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1. Introduction

Let C = (C1, . . . , Cm) be a system of sets. The range of an injective partial choice function from C is called
a rainbow set, and is also said to be multicolored by C. If φ is such a partial choice function and i ∈ dom(φ)
we say that Ci colors φ(i) in the rainbow set. If the elements of Ci are sets then a rainbow set is said to be
a (partial) rainbow matching if its range is a matching, namely it consists of disjoint sets.

Definition 1.1. For integers n,m let f(n,m) (respectively g(n,m)) be the minimal number k such that any
family M = (M1, . . . ,Mk) of matchings of size n in a bipartite (respectively, general) graph has a partial
rainbow matching of size m.

A greedy choice shows that g(n, 2n− 1) = n. In [1] it was conjectured that f(n, n+ 1) = n, namely every
family of n matchings of size n + 1 has a rainbow matching of size n. If true, this would yield by a simple
argument that f(n, n− 1) ≤ n. The current best result in this direction is f(n, d 32ne) = n.

A strange jump occurs here: while possibly f(n, n+ 1) = n, if we take matchings of size one less, namely
n, we need to take 2n− 1 of them to obtain a rainbow matching of size n. Namely, f(n, n) = 2n− 1.

Example 1.2. To show that f(n, n) > 2n− 2 take Mi, 1 ≤ i ≤ n− 1 to be all equal to one of the two perfect
matchings in C2n and Mi, i ≤ 2n− 2 to be all equal to the other perfect matching. Clearly, this system does
not have a rainbow matching.

The fact that 2n− 1 matchings suffice was essentially proved by Drisko [6]:

Theorem 1.3. Let A be an m × n matrix in which the entries of each row are all distinct. If m ≥ 2n − 1,
then A has a transversal, namely a set of n distinct entries with no two in the same row or column.

In [1] this was formulated in the rainbow matching setting, and given a short proof:

Theorem 1.4. Any family M = (M1, . . . ,M2n−1) of matchings of size n in a bipartite graph possesses a
rainbow matching.

In [3] it was shown that Example 1 is the only instance in which 2n − 2 matchings do not suffice. In [4]
Theorem 1.4 was strengthened, using topological methods:

Theorem 1.5. If Mi, i = 1, 2n − 1 are matchings in a bipartite graphs satisfying |Mi| = min(i, n) for all
i ≤ 2n− 1 then there exists a rainbow matching of size n.

The conjecture we wish to study in this paper is due to Barát, Gyárfás and Sárközy:

Conjecture 1.6. [5] For n even g(n, n) = 2n, and for n odd g(n, n) = 2n− 1.

Example 1.7. The following example shows that for n even f(n, n) ≥ 2n, namely 2n− 1 matchings of size n
in a graph do not necessarily have a rainbow matching of size n. Let n = 2k. Number the vertices of C2n

as v1, v2, . . . , v4n, and let K be the matching {v1v3, v2v4, v5v7, v6v8 . . . , v4n−3v4n−1, v4n−2v4k}. Let M0 = K,
let M be the family consisting of K and of n− 1 copies of each of the two matchings of size n in C2n. Then

The research of the first author was supported by BSF grant no. 2006099, by the Technion’s research promotion fund, and

by the Discont Bank chair.
The research of the second author was supported by BSF grant no. 2006099 and by ISF grant no.

The research of the third author was supported by BSF grant no. 2006099, and NSF grants DMS-1001091 and IIS-1117631.

The research of the fourth author was supported by BSF grant no. 2006099, and by ISF grants Nos. 779/08, 859/08 and 938/06.
The research of the fifth author was supported by .

1



2 RON AHARONI, ELI BERGER, MARIA CHUDNOVSKY, DAVID HOWARD, AND PAUL SEYMOUR

M does not have a rainbow matching of size n. If there was, it would have to contain an edge from K, and
without loss of generality this edge is v1v3. But then no edge can be chosen from any other matching in M
that contains the vertex v2.

Question: is this the only example? (As mentioned above, in the bipartite case Example 1 is the unique
example showing sharpness of Drisko’s theorem).

We shall prove:

Theorem 1.8. g(n, n) ≤ 3n− 2 for all n.

