Packing seagulls

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08540

October 4, 2008; revised November 9, 2016
${ }^{2}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

Abstract

A seagull in a graph is an induced three-vertex path. When does a graph G have k pairwise vertexdisjoint seagulls? This is NP-complete in general, but for graphs with no stable set of size three we give a complete solution. This case is of special interest because of a connection with Hadwiger's conjecture which was the motivation for this research; and we deduce a unification and strengthening of two theorems of Blasiak [2] concerned with Hadwiger's conjecture.

Our main result is that a graph G (different from the five-wheel) with no three-vertex stable set contains k disjoint seagulls if and only if - $|V(G)| \geq 3 k$ - G is k-connected, - for every clique C of G, if D denotes the set of vertices in $V(G) \backslash C$ that have both a neighbour and a non-neighbour in C then $|D|+|V(G) \backslash C| \geq 2 k$, and - the complement graph of G has a matching with k edges.

We also address the analogous fractional and half-integral packing questions, and give a polynomial time algorithm to test whether there are k disjoint seagulls.

1 Hadwiger's conjecture and seagulls

Hadwiger's conjecture from 1943 asserts [6] that every graph with chromatic number t contains K_{t} as a minor. (All graphs in this paper are finite and have no loops or parallel edges.) One special case is when we restrict to graphs G with $\alpha(G) \leq 2$ (we denote by $\alpha(G)$ the cardinality of the largest stable set of vertices). Since the chromatic number for such graphs is at least half the number of vertices, Hadwiger's conjecture implies:
1.1 Conjecture. Let G be a graph with $\alpha(G) \leq 2$, and let $t=\lceil|V(G)| / 2\rceil$; then G contains K_{t} as a minor.

This conjecture remains open, and seems to be very challenging, and perhaps false. (Note that if the conjecture 1.1 is true for all graphs G with $\alpha(G) \leq 2$, then Hadwiger's conjecture is also true for these graphs. For a proof see [7].)

For graphs G with $\alpha(G) \leq 2$, we are looking for t pairwise disjoint connected subgraphs (where $t=\lceil|V(G)| / 2\rceil$) that pairwise touch (two disjoint subgraphs or subsets touch if there is an edge between them), to give a K_{t} minor. Perhaps even more is true; that there exist t such subgraphs, each with either one or two vertices. We call this the matching version of 1.1.

In an attempt to make some progress, Jonah Blasiak [2] added more hypotheses. He proved:
1.2 Let G be a graph with $\alpha(G) \leq 2$ and with $|V(G)|$ even. If either

- $V(G)$ is the union of three cliques, or
- there is a list of k cliques such that every vertex belongs to strictly more than $k / 3$ of them then G satisfies 1.1, and indeed satisfies the matching version of 1.1.

But what if $|V(G)|$ is odd (and G still satisfies the other hypotheses of 1.2, and in particular $|V(G)|=2 t-1)$? In this case 1.1 implies that there is a K_{t} minor, but Blasiak's method only yields a K_{t-1} minor, and trying to gain the missing +1 has been the focus of a fair amount of effort. For the matching version of 1.1 , gaining the missing +1 is still open; but in this paper we prove 1.1 itself under a common generalization of Blasiak's alternative extra hypotheses. We prove the following.
1.3 Let G be a graph with $\alpha(G) \leq 2$, and let $t=\lceil|V(G)| / 2\rceil$. If some clique in G has cardinality at least $|V(G)| / 4$, and at least $(|V(G)|+3) / 4$ if $|V(G)|$ is odd, then G has a K_{t} minor.

To prove this we use the next result, which has been proved independently by several authors (see [7]):
1.4 Let G be a graph with $\alpha(G) \leq 2$, and let $t=\lceil|V(G)| / 2\rceil$. If G is not t-connected then G satisfies 1.1, and indeed satisfies the matching version of 1.1.

A seagull in G is a subset $S \subseteq V(G)$ with $|S|=3$ such that exactly one pair of vertices in S are nonadjacent in G, and a singleton in G is a subset of $V(G)$ with cardinality one. Then 1.3 follows immediately from 1.4 and the next result, proved later in this section.
1.5 Let G be a graph with $\alpha(G) \leq 2$, let $t=\lceil|V(G)| / 2\rceil$, and let G be t-connected. If the largest clique Z in G satisfies $\frac{3}{2}\lceil|V(G)| / 2\rceil-|V(G)| / 2 \leq|Z| \leq t$, then there are $t-|Z|$ pairwise disjoint seagulls in $V(G) \backslash Z$, and consequently G has a K_{t} minor.

This is a consequence of our main result, which we explain next. If $X, Y \subseteq V(G)$ are disjoint, we say that X is complete to Y if every vertex in X is adjacent to every vertex in Y, and X is anticomplete to Y if no vertex in X has a neighbour in Y. We say a vertex v is complete (or anticomplete) to a set Y if $\{v\}$ is, and v is mixed on Y if $v \in V(G) \backslash Y$ and v is neither complete nor anticomplete to Y. If C is a nonempty clique in G, let A, B, D be the sets of vertices in $V(G) \backslash C$ that are complete to C, anticomplete to C, and mixed on C respectively. Thus (A, B, C, D) is a partition of $V(G)$, called the associated partition of C. We define the capacity $\operatorname{cap}(C)$ of C to be $|D|+|A \cup B| / 2$. A five-wheel is a six-vertex graph obtained from a cycle of length five by adding one new vertex adjacent to every vertex of the cycle. An antimatching in G is a matching in the complement graph \bar{G} of G. Our main result is the following.
1.6 Let G be a graph with $\alpha(G) \leq 2$, and let $k \geq 0$ be an integer, such that if $k=2$ then G is not a five-wheel. Then G has k pairwise disjoint seagulls if and only if

- $|V(G)| \geq 3 k$
- G is k-connected,
- every clique of G has capacity at least k, and
- G admits an antimatching of cardinality k.

Proof of 1.5, assuming 1.6. Let $n=|V(G)|$. We may assume that $|Z|<t$, and so $|Z|<n / 2$. Let $k=t-|Z|$, and $H=G \backslash Z$. We claim that there are k disjoint seagulls in H.

To see this, we verify the hypotheses of 1.6. Since G is t-connected, it follows that H is k connected. Also, $|V(H)|=n-|Z| \geq 3 k$ since $3 t / 2-n / 2 \leq|Z|$ by hypothesis.

Suppose that C is a clique of H, with capacity (in H) less than k. Let its associated partition be (A, B, C, D) (so (A, B, C, D, Z) is a partition of $V(G)$). Thus $|D|+|A \cup B| / 2 \leq k-1 / 2$, and so $|A|+|B|+2|D| \leq 2 k-1$. Consequently
$2 t-1+|D| \leq|V(G)|+|D|=|A|+|B|+|C|+2|D|+|Z| \leq 2 k-1+|C|+|Z| \leq 2 k-1+2|Z|=2 t-1$,
and so we have equality throughout; and in particular $D=\emptyset$ and $|C|=|Z|$. Thus C is a largest clique in G, and hence $A=\emptyset$ (since if $v \in A$ then $C \cup\{v\}$ is a clique); and since there are no edges between B and C, and H is k-connected, it follows that $B=\emptyset$. Thus $C \cup Z=V(G)$, which is impossible since $|C| \leq|Z|<n / 2$. This proves that every clique of H has capacity at least k.

We claim that H has an antimatching of cardinality at least k. For suppose not, and let M be a maximal antimatching in H of cardinality at most $k-1$. Hence there are at least $|V(H)|-2(k-1)$ vertices in H not incident with any edge of M, and the maximality of M implies that these vertices are pairwise adjacent in H. Consequently H has a clique of cardinality at least $|V(H)|-2(k-1)$, and the maximality of $|Z|$ implies that $|V(H)|-2(k-1) \leq|Z|$, and so $n \leq 2|Z|+2(k-1)=2 t-2$, a contradiction. This proves that H has an antimatching of cardinality at least k.

Finally, suppose that H is a 5 -wheel and $k=2$, and therefore $t=|Z|+2$. Since H contains a three-vertex clique it follows that $|Z| \geq 3$, and so $t \geq 5$. On the other hand, $2 t-1 \leq n=|Z|+6=t+4$, and so $t=5$. Thus $n=9$, and $|Z|=3$. Let D be the induced cycle of length five in H. Since Z is a maximum clique of G, it follows that G has no K_{4} subgraph; and so for each edge $u v$ of D, at most one member of Z is adjacent to both u, v. Since D has only five edges, there exists $z \in Z$ such that
$\{z, u, v\}$ is a clique for at most one edge $u v$ of D. But then there are two nonadjacent vertices of D both nonadjacent to z, contradicting that $\alpha(G) \leq 2$.

From 1.6, we deduce that there are k disjoint seagulls in H. These, together with the singletons of Z, form a K_{t} minor (note that they pairwise touch since every vertex has a neighbour in every seagull, because $\alpha(G) \leq 2$). This proves 1.5.

In the final section, we prove a result analogous to 1.6 for packing seagulls fractionally, and derive a polynomial time algorithm to test whether G has k disjoint seagulls (for graphs G with no three-vertex stable set). What about the problem of deciding whether a general graph has k disjoint seagulls? If G is the line graph of some graph H, and $|E(H)|=3 k$, then deciding whether G has k disjoint seagulls is the same as deciding whether the edges of H can be partitioned into paths of length three; and the latter was shown to be NP-complete by Dor and Tarsi [4]. Consequently the problem of deciding whether a general graph has k disjoint seagulls is also NP-complete, and therefore there is no analogue of 1.6 for general graphs unless $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$.

2 Finding disjoint seagulls

In this section we prove 1.6. The "only if" half is easy and we leave it to the reader; and we prove the "if" half. Now the 5 -wheel is an exception in 1.6 . We wish to work by induction, deleting the vertex set of one seagull and applying 1.6 inductively to what remains, and we need to be careful not to run into the 5 -wheel exception. The following will serve to insulate us, and it is convenient to present it first.
2.1 If H is a graph with $\alpha(H)<3$, and S is a seagull of H such that $H \backslash S$ is a five-wheel, then H has three disjoint seagulls.

Proof. Let $S=\{p, q, r\}$ where q is adjacent to p, r, and let $H \backslash S$ be a five-wheel, with vertex set $\left\{c_{1}, \ldots, c_{5}, w\right\}$, where w is adjacent to c_{1}, \ldots, c_{5} and $c_{1}-c_{2}-\cdots-c_{5}-c_{1}$ are the vertices of a cycle in order. Suppose for a contradiction that H does not have three disjoint seagulls.

Suppose that c_{1}, \ldots, c_{5} are not mixed on S. Since c_{i} is adjacent to one of p, r (because $\alpha(H)<3$) it follows that $\left\{c_{1}, \ldots, c_{5}\right\}$ is complete to S. But then $\left\{c_{1}, c_{3}, w\right\},\left\{c_{2}, c_{4}, q\right\},\left\{c_{5}, p, r\right\}$ are three disjoint seagulls, a contradiction.

Thus we may assume that some c_{i} is mixed on S; and hence some c_{i} is mixed on $\{p, q\}$ or mixed on $\{q, r\}$, and from the symmetry we may assume that c_{1} is mixed on $\{p, q\}$. Thus $\left\{c_{1}, p, q\right\}$ is a seagull. Now r is adjacent to one of c_{2}, c_{5}, since $\alpha(H)<3$, and from the symmetry we may assume that r, c_{2} are adjacent. Since $\left\{c_{1}, p, q\right\},\left\{c_{3}, c_{4}, c_{5}\right\}$ are seagulls, it follows that $\left\{r, c_{2}, w\right\}$ is not a seagull, and so r, w are adjacent. Because of the seagulls $\left\{c_{1}, p, q\right\},\left\{c_{2}, c_{3}, c_{4}\right\}$ it follows similarly that r, c_{5} are adjacent; and the seagulls $\left\{c_{1}, p, q\right\},\left\{c_{3}, w, c_{5}\right\}$ imply that r, c_{4} are nonadjacent, and similarly r, c_{3} are nonadjacent.

We have shown then that if c_{i} is mixed on $\{p, q\}$ then r, c_{i} have the same neighbour set in $\left\{c_{1}, \ldots, c_{5}, w\right\} \backslash\left\{c_{i}\right\}$; and in particular i is unique. Thus we may assume that c_{2}, \ldots, c_{5} are not mixed on $\{p, q\}$. Since c_{3}, c_{4} are nonadjacent to r and therefore adjacent to p (because $\alpha(H)<3$), it follows that c_{3}, c_{4} are adjacent to q. Hence c_{3}, c_{4} are both mixed on $\{q, r\}$, contrary to what we already showed (with p, r exchanged). This proves 2.1.

To prove the "if" half of 1.6 , suppose that it is false, and choose G, k that fail to satisfy 1.6 , with $|V(G)|+k$ minimum. Throughout this section G, k are fixed with these properties, which we summarize for convenient reference:
2.2 G is a graph with $\alpha(G) \leq 2$, and $k \geq 0$ is an integer, such that

1. $|V(G)| \geq 3 k$,
2. G is k-connected,
3. every clique of G has capacity at least k,
4. G admits an antimatching of cardinality k,
5. there do not exist k seagulls in G, pairwise disjoint, and
6. every pair G^{\prime}, k^{\prime} with $\left|V\left(G^{\prime}\right)\right|+k^{\prime}<|V(G)|+k$ satisfies 1.6.

