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Abstract

Let H be a tournament, and let ǫ ≥ 0 be a real number. We call ǫ an “Erdős-Hajnal coefficient”
for H if there exists c > 0 such that in every tournament G not containing H as a subtournament,
there is a transitive subset of cardinality at least c|V (G)|ǫ. The Erdős-Hajnal conjecture asserts,
in one form, that every tournament H has a positive Erdős-Hajnal coefficient. This remains open,
but recently the tournaments with Erdős-Hajnal coefficient 1 were completely characterized. In this
paper we provide an analogous theorem for tournaments that have an Erdős-Hajnal coefficient larger
than 5/6; we give a construction for them all, and we prove that for any such tournament H there are
numbers c, d such that, if a tournament G with |V (G)| > 1 does not contain H as a subtournament,
then V (G) can be partitioned into at most c(log(|V (G)|))d transitive subsets.

Keywords: The Erdős-Hajnal conjecture, tournaments.



1 Introduction

A tournament is a loopless digraph such that for every pair of distinct vertices u, v, exactly one of
uv, vu is an edge. A transitive set is a subset of V (G) that can be ordered {x1, . . . , xk} such that xixj

is an edge for 1 ≤ i < j ≤ k. A colouring of a tournament G is a partition of V (G) into transitive
sets, and the chromatic number χ(G) is the minimum number of transitive sets in a colouring. If
G,H are tournaments, we say that G is H-free if no subtournament of G is isomorphic to H.

There are some tournaments H with the property that every H-free tournament has chromatic
number at most a constant (depending on H). These are called heroes, and they were all explicitly
found in an earlier paper [3]. In this paper, we turn to the question: which are the most heroic non-
heroes? It turns out that for some non-heroes H, the chromatic number of every H-free tournament
G is at most a polylog function of the number of vertices of G, and all the others give nothing better
than a polynomial bound. More exactly, we will show the following (we will often write |G| instead
of |V (G)|, when G is a graph or tournament):

1.1 Every tournament H has exactly one of the following properties:

• for some c, every H-free tournament has chromatic number at most c (that is, H is a hero)

• for some c, d, every H-free tournament G with |G| > 1 has chromatic number at most c(log(|G|))d,
and for all c, there are H-free tournaments G with |G| > 1 and with chromatic number at least
c(log(|G|))1/3

• for all c, there are H-free tournaments G with |G| > 1 and with chromatic number at least
c|G|1/6.

This is one of our main results. The other is an explicit construction for all tournaments of the
second type, which we call pseudo-heroes.

This research is closely connected with, and motivated by, the Erdős-Hajnal conjecture. P. Erdős
and A. Hajnal [7] made the following conjecture in 1989 (it is still open):

1.2 (The Erdős-Hajnal conjecture.) For every graph H there exists a number ǫ > 0 such that
every graph G that does not contain H as an induced subgraph contains a clique or a stable set of
size at least |G|ǫ.

If G is a tournament, α(G) denotes the cardinality of the largest transitive subset of V (G). It
was shown in [1] that the conjecture 1.2 is equivalent to the following:

1.3 (Conjecture.) For every tournament H there exists a number ǫ > 0 such that every H-free
tournament G satisfies α(G) ≥ |G|ǫ.

Let us say that ǫ ≥ 0 is an EH-coefficient for a tournament H if there exists c > 0 such that every
H-free tournament G satisfies α(G) ≥ c|G|ǫ. Thus, the Erdős-Hajnal conjecture is equivalent to the
conjecture that every tournament has a positive EH-coefficient. (We introduce c in the definition
of the Erdős-Hajnal coefficient to eliminate the effect of tournaments G of bounded order; now,
whether ǫ is an EH-coefficient for H depends only on arbitrarily large tournaments not containing
H.) If ǫ is an EH-coefficient for H, then so is every smaller non-negative number; and thus a natural
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invariant is the supremum of the set of all EH-coefficients for H. We call this the EH-supremum for
H, and denote it by ξ(H). The EH-supremum for H is not necessarily itself an EH-coefficient for H;
indeed, most of this paper concerns finding the tournaments H with ξ(H) = 1 for which 1 is not an
EH-coefficient.

While we have nothing to say about the truth of 1.3 in general, a more tractable problem is: for
which tournaments is some given ǫ > 0 an EH-coefficient? In an earlier paper [3], we completely
answered this for ǫ = 1; and in this paper one goal is a similar result for ǫ > 5/6.

Before we go on, let us state the result of [3] properly; and to do so we need some more definitions.
We denote by Tk the transitive tournament with k vertices. If G is a tournament and X,Y are disjoint
subsets of V (G), and every vertex in X is adjacent to every vertex in Y , we write X ⇒ Y . We write
v ⇒ Y for {v} ⇒ Y , and X ⇒ v for X ⇒ {v}. If G is a tournament and (X,Y,Z) is a partition of
V (G) into nonempty sets satisfying X ⇒ Y , Y ⇒ Z, and Z ⇒ X, we call (X,Y,Z) a trisection of
G. If A,B,C,G are tournaments, and there is a trisection (X,Y,Z) of G such that G|X,G|Y,G|Z
are isomorphic to A,B,C respectively, we write G = ∆(A,B,C). It is convenient to write k for Tk

here, so for instance ∆(1, 1, 1) means ∆(T1, T1, T1), and ∆(H, 1, k) means ∆(H,T1, Tk).
A tournament is a celebrity if 1 is an EH-coefficient for it; that is, for some c > 0, every H-free

tournament G satisfies α(G) ≥ c|G|. The main result of [3] is:

1.4 The following hold:

• A tournament is a hero if and only if it is a celebrity.

• A tournament is a hero if and only if all its strong components are heroes.

• A strongly-connected tournament with more than one vertex is a hero if and only if it equals
∆(1,H, k) or ∆(1, k,H) for some hero H and some integer k > 0.

In this paper, we study the tournaments H which are “almost” heroes, in the sense that all H-free
tournaments have chromatic number at most a polylog function of their order. More precisely, we
say a tournament H is

• a pseudo-hero if there exist c, d ≥ 0 such that every H-free tournament G with |G| > 1 satisfies
χ(G) ≤ c(log(|G|))d

• a pseudo-celebrity if there exist c > 0 and d ≥ 0 such that every H-free tournament G with
|G| > 1 satisfies α(G) ≥ c |G|

(log(|G|))d
.

Logarithms are to base two, throughout the paper. (The conditions |G| > 1 are included just to
ensure that log(|G|) > 0.) The next result is an analogue of 1.4:

1.5 The following hold:

• A tournament is a pseudo-hero if and only if it is a pseudo-celebrity.

• A tournament is a pseudo-hero if and only if all its strong components are pseudo-heroes.

• A strongly-connected tournament with more than one vertex is a pseudo-hero if and only if
either
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– it equals ∆(2, k, l) for some k, l ≥ 2, or

– it equals ∆(1,H, k) or ∆(1, k,H) for some pseudo-hero H and some integer k > 0.

More generally, let 0 ≤ ǫ ≤ 1; we say that a tournament H is

• an ǫ-hero if there exist c, d ≥ 0 such that every H-free tournament G with |G| > 1 satisfies
χ(G) ≤ c|G|1−ǫ log(|G|)d; and

• an ǫ-celebrity if there exist c > 0 and d ≥ 0 such that every H-free tournament G with |G| > 1
satisfies α(G) ≥ c−1|G|ǫ log(|G|)−d.

