APPROXIMATING CLIQUE-WIDTH AND BRANCH-WIDTH

SANG-IL OUM AND PAUL SEYMOUR

Abstract

We construct a polynomial-time algorithm to approximate the branch-width of certain symmetric submodular functions, and give two applications.

The first is to graph "clique-width". Clique-width is a measure of the difficulty of decomposing a graph in a kind of tree-structure, and if a graph has clique-width at most k then the corresponding decomposition of the graph is called a " k-expression". We find (for fixed k) an $O\left(n^{9} \log n\right)$-time algorithm that, with input an n-vertex graph, outputs either a $\left(2^{3 k+2}-1\right)$ expression for the graph, or a true statement that the graph has clique-width at least $k+1$. (The best earlier algorithm algorithm, by Johansson [13], constructed a $k \log n$-expression for graphs of clique-width at most k.) It was already known that several graph problems, NPhard on general graphs, are solvable in polynomial time if the input graph comes equipped with a k-expression (for fixed k). As a consequence of our algorithm, the same conclusion follows under the weaker hypothesis that the input graph has clique-width at most k (thus, we no longer need to be provided with an explicit k-expression).

Another application is to the area of matroid branch-width. For fixed k, we find an $O\left(n^{4}\right)$ time algorithm that, with input an n-element matroid in terms of its rank oracle, either outputs a branch-decomposition of width at most $3 k-1$ or a true statement that the matroid has branch-width at least $k+1$. The previous algorithm by Hliněný [11] was only for representable matroids.

1. Introduction

Some algorithmic problems, NP-hard on general graphs, are known to be solvable in polynomial time when the input graph admits a decomposition into trivial pieces by means of a tree-structure of cutsets of bounded order. However, it makes a difference whether the input graph is presented together with the corresponding tree-structure of cutsets or not. We have in mind two kinds of decompositions, "tree-width" and "clique-width" decompositions. These are similar graph invariants, and while the results of this paper concern clique-width, we begin with tree-width for purposes of comparison.

Having bounded clique-width is more general than having bounded tree-width, in the following sense. Every graph G of tree-width at most k has clique-width at most $O\left(2^{k}\right)[5,7]$, and for such graphs (for k fixed) the clique-width of G can be determined in linear time [9]. No bound in the reverse direction holds, for there are graphs of arbitrary large tree-width with clique-width at most k. (But, for fixed t, if G does not contain $K_{t, t}$ as a subgraph, then the tree-width is at most $3 k(t-1)-1$ [10].)

The algorithmic situation with tree-width is as follows:

- Numerous problems have been shown to be solvable in polynomial time when the input graph is presented together with a decomposition of bounded tree-width. Indeed, every

[^0]graph property expressible in monadic second order logic with quantifications over vertices, vertex sets, edges, and edge sets (MSO_{2}-logic) can be solved in polynomial time (see [6]).

- For fixed k there is a polynomial time algorithm [18] that either decides that an input graph has tree-width at least $k+1$, or outputs a decomposition of tree-width at most $4 k$.
- Consequently, by combining these algorithms, it follows that the same class of problems mentioned above can be solved on inputs of bounded tree-width; the input does not need to come equipped with the corresponding decomposition.
- In particular, one of these problems is the problem of deciding whether a graph has tree-width at most k. Consequently, for fixed k there is a polynomial (indeed, linear) time algorithm [1] to test whether an input graph has tree-width at most k, and if so to output the corresponding decomposition.
For inputs of bounded clique-width, less progress has so far been made. (We will define clique-width properly later.)
- Some problems have been shown to be solvable in polynomial time when the input graph is presented together with a decomposition of bounded clique-width. This class of problems is smaller than the corresponding set for tree-width, but still of interest. For instance, deciding whether the graph is Hamiltonian [22], finding the chromatic number [14], and various partition problems [8] are solvable in polynomial time; and so is any problem that can be expressed in monadic second order logic with quantifications over vertices and vertex sets (MSO_{1}-logic; see $[3,6]$).
- For fixed (general) k there was so far no known polynomial time algorithm that either decides that an input graph has clique-width at least $k+1$, or outputs a decomposition of clique-width bounded by any function of k. The best hitherto was an algorithm of Johansson [13], that with input an n-vertex graph G, either decides that G has cliquewidth at least $k+1$ or outputs a decomposition of clique-width at most $k \log n$. Our main result fills this gap.
- Consequently, it follows that the same class of problems mentioned above can be solved on inputs of bounded clique-width; the input does not need to come equipped with the corresponding decomposition.
- However, the problem of deciding whether a graph has clique-width at most k is not known to belong to this class. There is still no polynomial time algorithm to test whether G has clique-width at most k, for fixed general k.
We shall prove the following.
Theorem 1.1. For fixed k, there is an algorithm that with input an n-vertex graph G, either decides that G has clique-width at least $k+1$, or outputs a decomposition of G with clique-width at most $2^{3 k+2}-1$. Its running time is $O\left(n^{9} \log n\right)$.

The main tool for this algorithm is branch-width, which is closely related to tree-width, and was introduced in [19]. We develop a general algorithm to approximate the branch-width of certain symmetric submodular functions. Then we define the "rank-width" of a graph to be the branch-width of a symmetric submodular function determined by a graph; and since
our algorithm applies to this submodular function, we can approximate the rank-width of a graph in polynomial time. But we also prove that if clique-width is bounded, then rank-width is bounded, and vice versa; and consequently we can approximate clique-width in polynomial time.

We also apply this algorithm to matroids, and obtain an algorithm to approximate the branch-width of matroids, which was known before only for representable matroids by Hliněný [11]. We prove:
Theorem 1.2. For fixed k there is an algorithm which, with input an n-element matroid \mathcal{M} in terms of its rank oracle, either decides that \mathcal{M} has branch-width at least $k+1$, or outputs a branch-decomposition for \mathcal{M} of width at most $3 k-1$. Its running time and number of oracle calls is at most $O\left(n^{4}\right)$.

2. Branch-width

Let V be a finite set and $f: 2^{V} \rightarrow \mathbb{Z}$ be a function. If

$$
f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y)
$$

for all $X, Y \subseteq V$, then f is said to be submodular. If f satisfies $f(X)=f(V \backslash X)$ for all $X \subseteq V$, then f is said to be symmetric.

A subcubic tree is a tree with at least two vertices such that every vertex is incident with at most three edges. A leaf of a tree is a vertex incident with exactly one edge. We call (T, L) a partial branch-decomposition of a symmetric submodular function f if T is a subcubic tree and $L: V \rightarrow\{v: v$ is a leaf of $T\}$ is a surjective function. (If $|V| \leq 1$ then f admits no partial branch-decomposition.) If in addition L is bijective, we call (T, L) a branch-decomposition of f. If $L(v)=t$, then we say t is labeled by v and v is a label of t.

