Three-colourable perfect graphs without even pairs

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544

May 16, 2008; revised October 12, 2011

[^0]
Abstract

We still do not know how to construct the "most general" perfect graph, not even the most general three-colourable perfect graph. But constructing all perfect graphs with no even pairs seems easier, and here we make a start on it; we construct all three-connected three-colourable perfect graphs without even pairs and without clique cutsets. They are all either line graphs of bipartite graphs, or complements of such graphs.

1 Introduction

A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest clique in H. A hole in a graph G is an induced subgraph that is a cycle of length at least four, and an antihole in G is an induced subgraph whose complement is a cycle of length at least four; and a hole or antihole is odd if it has an odd number of vertices. A graph is Berge if it has no odd hole and no odd antihole. Perfect graphs were introduced by Claude Berge in [1], where he proposed the "strong perfect graph conjecture", now a theorem [5], the following:

1.1 A graph is perfect if and only if it is Berge.

The recognition problem for Bergeness (and hence, by 1.1, for perfection) is also solved [2]:
1.2 There is an algorithm with running time $O\left(|V(G)|^{9}\right)$, to test if an input graph G is Berge.

But neither of these results gives us a way to build the most general perfect graph. Ideally we would like a theorem that a graph is Berge if and only if it can be built from some well-understood class of building blocks, by piecing them together in a way that preserves Bergeness. But we are far from such a theorem, and indeed we do not even know how to construct the most general Berge graph with no K_{4} subgraph, which presumably should be an easier problem.

An even pair in G is a pair u, v of distinct vertices such that every induced path in G between u and v has even length (the length of a path or cycle is the number of edges in it), and consequently u, v are nonadjacent. As far as we know, finding an even pair does not give us a satisfactory way to construct our graph from a smaller graph; but still, an even pair u, v in a Berge graph G is quite a useful thing. For instance, if we identify u, v the graph remains Berge with the same clique number, which is helpful if we are trying to optimally colour G, or prove that G is perfect. (For a survey of recent work on even pairs see [6].) Thus, since finding a construction for all perfect graphs seems hopeless, what about finding a construction for all perfect graphs that have no even pairs? This problem, while still open, seems much more tractable.

In this paper we make a start on it; we construct all Berge graphs that have no K_{4} subgraphs and have no even pairs. (Almost; we also assume that the graph admits no clique cutset, and is 3 -connected. Graphs with a clique cutset can be constructed by overlapping two smaller graphs on the clique cutset, but this construction can introduce even pairs, and we have not been able to restrict the overlapping procedure to make it safe.) Let us say G is K_{4}-free if it has no K_{4} subgraph. A clique cutset in G is a clique C of G such that $G \backslash C$ is disconnected. We denote the complement of the graph G by \bar{G}. Our main theorem is the following:
1.3 Let G be a 3-connected K_{4}-free Berge graph with no even pair, and with no clique cutset. Then one of G, \bar{G} is the line graph of a bipartite graph.

The proof is lengthy, and similar to the proof of 1.1 ; for a sequence of different graphs H, we first assume that G contains H as an induced subgraph, and prove the theorem in this case, and thereafter we can assume that G does not contain H, and move on to the next graph of our sequence. (The sequence is shorter and the analysis easier than in the proof of 1.1, however.)

We used the fact that every K_{4}-free Berge graph is three-colourable (for instance, in the proof of 3.1), and so our work does not give an alternative proof of this fact, first proved by Tucker [9, 10].

It does, however, give a polynomial-time algorithm to three-colour K_{4}-free Berge graphs (first test if there is an even pair; to test if u, v is an even pair, just add an extra vertex adjacent to u, v and test for Bergeness.)

Here is a related question that has a surprisingly pretty answer: which K_{4}-free graphs have no odd hole and no even pair? In [4] (with Robertson and Thomas) we gave a construction for all $K_{4}{ }^{-}$ free graphs with no odd hole, using as building blocks the K_{4}-free Berge graphs. Using this result, in [11], Zwols proved that there are only two K_{4}-free graphs without odd holes that are not perfect and do not admit a clique cutset, namely the complement of a seven-cycle, and a certain 11-vertex graph with cyclic symmetry.

Perhaps every Berge graph G such that G and its complement both have no even pair is "nice"; either G or its complement admits a clique cutset or a 2 -join, or G or its complement is a line graph of a bipartite graph or a double split graph. Indeed, our work in this paper grew from an unpublished conjecture of Robin Thomas along these lines.

2 The Roussel-Rubio lemma

There was a result proved by Roussel and Rubio [8], that we used many times in the proof of 1.1, that will be important here. All graphs in this paper are finite, and without loops or parallel edges. Let us say a subset $X \subseteq V(G)$ is connected if the subgraph $G \mid X$ of G induced on X is connected, and anticonnected if $\bar{G} \mid X$ is connected. If $X, Y \subseteq V(G)$, we say X is complete to Y or Y-complete if every vertex in X is adjacent to every vertex in Y (and similarly, we say a vertex v is complete to Y or Y-complete if $\{v\}$ is complete to X, and an edge $u v$ is Y-complete if both u, v are Y-complete); and X is anticomplete to Y if X is complete to Y in \bar{G}. If P is a path $p_{1} \cdots-p_{k}$ say, with $k>1$, its interior is the set $\left\{p_{2}, \ldots, p_{k-1}\right\}$, and we denote this by P^{*}.

If P is an induced path in G with vertices $p_{1} \cdots-p_{k}$ in order, with $k \geq 4$, a leap for P is a pair $\{x, y\}$ of nonadjacent vertices of $V(G) \backslash V(P)$ such that x is adjacent to p_{1}, p_{2}, p_{k}, and y is adjacent to p_{1}, p_{k-1}, p_{k}, and there are no other edges between $\{x, y\}$ and $V(P)$. The Roussel-Rubio lemma is the following:
2.1 Let G be a Berge graph, and let P be an induced path in G of odd length, at least five. Let $X \subseteq V(G) \backslash V(P)$ be anticonnected, such that the ends of P are X-complete, and no edge of P is X-complete. Then X includes a leap for P.

We also need a theorem of [5]:
2.2 Let G be Berge, let X be an anticonnected subset of $V(G)$, and P be an induced path in $G \backslash X$ with odd length, such that both ends of P are X-complete, and no edge of P is X-complete. Then every X-complete vertex of G has a neighbour in P^{*}.

Next, we need:
2.3 Let G be a Berge graph, and let P be an induced path in G of odd length, with vertices $p_{1} \cdots \cdots-p_{k}$ in order. Let $X \subseteq V(G) \backslash V(P)$ be anticonnected, such that p_{1}, p_{k} are X-complete, and no edge of P is X-complete. Then $k \geq 4$ and every vertex in X is adjacent to one of p_{2}, p_{k-1}.

Proof. Since no edge of P is X-complete it follows that $k \geq 4$. Suppose that $z \in X$ is nonadjacent to both p_{2}, p_{k-1}. If $k=4$ then $z-p_{1}-p_{2}-p_{3}-p_{4}-z$ is an odd hole, a contradiction, so $k>4$. Choose an anticonnected subset $Z \subseteq X$, with $z \in Z$, maximal such that Z includes no leap for P. Thus $Z \neq X$ by 2.1 ; choose $x \in X \backslash Z$ such that $Z \cup\{x\}$ is anticonnected. From the maximality of $Z, Z \cup\{x\}$ includes a leap, and since Z includes no leap, it follows that there is a leap $\{x, y\}$ for some $y \in Z$. Consequently y is nonadjacent to p_{3}, \ldots, p_{k-2}. But from 2.1 applied to P and Z, since Z contains no leap, there is a Z-complete vertex p_{i}, where $2 \leq i \leq k-1$. Hence p_{i} is adjacent to both y, z. But z is nonadjacent to p_{2}, p_{k-1}, and y is nonadjacent to p_{3}, \ldots, p_{k-2}, a contradiction. This proves 2.3.