Thus, a 1-hero is the same thing as a pseudo-hero, and a 1-celebrity is the same as a pseudo-celebrity.
We will prove:

1.6 For all ǫ with 0 ≤ ǫ ≤ 1:

• a tournament is an ǫ-hero if and only if it is an ǫ-celebrity

• a tournament is an ǫ-celebrity if and only if its strong components are ǫ-celebrities

• if H is an ǫ-celebrity and k ≥ 1, then ∆(1,H, k) and ∆(1, k,H) are ǫ-celebrities.

(Much of 1.5 is implied by setting ǫ = 1 in 1.6.) In addition, we will prove:

1.7 Every tournament H with ξ(H) > 5/6 is a pseudo-hero and hence satisfies ξ(H) = 1.

Thus, if ξ(H) > 5/6 then every H-free tournament has chromatic number at most a polylog
function of its order. We do not know if 5/6 is best possible; but the polylog behaviour is best
possible, in the following sense:

1.8 For every real d with 0 ≤ d < 1
3 and all sufficiently large integers n (depending on d), there is

a tournament G with n vertices such that

• α(G) ≤ n(log(n))−d, and

• every pseudo-hero contained in G is a hero.

This last is a corollary of a result of [3]; let us see that now. Since every pseudo-hero that is not
a hero contains ∆(2, 2, 2), by 1.4 and 1.5, it follows that 1.8 is implied by the following result of [3]:

1.9 For every real d with 0 ≤ d < 1
3 , and all sufficiently large integers n (depending on d), there is

a tournament G with n vertices, not containing ∆(2, 2, 2), such that

α(G) ≤
n

(log(n))d
.

(More precisely, the result of [3] asserts this with log(n) replaced by ln(n); we leave the reader to
check the equivalence.) The paper is organized as follows:

• in sections 2,3 and 4 we prove the first, second and third assertion of 1.6 respectively;

• in section 5 we prove that for all k, l ≥ 2, ∆(2, k, l) is a pseudo-celebrity, and indeed there exists
c > 0 such that every ∆(2, k, l)-free tournament G with |G| > 1 satisfies α(G) ≥ c|G|/ log(|G|);

• in section 6 we prove the “only if” part of the third statement of 1.5, and thereby finish the
proof of 1.5; and we also prove 1.7.
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2 ǫ-celebrities are ǫ-heroes

In this section we prove the first statement of 1.6. Let us say a function φ is round if for each integer
n ≥ 2, φ(n) is a real number, at least 1 and (non-strictly) increasing with n. We need:

2.1 Let φ be round. Suppose that G is a tournament with |G| > 1, and for all n > 1, every n-vertex
subtournament of G has a transitive set of cardinality at least n/φ(n). Then χ(G) ≤ φ(|G|) log(|G|).

Proof. We proceed by induction on |G|. Let n = |G|. Now φ(n) log(n) ≥ 1 (since φ(n) ≥ 1, and
logarithms are to base 2), and so we may assume that χ(G) ≥ 2. By hypothesis, G has a transitive
set X of cardinality x say, where x ≥ n/φ(n) > 0. In particular, x ≤ n − 1, and so n − 1 ≥ n/φ(n).
Consequently φ(n) ≥ n/(n − 1) ≥ 2/ log(n), and so 2 ≤ φ(n) log(n). Hence we may assume that
χ(G) ≥ 3. In particular, G \ X has at least two vertices, and therefore we may apply the inductive
hypothesis to G \ X. Since χ(G) ≤ 1 + χ(G \ X), we deduce that

χ(G) ≤ 1 + φ(n − x) log(n − x) ≤ 1 + φ(n) log(n − x).

Now
log(1 − x/n) ≤ ln(1 − x/n) ≤ −x/n ≤ −(φ(n))−1,

and so 1 + φ(n) log(1 − x/n) ≤ 0. Consequently

χ(G) ≤ 1 + φ(n) log(n − x) = 1 + φ(n) log(1 − x/n) + φ(n) log(n) ≤ φ(n) log(n).

This proves 2.1.

Sometimes the previous result can be improved:

2.2 Let G be a tournament with |G| > 0, and for each integer n with 1 ≤ n ≤ |G|, let φ(n) be a
positive real number, and let ǫ be a real number with 0 < ǫ ≤ 1, such that

• every subtournament H of G with |H| > 0 has a transitive set of cardinality at least |H|/φ(|H|),
and

• φ(n)/φ(m) ≥ (n/m)ǫ for all m,n with 1 ≤ m ≤ n ≤ |G|.

Let c = 2ǫ − 1. Then χ(G) ≤ c−1φ(|G|).

Proof. We proceed by induction on |G|. Let n = |G|. From the hypothesis, there is a transitive
subset with cardinality at least n/φ(n) ≥ 2ǫ−1n/φ(n). Let us choose X1, . . . ,Xk ⊆ V (G), pairwise
disjoint and each transitive with cardinality at least 2ǫ−1n/φ(n), with k maximal; it follows that
k ≥ 1. Let X1 ∪ · · · ∪Xk = W , and let G \W = G′, and |G′| = n′. Let x = n′/n. Now W includes k
disjoint subsets of cardinality at least 2ǫ−1n/φ(n), and so

n − n′ = |W | ≥ k2ǫ−1n/φ(n),

that is, k ≤ (1 − x)φ(n)21−ǫ. If n′ = 0, then

χ(G) ≤ k ≤ φ(n)21−ǫ ≤ c−1φ(|G|),
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as required. Thus we may assume that n′ > 0. Now G′ has no transitive set of cardinality at least
2ǫ−1n/φ(n) by the maximality of k, and yet by hypothesis, it has a transitive set of cardinality at
least n′/φ(n′). It follows that n′/φ(n′) < 2ǫ−1n/φ(n), that is,

φ(n′)/φ(n) > 21−ǫx.

By hypothesis, φ(n′)/φ(n) ≤ xǫ, and so 21−ǫx < xǫ, that is, x < 1/2. From the inductive hypothesis,
χ(G′) ≤ c−1φ(n′). Since χ(G) ≤ χ(G′) + k, and k ≤ (1 − x)φ(n)21−ǫ, we deduce that

χ(G) ≤ c−1φ(n′) + (1 − x)φ(n)21−ǫ.

Since φ(n′) ≤ φ(n)xǫ, it follows that

cχ(G)/φ(G) ≤ xǫ + (1 − x)21−ǫc.

Now the function (1 − xǫ)/(1 − x) is minimized for 0 ≤ x ≤ 1/2 when x = 1/2, and its value then is
21−ǫc; and so (1 − xǫ)/(1 − x) ≥ 21−ǫc, that is,

xǫ + (1 − x)21−ǫc ≤ 1.

It follws that cχ(G)/φ(G) ≤ 1. as required. This proves 2.2.

Thus if φ grows sufficiently quickly then we can avoid the extra log factor introduced by 2.1.
Curiously, it was proved in [3] that the same is true when φ is constant. We do not know whether
it is also true in the cases in between, when φ is not constant but only grows slowly. Unfortunately,
these are the cases of most interest to us in this paper, and for them we have to make do with 2.1.

