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Abstract

A well-known conjecture of Lovász and Plummer from the mid-1970’s, still open, asserts that for
every cubic graph G with no cutedge, the number of perfect matchings in G is exponential in |V (G)|.
In this paper we prove the conjecture for planar graphs; we prove that if G is a planar cubic graph
with no cutedge, then G has at least

2|V (G)|/655978752

perfect matchings.



1 Introduction

In 1998, Schrijver [4] proved the “Schrijver-Valiant conjecture”, a lower bound on the number of
perfect matchings in a k-regular bipartite graph. A consequence of this is that every cubic bipartite
graph has exponentially many perfect matchings.

But what about non-bipartite cubic graphs? They need not have any perfect matchings at all,
so let us confine ourselves to cubic graphs without cutedges. In that case, Lovász and Plummer [3]
conjectured in the mid-1970’s that again such a graph G must have exponentially many perfect
matchings. This has proved to be a challenging question, and is still open; and the best lower bound
currently known is |V (G)|/2 + 1 (except for one graph with twelve vertices and only six perfect
matchings), proved recently by Kral, Sereni and Stiebitz [2]. In this paper we prove the conjecture
for planar cubic graphs, the following:

1.1 Let G be a planar cubic graph with no cutedge. Then G has at least

2|V (G)|/655978752

perfect matchings.

Planarity provides two advantages. First, we have the four-colour theorem, which tells us that
planar cubic graphs without cutedges are 3-edge-colourable, and thus provides us with a way to
produce triples of perfect matchings that cover all the edges. (However, it is not true that these graphs
necessarily have exponentially many 3-edge-colourings — unlike bipartite cubic graphs, which do —
so we need to use the four-colour theorem in an indirect way.) The second advantage of planarity
is that we have regions, a source of cycles of bounded length whose deletion does not reduce the
connectivity of the graph very much; and these will be key to the proof.

The proof breaks into two parts; first we prove the statement for cyclically 4-edge–connected
planar cubic graphs, and then we deduce it for general (planar) cubic graphs.

The idea in the cyclically 4-edge-connected case is, we first find linearly many even length cycles,
disjoint and carefully chosen (ideally we would like them far apart, and each bounding either one
region or the union of two regions). This set of cycles has exponentially many subsets; let X be one
of its subsets. For each cycle in X, delete its even edges and replace its odd edges by pairs of parallel
edges. (Let us call this “flipping” the cycle.) We arrange that for each X the graph we produce will
be a planar cubic graph with no cutedges, and will therefore be 3-edge-colourable, because of the
four-colour theorem. Consequently there will be a triple of perfect matchings of the original graph,
such that we can reconstruct X from this triple. This shows that the original graph had exponentially
many triples of perfect matchings, and therefore exponentially many perfect matchings. The problem
here is that we cannot necessarily find such a large set of even cycles sufficiently far apart for them all
to be flippable independently without producing cutedges, and we sometimes have to make do with
something a little less (we make use of the fact that there are two ways to flip a cycle, depending on
which we designate as its “even” edges, and we only need one of the two ways to work).

The second half of the proof, when the graph is not cyclically 4-edge-connected, is quite non-
trivial, rather surprisingly so, and it is the proof for this case that makes the constant in our main
result so large. We find it necessary to retain the stronger statement proved in the cyclically 4-edge-
connected case, that we have linearly many disjoint cycles that can all be independently “flipped”,
rather than just that there are exponentially many perfect matchings.
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2 Good looks, bracelets, and perfect matchings

Let us be more precise. Graphs in this paper are all finite and loopless, but not necessarily simple
(they may have parallel edges). For a graph G, if X ⊆ V (G) we define δG(X) = δ(X) to be
the set of edges of G with one end in X and one end in V (G) \ X; and if v ∈ V (G) we write
δ(v) for δ({v}). A cut in G is a set of edges D such that D = δ(X) for some X ⊆ V (G). If
w : E(G) → {−1, 0, 1} and Y ⊆ E(G), we define w(Y ) to be the sum of w(e) for all e ∈ Y . If G is
cubic and w : E(G) → {−1, 0, 1} satisfies w(δ(v)) = 0 for each v ∈ V (G), we call w a look of G. A
look w is said to be good if for every cut D, w(D) 6= 1 − |D|. (In other words, if we delete from G
all the edges e with w(e) = −1, and f is a cutedge of the graph we produce, then w(f) = 1.)

We observe first that:

2.1 Let G be a planar cubic graph with k good looks. Then G has at least k
1

3 perfect matchings.

Proof. Let w be a good look of G. Let H be obtained from G by deleting all edges e with w(e) = −1,
and adding an edge parallel to every edge e with w(e) = 1. Then H is also planar and cubic, and
since w is a good look of G it follows that H has no cutedge. By the four-colour theorem, there are
three perfect matchings in H such that every edge of H is in exactly one of them. Consequently
there are three perfect matchings in G, say F1, F2, F3, such that every edge e is in 1 +w(e) of them.
In particular, w can be reconstructed from a knowledge of F1, F2, F3; and so no two different good
looks produce the same triple (F1, F2, F3). We deduce that there are at least k distinct triples of
perfect matchings, and the theorem follows. This proves 2.1.

Let C be a cycle of G with even length, and let w0 : E(C) → {1,−1}, such that the edges of
C are mapped alternately to 1 and to −1. We call w0 a bracelet on C. Any such map w0 that
arises in this way from some cycle C is called a bracelet of G, and C is its supporting cycle. Define
w : E(G) → {−1, 0, 1} by w(e) = w0(e) if e ∈ E(C), and w(e) = 0 otherwise. Then w is a look, and
we call w the look of the bracelet w0. Any function w : E(G) → {−1, 0, 1} that arises in this way
from some bracelet w0 we call a bracelet look of G. (It is convenient for us to distinguish between
a bracelet and its look, especially when we come to the later parts of the proof, because sometimes
the same bracelet will occur in several different graphs.)

Again, let G be cubic. A jewel-box for G is a set B of bracelets of G, satisfying:

• every two members of B have disjoint supporting cycles

• for every subset W ⊆ B, the sum of the looks of the members of W is a good look.

We define β(G) to be the cardinality of the largest jewel-box in G. Our main result is:

2.2 For every planar cubic graph G with no cutedge, β(G) ≥ |V (G)|/218659584.

This implies that G has at least 2|V (G)|/218659584 good looks, and hence at least 2|V (G)|/655978752

perfect matchings, by 2.1; so 1.1 follows from 2.2.

3 The cyclically 4-edge-connected case

Let us say a cubic graph G is cyclically 4-edge-connected or C4C if it is 3-connected (and hence is
simple and has at least four vertices) and for every set X ⊆ V (G) with |X|, |V (G) \X| > 1 there are
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at least four edges between X and V (G) \X. Our goal in this section is to prove 2.2 (with a better
constant) for C4C planar cubic graphs. We shall show the following:

3.1 For every C4C planar cubic graph G, β(G) ≥ |V (G)|/30976.

We first need a lemma. (To clarify – the degree of a vertex is the number of edges incident with
it; a cycle has no repeated vertices; and the length of a path or cycle is the number of edges in it.)

3.2 Let G be a simple planar graph, let A ⊆ V (G) be stable, let d > 0 be an integer, and let each
member of A have degree at most d in G. Then there exist X ⊆ A and Y ⊆ V (G) \ A, such that

• |X| ≥ |A|/(64d + 8)

• each member of X is adjacent to at most two members of Y

• every path in G of length at most three between two members of X has a vertex in Y .

Proof. Let Y be the set of vertices in V (G) \ A with at least ten neighbours in A. Let A1 be the
set of vertices in A with at most two neighbours in Y , and let A2 = A \ A1.

