K_{4}-free graphs with no odd holes

Maria Chudnovsky ${ }^{1}$
Columbia University, New York NY 10027
Neil Robertson ${ }^{2}$
Ohio State University, Columbus, Ohio 43210
Paul Seymour ${ }^{3}$
Princeton University, Princeton NJ 08544
Robin Thomas ${ }^{4}$
Georgia Institute of Technology, Atlanta, GA 30332

October 5, 2001; revised April 19, 2011

[^0]
Abstract

All K_{4}-free graphs with no odd hole and no odd antihole are three-colourable, but what about $K_{4}{ }^{-}$ free graphs with no odd hole? They are not necessarily three-colourable, but we prove a conjecture of Ding that they are all four-colourable. This is a consequence of a decomposition theorem for such graphs; we prove that every such graph either has no odd antihole, or belongs to one of two explicitly-constructed classes, or admits a decomposition.

1 Introduction

All graphs in this paper are finite and have no loops or multiple edges. A hole in a graph is an induced cycle of length at least four, and an antihole is an induced subgraph isomorphic to the complement of a cycle of length at least four. As usual we denote by $\chi(G)$ the chromatic number of G and by $\omega(G)$ the clique number. Recently [2] we were able to prove the "strong perfect graph conjecture" of Berge [1], the following:
1.1 If a graph G has no odd holes and no odd antiholes, then $\chi(G)=\omega(G)$.

A graph is said to be perfect if every induced subgraph has chromatic number equal to clique number; and so 1.1 implies that graphs with no odd holes or antiholes are perfect. Since odd holes and odd antiholes do not satisfy the conclusion of 1.1, none of them can be left out from the hypothesis of the theorem. However, it is possible that the hypotheses can be relaxed and we could still deduce that $\chi(G)$ is bounded by some function of $\omega(G)$, where the function does not depend on G, of course. Gyarfás [4] conjectured:
1.2 Conjecture. For each integer $k \geq 0$ there is a least integer $g(k)$ such that every graph G with no odd hole and with $\omega(G)=k$ satisfies $\chi(G) \leq g(k)$.

Clearly $g(i)=i$ for $i \leq 2$, but $g(3) \geq 4$ since the complement of a cycle of length seven is not 3 -colourable, and Ding [3] conjectured that $g(3)=4$. We prove Ding's conjecture. For a graph F we say that a graph is F-free if it has no induced subgraph isomorphic to F, and for a family \mathcal{F} we say that a graph is \mathcal{F}-free if it has no subgraph isomorphic to a member of \mathcal{F}. Our main result is:

1.3 Every K_{4}-free graph with no odd hole is 4-colourable.

We deduce 1.3 from a decomposition theorem 3.1 for K_{4}-free graphs with no odd holes. The decomposition theorem requires a number of definitions before it can be formulated, and so we postpone its statement until Section 3. Let us remark that our decomposition theorem is not completely satisfactory in that it only applies to non-perfect graphs. It would be nice to have an analogous result for K_{4}-free perfect graphs, but that remains open.

There is a conjectured strengthening of 1.2 due to C. T. Hoàng and C. McDiarmid [5], the following.
1.4 Conjecture. For every graph G with no odd hole and with at least two vertices, there is a partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ such that every maximum clique of G meets both V_{1} and V_{2}.

Our result 1.3 shows that 1.4 is true for all K_{4}-free graphs.

2 Harmonious cutsets

The length of a path or cycle is the number of edges in it, and we say a path or cycle is even or odd depending whether its length is even or odd. If $A, B \subseteq V(G)$ are disjoint, we say that A is complete to B if every vertex in A is adjacent to every vertex in B, and A is anticomplete to B if no vertex in A is adjacent to a vertex in B. (We say a vertex v is complete to a set B if $\{v\}$ is complete to
B, and the same for anticomplete.) If $X \subseteq V(G), G \mid X$ denotes the subgraph of G induced on X, and $G \backslash X$ denotes the graph obtained by deleting X, that is, the subgraph induced on $V(G) \backslash X$. A cutset in a graph G is a set $X \subseteq V(G)$ such that $G \backslash X$ has at least two components. A cutset X is harmonious if X can be partitioned into disjoint sets $X_{1}, X_{2}, \ldots, X_{k}$ such that:

- for all $i, j \in\{1,2, \ldots, k\}$, if P is an induced path with one end in X_{i} and the other end in X_{j}, then P is even if $i=j$ and odd otherwise, and
- if $k \geq 3$, then X_{1}, \ldots, X_{k} are pairwise complete to each other.

Thus the first condition implies that each X_{i} is a stable set.
2.1 Let X be a harmonious cutset in a graph G, let C_{1}, C_{2} be a partition of $V(G) \backslash X$ into two nonempty sets that are anticomplete to each other, and for $t=1,2$ let G_{t} be $G \mid\left(C_{t} \cup X\right)$. If G_{1}, G_{2} have no odd hole then G has no odd hole.

We omit the (easy) proof since we do not need the result, which is included just to motivate the concept of harmonious cutset. 2.1 implies that if we understand all graphs with no odd hole and no harmonious cutset, then by repeatedly piecing them together on harmonious cutsets we can "construct" all graphs with no odd hole. However, this does not really count as a construction. If G, X, G_{1}, G_{2} are as above, and we wish to view this as a construction of G from things that we already understand, we need to know not only that G_{1}, G_{2} have no odd hole, but that the cutset X of G will be harmonious. This can be stated as a property of the pairs $\left(G_{1}, X\right)$ and $\left(G_{2}, X\right)$; but we need to have constructions for the pairs $\left(G_{1}, X\right)$ and $\left(G_{2}, X\right)$, not just for G_{1}, G_{2}, before we can claim to have a construction for G. We have not yet resolved this issue.

Let us return to the colouring problem.
2.2 Let X be a harmonious cutset in a graph G, let C_{1}, C_{2} be a partition of $V(G) \backslash X$ into two nonempty sets that are anticomplete to each other, and for $t=1,2$ let G_{t} be $G \mid\left(C_{t} \cup X\right)$. If G_{1}, G_{2} are 4-colourable then G is 4 -colourable.

Proof. Let $X_{1}, X_{2}, \ldots, X_{k}$ be as in the definition of a harmonious cutset. By hypothesis both G_{1} and G_{2} are 4 -colourable. Let $t \in\{1,2\}$, and let c be a 4 -colouring of G_{t} (using colours $1,2,3,4$, and so c is a map into $\{1,2,3,4\}$). We say that a vertex $v \in X$ is c-compliant if $c(v)=i$, where i is the index such that $v \in X_{i}$. We claim
(1) G_{t} has a 4-colouring c_{t} such that every vertex of X is c_{t}-compliant.

To prove this claim let c be a 4 -colouring of G_{t} that maximizes the number of c-compliant vertices. We will show that c is as desired. To this end, suppose for a contradiction that $v \in X$ is not c-compliant, say $v \in X_{i}$ and $c(v)=j$, where $i \neq j$. Let H be the component containing v of the subgraph of G_{t} induced by vertices coloured i or j. We claim that no vertex of H in X is c-compliant. For let $u \in V(H) \cap X$, and let P be an induced path of H joining u, v. Now $c(u)=c(v)$ (that is, $c(u)=j)$ if and only if P has even length, from the definition of H; but P has even length if and only if u, v belong to the same member of $\left\{X_{1}, \ldots, X_{k}\right\}$ (that is, $u \in X_{i}$), since X is harmonious. Consequently $c(u)=j$ if and only if $u \in X_{i}$, and so u is not c-compliant. This proves that no vertex of H in X is c-compliant.

Let c^{\prime} be the colouring obtained from c by swapping the colours i and j for every vertex of H. Then v is c^{\prime}-compliant. Since no vertex of H is c-compliant, it follows that more vertices in X are c^{\prime}-compliant than are c-compliant, contrary to our choice of c. This proves (1).

Now the colourings c_{1} and c_{2} can be combined to produce a 4 -colouring of G, as desired.
It is easy to see that a graph with a harmonious cutset has either what is called an even pair, an odd pair, or a clique cutset (we omit the definitions of these standard terms, which we do not need any more), and one could eliminate the use of 2.2 by using these three things instead, and three corresponding theorems from the literature. The interested reader can easily work this out.

What follows is a lemma to make it easier to prove that a given cutset is harmonious.
2.3 Let G be a graph with no odd hole, let X be a cutset in G, and let X_{1}, \ldots, X_{k} be a partition of X into stable sets, such that if $k \geq 3$ then the sets X_{1}, \ldots, X_{k} are pairwise complete. Suppose that for all nonadjacent $a, b \in X$, there is an induced path P joining a, b, with interior in $V(G) \backslash X$, such that P is even if some X_{i} contains both a, b, and odd otherwise. Then G admits a harmonious cutset.

Proof. If some proper subset X^{\prime} of X is a cutset, then X^{\prime} and the sets $X^{\prime} \cap X_{i}(1 \leq i \leq k)$ satisfy the hypotheses of the theorem and we may replace X by X^{\prime}. We may therefore assume that X is a minimal cutset. Let C_{1}, \ldots, C_{t} be the vertex sets of the components of $G \backslash X$; thus every member of X has a neighbour in C_{i} for all i with $1 \leq i \leq t$.
(1) Let $a, b \in X$. Every induced path between a, b with no internal vertex in X is even if some X_{i} contains both a, b, and odd otherwise.

For we may assume that a, b are nonadjacent, since X_{1}, \ldots, X_{k} are stable. By hypothesis, there is an induced path P joining a, b, with interior in $V(G) \backslash X$, such that P is even if some X_{i} contains both a, b, and odd otherwise. Since no internal vertex of P is in X, the interior of P is contained in one of C_{1}, \ldots, C_{t}, say C_{1}. Now $t>1$, so a, b both have neighbours in C_{2} from the minimality of X, and hence there is an induced path Q joining a, b with interior in C_{2}. Since the union of P, Q is an even hole, it follows that Q, P have the same parity. Now let R be any path with ends a, b and with interior disjoint from X. Then there exists $j \in\{1, \ldots, t\}$ such that the interior of R is a subset of C_{j}. Consequently one of $P \cup R, Q \cup R$ is a hole, and since P, Q have the same parity, it follows that R also has the same parity. This proves (1).

Let P be an induced path with both ends in X, and let its ends be v, v^{\prime} say, where $v \in X_{i}$ and $v^{\prime} \in X_{i^{\prime}}$. We must show that P is even if and only if $i=i^{\prime}$. We proceed by induction on the length of P. If no internal vertex of P is in X, the claim follows from (1), so we may assume that there is an internal vertex u of P in X_{j} say. Let Q, Q^{\prime} be the subpaths of P between v, u and between u, v^{\prime} respectively. From the inductive hypothesis, Q is even if and only if $i=j$, and Q^{\prime} is even if and only if $i^{\prime}=j$. Now P is odd if and only if exactly one of Q, Q^{\prime} is odd, that is, if exactly one of i, i^{\prime} is equal to j. It follows that if P is odd then $i \neq i^{\prime}$. For the converse, suppose that P is even; then either both i, i^{\prime} are equal to j or both i, i^{\prime} are different from j. In the first case $i=i^{\prime}$ as required. In the second case, if $k \leq 2$ then $i=i^{\prime}$ as required, and if $k \geq 3$ then $i=i^{\prime}$ since v, v^{\prime} are nonadjacent. This proves that P is even if and only if $i=i^{\prime}$, and so proves 2.3.

