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Abstract

Let us say two (simple) graphs G,G′ are degree-equivalent if they have the same vertex set, and for
every vertex, its degrees in G and in G′ are equal. In the early 1980’s, S. B. Rao made the conjecture
that in any infinite set of graphs, there exist two of them, say G and H, such that H is isomorphic
to an induced subgraph of some graph that is degree-equivalent to G. We prove this conjecture.



1 Introduction

Neil Robertson and the second author proved in [7] that the class of all graphs forms a “well-quasi-
order” under minor containment, that is, that in every infinite set of graphs, one of its members is
a minor of another. The same is not true for induced subgraph containment, but a conjecture of S.
B. Rao proposed a way to tweak the latter containment relation to make it a well-quasi-order; and
in this paper we prove Rao’s conjecture.

Let us be more precise. All graphs and digraphs in this paper are finite and without loops or
parallel edges, and digraphs do not have directed cycles of length two. If G is a graph and X ⊆ V (G),
we denote by G|X the subgraph of G induced on X (that is, the subgraph with vertex set X and
edge set all edges of G with both ends in X); and we say that G|X is an induced subgraph of G. Let
us say two graphs G,G′ are degree-equivalent if they have the same vertex set, and for every vertex,
its degrees in G and in G′ are equal; and H is Rao-contained in G if H is isomorphic to an induced
subgraph of some graph that is degree-equivalent to G. In the early 1980’s, S. B. Rao made the
conjecture, the main theorem of this paper, that:

1.1 In any infinite set of graphs, there exist two of them, say G and H, such that H is Rao-contained
in G.

A quasi-order Q consists of a class E(Q) and a transitive reflexive relation which we denote by
≤ or ≤Q; and it is a well-quasi-order or wqo if for every infinite sequence qi (i = 1, 2 . . .) of elements
of E(Q) there exist j > i ≥ 1 such that qi ≤Q qj. Rao-containment is transitive (this is an easy
exercise), and so the following is a reformulation of 1.1:

1.2 The class of all graphs, ordered by Rao-containment, is a wqo.

The proof falls into three main parts, and let us sketch them here. A “split graph” is a graph
such that there is a partition of its vertex set into a stable set and a clique. For Rao-containment of
split graphs, we will require the vertex set injection to preserve this partition. A “k-rooted graph”
means (roughly) a graph with k of its vertices designated as roots. For Rao-containment of k-rooted
graphs, we require the vertex set injection to respect the roots. (This will all be said more precisely
later.) We show three things:

• For every graph H, if G is a graph that does not Rao-contain H, then V (G) can be partitioned
into two sets (except for a bounded number of vertices), the first inducing a split graph and the
second inducing a graph of bounded degree (or the complement of one), such that the edges
between these two sets are under control. This allows us to break G into two parts; but both
parts acquire a bounded number of roots, because we need to remember how to hook them
back together to form G. This is proved in 4.2.

• For all k, the k-rooted graphs of bounded degree (except for the roots) form a wqo under
Rao-containment. This is proved in 6.1

• For all k, the k-rooted split graphs also form a wqo under Rao-containment. This is proved in
7.2.

From these three statements, the truth of 1.2 follows in a few lines, and is given immediately after
7.2. Then the proof of 7.2 occupies the remainder of the paper.
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2 Rao-containment in fixed position

We need to study the structure of the graphs that do not Rao-contain a fixed graph H. For there
to be a Rao-containment of H in G, there must be an injection of V (H) into V (G), and a graph
G′ degree-equivalent to G, such that the injection is an isomorphism between H and an induced
subgraph of G′. Thus, we need to understand the graphs G such that for every injection of V (H)
into V (G) there is no suitable choice of G′. But first, a much easier question. Suppose we are
given the injection; then when is it true that no suitable G′ exists? For this we can give a good
characterization, theorem 2.1 below; either G′ exists or there is an obvious reason why it does not
exist.

Let G be a graph. If X,Y ⊆ V are disjoint, we define s(X,Y ) or sG(X,Y ) to be

∑

x∈X

deg(x) +
∑

y∈Y

deg(y) − |X||Y |,

where deg(x) denotes the degree of x in G and deg(y) = |V (G)| − 1− deg(y) is the degree of y in G,
the complement graph of G.

The main result of this section is the following.

2.1 Let G,H be graphs with V (H) ⊆ V (G). Then the following are equivalent:

• there is a graph G′ degree-equivalent to G, such that G′|V (H) = H

• sH(X ∩ V (H), Y ∩ V (H)) ≤ sG(X,Y ) for every choice of disjoint X,Y ⊆ V (G).

The proof needs several steps. We begin with the following. If G is a graph and X,Y are disjoint
subsets of V (G), we denote by E(X,Y ) or EG(X,Y ) the set of edges of G with one end in X and
one end in Y .

2.2 Let G be a bipartite graph, and let (A,B) be a bipartition. For each vertex v let d(v) be an
integer. Then the following are equivalent:

• there exists F ⊆ E(G) such that every vertex v is incident with exactly d(v) members of F

•
∑

u∈A d(u) =
∑

v∈B d(v), and for every X ⊆ A and Y ⊆ B,

∑

u∈X

d(u) +
∑

v∈Y

(deg(v) − d(v)) ≥ |EG(X,Y )|.

Proof. Suppose that F satisfies the first statement. Then
∑

u∈A d(u) = |F |, and also
∑

v∈B d(v) =
|F |, and so

∑
u∈A d(u) =

∑
v∈B d(v). Let X ⊆ A and Y ⊆ B, and let there be p edges in F

between X and Y . Since
∑

u∈X d(u) is the total number of edges in F with an end in X, it
follows that

∑
u∈X d(u) ≥ p. On the other hand,

∑
v∈Y (deg(v) − d(v)) is the number of edges in

E(G) \ F with an end in Y , and there are |EG(X,Y )| − p such edges between X and Y ; and so∑
v∈Y (deg(v)− d(v)) ≥ |EG(X,Y )| − p. By adding, we deduce the second statement of the theorem.
For the converse, suppose the second statement of the theorem holds. For v ∈ A, setting X = {v}

and Y = ∅ implies that d(v) ≥ 0, and for v ∈ B, setting X = A and Y = B\{v} implies that d(v) ≥ 0.
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Thus d(v) ≥ 0 for all v ∈ V (G). Direct every edge of G from A to B, and add two new vertices a, b
to G, where a is adjacent to every member of A and b is adjacent from every member of B, forming a
digraph H say. For each edge e of H let c(e) = 1 if e ∈ E(G), and let c(e) = d(v) if e is incident with
a or b and with one vertex v of G. Since c(e) ≥ 0 for all e ∈ E(H), the max-flow min-cut theorem
implies that one of the following cases holds:

• there exists Z ⊆ V (H) with a ∈ Z and b /∈ Z, such that
∑

e∈D c(e) <
∑

u∈A d(u) , where D is
the set of edges e of H with tail in Z and head in V (H) \ Z

• there is an integer-valued flow φ in H from a to b of total value
∑

u∈A d(u) such that 0 ≤
φ(e) ≤ c(e) for every edge e of H.

Suppose that Z is as in the first case, and let X = A \ Z and Y = B \ Z. Then

∑

u∈X

d(u) +
∑

v∈B\Y

d(v) + |E(A \ X,Y )| =
∑

e∈D

c(e) <
∑

v∈B

d(v),

and so ∑

u∈X

d(u) + |E(A \ X,Y )| −
∑

v∈Y

d(v) < 0.

Since
|E(A \ X,Y )| =

∑

v∈Y

degG(v) − |E(X,Y )|,

substituting for |E(A \ X,Y )| yields

∑

u∈X

d(u) + +
∑

v∈Y

degG(v) − |E(X,Y )| −
∑

v∈Y

d(v) < 0,

that is, ∑

u∈X

d(u) +
∑

v∈Y

(degG(v) − d(v)) < |E(X,Y )|,

a contradiction. Consequently there is no Z as in the first case.
Thus the second case holds; let φ be as in the second case. It follows that φ(e) = c(e) for every

edge e incident with a or b, and setting F to be the set of edges e of G with φ(e) = 1 therefore
satisfies the first statement of the theorem. This proves 2.2.

If G is an (undirected) graph, an arc of G means an ordered pair (u, v) such that u, v ∈ V (G)
are adjacent, and we call u its tail and v its head. Let A(G) denote the set of arcs of G; thus,
|A(G)| = 2|E(G)|.

2.3 Let G be a graph and for every vertex v let d(v) be an integer. Then the following are equivalent:

• there exists F ⊆ A(G), such that for every vertex v ∈ V (G), there are exactly d(v) members of
F with tail v and d(v) members with head v

•
∑

x∈X d(x) +
∑

y∈Y (degG(y) − d(y)) ≥ |EG(X,Y )| for every pair of disjoint subsets X,Y ⊆
V (G).
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Proof. Take two new vertices ax, bx for each vertex x of G, and let A = {ax : x ∈ V (G)} and
B = {bx : x ∈ V (G)}. Let H be the graph with vertex set A ∪ B and edge set A(G), where for
each arc e = (x, y) ∈ A(G), e is incident in H with ax and by. Consequently (A,B) is a bipartition
of H. For each x ∈ V (G), define d′(ax) = d′(bx) = d(x). Thus

∑
u∈A d′(u) =

∑
v∈B d′(v), since

d′(av) = d′(bv) for each v ∈ V (G). Now the first statement of the theorem holds if and only if there
exists F ⊆ E(H) such that every vertex v ∈ V (H) is incident with exactly d′(v) members of F . By
2.2, this is true if and only if

∑

u∈X′

d′(u) +
∑

v∈Y ′

(degH (v) − d′(v)) ≥ |EH(X ′, Y ′)|

for all X ′ ⊆ A and Y ′ ⊆ B. By setting X ′ = {ax : x ∈ X ∪ Z} and Y ′ = {by : y ∈ Y ∪ Z}, we see
that the latter statement is true if and only if

∑

x∈X∪Z

d(x) +
∑

y∈Y ∪Z

(degG(y) − d(y)) ≥ |EG(X,Y )| + |EG(X ∪ Y,Z)| + 2|D(Z)|,

for all choices of pairwise disjoint subsets X,Y,Z ⊆ V (G), where D(Z) denotes the set of edges of
G with both ends in Z. This can be rewritten as

∑

x∈X

d(x) +
∑

y∈Y

(degG(y) − d(y)) − |EG(X,Y )| +
∑

z∈Z

degG(z) − |EG(X ∪ Y,Z)| − 2|D(Z)| ≥ 0.

The last three terms sum to |EG(W,Z)|, where W = V (G) \ (X ∪ Y ∪ Z); and this is minimized
when Z = ∅. Consequently the condition holds for all choices of disjoint X,Y,Z, if and only if it
holds for all disjoint X,Y with Z = ∅; and so the condition is equivalent to the second statement of
the theorem. This proves 2.3.

Let us say a graph G is constricted if for every two cycles C1, C2 of G, both of odd length, the
subgraph G|(V (C1 ∪ C2)) is connected. (Thus, either C1, C2 share a vertex, or some vertex of C1 is
adjacent to some vertex of C2.) For constricted graphs we can modify 2.3 as follows:

2.4 Let G be a constricted graph, and for every vertex v let d(v) be an integer, such that
∑

v∈V (G) d(v)
is even. Then the following are equivalent:

• there exists F ⊆ E(G) such that every vertex v ∈ V (G) is incident with exactly d(v) members
of F

• there exists F ′ ⊆ A(G), such that for every vertex v ∈ V (G), there are exactly d(v) members
of F ′ with tail v and d(v) members with head v

•
∑

x∈X d(x) +
∑

y∈Y (degG(y) − d(y)) ≥ |EG(X,Y )| for every pair of disjoint subsets X,Y ⊆
V (G).

Proof. The equivalence of the second and third statement follows from 2.3. Moreover if F satisfies
the first statement, then the set F ′ of arcs of G corresponding to the edges in F (thus |F ′| = 2|F |)
satisfies the second statement. Thus it suffices to show that the second statement implies the first.
Let F ′ satisfy the second statement. Let F2 be the set of all arcs (u, v) in F ′ such that (v, u) also
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belongs to F ′, and let F1 = F ′ \ F2. Choose F ′ with F1 minimal. Let H be the digraph with vertex
set V (G) and edge set F1, with the natural incidence. Since every vertex v ∈ V (G) is the head of
d(v) arcs in F ′ and the tail of d(v) arcs in F ′, and also every vertex v is the head of the same number
of arcs in F2 as it is the tail, it follows by subtracting that H is an eulerian digraph, and therefore
its edge set can be partitioned into the edge sets of directed cycles C1, . . . , Ck say.

Suppose first that one of C1, . . . , Ck has even length, say C1, and let its vertices be v0, v1, v2, . . . , v2n =
v0 in order. Let F ′′ be obtained from F ′ by

• removing the arcs (v2i−1, v2i) for 1 ≤ i ≤ n, and

• adding the arcs (v2j+1, v2j) for 0 ≤ j ≤ n − 1.

Then F ′′ also satisfies the second statement of the theorem, contrary to the maximality of F2. This
proves that C1, . . . , Ck all have odd length.

Next suppose that some two of C1, . . . , Ck are not vertex-disjoint, say C1 and C2, and so we can
number the vertices of these two cycles such that C1 has vertices u0, u1, . . . , u2m+1 = u0 in order,
and C2 has vertices v0, v1, . . . , v2n+1 = v0 in order, where u0 = v0. Note that since C1, C2 have no
common edges and all their edges belong to F1, it follows that no edge of C1 has the same set of
ends as an edge of C2. Let F ′′ be obtained from F ′ by

• removing the arcs (u2i−1, u2i) for 1 ≤ i ≤ m, and removing (v2j , v2j+1) for 0 ≤ j ≤ n, and

• adding the arcs (u2i+1, u2i) for 0 ≤ i ≤ m, and adding (v2j , v2j−1) for 1 ≤ j ≤ n.

Again, this contradicts the minimality of F1. Consequently C1, . . . , Ck are pairwise vertex-disjoint.
Suppose that k ≥ 2, and let C1 have vertices u0, u1, . . . , u2m+1 = u0 in order, and let C2 have

vertices v0, v1, . . . , v2n+1 = v0 in order. Since G is constricted, some ui is adjacent in G to some
vj , and so we may assume that u0, v0 are adjacent. Since C1, . . . , Ck are pairwise vertex-disjoint, it
follows that the arcs (u0, v0), (v0, u0) do not belong to any of C1, . . . , Ck and hence are not in F1.
There are two cases depending whether they belong to F2 or not.

First suppose that (u0, v0), (v0, u0) /∈ F2. Let F ′′ be obtained from F ′ by

• removing the arcs (u2i, u2i+1) for 0 ≤ i ≤ m, and removing (v2j , v2j+1) for 0 ≤ j ≤ n

• adding the arcs (u2i, u2i−1) for 1 ≤ i ≤ m, and adding (v2j , v2j−1) for 1 ≤ j ≤ n, and adding
(u0, v0), (v0, u0).

This contradicts the minimality of F1.
Thus F2 contains one and hence both of (u0, v0), (v0, u0). Let F ′′ be obtained from F ′ by

• removing the arcs (u2i−1, u2i) for 1 ≤ i ≤ m, and removing (v2j−1, v2j) for 1 ≤ j ≤ n, and
removing (u0, v0), (v0, u0)

• adding the arcs (u2i+1, u2i) for 0 ≤ i ≤ m, and adding (v2j+1, v2j) for 0 ≤ j ≤ n.

Again, this contradicts the minimality of F1.
We deduce that k ≤ 1. Since

∑
v∈V (G) d(v) is even, and every vertex v is the tail of exactly d(v)

members of F ′, it follows that |F ′| is even. But |F2| is even, and so |F1| is even, and since C1, . . . , Ck

have odd length, it follows that k is even. Since k ≤ 1 we deduce that k = 0, and so F ′ = F2. But
then the first statement of the theorem holds. This proves 2.4.
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We are almost ready to prove 2.1; first, one more lemma. If G is a graph and X ⊆ V (G), we
denote by E(X) or EG(X) the set of edges of G with both ends in X; and we remind the reader that
if X,Y are disjoint subsets of V (G), we denote by E(X,Y ) or EG(X,Y ) the set of edges of G with
one end in X and one end in Y . It is convenient to write FG(X) or F (X) for EG(X), and FG(X,Y )
or F (X,Y ) for EG(X,Y ).

2.5 Let G be a graph and let X,Y,Z be a partition of V (G); then

sG(X,Y ) = 2|E(X)| + |E(X,Z)| + 2|F (Y )| + |F (Y,Z)|.

Proof. For |E(X,Y )| + |F (X,Y )| = |X||Y |; but

∑

x∈X

deg(x) = 2|E(X)| + |E(X,Z)| + |E(X,Y )|

and ∑

y∈Y

deg(y) = 2|F (Y )| + |F (Y,Z)| + |F (X,Y )|,

and adding these three equations yields the statement of the theorem. This proves 2.5.

The main step in the proof of 2.1 is the following.

2.6 Let V be a finite set, and for every vertex v ∈ V let d(v) be an integer. Let H be a graph with
vertex set a subset of V . Then the following are equivalent:

• There is a graph J with vertex set V , such that every v ∈ V has degree d(v) in J , and J |V (H) =
H

•
∑

v∈V d(v) is even, and

∑

x∈X

d(x) +
∑

y∈Y

(|V | − 1 − d(y)) − |X||Y | ≥ sH(X ∩ V (H), Y ∩ V (H))

for every pair of disjoint subsets X,Y of V .

Proof. Suppose first that J satisfies the first statement. Then
∑

v∈V d(v) = 2|E(J)| and therefore
is even. Moreover, let X,Y ⊆ V (G) be disjoint. To verify the second statement we must check that
sJ(X,Y ) ≥ sH(X ∩ V (H), Y ∩ V (H)). But since H is an induced subgraph of J , this is immediate
from two applications of 2.5, to sJ(X,Y ) and to sH(X ∩ V (H), Y ∩ V (H)).