(1) |A1| ≥
1
2 |A|.

For we may assume that A2 6= ∅, and therefore Y 6= ∅. Consequently |A ∪ Y | ≥ 11 ≥ 3. Let
H1 be the bipartite subgraph of G with V (H1) = A ∪ Y and edge set all edges of G between A and
Y . Since H1 is planar, simple, and bipartite, and has at least three vertices, it follows (from Euler’s
formula; this is elementary and well known) that |E(H1)| ≤ 2|V (H1)| − 4. But |E(H1)| ≥ 10|Y |,
since every vertex in Y has at least 10 neighbours in A, and so 10|Y | ≤ 2(|A|+ |Y |)−4. Consequently
|Y | ≤ 1

4 |A|. Now let H2 be the subgraph of H1 induced on A2∪Y . Then |V (H2)| ≥ 4 (since A2 6= ∅),
and therefore |E(H2)| ≤ 2(|A2| + |Y |) − 4 as before; but |E(H2)| ≥ 3|A2| since every member of A2

has at least three neighbours in Y , and so 3|A2| ≤ 2(|A2| + |Y |) − 4, and in particular, |A2| ≤ 2|Y |.
Since |Y | ≤ 1

4 |A| as we already saw, it follows that |A2| ≤
1
2 |A|, and therefore |A1| ≥

1
2 |A|. This

proves (1).

Let H3 be the graph with vertex set A1, in which distinct u, v are adjacent if there is a path
in G \ Y between u, v of length two. (Since A is stable, it follows that no internal vertex of such a
path is in A.) Since each vertex of A has degree at most d in G, and each vertex of V (G) \ (A ∪ Y )
has at most nine neighbours in A, it follows that for each v ∈ A there are at most 8d paths in
G \ Y of length two with one end v, and hence v has degree at most 8d in H3. Consequently H3 is
colourable with 8d+ 1 colours; and therefore there is a subset A3 of A1 such that A3 is stable in H3

and |A3| ≥ |A1|/(8d+ 1). But by (1), |A1| ≥
1
2 |A|, and so |A3| ≥ |A|/(16d+ 2). Let H4 be the graph

with vertex set A3, in which distinct u, v ∈ A3 are adjacent if there is a path in G between u, v of
length 3 with no vertex in Y . Since no two members of A3 have a common neighbour in G \ Y , this
graph is a subgraph of the graph obtained from G \ Y by contracting every edge with an end in A3.
In particular, H4 is planar, and since it is simple, it is 4-colourable, and so there is a subset A4 ⊆ A3

with |A4| ≥ |A3|/4 that is stable in H4. Consequently, in G every path between two members of A4

has a vertex in Y . But

|A4| ≥
1

4
|A3| ≥ |A|/(64d + 8),

and so setting X = A4 satisfies the theorem. This proves 3.2.
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Now we prove the main result of this section.

Proof of 3.1. Let G be a C4C planar cubic graph with n vertices. Take a drawing of G in a 2-sphere
Σ. Let us say a domino of G is a closed disc ∆ ⊆ Σ with boundary a cycle of G of even length,
such that ∆ includes at most two regions of G, either exactly one region of G of even length, or two
regions of odd length.

(1) There exist at least n/32 dominos of G, pairwise disjoint, and each with boundary of length
at most 15.

For let G have R regions; thus by Euler’s formula, R = n/2 + 2. Since the dual graph G∗ of G
is a 4-connected planar triangulation, Whitney’s theorem [5] implies that the dual graph is Hamilto-
nian, and therefore we can number the regions of G as r1, . . . , rR, where for 1 ≤ i ≤ R, the boundaries
of ri, ri+1 share an edge (reading subscripts modulo R). We choose the numbering of the regions
such that rR is the region of greatest length (the “length” of a region is the number of edges incident
with it). Let k = ⌊1

2R⌋. Then the average length of r1, . . . , r2k is at most that of r1, . . . , rR, and
consequently less than six. Now for 1 ≤ i ≤ k, the closure of one of r2i−1, r2i, r2i−1 ∪ r2i is a domino
∆i say, and its length is at most the sum of the lengths of r2i−1 and r2i minus two. Thus the average
length of ∆1, . . . ,∆k is less than 10. We claim that at least half of them have length at most 15.
For let a of them have length at most 15, and b length at least 16, and let L be the sum of all their
lengths. Then 10(a+b) > L; but since they all have length at least four, L ≥ 4a+16b. Consequently,
10(a + b) > 4a + 16b, and so a > b. Thus at least half of ∆1, . . . ,∆k have length at most 15. If
we say that two of these dominos are adjacent when their boundaries share an edge, this defines a
loopless planar graph, which is therefore 4-colourable; and consequently we can choose a quarter of
our 1

2k dominos pairwise disjoint. Since k ≥ 1
2(R− 1) ≥ 1

4n, this proves (1).

Let A be a set of disjoint dominos as in (1), with |A| ≥ n/32. Let R be the set of all regions of
G not included in any member of A. Let H be the graph with V (H) = A ∪R, in which ∆ ∈ A and
r ∈ R are adjacent if the boundaries of ∆ and r share an edge, and distinct r1, r2 ∈ R are adjacent
if their boundaries share an edge. Thus H is simple, and planar. By 3.2 with d = 15, there exist
X ⊆ A and Y ⊆ R, such that

• |X| ≥ |A|/968 ≥ n/30976

• each member of X is adjacent to at most two members of Y

• every path in H of length at most three between two members of X has a vertex in Y .

Let X = {∆1, . . . ,∆k} say, where k ≥ n/30976. For 1 ≤ i ≤ k, let Ci be the cycle that forms
the boundary of ∆i. There are two bracelets on Ci, and we choose one, wi say, as follows. There
are at most two members of Y adjacent to ∆i in H. If there is at most one, let wi be an arbitrary
bracelet on Ci. Suppose there are exactly two, say r1, r2. Thus the boundaries of r1, r2 both share
at least one edge with the boundary of ∆i. If possible, choose a bracelet wi on Ci such that for some
edge e of G, and for some j ∈ {1, 2}, wi(e) = 1, and e is the unique edge in common between the
boundaries of ∆i and rj . If this is not possible, and so both r1, r2 are incident with two edges that
belong to the boundary of ∆i, let wi be an arbitrary bracelet on Ci.
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We claim that the set {w1, . . . , wk} is a jewel-box. Let W ⊆ {1, . . . , k}, and let w be the sum
of the looks of all wi (i ∈ W ); we need to show that w is a good look. It is certainly a look; let
us check that it is good, that is, w(D) 6= 1 − |D| for every cut D of G. Suppose not; and choose
a cut D of G with |D| minimal such that w(D) = 1 − |D|. Consequently w(f) = 0 for some edge
f ∈ D, and w(e) = −1 for all other edges of D. If some proper subset D1 of D is also a cut, then
so is D \ D1, and so we may assume that f ∈ D1; but then w(D1) = 1 − |D1| contrary to the
minimality of D. Thus no proper subset of D is a cut, and so D is a bond of G (that is, a minimal
nonempty cut) and in particular, there is a cycle C of the dual graph G∗ of G with E(C) = D
(we identify E(G∗) with E(G) in the natural way). We recall that R is the set of regions of G not
included in any member of A. Let S be the set of all other regions of G; thus, R,S form a partition
of V (G∗). For i = −1, 0, 1, let Fi be the set of edges e of G with w(e) = i; thus F−1, F0, F1 form
a partition of E(G) = E(G∗). We have seen that every edge of C belongs to F−1 except for one in F0.

(2) If s ∈ V (C) ∩ S, and r1, r2 are its neighbours in C, then not both r1, r2 ∈ Y .

