trigraph of which G is a proper
thickening. Since G is connected, it follows that F is connected. Let the vertices
of F be v1, . . . , vn numbered as in the definition of a linear interval trigraph, and
let Xi = Xvi be subsets of V (G) as in the definition of a proper thickening. Let
i ∈ {1, . . . , n} be such that v ∈ Xi. Let j ∈ {1, . . . , n} be minimum such that v has
a neighbor in Xj, and let k ∈ {1, . . . , n} be maximum such that v has a neighbor in
Xk. Since v is not a simplicial vertex, there exist xj ∈ Xj ∩N(v) and xk ∈ Xk ∩N(v)
nonadjacent, and therefore j ≤ i ≤ k, j �= k, and vj is not strongly adjacent to vk
in F . Moreover, either i = j or vi is adjacent to vj in F and either i = k or vi is
adjacent to vk in F .

(5) Either
• j = 1, v is complete to X1 \ {v}, and xj ∈ K and K ∩ Xk = ∅ for every
K ∈ T , or

• k = n, v is complete to Xn \ {v}, and xk ∈ K and K ∩ Xj = ∅ for every
K ∈ T .
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Let K ∈ T . Since v ∈ K, and xj and xk are both adjacent to v and nonadjacent
to each other, it follows that at least one of xj , xk is in K. From the symmetry we
may assume xj ∈ K. Since K is a clique, xk �∈ K.

Since K \{v} is a simplicial clique of G, xj is adjacent to v, and v is anticomplete

to
⋃j−1

p=1 Xp, it follows that xj is anticomplete to
⋃j−1

p=1 Xp. But by the definition of
a proper thickening, xj has a neighbor in every set Xu such that u is adjacent to vj ,

and so it follows from the fact that F is connected that
⋃j−1

p=1 Xp = ∅ and so j = 1.
Since xj is complete to X1 \ {xj} and K \ {v} is a simplicial clique, it follows that
every vertex of X1 is either adjacent to v or in K, and therefore v is complete to
X1 \ {v}.

Now suppose there exists L ∈ T (possibly L = K) such that L ∩ Xk �= ∅. Let
x′
k ∈ L∩Xk. Since v1 is not strongly adjacent to vk in F , it follows that some x′

1 ∈ X1

is nonadjacent to x′
k. By the argument above applied to L, x′

k, and x′
1, we deduce

that k = n and v is complete to Xk. Thus v is complete to V (G) \ {v}, contrary to
the fact that Gc is connected. This proves (5).

From the symmetry we may assume that the first outcome of (5) holds. Let
K ∈ T . Then xj ∈ K, K ∩ Xk = ∅ (and, in particular, k > i), j = 1, and v is
complete to X1 \ {v}. It follows from the definition of a proper thickening that either

i = 1 or v1 is strongly adjacent to vi in F . Consequently,
⋃i

p=1 Xp is a clique. Since

v is anticomplete to
⋃n

p=k+1 Xp, it follows that K ∩ (
⋃n

p=k Xp) = ∅.
(6)

⋃i−1
p=1 Xp ⊆ K.

In this proof we work with both F and G, and whenever we discuss adjacency, we
will explicitly mention which graph or trigraph is in question. Suppose there exists
u ∈

⋃i−1
p=1 Xp \K. Then i > 1. Since K is a simplicial clique in G, it follows that u is

adjacent to xk in G. Let t ∈ {1, . . . , i−1} be such that u ∈ Xt. Then vt is adjacent to
vk in F . It follows from the definition of a linear interval trigraph that vi is strongly
adjacent to vk in F , and therefore v is complete to Xk in G. Since v is anticomplete
to

⋃n
p=k+1 Xp in G, it follows that vi is strongly anticomplete to {vk+1, . . . , vn} in F ,

and therefore vt is strongly anticomplete to {vk+1, . . . , vn} in F . This implies that u
is anticomplete to

⋃n
p=k+1 Xp in G. The fact that {u, v} is not a homogeneous set in

G implies that u is not complete to Xk in G. But now, since v is adjacent to u and
complete to Xk in G, and K is a simplicial clique of G, we deduce that K ∩Xk �= ∅,
a contradiction. This proves (6).