In the three-colourable case we can say more:
2.4 Let G be a Berge graph with a three-colouring $\phi: V(G) \rightarrow\{1,2,3\}$. Let P be an induced path in G of odd length, with vertices $p_{1} \cdots-p_{k}$ in order. Let $X \subseteq V(G) \backslash V(P)$ be anticonnected, such that p_{1}, p_{k} are X-complete and not all members of X have the same colour. Then

- $\phi\left(p_{1}\right)=\phi\left(p_{k}\right)(=3$ say $)$, and in particular p_{1}, p_{k} are nonadjacent, so $k \geq 3$;
- no internal vertex of P is X-complete;
- $\left\{\phi\left(p_{2}\right), \phi\left(p_{k-1}\right)\right\}=\{1,2\}$, say $\phi\left(p_{2}\right)=1$ and $\phi\left(p_{k-1}\right)=2$;
- X is the union of two disjoint stable sets X_{1}, X_{2}, where the vertices in X_{1} have colour 1 and are adjacent to p_{k-1}, and the vertices in X_{2} have colour 2 and are adjacent to p_{2}; and
- there is a leap $\left\{x_{1}, x_{2}\right\}$ for P with $x_{i} \in X_{i}$ for $i=1,2$.

Proof. Since not all members of X have the same colour, we may assume that some vertex in X has colour 1, and some vertex in X has colour 2; so every X-complete vertex has colour 3 . In particular, p_{1}, p_{k} have colour 3 and therefore are nonadjacent, so $k \geq 4$. For the same reason no two X-complete vertices in P are adjacent. Choose a minimal subpath Q of P of odd length such that both its ends are X-complete. It follows that Q has length at least three; and none of its internal vertices are X-complete, from the minimality of Q. Since p_{1}, p_{k} are both X-complete, by 2.2 they both have neighbours in Q^{*}, and so $Q=P$. Consequently no internal vertex of P is X-complete.

Since p_{1} has colour 3 , it follows that $X=X_{1} \cup X_{2}$ where for $i=1,2, X_{i}$ is the set of vertices in X with colour i. Thus $X_{1}, X_{2} \neq \emptyset$. Since p_{2} is adjacent to p_{1} and p_{k-1} to p_{k}, we deduce that p_{2}, p_{k-1} do not have colour 3 , and from the symmetry we may assume that p_{2} has colour 1 . Thus p_{2} is anticomplete to X_{1}, and so by $2.3, X_{1}$ is complete to p_{k-1}. Since $X_{1} \neq \emptyset$, it follows that p_{k-1} does not have colour 1 ; so it has colour 2. Thus X_{2} is anticomplete to p_{k-1}, and therefore is complete to p_{2}, again by 2.3 . We have shown then that every vertex in X is adjacent to one of p_{2}, p_{k-1} and nonadjacent to the other. Finally, we need to produce the leap. If P has length at least five, this follows from 2.1, so we may assume that P has length three, and therefore $k=4$. Since p_{2}, p_{3} are not X-complete, and X is anticonnected, there is an (induced) antipath $p_{2}-q_{1}-\cdots-q_{m}-p_{3}$ between p_{2}, p_{3} with $q_{1}, \ldots, q_{m} \in X$. If $m \geq 3$ then q_{2} is adjacent to both p_{2}, p_{3}, a contradiction; and if $m=1$ then q_{1} is nonadjacent to both p_{2}, p_{3}, again a contradiction; so $m=2$ and $\left\{q_{1}, q_{2}\right\}$ is the desired leap. This proves 2.4.

3 Complement line graphs

Let H be a graph with vertex set $\left\{v_{1}, \ldots, v_{9}\right\}$ and edges as follows:

- for $1 \leq i \leq 6 v_{i}$ is adjacent to $v_{i+2}, v_{i+3}, v_{i+4}$ (reading subscripts modulo 6)
- v_{7} is adjacent to $v_{3}, v_{4}, v_{5}, v_{6} ; v_{8}$ is adjacent to $v_{5}, v_{6}, v_{1}, v_{2}$; and v_{9} is adjacent to $v_{1}, v_{2}, v_{3}, v_{4}$, and there are no other edges.

We call such a graph H a trampoline. In this section we study K_{4}-free Berge graphs that contain trampolines. We prove the following:
3.1 Let G be a K_{4}-free Berge graph with no even pair and no clique cutset. If G contains a trampoline as an induced subgraph, then G is the complement of the line graph of some bipartite graph.

The proof needs several steps. Throughout this section, let G be a K_{4}-free Berge graph with no even pair and no clique cutset, that contains a trampoline. Consequently we may choose $t \geq 4$, and pairwise disjoint stable sets $A_{i j}(1 \leq i \leq 3,1 \leq j \leq t)$ with the following properties:

- for $1 \leq i \leq 3$, there is at most one value of $j \in\{1, \ldots, t\}$ such that $A_{i j}=\emptyset$
- for $1 \leq j \leq t$, there is at most one value of $i \in\{1,2,3\}$ such that $A_{i j}=\emptyset$
- for all distinct $i, i^{\prime} \in\{1,2,3\}$ and all distinct $j, j^{\prime} \in\{1, \ldots, t\}, A_{i j}$ is complete to $A_{i^{\prime} j^{\prime}}$
- for $1 \leq i \leq 3$ and for all distinct $j, j^{\prime} \in\{1, \ldots, t\}, A_{i j}$ is anticomplete to $A_{i j^{\prime}}$
- for $1 \leq j \leq t$, if $A_{1 j}, A_{2 j}, A_{3 j}$ are all nonempty then they are pairwise anticomplete
- for $1 \leq j \leq t$, and all distinct $i, i^{\prime} \in\{1,2,3\}$, if $A_{i^{\prime} j}$ is nonempty then every vertex in $A_{i j}$ has a nonneighbour in $A_{i^{\prime} j}$.
Choose these sets with maximal union W say. For $1 \leq i \leq 3$ let $Z_{i}=\cup_{1 \leq j \leq t} A_{i j}$, and for $1 \leq j \leq t$ let $A_{j}=A_{1 j} \cup A_{2 j} \cup A_{3 j}$. Fix a 3-colouring ϕ of G. Since $t \geq 4$ it follows that the only partition of W into three stable sets is the partition Z_{1}, Z_{2}, Z_{3}; and we may therefore assume that for $1 \leq i \leq 3$, $\phi(v)=i$ for all $v \in Z_{i}$.

Let $v \in V(G) \backslash W$, and let N be the set of vertices in W that are adjacent to v. We say v is major if N is the union of two of Z_{1}, Z_{2}, Z_{3}; and v is minor if there exist $i, i^{\prime} \in\{1,2,3\}$ and $j, j^{\prime} \in\{1, \ldots, t\}$ such that $i \neq i^{\prime}$ and $N \subseteq A_{i j} \cup A_{i^{\prime} j^{\prime}}$ and $N \cap A_{i j}$ is complete to $N \cap A_{i^{\prime} j^{\prime}}$.
3.2 With notation as above, every vertex in $V(G) \backslash W$ is either major or minor.

Proof. Let $v \in V(G) \backslash W$, and let N be the set of vertices in W that are adjacent to v. We may assume that $\phi(v)=3$. Since v therefore has no neighbours in Z_{3}, it follows that
(1) $N \subseteq Z_{1} \cup Z_{2}$.
(2) For $1 \leq j \leq t$, if $A_{1 j}, A_{2 j}$ are both nonempty and $A_{1 j} \cup A_{2 j}$ is neither a subset of N nor a
subset of $V(G) \backslash N$, then there exist $a_{i j} \in A_{i j}$ for $i=1,2$, nonadjacent, such that exactly one of them is in N.