We deduce the first statement of 1.6, namely:

2.3 For 0 ≤ ǫ ≤ 1, a tournament is an ǫ-hero if and only if it is an ǫ-celebrity.

Proof. Let H be an ǫ-celebrity, and choose c > 0 and d ≥ 0 such that every H-free tournament
G with |G| > 1 satisfies α(G) ≥ c−1|G|ǫ log(|G|)−d. We may assume that c ≥ 1. Define φ(n) =
cn1−ǫ(log(n))d for n ≥ 2. Thus φ is round, and every H-free tournament G with |G| > 1 satisfies
α(G) ≥ |G|/φ(|G|). Then if G is H-free and |G| > 1, the hypotheses of 2.1 are satisfied, and so

χ(G) ≤ φ(|G|) log(|G|) ≤ c|G|1−ǫ(log(|G|))d+1,

and therefore H is an ǫ-hero. (Note that, if ǫ < 1, we could apply 2.2 here instead, and avoid the
extra log factor.)

For the converse, let H be an ǫ-hero. Thus there exist c, d ≥ 0 such that every H-free tournament
G with |G| > 1 satisfies χ(G) ≤ c|G|1−ǫ(log(|G|))d. But every non-null tournament G has a transitive
set of cardinality at least |G|/χ(G) (take the largest set of the partition given by the colouring).
Consequently, every H-free tournament G with |G| > 1 has a transitive set of cardinality at least
c−1|G|ǫ(log(|G|))−d. It follows that H is an ǫ-celebrity. This proves 2.3.
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3 ǫ-celebrities that are not strongly connected

In this section we prove the second statement of 1.6, the following.

3.1 For 0 ≤ ǫ ≤ 1, a tournament is an ǫ-celebrity if and only if all its strong components are
ǫ-celebrities.

Let T be a tournament and let X,Y ⊆ V (T ) be disjoint. We denote by eX,Y the number of edges
xy where x ∈ X and y ∈ Y . If X,Y 6= ∅, the density from X to Y is

d(X,Y ) =
eX,Y

|X||Y |
.

Note that d(X,Y ) = 1−d(Y,X), since T is a tournament. We need the following, which follows easily
by a standard application of the regularity lemma (see for instance [5] for an analogous argument).

3.2 For every tournament H and every real λ > 0 there exists a real c > 0 with the following
property. For every H-free tournament G there exist disjoint subsets X,Y ⊆ V (G) with |X|, |Y | =
⌈c|V (G)|⌉, such that d(X,Y ) < λ.

Let H1,H2 be tournaments. Let G be a tournament such that there is a partition (V1, V2) of
V (G) with V1 ⇒ V2, where for i = 1, 2, the subtournament of G with vertex set Vi is isomorphic
to Hi. We denote such a tournament G by H1 ⇒ H2. For two sets of tournaments F1 and F2, we
denote by F1 ⇒ F2 the set consisting of all tournaments (up to isomorphism) of the form H1 ⇒ H2

for some H1 ∈ F1 and H2 ∈ F2. For a set F of tournaments, we say that a tournament T is F-free
if no subtournament of T is isomorphic to a member of F . We need the following lemma.

3.3 Let h ≥ 1 be an integer, and let F1 and F2 be two sets of tournaments, where each tournament
in F1 ∪ F2 has at most h vertices. Then there exists C > 0 with the following property. Let φ be
round, such that for i = 1, 2, every Fi-free tournament T of order n > 1 satisfies α(T ) ≥ n/φ(n).
Then every (F1 ⇒ F2)-free tournament T of order n > 1 satisfies α(T ) ≥ Cn/φ(n).

Proof. If one of F1 and F2 is empty, the result is trivial, so we assume both are non-empty, and
hence F1 ⇒ F2 is nonempty. Choose one of its members, H0 say. Choose c > 0 satisfying 3.2, taking
H = H0 and λ = (4h)−1. Let C = c/2. We will show that C satisfies the theorem.

Let T be an (F1 ⇒ F2)-free tournament with n > 1 vertices. By 3.2, there exist disjoint
V1, V2 ⊆ V (G) with |V1|, |V2| ≥ c|V (T )| such that d(V2, V1) < (4h)−1. Let X be the set of all vertices
in V1 with at least (1− (2h)−1)|V2| out-neighbours in V2. Every vertex in V1 \X is adjacent from at
least (2h)−1|V2| members of V2, and so

|V1 \ X|(2h)−1|V2| ≤ (4h)−1|V1||V2|,

that is, |X| ≥ |V1|/2.
Now |V1| ≥ cn. Suppose that T |X is F1-free. From the hypothesis, X includes a transitive subset

of cardinality at least |X|/φ(|X|); but φ(|X|) ≤ φ(n), and |X| ≥ cn/2, and so α(T ) ≥ Cn/φ(n) as
required. Thus we may assume that there exists X ′ ⊆ X such that T |X ′ is isomorphic to some
member H1 of F1. For each x ∈ X ′, at most (2h)−1|V2| vertices in V2 are adjacent to x, since x ∈ X;
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and since |X ′| ≤ h, it follows that at most |V2|/2 vertices in V2 are adjacent to a vertex in X ′. Let
Y be the set of all y ∈ V2 that are adjacent from every vertex in X ′; then |Y | ≥ |V2|/2. Since T is
(F1 ⇒ F2)-free, it follows that T |Y is F2-free; and so from the hypothesis, Y includes a transitive
subset of cardinality at least |Y |/φ(|Y |). But φ(|Y |) ≤ φ(n), and

|Y | ≥ |V2|/2 ≥ cn/2 = Cn,

and so α(G) ≥ Cn/φ(n). This proves 3.3.

Proof of 3.1. Since every subtournament of an ǫ-celebrity is an ǫ-celebrity, the “only if” part of
3.1 is clear. The “if” part is implied by 3.3, taking φ(n) = cn1−ǫ(log(n))d for appropriate c, d. This
proves 3.1.

4 Adding handles

To complete the proof of 1.6, we need to show the following, which is proved in this section:

4.1 For 0 ≤ ǫ ≤ 1, let H be an ǫ-hero, and let k ≥ 1 be an integer. Then ∆(H, 1, k) and ∆(k, 1,H)
are ǫ-heroes.

We prove, more generally:

4.2 Let H be a tournament, and let φ be round, such that every H-free tournament G satisfies
χ(G) ≤ φ(|G|). Let k ≥ 1 be an integer. Then there exists c ≥ 0 such that every ∆(H, 1, k)-free
tournament G satisfies χ(G) ≤ cφ(G) log(|G|), and the same for ∆(k, 1,H).

We remark that if φ grows sufficiently quickly to satisfy the hypotheses of 2.2 we could use the latter
to avoid the extra log factor.

Let H,K be tournaments, and let a ≥ 1 be an integer. An (a,H,K)-jewel in a tournament G is
a subset X ⊆ V (G) such that |X| = a, and for every partition (A,B) of X, either G|A contains H
or G|B contains K. An (a,H,K)-jewel-chain of length t is a sequence Y1, . . . , Yt of (a,H,K)-jewels,
pairwise disjoint, such that Yi ⇒ Yi+1 for 1 ≤ i < t. We need the following lemma, proved in [3]:

4.3 Let H,K be tournaments, such that one of them is transitive, and let a ≥ 1 be an integer. Then
there are integers λ1, λ2 ≥ 0 with the following property. For every ∆(H, 1,K)-free tournament G, if

• c1 is such that every H-free subtournament of G has chromatic number at most c1, and every
K-free subtournament of G has chromatic number at most c1, and

• c2 is such that every subtournament of G containing no (a,H,K)-jewel-chain of length four
has chromatic number at most c2,

then G has chromatic number at most λ1c1 + λ2c2.
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Let us point out that there is a serious error in [3]; the statement of 4.3 published there (theorem
4.5 of that paper) mistakenly omitted the hypothesis that “one of them is transitive”, which is needed
for the application of theorem 4.4 of that paper, three lines from the end of its proof. Fortunately,
in the application of 4.3 in [3], the missing hypothesis is satisfied.
Proof of 4.2, 4.1 and 1.6. Let K be a transitive tournament with k vertices; from the symmetry,
it suffices to show the result for ∆(H, 1,K). Let φ be as in the hypothesis of the theorem. We may
assume that φ(2) ≥ 2k, by scaling φ. Let a = 2k|V (H)|, and let λ1, λ2 ≥ 0 be as in 4.3.