Now suppose that the second statement holds. Let V ′ = V (H). Let G be the graph with vertex
set V , in which every two distinct vertices are nonadjacent if and only if they both belong to V ′. For
each v ∈ V , let d′(v) = d(v) if v /∈ V ′, and d′(v) = d(v)− degH(v) if v ∈ V ′. If there is a subgraph of
G such that every vertex v has degree d′(v) then the first statement of the theorem holds (taking J
to be the union of this subgraph with H); so we assume not. Now G is constricted, since every odd
cycle of G has at least one vertex not in V ′; so by 2.4, there exist disjoint X,Y ⊆ V such that

∑

x∈X

d′(x) +
∑

y∈Y

(degG(y) − d′(y)) < |EG(X,Y )|.
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Let X ′ = X ∩ V ′ and Y ′ = Y ∩ V ′. Now

∑

x∈X

d′(x) =
∑

x∈X

d(x) −
∑

x∈X′

degH(x),

and since every vertex in V ′ has degree |V |− |V ′| in G, and every vertex in V \V ′ has degree |V |− 1
in G, it follows that

∑

y∈Y

(degG(y) − d′(y)) =
∑

y∈Y

(|V | − 1 − d(y)) −
∑

y∈Y ′

(|V ′| − 1 − degH(y)).

Moreover |EG(X,Y )| = |X||Y | − |X ′||Y ′|. On substitution we obtain

∑

x∈X

d(x) −
∑

x∈X′

degH(x) +
∑

y∈Y

(|V | − 1 − d(y)) −
∑

y∈Y ′

(|V ′| − 1 − degH(y)) < |X||Y | − |X ′||Y ′|,

that is,

∑

x∈X

d(x)+
∑

y∈Y

(|V |−1−d(y))−|X||Y | <
∑

x∈X′

degH(x)+
∑

y∈Y ′

(|V ′|−1−degH (y))−|X ′||Y ′| = sH(X ′, Y ′),

a contradiction. This proves that the first statement of the theorem holds, and so proves 2.6.

2.6 extends a result of Koren [4], who proved the same statement with H the null graph.

Proof of 2.1. Let G,H be graphs with V (H) ⊆ V (G). For each vertex v ∈ V (G), let d(v) =
degG(v). There is a graph J with vertex set V (G), such that every v ∈ V has degree d(v) in J , and
J |V ′ = H, if and only if the first statement of the theorem holds. But

∑
v∈V d(v) is even, since it

equals 2|E(G)|; and so by 2.6, such a graph J exists if and only if

∑

x∈X

d(x) +
∑

y∈Y

(|V | − 1 − d(y)) − |X||Y | ≥ sH(X ∩ V ′, Y ∩ V ′)

for every pair of disjoint subsets X,Y of V . The left side of this inequality equals sG(X,Y ), and so
this proves 2.1.

3 Pairs of bounded surplus

Let H be a fixed graph. We will show in the next section that there are numbers m, θ depending
only on H, such that for every graph G that does not Rao-contain H, and for every vertex v of G
except at most m, there is a pair (X,Y ) of subsets of V (G) with sG(X,Y ) ≤ θ and v ∈ X ∪ Y . This
in turn will lead to a decomposition theorem for the graphs G that do not Rao-contain H; we will
prove they are all “almost” split graphs. In this section we develop some lemmas for that purpose.
If θ ≥ 0 is an integer, a θ-shelf in a graph G is a pair (X,Y ) of disjoint subsets of V (G) such that
sG(X,Y ) ≤ θ. We begin with:
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3.1 Let G be a graph and θ ≥ 0 an integer, and for i = 1, 2, let (Xi, Yi) be a θ-shelf. If one of
X1 ∩Y2,X2 ∩Y1 is nonempty, then one of V (G) \ (X1 ∪Y1), V (G) \ (X2 ∪Y2) has cardinality at most
2θ.

Proof. Let Zi = V (G) \ (Xi ∪ Yi) for i = 1, 2. By 2.5, we have

(1) 2|E(Xi)| + |E(Xi, Zi)| + 2|F (Yi)| + |F (Yi, Zi)| ≤ θ for i = 1, 2.

We may assume from the symmetry that there exists w ∈ Y1 ∩ X2. Suppose first that there ex-
ists x ∈ X1 ∩ Z2. For each v ∈ Z1 ∩ X2, if v,w are adjacent then this edge belongs to E(X2), and if
they are nonadjacent then the edge of G joining them belongs to F (Y1, Z1); and so in either case the
pair {v,w} belongs to E(X2)∪F (Y1, Z1). Similarly if v ∈ Z1∩Y2 then {v, x} ∈ E(X1, Z1)∪F (Y2, Z2),
and if v ∈ Z1 ∩ Z2 then {v,w} ∈ E(X2, Z2) ∪ F (Y1, Z1). Summing, we deduce that

|Z1| = |Z1∩X2|+|Z1∩Y2|+|Z1∩Z2| ≤ |E(X2)|+|F (Y1, Z1)|+|E(X1, Z1)|+|F (Y2, Z2)|+|E(X2, Z2)|

and so |Z1| ≤ 2θ by (1), as required.
Thus we may assume that X1 ∩ Z2 = ∅. But for each v ∈ Y1 ∩ Z2, {v,w} ∈ E(X2, Z2) ∪ F (Y1);

and as we already saw, if v ∈ Z1 ∩ Z2 then {v,w} ∈ E(X2, Z2) ∪ F (Y1, Z1). Summing, we deduce
that

|Z2| = |Y1 ∩ Z2| + |Z1 ∩ Z2| ≤ |E(X2, Z2)| + |F (Y1)| + |F (Y1, Z1)| ≤ 2θ

by (1), as required. This proves 3.1.

We need the following.

3.2 Let G be a graph and let X1,X2, Y1, Y2 ⊆ V (G) such that X1 ∪ X2 is disjoint from Y1 ∪ Y2.
Then

sG(X1 ∪ X2, Y1 ∪ Y2) ≤ sG(X1, Y1) + sG(X2, Y2).

Proof. Define X0 = X1 ∪X2 and Y0 = Y1 ∪ Y2; and for i = 0, 1, 2 let Zi = V (G) \ (Xi ∪ Yi). By 2.5,
for i = 0, 1, 2 we have

sG(Xi, Yi) = 2|E(Xi)| + |E(Xi, Zi)| + 2|F (Yi)| + |F (Yi, Zi)|,

and therefore to show that sG(X0, Y0) ≤ sG(X1, Y1) + sG(X2, Y2), it suffices to show that

2|E(X1)| + |E(X1, Z1)| + 2|E(X2)| + |E(X2, Z2)| ≥ 2|E(X0)| + |E(X0, Z0)|

and
2|F (Y1)| + |F (Y1, Z1)| + 2|F (Y2)| + |F (Y2, Z2)| ≥ 2|F (Y0)| + |F (Y0, Z0)|.

From the symmetry under replacing G by its complement, it suffices to show the first. For every
edge e = uv, let us count the contribution of e to the right and left sides. Thus, for i = 0, 1, 2 let
pi = 1 if e ∈ E(Xi), and pi = 0 otherwise; and let qi = 1 if e ∈ E(Xi, Zi), and qi = 0 otherwise. We
will show that

2p1 + q1 + 2p2 + q2 ≥ 2p0 + q0.

Since q1 + q2 ≥ q0, we may assume that p0 = 1 and hence q0 = 0. If p1, p2 are not both zero then the
claim holds, so we assume that p1 = p2 = 0. Since p0 = 1, it follows that one of u, v is in X1 \X2 and
the other is in X2 \ X1; but then q1 + q2 = 2 = 2p0 and again the claim holds. This proves 3.2.
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3.3 Let G be a graph and θ ≥ 0 an integer, and let L,R be disjoint subsets of V (G). Suppose that
for each v ∈ L ∪ R, there is a θ-shelf (X,Y ) with X ⊆ L and Y ⊆ R and v ∈ X ∪ Y . Then either

• there exists V ⊆ L such that sG(V,R) ≤ 4θ(θ + 1), and for every vertex v ∈ V ∪ R there is a
θ-shelf (X,Y ) with v ∈ X ∪ Y and X ⊆ V and Y ⊆ R, or

• there exists V ⊆ R such that sG(L, V ) ≤ 4θ(θ + 1), and for every vertex v ∈ L ∪ V there is a
θ-shelf (X,Y ) with v ∈ X ∪ Y and X ⊆ L and Y ⊆ V .

Proof. By hypothesis, there are θ-shelves (Xi, Yi) (i ∈ I) such that
⋃

i∈I Xi = L, and
⋃

i∈I Yi = R.
If J ⊆ I, we say that A ⊆ L is a left J-transversal if A ⊆

⋃
j∈J Xj , and |A ∩ Xj | ≤ 1 for each j ∈ J .

Similarly, B ⊆ R is a right J-transversal if B ⊆
⋃

j∈J Yj , and |B ∩ Yj| ≤ 1 for each j ∈ J .

(1) If J ⊆ I and A,B are left and right J-transversals respectively, then min(|A|, |B|) ≤ 2θ + 2.

For let min(|A|, |B|) = k say. Every subset of a left J-transversal is also a left J-transversal, and
the same for right J-transversals, and so, by replacing the larger of A,B with a subset of itself with
cardinality k, we may assume that |A| = |B| = k. Let a ∈ A, and choose j ∈ J with a ∈ Xj . Since
sG(Xj , Yj) ≤ θ, 2.5 implies that there are at most θ vertices in B \ Yj adjacent to a; and there is
at most one vertex in B ∩ Yj adjacent to a, since |B ∩ Yj | ≤ 1. Consequently a is adjacent to at
most θ + 1 members of B, and so (summing over all a ∈ A) we deduce that |EG(A,B)| ≤ k(θ + 1).
Similarly |FG(A,B)| ≤ k(θ + 1), and since |EG(A,B)| + |FG(A,B)| = |A||B| = k2, adding these two
inequalities yields that k2 ≤ 2k(θ + 1). This proves (1).

(2) There exists J ⊆ I with |J | ≤ 4θ + 4, such that either
⋃

j∈J Xi = L or
⋃

j∈J Yi = R.

For we may assume that I is minimal such that
⋃

i∈I Xi = L and
⋃

i∈I Yi = R. It follows that
for each i ∈ I there exists vi ∈ Xi ∪ Yi such that vi /∈ Xj ∪ Yj for all j ∈ I with j 6= i. Let P be
the set of all i ∈ I with vi ∈ L, and let Q be the set of all i ∈ I with vi ∈ R. Thus {vi : i ∈ P}
is a left I-transversal of cardinality |P |, and {vi : i ∈ Q} is a right I-transversal of cardinality Q,
and so by (1), min(|P |, |Q|) ≤ 2θ + 2, say |Q| ≤ 2θ + 2. (This is without loss of generality, since
replacing G by its complement and exchanging L and R will provide a symmetry exchanging P and
Q.) Choose T ⊆ P minimal such that

⋃
i∈T Yi =

⋃
i∈P Yi. Hence for each i ∈ T there exists wi ∈ Yi

such that wi /∈ Yj for j ∈ T \ {i}. It follows that {wi : i ∈ T} is a right T -transversal of cardinality
|T |. Moreover, {vi : i ∈ T} is a left T -transversal of cardinality T , and so |T | ≤ 2θ + 2 by (1). But

⋃

i∈Q∪T

Yi =
⋃

i∈Q

Yi ∪
⋃

i∈T

Yi =
⋃

i∈Q

Yi ∪
⋃

i∈P

Yi =
⋃

i∈I

Yi = R.

Since |Q ∪ T | ≤ 4θ + 4, setting J = Q ∪ T proves (2).

Let J be as in (2); and from the symmetry we may assume that
⋃

j∈J Yi = R. Let V =
⋃

j∈J Xj . By
repeated application of 3.2 it follows that sG(V,R) ≤ 4θ(θ+1), since |J | ≤ 4(θ+1) and sG(Xj , Yj) ≤ θ
for each j ∈ J . This proves 3.3.
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4 A structure theorem for Rao-containment

In this section we finish the proof that for every graph H, the graphs that do not Rao-contain H
are “almost” split graphs. It is convenient to break the proof into two steps. We first prove the
following:

4.1 Let H be a graph, and let θ = |V (H)|2. If G is a graph that does not Rao-contain H, then there
is a partition of V (G) into four sets P,Q, S, T , possibly empty, such that

• every vertex in P has at most θ neighbours in V (G) \ Q, and every vertex in Q has at most θ
non-neighbours in V (G) \ P

• sG(P,Q) ≤ 4θ(θ + 1)

• |S| ≤ 2θ

• either every vertex in T has at most θ neighbours in V (G) \ Q, or every vertex in T has at
most θ non-neighbours in V (G) \ P .

Proof. Let L,R be the union of the sets X, and the sets Y respectively, over all θ-shelves (X,Y ).

(1) For every θ-shelf (X,Y ), every vertex in X has at most θ neighbours in V (G) \ Y , and ev-
ery vertex in Y has at most θ non-neighbours in V (G) \ X. Consequently, every vertex in L has at
most θ neighbours in V (G) \ R, and every vertex in R has at most θ non-neighbours in V (G) \ L.

For if (X,Y ) is a θ-shelf and v ∈ X, then since sG(X,Y ) ≤ θ, 2.5 implies that v has at most θ
neighbours in V (G) \Y , and similarly, every vertex in Y has at most θ non-neighbours in V (G) \X.
This proves the first assertion. Now let v ∈ L. Then there is a θ-shelf (X,Y ) such that v ∈ X; and
since v has at most θ neighbours in V (G)\Y , it follows that v has at most θ neighbours in V (G)\R.
Similarly every vertex in R has at most θ non-neighbours in V (G) \ L. This proves (1).

(2) If L ∩ R 6= ∅ then the theorem holds.

For since L ∩ R 6= ∅, there exist θ-shelves (X1, Y1), (X2, Y2) such that X1 ∩ Y2 6= ∅. By 3.1, there
is a θ-shelf (X,Y ) such that |Z| ≤ 2θ, where Z = V (G) \ (X ∪ Y ). But then we may take P = X,
Q = Y , S = Z and T = ∅, and by (1) the theorem is satisfied. This proves (2).

Henceforth we assume that L ∩ R = ∅.

(3) |V (G) \ (L ∪ R)| < |V (H)|.

For suppose not. By replacing H by an isomorphic graph we may assume (to simplify notation)
that V (H) ⊆ V (G)\(L∪R). Since G does not Rao-contain H there is no graph G′ degree-equivalent
to G, such that G′|V (H) = H. By 2.1 it follows that there exist disjoint X,Y ⊆ V (G) such that
sH(X ∩ V (H), Y ∩ V (H)) > sG(X,Y ). Since sH(X ∩ V (H), Y ∩ V (H)) ≤ θ it follows that (X,Y ) is
a θ-shelf, and so X ∪Y ⊆ L∪R. But V (H)∩ (L∪R) = ∅, and so V (H)∩ (X ∪Y ) = ∅. Consequently
sH(X ∩ V (H), Y ∩ V (H)) = 0, which is impossible since sH(X ∩ V (H), Y ∩ V (H)) > sG(X,Y ) and
sG(X,Y ) ≥ 0 by 2.5. This proves (3).
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By 3.3, either

• there exists V ⊆ L such that sG(V,R) ≤ 4θ(θ + 1), and for every vertex v ∈ V ∪ R there is a
θ-shelf (X,Y ) with v ∈ X ∪ Y and X ⊆ V and Y ⊆ R, or

• there exists V ⊆ R such that sG(L, V ) ≤ 4θ(θ + 1), and for every vertex v ∈ L ∪ V there is a
θ-shelf (X,Y ) with v ∈ X ∪ Y and X ⊆ L and Y ⊆ V .

In the first case, we set P = V , Q = R, S = V (G) \ (L ∪ R), and T = L \ V . In the second case we
set P = L, Q = V , S = V (G) \ (L ∪ R), and T = R \ V . This proves 4.1.

Here is a slightly cleaner version of the same result:

4.2 Let H be a graph and let θ = |V (H)|2. If G is a graph that does not Rao-contain H, then there
is a partition of V (G) into six sets (possibly empty) A,B,C,A′, B′, C ′ such that

• A is stable and there are no edges between A and A′ ∪ C ∪ C ′

• B is a clique and every vertex in B is adjacent to B′ ∪ C ∪ C ′

• A′, B′, C ′ all have cardinality at most 4θ(θ + 1)

• every vertex in A′ has at most θ neighbours in V (G) \ (B ∪ B′)

• every vertex in B′ has at most θ non-neighbours in V (G) \ (A ∪ A′)

• either every vertex in C has at most θ neighbours in V (G) \ (B ∪B′), or every vertex in C has
at most θ non-neighbours in V (G) \ (A ∪ A′).

Proof. Let P,Q, S, T be as in 4.1. Let A′ be the set of vertices in P that have a neighbour in
P ∪ R ∪ S, and let B′ be the set of vertices in Q that have a non-neighbour in Q ∪ R ∪ S. Since
sG(P,Q) ≤ 4θ(θ + 1), it follows that |A′| + |B′| ≤ 4θ(θ + 1). Set A = P \ A′, and B = Q \ B′, and
C ′ = S, and C = T ; then the theorem holds. This proves 4.2.

5 Some lemmas about wqos

Now we begin on the second of the three parts sketched in the first section, and it is convenient to
assemble here some standard results about wqos that we shall need frequently. For instance:

5.1 Let Q be a wqo, and let qi (i = 1, 2, . . . ) be an infinite sequence of elements of E(Q). Then
there is an infinite sequence i(1) < i(2) < . . . of positive integers such that qi(j) ≤Q qi(j+1) for all
j ≥ 1.