(7) K ∩ (
⋃k−1

p=i+1 Xp) = ∅.
Suppose there exists u ∈ K ∩ (

⋃k−1
p=i+1)Xp. Since K \ {v} is a simplicial clique of

G, it follows that u is anticomplete to
⋃n

p=k+1 Xp. Since K is a clique, u is complete

to X1, and therefore u is complete to
⋃i

p=1 Xi. Since v has a neighbor in Xk, it
follows from the definition of a proper thickening that vi is adjacent to vk in F , and
therefore

⋃k−1
p=i Xp is a clique. Let t ∈ {1, . . . , n} be such that u ∈ Xt. Since i < t < k

we deduce that vt is strongly adjacent to vk, and so u is complete to Xk. Now since
{u, v} is not a homogeneous set in G, it follows that v is not complete to Xk, and
so some vertex w ∈ Xk is adjacent to u and nonadjacent to v. But K \ {v} is a
simplicial clique in G, and v, w ∈ N(u) \ (K \ {v}) are nonadjacent, a contradiction.
This proves (7).

Let X ′
k = N(v) ∩Xk. Let Y be the set of vertices in Xi \ {v} that are complete

to X ′
k, and let Z = Xi \ (Y ∪ {v}).
(8) Y ∩K = ∅.
Suppose there exists u ∈ Y ∩ K. It follows from the maximality of k that vi

is strongly anticomplete to {vk+1, . . . , vt}, and therefore u is strongly anticomplete
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to
⋃n

p=k+1 Xp. Since
⋃i

p=1 Xp and
⋃k−1

p=i Xp are cliques, and since {u, v} is not a

homogeneous set in G, it follows that some vertex w of Xk is adjacent to u and not to
v. But then v, w ∈ N(u) \ (K \ {v}), contrary to the fact that K \ {v} is a simplicial
clique in G. This proves (8).

(9) Z ⊆ K.
Suppose there exists u ∈ Z \ K. Let w ∈ X ′

k be a nonneighbor of u. Then
u,w ∈ N(v) \ K, contrary to the fact that K is a simplicial clique in G. This
proves (9).

Now it follows from (6)–(9) that K = (
⋃i−1

p=1 Xp) ∪ {v} ∪Z for every K ∈ T , and

therefore |T | = 1, as required. This proves Theorem 1.1.

4. Growing prime graphs. In this section we prove a lemma that we hope
is of independent interest. It is similar in spirit to Seymour’s splitter theorem for
3-connected graphs [5]; the idea is that a prime graph (that is not obstinate) can
be grown by adding one vertex at a time, starting from any of its prime induced
subgraphs, and in such a way that all the graphs that are constructed along the way
are prime. More precisely, we prove the following (a restatement of Theorem 1.2).

4.1. Let G be a graph, and let H be a proper induced subgraph of G. Assume
that both G and H are prime and that G is not obstinate. Then there exists an
induced subgraph H ′ of G, isomorphic to H, and a vertex v ∈ V (G)\V (H ′) such that
G|(V (H ′) ∪ {v}) is prime.

Here is the outline of the proof. First in Theorem 4.2 we deal with the easy case
when H is not “controlling” (the definition is below). Our next step is to show that
H can be grown to a prime graph by adding two vertices (this is Theorem 4.3, and
we do not need to assume that G is not obstinate). Then we use this result to prove
Theorem 4.1 in the case when H is not obstinate or H is a maximal obstinate induced
subgraph of G (this is done in Theorem 4.5). Finally, we bridge the remaining gap
using Theorem 4.6.

Next we need some definitions. Let H be an induced subgraph of G. Let us say
that v ∈ V (G) \ V (H) is an H-clone of x ∈ V (H) if for every y ∈ V (H) \ {x}, v is
adjacent to y if and only if xy ∈ E(H). For x ∈ V (H), let V H

x be the set of H-clones
of x. Let AH be the set of vertices of V (G) \ V (H) that are complete to V (H) and
BH the set of vertices of V (G) \ V (H) that are anticomplete to V (H). We observe
that if H is prime, then the sets AH , BH , and V H

x (where x ∈ V (H)) are all pairwise
disjoint. We say that H is controlling (in G) if every vertex of V (G) \ V (H) either is
an H-clone or belongs to AH ∪BH . We start with the following.

4.2. Let G be a graph, and let H be a proper induced subgraph of G. Assume
that H is prime and not controlling. Then there exists a vertex v ∈ V (G)\V (H) such
that G|(V (H) ∪ {v}) is prime.

Proof. Let v ∈ V (G)\(V (H)∪AH ∪BH) be a vertex that is not an H-clone. Sup-
pose that F = G|(V (H) ∪ {v}) is not prime. Then there is a nontrivial homogeneous
set X in F . Since X is not a nontrivial homogeneous set in H , and v �∈ AH ∪BH , it
follows that v ∈ X . Since X \ {v} is not a nontrivial homogeneous set in H , it follows
that |X \ {v}| = 1. Let x be the unique vertex of X \ {v}. Now v is an H-clone of
x, a contradiction. This proves that F is prime and completes the proof of Theorem
4.2.