We prove a series of results about G, k that will eventually lead to a contradiction.
Let A, B be disjoint subsets of $V(H)$, where H is a graph. A matching between A and B is a set of edges of G, each with one end in A and the other in B, and pairwise with no common ends. A matching of A into B is a matching between A and B of cardinality $|A|$; and if such a matching exists, we say that A can be matched into B. We use similar terminology for antimatchings. (An antiedge means an edge of \bar{G}.) We need the following lemma.
2.3 Let H be a graph, and let $A, B \subseteq V(H)$ be disjoint. Let $p, q \geq 0$ be integers such that $p+q \leq|B|$ and $p, q \leq|A|$. Suppose that either $q=|A|$ or there is a matching between A and B of cardinality p, and either $p=|A|$ or there is an antimatching between A, B of cardinality q. Suppose also that for every nonempty subset $Y \subseteq B$, the number of vertices in A that are mixed on Y is at least $|Y|+p+q-|A|-|B|$. Then there exist disjoint $P, Q \subseteq B$, with $|P|=p$ and $|Q|=q$, such that there is a matching of P into A and an antimatching of Q into A.

Proof. We claim that there is a matching between A and B of cardinality p. If $q<|A|$ then this is a hypothesis of the theorem, so we assume that $q=|A|$. To show the desired matching exists, it suffices by König's theorem to show that for every $X \subseteq A \cup B$, if $A \backslash X$ is anticomplete to $B \backslash X$ then $|X| \geq p$. Let $Y=B \backslash X$. If $Y=\emptyset$ then $|X| \geq|B| \geq p$ as required, so we may assume that $Y \neq \emptyset$. Every vertex in A mixed on Y belongs to $X \cap A$, and so by hypothesis $|X \cap A| \geq|Y|+p+q-|A|-|B|$, that is, $|X| \geq p$ as required. This proves our claim that there is a matching between A and B of cardinality p. Similarly there is an antimatching of cardinality q.

Let M_{1} be the set of all subsets of B that can be matched into A, and let M_{2} be the set of all subsets of B that can be antimatched into A. Thus M_{1}, M_{2} are matroids (regarded as a set of independent subsets), of ranks at least p, q respectively. For $Y \subseteq B$, let $N_{1}(Y), N_{2}(Y)$ be the sets of all vertices in A with a neighbour in Y and with a nonneighbour in Y, respectively. Thus from König's theorem, for $i=1,2$ the rank function r_{i} of M_{i} is given by $r_{i}(X)=\min _{Y \subseteq X}\left|N_{i}(Y)\right|+|X \backslash Y|$.

We claim that there exist $X_{1} \in M_{1}$ and $X_{2} \in M_{2}$ with $\left|X_{1} \cup X_{2}\right| \geq p+q$. To see this, it suffices from the matroid union theorem [5] to show that for all $X \subseteq B, r_{1}(X)+r_{2}(X)+|B \backslash X| \geq p+q$; that is, for all $X \subseteq B$ and all $Y_{1}, Y_{2} \subseteq X$,

$$
\left|N_{1}\left(Y_{1}\right)\right|+\left|X \backslash Y_{1}\right|+\left|N_{2}\left(Y_{2}\right)\right|+\left|X \backslash Y_{2}\right|+|B \backslash X| \geq p+q
$$

which can be rewritten as $\left|N_{1}\left(Y_{1}\right)\right|+\left|N_{2}\left(Y_{2}\right)\right|+|X|-\left|Y_{1}\right|-\left|Y_{2}\right| \geq p+q-|B|$. Let $Y=Y_{1} \cap Y_{2}$; then the left side of the previous inequality is at least $\left|N_{1}(Y)\right|+\left|N_{2}(Y)\right|-|Y|$, since $|X|-\left|Y_{1}\right|-\left|Y_{2}\right| \geq-|Y|$. It therefore suffices to show that $\left|N_{1}(Y)\right|+\left|N_{2}(Y)\right|-|Y| \geq p+q-|B|$ for all $Y \subseteq B$. If $Y=\emptyset$ this is true, since $|B| \geq p+q$, and so we may assume that $Y \neq \emptyset$; and so $N_{1}(Y)+N_{2}(Y)=A$. Let $M(Y)$ be the set of vertices in A that are mixed on Y; then $\left|N_{1}(Y)\right|+\left|N_{2}(Y)\right|=|A|+|M(Y)|$. We must therefore show that $|A|+|M(Y)|-|Y| \geq p+q-|B|$ for all nonempty $Y \subseteq B$. But this is a hypothesis of the theorem. This proves our claim.

Let $X_{1} \in M_{1}$ and $X_{2} \in M_{2}$ with $\left|X_{1} \cup X_{2}\right| \geq p+q$. Since the matroids have ranks at least p and at least q respectively, we may choose X_{1}, X_{2} with $\left|X_{1} \cup X_{2}\right| \geq p+q$, and $\left|X_{1}\right| \geq p$, and $\left|X_{2}\right| \geq q$. But now we can choose $P \subseteq X_{1}$ and $Q \subseteq X_{2}$ to satisfy the theorem. This proves 2.3.

We also frequently need the following.
2.4 Let H be a graph and let $n \geq 0$ be an integer, with $|V(H)| \geq 2 n$. Then either H has a matching with cardinality n, or there exists $X \subseteq V(H)$ such that:

- $H \backslash X$ has exactly $|X|+|V(H)|-2 n+2$ components
- for every component C of $H \backslash X$, and every vertex $v \in V(C), C \backslash\{v\}$ has a perfect matching (and consequently $|V(C)|$ is odd, and if $|V(C)|>1$ then C is not bipartite), and
- $|X| \leq n-1$.

Proof. Suppose that the matching does not exist. By the "Tutte-Berge formula" [1], there exists $X \subseteq V(H)$ such that $H \backslash X$ has more than $|X|+|V(H)|-2 n$ odd components, where an "odd" component means a component with an odd number of vertices. Choose such a set X maximal.

Since the number of odd components of $H \backslash X$ has the same parity as $|V(H)|+|X|$, it follows that $H \backslash X$ has at least $|X|+|V(H)|-2 n+2$ odd components. If $H \backslash X$ has more than $|X|+|V(H)|-2 n+2$ odd components, then since $|V(H)| \geq 2 n$ it follows that $H \backslash X$ has at least one odd component C, and choosing $v \in V(C)$ and replacing X by $X \cup\{v\}$ contradicts the maximality of X. Consequently $H \backslash X$ has exactly $|X|+|V(H)|-2 n+2$ odd components.

Let C be a component of $H \backslash X$. Let $v \in V(C)$, and suppose that $C \backslash\{v\}$ has no perfect matching. By Tutte's theorem, there exists $Y \subseteq V(C) \backslash\{v\}$ such that $C \backslash(Y \cup\{v\})$ has at least $|Y|+1$ odd components; but then $H \backslash(X \cup Y \cup\{v\})$ has at least $(|X|+|V(H)|-2 n+2)-1+(|Y|+1)$ odd components, and so more than $|X \cup Y \cup\{v\}|+|V(H)|-2 n$, contrary to the maximality of X. This proves that $C \backslash\{v\}$ has a perfect matching. Consequently C is odd, and if $|V(C)|>1$ then C is not bipartite.

Finally, since $H \backslash X$ has $|X|+|V(H)|-2 n+2$ components, it follows that $H \backslash X$ has at least $|X|+|V(H)|-2 n+2$ vertices, and so $|V(H)|-|X| \geq|X|+|V(H)|-2 n+2$, that is, $|X| \leq n-1$. This proves 2.4.
2.5 G is $(k+1)$-connected.

Proof. Suppose not; then since G is k-connected by 2.2.2, there is a partition (L, M, R) of $V(G)$ such that $L, R \neq \emptyset$, and L is anticomplete to R, and $|M|=k$. If $|L|,|R| \geq k$, then there are k vertex-disjoint paths between L and R, and each includes a seagull, contrary to 2.2.5. Thus we may
assume that $|L|=k-x$ say, where $1 \leq x \leq k-1$. Since $|V(G)| \geq 3 k$ by 2.2.1, it follows that $|R| \geq k+x$. Since G is k-connected, there is a matching of cardinality k between M and R. Suppose that there is a nonempty subset $C \subseteq R$ such that fewer than $|C|+k+x-|M|-|R|$ vertices in M are mixed on C. Then C is a clique; let the associated partition be (A, B, C, D) say. Thus $R \backslash C \subseteq A$, and $L \subseteq B$, and $D \subseteq M$, and $|D|<|C|+k+x-|M|-|R|$. But C has capacity

$$
|D| / 2+|V(G) \backslash C| / 2<(|C|+k+x-|M|-|R|) / 2+(|L|+|M|+|R|-|C|) / 2=k
$$

since $|L|=k-x$, contrary to 2.2.2. Thus from 2.3 , there exist disjoint $P, Q \subseteq R$ with $|P|=k$ and $|Q|=x$, such that P is matchable into M and Q is antimatchable into M. Let $M=\left\{m_{1}, \ldots, m_{k}\right\}$, and let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{x}\right\}$, where $p_{i} m_{i}$ is an edge for $1 \leq i \leq k$, and $q_{i} m_{i}$ is an antiedge for $1 \leq i \leq x$. Since G is k-connected, we may number L as $\left\{l_{1}, \ldots, l_{k-x}\right\}$ such that $l_{i} m_{x+i}$ is an edge for $1 \leq i \leq k-x$. But then

$$
\left\{m_{i}, p_{i}, q_{i}\right\}(1 \leq i \leq x),\left\{l_{i}, m_{x+i}, p_{x+i}\right\}(1 \leq i \leq k-x)
$$

are k disjoint seagulls, a contradiction. This proves 2.5 .
2.6 Every clique of G has capacity at least $k+1 / 2$, and if $|V(G)|>3 k$ then every clique has capacity at least $k+1$.

Proof. Suppose that C is a clique with $2 \operatorname{cap}(C) \leq|V(G)|-k$ and with $\operatorname{cap}(C) \leq k+1 / 2$, chosen with $\operatorname{cap}(C)$ minimum. Let (A, B, C, D) be the associated partition; thus $|D|+(|A|+|B|) / 2=$ $\operatorname{cap}(C)$, and $|D| \leq k$. Since $2|D|+|A|+|B|=2 \operatorname{cap}(C)$, and $|A|+|B|+|C|+|D|=|V(G)|$, it follows that $|C|=|D|+|V(G)|-2 \operatorname{cap}(C) \geq|D|+k$.
(1) There are $|D|$ pairwise disjoint seagulls included in $C \cup D$, each with exactly one vertex in D.

Suppose that there exists a nonempty subset $Y \subseteq C$ such that fewer than $|Y|+|D|-|C|$ vertices in D are mixed on Y. Since the only vertices mixed on Y belong to D, it follows that $2 \operatorname{cap}(Y)<(|Y|+|D|-|C|)+(|V(G)|-|Y|)$. But $|C|=|D|+|V(G)|-2 \operatorname{cap}(C)$, and so $\operatorname{cap}(Y)<\operatorname{cap}(C)$, a contradiction. Thus there is no such Y. Moreover, since $|C| \geq|D|+k$ and $|D| \leq k$, it follows that $|C| \geq 2|D|$. Hence the claim follows from 2.3, taking $p=q=|D|$. This proves (1).

Let H be the graph with vertex set $A \cup B$, in which distinct u, v are adjacent if either $u, v \in A$ and u, v are nonadjacent in G, or exactly one of u, v is in A and u, v are adjacent in G.
(2) There is a matching in H of cardinality $k-|D|$.

For suppose not. Since $|A|+|B| \geq 2(k-|D|), 2.4$ implies that there exists $X \subseteq V(H)$ with $|X| \leq k-|D|-1$ such that $H \backslash X$ has $|X|+|V(H)|-2(k-|D|-1)$ odd components; and every component of $H \backslash X$ is odd, and every component of $H \backslash X$ with more than one vertex is not bipartite. Since $|X| \leq k-|D|-1$, it follows that $|D \cup X|<k$, and since G is k-connected, we deduce that $G \backslash(D \cup X)$ is connected.

Suppose that some component P of $H \backslash X$ contains a vertex in B. Since $\alpha(G)<3$, no other component contains two vertices of A that are nonadjacent in G; and so every other component of $H \backslash X$ is bipartite, and therefore has only one vertex. Since $G \backslash(D \cup X)$ is connected, some vertex in A belongs to the union of all components of $H \backslash X$ that contain a vertex in B; and so P has more than one vertex. Consequently P is not bipartite, and so contains two vertices of A that are nonadjacent in G; and therefore no other component has a vertex in B. Thus $B \subseteq V(P) \cup X$. Since $H \backslash X$ has $|X|+|V(H)|-2(k-|D|-1)$ odd components, it follows that

$$
|A \backslash(X \cup P)| \geq|X|+|V(H)|-2(k-|D|-1)-1
$$

Let $C^{\prime}=C \cup(A \backslash(X \cup P))$. Then

$$
\left|C^{\prime}\right| \geq|C|+|X|+|V(H)|-2(k-|D|-1)-1=|V(G)|+|X|-2 k+1+|D|
$$

The only vertices mixed on C^{\prime} belong to $X \cup D$, and so
$2 \operatorname{cap}\left(C^{\prime}\right) \leq|X \cup D|+|V(G)|-\left|C^{\prime}\right| \leq|X \cup D|+|V(G)|-(|V(G)|+|X|-2 k+1+|D|)=2 k-1$, a contradiction.

