Detecting a long odd hole

Maria Chudnovsky ${ }^{1}$
Princeton University, Princeton, NJ 08544

Alex Scott ${ }^{2}$
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
Paul Seymour ${ }^{3}$
Princeton University, Princeton, NJ 08544.
January 31, 2019; revised April 24, 2020

[^0]
Abstract

For each integer $\ell \geq 5$, we give a polynomial-time algorithm to test whether a graph contains an induced cycle with length at least ℓ and odd.

1 Introduction

All graphs in this paper are finite and have no loops or parallel edges. A hole of G is an induced subgraph of G that is a cycle of length at least four, and an antihole is an induced subgraph whose complement is a cycle of length at least four. In 2005, two of us, with Cornuéjols, Liu and Vušković [4], gave an algorithm to test whether an input graph G has an odd hole or odd antihole, and thereby to test whether G is perfect, with running time at most polynomial in $|G|$. ($|G|$ denotes the number of vertices of G.) At that time we were unable to separate the test for odd holes from the test for odd antiholes, and testing for odd holes in poly-time has remained open until very recently. Indeed, it seemed quite likely that testing for an odd hole was NP-complete; for instance, D. Bienstock [2, 3] showed that testing if a graph has an odd hole containing a given vertex is NP-complete. So it was something of a surprise when recently we found a poly-time algorithm to test for odd holes [6]. (This is modified to run faster in a recent paper [10] by Lai, Lu , and Thorup.)

In this paper we extend that result: for each integer $\ell \geq 5$ we give a poly-time algorithm to test whether G has an odd hole of length at least ℓ. More exactly:

1.1 For each integer $\ell \geq 5$, there is an algorithm with the following specifications:

Input: A graph G.
Output: Decides whether G has an odd hole of length at least ℓ.
Running time: $O\left(|G|^{20 \ell+40}\right)$.
We have not tried very hard to optimize the exponent in the running time (although getting the exponent to be linear in ℓ took some effort).

We are not aware of previous work on detecting "long" induced subgraphs of specific type, although it seems a sensible question. Here are three current pieces of work that are related:

- Linda Cook, with Seymour, has a poly-time algorithm to test if a graph has a long even hole [9].
- Eli Berger and Sophie Spirkl, with Seymour, have a poly-time algorithm to test if there is an induced path between specified vertices s, t of a graph that has length longer than the shortest st-path [1]. It is open whether there is a poly-time algorithm to test for an induced st-path of length at least three more than the shortest st-path.
- We have a poly-time algorithm to find the shortest odd hole in a graph, if it has one [5].

Long odd holes have been worked on before, although not for algorithms. In [11] Scott and Seymour proved that graphs with no odd hole are " χ-bounded ", and later, with Sophie Spirkl [7], we extended this to graphs with no long odd hole. Indeed, in [12] Scott and Seymour extended it further, to graphs with no holes of length p modulo q, for any fixed p, q. We currently see no prospect of extending the algorithmic work to test for a hole of length p modulo q; even testing for holes of length a multiple of three seems very challenging, although of interest because such graphs have nice properties [8].

The new algorithm once again uses "cleaning", as does the algorithm of [6] and several other algorithms to detect special induced subgraphs. Indeed it was modelled on the algorithm of [6], but it is considerably more complicated.

Here is an outline of the method. Throughout the paper, $\ell \geq 5$ is a fixed number, and throughout, a long path or hole means a path or hole of length at least ℓ. If C is a hole in G, a vertex v of $V(G) \backslash V(C)$ is C-major if there is no three-vertex path of C containing all the neighbours of v in $V(C)$. A hole C is clean if no vertex is C-major.

- First we test for the presence in the input graph G of certain kinds of induced subgraphs ("short" long odd holes, "long pyramids" and "long jewels") that we can test for in polynomial time, and whose presence would imply that G contains a long odd hole. We call these three kinds of subgraphs "easily-detected configurations". We may assume these tests are unsuccessful.
- Second, we generate a "cleaning list", a list of polynomially-many subsets of $V(G)$, such that if G has a long odd hole, and C is a long odd hole of minimum length (a shortest long odd hole) then some set X in the list contains all the C-major vertices and contains no vertex of C itself. This relies on the fact that G contains none of the easily-detected configurations.
- Third, for each X in the cleaning list, we test whether $G \backslash X$ has a clean shortest long odd hole. (More exactly, we give an algorithm that either decides that $G \backslash X$ has a long odd hole, or decides that $G \backslash X$ has no clean shortest long odd hole.) This again relies on the absence of the easily-detected configurations.

The reader familiar with the method of [6] will see the similarity of the two algorithms.
But part of the approach is significantly different. To generate the cleaning list in [6], we used a theorem that if C is a shortest odd hole, and M is a set of C-major vertices such that one of them is nonadjacent to all the others, then there is a "heavy edge" in C, an edge $u v$ of C such that every vertex in M is adjacent to one of u, v. We tried to extend this to the long odd hole situation, but failed. For our purposes, a "heavy path" of C of bounded length (that is, such that every vertex in M has a neighbour in the path) would be just as good as a heavy edge; and this extension might be true, but we were unable to prove it. In its place we had to use a considerably more complicated method, proving that there is a bounded set of paths of C, each of bounded length, such that every vertex in M has a neighbour in one of the paths; and we could only prove this when the exceptional vertex of M was carefully chosen.

The paper is organized as follows. First, we explain how to test for the easily-detected configurations; this is a straightforward adaptation of the algorithms in [4] to test for pyramids and jewels. Then we give the algorithm for the third step above; and finally we show how to generate the cleaning list.

Let us remark, finally, that if we want to test for a long hole, rather than a long odd hole, then this is easy: enumerate all induced paths of G of length $\ell-1$, and for each one, test directly if it can be extended to a hole. This has running time $O\left(|G|^{\ell+1}\right)$, and so both this and our algorithm for 1.1 have running time $|G|^{O(\ell)}$. We do not know if either can be substantially improved, although both problems are NP-hard when ℓ is part of the input. (To see this for the long hole problem, take a graph with n vertices and subdivide each edge once, and take $\ell=2 n$; then this has an induced cycle of length at least ℓ if and only if the original graph has a Hamilton cycle. For the long odd hole problem, take a graph with an odd number n of vertices, subdivide every edge twice, and take $\ell=3 n$.)

2 The easily-detected configurations

We begin with the test for what we earlier called "short" long odd holes:

2.1 There is an algorithm with the following specifications:

Input: A graph G, and an integer $k \geq 0$.
Output: Decides whether there is a long odd hole in G of length at most k.
Running time: $O\left(|G|^{k}\right)$.
Proof. We enumerate all sets of at most k vertices, and for each one, check whether it induces a long odd hole.

If $X \subseteq V(G)$, we denote the subgraph of G induced on X by $G[X]$. If X is a vertex or edge of G, or a set of vertices or a set of edges of G, we denote by $G \backslash X$ the graph obtained from G by deleting X. Thus, for instance, if $b_{1} b_{2}$ is an edge of a hole C, then $C \backslash\left\{b_{1}, b_{2}\right\}$ and $C \backslash b_{1} b_{2}$ are both paths, but one contains b_{1}, b_{2} and the other does not. If P is a path, we denote by P^{*} the interior of P, the set of vertices of the path P that are not ends of P. If P is a path and $x, y \in V(P)$, we denote the subpath with ends x, y by $x-P-y$. The length of a path or cycle is the number of edges in it.

Let $u, v \in V(G)$, and let Q_{1}, Q_{2} be induced paths between u, v, of different parity. Let P be an induced path between u, v of length at least ℓ, such that no vertex of P^{*} equals or is adjacent to any vertex of Q_{1}^{*}, Q_{2}^{*}. We say the subgraph induced on $V\left(P \cup Q_{1} \cup Q_{2}\right)$ is a long jewel of order $\max \left(\left|V\left(Q_{1}\right)\right|,\left|V\left(Q_{2}\right)\right|\right)$, formed by Q_{1}, Q_{2}, P. Any graph containing a long jewel has a long odd hole, since the holes $P \cup Q_{1}, P \cup Q_{2}$ are both long and one of them is odd. The next result extends theorem 3.1 of [4]:

2.2 There is an algorithm with the following specifications:

Input: A graph G, and an integer $k \geq 0$.
Output: Decides whether there is a long jewel in G of order at most k.
Running time: $O\left(|G|^{2 k+\ell}\right)$.
Proof. We enumerate all triples of induced paths Q_{1}, Q_{2}, R of G, such that:

- Q_{1}, Q_{2} join the same pair of vertices, say u, v;
- one of Q_{1}, Q_{2} is odd and the other is even, and each has at most k vertices;
- R has length $\ell-2$, and has one end u and the other some vertex w say;
- no vertex of $V(R) \backslash\{u\}$ equals or has a neighbour in $V\left(Q_{1} \cup Q_{2}\right) \backslash\{u\}$.

For each such triple of paths, let X be the set of vertices of G that are different from and nonadjacent to each vertex of $V\left(Q_{1} \cup Q_{2} \cup R\right) \backslash\{v, w\}$. We test whether there is a path in $G[X \cup\{w, v\}]$ between w, v. If so we output that G contains a long jewel of order at most k. If no triple yields this outcome, we output that G has no such long jewel.

To see the correctness of the algorithm, certainly the output is correct if G contains no long jewel of order at most k. Suppose then it does, say formed by Q_{1}, Q_{2}, P. Let u, v be the ends of P, and let R be the subpath of P of length $\ell-2$ with one end u. When the algorithm tests the triple Q_{1}, Q_{2}, R, it will discover there is a path in $G[X \cup\{w, v\}]$ between w, v, because the remainder of P is such a path. Consequently the output is correct.

The running time is $O\left(|G|^{2}\right)$ for each triple of paths, and there are at most $|G|^{2 k+\ell-2}$ such triples, so the running time is as claimed. This proves 2.2.

Many of the algorithms in this paper follow the same outline; we enumerate all subgraphs, or sequences of vertices, of some prescribed type, and for each one, perform some test on it. (Critically, there must be only polynomially many such subgraphs to test.) If the test is successful, we have found a subgraph of the desired type, and if it is never successful we will apply a theorem that says that then there is no subgraph of the desired type. For brevity we call the process of enumerating all these subgraphs and testing them one-by-one "guessing"; thus we would describe the long jewel algorithm above as "guessing the two paths Q_{1}, Q_{2} and an initial subpath of P ".

Let $v_{0} \in V(G)$, and for $i=1,2,3$ let P_{i} be an induced path of G between v_{0} and v_{i}, such that

- P_{1}, P_{2}, P_{3} are pairwise vertex-disjoint except for v_{0};
- $v_{1}, v_{2}, v_{3} \neq v_{0}$, and at least two of P_{1}, P_{2}, P_{3} have length at least ℓ;
- v_{1}, v_{2}, v_{3} are pairwise adjacent; and
- for $1 \leq i<j \leq 3$, the only edge between $V\left(P_{i}\right) \backslash\left\{v_{0}\right\}$ and $V\left(P_{j}\right) \backslash\left\{v_{0}\right\}$ is the edge $v_{i} v_{j}$.