For let ei be the edge ris of G∗. Suppose that r1, r2 ∈ Y and hence r1, r2 ∈ R. Since s ∈ S,
there is a unique ∆ ∈ A such that s is included in ∆. Since e1, e2 ∈ E(C), at least one of them
belongs to F−1; and so ∆ ∈ X, say ∆ = ∆j where 1 ≤ j ≤ k, and j ∈ W . Consequently e1, e2 both
belong to the supporting cycle of wj , and so wj(e1) = wj(e2) = −1. From the choice of wj it follows
that r1, r2 are both incident with two edges of the boundary of ∆j in G; and since G is 3-connected,
it follows that ∆j is not the closure of a region of G, and so ∆j is the closure of the union of s and
some other region s′ of G, and their boundaries share an edge v1v2 of G that is drawn in the interior
of ∆j in the drawing of G. In particular, s has odd length. Moreover, for i = 1, 2, the boundary
of ri meets that of s and that of s′; and since G is C4C it follows that ri is incident with exactly
one of v1, v2 in the drawing of G. Thus we may assume that r1 is incident with v1 and r2 with v2.
Consequently for i = 1, 2, ei is incident with vi in G; and yet wj(e1) = wj(e2) = −1, contradicting
that s has odd length. This proves (2).

(3) Let e be the unique edge of C in F0. Then in G∗, either both ends of e are in R or both
are in S.

For suppose that e = rs in G∗, where r ∈ R and s ∈ S. Let r′ be the second neighbour of
s in C. Since r′s ∈ F−1, it follows that r′ ∈ R, and s is included in some ∆i where i ∈ W . But
then every edge of the boundary of ∆i belongs to F1∪F−1, contradicting that e ∈ F0. This proves (3).

(4) Let s, s′ ∈ S both be incident with some edge e of G, so e = ss′ in G∗. If both s, s′ ∈ V (C)
then they are adjacent in C.

Let P1, P2 be the two paths of C between s, s′. In one of them, say P1, every edge belongs to
F−1. Since in the drawing of G, the edge e is drawn in the interior of a member of A, it follows that
e ∈ F0; and so the cycle C1 of G∗ made by adding e to P1 satisfies w(E(C1)) = 1 − |E(C1)|. By the
minimality of |D|, it follows that the length of C1 is at least that of C, and so P2 has only one edge,
and hence s, s′ are adjacent in C. This proves (4).
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Now every edge of F−1 has (in G∗) an end in R and an end in S, and consequently every edge of
C except one is between R and S. Since G is 3-connected, it follows that G∗ is simple, and so C has
length at least three. By (3), C has odd length, say 2t+ 1. Suppose that two consecutive vertices of
C belong to S; then we can number the vertices of C in order as

s0-r1-s1-r2-s2- · · · -rt-st-s0,

where r1, . . . , rt ∈ R and s0, s1, . . . , st ∈ S. For 1 ≤ i ≤ t there exists ∆ ∈ A with si ⊆ ∆, and since
the edge risi of G∗ belongs to F−1, it follows that ∆ = ∆j for some j ∈ W . Moreover, by (4) all
these dominos are distinct, and so we may assume that si ⊆ ∆i and i ∈ W for 1 ≤ i ≤ t. Suppose
that t ≥ 2. Then for i = 1, 2, the vertex ri of H is adjacent in H to the vertices ∆i,∆i+1 of H,
and so ri ∈ Y from the choice of X,Y ; but this contradicts (2). It follows that t = 1, and so r1 is
incident with an edge of the boundary of s0, and an edge of the boundary of s1. Since G is C4C, it
follows that these two edges have a common end in G, and therefore do not both belong to F−1, a
contradiction. This proves that no two consecutive vertices of C belong to S.

Consequently there are two consecutive vertices of C that belong to R, and we can number the
vertices of C in order as

r0-s1-r1-s2- · · · -st-rt-r0,

where r0, r1, . . . , rt ∈ R and s1, . . . , st ∈ S. As before we may assume that si ⊆ ∆i and i ∈ W for
1 ≤ i ≤ t. Suppose that t ≥ 3; then for i = 1, 2, the vertex ri of H is adjacent in H to the vertices
∆i,∆i+1 of H, and so ri ∈ Y from the choice of X,Y ; but this contradicts (2). So t ≤ 2. Suppose
that t = 2; then since there is a path of H with vertices ∆1, r2,∆2, it follows that r2 ∈ Y from the
choice of X,Y ; and since also there is a path of H with vertices ∆2, r0, r1,∆1 in order, it follows from
the choice of X,Y that at least one of r0, r1 ∈ Y , contrary to (2). Thus t = 1. But then r0, r1, s1
are regions that pairwise are incident with a common edge, and since G is C4C, it follows that for
some vertex v of G, these three edges are all incident with v, and yet two of the edges belong to F−1,
a contradiction. This proves that {w1, . . . , wk} is a jewel-box, and therefore completes the proof of
3.1.

4 The 3-connected case.

In this section we extend 3.1 (changing the constant 30976 to something larger) to planar cubic graphs
that are 3-connected but not necessarily C4C. It would seem natural to do this by induction on the
size of the graph, but we were not able to do so. Instead, we need to work with a set of three-edge
cuts that decompose the graph into C4C pieces, and we begin by describing this decomposition.

Let G be a graph. A cut-decomposition of G is a pair (T, φ) such that:

• T is a tree with E(T ) 6= ∅,

• φ : V (G) → V (T ) is a map, and

• for each t ∈ V (T ) with degree one or two in T , there exists v ∈ V (G) with φ(v) = t.

If t ∈ V (T ), φ−1(t) denotes the set of v ∈ V (G) with φ(v) = t. Similarly, if Y ⊆ V (T ), we denote
{v ∈ V (G) : φ(v) ∈ Y } by φ−1(Y ); and if S is a subgraph of T we write φ−1(S) for φ−1(V (S)). For
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each edge e of T , let T1, T2 be the two components of T \ e, and for i = 1, 2 let Xi = φ−1(Ti). Thus
X1,X2 is a partition of V (G), and therefore δ(X1) = δ(X2) is a cut; we denote this cut by φ−1(e). If
|φ−1(e)| = k for each e ∈ E(T ) we call (T, φ) a k-cut-decomposition of G. We will only be concerned
with 2- and 3-cut-decompositions of cubic graphs.

Let (T, φ) be a 3-cut-decomposition of G, and let T0 be a subtree of T . Let T1, . . . , Ts be the
components of T \ V (T0), and for 1 ≤ i ≤ s let ei be the unique edge of T with an end in V (T0) and
an end in V (Ti). For 0 ≤ i ≤ s, let Xi = φ−1(Ti). Thus X0,X1, . . . ,Xs are pairwise disjoint subsets
of V (G) with union V (G). Let G′ be the graph obtained from G by, for 1 ≤ i ≤ s, deleting all edges
of G|Xi and identifying all the vertices in Xi. (If G|Xi is connected, this is the same as contracting
all edges of G|Xi.) Thus the graph G′ has |X0|+ s vertices, and all the vertices of G′ not in X0 have
degree 3. We call G′ the 3-hub of G at T0 (with respect to (T, φ)). If t0 ∈ V (T ), by the “3-hub of
G at t0” we mean the 3-hub of G at T0, where T0 is the subtree of T with vertex set {t0}. If C is a
class of graphs and (T, φ) is a 3-cut-decomposition of G, and for each t ∈ V (T ) the 3-hub of G at t
belongs to C, we say that (T, φ) is a 3-cut-decomposition of G over C.