For X as in 2.3, we call $\left(X_{1}, \ldots, X_{k}\right)$ the "corresponding colouring".

3 The main theorem

In this section we state the main result. If $A, B \subseteq V(G)$ are disjoint, we say that A, B are linked if every member of A has a neighbour in B, and every member of B has a neighbour in A. We need to define two kinds of graphs.

We say a graph G is of T_{11} type if there is a partition of $V(G)$ into eleven nonempty stable subsets W_{1}, \ldots, W_{11}, such that (with index arithmetic modulo 11) for $1 \leq i \leq 11, W_{i}$ is anticomplete to $W_{i+1} \cup W_{i+2}$ and complete to $W_{i+3} \cup W_{i+4} \cup W_{i+5}$.

We say that G is of heptagram type if there is a partition of $V(G)$ into fourteen stable subsets $W_{1}, \ldots, W_{7}, Y_{1}, \ldots, Y_{7}$, where W_{1}, \ldots, W_{7} are nonempty but Y_{1}, \ldots, Y_{7} may be empty, satisfying the following (with index arithmetic modulo 7).

1. For $1 \leq i \leq 7, W_{i}$ is anticomplete to W_{i+3}.
2. For $2 \leq i \leq 7, W_{i}$ is complete to W_{i+2}, and W_{1}, W_{3} are linked.
3. For $i \in\{3,4,6,7\}, W_{i}$ is complete to W_{i+1}; for $i=1,2,5, W_{i}, W_{i+1}$ are linked.
4. If $v_{i} \in W_{i}$ for $i=1,2,3$, and v_{2} is adjacent to v_{1}, v_{3}, then v_{1} is adjacent to v_{3}.
5. If $v_{i} \in W_{i}$ for $i=1,2,3$, and v_{2} is nonadjacent to v_{1}, v_{3}, then v_{1} is nonadjacent to v_{3}.
6. For $1 \leq i \leq 7$, every vertex in Y_{i} has a neighbour in each of W_{i}, W_{i+3}, W_{i-3} and has no neighbour in $W_{i+1}, W_{i+2}, W_{i-1}, W_{i-2}$.
7. For $1 \leq i \leq 7$ and each $y \in Y_{i}$, let N_{j} be the set of neighbours of y in W_{j} for $j=i, i+3, i-3$; then N_{i+3} is complete to N_{i-3}, and N_{i+3} is anticomplete to $W_{i-3} \backslash N_{i-3}$, and N_{i-3} is anticomplete to $W_{i+3} \backslash N_{i+3}$, and N_{i} is complete to $W_{i+1} \cup W_{i-1}$.
8. For $1 \leq i \leq 7, Y_{i}$ is complete to Y_{i+1} and anticomplete to $Y_{i+2} \cup Y_{i+3}$.
9. For $1 \leq i \leq 7$, if Y_{i} is not complete to $W_{i+3} \cup W_{i-3}$ then $W_{i-3} \cup W_{i+3}$ is complete to $W_{i-2} \cup W_{i+2}$, and $Y_{i-1}, Y_{i+1}, Y_{i-3}, Y_{i+3}$ are all empty.
10. For $1 \leq i \leq 7$, at least one of Y_{i}, Y_{i+1}, Y_{i+2} is empty.

It is questionable whether the description given above of graphs of heptagram type really counts as an explicit construction. We return to this in the final section, where we give a more complicated but more explicit construction of the same class of graphs. We leave the reader to check that graphs of T_{11} type and graphs of heptagram type have no odd hole, are K_{4}-free, do not admit a harmonious cutset, and contain an antihole of length seven. (To check that graphs of heptagram type have no odd hole, we suggest the use of theorem 5.2 below.) Our main result is the converse, the following.
3.1 Let G be a K_{4}-free graph with no odd hole, and with no harmonious cutset, containing an antihole of length seven. Then G is either of heptagram type or of T_{11} type.

This has the corollary mentioned earlier:
3.2 Every K_{4}-free graph with no odd hole is four-colourable.

Proof. Let G be a K_{4}-free graph with no odd hole; we prove by induction on $|V(G)|$ that G is four-colourable. If G admits a harmonious cutset, the result follows from 2.2 and the inductive hypothesis. If G contains no antihole of length seven, then it contains no odd hole or antihole, and therefore is perfect by 1.1 (or Tucker's earlier result [6]), and so is three-colourable. We may therefore assume that G satisfies the hypotheses of 3.1 ; but then, by $3.1, G$ is of one of the two types listed. It is easy to check that graphs of these two types are four-colourable. This proves 3.2.

4 Graphs of T_{11} type

Let X_{1}, \ldots, X_{n} be disjoint subsets of $V(G)$; by an induced path of the form $X_{1} \cdots-X_{n}$ we mean an induced path $x_{1}-\cdots-x_{n}$ where $x_{i} \in X_{i}$ for $1 \leq i \leq n$ (and when some X_{i} is a singleton, say $\{x\}$, we sometimes write x instead of X_{i}). We use analogous terminology for holes. Let T_{11} be the graph with vertex set w_{1}, \ldots, w_{11}, in which for $1 \leq i \leq 11, w_{i}$ is nonadjacent to w_{i+1}, w_{i+2} and adjacent to $w_{i+3}, w_{i+4}, w_{i+5}$. (Throughout this section, index arithmetic is modulo 11.) In this section we show the following.
4.1 Let G be a K_{4}-free graph with no odd holes and no harmonious cutset. If G contains T_{11} as an induced subgraph then G is of T_{11} type.

Proof. Since G contains T_{11} as an induced subgraph, we may choose eleven nonempty stable sets W_{1}, \ldots, W_{11}, pairwise disjoint, such that for $1 \leq i \leq 11, W_{i}$ is anticomplete to W_{i+1}, W_{i+2} and complete to $W_{i+3}, W_{i+4}, W_{i+5}$. Choose them with maximal union, and let their union be W.
(1) If $v \in V(G) \backslash W$, and $a, b \in W$ are adjacent to v, then either a, b are adjacent or $a, b \in W_{i}$ for some $i \in\{1, \ldots, 11\}$.

For suppose not; then from the symmetry we may assume that $a \in W_{1}$ and $b \in W_{2} \cup W_{3}$. Let N be the set of neighbours of v in W. By a v-path we mean an induced path in $G \mid W$ with both ends in N and with no internal vertices in N. Since G has no odd hole, every odd v-path has length one. For $1 \leq i \leq 11$ choose $w_{i} \in W_{i}$. Suppose first that $b \in W_{2}$. Since there is no v-path of the form $a-W_{4}-W_{10}-b$, it follows that N includes one of W_{4}, W_{10}; and from the symmetry we may assume that $W_{4} \subseteq N$. Since no three members of N are pairwise adjacent (since G is K_{4}-free) it follows that N is disjoint from W_{7}, W_{8}, W_{9}. Since there is no v-path of the form $b-\left(W_{5} \cup W_{6}\right)-\left(W_{1} \cup W_{11}\right)$ - w_{4} it follows that N includes one of $W_{5} \cup W_{6}, W_{1} \cup W_{11}$, and we claim we may assume the second. For if $w_{5} \notin N$ then the second statement holds anyway; and if $w_{5} \in N$ then $W_{2} \subseteq N$ (since there is no v-path of the form $w_{4}-W_{7}-W_{2}-w_{5}$), and so there is symmetry between the pairs (W_{1}, W_{2}) and $\left(W_{5}, W_{4}\right)$, and we may assume that $W_{1} \cup W_{11} \subseteq N$ because of this symmetry. Thus, we may assume that $W_{1} \cup W_{11} \subseteq N$. Since there is no v-path of the form $a-w_{9}-W_{3}-w_{11}$ it follows that $W_{3} \subseteq N$; and since N includes no triangle within $W_{3} \cup W_{6} \cup W_{11}$, it follows that $N \cap W_{6}=\emptyset$. There is no v-path of the form $a-W_{5}-W_{10}-w_{3}$, so N includes one of W_{5}, W_{10}, and from the symmetry exchanging W_{1}, W_{3} we may assume that $W_{5} \subseteq N$. Since N includes no triangle within $W_{2} \cup W_{5} \cup W_{10}$, it follows that N is disjoint from W_{10}. Since there is no v-path of the form $w_{4}-w_{7}-W_{2}-w_{5}$, we deduce that $W_{2} \subseteq N$, and so N is the union of W_{i} for $i=11,1,2,3,4,5$. But then v can be added to W_{8}, contradicting the maximality of W.

This proves that $b \notin W_{2}$, and more generally for $1 \leq i \leq 11, N$ is disjoint from one of W_{i}, W_{i+1}. Now $b \in W_{3}$, and so N is disjoint from W_{11}, W_{2}, W_{4}. But then there is a v-path $a-w_{4}-w_{11}-b$, a contradiction. This proves (1).
(2) Let $X \subseteq V(G) \backslash W$ such that $G \mid X$ is connected. If $a, b \in W$ have neighbours in X then either a, b are adjacent or $a, b \in W_{i}$ for some $i \in\{1, \ldots, 11\}$.

For suppose not, and choose X minimal such that some such pair a, b violates (2). It follows that there is an induced path $a-x_{1} \cdots \cdots x_{k}-b$ where $X=\left\{x_{1}, \ldots, x_{k}\right\}$. By (1), a, b have no common neighbour in X, and so $k \geq 2$. From the symmetry we may assume that $a \in W_{1}$ and $b \in W_{2} \cup W_{3}$. For $1 \leq i \leq 11$ choose $w_{i} \in W_{i}$, choosing $w_{i} \in\{a, b\}$ if possible. For $1 \leq i \leq 11$, the minimality of X implies that not all of w_{i}, w_{i+1}, w_{i+2} have neighbours in X, since then some two of them would be joined by a proper subpath of $x_{1}-\cdots-x_{k}$. In particular, not all of w_{6}, w_{7}, w_{8} have neighbours in X; say w_{j} does not, where $6 \leq j \leq 8$. Consequently $w_{j}-a-x_{1}-\cdots-x_{k}-b-w_{j}$ is a hole, and therefore k is odd.

Suppose first that $b \in W_{2}$. Since $a-x_{1} \cdots \cdots-x_{k}-b-w_{10}-w_{4}-a$ is not an odd hole, we may assume from the symmetry that w_{4} has a neighbour in X. From the minimality of X, w_{4} is adjacent to x_{1} and to no other member of X. Since not all w_{11}, w_{1}, w_{2} have neighbours in X, it follows that w_{11} has no neighbour in X. Since not all w_{4}, w_{5}, w_{6} have neighbours in X, there exists $i \in\{5,6\}$ such that w_{i} has no neighbour in X. But then $w_{4}-x_{1}-\cdots-x_{k}-b-w_{i}-w_{11}-w_{4}$ is an odd hole, a contradiction.

Thus $b \notin W_{2}$, so $b \in W_{3}$, and more generally for $1 \leq i \leq 11$ at least one of W_{i}, W_{i+1} is anticomplete to X. In particular, w_{11}, w_{2}, w_{4} have no neighbour in X. Thus $a-x_{1}-\cdots-x_{k}-b-w_{11}-w_{4}-a$ is an odd hole, a contradiction. This proves (2).