For an edge e of T, the connected components of $T \backslash e$ induce a partition (X, Y) of the set of leaves of T. The width of an edge e of a partial branch-decomposition (T, L) is $f\left(L^{-1}(X)\right)$. The width of (T, L) is the maximum width of all edges of T. The branch-width $\mathrm{bw}(f)$ of f is the minimum width of a branch-decomposition of f. (If $|V| \leq 1$, we define $\operatorname{bw}(f)=f(\emptyset)$.)

For the application to matroids, we assume that the reader is familiar with the basic notions of matroid theory (see [16]). Let us review matroid theory briefly for the purpose of this paper.

A matroid $\mathcal{M}=(E, r)$ is a pair formed by a finite set E of elements and a rank function $r: 2^{E} \rightarrow \mathbb{Z}$ satisfying the following axioms:
i) $0 \leq r(X) \leq|X|$ for all $X \subseteq E$.
ii) If $X \subseteq Y \subseteq E$, then $r(X) \leq r(Y)$.
iii) r is submodular.

We write $E(\mathcal{M})=E$. For $Y \subseteq E(\mathcal{M}), \mathcal{M} \backslash Y$ is the matroid $\left(E(\mathcal{M}) \backslash Y, r^{\prime}\right)$ where $r^{\prime}(X)=$ $r(X)$. For $X \subseteq E(\mathcal{M}), \mathcal{M} / Y$ is the matroid $\left(E(\mathcal{M}) \backslash Y, r^{\prime}\right)$ where $r^{\prime}(X)=r(X \cup Y)-r(Y)$. If $Y=\{e\}$, we denote $\mathcal{M} \backslash e=\mathcal{M} \backslash\{e\}$ and $\mathcal{M} / e=\mathcal{M} /\{e\}$. It is routine to prove that $\mathcal{M} \backslash Y$ and \mathcal{M} / Y are matroids.

For $X \subseteq E, \lambda(X)=r(X)+r(E(\mathcal{M}) \backslash X)-r(\mathcal{M})+1$ is the connectivity function of \mathcal{M}. A branch-decomposition and the branch-width of a matroid \mathcal{M} are defined as a branchdecomposition and the branch-width of λ.

3. Clique-width

The notion of clique-width was first introduced by Courcelle and Olariu [7]. Let k be a positive integer. We call $(G, l a b)$ a k-graph if G is a graph and lab is a mapping from its vertex set to $\{1,2, \ldots, k\}$. (In this paper, all graphs are finite and have no loops or parallel edges.) We call $l a b(v)$ the label of a vertex v.

We need the following definitions and operations on k-graphs.
(1) For $i \in\{1, \ldots, k\}$, let \cdot_{i} denote an isolated vertex labeled by i.
(2) For $i, j \in\{1,2, \ldots, k\}$ with $i \neq j$, we define a unary operator $\eta_{i, j}$ such that

$$
\eta_{i, j}(G, l a b)=\left(G^{\prime}, l a b\right)
$$

where $V\left(G^{\prime}\right)=V(G)$, and $E\left(G^{\prime}\right)=E(G) \cup\{v w: v, w \in V, l a b(v)=i, l a b(w)=j\}$. This adds edges between vertices of label i and vertices of label j.
(3) We let $\rho_{i \rightarrow j}$ be the unary operator such that

$$
\rho_{i \rightarrow j}(G, l a b)=\left(G, l a b^{\prime}\right)
$$

where

$$
l a b^{\prime}(v)= \begin{cases}j & \text { if } \operatorname{lab}(v)=i \\ \operatorname{lab}(v) & \text { otherwise }\end{cases}
$$

This mapping relabels every vertex labeled by i into j.
(4) Finally, \oplus is a binary operation that makes the disjoint union. Note that $G \oplus G \neq G$.

A well-formed expression t in these symbols is called a k-expression. The k-graph produced by performing these operations in order therefore has vertex set the set of occurrences of the constant symbols in t; and this k-graph (and any k-graph isomorphic to it) is called the value $\operatorname{val}(t)$ of t. If a k-expression t has value $(G, l a b)$, we say that t is a k-expression of G. The clique-width of a graph G, denoted by $\operatorname{cwd}(G)$, is the minimum k such that there is a k-expression of G.

For instance, K_{4} (the complete graph with four vertices) can be constructed by

$$
\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left(\rho_{2 \rightarrow 1}\left(\eta_{1,2}\left({ }_{1} \oplus \cdot \cdot_{2}\right)\right) \oplus \cdot \cdot_{2}\right)\right) \oplus \cdot \cdot_{2}\right)\right) .
$$

Therefore, K_{4} has a 2-expression, and $\operatorname{cwd}\left(K_{4}\right) \leq 2$. It is easy to see that $\operatorname{cwd}\left(K_{4}\right)>1$, and therefore $\operatorname{cwd}\left(K_{4}\right)=2$.

Some other examples: cographs, which are graphs with no induced path of length 3, are exactly the graphs of clique-width at most 2 ; the complete graph $K_{n}(n>1)$ has clique-width 2 ; and trees have clique-width at most 3 [7].

For some classes of graphs, it is known that clique-width is bounded and algorithms to construct a k-expression have been found. For example, cographs [4], graphs of clique-width at most 3 [2], and P_{4}-sparse graphs (every five vertices have at most one induced subgraph isomorphic to a path of length 3) [3] have such algorithms.

4. Extension of a submodular function

In this section, we define an "interpolation" of an integer-valued submodular function. Later we will use it to prove the main theorem.

For a finite set V, we define (with a slight abuse of terminology) 3^{V} to be $\{(X, Y): X, Y \subseteq$ $V, X \cap Y=\emptyset\}$.

Definition 4.1. Let $f: 2^{V} \rightarrow \mathbb{Z}$ be an integer-valued submodular function such that $f(\emptyset) \leq$ $f(X)$ for all $X \subseteq V$. We call $f^{*}: 3^{V} \rightarrow \mathbb{Z}$ an interpolation of f if
i) $f^{*}(X, V \backslash X)=f(X)$ for all $X \subseteq V$,
ii) (uniform) if $C \cap D=\emptyset, A \subseteq C$, and $B \subseteq D$, then $f^{*}(A, B) \leq f^{*}(C, D)$,
iii) (submodular) $f^{*}(A, B)+f^{*}(C, D) \geq f^{*}(A \cap C, B \cup D)+f^{*}(A \cup C, B \cap D)$ for all $(A, B),(C, D) \in 3^{V}$.
iv) $f^{*}(\emptyset, \emptyset)=f(\emptyset)$.

