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Abstract

Branch-width is defined for graphs, matroids, and, more

generally, arbitrary symmetric submodular functions. For

a finite set V , a function f on the set of subsets 2V of V

is submodular if f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ),

and symmetric if f(X) = f(V \ X). We discuss the

computational complexity of recognizing that symmetric

submodular functions have branch-width at most k for fixed

k. An integer-valued symmetric submodular function f on

2V is a connectivity function if f(∅) = 0 and f({v}) ≤ 1

for all v ∈ V . We show that for each constant k, if a

connectivity function f on 2V is presented by an oracle

and the branch-width of f is larger than k, then there is a

certificate of polynomial size (in |V |) such that a polynomial-

time algorithm can verify the claim that branch-width of f

is larger than k. In particular it is in coNP to recognize

matroids represented over a fixed field with branch-width at

most k for fixed k.

1 Introduction

Branch-width (for graphs) was defined by Robertson
and Seymour [6]. We will define the more general
branch-width of symmetric submodular functions later
in Section 2. One natural question is the following.

Let k be a fixed constant and let V be a finite
set. What is the time complexity of deciding
whether the branch-width of a symmetric sub-
modular function f : 2V → Z is at most k?

(We assume that f is presented by an oracle.)

We answer this question partially when f(∅) = 0
and f({v}) ≤ 1 for all v ∈ V . In this case, we say that
f is a connectivity function. Symmetric submodular
functions defining branch-width of matroids [6] and
rank-width of graphs [5] are instances of connectivity
functions. We show that if the branch-width of a
connectivity function is larger than k, then there is a
certificate of this fact, of polynomial size in |V |, which
can be checked in time a polynomial in |V |.
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We are not yet able to find a polynomial-time
algorithm to decide whether branch-width is at most k,
but in [5], we give a polynomial-time “approximation”
algorithm that, for fixed k, either confirms that branch-
width of a connectivity function is larger than k or
obtains a branch-decomposition of width at most 3k+1.

There have been answers for our problem for a few
special symmetric submodular functions separately. We
summarize them in Table 1. In particular, it is open
whether there exists a polynomial-time algorithm that
decides whether a matroid (given by an independence
oracle) has branch-width at most k for fixed k. More-
over, this problem is open when the input matroid is
represented over a fixed non-finite field. Our result im-
plies that it is in NP∩coNP to decide that branch-width
of represented matroids is at most k; in this case we
do not need an oracle to obtain the input matroid and
therefore we can say that our algorithm is in coNP.

Object Results
Branch-width of graphs G Linear time [1]
Branch-width of matroids M
represented over a fixed finite
field

O(|E(M)|3)-time1[2]

Rank-width of graphs G O(|V (G)|3)-time [4]
Branch-width of matroids ?

Table 1: Parametrized algorithms on deciding branch-
width ≤ k for fixed k

2 Definitions

Let us write Z to denote the set of integers. Let V be a
finite set and f : 2V → Z be a function. If

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for all X,Y ⊆ V , then f is said to be submodular. If f
satisfies f(X) = f(V \ X) for all X ⊆ V , then f is said
to be symmetric.

A subcubic tree is a tree with at least two vertices
such that every vertex is incident with at most three
edges. A leaf of a tree is a vertex incident with exactly
one edge. We call (T,L) a branch-decomposition of a

1The input is given by the matrix representation of matroids.



symmetric submodular function f if T is a subcubic tree
and L : V → {t : t is a leaf of T} is a bijective function.
(If |V | ≤ 1 then f admits no branch-decomposition.)

For an edge e of T , the connected components of
T \ e induce a partition (X,Y ) of the set of leaves of T .
The width of an edge e of a branch-decomposition (T,L)
is f(L−1(X)). The width of (T,L) is the maximum
width of all edges of T . The branch-width of f is the
minimum width of a branch-decomposition of f . (If
|V | ≤ 1, we define that the branch-width of f is f(∅).)

3 Comparing branch-width with a fixed

number

Let f be a symmetric submodular functions on 2V .
To prove that branch-width of f is at most k, we can
provide a natural certificate, a branch-decomposition of
width at most k. However it is nontrivial to disprove
that branch-width of f is at most k. We use the
notion called a tangle, which is dual to the notion of
branch-width and was introduced by Robertson and
Seymour [6].

A class T of subsets of V is called a f -tangle of
order k if it satisfies the following four axioms.

(T1) For all A ∈ T , we have f(A) < k.

(T2) For all A ⊆ V , if f(A) < k, then either A ∈ T or
V \ A ∈ T .

(T3) If A,B,C ∈ T , then A ∪ B ∪ C 6= V .

(T4) For all v ∈ V , we have V \ {v} /∈ T .