(1) If G is a tournament with |G| > 1, not containing an (a,H,K)-jewel, then χ(G) ≤ aφ(|G|).

Choose pairwise vertex-disjoint subtournaments H1, . . . ,Ht of G, each isomorphic to H, with t
maximum, and let the union of their vertex sets be W . If t ≥ 2k, then since every tournament with
at least 2k vertices has a transitive subset of cardinality k, it follows that V (H1) ∪ · · · ∪ V (H2k)
is an (a,H,K)-jewel, a contradiction. Thus t < 2k. Consequently χ(G|W ) ≤ |W | ≤ a, and
χ(G\W ) ≤ φ(|G|− |W |) ≤ φ(|G|) since G\W is H-free. It follows that χ(G) ≤ a+φ(|G|) ≤ aφ(|G|)
since a, φ(|G|) ≥ 2. This proves (1).

(2) There exists C ≥ 0 such that if G is a tournament with |G| > 1, not containing an (a,H,K)-
jewel-chain of length four, then χ(G) ≤ Cφ(G) log(|G|).

By (1), if G is a tournament with n > 1 vertices, not containing an (a,H,K)-jewel, then α(G) ≥
a−1n/φ(n). By 3.3 applied twice, there exists C > 0 such that every tournament G of order n > 1
containing no (a,H,K)-jewel-chain of length four satisfies α(G) ≥ C−1n/φ(n). By 2.1, every such
G satisfies χ(G) ≤ Cφ(n) log(n). This proves (2).

Let c = λ1+λ2C; we claim that c satisfies the theorem. For let G be a ∆(H, 1,K)-free tournament,
with n > 1 vertices. Let c1 = φ(n). Then every H-free subtournament of G has chromatic number at
most c1; and so does every K-free subtournament of G, since every K-free tournament has at most
2k vertices and hence has chromatic number at most 2k ≤ φ(2) ≤ φ(n) = c1. Let c2 = Cφ(n) log(n);
then every subtournament of G not containing an (a,H,K)-jewel-chain of length four has chromatic
number at most c2, by (2). By 4.3,

χ(G) ≤ λ1c1 + λ2c2 = λ1φ(n) + λ2Cφ(n) log(n) ≤ (λ1 + λ2C)φ(n) log(n).

This proves 4.2, and hence 4.1, and therefore finishes the proof of 1.6.

That completes all we have to say about ǫ-heroes in general.

5 Excluding ∆(2, k, l)

Now we return to the case ǫ = 1 and the proof of 1.5. So far we have proved the first two statements
of 1.5, and part of the “if” half of the third statement, all as corollaries of 1.6. In this section we
complete the proof of the “if” half of the third statement of 1.5, by proving the following.

5.1 For all k, l ≥ 2, there exists c > 0 such that every ∆(2, k, l)-free tournament G with |G| > 1
satisfies α(G) ≥ c|G|/ log(|G|).
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This follows immediately from 5.3 and 5.4, proved below. We need the “bipartite Ramsey theo-
rem”, proved by Beineke and Schwenk [2], the following. If X,Y are disjoint subsets of the vertex
set of a graph G, we say X is complete to Y if every vertex in X is adjacent to every vertex in Y ,
and X is anticomplete to Y if there are no edges between X and Y .

5.2 For all integers l ≥ 0 there exists K ≥ 0, such that for every graph with bipartition (A,B) where
|A|, |B| ≥ K, there exist X ⊆ A and Y ⊆ B with |X| = |Y | = l, such that either X is complete to Y
or X is anticomplete to Y .

The smallest K satisfying the statement of 5.2 will be denoted by K(l).
If G is a tournament and uv is an edge, we say that u is adjacent to v and v is adjacent from

u. Let (v1, ..., vn) be an enumeration of the vertex set of a tournament G (thus, with n = |V (G)|).
We say that an edge vivj of G is a backedge under this enumeration if i > j. If t ≥ 0 is an integer,
an enumeration (v1, . . . , vn) of V (G) is said to be t-forward if for every two sets X,Y ⊆ V (G) with
|X| = |Y | = t, there exist vi ∈ X and vj ∈ Y such that either i ≥ j, or vivj is an edge of G.

5.3 For all integers k ≥ 2, there exists c > 0 such that, if G is a ∆(2, k, k)-free tournament with
|G| > 1 that admits a 2k-forward enumeration, then α(G) ≥ c|G|/ log(|G|).

Proof. Let M = 2kK(2k) and c = 1/(4M). We will show that c satisfies the theorem. For let G be
a ∆(2, k, k)-free tournament with |G| > 1, and let (v1, . . . , vn) be a 2k-forward enumeration of V (G).
For 1 ≤ i ≤ n, we define φ(vi) = i. A backedge vu of G is left-active if there is no set A ⊆ V (G)
such that:

• |A| = K(2k)

• for each a ∈ A, φ(u) < φ(a) < (φ(u) + φ(v))/2

• each a ∈ A is adjacent from u and from v.

Similarly, a backedge vu is right-active if there is no set B ⊆ V (G) such that:

• |B| = K(2k)

• for each b ∈ B, (φ(u) + φ(v))/2 < φ(b) < φ(v)

• each b ∈ B is adjacent to u and to v.

(1) Every backedge vu is either left-active or right-active.

For suppose that vu is a backedge that is neither left-active nor right-active. Thus there exist
sets A and B as above. Let J be the graph with bipartition (A,B), in which a ∈ A and b ∈ B are
adjacent if ba is an edge (and hence a backedge) of G. By 5.2, there exist X ⊆ A and Y ⊆ B such
that |X| = |Y | = 2k, and X is either complete or anticomplete to Y in J . Since the enumeration is
2k-forward, and φ(x) < (φ(u) + φ(v))/2 < φ(y) for all x ∈ X and y ∈ Y , it follows that there exist
x ∈ X and y ∈ Y such that yx is not a backedge of G, and thus x, y are not adjacent in J ; and
consequently X is anticomplete to Y in J , and so every vertex in y is adjacent in G from every vertex
in X. Since |X| = |Y | = 2k, there are transitive subsets X ′ of X and Y ′ of Y , both of cardinality
k (by a theorem of [8], that every tournament with 2k vertices has a transitive set of cardinality
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k +1). But then the subtournament of G with vertex set X ′ ∪Y ′∪{u, v} is isomorphic to ∆(2, k, k),
a contradiction. This proves (1).

For a backedge vu, we call φ(v) − φ(u) its length.

(2) There do not exist M log(n) left-active edges in G with the same tail v.