Let H be an induced subgraph of G, and let u, v ∈ V (G) \ V (H). We call the
pair uv H-conforming if either

• u ∈ V H
x and v ∈ V H

y for distinct x, y ∈ V (H), and uv ∈ E(G) if and only if
xy ∈ E(H), or
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• u ∈ AH and v ∈ V H
x for some x ∈ V (H), and u is adjacent to v, or

• u ∈ BH and v ∈ V H
x for some x ∈ V (H), and u is nonadjacent to v.

We start with a lemma.
4.3. Let G be a graph, and let H be a proper induced subgraph of G. Assume that

both G and H are prime and that H is controlling. Then there exist u, v ∈ V (G)\V (H)
such that G|(V (H) ∪ {u, v}) is prime and the pair uv is not H-conforming.

Note that while in Theorem 4.1 we may need to move to an isomorphic copy of
H in G (which we denoted by H ′), Theorem 4.3 states that we can add two vertices
to a fixed subgraph H of G, keeping it prime.

Proof of Theorem 4.3. Let k = |V (H)| and let the vertices of H be v1, . . . , vk.
For i ∈ {1, . . . , k}, let Vi = V H

vi , A = AH , and B = BH . Since H is prime, the
sets V1, . . . , Vk, A

H , BH are all pairwise disjoint, and since H is controlling, V (G) =

V (H) ∪
⋃k

i=1 Vi ∪ AH ∪ BH . We observe that since H is prime, every vertex of H

has both a neighbor and a nonneighbor in H , and therefore every vertex of
⋃k

i=1 Vi

is mixed on V (H).

Assume first that A ∪ B �= ∅. If A is complete to V (H) ∪
⋃k

i=1 Vi and B is

anticomplete to V (H)∪
⋃k

i=1 Vi, then V (H)∪
⋃k

i=1 Vi is a nontrivial homogeneous set
in G, contrary to the fact that G is prime. Therefore (by passing to the complement
and renumbering the vertices of H if necessary) we may assume that there exist
u ∈ V1 and v ∈ B such that uv ∈ E(G). We claim that G|(V (H) ∪ {u, v}) is prime.
Suppose not, and let X be a nontrivial homogeneous set in G|(V (H) ∪ {u, v}). If
X ⊆ V (H), then, since X is not a nontrivial homogeneous set in H , it follows that
X = V (H), contrary to the fact that u is mixed on V (H). This proves that at least
one of u, v ∈ X . Since v is adjacent to u and anticomplete to V (H), it follows that
if u ∈ X then v ∈ X . Thus we may assume that v ∈ X . Moreover, since X ∩ V (H)
is not a nontrivial homogeneous set in H , it follows that either |X ∩ V (H)| ≤ 1 or
V (H) ⊆ X . If X ∩ V (H) = ∅, then X = {u, v}, which is a contradiction since
every neighbor of v1 in H is adjacent to u and nonadjacent to v; and if V (H) ⊆ X ,
then X = V (H) ∪ {v}, which is a contradiction since u is mixed on V (H). Thus
|X ∩ V (H)| = 1; let x be the unique vertex of X ∩ V (H). But now, since v ∈ X , it
follows that every vertex of V (H) \ {x} is anticomplete to X , and in particular x has
no neighbor in H , a contradiction. This proves that G|(V (H) ∪ {u, v}) is prime, and
the theorem holds.

Therefore we may assume that A ∪ B = ∅. If for every i, j ∈ {1, . . . , k} and
every u ∈ Vi and v ∈ Vj the pair {u, v} is H-conforming, then each Vi ∪ {vi} is
a homogeneous set in G; since V (H) �= V (G), we deduce that at least one of these
homogeneous sets is nontrivial, contrary to the fact that G is prime. This implies that
there is at least one pair that is not H-conforming. By passing to the complement
and renumbering the vertices of H if necessary, we may assume that v1v2 ∈ E(H),
and there exist u1 ∈ V1 and u2 ∈ V2 such that u1 is nonadjacent to u2. We claim that
G|(V (H) ∪ {u1, u2}) is prime. Suppose not, and let X be a nontrivial homogeneous
set in G|(V (H) ∪ {u1, u2}). Let