Assuming that \emptyset is a minimizer of f is not a serious restriction, because first of all it is true for all symmetric submodular functions, and secondly if we let

$$
g(X)= \begin{cases}f(X) & \text { if } X \neq \emptyset \\ \min _{Z} f(Z) & \text { otherwise }\end{cases}
$$

then g is also submodular.
Proposition 4.1. Let $f: 2^{V} \rightarrow \mathbb{Z}$ be a submodular function such that $f(\emptyset) \leq f(X)$ for all $X \subseteq V$, and let $f^{*}: 3^{V} \rightarrow \mathbb{Z}$ be an interpolation of f. Then:
(1) for all $(X, Y) \in 3^{V} \rightarrow, f^{*}(X, Y) \leq \min _{X \subseteq Z \subseteq V \backslash Y} f(Z)$.
(2) $f^{*}(\emptyset, Y)=f(\emptyset)$ for all $Y \subseteq V$.
(3) If $f(\{v\})-f(\emptyset) \leq 1$ for every $v \in V$, then for every fixed $B \subseteq V, f^{*}(X, B)-f(\emptyset)$ is the rank function of a matroid on $V \backslash B$.
Proof.
(1) If $X \subseteq Z \subseteq V \backslash Y$, then $f^{*}(X, Y) \leq f^{*}(Z, V \backslash Z)=f(Z)$.
(2) $f(\emptyset)=f^{*}(\emptyset, \emptyset) \leq f^{*}(\emptyset, Y) \leq f^{*}(\emptyset, V)=f(\emptyset)$.
(3) Let $r(X)=f^{*}(X, B)-f(\emptyset)$. It is trivial that r is submodular and nondecreasing. Moreover,

$$
0 \leq r(X)=f^{*}(X, B)-f(\emptyset) \leq f(X)-f(\emptyset) \leq|X|
$$

and therefore r is the rank function of a matroid on $V \backslash B$.
We define $f_{\min }(X, Y)=\min f(Z)$, the minimum being taken over all Z satisfying $X \subseteq Z \subseteq$ $V \backslash Y$.

Proposition 4.2. Let $f: 2^{V} \rightarrow \mathbb{Z}$ be a submodular function such that $f(\emptyset) \leq f(X)$ for all $X \subseteq V$. Then $f_{\min }$ is an interpolation of f.

Proof. The first, second, and last conditions are trivial. Let us prove submodularity. Let X, Y be subsets of V such that $A \subseteq X \subseteq V \backslash B, C \subseteq Y \subseteq V \backslash D, f_{\min }(A, B)=f(X)$, and $f_{\text {min }}(C, D)=f(Y)$. Then

$$
\begin{aligned}
f(X)+f(Y) & \geq f(X \cap Y)+f(X \cup Y) \\
& \geq f_{\min }(A \cap C, B \cup D)+f_{\min }(A \cup C, B \cap D)
\end{aligned}
$$

Thus, $f_{\text {min }}$ is an interpolation.

In general $f_{\text {min }}$ is not the only interpolation of a function f, and sometimes it is better for us to work with other interpolations that can be evaluated more quickly.

We remark that if $f^{*}: 3^{V} \rightarrow \mathbb{Z}$ is a uniform submodular function satisfying $f^{*}(\emptyset, \emptyset)=$ $f^{*}(\emptyset, V)$, then there is a submodular function $f: 2^{V} \rightarrow \mathbb{Z}$ such that $f(\emptyset) \leq f(X)$ for all $X \subseteq V$ and f^{*} is an interpolation of f.

5. Branch-Width and Well-Linkedness

Definition 5.1. Let V be a finite set and let $f: 2^{V} \rightarrow \mathbb{Z}$ be a symmetric submodular function satisfying $f(\emptyset)=0$. We say that $W \subseteq V$ is well-linked with respect to f if for every partition (X, Y) of W and every Z with $X \subseteq Z \subseteq V \backslash Y$, we have

$$
f(Z) \geq \min (|X|,|Y|)
$$

This notion is analogous to the notion of well-linkedness [17] related to tree-width of graphs.
Theorem 5.1. Let V be a finite set with $|V| \geq 2$, and let $f: 2^{V} \rightarrow \mathbb{Z}$ be a symmetric submodular function such that $f(\emptyset)=0$. If with respect to f there is a well-linked set of size k, then $\operatorname{bw}(f) \geq k / 3$.
Proof. Let W be a well-linked set of size k, and suppose that (T, L) is a branch decomposition of f. We will show that (T, L) has width at least $k / 3$. We may assume that T does not have a vertex of degree 2 , by suppressing any such vertices. For each edge $e=u v$ of T, let $A_{u v}$ be the set of elements of V that are mapped by L into the connected component of $T \backslash e$ containing u, and let $B_{u v}=V \backslash A_{u v}$.

We may assume that $W \neq \emptyset$; choose $w \in W$. Since W is well-linked with respect to f, $f(\{w\}) \geq 1$, and therefore the width of (T, L) is at least 1 . Consequently we may assume that assume $k>3$.

Suppose first that $\min \left(\left|A_{u v} \cap W\right|,\left|B_{u v} \cap W\right|\right)<k / 3$ for every edge $u v$ of T. Direct every edge $u v$ from u to v if $\left|A_{u v} \cap W\right|<k / 3$ and $\left|B_{u v} \cap W\right| \geq k / 3$. By the assumption, each edge is given a unique direction. Since the number of vertices is more than the number of edges in T, there is a vertex $t \in V(T)$ such that every edge incident with t has head t.

If t is a leaf of T, let s be the neighbour of t. Since $t s$ has head t, it follows that $\left|B_{s t} \cap W\right| \geq$ $k / 3$. But $\left|B_{s t}\right|=1<k / 3$, a contradiction.

So, t has three neighbours x, y, z in T such that $\left|A_{x t} \cap W\right|<k / 3,\left|A_{y t} \cap W\right|<k / 3$, and $\left|A_{z t} \cap W\right|<k / 3$. But $|W|=\left|A_{x t} \cap W\right|+\left|A_{y t} \cap W\right|+\left|A_{z t} \cap W\right|<k=|W|$, a contradiction.

We deduce that there exists $u v \in E(T)$ such that $\left|A_{u v} \cap W\right| \geq k / 3$ and $\left|B_{u v} \cap W\right| \geq k / 3$. Hence $f\left(A_{u v}\right) \geq \min \left(\left|A_{u v} \cap W\right|,\left|B_{u v} \cap W\right|\right) \geq k / 3$, and the width of (T, L) is at least $k / 3$.