For we may assume that $j=1$; and suppose the claim is false. For $i=1,2$, let $N_{i}=N \cap A_{i 1}$ and let $M_{i}=A_{i 1} \backslash N_{i}$. Since the claim is false, N_{1} is complete to M_{2}, and N_{2} is complete to M_{1}. If $x \in N_{1}$, then since x has a nonneighbour in A_{21}, it follows that x has a nonneighbour in N_{2}; and so, since by hypothesis one of N_{1}, N_{2} is nonempty, it follows that there exist $n_{i} \in N_{1}$ for $i=1,2$, nonadjacent. Similarly M_{1}, M_{2} are both nonempty. Since A_{11} is not anticomplete to A_{21}, it follows that $A_{31}=\emptyset$. If $m_{1} \in M_{1}$ is adjacent to $m_{2} \in M_{2}$, then $v-n_{1}-m_{2}-m_{1}-n_{2}-v$ is an odd hole, a contradiction; so M_{1} is anticomplete to M_{2}. If say there exists $a_{12} \in A_{12} \backslash N$, then $v-n_{2}-a_{12}-m_{2}-n_{1}-v$ is an odd hole, a contradiction; so $A_{12} \subseteq N$, and similarly $\left(Z_{1} \cup Z_{2}\right) \backslash A_{1} \subseteq N$. But then we can define $A_{11}^{\prime}=N_{1}, A_{21}^{\prime}=N_{2}, A_{31}^{\prime}=\emptyset, A_{1, t+1}^{\prime}=M_{1}, A_{2, t+1}^{\prime}=M_{2}, A_{3, t+1}^{\prime}=\{v\}$, and $A_{i j}^{\prime}=A_{i j}$ for $1 \leq i \leq 3$ and $2 \leq j \leq t$, contrary to the maximality of W.
(3) We may assume that there are at least two values of $j \in\{1, \ldots, t\}$ such that $A_{1 j} \cup A_{2 j} \nsubseteq N$.

For suppose not; say $Z_{1} \cup Z_{2} \subseteq N \cup A_{1}$. If $A_{11}=\emptyset$ and $A_{21} \subseteq N$, then $N=Z_{1} \cup Z_{2}$ and v is major as required. If $A_{11}=\emptyset$ and $A_{21} \nsubseteq N$, then we can add v to A_{31}, contrary to the maximality of W. Thus we may assume that $A_{11} \neq \emptyset$, and similarly $A_{21} \neq \emptyset$. If N includes $A_{11} \cup A_{21}$ then again v is major, and if N is disjoint from $A_{11} \cup A_{21}$ then we can add v to A_{31}, again contradictory to the maximality of W. Thus we may assume that N includes some but not all of $A_{11} \cup A_{21}$; and so, from (2), we may assume that there exists $a_{11} \in A_{11} \backslash N$, and $a_{21} \in A_{21} \cap N$, nonadjacent. Since $t \geq 4$, there exists $j \in\{2, \ldots, t\}$ such that $A_{2 j}, A_{3 j} \neq \emptyset$, say $j=2$. Choose $a_{22} \in A_{22}$, and choose $a_{32} \in A_{32}$ nonadjacent to a_{22}. Then $v-a_{21}-a_{32}-a_{11}-a_{22}-v$ is an odd hole, a contradiction. This proves (3).
(4) For $1 \leq j \leq t, N \cap A_{1 j}$ is complete to $N \cap A_{2 j}$.

For suppose that there exist $a_{i 1} \in N \cap A_{i 1}$ for $i=1,2$, nonadjacent. By (3) we may assume that $A_{12} \cup A_{22} \nsubseteq N$. Suppose first that both A_{12}, A_{22} are nonempty, and $N \cap\left(A_{12} \cup A_{22}\right) \neq \emptyset$. From (2) we may assume that there exist $a_{12} \in A_{12} \backslash N$ and $a_{22} \in A_{22} \cap N$, nonadjacent. Since there is no odd hole of the form $v-a_{21}-a_{12}-A_{31}-a_{22}-v$, it follows that $A_{31}=\emptyset$; and so $A_{3 k} \neq \emptyset$ for $2 \leq k \leq t$. Since $t \geq 4$, one of A_{23}, A_{24} is nonempty, say A_{23}; choose $a_{23} \in A_{23}$. If $a_{23} \in N$ then $v-a_{23}-a_{12}-a_{33}-a_{22}-v$ is an odd hole (where $a_{33} \in A_{33}$ is nonadjacent to a_{23}), and if $a_{23} \notin N$ then $v-a_{11}-a_{23}-a_{12}-a_{21}-v$ is an odd hole, in either case a contradiction. This proves that if both A_{12}, A_{22} are nonempty, then $N \cap\left(A_{12} \cup A_{22}\right)=\emptyset$. Since $A_{12} \cup A_{22} \nsubseteq N$, we may assume that there exists $a_{12} \in A_{12} \backslash N$. For $3 \leq j \leq t$, since there is no odd hole of the form $v-a_{21}-a_{12}-A_{2 j}-a_{11}-v$, it follows that $A_{2 j} \subseteq N$.

Suppose that $A_{22} \neq \emptyset$. By what we just proved, $N \cap\left(A_{12} \cup A_{22}\right)=\emptyset$, and from the symmetry between Z_{1}, Z_{2} it follows that $A_{1 j} \subseteq N$ for $3 \leq j \leq t$. By (3) it follows that $A_{11} \cup A_{21} \nsubseteq N$, and so by (2) and the symmetry between Z_{1}, Z_{2}, we may assume that $a_{11}^{\prime} \in A_{11} \cap N$ and $a_{21}^{\prime} \in A_{21} \backslash N$, nonadjacent. If both $A_{1 j}, A_{2 j} \neq \emptyset$ for some j with $3 \leq j \leq t$, then from the symmetry between A_{1} and A_{j} it follows that $A_{11} \cup A_{21} \subseteq N$, a contradiction; so for all j with $3 \leq j \leq t$, one of $A_{1 j}, A_{2 j}=\emptyset$. Consequently $A_{3 j} \neq \emptyset$, and since $t \geq 4$ we may assume that $A_{13}, A_{33} \neq \emptyset$. Choose $a_{i 3} \in A_{i 3}$ for $i=1,3$; then $v-a_{11}^{\prime}-a_{33}-a_{21}^{\prime}-a_{13}-v$ is an odd hole, a contradiction. This proves that $A_{22}=\emptyset$.

Consequently $A_{2 j} \neq \emptyset$ for $3 \leq j \leq t$. For $3 \leq j \leq t$, exchanging A_{2}, A_{j} implies that $A_{1 j} \subseteq N$. Since $t \geq 4$, at least one of $A_{13}, \ldots, A_{1 t}$ is nonempty, say A_{13}; and so there exist vertices in $A_{13} \cap N, A_{23} \cap N$ that are nonadjacent. By exchanging A_{1}, A_{3}, it follows that $A_{11}, A_{21} \subseteq N$, contrary to (3). This proves (4).
(5) There exist $j, j^{\prime} \in\{1, \ldots, t\}$ such that $N \cap Z_{1} \subseteq A_{1 j}$ and $N \cap Z_{2} \subseteq A_{2 j^{\prime}}$.

For suppose that there exist $a_{1 j} \in N \cap A_{1 j}$ for $j=1,2$ say. Now either A_{31}, A_{22} are both nonempty, or A_{32}, A_{21} are both nonempty, and from the symmetry we may assume the former. Choose $a_{31} \in A_{31}$ nonadjacent to a_{11}, and choose $a_{22} \in A_{22}$ nonadjacent to a_{12}. By (1) and (4), $a_{31}, a_{22} \notin N$. Then $v-a_{11}-a_{22}-a_{31}-a_{12}-v$ is an odd hole, a contradiction. This proves (5).

Let j, j^{\prime} be as in (5). To show that v is minor, it remains to show that $N \cap A_{1 j}$ is complete to $N \cap A_{2 j^{\prime}}$. This is true from the construction if $j \neq j^{\prime}$, and by (4) if $j=j^{\prime}$. Thus v is minor. This proves 3.2.