Suppose that $W \neq V(G)$; we shall prove that G admits a harmonious cutset. Choose $C \subseteq$ $V(G) \backslash W$ maximal such that $G \mid C$ is connected. Let N be the set of vertices in W with neighbours in C. By (2) (and since $11 / 4<3$), $N \cap W_{i}$ is nonempty for at most three values of $i \in\{1, \ldots, 11\}$, and $N \cap W_{i}$ is complete to $N \cap W_{j}$ for all distinct $i, j \in\{1, \ldots, 11\}$. Thus by 2.3 it suffices to show that if $a, b \in N \cap W_{1}$ then there is an even path joining a, b with interior in $W \backslash N$. But a, b have a common neighbour in W_{j} for $j=4,5$, and not both these belong to N by (2). This completes the proof of 4.1.

5 Heptagrams

In view of 4.1, to prove 3.1 it suffices to prove it for $\left\{K_{4}, T_{11}\right\}$-free graphs, and that is the main goal of the remainder of the paper.

If a graph G contains an antihole of length seven, then the vertices of that antihole can be numbered $w_{1}, w_{2}, \ldots, w_{7}$ in such a way that w_{i} is adjacent to w_{j} if and only if $|i-j| \in\{1,2,5,6\}$. This motivates the following definition. We say that $W=\left(W_{1}, W_{2}, \ldots, W_{7}\right)$ is a heptagram in G if (here and later index arithmetic is modulo 7)
(S1) the sets $W_{1}, W_{2}, \ldots, W_{7} \subseteq V(G)$ are disjoint, nonempty, and stable,
(S2) for $1 \leq i \leq 7, W_{i}$ is anticomplete to $W_{i+3} \cup W_{i+4}$
(S3) for $1 \leq i \leq 7$, the sets W_{i}, W_{i+1}, W_{i+2} are pairwise linked
(S4) if $u \in W_{i-1}, v \in W_{i}, w \in W_{i+1}$ and v is adjacent to both u and w, then u is adjacent to w,
(S5) if $u \in W_{i-1}, v \in W_{i}, w \in W_{i+1}$ and v is non-adjacent to both u and w, then u is non-adjacent to w, and
(S6) if $u \in W_{i-1}, v \in W_{i}, w \in W_{i+1}, x \in W_{i+2}, u$ is adjacent to w and v is adjacent to x, then either u is adjacent to v or w is adjacent to x.

If $W=\left(W_{1}, \ldots, W_{7}\right)$ is a heptagram in G, we also use W to denote the set $W_{1} \cup \cdots \cup W_{7}$. This mild abuse of notation should cause no confusion.

Let us explain briefly where these conditions came from. It is clear that (S1)-(S3) are designed to mimic the edge-structure of the antihole on seven vertices, but (S4)-(S6) are less natural. They arose from the following consideration. Let $\left(W_{1}, \ldots, W_{7}\right)$ satisfy (S1)-(S3), in a graph G. One can check that if (S4)-(S6) are also satisfied, then $G \mid W$ has no odd hole (to prove this, use 5.3 below); and also the converse holds, that is, if $G \mid W$ has no odd hole then (S4)-(S6) hold, provided all the graphs $G \mid W_{i} \cup W_{i+1}$ are connected.

Our strategy to prove 3.1 is to choose a heptagram W in G with W maximal, and to analyze how the remainder of G attaches to W. But first, in this section we study the internal structure of a heptagram. We begin with:
5.1 Let $\left(W_{1}, W_{2}, \ldots, W_{7}\right)$ be a heptagram in a graph G. For $1 \leq i \leq 7$, if W_{i} is complete to W_{i+1}, then W_{i} is complete to W_{i+2} and W_{i-1} is complete to W_{i+1}.

Proof. Let $u \in W_{i}$ and $w \in W_{i+2}$, and let $v \in W_{i+1}$ be a neighbour of w. (This exists by (S3).) Since W_{i} is complete to W_{i+1}, it follows that v is adjacent to both u, w; and so u is adjacent to w by (S4). This proves that W_{i} is complete to W_{i+2}. The second assertion follows by symmetry. This proves 5.1.
5.2 Let $\left(W_{1}, W_{2}, \ldots, W_{7}\right)$ be a heptagram in a graph G. For $1 \leq i \leq 7$ either W_{i} is complete to W_{i+1} or W_{i+2} is complete to W_{i+3}.

Proof. From the symmetry we may assume $i=1$.
(1) Let $w_{i} \in W_{i}$ for $i=1,3,4$. Then w_{3} is adjacent to one of w_{1}, w_{4}.

For suppose not. By (S3), w_{1} has a neighbour $w_{2} \in W_{2}$; by (S4), w_{2}, w_{3} are nonadjacent, and so by (S5), w_{2}, w_{4} are nonadjacent. By (S3) again, w_{2} has a neighbour $n_{3} \in W_{3}$; by (S4), w_{1}, n_{3} are adjacent, and by (S4) again, n_{3}, w_{4} are nonadjacent. Again by (S3), w_{4} has a neighbour $n_{2} \in W_{2}$; by (S5), n_{2}, w_{3} are adjacent, and so by (S 4), n_{2}, w_{1} are nonadjacent. But then $w_{1}, n_{2}, n_{3}, w_{4}$ violate (S6). This proves (1).

To prove the theorem, suppose that $w_{i} \in W_{i}$ for $1 \leq i \leq 4$, say, and w_{1}, w_{2} are nonadjacent, and w_{3}, w_{4} are nonadjacent. By (1), w_{1}, w_{3} are adjacent, and similarly so are w_{2}, w_{4}; but then (S6) is violated. This proves 5.2.
5.3 Let $\left(W_{1}, W_{2}, \ldots, W_{7}\right)$ be a heptagram in a graph G. Then there exists $t \in\{1, \ldots, 7\}$ such that W_{j-1} is complete to W_{j+1} for all $j \in\{1, \ldots, 7\} \backslash\{t\}$, and W_{j} is complete to W_{j+1} for all $j \in\{t-3, t-2, t+1, t+2\}$. Consequently, for all $i \in\{1, \ldots, 7\}$, if $u \in W_{i-2}$ and $v \in W_{i+2}$, then

- u, v have common neighbours in W_{i-3}, in W_{i} and in W_{i+3}, and
- there is a path of the form $u-W_{i-1}-W_{i+1}-v$.

Proof. The first assertion follows from 5.2 and 5.1, and the others follow from this and (S3). This proves 5.3.

6 Y-vertices

Until the end of section 8 , where we complete the proof of $3.1, G$ is a $\left\{K_{4}, T_{11}\right\}$-free graph with no odd hole, containing an antihole of length seven. Consequently there is a heptagram in G, say $W=\left(W_{1}, \ldots, W_{7}\right)$; and let us choose the heptagram with $W_{1} \cup \cdots \cup W_{7}$ maximal. (We call this the "maximality" of W.) Again, W is fixed until the end of section 8.

We say that $y \in V(G) \backslash W$ is a Y-vertex or a Y-vertex of type t if the following hold, where N_{i} denotes the set of neighbours of y in W_{i} for $1 \leq i \leq 7$:

- N_{t}, N_{t+3}, N_{t-3} are nonempty, and $N_{i}=\emptyset$ for $i=t-2, t-1, t+1, t+2$
- N_{t-3} is complete to N_{t+3}, and N_{t-3} is anticomplete to $W_{t+3} \backslash N_{t+3}$, and N_{t+3} is anticomplete to $W_{t-3} \backslash N_{t-3}$
- N_{t} is complete to $W_{t+1} \cup W_{t+2} \cup W_{t-1} \cup W_{t-2}$

The main result of this section is the following:
6.1 Let $v \in V(G) \backslash W$. Then one of the following holds:

- v is a Y-vertex, or
- let N be the set of neighbours of v in W; then $N \cap W_{i}$ is nonempty for at most two values of $i \in\{1, \ldots, 7\}$, and if there are two such values, i and j say, then $j \in\{i-2, i-1, i+1, i+2\}$ and $N \cap W_{i}$ is complete to $N \cap W_{j}$.

Proof. Let $N_{i}=N \cap W_{i}$ and $M_{i}=W_{i} \backslash N_{i}$ for $1 \leq i \leq 7$. Let

$$
I=\left\{i \in\{1, \ldots, 7\}: N_{i} \neq \emptyset\right\} .
$$

By a v-path we mean an induced path of $G \mid W$ such that its ends are in N and its internal vertices are not in N. Since G has no odd hole, every odd v-path has length one. Since G is K_{4}-free, no three members of N are pairwise adjacent (briefly, N is triangle-free).
(1) For $1 \leq i \leq 7$, not all $i, i+1, i+2, i+3$ belong to I.

For suppose that $1,2,3,4 \in I$ say, and choose $n_{i} \in N_{i}$ for $1 \leq i \leq 4$. By 5.2, either n_{1}, n_{2} are
adjacent or n_{3}, n_{4} are adjacent, and we may assume the first by the symmetry. Since N is trianglefree, $\left\{n_{1}, n_{2}, n_{3}\right\}$ is not a triangle, and so (S4) implies that n_{2}, n_{3} are nonadjacent. By $5.2 W_{1}$ is complete to W_{7}, so by $5.1 W_{2}$ is complete to W_{7}; and so $N_{7}=\emptyset$ since N is triangle-free; and by 5.2 again, W_{4} is complete to W_{5}. Choose $w_{7} \in W_{7}$ adjacent to n_{2}; and choose $n_{5} \in W_{5}$ and $w_{6} \in W_{6}$, both adjacent to w_{7}. By $5.3, n_{3}, n_{5}$ are adjacent, and since $n_{3}-n_{5}-w_{7}-n_{2}$ is not a v-path, it follows that $n_{5} \in N_{5}$. Since $N_{2}, N_{3}, N_{4}, N_{5} \neq \emptyset$, the argument earlier in this paragraph implies that n_{3}, n_{4} are nonadjacent, and $N_{6}=\emptyset$. Now n_{3} is nonadjacent to both n_{2}, n_{4}, and so (S5) implies that n_{2}, n_{4} are nonadjacent. By 5.3, $n_{4}-w_{6}-w_{7}-n_{2}$ is a v-path, a contradiction. This proves (1).
(2) $|I| \leq 4$.

For (1) implies that $|I| \leq 5$; suppose that $|I|=5$. From (1) again we may assume that $I=$ $\{1,2,4,5,7\}$. Choose $n_{1} \in N_{1}$. If n_{1} has a neighbour in N_{2} and one in N_{7}, then by (S4) there is a triangle in N, a contradiction. Thus we may assume that n_{1} is anticomplete to N_{2}. By $5.2, W_{3}$ is complete to W_{4}, and W_{6} to W_{7}. Choose $n_{2} \in N_{2}$. If n_{2} has a neighbour $w_{1} \in M_{1}$, then since W_{1} is complete to W_{6} by 5.1 , there is a v-path of the form $n_{2}-w_{1}-W_{6}-n_{1}$, a contradiction. This proves that n_{2} is anticomplete to M_{1}. Choose $n_{1}^{\prime} \in W_{1}$ adjacent to n_{2}; it follows that $n_{1}^{\prime} \in N_{1}$. Since $n_{1}^{\prime} \in N_{1}$ and has a neighbour in N_{2}, it follows from our previous argument that n_{1}^{\prime} is anticomplete to N_{7}. By $5.2, W_{2}$ is complete to W_{3}, and W_{5} to W_{6}. Choose $n_{7} \in N_{7}$. Now n_{1} has a neighbour in W_{2}, necessarily in M_{2}; let w_{2} be such a neighbour. Similarly let $w_{7} \in M_{7}$ be adjacent to n_{1}^{\prime}. Choose $n_{4} \in N_{4}$. If n_{4} is anticomplete to N_{5}, then since W_{5} is complete to W_{7} by 5.1 , and n_{4} has a neighbour (say w_{5}) in $W_{5}, n_{4}-w_{5}-w_{7}-n_{5}$ is a v-path (where $n_{5} \in N_{5}$), a contradiction. Thus we may choose $n_{5} \in N_{5}$ adjacent to n_{4}. Choose $w_{3} \in W_{3}$ and $w_{6} \in W_{6}$. Now n_{2}, w_{7} are adjacent by (S4). If n_{2}, n_{7} are nonadjacent, then $n_{2}-w_{7}-w_{6}-n_{7}$ is a v-path, a contradiction. Thus n_{2}, n_{7} are adjacent, and so by (S5), n_{1}, n_{7} are adjacent. By (S4), n_{7}, w_{2} are adjacent. By (S5), n_{1}^{\prime}, w_{2} are adjacent, and similarly n_{1}, w_{7} are adjacent. By (S4), w_{7}, w_{2} are adjacent. But then the subgraph induced on

$$
\left\{v, w_{3}, w_{7}, n_{7}, n_{4}, n_{1}^{\prime}, n_{1}, n_{5}, n_{2}, w_{2}, w_{6}\right\}
$$

is isomorphic to T_{11} (and these eleven vertices are written in the appropriate order), a contradiction. This proves (2).
(3) $|I| \leq 3$.