Theorem 5.2. Let V be a finite set, let $f: 2^{V} \rightarrow \mathbb{Z}$ be a symmetric submodular function such that $f(\{v\}) \leq 1$ for all $v \in V$ and $f(\emptyset)=0$, and let $k \geq 0$ be an integer. If with respect to f, there is no well-linked set of size k, then $\mathrm{bw}(f) \leq k$.
Proof. We may assume that $\mathrm{bw}(f)>0$, and so $|V| \geq 2$. We may assume that $k>0$. For two partial branch-decompositions (T, L) and $\left(T^{\prime}, L^{\prime}\right)$ of f, we say that (T, L) extends $\left(T^{\prime}, L^{\prime}\right)$ if T^{\prime} is obtained by contracting some edges of T and for every $v \in V, L^{\prime}(v)$ is the vertex of T^{\prime} that corresponds to $L(v)$ under the contraction.

We will prove that, if there is no well-linked set of size k with respect to f, then for every partial branch-decomposition $\left(T_{s}, L_{s}\right)$ of f with width at most k, there is a branchdecomposition of f of width at most k extending $\left(T_{s}, L_{s}\right)$. Since $k \geq 1$ and f trivially admits a partial branch-decomposition of width 1 (using the two-vertex tree with vertices u, v, and mapping all vertices of V except one to u, and the last to v), this implies the statement of the theorem.

Pick a partial branch-decomposition (T, L) of f extending $\left(T_{s}, L_{s}\right)$ such that the width of (T, L) is at most k and the number of leaves of T is maximum.

We claim that (T, L) is a branch-decomposition of f, that is, L is a bijection. Suppose therefore that there is a leaf t of T such that $B=L^{-1}(\{t\})$ has more than one element.
(1) $f(B)=k$.

Suppose that $f(B)<k$. Let $v \in B$. Construct a subcubic tree T^{\prime} by adding two vertices t_{1} and t_{2} and edges $t_{1} t, t_{2} t$ to T. Let $L^{\prime}(v)=t_{1}$ and $L^{\prime}(w)=t_{2}$ for all $w \in B \backslash\{v\}$ and $L^{\prime}(x)=L(x)$ for all $x \in V \backslash B$. Then $\left(T^{\prime}, L^{\prime}\right)$ is a partial branch-decomposition extending (T, L). Moreover $f(\{v\}) \leq 1 \leq k$ and $f(B \backslash\{v\}) \leq f(B)+f(\{v\}) \leq k$, and so the width of $\left(T^{\prime}, L^{\prime}\right)$ is at most k. But the number of leaves of T^{\prime} is greater than that of T, a contradiction.

Let f^{*} be an interpolation of f. By Proposition 4.1, $f^{*}(X, B)$ is the rank function of a matroid on $V \backslash B$. Let X be a base of this matroid. Then $|X|=f^{*}(V \backslash B, B)=f(B)=k$.

Since X is not well-linked, there exists $Z \subseteq V$ such that

$$
f(Z)<\min (|Z \cap X|,|(V \backslash Z) \cap X|)
$$

Since $f(Z \backslash B)=f^{*}(Z \backslash B, B \cup(V \backslash Z)) \geq f^{*}(Z \cap X, B)=|Z \cap X|>f(Z)$, it follows that $Z \cap B \neq \emptyset$. Similarly $B \backslash Z=(V \backslash Z) \cap B \neq \emptyset$.

Construct a subcubic tree T^{\prime} by adding two vertices t_{1} and t_{2} and edges $t_{1} t, t_{2} t$ to T. Let $L^{\prime}(x)=t_{1}$ if $x \in B \cap Z, L^{\prime}(x)=t_{2}$ if $x \in B \backslash Z$ and $L^{\prime}(x)=L(x)$ otherwise.

By submodularity,

$$
\begin{aligned}
|(V \backslash Z) \cap X|+f(B) & >f(Z)+f(B) \geq f(Z \cup B)+f(Z \cap B) \\
& =f((V \backslash Z) \backslash B)+f(Z \cap B) \\
& \geq f^{*}((V \backslash Z) \cap X, B)+f(Z \cap B) \\
& =|(V \backslash Z) \cap X|+f(Z \cap B),
\end{aligned}
$$

and so $f(Z \cap B)<f(B) \leq k$ and similarly $f(B \backslash Z)<f(B) \leq k$. Therefore $\left(T^{\prime}, L^{\prime}\right)$ is a partial branch-decomposition extending (T, L) of width at most k. But the number of leaves of T^{\prime} is greater than that of T, a contradiction.

Corollary 5.3. For all $k \geq 0$, there is a polynomial-time algorithm that, with input a set V with $|V| \geq 2$ and a symmetric submodular function $f: 2^{V} \rightarrow \mathbb{Z}$ with $f(\{v\}) \leq 1$ for all $v \in V$ and $f(\emptyset)=0$, outputs either a well-linked set of size k or a branch-decomposition of width at most k.

The proof of Theorem 5.2 shows an algorithm that either finds a well-linked set of size k, or constructs a branch-decomposition of f of width at most k. By combining with Theorem 5.1, we get an algorithm that either concludes that $\mathrm{bw}(f)>k$ or finds a branch-decomposition of width at most $3 k+1$.

Let us analyze the running time of the algorithm of Theorem 5.2. To do so, we must be more precise about how the input function f and f^{*} are accessed. We consider two different situations, as follows:

- In the first case, we assume that only f is given as input, and in the sense that we can compute $f(X)$ for a set X; and we need to compute values of f^{*} from this input.
- In the second case, we assume that an interpolation f^{*} of f is given as input (in the same sense, that for any pair (X, Y) we can compute $f^{*}(X, Y)$), and we need to compute f from f^{*}.
For the first analysis, let γ be the time to compute $f(X)$ for any set X. In this case we shall use $f^{*}=f_{\min }$. To calculate $f_{\min }$, we use the submodular function minimization algorithm [12], whose running time is $O\left(n^{5} \gamma \log M\right)$ where M is the maximum value of f and $n=|V|$. Thus, we can calculate $f_{\min }$ in $O\left(n^{5} \gamma \log n\right)$ time. Finding a base X can be done by calculating f^{*} at most $O(n)$ times, and therefore takes time $O\left(n^{6} \gamma \log n\right)$. To check whether X is well-linked, we try all partitions of $X ; 2^{k-1}$ tries (a constant). And finding the set Z for a given partition of X can be done in time $O\left(n^{5} \gamma \log n\right)$ by submodular function minimization algorithms. Since the process is cycled through at most $O(n)$ times (because if (T, L) is a partital branch-decomposition then $|V(T)| \leq 2 n-2)$, it follows that in this case the time complexity is $O\left(n^{7} \gamma \log n\right)$.