3.3 With notation as before, there is no major vertex.

Proof. We begin with:

(1) Every two major vertices are adjacent.

For suppose that b_{1}, b_{2} are nonadjacent major vertices. We may assume that b_{1} is complete to $Z_{2} \cup Z_{3}$ say. Suppose first that b_{2} is not complete to $Z_{2} \cup Z_{3}$; say b_{2} is complete to $Z_{3} \cup Z_{1}$. If there exists $j \in\{1, \ldots, t\}$ such that $A_{3 j}=\emptyset$, we can add b_{1} to $A_{1 j}$ and b_{2} to $A_{2 j}$, contrary to the maximality of W. Thus $A_{31}, \ldots, A_{3 t}$ are all nonempty. But then we may define $A_{1, t+1}=\left\{b_{1}\right\}$, $A_{2, t+1}=\left\{b_{2}\right\}$, and $A_{3, t+1}=\emptyset$, contrary to the maximality of W. This proves that b_{2} is complete to $Z_{2} \cup Z_{3}$.

Since G has no even pair, there is an odd induced path $b_{1}=p_{1} \cdots-p_{k}=b_{2}$ in G. Since none of p_{2}, \ldots, p_{k-1} is adjacent to both b_{1}, b_{2}, it follows that none of them is in $Z_{2} \cup Z_{3}$. Moreover, $p_{2}, p_{k-1} \notin Z_{1}$, since b_{1}, b_{2} are anticomplete to Z_{1}. Thus $p_{2}, p_{k-1} \in V(G) \backslash W$. Now p_{2} is not complete to $Z_{2} \cup Z_{3}$ since $Z_{2} \cup Z_{3}$ is not stable and G is K_{4}-free; and since p_{2}, b_{2} are nonadjacent, and we have already seen that every two nonadjacent major vertices have the same neighbours in W, it follows that p_{2} is not major. Similarly p_{k-1} is not major. But by 2.4 , one of p_{2}, p_{k-1} is complete to Z_{2} and the other to Z_{3}, which is impossible since they are both minor. This proves (1).

Now to complete the proof of 3.3 , suppose that b is a major vertex. Thus $b \notin W$, and we may assume that b is complete to $Z_{2} \cup Z_{3}$ and anticomplete to Z_{1}. At least one of A_{11}, A_{12} is nonempty, say A_{11}; choose $a_{11} \in A_{11}$. Since G has no even pair, there is an odd induced path $b=p_{1}-p_{2}-\cdots-p_{k}=a_{11}$. Thus p_{1}, p_{k} are both complete to the anticonnected set $\left(Z_{2} \cup Z_{3}\right) \backslash A_{1}$; and this anticonnected set is not stable since $t \geq 4$. Since k is even it follows that none of p_{1}, \ldots, p_{k} belong to $\left(Z_{2} \cup Z_{3}\right) \backslash A_{1}$; and so by 2.4 , one of p_{2}, p_{k-1} is complete to $Z_{2} \backslash A_{1}$, and the other to $Z_{3} \backslash A_{1}$. Since p_{k-1} is adjacent to a_{11} and not to b, it follows that p_{k-1} is not in W; by (1) p_{k-1} is not major; and since p_{k-1} is complete to one of $Z_{2} \backslash A_{1}, Z_{3} \backslash A_{1}$ it follows that p_{k-1} is not minor, contrary to 3.2. This proves 3.3 .
3.4 For $1 \leq i \leq 3$ and $1 \leq j \leq t,\left|A_{i j}\right| \leq 1$.

Proof. Suppose that $u, v \in A_{11}$ say are distinct. Then u, v both have the same colour, and so are nonadjacent. Moreover, u, v are both complete to $\left(Z_{2} \cup Z_{3}\right) \backslash A_{1}$, and there is an odd induced path $u=p_{1} \cdots-p_{k}=v$ between u, v since they are not an even pair; so 2.4 implies that one of p_{2}, p_{k-1} has colour 3 and is complete to $Z_{2} \backslash A_{1}$, and the other has colour 2 and is complete to $Z_{3} \backslash A_{1}$; let the first be p_{2}, say. Consequently p_{2} is not minor; by 3.3 it is not major; and so by 3.2 it belongs to W. Since it has colour 3 and has a neighbour and a nonneighbour in A_{11}, we deduce that $p_{2} \in A_{31}$ and $A_{21}=\emptyset$. But similarly $p_{k-1} \in A_{21}$, a contradiction. This proves 3.4.

Henceforth we denote the unique member of $A_{i j}$ by $a_{i j}$ (when it exists) without further explanation. Note that 3.4 implies that $A_{i j}$ is anticomplete to $A_{i^{\prime} j}$ for all distinct $i, i^{\prime} \in\{1,2,3\}$ and all $j \in\{1, \ldots, t\}$.
3.5 If X is a connected set of minor vertices and $u, v \in W$ both have neighbours in X, then u, v are adjacent.

Proof. Suppose not, and choose nonadjacent $u, v \in W$ and a connected set X as in the claim, with $|X|$ minimum. It follows that X is the interior of an induced path $u-p_{1}-\cdots-p_{k}-v$ between u, v. Since the members of X are minor, 3.4 implies that $k \geq 2$.
(1) For some $i \in\{1,2,3\}$ there are two members of Z_{i} with neighbours in X.

For suppose not. We may therefore assume that $u=a_{11}$ and $v=a_{21}$, and $\left(Z_{1} \cup Z_{2}\right) \backslash A_{1}$ is anticomplete to X. Suppose first that k is even. At most one vertex in $Z_{3} \backslash A_{1}$ has a neighbour in X; choose $w \in Z_{3} \backslash A_{1}$ with no neighbour in X, and then $w-u-p_{1^{-}} \cdots-p_{k}-v-w$ is an odd hole. So k is odd. Now either a_{12}, a_{23} both exist, or a_{22}, a_{13} both exist, and from the symmetry we may assume the first; and then $u-p_{1}-\cdots-p_{k}-v-a_{12}-a_{23}-u$ is an odd hole, a contradiction. This proves (1).

In view of (1) we may assume that $u=a_{11}$ and $v=a_{12}$. From the minimality of X (and since $k \geq 2$) it follows that $A_{1 j}$ is anticomplete to X for $3 \leq j \leq t$.
(2) It is impossible that k is even.

For suppose k is even. We may assume that a_{23}, a_{34} exist. If a_{24} exists, then $\left\{a_{23}, a_{34}, a_{24}\right\}$ is anticonnected and not stable, and complete to u, v; so by 2.4 each of a_{23}, a_{34}, a_{24} is adjacent to one of p_{1}, p_{k}, contradicting that p_{1}, p_{k} are minor. So $A_{24}=\emptyset$, and similarly $A_{33}=\emptyset$. Hence a_{21}, a_{22}, a_{13} exist, and since

$$
a_{13}-a_{22}-u-p_{1}-\cdots-p_{k}-v-a_{21}-a_{13}
$$

is not an odd hole, one of a_{21}, a_{22} has a neighbour in X, say a_{21}. Since u is adjacent to p_{1} and nonadjacent to a_{21}, we deduce that a_{21} is adjacent to p_{k} from the minimality of X. Since a_{23} also has a neighbour in X and a_{21}, a_{23} are nonadjacent, the minimality of X implies that a_{23} is adjacent to p_{1}. But similarly a_{34} is adjacent to one of p_{1}, p_{k}, contradicting that p_{1}, p_{k} are both minor. This proves (2).
(3) It is impossible that k is odd.