Let C4 be the class of C4C planar cubic graphs. We begin with:

4.1 Every 3-connected planar cubic graph G that is not C4C admits a 3-cut-decomposition over C4.

Proof. We proceed by induction on |V (G)|. Since G is not C4C, there is a partition X1,X2 of
V (G) such that |δ(X1)| = 3 and |X1|, |X2| > 1. Since G is 3-connected, it follows that G|X1, G|X2

are connected. Let G1 be obtained from G by contracting the edges of G|X2, and let x1 be the
vertex of G1 formed by identifying the vertices of X2. Define G2, x2 similarly. Then G1, G2 are
3-connected, planar, cubic, and have fewer vertices than G. For i = 1, 2, if Gi is C4C let Ti be a
tree with one vertex ti and define φi(v) = ti for each v ∈ V (Gi); if Gi is not C4C, let (Ti, φi) be a
3-cut-decomposition of Gi over C4 (this exists from the inductive hypothesis), and let ti = φi(xi).
Note that for i = 1, 2, if ti has degree zero in Ti, then |φ−1

i (ti)| ≥ 4 since φ−1
i (ti) = V (Gi) and Gi

is 3-connected; while if ti has degree one in Ti then |φ−1
i (ti)| ≥ 3 since the 3-hub of Gi at ti with

respect to (Ti, φi) is C4C. Thus in either case |φ−1
i (ti)| ≥ 3. Let T be the tree obtained from the

disjoint union of T1 and T2 by making t1, t2 adjacent; and for v ∈ V (G), define φ(v) = φi(v) where
v ∈ Xi. Consequently, for i = 1, 2, if ti has degree at most two in T then |φ−1(ti)| ≥ 2. It is easy to
check that (T, φ) is a 3-cut-decomposition of G over C4. This proves 4.1.

4.2 Let (T, φ) be a 3-cut-decomposition of a 3-connected cubic graph G, let T1, . . . , Tk be pairwise
vertex-disjoint subtrees of T , and for 1 ≤ i ≤ k let Hi be the 3-hub of G at Ti. For 1 ≤ i ≤ k let Bi

be a set of bracelets of G, such that

• Bi is a jewel-box of Hi, and

• if C is the supporting cycle of a member of Bi, then V (C) ⊆ φ−1(Ti).

Then B1 ∪ · · · ∪ Bk is a jewel-box in G.

Proof. Let w,w′ ∈ B1∪· · ·∪Bk be distinct, on cycles C,C ′ ofG respectively. We must show that C,C ′

are vertex-disjoint. Choose i, j ∈ {1, . . . , k} such that w ∈ Bi and w′ ∈ Bj. Thus V (C) ⊆ φ−1(Ti)
and V (C ′) ⊆ φ−1(Tj). If i 6= j then Ti, Tj are disjoint and therefore C,C ′ are disjoint; while if i = j
then w,w′ both belong to the same jewel-box in Hi, and therefore have disjoint supporting cycles.
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Second, let W ⊆ B1 ∪ · · · ∪ Bk, and let w be the sum of the looks of all members of W ; and for
i = −1, 0, 1 let Fi be the set of edges e of G such that w(e) = i. We must show that w is a good look.
Suppose not; then there is a cut D of G and an edge f ∈ D such that f ∈ F0 and D \ {f} ⊆ F−1.
Choose such a cut D with |D| minimum. Then as in the proof of 3.1, D is a bond of G, that is,
D = δ(X) for some X ⊆ V (G) with G|X,G|(V (G) \X) both connected.

(1) Let e ∈ E(T ), let S1, S2 be the two components of T \ e, and for i = 1, 2 let Yi = φ−1(V (Si)).
Then one of X ∩ Y1,X ∩ Y2, Y1 \X,Y2 \X is empty.

Suppose all four of these sets are nonempty. Since δ(Y1) ⊆ F0, and δ(X) \ {f} ⊆ F−1, it follows that
δ(Y1) ∩ δ(X) ⊆ {f}. There are two cases depending whether f ∈ δ(Y1) or not. Suppose first that
f /∈ δ(Y1). Then δ(Y1) ∩ δ(X) = ∅, and from the symmetry between Y1 and Y2 we may assume that
both ends of f belong to Y2. Since G|X is connected and X ∩ Y1,X ∩ Y2 are both nonempty, some
edge of δ(Y1) has both ends in X, and similarly some edge of δ(Y1) has both in V (G) \ X. Since
|δ(Y1)| = 3 and every edge of δ(Y1) either has both ends in X or both in V (G) \X, we may assume
(replacing X by its complement if necessary) that exactly one edge f ′ of δ(Y1) has both ends in X.
But then f ′ ∈ F0, and f ′ belongs to the cut δ(X ∩ Y1), and every other edge of this cut belongs to
δ(X) and therefore to F−1. From the minimality of |D|, it follows that |δ(X ∩ Y1)| ≥ |δ(X)|, and so
there is at most one edge of G between X ∩Y2 and Y2 \X. But then |δ(X ∩Y2)| ≤ 2, a contradiction
since G is 3-connected.

This proves that f ∈ δ(Y1). From the symmetry between Y1, Y2 we may assume that f is between
X ∩ Y2 and Y1 \X. Since G|X is connected, there is at least one edge between X ∩ Y1 and X ∩ Y2.
Suppose that there is only one. Since G is 3-connected, there are at least two edges between X ∩ Y1

and Y1 \X, and an edge between X ∩ Y2 and Y2 \X; and so δ(X ∩ Y1) contradicts the minimality of
|D|. Thus there are at least two edges between X ∩ Y1 and X ∩ Y2. Since |δ(Y1)| = 3, there are no
edges between Y1 \X and Y2 \X, contradicting that G|(V (G) \X) is connected. This proves (1).

Since G is 3-connected and therefore |D| ≥ 3, we may choose e ∈ D with e 6= f . Thus φ(e) = −1,
and so e is an edge of one of C1, . . . , Ck, say C1. Let Y0 = φ−1(T1). Let e = xy; then since V (C1) ⊆ Y0

it follows that x, y ∈ Y0, and since e ∈ δ(X), we deduce that X ∩ Y0, Y0 \ X are both nonempty.
Let S1, . . . , Ss be the components of T \ V (T1), and for 1 ≤ i ≤ s let ei be the unique edge of T
with an end in V (T1) and an end in V (Si). For 1 ≤ i ≤ s, let Yi = φ−1(Si). Thus Y0, Y1, . . . , Ys are
pairwise disjoint subsets of V (G) with union V (G). The 3-hub H1 of G at T1 is therefore obtained
by contracting all edges of G|Yi for 1 ≤ i ≤ s. Since D is not a cut of H1 (because B1 is a jewel-box
of H1) it follows that for some i ∈ {1, . . . , s}, both X ∩ Yi, Yi \ X are nonempty. But since both
Y0 ∩X, Y0 \X are nonempty, this contradicts (1) applied to the edge ei. This proves 4.2.

Here is a convenient lemma:

4.3 Let G be a cubic graph, and let F1, F2, F3 be pairwise disjoint perfect matchings of G. Let
C1, . . . , Ck be the cycles of G with edge-set included in F1 ∪ F2, and for 1 ≤ i ≤ k let wi be the
bracelet on Ci such that wi(e) = −1 if e ∈ F1 ∩ E(Ci) and wi(e) = 1 if e ∈ F2 ∩ E(Ci). Then
{w1, . . . , wk} is a jewel-box in G, and so β(G) ≥ k. Moreover, if e ∈ E(G), then β(G) > 0, and
there is a bracelet w such that e is not in the supporting cycle of w and {w} is a jewel-box.