For the second analysis, let δ be the time to compute $f^{*}(X)$ for any set X. Finding a base X can be done in time $O(n \delta)$. Finding Z to show that X is not well-linked can be done in time $O\left(n^{5} \delta \log n\right)$. Thus, the time complexity in this case is $O\left(n^{6} \delta \log n\right)$.

In summary, then, we have shown the following two statements.
Corollary 5.4. For given k, there is an algorithm as follows. It takes as input a finite set V with $|V| \geq 2$ and a symmetric submodular function $f: 2^{V} \rightarrow \mathbb{Z}$, such that $f(\{v\}) \leq 1$ for all $v \in V$ and $f(\emptyset)=0$. It either concludes that $\mathrm{bw}(f)>k$ or outputs a branch-decomposition of f of width at most $3 k+1$; and its running time (excluding evaluating f) and number of evaluations of f are both $O\left(|V|^{7} \log |V|\right)$.

Corollary 5.5. For given k, there is an algorithm as follows. It takes as input a finite set V with $|V| \geq 2$ and a function f^{*} which is an interpolation of some symmetric submodular function $f: 2^{V} \rightarrow \mathbb{Z}$, such that $f(\{v\}) \leq 1$ for all $v \in V$ and $f(\emptyset)=0$. It either concludes that $\operatorname{bw}(f)>k$ or outputs a branch-decomposition of f of width at most $3 k+1$; and its running time is $O\left(|V|^{6} \delta \log |V|\right)$, where δ is the time for each evaluation of f^{*}.

6. Application to Clique-width

Definition 6.1. Let G be a graph and let $A, B \subseteq V(G)$ be disjoint. Let $M_{A}^{B}(G)$ be the matrix ($m_{i j}: i \in A, j \in B$) over the 2-element field $\operatorname{GF}(2)$, where $m_{i j}=1$ if i, j are adjacent in G, and $m_{i j}=0$ otherwise. We define $\operatorname{cutrk}_{G}^{*}(A, B)=\operatorname{rk}\left(M_{A}^{B}(G)\right)$ where rk is the matrix rank function; and we define the cut-rank function cutrk ${ }_{G}$ of G by $\operatorname{cutrk}_{G}(X)=\operatorname{cutrk}_{G}^{*}(X, V(G) \backslash X)$ for
$X \subseteq V(G)$. We will show that cutrk_{G} is symmetric submodular and cutrk ${ }_{G}^{*}$ is an interpolation of cutrk_{G}.

Proposition 6.1. Let $M=\left(m_{i j}: i \in C, j \in R\right)$ be a matrix over a field F. For $X \subseteq R$ and $Y \subseteq C$, let $M[X, Y]$ denote the submatrix $\left(m_{i j} ; i \in X, j \in Y\right)$. Then for all $X_{1}, X_{2} \subseteq R$ and $Y_{1}, Y_{2} \subseteq C$, we have

$$
\operatorname{rk}\left(M\left[X_{1}, Y_{1}\right]\right)+\operatorname{rk}\left(M\left[X_{2}, Y_{2}\right]\right) \geq \operatorname{rk}\left(M\left[X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right]\right)+\operatorname{rk}\left(M\left[X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right]\right)
$$

Proof. See [15, Proposition 2.1.9], [21, Lemma 2.3.11], or [20].
Corollary 6.2. Let G be a graph. If $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \in 3^{V(G)}$ then

$$
\operatorname{cutrk}_{G}^{*}\left(X_{1}, Y_{1}\right)+\operatorname{cutrk}_{G}^{*}\left(X_{2}, Y_{2}\right) \geq \operatorname{cutrk}_{G}^{*}\left(X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right)+\operatorname{cutrk}_{G}^{*}\left(X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right)
$$

Moreover, if $X_{1}, X_{2} \subseteq V(G)$, then

$$
\operatorname{cutrk}_{G}\left(X_{1}\right)+\operatorname{cutrk}_{G}\left(X_{2}\right) \geq \operatorname{cutrk}_{G}\left(X_{1} \cap X_{2}\right)+\operatorname{cutrk}_{G}\left(X_{1} \cup X_{2}\right)
$$

Proof. Let M be the $V(G) \times V(G)$ adjacency matrix of G over $\mathrm{GF}(2)$. The first statement follows from 6.1 applied to M. The second follows from the first by setting $Y_{i}=V(G) \backslash X_{i}(i=$ $1,2)$.

A rank-decomposition of G is a branch-decomposition of cutrk $_{G}$, and the rank-width $\operatorname{rwd}(G)$ of G is the branch-width of cutrk $_{G}$.

The following proposition shows a relation between clique-width and rank-width.
Proposition 6.3. For any graph $G, \operatorname{rwd}(G) \leq \operatorname{cwd}(G) \leq 2^{\mathrm{rwd}(G)+1}-1$.
Proof. We may assume that $|V(G)| \geq 2$, because if $|V(G)| \leq 1$, then $\operatorname{rwd}(G)=0$ and $\operatorname{cwd}(G) \leq 1$.

A rooted binary tree is a subcubic tree with a specified vertex, called the root, such that every non-root vertex has one, two or three incident edges and the root has at most two incident edges. A vertex u of a rooted binary tree is called a descendant of a vertex v if v belongs to the path from the root to u; and u is called a child of v if u, v are adjacent in T and u is a descendant of v.

First we show that $\operatorname{rwd}(G) \leq \operatorname{cwd}(G)$. Let $k=\operatorname{cwd}(G)$. Let t be a k-expression with value ($G, l a b$) for some choice of lab. We recall that a k-expression is a well-formed expression with four types of symbols; the constants, two unary operators, and the binary operator forming disjoint union. The parentheses of the expression form a tree structure. Thus there is a rooted binary tree T, each vertex v of which corresponds to a k-expression say $N(v)$; and letting V_{0}, V_{1}, V_{2} denote the sets of vertices in T with zero, one and two children respectively, we have for each vertex $v \in V(T)$:

- if $v \in V_{0}$ then $N(v)$ is a 1-term expression consisting just of a constant term
- if $v \in V_{1}$ with child u, then $N(v)$ is obtained from $N(u)$ by applying one of the two unary operators
- if $v \in V_{2}$ with children u_{1}, u_{2}, then $N(v)$ is obtained from $N\left(u_{1}\right), N\left(u_{2}\right)$ by applying \oplus
- if v is the root then $N(v)=(G, l a b)$.