For suppose that k is odd. We may assume that a_{21}, a_{32} exist, and since

$$
u-p_{1}-\cdots-p_{k}-v-a_{21}-a_{32}-u
$$

is not an odd hole, we deduce that at least one of a_{21}, a_{32} has a neighbour in X, say a_{21}. Since u is adjacent to p_{1}, the minimality of X implies that p_{k} is the only neighbour of a_{21} in X. If also a_{32} has a neighbour in X, then similarly p_{1} is its only neighbour, and then $a_{32}-p_{1} \cdots-p_{k}-a_{21}-a_{32}$ is an odd hole, a contradiction. Thus a_{32} is anticomplete to X. We may assume that a_{13}, a_{24} exist, and we have seen that a_{13} is anticomplete to X. If also a_{24} is anticomplete to X, then

$$
u-p_{1^{-}} \cdots-p_{k}-a_{21}-a_{13}-a_{24}-u
$$

is an odd hole. So a_{24} has a neighbour in X. From the minimality of X, its only neighbour in X is p_{1}; but then $v-a_{24}-p_{1}-\cdots-p_{k}-v$ is an odd hole. This proves (3).

From (2) and (3), we have a contradiction. This proves 3.5.

Proof of 3.1.

Let G be a K_{4}-free Berge graph with no clique cutset and no even pair, that contains a trampoline. Define the sets $A_{i j}$ as before. If there is a minor vertex, let X be a maximal connected set of minor vertices; then by 3.5 and 3.3 , the set of vertices in W with a neighbour in X is a clique cutset, a contradiction. Thus there is no minor vertex, and by 3.3 and 3.4 it follows that G is the complement of the line graph of a bipartite graph. This proves 3.1.

4 Trapezes and trestles

Let H be a graph, and let G be obtained from H by adding two more vertices, nonadjacent to each other and each adjacent to every vertex of H. We call G a suspension of H. We need to consider suspensions of several different small graphs. A trapeze is a suspension of a graph H that has four vertices and two edges, disjoint. A trestle is a suspension of a four-vertex path. An extended 4 -wheel is a suspension of a graph with four vertices and two edges that share an end. An octahedron is a suspension of a cycle of length four. In this section we show that we can exclude these four kinds of subgraphs.
4.1 Let G be a K_{4}-free Berge graph with no even pair, containing no trampoline. Then G does not contain a trapeze.

Proof. Suppose that G contains a trapeze, with six vertices $a_{1}, b_{1}, a_{2}, b_{2}, c_{1}, c_{2}$, where c_{1}, c_{2} are both complete to $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$, and $a_{i} b_{i}$ is an edge for $i=1,2$. Fix a three-colouring ϕ of G; then $\phi\left(c_{1}\right)=\phi\left(c_{2}\right)$, and we may assume that $\phi\left(c_{1}\right)=3$, and $\phi\left(a_{i}\right)=1$ and $\phi\left(b_{i}\right)=2$ for $i=1,2$.

There is an odd induced path between c_{1}, c_{2}, since G has no even pair. For $i=1,2$, let d_{i} be the neighbour of c_{i} in this path. For $i=1,2$, let X_{i} be the set of common neighbours of c_{1}, c_{2} that have colour i. Then $X_{1} \cup X_{2}$ is anticonnected and not stable (since $a_{1}, a_{2} \in X_{1}$ and $b_{1}, b_{2} \in X_{2}$).

Since c_{1}, c_{2} are common neighbours of $X_{1} \cup X_{2}$, we may assume by 2.4 that d_{1} has colour 1 and is complete to X_{2}, and d_{2} has colour 2 and is complete to X_{1}.

Now there is an odd induced path $a_{1}-q_{1} \cdots-q_{k}-a_{2}$ between a_{1}, a_{2}. Since a_{1}, a_{2} are common neighbours of $\left\{c_{1}, c_{2}, d_{2}\right\}$, we may assume by 2.4 (by exchanging $a_{1} b_{1}$ with $a_{2} b_{2}$ if necessary) that q_{1} has colour 3 and is adjacent to d_{2}, and q_{k} has colour 2 and is complete to $\left\{c_{1}, c_{2}\right\}$. Moreover, $\left\{c_{1}, c_{2}, d_{2}\right\}$ includes a leap; and since the two vertices of the leap are nonadjacent and have different colours, it follows that the leap is $\left\{c_{1}, d_{2}\right\}$. Consequently c_{1} is nonadjacent to q_{1}, \ldots, q_{k-1}, and d_{2} is nonadjacent to q_{2}, \ldots, q_{k}. Since q_{k} is adjacent to a_{2}, c_{1}, c_{2}, it follows that $q_{k} \in X_{2}$, and so d_{1} is adjacent to q_{k}.

Since b_{1}, q_{k} have the same colour, they are nonadjacent. Suppose that b_{1} is nonadjacent to q_{1}, \ldots, q_{k-1}. Then $b_{1}-a_{1}-q_{1}-\cdots-q_{k}$ is an odd path between common neighbours of $\left\{c_{1}, c_{2}, d_{1}\right\}$, and so by 2.4 , it follows that d_{1} is adjacent to q_{k-1} and not to q_{1}, \ldots, q_{k-2}. But then if d_{1}, d_{2} are nonadjacent then

$$
d_{2}-q_{1}-\cdots-q_{k-1}-d_{1}-c_{1}-a_{2}-d_{2}
$$

is an odd hole, a contradiction; if d_{1}, d_{2} are adjacent and $k \geq 4$ then $d_{2}-q_{1}-\cdots-q_{k-1}-d_{1}-d_{2}$ is an odd hole, a contradiction; and if d_{1}, d_{2} are adjacent and $k=2$ (and therefore d_{1}, q_{1} are adjacent) then the subgraph induced on $\left\{a_{1}, a_{2}, b_{1}, q_{k}, c_{1}, c_{2}, d_{1}, d_{2}, q_{1}\right\}$ is a trampoline, a contradiction. This proves that b_{1} is adjacent to q_{i} for some $i \in\{1, \ldots, k-1\}$. Choose i minimum. From the hole

$$
d_{2}-q_{1}-\cdots-q_{i}-b_{1}-c_{1}-a_{2}-d_{2}
$$

it follows that i is even, and since k is even, we deduce that q_{i}, q_{k} are nonadjacent. Suppose that d_{1} is anticomplete to $\left\{q_{1}, \ldots, q_{i}\right\}$. If d_{1}, d_{2} are nonadjacent then

$$
d_{2}-q_{1}-\cdots-q_{i}-b_{1}-d_{1}-q_{k}-a_{2}-d_{2}
$$

is an odd hole, and if d_{1}, d_{2} are adjacent then $d_{2}-q_{1}-\cdots-q_{i}-b_{1}-d_{1}-d_{2}$ is an odd hole, a contradiction. Thus d_{1} is adjacent to one of q_{1}, \ldots, q_{i}. Since $d_{2}-q_{1}-\cdots-q_{i}-b_{1}-c_{2}-d_{2}$ is not an odd hole, c_{2} is also adjacent to one of q_{1}, \ldots, q_{i}. Consequently there is an induced path R between c_{2} and d_{1} with $R^{*} \subseteq\left\{q_{1}, \ldots, q_{i}\right\}$. But R can be completed to a hole via $d_{1}-q_{k}-c_{2}$ and via $d_{1}-c_{1}-a_{2}-c_{2}$, and one of these is an odd hole, a contradiction. This proves 4.1.
4.2 Let G be a K_{4}-free Berge graph with no even pair, containing no trampoline. Then G contains no trestle.

Proof. (We remind the reader that all graphs in this paper are finite. This theorem in particular is false if we allow infinite graphs.) Let us say an extended trestle in G is a sequence v_{1}, \ldots, v_{n} of distinct vertices, with $n \geq 8$, such that for $1 \leq i<j \leq n, v_{i}$ and v_{j} are adjacent if $j-i \in\{1,2,4\}$, and they are nonadjacent if $j-i \notin\{1,2,4,7\}$. Fix a three-colouring ϕ of G. By 4.1 it follows that G contains no trapeze. Suppose it contains a trestle.
(1) G contains an extended trestle.