We call the subgraph induced on $V\left(P_{1} \cup P_{2} \cup P_{3}\right)$ a long pyramid, with apex v_{0} and base $\left\{v_{1}, v_{2}, v_{3}\right\}$, formed by P_{1}, P_{2}, P_{3}.

Figure 1: A long pyramid. The dashed lines represent paths, of indeterminate length, but two of them must have length at least ℓ.

If G has a long pyramid then G has a long odd hole (because two of the paths P_{1}, P_{2}, P_{3} have the same length modulo two, and they induce a long odd hole). The next result extends theorem 2.2 of [4], and is proved similarly:

2.3 There is an algorithm with the following specifications:

Input: A graph G.
Output: Decides whether there is a long pyramid in G.
Running time: $O\left(|G|^{6 \ell+8}\right)$.
Proof. Suppose that G contains a long pyramid; then it contains a "smallest" one, one with the fewest vertices, say with apex v_{0} and base $\left\{v_{1}, v_{2}, v_{3}\right\}$, formed by the path P_{1}, P_{2}, P_{3}. For $i=1,2,3$, let m_{i} be a vertex of P_{i} that divides it into two paths with lengths differing by at most one. For $i=1,2,3$,

- if P_{i} has length at least ℓ, let A_{i} be a subpath of P_{i} of length ℓ with one end v_{0}, and let B_{i} be a subpath of P_{i} of length ℓ with one end v_{i};
- if P_{i} has length less than ℓ, let $A_{i}=B_{i}=P_{i}$.

Let A_{i} have ends v_{0}, a_{i}, and let B_{i} have ends v_{i}, b_{i} for $i=1,2,3$.
The algorithm proceeds as follows. If there is a pyramid as above, we guess the vertex v_{0} and for $i=1,2,3$ we guess the vertices $v_{i}, m_{i}, a_{i}, b_{i}$ and the paths A_{i}, B_{i}. Let X be the set of all these vertices (including the vertices of the paths A_{i}, B_{i} for $1 \leq i \leq 3$). For each i such that m_{i} does not belong to $V\left(A_{i}\right)$ we choose a shortest path A_{i}^{\prime} between m_{i}, a_{i} such that its interior is disjoint from $X \backslash\left\{m_{i}, a_{i}\right\}$ and contains no vertex with a neighbour in $X \backslash\left\{m_{i}, a_{i}\right\}$, and let $Q_{i}^{\prime}=A_{i} \cup A_{i}^{\prime}$. If $m_{i} \in V\left(A_{i}\right)$ let $Q_{i}^{\prime}=A_{i}$. Similarly, if $m_{i} \notin V\left(B_{i}\right)$ we choose a shortest path B_{i}^{\prime} between m_{i}, b_{i} such that its interior is disjoint from $X \backslash\left\{m_{i}, b_{i}\right\}$ and contains no vertex with a neighbour in $X \backslash\left\{m_{i}, b_{i}\right\}$; and let $R_{i}^{\prime}=B_{i} \cup B_{i}^{\prime}$. If $m_{i} \in V\left(B_{i}\right)$ let $R_{i}^{\prime}=B_{i}$.

Now for $1 \leq i \leq 3$ we test whether $Q_{i}^{\prime} \cup R_{i}^{\prime}$ is an induced path between v_{0}, v_{1}, and if this is true for each i, and the three paths form a pyramid, we return that G contains a long pyramid. To prove the correctness, we must now prove a theorem that starting from a smallest pyramid as described, $Q_{i}^{\prime} \cup R_{i}^{\prime}$ is indeed a path between v_{0}, v_{i} for $1 \leq i \leq 3$, and these three paths form a (possibly different) smallest pyramid.

Let Π be a smallest pyramid in G, formed by paths P_{1}, P_{2}, P_{3} as above. For $i=1,2,3$, let Q_{i}, R_{i} be the subpaths of P_{i} between m_{i}, v_{0} and between m_{i}, v_{i} respectively.
(1) With Q_{1}^{\prime} chosen as in the algorithm, no vertex of Q_{1}^{\prime} belongs to or has a neighbour in $V\left(P_{2} \cup P_{3}\right)$.

Suppose that this is false. Consequently $Q_{1}^{\prime} \neq A_{1}$, and so $m_{1} \notin V\left(A_{1}\right)$ and m_{1} is an end of Q_{1}^{\prime}. Let S be a minimal subpath of Q_{1}^{\prime} with one end m_{1} such that its other end has a neighbour in $V\left(P_{2} \cup P_{3}\right)$. Let S have ends m_{1}, s. There are three cases.

First, suppose that s has a unique neighbour t in $P_{2} \cup P_{3}$. We may assume that $t \in V\left(P_{2}\right)$ from the symmetry; let Π^{\prime} be the pyramid with apex t and base $\left\{v_{1}, v_{2}, v_{3}\right\}$, formed by the paths $t-P_{2}-v_{2}, t-P_{2}-v_{0}-P_{3}-v_{3}$ and an induced path between t, v_{1} with interior in $V\left(S \cup R_{1}\right)$. This is indeed a pyramid, from the minimality of S; it is long, since all three of the paths have length at least ℓ (because they include the paths B_{2}, B_{3}, B_{1} respectively); and it has fewer vertices than Π, since $|V(S)| \leq\left|V\left(Q_{1}\right)\right|-\ell$. This is impossible from the choice of Π.

Second, suppose that s has two nonadjacent neighbours in $V\left(P_{2} \cup P_{3}\right)$. Let Π^{\prime} be the pyramid with apex s and base $\left\{v_{1}, v_{2}, v_{3}\right\}$ formed by the induced paths between s, v_{2} and between s, v_{3}, both with interior in $V\left(P_{2} \cup P_{3}\right\}$ (these are unique, and include B_{2}, B_{3} respectively, and so are long), and a path between s, v_{1} with interior in $V\left(S \cup R_{1}\right)$. Again, this is a long pyramid with fewer vertices than Π, a contradiction.

Third, suppose that s has exactly two neighbours t_{1}, t_{2} in $V\left(P_{2} \cup P_{3}\right)$ and they are adjacent. We may assume that $t_{1}, t_{2} \in V\left(P_{2}\right)$ and t_{2} is closer to v_{2} in P_{2}. Let Π^{\prime} be the pyramid with apex v_{0} and base $\left\{s, t_{1}, t_{2}\right\}$ formed by the paths $v_{0}-P_{2}-t_{1}, v_{0}-P_{3}-v_{3}-v_{2}-P_{2}-t_{2}$ and a path between v_{0}, s with interior in $V\left(S \cup Q_{1}\right)$. Again, this is a long pyramid (because the three paths include A_{2}, A_{3}, A_{1} respectively), and it has fewer vertices than Π, because $|V(S)| \leq\left|V\left(Q_{1}\right)\right|-\ell<\left|V\left(R_{1}\right)\right|$, a contradiction. This proves (1).
(2) With R_{1}^{\prime} chosen as in the algorithm, no vertex of R_{1}^{\prime} belongs to or has a neighbour in $V\left(P_{2} \cup P_{3}\right)$.

The proof is similar and we omit it.
Let P_{1}^{\prime} be an induced path between v_{0}, v_{1} with interior in $V\left(Q_{1}^{\prime} \cup R_{1}^{\prime}\right)$. From (1) and (2), it follows that $P_{1}^{\prime}, P_{2}, P_{3}$ form a long pyramid with at most as many vertices as Π. Consequently equality holds, and so $P_{1}^{\prime}=Q_{1}^{\prime} \cup R_{1}^{\prime}$; and $P_{1}^{\prime}, P_{2}, P_{3}$ form a smallest long pyramid. Similarly $Q_{2}^{\prime} \cup R_{2}^{\prime}$ is an induced path between v_{0}, v_{2}, say P_{2}^{\prime}; and $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}$ form a smallest long pyramid. And similarly for $Q_{3}^{\prime} \cup R_{3}^{\prime}$. This proves the correctness of the algorithm.

For its running time, we are guessing a sequence of at most $6(\ell+1)$ vertices, so the running time is as claimed. This proves 2.3.

Let us say G is a candidate if G contains no long pyramid, no long jewel of order at most $\ell+2$, and no long odd hole of length at most $2 \ell+2$. In view of $2.1,2.2$, and 2.3 , we have:
2.4 There is an algorithm with the following specifications:

Input: A graph G.
Output: Decides whether G is a candidate.
Running time: $O\left(|G|^{6 \ell+8}\right)$.
Any graph that is not a candidate has a long odd hole, so now we just need to find a poly-time algorithm to test whether candidates have long odd holes.

3 Detecting a clean shortest long odd hole

The following was proved in [4]:
3.1 Let G be a graph containing no jewel or pyramid, and let C be a clean shortest odd hole in G. Let $u, v \in V(C)$ be distinct and nonadjacent, and let L_{1}, L_{2} be the two subpaths of C joining u, v, where $\left|E\left(L_{1}\right)\right|<\left|E\left(L_{2}\right)\right|$. Then:

- L_{1} is a shortest path in G between u, v, and
- for every shortest path P in G between $u, v, P \cup L_{2}$ is a shortest odd hole in G.

This was crucial in that paper. Happily, the exact analogue holds for clean shortest long odd holes:
3.2 Let G be a graph containing no long jewel of order at most $\ell+2$, and no long pyramid, and with no long odd hole of length at most $2 \ell+2$. Let C be a clean shortest long odd hole in G. Let $u, v \in V(C)$ be distinct and nonadjacent, and let L_{1}, L_{2} be the two subpaths of C joining u, v, where $\left|E\left(L_{1}\right)\right|<\left|E\left(L_{2}\right)\right|$. Then:

- L_{1} is a shortest path in G between u, v, and
- for every shortest path P in G between $u, v, P \cup L_{2}$ is a clean shortest long odd hole in G.

First we prove the first assertion of 3.2. If u, v are vertices of a graph $G, d_{G}(u, v)$ denotes the length of the shortest path of G joining $u, v\left(d_{G}(u, v)=\infty\right.$ if there is no such path).
3.3 Let G be a graph containing no long pyramid, no long jewel of order at most $\ell+2$, and no long odd hole of length at most 2ℓ. Let C be a clean shortest long odd hole in G. Then $d_{G}(u, v)=d_{C}(u, v)$ for all $u, v \in V(C)$.
Proof. Suppose the result is false; then there is an induced path Q with vertices $q_{1}-\cdots-q_{k}$ in order, such that some vertex $u \in V(C)$ is adjacent to q_{1}, some $v \in V(C)$ is adjacent to q_{k}, and $d_{C}(u, v)>k+1$. Choose such a path Q with k minimum. Since $d_{C}(u, v)>k+1 \geq 2$, and q_{1} is not C-major, it follows that $q_{1} \neq q_{k}$, and so $k \geq 2$. If some vertex of Q belongs to $V(C)$, say $q_{i} \in V(C)$, then from the choice of $k, d_{C}\left(u, q_{i}\right) \leq i$, and $d_{C}\left(q_{i}, v\right) \leq k-i+1$, and so

$$
d_{C}(u, v) \leq d_{C}\left(u, q_{i}\right)+d_{C}\left(q_{i}, v\right) \leq k+1,
$$

a contradiction. Thus $Q \cap C$ is null. There are two paths of C that join u, v; one, L_{1} say, of length $d_{C}(u, v)$, and the other, L_{2} say, longer and of opposite parity.