2. Preliminaries and notation

We shall use the following notation regarding paths. The first vertex on a path P is denoted by in(P ),
and its last vertex by ter(P ). The edge set of P is denoted by E(P ), and its vertex set by V (P ). Given
a family of paths P, we write E[P] =

⋃
P∈P E(P ). For a path P and a vertex v on it, we denote by Pv

the part of P up to and including v, and by vP the part from v (including v) and on. If P,Q are paths
such that in(Q) = ter(P ) we write PQ for the trail (namely not necessarily simple path) resulting from the
concatenation of P and Q.

Let F be a matching in a graph, and let K be a set of edges disjoint from F . A path P is said to be
K − F -alternating if every odd-numbered edge of P belongs to K and every even-numbered edge belongs to
F . If there is no restriction on the odd edges of P then we just say that it is F -alternating. If both in(P )
and ter(P ) do not belong to

⋃
F then P is said to be augmenting. The origin of the name is that in such a

case E(P )4 F is a matching larger than F . The converse is also well known to be true:

Lemma 2.1. If F,G are matchings and |G| > |F | then E(F )∪E(G) contains an F -alternating augmenting
path.

Proof. Viewed as a multigraph, the connected components of E(F ) ∪ E(G) are cycles (possibly digons) and
paths that alternate between G and F edges. Since |G| > |F | one of these paths contains more edges from G
than from F , and is thus F -augmenting. �

Definition 2.2. Let F be a matching, let K be a set of edges disjoint from F , and let a be any vertex. A
vertex v ∈

⋃
M is said to be oddly K-reachable (resp. evenly K-reachable) from a if there exists an odd

(respectively even) K−F -alternating path starting with an edge ab ∈ K and ending at v. Note that being an
odd alternating path means ending with an edge from K, and being an even alternating path means ending
with an edge of F . Let OR(a,K, F ) be the set of vertices oddly reachable from a, ER(a,K, F ) the set of
vertices evenly reachable from a, and let DR(a,K, F ) = OR(a,K, F ) ∩ ER(a,K, F ). We say that v is oddly
K-reachable (respectively evenly K-reachable) if it is oddly (respectively evenly) reachable from some vertex
not belonging to

⋃
F .

Note that there exists a K − F augmenting alternating path if and only if OR(K,F ) 6⊆
⋃
F .

Definition 2.3. A graph G is called hypomatchable if G− v has a perfect matching for every v ∈ V (G).

Lemma 2.4. Let F be a matching in a graph G, let K = E \ F , and suppose that V (G) \
⋃
F consists of a

single vertex a. Then a vertex x belongs to ER(a,K, F ) if and only if G− x has a perfect matching.

Proof. Suppose that there exists a matching M of G−x. Then the F −M -alternating path starting at x with
an edge of F must terminate at a with an edge of M , wich proves that x ∈ OR(a,K, F ). If x ∈ OR(a,K, F )
then taking L to be the odd a − x F -alternating path reaching x and letting M = F4L yields a perfect
matching of G− x.

�

Note that x ∈ OR(a,K, F ) if and only if F (x) ∈ ER(a,K, F ). Hence the lemma implies:

Corollary 2.5. Let F be a matching in a graph G, let K = E(G) \ F , and let a be the single vertex in
V (G) \

⋃
F . Then G is hypomatchable if and only if V (G) = DR(a,K, F ).
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3. Snick-Berry switches

Let G be a graph, let F be a matching in it, and write K = E \F . The pair (G,F ) is called a snick-berry
tree if it can be obtained from a rooted tree T with root r as follows. Subdivide every edge e = st of T , where
s is the vertex nearer to r, by a vertex m(e). Replace each vertex s of the original tree by a hypomatchable
graph H(s), such that F � H(s) matches all vertices apart from a single vertex r(s). For every descendant t
of s connect some vertex v ∈ H(s) different from r(s) to m(st) by an edge of K, and connect m(st) to r(t)
by an edge of F . The sets Vt = V (H(t)) are called islands. We say that T guides the snick-berry tree.

A pair (G,F ) of a graph G and a matching F in it is called a snick-berry switch, or SBS for short, if each
of its connected components is of one of two types: a snick-berry tree, or a component on which F induces
a perfect matching.