Thus no component of $H \backslash X$ meets B, and so $B \subseteq X$. Since G has an antimatching of cardinality k, there is an antimatching of cardinality at least $k-|D|-|X|$ in $G \backslash(D \cup X)$. Since C is complete to all other vertices of $G \backslash(D \cup X)$, it follows that there is an antimatching of cardinality $k-|D|-|X|$ in $G \backslash(C \cup D \cup X)$. Hence at least $2(k-|D|-|X|)$ vertices are incident with antiedges in this antimatching; but for every odd component of $H \backslash X$, at least one vertex is not incident with an antiedge of the antimatching. Consequently

$$
|A \backslash X| \geq 2(k-|D|-|X|)+|X|+|V(H)|-2(k-|D|-1),
$$

that is, $|A \backslash X| \geq-|X|+|A|+|B|+2$, which is impossible. This proves (2).
Let $X_{1}, \ldots, X_{k-|D|}$ be the vertex sets of the edges of the matching in H given by (2). Let $S_{1}, \ldots, S_{|D|}$ be the $|D|$ seagulls in (1). Since $|C| \geq|D|+k=2|D|+(k-|D|)$, there are at least $k-|D|$ vertices in C that do not belong to these seagulls, say $c_{1}, \ldots, c_{k-|D|}$. But then

$$
S_{1}, \ldots, S_{|D|}, X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-|D|)
$$

are k disjoint seagulls, a contradiction. This proves 2.6.

2.7 G admits an antimatching of cardinality $k+1$.

Proof. Suppose not; then by 2.4, there exists $X \subseteq V(G)$ with $|X| \leq k$ such that $\bar{G} \backslash X$ has m odd components, say C_{1}, \ldots, C_{m}, where $m=|V(G)|+|X|-2 k$, and for $1 \leq i \leq m,\left|V\left(C_{i}\right)\right|$ is odd, and either $\left|V\left(C_{i}\right)\right|=1$ or C_{i} is not bipartite, and for every vertex v of $C_{i}, C_{i} \backslash\{v\}$ has a perfect matching. Let $X=\left\{x_{1}, \ldots, x_{t}\right\}$.
(1) There exist distinct $i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{t} \in\{1, \ldots, m\}$ such that for $1 \leq h \leq t$, x_{h} has a neighbour in $C_{i_{h}}$ and has a nonneighbour in $C_{j_{h}}$.

Let M_{1} be the set of all subsets $Y \subseteq\{1, \ldots, t\}$ such that there is an injective function $f: Y \rightarrow X$ satisfying that $f(y)$ has a neighbour in C_{y} for each $y \in Y$; and let M_{2} be the set of all $Y \subseteq\{1, \ldots, t\}$ such that there is an injective function $f: Y \rightarrow X$ satisfying that $f(y)$ has a nonneighbour in C_{y} for each $y \in Y$. We need to show that there exist a member of M_{1} and a member of M_{2} with union of cardinality $2 t$. For $Y \subseteq\{1, \ldots, m\}$, let $C(Y)$ denote $\bigcup_{y \in Y} V\left(C_{y}\right)$, and let $N_{1}(Y), N_{2}(Y)$ denote respectively the set of all vertices in X with a neighbour in $C(Y)$, and the set of all vertices in X with a nonneighbour in $C(Y)$. As in the proof of 2.3 , it suffices to show that for all $Y \subseteq\{1, \ldots, m\}$,

$$
\left|N_{1}(Y)\right|+\left|N_{2}(Y)\right|-|Y| \geq 2 t-m
$$

If $Y=\emptyset$, the claim holds since $m \geq 2 t$ (because $t \leq k$ and $|V(G)| \geq 3 k$). Thus we may assume that $Y \neq \emptyset$, and so $\left|N_{1}(Y)\right|+\left|N_{2}(Y)\right|=|X|+|M(Y)|$, where $M(Y)$ denotes the set of all vertices in X with a neighbour and a nonneighbour in $C(Y)$. Hence we must show that $|Y|-|M(Y)| \leq m-t=$ $|V(G)|-2 k$ for all nonempty subsets $Y \subseteq\{1, \ldots, m\}$.

Suppose first that $C(Y)$ is not a clique of G. Then no vertex of X is anticomplete to $C(Y)$, and so all the components $C_{y}(y \in Y)$ are also components of $\bar{G} \backslash M(Y)$. Thus $\bar{G} \backslash M(Y)$ has at least $|Y|$ odd components; and since \bar{G} has a matching of cardinality k, it follows that $\bar{G} \backslash M(Y)$ has at most $|M(Y)|+|V(G)|-2 k$ odd components. Consequently $|Y| \leq|M(Y)|+|V(G)|-2 k$ as required.

Thus we may assume that $C(Y)$ is a clique of G. All vertices of G mixed on Y belong to $M(Y)$, and so $2 \operatorname{cap}(C(Y)) \leq|M(Y)|+|V(G)|-|C(Y)|$. Since $2 \operatorname{cap}(C(Y)) \geq 2 k$, it follows that $2 k \leq|M(Y)|+|V(G)|-|C(Y)|$. But since $C(Y)$ is a clique of G, it follows that each $C_{y}(y \in Y)$ is also a clique of G, and hence has only one vertex; and so $|C(Y)|=|Y|$. Thus we have shown that $2 k \leq|M(Y)|+|V(G)|-|Y|$, as required. This proves (1).
(2) For each component C of $\bar{G} \backslash X$, if $|V(C)|>1$ and C is not a cycle of length five, then there exists $c \in V(C)$ and a perfect matching M of $C \backslash\{c\}$ such that c is nonadjacent (in C) to both ends of some edge of M.

For since $|V(C)|>1$, there exist $u, v \in V(C)$, adjacent in C. From the choice of X, both $C \backslash\{u\}$ and $C \backslash\{v\}$ have perfect matchings; and by taking the union of two such perfect matchings, we deduce that there is an odd cycle D of C such that $C \backslash V(D)$ has a perfect matching. By choosing D minimal it follows that D is a hole of C. Let M be a perfect matching of $C \backslash V(D)$. Since $\alpha(G)<3, D$ has length at least five. Suppose it has length at least seven, and let $d_{1}-d_{2}-\cdots-d_{5}$ be a path of D. Then the edge $d_{4} d_{5}$ is contained in a perfect matching of $C \backslash\left\{d_{1}\right\}$, and d_{1} is nonadjacent in C to both d_{4}, d_{5}, so the claim holds. Hence we may assume that D has length five. Suppose that $M \neq \emptyset$, and let $p q$ be an edge of M. For each vertex $d \in V(D)$, there is a perfect matching of $C \backslash\{d\}$ containing $p q$, and so we may assume that d is adjacent to one of p, q; and so one of p, q is adjacent to at least three of the five vertices in D, which is impossible since C has no triangles. Thus $M=\emptyset$, and so C is a cycle of length five, contrary to the hypothesis. This proves (2).

If $X \neq \emptyset$ and $i \in\{1, \ldots, m\}$, we may choose $i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{t}$ as in (1) with

$$
i \in\left\{i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{t}\right\}
$$

(To see this, assume that $i \neq i_{1}, \ldots, i_{t}, j_{1}, \ldots, j_{t}$. If x_{1} has a neighbour in C_{i} we may replace i_{1} by i, and otherwise we may replace j_{1} by i.) In particular, if $X \neq \emptyset$ and $t<k$, then since $\bar{G} \backslash X$
has $|V(G)|-t$ vertices and only $|V(G)|+t-2 k$ components, at least one of the components has more than one vertex, and so we may assume that $i_{h}=h$ and $j_{h}=t+h$ for $1 \leq h \leq t$ and one of $C_{1}, \ldots, C_{2 t}$ has more than one vertex. From (2), for $1 \leq i \leq m$ we may choose $c_{i} \in V\left(C_{i}\right)$ and a perfect matching of $C_{i} \backslash\left\{c_{i}\right\}$, such that

- for $1 \leq i \leq t, c_{i}, x_{i}$ are adjacent
- for $t+1 \leq i \leq 2 t, c_{i}, x_{i-t}$ are nonadjacent
- for $i>2 t$, if C_{i} has more than one vertex and is not a cycle of length five then c_{i} is nonadjacent (in C_{i}) to both ends of some edge of M_{i}
- if $0<t<k$, at least one of $C_{1}, \ldots, C_{2 t}$ has more than one vertex.

Now $M_{1} \cup \cdots \cup M_{m}$ is a matching of \bar{G} and hence an antimatching of G; and its cardinality is $(|V(G)|-m-t) / 2=k-t$, since it covers all vertices except one of each C_{i}. If there is an injective map $f: M \rightarrow\left\{c_{2 t+1}, \ldots, c_{m}\right\}$ such that $f(e)$ is adjacent to both ends of the antiedge e for each $e \in M$, then the union of $\{f(e)\}$ with the set of ends of e is a seagull, for each $e \in M$, and these $k-t$ seagulls, together with the t seagulls $\left\{x_{i}, c_{i}, c_{t+i}\right\}(1 \leq i \leq t)$ are k disjoint seagulls, a contradiction. Thus by Hall's theorem, there is a nonempty subset $M^{\prime} \subseteq M$ such that $|N| \leq\left|M^{\prime}\right|-1$, where N is the set of all c_{i} with $2 t<i \leq m$ such that c_{i} is adjacent to both ends of some member of M^{\prime}. Let I be the set of $i \in\{1, \ldots, m\}$ such that some edge of C_{i} belongs to M^{\prime}. Let $i \in I$, and let $e \in M^{\prime} \cap E\left(C_{i}\right)$. Since C_{i} is a component of $\bar{G} \backslash X$, it follows that every vertex in $V(G) \backslash\left(X \cup V\left(C_{i}\right)\right)$ is complete to $V\left(C_{i}\right)$ and in particular, each c_{j} with $j \neq i$ is adjacent to both ends of e; and so $\{j: 2 t+1 \leq j \leq m, j \neq i\} \subseteq N$. We deduce that $|N| \geq m-2 t-1$, and so $\left|M^{\prime}\right| \geq m-2 t$. But $\left|M^{\prime}\right| \leq|M|=k-t \leq m-2 t$, and so we have equality throughout, and in particular $M^{\prime}=M$, and $|V(G)|=3 k$, and $i>2 t$, and $N=\{j: 2 t+1 \leq j \leq m, j \neq i\}$. Since this holds for all $i \in I$, we deduce that $I \cap\{1, \ldots, 2 t\}=\emptyset$, and $I=\{i\}$; let $i=m$ say. Consequently every edge of M belongs to C_{m}, and so C_{1}, \ldots, C_{m-1} each have only one vertex. From the last bulletted statement above, it follows that $t=0$ or $t=k$. If $t=k$ then $M=\emptyset$, which is impossible; so $t=0$, and therefore $X=\emptyset$ and $|M|=k$.

Suppose that C_{m} is not a five-cycle. Then by the third bulletted statement above, there is an antiedge $p_{k} q_{k}$ of M such that $\left\{p_{k}, q_{k}, c_{k}\right\}$ is a seagull. Let the other antiedges of M be $p_{i} q_{i}$ for $i=1, \ldots, k-1$. Then $\left\{p_{i}, q_{i}, c_{i}\right\}(1 \leq i \leq k)$ are k disjoint seagulls, a contradiction.

This proves that C_{m} is a five-cycle, and so $|M|=2$, and therefore $k=2$, and $|V(G)|=6$, and $m=2$; but then G is a five-wheel, a contradiction. This proves 2.7.

2.8 G has exactly $3 k$ vertices.

Proof. Suppose that $|V(G)|>3 k$, and let $v \in V(G)$. Let $G^{\prime}=G \backslash\{v\}$. By 2.5, G^{\prime} is k-connected, and by $2.7, G^{\prime}$ has an antimatching of cardinality k. By 2.6 , since $|V(G)|>3 k$, it follows that every clique in G has capacity at least $k+1$, and therefore every clique in G^{\prime} has capacity at least k. But since G does not have k disjoint seagulls, the same holds for G^{\prime}, and therefore from 2.2.6 it follows that $k=2$ and G^{\prime} is a five-wheel. Since this holds for every vertex v of G, it follows that G has at least two vertices of degree at least five (for otherwise we could delete a vertex leaving no vertex of degree five), and so (by deleting some third vertex) it follows that for some choice of $v, G \backslash\{v\}$ has at least two vertices of degree at least four, and therefore is not a five-wheel, a contradiction. This proves 2.8.
2.9 Every clique has capacity at least $k+1$.