For suppose not; then $|I|=4$ by (2), and we may assume that $1,4 \in I$. By 5.3 , there is a path of the form $N_{1}-W_{7}-W_{5}-N_{4}$. Since this is not a v-path, it follows that one of $N_{5}, N_{7} \neq \emptyset$, and from the symmetry we may assume that $5 \in I$. Suppose that $6 \in I$, and so $I=\{1,4,5,6\}$. If N_{4} is not complete to N_{5} there is a v-path of the form $N_{5}-W_{7}-W_{2}-N_{4}$, a contradiction, so N_{4} is complete to N_{5}. Choose $n_{6} \in N_{6}$. Since N_{4} is complete to N_{5} and N is triangle-free, it follows from (S4) that n_{6} has no neighbour in N_{5}; and consequently n_{6} is adjacent to some $w_{5} \in M_{5}$. But then by 5.3 there is a v-path of the form $N_{5}-W_{3}-w_{5}-n_{6}$, a contradiction. This proves that $6 \notin I$, and similarly $3 \notin I$, and so from the symmetry we may assume that $2 \in I$, and therefore $I=\{1,2,4,5\}$.

In this case we will show that we can add v to W_{3}, forming a heptagram W^{\prime}, contrary to the maximality of W. Define $W_{i}^{\prime}=W_{i}$ for $1 \leq i \leq 7$ with $i \neq 3$, and $W_{3}^{\prime}=W_{3} \cup\{v\}$; and let $W^{\prime}=\left(W_{1}^{\prime}, \ldots, W_{7}^{\prime}\right)$. We must check that W^{\prime} satisfies (S1)-(S6). The first three are clear. Since W
satisfies (S4)-(S6), in order to check that W^{\prime} satisfies (S4)-(S6), it suffices from the symmetry to show that:

1. N_{2} is complete to N_{4}
2. N_{4} is anticomplete to M_{5}
3. M_{2} is anticomplete to M_{4}
4. M_{4} is complete to N_{5}
5. if $M_{2} \neq \emptyset$ then N_{4} is complete to N_{5}
6. every vertex in W_{6} is either anticomplete to M_{4} or complete to N_{5}.

Let us prove these statements. For the first, if $n_{2} \in N_{2}$ and $n_{4} \in N_{4}$ are nonadjacent, choose $w_{i} \in W_{i}$ for $i=6,7$, adjacent; then by $5.2, n_{4}, w_{6}$ are adjacent and so are n_{2}, w_{7}, and therefore $n_{4}-w_{6}-w_{7}-n_{4}$ is a v-path, a contradiction.

For the second, suppose that $n_{4} \in N_{4}$ is adjacent to $w_{5} \in M_{5}$. Choose $n_{1} \in N_{1}$ and $w_{7} \in W_{7}$ adjacent to both n_{1}, w_{5} (this is possible by 5.3); then $n_{4}-w_{5}-w_{7}-n_{1}$ is a v-path, a contradiction.

For the third statement, suppose that $w_{2} \in M_{2}$ and $w_{4} \in M_{4}$ are adjacent. Choose $n_{1} \in N_{1}$ and $n_{5} \in N_{5}$. Since $n_{1}-w_{2}-w_{4}-n_{5}$ is not a v-path, we may assume that n_{1}, w_{2} are nonadjacent, and indeed w_{2} has no neighbour in N_{1}. Choose $w_{1} \in W_{1}$ adjacent to w_{2} (necessarily in M_{1}), and choose $w_{7} \in W_{7}$ adjacent to w_{1}. By (S4), w_{2}, w_{7} are adjacent, and by (S5), n_{1}, w_{7} are adjacent. Choose $n_{4} \in N_{4}$; by $5.3, n_{4}, w_{2}$ are adjacent, since w_{2}, n_{1} are not adjacent. But then $n_{1}-w_{7}-w_{2}-n_{4}$ is a v-path, a contradiction.

For the fourth statement, suppose that $w_{4} \in M_{4}$ and $n_{5} \in N_{5}$ are nonadjacent. Choose $w_{6} \in W_{6}$ adjacent to w_{4}; then (S5) implies that n_{5}, w_{6} are adjacent. Choose $n_{2} \in N_{2}$; by 5.3, n_{2}, w_{4} are adjacent. But then $n_{2}-w_{4}-w_{6}-n_{5}$ is a v-path, a contradiction.

For the fifth statement, suppose that $w_{2} \in M_{2}, n_{4} \in N_{4}$ and $n_{5} \in N_{5}$, where n_{4}, n_{5} are nonadjacent. By 5.3, w_{2}, n_{4} are adjacent. By 5.3 , there exists $w_{7} \in W_{7}$ adjacent to both w_{2}, n_{5}; but then $n_{4}-w_{2}-w_{7}-n_{5}$ is a v-path, a contradiction.

Finally, for the last statement, suppose that $w_{6} \in W_{6}$ is adjacent to $w_{4} \in M_{4}$ and nonadjacent to $n_{5} \in N_{5}$. Choose $n_{1} \in N_{1}$. By (S5), n_{5}, w_{4} are adjacent, and by $5.3, w_{6}, n_{1}$ are adjacent; but then $n_{1}-w_{6}-w_{4}-n_{5}$ is a v-path, a contradiction.

This proves that W^{\prime} is a heptagram, contrary to the maximality of W. This completes the proof of (3).
(4) If $|I|=3$ then the first outcome of the theorem holds.

For suppose first that $I=\{1,2,3\}$, and choose $n_{i} \in N_{i}$ for $i=1,2,3$. Since N is triangle-free, we may assume from (S4) that n_{1}, n_{2} are nonadjacent. Choose $w_{4} \in W_{4}$ and $w_{6} \in W_{6}$, adjacent; then by $5.3, n_{2}-w_{4}-w_{6}-n_{1}$ is a v-path, a contradiction.

Thus I does not consist of three consecutive integers (modulo seven), and so we may assume that $1,4 \in I$. Since there is no v-path of the form $N_{4}-W_{5}-W_{7}-N_{1}, 5.3$ implies one of N_{5}, N_{7} is nonempty, and from the symmetry we may assume that the former. Thus $I=\{1,4,5\}$. By the same argument, N_{4} is anticomplete to M_{5}, and N_{5} is anticomplete to M_{4}. If N_{4} is not complete to $N_{5}, 5.3$ implies that
there is a v-path of the form $N_{5}-W_{7}-W_{2}-N_{4}$, a contradiction. Thus N_{4} is complete to N_{5}. Suppose that N_{1} is not complete to W_{2}, and choose $n_{1} \in N_{1}$ and $w_{2} \in W_{2}$, nonadjacent. Choose $w_{7} \in W_{7}$ adjacent to w_{2}; then (S5) implies that n_{1}, w_{7} are adjacent. But by $5.3, w_{2}, n_{4}$ are adjacent, and so $n_{1}-w_{7}-w_{2}-n_{4}$ is a v-path, a contradiction. Thus N_{1} is complete to W_{2} and therefore to W_{3}, by (S 4). Similarly N_{1} is complete to W_{7}, W_{6}. But then v is a Y-vertex of type 1 , and the first statement of the theorem holds. This proves (4).
(5) If $|I|=2$ then the second outcome of the theorem holds.

For then we may assume that $I=\{1, t\}$ where $t \in\{2,3,4\}$. If $t=4$, there is a v-path of the form $N_{4}-W_{5}-W_{7}-N_{1}$, a contradiction. Thus $t \in\{2,3\}$. Suppose there exist $n_{1} \in N_{1}$ and $n_{t} \in N_{t}$, nonadjacent. Choose $w_{6} \in W_{6}$ adjacent to n_{1}. By 5.3 , there exists $w_{4} \in W_{4}$ adjacent to both n_{t}, w_{6}; but then $n_{1}-w_{6}-w_{4}-n_{7}$ is a v-path, a contradiction. Thus N_{1} is complete to N_{t} and the second outcome of the theorem holds. This proves (5).

From (2)-(5), we may assume that $|I| \leq 1$; but then the second outcome of the theorem holds. This proves 6.1.

7 V-vertices

Let $1 \leq t \leq 7$. A tail, or tail of type t, is an induced path $v_{1} \cdots-v_{k}$ with the following properties:

- $k \geq 1$ is odd, and $v_{1}, \ldots, v_{k} \in V(G) \backslash W$
- v_{1} has a neighbour in W_{t-3} and a neighbour in W_{t+3}, and W_{t-3}, W_{t+3} are anticomplete to $\left\{v_{2}, \ldots, v_{k}\right\}$
- W_{t-1}, W_{t+1} and at least one of W_{t-2}, W_{t+2} are anticomplete to $\left\{v_{1}, \ldots, v_{k}\right\}$
- v_{k} has a neighbour in W_{t}, and W_{t} is anticomplete to $\left\{v_{1}, \ldots, v_{k-1}\right\}$
- for $j=t-3, t+3$ let N_{j} be the set of neighbours of v_{1} in W_{j}; then N_{t-3} is complete to N_{t+3}, N_{t-3} is anticomplete to $W_{t+3} \backslash N_{t+3}$, and N_{t+3} is anticomplete to $W_{t-3} \backslash N_{t-3}$
- every neighbour of v_{k} in W_{t} is complete to each of $W_{t-2}, W_{t-1}, W_{t+1}, W_{t+2}$.

We see that every Y-vertex forms a 1 -vertex path that is a tail of length zero, and for every tail of length zero, its unique vertex is a Y-vertex, by 6.1 , and so we may regard tails as a generalization of Y-vertices. If $v_{1}-\cdots-v_{k}$ is a tail, we say it is a tail for v_{1}. If $1 \leq t \leq 7$, a vertex $v \in V(G) \backslash W$ with neighbours in W_{t-3} and in W_{t+3}, and anticomplete to W_{j} for $j=t-2, t-1, t, t+1, t+2$, is called a hat of type t. If v_{1}, \ldots, v_{k} is a tail of type t, and has length greater than zero, then v_{1} is a hat of type t. We say a vertex $v \in V(G) \backslash W$ is a V-vertex of type t if there is a tail of type t for v. Thus, every V-vertex of type t is either a Y-vertex of type t or a hat of type t.