If Q1, Q2 are quasiorders, then Q1×Q2 is the quasiorder with element set E(Q1)×E(Q2), ordered
by the relation (q1, q2) ≤ (q′1, q

′
2) if q1 ≤Qi

q′i for i = 1, 2.

5.2 If Q1, Q2 are wqo’s then so is Q1 × Q2.
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We need a theorem of Higman [2], which we now describe. Let Q be a quasiorder, and define
a quasiorder R as follows. E(R) is the class of all finite sequences of members of Q; and if a =
(u1, . . . , um) and b = (v1, . . . , vn) are members of R, we say a ≤R b if m ≤ n and there exist
j(1), . . . , j(m) with 1 ≤ j(1) < j(2) < · · · < j(m) ≤ n such that ui ≤Q vj(i) for 1 ≤ i ≤ m. We
denote this quasiorder R by Q<ω. Higman showed

5.3 If Q is a wqo then so is Q<ω.

We also need an extension of this. Let Q be a quasiorder, and let k ≥ 0 be an integer. Define
a quasiorder R as follows. E(R) is the class of all finite sequences of odd length, x1, . . . , x2n+1 say,
such that x2i ∈ Q for 1 ≤ i ≤ n, and for 0 ≤ i ≤ n, x2i+1 is an integer with 0 ≤ x2i+1 ≤ k. If
a = (u1, . . . , u2m+1) and b = (v1, . . . , v2n+1) are members of R, we say a ≤R b if m ≤ n and there
exist j(1), . . . , j(m) with 1 ≤ j(1) < j(2) < · · · < j(m) ≤ n such that

• for 1 ≤ i ≤ m, u2i ≤Q v2j(i)

• for 1 ≤ i ≤ m, u2i−1 = v2j(i)−1 and u2i+1 = v2j(i)+1

• for 0 ≤ i ≤ m and 0 ≤ j ≤ n, if either i = 0 or j ≥ j(i), and either i = m or j + 1 ≤ j(i + 1),
then v2j+1 ≥ u2i+1.

We denote this quasiorder R by Q<ω(k). Then we have (see for instance [5]):

5.4 If Q is a wqo then so is Q<ω(k), for all k ≥ 0.

6 Graphs of bounded degree

Our object in this section is to show that graphs of bounded maximum degree form a wqo under
Rao-containment, and some strengthenings of this fact.

A march in a set V is a finite sequence of distinct elements of V ; and if π is the march v1, . . . , vk,
we denote the set {v1, . . . , vk} by π̄, and call k the length of the march. If η is an injection from
V to W say, and π is a march v1, . . . , vk in V , we define η(π) to be the march η(v1), . . . , η(vk) in
W , and we say that η takes π to η(π). Similarly if η is an injection from V to W , and X ⊆ V , we
define η(X) to be the set {η(v) : v ∈ X}. A rooted graph is a pair (G,π) where G is a graph and
π is a march in V (G). We call π the root sequence, and its terms are the roots. A rooted graph is
k-rooted, or (≤ k)-rooted, if it has exactly k roots, or at most k roots, respectively. If (G,π) is a
rooted graph and X ⊆ V (G) with π̄ ⊆ X, then (G|X,π) is a rooted graph and we say it is a rooted
induced subgraph of (G,π). Two rooted graphs (G,π) and (G′, π′) are degree-equivalent if G,G′ are
degree-equivalent and π = π′.

A rooted graph (H, ρ) is Rao-contained in a rooted graph (G,π) if there is a rooted graph (G′, π)
degree-equivalent to (G,π), and a rooted induced subgraph (H ′, π) of (G′, π), and an isomorphism
from H to H ′ taking ρ to π. Let C(k,D) be the class of all (≤ k)-rooted graphs (G,π) such that
every vertex of G not in π̄ has at most D neighbours that are not inπ̄. We shall prove:

6.1 For every two integers k,D ≥ 0, C(k,D) is a wqo under Rao-containment.
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Proof. Let (Gi, πi) ∈ C(k,D) for i = 1, 2, . . .. We need to show that there exist i < j such that
(Gi, πi) is Rao-contained in (Gj , πj). By passing to an infinite subsequence, we may assume that all
the marches πi have the same length, and (by reducing k if necessary) we may assume they all have
length k. Thus, we may assume, to simplify notation, that all the marches πi are equal to some fixed
march π. Since there are only finitely many possibilities for the graph Gi|π̄, we may assume (again,
by passing to an infinite subsequence) that all these graphs are the same; and so there is a graph H,
a common induced subgraph of all the graphs Gi, with H = Gi|π̄ for each i.

Let µ(G) denote the size of the largest matching in a graph G.

(1) We may assume that |µ(Gi)| ≥ 2|V (Gi−1)|
2 + D + k + 1 for each i ≥ 2.

For if n is fixed, and infinitely many of the Gi’s have no matching of size n, then by passing to
an infinite subsequence we may assume that in each Gi there is no matching of size n, and con-
sequently in each Gi there is a set of at most 2n vertices that contains at least one end of every
edge. But it is an easy exercise to show that such (rooted) graphs are well-quasi-ordered by Rao-
containment and indeed by induced subgraph containment. Thus we assume that only finitely many
have no matching of size n, for each n; and then there is an infinite subsequence satisfying the
property of (1). This proves (1).

Let Fi = Gi \ V (H) for i ≥ 1. For each i ≥ 1, and every J ⊆ V (H), let Zi(J) be the set of
vertices in V (Gi)\V (H) that are adjacent in Gi to every vertex in J and nonadjacent to every vertex
in V (H) \ J . Fix J for the moment. Choose an ordering of each set Zi(J), arbitrarily, and list the
degrees in Fi of the vertices in Zi(J), in order. This gives a finite sequence of integers for each i ≥ 1,
all at most D; and by 5.3 and 5.1, we may assume (by passing to an infinite subsequence) that for
each i ≥ 1, there is an injection from Zi(J) into Zi+1(J) such that each v ∈ Zi(J) is mapped to a
vertex in Zi+1(J) with degree in Fi+1 equal to the degree of v in Fi.. By repeating this for all J , we
deduce that for all i ≥ 1, there is an injection ηi from V (Gi) into V (Gi+1) such that

• for v ∈ V (H), ηi(v) = v

• for each J ⊆ V (H) and each v ∈ Zi(J), ηi(v) ∈ Zi+1(J) and the degree of v in Fi equals the
degree of ηi(v) in Fi+1.

(2) For every pair of disjoint subsets X2, Y2 of V (F2), let X1 = {v ∈ V (F1) : η1(v) ∈ X2} and let
Y1 = {v ∈ V (F1) : η1(v) ∈ Y2}; then sF1

(X1, Y1) ≤ sF2
(X2, Y2).

For sF1
(X1, Y1) ≤ |V (F1)|

2, and so we may assume that sF2
(X2, Y2) < |V (F1)|

2 ≤ |V (G1)|
2. Suppose

first that Y2 6= ∅, and choose y ∈ Y2. By 2.5, y has at most |V (G1)|
2 non-neighbours in V (F2) \ X2;

but it has at most D neighbours in this set, since F2 has maximum degree at most D, and so
|V (F2)\X2| ≤ |V (G1)|

2 +D. On the other hand, by 2.5, there are at most |V (G1)|
2 edges with both

ends in X2. Consequently µ(F2) ≤ 2|V (G1)|
2 + D, and so µ(G2) ≤ 2|V (G1)|

2 + D + k, contrary to
(1).

Thus Y2 = ∅, and so Y1 = ∅. But then for i = 1, 2, sFi
(Xi, Yi) is the sum of the degrees in Fi of

the vertices in Xi; and this is at least as big for F2 as it is for F1, since η1(v) has degree in F2 equal
to the degree of v in F1, for each v ∈ V (F1), and so sF1

(X1, Y1) ≤ sF2
(X2, Y2) as required. This

proves (2).
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From (2) and 2.1, there is a graph F ′
2 degree-equivalent to F2, such that the restriction of η1

to V (F1) is an isomorphism from F1 to an induced subgraph of F ′
2. Hence there is a graph G′

2

degree-equivalent to G2, such that η1 is an isomorphism from G1 to an induced subgraph of G′
2; and

so (G2, π2) Rao-contains (G1, π1), as required. This proves 6.1.

7 Split graphs

A graph G is a split graph if there is a partition (A,B) into a stable set A and a clique B. In this
section we begin work on the the third of the steps outlined in the first section. Let us mention a
convenient lemma:

7.1 Let G be a split graph and let (A,B) be a partition of its vertex set into a stable set A and a
clique B. Let G′ be degree-equivalent to G. Then G′ is a split graph and A is a stable set and B a
clique of G′.

Proof. Since (A,B) is a partition of V (G) and A is a stable set and B is a clique of G, 2.5 implies that
sG(A,B) = 0. But sG(A,B) = sG′(A,B) since G,G′ are degree-equivalent, and so sG′(A,B) = 0.
By 2.5, we deduce that A is a stable set and B is a clique of G′. This proves 7.1.

We promised in the introduction to prove that (≤ k)-rooted split graphs form a wqo under Rao-
containment, but in fact we need something a little stronger. The vertex set of a split graph is the
union of a stable set and a clique, and we need the Rao-containment to preserve this partition. We
shall prove the following:

7.2 Let k ≥ 0 be an integer, and for all i ≥ 1 let (Gi, πi) be a (≤ k)-rooted split graph, and let
(Ai, Bi) be a partition of V (Gi) such that Ai is a stable set and Bi is a clique. Then there exist
j > i ≥ 1 and a graph G′ degree-equivalent to Gj (and therefore Aj and Bj are respectively a stable
set and a clique of G′, by 7.1) and an injection η : V (Gi) → V (Gj), with the following properties:

• for all distinct u, v ∈ V (Gi), u, v are adjacent in Gi if and only if η(u), η(v) are adjacent in G′

• πj = η(πi)

• η(Ai) ⊆ Aj and η(Bi) ⊆ Bj .

The proof of 7.2 will occupy the remainder of the paper, but first let us see that it implies our
main result 1.2.

Proof of 1.2, assuming 7.2.

Suppose that 1.2 is false. Then there is a sequence Gi (i = 0, 1, 2, . . .) of graphs, such that for all
j > i ≥ 0, Gi is not Rao-contained in Gj . In particular, none of G1, G2, . . . , Rao-contains G0. Let
θ = |V (G0)|

2; then by 4.2, for each i ≥ 1 there is a partition of V (Gi) into six sets (possibly empty)
Ai, Bi, Ci, A

′
i, B

′
i, C

′
i such that

• Ai is stable and there are no edges between Ai and A′
i ∪ Ci ∪ C ′

i
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• Bi is a clique and every vertex in Bi is adjacent to every vertex in B′
i ∪ Ci ∪ C ′

i

• A′
i, B

′
i, C

′
i all have cardinality at most 4θ(θ + 1)

• every vertex in A′
i has at most θ neighbours in V (Gi) \ (Bi ∪ B′

i)

• every vertex in B′
i has at most θ non-neighbours in V (Gi) \ (Ai ∪ A′

i)

• either every vertex in Ci has at most θ neighbours in V (Gi) \ (Bi ∪ B′
i), or every vertex in Ci

has at most θ non-neighbours in V (Gi) \ (Ai ∪ A′
i).

Now either there are infinitely many values i such that every vertex in Ci has at most θ neighbours
in V (Gi) \ (Bi ∪ B′

i), or there are infinitely many such that every vertex in Ci has at most θ non-
neighbours in V (Gi) \ (Ai ∪ A′

i). Thus, by replacing the sequence by an infinite subsequence, we
may assume that either that the first happens for all i, or the second happens for all i. Now Gi is
Rao-contained in Gj if and only if the complement of Gi is Rao-contained in the complement of Gj ,
and so we may replace each Gi by its complement, and exchange Ai with Bi, and exchange A′

i with
B′

i, and thereby obtain another sequence satisfying the same conditions. Thus we may assume that

(1) For all i ≥ 1, every vertex in Ci has at most θ neighbours in V (Gi) \ (Bi ∪ B′
i).

Since all the sets A′
i, B

′
i, C

′
i have bounded size, there is an infinite subsequence of the sequence

such that all the sets A′
i have the same size, and to simplify notation we may assume that all the

sets A′
i are equal. The same applies for the sets B′

i and C ′
i; and since there are only finitely many

graphs of bounded size, we may assume that for all i ≥ 1 the subgraph of Gi induced on A′
i ∪B′

i ∪C ′
i

is the same. In summary, we may assume that

(2) There are sets A′, B′, C ′, and a graph N with vertex set A′ ∪ B′ ∪ C ′, such that A′
i = A′,

B′
i = B′, and C ′

i = C ′, and Gi|(A
′ ∪ B′ ∪ C ′) = N , for all i ≥ 1.

Let us fix a march π with support A′ ∪B′∪C ′, and a march π′ with support A′∪B′. For each i ≥ 1,
let Pi be the graph obtained from Gi|(Ai ∪A′ ∪Bi ∪B′) by removing all edges with both ends in A′

and making B′ a clique. Thus Ai ∪ A′ is a stable set of Pi and Bi ∪B′ is a clique of Pi, and so Pi is
a split graph. For each i ≥ 1, let Qi be Gi|(A

′ ∪ B′ ∪ C ′ ∪ Ci). Then (Gi, π) is a rooted graph and
belongs to C(12θ(θ + 1), θ).

By 7.2, the set of all rooted graphs (Pi, π
′) is a wqo under the relation described in 7.2, taking

Ai ∪ A′
i and Bi ∪ B′

i to be the corresponding stable set and clique. By 6.1, C(12θ(θ + 1), θ) is a
wqo under Rao-containment. By 5.2, there exist j > i ≥ 1 such that (Pi, π

′) is contained in (Pj , π
′)

(under the relation of 7.2) and (Qi, π) is Rao-contained in (Qj , π). By combining the corresponding
two injections (which agree on the intersection of their domains) we deduce that there is an injection
η from V (Gi) into V (Gj), such that

• η(v) = v for each v ∈ A′ ∪ B′ ∪ C ′

• η(v) ∈ Aj for each v ∈ Ai, and η(v) ∈ Bj for each v ∈ Bi, and η(v) ∈ Cj for each v ∈ Ci

• there is a graph P ′
j degree-equivalent to Pj such that the restriction of η to Ai ∪ A′ ∪ Bi ∪ B′

is an isomorphism between Pi and an induced subgraph of P ′
j
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• there is a graph Q′
j degree-equivalent to Qj such that the restriction of η to A′ ∪ B′ ∪ C ′ ∪ Ci

is an isomorphism between Qi and an induced subgraph of Q′
j.

Let X be the set of edges of N |A′, and let Y be the set of nonedges of N |B′ (that is, the set of
unordered pairs of distinct vertices in B′ that are nonadjacent in N). Let Ri = Gi|(Ai∪A′∪Bi∪B′),
and Rj = Gj |(Aj ∪ A′ ∪ Bj ∪ B′). Now Pi was obtained from Ri by removing the edges in X and
adding as edges all the pairs in Y , and so E(Ri) = (E(Pi) \ Y ) ∪ X, and E(Rj) = (E(Pj) \ Y ) ∪ X.
Let R′

j be the graph with vertex set V (P ′
j) and with edge set (E(P ′

j) \ Y ) ∪ X. It follows that R′
j is

degree-equivalent to Rj .
Since η fixes every vertex in V (N), it follows that N is an induced subgraph of Q′

j, and N |(A′∪B′)
is an induced subgraph of R′

j. Consequently there is a graph G′
j with vertex set V (Gj), such that

R′
j and Q′

j are both induced subgraphs of G′
j . But then G′

j is degree-equivalent to Gj , and so Gj

Rao-contains Gi, a contradiction. Thus there is no such sequence Gi (i = 0, 1, 2, . . .). This proves
1.2.

8 Switching-containment

If G is a digraph, the underlying graph of G is the graph obtained from G by removing the directions
of its edges, and is denoted by G−. We say digraphs G,G′ are degree-equivalent if G− = G′− (and
therefore V (G) = V (G′)), and every vertex in V (G) has the same outdegree in G and in G′ (and
consequently has the same indegree in G and in G′). We say a digraph G switching-contains a
digraph H if there is a digraph G′ degree-equivalent to G, such that H is isomorphic to an induced
subdigraph of G′.

Before we go on, we remark that switching-containment is not a wqo of the class of all digraphs.
For instance if C is the class of digraphs G such that G− is a cycle, then C contains infinitely
many non-isomorphic digraphs and none of them switching-contains another. For tournaments,
however, switching-containment yields a wqo (this follows from the main theorem of [1], because if
a tournament H can be immersed in a tournament G then G switching-contains H). In this paper
we show that switching-containment also yields a wqo for the digraphs whose underlying graph is
complete bipartite. We prove the following, which implies 7.2:

8.1 Let k ≥ 0 be an integer. For all i ≥ 1 let Gi be a digraph, let (Ai, Bi) be a bipartition of G−
i

such that every vertex in Ai is adjacent in G−
i to every vertex in Bi, and let πi be a march in V (Gi)

with length at most k. Then there exist j > i ≥ 1 and a digraph G′ degree-equivalent to Gj and an
injection η : V (Gi) → V (Gj), with the following properties:

• for all distinct u, v ∈ V (Gi), u is adjacent to v in Gi if and only if η(u) is adjacent to η(v) in
G′

• πj = η(πi)

• η(Ai) ⊆ Aj and η(Bi) ⊆ Bj .