Proof. We must show that for every subset X ⊆ F1 ∪ F2 that is a union of edge-sets of cycles, if
we delete from G every edge in F1 ∩X, and add a new edge parallel to every edge in F2 ∩X, then
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the graph G′ that we construct has no cutedge. But F2, F3 are disjoint perfect matchings of G′, and
the remaining edges of G′ form a third, and so G′ is 3-edge-colourable and therefore has no cutedge.
Consequently {w1, . . . , wk} is a jewel-box, and so β(G) ≥ k. For the final claim, let e ∈ E(G); from
the symmetry between F1, F2, F3 we may assume that e ∈ F3, and since F1, F2 6= ∅ there is a cycle
within F1 ∪ F2, so the final claim follows from the first. This proves 4.3.

A 3-edge-colouring of G is a map κ : E(G) → {1, 2, 3} such that κ(e) 6= κ(f) for every two distinct
edges e, f ∈ E(G) with a common end; and two 3-edge-colourings κ, κ′ are equivalent if there is a
permutation π of {1, 2, 3} such that κ′(e) = π(κ(e)) for each e ∈ E(G). If κ is a 3-edge-colouring of
G and X ⊆ E(G), we denote the restriction of κ to X by κ|X; and if i ∈ {1, 2, 3}, we denote the set
of e ∈ E(G) with κ(e) = i by κ−1(i). A cubic graph G is uniquely 3-edge-colourable (U3C) if there is
a unique set {F1, F2, F3} of perfect matchings of G with union E(G); that is, if it is 3-edge-colourable
and all its 3-edge-colourings are equivalent.

Finding a 3-edge-colouring of a cubic graph G equipped with a 3-cut-decomposition is just a
matter of finding a 3-edge-colouring of the 3-hub of G at each vertex of the tree. In particular, if
(T, φ) is a 3-cut-decomposition of a cubic graph G, and H is the 3-hub of G at some t ∈ V (T ),
and κ is a 3-edge-colouring of G, then κ|E(H) is a 3-edge-colouring of H; while if G admits a
3-edge-colouring, then every 3-edge-colouring of H can be extended to a 3-edge-colouring of G.

If (T, φ) is a 3-cut-decomposition of a cubic graph G with |V (T )| ≥ 3, and e = t1t2 is an edge of
T , let T ′ be the tree obtained from T by contracting e (forming a vertex t′ say), and for v ∈ V (G),
define φ′(v) = φ(v) if φ(v) 6= t1, t2, and φ′(v) = t′ if φ(v) = t1 or t2. Then (T ′, φ′) is also a 3-cut-
decomposition of G, and we say it is obtained from (T, φ) by contracting e. Note that if the 3-hub
of G at one of t1, t2 (with respect to (T, φ)) is not U3C, then the 3-hub of G at t′ (with respect to
(T ′, φ′)) is not U3C, since if the second 3-hub is 3-edge-colourable then every 3-edge-colouring of the
first 3-hub extends to a 3-edge-colouring of the second.

4.4 Let (T, φ) be a 3-cut-decomposition of a 3-connected 3-edge-colourable cubic graph G. Then
there are at most 6β(G) vertices t ∈ V (T ) such that the 3-hub of G at t is not U3C.

Proof. Let there be n1 vertices t ∈ V (T ) such that the 3-hub of G at t is not U3C; we need to show
that n1 ≤ 6β(G). Since β(G) ≥ 1 by 4.3, we may assume that n1 ≥ 7. By contracting edges of T
appropriately, we may therefore assume that for every vertex t ∈ V (T ), the 3-hub of G at t is not
U3C. Consequently we may choose 3-edge-colourings κ, κ′ of G, such that for each t ∈ V (T ) with
3-hub H say, κ|E(H) and κ′|E(H) are not equivalent. By permuting the elements of {1, 2, 3} in one
of κ, κ′, we may assume that κ|φ−1(e) = κ′|φ−1(e) for at least one-sixth of all edges e ∈ E(T ). By
contracting all other edges of T , we obtain a 3-cut-decomposition (S,ψ) of G, such that

• |E(S)| ≥ (n1 − 1)/6,

• for each t ∈ V (S) with 3-hub H say, κ|E(H) 6= κ′|E(H),

• κ|ψ−1(e) = κ′|ψ−1(e) for all e ∈ E(S).

Let V (S) = {s1, . . . , sm} say, where m ≥ (n1 − 1)/6 + 1, and for 1 ≤ i ≤ m let Hi be the 3-hub of
G at si with respect to (S,ψ). Fix i with 1 ≤ i ≤ m. For j = 1, 2, 3, let Fj be the set of edges e of
Hi with κ(e) = j, and let F ′

j be the set of edges e of H with κ′(e) = j. Since κ|E(Hi) 6= κ′|E(Hi),
there exists j ∈ {1, 2, 3} such that Fj 6= F ′

j . Choose a cycle Ci with E(Ci) ⊆ (Fj \ F
′
j) ∪ (F ′

j \ Fj),
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and let wi be some bracelet on Ci. Note that ψ(v) = si for every v ∈ V (Ci), since every edge of C
belongs to just one of Fj , F

′
j , and yet κ|ψ−1(e) = κ′|ψ−1(e) for every edge e of S. We claim that

the look of wi is a good look in Hi. To see this, let J be obtained from Hi by deleting every edge
e with wi(e) = −1, and adding a new edge parallel to every edge e with w(e) = 1; we must show
that J has no cutedge. Since every edge of Ci belongs to exactly one of Fj , F

′
j , we may assume that

the edges e of Ci with wi(e) = −1 belong to Fj , and that j = 1 say. But then F2, F3 are disjoint
perfect matchings of J , and the remaining edges of J form a third perfect matching, and so J is
3-edge-colourable, and therefore has no cutedge. This proves that the look of wi is a good look in
Hi, and so {wi} is a jewel-box in Hi.

These jewel-boxes satisfy the hypotheses of 4.2, and so by 4.2, it follows that the set {w1, . . . , wm}
is a jewel-box in G. Since

β(G) ≥ m ≥ (n1 − 1)/6 + 1 ≥ n1/6,

this proves 4.4.

We need the following theorem of Fowler [1]:

4.5 The only planar cubic graph that is both C4C and U3C is the graph K4.

Let u1, u2, u3 be pairwise adjacent vertices of a cubic graph G′, and for 1 ≤ i ≤ 3 let ui

have a neighbour vi /∈ {u1, u2, u3}. Let G be obtained from G′ by contracting the three edges
u1u2, u2u3, u3u1, forming a vertex v say. We say that G′ is obtained from G by “replacing v by a
triangle”. Let w be a bracelet in G, with supporting cycle C. If v /∈ V (C) then w is a bracelet in
G′. If v ∈ V (C), and say the edges vv1, vv2 belong to E(C), let C ′ be the cycle of G′ consisting of
the path C \ v and the path v1-u1-u3-u2-v2, and let w′ be the bracelet on C ′ that equals w on the
edges of C \ v. In this case we call w′ the “natural rerouting of w”.

4.6 Let G, v,G′, u1, u2, u3, v1, v2, v3 be as above, and let B = {w1, . . . , wk} be a jewel-box in G. For
1 ≤ i ≤ k, if v is in the supporting cycle of wi let w′

i be the natural rerouting of wi, and otherwise
let w′

i = wi. Let B′ = {w′
1, . . . , w

′
k}. Then B′ is a jewel-box in G′.