Before we go on, let us give some idea where we are going. If every vertex in $V(G) \backslash W$ is a V-vertex, then since every tail only contains one V-vertex it follows that every tail has length zero, and so every vertex in $V(G) \backslash W$ is a Y-vertex, and we shall deduce that the graph is of heptagram
type. On the other hand, if some vertex in $V(G) \backslash W$ is not a V-vertex, we shall prove that G admits a harmonious cutset.

If $X \subseteq V(G)$, we define $N(X)$ to be the set of vertices in $V(G) \backslash X$ with a neighbour in X. Here is a nice property of tails:
7.1 Let $X \subseteq V(G) \backslash W$, such that $G \mid X$ is connected and contains no tail of G. Then there exists $i \in\{1, \ldots, 7\}$ such that $N(X) \cap W \subseteq W_{i-1} \cup W_{i} \cup W_{i+1}$.

Proof. Suppose this is false, and choose a minimal counterexample X. Consequently there exists $i \in\{1, \ldots, 7\}$ such that N_{i}, N_{i+3} are both not anticomplete to X, and we may therefore assume that $N(X) \cap W_{1}, N(X) \cap W_{4} \neq \emptyset$. Choose a minimal path from W_{4} to W_{1} with interior in X, say $n_{4}-v_{1}-\cdots-v_{k}-n_{1}$. From the minimality of X, it follows that $X=\left\{v_{1}, \ldots, v_{k}\right\}$, and from 6.1 it follows that $k>1$. From the minimality of X, W_{1} is anticomplete to $\left\{v_{1}, \ldots, v_{k-1}\right\}$, and W_{4} is anticomplete to $\left\{v_{2}, \ldots, v_{k}\right\}$. Suppose first that k is even. Then by $5.3, n_{1}, n_{4}$ have a common neighbour $w_{j} \in W_{j}$ for $j=2,3,6$, and since G has no odd hole, it follows that w_{2}, w_{3}, w_{6} each are adjacent to one of v_{1}, \ldots, v_{k}. But each of v_{1}, v_{k} is nonadjacent to one of w_{2}, w_{3}, by 6.1 , and so one of w_{2}, w_{3} is joined to w_{6} by a path with interior a proper subpath of v_{1}, \ldots, v_{k}, contrary to the minimality of X. This proves that k is odd. Since there is no odd hole of the form

$$
n_{4}-v_{1}-\cdots-v_{k}-n_{1}-W_{7}-W_{5}-n_{4},
$$

it follows that some vertex of $W_{5} \cup W_{7}$ is adjacent to one of v_{1}, \ldots, v_{k}, and from the symmetry we may assume this vertex is in W_{5}. From the minimality of $X,\left\{v_{2}, \ldots, v_{k}\right\}$ is anticomplete to W_{5}, and so v_{1} a has neighbour in W_{5}. By 6.1, and since $G \mid X$ contains no tail of G and hence X contains no Y-vertex, it follows that v_{1} is a hat of type 1 . We will prove that v_{1}, \ldots, v_{k} is a tail.

From the minimality of $|X|, W_{2}$ and W_{7} are both anticomplete to $\left\{v_{1}, \ldots, v_{k-1}\right\}$. Suppose that v_{k} has a neighbour $n_{2} \in W_{2}$ say. Then by $6.1, v_{k}$ is a hat of type 5 , and so W_{7} is anticomplete to X, and the minimality of X implies that W_{6} is anticomplete to X. If n_{2}, n_{4} are adjacent then $n_{4}-v_{1}-\cdots-v_{k}-n_{2}-n_{4}$ is an odd hole, and if n_{2}, n_{4} are nonadjacent then there is an odd hole of the form

$$
n_{4}-v_{1}-\cdots-v_{k}-n_{2}-W_{7}-W_{6}-n_{4},
$$

in either case a contradiction. This proves that v_{k} has no neighbour in W_{2}, and so X is anticomplete to W_{2}, and similarly to W_{7}. Now v_{1} is anticomplete to both W_{3}, W_{6}, and from the minimality of X, at least one of W_{3}, W_{6} is anticomplete to $X \backslash\left\{v_{1}\right\}$, and so at least one of W_{3}, W_{6} is anticomplete to X. We have therefore verified that v_{1}, \ldots, v_{k} satisfies the first four conditions in the definition of a tail.

To verify the fifth condition, let N_{i} be the set of neighbours of v_{1} in W_{i} for $i=4,5$. By $6.1, N_{4}$ is complete to N_{5}. If $w_{4} \in N_{4}$ is adjacent to some $w_{5} \in W_{5} \backslash N_{5}$, then there is an odd hole of the form

$$
w_{4}-v_{1}-\cdots-v_{k}-n_{1}-W_{7}-w_{5}-w_{4},
$$

a contradiction. Similarly N_{5} is anticomplete to $W_{4} \backslash N_{4}$, and this verifies the fifth condition.
To verify the sixth and last condition, let $w_{1} \in W_{1}$ be adjacent to v_{k}. If w_{1} is nonadjacent to some $w_{2} \in W_{2}$, choose $w_{7} \in W_{7}$ adjacent to w_{2}; then (S5) implies that w_{1}, w_{7} are adjacent, and so by 5.3 there is an odd hole

$$
n_{4}-v_{1}-\cdots-v_{k}-w_{1}-w_{7}-w_{2}-n_{4},
$$

a contradiction. Thus w_{1} is complete to W_{2}, and therefore to W_{3} by (S4), and similarly to W_{7}, W_{6}. This verifies the sixth condition.

Consequently v_{1}, \ldots, v_{k} is a tail in $G \mid X$, a contradiction. Thus there is no such X. This proves 7.1.
7.2 Let U be the set of all vertices in $V(G) \backslash W$ that are not V-vertices. For $1 \leq t \leq 7$, there is no path $x_{1}-\cdots-x_{k}$ in G satisfying the following:

- x_{1} is either a hat or Y-vertex of type t
- $x_{2}, \ldots, x_{k-1} \in U$
- $x_{k} \in V(G) \backslash W$ has a neighbour in $W_{t+1} \cup W_{t-1}$, and
- x_{k} is not a Y-vertex of type $t+1$ or $t-1$.

Proof. For suppose there is, and choose k minimum such that for some t there is such a path. We may assume that $t=1$, and x_{1} is either a hat or a Y-vertex of type 1 , and $x_{k} \in V(G) \backslash W$ has a neighbour in W_{2}, and $x_{2}, \ldots, x_{k-1} \in U$, and x_{k} is not a Y-vertex of type 2 or 7 . Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$. From the minimality of k, W_{2}, W_{7} are both anticomplete to $X \backslash\left\{x_{k}\right\}$. Choose $w_{2} \in W_{2}$ adjacent to x_{k}. Choose $w_{4} \in W_{4}$ adjacent to x_{1}, and also adjacent to w_{2} if possible. We claim that if x_{1} is a V-vertex, then w_{2}, w_{4} are adjacent; for if W_{4} is complete to W_{5} then x_{1} is complete to W_{4} (since x_{1} is a V-vertex), and if W_{4} is not complete to W_{5} then W_{4} is complete to W_{2} by 5.3. In either case it follows that w_{2}, w_{4} are adjacent.
(1) $G \mid X$ contains a tail for x_{k} and a tail for x_{1}, and in particular x_{1} and x_{k} are V-vertices.

For suppose it contains no tail for x_{k}. By 7.1 applied to $X \backslash\left\{x_{1}\right\}$ we deduce that W_{5}, W_{6} are anticomplete to $X \backslash\left\{x_{1}\right\}$. From 7.1, $G \mid X$ contains a tail of G, and since X contains no V-vertex except possibly x_{1} and x_{k}, we may assume that $G \mid X$ contains a tail for x_{1}. Thus x_{1} is a V-vertex, and so w_{2}, w_{4} are adjacent. Moreover, there exists $j \leq k$ such that $x_{1} \cdots x_{j}$ is a tail for x_{1}. In particular, W_{2} is anticomplete to $\left\{x_{1}, \ldots, x_{j}\right\}$, and so $j<k$.

Suppose that k is even. Since there is no odd hole of the form

$$
x_{1}-\cdots-x_{k}-w_{2}-W_{7}-W_{5}-x_{1},
$$

it follows that x_{k} has a neighbour $w_{7} \in W_{7}$. But then W_{4} is anticomplete to $X \backslash\left\{x_{1}\right\}$ by 7.1, and so there is an odd hole of the form

$$
x_{1}-\cdots-x_{k}-w_{7}-W_{6}-W_{4}-x_{1},
$$

a contradiction.
Thus k is odd. Since $x_{1}-\cdots-x_{k}-w_{2}-w_{4}-x_{1}$ is not an odd hole, we deduce that w_{4} has a neighbour in $X \backslash\left\{x_{1}\right\}$. From 7.1 applied to $X \backslash\left\{x_{1}\right\}$, we deduce that W_{1}, W_{7} are anticomplete to $X \backslash\left\{x_{1}\right\}$, and therefore $j=1$, and so x_{1} is a Y-vertex. Choose $w_{1} \in W_{1}$ adjacent to x_{1}. Then w_{1} is complete to W_{2} from the definition of a Y-vertex, and in particular w_{1}, w_{2} are adjacent. But then $x_{1}-\cdots-x_{k}-w_{2}-w_{1}-x_{1}$ is an odd hole, a contradiction.

This proves that $G \mid X$ contains a tail for x_{k}. In particular, x_{k} is either a hat or Y-vertex of type s say, where $s=5$ or 6 , and x_{1} has a neighbour in W_{s-1}. Thus there is symmetry between x_{1} and x_{k}, and since we have shown that $G \mid X$ contains a tail for x_{k}, it follows that it also contains a tail for x_{1}. This proves (1).

(2) x_{k} is not a V-vertex of type 6 .

For suppose it is; then it has neighbours in W_{3}. From the minimality of k, W_{7} is anticomplete to X, and W_{2} is anticomplete to $X \backslash\left\{x_{k}\right\}$, and W_{5} is anticomplete to $X \backslash\left\{x_{1}\right\}$. Since there is no odd hole of the form

$$
x_{1}-\cdots-x_{k}-w_{2}-W_{7}-W_{5}-x_{1},
$$

it follows that k is odd. Since $w_{4}-x_{1}-\cdots-x_{k}-w_{2}-w_{4}$ is not an odd hole, it follows that w_{4} has a neighbour in $X \backslash\left\{x_{1}, x_{k}\right\}$. By 7.1 applied to $X \backslash\left\{x_{1}, x_{k}\right\}$, it follows that W_{1} is anticomplete to $X \backslash\left\{x_{1}, x_{k}\right\}$. But by (1), some vertex $w_{1} \in W_{1}$ has a neighbour in a tail for x_{1} contained in $x_{1}-\cdots-x_{k} ; w_{1}$ is not adjacent to x_{k} since x_{k} is a V-vertex of type 6 ; and so w_{1} is adjacent to x_{1} and to none of x_{2}, \ldots, x_{k}. Since x_{1} is a V-vertex, w_{1} is complete to W_{2} and in particular adjacent to w_{2}. But then $w_{1}-x_{1}-\cdots-x_{k}-w_{2}-w_{1}$ is an odd hole, a contradiction. This proves (2).
(3) x_{k} is not a V-vertex of type 5 .