Proof of 7.2, assuming 8.1. For each i ≥ 1 let (Gi, πi) be a (≤ k)-rooted split graph, and
let (Ai, Bi) be a partition of V (Gi) as in 7.2. Let Hi be the digraph with vertex set V (Gi), in
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which a ∈ Ai is adjacent to b ∈ Bi if a, b are adjacent in Gi, and a is adjacent from b in H if
a, b are nonadjacent in Gi. Thus H−

i is complete bipartite, and (Ai, Bi) is a bipartition. By 8.1
we deduce that there exist j > i ≥ 1 and a digraph H ′ degree-equivalent to Hj and an injection
η : V (Hi) → V (Hj), satisfying the three bullets of 8.1 (with Gi, Gj , G

′ replaced by Hi,Hj ,H
′). Let

G′ be the split graph with vertex set V (Gj) in which Aj is stable, Bj is a clique, and a ∈ Aj and
b ∈ Bj are adjacent in G′ if and only if a is adjacent to b in H ′. Then G′, Gj are degree-equivalent,
and it follows that η provides a Rao-containment of (Gi, πi) in (Gj , πj). This proves 7.2.

The remainder of the paper is devoted to proving 8.1.

9 Switching-containment in fixed position

Next we need an analogue of 2.1 for switching-containment of directed complete bipartite graphs. In
principle this is already solved, because the translation from split graphs will transform 2.1 into a
necessary and sufficient condition for switching-containment of directed complete bipartite graphs;
but we will derive a much simpler condition (still necessary and sufficient), that holds for general
digraphs, not just directed complete bipartite graphs.

We also need an extension of it to what we call “weighted” digraphs. A weighted digraph is a
triple (G,m,n) such that G is a digraph and m,n are maps from V (G) to the set of nonnegative
integers. If v is a vertex of a digraph G, d+(v) or d+

G(v) denote the outdegree of v in G, and d−(v)
or d−G(v) denote its indegree. Two weighted digraphs (G,m,n), (G′,m′, n′) are degree-equivalent if

• G− = G′−,

•
∑

v∈V (G) m(v) =
∑

v∈V (G′) m′(v), and
∑

v∈V (G) n(v) =
∑

v∈V (G′) n′(v), and

• for every vertex v ∈ V (G),

d+
G(v) + n(v) − m(v) = d+

G′(v) + n′(v) − m′(v).

Let G be a digraph. If X ⊆ V (G), we denote by D+
G(X) and D−

G(X) respectively the sets of all
edges uv of G with X ∩ {u, v} = {u} and X ∩ {u, v} = {v}. The following is an easy consequence of
the max-flow min-cut theorem (or of Hoffman’s circulation theorem [3]), and we omit its proof.

9.1 Let G be a digraph and for every vertex v let t(v) be an integer, such that
∑

v∈V (G) t(v) = 0.

Let F,F ′ ⊆ E(G), with F ∩ F ′ = ∅. Then the following are equivalent:

• there is a map φ from E(G) to {0, 1} such that φ(e) = 0 for e ∈ F , and φ(e) = 1 for e ∈ F ′,
and

∑
e∈A(v) φ(e) −

∑
e∈B(v) φ(e) = t(v) for every vertex v, where A(v) and B(v) denote the

sets of edges with tail v and head v respectively

• for every subset X ⊆ V (G), |D−
G(X) ∩ F ′| + |D+

G(X) ∩ F | +
∑

v∈X t(v) ≤ |D+
G(X)|.

We deduce

9.2 Let (G,m,n) and (H, p, q) be weighted digraphs, such that H− is an induced subgraph of G−,
and

∑
v∈V (G) m(v) =

∑
v∈V (H) p(v), and

∑
v∈V (G) n(v) =

∑
v∈V (H) q(v). Then the following are

equivalent:
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• there is a weighted digraph (G′,m′, n′) degree-equivalent to (G,m,n), such that

(a) G′|V (H) = H

(b) m′(v) = p(v) and n′(v) = q(v) for every vertex v ∈ V (H), and

(c) m′(v) = n′(v) = 0 for every vertex v ∈ V (G) \ V (H)

• for every subset X ⊆ V (G),

|D+
G(X)| +

∑

v∈X

(n(v) − m(v)) ≥ |D+
H(X ∩ V (H))| +

∑

v∈X∩V (H)

(q(v) − p(v)).

Proof. For each vertex v ∈ V (G), let t(v) = m(v) − n(v) + q(v) − p(v) if v ∈ V (H) and
t(v) = m(v) − n(v) otherwise. Thus

∑
v∈V (G) t(v) = 0. Let F,F ′ be the sets of edges uv of G

such that uv, vu ∈ E(H) respectively.

(1) There exists (G′,m′, n′) as in the first statement of the theorem, if and only if there exists φ
as in 9.1.

For suppose that φ is as in 9.1. For every vertex v ∈ V (G), let m′(v) = p(v) and n′(v) = q(v)
if v ∈ V (H), and m′(v) = n′(v) = 0 if v /∈ V (H). Let G′ be obtained from G by reversing the
direction of all edges e ∈ E(G) with φ(e) = 1 (and so G′|V (H) = H). Thus (G′,m′, n′) is a weighted
digraph, and we claim that (G′,m′, n′) and (G,m,n) are degree-equivalent. We must check the three
conditions in the definition of “degree-equivalent”. The first we have already seen. For the second,

∑

v∈V (G′)

m′(v) =
∑

v∈V (H)

p(v) =
∑

v∈V (G)

m(v),

and similarly
∑

v∈V (G) n(v) =
∑

v∈V (G′) n′(v). For the third, let v ∈ V (G). Then d+
G′(v) = d+

G(v) +
b − a, where b is the number of edges e of G with head v and with φ(e) = 1, and a is the number of
edges e of G with tail v and φ(e) = 1. Hence a =

∑
e∈A(v) φ(e) and b =

∑
e∈B(v) φ(e), with notation

as in 9.1. Since φ is as in the first statement of 9.1, it follows that
∑

e∈A(v)

φ(e) −
∑

e∈B(v)

φ(e) = t(v),

and so a − b = t(v). Consequently d+
G′(v) = d+

G(v) − t(v), and so

d+
G(v) + n(v) − m(v) = d+

G′(v) + n′(v) − m′(v).

This proves the third condition in the definition of “degree-equivalent”, and so proves that (G′,m′, n′)
and (G,m,n) are degree-equivalent. Conversely, by reversing this argument it follows that every
weighted digraph satisfying the first statement of the theorem arises from some such φ in this way.
This proves (1).

From (1) and 9.1 we deduce that the first statement of the theorem holds if and only if

|D−
G(X) ∩ F ′| + |D+

G(X) ∩ F | +
∑

v∈X

t(v) ≤ |D+
G(X)|
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for every subset X ⊆ V (G). But |D−
G(X) ∩ F ′| + |D+

G(X) ∩ F | = |D+
H(X ∩ V (H))|, and

∑

v∈X

t(v) =
∑

v∈X

(m(v) − n(v)) +
∑

v∈X∩V (H)

(q(v) − p(v)),

so the first statement of the theorem holds if and only if

|D+
H(X ∩ V (H))| +

∑

v∈X

(m(v) − n(v)) +
∑

v∈X∩V (H)

(q(v) − p(v)) ≤ |D+
G(X)|,

that is,

|D+
G(X)| +

∑

v∈X

(n(v) − m(v)) ≥ |D+
H(X ∩ V (H))| +

∑

v∈X∩V (H)

(q(v) − p(v)).

This proves 9.2.

10 Contests

A contest is a seven-tuple (G,A,B, l,m, n, π), where

• (G,m,n) is a weighted digraph

• (A,B) is a bipartition of G− and every vertex in A is adjacent in G− to every vertex in B

• π is a march in V (G), and

• l ≥ 0 is an integer.

The type of a contest (G, l,A,B,m, n, π) is the quadruple

(|π̄|, l,
∑

v∈V (G)

m(v),
∑

v∈V (G)

n(v)).

Let C1 = (G1, A1, B1, l1,m1, n1, π1) and C2 = (G2, A2, B2, l2,m2, n2, π2) be contests. We say that
C2 switching-contains C1 if l1 = l2 and there is a weighted digraph (G′,m′, n′) degree-equivalent to
(G2,m2, n2) (and therefore (G′, A2, B2, l2,m

′, n′, π2) is a contest) and an injection η : V (G1) →
V (G2), with the following properties:

• for all distinct u, v ∈ V (G1), u is adjacent to v in G1 if and only if η(u) is adjacent to η(v) in
G′

• π2 = η(π1)

• η(A1) ⊆ A2 and η(B1) ⊆ B2

• m1(v) = m′(η(v)) and n1(v) = n′(η(v)) for each v ∈ V (G1), and m′(v) = n′(v) = 0 for each
v ∈ V (G2) \ η(V (G1)).

We will prove the following, which evidently implies 8.1:

10.1 Let Ci (i = 1, 2, . . .) be contests, all of the same type. Then there exist j > i ≥ 1 such that Cj

switching-contains Ci.
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11 The pieces after a slicing

Let C = (G,A,B, l,m, n, π) be a contest. A slice of C means a partition (X,Y ) of V (G), and its
order is

l + |D+
G(X)| +

∑

v∈X

n(v) +
∑

v∈Y

m(v).

We need the following:

11.1 Let (X,Y ) and (X ′, Y ′) be slices of a contest C, of order h and h′ respectively. Then (X ∩
X ′, Y ∪ Y ′) and (X ∪ X ′, Y ∩ Y ′) are slices and the sum of their orders is at most h + h′.

Proof. Let C = (G,A,B, l,m, n, π). The sum of the orders of (X ∩X ′, Y ∪Y ′) and (X ∪X ′, Y ∩Y ′)
is

2l + |D+
G(X ∩ X ′)| +

∑

v∈X∩X′

n(v) +
∑

v∈Y ∪Y ′

m(v) + |D+
G(X ∪ X ′)| +

∑

v∈X∪X′

n(v) +
∑

v∈Y ∩Y ′

m(v).

But
|D+

G(X ∩ X ′)| + |D+
G(X ∪ X ′)| ≤ |D+

G(X)| + |D+
G(X ′)|

since every edge contributes at least as much to the right side as it does to the left; and

∑

v∈X∩X′

n(v) +
∑

v∈X∪X′

n(v) =
∑

v∈X

n(v) +
∑

v∈X′

n(v),

and ∑

v∈Y ∪Y ′

m(v) +
∑

v∈Y ∩Y ′

m(v) =
∑

v∈Y

m(v) +
∑

v∈Y ′

m(v).

We deduce that the sum of the orders of (X ∩ X ′, Y ∪ Y ′) and (X ∪ X ′, Y ∩ Y ′) is at most

2l + |D+
G(X)| + |D+

G(X ′)| +
∑

v∈X

n(v) +
∑

v∈X′

n(v) +
∑

v∈Y

m(v) +
∑

v∈Y ′

m(v) = h + h′

as required. This proves 11.1.

Let C = (G,A,B, l,m, n, π) be a contest, and let (W1, . . . ,Wt) be a sequence of subsets of V (G),
pairwise disjoint and with union V (G) (possibly some of the sets Wi are empty). (Thus t ≥ 1 unless
V (G) = ∅; however, it is useful to permit t = 0 when V (G) = ∅.) We call (W1, . . . ,Wt) a slicing of C.
For each i with 0 ≤ i ≤ t, let Xi = W1∪· · ·∪Wi and let Yi = Wi+1∪· · ·∪Wt. Then (Xi, Yi) is a slice
for 0 ≤ i ≤ t. For p ≥ 0, we say the slicing has order at most p if each of the slices (Xi, Yi) (0 ≤ i ≤ t)
has order at most p.

Let (W1, . . . ,Wt) be a slicing of C = (G,A,B, l,m, n, π) and define Xi, Yi for 0 ≤ i ≤ t as above.
For 1 ≤ i ≤ t, let Ci = (Gi, Ai, Bi, li,mi, ni, πi) be the contest defined as follows. Let Gi = G|Wi,
and Ai = A ∩ Wi, Bi = B ∩ Wi. Let

li = l +
∑

v∈Xi−1

n(v) +
∑

v∈Yi

m(v) + |Fi|
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where Fi denotes the set of edges of G with tail in Xi−1 and head in Yi. For each v ∈ Wi, let
mi(v) = m(v)+x(v), where x(v) denotes the number of vertices in Xi−1 that are adjacent to v in G,
and let ni(v) = n(v) + y(v) where y(v) denotes the number of vertices in Yi that are adjacent from v
in G. Let πi be the subsequence of π consisting of those terms that belong to Wi. We call C1, . . . , Ct

the pieces of C after the slicing (W1, . . . ,Wt).
We observe:

11.2 Let (W1, . . . ,Wt) be a slicing of C = (G,A,B, l,m, n, π), and let C1, . . . , Ct be the pieces of C
after the slicing. Let 1 ≤ i ≤ t, and let (U, V ) be a slice of Ci, of order h say. Then

(W1 ∪ · · · ∪ Wi−1 ∪ U, V ∪ Wi+1 ∪ · · · ∪ Wt)

is a slice of C, and it has the same order h.

Proof. Let Ci = (Gi, Ai, Bi, li,mi, ni, πi). Let U ′ = W1∪· · ·∪Wi−1∪U and V ′ = V ∪Wi+1∪· · ·∪Wt,
and let the slice (U ′, V ′) of C have order h′. Thus,

h′ = l + |D+
G(U ′)| +

∑

v∈U ′

n(v) +
∑

v∈V ′

m(v),

and
h = li + |D+

Gi
(U)| +

∑

v∈U

ni(v) +
∑

v∈V

mi(v).

We need to show that h′ = h, that is,

l − li + |D+
G(U ′)| − |D+

Gi
(U)| +

∑

v∈U ′

n(v) −
∑

v∈U

ni(v) +
∑

v∈V ′

m(v) −
∑

v∈V

mi(v) = 0.

Let X = W1 ∪ · · · ∪Wi−1 and Y = Wi+1 ∪ · · · ∪Wk, and for each v ∈ Wi let x(v) denote the number
of vertices in X that are adjacent to v in G, and y(v) denote the number of vertices in Y that are
adjacent from v in G; then mi(v) = m(v) + x(v), and ni(v) = n(v) + y(v). Let F denote the set of
edges of G with tail in X and head in Y . Now

l − li = −
∑

v∈X

n(v) −
∑

v∈Y

m(v) − |F |.

But
|D+

G(U ′)| − |D+
Gi

(U)| =
∑

v∈U

y(v) +
∑

v∈V

x(v) + |F |

and ∑

v∈U ′

n(v) −
∑

v∈U

ni(v) =
∑

v∈U ′

n(v) −
∑

v∈U

(n(v) + y(v)) =
∑

v∈X

n(v) −
∑

v∈U

y(v),

and similarly ∑

v∈V ′

m(v) −
∑

v∈V

mi(v) =
∑

v∈Y

m(v) −
∑

v∈V

x(v).

The sum of the right sides of these four equations is zero, and so the sum of the left sides is zero.
This proves 11.2.
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We need the following lemma.

11.3 Let C = (G,A,B, l,m, n, π) and D = (H,A′, B′, l, p, q, ρ) be contests of the same type. Let
(W1, . . . ,W2t+1) be a slicing of C, and let C1, . . . , C2t+1 be the pieces of C after this slicing; define
Xi, Yi (0 ≤ i ≤ 2t + 1) as before. Let (U1, . . . , Ut) be a slicing of D, and let D1, . . . ,Dt be the pieces
of D after this slicing. Suppose that

• for 1 ≤ i ≤ t, Di is switching-contained in C2i;

• for 1 ≤ i ≤ t and all j, if Ui contains the jth term of ρ, then W2i contains the jth term of π;

• for 0 ≤ i ≤ t, the slices (X2i, Y2i) and (X2i+1, Y2i+1) of C have the same order, say si; and
every slice (X,Y ) of C with X2i ⊆ X and Y2i+1 ⊆ Y has order at least si.

Then D is switching-contained in C.

Proof. For 1 ≤ i ≤ 2t + 1, let Ci = (Gi, Ai, Bi, li,mi, ni, πi), and for 1 ≤ i ≤ t let Di =
(Hi, A

′
i, B

′
i, l

′
i, pi, qi, ρi). For 1 ≤ i ≤ t, since Di is switching-contained in C2i, there is an injec-

tion of V (Hi) into V (G2i) with certain properties, and to simplify the notation we may as well
assume that this injection is the identity. Thus

(1) H− is an induced subgraph of G−, and ρ = π, and A′ ⊆ A and B′ ⊆ B, and Ui ⊆ W2i for
1 ≤ i ≤ t. Moreover, for 1 ≤ i ≤ t, l′i = l2i, and there is a weighted digraph (G′

2i,m
′
2i, n

′
2i),

degree-equivalent to (G2i,m2i, n2i), such that

• G′
2i|Ui = Hi,

• m′
2i(v) = pi(v) and n′

2i(v) = qi(v) for each v ∈ Ui, and

• m′
2i(v) = n′

2i(v) = 0 for each v ∈ W2i \ Ui.

For each v ∈ V (G), with v ∈ Wi say, let x(v) denote the number of vertices in Xi−1 that are
adjacent to v in G, and y(v) denote the number of vertices in Yi that are adjacent from v in G.

(2) For 0 ≤ i ≤ t, there is a digraph G′
2i+1 with G′−

2i+1 = G−
2i+1, such that for each v ∈ W2i+1,

d+
G′

2i+1

(v) = d+
G2i+1

(v) − m2i+1(v) + n2i+1(v).

We claim first that
∑

v∈W2i+1
(m2i+1(v) − n2i+1(v)) = 0. For the slices (X2i, Y2i) and (X2i+1, Y2i+1)

of C have the same order, and so

|D+
G(X2i)| +

∑

v∈X2i

n(v) +
∑

v∈Y2i

m(v) = |D+
G(X2i+1)| +

∑

v∈X2i+1

n(v) +
∑

v∈Y2i+1

m(v),

that is,

|D+
G(X2i)| − |D+

G(X2i+1)| +
∑

v∈W2i+1

(m(v) − n(v)) = 0.
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But
|D+

G(X2i)| − |D+
G(X2i+1)| =

∑

v∈W2i+1

(x(v) − y(v))

and so
∑

v∈W2i+1
(x(v) − y(v) + m(v) − n(v)) = 0, that is,

∑
v∈W2i+1

(n2i+1(v) − m2i+1(v)) = 0. This
proves the claim.