Since q_{1} is not C-major, there is a path P_{1} of C of length at most two such that all neighbours of q_{1} in $V(C)$ lie in $V\left(P_{1}\right)$; choose P_{1} minimal, and consequently both its ends are adjacent to q_{1}. (Possibly P_{1} has only one vertex.) Define P_{2} similarly for q_{k}.
(1) P_{1}, P_{2} are vertex-disjoint.

Suppose that $P_{1} \cap P_{2}$ is non-null. Thus $d_{C}(u, v) \leq 4$, and since $d_{C}(u, v)>k+1 \geq 3$ it follows that $k=2$ and $d_{C}(u, v)=4$, and P_{1}, P_{2} both have length exactly two. Hence $P_{1} \cup P_{2}=L_{1}$, and the three paths $L_{1}, u-q_{1}-q_{2}-v$, and L_{2}, form a long jewel of order four, a contradiction. Thus $P_{1} \cap P_{2}$ is null. This proves (1).

Figure 2: The paths P_{1}, P_{2}, A, B of C.

Let P_{1} have ends a_{1}, b_{1}, and let P_{2} have ends a_{2}, b_{2}, where $a_{1}, b_{1}, b_{2}, a_{2}$ are in order in C (possibly $a_{1}=b_{1}$ or $a_{2}=b_{2}$). Let A, B be two paths of C, where A has ends a_{1}, a_{2}, and B has ends b_{1}, b_{2}, and the four paths A, B, P_{1}, P_{2} are pairwise edge-disjoint and have union C.
(2) One of q_{2}, \ldots, q_{k-1} has a neighbour in $V(C)$, and therefore $k \geq 3$.

Suppose not. The hole formed by adding the path $a_{1}-q_{1}-\cdots-q_{k}-a_{2}$ to A is shorter than C, so either it has length less than ℓ or it has even length; so either $|E(A)|+k+1<\ell$, or $|E(A)|+k+1$ is even. Similarly either $|E(B)|+k+1<\ell$, or $|E(B)|+k+1$ is even. Since $|E(A)|+|E(B)|+4 \geq|E(C)|>2 \ell$, we may assume that $|E(B)| \geq \ell-1$. In particular, $|E(B)|+k+1 \geq \ell$, and so $|E(B)|+k$ is odd. Now the paths $b_{1}-q_{1}-\cdots-q_{k}-b_{2}, b_{1}-P_{1}-a_{1}-A-a_{2}-P_{2}-b_{2}$ and B form a long jewel, of order the maximum of the lengths of the first two paths. But the second path has length at least $d_{C}(u, v) \geq k+2$, so the second path is longer; and so the long jewel has order $|E(A)|+\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|$. Consequently $|E(A)|+\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right|>\ell+2$, and so $|E(A)| \geq \ell-1$. Hence $|E(A)|+k+1 \geq \ell$, and so $|E(A)|+k$ is odd. Since C is odd, it follows that one of P_{1}, P_{2} is odd and the other is even, and we may assume that P_{2} has length one; and so q_{k} has exactly two neighbours in $V(C), a_{2}$ and b_{2}, and they are adjacent. If $a_{1}=b_{1}$ then since $|E(A)|+\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right| \geq \ell+3$, it follows that $|E(A)| \geq \ell+2$, and so the three paths A, B and $a_{1}-q_{1}-Q-q_{k}$ form a long pyramid, a contradiction. Thus P_{2} has exactly three vertices. Since $|E(A)|+\left|E\left(P_{1}\right)\right|+\left|E\left(P_{2}\right)\right| \geq \ell+3$, it follows that $|E(A)|>\ell$, and so the three paths $q_{1}-a_{1}-A-a_{2}, q_{1}-b_{1}-B-b_{2}$ and Q form a long pyramid, a contradiction. This proves (2).
(3) None of q_{2}, \ldots, q_{k-1} has a neighbour in $V\left(L_{2}\right)$.

Suppose that q_{i} has a neighbour $w \in V\left(L_{2}\right)$ say, where $2 \leq i \leq k-1$. Thus $w \neq u, v$. Let R_{2}, S_{2} be the subpaths of L_{2} between w, u and between w, v respectively. From the minimality of k, $d_{C}(u, w)<d_{C}(u, v)$, and so the path of C between u, w of length $d_{C}(u, w)$ is a subpath of L_{2}, that is, R_{2} has length $d_{C}(u, w)$. Similarly S_{2} has length $d_{C}(v, w)$, and so $d_{C}(u, w)+d_{C}(v, w)=\left|E\left(L_{2}\right)\right|$. From the minimality of $k, d_{C}(u, w) \leq i+1$ (because otherwise $d_{G}(u, w) \leq i+1<d_{C}(u, w)$ and $d_{G}(u, w)<k+1$, contrary to the minimality of k), and similarly $d_{C}(v, w) \leq k-i+2$, and so $\left|E\left(L_{2}\right)\right| \leq k+3$. But $\left|E\left(L_{2}\right)\right|>\left|E\left(L_{1}\right)\right|=d_{C}(u, v) \geq k+2$, and so equality holds throughout. In particular, $\left|E\left(L_{2}\right)\right|=\left|E\left(L_{1}\right)\right|+1=k+3$. Moreover, R_{2} has length $d_{C}(u, w)=i+1$ and S_{2} has length $k-i+2$.

The union of L_{1} and the path $u-q_{1}-Q-q_{k}-v$ therefore is a cycle of length $|C|-2$. This is odd, less than C, and at least ℓ, so this cycle is not induced. Hence there exists $j \in\{1, \ldots, k\}$ such that q_{j} has a neighbour in the interior of L_{1}, say x. From the symmetry under reversing q_{1}, \ldots, q_{k}, we may assume that $j \geq i$. Let R_{1}, S_{1} be the subpaths of L_{1} between x, u and between x, v respectively. The path $S_{1} \cup S_{2}$ has length more than the length of S_{2} and hence at least $k-i+3$; and the path $w-q_{i^{-}} \cdots-q_{j}-x$ has length $j-i+2 \leq k-i+2$. Thus $S_{1} \cup S_{2}$ is longer than $w-q_{i^{-}} \cdots-q_{j}-x$. But from the minimality of k, it follows that the length of $w-q_{i^{-}} \cdots-q_{j}-x$ is at least $d_{C}(w, x)$, and so at least the length of $R_{1} \cup R_{2}$. Thus $j-i+2 \geq\left|E\left(R_{1}\right)\right|+\left|E\left(R_{2}\right)\right|$. Also, the minimality of k implies that the path $x-q_{j}-\cdots-q_{k}-v$ has length at least the length of S_{1}, and so $k-j+2 \geq\left|E\left(S_{1}\right)\right|$. Adding, we deduce that $k-i+4 \geq\left|E\left(R_{1}\right)\right|+\left|E\left(R_{2}\right)\right|+\left|E\left(S_{1}\right)\right|$. But $\left|E\left(R_{1}\right)+\left|E\left(S_{1}\right)\right|=\left|E\left(L_{1}\right)\right|=k+2\right.$, and $\left|E\left(R_{2}\right)\right|=i+1$, and so $k-2 i+4 \geq k+3$, which is impossible. This proves (3).

We may assume that u, v are chosen, adjacent to q_{1}, q_{k} respectively, with $d_{C}(u, v)$ maximum. Then we have
(4) q_{1}, q_{k} have no neighbours in L_{2}^{*}.

By (2) and (3), one of q_{2}, \ldots, q_{k-1} (say q_{i}) has a neighbour in L_{1}^{*}, say w. Since $d_{G}(u, w)<d_{G}(u, v)$, the minimality of k implies that $d_{G}(u, w)=d_{C}(u, w)$. If w, v are adjacent, then

$$
d_{C}(u, v) \leq d_{C}(u, w)+1=d_{G}(u, w)+1 \leq i+2 \leq k+1,
$$

a contradiction; so w is nonadjacent to v and similarly nonadjacent to u. Consequently $w \in V(A)$. Let R, S be the subpaths of A between w and a_{1}, a_{2} respectively. Since w, v are nonadjacent, the path $R \cup P_{1}$ has length at most that of L_{1}, and so less than $|E(C)| / 2$, and hence $d_{C}\left(w, b_{1}\right)=\left|E\left(R \cup P_{1}\right)\right|$. From the minimality of k, the path $b_{1}-q_{1}-\cdots-q_{i}-w$ has length at least the length of $R \cup P_{1}$; and similarly $w-q_{i} \cdots \cdots-q_{k}-b_{2}$ has length at least that of $S \cup P_{2}$. Adding, we deduce that $P_{1} \cup A \cup P_{2}$ has length at most $k+3$. But $\left|E\left(L_{1}\right)\right| \geq k+2$, and we suppose for a contradiction that not both b_{1}, b_{2} belong to $V\left(L_{1}\right)$, and so the length of L_{1} is strictly less than that of $P_{1} \cup A \cup P_{2}$. Hence we have equality throughout; so $\left|E\left(L_{1}\right)\right|=k+2$, and $P_{1} \cup A \cup P_{2}$ has length $k+3$, and exactly one edge of $P_{1} \cup P_{2}$ does not belong to L_{1}; and so from the symmetry between u, v we may assume that $u=b_{1}$ and v, b_{2} are adjacent. But the path $b_{1}-q_{1} \cdots-q_{k}-b_{2}$ has length $k+1$, and this has the same parity as, and is shorter by two than, the path $P_{1} \cup A \cup P_{2}$, so its union with the path B is an odd hole C^{\prime} of length two less than that of C. Consequently C^{\prime} is not long; but this is impossible, since C has length more than 2ℓ. This shows that $b_{1}, b_{2} \in V\left(L_{1}\right)$, and so proves (4).

(5) L_{1} has length $k+2$.

From (2) and (3), there exists $i \in\{2, \ldots, k-1\}$ such that q_{i} has a neighbour $w \in L_{1}^{*}$. From the minimality of k, the path $u-q_{1} \cdots \cdot-q_{i}-w$ has length at least the length of the subpath of L_{1} between u, w; and the path $w-q_{i^{-}} \cdots-q_{k}-v$ has length at least the length of the subpath of L_{1} between w, v. Adding, we deduce that $k+3$ is at least the length of L_{1}. But adding the path $u-q_{1}-\cdots-q_{k}-v$ to L_{2} makes a hole, of length at least ℓ since L_{2} has length at least $|C| / 2$; and this hole is shorter than C, and so has even length. Consequently $k+1$ has the same parity as the length of L_{2}, and hence k has the same parity as the length of L_{1}. Since the length of L_{1} is at most $k+3$, it equals $k+2$. This proves (5).