For suppose it is, and so it has neighbours in W_{1}. By the minimality of k, W_{4}, W_{6} are both anticomplete to $X \backslash\left\{x_{1}\right\}$. From the hole $x_{1} \cdots-x_{k}-w_{2}-w_{4}-x_{1}$ we deduce that k is even. Choose $w_{5} \in W_{5}$ adjacent to x_{1}, and $w_{1} \in W_{1}$ adjacent to x_{k}. There is no odd hole of the form

$$
x_{1}-\cdots-x_{k}-w_{2}-W_{7}-w_{5}-x_{1},
$$

and so w_{5} is not anticomplete to $X \backslash\left\{x_{1}\right\}$. Similarly w_{1} is not anticomplete to $X \backslash\left\{x_{k}\right\}$. By 7.1 applied to $X \backslash\left\{x_{1}, x_{k}\right\}$, not both w_{1}, w_{5} have neighbours in $X \backslash\left\{x_{1}, x_{k}\right\}$; so from the symmetry we may assume that w_{1} is adjacent to x_{1} and not to x_{2}, \ldots, x_{k-1}. In particular x_{1} is a Y-vertex. Since $x_{1}-\cdots-x_{k}-w_{1}-x_{1}$ is not an odd hole, it follows that $k=2$, and so w_{5} is adjacent to x_{2}; and therefore x_{2} is also a Y -vertex.

Since x_{1} is a Y-vertex, it has a neighbour in W_{1} that is complete to W_{2}, and therefore $G \mid\left(W_{1} \cup W_{2}\right)$ is connected. Since x_{2} is a Y-vertex of type 5, its set of neighbours in $W_{1} \cup W_{2}$ is the vertex set of a component of $G \mid\left(W_{1} \cup W_{2}\right)$; and consequently x_{2} is complete to $W_{1} \cup W_{2}$, and W_{1} is complete to W_{2}. Similarly x_{1} is complete to $W_{4} \cup W_{5}$ and W_{4} is complete to W_{5}. We claim that x_{1} is complete to W_{1}. For suppose that x_{1} is nonadjacent to some $w_{1} \in W_{1}$. Then there is an odd hole of the form

$$
x_{1}-x_{2}-w_{1}-W_{3}-w_{4}-x_{1},
$$

a contradiction. This proves that x_{1} is complete to W_{1}, and similarly x_{2} is complete to W_{5}.
Define $W_{6}^{\prime}=W_{6} \cup\left\{x_{1}\right\}$, and $W_{7}^{\prime}=W_{7} \cup\left\{x_{2}\right\}$, and let $W^{\prime}=\left(W_{1}, \ldots, W_{5}, W_{6}^{\prime}, W_{7}^{\prime}\right)$. We claim that W^{\prime} is a heptagram. We must check (S1)-(S6), but they are all obvious and we leave this to the reader. Thus W^{\prime} is a heptagram, contrary to the maximality of W. This proves (3).

Since x_{k} is a V-vertex with a neighbour in W_{2}, and is not a Y-vertex of type 2, (1)-(3) are contradictory. Consequently there is no such path x_{1}, \ldots, x_{k}. This proves 7.2.

We conclude this section with some more lemmas about V-vertices.
7.3 For $1 \leq i \leq 7$, no two V-vertices of type i are adjacent.

Proof. Suppose that a, b are adjacent V-vertices of type 5 say. For $j=1,2$, let A_{j}, B_{j} be the set of neighbours in W_{j} of a, b respectively. Since G is K_{4}-free, and A_{1} is complete to A_{2}, it follows that $A_{1} \cup A_{2} \neq B_{1} \cup B_{2}$. Since $A_{1} \cup A_{2}$ and $B_{1} \cup B_{2}$ are both vertex sets of components of $G \mid\left(W_{1} \cup W_{2}\right)$, we deduce that $A_{j} \cap B_{j}=\emptyset$ for $j=1,2$. Since G is K_{4}-free, and A_{1} is complete to A_{2}, some vertex of $A_{1} \cup A_{2}$ is not adjacent to b, and so $A_{j} \cap B_{j}=\emptyset$ for $j=1,2$. In particular, W_{1} is not complete to W_{2}, and so W_{1} is complete to W_{6} by 5.3. Choose $a_{1} \in A_{1}, b_{1} \in B_{1}$, and $w_{6} \in W_{6}$. Then $w_{6}-a_{1}-a-b-b_{1}-w_{6}$ is a hole of length five, a contradiction. This proves 7.3.
7.4 For $1 \leq i \leq 7$, if a is a V-vertex of type i, and a is not complete to $W_{i-3} \cup W_{i+3}$, then $W_{i-2} \cup W_{i+2}$ is complete to $W_{i-3} \cup W_{i+3}$.

Proof. We may assume that $i=5$ say. For $j=1,2$, let N_{j} be the set of neighbours of a in W_{j}, and let $M_{j}=W_{i} \backslash N_{j}$. Thus N_{1} is complete to N_{2}, and N_{1} is anticomplete to M_{2}, and M_{1} is anticomplete to N_{2}. By hypothesis $M_{1} \cup M_{2} \neq \emptyset$, and since each member of M_{1} has a neighbour in W_{2} (and therefore in M_{2}), and vice versa, it follows that $M_{1}, M_{2} \neq \emptyset$. Let $w_{3} \in W_{3}$; we will show that w_{3} is complete to $W_{1} \cup W_{2}$. Suppose first that w_{3} is anticomplete to M_{1}. Then w_{3} has a neighbour in N_{1}, and so by (S5), w_{3} is complete to M_{2}. Yet w_{3} is anticomplete to M_{1}, and every vertex in M_{2} has a neighbour in M_{1}, contrary to (S4). This proves that w_{3} has a neighbour in M_{1}, say m_{1}. By (S5), since m_{1} is anticomplete to N_{2}, it follows that w_{3} is complete to N_{2}, and consequently complete to N_{1}, by (S4). Choose $n_{1} \in N_{1}$; then since n_{1} is anticomplete to M_{2}, (S5) implies that w_{3} is complete to M_{2}, and hence to M_{1}, by (S4). This proves our claim that w_{3} is complete to $W_{1} \cup W_{2}$. We deduce that W_{3} is complete to $W_{1} \cup W_{2}$, and similarly so is W_{7}. This proves 7.4.
7.5 For $1 \leq i \leq 7$, if a is $a V$-vertex of type i, and b is a V-vertex of type $i+1$, then a, b are adjacent, and both are complete to W_{i-3}.

Proof. We may assume that $i=5$, say. Let a, b be V-vertices of types 5 and 6 respectively, and let their tails be S, T respectively. For $j=1,2$, let A_{j} be the set of neighbours of a in W_{j}, and for $j=2,3$, let B_{j} be the set of neighbours of b in W_{j}. By 7.4, at least one of a, b is complete to W_{2}.
(1) a, b are adjacent.

For suppose a, b are nonadjacent. Since at least one of a, b is complete to W_{2}, they have a common neighbour $w_{2} \in W_{2}$. Suppose first that S, T are disjoint and there is no edge between them. Then there is an induced path Q of odd length between a, b of the form

$$
a-S-W_{5}-W_{6}-T-b,
$$

and we can complete it to an odd hole via $b-w_{2}-a$ (note that w_{2} has no neighbours in $S \cup T$ except $a, b)$, a contradiction. Thus $V(S) \cup V(T)$ induces a connected subgraph of G.

Now by 7.2, a is anticomplete to $V(T) \backslash\{b\}$ and hence to $V(T)$, and similarly b is anticomplete to $V(S)$. Let $X=V(S) \cup V(T) \backslash\{a, b\}$. Since $V(S) \cup V(T)$ induces a connected subgraph of G, it
follows that S, T both have positive length and $G \mid X$ is connected. Since X contains no V-vertex, and $N(X)$ has nonempty intersection with $W_{5}, W_{6}, 7.2$ implies that W_{1}, W_{3} have no neighbours in X. Choose $a_{1} \in A_{1}$, and $b_{3} \in B_{3}$. Since w_{2} is adjacent to a_{1}, b_{3}, (S4) implies that a_{1}, b_{3} are adjacent. But there is an induced path Q between a, b with interior in X, and it can be completed to holes via $b-w_{2}-a$ and via $b-b_{3}-a_{1}-a$, and one of these is odd, a contradiction. This proves (1).

Suppose there exists $a_{2} \in W_{2} \backslash B_{2}$, say. Thus b is not complete to W_{2}, and so by 7.4, a is complete to $W_{1} \cup W_{2}$, and in particular $a_{2} \in A_{2}$. Choose $b_{3} \in B_{3}$; then a_{2}, b_{3} are nonadjacent since b is a V-vertex. Choose $w_{4} \in W_{4}$ adjacent to a_{2} and therefore to b_{3}, by (S5). Then $a-b-b_{3}-w_{4}-a_{2}-a$ is a hole of length five, a contradiction. This proves that $B_{2}=W_{2}$, and similarly $A_{2}=W_{2}$, and hence proves 7.5.
7.6 For $1 \leq i \leq 7$, if a is a V-vertex of type i, and a is not complete to $W_{i-3} \cup W_{i+3}$, then there is no V-vertex of type j for $j \in\{i-3, i-1, i+1, i+3\}$.

Proof. We may assume that $i=5$. By 7.5 , there is no V-vertex of type 6 , since a is not complete to W_{2}. Similarly there is none of type 4 . Since no vertex in W_{1} is complete to W_{2}, there is no V-vertex of type 1 , and similarly there is none of type 2 . This proves 7.6.

8 Attachments of the remaining vertices

In this section we complete the proof of 3.1. The main part of this proof is the next result.
8.1 Let U be the set of all vertices in $V(G) \backslash W$ that are not V-vertices. If $U \neq \emptyset$ then G admits a harmonious cutset.

Proof. Suppose that $U \neq \emptyset$, and let $X \subseteq U$ be maximal such that $G \mid X$ is connected. Thus $X \neq \emptyset$, and $N(X) \subseteq V(G) \backslash U$. For $1 \leq i \leq 7$, let $N_{i}=N(X) \cap W_{i}$, let V_{i} be the set of all V-vertices of type i, and let $P_{i}=N(X) \cap V_{i}$. Let $I=\left\{i \in\{1, \ldots, 7\}: N_{i} \neq \emptyset\right\}$ and $J=\left\{i \in\{1, \ldots, 7\}: P_{i} \neq \emptyset\right\}$. By 7.1 there exists t such that $I \subseteq\{t-1, t, t+1\}$ and by 7.2 there exists t such that $J \subseteq\{t, t+1\}$.
(1) If $1 \leq i \leq 7$ and $a, b \in N_{i}$ then there is an induced even path joining a, b with interior in X.

Let Q be an induced path between a, b with interior in X. We will prove that Q is even. Let $a, b \in W_{3}$ say; thus $6,7 \notin I$ and not both $1,5 \in I$. From the symmetry we may assume that $1 \notin I$. If a, b have a common neighbour $w_{1} \in W_{1}$ then the claim holds, since $w_{1}-a-Q-b-w_{1}$ is an even hole, so we assume not; and therefore W_{1} is complete to W_{7}, by 5.3. Choose $a^{\prime}, b^{\prime} \in W_{1}$ adjacent to a, b respectively. Thus a, b^{\prime} are nonadjacent, and a^{\prime}, b are nonadjacent. Choose $w_{7} \in W_{7}$; then $w_{7}-b^{\prime}-b-Q-a-a^{\prime}-w_{7}$ is a hole, and so Q is even. This proves (1).
(2) For $1 \leq i \leq 7, N_{i}$ is complete to N_{i+1}.