Next, we claim that

|D+
G2i+1

(X)| ≥
∑

v∈X

(m2i+1(v) − n2i+1(v))

for all X ⊆ W2i+1. For let X ⊆ W2i+1. Since (X2i ∪X,Y2i \X) is a slice of C and X2i ⊆ X2i ∪X and
Y2i+1 ⊆ Y2i \X, it follows by hypothesis that this slice has order at least that of the slice (X2i, Y2i).
Consequently

|D+
G(X2i ∪ X)| +

∑

v∈X2i∪X

n(v) +
∑

v∈Y2i\X

m(v) ≥ |D+
G(X2i)| +

∑

v∈X2i

n(v) +
∑

v∈Y2i

m(v),

that is,

|D+
G(X2i ∪ X)| − |D+

G(X2i)| +
∑

v∈X

(n(v) − m(v)) ≥ 0.

But
|D+

G(X2i ∪ X)| − |D+
G(X2i)| =

∑

v∈X

(y(v) − x(v)) + |D+
G2i+1

(X)|,

and so
|D+

G2i+1
(X)| ≥

∑

v∈X

(x(v) − y(v) + m(v) − n(v)),

that is,

|D+
G2i+1

(X)| ≥
∑

v∈X

(m2i+1(v) − n2i+1(v)).

This proves our second claim.
From these two claims and 9.1 (setting F1 = F2 = ∅ and t(v) = m2i+1(v) − n2i+1(v) for each v),

we deduce (by taking L to be the set of edges e with φ(e) = 1) that there is a set L ⊆ E(G2i+1) such
that for every vertex v ∈ W2i+1, the number of edges in L with tail v minus the number with head
v is equal to m2i+1(v) − n2i+1(v). Let G′

2i+1 be the digraph obtained from G2i+1 by reversing the
direction of every edge in L; then G′

2i+1 satisfies (2). This proves (2).

For all odd i, let m′
i(v) = n′

i(v) = 0 for all v ∈ Wi. Thus G′
i,m

′
i, n

′
i are defined for 1 ≤ i ≤ 2t + 1.

Let G′ be the digraph with G′− = G− defined as follows. Let u, v be adjacent in G−, and let u ∈ Wi

and v ∈ Wj say, where 1 ≤ i ≤ j ≤ 2t + 1. If i = j let u be adjacent to v in G′ if and only if u is
adjacent to v in G′

i. If i < j let u be adjacent to v in G′ if and only if

• i, j are even, say i = 2i′ and j = 2j′ where 1 ≤ i′, j′ ≤ t, and

• u ∈ Ui′ and v ∈ Uj′ , and

• u is adjacent to v in H.

23



Thus H is a subdigraph of G′. For each v ∈ V (H), let m′(v) = p(v) and n′(v) = q(v), and for each
v ∈ V (G) \ V (H) let m′(v) = n′(v) = 0. Thus (G′,m′, n′) is a weighted digraph, and to complete
the proof of the theorem it suffices to show that (G′,m′, n′) is degree-equivalent to (G,m,n).

We must check the three conditions in the definition of “degree-equivalent”. The first we have
already seen. For the second, ∑

v∈V (G′)

m′(v) =
∑

v∈V (H)

p(v)

from the definition of m′; but ∑

v∈V (H)

p(v) =
∑

v∈V (G)

m(v)

since C,D have the same type. We deduce that

∑

v∈V (G)

m(v) =
∑

v∈V (G′)

m′(v),

and similarly ∑

v∈V (G)

n(v) =
∑

v∈V (G′)

n′(v).

This proves the second condition.
For the third condition, we need some preliminaries. For each v ∈ V (G), if v ∈ V (H) and v ∈ Ui

say, let y′(v) be the number of vertices in Ui+1 ∪ · · · ∪ Ut that are adjacent from v in H, and let
x′(v) be the number of vertices in U1 ∪ · · · ∪ Ui−1 that are adjacent to v in H. If v ∈ V (G) \ V (H)
let x′(v) = y′(v) = 0. We claim that for each v ∈ V (G), if v ∈ Wi where 1 ≤ i ≤ 2t + 1, then
n′

i(v) = n′(v) + y′(v). To see this there are two cases, depending whether v ∈ V (H) or not. If
v /∈ V (H) then n′

i(v) = 0, and n′(v) = 0, and y′(v) = 0 as required. If v ∈ V (H) (and hence i
is even, i = 2h say), then n′

i(v) = qh(v); but qh(v) = q(v) + y′(v) and q(v) = n′(v), and so again
n′

i(v) = n′(v) + y′(v). This proves the claim. Similarly m′
i(v) = m′(v) + x′(v).

Now to prove the third condition in the definition of “degree-equivalent”, let v ∈ Wi say. We
must check that

d+
G′(v) + n′(v) − m′(v) = d+

G(v) + n(v) − m(v)

and
d−G′(v) − n′(v) + m′(v) = d−G(v) − n(v) + m(v).

The first implies the second, since G′− = G−, so it suffices to prove the first; and from the symmetry
we may assume that v ∈ A. Since v ∈ A, v is adjacent in G (to or from) every vertex in Xi−1 ∩ B,
and to or from none in Xi−1 ∩ A, and since v is adjacent from x(v) vertices in Xi−1 it follows that
there are |Xi−1 ∩ B| − x(v) vertices in Xi−1 that are adjacent from v in G. Consequently

d+
G(v) = d+

Gi
(v) + y(v) + |Xi−1 ∩ B| − x(v),

and similarly
d+

G′(v) = d+
G′

i

(v) + y′(v) + |Xi−1 ∩ B| − x′(v).

But
d+

G′

i

(v) + n′
i(v) − m′

i(v) = d+
Gi

(v) + ni(v) − mi(v)
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from the choice of G′
i,m

′
i, n

′
i. Subtracting the second and third of these equations from the first

yields that

d+
G(v) − d+

G′(v) − n′
i(v) + m′

i(v) = y(v) − x(v) − y′(v) + x′(v) − ni(v) + mi(v).

Since n′
i(v) = n′(v) + y′(v) and m′

i(v) = m′(v) + x′(v), and ni(v) = n(v) + y(v) and mi(v) =
m(v) + x(v), it follows on substitution that

d+
G(v) + n(v) − m(v) = d+

G′(v) + n′(v) − m′(v).

This proves the third condition, and hence that (G′,m′, n′) is degree-equivalent to (G,m,n); and so
completes the proof of 11.3.

12 Reduction to incoherence

If p, q ≥ 0, a subset Z ⊆ V (G) is called (p, q)-coherent in a contest (G,A,B, l,m, n, π) if |Z ∩A|, |Z ∩
B| ≥ q, and there is no slice (X,Y ) with order less than p and with X ∩ Z, Y ∩ Z 6= ∅. Let us say
that (G,A,B, l,m, n, π) is (p, q)-incoherent if the slices (∅, V (G)) and (V (G), ∅) both have order less
than p, and there is no (p, q)-coherent subset of V (G).

The main part of the proof of 10.1 is to prove the following, which is the same statement as 10.1
but with an extra hypothesis:

12.1 Let p, q ≥ 0, and let Ci (i = 1, 2, . . .) be (p, q)-incoherent contests, all of the same type. Then
there exist j > i ≥ 1 such that Cj switching-contains Ci.

For the moment we shall assume the truth of 12.1, and our object in this section is to deduce
10.1 from it. We say two slices (X1, Y1), (X2, Y2) cross if X1 ∩ Y2,X2 ∩ Y1 are both nonempty. We
need the following lemma.

12.2 Let Z be a (p, q)-coherent set in a contest C; and let (X1, Y1), (X2, Y2) be slices both of order
less than min(p, q/2) that cross. Then Z is a subset of one of X1 ∩ X2, Y1 ∩ Y2.

Proof. Let C = (G,A,B, l,m, n, π). Since Z is (p, q)-coherent, not both Z∩X1, Z∩Y1 are nonempty,
and so Z is a subset of one of X1, Y1, and similarly of one of X2, Y2. From the symmetry we may
therefore assume (for a contradiction) that Z ⊆ X1 ∩ Y2. Since the two slices cross, there exists
v ∈ X2 ∩ Y1. Since |Z ∩ A|, |Z ∩ B| ≥ q and C is a contest, it follows that there are at least q edges
of G with one end v and the other end in Z. But fewer than q/2 of these edges are directed from
v to Z, since (X2, Y2) has order less than q/2; and fewer than q/2 are directed from Z to v, since
(X1, Y1) has order less than q/2, a contradiction. This proves 12.2.

We also need:

12.3 Let (W1, . . . ,Wt) be a slicing of a contest C, with order at most p; and let C1, . . . , Ct be the
pieces of C after this slicing. Suppose that Z is (3p, q)-coherent in Ci, where 1 ≤ i ≤ t. Then Z is
(p, q)-coherent in C.
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Proof. Let C = (G,A,B, l,m, n, π). Certainly |Z ∩ A|, |Z ∩ B| ≥ q, since Z is (3p, q)-coherent in
Ci. Suppose that (U, V ) is a slice of C, with U ∩Z, V ∩Z both nonempty; we shall prove that (U, V )
has order at least p. For let its order be h say. Let X = W1 ∪ · · · ∪ Wi−1, and Y = Wi+1 ∪ · · · ∪ Wt.
From 11.1 applied to the slices (U, V ) and X,Wi ∪Y ), it follows that the slice (U ∪X,V ∩ (Wi ∪Y ))
has order at most p + h; and by 11.1 again, applied to this slice and (X ∪ Wi, Y ), we deduce
that the slice ((U ∪ X) ∩ (X ∪ Wi), (V ∩ (Wi ∪ Y )) ∪ Y ) has order at most 2p + h, that is, the slice
(X∪(U∩Wi), (V ∩Wi)∪Y ) has order at most 2p+h. By 11.2 it follows that the slice (U∩Wi, V ∩Wi)
of Ci has order at most 2p + h. But this slice has order at least 3p since Z is (3p, q)-coherent in Ci,
and both U ∩ Wi, V ∩ Wi have nonempty intersection with Z. We deduce that h ≥ p as claimed.
This proves 12.3.

Proof of 10.1, assuming 12.1. Let T = (T1, T2, T3, T4) be a quadruple of non-negative integers.
A bad sequence for T is an infinite sequence of contests Ci (i = 1, 2 . . .), all of type T , such that there
do not exist j > i ≥ 1 such that Cj switching-contains Ci. We say the quadruple T is bad if there
exists a bad sequence for T , and good otherwise. We need to prove that every quadruple is good.

Suppose not; then we may choose a bad quadruple T as follows:

• first, with T1 as small as possible

• subject to that, with T2 + T3 + T4 as small as possible.

Let Ci (i = 1, 2 . . .) be a bad sequence for T , and let Ci = (Gi, Ai, Bi, li,mi, ni, πi) for i ≥ 1.

(1) We may assume that for all j > i ≥ 1, the map sending πi to πj is an isomorphism from
Gi|πi to Gj |πj , and for 1 ≤ h ≤ T1, the hth term of πi belongs to Ai if and only if the hth term of
πj belongs to Aj .

For there are only finitely many possibilities for the (labelled) isomorphism class of

(Gi|πi, Ai ∩ πi, Bi ∩ πi),

and so we may assume they are all the same, by passing to an infinite subsequence. This proves (1).

Let q = |V (G1)| + 2max(T2 + T3 + T4), and let p = |E(G1)| + T2 + T3 + T4.

(2) We may assume that for all i ≥ 2, if (X,Y ) is a slice in Gi, and h denotes its order, then:

• h ≥ min(T2 + T3, T2 + T4)

• if h < T2 + T3 then πi ⊆ X and some subset of X is (p, q)-coherent; and if h < T2 + T4 then
πi ⊆ Y and some subset of Y is (p, q)-coherent.

• if h < p then either πi ⊆ X and some subset of X is (p, q)-coherent, or πi ⊆ Y and some subset
of Y is (p, q)-coherent.

For if there are only finitely many values of i that do not satisfy (2), then we may remove them
from the sequence and (2) would follow. Thus we assume there are infinitely many values of i ≥ 2
with slices that fail to satisfy (2), and so by passing to a subsequence we may assume that for all
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i ≥ 2 there is a slice (Xi, Yi) in Gi failing to satisfy (2). It follows that (Xi, Yi) has order at most
max(T2 + T3, T2 + T4, p), and so by passing to an infinite subsequence we may assume that all the
slices (Xi, Yi) have the same order h say. Let i ≥ 2, and let C′

i, C
′′
i be the pieces of Ci under the slicing

(Xi, Yi). Let C′
i have type T ′ = (T ′

1, T
′
2, T

′
3, T

′
4); then T ′

1 ≤ T1, and T ′
3 ≤ T3, and T ′

2 + T ′
4 ≤ h. By

passing to a subsequence we may assume that for each i ≥ 2, the type of C′
i is the same; that is,

T ′ does not depend on i. Similarly, we may assume that for each i ≥ 2, C′′
i is a contest of type T ′′,

where T ′
1 + T ′′

1 = T1 and T ′
4 ≤ T4, and T ′

2 + T ′
3 ≤ h. Moreover, we may assume that for 1 ≤ j ≤ T1,

if there exists i ≥ 2 such that the jth term of πi belongs to Xi, then the jth term of πi belongs to
Xi for all i ≥ 2. (Note that in these arguments where we replace our infinite sequence by an infinite
subsequence, it is important that the first term is unchanged, since p, q are defined by means of the
first term; and so we cannot assume that the statement of (2) holds for all i ≥ 1.)

Suppose that switching-containment defines a wqo on the set of all contests C′
i (i ≥ 2), and also

on the set of all contests C′′
i (i ≥ 2). From 5.3 it follows that there exist j > i ≥ 2 such that C′

i is
switching-contained in C′

j , and C′′
i is switching-contained in C′′

j . But then Ci is switching-contained
in Cj by 11.3, a contradiction.

From the symmetry, we may therefore assume that switching-containment does not define a wqo
on the set of all contests C′

i (i ≥ 2), and consequently T ′ is a bad quadruple. Since T ′
1 ≤ T1, and

T ′
2 ≤ T2, and T ′

3 + T ′
4 ≤ h, it follows from the choice of T that T ′

1 = T1, and so πi ⊆ Xi for each
i > 1. Since T ′

3 ≤ T3, and T ′
2 + T ′

4 ≤ h, the choice of T implies that T2 + T4 ≤ h. For i ≥ 2, since
(Xi, Yi) does not satisfy (2), it follows that h < p and no subset of Xi is (p, q)-coherent in Ci; and
hence, by 12.3, no subset of Xi is (3p, q)-coherent in C′

i. But then by 12.1, switching-containment
defines a wqo on the set of all C′

i (i ≥ 2), a contradiction. This proves (2).

From the symmetry we may assume that T3 ≤ T4.

(3) Let i ≥ 2 and let Z be (p, q)-coherent in Gi. Then either

• T1 > 0 and there is a slice (X,Y ) of Ci of order less than p, such that Z is a subset of one of
X,Y and πi is a subset of the other, or

• T1 = 0 and there is a slice (X,Y ) of Ci of order less than T2 + T4, with Z ⊆ X.

For let us construct an injection η : V (G1) → V (Gi) as follows. First, let η(π1) = πi. Let η map
A1 \ π1 injectively into (Z ∩ Ai) \ πi (this is possibly since |Z ∩ Ai| ≥ q) and similarly let η map
B1 \ π1 injectively into (Z ∩ Bi) \ πi. Since C1 and Ci have the same type, it follows that li = l1,
and

∑
v∈V (G1) m1(v) =

∑
v∈V (Gi)

mi(v), and
∑

v∈V (G1) n1(v) =
∑

v∈V (Gi)
ni(v). Since Ci does not

switching-contain C1, there is no weighted digraph (G′,m′, n′) degree-equivalent to (Gi,mi, ni) with
the following properties:

• for all distinct u, v ∈ V (G1), u is adjacent to v in G1 if and only if η(u) is adjacent to η(v) in
G′

• m1(v) = m′(η(v)) and n1(v) = n′(η(v)) for each v ∈ V (G1), and m′(v) = n′(v) = 0 for each
v ∈ V (Gi) \ η(V (G1)).
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From 9.2 we deduce that there exists X ⊆ V (Gi) such that, if we denote {v ∈ V (G1) : η(v) ∈ X}
by X1, then

|D+
Gi

(X)| +
∑

v∈X

(ni(v) − mi(v)) < |D+
G1

(X1))| +
∑

v∈X1

(n1(v) − m1(v)).

Let Y = V (Gi) \ X and Y1 = V (G1) \ X1; then since
∑

v∈V (Gi)
mi(v) =

∑
v∈V (G1) m1(v), we deduce

by adding that

|D+
Gi

(X)| +
∑

v∈X

ni(v) +
∑

v∈Y

mi(v) < |D+
G1

(X1))| +
∑

v∈X1

n1(v) +
∑

v∈Y1

m1(v);

that is, h < h1, where h is the order of the slice (X,Y ) of Ci, and h1 is the order of the slice (X1, Y1)
of C1. Since h1 ≤ p from the definition of p, we deduce that h < p. Since Z is (p, q)-coherent, it
follows that one of X,Y includes Z. By the third assertion of (2), either πi ⊆ X or πi ⊆ Y .

By the first assertion of (2), h ≥ T2 + T3, since T3 ≤ T4. Consequently h1 > T2 + T3, and so
X1 6= ∅. Hence there exists v ∈ V (G1) such that η(v) ∈ X; and since η(v) ∈ Z ∪ πi from the con-
struction of η, we deduce that Z ∪ πi is not a subset of Y , and so at least one of Z, πi is a nonempty
subset of X. If the other is a nonempty subset of Y , then T1 > 0 and (3) holds, so we may assume
that Z ∪ πi ⊆ X. Hence η(v) ∈ X for all v ∈ V (G1), and so X1 = V (G1) and Y1 = ∅. Consequently
h1 = T2 + T4. Since h < h1, it follows that h < T2 + T4. By the second assertion of (2) it follows
that πi ⊆ Y , and since we have already seen that πi ⊆ X, it follows that T1 = 0, and again the claim
holds. This proves (3).