In particular, each vertex $v \in V_{0}$ gives rise to a unique vertex of G; let us call this $L(v)$. Then L is a bijection between $V(G)$ and the set of leaves of T. Consequently (T, L) is a branch-decomposition of cutrk $_{G}$. Let us study its width. Let $u, v \in V(T)$, where u is a child of v, and let T_{1}, T_{2} be the components of $T \backslash e$, where e is the edge $u v$ and $u \in V\left(T_{1}\right)$. Let $X_{i}=\left\{L(t): t \in V_{0} \cap V\left(T_{i}\right)\right\}$ for $i=1,2$. Thus $\left(X_{1}, X_{2}\right)$ is a partition of $V(G)$, and we need to investigate $\operatorname{cutrk}_{G}\left(X_{1}\right)$. Let $N(u)=\left(G_{1}, l a b_{1}\right)$. Thus $V\left(G_{1}\right)=X_{1}$. If $x, y \in X_{1}$, and $l a b_{1}(x)=l a b_{1}(y)$, then x, y are adjacent in G to the same members of X_{2}, from the properties of the iterative construction of ($G, l a b$); and since the function $l a b_{1}$ has at most k different values, it follows that X_{1} can be partitioned into k subsets so that the members of each subset have the same neighbours in X_{2}. Consequently $\operatorname{cutr}_{G}\left(X_{1}\right) \leq k$. Since this applies for every edge of T, we deduce that (T, L) is a branch-decomposition of cutr $_{G}$ with width at most k. Hence $\operatorname{rwd}(G) \leq k=\operatorname{cwd}(G)$.

Now we show the second statement of the theorem, that $\operatorname{cwd}(G) \leq 2^{\mathrm{rwd}(G)+1}-1$. Let $k=\operatorname{rwd}(G)$ and (T, L) be a rank-decomposition of G of width k. By subdividng one edge of T, and suppressing all other vertices of T with degree 2 , we may assume that T is a rooted binary tree; its root has degree 2 , and all other vertices have degree 1 or 3 .

For $v \in V(T)$, let $D_{v}=\{x \in V(G): L(x)$ is a descendant of v in $T\}$, and let G_{v} denote the subgraph of G induced on D_{v}. We claim that for every $v \in V(T)$, there is a map $l a b_{v}$ and a $\left(2^{k+1}-1\right)$-expression t_{v} with value $\left(G_{v}, l a b_{v}\right)$, such that
(i) if $l a b_{v}(x)=1$ then $x \in D_{v}$ is nonadjacent to every vertex of $G \backslash D_{v}$,
(ii) if $x, y \in D_{v}$ and there exists $z \in V(G) \backslash D_{v}$ such that x is adjacent to z but y is not, then $l a b_{v}(x) \neq l a b_{v}(y)$,
(iii) for each $x \in D_{v}, l a b_{v}(x) \in\left\{1,2, \ldots, 2^{k}\right\}$.

We prove this by induction on the number of vertices of T that are descendants of v. If v is a leaf, let $t_{v}=\cdot_{1}$. Then t_{v} satisfies the above conditions. Thus we may assume that v has exactly two children v_{1}, v_{2}.

By the inductive hypothesis, there are $\left(2^{k+1}-1\right)$-expressions t_{1}, t_{2} with values $\left(G_{v_{i}}, l a b_{v_{i}}\right)$ for $i=1,2$, satisfying the statements above. Let F be the set of pairs (i, j) with $i, j \in$ $\left\{1,2, \ldots, 2^{k}\right\}$, such that there is an edge $x y$ of G, with $x \in D_{v_{1}}, l a b_{v_{1}}(x)=i, y \in D_{v_{2}}$ and $l a b_{v_{2}}(y)=j$. It follows from the second condition above that if $(i, j) \in F$ then every vertex $x \in D_{v_{1}}$ with $\operatorname{lab}_{v_{1}}(x)=i$ is adjacent in G to every vertex $y \in D_{v_{2}}$ with $\operatorname{lab}_{v_{2}}(y)=j$. Let

$$
t^{*}=\left(\begin{array}{cc}
0 \\
(i, j) \in F
\end{array} \eta_{i, j+2^{k}-1}\right)\left(t_{v_{1}} \oplus\left(\begin{array}{c}
2^{k} \\
i=2
\end{array} \rho_{i \rightarrow i+2^{k}-1}\right)\left(t_{v_{2}}\right)\right) .
$$

Then t^{*} is a $\left(2^{k+1}-1\right)$-expression with value $\left(G_{v}, l a b^{*}\right)$ say, and it satisfies the first two displayed conditions above. However, it need not yet satisfy the third. Let us choose a $\left(2^{k+1}-1\right)$-expression t_{v} with value $\left(G_{v}, l a b_{v}\right)$ say, satisfying the first two conditions above, and satisfying the following:

- $\left\{l a b_{v}(x): x \in D_{v}\right\}$ is minimal
- subject to this condition, $\max \left(l a b_{v}(x): x \in D_{v}\right)(=r$ say $)$ is as small as possible.
(We call these the "first and second optimizations".) For $i=1, \ldots, r$ let $X_{i}=\left\{x \in D_{v}\right.$: $\left.l a b_{v}(x)=i\right\}$. The definition of r implies that $X_{r} \neq \emptyset$. If there exists i with $2 \leq i<r$ such that $X_{i}=\emptyset$, then applying the function $\rho_{r \rightarrow i}$ to t_{v} produces a k-expression contradicting the
second optimization. Thus, X_{2}, \ldots, X_{r} are all nonempty. For $1 \leq i \leq r$ let Y_{i} be the set of vertices of $V(G) \backslash D_{v}$ with a neighbour in X_{i}. From the first condition above, $Y_{1}=\emptyset$. From the second condition above, every vertex in X_{i} is adjacent to every member of Y_{i} for all i with $1 \leq i \leq r$. If there exist i, j with $1 \leq i<j \leq r$ such that $Y_{i}=Y_{j}$, then applying $\rho_{j \rightarrow i}$ to t_{v} produces a k-expression contradicting the first optimization. Thus Y_{1}, \ldots, Y_{r} are all distinct.

Let M be the matrix $\left(m_{i j}: i \in D_{v}, j \in V(G) \backslash D_{v}\right)$, where $m_{i j}=1$ if i, j are adjacent and 0 otherwise. Then M has $r-1$ distinct nonzero rows. Since (T, L) has width k, it follows that M has rank at most k, and therefore M has at most $2^{k}-1$ distinct nonzero rows (this is an easy fact about any matrix over $\mathrm{GF}(2))$. We deduce that $r \leq 2^{k}$, and therefore t_{v} satisfies the third condition above.