For G contains a trestle, and so there are six vertices v_{2}, \ldots, v_{7} in G such that $v_{2}-v_{4}-v_{5}-v_{7}$ is an induced path, and $\left\{v_{3}, v_{6}\right\}$ is complete to $\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$, and there are no other edges among
v_{2}, \ldots, v_{7}. We may assume that v_{2}, v_{5} have colour 1 , and v_{3}, v_{6} have colour 2 , and v_{4}, v_{7} have colour 3. There is an odd induced path between v_{3}, v_{6}, say $v_{3}-p_{1^{-}} \cdots-p_{k}-v_{6}$. Since v_{3}, v_{6} are both complete to $\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$, and the latter is anticonnected and not stable, we may assume from 2.4 and the symmetry that p_{1} has colour 3 and is complete to $\left\{v_{2}, v_{5}\right\}$, and p_{k} has colour 1 and is complete to $\left\{v_{4}, v_{7}\right\}$. But then the sequence $p_{1}, v_{2}, \ldots, v_{7}, p_{k}$ is an extended trestle. This proves (1).

In view of (1) and the finiteness of G, we may choose an extended trestle v_{1}, \ldots, v_{n} with n maximum. We may assume that:
(2) For $1 \leq i \leq n, \phi\left(v_{i}\right)=n-i \bmod 3$.

For v_{i}, v_{i+1}, v_{i+2} are pairwise adjacent (for $1 \leq i \leq n-2$), and so are $v_{i+1}, v_{i+2}, v_{i+3}$ (for $i \leq n-3$), and so v_{i}, v_{i+3} have the same colour for $1 \leq i \leq n-3$. Thus for $1 \leq i<j \leq n$, if $j-i=0 \bmod 3$ then v_{i}, v_{j} have the same colour. Since we may assume that v_{n} has colour 3 and v_{n-1} has colour 1 , the claim follows. This proves (2).
(3) There is a vertex $v_{n+1} \neq v_{1}, \ldots, v_{n}$, with colour 2 , adjacent to v_{n}, v_{n-1}, v_{n-3} and not to $v_{n-2}, v_{n-4}, v_{n-5}$.

For there is an odd induced path $v_{n-1}-p_{1-} \cdots-p_{k}-v_{n-4}$ between v_{n-1}, v_{n-4}. Since v_{n-1}, v_{n-4} are both complete to $\left\{v_{n}, v_{n-2}, v_{n-3}, v_{n-5}\right\}$, and the latter is anticonnected and not stable, it follows from 2.4 that one of p_{1}, p_{k} has colour 2 and is complete to $\left\{v_{n}, v_{n-3}\right\}$, and the other has colour 3 and is complete to $\left\{v_{n-2}, v_{n-5}\right\}$. Suppose that p_{1} has colour 3 . Then v_{n-2}, v_{n-5} are complete to $\left\{v_{n-1}, p_{1}, v_{n-4}, v_{n-6}\right\}$, and $v_{n-1} p_{1}$ and $v_{n-4} v_{n-6}$ are edges, and $\left\{v_{n-1}, p_{1}\right\}$ is anticomplete to $\left\{v_{n-4}, v_{n-6}\right\}$ (p_{1} is not adjacent to v_{n-6} since they have the same colour). Thus G contains a trapeze, a contradiction. This proves that p_{1} has colour 2 , and is adjacent to v_{n}, v_{n-3}, and not to v_{n-4}.

Define $v_{n+1}=p_{1}$; we will show that v_{n+1} satisfies the claim. Since v_{n+1} has colour 2 , it is nonadjacent to v_{n-2}, v_{n-5}. Thus, in summary, v_{n+1} is adjacent to v_{n}, v_{n-1}, v_{n-3} and not to $v_{n-2}, v_{n-4}, v_{n-5}$. Suppose that $v_{n+1}=v_{i}$ for some $i \in\{1, \ldots, n\}$. Then $n-i=2 \bmod 3$ by (2), since v_{n+1} has colour 2 ; and $i \neq n-5, n-2$ since v_{n+1} is nonadjacent to v_{n-4}. Thus $i \leq n-8$. But the only neighbours of v_{n} in $\left\{v_{1}, \ldots, v_{n-1}\right\}$ are $v_{n-1}, v_{n-2}, v_{n-4}$ and possibly v_{n-7}, a contradiction. Thus v_{n+1} is different from v_{1}, \ldots, v_{n}. This proves (3).
(4) v_{n+1} is nonadjacent to v_{n-7}.

For suppose v_{n+1}, v_{n-7} are adjacent. Since $v_{n+1}-v_{n-7}-v_{n-6}-v_{n-2}-v_{n-1}-v_{n+1}$ is not a hole of length five, it follows that v_{n+1} is adjacent to v_{n-6}. But then $v_{n+1} v_{n-7}$ and $v_{n-2} v_{n-4}$ are edges, and $\left\{v_{n+1}, v_{n-7}\right\}$ is anticomplete to $\left\{v_{n-2}, v_{n-4}\right\}$, and v_{n-3}, v_{n-6} are both complete to $\left\{v_{n-7}, v_{n-4}, v_{n-2}, v_{n+1}\right\}$, and hence G contains a trapeze, a contradiction. This proves (4).
(5) v_{n+1} is nonadjacent to v_{i} for $1 \leq i \leq n-8$.

For suppose that v_{i} is adjacent to v_{n+1} for some $i \in\{1, \ldots, n-8\}$, and choose i maximum. There are cases depending on the value of $n-i \operatorname{modulo} 6$. By $(2), n+1-i \neq 0,3 \bmod 6$ since v_{n+1}, v_{i} are adjacent and therefore have different colours; so $n-i$ is one of $0,1,3$ or $4 \bmod 6$. If $n-i=0$
$\bmod 6$, then $i \leq n-12$, and

$$
v_{n+1}-v_{i}-v_{i+4}-v_{i+6}-v_{i+10^{-}} \cdots-v_{n-12}-v_{n-8}-v_{n-4}-v_{n}-v_{n+1}
$$

is an odd hole. If $n-i=1 \bmod 6$, then $i \leq n-13$, and

$$
v_{n+1}-v_{i}-v_{i+4}-v_{i+6}-v_{i+10^{-}} \cdots-v_{n-13}-v_{n-9}-v_{n-5}-v_{n-1}-v_{n+1}
$$

is an odd hole. If $n-i=3 \bmod 6$ then $i \leq n-9$, and

$$
v_{n+1}-v_{i}-v_{i+2}-v_{i+6}-v_{i+8^{-}} \cdots-v_{n-13}-v_{n-9}-v_{n-5}-v_{n-4}-v_{n}-v_{n+1}
$$

is an odd hole. If $n-i=4 \bmod 6$, then $i \leq n-10$, and

$$
v_{n+1^{-}} v_{i}-v_{i+2}-v_{i+6^{-}} v_{i+8^{-}} \cdots-v_{n-14}-v_{n-10^{-}} v_{n-8}-v_{n-4}-v_{n}-v_{n+1}
$$

is an odd hole. This proves (5).
But from (5), v_{1}, \ldots, v_{n+1} is an extended trestle, contrary to the maximality of n. This proves 4.2.
4.3 Let G be a K_{4}-free Berge graph with no even pair, containing no trampoline. Then G contains no extended 4-wheel.

Proof. Suppose that G contains an extended 4 -wheel, with vertex set $\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right\}$, where $a_{1}-b_{1}-a_{2}$ is a path and $\left\{c_{1}, c_{2}\right\}$ is complete to $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Fix a three-colouring of G; then we may assume that a_{1}, a_{2} have colour 1 , and b_{1} has colour 2 , and c_{1}, c_{2} have colour 3 (and b_{2} has colour 1 or 2). Since G has no even pair, there is an odd induced path $c_{1}-p_{1} \cdots-p_{k}-c_{2}$, and since c_{1}, c_{2} are complete to $\left\{a_{1}, b_{1}, a_{2}, b_{2}\right\}$, and the latter is anticonnected and not stable, we may assume from 2.4 and the symmetry between c_{1}, c_{2} that p_{1} has colour 2 and is adjacent to a_{1}, a_{2}. Since p_{1} is not adjacent to c_{2}, it follows that $p_{1} \neq b_{1}$, and $c_{2}-b_{1}-c_{1}-p_{1}$ is an induced path; but $\left\{a_{1}, a_{2}\right\}$ is complete to the vertex set of this path, and so G contains a trestle, contrary to 4.2. This proves 4.3.
4.4 Let G be a K_{4}-free Berge graph with no even pair, containing no trampoline. Then G contains no octahedron.