Suppose there do exist such edges. Since their lengths are all between 1 and n − 1, it follows
that for some integer t with 0 ≤ t ≤ log(n), there are M left-active edges all with tail v and all with
length between 2t and 2t+1 − 1. Let them be vui (1 ≤ i ≤ M), numbered such that φ(ui) < φ(uj)
for 1 ≤ i < j ≤ M . For 1 ≤ i < j ≤ M , since

φ(v) − φ(uj) ≥ 2t > (φ(v) − φ(ui))/2,

it follows that φ(ui) < φ(uj) < (φ(ui) + φ(v))/2. Let X = {ui : 1 ≤ i ≤ 2k}, and Y = {ui : 2k < i ≤
M}. For each ui ∈ X, vui is left-active, and so ui is adjacent in G to at most (K(2k) − 1) members
of Y . Consequently there are at least |Y | − |X|(K(2k) − 1) ≥ 2k members of Y that are adjacent in
G to each member of X, contradicting that the enumeration is 2k-forward. This proves (2).

By (2) there are at most Mn log(n) left-active edges in G, and similarly at most Mn log(n)
right-active. By (1), it follows that there are at most 2Mn log(n) = (2c)−1n log(n) backedges.
Let J be the graph with vertex set V (G) in which u, v are adjacent for each backedge vu. Thus
|E(J)| ≤ (2c)−1n log(n). By Turan’s theorem [4], applied to J , we deduce that J has a stable set of
cardinality at least cn/ log(n), and so α(G) ≥ cn/ log(n). This proves 5.3.

5.4 For all integers k ≥ 2 there exists c > 0 such that every ∆(2, k, k)-free tournament G has a
subtournament with at least c|G| vertices that admits a 2k-forward enumeration.

Proof. Let b = 2k + 1, and d = (12k − 1)b. Let c > 0 be the real number satisfying

log(c) = −240b227bd.

We will show that c satisfies the theorem.
Let G be a ∆(2, k, k)-free tournament. Let us say a chain is a sequence A1, . . . , Am of subsets of

V (G) with the following properties:

• A1, . . . , Am are pairwise disjoint

• for 1 ≤ i ≤ m, |Ai| = bd and Ai is transitive

• for 1 ≤ i < j ≤ m, each vertex in Aj is adjacent to at most d vertices in Ai, and each vertex
in Ai is adjacent from at most d vertices in Aj.

(1) We may assume that G admits a chain A1, . . . , Am with m ≥ 4.

For if n < 24bd then the theorem holds, since c < 2−4bd and so any one-vertex subtournament
of G satisfies the theorem (and if G is null then G itself satisfies the theorem). Thus we assume

10



that n ≥ 24bd, and so G contains a transitive set of cardinality 4bd. But then there is a chain
A1, A2, A3, A4. This proves (1).

Let A1, . . . , Am be a chain with m maximum. Define A = A1 ∪ · · · ∪ Am. For 1 ≤ i < m, let Bi

be the set of all v ∈ V (G) \ A such that there exist Y ⊆ Ai and Z ⊆ Ai+1 with |Y | = |Z| = k and
{v} ⇒ Y ⇒ Z ⇒ {v}. Let B = B1 ∪ · · · ∪ Bm−1, and C = V (G) \ (A ∪ B).

(2) |B| ≤ m(bd)2k.

For suppose not. Then |Bi| > (bd)2k for some i with 1 ≤ i < m. For each v ∈ Bi, choose Yv ⊆ Ai

and Zv ⊆ Ai+1 such that |Yv| = |Zv | = k and {v} ⇒ Yv ⇒ Zv ⇒ {v}. Since there are at most (bd)2k

possibilities for the pair (Yv, Zv), there exist distinct u, v with Yu = Yv and Zu = Zv. But then the
subtournament of G with vertex set {u, v} ∪ Yv ∪ Zv is isomorphic to ∆(2, k, k), a contradiction.

(3) For each v ∈ C, there is no i with 1 ≤ i < m such that v has at least k out-neighbours in
Ai and at least (d + 1)k in-neighbours in Ai+1. Also, there is no i with 1 ≤ i < m such that v has at
least (d + 1)k out-neighbours in Ai and at least k in-neighbours in Ai+1. In particular, there is no i
with 1 ≤ i < m such that v has at least bd/2 out-neighbours in Ai and at least bd/2 in-neighbours in
Ai+1.

For the first claim, suppose that Y ⊆ Ai and Z ⊆ Ai+1 with |Y | = k and |Z| ≥ (d + 1)k , and
v is adjacent to every vertex in Y and adjacent from every vertex in Z. Now each vertex in Y has
at most d in-neighbours in Z, and so at most dk vertices in Z have an out-neighbour in Y . Conse-
quently, there exists Z ′ ⊆ Z with |Z ′| = k, such that Y ⇒ Z ′. But then Y,Z ′ show that v ∈ Bi ⊆ B,
a contradiction. This proves the first claim, and the second follows from the symmetry. The third
follows since bd/2 ≥ k and bd/2 ≥ (d + 1)k. This proves (3).

For 1 ≤ i < m let Ci be the set of all vertices v ∈ C such that v has at least bd/2 in-neighbours in
Ai and at least bd/2 out-neighbours in Ai+1. (Note that bd is odd, so equality is not possible here.)
Let C0 be the set of all v ∈ C with at least bd/2 out-neighbours in A1, and let Cm be the set of all
v ∈ C with at least bd/2 in-neighbours in Am. By (3), it follows that C0, C1, . . . , Cm are pairwise
disjoint and have union C.

(4) Let 0 ≤ i ≤ m and let v ∈ Ci. Then for 1 ≤ h < i, v has at most k − 1 out-neighbours in
Ah; and for i + 1 < j ≤ m, v has at most k − 1 in-neighbours in Aj.

For v has at least bd/2 in-neighbours in Ai, and since v /∈ B, it follows from (3) that v has at
least bd/2 in-neighbours in each of A1, . . . , Ai. In particular, v has at least bd/2 in-neighbours in
Ah+1. By (3), v has at most k− 1 out-neighbours in Ah. This proves the first assertion. The second
follows by the symmetry. This proves (4).

For 2 ≤ i ≤ m let Li = A1 ∪ · · · ∪ Ai−2, and for 0 ≤ i ≤ m − 2 let Ri = Ai+3 ∪ · · · ∪ Am. Let
L0, L1, Rm−1, Rm all be the null set. (It follows that L2, Rm−2 are also empty.)

(5) Let 0 ≤ i ≤ m, and let u, v ∈ Li be distinct. Then there is no transitive set Z ⊆ Ci with
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|Z| = k such that Z ⇒ {u, v}, and consequently there are at most 2k vertices in Ci that are adjacent
to both u and v. Similarly, for 0 ≤ i ≤ m, if u, v ∈ Ri then there is no transitive set Z ⊆ Ci with
|Z| = k such that {u, v} ⇒ Z, and hence there are at most 2k vertices in Ci that are adjacent from
both u and v.

For let 0 ≤ i ≤ m, and let u, v ∈ Li (thus i ≥ 3), and suppose that there exists a transitive
set Z ⊆ Ci with |Z| = k such that every vertex in Z is adjacent to both u, v. By (4), each member
of Z has at most k − 1 out-neighbours in Ai−1. Also, u, v each have at most at in-neighbours in
Ai−1. Consequently there is a subset Y of Ai−1 with |Y | = k such that {u, v} ⇒ Y ⇒ Z, since
bd− (k−1)k−2d ≥ k. But then the subtournament of G with vertex set {u, v}∪Y ∪Z is isomorphic
to ∆(2, k, k), a contradiction. This proves the first assertion, and the second follows by symmetry.
This proves (5).