Theorem 3.1. Let G = (V,E) be a graph, let F be a matching in G, and let K = E \ F . Suppose that:

(1) F is a matching of maximal size in G, and
(2) For every L $ K we have OR(L,F ) $ OR(K,F ).

Then the pair (G,F ) is an SBS.

Proof. It suffices to show that if G satisfies the conditions of the theorem and is connected, then it is a
snitch-berry tree. If G consists of a single edge belonging to F then the lemma is true, with the tree being
empty. So, we may assume that this is not the case.

We construct the tree T guiding the snitch-berry tree inductively, by adding at the i-th stage an island Vti
with a hypomatchable graph H(ti). We call the tree obtained after adding the i-th island Ti. The inductive
assumption will be that for each island Vt in Ti we have:

(a) Vt = DR(r(t),K, F ).
(b) r(t) ∈ OR(a,K, F ) \ ER(a,K, F ).

If OR(K,F ) = ∅ then by condition (2) K = ∅, meaning that F is a perfect matching in G (actually,
with the assumption of connectedness, a single edge), and the theorem is true. So, we may assume that
OR(K,F ) 6= ∅. This means that there exists a vertex a 6∈

⋃
F . Define t1 as r, the root of T , and let T1 be

the tree consisting of the single vertex t1. Let r(t1) = a, and let Vt1 = DR(a,K, F ).

Suppose that Ti has been defined. If
⋃
{Vt | t ∈ V (Ti)} = V then we halt the construction and let

T = Ti. Otherwise, choose an edge xy where x ∈ Vs, s ∈ V (Ti) and y 6∈
⋃
{Vt | t ∈ V (Ti)}. By its choice,

y ∈ OR(r(s),K, F ) and since by the induction hypothesis Vs = DR(r(s),K, F ) and r(s) ∈ OR(a,K, F ), we
have y ∈ OR(a,K, F ). By the inductive assumption y 6∈ DR(r(s),K, F ), meaning that y 6∈ ER(a,K, F ),
proving (b) for Ti+1.

By condition (1), y ∈
⋃
F . Let z be the vertex connected by F to y, obtain Ti+1 by adding a descendant

ti+1 of s to Ti, and let Vti+1
= DR(z,K, F ). Let z = r(ti+1). By (2) above, there is no other edge, except for

xy, that connects y with any Vt, t ∈ V (Ti). Also, there is no edge connecting Vr to Vti+1
, since such an edge

would generate a K − F alternating path showing that y ∈ DR(a,K, F ), implying that y ∈ Vr, contrary to
the choice of y.

By the construction, for every t ∈ V (T ) and every vertex v ∈ Vt there exists an even K − F alternating
path EP (v) from a to v going only through islands Vs, for s belonging to the path in T from r to t, and the
bridges between them. Also, for every v ∈ Vt there exists an even K − F -alternating path EQ(v) from r(t)
to v.

Finally, we have to show that if an edge uv ∈ E(G) satisfies u ∈ Vs and v 6∈ Vs then either

(1) v = m(st) for a direct descendant t of s, or
(2) u = r(s) and v = m(ps) for the father p of s in the tree T .

Suppose, to the contrary, that there exists an edge uv contradicting this assertion. There are two cases to
consider:
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• v ∈ Vt for some t ∈ V (T ). Let p be the father of t. Then EP (u) concatenated with
←−−−−
EQ(v) shows

that m(pt) ∈ ER(a,K, F ), contrary to (b) above.
• v = m(pq) where p is the father of the vertex q of T . This cannot happen, because the deletion of
uv does not reduce OR(a,K, F ), contrary to assumption (2) in the theorem.

�

Remark 3.2. From the proof it follows that if there exists an edge joining a vertex in Vs and Vt where s is
not a descendant of t then r(t) ∈ OR(K ∪ {e}, F ) \OR(K,F ).

4. Multicolored alternating paths and proof of Theorem 1.8

Theorem 4.1. Let F be a matching, let K be a set of edges disjoint from F such that there is no K − F
augmenting F -alternating path. If A is an augmenting F -alternating path then there exists an edge e ∈
E(A) \ F such that OR(K ∪ {e}, F ) % OR(K,F ).