Let the vertices of L_{1} in order be $u=w_{0}-w_{1}-w_{k+1}-w_{k+2}=v$.
(6) For $1 \leq i \leq k$ and $1 \leq j \leq k+1$, if q_{i}, w_{j} are adjacent then $j \in\{i, i+1\}$.

If $j<i$ then the path $w_{j}-q_{i^{-}} \cdots-q_{k}-v$ has length less than the length of $w_{j}-w_{j+1^{-}} \cdots-w_{k+1^{-}} v$, since the first path has length $k-i+2$ and the second has length $k+2-j=d_{C}\left(w_{j}, v\right)$. This is contrary to the minimality of k. Similarly, if $j>i+1$, the path $u-q_{1}-\cdots-q_{i}-w_{j}$ is shorter than $u-w_{1}-\cdots-w_{j}$, again a contradiction. This proves (6).

From (2), we may assume (exchanging u, v if necessary) that there exists $i \in\{2, \ldots, k-1\}$ such that q_{i} is adjacent to w_{i}. Let C^{\prime} be the union of L_{2} and the path

$$
u-w_{1}-\cdots-w_{i}-q_{i}-\cdots-q_{k}-v .
$$

From (3), (4) and (6), C^{\prime} is a hole of length $|C|$, and so is a shortest long odd hole. Let G^{\prime} be the subgraph of G induced on $V(C) \cup V(Q)$. Then C^{\prime} is a hole in G^{\prime}, and moreover, in $G^{\prime} C^{\prime}$ is a clean hole, because of (6). But the path $u-q_{1} \cdots-q_{i}$ is shorter then the path $u-w_{1}-\cdots-w_{i}-q_{i}$, and the latter has length $d_{C^{\prime}}\left(u, q_{i}\right)$; and this contradicts the minimality of k. This proves 3.3.

We need the following lemma.
3.4 Let G be a graph containing no long jewel of order at most k, and no long odd hole of length less than $k+\ell$. Let C be a shortest long odd hole, and let $v \in V(G)$ be C-major. Then every path of C that contains all the neighbours of v in $V(C)$ has length more than k.

Proof. Suppose that P is a path of C, with ends a, b say, containing all the neighbours of v in $V(C)$, and P has length at most k. Since v is C-major, it follows that P has length at least three. Let Q be the other path of C with ends a, b. Since by hypothesis, C has length at least $k+\ell$, it follows that Q has length at least ℓ. Adding the path $a-v-b$ to Q therefore gives a long hole, and it is shorter than C since P has length at least three. Consequently this hole is not odd; so Q is even and so P is odd. But then the three paths $P, a-v-b$ and Q form a long jewel of order at most k, a contradiction. This proves 3.4.

Now we prove the second statement of 3.2 , in the following.
3.5 Let G be a candidate, and let C be a clean shortest long odd hole in G. Let $u, v \in V(C)$ be nonadjacent, and let Q be a shortest path in G joining u, v. Let L_{1}, L_{2} be the paths of C that join u, v, where L_{1} is shorter than L_{2}. Then $L_{2} \cup Q$ is a clean shortest long odd hole.

Proof. Let Q have vertices $u-q_{1} \cdots-q_{k}-v$ in order. We proceed by induction on k. By $3.3, L_{1}$ and Q have the same length. If some vertex q_{i} of Q^{*} belongs to L_{2}^{*}, then by two applications of 3.3 , $d_{C}\left(u, q_{i}\right) \leq i$ and $d_{C}\left(q_{i}, v\right) \leq k-i+1$, so L_{2} has length at most $k+1$, which is impossible since L_{1} has length $k+1$ and L_{2} is longer. Thus $Q^{*} \cap L_{2}^{*}=\emptyset$, and so $L_{2} \cup Q$ is a cycle, with the same length as C.
(1) $L_{2} \cup Q$ is induced.

Suppose it is not induced. Then there exist $i \in\{1, \ldots, k\}$ and $w \in L_{2}^{*}$ such that q_{i}, w are adjacent. Let R, S be the subpaths of L_{2} between w and u, v respectively. From 3.3, $d_{C}(u, w) \leq i+1 \leq\left|E\left(L_{1}\right)\right|$, and so R has length $d_{C}(u, w) \leq i+1$ (because the other path of C joining u, w includes L_{1} and so is too long); and $d_{C}(w, v) \leq k-i+2 \leq\left|E\left(L_{1}\right)\right|$, so similarly S has length $d_{C}(u, w) \leq k-i+2$. Thus

$$
\left|E\left(L_{2}\right)\right|=|E(R)|+|E(S)|=k+3-\left(i+1-d_{C}(u, w)\right)-\left(k+i-2-d_{C}(v, w)\right) .
$$

In particular, L_{2} has length at most $k+3$. Since L_{1} has length $k+1$ and L_{1}, L_{2} have opposite parity, it follows that L_{2} has length $k+2$, and so $\left(i+1-d_{C}(u, w)\right)+\left(k+i-2-d_{C}(v, w)\right)=1$; and from the symmetry between u, v, we may assume that $d_{C}(w, v)=k-i+2$ and $d_{C}(u, w)=i$. Since the path $w-q_{i^{-}} \cdots-q_{k}-v$ has the same length as S, and the latter is a shortest path between v, w by 3.3, it follows that $w-q_{i} \cdots-q_{k}-v$ is also a shortest path between v, w. Suppose that $i>1$; then from the inductive hypothesis, the union of the path $L_{1} \cup R$ and $w-q_{i^{-}} \cdots-q_{k}-v$ is a clean shortest long odd hole C^{\prime} say. The two subpaths of C^{\prime} between u, q_{i} have lengths $\left|E\left(L_{1}\right)\right|+k-i=2 k+1-i$ and $|E(R)|+1$. By 3.3, one of these paths has length at most the length of $u-q_{1} \cdots-q_{i}$, that is, at most i. But
$2 k+1-i>i$ since $i \leq k$; and $|E(R)|+1>i$ since $|E(R)|=\left|E\left(L_{2}\right)\right|-|E(S)|=k+2-(k-i+2)=i$, a contradiction. This proves (1).

Let $C^{\prime}=L_{2} \cup Q$; then C^{\prime} is a shortest long odd hole. It only remains to check that C^{\prime} is clean. Suppose not. Then there is a C^{\prime}-major vertex x. Since x is not C-major, x has a neighbour in the interior of Q. Since Q is a shortest path, there is a subpath P_{1} of Q of length at most two containing all neighbours of x in $V(Q)$; choose P_{1} minimal. Since x is C^{\prime}-major, it has a neighbour in the interior of L_{2}. Since x is not C-major, there is a path P_{2} of L_{2}, of length at most two, containing all neighbours of x in $V(C)$; choose P_{2} minimal. Let P_{1} have ends a_{1}, b_{1}, where u, a_{1}, b_{1}, v are in order in Q, and let P_{2} have ends a_{2}, b_{2}, where u, a_{2}, b_{2}, v are in order in L_{2}. Let A be the path of C^{\prime} between a_{1}, a_{2} that contains u, and let B be the path of C^{\prime} between b_{1}, b_{2} that contains v. By 3.4, the path $P_{1} \cup A \cup P_{2}$ has length at least $\ell+3$, and so does the path $P_{1} \cup B \cup P_{2}$. In particular, P_{1}, P_{2} are vertex-disjoint and do not contain u or v. Since C^{\prime} has length at least $2 \ell+3$, one of A, B has length at least ℓ, say A. Hence the hole obtained by adding $a_{1}-x-a_{2}$ to A is long, and shorter than C, so even; and hence A has even length. The path $P_{1} \cup B \cup P_{2}$ therefore has odd length, and so this path, $a_{1}-x-a_{2}$ and A form a long jewel, of order the length of $P_{1} \cup B \cup P_{2}$; and so this path has length at least $\ell+3$. If P_{1} has length two, let it have vertices $q_{i-1}-q_{i}-q_{i+1}$; then the path

$$
u-q_{1^{-}} \cdots-q_{i-1^{-}} v-q_{i+1^{-}} \cdots-q_{k}-v
$$

is a path between u, v with the same length as Q, and violates (1). Thus P_{1} has length at most one. Consequently B has length at least ℓ; and so B is even. Since C^{\prime} is odd, and A, B are both even, it follows that exactly one of P_{1}, P_{2} is odd. If P_{2} is odd, that is, if a_{2}, b_{2} are adjacent, then since P_{1} is even and has length at most one, it follows that $a_{1}=b_{1}$; and the three paths A, B and $a_{1}-x$ form a long pyramid. Thus P_{2} is even and P_{1} is odd. If $a_{2}=b_{2}$ then similarly the three paths A, B and $a_{2}-x$ form a long pyramid; so P_{2} has length two. Since x is not C-major, it has no neighbours in L_{1}. Since P_{1} is odd, it follows that $k \geq 2$, so from the inductive hypothesis, the hole obtained from C by replacing the middle vertex of P_{2} by x is a clean shortest long odd hole, violating (1). This proves that C^{\prime} is clean, and so completes the inductive proof of 3.5 .

Now we can give the main result of this section. (In the following, we could bring the running time down to $O\left(|G|^{4}\right)$, but there is no need.)

3.6 There is an algorithm with the following specifications:

Input: A candidate G.
Output: Decides either that G has a long hole, or that there is no clean shortest long odd hole in G.
Running time: $O\left(|G|^{5}\right)$.
Proof. If C is a shortest long odd hole in G, let $u, v, w \in V(C)$ be chosen such that each of $d_{C}(u, v), d_{C}(v, w), d_{C}(w, u)$ equals either $\lfloor|C| / 3\rfloor$ or $\lceil|C| / 3\rceil$. Here is the algorithm: guess u, v, w, find a shortest path between each pair of them, and test whether these three paths make a long odd hole. If so, output that G has an odd hole. After checking all triples, if none has produced an odd hole, output that G has no clean shortest long odd hole. It follows immediately from 3.2 that the output is correct.

4 Covering by a short path

Now we begin the third step of the main algorithm: cleaning a shortest long odd hole. In this section we prove some preliminary lemmas. Let C be a shortest long odd hole in G, and let x be C-major. An x-gap means a path of C of length at least two, with both ends adjacent to x and with no interior vertices adjacent to x; so if P is an x-gap then adding x gives a hole. If x, y are distinct nonadjacent C-major vertices in G, an (x, y)-gap means a path P of C such that $V(P)$ is the interior of an induced path of G between x and y. If x, y are adjacent C-major vertices, an (x, y)-gap means a path P of C such that $V(P)$ is the interior of an induced path of $G \backslash e$ between x and y, where e is the edge $x y$. Two sets of vertices X, Y are anticomplete if they are disjoint and there are no edges between them. We use the same term for two subgraphs P, Q; thus we say P is anticomplete to Q if $V(P)$ is anticomplete to $V(Q)$.
4.1 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices. Then there is a (u, v)-gap of length less than $\ell / 2-1$.