Proof. Suppose that C is a clique with capacity less than $k+1$, and therefore with capacity $k+1 / 2$, by 2.6. Let (A, B, C, D) be the associated partition; thus $|A|+|B|+2|D|=2 k+1$, that is, $|C|=|D|+k-1$, since $|V(G)|=3 k$ by 2.8 .
(1) $|D| \leq k-1$.

For suppose not; then $|D|=k$ and $|A|+|B|=1$. If $A=\emptyset$ and $|B|=1$ then G is not $(k+1)$-connected, contrary to 2.5. If $B=\emptyset$ and $|A|=1$ then $C \cup A$ is a clique with capacity at most $|D|=k$, contrary to 2.6. This proves (1).
(2) There are $|D|$ pairwise disjoint seagulls included in $C \cup D$, each with exactly one vertex in D.

Suppose that there exists a nonempty subset $Y \subseteq C$ such that fewer than $|Y|+|D|-|C|$ vertices in D are mixed on Y. Since the only vertices mixed on Y belong to D, it follows that

$$
2 \operatorname{cap}(Y)<(|Y|+|D|-|C|)+(|V(G)|-|Y|)=|V(G)|-|C|+|D|=2 \operatorname{cap}(C)=2 k+1
$$

contrary to 2.6. Thus there is no such Y. Moreover, since $|C|=|D|+k-1$ and $|D| \leq k-1$, it follows that $|C| \geq 2|D|$. Hence the claim follows from 2.3, taking $p=q=|D|$. This proves (2).

Let H be the graph with vertex set $A \cup B$ in which distinct vertices u, v are adjacent if either $u, v \in A$ and u, v are nonadjacent in G, or exactly one of u, v is in A and u, v are adjacent in G.
(3) There is a matching in H of cardinality $k-|D|$.

For suppose not. Since $|A|+|B| \geq 2(k-|D|), 2.4$ implies that there exists $X \subseteq V(H)$ with $|X| \leq k-|D|-1$ such that $H \backslash X$ has $|X|+|V(H)|-2(k-|D|-1)$ odd components, and every component of $H \backslash X$ is odd, and every component of $H \backslash X$ with more than one vertex is not bipartite. Since $|X| \leq k-|D|-1$, it follows that $|D \cup X|<k$, and since G is k-connected, we deduce that $G \backslash(D \cup X)$ is connected.

Suppose that some component P of $H \backslash X$ contains a vertex in B. Since $\alpha(G)<3$, no other component contains two vertices of A that are nonadjacent in G; and so every other component of $H \backslash X$ is bipartite, and therefore has only one vertex. Since $G \backslash(D \cup X)$ is connected, some vertex in A belongs to the union of all components of $H \backslash X$ that contain a vertex in B; and so P has more than one vertex. Consequently P is not bipartite, and so contains two vertices of A that are nonadjacent in G; and therefore no other component has a vertex in B. Thus $B \subseteq V(P) \cup X$. Let $C^{\prime}=C \cup(A \backslash(X \cup P))$. Thus

$$
\left|C^{\prime}\right| \geq|C|+|X|+|V(H)|-2(k-|D|-1)-1=|V(G)|+|X|-2 k+1+|D|
$$

since $H \backslash X$ has at least $|X|+|V(H)|-2(k-|D|-1)$ odd components. The only vertices mixed on C^{\prime} belong to $X \cup D$, and so
$2 \operatorname{cap}\left(C^{\prime}\right) \leq|X \cup D|+|V(G)|-\left|C^{\prime}\right| \leq|X \cup D|+|V(G)|-(|V(G)|+|X|-2 k+G 1+|D|)=2 k-1$,
a contradiction.
Thus no component of $H \backslash X$ meets B, and so $B \subseteq X$. Since G has an antimatching of cardinality k, there is an antimatching of cardinality at least $k-|D|-|X|$ in $G \backslash(D \cup X)$. Since C is complete to all other vertices of $G \backslash(D \cup X)$, it follows that there is an antimatching of cardinality $k-|D|-|X|$ in $G \backslash(C \cup D \cup X)$. Hence at least $2(k-|D|-|X|)$ vertices are incident with antiedges in this antimatching; but for every odd component of $H \backslash X$, at least one vertex is not incident with an antiedge of the antimatching. Consequently

$$
|A \backslash X| \geq 2(k-|D|-|X|)+|X|+|V(H)|-2(k-|D|-1),
$$

that is, $|A \backslash X| \geq-|X|+|A|+|B|+2$, which is impossible. This proves (3).
If M is a matching as in (3), then $2|M|=2(k-|D|)=|V(H)|-1$, and so there is a unique vertex w of H not incident in H with any edge of M. We call w the free vertex of M. Let $c_{1}, \ldots, c_{k-|D|-1}$ be the vertices of C in none of $S_{1}, \ldots, S_{|D|}$.
(4) $D=\emptyset$.

For suppose not. Let the $|D|$ seagulls of (2) be $S_{1}, \ldots, S_{|D|}$ say, and let $S_{1}=\left\{d_{1}, u, v\right\}$, where $d_{1} \in D$ and $u, v \in C$ and u is adjacent to d_{1}. Choose M as in (3), with free vertex w say. Let $X_{1}, \ldots, X_{k-|D|}$ be the sets of ends of the edges of M. If w is mixed on $\left\{d_{1}, u\right\}$ then $\left\{w, d_{1}, u\right\}$ is a seagull, and

$$
\left\{w, d_{1}, u\right\}, S_{2}, \ldots, S_{|D|}, X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-|D|-1), X_{k-|D|} \cup\{v\}
$$

are k disjoint seagulls, a contradiction; so w is not mixed on $\left\{d_{1}, u\right\}$. Since $w \notin D, w$ is also not mixed on $\{u, v\}$; and so w is not mixed on $\left\{d_{1}, v\right\}$. Since $\alpha(G)<3$ and d_{1}, v are nonadjacent, we deduce that w is adjacent to both d_{1}, v; but then

$$
\left\{w, d_{1}, v\right\}, S_{2}, \ldots, S_{|D|}, X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-|D|-1), X_{k-|D|} \cup\{u\}
$$

are k disjoint seagulls, again a contradiction. This proves (4).
From (4) we deduce that $C=\left\{c_{1}, \ldots, c_{k-1}\right\}$.
(5) For every choice of the matching M as in (3), if w is the free vertex of M and X is the set of ends of some edge of M then $X \cup\{w\}$ is not a seagull of G.

For let the edges of M have sets of ends X_{1}, \ldots, X_{k} say, and suppose that $X_{k} \cup\{w\}$ is a seagull of G. Then

$$
X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-1), X_{k} \cup\{w\}
$$

are k disjoint seagulls, a contradiction. This proves (5).
(6) For every k-edge matching of H, its free vertex is not in B.

For let $B=\left\{b_{0}, b_{1}, \ldots, b_{s}\right\}$, and suppose that for some k-edge matching M of H, its free vertex
is b_{0}. There are exactly s edges of M with an end in B, say $a_{i} b_{i}(1 \leq i \leq s)$. Let $t=k-s$, and let the remaining edges of M be $p_{j} q_{j}(1 \leq j \leq t)$. Thus p_{j}, q_{j} are nonadjacent in G for $1 \leq j \leq t$, and

$$
A=\left\{a_{1}, \ldots, a_{s}\right\} \cup\left\{p_{1}, \ldots, p_{t}\right\} \cup\left\{q_{1}, \ldots, q_{t}\right\}
$$

Let N be the set of all vertices in A that are complete to B in G. For $1 \leq i \leq s$, since b_{0} is adjacent to b_{i}, (5) implies that b_{0} is adjacent to a_{i}. For $1 \leq i \leq s$, by applying (5) to the matching M^{\prime} of H with free vertex b_{i} obtained from M by replacing $a_{i} b_{i}$ by $a_{i} b_{0}$, we deduce that b_{i} is complete to $\left\{a_{1}, \ldots, a_{s}\right\}$. Consequently $a_{1}, \ldots, a_{s} \in N$. By (5), for $1 \leq j \leq t b_{0}$ is nonadjacent to one of p_{j}, q_{j}, and similarly (replacing M by the matching M^{\prime} above) it follows that no vertex in B is adjacent in G to both p_{j}, q_{j}. In particular, at least one of p_{j}, q_{j} does not belong to N.

Suppose that $p_{1}, q_{1} \notin N$. Let B_{0}, B_{1} be the sets of vertices in B adjacent to p_{1} and adjacent to q_{1} respectively. Since no vertex in B is adjacent to both p_{1}, q_{1}, it follows that $B_{0} \cap B_{1}=\emptyset$; since $\alpha(G) \leq 2$ it follows that $B_{0} \cup B_{1}=B$; and since $p_{1}, q_{1} \notin N$ it follows that $B_{0}, B_{1} \neq \emptyset$.

We claim that p_{1}, q_{1} are both complete to $\left\{a_{1}, \ldots, a_{s}\right\}$. For suppose that q_{1} is nonadjacent to a_{1} say. Since $\left\{a_{1}, \ldots, a_{s}\right\}$ is complete to B, there is symmetry between the members of B, and so we may assume that $b_{0} \in B_{0}$ and $b_{1} \in B_{1}$. But then

$$
\left(M \backslash\left\{a_{1} b_{1}, p_{1} q_{1}\right\}\right) \cup\left\{q_{1} a_{1}, p_{1} b_{0}\right\}
$$

is a k-edge matching of H with free vertex b_{1}; and yet $\left\{b_{1}, p_{1}, b_{0}\right\}$ is a seagull contrary to (5). This proves that p_{1}, q_{1} are both complete to $\left\{a_{1}, \ldots, a_{s}\right\}$.

Suppose that $\left|B_{0}\right| \geq 2$, and let $b_{0}, b_{1} \in B_{0}$ say. Then

$$
\left(M \backslash\left\{p_{1} q_{1}\right\}\right) \cup\left\{p_{1} b_{0}\right\}
$$

is a k-edge matching of H with free vertex q_{1}, and yet $\left\{q_{1}, a_{1}, b_{1}\right\}$ is a seagull, contrary to (5). So $\left|B_{0}\right|=\left|B_{1}\right|=1$, and so $s=1$. Let $B_{0}=\left\{b_{0}\right\}$ and $B_{1}=\left\{b_{1}\right\}$ say.

Suppose that $k \geq 3$, and hence $t \geq 2$. Suppose first $p_{2} \in N$. Since no vertex in B is adjacent to both p_{2}, q_{2} it follows that q_{2} is nonadjacent to both b_{0}, b_{1}, and therefore adjacent to both p_{1}, q_{1}, since $\alpha(G)<3$. But then

$$
\left(M \backslash\left\{p_{2} q_{2}\right\}\right) \cup\left\{p_{2} b_{0}\right\}
$$

is a k-edge matching of H with free vertex q_{2}, and yet $\left\{q_{2}, p_{1}, q_{1}\right\}$ is a seagull contrary to (5). This proves that $p_{2} \notin N$, and similarly $p_{j}, q_{j} \notin N$ for $2 \leq j \leq t$, and so $N=\left\{a_{1}, \ldots, a_{s}\right\}$. We may assume that p_{t} is adjacent to b_{0} and q_{t} to b_{1}. But then

$$
\left\{p_{t} b_{0}, q_{t} b_{1}\right\} \cup\left\{p_{j} q_{j}: 1 \leq j \leq t-1\right\}
$$

is a k-edge matching of H with free vertex a_{1}, and yet $\left\{a_{1}, p_{1}, q_{1}\right\}$ is a seagull, contrary to (5). Thus $k=2$; but then G is a five-wheel, a contradiction.

This proves that at least one of $p_{1}, q_{1} \in N$; so we may assume that $p_{j} \in N$ and $q_{j} \notin N$ for $1 \leq j \leq t$. Let $P=\left\{p_{1}, \ldots, p_{t}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{t}\right\}$. Since no vertex in B is adjacent to both p_{j}, q_{j}, it follows that Q is anticomplete to B, and so Q is a clique. Now

$$
\left(M \backslash\left\{p_{1} q_{1}\right\}\right) \cup\left\{p_{1} b_{0}\right\}
$$

is a k-edge matching of H with free vertex q_{1}, and so $\left\{q_{1}, a_{i}, b_{i}\right\}$ is not a seagull for $1 \leq i \leq s$, and $\left\{q_{1}, p_{j}, q_{j}\right\}$ is not a seagull for $2 \leq j \leq t$. Consequently q_{1} is anticomplete to N, and therefore Q is anticomplete to $N \cup B$.

But then no vertex of G is mixed on N, and yet $|N|=k$ since $N=\left\{a_{1}, \ldots, a_{s}, p_{1}, \ldots, p_{t}\right\}$ and $s+t=k$; and so $\operatorname{cap}(N)=k$ since $|V(G)|=3 k$, contrary to 2.6 . This proves (6).

(7) For every k-edge matching of H, its free vertex is not in A.