(4) T1 > 0.

For suppose that T1 = 0. By 12.1 for some i ≥ 2 there exists a set Z that is (p, q)-coherent in
Ci; and by (3) there there is a slice (X,Y ) of Gi of order less than T2 +T4, with Z ⊆ X. Choose such
a slice (X,Y ) with Y minimal. By the second assertion of (2), there is a (p, q)-coherent set Z ′ ⊆ Y .
By (3) there is a slice (X ′, Y ′) of Ci of order less than T2 + T4, with Z ′ ⊆ X ′. Since Z ′ ⊆ Y \Y ′, 12.2
implies that Y ′ ⊆ Y , contrary to the minimality of Y . This proves (4).

(5) For every i ≥ 2, there is a slicing (Li,Mi, Ri) of Ci, of order less than p, such that πi ⊆ Mi

and every (p, q)-coherent set Z is a subset of one of Li, Ri.

For let i ≥ 2. Since (∅, V (Gi)) is a slice of order T2 + T3 < p, it follows that there is a slice
(U, V ) of Ci with πi ⊆ V of order less than p; choose such a slice (U, V ) with U maximal. Similarly
choose a slice (U ′, V ′) of order less than p with πi ⊆ U ′, with V ′ maximal. Now U ′ ∩ V 6= ∅, since it
includes πi. Suppose first that (U, V ), (U ′, V ′) cross. The sum of the orders of (U, V ) and (U ′, V ′) is
at most 2p− 2, and so by 11.1, one of the slices (U ∩U ′, V ∪V ′), (U ∪U ′, V ∩V ′) has order less than
p, and from the symmetry we may assume the first. But then (U ∩U ′, U ∩V ′, V ) is a slicing of order
less than p. Moreover, by 12.2, every (p, q)-coherent set is a subset of one of U ∩ U ′, V ∩ V ′, and in
particular is a subset of one of U ∩ U ′, V ; and so we may set (Li,Mi, Ri) = (U ∩ U ′, U ∩ V ′, V ).

Thus we may assume that (U, V ), (U ′, V ′) do not cross, and so U ∩ V ′ = ∅. Hence (U,U ′ ∩ V, V ′)
is a slicing of order less than p. Suppose that there is a (p, q)-coherent set Z that is not a subset of
one of U, V ′. Since (U, V ) and (U ′, V ′) both have order less than p and Z is (p, q)-coherent, it follows
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that Z ⊆ U ′ ∩ V . By (3) there is a slice (X,Y ) of Ci of order less than p, such that Z is a subset of
one of X,Y and πi is a subset of the other; and from the symmetry we may assume that Z ⊆ X and
πi ⊆ Y . Since Z ⊆ X ∩ U ′, 12.2 applied to (U, V ) and (X,Y ) implies that these two slices do not
cross, and so U ∩ Y = ∅; but then U ⊆ X, contrary to the maximality of U . This proves that every
(p, q)-coherent set is a subset of one of U, V ′, and hence we may take (Li,Mi, Ri) = (U,U ′ ∩ V, V ′).
This proves (5).

Now since T1 > 0, our choice of the bad quadruple T implies that every quadruple of non-negative
integers with first term zero is good. There are three pieces of Ci after the slicing described in (5),
say Li,Mi,Ri. Since there are only a finite number of possibilities for the type of Li, we may assume
(by passing to an infinite subsequence) that all the contests Li (i ≥ 2) have the same type; and the
same holds for Mi (i ≥ 2) and Ri (i ≥ 2).

Now each Li with i ≥ 2 has type with first term zero, since πi ∩Wi = ∅; and so this type is good,
as we already saw. Thus switching-containment defines a wqo on the set of all contests Li (i ≥ 2),
and the same for Ri (i ≥ 2).

Since for i ≥ 2, no subset of Mi is (p, q)-coherent in Ci, it follows from 12.3 that no subset of Mi is
(3p, q)-coherent in Mi; and so by 12.1, switching-containment defines a wqo on the set of all contests
Mi (i ≥ 2). By 5.3, there exist j ≥ i ≥ 2 such that Li,Mi,Ri are switching-contained in Lj,Mj ,Rj

respectively, and then by 11.3, it follows that Ci is switching-contained in Cj , a contradiction. This
proves 10.1.

13 Linked slicings

Let C = (G,A,B, l,m, n, π) be a contest, and let (W1, . . . ,Wt) be a slicing of C. For 0 ≤ i ≤ t,
let Xi = W1 ∪ · · · ∪ Wi and Yi = Wi+1 ∪ · · · ∪ Wt. We say this slicing is linked if for all h, j with
0 ≤ h ≤ j ≤ t, if the slices (Xh, Yh) and (Xj , Yj) have the same order, say c, and each of the slices
(Xi, Yi) (h ≤ i ≤ j) has order at least c, then every slice (X,Y ) with Xh ⊆ X and Yj ⊆ Y has order
at least c.

If S is a class of contests, and (W1, . . . ,Wt) is a slicing of a contest C such that all the pieces of
C after this slicing belong to S, we say that C admits a slicing over S, and if (W1, . . . ,Wt) is linked,
we say that C admits a linked slicing over S. We need:

13.1 Let S be a class of contests that is a wqo under switching-containment, and let T be a quadruple
of non-negative integers, and let p ≥ 0. Then the class of all contests of type T that admit a linked
slicing over S of order at most p is also a wqo under switching-containment.

Proof. Let T = (T1, . . . , T4), and let R be the class of all pairs (C, J), where C ∈ S and J ⊆
{1, . . . , T1}. We say (C, J) ≤ (C′, J ′) if C′ switching-contains C and J ′ = J . Since there are only
finitely many possibilities for J , this order relation is a wqo on R.

Let C = (G,A,B, l,m, n, π) be a contest of type T that admits a linked slicing (W1, . . . ,Wt)
over S, of order at most p. For 1 ≤ i ≤ t, let (x1, . . . , x2t+1) be a sequence defined as follows. Let
C1, . . . , Ct be the pieces of C after the slicing (W1, . . . ,Wt), and for 1 ≤ i ≤ t, let x2i = (Ci, Ji), where
Ji is the set of all j ∈ {1, . . . , T1} such that the jth term of π belongs to Wi. Thus x2i ∈ R. For
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0 ≤ i ≤ t, let x2i+1 be the order of the slicing

(W1 ∪ · · · ∪ Wi,Wi+1 ∪ · · · ∪ Wt)

of C. (Thus x1 = T2 + T3 and x2t+1 = T2 + T4, and x1, x3, . . . , x2t+1 ≤ p, and in particular
T2 + T3, T2 + T4 ≤ p.) Let us call (x1, . . . , x2t+1) the dissection of C after (W1, . . . ,Wt). We see
that the dissection (x1, . . . , x2t+1) belongs to R<ω(p) (as defined before 5.4), where R is ordered as
described above.

Now suppose that we have an infinite sequence of contests of type T that admit linked slicings
over S, of order at most p. Then we have a corresponding infinite sequence of dissections, that
all belong to R<ω(p). By 5.4, one of these dissections is at most some later one (where the “less
than” relation is the order relation of R<ω(p)). But then by 11.3, it follows that the first contest is
switching-contained in the second. This proves 13.1.

14 Dissecting incoherence

It remains to prove 12.1. Our objective in this section is to show that 12.1 is implied by a special
case of itself, 14.2 below. But first we need some definitions.

Let C = (G,A,B, l,m, n, π) be a contest. A C-slice sequence is a sequence of slices (Xi, Yi) (0 ≤
i ≤ t) of C, satisfying Xi ⊆ Xj and Yj ⊆ Yi for 0 ≤ i < j ≤ t, and X0 = Yt = ∅. If (Xi, Yi) (0 ≤ i ≤ t)
is a C-slice sequence, let Wi = Yi−1 ∩ Xi for 1 ≤ i ≤ t; then (W1, . . . ,Wt) is a slicing, that we call
the corresponding slicing. Conversely, if (W1, . . . ,Wt) is a slicing of C, let Xi = W1 ∪ · · · ∪ Wi and
Yi = Wi+1 ∪ · · · ∪ Wt for 0 ≤ i ≤ t; then (Xi, Yi) (0 ≤ i ≤ t) is a C-slice sequence, that we call the
corresponding C-slice sequence. Thus a C-slice sequence gives another way to describe a slicing of C,
sometimes more convenient.

Let C = (G,A,B, l,m, n, π) be a contest. We call (∅, V (G)) and (V (G), ∅) its end-slices. A subset
Z ⊆ V (G) is (0, p)-small if and only if Z = ∅. A subset Z ⊆ V (G) is (1, p)-small if min(|A∩Z|, |B ∩
Z|) ≤ 2p− 2. Inductively, for k ≥ 2, a subset Z ⊆ V (G) is (k, p)-small if there is a partition (Z1, Z2)
of Z such that there are fewer than p edges from Z1 to Z2, and Z1, Z2 are (k−1, p)-small. We observe
that every subset of a (k, p)-small set is also (k, p)-small.

14.1 Let (X,Y ), (X ′, Y ′) be slices of a contest C that cross, both of order less than p. Then X ∩
Y ′,X ′ ∩ Y are both (1, p)-small.

Proof. Let C = (G,A,B, l,m, n, π). Since (X,Y ), (X ′, Y ′) cross, there exists v ∈ X ∩ Y ′. Since
(X,Y ) has order less than p, v is adjacent to at most p−1 members of X ′∩Y , and since (X ′, Y ′) has
order at most p−1, v is adjacent from at most p−1 members of X ′∩Y . From the symmetry between
A and B, we may assume that v ∈ A, and so v is adjacent to or from every vertex in X ′ ∩ Y ∩ B;
and consequently |X ′ ∩ Y ∩ B| ≤ 2p − 2. it follows that X ′ ∩ Y is (1, p)-small, and similarly so is
X ∩ Y ′. This proves 14.1.

Now, let (X,Y ) and (X ′, Y ′) be slices of C, that do not cross. We say that the two slices are
(k, p)-close if they both have order less than p, and (X1 ∪X2)∩ (Y1 ∪Y2) is (k, p)-small. We say C is
(k, p)-convex if both end-slices have order less than p and every slice (X,Y ) of C of order less than
p is (k, p)-close to one of the end-slices. The following is 12.1 with an extra hypothesis.
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14.2 Let p, q ≥ 0, and let Ci (i = 1, 2, . . .) be (p, p)-convex (p, q)-incoherent contests, all of the same
type. Then there exist j > i ≥ 1 such that Cj switching-contains Ci.

As we said, the objective of this section is to show that 14.2 implies 12.1. The main part of the
proof is the following.

14.3 Let p, q ≥ 0, and let S be the class of all contests that are (p, p)-convex and (p, q)-incoherent.
Let C be a (p, q)-incoherent contest. Then C admits a linked slicing over S of order less than p.

Proof. Let C = (G,A,B, l,m, n, π). A slicing (W1, . . . ,Wt) of C is generous if it satisfies the
following, where (Xi, Yi) (0 ≤ i ≤ t) is the corresponding C-slice sequence, and hi is the order of the
slice (Xi, Yi) for 0 ≤ i ≤ t :

• the slicing has order less than p, and

• for 1 ≤ i < j < t, the slices (Xi, Yi) and (Xj , Yj) are not (|hi − hj|, p)-close.

(1) If (W1, . . . ,Wt) is a generous slicing, then t ≤ |V (G)| + 2.

For let 2 ≤ i ≤ t − 1; then since the slicing is generous, the slices (W1 ∪ · · · ∪ Wi−1,Wi ∪ · · · ∪ Wt)
and (W1 ∪ · · · ∪ Wi,Wi+1 ∪ · · · ∪ Wt) are not (0, p)-close, and so Wi 6= ∅. Since W2, . . . ,Wt−1 are all
non-empty, this proves (1).

Let (W1, . . . ,Wt) be a generous slicing of C, and let (Xi, Yi) (0 ≤ i ≤ t) be the corresponding
C-slice sequence. For 0 ≤ i ≤ t, let hi be the order of (Xi, Yi). The spectrum of this slicing is the
sequence (sj : j ≥ 0), where sj denotes the number of values of i ∈ {1, . . . , t − 1} such that hi = j.
(Consequently sj = 0 for all sufficiently large j.) If (V1, . . . , Vs) is another generous slicing of C, with
spectrum (rj : j ≥ 0), we say that (V1, . . . , Vs) is better than (W1, . . . ,Wt) if there exists j ≥ 0 such
that rj > sj and ri = si for 0 ≤ i < j. We say that a generous slicing (W1, . . . ,Wt) is optimal if it
has order less than p, and no generous slicing of order less than p is better.

Since both end-slices of C have order less than p (from the definition of (p, q)-incoherent), it
follows that (V (G)) is a generous slicing. Consequently, (1) implies that there is an optimal generous
slicing.

Let (W1, . . . ,Wt) be an optimal generous slicing. We shall prove that (W1, . . . ,Wt) satisfies the
theorem. We need therefore to show that (W1, . . . ,Wt) is linked and each piece after the slicing
belongs to S. Let (Xi, Yi) (0 ≤ i ≤ t) be the corresponding C-slice sequence, and for 0 ≤ i ≤ t, let hi

be the order of (Xi, Yi).

(2) If (X,Y ) is a slice of order h < p, then either

• there exists i with 1 ≤ i ≤ t − 1 such that hi ≤ h and (X,Y ) crosses (Xi, Yi), or

• there exists i with 1 ≤ i ≤ t − 1 such that hi ≤ h and (X,Y ) is (h − hi, p)-close to (Xi, Yi).

For let I be the set of all i ∈ {1, . . . , t− 1} such that (X,Y ) does not cross (Xi, Yi) and (X,Y ) is not
(|h − hi|, p)-close to (Xi, Yi). Then the set of slices

{(Xi, Yi) (i ∈ I ∪ {0, t})} ∪ (X,Y )
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can be ordered to be the C-slice sequence of a generous slicing; and from the optimality of (W1, . . . ,Wt),
this generous slicing is not better than (W1, . . . ,Wt). Since (X,Y ) is a slice of this new C-slice se-
quence, it follows that there exists i with 1 ≤ i ≤ t − 1 such that hi ≤ h and i /∈ I. This proves (2).

(3) Let (X,Y ) be a slice of C, of order h < p, and let 1 ≤ i ≤ t − 1, such that h < hi, and
(X,Y ) and (Xi, Yi) do not cross. Then they are not (hi − h, p)-close.

For suppose the statement is false, and choose i with 1 ≤ i ≤ t − 1 and a slice (X,Y ), such
that

• (X,Y ) and (Xi, Yi) do not cross

• h < hi, where h is the order of (X,Y )

• (X,Y ) and (Xi, Yi) are (hi − h, p)-close

• subject to the previous three conditions, hi is minimum

• subject to the previous four conditions, (X ∪ Xi) ∩ (Y ∪ Yi) is minimal.

Suppose first that (X,Y ) crosses (Xj , Yj), for some j ∈ {1, . . . , t−1} with hj ≤ h. From 14.1, X ∩Yj

is (1, p)-small. From the symmetry we may assume that i ≤ j; and so i < j since (X,Y ) and (Xi, Yi)
do not cross. Thus Xi ⊆ Xj . Now since (X,Y ) crosses (Xj , Yj), and hence ∅ 6= X ∩ Yj ⊆ Yi, it
follows that X 6⊆ Xi, and so Xi ⊆ X. Let the slice (X ∪ Xj , Y ∩ Yj) have order h′. If h′ < hj ,
then (Xj , Yj) and (X ∪Xj , Y ∩Yj) are (1, p)-close and hence (hj −h′, p)-close, contrary to the fourth
bullet above in the choice of i and (X,Y ). Thus h′ ≥ hj . By 11.1, the slice (X ∩ Xj , Y ∪ Yj) has
order at most h. Now X ∩ Yi is (hi − h, p)-small, since (Xi, Yi) and (X,Y ) are (hi − h, p)-close. It
follows that X ∩ Xj ∩ Yi is also (hi − h, p)-small, since it is a subset of an (hi − h, p)-small set; and
so (X ∩ Xj , Y ∪ Yj) is (hi − h, p)-close to (Xi, Yi), contrary to the fifth bullet above. Thus, there is
no j ∈ {1, . . . , t − 1} such that (X,Y ) crosses (Xj , Yj) and hj ≤ h.

From (2) it follows that there exists j with 1 ≤ j ≤ t−1 such that hj ≤ h and (X,Y ) is (h−hj , p)-
close to (Xj , Yj). If h = hj then (X,Y ) is (0, p)-close to (Xj , Yj) and so (X,Y ) = (Xj , Yj), which is
impossible since (X,Y ) and (Xi, Yi) are (hi−h, p)-close, and (Xj , Yj) and (Xi, Yi) are not (hi−hj, p)-
close. Thus hj < h. From the symmetry we may assume that i ≤ j; and so i < j, since hj < h < hi.
Consequently Yi ∩ Xj is not (hi − hj , p)-small. Since (X,Y ) crosses neither of (Xi, Yi), (Xj , Yj),
there are three cases: X ⊆ Xi ⊆ Xj , or Xi ⊆ X ⊆ Xj , or Xi ⊆ Xj ⊆ X. In the first case, since
Y ∩Xj is (h− hj , p)-small, it follows that Yi ∩Xj is (h− hj , p)-small and hence (hi − hj , p)-small, a
contradiction. In the second case, since Yi ∩X is (hi − h, p)-small, and Y ∩Xj is (h−hj , p)-small, it
follows that Yi ∩X and Y ∩Xj are both (hi −hj − 1, p)-small; and since there are fewer than p edges
from Yi ∩X to Y ∩Xj (because (X,Y ) has order less than p), we deduce that Yi ∩Xj is (hi −hj , p)-
small, a contradiction. In the third case, since Yi ∩ Xj ⊆ Yi ∩ X, and Yi ∩ X is (hi − h, p)-small,
it follows that Yi∩Xj is (hi−h, p)-small and hence (hi−hj , p)-small, a contradiction. This proves (3).