This completes the proof that the k-expressions t_{v} exist as described above. In particular, if v is the root of T then $G_{v}=G$, and so t_{v} is a $2^{k+1}-1$-expression of G. We deduce that $\operatorname{cwd}(G) \leq 2^{k+1}-1$.

The above proof gives an algorithm that converts a rank-decomposition of order k into a $\left(2^{k+1}-1\right)$-expression. Let $n=|V(G)|$, and let (T, L) be the input rank-decomposition. At each non-leaf vertex v of T, we first construct F, in $O\left(\left(2^{k}\right)^{2}\right)=O(1)$ time. Then merging sets with the same neighbours outside D_{v} will take time $O\left(2^{2 k} n\right)=O(n)$. The number of non-leaf vertices v of T is $O(n)$. Therefore, the time complexity is $O\left(n^{2}\right)$. Note that we may assume that checking the adjacency of two vertices can be done in constant time, because we preprocess the input to construct an adjacency matrix in time $O\left(n^{2}\right)$.
Corollary 6.4. For given k, there is an algorithm that, with input an n-vertex graph G, either concludes that $\operatorname{rwd}(G)>k$ or outputs a rank-decomposition of width at most $3 k+1$. Its running time is $O\left(n^{9} \log n\right)$.
Proof. cutrk ${ }_{G}^{*}$ can be calculated in time $O\left(n^{3}\right)$, so the claim follows from 5.5.
Corollary 6.5. For given k, there is an algorithm that, with input a graph G, either concludes that $\operatorname{cwd}(G)>k$ or outputs a $\left(2^{3 k+2}-1\right)$-expression of G. Its running time is $O\left(n^{9} \log n\right)$.

Proof. This is immediate from 6.4 and 6.3.

7. Application to the Branch-width of a Matroid

In this section, we will show an interpolation of the connectivity function λ of a matroid that can be evaluated faster than $\lambda_{\text {min }}$, and a method to apply the matroid intersection theorem to avoid the general submodular function minimization algorithms. So, approximating the branch-width of matroids can be done much faster than that of general symmetric submodular functions.

The following proposition is due to Jim Geelen (private communication).
Proposition 7.1. Let \mathcal{M} be a matroid with rank function r. Let $\lambda(X)=r(X)+r(E(\mathcal{M}) \backslash$ $X)-r(\mathcal{M})+1$ be the connectivity function of \mathcal{M}. Let B be a base of \mathcal{M}. Then

$$
\lambda_{B}(X, Y)=r(X \cup(B \backslash Y))+r(Y \cup(B \backslash X))-|B \backslash X|-|B \backslash Y|+1
$$

is an interpolation of λ.

Proof. We verify the three conditions of the definition of an interpolation.

1) If $Y=E(\mathcal{M}) \backslash X$, then

$$
\lambda_{B}(X, Y)=r(X)+r(Y)-r(B \cap X)-r(B \cap Y)+1=r(X)+r(Y)-r(\mathcal{M})+1=\lambda(X)
$$

2) Let $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$. Then

$$
r\left(X_{2} \cup\left(B \backslash Y_{2}\right)\right) \geq r\left(X_{1} \cup\left(B \backslash Y_{2}\right)\right) \geq r\left(X_{1} \cup\left(B \backslash Y_{1}\right)\right)-\left(\left|B \backslash Y_{1}\right|-\left|B \backslash Y_{2}\right|\right) .
$$

Therefore,

$$
r\left(X_{2} \cup\left(B \backslash Y_{2}\right)\right)-\left|B \backslash Y_{2}\right| \geq r\left(X_{1} \cup\left(B \backslash Y_{1}\right)\right)-\left|B \backslash Y_{1}\right|
$$

Similarly,

$$
r\left(Y_{2} \cup\left(B \backslash X_{2}\right)\right)-\left|B \backslash X_{2}\right| \geq r\left(Y_{1} \cup\left(B \backslash X_{1}\right)\right)-\left|B \backslash X_{1}\right| .
$$

By adding both inequalities, we deduce that $\lambda_{B}\left(X_{2}, Y_{2}\right) \geq \lambda_{B}\left(X_{1}, Y_{1}\right)$.
3) Let $X_{1} \cap Y_{1}=\emptyset$ and $X_{2} \cap Y_{2}=\emptyset$. It is easy to show that

$$
(P \cap R) \cup(Q \cap S) \subseteq(P \cup Q) \cap(R \cup S)
$$

for any choice of sets P, Q, R, S. Since r is submodular and increasing,

$$
\begin{aligned}
& r\left(X_{1} \cup\left(B \backslash Y_{1}\right)\right)+r\left(X_{2} \cup\left(B \backslash Y_{2}\right)\right) \\
\geq & r\left(\left(X_{1} \cup\left(B \backslash Y_{1}\right)\right) \cup\left(X_{2} \cup\left(B \backslash Y_{2}\right)\right)\right)+r\left(\left(X_{1} \cup\left(B \backslash Y_{1}\right)\right) \cap\left(X_{2} \cup\left(B \backslash Y_{2}\right)\right)\right) \\
\geq & r\left(\left(X_{1} \cup X_{2}\right) \cup\left(B \backslash\left(Y_{1} \cap Y_{2}\right)\right)\right)+r\left(\left(X_{1} \cap X_{2}\right) \cup\left(B \backslash\left(Y_{1} \cup Y_{2}\right)\right)\right) .
\end{aligned}
$$

Similarly

$$
r\left(Y_{1} \cup\left(B \backslash X_{1}\right)\right)+r\left(Y_{2} \cup\left(B \backslash X_{2}\right)\right) \geq r\left(\left(Y_{1} \cup Y_{2}\right) \cup\left(B \backslash\left(X_{1} \cap X_{2}\right)\right)\right)+r\left(\left(Y_{1} \cap Y_{2}\right) \cup\left(B \backslash\left(X_{1} \cup X_{2}\right)\right)\right)
$$

But also

$$
\left|B \backslash X_{1}\right|+\left|B \backslash X_{2}\right|=\left|B \backslash\left(X_{1} \cap X_{2}\right)\right|+\left|B \backslash\left(X_{1} \cup X_{2}\right)\right| .
$$

Adding, we deduce that

$$
\lambda_{B}\left(X_{1}, Y_{1}\right)+\lambda_{B}\left(X_{2}, Y_{2}\right) \geq \lambda_{B}\left(X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right)+\lambda\left(X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right)
$$