Proposition 3.1. Let T be a f -tangle of order k. If

A ∈ T , B ⊆ A, and f(B) < k, then B ∈ T .

Proof. By (T2), either B ∈ T or V \ B ∈ T . Since
(V \ B) ∪ A ∪ A = V , the f -tangle T cannot contain
V \ B by (T3). Hence B ∈ T .

Robertson and Seymour [6] showed that tangles are
related to branch-width.

Theorem 3.1. (Robertson and Seymour [6])
There is no f -tangle of order k + 1 if and only if

branch-width of f is at most k.

Therefore to show that the branch-width of f is larger
than k, it is enough to provide a f -tangle T of order
k + 1. However, T might contain exponentially many
subsets of V . So, we need to devise a way to encode a
f -tangle of order k + 1 into a certificate of polynomial
size in |V |. If f is a connectivity function, then there
is such an encoding as we explain later. We need the
following lemmas. For disjoint subsets of X and Y , let
fmin(X,Y ) = minX⊆U⊆V \Y f(U).

Lemma 3.1. For a connectivity function f on subsets

of V ,

fmin(A,B) + fmin(C,D) ≥

fmin(A ∩ C,B ∪ D) + fmin(A ∪ C,B ∩ D).

Proof. Let S be a subset of V such that A ⊆ S ⊆ V \B
and f(S) = fmin(A,B). Let T be a subset of V such
that C ⊆ T ⊆ V \ D and f(T ) = fmin(C,D). By the
submodularity of f , we deduce

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T )

and moreover f(S ∩ T ) ≥ fmin(A ∩ C,B ∪ D) and
f(S ∪ T ) ≥ fmin(A ∪ C,B ∩ D).

Lemma 3.2. For a connectivity function f on subsets

of V ,

0 ≤ fmin(A,B) ≤ min(|A|, |B|).

Proof. Since f is symmetric, fmin(A,B) = fmin(B,A)
and therefore it is enough to show that fmin(A,B) ≤
|A|. We proceed by induction on |A|. If A = ∅, then
it is clear that fmin(∅, B) ≤ 0. Now let us assume that
v ∈ A. Then by Lemma 3.1, fmin(A,B) ≤ fmin(A \
{v}, B) + fmin({v}, B) and therefore fmin(A,B) ≤ |A|.

Lemma 3.3. Let f be a connectivity function on subsets

of V . For a subset Z of V , there exist a subset X of Z
and a subset Y of V \ Z such that fmin(X,Y ) = f(Z)
and |X| = |Y | = f(Z).

Proof. Let X be the maximum subset of Z such that
fmin(X,V \ Z) = |X|. For all v ∈ Z \ X, fmin(X ∪
{v}, V \Z) ≤ |X|+1 by Lemma 3.2. Moreover fmin(X∪
{v}, V \Z) ≥ fmin(X,V \Z) = |X| by definition. Since
X is chosen maximally, fmin(X ∪ {v}, V \ Z) 6= |X| + 1
and therefore fmin(X∪{v}, V \Z) = |X| for all v ∈ Z\X.
By Lemma 3.1, we deduce that fmin(Z, V \Z) = |X| and
therefore |X| = f(Z).

We now take Y as a maximum subset of V \Z such
that fmin(X,Y ) = |Y |. By the similar argument, we
deduce that fmin(X,Y ) = f(Z) = |X| = |Y |.

For a connectivity function f on subsets of V , we say
that (P, µ) is a f -tangle kit of order k if P = {(X,Y ) :
X,Y ⊆ V,X ∩ Y = ∅, fmin(X,Y ) = |X| = |Y | < k} and
µ : P → 2V is a function satisfying the following three
axioms.

(K1) µ(X1, Y1) ∪ µ(X2, Y2) ∪ µ(X3, Y3) 6= V for all
(Xi, Yi) ∈ P for i ∈ {1, 2, 3}.

(K2) for all (A,B) ∈ P , there is no Z such that
A ⊆ Z ⊆ V \ B, f(Z) = |A|, and Z 6⊆ µ(A,B)
and V \ Z 6⊆ µ(B,A).



Equivalently for all x ∈ V \ (µ(A,B) ∪ B) and
y ∈ V \ (µ(B,A) ∪ A), if x 6= y, then fmin(A ∪
{x}, B ∪ {y}) > |A|.

(K3) |µ(X,Y )| 6= |V | − 1 for all (X,Y ) ∈ P .

In the following theorem we show that for a connectivity
function f , f -tangle kits play the same role as f -tangles.

Theorem 3.2. Let f be a connectivity function on V .

There exists a f -tangle of order k if and only if there

exists a f -tangle kit of order k.