Proof. Let A, B be the sets of neighbours of u, v in $V(C)$ respectively. We may assume that u, v have no common neighbour in $V(C)$, because that would make an (x, y)-gap of length zero; and so there are an even number of (u, v)-gaps. Let us number them $D_{1}, \ldots, D_{2 k}$ say, in order in C. We may assume that each D_{i} has length at least $\ell / 2-1$, and in particular, have length at least two, since $\ell \geq 5$. For $1 \leq i \leq 2 k$, let D_{i} have ends $a_{i} \in A$ and $b_{i} \in B$. We say $i, j \in\{1, \ldots, 2 k\}$ are consecutive if either $|j-i|=1$ or $|j-i|=2 k-1$.
(1) For all $i, j \in\{1, \ldots, 2 k\}$, if D_{i}, D_{j} have different parity then i, j are consecutive.

Suppose not; then we may assume that D_{1}, D_{i} have opposite parity where $3 \leq i \leq 2 k-1$. Let a_{1}^{\prime} be the vertex of C adjacent to a_{1} that is not in D_{1}, and define b_{1}^{\prime} similarly. Since $i \neq 2,2 k$ it follows that $a_{1}, b_{1} \notin V\left(D_{i}\right)$. If $a_{1}^{\prime} \in V\left(D_{i}\right)$ then since $i, 1$ are not consecutive, it follows that $\left\{a_{1}, a_{1}^{\prime}\right\}$ includes the vertex set of a (u, v)-gap; but this is impossible since all (u, v)-gaps have length at least two. So $a_{1}^{\prime}, b_{1}^{\prime} \notin V\left(D_{i}\right)$, and adding u, v to $D_{1} \cup D_{i}$ gives a long odd hole, shorter than C, a contradiction. This proves (1).

(2) $D_{1}, \ldots, D_{2 k}$ all have the same parity.

Suppose not; then $k \leq 2$, and we may assume that D_{i} has the same parity as i for $1 \leq i \leq 2 k$. If say $a_{1}=a_{2}$, then adding v to $D_{1} \cup D_{2}$ gives a long odd hole shorter than C (note that $b_{1} \neq b_{2}$ and they are nonadjacent, since u has at least two neighbours); so $D_{1}, \ldots, D_{2 k}$ are pairwise vertexdisjoint. Since D_{1}, D_{2} have opposite parity, they are not anticomplete, and we may assume that a_{1} is adjacent to one of a_{2}, b_{2}; and not to b_{2} since all (u, v)-gaps have length at least two. So a_{1}, a_{2} are adjacent. Since u is C-major, it follows that $k \geq 2$, and so $k=2$. Similarly either a_{2}, a_{3} are adjacent, or b_{2}, b_{3} are adjacent, and the first is impossible since a_{2} is adjacent to a_{1} and has a neighbour in the interior of D_{2}. So $b_{2} b_{3}, a_{3} a_{4}, b_{4} b_{1}$ are edges; but then C has even length, a contradiction. This proves (2).

From (2), an even number of edges of C belong to (u, v)-gaps. Let F be the graph obtained from C by deleting the edges and internal vertices of every (u, v)-gap. Since C is odd, it follows that
$|E(F)|$ is odd, and so some component P of F is odd. Now the ends of P belong to two consecutive (u, v)-gaps, D_{1}, D_{2} say; and so we may assume that P has ends a_{1}, a_{2}. But then $D_{1} \cup P \cup D_{2}$ is odd, and adding v makes a long odd hole of length less than C, a contradiction. This proves 4.1.

A similar proof yields:
4.2 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices. Suppose that all (u, v)-gaps are odd; then for every long (u, v)-gap Q, there is a (u, v)-gap of length at most $\ell-5$, anticomplete to Q.

Proof. Since an even number of edges belong to (u, v)-gaps, it follows as in the proof of 4.1 (and using the notation of that proof) that some component P of F is odd, and we may assume that P has ends a_{1}, a_{2}. Then $D_{1} \cup P \cup D_{2}$ is odd, and adding v makes an odd hole of length less than that of C, which therefore has length less than ℓ. Since P is odd, it follows that the sum of the lengths of D_{1}, D_{2} is at most $\ell-4$, and so each has length at most $\ell-5$. Suppose that neither of them is anticomplete to Q. Since Q exists and $Q \neq D_{1}, D_{2}$, there are at least four (u, v)-gaps; let $Q=D_{i}$ say where $3 \leq i \leq 2 k$. Since D_{i}, D_{2} are not anticomplete, it follows that $i \leq 4$; and similarly $i \geq 2 k-1$, and so $k=2$, and we may assume that $i=3$ from the symmetry. Since D_{1}, D_{3} are not anticomplete, it follows that $b_{1}=b_{4}, a_{3}=a_{4}$, and a_{4}, b_{4} are adjacent. Also since D_{2}, D_{3} are not anticomplete, the vertices b_{2}, b_{3} are either equal or adjacent; and since C is odd and $D_{1}, D_{2}, D_{3}, D_{4}$ and P are odd, it follows that $b_{2}=b_{3}$. Now the three paths $D_{1} \cup P \cup D_{2}, b_{4}-v-b_{2}$ and D_{3} form a long jewel of order $\left|V\left(D_{1} \cup P \cup D_{2}\right)\right|<\ell$, a contradiction. This proves 4.2.

The next result is crucial, and provides the machinery behind all the proof of 1.1 that is novel. When we apply this, we will have a subpath P of some hole C, and some C-major vertices with neighbours in $V(P)$; the sets A_{1}, \ldots, A_{k} in 4.3 will be the neighbour sets in $V(P)$ of these C-major vertices.
4.3 Let P be a path of odd length, with ends p, p^{\prime}. Let $A_{1}, \ldots, A_{k} \subseteq V(P)$ be nonempty, and let us say a subpath Q of P is "covering" if $V(Q) \cap A_{s} \neq \emptyset$ for $1 \leq s \leq k$. Suppose that the minimal covering subpath with one end p, and the minimal covering subpath with one end p^{\prime}, have the same parity. Then there is an odd subpath Q of P such that Q is covering, and for some (possibly equal) $s, t \in\{1, \ldots, k\}$, one end of Q belongs to A_{s}, the other end belongs to A_{t}, and A_{s}, A_{t} contain no other vertex of Q.

Proof. Let P have vertices $p_{0}-\cdots-p_{n}$ in order. Thus n is odd. Choose $d \in\{0, \ldots, n\}$ minimum such that $p_{0}-\cdots-p_{d}$ is covering. For $d \leq j \leq n$, choose $i \leq j$ maximum such that $p_{i^{-}} \cdots-p_{j}$ is covering and define $m(j)=j-i$. If $m(d)$ is odd, then the subpath of P between $p_{d-m(d)}$ and p_{d} satisfies the theorem; so we assume that $m(d)$ is even. Also, from the hypothesis, $m(n)$ and d have the same parity, so $m(n)+n$ and $m(d)+d$ have different parity. Consequently there exists i with $d+1 \leq i \leq n$ such that $m(i)+i$ has different parity from $m(i-1)+i-1$. It follows that $m(i), m(i-1)$ have the same parity. Choose $h \leq i-1$ maximum such that $p_{h^{-}} \cdots-p_{i-1}$ is covering. Consequently $i-1-h=m(i-1)$. From the maximality of h, there exists $t \in\{1, \ldots, k\}$ such that $p_{h} \in A_{t}$, and $p_{h+1}, \ldots, p_{i-1} \notin A_{t}$. Since $m(i), m(i-1)$ have the same parity, it follows that one of $p_{h+1}, \ldots, p_{i-1}, p_{i}$ belongs to A_{t}, and so $p_{i} \in A_{t}$. If i, h have opposite parity, the path $p_{h^{-}} \cdots-p_{i}$ satisfies the theorem, so we assume they have the same parity. Choose $g \leq i$ maximum such that $p_{g^{-}} \cdots-p_{i}$ is covering.

Thus $i-g=m(i)$. From the maximality of g, there exists $s \in\{1, \ldots, k\}$ such that $p_{g} \in A_{s}$ and $p_{g+1}, \ldots, p_{i} \notin A_{s}$. Since $m(i-1), m(i)$ have the same parity, it follows that $i-1-h$ and $i-g$ have the same parity, that is, $g-h$ is odd. But i, h have the same parity, so $i-g$ is odd, and the path $p_{g^{-}} \cdots-p_{i}$ satisfies the theorem. This proves 4.3.

5 Bases

In this section we prepare to apply 4.3 to generate a cleaning list.
5.1 Let C be a shortest long odd hole in a candidate G, and let u, v be nonadjacent C-major vertices. There is not both a long odd (u, v)-gap and a long even (u, v)-gap.

Proof. Let P be a long odd (u, v)-gap, and let Q be a long even (u, v)-gap. They are not anticomplete, since otherwise adding u, v to their union gives a long odd hole, shorter than C, a contradiction. If they share a vertex, then their union is either a long odd u-gap or a long odd v-gap, a contradiction. So they are vertex-disjoint. Let P have ends p_{1}, p_{2}, and let Q have ends q_{1}, q_{2}, where u is adjacent to p_{1}, q_{1} and v to p_{2}, q_{2}. We may assume that one of q_{1}, q_{2} is adjacent to p_{2}. If q_{1} is adjacent to p_{2} then $v-p_{2}-q_{1}-Q-q_{2}-v$ is a long odd hole shorter than C. So q_{2} is adjacent to p_{2}. Let R be the path of C joining p_{1}, q_{1} that does not contain p_{2}, q_{2}. Thus R has odd length, and so the three paths $R, p_{1}-u-q_{1}$ and $p_{1}-P-p_{2}-q_{2}-Q-q_{1}$ form a long jewel; and therefore this jewel has order at least $\ell+3$. Consequently R has at least $\ell+4$ vertices. Let r_{1}, r_{2} be the neighbours of p_{1}, q_{1} respectively in R. Suppose that v has no neighbours in $V(R) \backslash\left\{p_{1}, r_{1}, r_{2}, q_{1}\right\}$. Since v is C-major, it is adjacent to at least one of r_{1}, r_{2}; not to exactly one, since it would make a long pyramid with C, and not with both since then $v-r_{1}-R-r_{2}-v$ is a long odd hole shorter than C; in each case a contradiction. So v has a neighbour in $V(R) \backslash\left\{p_{1}, r_{1}, r_{2}, q_{1}\right\}$. Now suppose that u has no neighbour in this set. If u is adjacent to neither of r_{1}, r_{2} then $u-p_{1}-R-q_{1}-u$ is a long odd hole shorter than C; if u is adjacent to both r_{1}, r_{2} then $u-r_{1}-R-r_{2}-u$ is a long odd hole shorter than C; and if u is adjacent to exactly one of r_{1}, r_{2}, it makes a long pyramid with C, in each case a contradiction. So u also has a neighbour in $V(R) \backslash\left\{p_{1}, r_{1}, r_{2}, q_{1}\right\}$. But then there is a path joining u, v with interior in $V(R) \backslash\left\{p_{1}, r_{1}, r_{2}, q_{1}\right\}$; and this path, with $u-p_{1}-P-p_{2}$ and $u-q_{1}-Q-q_{2}$, forms a long pyramid, a contradiction. This proves 5.1.