X ′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X if u1, u2 �∈ X

(X \ {u1}) ∪ {v1} if u1 ∈ X and u2 �∈ X

(X \ {u2}) ∪ {v2} if u2 ∈ X and u1 �∈ X

(X \ {u1, u2}) ∪ {v1, v2} if u1, u2 ∈ X.
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Then X ′ is a homogeneous set in H , and since X ′ is not a nontrivial homogeneous set
in H , it follows that either |X ′| ≤ 1 or X ′ = V (H). Since u1u2 is not a conforming
pair, it follows that {u1, v1} and {u2, v2} are not homogeneous sets of G|(V (H) ∪
{u1, u2}), and therefore |X ′| > 1. Consequently, X ′ = V (H). This implies that
V (H) \ {v1, v2} ⊆ X and that |X ∩ {u1, v1}| ≥ 1 and |X ∩ {u2, v2}| ≥ 1. We observe
that V (H) �⊆ X , since both u1 and u2 are mixed on V (H), and so we may assume
that v1 �∈ X and u1 ∈ X . But v1 is complete to {u2, v2}, and therefore, since X
is a homogeneous set, v1 is complete to V (H) \ {v1, v2}. Consequently, u2 has no
nonneighbor in H , a contradiction. This proves that G|(V (H) ∪ {u1, u2}) is prime
and completes the proof of Theorem 4.3.

Let P,Q be two graphs. Let us call a pair of disjoint sets (A,B) in V (Q) useful
(relative to P,Q) if

• |A|, |B| ≥ 2,
• A is a homogeneous set in Q \B and B is a homogeneous set in Q \A,
• each of A,B is either a clique or a stable set,
• there exists p such that each of A,B has size p or p− 1, the vertices of A can
be numbered a1, . . . , ap or a1, . . . , ap−1, the vertices of B can be numbered
b1, . . . , bp or b2, . . . , bp, and ai is adjacent to bj if and only if j ≤ i, and

• Q1 = Q \ {a1, b2} is isomorphic to P .
We call p the order of the pair (A,B). We observe that p is determined by the

pair (A,B). It is not difficult to check that
• if (A,B) is a useful pair of order p relative to P,Q, then (B,A) is a useful
pair of order p relative to P,Q;

• if (A,B) is a useful pair of order p relative to P,Q, then (A,B) is a useful
pair of order |A|+ |B|+ 1− p relative to P c, Qc;

• Qi = Q \ {ai, bi+1} is isomorphic to P for all i ∈ {1, . . . , p− 1}; and
– Qi = Q \ {ai, bi} is isomorphic to P for all i ∈ {2, . . . , p− 1}, and
– if |A| = p, then Qp = Q \ {ap, bp} is isomorphic to P , and
– if |B| = p, then Q1 = Q \ {a1, b1} is isomorphic to P .

We prove the following easy technical lemma.
4.4. Let P,Q be graphs, and let (A,B) be a useful pair relative to P,Q. Then,

with notation as in the definition of a useful pair,
• ai ∈ V Qi

ai+1
(that is, ai is a Qi-clone of ai+1) for i ∈ {1, . . . , p− 2}, and

– if |A| = p, then ap−1 ∈ V
Qp−1
ap , and

– bi+1 ∈ V Qi

bi
(that is, bi+1 is a Qi-clone of bi) for i ∈ {2, . . . , p− 1}, and

– if |B| = p, then b2 ∈ V Q1

b1
.

• ai ∈ V Qi

ai−1
and bi ∈ V Qi

bi+1
for all i ∈ {2, . . . , p− 1}, and

– if |A| = p, then ap ∈ V Qp

ap−1
, and

– if |B| = p, then b1 ∈ V Q1

b2
.

Proof. Theorem 4.4 follows from the fact that if ai and ai+1 both exist, then bi+1

is the only vertex of Q that is mixed on {ai, ai+1}, and a similar statement with the
roles of A and B exchanged.

Our next step is the following.
4.5. Let G be a graph, and let H be a proper induced subgraph of G. Assume

that both G and H are prime and that no obstinate induced subgraph of G has a
proper induced subgraph isomorphic to H. Then there exists an induced subgraph H ′

of G, isomorphic to H, and a vertex v ∈ V (G) \ V (H ′) such that G|(V (H ′) ∪ {v}) is
prime.
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Proof. By Theorem 4.2, we may assume that every induced subgraph of G iso-
morphic to H is controlling. Let u, v ∈ V (G) \ V (H) be as in Theorem 4.3. Let
k = |V (H)| and let the vertices of H be v1, . . . , vk. For i ∈ {1, . . . , k}, let Vi = V H

vi ,
A = AH , and B = BH . We observe that both the hypotheses and the conclusion of
Theorem 4.5 are invariant under taking complements, and we will make use of the
symmetry between G and Gc in the course of the proof.