For suppose that M is a k-edge matching of H with free vertex in A. Let the edges of H with one end in B be $a_{i} b_{i}(1 \leq i \leq s)$, and let those with both ends in A be $p_{j} q_{j}\left(1 e_{j} \leq t\right)$, where $s+t=k$ and $B=\left\{b_{1}, \ldots, b_{s}\right\}$. Let the free vertex be a_{0} where

$$
A=\left\{a_{0}, a_{1}, \ldots, a_{s}, p_{1}, \ldots, p_{t}, q_{1}, \ldots, q_{t}\right\}
$$

If a_{0}, a_{1} are nonadjacent, then $\left(M \backslash\left\{a_{1} b_{1}\right\}\right) \cup\left\{a_{0} a_{1}\right\}$ is a k-edge matching of H with free vertex $b_{1} \in B$, contrary to (6). So a_{0} is complete to a_{1}, \ldots, a_{s}, and therefore to B by (5). For $1 \leq i \leq s$, by replacing $a_{i} b_{i}$ by $a_{0} b_{i}$ we deduce that a_{i} is complete to $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\} \backslash\left\{a_{i}\right\}$ and to B, and so $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\} \cup B$ is a clique.

Since a_{0} is adjacent to at least one of $p_{j}, q_{j}(\operatorname{since} \alpha(G)<3)$ and not to both (by (5)), we may assume that a_{0}, p_{j} are adjacent and a_{0}, q_{j} are nonadjacent for $1 \leq j \leq t$. Let $P=\left\{p_{1}, \ldots, p_{t}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{t}\right\}$. For $1 \leq j \leq t$, by the argument above applied to the matching $\left(M \backslash\left\{p_{j} q_{j}\right\}\right) \cup\left\{a_{0} q_{j}\right\}$ we deduce that p_{j} is complete to $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\} \cup B$, and so P is complete to $\left\{a_{0}, a_{1}, \ldots, a_{s}\right\} \cup B$. By (5) applied to $\left(M \backslash\left\{a_{1} b_{1}\right\}\right) \cup\left\{a_{0} b_{1}\right\}$ it follows that q_{1} is nonadjacent to a_{1}, and similarly Q is anticomplete to $\left\{a_{0}, \ldots, a_{s}\right\}$.

Suppose that p_{1}, q_{2} are adjacent. By (5) applied to $\left(M \backslash\left\{p_{1} q_{1}\right\}\right) \cup\left\{a_{0} q_{1}\right\}$, it follows that $\left\{p_{1}, p_{2}, q_{2}\right\}$ is not a seagull, and so p_{1}, p_{2} are nonadjacent. If $s>0$ then

$$
\left(M \backslash\left\{p_{1} q_{1}, p_{2} q_{2}, a_{1} b_{1}\right\}\right) \cup\left\{a_{0} q_{1}, a_{1} q_{2}, p_{1} p_{2}\right\}
$$

is a k-edge matching of H with free vertex $b_{1} \in B$, contrary to (6). Thus $B=\emptyset$; but then G has no antimatching of cardinality $k+1$ contrary to 2.7 . This proves that p_{1}, q_{2} are nonadjacent and similarly P is anticomplete to Q.

Hence $P \cup\left\{a_{0}, \ldots, a_{s}\right\}$ is a clique. It has cardinality $k+1$, and yet no vertex is mixed on it, and so has capacity less than k, a contradiction. This proves (7).

From (3), (6) and (7) we have a contradiction. This proves 2.9.

$2.10 k \geq 3$.

Proof. Certainly $k>1$; suppose that $k=2$, and so $|V(G)|=6$. Since $\alpha(G)<3$ and $|V(G)|=6$, there are three pairwise adjacent vertices say b_{1}, b_{2}, b_{3}. Since there is an antimatching of cardinality three by 2.7 , we may assume that $V(G)=\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$, where a_{i}, b_{i} are nonadjacent for $i=1,2,3$. Each of a_{1}, a_{2}, a_{3} has a neighbour in $\left\{b_{1}, b_{2}, b_{3}\right\}$ since G is 3 -connected by 2.5 ; so from the symmetry we may assume that $a_{1} b_{2}$ and $a_{2} b_{3}$ are edges. Since $\left\{a_{1}, b_{1}, b_{2}\right\}$ is a seagull, it follows that $\left\{a_{2}, a_{3}, b_{3}\right\}$ is not a seagull, since there do not exist two disjoint seagulls; and so a_{2}, a_{3} are nonadjacent. Since G is three-connected, we deduce that a_{2} is adjacent to a_{1}, b_{1} and a_{3} is adjacent to a_{1}, b_{1}, b_{2}. But then $\left\{a_{1}, a_{2}, b_{1}\right\},\left\{a_{3}, b_{2}, b_{3}\right\}$ are two disjoint seagulls, a contradiction. This proves 2.10.

Let us say a vertex of G is big if its degree is at least $2 k-1$.

2.11 Every two big vertices of G are adjacent.

Proof. Suppose that $u, v \in V(G)$ are nonadjacent big vertices.
(1) There are $k-1$ seagulls in $G \backslash\{u, v\}$, pairwise disjoint.

To show this, it suffices by 2.2 .6 to check that $G \backslash\{u, v\}$ is $(k-1)$-connected and has an antimatching of cardinality $k-1$, and every clique in $G \backslash\{u, v\}$ has capacity at least $k-1$ in $G \backslash\{u, v\}$, and if $k=3$ then $G \backslash\{u, v\}$ is not a five-wheel. We check these in turn. First, by $2.5, G$ is $(k+1)$ connected and so $G \backslash\{u, v\}$ is $(k-1)$-connected. Second, by $2.7 G$ has an antimatching of cardinality $k+1$, and therefore $G \backslash\{u, v\}$ has an antimatching of cardinality $k-1$. Third, let C be a clique of $G \backslash\{u, v\}$. In G, C has capacity at least $k+1$, by 2.9 , and so in $G \backslash\{u, v\}, C$ has capacity at least $k-1$. Finally, if $k=3$ then $|V(G)|=9$, and so $G \backslash\{u, v\}$ has seven vertices and is therefore not a five-wheel. From 2.2.6 this proves (1).

Let S_{1}, \ldots, S_{k-1} be the $k-1$ seagulls of (1). For $1 \leq i \leq k-1$, we say that S_{i} is tame if for all $x \in\{u, v\}$, if x is complete to only one of S_{1}, \ldots, S_{k-1} then x is not complete to S_{i}.
(2) It is possible to choose S_{1}, \ldots, S_{k-1} such that one of them is tame.

Let I be the set of $i \in\{1, \ldots, k-1\}$ such that u is complete to S_{i}, and define J similarly with respect to v. If $k \geq 4$ then we may choose $i \in\{1, \ldots, k-1\}$ such that if $|I|=1$ then $i \notin I$, and if $|J|=1$ then $i \notin J$, and then S_{i} is tame. Thus we may assume that $k=3$, and $I=\{1\}, J=\{2\}$ say. Let w be the unique vertex of G not in $S_{1} \cup S_{2}$ and different from u, v. Since G does not have three disjoint seagulls, it follows that $\{u, v, w\}$ is not a seagull, so w is nonadjacent to at least one of u, v; and since $\alpha(G)<3, w$ is adjacent to one of u, v. Thus we may assume that w is adjacent to v and not to u. Now there is a seagull $S_{1}^{\prime} \subseteq S_{1} \cup\{w\}$ containing w. Thus S_{1}^{\prime}, S_{2} are disjoint; u has a nonneighbour in S_{1}^{\prime}; and v is complete to S_{2}, and so again the claim holds. This proves (2).

Choose S_{1}, \ldots, S_{k-1} such that one of them is tame. Choose one of these seagulls, tame, such that in addition one of u, v has two nonneighbours in it if possible. Let this seagull be S_{1} say. Since G does not have k disjoint seagulls, it follows that $G \backslash S_{1}$ does not have $k-1$ disjoint seagulls. We use 2.2.6 to obtain a contradiction, as follows.
(3) $G \backslash S_{1}$ is $(k-1)$-connected and has an antimatching of cardinality $k-1$.

For suppose that $G \backslash S_{1}$ is not $(k-1)$-connected. Thus there is a partition (P, Q, R) of $V(G)$ such that $P, Q \neq \emptyset,|R| \leq k+1, S_{1} \subseteq R$, and P is anticomplete to Q. Every seagull of G contains a vertex of R, and in particular S_{2}, \ldots, S_{k-1} each contain a vertex of R, and S_{1} contains three; and so S_{2}, \ldots, S_{k-1} each have exactly one vertex in R, and $|R|=k+1$, and $R \subseteq S_{1} \cup \cdots \cup S_{k-1}$, and therefore $u, v \notin R$. Since P, Q are cliques and u, v are nonadjacent, we may assume that $u \in P$ and $v \in Q$. Since $|R|=k+1,2.8$ implies that $|P|+|Q|<2 k$, and so we may assume that $|P|<k$. Since u has degree at least $2 k-1$, and $|P|+|R| \leq(k-1)+(k+1)$, it follows that $|P|=k-1$ and u is
complete to R. Since $|V(G)|=3 k$, we deduce that $|Q|=k$. Now v has degree at least $2 k-1$, and $|Q \cup R|=2 k+1$, and so v has only one nonneighbour in S_{1}. Since S_{1} is tame, and u is complete to S_{1}, it follows that u is complete to one of S_{2}, \ldots, S_{k-1}, say S_{2}; and so $S_{2} \subseteq P \cup R$. Since S_{2} contains only one vertex of R, it follows that v has two nonneighbours in S_{2}. But S_{2} is tame, since u is complete to S_{1} and v is not complete to S_{2}; and yet neither of u, v has two nonneighbours in S_{1}, contrary to our choice of S_{1}. This proves that $G \backslash S_{1}$ is $(k-1)$-connected. Each of S_{2}, \ldots, S_{k-1} includes a nonadjacent pair of vertices, and these pairs together with the pair $u v$ form an antimatching of cardinality $k-1$ in $G \backslash S_{1}$. This proves (3).

(4) Every clique of $G \backslash S_{1}$ has capacity at least $k-1$ in $G \backslash S_{1}$.

For let C be a clique of $G \backslash S_{1}$, and let (A, B, C, D) be the associated partition of $V\left(G \backslash S_{1}\right)$. Suppose that C has capacity at most $k-3 / 2$ in $G \backslash S_{1}$; thus, $2|D|+|A \cup B| \leq 2 k-3$. Let w be the vertex of G not in S_{1}, \ldots, S_{k-1} different from u, v, and let $T=\{u, v, w\}$. Let S be the union of S_{2}, \ldots, S_{k-1}. Since $S \cup T=V\left(G \backslash S_{1}\right)$, it follows that

$$
2|D \cap S|+|(A \cup B) \cap S|+2|D \cap T|+|(A \cup B) \cap T| \leq 2 k-3 .
$$

Now each of S_{2}, \ldots, S_{k-1} contains either a member of $D \backslash S_{1}$, or two members of $(A \cup B) \backslash S_{1}$; and so $2|D \cap S|+|(A \cup B) \cap S| \geq 2 k-4$. Consequently $2|D \cap T|+|(A \cup B) \cap T| \leq 1$. Hence $D \cap T=\emptyset$. Moreover, since u, v are nonadjacent, they do not both belong to C, so we may assume that $u \in A \cup B$; and so $(A \cup B) \cap T=\{u\}$. Hence $v, w \in C$. Since u is not mixed on C and u, v are nonadjacent, we deduce that u is anticomplete to C and so $u \in B$. Every neighbour of u in G therefore belongs to $A \cup B \cup D \cup S_{1}$, and since $2|D|+|A \cup B| \leq 2 k-3$ and u has degree at least $2 k-1$, it follows that we have equality throughout; and in particular, $D=\emptyset$ and u is complete to $A \cup(B \backslash\{u\}) \cup S_{1}$, and each of S_{2}, \ldots, S_{k-1} contains exactly two members of $A \cup B$. It follows that each of S_{2}, \ldots, S_{k-1} contains a member of C, and so is not complete to u, contradicting that S_{1} is tame. This proves (4).

Now from 2.1 $G \backslash S_{1}$ is not a five-wheel, so by $2.2 .6 G \backslash S_{1}$ has $k-1$ disjoint seagulls, and therefore G has k disjoint seagulls, a contradiction. This proves 2.11.

If $\{p, q, r\}$ is a seagull, with q adjacent to p, r, we call p, r the wings of the seagull and q its body.
2.12 Let S be a seagull in G, such that either it contains a big vertex, or there is no big vertex in $V(G)$. Then $G \backslash S$ has an antimatching of cardinality at least $k-1$.

Proof. Suppose not; then since $|V(G \backslash S)|=3 k-3 \geq 2(k-1), 2.4$ applied in $\bar{G} \backslash S$ implies that there exists $X \subseteq V(G)$ with $S \subseteq X$, such that $\bar{G} \backslash X$ has $(|X|-3)+(|V(G)|-3)-2(k-2)=|X|+k-2$ components, and for each component C of $\bar{G} \backslash X$ and each $v \in V(C), C \backslash\{v\}$ has a perfect matching.