(6) For 0 ≤ i ≤ m, and all u ∈ Li and v ∈ Ri, there are fewer than 27bd vertices in Ci that
are adjacent to u and from v.

For since Li, Ri 6= ∅, it follows that 3 ≤ i ≤ m − 3. Suppose that there are at least 27bd ver-
tices in Ci adjacent to u and from v; then they include a transitive set Y of cardinality 7bd. Choose
a chain Y1, . . . , Y7 of subsets of Y such that Yh ⇒ Yj for all h, j with 1 ≤ h < j ≤ 7. By (5), every
vertex in Li \ {u} has at most k − 1 ≤ d in-neighbours in Y , and every vertex in Ri \ {v} has at
most d out-neighbours in Y . Also, each vertex in Y has at most k − 1 ≤ d out-neighbours in Ah for
1 ≤ h ≤ i− 2, and at most d in-neighbours in Aj for i + 2 ≤ j ≤ m, by (4). Choose h, j with u ∈ Ah

and v ∈ Aj . Then

A1, . . . , Ah−1, Ah+1, . . . , Ai−2, Y1, Y2, . . . , Y7, Ai+3, . . . , Aj−1, Aj+1, . . . , Am

is a chain with m + 1 terms, contrary to the maximality of m. This proves (6).

(7) Let 0 ≤ i ≤ m, and let Z ⊆ Ci be transitive. Let p be an integer such that |Z| ≤ bdp and
2b(k − 1)p < d. Then there are fewer than 2bp vertices in Li that are adjacent from at least d mem-
bers of Z.

For suppose that there exists W ⊆ Li with |W | = 2bp such that each member of W is adjacent
from at least d members of Z. Each member of W has at least d in-neighbours in Z, and yet
every two distinct members of W have at most k − 1 common in-neighbours in Z, by (5). Hence
|Z| ≥ d|W | − (k − 1)|W |2/2. Since |Z| ≤ bdp and |W | = 2bp, it follows that 2(k − 1)bp ≥ d, a
contradiction. Thus there is no such W . This proves (7).

(8) For 0 ≤ i ≤ m and all v ∈ Ri, if Y ⊆ Ci is transitive and v ⇒ Y then |Y | < 12b · 27bd.

We may assume that Ri 6= ∅, and so i ≤ m − 3. Choose a maximal subset Z of Y such that
every vertex in Li is adjacent from at most d members of Z. Suppose that |Z| ≥ 6bd, and choose a
chain Z1, . . . , Z6 of subsets of Z such that Zh ⇒ Zj for 1 ≤ h < j ≤ 6. By (2), every vertex of Ri

different from v is adjacent to at most k − 1 ≤ at members of Y . Let v ∈ Aj. By (4), if i ≥ 2 then

A1, . . . , Ai−2, Z1, . . . , Z6, Ai+3, . . . , Aj−1, Aj+1, . . . , Am
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is a chain with m + 1 terms, contrary to the maximality of m; while if i ≤ 1 then the chain

Z1, . . . , Z6, Ai+3, . . . , Aj−1, Aj+1, . . . , Am

gives a contradiction similarly. Thus |Z| < 6bd.
We say u ∈ Li is saturated if u is adjacent from exactly d members of Z. Since |Z| < 6bd and

12(k − 1)b < d, it follows from (7) with p = 6 that there are fewer than 12b saturated vertices in Li.
But every vertex in Y \ Z is adjacent to a saturated vertex in Li, from the maximality of Z. Since
every saturated vertex in Li is adjacent from at most 27bd members of Y , by (6), and hence from at
most 27bd − d members of Y \ Z, it follows that |Y \ Z| ≤ 12b(27bd − d), and so

|Y | ≤ 12b(27bd − d) + 6bd < 12b · 27bd.

This proves (8).

(9) For 0 ≤ i ≤ m, there is no transitive subset Y of Ci with |Y | ≥ 240b227bd.

Let Y ⊆ Ci be transitive. Choose a maximal subset Z of Y such that every vertex of Li is ad-
jacent from at most d members of Z, and every vertex in Ri is adjacent to at most d members of
Z. Suppose that |Z| ≥ 5bd, and choose a chain Z1, . . . , Z5 of subsets of Z such that Zh ⇒ Zj for
1 ≤ h < j ≤ 5. If 2 ≤ i ≤ m − 2 then by (4),

A1, . . . , Ai−2, Z1, . . . , Z5, Ai+3, . . . , Am

is a chain with m + 1 terms, a contradiction; while if i ≤ 1 then

Z1, . . . , Z5, Ai+3, . . . , Am

gives a contradiction, and if i ≥ m − 1 then

A1, . . . , Ai−2, Z1, . . . , Z5

gives a contradiction. Thus |Z| < 5bd.
We say u ∈ Li is saturated if it is adjacent from exactly d members of Z; and v ∈ Ri is saturated if

it is adjacent to exactly d members of Z. Since |Z| ≤ 5t, and 10(k− 1)b < d, it follows from (7) with
p = 5 that there are at most 10b saturated vertices in Li, and similarly at most 10b saturated vertices
in Ri. From the maximality of Z, every vertex of Y \Z is adjacent to at least one of the saturated
vertices in Li or from at least one of the saturated vertices in Ri. But by (8), each saturated vertex
in Li is adjacent from at most 12b27bd members of Y and hence from at most 12b27bd − d members
of Y \ Z, and similarly every saturated vertex in Ri is adjacent to at most 12b27bd − d members of
Y \ Z. We deduce that

|Y | < 20b(12b27bd − d) + 5bd ≤ 240b227bd.

This proves (9).

(10) |A| ≥ 2c|G| where c is as defined in the statement of the theorem.
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From (9), each Ci has cardinality at most 2240b227bd−1, and so |C| ≤ (m + 1)2240b227bd−1. Since
m ≥ 2 (and hence m + 1 ≤ 2m), and |B| ≤ m(bd)2k by (2), and |A| = mbd, we deduce that

|G| ≤ (2240b227bd

+ (bd)2k + bd)m ≤ (2240b227bd

+ (bd)2k + bd)|A|/(bd).

It follows that |A| ≥ 2c|G| where c is as defined in the statement of the theorem. This proves (10).

Let V be the union of all Ai with 1 ≤ i ≤ m and i odd. Then |V | ≥ |A|/2 ≥ c|G|. Number the
members of V as {v1, . . . , vt} say, where for 1 ≤ r < s ≤ t, if xr ∈ Ai and xs ∈ Aj then i ≤ j, and
either i < j or xr is adjacent to xs. (This is possible since each Ai is transitive.) We claim that
this order is 2k-forward. For let Y,Z be disjoint subsets of V with |Y | = |Z| = 2k, such that for
1 ≤ r, s ≤ t, if xr ∈ Y and xs ∈ Z then r < s. We must show that there exist y ∈ Y and z ∈ Z
such that y is adjacent to z. Suppose not. Choose i with 1 ≤ i ≤ m and i odd, maximum such
that Ai ∩ Y 6= ∅. It follows that Ah ∩ Z = ∅ for all h < i. If Z ∩ Ai 6= ∅, let vr ∈ Ai ∩ Y and
vs ∈ Ai ∩ Z; it follows that r < s from the choice of the numbering, and so vr is adjacent to vs,
a contradiction. Thus Z ∩ Ai = ∅. It follows that j ≥ i + 2 for each j with 1 ≤ j ≤ m such that
z ∩Aj 6= ∅. Since |Y | = 2k, there exists Y ′ ⊆ Y with |Y | = k such that Y is transitive, and similarly
there exists a transitive Z ′ ⊆ Z with |Z ′| = k. Now each member of Y ′ is adjacent from at most
d members of Ai+1, and so there are at most dk vertices in Ai+1 adjacent to some member of Y ′;
and similarly at most dk are adjacent from some member of Z ′. Since bd ≥ 2dk + 2, there are two
vertices u, v ∈ Ai+1 such that Y ′ ⇒ {u, v} and {u, v} ⇒ Z ′. But then the subtournament of G with
vertex set {u, v} ∪ Y ′ ∪ Z ′ is isomorphic to ∆(2, k, k), a contradiction. This proves that the order is
2k-forward, and so completes the proof of 5.4.