(1) We may assume that there exists an induced subgraph H ′ of G, isomorphic to
H, and a pair u′v′ such that u′ ∈ V H′

x and v′ ∈ V H′
y for some x, y ∈ V (H ′), and u′v′

is not H ′-conforming.
By renumbering the vertices of H and passing to the complement if necessary,

and since the pair uv is not H-conforming, we may assume that u ∈ V1, v ∈ B
and u is adjacent to v. Then H ′ = G|((V (H) \ {v1}) ∪ {u}) is isomorphic to H .
Let F = G|(V (H ′) ∪ {v}). Since H ′ is controlling (because every induced subgraph
of G isomorphic to H is) and v is mixed on V (H ′), we may assume (renumbering
{v2, . . . , vk} if necessary) that v ∈ V H′

v2 and v1 ∈ V H′
u . Now since vv1 �∈ E(G) and

uv2 ∈ E(H ′), it follows that the pair vv1 is not H ′-conforming, as required. This
proves (1).

Let H ′, u′, v′ be as in (1). Since in Theorem 4.5 we are allowed to pass to an
isomorphic copy of H , we may assume that H ′ = H , u′ = u, and v′ = v. By
renumbering the vertices of H if necessary, we may assume that u ∈ V1, v ∈ V2. Let
F = G|(V (H) ∪ {u, v}). We remark that Theorem 4.3 implies that F is prime.

We observe that if v1v2 ∈ E(H), then ({u, v1}, {v2, v}) is a useful pair of order
two relative to H,F , and if v1v2 �∈ E(H), then ({u, v1}, {v2, v}) is a useful pair of
order three relative to H,F . Let (A,B) be a useful pair relative to H,F such that
{u, v1} ⊆ A, {v2, v} ⊆ B and with |A ∪B| maximum. By passing to the complement
and exchanging A and B if necessary, we may assume that (A,B) has order |A|, and
let p = |A|. Let the vertices of A and B be numbered as in the definition of a useful
pair, and let Fi and F i also be as in that definition. Then Fp−1 is isomorphic to

H , and ap−1 ∈ V
Fp−1
ap and bp ∈ V

Fp−1

bp−1
; and F p is isomorphic to H and ap ∈ V Fp

ap−1
.

Let K = F \ ap. Let X be the set of vertices of F \ (A ∪ B) that are complete to
A and anticomplete to B, Y the set of vertices of F \ (A ∪ B) that are complete to
B and anticomplete to A, Z the set of vertices of F \ (A ∪ B) that are complete to
A∪B, and W the set of vertices of F \ (A∪B) that are anticomplete to A∪B. Then
V (F ) = A ∪B ∪X ∪ Y ∪ Z ∪W .

(2) Either
• there exist x ∈ V (K) \ {bp} such that ap is nonadjacent to x and NK(x) \
{bp} = NK(bp) \ {x}, or

• NF (bp) = {ap}.
Since K\bp = F p and is therefore isomorphic to H , it follows thatK\bp is controlling,
and therefore either

• bp is complete to V (K) \ {bp}, or
• bp is anticomplete to V (K) \ {bp}, or
• bp is a K \ bp-clone of some vertex x ∈ V (K) \ {bp}.

Since a1 is nonadjacent to bp, it follows that bp is not complete to V (K) \ {bp}. Since
F is prime, and since ap is adjacent to bp, we deduce that either

• bp is anticomplete to V (K) \ {bp} (and therefore NF (bp) = {ap}, and the
second outcome of (2) holds), or

• bp is a K \ bp-clone of some vertex x ∈ V (K) \ {bp} and ap is nonadjacent to
x, and the first outcome of (2) holds.

This proves (2).
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Suppose first that the first outcome of (2) holds, and let x ∈ V (K)\{bp} such that
ap is nonadjacent to x, and NK(x)\{bp} = NK(bp)\{x}. Since x is nonadjacent to ap,
it follows that x �∈ {b1, . . . , bp−1} ∪X ∪Z, and therefore x ∈ {a1, . . . , ap−1} ∪ Y ∪W .
Assume first that x ∈ {a1, . . . , ap−1}. Then, since NK(x) \ {bp} = NK(bp) \ {x}, it
follows that X ∪ Y = ∅, and since A ∪ B is not a nontrivial homogeneous set in F ,
it follows that Z ∪W = ∅. Now if A is a clique, then ap is complete to V (F ) \ {ap},
contrary to the fact that F is prime, and therefore A is a stable set. If B is a clique,
then either |B| = p and b1 is complete to V (F ) \ {b1}, or |B| = p − 1 and a1 is
anticomplete to V (G) \ {a1}, in both cases contrary to the fact that F is prime.
Consequently, both A and B are stable sets. But now F is obstinate, and F p is a
proper induced subgraph of F , again a contradiction since F p is isomorphic to H .
This proves that x �∈ {a1, . . . , ap−1}, and so x ∈ Y ∪W .