(4) (W1, . . . ,Wt) is linked.

Let 0 ≤ i ≤ k ≤ t, and suppose the slices (Xi, Yi) and (Xk, Yk) have the same order, say c, and
each of the slices (Xj , Yj) (i ≤ j ≤ k) has order at least c. We must show that every slice (X,Y )
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with Xi ⊆ X and Yk ⊆ Y has order at least c. Thus, suppose (X,Y ) is a slice with Xi ⊆ X and
Yk ⊆ Y , of order h say, where h < c. Now (X,Y ) does not cross (Xj , Yj) if j ≤ i or if j ≥ k, and for
i ≤ j ≤ k, (Xj , Yj) has order at least c > h. Thus, by (2), there exists j with 1 ≤ j ≤ t− 1 such that
hj ≤ h and (X,Y ) is (h−hj , p)-close to (Xj , Yj). Since hj ≤ h < c and therefore j /∈ {i, i+1, . . . , k},
we may assume from the symmetry that j < i. Now Yj ∩ X is (h − hj , p)-small, and so Yi ∩ X is
(h− hj , p)-small (since Yi ∩X ⊆ Yj ∩X); and hence (hi − hj , p)-small (since hi > h). It follows that
(Xi, Yi), (Xj , Yj) are (hi − hj , p)-close, a contradiction. This proves (4).

Let C1, . . . , Ct be the pieces after the slicing (W1, . . . ,Wt).

(5) Let 1 ≤ i ≤ t; then Ci is (p, p)-convex.

For let (X,Y ) be a slice of Ci, of order h < p say; and let (X ′, Y ′) = (X ∪ Xi−1, Y ∪ Yi). Then
(X ′, Y ′) is a slice of C, and by 11.2 it also has order h. Now (X ′, Y ′) crosses none of the slices
(Xj , Yj) (0 ≤ j ≤ t), so by (2), there exists j with 1 ≤ j ≤ t − 1 such that hj ≤ h and (X ′, Y ′)
is (h − hj, p)-close to (Xj , Yj). From the symmetry we may assume that i ≤ j, and so Xi ⊆ Xj .
Since Y ′ ∩ Xj is (h − hj, p)-small and Y ⊆ Y ′ ∩ Xj, it follows that Y is (h − hj , p)-small, and hence
(p, p)-small, in C. Thus Y is (p, p)-small in C〉, and so (X,Y ) is (p, p)-close to the end-slice (Wi, ∅) of
C〉. This proves (5).

(6) Let 1 ≤ i ≤ t; then Ci is (p, q)-incoherent.

For let Z ⊆ Wi with |Z ∩ A|, |Z ∩ B| ≥ q. Since C is (p, q)-incoherent, there is a slice (X,Y )
of order less than p with X ∩ Z, Y ∩ Z 6= ∅. Now (X,Y ) may cross either or both of the slices
(Xi−1, Yi−1), (Xi, Yi); choose (X,Y ) so that it crosses as few of these two slices as possible. Suppose
that it crosses (Xi, Yi). Then 0 < i < t, and Yi∩X is (1, p)-small by 14.1. If the slice (X ∪Xi, Y ∩Yi)
has order less than hi, then it is (1, p)-close to (Xi, Yi), contrary to (3). Thus (X ∪ Xi, Y ∩ Yi) has
order at least hi, and so by 11.1, (X ∩ Xi, Y ∪ Yi) (= (X ′, Y ′) say) has order at most h. But then
(X ′, Y ′) is a slice of order at most h, and X ′ ∩ Z, Y ′ ∩ Z 6= ∅, and yet (X ′, Y ′) crosses fewer of
(Xi−1, Yi−1), (Xi, Yi) than (X,Y ). This proves that (X,Y ) does not cross (Xi, Yi), and similarly it
does not cross (Xi−1, Yi−1). But then Xi−1 ⊆ X ⊆ Xi, and by 11.2, (X ∩ Wi, Y ∩ Wi) is a slice of
Ci of order h. This proves that Z is not (p, q)-coherent in Ci, and hence Ci is (p, q)-incoherent. This
proves (6).

From (4)–(6), this proves 14.3.

Proof of 12.1, assuming 14.2. Let p, q ≥ 0, and let S be the class of all contests that are
(p, p)-convex and (p, q)-incoherent. Let Ci (i = 1, 2, . . .) be (p, q)-incoherent contests, all of the same
type. By 14.3, each Ci admits a linked slicing over S; and the result follows from 13.1 and 14.2. This
proves 12.1.

15 Contests with degree constraints

Let c ≥ 0 be an integer. A contest C = (G,A,B, l,m, n, π) is c-limited if there are at most c vertices
in B that both have indegree at least c and outdegree at least c. We shall prove:
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15.1 Let c ≥ 0, and let Ci (i = 1, 2, . . .) be c-limited contests, all of the same type. Then there exist
j > i ≥ 1 such that Cj switching-contains Ci.

In this section we prove that 15.1 implies 14.2. We begin with the following lemma.

15.2 Let C = (G,A,B, l,m, n, π) be a contest, let p ≥ 0 be an integer, and let F be a set of slices
all of order less than p. Let Z =

⋃
(X,Y )∈F X. Then there is a subset F ′ ⊆ F of cardinality at most

6p, such that one of (Z \ Z ′) ∩ A, (Z \ Z ′) ∩ B = ∅, where Z ′ =
⋃

(X,Y )∈F ′ X.

Proof. For M ⊆ F , let X(M) =
⋃

(X,Y )∈M X. Choose M ⊆ F of cardinality at most 4p, with
|X(M)| maximal. Suppose that |(Z \ X(M)) ∩ A|, |(Z \ X(M)) ∩ B| ≥ 2p. Since every member of
Z belongs to X for some (X,Y ) ∈ F , there exists N ⊆ F with cardinality at most 4p, such that
X(N) contains at least 2p members of (Z \X(M))∩A and at least 2p members of (Z \X(M))∩B.
From the choice of M , it follows that |X(N)| ≤ |X(M)|, and since |X(N) \ X(M)| ≥ 4p, it follows
that |X(M) \ X(N)| ≥ 4p. From the symmetry we may assume that there are at least 2p members
of A ∩ X(M) that are not in X(N). Let P = A ∩ (X(M) \ X(N)), and Q = B ∩ (X(N) \ X(M));
then |P |, |Q| ≥ 2p.

If u ∈ P , then there exists (X,Y ) ∈ M with u ∈ X, and X ∩ Q = ∅ since Q ∩ X(M) = ∅. Since
(X,Y ) has order less than p, it follows that u is adjacent to at most p − 1 members of Q. Hence
there are at most (p− 1)|P | < |P ||Q|/2 edges from P to Q. But similarly, if v ∈ Q then there exists
(X,Y ) ∈ N with u ∈ X and X ∩ P = ∅; and so v is adjacent to at most p − 1 members of P ; and
so there are at most (p − 1)|Q| < |P ||Q|/2 edges from Q to P . But there are |P ||Q| edges of G−

between P and Q, a contradiction.
This proves that not both |(Z \X(M)) ∩A|, |(Z \X(M)) ∩B| ≥ 2p, and from the symmetry we

may assume that |(Z \ X(M)) ∩ A| < 2p. For each v ∈ (Z \ X(M)) ∩ A, choose (X,Y ) ∈ F with
v ∈ X, and let N be the set of these (at most 2p) slices. Then setting F ′ = M ∪ N satisfies the
theorem. This proves 15.2.

15.3 Let C = (G,A,B, l,m, n, π) be a contest, that is (p, p)-convex and (p, q)-incoherent, for some
p, q. Then C admits a slicing (W1,W2,W3) such that

• the slices (W1,W2 ∪ W3) and (W1 ∪ W2,W3) both have order at most 6p2

• W1 and W3 are both (6p2, p)-small

• one of A ∩ W2, B ∩ W2 contains fewer than max(q, 2p) vertices with at least p out-neighbours
in W2 and at least p in-neighbours in W2.

Proof. Let F be the set of all slices (X,Y ) of order less than p such that X is (p, p)-small, and let F ′

be the set of all slices (X,Y ) of order less than p such that Y is (p, p)-small. Since C is (p, p)-convex,
every slice of order less than p belongs to one of F ,F ′.

(1) If there exist (X,Y ) ∈ F and (X ′, Y ′) ∈ F ′ such that X ∩ Y ′ 6= ∅ then the result holds.

For then let W1 = X,W2 = Y ∩ X ′, and W3 = Y ′ \ X. The slice (W1,W2 ∪ W3) has order less
than p ≤ 6p2, and the slice (W1 ∪ W2,W3) has order at most 2p ≤ 6p2 by 11.1. Moreover, W1 and

34



W3 are both (p, p)-small and hence (4p2, p)-small; and Y ∩X ′ is (1, p)-small (since X ∩ Y ′ 6= ∅), and
so one of A ∩ W2, B ∩ W2 contains fewer than 2p vertices. This proves (1).

Let Z =
⋃

(X,Y )∈F X, and Z ′ =
⋃

(X,Y )∈F ′ Y . By (1) we may assume that Z ∩ Z ′ = ∅. By
15.2, there exists M ⊆ F such that |M | ≤ 6p and one of (Z \ W1) ∩ A, (Z \ W1) ∩ B = ∅, where
W1 =

⋃
(X,Y )∈M X. Similarly there exists M ′ ⊆ F ′ such that |M ′| ≤ 6p and one of (Z ′\W3)∩A, (Z ′ \

W3) ∩ B = ∅, where W3 =
⋃

(X,Y )∈M Y . Let W2 = V (G) \ (W1 ∪ W3). We claim that (W1,W2,W3)
satisfies the theorem. For since |M | ≤ 6p, it follows that the slice (W1,W2 ∪ W3) has order at most
6p2, by at most 6p applications of 11.1; and similarly (W1 ∪W2,W3) has order at most 6p2. For each
(X,Y ) ∈ M , X is (p, p)-small. Let M = {(X1, Y1), . . . , (Xk, Yk)} say, and for 1 ≤ i ≤ k let Zi be the
set of members of Xi that are not in Xi+1 ∪ · · · ∪ Xk. Then each Zi is (p, p)-small, and Z1, . . . , Zk

are pairwise disjoint, and for 1 ≤ i ≤ k, there are at most p edges from Zi to Z1 ∪ · · · ∪ Zi−1, since
(Xi, Yi) has order less than p. Consequently W1 is (6p2, p)-small, and similarly so is W3.

Finally, let R be the set of vertices in W2 with at least p out-neighbours in W2 and at least p
in-neighbours in W2, and suppose that |A ∩ R|, |B ∩ R| ≥ q. Since C is (p, q)-incoherent, there is a
slice (X,Y ) of order less than p, with X ∩R,Y ∩R 6= ∅. Since every slice of order less than p belongs
to one of F ,F ′, we may assume from the symmetry that (X,Y ) ∈ F . Consequently X ⊆ Z, and so
there exists v ∈ X ∩R∩Z. From the symmetry we may assume that v ∈ A, and so (Z \W1)∩A 6= ∅.
It follows from the choice of M that (Z \W1)∩B = ∅, and so every out-neighbour of v in W2 belongs
to Y ; and hence v has at most p − 1 out-neighbours in W2 (since (X,Y ) has order less than p),
contradicting that v ∈ R. This proves that one of |A ∩ R|, |B ∩ R| < q, and hence proves 15.3.

For k, p ≥ 0, let us say a contest C = (G,A,B, l,m, n, π) is (k, p)-small if V (G) is (k, p)-small.

15.4 Let k, p ≥ 0, and for each i ≥ 1 let Ci be a (k, p)-small contest, all of the same type. Then
there exist j > i ≥ 1 such that Cj switching-contains Ci.

Proof. The result is clear if k = 0, for if C = (G,A,B, l,m, n, π) is (0, p)-small then V (G) = ∅.
Next we assume that k = 1. Let T be a quadruple of non-negative integers, and let C =

(G,A,B, l,m, n, π) be a (1, p)-small contest of type T , with |B| ≤ 2p say. It follows that there are at
most T3 vertices v ∈ A with m(v) > 0, and at most T4 with n(v) > 0; let A′ be the set of all vertices
v ∈ A such that either m(v) > 0, or n(v) > 0, or v ∈ π̄. Thus |A′| ≤ T1 + T3 + T4. We call A′ the
core of C.

For each i ≥ 1 let Ci = (Gi, Ai, Bi, li,mi, ni, πi) be a (1, p)-small contest, all of the same type T .
For each i, either |Ai| ≤ 2p or |Bi| ≤ 2p, and passing to an infinite subsequence, we may assume that
|Bi| ≤ 2p for each i ≥ 1. For each i ≥ 1, let A′

i be the core of Ci. Since there are only finitely many
possibilities for the digraph Gi|(A

′
i ∪Bi), we may assume (again passing to a subsequence) that they

are all the same, for all i ≥ 1. Thus there is a digraph H, which is an induced subdigraph of each Gi,
and V (H) is the core of each Ci. Let A′

i = A′ and Bi = B for each i ≥ 1. Since there are only finitely
many possibilities for the restriction of mi to V (H), again we can assume they are all equal, and the
same holds for ni; and we may also assume that all the marches πi are the same. For each i ≥ 1, and
every subset J ⊆ B, let xi(J) be the number of vertices in Ai \ A′ that are adjacent to every vertex
in J and adjacent from every vertex in B \ J . By passing to a subsequence, we may assume that for
every J , the numbers xi(J) (i = 1, 2, . . .) are non-decreasing. But then C1 is switching-contained in
C2.
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Thus the result holds when k = 1 (for all T and p), and now we proceed by induction on k. Let
k ≥ 2, and let T be a quadruple of non-negative integers. Let F be the class of all (k − 1, p)-small
contests C′ = (G′, A′, B′, l′,m′, n′, π′) with a type T ′ that satisfies T ′

1 ≤ T1, T ′
2 ≤ T2 + T3 + T4,

T ′
3 ≤ T3 + p and T ′

4 ≤ T4 + p. From the inductive hypothesis, switching-containment defines a wqo
on F .

Now if C = (G,A,B, l,m, n, π) is (k, p)-small, of type T , there is a partition (X,Y ) of V (G) such
that there are fewer than p edges from X to Y , and X,Y are both (k − 1, p)-small. The pieces after
this slicing are (k − 1, p)-small, and their types satisfy the four constraints above, and so the pieces
both belong to F .

For each i ≥ 1 let Ci = (Gi, Ai, Bi, li,mi, ni, πi) be a (k, p)-small contest of type T . For each
i ≥ 1, let (Xi, Yi) be a slice as described above. By passing to an infinite subsequence, we may
assume that for 1 ≤ j ≤ T1, if the jth term of πi belongs to Xi for some choice of i ≥ 1, then the
same holds for all choices of i. But then from 11.3, we deduce that there exist j > i ≥ 1 such that
Cj switching-contains Ci. This proves 15.4.

Proof of 14.2, assuming 15.1. Let p, q ≥ 0, and let T be a quadruple of nonnegative integers.
Let T be the set of all quadruples of nonnegative integers T ′ such that T ′

1 ≤ T1, T ′
2 ≤ T2 + T3 + T4,

T ′
3 ≤ T3 + 6p2, and T ′

4 ≤ T4 + 6p2. Let F1 be the class of all (6p2, p)-small contests with a type
in T . Let F2 be the class of all max(q, 2p)-limited contests with a type in T . By 15.4, switching-
containment defines a wqo on F1 , and from 15.1, the same holds for F2.

Let C = (G,A,B, l,m, n, π) be a (p, p)-convex (p, q)-incoherent contest of type T . By 15.3, C
admits a slicing (W1,W2,W3) such that

• the slices (W1,W2 ∪ W3) and (W1 ∪ W2,W3) both have order at most 6p2

• W1 and W3 are both (6p2, p)-small

• one of A ∩ W2, B ∩ W2 contains fewer than max(q, 2p) vertices with at least p out-neighbours
in W2 and at least p in-neighbours in W2.

There are three pieces after this slicing. All three pieces have a type in T ; the first and third are
(6p2, p)-small, and so belong to F1, and the second is max(q, 2p)-limited, and so belongs to F2.

Now for each i ≥ 1 let Ci = (Gi, Ai, Bi, li,mi, ni, πi) be a (p, p)-convex (p, q)-incoherent contest
of type T . For each i ≥ 1, take a slicing (Wi1,Wi2,Wi3) as just described. By passing to an infinite
subsequence, we may assume that for 1 ≤ j ≤ T1 and for k = 1, 2, 3, if the jth term of πi belongs to
Wik for some i ≥ 1, then the same holds for all i. But then the result follows from 11.3. This proves
14.2.

16 The end

So, it remains to prove 15.1. We need a few more easy reductions: first, let us say a contest
C = (G,A,B, l,m, n, π) is clean if l = 0 and m,n are identically zero. (We use 0 loosely to denote the
function which is identically zero, so a clean contest may be written (G,A,B, 0, 0, 0, π).) We shall
prove:

36



16.1 Let c ≥ 0, and let Ci (i = 1, 2, . . .) be clean c-limited contests, all of the same type. Then there
exist j > i ≥ 1 such that Cj switching-contains Ci.

Proof of 15.1, assuming 16.1. Let T be a quadruple of nonnegative integers, and let C =
(G,A,B, l,m, n, π) be a contest of type T . Let π′ be a march such that its first T1 terms are π, and

π̄′ = π̄ ∪ {v ∈ V (G) : m(v) + n(v) > 0}.