Proof of 5.1. This follows immediately from 5.3 and 5.4.

6 Strongly-connected pseudo-heroes

In this section we complete the proof of 1.5, and also prove 1.7. As a biproduct of the remainder
of the proof of 1.5, we are able to identify all the minimal tournaments that are not pseudo-heroes
(there are six). Here they are:

• Let H1 be the tournament with five vertices v1, . . . , v5, in which vi is adjacent to vi+1 and vi+2

for 1 ≤ i ≤ 5 (reading subscripts modulo 5).

• Let H2 be the tournament obtained from H1 by replacing the edge v5v1 by an edge v1v5.

• Let H3 be the tournament with five vertices v1, . . . , v5 in which vi is adjacent to vj for all i, j
with 1 ≤ i < j ≤ 4, and v5 is adjacent to v1, v3 and adjacent from v2, v4.

• Let H4 be the tournament ∆(1,∆(1, 1, 1),∆(1, 1, 1))

• Let H5 be the tournament ∆(2, 2,∆(1, 1, 1))

• Let H6 be the tournament ∆(3, 3, 3).
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First, we prove they are not pseudo-heroes, but also it is helpful to give the best upper bounds
on their ξ-values that we can. We begin with:

6.1 If H is a strongly-connected tournament with more than one vertex that does not admit a
trisection, then ξ(H) ≤ 1/ log(3). In particular, ξ(Hi) ≤ 1/ log(3) for i = 1, 2, 3, and so H1,H2,H3

are not pseudo-heroes.

Proof. Let D0 be the one-vertex tournament, and for i ≥ 1 let Di = ∆(Di−1,Di−1,Di−1). Thus
|Di| = 3i. For i > 0, no transitive subtournament of Di intersects all three parts of the trisection of
Di, so α(Di) = 2α(Di−1); and consequently α(Di) = 2i = |Di|

1/ log(3). We claim that for all i ≥ 0,
Di does not contain H; for suppose Di contains H for some value of i, and choose the smallest.
Then i ≥ 1 since |V (H)| ≥ 2, and so Di admits a trisection (A,B,C) where Di|A,Di|B,Di|C are all
isomorphic to Di−1. Choose a subtournament T of Di isomorphic to H. From the minimality of i,
V (T ) is not a subset of any of A,B,C, and therefore has nonempty intersection with at least two of
them; and since H is strongly-connected, V (T ) has nonempty intersection with all three of A,B,C.
But then T admits a trisection, a contradiction.

This proves that no Di contains H. Let ǫ be an EH-coefficient for H, and choose c > 0 such that
every H-free tournament G satisfies α(G) ≥ c|G|ǫ. In particular, taking G = Di implies that

|Di|
1/ log(3) = α(Di) ≥ c|Di|

ǫ,

for all i ≥ 0. It follows that 1/ log(3) ≥ ǫ. Since this holds for all EH-coefficients ǫ, it follows that
ξ(H) ≤ 1/ log(3). This proves 6.1.

6.2 ξ(H4) ≤ 1/2, and hence H4 is not a pseudo-hero.

Proof. For k ≥ 1, let Dk be the tournament with k2 vertices v1, . . . , vk2 , in which for 1 ≤ i < j ≤ k2,
vi is adjacent to vj if k does not divide j− i, and otherwise vj is adjacent to vi. (This construction is
due to Gaku Liu, in private communication.) For 1 ≤ i ≤ k, let Ci = {vi, vi+k, vi+2k, . . . , vi+(k−1)k}.
Then C1, . . . , Ck are disjoint and have union V (Dk).

(1) α(Dk) ≤ 2k − 1.

Let X ⊆ V (Dk) induce a transitive tournament. For 1 ≤ i ≤ k, if X ∩ Ci 6= ∅, let pi be the
smallest value of j such that vj ∈ X ∩ Ci, and qi the largest; and let Ii be {vj : pi ≤ j ≤ qi}. If
X ∩ Ci = ∅, let Ii = ∅. Note that if vj ∈ X ∩ Ii then j ∈ Ci; because otherwise {vpi

, vqi
, vj} would

induce a cyclic triangle, contradicting that X is transitive. This has two consequences:

• For each i ∈ {1, . . . , k}, |X ∩ Ii| ≤ 1 + (|Ii| − 1)/k, since between any two members of X in Ii

there are k − 1 members of Ci \ X. Summing over i, we deduce that |X| ≤ k − 1 +
∑

i |Ii|/k.

• The sets Ii (1 ≤ i ≤ k) are pairwise disjoint, and so
∑

i |Ii| ≤ k2.

Combining these, we deduce that |X| ≤ 2k − 1. This proves (1).

(2) Dk does not contain H4.
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For 1 ≤ j ≤ k2, let φ(vj) be the value of i ∈ {1, . . . , k} with vj ∈ Ci. Thus, let a, b, c ∈ V (Dk)
be distinct with the following properties:

(P) if {a, b, c} induces a cyclic triangle in Dk then |{φ(a), φ(b), φ(c)}| = 2; and

(Q) if ab, ac, bc are edges and φ(a) = φ(c) then φ(b) = φ(a).

(R) if {a, b, c} induces a cyclic triangle and d is some other vertex such that d ⇒ {a, b, c} or
d ⇐ {a, b, c} then φ(d) 6= φ(a), φ(b), φ(c).

(The third condition above follows easily from the other two, but we use it enough to give it a
separate name.) For X ⊆ V (Dk), φ(X) denotes {φ(v) : v ∈ X}. Suppose that Dk contains H4, and
let A,B,C be the trisection of H4 with |A| = |B| = 3; let A = {a1, a2, a3}, and B = {b1, b2, b3}, and
C = {c}. Thus from property P applied to A, |φ(A)| = 2, and similarly |φ(B)| = 2; by property R
applied to A and each member of B, φ(A) and φ(B) are disjoint; and by property R applied to A
and c, φ(c) /∈ φ(A) and similarly φ(c) /∈ φ(B). Choose a ∈ A and b ∈ B; then φ(a), φ(b), φ(c) are all
distinct, contrary to property P. This proves (2).

Let ǫ be an EH-coefficient for H4, and choose c > 0 such that every H4-free tournament G satisfies
α(G) ≥ c|G|ǫ. In particular, for each k ≥ 1, α(Dk) ≥ c|Dk|

ǫ, and so from (1), 2k − 1 ≥ ck2ǫ. Since
this holds for all k ≥ 1, we deduce that ǫ ≤ 1/2, and so ξ(H4) ≤ 1/2. This proves 6.2.