Let B′ = B ∪ {x}. We claim that (A,B′) is a useful pair relative to H,F . The
first condition is obvious. Since NK(x) \ {bp} = NK(bp) \ {x}, it follows that B′ is a
homogeneous set in F \A. It also follows that x ∈ Y if and only if B is a clique (and
x ∈ W if and only if B is a stable set), and therefore B ∪ {x} is either a clique or a
stable set, and thus the third condition holds. Let bp+1 = x; since x is anticomplete
to A, the fourth condition is satisfied. The fifth condition is satisfied because (A,B)
is a useful pair relative to H,F . This proves that the pair (A,B′) is useful, contrary
to the maximality of A∪B. Thus our assumption that the first outcome of (2) holds,
leading to a contradiction.

Therefore the second outcome of (2) holds, namely, NF (bp) = {ap}. This implies
that Y ∪ Z = ∅ and B is a stable set. Suppose that |B| = p. It follows from the
symmetry that X = ∅ and A is a stable set, and since A ∪ B is not a nontrivial
homogeneous set in F , we deduce that W = ∅. But now F is isomorphic to Op, which
is a contradiction since F p is a proper induced subgraph of F and F p is isomorphic
to H . This proves that |B| = p− 1, and therefore a1 is anticomplete to B. But now,
passing to the complement (with a1 playing the role of ap, b2 playing the role of bp,
and considering the subgraph K ′ = F c \ {a1} instead of K), we deduce that B is a
clique, a contradiction. This proves Theorem 4.5.

Since every prime induced subgraph of Oq is isomorphic to Op for some p ≤ q
(this is easy to verify, and we leave the details to the reader), Theorem 4.5 implies
that Theorem 4.1 is true in the case when H is not an obstinate graph. The last step
in the proof of Theorem 4.1 is to replace the relevant hypothesis of Theorem 4.5 by
the assumption that G is not an obstinate graph. To do that, we start with a lemma.

4.6. Let K be a prime graph, and let v ∈ V (K) such that K \ v is obstinate.
Then for every obstinate induced subgraph H of K \ v, there exists a prime induced
subgraph J of K and a vertex v′ ∈ V (J) such that J \ v′ is isomorphic to H.

Proof. By Theorem 4.2 we may assume that every induced subgraph of K iso-
morphic to H is controlling. Let F = K \ v. If F = H , the result is trivial, so we may
assume that H is a proper induced subgraph of F . We may also assume, by passing
to the complement if necessary, that H is isomorphic to Op and F is isomorphic to
Oq, where p and q are integers and p < q. Then p ≥ 2 and q ≥ 3. If |q − p| > 1, the
result follows inductively (by induction on |q − p|), so we may assume q = p+ 1.

Let the vertices of F be numbered a1, . . . , ap+1 and b1, . . . , bp+1 as in the definition
of Op+1. For i ∈ {1, . . . , p+1} let Hi = F \ {ai, bi}. Then Hi is isomorphic to H . Let
Ki = K|(V (Hi) ∪ {v}). Since Hi is controlling, it follows that for every i, either

• v is complete to V (Hi), or
• v is anticomplete to V (Hi), or
• v is an Hi-clone of some vertex of Hi.
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We claim that the last bullet holds either for i = 1 or for i = p + 1. Suppose not.
Then v is either complete or anticomplete to each of V (H1), V (Hp+1), and since
V (H1) ∩ V (Hp+1) �= ∅ and V (H1) ∪ V (Hp+1) = V (F ), it follows that v is either
complete or anticomplete to V (F ), contrary to the fact that K is prime. This proves
the claim. From the symmetry we may assume that v is an H1-clone of ai for some
i ∈ {2, . . . , p + 1}. Then v is anticomplete to {a2, . . . , ap+1} \ {ai}, complete to
{b2 . . . , bi}, and anticomplete to {bi+1, . . . , bp+1}.

Suppose that v is complete or anticomplete to V (Hp+1). Assume first that p =
i = 2. Then v is adjacent to b2, and therefore v is complete to V (Hp+1). But now
the theorem holds setting J = K|{a1, b1, a3, b2, v} and v′ = v. Thus we may assume
that either p > 2, or p = 2 and i �= 2. Now for some j ∈ {1, . . . , p+ 1} \ {1, i, p+ 1},
v is nonadjacent to aj and has a neighbor in {b1, . . . , bp}; therefore v is not complete
and not anticomplete to V (Hp+1), a contradiction. Thus we may assume that v is
not complete and not anticomplete to V (Hp+1). Consequently, v is an Hp+1-clone of
some vertex x of Hp+1.