We claim that every vertex in $V(G) \backslash X$ is big. For let the components of $\bar{G} \backslash X$ be $C_{1}, \ldots, C_{|X|+k-2}$, let $1 \leq i \leq|X|+k-2$, with $\left|V\left(C_{i}\right)\right|=2 m+1$ say, and let $v \in C_{i}$. Let $Y=V(G) \backslash\left(X \cup V\left(C_{i}\right)\right)$. Since $\bar{G} \backslash X$ has $|X|+k-2$ components, it follows that $|Y| \geq|X|+k-3$; but also $|Y|=|V(G)|-|X|-(2 m+$ $1)=3 k-|X|-2 m-1$, and so, summing, we deduce that $2|Y| \geq(|X|+k-3)+(3 k-|X|-2 m-1)=$ $4 k-2 m-4$, and so $|Y| \geq 2 k-m-2$. Since $C \backslash\{v\}$ has a perfect matching (which is an antimatching of G) and $\alpha(G)<3$, it follows that v is adjacent in G to at least m vertices in C_{i}. Also, v is
complete to Y; and v has a neighbour in $S \subseteq X$, since $\alpha(G)<3$. Hence the degree of v is at least $m+|Y|+1 \geq m+(2 k-m-2)+1=2 k-1$. This proves our claim that that every vertex in $V(G) \backslash X$ is big.

By 2.11, all vertices in $V(G) \backslash X$ are pairwise adjacent, and so each C_{i} has only one vertex. Consequently $|X|+k-2=|V(G) \backslash X|$, and so $|X|=k+1$ and $|V(G) \backslash X|=2 k-1$. By 2.9, $\operatorname{cap}(V(G) \backslash X) \geq k+1$, and therefore every vertex in X is mixed on $V(G) \backslash X$; and so no vertex in X is big, by 2.11 . In particular, no vertex of S is big, and so there is no big vertex by hypothesis, and hence $X=V(G)$, which is impossible. This proves 2.12.

A cutset in G is a subset $X \subseteq V(G)$ such that $G \backslash X$ is disconnected (and consequently has two components, both complete). We need the following lemma.
2.13 Let M be a cutset of G, with $|M|=k+1$. Let A, B be the two components of $G \backslash M$. Then for every subset $P \subseteq M$ with $|P| \leq|B|$, there is a matching of P into B. Moreover, if $b \in B$ has a neighbour in P, then there is a matching with cardinality $|P|$ between P and a subset of B containing b.

Proof. Suppose not; then by König's theorem, there is a subset $X \subseteq P \cup B$ with $|X|<|P|$ such that $P \backslash X$ is anticomplete to $B \backslash X$. But then $B \backslash X \neq \emptyset$, since $|X|<|P| \leq|B|$, and so $X \cup(M \backslash P)$ is a cutset. We deduce that $|X \cup(M \backslash P)| \geq k+1$ by 2.5 , and so $|X \cup(M \backslash P)| \geq|M|$, that is, $|M \backslash P|+|X| \geq|M \backslash P|+|P|$, a contradiction. This proves the first assertion of 2.13 , and the second follows easily.
2.14 Let C be a clique in G with $\operatorname{cap}(C)=k+1$, with associated partition (A, B, C, D), and suppose that $D \neq \emptyset$, and if some vertex of $V(G)$ is big, then there is a big vertex in D. Then there do not exist partitions $\left(A_{1}, A_{2}\right)$ of A and $\left(B_{1}, B_{2}\right)$ of B such that A_{1} is anticomplete to B_{2}, and A_{2} is anticomplete to B_{1}, and $B_{1}, B_{2} \neq \emptyset$, and $\left|A_{1}\right|-\left|B_{1}\right|=\left|A_{2}\right|-\left|B_{2}\right|$.

Proof. For suppose that such partitions exist. Thus $B_{1} \cup B_{2}=B$ is a clique, and is complete to D; A_{1} is a clique, since it is anticomplete to $B_{2} \neq \emptyset$; and similarly A_{2} is a clique.

Let $|D|=d$. Since $\operatorname{cap}(C)=k+1$ and $\left|A_{1}\right|+\left|B_{2}\right|=\left|A_{2}\right|+\left|B_{1}\right|$, it follows that $\left|A_{1}\right|+\left|B_{2}\right|=$ $k+1-d$, and

$$
|C|=3 k-(|A|+|B|+|D|)=3 k-2(k+1-d)-d=d+k-2 .
$$

(1) $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|=\left|B_{2}\right|$.

For let $\left|A_{1}\right|-\left|B_{1}\right|=x$ say; then $\left|A_{2}\right|-\left|B_{2}\right|=x$, and $|A|-|B|=2 x$. Since $G \backslash(D \cup A)$ is disconnected (because $B \neq \emptyset$) we deduce that $|D|+|A| \geq k+1$ from 2.5, and so $|D|+\left|A_{1}\right|+\left|A_{2}\right| \geq|D|+\left|A_{2}\right|+\left|B_{1}\right|$, that is, $x \geq 0$. Since $\left|A_{1}\right|+\left|B_{2}\right|=\left|A_{2}\right|+\left|B_{1}\right|=k+1-d$, it follows that $|A|+|B|=2(k+1-d)$. Consequently $(|B|+2 x)+|B|=2(k+1-d)$, that is, $|B|=k+1-d-x$, and $|A|=k+1-d+x$. By hypothesis, there exists $v \in D$ such that if any vertex is big then v is big. Since $v \in D$, it has a
nonneighour $u \in C$, and consequently u is not big, by 2.11. But u has $|C|+|A|-1$ neighbours in $C \cup A$, and

$$
|C|+|A|-1=(d+k-2)+(k+1-d+x)-1=2 k-2+x,
$$

and so $x=0$. This proves (1).
(2) For each $v \in D$, there are $d-1$ disjoint seagulls each with one vertex in $D \backslash\{v\}$ and two in C.

For if not, by 2.3 there is a subset $Y \subseteq C$ such that at most $|Y|+|D \backslash\{v\}|-|C|-1=|Y|-k$ vertices in $D \backslash\{v\}$ are mixed on Y, and hence only $|Y|-k+1$ vertices in $V(G) \backslash Y$ are mixed on Y. But then $\operatorname{cap}(Y) \leq(3 k-|Y|) / 2+(|Y|-k+1) / 2=k+1 / 2$, contrary to 2.9. This proves (2).
(3) For $i=1,2$ there is a matching in G of B_{i} into A_{i}.

For let $i=1$ say. Since $D \cup A_{1} \cup B_{2}$ is a cutset in G of cardinality $k+1$, the claim follows from 2.13 and (1).
(4) A_{1}, A_{2} are complete to D.

For suppose that $a_{1} \in A_{1}$ is nonadjacent to $v_{1} \in D$. By (3) there is a matching of B into A, say X_{0}, \ldots, X_{k-d}, where $v_{1} \in X_{0}$. Let $S_{1}=X_{0} \cup\left\{v_{1}\right\}$; thus S_{1} is a seagull. Let $D=\left\{v_{1}, \ldots, v_{d}\right\}$. Let S_{2}, \ldots, S_{d} be seagulls as in (2) with $v_{i} \in S_{i}(2 \leq i \leq d)$. Since $|C|=d+k-2$, there are $k-d$ vertices in C not in $S_{2} \cup \cdots \cup S_{d}$, say c_{1}, \ldots, c_{k-d}. But then

$$
S_{1}, \ldots, S_{d}, X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-d)
$$

are k disjoint seagulls, a contradiction. This proves (4).
(5) Let H be a graph with six vertices $\left\{h_{0}, \ldots, h_{5}\right\}$, in which h_{i} is adjacent to h_{i+1} for $1 \leq i \leq 4$, and h_{5} is adjacent to h_{1}, and h_{0} is adjacent to $h_{2}, h_{3}, h_{4}, h_{5}$, and the pairs $h_{2} h_{5}, h_{1} h_{0}$ may be edges, but all other pairs are nonadjacent. Then either $V(H)$ can be partitioned into two seagulls or H is a five-wheel.

For if h_{0}, h_{1} are nonadjacent then $\left\{h_{0}, h_{1}, h_{2}\right\},\left\{h_{3}, h_{4}, h_{5}\right\}$ are two disjoint seagulls, so we may assume that h_{0}, h_{1} are adjacent. If h_{2}, h_{5} are adjacent then $\left\{h_{0}, h_{1}, h_{3}\right\},\left\{h_{2}, h_{4}, h_{5}\right\}$ are two disjoint seagulls, and if h_{2}, h_{5} are nonadjacent then H is a five-wheel. This proves (5).

Let $h_{0} \in D$, and let S_{1}, \ldots, S_{d-1} be seagulls as in (2), not containing h_{0}. Let the vertices of C not in S_{1}, \ldots, S_{d-1} be c_{1}, \ldots, c_{k-d}. Let X_{1}, \ldots, X_{k+1-d} be a matching between B and A, where $X_{k-d} \subseteq A_{1} \cup B_{1}$ and $X_{k+1-d} \subseteq A_{2} \cup B_{2}$. Let W be the union of the $k-2$ seagulls

$$
S_{1}, \ldots, S_{d-1}, X_{i} \cup\left\{c_{i}\right\}(1 \leq i \leq k-d-1)
$$

and let S be any one of these $k-2$ seagulls (since $k \geq 3$, this is possible). Then

$$
V(G) \backslash W=\left\{c_{k-d}, h_{0}\right\} \cup X_{k-d} \cup X_{k+1-d},
$$

and the subgraph H induced on these six vertices satisfies the hypotheses of (5). Since H does not have two disjoint seagulls (since G does not have k disjoint seagulls), (5) implies that H is a fivewheel. By 2.1, $V(H) \cup S$ can be partitioned into three seagulls, and so $V(G)$ has k disjoint seagulls, a contradiction. This proves 2.14.

If S is a seagull, a seagull S^{\prime} is close to S if $\left|S \cap S^{\prime}\right|=2$. A seagull S is a king seagull if it satisfies:

- either some vertex of S is big, or no vertex of G is big, and
- either two vertices of S are big, or no seagull close to S contains two big vertices.
2.15 For every king seagull $S, G \backslash S$ is not ($k-1$)-connected.

Proof. Let S be a king seagull, and suppose that $G \backslash S$ is $(k-1)$-connected. Let $G^{\prime}=G \backslash S$. By 2.12 it follows that G^{\prime} has an antimatching of cardinality at least $k-1$. By $2.1 G^{\prime}$ is not a five-wheel. Since G^{\prime} does not have $k-1$ disjoint seagulls, 2.2.6 implies that there is a clique C of G^{\prime} with capacity in G^{\prime} at most $k-3 / 2$. Let (A, B, C, D) be the associated partition in G; thus $S \subseteq A \cup B \cup D$, and

$$
|D \backslash S|+|(A \cup B) \backslash S| / 2 \leq k-3 / 2 .
$$

Consequently $\operatorname{cap}_{G}(C) \leq k+3 / 2$; and if $S \nsubseteq D$, then $\operatorname{cap}_{G}(C) \leq k+1$, with equality only if $|S \cap D|=2$. On the other hand, by $2.9, \operatorname{cap}_{G}(C) \geq k+1$; so either $S \subseteq D$ and $\operatorname{cap}_{G}(C) \leq k+3 / 2$, or $|S \cap D|=2$ and $\operatorname{cap}_{G}(C)=k+1$. In either case it follows that $|D|+(|A|+|B|) / 2 \leq k+3 / 2-\delta / 2-\epsilon / 2$, that is,

$$
|C|+(|A|+|B|) / 2 \geq 2 k-3 / 2+\delta / 2+\epsilon / 2,
$$

where $\delta=1$ if the body of S is not in D, and 0 otherwise, and ϵ is the number of wings of S that are not in D.

Suppose that every vertex in C is big. Then at least one vertex of S is big, and since this vertex is complete to C by 2.11 , it belongs to A. Consequently the other two vertices of S belong to D; and there exist $u \in A \cap S$ and $v \in D \cap S$, adjacent. Now v has a nonneighbour w in C, and so $\{u, v, w\}$ is a seagull, close to S, and containing two big vertices. We deduce that two vertices of S are big, since it is a king seagull; but one of them is in D and therefore not complete to C, contrary to 2.11 .

Thus there exists $c \in C$ that is not big. Since c has $|C|+|A|-1$ neighbours in $C \cup A$, and has at least one neighbour in D if both wings of S are in D, it follows that the degree of c is at least $|C|+|A|-\epsilon$. Consequently $|C|+|A|-\epsilon \leq 2 k-2$ since c is not big. We deduce that
$2 k-2+\epsilon \geq|C|+|A|=(|A|-|B|) / 2+|C|+(|A|+|B|) / 2 \geq(|A|-|B|) / 2+2 k-3 / 2+\delta / 2+\epsilon / 2$, that is, $|B|-|A| \geq \delta+1-\epsilon$.

Now any vertex of $S \cap B$ is the body of S, since the other two vertices of S are in D and B is complete to D (because every vertex in D has a nonneighbour in C), and so $\delta \geq|S \cap B|$. Consequently every wing of S not in D belongs to A, and so $|A| \geq \epsilon$. It follows that $|B| \geq \delta+1>|S \cap B|$, and so some vertex of B is not in S. Hence $(D \cup A) \backslash S$ is a cutset of $G \backslash S$, and since the latter is $(k-1)$ connected, we deduce that $|D|+|A|-|S \cap(D \cup A)| \geq k-1$, and so $|D|+|A| \geq k+2-|S \cap B| \geq k+2-\delta$. Since $|B|-|A| \geq \delta+1-\epsilon$, it follows that
$k+3 / 2-\delta / 2-\epsilon / 2 \geq|D|+(|A|+|B|) / 2=|D|+|A|+(|B|-|A|) / 2 \geq(k+2-\delta)+(\delta+1-\epsilon) / 2$, a contradiction. This proves 2.15.