Proof. Suppose it does; consequently we may choose three disjoint stable sets $A_{1}, A_{2}, A_{3} \subseteq V(G)$, pairwise complete and each with cardinality at least two. Choose them with maximal union. Fix a three-colouring of G, and we may assume that the vertices in A_{i} have colour i for $i=1,2,3$.
(1) Every A_{1}-complete vertex belongs to $A_{2} \cup A_{3}$.

For suppose that v is A_{1}-complete and $v \notin A_{2} \cup A_{3}$. Since G is K_{4}-free, v is anticomplete to at least one of A_{2}, A_{3}, say A_{3}. If v is A_{2}-complete then we may add v to A_{3}, contrary to the maximality of $A_{1} \cup A_{2} \cup A_{3}$. Thus v has a nonneighbour in A_{2}. Choose $a_{1}, a_{1}^{\prime} \in A_{1}$. There is an odd induced path $a_{1}-p_{1}-\cdots-p_{k}-a_{1}^{\prime}$ between a_{1}, a_{1}^{\prime}; and since $A_{2} \cup A_{3} \cup\{v\}$ is anticonnected and not stable,
we may assume by 2.4 that p_{1} is complete to A_{3} and anticomplete to A_{2}. Choose distinct $a_{3}, a_{3}^{\prime} \in A_{3}$, and choose $a_{2} \in A_{2}$. Then $p_{1}-a_{1}-a_{2}-a_{1}^{\prime}$ is an induced path, and a_{3}, a_{3}^{\prime} are complete to its vertex set, so G contains a trestle, contrary to 4.2. This proves (1).

Now since $\left|A_{2}\right| \geq 2$, there is an odd induced path with both ends in A_{2}; choose such a path with minimum length, say $a_{2}-p_{1} \cdots \cdots-p_{k}-a_{2}^{\prime}$, where $a_{2}, a_{2}^{\prime} \in A_{2}$. From the minimality of k, it follows that none of p_{1}, \ldots, p_{k} is in A_{2}; and none of them is in $A_{1} \cup A_{3}$ since none of them is adjacent to both a_{2}, a_{2}^{\prime}. Consequently none of p_{1}, \ldots, p_{k} is complete to A_{1}, by (1). By 2.3 , every vertex in A_{1} is adjacent to one of p_{1}, p_{k}; and similarly so is every vertex in A_{3}. Since p_{1}, p_{k} do not have colour 2 (because they have neighbours in A_{2}), we may assume that p_{k} has colour 1. Consequently p_{k} is anticomplete to A_{1}, and so p_{1} is complete to A_{1}, contrary to (1). This proves 4.4.

5 Jumps on a prism

In this section we present a collection of lemmas about attachments to a prism that we need later. We say a vertex v can be linked onto a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$ (via paths P_{1}, P_{2}, P_{3}) if:

- $v \neq a_{1}, a_{2}, a_{3}$
- the three paths P_{1}, P_{2}, P_{3} are induced and mutually vertex-disjoint, and do not contain v
- for $i=1,2,3 a_{i}$ is an end of P_{i}
- for $1 \leq i<j \leq 3, a_{i} a_{j}$ is the unique edge of G between $V\left(P_{i}\right)$ and $V\left(P_{j}\right)$
- v has a neighbour in each of P_{1}, P_{2} and P_{3}.

Our first lemma (theorem 2.4 of [5]) is well-known:
5.1 Let G be Berge, and suppose v can be linked onto a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$. Then v is adjacent to at least two of a_{1}, a_{2}, a_{3}.

A prism is a graph consisting of two vertex-disjoint triangles $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths R_{1}, R_{2}, R_{3}, where each R_{i} has ends a_{i}, b_{i}, and for $1 \leq i<j \leq 3$ the only edges between $V\left(R_{i}\right)$ and $V\left(R_{j}\right)$ are $a_{i} a_{j}$ and $b_{i} b_{j}$. The three paths R_{1}, R_{2}, R_{3} are said to form the prism. The prism is long if at least one of the three paths has length >1. If G is a graph, a prism in G is an induced subgraph K that is a prism. If G is Berge, the three paths forming K are either all even or all odd, and we call the prism even or odd respectively. A vertex $w \in V(G) \backslash V(K)$ is said to be major with respect to K if it has at least two neighbours in each triangle of the prism.

If F, K are induced subgraphs of G, a vertex in $V(K)$ is said to be an attachment of F (or of $V(F))$ in K if either it belongs to $V(F)$ or it has a neighbour in $V(F)$. If K is a prism in G with R_{1}, R_{2}, R_{3} as before, a subset $X \subseteq V(K)$ is local with respect to K if either $X \subseteq V\left(R_{i}\right)$ for some i, or X is a subset of one of the triangles of K. If f_{1}, \ldots, f_{n} is an induced path disjoint from K, we say that $f_{1} \cdots-f_{n}$ is a corner jump in position a_{1} with respect to K if f_{1} is adjacent to a_{2}, a_{3}, and there is at least one edge between f_{n} and $V\left(R_{1}\right) \backslash\left\{a_{1}\right\}$, and every edge between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K) \backslash\left\{a_{1}\right\}$ is between f_{1} and $\left\{a_{2}, a_{3}\right\}$ or between f_{n} and $V\left(R_{1}\right) \backslash\left\{a_{1}\right\}$. We define corner jumps
in positions $a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ similarly. A corner jump means a path that is a corner jump in one of these six positions. Note that we are distinguishing between $f_{1} \cdots-f_{n}$ and $f_{n} \cdots-f_{1}$ here.

We need theorem 10.1 of [5], specialized to K_{4}-free graphs, the following.
5.2 Let R_{1}, R_{2}, R_{3} form a prism K in a K_{4}-free Berge graph G, with triangles $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}, b_{3}\right\}$, where each R_{i} has ends a_{i} and b_{i}. Let $F \subseteq V(G) \backslash V(K)$ be connected, such that its set of attachments in K is not local. Then there exist $n \geq 1$ and an induced path $f_{1} \cdots-f_{n}$ with $f_{1}, \ldots, f_{n} \in F$, such that either:

- $n=1$ and f_{1} is major, or
- for some distinct $i, j \in\{1,2,3\}$, f_{1} has two adjacent neighbours in R_{i}, and f_{n} has two adjacent neighbours in R_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
- $n \geq 2$, and for some distinct $i, j \in\{1,2,3\}, f_{1}$ is adjacent to a_{i}, a_{j}, and f_{n} is adjacent to b_{i}, b_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
- $f_{1}-\cdots-f_{n}$ is a corner jump.

This has the following useful corollary.
5.3 Let G be a K_{4}-free Berge graph containing no trestle, and let C be a hole of G. Let R_{3} be an induced path of G, with $V\left(R_{3}\right) \cap V(C)=\emptyset$, and with ends a_{3}, b_{3}. (Possibly R_{3} has length zero.) Let $a_{1} a_{2}$ and $b_{1} b_{2}$ be disjoint edges of C, such that the only edges between $V\left(R_{3}\right)$ and $V(C)$ are $a_{1} a_{3}, a_{2} a_{3}, b_{1} b_{3}, b_{2} b_{3}$. Let $w \in V(G) \backslash(V(R) \cup V(C))$, and let w be adjacent to a_{1}, a_{2} and nonadjacent to at least two of b_{1}, b_{2}, b_{3}. Then w has no neighbours in C except a_{1}, a_{2}.