For suppose that $i=1$ say, and $n_{1} \in N_{1}$ and $n_{2} \in N_{2}$ are nonadjacent. Let Q be an induced
path between n_{1}, n_{2} with interior in X. By $7.1,4,6 \notin I$, and not both $3,7 \in I$ and we may assume that $3 \notin I$. Choose $w_{3} \in W_{3}$ adjacent to n_{1}; then (S5) implies that n_{2}, w_{3} are adjacent. From the hole $w_{3}-n_{1}-Q-n_{2}-w_{3}$ we deduce that Q is even. But there is a hole of the form

$$
n_{1}-Q-n_{2}-W_{4}-W_{6}-n_{1},
$$

and it is odd, a contradiction. This proves (2).
(3) For $1 \leq i \leq 7$, every two members of P_{i} have the same neighbours in $W_{i-3} \cup W_{i+3}$, and P_{i} is complete to $N_{i-3} \cup N_{i+3}$.

For we may assume that $i=5$, say, and we may assume that $P_{5} \neq \emptyset$. For $j=1,2$ let R_{j} be the set of vertices in W_{j} with a neighbour in $X \cup P_{5}$. We claim first that R_{1} is complete to R_{2}. For suppose that $r_{1} \in R_{1}$ and $r_{2} \in R_{2}$ are nonadjacent, and let Q be a path joining r_{1}, r_{2} with interior in $X \cup P_{5}$. It follows from 7.2 (since $P_{5} \neq \emptyset$) that $X \cup P_{5}$ is anticomplete to W_{4}, W_{6}, and (by 7.1) anticomplete to at least one of W_{3}, W_{7}, say W_{7}. Consequently Q can be completed to a hole via $r_{2}-W_{7}-r_{1}$ and via $r_{2}-W_{4}-W_{6}-r_{1}$, and one of these is odd, a contradiction. This proves that R_{1} is complete to R_{2}. Since each $p_{5} \in P_{5}$ is a V-vertex, and therefore its neighbour set in $W_{1} \cup W_{2}$ is the vertex set of a component of $G \mid\left(W_{1} \cup W_{2}\right)$, it follows that each $p_{5} \in P_{5}$ is complete to $R_{1} \cup R_{2}$. This proves (3).

We wish to prove that G admits a harmonious cutset, and henceforth we assume (for a contradiction) that it does not.
(4) $J \neq \emptyset$.

For suppose that $J=\emptyset$; and we may assume that $I \subseteq\{1,2,3\}$. By (2), N_{1} is complete to N_{2}, and N_{2} to N_{3}, so if $N_{2} \neq \emptyset$ then N_{1} is complete to N_{3} by (S4), and by (1) and 2.3 applied to the cutset $N_{1} \cup N_{2} \cup N_{3}$, we deduce that G admits a harmonious cutset, a contradiction. We may therefore assume that $N_{2}=\emptyset$. Let $n_{1} \in N_{1}$ and $n_{3} \in N_{3}$ be nonadjacent; and let Q be a path between them with interior in X. By 5.3 there is a hole of the form $n_{1}-Q-n_{3}-W_{4}-W_{6}-n_{1}$, so Q is odd. Thus it again follows from (1) and 2.3 that G admits a harmonious cutset, a contradiction. This proves (4).
(5) $I \cap J=\emptyset$.

For suppose that $5 \in I \cap J$ say. By $7.1,1,2 \notin I$. Since $5 \in J, 7.2$ implies that $4,6 \notin I$ and $1,2,3,7 \notin J$. Since $5 \in I, 7.2$ implies that $4,6 \notin J$. Consequently $I \subseteq\{3,5,7\}$ and $J=\{5\}$. By 7.1 not both $3,7 \in I$, so we may assume that $I \subseteq\{3,5\}$. We claim that $P_{5} \cup N_{3} \cup N_{5}$ is a harmonious cutset (where ($P_{5} \cup N_{3}, N_{5}$) is the corresponding colouring). We must check:

- if $a, b \in P_{5} \cup N_{3}$ then there is an induced even path joining them with interior disjoint from $P_{5} \cup N_{3} \cup N_{5}$
- if $a, b \in N_{5}$ then there is an induced even path joining them with interior disjoint from $P_{5} \cup$ $N_{3} \cup N_{5}$
- if $a \in P_{5} \cup N_{3}$ and $b \in N_{5}$ then there is an induced odd path joining them with interior disjoint from $P_{5} \cup N_{3} \cup N_{5}$.

For the first, if $a, b \in N_{3}$ this follows from (1), so we may assume that $a \in P_{5}$. But then a, b have a common neighbour in W_{2} by 7.4 and (3), and so the claim follows since $2 \notin I$. The second follows from (1). For the third, let $a \in P_{5} \cup N_{3}$ and $b \in N_{5}$, and we may assume that a, b are nonadjacent; then there is an induced path of the form $a-W_{1}-W_{6}-b$ satisfying the claim. Consequently, 2.3 implies that G admits a harmonious cutset, a contradiction. This proves (5).

In view of (5), since the same conclusion holds for every choice of X, we may therefore assume that every tail has length zero, and therefore every V-vertex is a Y-vertex.
(6) There exists $t \in\{1, \ldots, 7\}$ such that $I \subseteq\{t-1, t, t+1\}$ and $J \subseteq\{t-3, t+3\}$.

For we may assume that $5 \in J$ say. By (5), $5 \notin I$; and by $7.2,4,6 \notin I$; and not both $3,7 \in I$, say $7 \notin I$. But 7.2 implies that $7,1,2,3 \notin J$, and not both $4,6 \in J$. If $4 \notin J$ then the claim holds with $t=2$, so we may assume that $4 \in J$. By $7.2,3 \notin I$, and now the claim holds with $t=1$. This proves (6).

In view of (6) we henceforth assume that $I \subseteq\{1,2,3\}$ and $J \subseteq\{5,6\}$. We claim that $N(X)$ is a cutset satisfying the hypotheses of 2.3 , with corresponding colouring ($N_{2}, N_{1} \cup P_{6}, N_{3} \cup P_{5}$). Certainly it is a cutset, and the three sets $N_{2}, N_{1} \cup P_{6}, N_{3} \cup P_{5}$ are pairwise complete, by (1), (3) and 7.5 . It suffices therefore (by the symmetry) to show that

- if $a, b \in N_{2}$ then they are joined by an even induced path with interior disjoint from $N(X)$, and
- if $a, b \in N_{1} \cup P_{6}$ then they are joined by an even induced path with interior disjoint from $N(X)$.

The first is proved in (1). For the second, if $a, b \in N_{1}$, then again the claim follows from (1). If $a, b \in P_{6}$, then since they both have neighbours in W_{6} that are complete to W_{5}, there is an induced path between a, b of length two or four with interior in $W_{5} \cup W_{6}$, satisfying the claim. If $a \in N_{1}$ and $b \in P_{6}$, then b has a neighbour $w_{6} \in W_{6}$ that is complete to W_{1}, and so the path $a-w_{6}-b$ satisfies the claim. This completes the proof of the two displayed statements above. Consequently, by 2.3 , we deduce that G admits a harmonious cutset, a contradiction. This proves 8.1.

Finally we can prove our main decomposition theorem.
Proof of 3.1. Let G be a K_{4}-free graph with no odd hole, and with no harmonious cutset, containing an antihole of length seven. By 4.1 we may assume that G is T_{11}-free. Choose a maximal heptagram $W=\left(W_{1}, \ldots, W_{7}\right)$. By 8.1, every vertex of G either belongs to W or is a V-vertex; and, since a tail contains only one V-vertex, it follows that every tail has length zero and so every V-vertex is a Yvertex. For $1 \leq i \leq 7$ let Y_{i} be the set of all Y-vertices of type i. We need to check the ten conditions in the definition of heptagram type. The first is clear; and by 5.3 we may assume that the second and third hold by renumbering W_{1}, \ldots, W_{7}. Conditions 4-7 are clear. For the eighth condition, we see from 7.2 that Y_{i} is anticomplete to Y_{i+2}, Y_{i+3}, and from 7.5 that Y_{i} is complete to Y_{i+1}. The ninth condition follows from 7.4 and 7.6. For the tenth condition, suppose that $y_{i-1} \in Y_{i-1}$, and
$y_{i} \in Y_{i}$, and $y_{i+1} \in Y_{i+1}$. Thus y_{i} is adjacent to y_{i-1}, y_{i+1}, and y_{i-1}, y_{i+1} are nonadjacent. But then there is an odd hole of the form

$$
y_{i}-y_{i+1}-W_{i+1}-W_{i-1}-y_{i-1}-y_{i}
$$

a contradiction. This proves 3.1.

9 A more explicit construction

We hesitate to claim that our current definition of graphs of heptagram type is an "explicit construction"; it is certainly a helpful description, but the way the various hypotheses interact is not transparent. In this section we make it more explicit.

Let us say that G is of the first heptagram type if there exist $t \geq 1$ and a partition of $V(G)$ into ten stable sets

$$
W_{1}, \ldots, W_{7}, Y_{2}, Y_{4}, Y_{7}
$$

where Y_{4}, Y_{7} may be empty but the other sets are nonempty, such that, with index arithmetic modulo seven:

- for $1 \leq i \leq 7, W_{i}$ is complete to W_{i+2} and anticomplete to W_{i+3}
- for $i \in\{3,4,6,7\}, W_{i}$ is complete to W_{i+1}, and for $i=1,2, W_{i}, W_{i+1}$ are linked; and every vertex in W_{2} is complete to one of W_{1}, W_{3}
- for $i=4,7$, every vertex in Y_{i} is complete to $W_{i+3} \cup W_{i-3}$, has a neighbour in W_{i}, and has no neighbour in $W_{i+1}, W_{i+2}, W_{i-1}, W_{i-2}$
- Y_{2}, Y_{4}, Y_{7} are pairwise anticomplete
- there is a nonempty subset $C \subseteq W_{2}$ such that C is complete to $W_{1} \cup W_{3}$, and Y_{2}, C are linked, and Y_{2} is anticomplete to $W_{2} \backslash C$
- there exist partitions M_{0}, \ldots, M_{t} of W_{5} and N_{0}, \ldots, N_{t} of W_{6} where M_{0}, N_{0} may be empty but the other sets are nonempty, such that for $1 \leq i \leq t, M_{i}$ is complete to N_{i}, M_{i} is anticomplete to $W_{6} \backslash N_{i}, W_{5} \backslash M_{i}$ is anticomplete to N_{i}, and M_{0}, N_{0} are linked (and consequently W_{5}, W_{6} are linked)
- there is a partition X_{1}, \ldots, X_{t} of Y_{2} where X_{1}, \ldots, X_{t} are all nonempty, such that for $1 \leq i \leq t$, X_{i} is complete to $M_{i} \cup N_{i}$, and anticomplete to each of

$$
W_{5} \backslash M_{i}, W_{6} \backslash N_{i}, W_{7}, W_{1}, W_{3}, W_{4}
$$

That completes the definition of the first heptagram type. Before we define the second, we need another definition. Let us say a triple $\left(W_{1}, W_{2}, W_{3}\right)$ of disjoint stable subsets of $V(G)$ is a crescent in G if the following hold:

- if $v_{i} \in W_{i}$ for $i=1,2,3$, and v_{2} is adjacent to v_{1}, v_{3}, then v_{1} is adjacent to v_{3}
- if $v_{i} \in W_{i}$ for $i=1,2,3$, and v_{2} is nonadjacent to v_{1}, v_{3}, then v_{1} is nonadjacent to v_{3}.