Proof. Certainly the members of B′ have disjoint supporting cycles, because v belongs to the
supporting cycle of at most one member of B. Let W ′ ⊆ B′, and let w′ be the sum of the looks of
members of W ′; we must show that w′ is a good look in G′. Suppose not, and let D′ be a cut of G′

with w′(D′) = 1 − |D′|. Choose X ′ ⊆ V (G′) with D′ = δG′(X ′). By replacing X ′ by its complement
if necessary, we may assume that at most one of u1, u2, u3 ∈ X ′. For −1 ≤ i ≤ 1, let Fi be the set
of edges e ∈ E(G) with w(e) = i, and let F ′

i be the set of edges e ∈ E(G′) with w′(e) = i. Thus
every edge of D′ belongs to F ′

−1 except for exactly one in F ′
0. Let W be the set of all wi such that

w′
i ∈W

′, and let w be the sum of the looks in G of the members of W . Thus w is a good look in G.
Suppose first that none of u1, u2, u3 ∈ X ′; then D′ is also a cut of G, and w(D′) = w′(D′) =

1−|D′|, contradicting that w is a good look in G. So we may assume that u1 ∈ X ′ and u2, u3 /∈ X ′. In
particular, u1u2, u1u3 ∈ D′, and since |D′ \F ′

−1| = 1, we may assume that u1u2 ∈ F ′
−1. Consequently

there exists some member of W ′, say w′
1, such that u1u2 is an edge of the supporting cycle of w′

1,
and w′

1(u1u2) = −1; and so w1 ∈ W , and v belongs to the supporting cycle of w1. Now u1u3 /∈ F ′
−1

from the definition of w′, and yet no edge of D′ is in F ′
1; so u1u3 ∈ F ′

0. It follows that u2u3 ∈ F ′
1,

since u2u3 is an edge of the supporting cycle of w′
1; and so u2v2 ∈ F0 ∩ F

′
0, and u3v3 ∈ F−1 ∩ F

′
−1.

Let X = (X ′ \ {u1}) ∪ {v}, and let D be the cut δG(X) of G; then every edge of D belongs to F−1
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except for exactly one, namely u2v2 ∈ F0, contradicting that w is a good look in G. This proves
4.6.

A leaf of a tree means a vertex with degree one. The inner tree of a tree T with at least three
vertices is the tree obtained by deleting all leaves of T . An twig of a tree T is a leaf of its inner tree.
Thus, for every twig t of T , t has at least two neighbours in T , and all of its neighbours are leaves
of T except exactly one.

4.7 Let G be a 3-connected 3-edge-colourable cubic graph, and let (T, φ) be a 3-cut-decomposition
of G over C4. Then T has at most 7β(G) twigs.

Proof. Let P be the set of vertices t of T such that the 3-hub at t is not U3C.

(1) Let t0 be a twig and t1, . . . , tk all the leaves adjacent to t0. Let S be the subtree of T with
vertex set {t0, t1, . . . , tk}, and suppose that V (S)∩P = ∅. Let H be the 3-hub of G at S. Then there
is a cycle C of G, satisfying φ(v) ∈ V (S) for every vertex v ∈ V (C), and a bracelet w on C, such
that {w} is a jewel-box of H.

For 0 ≤ i ≤ k let Hi be the 3-hub of G at ti. Since Hi is both C4C and U3C, it follows from
4.5 that Hi is isomorphic to K4 for 0 ≤ i, . . . , k. In particular, since H0 is isomorphic to K4, it
follows that 1 ≤ k ≤ 3. Let H0 have vertex set {v1, . . . , v4}, where v4 is the vertex formed by identi-
fying all vertices v of G with φ(v) /∈ V (S), and for 1 ≤ i ≤ k vi is the vertex formed by identifying
the members of φ−1(ti). Thus {vk+1, . . . , v3} = φ−1(t0). Consequently H is obtained from K4 by
replacing v1, . . . , vk by triangles. Since k ≥ 1, it follows that H is obtained from a “prism” (the
complement of a six-vertex cycle), say J , with one vertex called v4, by replacing one or two other
vertices by triangles. In view of 4.6, it suffices to check that there is a cycle C of the prism J with
v4 /∈ V (C) such that {w} is a jewel-box in J for some bracelet w on C. We leave this to the reader
(use the cycle of length four). This proves (1).

Let there be m twigs in T . The at least m− |P | of them satisfy the hypotheses of (1), and so by
4.2, β(G) ≥ m− |P |. But |P | ≤ 6β(G) by 4.4, and so m ≤ 7β(G). This proves 4.7.

4.8 Let G be a 3-connected 3-edge-colourable cubic graph, and let (T, φ) be a 3-cut-decomposition
of G over C4. Then the inner tree of T (if it exists) has at most 84β(G) vertices.

Proof. Let P be the set of vertices t of T such that the 3-hub at t is not U3C. Let T ′ be the
inner tree of T (we may assume that this exists). Let t1- · · · -t4 be a four-vertex path of T ′ such that
t1, . . . , t4 all have degree two in T ′; and let S be the subtree of T induced on the union of {t1, . . . , t4}
and the set of leaves of T adjacent to one of t1, . . . , t4. We call S a limb of T .

(1) Let S be a limb with t1, . . . , t4 as above, and suppose that P ∩ V (S) = ∅. Let H be the 3-
hub of G at S. Then there is a cycle C of G with V (C) ⊆ φ−1(S), and a bracelet w on C such that
{w} is a jewel-box of H.

For since P ∩ V (S) = ∅, it follows from 4.5 that the 3-hub of G at t is isomorphic to K4 for
every vertex t ∈ V (S); and so t1, . . . , t4 each have degree two, three or four in T . It follows that the
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3-hub of G at the subtree with vertex set {t1, . . . , t4} can be constructed as follows: start with K4

and call one of its vertices x; choose another vertex of the K4 and replace it by a triangle; choose a
vertex of this triangle and replace it by a triangle; choose a vertex of the most recent triangle and
replace it by a triangle; and choose a vertex of this latest triangle and call it y. Let us call this graph
J . Then H can be obtained from J by replacing any of its vertices by triangles, except x, y. We
must check that there is a cycle of H not containing x, y, and a bracelet w on H, such that {w} is a
jewel-box of H. By 4.6, it is enough to prove the claim for J rather for H. To check the claim for
J , note that any cycle of length four in J not using x, y will do, so we can assume there is no such
cycle, and then the possibilities for J are greatly restricted (there are only three). We leave the rest
to the reader. This proves (1).

Let |V (T ′)| = m (and we may assume that m > 1), and let T ′ have m1 leaves, and m2 vertices of
degree two. Thus T ′ has m−m1 −m2 vertices of degree at least three. Since every tree has at least
as many leaves as it does vertices of degree at least three, it follows that m−m1 −m2 ≤ m1, and so
m ≤ 2m1 +m2. A branch of a tree is a maximal subpath (with at least one edge) such that all its
internal vertices have degree two in the tree; the number of branches of a tree is one less than the
number of vertices of degree different from two. Thus T ′ has m−m2 − 1 branches. Let its branches
be B1, . . . , Bk say, where k = m − m2 − 1, and let Bi have bi + 2 vertices for 1 ≤ i ≤ k. Thus
b1 + · · · + bk = m2. Each Bi has bi internal vertices, and so there are ⌊bi/4⌋ ≥ (bi − 3)/4 disjoint
4-vertex paths within the interior of Bi. Consequently there are at least

∑

i=1,...,k

(bi − 3)/4 ≥ m2/4 − 3k/4

disjoint limbs in T , and at most |P | of them contain members of P , so at least m2/4 − 3k/4 − |P |
of them satisfy the hypotheses of (1). By 4.2, it follows that m2/4 − 3k/4 − |P | ≤ β(G). Since
k ≤ m −m2, it follows that 4m2 − 3m− 4|P | ≤ 4β(G). We already saw that m ≤ 2m1 +m2 (that
is, m − 8m1 ≤ 4m2 − 3m), and therefore m ≤ 8m1 + 4|P | + 4β(G). But m1 ≤ 7β(G) by 4.7, and
|P | ≤ 6β(G) by 4.4, and it follows that m ≤ 84β(G). This proves 4.8.

4.9 Let H be a C4C planar cubic graph, let X ⊆ V (H), and let G be obtained from H by replac-
ing some vertices not in X by triangles. Then there is a jewel-box B in G of cardinality at least
|V (G)|/92928 − |X|, such that the supporting cycle of each member of B contains no vertex in X.