To apply 5.5 to matroid branch-width, we needed a submodular function minimization algorithm that, given a matroid \mathcal{M} and two disjoint subsets X and Y, will output $Z \subseteq E(\mathcal{M})$ such that $X \subseteq Z \subseteq E(\mathcal{M}) \backslash Y$ and $\lambda(Z)$ is minimum. We would like to show that this can be done by the matroid intersection algorithm. Let $\mathcal{M}_{1}=\mathcal{M} / X \backslash Y, \mathcal{M}_{2}=\mathcal{M} \backslash X / Y$. Let r_{1}, r_{2} be the rank function of $\mathcal{M}_{1}, \mathcal{M}_{2}$, respectively. Then by the matroid intersection algorithm, we can find $U \subseteq E(\mathcal{M}) \backslash X \backslash Y$ minimizing $r_{1}(U)+r_{2}(E(\mathcal{M}) \backslash X \backslash Y \backslash U)$. Using the fact $r_{1}(U)=r(U \cup X)-r(X), r_{2}(U)=r(U \cup Y)-r(Y)$, we get $Z, X \subseteq Z \subseteq E(\mathcal{M}) \backslash Y$ minimizing $\lambda(Z)$. And this can be done in $O\left(n^{3}\right)$ time (in terms of the rank oracle), where $n=|E(\mathcal{M})|$.

We deduce:

Corollary 7.2. For given k, there is an algorithm that, with input an n-element matroid \mathcal{M}, given by its rank oracle, either concludes that $\mathrm{bw}(\mathcal{M})>k$ or outputs a branch-decomposition of \mathcal{M} of width at most $3 k-1$. Its running time and number of oracle calls is at most $O\left(n^{4}\right)$.

Proof. Pick a base B of \mathcal{M} arbitrarily. We use λ_{B} as an interpolation of λ. For a given partition (A, B), finding a base X can be done in time $O(n)$. Finding Z to prove that X is not welllinked can be done in $O\left(2^{3 k-2} n^{3}\right)$. Therefore, the time complexity is $O\left(n+n\left(n+2^{3 k-2} n^{3}\right)\right)=$ $O\left(8^{k} n^{4}\right)$.

Acknowledgment. We would like to thank Jim Geelen for suggesting the branch-width of symmetric submodular functions and Proposition 7.1, and Frank Gurski for discussions which led to a slight improvement of Proposition 6.3.

References

[1] Hans L. Bodlaender, "A linear-time algorithm for finding tree-decompositions of small treewidth", SIAM J. Comput. 25 (1996), no. 6, 1305-1317.
[2] Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics, "Polynomial time recognition of clique-width ≤ 3 graphs (extended abstract)", Gonnet, Gastón H. (ed.) et al., LATIN 2000: Theoretical informatics. 4th Latin American symposium, Punta del Este, Uruguay, April 10-14, 2000. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci. 1776, 126-134, 2000.
[3] Bruno Courcelle, J. A. Makowsky, and Udi Rotics, "Linear time solvable optimization problems on graphs of bounded clique-width", Theory Comput. Syst. 33 (2000), no. 2, 125-150.
[4] Derek G. Corneil, Y. Perl, and L. K. Stewart, "A linear recognition algorithm for cographs", SIAM J. Comput. 14 (1985), no. 4, 926-934.
[5] Derek G. Corneil and Udi Rotics, "On the relationship between clique-width and treewidth (extended abstract)", Graph-theoretic concepts in computer science (Boltenhagen, 2001), Lecture Notes in Comput. Sci., vol. 2204, Springer, Berlin, 2001, pp. 78-90.
[6] Bruno Courcelle, "The expression of graph properties and graph transformations in monadic secondorder logic", Handbook of graph grammars and computing by graph transformation, Vol. 1, World Sci. Publishing, River Edge, NJ, 1997, pp. 313-400.
[7] Bruno Courcelle and Stephan Olariu, "Upper bounds to the clique width of graphs", Discrete Appl. Math. 101 (2000), no. 1-3, 77-114.
[8] Wolfgang Espelage, Frank Gurski, and Egon Wanke, "How to solve NP-hard graph problems on cliquewidth bounded graphs in polynomial time", Graph-theoretic concepts in computer science (Boltenhagen, 2001), Lecture Notes in Comput. Sci., vol. 2204, Springer, Berlin, 2001, pp. 117-128.
[9] Wolfgang Espelage, Frank Gurski, and Egon Wanke, "Deciding clique-width for graphs of bounded treewidth", Journal of Graph Algorithms and Applications 7 (2003), no. 2, 141-180.
[10] Frank Gurski and Egon Wanke, "The tree-width of clique-width bounded graphs without $K_{n, n}$ ", Graphtheoretic concepts in computer science (Konstanz, 2000), Lecture Notes in Comput. Sci., vol. 1928, Springer, Berlin, 2000, pp. 196-205.
[11]
[12] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige, "A combinatorial strongly polynomial algorithm for minimizing submodular functions", Journal of the ACM 48 (2001), no. 4, 761-777.
[13] Öjvind Johansson, "log n-approximative NLC_{k}-decomposition in $O\left(n^{2 k+1}\right)$ time (extended abstract)", Graph-theoretic concepts in computer science (Boltenhagen, 2001), Lecture Notes in Comput. Sci., vol. 2204, Springer, Berlin, 2001, pp. 229-240.
[14] Daniel Kobler and Udi Rotics, "Edge dominating set and colorings on graphs with fixed clique-widthi", Discrete Appl. Math. 126 (2003), no. 2-3, 197-221.
[15]
[16] James G. Oxley, Matroid theory, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1992.
[17] Bruce A. Reed, "Tree width and tangles: a new connectivity measure and some applications", Surveys in Combinatorics, 1997 (London), London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, Cambridge, 1997, pp. 87-162.
[18] Neil Robertson and P. D. Seymour, "Graph minors. V. Excluding a planar graph", J. Combin. Theory Ser. B 41 (1986), no. 1, 92-114.
[19] Neil Robertson and P. D. Seymour, "Graph minors. X. Obstructions to tree-decomposition", J. Combin. Theory Ser. B 52 (1991), no. 2, 153-190.
[20]
[21] K. Truemper, Matroid decomposition, Academic Press Inc., Boston, MA, 1992.
[22] Egon Wanke, " k-NLC graphs and polynomial algorithms", Discrete Appl. Math. 54 (1994), no. 2-3, 251-266.
E-mail address: sangil@princeton.edu
E-mail address: pds@math.princeton.edu
Program in Applied and Computational Mathematics, Princeton University, USA

[^0]: Supported by ONR grant N00014-01-1-0608, and NSF grant DMS-0070912.