Proof. Let T be a f -tangle of order k. We claim that
there exists a f -tangle kit of order k. Let P = {(X,Y ) :
X,Y ⊆ V,X ∩ Y = ∅, fmin(X,Y ) = |X| = |Y | < k}.
We claim that for each (X,Y ) ∈ P , there is a unique
maximal set Z ∈ T , denoted by µ(X,Y ), such that
X ⊆ Z ⊆ V \ Y and f(Z) = fmin(X,Y ). Suppose that
Z1 and Z2 are contained in T and X ⊆ Z1 ⊆ V \ Y ,
X ⊆ Z2 ⊆ V \ Y , and f(Z1) = f(Z2) = fmin(X,Y ). By
submodularity,

f(Z1∪Z2)+f(Z1∩Z2) ≤ f(Z1)+f(Z2) = 2fmin(X,Y ).

Since f(Z1 ∪ Z2) ≥ fmin(X,Y ) and f(Z1 ∩ Z2) ≥
fmin(X,Y ), we deduce that f(Z1 ∪Z2) = f(Z1 ∩Z2) =
fmin(X,Y ). Since Z1 ∪ Z2 ∪ (V \ (Z1 ∪ Z2)) = V , we
obtain that Z1 ∪ Z2 ∈ T . Thus µ : P → 2V is well-
defined. (K1) follows (T3) and (K3) follows (T4). (K2)
is true by (T2) and the construction of µ.

Conversely let us assume that we are given a f -
tangle kit (P, µ) of order k. We construct a f -tangle T
of order k as follows.

For all Z such that f(Z) < k, we choose
(A,B) ∈ P such that

|A| = |B| = f(Z) and A ⊆ Z ⊆ V \ B.

If Z ⊆ µ(A,B), then Z ∈ T . Otherwise,
V \ Z ∈ T .

Let us first show that this is well-defined. Let Z
be a subset of V such that f(Z) < k. By Lemma
3.3, there are A ⊆ Z and B ⊆ V \ Z such that
fmin(A,B) = |A| = |B| = f(Z). By (K2), either
Z ⊆ µ(A,B) or V \Z ⊆ µ(B,A). Suppose that there are
two pairs (A1, B1), (A2, B2) ∈ P such that A1, A2 ⊆ Z,
B1, B2 ⊆ V \ Z, fmin(A1, B1) = fmin(A2, B2) = f(Z),
and Z ⊆ µ(A1, B1) but Z 6⊆ µ(A2, B2). We obtain that
µ(B2, A2) ∪ µ(A1, B1) = V , because V \ Z ⊆ µ(B2, A2)
by (K2). This contradicts (K1).

We now claim that the f -tangle axioms are satisfied
by T . Axioms (T1) and (T2) are true by construction.
To show (T3), assume that Ai ∈ T for all i ∈ 1, 2, 3.

There exists (Xi, Yi) ∈ P for each i such that Ai ⊆
µ(Xi, Yi), and therefore A1 ∪ A2 ∪ A3 ⊆ µ(X1, Y1) ∪
µ(X2, Y2) ∪ µ(X3, Y3) 6= V by (K2). To obtain (T4),
suppose that V \{v} ∈ T . Then, there exists (X,Y ) ∈ P
such that V \ {v} ⊆ µ(X,Y ). Hence µ(X,Y ) = V
or µ(X,Y ) = V \ {v}, but we obtain a contradiction
because of (K1) and (K3).

By the result of the previous theorem, we can provide a
f -tangle kit as a certificate that branch-width is larger
than k. In the following theorem we show that the
size of its description is in a polynomial in |V | and this
certificate can be checked in time a polynomial in |V |
for fixed k.

Theorem 3.3. Let f be a connectivity function on

subsets of V having branch-width larger than k. We

assume that f is given by an oracle. For fixed k, there

is a certificate that f has branch-width larger than k, of

size at most a polynomial in |V |, that can be checked in

time a polynomial in |V |.

Proof. By Theorem 3.2, it is enough to provide a f -
tangle kit (P, µ) of order k + 1 to our algorithm as
a certificate that branch-width of f is larger than k.

Since |P | ≤
∑k

i=0

(

|V |
i

)2

, a description of (P, µ) has
polynomial size in |V |.

Now we describe a polynomial-time algorithm that
check that the certificate is valid, that is to decide
whether (P, µ) satisfies its three axioms (K1), (K2),
and (K3). By using submodular function minimization
algorithms such as [7] or [3], we can calculate fmin in
time a polynomial in |V |. So it is clear that those axioms
can be checked in time a polynomial in |V |.

Suppose that we can calculate f by using an input of
size in a polynomial in |V | in polynomial time. By the
previous theorem, we conclude that deciding whether
the branch-width is at most k for fixed k is in NP∩coNP.
But, it is still open whether it is in P. We conjecture that
this is true.
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