Let C be a shortest long odd hole in a candidate G. If C is not clean, there is a maximal path D of C such that some C-major vertex (x say) is adjacent to its ends and not to any of its internal vertices. We call (x, D) a base (for C in G). A base (x, D) is remote if D has length at least 2ℓ, and no C-major vertex different from x has a neighbour $w \in V(C)$ such that $d_{C}\left(w, d_{i}\right)<\ell$ for some $i \in\{1,2\}$, where d_{1}, d_{2} are the ends of D. (If there is a C-major vertex different from x, the second condition just given implies the first.) It is easy to "arrange" algorithmically that a base is remote: we just guess the two paths of C of length 2ℓ with middle vertex d_{1}, d_{2} respectively, and delete all vertices not in these paths with a neighbour in the interior of one of them, except x. (This is safe, because no vertex of C will be deleted.) If any C-major vertex different from x remains, then the base has become remote (and if they all have been deleted then we have won). So the theorems to come will often assume that (x, D) is a remote base. If (x, D) is a remote base then D is even, since adding v to D gives a long hole shorter than C.

In what follows, when we have a base (x, D), we will always denote the ends of D by d_{1}, d_{2}. If v is a C-major vertex nonadjacent to x, then v has a neighbour in $V(D)$ from the maximality of D, and since (x, D) is remote, there are two (x, v)-gaps included in $D, D_{1}(v)$ and $D_{2}(v)$ say, where for $i=1,2, D_{i}(v)$ has ends d_{i} and $d_{i}(v)$ say. Both of them are long, since (x, D) is remote, so they have the same parity by 5.1.

We will use this notation throughout the paper without defining it again.
5.2 Let C be a shortest long odd hole C in a candidate G, and let (x, D) be a remote base. Then for every C-major vertex v nonadjacent to x, all (x, v)-gaps have the same parity.

Proof. Let D^{\prime} be the path of C different from D with ends d_{1}, d_{2}. Since D is even (because adding x gives a long hole shorter than C) it follows that D^{\prime} is odd. Thus the three paths $D^{\prime}, d_{1}-x-d_{2}$ and D form a long jewel, and so D^{\prime} has length at least $\ell+3$. Consequently x has a neighbour in C that is different from and nonadjacent to d_{1}, d_{2} (to see this, suppose not; then x has at most four neighbours in C, and if three then it makes a long pyramid, and if two or four then it makes a long odd hole shorter than C). Hence every (x, v)-gap different from $D_{1}(v), D_{2}(v)$ is anticomplete to one of $D_{1}(v), D_{2}(v)$, and therefore has the same parity as $D_{1}(v), D_{2}(v)$. This proves 5.2.

Let (x, D) be a remote base for C. If v is a C-major vertex nonadjacent to x, we say the x-parity of v is the common parity of all (x, v)-gaps.
5.3 Let C be a shortest long odd hole in a candidate G, and let (x, D) be a remote base. Let v_{1}, v_{2} be nonadjacent C-major vertices, nonadjacent to x, and with the same x-parity, and let Q be a long odd $\left(v_{1}, v_{2}\right)$-gap edge-disjoint from D. Then x has no neighbour in $V(Q)$.

Proof. Let Q have ends q_{1}, q_{2}, where $v_{1} q_{1}$ and $v_{2} q_{2}$ are edges. Since q_{i} is adjacent to v_{i}, it follows that $d_{C}\left(q_{i}, d_{j}\right) \geq \ell$ for $j=1,2$; and so Q is anticomplete to D.

Suppose x has a neighbour in $V(Q)$. If x has no neighbour in the interior of Q, then x is adjacent to one of q_{1}, q_{2}, so one and therefore both of v_{1}, v_{2} have even x-parity, and consequently Q is not an $\left(x, v_{1}\right)$ or (x, v_{2})-gap; and therefore x is adjacent to both q_{1}, q_{2}, and adding x to Q would give a long odd hole shorter than C, a contradiction. So x has a neighbour in the interior of Q.

Figure 3: For 5.3.

Consequently there is an $\left(x, v_{1}\right)$-gap P_{1} that is anticomplete to D and v_{2} has no neighbour in $V\left(P_{1}\right)$; and also there is P_{2} similarly. For $i=1,2$, let P_{i}^{+}be the path between v_{i}, x with interior $V\left(P_{i}\right)$. Now every (v_{1}, v_{2})-gap included in D is anticomplete to Q, and since Q is odd and has length at least ℓ, it follows that every (v_{1}, v_{2})-gap included in D has odd length. In particular, $d_{1}\left(v_{1}\right) \neq d_{1}\left(v_{2}\right)$. From the symmetry we may assume that $D_{1}\left(v_{2}\right)$ is a proper subpath of $D_{1}\left(v_{1}\right)$. Choose a vertex d_{0} of the path $d_{1}\left(v_{1}\right)-D-d_{1}\left(v_{2}\right)$, adjacent to v_{2}, such that the subpath $d_{1}\left(v_{1}\right)-D-d_{0}$ is minimal. The latter is a $\left(v_{1}, v_{2}\right)$-gap, and so odd. On the other hand, since v_{1}, v_{2} have same x-parity, the paths $D_{1}\left(v_{1}\right), D_{1}\left(v_{2}\right)$ have the same parity, and so $d_{1}\left(v_{1}\right)-D-d_{1}\left(v_{2}\right)$ is even; and hence $d_{1}\left(v_{2}\right)-D-d_{0}$ is odd. If $d_{1}\left(v_{2}\right), d_{0}$ are nonadjacent, then the path $d_{0}-D-d_{1}\left(v_{1}\right)-v_{1}-P_{1}^{+}-x-d_{1}-D-d_{1}\left(v_{1}\right)$ can be extended to a hole by adding either the path $d_{1}\left(v_{2}\right)-D-d_{0}$ or $d_{1}\left(v_{2}\right)-v_{2}-d_{0}$, and since these two paths have different parity, one of these holes is odd. It is long since $d_{1}-D-d_{1}\left(v_{2}\right)$ has length at least ℓ; and it is shorter than C, a contradiction. Thus $d_{1}\left(v_{2}\right), d_{0}$ are adjacent. Choose a minimal subpath R of D with one end d_{2} such that the other end, r say, is adjacent to one of v_{1}, v_{2}. Thus R has length at least ℓ, and only one of v_{1}, v_{2} has a neighbour in $V(R)$. If r is adjacent to v_{1}, the three paths $x-d_{2}-R-r-v_{1}-d_{1}\left(v_{1}\right)-D-d_{0}, x-d_{1}-D-d_{1}\left(v_{2}\right)$ and $x-P_{2}^{+}-v_{2}$ form a long pyramid (omitting v_{1} from the first if $d_{1}\left(v_{1}\right), d_{0}$ are equal or adjacent). If r is adjacent to v_{2}, the three paths $x-d_{2}-R-r-v_{2}$, $x-d_{1}-D-d_{1}\left(v_{1}\right)$ and $x-P_{1}^{+}-v_{1}-d_{1}\left(v_{1}\right)-D-d_{0}$ form a long pyramid, a contradiction. This proves 5.3.

6 Catch and clean

Let C be a shortest long odd hole, and let P be a path of C. If v is a vertex, we say that P catches v if $v \notin V(P)$ and v is adjacent to an internal vertex of P. The point is, if P is a path of C then we are sure that no vertices it catches belong to $V(C)$; they might not all be C-major, but it does no harm to delete them. This is a quite effective way to clean C of C-major vertices: we guess a path of bounded length (or a bounded number of such paths) and delete all the vertices each one catches. For instance, if we could prove that there is such a set of paths of C (of bounded size, and each of bounded length) that together catch all the C-major vertices, we could clean C and be done. We have not been able to prove or disprove this. Nonetheless, catching C-major vertices by paths is a useful technique, and we will develop it in this section. If \mathcal{F} is a set of paths of C, its cost is the number of vertices in the union of the paths; and it catches v if one of its paths catches v.
6.1 Let C be a shortest long odd hole in a candidate G, and let (x, D) be a remote base. Let M be a set of C-major vertices, all nonadjacent to x and with the same x-parity. Let $v_{1}, v_{2} \in M$ be adjacent, and let Q be an odd $\left(v_{1}, v_{2}\right)$-gap, with ends q_{1}, q_{2}, edge-disjoint from D, where v_{i}, q_{i} are adjacent for $i=1,2$. Suppose that x has a neighbour in $V(Q)$ and every vertex in M has a neighbour in $V(Q)$. Then there is a set of paths of C with cost at most $5 \ell+12$ that catches all the vertices in M.

Figure 4: For 6.1.
Proof. For $i=1,2$, let P_{i} be the $\left(x, v_{i}\right)$-gap included in Q, and let its ends be q_{i}, p_{i}.
(1) $d_{1}\left(v_{1}\right)=d_{1}\left(v_{2}\right)$.

Suppose not; then we can assume that $D_{1}\left(v_{1}\right)$ is a proper subpath of $D_{1}\left(v_{2}\right)$. But then the holes

$$
\begin{gathered}
v_{2}-d_{1}\left(v_{2}\right)-D_{1}\left(v_{2}\right)-d_{1}-x-p_{2}-P_{2}-q_{2}-v_{2} \\
v_{2}-v_{1}-d_{1}\left(v_{1}\right)-D_{1}\left(v_{1}\right)-d_{1}-x-p_{2}-P_{2}-q_{2}-v_{2}
\end{gathered}
$$

have opposite parity, and are both long and shorter than C, a contradiction. This proves (1).
(2) p_{1}, p_{2} are distinct; and if p_{1}, p_{2} are nonadjacent then the sum of the lengths of P_{1}, P_{2} is at most ℓ - 6 .

Since P_{1}, P_{2} have the same parity, it follows that the path $p_{1}-Q-p_{2}$ is odd, and in particular $p_{1} \neq p_{2}$. If p_{1}, p_{2} are nonadjacent, there is an odd hole

$$
x-p_{1}-P_{1}-q_{1}-v_{1}-v_{2}-q_{2}-P_{2}-p_{2}-x
$$

which is shorter than C, and hence has length less than ℓ. This proves (2).
(3) Let T be a $\left(v_{1}, x\right)$-gap. If $v \in M$ is adjacent to v_{1}, then either $d_{1}(v)=d_{1}\left(v_{1}\right)$, or v has a neighbour in $V(T)$.

Let $v \in M$ be adjacent to v_{1}, and suppose that $d_{1}(v) \neq d_{1}\left(v_{1}\right)$, and v has no neighbour in $V(T)$. One of $D_{1}(v), D_{1}\left(v_{1}\right)$ is a proper subpath of the other. If $D_{1}\left(v_{1}\right)$ is a proper subpath of $D_{1}(v)$, choose a path S joining v, x with interior in the interior of Q; then since S and $D_{1}\left(v_{1}\right)$ have the same parity, it follows that the hole $v-v_{1}-d_{1}\left(v_{1}\right)-D_{1}\left(v_{1}\right)-d_{1}-x-S-v$ is a long odd hole shorter than C, a contradiction. If $D_{1}(v)$ is a proper subpath of $D_{1}\left(v_{1}\right)$, let T^{+}be the path between v_{1}, x with interior $V(T)$; then since T and $D_{1}(v)$ have the same parity, the hole $v_{1}-v-d_{1}(v)-D_{1}(v)-d_{1}-x-T^{+}-v_{1}$ is a long odd hole shorter than C, a contradiction. This proves (3).