Proof. Let G be the graph on V whose edge set is K ∪ F . By the assumption that there is no K − F
augmenting alternating path, F is a maximal matching in G. Clearly, if the theorem is true when K is
replaced by a subset L with OR(L,F ) = OR(K,F ) then it is true also for K. Thus we may assume that
condition (2) in Theorem 3.1 holds. By this theorem it follows that the pair (G,F ) is an SBS. Since we may
clearly assume that G is connected, it is in fact a snick-berry tree, guided by some tree T . Suppose that there
exits an edge e = uv of A between two distinct islands Vs and Vt (s, t ∈ V (T )). One of s, t, say s, is not a
descendant of the other. By Remark 3.2 it follows that r(t) ∈ OR(K ∪ {e}, F ) \ OR(K,F ), which validates
the theorem.

Thus we may assume that there is no such edge. Let Vq be the last island visited by A. Since A terminates
at a non

⋃
F vertex, it must leave Vq at some point, and by the above the edge of A leaving Vq must be of

the form xm(uv) for some vertex x ∈ Vq and an edge uv of T . Then its next edge must be m(uv)v, reaching
the island Vp where v = r(p), contradicting the assumption that Vq is the last island visited by A. �

Given a family P of F -alternating paths, an F -alternating path P is said to be P-multicolored if E(P ) \F
is a partial rainbow set of the family E(Q), Q ∈ P.

Corollary 4.2. If |P| > 2|F | then there exists an augmenting P-multicolored F -alternating path.

Proof. By Theorem 4.1 we can construct sets of edges Ki, where K0 = ∅ and Ki = Ki−1 ∪ {ei}, ei ∈ E(Pi),
and OR(Ki+1, F ) % OR(Ki, F ). Since there are only 2|F | vertices in

⋃
F , at some point OR(Ki, F ) will

contain a vertex not in
⋃
F , meaning that there exists an augmenting Ki − F -alternating path P , which by

the inductive construction of the sets Ki is P-multicolored. �

Finally, we derive Theorem 1.8 from Corollary 4.2. We have to show that given 3n− 2 matchings Mi, i ≤
3n− 2 there exists a partial rainbow matching of size n. Let F be a rainbow matching of maximal size, and
let |F | = k. We wish to show that k = n. Suppose to the contrary that k < n. Then there are at least 2k− 1
matchings Mi not represented in F . Each of these generates an augmenting F -alternating path Pi, and by
the corollary, there is an augmenting multicolored F -alternating path P using edges from the paths Pi. Then
F4E(P ) is a partial rainbow matching of size k + 1, contradicting the maximality property of k.

Remark 4.3. In [3] it was shown that in the bipartite case Corollary 4.2 only demands |P| > |F |. In
the case of general graphs Corollary 4.2 is sharp - 2|F | − 1 matchings do not suffice. The example is
essentially the same as Example 1.7. Let F be a matching {uivi | i ≤ k− 1} ∪ {xy}, let P1, . . . , Pk all be the
same matching {xu1} ∪ {vk−1y} ∪ {viui+1 | i ≤ k − 2} and let Pk+1, . . . , P2k all be equal to the matching
{xv1}∪{uk−1y}∪{uivi+1 | i ≤ k−2}. Example 1.7 consists of the matchings Mi, together with the matching
F .



LARGE RAINBOW MATCHINGS IN GENERAL GRAPHS 5

5. A conjectured scrambled version

Should the sets Mi in Drisko’s theorem be matchings? What happens when we take 2n− 1 matchings of
size n each, and scramble them, so as to obtain another system of sets of edges, each of size n? We conjecture
that there still must exist a rainbow matching of size n. By König’s edge coloring theorem this is equivalent
to the following:

Conjecture 5.1. Any system E1, . . . , E2n−1 of sets of edges in a bipartite graph, each of size n and satisfying
∆(

⋃
Ei) ≤ 2n− 1, has a rainbow matching of size n.

In [2] a weaker version was proved, using topological methods:

Theorem 5.2. Let d ≥ n2 and let E1, . . . , Ed be sets of edges of size n in a bipartite graph, each of size n,
and assume that ∆(

⋃
Ei) ≤ d. Then the sets have a rainbow matching of size n.
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