We say that G is of the second heptagram type if there is a partition of $V(G)$ into fourteen stable subsets $W_{1}, \ldots, W_{7}, Y_{1}, \ldots, Y_{7}$, where W_{1}, \ldots, W_{7} are nonempty but Y_{1}, \ldots, Y_{7} may be empty, such that (with index arithmetic modulo 7)

- for $1 \leq i \leq 7, W_{i}$ is anticomplete to W_{i+3}
- for $2 \leq i \leq 7, W_{i}$ is complete to W_{i+2}, and the sets W_{1}, W_{2}, W_{3} are pairwise linked
- $\left(W_{1}, W_{2}, W_{3}\right)$ is a crescent, and if W_{1} is not complete to W_{3} then $Y_{2}, Y_{5}, Y_{6}=\emptyset$
- for $i \in\{3,4,6,7\}, W_{i}$ is complete to $W_{i+1} ; W_{5}, W_{6}$ are linked
- for $1 \leq i \leq 7$, every vertex in Y_{i} is complete to $W_{i+3} \cup W_{i-3}$, has a neighbour in W_{i}, and has no neighbour in $W_{i+1}, W_{i+2}, W_{i-1}, W_{i-2}$
- for $1 \leq i \leq 7$, every vertex in W_{i} with a neighbour in Y_{i} is complete to $W_{i+1} \cup W_{i-1}$
- for $1 \leq i \leq 7, Y_{i}$ is complete to Y_{i+1} and anticomplete to $Y_{i+2} \cup Y_{i+3}$
- for $1 \leq i \leq 7$, at least one of Y_{i}, Y_{i+1}, Y_{i+2} is empty.

Then we have:
9.1 A graph is of heptagram type if and only if it is of either the first or second heptagram type.

Proof. (A sketch, we leave the details to the reader.) Let G be of heptagram type, with notation as usual. Suppose first that some Y_{i} is not complete to $W_{i-3} \cup W_{i+3}$. Then we may assume that $i=2$; by $7.6 Y_{1}, Y_{3}, Y_{5}, Y_{6}$ are empty; and if C denotes the set of vertices in W_{2} with neighbours in Y_{2}, then C is complete to $W_{1} \cup W_{3}$ and so (S4) implies that W_{1} is complete to W_{3}. By (S5), every vertex in W_{2} is complete to one of W_{1}, W_{3}. By 7.4 and $5.3, W_{j}$ is complete to W_{j+1} for $j=3,7$, and so 5.1 implies that W_{j} is complete to W_{j+2} for all j. Every two vertices in Y_{2} either have the same neighbours in $W_{5} \cup W_{6}$ or disjoint neighbour sets in $W_{5} \cup W_{6}$. It follows that G is of the first heptagram type. On the other hand, if each Y_{i} is complete to $W_{i-3} \cup W_{i+3}$, then G is of the second type.

The two descriptions are more explicit than before, and the first heptagram type description is explicit and satisfactory; but there is still some degree of opacity in the description of the second type, due principally to the use of "crescents". We need to transform the definition of a crescent into something transparent.

Let W_{1}, W_{2}, W_{3} be disjoint sets, and let f be a function from their union to the set of all integers, such that there do not exist $w_{i} \in W_{i}(i=1,2,3)$ with $f\left(w_{1}\right)=f\left(w_{2}\right)=f\left(w_{3}\right)$. We define a graph H_{f} with vertex set $W_{1} \cup W_{2} \cup W_{3}$ as follows. W_{1}, W_{2}, W_{3} are stable in H_{f}. For $1 \leq i<j \leq 3$, and all $u \in W_{i}$ and $v \in W_{j}$, let u, v be adjacent if $f(u)<f(v)$, and nonadjacent if $f(u)>f(v)$; if $f(u)=f(v)$ then the adjacency between u and v is arbitrary. It is easy to check that (W_{1}, W_{2}, W_{3}) is a crescent in H_{f}. We prove in the next section that the converse is also true; if $\left(W_{1}, W_{2}, W_{3}\right)$ is a crescent in G, then there is a function f as above such that $H_{f}=G \mid\left(W_{1} \cup W_{2} \cup W_{3}\right)$. This gives an explicit construction of all crescents, and hence can be used to convert our definition of the second heptagram type to an explicit construction.

10 Constructing a crescent

Let $\left(W_{1}, W_{2}, W_{3}\right)$ be a partition of the vertex set of a graph G. We say the quadruple (G, W_{1}, W_{2}, W_{3}) is a trident if W_{1}, W_{2}, W_{3} are stable, and for all choices of $w_{i} \in W_{i}$ for $1 \leq i \leq 3, w_{1}, w_{2}, w_{3}$ are not all pairwise adjacent and not all pairwise nonadjacent. How do we construct the most general trident? This will answer the crescent problem of the previous section, because if (W_{1}, W_{2}, W_{3}) is a partition of $V(G)$, and H is obtained from G by reversing all adjacencies between W_{1} and W_{3}, then (G, W_{1}, W_{2}, W_{3}) is a trident if and only if $\left(W_{1}, W_{2}, W_{3}\right)$ is a crescent in H.

Let W_{1}, W_{2}, W_{3} be three disjoint sets with union W say, and let f be a function from W to the set of integers, such that there do not exist $w_{i} \in W_{i}(1 \leq i \leq 3)$ satisfying $f\left(w_{1}\right)=f\left(w_{2}\right)=f\left(w_{3}\right)$. Let G be a graph with vertex set W defined as follows. For $1 \leq i \leq 3$, let $j=i+1$ if $i<3$ and $j=1$ if $i=3$; then for all $u \in W_{i}$ and $v \in W_{j}$, let u, v be adjacent if $f(u)<f(v)$, and nonadjacent if $f(u)>f(v)$, and either adjacent or nonadjacent if $f(u)=f(v)$. It is easy to check that $\left(G, W_{1}, W_{2}, W_{3}\right)$ is a trident.

The result of this section is the converse: that every trident arises in this way from some appropriate function f. More precisely, let $\left(G, W_{1}, W_{2}, W_{3}\right)$ be a trident. We say a function f from $V(G)$ to the set of integers is a certificate for this trident if it satisfies the following:

- there do not exist $w_{1} \in W_{1}, w_{2} \in W_{2}$ and $w_{3} \in W_{3}$ such that $f\left(w_{1}\right)=f\left(w_{2}\right)=f\left(w_{3}\right)$, and
- for all $i, j \in\{1,2,3\}$ such that $j-i=1$ modulo 3 , and all $u \in W_{i}$ and $v \in W_{j}$, if $f(u)<f(v)$ then u, v are adjacent, and if $f(u)>f(v)$ then u, v are nonadjacent.

We shall prove:

10.1 Every trident admits a certificate.

Proof. Let $\left(G, W_{1}, W_{2}, W_{3}\right)$ be a trident. We prove by induction on $|V(G)|$ that $\left(G, W_{1}, W_{2}, W_{3}\right)$ admits a certificate. If $V(G)=\emptyset$ then the claim is true, so we may assume that $V(G) \neq \emptyset$. Below, all index arithmetic is modulo three.
(1) There exists $i \in\{1,2,3\}$ and $v \in W_{i}$ such that v is adjacent to every member of W_{i+1}.

For we may assume that $W_{1} \neq \emptyset$. Choose $w_{1} \in W_{1}$ with as many neighbours in W_{2} as possible, and let N_{2} be the set of vertices in W_{2} adjacent to w_{1}. We may assume that some vertex w_{2} is nonadjacent to w_{1}. Similarly we may assume that some vertex $w_{3} \in W_{3}$ is nonadjacent to w_{2}. Since $\left\{w_{1}, w_{2}, w_{3}\right\}$ is not a stable set it follows that w_{1}, w_{3} are adjacent. For $n_{2} \in N_{2}$, since $\left\{w_{1}, n_{2}, w_{3}\right\}$ is not a clique, it follows that n_{2}, w_{3} are nonadjacent, and so w_{3} is anticomplete to N_{2}. We may assume that there exists $w_{1}^{\prime} \in W_{1}$ nonadjacent to w_{3}. For $n_{2} \in N_{2} \cup\left\{w_{2}\right\}$, since $\left\{w_{1}^{\prime}, n_{2}, w_{3}\right\}$ is not a stable set, w_{1}^{\prime} is adjacent to n_{2}, and so w_{1}^{\prime} is complete to $N_{2} \cup\left\{w_{2}\right\}$. But then w_{1}^{\prime} has more neighbours in W_{2} than w_{1}, contrary to the choice of w_{1}. This proves (1).

In view of (1), we may assume that some vertex in W_{1} is complete to W_{2}. Let A_{1} be the set of all vertices in W_{1} that are complete to W_{2}, and let A_{3} be the set of all vertices in W_{3} with a neighbour in A_{1}. For each $a_{3} \in A_{3}$, since a_{3} is adjacent to some $a_{1} \in A_{1}$, and a_{1} is adjacent to each $w_{2} \in W_{2}$, and $\left\{a_{1}, w_{2}, a_{3}\right\}$ is not a clique, it follows that a_{3}, w_{2} are nonadjacent, and so A_{3} is anticomplete to W_{2}. Also, for each $w_{1} \in W_{1} \backslash A_{1}$, since w_{1} has a non-neighbour $w_{2} \in W_{2}$, and each $a_{3} \in A_{3}$ is
nonadjacent to w_{2}, and $\left\{w_{1}, w_{2}, a_{3}\right\}$ is not a stable set, it follows that w_{1}, a_{3} are adjacent, and so A_{3} is complete to $W_{1} \backslash A_{1}$. Let $W^{\prime}=V(G) \backslash\left(A_{1} \cup A_{3}\right)$; then

$$
\left(G \mid W^{\prime}, W_{1} \backslash A_{1}, W_{2}, W_{3} \backslash A_{3}\right)
$$

is a trident, and since $A_{1} \neq \emptyset$, it follows from the inductive hypothesis that there is a certificate, f^{\prime} say, for this trident. Choose an integer n such that $n<f^{\prime}(v)$ for all $v \in W^{\prime}$. Define a map f from W to the set of integers by setting $f(v)=n$ if $v \in A_{1} \cup A_{3}$, and $f(v)=f^{\prime}(v)$ otherwise. Then f is a certificate for (G, W_{1}, W_{2}, W_{3}) as required. This proves 10.1.

References

[1] C. Berge, "Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind", Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114.
[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Math. 164 (2006), 51-229.
[3] G. Ding, private communication.
[4] A. Gyarfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[5] C. T. Hoàng and C. McDiarmid, "On the divisibility of graphs", Discrete Math. 242 (2002), 145-156.
[6] A. Tucker, "Critical perfect graphs and perfect 3-chromatic graphs", J. Combinatorial Theory Ser. B 23 (1977), 143-149.

[^0]: ${ }^{1}$ This research was conducted while the author served as a Clay Mathematics Institute Research Fellow.
 ${ }^{2}$ Supported by NSF grant DMS-0071096.
 ${ }^{3}$ Supported by ONR grants N00014-97-1-0512 and N00014-01-1-0608, and NSF grant DMS-0070912.
 ${ }^{4}$ Supported by NSF grant DMS-9623031 and NSA grant MDA904-98-1-0517.