Then C′ = (G,A,B, 0, 0, 0, π′) is a clean contest of type T ′, where T ′
1 ≤ T1+T3+T4 and T ′

2, T
′
3, T

′
4 = 0,

and if C is c-limited then so is C′. Let us call this an associated clean contest.
Now for each i ≥ 1 let Ci = (Gi, Ai, Bi, li,mi, ni, πi) be a c-limited contest, and let C′

i be an
associated clean contest. By moving to an infinite subsequence we may assume that all the contests
C′

i have the same type T ′ say; and by the same argument, we may assume that there are two T ′
1-tuples

m,n say, such that for all i ≥ 1 and for 1 ≤ j ≤ T ′
1, if v is the jth term of π′

i then mi(v) = m(j) and
ni(v) = n(j). Moreover, by 16.1, there exist j > i ≥ 1 such that C′

j switching-contains C′
i. But then

Cj switching-contains Ci. This proves 15.1.

Let c, k ≥ 0. A (c, k)-battle B is a five-tuple (G,A,B,C, π) such that

• G is a digraph such that G− is complete bipartite, and (A,V (G) \ A) is a bipartition

• B,C are disjoint subsets of V (G), and B ∪ C = V (G) \ (A ∪ π̄) (thus, A,B,Cπ̄ have union
V (G), and they are pairwise disjoint except that A ∪ π̄ may be nonempty)

• every vertex in B has at most c outneighbours in A, and every vertex in C has at most c
in-neighbours in A

• π has length at most k.

Let B1 = (G1, A1, B1, C1, π1) and B2 = (G2, A2, B2, C2, π2) be (c, k)-battles. We say B2 switching-
contains B1 if there is a digraph G′ degree-equivalent to G2 and an injection η : V (G1) → V (G2),
with the following properties:

• for all distinct u, v ∈ V (G2), if at least one of u, v belongs to π̄2, then uv is an edge of G2 if
and only if uv is an edge of G′

• for all distinct u, v ∈ V (G1), u is adjacent to v in G1 if and only if η(u) is adjacent to η(v) in
G′

• η(π1) = π2

• η(A1) ⊆ A1 and η(B1) ⊆ B2 and η(C1) ⊆ C2

• for each v in V (G1) \ π̄1, and for 1 ≤ j ≤ |π̄1|, v is adjacent to the jth term of π1 if and only if
η(v) is adjacent to the jth term of π2

• for each v in V (G1) \ π̄1, the degree of v in G1 is the same as the degree of η(v) in G2.

We shall prove:
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16.2 Let c, k ≥ 0, and let Bi (i = 1, 2, . . .) be (c, k)-battles. Then there exist j > i ≥ 1 such that Bj

switching-contains Bi.

be Proof of 16.1, assuming 16.2. Let c ≥ 0, and for each i ≥ 1 let Ci be a clean c-limited
contest, all of the same type T . For each i ≥ 1 let Ci = (Gi, Ai, Bi, 0, 0, 0, πi). For each i there is a
partition of Bi into three sets say Di11,Di2,Di3, where every vertex in Di1 has outdegree at most c,
every vertex in Di2 has indegree at most c, and |Di3| ≤ c. Let π′

i be a march of which πi is an initial
subsequence, and π̄′

i = π̄i ∪ Di3; then Bi = (Gi, Ai,Di1,Di2, π
′) is a (c, T1 + c)-battle. By 16.2 there

exists j > i ≥ 1 such that Bj switching-contains Bi; and then Cj switching-contains Ci. This proves
16.1.

Let G be a digraph and A,B ⊆ V (G). A matching in G from A to B is a set of directed
edges {x1y1, . . . , xnyn} of G such that x1, y1, . . . , xn, yn are all distinct, and x1, . . . , xm ∈ A, and
y1, . . . , ym ∈ B. We denote by µ(A,B) or µG(A,B) the cardinality of the largest matching in G from
A to B.

Let B = (G,A,B,C, π) be a (c, k)-battle. For each v ∈ A, we define its B-spread to be the
maximum n such that there is a matching {x1y1, . . . , xnyn} of G from B to A such that x1, . . . , xn

are all adjacent from v. We define the C-spread of v ∈ A to be the maximum n such that there is a
matching {x1y1, . . . , xnyn} of G from A to C such that y1, . . . , yn are all adjacent to v. We define the
c-pivot of the battle to be the subset of A consisting of the c members of A with smallest A-spread
together with the c members of A with smallest B-spread (if |A| < c we define the c-pivot to be A,
and we break ties arbitrarily). A (c, k)-battle (G,A,B,C, π) is c-pivotal if its c-pivot is a subset of
π̄. We shall prove

16.3 Let c, k ≥ 0, and let Bi (i = 1, 2, . . .) c-pivotal (c, k)-battles. Then there exist j > i ≥ 1 such
that Bj switching-contains Bi.

Proof of 16.2, assuming 16.3. Let c, k ≥ 0, and for each i ≥ 1 let Bi be a (c, k)-battle. For each
i ≥ 1 let Bi = (Gi, Ai, Bi, Ci, πi). Let π′

i be a march of length at most k + 2c of which πi is an initial
subsequence, such that every vertex of the c-pivot of Bi belongs to π̄′ (since the c-pivot has at most
2c vertices, this exists), and let B′

i = (Gi, Ai, Bi, Ci, π
′
i). Thus B′

i is a c-pivotal (c, k + 2c)-battle. By
16.3 there exists j > i ≥ 1 such that B′

j switching-contains B′
i; and then Bj switching-contains Bi.

This proves 16.2.

Proof of 16.3. The imbalance of a battle (G,A,B,C, π) is

• 2 if A ⊆ π̄

• 1 if A 6⊆ π̄ and at least one of B,C = ∅

• 0 otherwise.

Let c, k ≥ 0. A (c, k)-bad sequence means an infinite sequence Bi (i = 1, 2, . . .) of c-pivotal (c, k)-
battles, such that there do not exist j > i ≥ 1 such that Bj switching-contains Bi. If there is a
(c, k)-bad sequence, we say the pair (c, k) is bad. If (c, k) is a bad pair, its imbalance is the maximum
n such that there is a (c, k)-bad sequence each term of which has imbalance n.

We need to show there is no bad pair; thus, suppose that there is a bad pair, and choose a bad
pair (c, k) with maximum imbalance. Let Bi (i = 1, 2, . . .) be the corresponding (c, k)-bad sequence,
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and for each i ≥ 1 let Bi = (Gi, Ai, Bi, Ci, πi); thus, each Bi is a c-pivotal (c, k)-battle. By moving to
a infinite subsequence, we may assume that either Bi = ∅ for all i, or Bi 6= ∅ for all i; and the same
for the Ci.

Since there are only finitely many possibilities for Gi|π̄i, we may assume they are all the same;
and so there is a digraph H, a common subdigraph of G1, G2, . . ., and a march π with π̄ = V (H),
such that πi = π for each i ≥ 1. For each i ≥ 1, let Fi = Gi \ V (H).

For every subset J ⊆ V (H), let Ni(J) be the set of all vertices in V (Fi) that are adjacent in Gi

to every vertex in J and have no other out-neighbours in V (H). (Thus, Ni(J) = ∅ unless J ⊆ Ai or
J ∩ Ai = ∅.) Let Ai(J) = Ai ∩ Ni(J), and define Bi(J), Ci(J) similarly.

For the moment, let us fix J ⊆ V (H). Take an enumeration of the members of Ai(J) \ V (H),
and for each v ∈ Ai(J) \ V (H) list the pair (pi(v), qi(v)), where pi(v) is the number of vertices in
Bi adjacent to v, and qi(v) is the number of vertices in Ci adjacent from v. This gives a finite se-
quence of pairs of non-negative integers. Pairs of non-negative integers, ordered by component-wise
domination, form a wqo; so by 5.3 and 5.1 and passing to an infinite subsequence, we may assume
that for each i ≥ 1 there is an injection η from Ai(J) \ V (H) to Ai+1(J) \ V (H) such that for each
v ∈ Ai(J) \ V (H), η(v) ∈ Ai+1(J) \ V (H), and pi(v) ≤ pi+1(η(v)), and qi(v) ≤ qi+1(η(v)). Similarly,
take an enumeration of the members of Bi(J), and for each v ∈ Bi(J) list its outdegree in Fi. This
gives a finite sequence of integers, all at most c; and so by 5.3 and 5.1, we may assume that for all
i ≥ 1 there is an injection η from Bi(J) into Bi+1(J), such that for each v ∈ Bi(J), the outdegree of
η(v) in Fi+1 equals the outdegree of v in Fi. Similarly we may assume there is an injection η from
Ci(J) into Ci+1(J), such that for each v ∈ Ci(J), the indegree of η(v) in Fi+1 equals the indegree of
v in Fi. By repeating this for all subsets J of V (H), we may assume

(1) For each i ≥ 1, there is an injection ηi from V (Gi) into V (Gi+1) such that

• ηi(v) = v for each v ∈ V (H)

• for each v ∈ V (Fi) and u ∈ V (H), v is adjacent to u in Gi if and oly if ηi(v) is adjacent to u
in Gi+1, and v is adjacent from u in Gi if and oly if ηi(v) is adjacent from u in Gi+1

• for each v ∈ V (Fi), if v ∈ Ai then ηi(v) ∈ Ai+1, and the number of edges of Fi+1 from Bi+1 to
η(v) is at least the number of edges of Fi from Bi to v, and the number of edges of Fi+1 from
η(v) to Ci+1 is at least the number of edges of Fi from v to Ci

• for each v ∈ Bi, ηi(v) ∈ Bi+1, and the outdegree of v in Fi equals the outdegree of ηi(v) in Fi+1

• for each v ∈ Ci, ηi(v) ∈ Ci+1, and the indegree of v in Fi equals the indegree of ηi(v) in Fi+1.

(2) No pair (c′, k′) has imbalance 2.

For suppose there were such a pair; then (c, k) has imbalance 2, from our choice of (c, k). But then
by (1), η1 provides an isomorphism from G1 to an induced subdigraph of G2, and so B2 switching-
contains B1, a contradiction. This proves (2).

(3) We may assume that |Ai+1| > 2|V (Gi)|
2 + 2c for all i ≥ 1.

For suppose that for some n there are infinitely many values of i with |Ai| ≤ n. Then we may
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assume that this is true for all i, by passing to an infinite subsequence. For each i ≥ 1, let π′
i be

a march of length at most n + k of which πi is an initial subsequence, and with Ai ⊆ π̄′
i. Then

B′
i = (Gi, Ai, Bi, Ci, π

′
i) is a c-pivotal (c, k + n)-battle with imbalance 2, for each i ≥ 1, and so by

(2) there exist j > i ≥ 1 such that B′
j switching-contains B′

i. But then Bj switching-contains Bi, a
contradiction. So for each n there are only finitely many i with |Ai+1| ≤ n. But then there is an
infinite subsequence satisfying (3). This proves (3).

(4) If B1 6= ∅ then we may assume that for each i ≥ 1, µGi+1
(Bi+1, Ai+1) > (2|V (Gi)|

2 + c+k)(c+1)
for each i ≥ 1. Also, if C1 6= ∅, we may assume that µGi+1

(Ai+1, Ci+1) > (2|V (Gi)|
2 + c + k)(c + 1)

for each i ≥ 1.

For suppose that B1 6= ∅, and for some n ≥ 0, there are infinitely many values of i such that
µGi

(Bi, Ai) ≤ n. Then by passing to a subsequence, we may assume that this is the case for all i. By
Hall’s theorem, for each i ≥ 1 there is a subset Zi ⊆ Ai ∪Bi such that every edge from Bi to Ai has
at least one end in Zi. For each i ≥ 1, let π′

i be a march of length at most k + n such that πi is an
initial subsequence of π′

i, and Zi ∪ π̄i = π̄′
i. Then B′

i = (Gi, Ai, ∅, Ci, π
′
i) is a c-pivotal (c, k +n)-battle

with imbalance greater than that of Bi; and so from our choice of (c, k), there exists i < j such
that B′

i is switching-contained in B′
j, and from (1), it follows that Bi is switching-contained in Bj a

contradiction. Thus for each n there are only finitely many such i. Similarly, if C1 6= ∅, for each n
there are only finitely many i such that µGi

(Ai, Ci) ≤ n; and then there is an infinite subsequence
satisfying (4). This proves (4).

(5) Let X2 ⊆ V (F2), and let X1 = {v ∈ V (F1) : η(v) ∈ X2}. Then |D+
F2

(X2)| ≥ |D+
F1

(X1)|.

For suppose that |D+
F2

(X2)| < |D+
F1

(X1)|, for a contradiction. Since |D+
F1

(X1)| ≤ |V (G1)|
2, it

follows that |D+
F2

(X2)| < |V (G1)|
2. Suppose first that X2 ∩ C2 6= ∅ and B2 6⊆ X2. Let v ∈ X2 ∩ C2;

then v has indegree at most c, and therefore it is outadjacent to all members of A2 \ (X2 ∪ V (H))
except at most c. Since it has at most |V (G1)|

2 outneighbours in A2 \ (X2 ∪ V (H)) (because
|D+

F2
(X2)| < |V (G1)|

2), it follows that |A2 \ (X2 ∪ V (H))| ≤ |V (G1)|
2 + c. Similarly, since B2 6⊆ X2,

it follows that |A2 ∩ X2| ≤ |V (G1)|
2 + c, and so |A2 \ V (H)| ≤ 2(|V (G1)|

2 + c), contrary to (1).
Thus not both X2 ∩C2 6= ∅ and B2 6⊆ X2. From the symmetry we may assume that X2 ∩C2 = ∅.

Suppose that B2 ⊆ X2. Then |D+
F2

(X2)| is the number of edges of F2 from B2 to A2 \ (X2 ∪ V (H)),
plus the number of edges of F2 from X2 to C2. Now the number of edges of F2 from X2 to C2 is at
least the number of edges of F1 from X1 to C1, since for each v ∈ X1, η(v) ∈ X2, and the number of
edges in F2 from η(v) to C2 is at least the number of edges of F1 from v to C1, from the choice of η.
Similarly, the number of edges of F2 from B2 to A2 \ (X2 ∪ V (H)) is at least the number of edges of
F1 from B1 to A1 \ (X1 ∪ V (H)). It follows that |D+

F2
(X2)| ≥ |D+

F1
(X1)| as required.

Thus, we may assume that B2 6⊆ X2. As before, it follows that |A2∩X2| ≤ |V (G1)|
2 +c. Suppose

that A2 ∩X2 = ∅, and so X2 ⊆ B2. For every vertex v ∈ X1 ∩B1, η1(v) belongs to X2 ∩B2, and all
edges of F2 with tail η2(v) therefore belong to D+

F2
(X2); and since the outdegree of η(v) in F2 equals

the outdegree of v in F1, it follows that |D+
F2

(X2)| ≥ |D+
F1

(X1)|, a contradiction.
Thus A2 ∩ X2 6= ∅; choose v ∈ A2 ∩ X2. Let n be the B-spread of v in G2. Thus there is a

matching {x1y1, . . . , xnyn} of G2 from B2 to A2, such that x1, . . . , xn are all adjacent from v in G2.
Now there are at most |V (G1)|

2 + c values of j ∈ {1, . . . , n} such that yj ∈ (A2 ∩ X2) \ V (H), since

40



|(A2 ∩ X2) \ V (H)| ≤ |V (G1)|
2 + c; and there are at most k values of j with yj ∈ V (H), since

|V (H)| ≤ k. Thus yj ∈ A2 \ (V (H) ∩ X2) for at least n − |V (G1)|
2 − c − k values of j ∈ {1, . . . , n}.

But for each such value of j, either vxj ∈ D+
F2

(X2) (if xj /∈ X2) or xjyj ∈ D+
F2

(X2) (if xj ∈ X2),

and so there are at most |V (G1)|
2 such values. Consequently n − |V (G1)|

2 − c − k ≤ |V (G1)|
2,

and so n ≤ 2|V (G1)|
2 + c + k. Since v /∈ V (H), it follows that v is not in the c-pivot of Bi, and

so there are at least c + 1 vertices in A2 with c-spread at most n (counting v as one of them), say
v1, . . . , vc+1. Now B2 6= ∅, and so B1 6= ∅. By (4), there is a matching {x1y1, . . . , xmym} of G2 from
B2 to A2 with m > n(c + 1) ≤ (2|V (G1)|

2 + c + k)(c + 1). Since v1, . . . , vc+1 each have B-spread
at most n, it follows that each of v1, . . . , vc+1 is adjacent to at most n of x1, . . . , xm. Consequently,
there are at least (m − n)(c + 1) edges of G2 from {x1, . . . , xm} to {v1, . . . , vc+1. Since each xi

has outdegree at most c (since it belongs to B2), it follows that mc ≥ (m − n)(c + 1), and so
m ≤ n(c + 1) ≤ (2|V (G1)|

2 + c + k)(c + 1), a contradiction. This proves that A2 ∩ X2 = ∅, and so
X2 ⊆ B2 \V (H). But for every vertex v ∈ X1∩B1, η1(v) belongs to X2∩B2, and all edges of F2 with
tail η2(v) therefore belong to D+

F2
(X2); and since the outdegree of η(v) in F2 equals the outdegree

of v in F1, it follows that |D+
F2

(X2)| ≥ |D+
F1

(X1)|, a contradiction. This proves (5).

Let G′
1 be the image of G1 under η. From (5) and 9.2, applied to the weighted digraphs (G′

1, 0, 0)
and (G2, 0, 0) (where 0 denote the function which is identically zero), we deduce that there is a
digraph G′

2, degree-equivalent to G2, such that G′
1 is an induced subdigraph of G′

2. Consequently
B1 is switching-contained in B2. This proves 16.3.
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