For each $v \in M$ and for $i=1,2$, let $Q_{i}(v)$ be the $\left(v, v_{i}\right)$-gap in Q, and let $q_{i}(v)$ be the neighbour of v in $Q_{i}(v)$. Now there are two cases, depending whether p_{1}, p_{2} are adjacent or not.
(4) If p_{1}, p_{2} are adjacent, we can catch M with a set of paths of C with cost at most $5 \ell+12$.

Let M_{0} be the set of all $v \in M$ such that either one of $Q_{1}(v), Q_{2}(v)$ has length less than ℓ, or one of the (x, v)-gaps in Q has length less than ℓ. We can catch M_{0} with a set of three paths of C, two of length $\ell+1$ and one of length $2 \ell+1$, so with cost at most $4 \ell+6$. For $i=1,2$, let M_{i} be the set of $v \in M \backslash M_{0}$ that are adjacent to v_{i}. By 4.1, there is a $\left(v_{1}, x\right)$-gap T of length less than $\ell / 2-1$, and the same for v_{2}, so by (3) we can catch $M_{1} \cup M_{2}$ with a set of paths of C with cost at most $\ell+6$. We claim that $M_{0} \cup M_{1} \cup M_{2}=M$; for suppose that $v \in M \backslash\left(M_{0} \cup M_{1} \cup M_{2}\right)$. Hence v is nonadjacent to both v_{1}, v_{2}. Suppose first that v has a neighbour in P_{1} and a neighbour in P_{2}. Then there are two (x, v)-gaps in Q, with the same parity, and there is a long odd hole shorter than C, consisting of the union of the two (x, v)-gaps, the edge $p_{1} p_{2}$, and the two edges from v to the ends of the (x, v)-gaps; and this is impossible. Thus we may assume that all neighbours of v in $V(Q)$ belong to $V\left(P_{1}\right)$. Since x has neighbours in $Q_{2}(v)$, and $Q_{2}(v)$ is long, it is even by 5.3; but then the (v, x)-gap and the $\left(x, v_{2}\right)$-gap in $Q_{2}(v)$ have different parities, a contradiction. This proves that $M_{0} \cup M_{1} \cup M_{2}=M$. Consequently we can catch M with a set of paths of C with cost at most $5 \ell+12$. This proves (4).

Henceforth we assume that p_{1}, p_{2} are nonadjacent. Let M_{0} be the set of all vertices $v \in M$ such that either one of $Q_{1}(v), Q_{2}(v)$ has length less than ℓ, or $d_{1}(v)=d_{1}\left(v_{1}\right)$. We can catch M_{0} with a set of three paths of C, with lengths $\ell+1, \ell+1$ and 2 , and hence with cost at most $2 \ell+7$.
(5) If $v \in M \backslash M_{0}$, then

- v is nonadjacent to v_{1}, v_{2}
- $Q_{1}(v), Q_{2}(v)$ are both even; and
- $q_{1}(v), q_{2}(v)$ are adjacent (and so v has exactly two neighbours in $V(Q)$, namely $q_{1}(v), q_{2}(v)$).

Since $Q_{1}(v)$ has length at least ℓ, and P_{1} has length less than ℓ by (2), it follows that v has no neighbour in $V\left(P_{1}\right)$. Since P_{1} is an $\left(x, v_{1}\right)$-gap, and $d_{1}(v) \neq d_{1}\left(v_{1}\right)$, (3) implies that v, v_{1} are nonadjacent, and similarly v, v_{2} are nonadjacent. All neighbours of v in $V(Q)$ lie strictly between p_{1}, p_{2} in Q. Since $Q_{1}(v)$ is long and contains a neighbour of $x, 5.3$ implies that $Q_{1}(v)$ is even, and similarly $Q_{2}(v)$ is even. Thus $q_{1}(v) \neq q_{2}(v)$. If $q_{1}(v), q_{2}(v)$ are nonadjacent, the hole

$$
v-q_{1}(v)-Q_{1}(v)-q_{1}-v_{1}-v_{2}-q_{2}-Q_{2}(v)-q_{2}(v)-v
$$

is long, odd, and shorter than C, a contradiction. Thus $q_{1}(v), q_{2}(v)$ are adjacent. This proves (5).
(6) We can catch $M \backslash M_{0}$ with a set of paths of C with cost at most $\ell+4$.

We may assume that $M \backslash M_{0}$ is nonempty. Choose $u \in M \backslash M_{0}$ such that the path $Q_{1}(u)$ is as short as possible. Now there are three kinds of vertices $v \in M \backslash M_{0}$:

- Let N_{0} be the set of all $v \in M \backslash M_{0}$ such that some (u, v)-gap in Q has length less than ℓ (the (u, v)-gap in Q is unique unless u, v have the same two neighbours in $V(Q)$);
- Let N_{1} be the set of all $v \in M \backslash\left(M_{0} \cup N_{0}\right)$ such that u, v are nonadjacent;
- Let N_{2} be the set of all $v \in M \backslash\left(M_{0} \cup N_{0}\right)$ such that u, v are adjacent.

We can catch N_{0} with one path of length $\ell+1$ (because of the minimality of $Q_{1}(u)$). We claim that $N_{1}=\emptyset$. For suppose that $v \in N_{1}$. Since $Q_{1}(u), Q_{1}(v)$ are both even, it follows that the (u, v)-gap in Q is odd, and long; and so x has no neighbour in it, by 5.3. But then there is a long pyramid formed by the path $x-d_{1}-D_{1}(v)-d_{1}(v)-v$, and the two (x, v)-gaps in Q, extended to x (note that one of the latter is long, since it includes the (u, v)-gap). Thus $N_{1}=\emptyset$.

We claim that $d_{1}(v)=d_{1}(u)$ for all $v \in N_{2}$. Suppose not. If $D_{1}(u)$ is a proper subpath of $D_{1}(v)$, let S be an induced path between x, v with interior in $V(Q)$ that is edge-disjoint from the (u, v)-gap, and therefore contains no neighbour of u. Since $D_{1}(u), D_{1}(v)$ have the same parity, the holes

$$
\begin{gathered}
v-d_{1}(v)-D_{1}(v)-d_{1}-x-S-v \\
v-u-d_{1}(u)-D_{1}(u)-d_{1}-x-S-v
\end{gathered}
$$

have opposite parity, and both are long and shorter than C, a contradiction. If $D_{1}(v)$ is a proper subpath of $D_{1}(u)$, let S be an induced path between x, u with interior in $V(Q)$ that is edge-disjoint from the (u, v)-gap, and therefore contains no neighbour of v. Since $D_{1}(u), D_{1}(v)$ have the same parity, the holes

$$
\begin{gathered}
u-d_{1}(u)-D_{1}(u)-d_{1}-x-S-u \\
u-v-d_{1}(v)-D_{1}(v)-d_{1}-x-S-u
\end{gathered}
$$

have opposite parity, and are both long and shorter than C, a contradiction. This proves that $d_{1}(v)=d_{1}(u)$ for all $v \in N_{2}$; and hence we can catch N_{2} with one path of length two and hence cost three. Since $N_{1}=\emptyset$ and we can catch N_{0} with one path of length $\ell+1$ and hence cost $\ell+2$, this proves (6).

But we can catch M_{0} with a set of paths of C with cost at most $2 \ell+7$; so from (6) we can catch M with cost at most $3 \ell+11$. This proves 6.1.

As a consequence we have:
6.2 Let C be a shortest long odd hole in a candidate G, and let (x, D) be a remote base. Then there is a set of paths of C with cost at most $5 \ell+12$ that catches all C-major vertices that both are nonadjacent to x and have even x-parity.
Proof. Let M be the set of all C-major vertices nonadjacent to x with even x-parity. Let P be the path of C obtained by deleting the interior of D. Every vertex in $M \cup\{x\}$ has at least two neighbours in $V(P)$. Moreover, for each $v \in M \cup\{x\}$, the shortest subpath of P with one end d_{1} and the other adjacent to v has the same parity as $D_{1}(v)$ and so is even; and the same holds for d_{2}. Thus $M \cup\{x\}$ and P satisfy the hypotheses of 4.3 , and so there is an odd path Q of C with ends q_{1}, q_{2}, edge-disjoint from D, and there are vertices $v_{1}, v_{2} \in M \cup\{x\}$, such that $v_{1} q_{1}$ and $v_{2} q_{2}$ are edges and there are no other edges between $\left\{v_{1}, v_{2}\right\}$ and $V(Q)$; and every vertex in $M \cup\{x\}$ has a neighbour in $V(Q)$. If Q has length less than ℓ the result follows, so we assume Q is long. Hence $v_{1} \neq v_{2}$. Now x is nonadjacent to all vertices in M, and they all have even x-parity; so $v_{1}, v_{2} \neq x$. By $5.3, v_{1}, v_{2}$ are adjacent, and the result follows from 6.1. This proves 6.2.
6.3 Let C be a shortest long odd hole in a candidate G, and let (x, D) be a remote base. Then there is a set of paths of C with cost at most $16 \ell+28$ that catches all C-major vertices nonadjacent to x.

Proof. By 6.2 there is a set \mathcal{F}_{1} of paths of C with cost at most $5 \ell+12$ that catches all C-major vertices nonadjacent to x with even x-parity. Let M_{1} be the set of all C-major non-neighbours of x not caught by \mathcal{F}_{1}. Now let us apply 4.3 to the path P of C obtained by deleting the interior of D, and the set $M_{1} \cup\{x\}$. We may assume that $M_{1} \neq \emptyset$. Again, the hypotheses of 4.3 are satisfied, since for each $v \in M_{1}$, the shortest subpath of P with one end d_{1} and the other adjacent to v has the same parity as $D_{1}(v)$ and so is odd; and the same holds for d_{2}; and so for $i=1,2$ the shortest subpath of P with one end d_{i} containing a neighbour of each vertex in $M_{1} \cup\{x\}$ is odd. (Note that although x is adjacent to d_{i}, the members of M_{1} are not adjacent to d_{i}, and $M_{1} \neq \emptyset$, so this shortest subpath does not have length zero.)

It follows that there is an odd path Q of C with ends q_{1}, q_{2}, edge-disjoint from D, and there are vertices $v_{1}, v_{2} \in M \cup\{x\}$, such that $v_{1} q_{1}$ and $v_{2} q_{2}$ are edges and there are no other edges between $\left\{v_{1}, v_{2}\right\}$ and $V(Q)$; and every vertex in $M_{1} \cup\{x\}$ has a neighbour in $V(Q)$. If Q has length less than ℓ the result follows, so we assume Q is long. Hence $v_{1} \neq v_{2}$.