Proof. By 3.1, there is a jewel-box in H with cardinality at least |V (H)|/30976 ≥ |V (G)|/92928.
The supporting cycles of at most |X| members of this jewel-box contain a vertex of X, and so there
is a jewel-box in H with cardinality at least |V (G)|/92928 − |X| such that none of the supporting
cycles of its members contain members of X. By 4.6, the same holds in G. This proves 4.9.

4.10 For every 3-connected planar cubic graph G, β(G) ≥ |V (G)|/16819968.

Proof. If G is C4C this follows from 3.1, so we assume that G is not C4C. By 4.1, there is a
3-cut-decomposition (T, φ) of G over C4. Let the vertices of T be t1, . . . , tk. Let P be the set of
vertices t of T such that the 3-hub of G at t is not U3C. Let L be the set of all leaves of T that
do not belong to P , and let S = T \ L. If S is null then |L| = 2 and both members of L have
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U3C 3-hubs, and so by 4.5 |V (G)| ≤ 6 and the theorem holds. We may therefore assume that S is
nonnull. Let V (S) = {t1, . . . , ts} say, where s ≤ k; and so L = {ts+1, . . . , tk}. For 1 ≤ i ≤ s, let
Ti be the subtree of T with vertex set consisting of ti and all members of L adjacent to ti. Thus
T1, . . . , Ts are pairwise disjoint subtrees of T , and every vertex of T belongs to exactly one of them.
For 1 ≤ i ≤ s, let Hi be the 3-hub of G at Ti. Then V (Hi) is the disjoint union of two sets Xi, Yi

say, where Yi = φ−1(Ti). Now Hi is obtained from the 3-hub of G at ti (which is C4C) by replacing
some vertices not in Xi by triangles; and so by 4.9 there is a jewel-box Bi in Hi of cardinality at
least |V (Hi)|/92928 − |Xi| ≥ |Yi|/92928 − |Xi|, such that the supporting cycle of each member of Bi

contains no vertex in Xi. By 4.2, it follows that the union of these jewel-boxes is a jewel-box in G,
and so ∑

1≤i≤s

|Yi|/92928 − |Xi| ≤ β(G).

But |Y1| + · · · + |Ys| = |V (G)|, and |X1| + · · · + |Xs| = 2|E(S)| ≤ 2|V (S)|, so we deduce that
|V (G)|/92928 ≤ 2|V (S)| + β(G). Now every vertex of S either belongs to the inner tree of T or to
P , and G is 3-edge-colourable by the four-colour theorem; so by 4.8 and 4.4, |V (S)| ≤ 90β(G). Thus
|V (G)|/92928 ≤ 181β(G), that is, β(G) ≥ |V (G)|/16819968. This proves 4.10.

5 The non-3-connected case.

Now we extend 4.10 to all planar cubic graphs without cutedges. We begin with:

5.1 Let G be a 3-edge-colourable 2-connected cubic graph. If (T, φ) is a 2-cut-decomposition of G
then |V (T )| ≤ 6β(G).

Proof. Let F1, F2, F3 be pairwise disjoint perfect matchings of G.

(1) Let (T, φ) be a 2-cut-decomposition of G such that

• φ−1(t) 6= ∅ for each t ∈ V (T )

• φ−1(f) ⊆ F3 for every edge f ∈ E(T ).

Then |E(T )| ≤ β(G).

Let t ∈ V (T ). Since φ−1(f) ⊆ F3 for every edge f ∈ E(T ) incident with t, it follows that ev-
ery edge e = uv ∈ F1 ∪ F2, if φ(u) = t then φ(v) = t. Moreover, since φ−1(t) 6= ∅, it follows that
there is an edge e = uv ∈ F1∪F2 with φ(u) = t. Consequently there is a cycle C with E(C) ⊆ F1∪F2

such that V (C) ⊆ φ−1(t). Since this holds for each t ∈ V (T ), we deduce that there are at least |V (T )|
cycles within F1 ∪ F2, and so |E(T )| ≤ β(G) by 4.3. This proves (1).

(2) For every 2-cut-decomposition (T, φ) of G, if φ−1(t) 6= ∅ for each t ∈ V (T ) then |E(T )| ≤ 3β(G).

For let f ∈ E(T ), and let e1, e2 be the two edges in φ−1(f). Since {e1, e2} is a cut of even car-
dinality of a cubic graph, it follows that every perfect matching contains an even number of members
of this cut, and in particular one of F1, F2, F3 includes both of e1, e2. From the symmetry between
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F1, F2, F3, we may assume that φ−1(f) ⊆ F3 for at least one-third of all edges f ∈ E(T ), and so by
contracting all other edges f ∈ E(T ), we obtain a 2-cut-decomposition (S, φ) with |E(S)| ≥ |E(T )|/3,
satisfying the hypotheses of (1). Consequently |E(S)| ≤ β(G), and so |E(T )| ≤ 3β(G). This proves
(2).

Now we deduce the theorem. Let (T, φ) be a 2-cut-decomposition of G, and let n1, n2 and n3

be the number of vertices of T of degree 1,2 and at least 3 respectively. From the definition of a
cut-decomposition, φ−1(t) 6= ∅ for each t ∈ V (T ) with degree one or two; so by contracting edges of T
appropriately, we deduce that there is a 2-cut-decomposition (S, φ) of G with |V (S)| ≥ n1 +n2, such
that φ−1(s) 6= ∅ for each s ∈ V (S). It follows from (2) that |E(S)| ≤ 3β(G), and so n1 + n2 − 1 ≤
3β(G). Since T is a tree, it follows that n3 ≤ n1 − 2, and so

|V (T )| = n1 + n2 + n3 ≤ 2n1 + n2 − 2 ≤ 2(n1 + n2 − 1) ≤ 6β(G).

This proves 5.1.

We would like to define a notion analogous to “3-hub” for a 2-cut-decomposition, but we have to
be more careful. Let (T, φ) be a 2-cut-decomposition of G, and let t ∈ V (T ). We say that t is solid
if for every edge f ∈ E(T ) incident with t, and every e ∈ φ−1(f), e is incident in G with some vertex
of φ−1(t). Let t ∈ V (T ) be solid; let X0 = φ−1(t), and let f1, . . . , fk be the edges of T incident with
t, where fi is incident with a vertex of Ti for 1 ≤ i ≤ k. Let G′ be obtained from G|X0 by adding
a new edge xiyi for 1 ≤ i ≤ k, where xi, yi are the two vertices in X0 incident in G with edges in
φ−1(fi). We call G′ the 2-hub of G at t. We need an analogue of 4.2, as follows.

5.2 Let (T, φ) be a 2-cut-decomposition of a 2-connected cubic graph G, let t1, . . . , tk ∈ V (T ) be
solid, and for 1 ≤ i ≤ k, let Hi be the 2-hub of G at ti. For 1 ≤ i ≤ k let Bi be a set of bracelets of
G, such that

• Bi is a jewel-box of Hi, and

• if C is the supporting cycle of a member of Bi, then V (C) ⊆ φ−1(t).

Then B1 ∪ · · · ∪ Bk is a jewel-box in G.

Proof. Suppose not. Let w be the sum of the looks of a subset of B1∪· · ·∪Bk, and for i = −1, 0, 1 let
Fi be the set of all e ∈ E(G) with w(e) = i; and suppose there is a cut D of G such that every edge
of D belongs to F−1 except for one, f say, that belongs to F0. Choose D = δ(X) and f ∈ D with |D|
minimum, and, subject to that, with |X| minimum; then, as in the proof of 4.2, G|X,G|(V (G) \X)
are both connected.