Suppose that $M \subseteq V(G)$ with $|M|=k+1$ such that $G \backslash M$ is disconnected. Then $G \backslash M$ has exactly two components L, R say, both cliques (since $\alpha(G)<3$). Moreover, $|L|+|R|=2 k-1$ since $|V(G)|=3 k$, and so exactly one of $|L|,|R|<k$. If $|L|<k$ we call the triple (L, M, R) a $(k+1)$-cut, and we call L and R the left and right sides of the cut. A $(k+1)$-cut (L, M, R) is central if either there is no big vertex, or some vertex in M is big.
2.16 Let (L, M, R) be a central $(k+1)$-cut. Then there is a big vertex in $V(G)$, but none in R.

Proof. For suppose not. Then there is a central $(k+1)$-cut such that either there is no big vertex in $V(G)$ or there is a big vertex in the right side of this cut; choose such a central $(k+1)$-cut (L, M, R) with left side minimal. Choose $u \in R$ and $v \in M$, adjacent, as follows. If there is a big vertex in $V(G)$, then by hypothesis there is a big vertex (say u) in R, and from the definition of "central", there is a big vertex (say v) in M, and u, v are adjacent by 2.11 . If there is no big vertex in $V(G)$, choose $v \in M$ arbitrarily; and since G is $(k+1)$-connected, v has a neighbour $u \in R$.

Let $|L|=k-x$, so $|R|=k+x-1$. Since G is $(k+1)$-connected by 2.5 , it follows that v has a neighbour $w \in L$, and so $\{u, v, w\}$ is a king seagull S say. By $2.15, G \backslash S$ is not $(k-1)$-connected, and so there is a $(k+1)$-cut $\left(L^{\prime}, M^{\prime}, R^{\prime}\right)$ with $S \subseteq M^{\prime}$. Let $A_{i j}(1 \leq i, j \leq 3)$ be the partition of $V(G)$ into nine subsets where

$$
\begin{gathered}
A_{11} \cup A_{12} \cup A_{13}=L^{\prime} \\
A_{21} \cup A_{22} \cup A_{23}=M^{\prime} \\
A_{31} \cup A_{32} \cup A_{33}=R^{\prime} \\
A_{11} \cup A_{21} \cup A_{31}=L \\
A_{12} \cup A_{22} \cup A_{32}=M \\
A_{13} \cup A_{23} \cup A_{33}=R .
\end{gathered}
$$

Thus $u \in A_{23}, v \in A_{22}$, and $w \in A_{21}$. For $1 \leq i, j \leq 3$ let $a_{i j}=\left|A_{i j}\right|$.
(1) $A_{33} \neq \emptyset$.

For suppose that $A_{33}=\emptyset$. Since $v, w \in M^{\prime}$ and $\left|M^{\prime}\right|=k+1$, it follows that $a_{23} \leq k-1$, and since $|R| \geq k$ we deduce that $R \nsubseteq M^{\prime}$, and so $A_{13} \neq \emptyset$. Consequently $A_{11}=\emptyset$, since any vertex in A_{11} is both complete to A_{13} (since L^{\prime} is a clique) and anticomplete to A_{13} (since M is a cutset). Since G is $(k+1)$-connected, it follows that w has a neighbour in L^{\prime}, and so $A_{12} \neq \emptyset$. But $|M|=k+1$, and since $A_{12}, A_{22} \neq \emptyset$ we deduce that $a_{32} \leq k-1$. Since $\left|R^{\prime}\right| \geq k$ it follows that $A_{31} \neq \emptyset$. Thus both $A_{12} \cup A_{22} \cup A_{23}$ and $A_{21} \cup A_{22} \cup A_{32}$ are cutsets, and so both have cardinality at least $k+1$; and yet the sum of their cardinalities is

$$
a_{12}+a_{22}+a_{23}+a_{21}+a_{22}+a_{32}=|M|+\left|M^{\prime}\right|=2(k+1)
$$

and so we have equality throughout. We deduce that $\left(A_{31}, A_{21} \cup A_{22} \cup A_{32}, R \cup L^{\prime}\right)$ is a central $(k+1)$-cut, contrary to the minimality of L. This proves (1).

Since $L \neq \emptyset$ it follows that R is a clique, and since L^{\prime} is anticomplete to R^{\prime} it follows that $A_{13}=\emptyset$, and similarly $A_{31}=\emptyset$. Suppose that $A_{11} \neq \emptyset$. Then both $A_{32} \cup A_{22} \cup A_{23}$ and $A_{12} \cup A_{22} \cup A_{21}$ are
cutsets, and the sum of their cardinalities equals $|M|+\left|M^{\prime}\right|=2(k+1)$, and so ($A_{11}, A_{12} \cup A_{22} \cup$ $A_{21}, R \cup R^{\prime}$) is a central ($k+1$)-cut, contrary to the minimality of L. Thus $A_{11}=\emptyset$. Since $L^{\prime} \neq \emptyset$ it follows that $A_{12} \neq \emptyset$.

Now A_{33} is a clique; let $\left(A, B, A_{33}, D\right)$ be the associated partition. Since R is a clique it follows that $A_{23} \subseteq A$, and similarly $A_{32} \subseteq A$; and since L is anticomplete to $R, A_{21} \subseteq B$, and similarly $A_{12} \subseteq B$. Thus $D \subseteq A_{22}$, and so

$$
2 \operatorname{cap}\left(A_{33}\right) \leq a_{12}+a_{21}+a_{32}+a_{23}+2 a_{22}=|M|+\left|M^{\prime}\right|=2 k+2,
$$

and since $\operatorname{cap}\left(A_{33}\right) \geq k+1$ by 2.9 , it follows that $A_{22}=D$. But then A_{33} violates 2.14, a contradiction. This proves 2.16.

Finally we can prove our main result.
Proof of 1.6. Every vertex is in a seagull, since G is connected and not complete; and consequently there is a king seagull S_{0}. From 2.15, $G \backslash S_{0}$ is not ($k-1$)-connected, and so there is a central $(k+1)$-cut (L, M, R) with $S_{0} \subseteq M$. Let $|L|=k-x$, so $|R|=k+x-1$.
(1) Every vertex in R has at least $x+1$ nonneighbours in M.

For let $v \in R$. Thus v has $k+x-2$ neighbours in R (because R is a clique), and since v is not big by 2.16, it follows that v has at most $2 k-2-(k+x-2)=k-x$ neighbours in M. Since $|M|=k+1$, the claim follows. This proves (1).
(2) For every $m_{0} \in M$, and every matching of $M \backslash\left\{m_{0}\right\}$ into R, if ab belongs to the matching then m_{0} is adjacent to both or to neither of a, b.

For let $M=\left\{m_{0}, \ldots, m_{k}\right\}$, and let $R=\left\{r_{1}, \ldots, r_{k+x-1}\right\}$, where m_{i}, r_{i} are adjacent for $1 \leq i \leq k$. For $1 \leq i \leq x-1, r_{k+i}$ has at least $x+1$ nonneighbours in M by (1), and so we may choose an antimatching of cardinality $x-1$ between $\left\{r_{k+1}, \ldots, r_{k+x-1}\right\}$ and $\left\{m_{1}, \ldots, m_{k}\right\}$. Let $s=k-x+1$. Thus we may assume that r_{k+i} is nonadjacent to m_{s+i} for $1 \leq i \leq x-1$. Let $S_{i}=\left\{m_{s+i}, r_{s+i}, r_{k+i}\right\}$, for $1 \leq i \leq x-1$. Thus S_{1}, \ldots, S_{x-1} are disjoint seagulls, and $m_{0}, \ldots, m_{s}, r_{1}, \ldots, r_{s}$ are the vertices of $M \cup R$ that are not in the union of these seagulls. Suppose that m_{0} is adjacent to exactly one of m_{j}, r_{j}, where $1 \leq j \leq k$. There are two cases, depending whether $j \leq s$ or $j>s$. Suppose first that $j \leq s$, say $j=1$. Since G is $(k+1)$-connected and $|L|=s-1$, there is a matching of cardinality $|L|$ between $\left\{m_{2}, \ldots, m_{s}\right\}$ and L, say $\left\{X_{2}, \ldots, X_{s}\right\}$ where $m_{i} \in X_{i}$ for $2 \leq i \leq s$. Then

$$
\left\{m_{0}, m_{1}, r_{1}\right\}, X_{i} \cup\left\{r_{i}\right\}(2 \leq i \leq s), S_{1}, \ldots, S_{x-1}
$$

are k disjoint seagulls, a contradiction. Thus $j>s$ and so $x \geq 2$; let $j=s+1$ say. By (1), r_{k+1} is nonadjacent to one of m_{1}, \ldots, m_{s}, say m_{s}. By 2.13 there is a matching $\left\{X_{1}, \ldots, X_{s-1}\right\}$ between L and $\left\{m_{1}, \ldots, m_{s-1}\right\}$ with $m_{i} \in X_{i}$ for $1 \leq i \leq s-1$. Then

$$
\left\{m_{0}, m_{s+1}, r_{s+1}\right\},\left\{m_{s}, r_{s}, r_{k+1}\right\}, X_{i} \cup\left\{r_{i}\right\}(1 \leq i \leq s-1), S_{2}, \ldots, S_{x-1}
$$

are k disjoint seagulls, a contradiction. This proves (2).
(3) Let $m_{0}, m_{1}, m_{2}, m_{3} \in M$ be distinct. If $m_{0} m_{1}, m_{1} m_{2}, m_{2} m_{3}$ are edges, then either m_{0} is adjacent to m_{2}, or m_{1} is adjacent to m_{3}.

For suppose not. Let $M=\left\{m_{0}, \ldots, m_{k}\right\}$. By 2.13 there is a matching of $M \backslash\left\{m_{0}\right\}$ into R; let $R=\left\{r_{1}, \ldots, r_{k+x-1}\right\}$, where m_{i}, r_{i} are adjacent for $1 \leq i \leq k$. By (2) m_{0} is adjacent to r_{1}, and nonadjacent to r_{2}, and m_{0} is adjacent to r_{3} if and only if it is adjacent to m_{3}. Now

$$
\left\{m_{0} r_{1}\right\} \cup\left\{m_{i} r_{i}: 2 \leq i \leq k\right\}
$$

is also a matching, and so m_{1} is adjacent to r_{2} and not to r_{3}. Similarly,

$$
\left\{m_{0} r_{1}, m_{1} r_{2}\right\} \cup\left\{m_{i} r_{i}: 3 \leq i \leq k\right\}
$$

is a matching, and so m_{2} is adjacent to r_{3} and not to r_{1}. Also,

$$
\left\{m_{0} r_{1}, m_{1} r_{2}, m_{2} r_{3}\right\} \cup\left\{m_{i} r_{i}: 4 \leq i \leq k\right\}
$$

is a matching, and so m_{3} is nonadjacent to r_{2}. Since $\left\{m_{0}, m_{3}, r_{2}\right\}$ is not a stable set, we deduce that m_{0}, m_{3} are adjacent, and so m_{0}, r_{3} are adjacent. But then

$$
\left\{m_{0} r_{3}, m_{1} r_{1}, m_{2} r_{2}\right\} \cup\left\{m_{i} r_{i}: 4 \leq i \leq k\right\}
$$

is a matching, and yet m_{3} is adjacent to m_{2} and not to r_{2}, contrary to (2). This proves (3).
(4) Let $m_{0}, m_{1}, m_{2}, m_{3} \in M$ be distinct. If m_{0}, m_{3} are nonadjacent, then some other pair of $m_{0}, m_{1}, m_{2}, m_{3}$ are nonadjacent.

For suppose that the other five pairs are all edges. Let $R=\left\{r_{1}, \ldots, r_{k+x-1}\right\}$, where m_{i}, r_{i} are adjacent for $1 \leq i \leq k$ (this is possible by 2.13). By (2) m_{0} is adjacent to r_{1}, r_{2}, and nonadjacent to r_{3}. From the matching

$$
\left\{m_{0} r_{1}\right\} \cup\left\{m_{i} r_{i}: 2 \leq i \leq k\right\}
$$

it follows that m_{1} is adjacent to r_{2}, r_{3}, and similarly m_{2} is adjacent to r_{1}, r_{3}. From the matching

$$
\left\{m_{0} r_{1}, m_{1} r_{2}, m_{2} r_{3}\right\} \cup\left\{m_{i} r_{i}: 4 \leq i \leq k\right\}
$$

it follows that m_{3} is adjacent to r_{2} and not to r_{1}. But m_{0} is adjacent to m_{2} and not to r_{3}, and so the matching

$$
\left\{m_{1} r_{1}, m_{2} r_{3}, m_{3} r_{2}\right\} \cup\left\{m_{i} r_{i}: 4 \leq i \leq k\right\}
$$

violates (2). This proves (4).
Let H be the subgraph of G induced on M.
(5) There exists $m_{0} \in M$ such that $H \backslash\left\{m_{0}\right\}$ is disconnected and m_{0} is complete to $M \backslash\left\{m_{0}\right\}$.