First, suppose that $v_{1}, v_{2} \neq x$. By $5.3, v_{1}, v_{2}$ are adjacent; and by 6.1 the result holds. So we may assume that $v_{2}=x$ say. Let B be the v_{1}-gap that includes Q. Then $\left(v_{1}, B\right)$ is a base for C in $G \backslash N_{1}$, where N is the set of all C-major neighbours adjacent to x, and N_{1} is the union of N with the set of all C-major vertices caught by \mathcal{F}_{1}. Let \mathcal{F}_{2} be the set of the two paths of C of length 2ℓ with middle vertices the ends of B, and let N_{2} be the union of N_{1} with the set of C-major vertices caught by \mathcal{F}_{2}; then $\left(v_{1}, B\right)$ is a remote base for C in $G \backslash N_{2}$. By 6.2 there is a set \mathcal{F}_{3} of paths of C with cost at most $5 \ell+15$ that catches all C-major vertices of $G \backslash N_{2}$ nonadjacent to v_{1} and with even v_{1}-parity. Let N_{3} be the union of N_{2} with the set of C-major vertices caught by \mathcal{F}_{3}. Thus every C-major vertex in $G \backslash N_{3}$ is nonadjacent to x, and has odd x-parity, and odd v_{1}-parity, and its neighbours in $V(C)$ all have C-distance at least ℓ from each end of B.

By 4.2 there is an $\left(x, v_{1}\right)$-gap T of length at most $\ell-5$ anticomplete to Q; and it follows that T is vertex-disjoint from and anticomplete to D. let T^{+}be the path between x, v_{1} with interior $V(T)$. Let T have ends t_{1}, t_{2}, where $t_{1} v$ and $t_{2} x$ are edges. For each C-major vertex v of $G \backslash N_{3}$, let $Q_{1}(v)$ be the $\left(v_{1}, v\right)$-gap in Q, with ends $q_{1}(v)$ and q_{1}, and let $Q_{2}(v)$ be the (x, v)-gap in Q, with ends $q_{2}(v)$ and q_{2}. Note that $Q_{1}(v)$ is long, since $\left(v_{1}, B\right)$ is a remote base.
(1) For every C-major vertex v of $G \backslash N_{3}$, either v has a neighbour in $V(T)$, or $Q_{2}(v)$ has length less than ℓ.

Let v be a C-major vertex of $G \backslash N_{3}$, and suppose that v has no neighbour in $V(T)$, and $Q_{2}(v)$ is long. Suppose first that v, v_{1} are adjacent. Now T is odd, since v_{1} has odd x-parity; and also $Q_{2}(v)$ is odd, since v has odd x-parity. But v_{1} has no neighbour in $Q_{2}(v)$, since q_{1} is the only neighbour of v_{1} in Q, and $q_{1} \notin V\left(Q_{2}(v)\right)$ since v, q_{1} are not adjacent. Since T is anticomplete to Q and hence to $Q_{2}(v)$, the hole $v_{1}-v-q_{2}(v)-Q_{2}(v)-q_{2}-x-T^{+}-v_{1}$ is a long odd hole shorter than C, a contradiction.

Now suppose that v, v_{1} are nonadjacent. Since $Q, Q_{1}(v)$ and $Q_{2}(v)$ are odd, and $Q_{1}(v), Q_{2}(v)$ are edge-disjoint, it follows that the path $q_{1}(v)-Q-q_{2}(v)$ is odd. There is an induced path R between q_{1}, q_{2} with interior in $V(T) \cup\left\{x, v_{1}\right\}$, and there are no edges between the interior of R and the interior of Q, or between the interior of R and v. Consequently if $q_{1}(v), q_{2}(v)$ are nonadjacent, the paths
$q_{1}(v)-v-q_{2}(v), q_{1}(v)-Q-q_{2}(v)$ and $q_{1}(v)-Q_{1}(v)-q_{1}-R-q_{2}-Q_{2}(v)-q_{2}(v)$ form a long jewel, and so there is a long odd hole of length less than C, a contradiction. Hence $q_{1}(v), q_{2}(v)$ are adjacent. Since the paths $Q_{1}(v)$ and T are disjoint and anticomplete, there is a long pyramid formed by $v_{1}-q_{1}-Q_{1}(v)-q_{1}(v)$, a path between $v_{1}, q_{2}(v)$ with interior in $V(T) \cup\{x\} \cup V\left(Q_{2}(v)\right)$ and a path between v_{1}, v with interior in the interior of D, a contradiction. This proves (1).

It follows from (1) that there is a set \mathcal{F}_{4} of paths of C with cost at most $2 \ell-1$ that catches every C-major vertex of $G \backslash N_{3}$. Then $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3} \cup \mathcal{F}_{4}$ catches every C-major vertex of G that is nonadjacent to x. This set has cost at most

$$
(5 \ell+15)+(4 \ell+2)+(5 \ell+15)+(2 \ell-1)=16 \ell+28 .
$$

This proves 6.3.

7 The algorithm

In this section we will use the results of the previous sections to give our main theorem. We need

7.1 There is an algorithm with the following specifications:

Input: A candidate G.
Output: Either decides that G has a long odd hole, or decides that G does not have a shortest long odd hole C and a remote base (x, D) such that all C-major vertices are equal or adjacent to x.

Running time: $O\left(|G|^{9}\right)$.
Proof. Suppose that C is a shortest long odd hole with a remote base (x, D), and every other C-major vertex is adjacent to x. Here is an algorithm: we guess x and the ends d_{1}, d_{2} of the path D, and its middle vertex d_{0} (D has even length). Let Z be the set consisting of x and all its neighbours. For $i=1,2$, compute the set D_{i} of internal vertices of all shortest paths with interior in $G \backslash Z$ between d_{i}, d_{0}. Let Y be the set of vertices of G not in $D_{1} \cup D_{2} \cup\left\{d_{0}, d_{1}, d_{2}\right\}$ and with a neighbour in $D_{1} \cup D_{2} \cup\left\{d_{0}\right\}$. Apply 3.6 to $G \backslash(Y \cup\{x\})$. If it finds a long odd hole, output that G has a long odd hole. If (after checking all possible guesses) we did not find a long odd hole, output that G has no shortest long odd hole C and base (x, D) such that every other C-major vertex is adjacent to x.

To see correctness, we only need to check correctness when G has a shortest long odd hole C and a remote base (x, D), and every other C-major vertex is adjacent to x. In this case, when we guess correctly, the interior of D contains no vertices in Z; and since the subpath of D between d_{1}, d_{0} has length less than $|C| / 2$, it is a shortest path of G between d_{1}, d_{0} containing no C-major vertices, by 3.2. Any shortest path with interior in $G \backslash Z$ between d_{1}, d_{0} will contain no C-major vertices, because they all belong to Z. Hence the interior of D is a subset of the set $D_{1} \cup D_{2} \cup\left\{d_{0}\right\}$ computed by the algorithm. Also by 3.2, $V(C) \backslash V(D)$ is anticomplete to $D_{1} \cup D_{2} \cup\left\{d_{0}\right\}$; and so the set Y computed by the algorithm contains no vertices of C. But it does contain all the C-major vertices except x; because they all have neighbours in the interior of D, and do not belong to $D_{1} \cup D_{2}$ since $D_{1} \cup D_{2}$ is disjoint from Z. Hence after deleting $Y \cup\{x\}$, all C-major vertices have been deleted and C has
become a clean shortest long odd hole, and the algorithm of 3.6 will detect a long odd hole; and so the output is correct.

For running time, there are $|G|^{4}$ guesses to check, and each one takes time $O\left(|G|^{5}\right)$ (because we are applying 3.6). Thus the total running time is $O\left(|G|^{9}\right)$. This proves 7.1.

Now our main result 1.1, which we restate:
7.2 There is an algorithm with the following specifications:

Input: A graph G.
Output: Decides whether G has a long odd hole.
Running time: $O\left(|G|^{20 \ell+40}\right)$.
Proof. First we apply 2.4, and we may assume we determine that G is a candidate. Next we apply 3.6 to G, and we assume we find that there is no clean shortest long odd hole. So either G has no long odd hole, or it has a shortest long odd hole C with a base (x, D). We assume the latter. Let R_{1}, R_{2} be the paths of C of length 2ℓ with middle vertices the ends d_{1}, d_{2} of D. We guess x and R_{1}, R_{2}, and delete all vertices caught by $\left\{R_{1}, R_{2}\right\}$ different from x, producing H say, and run 3.6 on $H \backslash\{x\}$; and assuming it still does not find a long odd hole, and G has a long odd hole, then when we guess correctly, H has a shortest long odd hole C with a remote base (x, D).

Now by 6.3 there is a set \mathcal{F} of paths of C, with cost at most $16 \ell+28$, that catches every C-major vertex of H nonadjacent to x. We guess the paths in \mathcal{F}, and delete all the vertices they catch. Then we apply 7.1 to the resulting graph. If it finds a long odd hole we are done; and it will do so in the case when we guess correctly. If after all guesses we never find a long odd hole, we return that there is none.

The total cost of guesses for the paths is $(4 \ell+2)+(16 \ell+28)=20 \ell+30$, and we also have to guess x; and checking each guess takes time $O\left(|G|^{9}\right)$, since we are applying 7.1. Thus the total running time is $O\left(|G|^{20 \ell+40}\right)$. This proves 7.2.

Acknowledgement

We would like to thank Hou Teng Cheong, who found a significant error in an earlier version of this paper.

References

[1] E. Berger, P. Seymour and S. Spirkl, "Finding an induced path that is not a shortest path", in preparation.
[2] D. Bienstock, "On the complexity of testing for odd holes and induced odd paths", Discrete Math. 90 (1991), 85-92.
[3] D. Bienstock, "Corrigendum: On the complexity of testing for odd holes and induced odd paths". Discrete Math. 102 (1992), 109.
[4] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, "Recognizing Berge graphs", Combinatorica, 25 (2005), 143-186.
[5] M. Chudnovsky, A. Scott, and P. Seymour, "Finding a shortest odd hole", in preparation.
[6] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Detecting an odd hole", J. Assoc. Comput. Mach., 67 (2020), 1-12, arXiv:1903.00208.
[7] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes", submitted for publication, arXiv:1701.07217.
[8] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Proof of the Kalai-Meshulam conjecture", submitted for publication, arXiv:1810.00065.
[9] L. Cook and P. Seymour, "Detecting a long even hole", in preparation.
[10] K. Lai, H. Lu, and M. Thorup, "Three-in-a-tree in near linear time", to appear, arXiv:1909.07446.
[11] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. I. Odd holes", J. Combinatorial Theory, Ser. B 121 (2016), 68-84.
[12] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. X. Holes with specific residue", submitted for publication, arXiv:1705.04609.

[^0]: ${ }^{1}$ This material is based upon work supported in part by the U. S. Army Research Office under grant number W911NF-16-1-0404, and by NSF grant DMS-1763817.
 ${ }^{2}$ Supported by a Leverhulme Trust Research Fellowship.
 ${ }^{3}$ Supported by NSF grant DMS-1800053 and AFOSR grant A9550-19-1-0187, and partially supported by the Simons Foundation and by the Mathematisches Forschungsinstitut Oberwolfach.