(1) Let e ∈ T , let S1, S2 be the two components of T \ e, and for i = 1, 2 let Yi = φ−1(V (Si)).
Then one of X ∩ Y1,X ∩ Y2, Y1 \X,Y2 \X is empty.

Suppose all four of these sets are nonempty. Let δ(Y1) = {a1a2, b1b2}, where ai, bi ∈ Yi for i = 1, 2.
Since G|X,G|(V (G)\X) are both connected, at least one of the edges a1a2, b1b2 has both ends in X,
and at least one has both ends in V (G)\X; so we may assume that a1, a2 ∈ X and b1, b2 ∈ V (G)\X.
In particular, neither of a1a2, b1b2 belongs to D; so from the symmetry between Y1, Y2, we may as-
sume that both ends of f belong to Y2. Now δ(Y1) ⊆ F0, from the choice of B1, . . . ,Bk, and so
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a1a2, b1b2 ∈ F0. Thus every edge of δ(X ∩ Y1) belongs to F−1 except for exactly one in F0, namely
a1a2. From the minimality of |D|, it follows that δ(X ∩ Y1)| ≥ |δ(X)|, and so |δ(X ∩ Y2)| = 2, and
δ(X ∩ Y1)| = |δ(X)|, and yet |X ∩ Y1| < |X|, contrary to the minimality of |X|. This proves (1).

Since G is 2-connected and therefore |D| ≥ 2, we may choose e ∈ D with e 6= f . Thus φ(e) = −1,
and so e is an edge of the supporting cycle of some member of B1∪· · ·∪Bk; say e ∈ E(C1) where C1 is
the supprting cycle of some w1 ∈ B1. Let Y0 = φ−1(t1). Let e = xy; then since V (C1) ⊆ Y0 it follows
that x, y ∈ Y0, and since e ∈ δ(X), we deduce that X ∩Y0, Y0 \X are both nonempty. Let S1, . . . , Ss

be the components of T \ {t1}, and for 1 ≤ i ≤ s let ei be the unique edge of T incident with t1 and
an end in V (Si). For 1 ≤ i ≤ s, let Yi = φ−1(Si). Thus Y0, Y1, . . . , Ys are pairwise disjoint subsets of
V (G) with union V (G). The 2-hub H1 of G at t1 is therefore obtained by contracting all edges of
G|Yi and one of the two edges of φ−1(ei), for 1 ≤ i ≤ s. Since D is not a cut of H1 (because B1 is a
jewel-box of H1) it follows that for some i ∈ {1, . . . , s}, both X ∩ Yi, Yi \X are nonempty. But since
both Y0 ∩X, Y0 \X are nonempty, this contradicts (1) applied to the edge ei. This proves 5.2.

Now we prove the main theorem of the paper, 2.2, which we restate:

5.3 Let G be a planar cubic graph with no cutedge. Then β(G) ≥ |V (G)|/218659584.

Proof. We proceed by induction on |V (G)|. If G is not connected, the result follows from the
inductive hypothesis applied to the components of G (for the union of jewel-boxes in different com-
ponents is a jewel-box in G, as is easily seen). Thus we may assume that G is connected and hence
2-connected, since it has no cutedge. If G is 3-connected the result follows from 4.10, so we may
assume that G is not 3-connected. Hence there is a 2-cut-decomposition (T, φ) of G; choose such a
decomposition with |V (T )| maximum. (This is possible by 5.1.)

(1) Let t ∈ V (T ) such that φ−1(t) 6= ∅. Then t is solid, and the 2-hub of G at t is 3-edge-connected.

For let f1, . . . , fk be the edges of T incident with t, and let T1, . . . , Tk be the components of T \ {t},
where fi is incident with a vertex ti of Ti for 1 ≤ i ≤ k. Let X0 = φ−1(t), and for 1 ≤ i ≤ k let
Xi = φ−1(Ti). To prove that t is solid, let e ∈ φ−1(f1) say, where e = uv. Since φ−1(f1) = δ(X1),
exactly one of u, v ∈ X1, say u. We must show that v ∈ X0. For suppose not; then v is in one of
X2, . . . ,Xk, say X2. Let T ′ be the tree obtained from T by deleting the edges f1, f2 and adding a
new vertex s adjacent to t1, t2, t. Then (T ′, φ) is a 2-cut-decomposition of G (to see this, note that
s has degree at least three in G, and every other vertex of T has the same degree in T and in T ′,
except for t, and φ−1(t) 6= ∅.) But this contradicts the maximality of |V (T )|. This proves that t is
solid.

Let H be the 2-hub of G at t, and for 1 ≤ i ≤ k let xi, yi be the two vertices in X0 incident in
G with an edge of δ(Xi); thus xiyi is an edge ei say of H. Suppose that H is not 3-edge-connected;
then there is a partition Y1, Y2 of φ−1(t) into two nonempty subsets, such that there are exactly two
edges of H between Y1, Y2. Let T ′ be the tree obtained from T by deleting t and adding two new
vertices s1s2, where s1, s2 are adjacent, and for 1 ≤ i ≤ k s1 is adjacent to ti if and only if xi, yi ∈ Y1,
and otherwise s2 is adjacent to ti. (In particular, if ei joins a vertex of Y1 to a vertex of Y2 then s2
is adjacent to ti.) Define φ′ : V (G) → V (T ′) by: φ′(v) = si if v ∈ Yi for i = 1, 2, and φ′(v) = φ(v)
if φ(v) 6= t. We claim that (T ′, φ′) is 2-cut-decomposition of G. Note that φ′−1(si) 6= ∅ for i = 1, 2,
so it remains to check that there are exactly two edges of G in φ′−1(s1s2). But since t is solid, this

15



set consists of all edges uv of G with u ∈ Y1 and v ∈ Y2 (which therefore belongs to δH(X1)) and
all edges uv of G such that u ∈ Y1, v ∈ Xi and ei ∈ δH(X1). Since |δH(X1)| = 2, it follows that
there are exactly two edges in φ′−1(s1s2). Thus (T ′, φ′) is 2-cut-decomposition of G, contrary to the
maximality of |V (T )|. This proves (1).

Let t1, . . . , tk be the vertices t of T such that φ−1(t) 6= ∅, and for 1 ≤ i ≤ k let Hi be the 2-hub
of G at ti. Let Yi be the set of edges e = uv of G such that u, v ∈ φ−1(ti), and let Xi = E(Hi) \ Yi.
Thus |Xi| is the degree of ti in T . Let ni = |φ−1(ti)|. We claim there is a set Bi of bracelets of G,
such that

• Bi is a jewel-box of Hi, and

• if C is the supporting cycle of a member of Bi, then V (C) ⊆ φ−1(t)

• |Bi| ≥ ni/16819968 − |Xi|.

For if ni ≤ 2 and Xi 6= ∅, we may take Bi = ∅, and if ni ≤ 2 and Xi = ∅ then |V (G)| ≤ 2 and the
result follows from 4.3. Thus we may assume that ni ≥ 3, and so Hi is 3-connected, since it is cubic
and 3-edge-connected by (1). By 4.10 there is a jewel-box in Hi of cardinality at least ni/16819968,
and at most |Xi| of its members have a supporting cycle that contains a member of Xi. Removing
these members gives the jewel-box Bi as claimed. By 5.2, the union of these jewel-boxes is a jewel-box
in G, and so ∑

1≤i≤k

(ni/16819968 − |Xi|) ≤ β(G).

But n1 + · · · + nk = |V (G)|, and

|X1| + · · · + |Xk| ≤ 2|E(T )| ≤ 12β(G)

by 5.1, so |V (G)|/16819968 − 12β(G) ≤ β(G), that is, β(G) ≥ |V (G)|/218659584. This proves
5.3.
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