Suppose that x ∈ {b1, . . . , bp}. Since v is complete to {b2, . . . , bi} and B is a
stable set, it follows that i = 2 and x = b2. If p = 2, then NK(v) = {a2, b2}, and the
theorem holds setting J = K|{a2, a3, b1, b2, v} and v′ = b2. Thus we may assume that
p > 2. Now ap is adjacent to x and nonadjacent to v, contrary to the fact that v is an
Hp+1-clone of x. This proves that x ∈ {a1, . . . , ap}. In particular, v is adjacent to b1
and nonadjacent to a1. But now {ai, v} is a homogeneous set in K, a contradiction.
This proves Theorem 4.6.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. Let G and H be as in Theorem 4.1. If no obstinate

induced subgraph of G has a proper induced subgraph isomorphic to H , then the
result follows from Theorem 4.5. So we may assume that some obstinate induced
subgraph F of G has a proper induced subgraph isomorphic to H . Choose F with
|V (F )| maximum. Then F �= G, and no obstinate induced subgraph of G has a proper
induced subgraph isomorphic to F . By Theorem 4.5, there exists v ∈ V (G) \ V (F )
such that K = G|(V (F )∪{v}) is prime. But now, since H is isomorphic to an induced
subgraph of F , Theorem 4.6 implies that there is a prime induced subgraph J of K
and a vertex v′ ∈ V (J) such thatH ′ = J\v′ is isomorphic toH . NowG|(V (H ′)∪{v′})
is prime, as required. This proves Theorem 4.1.

5. Finding simplicial cliques. In this section we use Theorem 1.1 and The-
orem 1.3 to give an algorithm that finds all simplicial cliques of a prime claw-free
graph. First we show the following.

5.1. There is an algorithm with the following specifications:
• Input: A graph G.
• Output: Either

1. a true determination that G is isomorphic to Ok for some k ≥ 2 and an
ordering a1, . . . , ak, b1, . . . , bk of the vertices of G as in the definition of
Ok, or

2. a true determination that Gc is isomorphic to Ok for some k ≥ 3 and an
ordering a1, . . . , ak, b1, . . . , bk of the vertices of Gc as in the definition of
Ok, or

3. a true determination that G is not obstinate.
• Running time: O(|V (G)|2).

Proof. If |V (G)| is odd, output “G is not obstinate” and stop. Let |V (G)| = 2k,
and calculate the degree sequence of G. If the degree sequence of G is not

1, 1, 2, 2, . . . , k, k
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or

k − 1, k − 1, k, k, . . . , 2k − 2, 2k − 2,

output “G is not obstinate” and stop. If the degree sequence of G is

1, 1, 2, 2, . . . , k, k,

let H = G, and if k ≥ 3 and the degree sequence of G is

k − 1, k − 1, k, k, . . . , 2k − 2, 2k − 2

let H = Gc. Let ak and b1 be the two vertices of H of degree k. Let A = NH(b1) and
B = NH(ak), and let DA = {degH(v)}v∈A and DB = {degH(v)}v∈B. If one of A,B
is not stable or A ∩B �= ∅, output “G is not obstinate” and stop. If DA �= {1, . . . , k}
or DB �= {1, . . . , k}, output “G is not obstinate” and stop. For i ∈ {1, . . . , k}, let ai
be the vertex of A with degree i, and let bi be the vertex of B with degree k + 1− i.
Now check whether ai is adjacent to bj if and only if j ≤ i. If not, output “G is not
obstinate” and stop. If G = H , output “G is isomorphic to Ok”; if G

c = H , output
“Gc is isomorphic to Ok”. In both cases output

a1, . . . , ak, b1, . . . , bk.

It is easy to check that the complexity of this algorithm in O(|V (G)|2) and that
the algorithm works correctly. This proves Theorem 5.1.

5.2. There is an algorithm with the following specifications:
• Input: A prime claw-free graph G.
• Output: A list L of all simplicial cliques of G.
• Running time: O(|V (G)|4).