We recall that $S_{0} \subseteq M$, and so H is connected, and not complete. Hence there exists $X \subseteq V(H)$
such that $H \backslash X$ is disconnected. Choose X minimal, and let A, B be the two components of $H \backslash X$. They are both cliques since $\alpha(H)<3$. Since H is connected it follows that $X \neq \emptyset$. For each $v \in X$, x has a neighbour in A and a neighbour in B; and if v is not complete to A then there is a seagull with one wing v and the other two vertices in A, and this together with a neighbour of v in B violates (3). Thus X is complete to both A, B. If $|X|>1$ then (3) or (4) is violated (depending whether two vertices in X are nonadjacent or adjacent); so $|X|=1$ and the claim holds. This proves (5).

Let m_{0} be as in (5). We claim that m_{0} is complete to R; for suppose that $v \in R$ is nonadjacent to m_{0}. Since $\alpha(G)<3$ and M is not a clique, it follows that v has a neighbour in M, and hence in $M \backslash\left\{m_{0}\right\}$; and so by 2.13 there is a matching of cardinality k between $M \backslash\left\{m_{0}\right\}$ and some subset of R containing v, contrary to (2). Thus m_{0} is complete to R.

Let M_{1}, M_{2} be the vertex sets of the two components of $H \backslash\left\{m_{0}\right\}$. For $i=1,2$, let R_{i} be the set of vertices in R that are complete to M_{i}, and let N_{i} be the set of vertices in R with a neighbour in M_{i}. Thus $R_{i} \subseteq N_{i}$, and since $\alpha(G)<3$, it follows that $R_{1} \cup R_{2}=R$. Suppose that $N_{1} \cap N_{2} \neq \emptyset$. Hence by 2.13 there is a matching of cardinality k between $M \backslash\left\{m_{0}\right\}$ and a subset of R that contains a vertex in $N_{1} \cap N_{2}$.

Let $M=\left\{m_{0}, m_{1}, \ldots, m_{k}\right\}$, and let $R=\left\{r_{1}, \ldots, r_{k+x-1}\right\}$ where m_{i}, r_{i} are adjacent for $1 \leq i \leq k$, and say $r_{1} \in N_{1} \cap N_{2}$; let r_{1} be adjacent to m_{2} say, where $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$. Thus m_{2} is adjacent to r_{1} and not to m_{1}, contrary to (2) applied to

$$
\left\{m_{0} r_{2}, m_{1} r_{1}\right\} \cup\left\{m_{i} r_{i}: 3 \leq i \leq k\right\} .
$$

This proves that $N_{1} \cap N_{2}=\emptyset$; and so $R_{i}=N_{i}$ for $i=1,2$.
By (1), $\left|M_{1}\right| \geq x+1$. Now $|M|=k+1$, and so $\left|M_{2}\right|=k-\left|M_{1}\right| \leq k-x-1$. Since $M_{2} \cup\left\{m_{0}\right\} \cup R_{1}$ is a cutset and G is $(k+1)$-connected, it follows that $(k-x-1)+1+\left|R_{1}\right| \geq k+1$, that is, $\left|R_{1}\right| \geq x+1$. Similarly $\left|M_{2}\right|,\left|R_{2}\right| \geq x+1$. Since every vertex in $M_{1} \cup M_{2}$ has a nonneighbour in R, it follows that $M_{1} \cup M_{2}$ is complete to L.

Let us say a seagull is migratory if it contains m_{0} and a vertex of L. Suppose that there is a migratory king seagull. By 2.15 there is a cutset X in $G \backslash\left\{m_{0}\right\}$ of cardinality k that contains a vertex in L. Now $G \backslash\left\{m_{0}\right\}$ is k-connected, and so X is a minimal cutset of $G \backslash\left\{m_{0}\right\}$; and it follows that X is the union of some of the sets $L, M_{1}, R_{1}, M_{2}, R_{2}$. In particular $L \subseteq X$, and yet $\left|M_{1}\right|,\left|M_{2}\right|,\left|R_{1}\right|,\left|R_{2}\right| \geq x+1$, a contradiction. It follows that there is no migratory king seagull.

Now m_{0} is big, since it is complete to $R \cup M_{1} \cup M_{2}$ and the latter has cardinality $k+x-1+k \geq 2 k$. We deduce that no vertex in L is big (for any big vertex in L would be adjacent to m_{0} and therefore would be contained in a migratory king seagull, since m_{0} has a neighbour in R). By 2.16 , no vertex in R is big. If m_{0} is the only big vertex, then every migratory seagull is a king seagull, and there is a migratory seagull since m_{0} has a neighbour in L and one in R, a contradiction. Thus we may assume that there is a big vertex $m_{1} \in M_{1}$. By 2.11 there are no big vertices in M_{2}, and so every big vertex belongs to $M_{1} \cup\left\{m_{0}\right\}$. If m_{0} has a nonneighbour $v \in L$, then $\left\{m_{0}, m_{1}, v\right\}$ is a migratory king seagull, a contradiction. Thus m_{0} is complete to L. Let $u \in L$ and $v \in R_{1}$; then $\left\{u, v, m_{0}\right\}$ is a migratory king seagull since no close seagull contains two big vertices, a contradiction. This proves 1.6 .

3 Fractional packing

So far we have been concerned with whether G contains k disjoint seagulls. By a fractional packing (of seagulls) we mean an assignment of a real number $q(S) \geq 0$ to each seagull S of G, such that for every vertex v, the sum of $q(S)$ for all seagulls S containing v is at most one. The value of a fractional packing q is the sum of $q(S)$ over all seagulls S. (Thus there is a fractional packing q of value k such that $q(S) \in\{0,1\}$ for every seagull S if and only if G has k disjoint seagulls.) In this section we find an analogue of 1.6 for fractional packing.

A half-integral packing means a fractional packing q such that $q(S) \in\{0,1 / 2,1\}$ for every seagull S. We prove the following:
3.1 Let G be a graph with $\alpha(G)<3$, and let $k \geq 0$ be a real number. The following are equivalent:

- There is a fractional packing of value at least k
- There is a half-integral packing of value at least k
- $|V(G)| \geq 3 k$, and G has connectivity at least k, and for every clique $C, \operatorname{cap}(C) \geq k$.

Proof. We show first that the first statement implies the third. Thus, let q be a fractional packing of value at least k. Then

$$
3 k \leq 3 \sum_{S} q(S)=\sum_{S} \sum_{v \in S} q(S)=\sum_{v \in V(G)} \sum_{S \ni v} q(S) \leq \sum_{v \in V(G)} 1=|V(G)|,
$$

(where the summations subscripted by S are over all seagulls S), and so $|V(G)| \geq 3 k$. If X is a cutset of G, then every seagull contains a vertex of X, and so

$$
k \leq \sum_{S} q(S) \leq \sum_{S} q(S)|S \cap X|=\sum_{v \in X} \sum_{S \ni v} q(S) \leq \sum_{v \in X} 1=|X|,
$$

and consequently the connectivity of G is at least k. If C is a clique, let (A, B, C, D) be the associated partition; then every seagull either contains a vertex in D or two in $A \cup B$, and so

$$
\begin{gathered}
k \leq \sum_{S} q(S) \leq \sum_{S}(|S \cap D|+|S \cap(A \cup B)| / 2) q(S)=\sum_{v \in D} \sum_{S \ni v} q(S)+\sum_{v \in A \cup B} \sum_{S \ni v} q(S) / 2 \\
\leq \sum_{v \in D} 1+\sum_{v \in A \cup B} 1 / 2=|D|+|A \cup B| / 2=\operatorname{cap}(C) .
\end{gathered}
$$

Consequently $\operatorname{cap}(C) \geq k$. Thus the first statement implies the third.
Clearly the second implies the first, so it remains to show that the third implies the second. Let G be as in the third statement. Let G^{\prime} be the graph obtained from G by replacing every vertex v by two adjacent vertices a_{v}, b_{v}, and for every edge $u v$ of G making $\left\{a_{u}, b_{u}\right\}$ complete to $\left\{a_{v}, b_{v}\right\}$. Thus $\left|V\left(G^{\prime}\right)\right| \geq 6 k$, and it is easy to see that the connectivity of G^{\prime} is twice that of G, and so at least $2 k$. Moreover, for every clique C^{\prime} of G^{\prime}, let C be the clique of G where $v \in C$ if and only if $C^{\prime} \cap\left\{a_{v}, b_{v}\right\} \neq \emptyset$. Let D be the set of all vertices in $V(G) \backslash C$ that are mixed on C, and let D^{\prime} be
the set of all vertices in $V\left(G^{\prime}\right) \backslash C^{\prime}$ that are mixed on C^{\prime}. For every vertex $u \in D$, both a_{u}, b_{u} belong to D^{\prime}, and so $\left|D^{\prime}\right| \geq 2|D|$. Since $\left|C^{\prime}\right| \leq 2|C|$, it follows that

$$
\left|V\left(G^{\prime}\right) \backslash C^{\prime}\right|+\left|D^{\prime}\right| \geq 2(|V(G) \backslash C|+|D|),
$$

and so the capacity of C^{\prime} in G^{\prime} is at least twice that of C in G, and so at least $2 k$.
We claim that G^{\prime} has an antimatching of cardinality at least $2 k$. For let H be obtained from G^{\prime} by making a_{u}, a_{v} adjacent and making b_{u}, b_{v} adjacent, for all distinct $u, v \in V(G)$. Thus \bar{H} is bipartite. If \bar{H} has a matching of cardinality at least $2 k$ then our claim holds, so by König's theorem we may assume that there is a set $X \subseteq V(H)$ with $|X|<2 k$ such that $H \backslash X$ is complete. Let A be the set of $v \in V(G)$ such that $a_{v} \in X$, and let B be the set of $v \in V(G)$ such that $b_{v} \in X$. Thus $|A|+|B|<2 k$; and for all $u \in V(G) \backslash A$ and $v \in V(G) \backslash B, u$ is adjacent to v in G. Let $C=V(G) \backslash(A \cup B)$; then $(A \backslash B) \cup(B \backslash A)$ is complete to C, and so $\operatorname{cap}(C) \leq(|A|+|B|) / 2<k$, a contradiction. This proves that G^{\prime} has an antimatching of cardinality at least $2 k$. Moreover, G^{\prime} is not a five-wheel, since no two vertices in a five-wheel have the same neighbour sets. From 1.6 it follows that there are at least $2 k$ seagulls of G^{\prime}, pairwise disjoint. For every seagull S^{\prime} of G^{\prime}, there are three vertices $v \in V(G)$ such that $S^{\prime} \cap\left\{a_{v}, b_{v}\right\} \neq \emptyset$, and these three vertices form a seagull in G. Consequently there is a list of at least $2 k$ seagulls in G (possibly with repetition) such that every vertex is in at most two of them; and hence the second statement holds. This proves 3.1.

What about the algorithmic question - can we decide in polynomial time whether there are k disjoint seagulls in G (still assuming $\alpha(G)<3$)? 1.6 gives us four conditions that would decide this question if we could check whether the conditions hold; and three of them are easy to check. But how do we check in polynomial time whether $\operatorname{cap}(C) \geq k$ for each clique C ? This can in fact be done, and appears in a companion paper, joint with Sang-Il Oum [3]. But there is an alternative, indirect method, as follows. Using linear programming methods (the ellipsoid method), we can check in polynomial time whether there is a fractional packing of value k, since this is a linear programming problem of size polynomial in $\mid V(G \mid$. Consequently, we can check in polynomial time whether the third statement of 3.1 holds, by 3.1. This comprises three of the four conditions of 1.6 that we need to verify, including the difficult one; so we can indeed check the hypotheses of 1.6 in polynomial time, and thereby decide whether there are k disjoint seagulls in polynomial time.

References

[1] C.Berge, "Sur le couplage maximum d'un graphe", C.R. Acad. Sci. Paris, 247 (1958), 258-259.
[2] J.Blasiak, "A special case of Hadwiger's conjecture", J. Combinatorial Theory, Ser. B, 97 (2007), 1056-1073.
[3] Maria Chudnovsky, Sang-Il Oum and Paul Seymour, "Finding minimum clique capacity", Combinatorics, this issue.
[4] D.Dor and M.Tarsi, "Graph decomposition is NP-complete: A complete proof of Holyer's conjecture", SIAM J. Comput. 26 (1997), 1166-1187.
[5] J.Edmonds, "Matroid partition", in: Mathematics of the Decision Sciences Part 1 (Proceedings Fifth Summer Seminar on the Mathematics of the Decision Sciences, Stanford, California,

1967; G.B.Dantzig, A.F.Vienott,Jr. eds.) [Lectures in Applied Mathematics Vol.11], American Mathematical Society, Providence, Rhode Island, 1968, 333-345.
[6] H.Hadwiger, "Über eine Klassifikation der Streckenkomplexe", Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943), 133-142.
[7] M.D.Plummer, M.Stiebitz and B.Toft, "On a special case of Hadwiger's conjecture", Discuss. Math. Graph Theory 23 (2005), 333-363.