The above is not the easiest way to prove that H4 is not a pseudo-hero, but it gives a better
bound on ξ(H4).

Next we need a lemma proved in [6], the following:

6.3 The vertex set of every tournament H can be ordered such that the set of backward edges of
every non-null subtournament S of H has cardinality at most (|S| − 1)(ξ(H))−1.

We deduce

6.4 ξ(H5) ≤ 5/6, and so H5 is not a pseudo-hero.

Proof. Let H = H5, and let V (H) = A ∪ B ∪ C, where

• A = {a1, a2}, B = {b1, b2}, and C = {c1, c2, c3}

• A ⇒ B ⇒ C ⇒ A

• c1-c2-c3-c1 is a directed cycle.

Suppose there is an ordering of V (H) such that no cycle of the backedge graph has length at most
six. (By the backedge graph we mean the graph with vertex set V (H) in which distinct vertices are
adjacent if they are ends of a backedge of H.) Let X be the set of backedges in this ordering, and
let Y = E(H) \ X. We have two properties:

(P) For every directed cycle of H, at least one of its edges is in X.
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(Q) For every undirected cycle of H of length at most six, at least one of its edges is in Y .

Since every undirected graph with seven vertices and eight edges has a cycle of length at most
six (indeed, at most five), it follows that |X| ≤ 7. Suppose first that a1b1, a2b2 ∈ Y . From property
P applied to the directed cycle ci-aj-bj-ci, at least one of ciaj, bjci is in X, for i = 1, 2, 3 and j = 1, 2.
Thus there are at least six edges in X between A ∪ B and C. By property P applied to H|C, some
edge of X has both ends in C. Since |X| ≤ 7, it follows that all edges from A to B belong to Y ; and
so by property P, for i = 1, 2, 3 either cia1, cia2 ∈ X, or b1ci, b2ci ∈ X. Thus from the symmetry we
may assume that c1a1, c1a2, c2a1, c2a2 ∈ X. But these four edges form a cycle contrary to property
Q.

Thus not both a1b1, a2b2 ∈ Y , and similarly not both a1b2, a2b1 ∈ Y . Suppose next that
a1b1, a1b2 ∈ Y . Thus a2b1, a2b2 ∈ X. By property Q applied to the cycle a2-b1-ci-b2-a2, for i = 1, 2, 3
not both b1ci, b2ci ∈ X. By property P applied to the directed cycles ci-a1-b1-ci and ci-a1-b2-ci it
follows that cia1 ∈ X, for i = 1, 2, 3. But some edge of X has both ends in C, contrary to property
Q.

It follows that not both a1b1, a2b2 ∈ Y , and so from the symmetry, at most one edge from A
to B belongs to Y . By property Q, not all four of these edges are in X, so we may assume that
a1b1 ∈ Y , and a2b1, a1b2, a2b2 ∈ X. From property P, some edge of H|C belongs to X, say c1c2.
Now by property P again, for i = 1, 2 at least one of cia1, b1ci ∈ X. But then there are six edges in
X each with both ends in V (H) \ {c3}, contrary to property Q.

It follows that in every ordering of V (H), some cycle of the backedge graph has length at most
six. From 6.3, we deduce that ξ(H) ≤ 5/6. This proves the first assertion of the theorem, and the
second follows.

Finally:

6.5 ξ(H6) ≤ 3/4, and so H6 is not a pseudo-hero.

Proof. Let H = H6, and let V (H) = A ∪ B ∪ C, where

• A = {a1, a2, a3}, B = {b1, b2, b3}, and C = {c1, c2, c3}

• A ⇒ B ⇒ C ⇒ A

• A,B,C are all transitive.

Suppose there is an ordering of V (H) such that no cycle of the backedge graph has length at most
four; let X be the set of backedges in this ordering, and let Y = E(H) \X. We have two properties:

(P) For every directed cycle of H, at least one of its edges is in X.

(Q) For every undirected cycle of H of length at most four, at least one of its edges is in Y .

If there is a three-edge matching of members of Y between A,B, and also between B,C and between
C,A, then the union of these three matchings includes a directed cycle of H, contrary to property
P. So we may assume there is no three-edge matching of members of Y between A and B. By
König’s theorem, there are two vertices x, y ∈ A ∪ B such that every edge in Y between A and B
is incident with one of x, y. If x ∈ A and y ∈ B, and x = a3, y = b3 say, then a1b1, a1b2, a2b1, a2b2
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are all in X, contrary to property Q. Thus we may assume that x, y ∈ A; say x = a1, y = a2.
Hence a3b1, a3b2, a3b3 ∈ X. Let 1 ≤ k ≤ 3. We claim that cka1, cka2 ∈ X. For suppose that
cka1 ∈ Y say. From property Q at most one of the edges a1b1, a1b2, a1b3 is in X (otherwise there is
a cycle of edges in X of length four passing through a3); say a1b1, a1b2 ∈ Y . Now from property P
applied to a1-bj-ck-a1, it follows that bjck ∈ X for j = 1, 2, contrary to property Q. This proves that
cka1, cka2 ∈ X, for k = 1, 2, 3; but again this contradicts property Q. This proves 6.5.

Now we complete the proof of 1.5; all that remains is to prove the “only if” half of the third
statement of 1.5, which is the equivalence of the first two statements of the following.

6.6 Let H be a strongly-connected tournament with more than one vertex. Then the following are
equivalent:

• H is a pseudo-hero

• every strong component of H is isomorphic to ∆(2, k, l) for some k, l ≥ 2, or to ∆(1, P, T ) or
∆(1, T, P ) for some pseudo-hero P and some nonempty transitive tournament T

• H contains none of H1, . . . ,H6.

Proof. The first statement implies the third, by 6.1, 6.2, 6.4 and 6.5, since every subtournament
of a pseudo-hero is a pseudo-hero. By 5.1 and 4.1 with ǫ = 1, and 3.1 with ǫ = 1, the second
statement implies the first. It remains to show that the third implies the second, and we proceed by
induction on |V (H)|. Thus, let H contain none of H1, . . . ,H6. If H is not strongly-connected, then
inductively we may assume that all its strong components are pseudo-heroes, and hence so is H, by
3.1 with ǫ = 1. If H is strongly-connected, then by a theorem of Gaku Liu, published as theorem 5.1
of [3], since H contains none of H1,H2,H3, it admits a trisection (A,B,C). We may assume that
|C| ≤ |A|, |B|. If |C| = 1 then since H does not contain H4, it follows that at least one of A,B is
transitive, and so H = ∆(1, P, T ) or H = ∆(1, T, P ) for some pseudo-hero P and some nonempty
transitive tournament T , and the theorem holds. If |C| ≥ 2, then since H does not contain H5 and
|A|, |B| ≥ 2 it follows that A,B,C are all transitive, and therefore |C| = 2 since H does not contain
H6; but then H = ∆(2, k, l) for some k, l ≥ 2, and the theorem holds. This proves 6.6, and hence
completes the proof of 1.5.

Proof of 1.7. If H is not a pseudo-hero then from 6.6, H contains one of H1, . . . ,H6, and so
ξ(H) ≤ max(ξ(H1), . . . , ξ(H6)). But by 6.1, 6.2, 6.4 and 6.5, this maximum is at most 5/6. This
proves 1.7.
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