Proof. First, run Theorem 5.1 on G. This takes time O(|V (G)|2). If G is isomor-
phic to O2, then output

L = {{a1}, {a1, b1}, {a2, b1}, {a2, b2}, {b2}}
and stop. This takes constant time. If Gc is isomorphic to Ok for k ≥ 3, let Ai =
{ai, . . . , ak}, Bi = {b1, . . . , bi}, output

L = {A1, . . . , Ak, B1, . . . , Bk},
and stop. This takes time O(|V (G)|2). Now, for every v ∈ V (G), check if G \ v is
prime. This can be done in time O(|V (G)|2) for each v by [4]. Let v0 be such that
G′ = G \ v0 is prime. Recursively, run the algorithm on G′, and let L′ be the list
of all simplicial cliques in G′. Now, for every K ∈ L′, check if K is simplicial in G,
and add K to L if the answer is yes. This can be done in time O(|V (G)|2) for each
K, and so, since by Theorem 1.1 |L′| ≤ |V (G)|, the total running time of this step is
O(|V (G)|3). Next, check if v0 is a simplicial vertex, and add {v0} to L if the answer
is yes. This takes time O(|V (G)|2). Finally, for every K ∈ L′, check if K ∪ {v0} is a
simplicial clique in G, and add K ∪ {v0} to L if the answer is yes. This can be done
in time O(|V (G)|2) for each K, and again, since |L′| ≤ |V (G)|, the total running time
of this step is O(|V (G)|3). This completes the algorithm.

It is clear that the running time of this algorithm is O(|V (G)|4), so it remains
to prove correctness. If G is obstinate, the correctness of the algorithm follows from
Theorem 3.2, and so we may assume that G is not obstinate. Since G is prime, it
follows that G and Gc are both connected, and therefore there is an induced subgraph
H of G isomorphic to the three-edge path. Then, by Theorem 1.3, applied to H and
G, there exists v0 ∈ V (G) such that G′ = G \ v0 is prime (taking v0 to be the vertex
v|V (G)|−4 in the statement of Theorem 1.3), and so the algorithm will find the graph
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G′ and the list L′. We observe that if K �= {v} is a simplicial clique in G and v ∈ K,
then K \{v} is a simplicial clique in G′; and if K is a simplicial clique in G and v �∈ K,
then K is simplicial in G′. From this observation, it follows that L is indeed the list
of all simplicial cliques of G. This proves Theorem 5.2.

6. Simplicial cliques in general claw-free graphs. In this section we con-
sider the problem of finding the simplicial cliques in a general claw-free graph. We
cannot necessarily list them all in polynomial time, because there may be exponen-
tially many; for instance, if G is an n-vertex clique, then it has 2n−1 simplicial cliques.
On the other hand, if G is a clique, then it is easy to say what its simplicial cliques are:
any subset except the empty set. We might hope for a similar description in general,
and indeed it exists, as we shall see. We omit the proofs because they are all easy.

Thus, let G be a claw-free graph with |V (G)| > 1. Suppose first that both G and
Gc are connected. Then there is a prime graph H such that G is a thickening of H ;
let V (H) = {v1, . . . , vk}, and let Vvi = Vi be as in the definition of thickening. Then
H is prime, and therefore we can enumerate all simplicial cliques of H in polynomial
time. For each simplicial clique X of H , and for 1 ≤ i ≤ k with vi ∈ X , choose
Yi ⊆ Vi, where

• if vi is adjacent to every vertex in V (H) \X with a neighbor in X , then Yi is
an arbitrary nonempty subset of Vi (there is at most one such vi in X because
H is prime and therefore no two members of X are twins);

• otherwise, Yi = Vi.
Let Y be the union of the sets Yi (vi ∈ X); then Y is a simplicial clique of G, and
every simplicial clique of G arises in this way.

Now suppose that Gc is not connected, and let G1, . . . , Gk be the connected com-
ponents of Gc. Certainly if (X,V (G) \X) is a bipartition of Gc (that is, a partition
into two stable sets), then X is a simplicial clique of G; we need to describe the other
simplicial cliques. We may assume that for some t ∈ {1, . . . , k}, each of the compo-
nents G1, . . . , Gt has at least two vertices, and each of the components Gt+1, . . . , Gk

has exactly one vertex. Then every simplicial clique of G meets each of G1, . . . , Gt.
Moreover, if K is not contained in V (Gi), where i ∈ {1, . . . , t}, then V (Gi)\K is also
a clique of G. Thus if t ≥ 2, then all simplicial cliques of G arise from bipartitions
of Gc, and so we may assume that t = 1. But now the simplicial cliques of G are
those that arise from bipartitions, together with the simplicial cliques of G|V (G1).
(G|V (G1) might not be connected, but in that case it has exactly two components,
both cliques, so in all cases we can describe the simplicial cliques of G|V (G1).)

Finally, if G is not connected, its simplicial cliques are just those of its components.
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