Proof. We may assume that $a_{1}, a_{2}, b_{2}, b_{1}$ appear in this order in C. For $i=1,2$, let R_{i} be the path of C between a_{i}, b_{i} not using the edge $a_{1} a_{2}$, and let c_{i} be the neighbour of a_{i} in R_{i}. Suppose w has another neighbour in $V(C)$. Suppose first that R_{3} has positive length, so R_{1}, R_{2}, R_{3} form a prism K. The set of neighbours of w in K is not local, and so 5.2 implies that one of its outcomes holds if we set $n=1$ and $f_{1}=w$. Now the first outcome of 5.2 is false since w has at most one neighbour in $\left\{b_{1}, b_{2}, b_{3}\right\}$, and the third is false since $n=1$. Suppose the second holds. Then w has exactly four neighbours in the hole C, namely $c_{1}, a_{1}, a_{2}, c_{2}$. Since C is even, and

$$
w-c_{1}-R_{1}-b_{1}-b_{2}-R_{2}-c_{2}-w
$$

is not an odd hole, it follows that C has length four; but then the prism is odd, so R_{3} is odd, and

$$
w-a_{1}-a_{3}-R_{3}-b_{3}-b_{2}-w
$$

is an odd hole, a contradiction. Thus the fourth outcome holds. Since w is adjacent to a_{1}, a_{2} it follows that w has neighbours in $V\left(R_{3}\right) \backslash\left\{a_{3}\right\}$, and has no other neighbours in $V(C)$, a contradiction.

We may therefore assume that R_{3} has length zero, so $a_{3}=b_{3}$. Suppose that R_{2} has length one. Then since the subgraph induced on $\left(V(C) \backslash\left\{a_{2}, b_{2}\right\}\right) \cup\{w\}$ is not an odd hole, it follows that C has length four; and since w has more than two neighbours in C and is nonadjacent to one of b_{1}, b_{2}, it follows that G contains a trestle, a contradiction. Thus R_{2} has length at least two, and similarly so does R_{1}. Since $a_{3}-a_{2}-R_{2}-b_{2}-a_{3}$ is a hole it follows that R_{2} is even, and similarly R_{1} is even.

Consequently R_{1}, R_{2} are both even. Suppose that for $i=1,2, w$ has a neighbour in R_{i} different from a_{i}. Since w cannot be linked onto $\left\{b_{1}, b_{2}, b_{3}\right\}$, we deduce that $c_{1}, a_{1}, a_{2}, c_{2}$ are the only neighbours of w in C, and then either C or the graph induced on $\left(V(C) \backslash\left\{a_{1}, a_{2}\right\}\right) \cup\{w\}$ is an odd hole. Thus we may assume that w has no neighbour in R_{2} different from a_{2}; and so it does have a neighbour in R_{1} different from a_{1}. Let Q be an induced path between b_{1} and w with interior in $V\left(R_{1}\right)$. Since $w-a_{2}-R_{2}-b_{2}-b_{1}-Q-w$ is not an odd hole, it follows that Q is even; but then $w-a_{2}-a_{3}-b_{1}-Q-w$ is an odd hole, a contradiction. This proves 5.3.

We use 5.2 to prove the following.
5.4 Let G be a K_{4}-free Berge graph containing no trapeze, trestle, octahedron or extended 4-wheel. Let K be a prism in G, and let A, B and $R_{i}, a_{i}, b_{i}(i=1,2,3)$ be as before. Let $w \in V(G) \backslash V(K)$ be major with respect to K. Let $F \subseteq V(G) \backslash V(K)$ be connected, such that its set of attachments in K is not local, and w is anticomplete to F. Then there is an induced path $f_{1} \cdots-f_{n}$ with $n \geq 1$ and $f_{1}, \ldots, f_{n} \in F$, such that either:

- $n \geq 3$ is odd, and for some distinct $i, j \in\{1,2,3\}$, f_{1} has two adjacent neighbours c_{i}, d_{i} in R_{i}, and f_{n} has two adjacent neighbours c_{j}, d_{j} in R_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, and w is adjacent to all of $c_{i}, d_{i}, c_{j}, d_{j}$, or
- K is even, and for some distinct $i, j \in\{1,2,3\}, f_{1}$ has two adjacent neighbours c_{i}, d_{i} in R_{i}, and f_{n} has two adjacent neighbours c_{j}, d_{j} in R_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, and w is adjacent to $a_{i}, b_{i}, a_{j}, b_{j}$ and nonadjacent to every internal vertex of R_{i} and of R_{j}, or
- $n \geq 2$, and for some distinct $i, j \in\{1,2,3\}$, f_{1} is adjacent to a_{i}, a_{j}, and f_{n} is adjacent to b_{i}, b_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, and w is adjacent to $a_{i}, a_{j}, b_{i}, b_{j}$, or
- $f_{1}-\cdots-f_{n}$ is a corner jump in position a_{i} say (or b_{i}, similarly). Moreover, if w is adjacent to a_{i}, and therefore nonadjacent to a_{j} for some $j \in\{1,2,3\} \backslash\{i\}$, then R_{i} has length one, w is adjacent to b_{i}, b_{j}, and w has no neighbour in R_{j} except b_{j}.

Proof. Let f_{1}, \ldots, f_{n} be as in 5.2.
(1) The first outcome of 5.2 does not hold.

For suppose it does; thus f_{1} is major. Let $\{u, v\}=\left\{w, f_{1}\right\}$; thus, u, v are nonadjacent major vertices, and there is symmetry between u, v. Let X be the set of vertices in K adjacent to both u, v. Thus $A \cap X, B \cap X \neq \emptyset$. If u, v have the same neighbours in $A \cup B$, then the subgraph induced on $X \cap(A \cup B)$ is either a 2-edge matching, or a 3-edge path, or a cycle of length four, and so H contains a trapeze, trestle or octahedron, contrary to the hypothesis. So we may assume that u, v have different neighbours in A; and since they both have exactly two neighbours in A (because G is K_{4}-free) we may assume that u is adjacent to a_{1}, a_{3}, and v is adjacent to a_{2}, a_{3}. Hence $a_{3} \in X$. Since G contains no hole of length five, every vertex in X is adjacent to one of a_{1}, a_{2}. In particular $b_{3} \notin X$, and for $i=1,2$, if $b_{i} \in X$ then R_{i} has length one.

If $b_{1}, b_{2} \in X$, then R_{1}, R_{2} both have length one; but then the subgraph induced on

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, u, v\right\}
$$

is an odd antihole, a contradiction. Thus we may assume (exchanging u, v if necessary) that $b_{2} \notin X$. Now also $b_{3} \notin X$, so $b_{1} \in X$ and therefore R_{1} has length one. Moreover the subgraph induced on $\left\{u, v, b_{2}, b_{3}\right\}$ is a path of length three between u and v. Thus every vertex in X is adjacent to one of b_{2}, b_{3}; and since $a_{3} \in X$, it follows that R_{3} has length one. But then a_{1}, b_{3}, u, v are all adjacent to both a_{3}, b_{1}, and so G contains either a trapeze (if v is adjacent to b_{3}) or an extended 4 -wheel (if u is adjacent to b_{3}). This proves (1).

(2) If the second outcome of 5.2 holds then the theorem holds.

For suppose, say, f_{1} has two adjacent neighbours in R_{1}, and f_{n} has two adjacent neighbours in R_{2}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$. Let c_{1}, d_{1} be the two neighbours of $f_{1} \in R_{1}$, where $a_{1}, c_{1}, d_{1}, b_{1}$ are in order in R_{1}, and choose $c_{2}, d_{2} \in V\left(R_{2}\right)$ similarly. Suppose that w is adjacent to all of $c_{1}, d_{1}, c_{2}, d_{2}$. Thus n is odd, since $w-c_{1}-f_{1}-\cdots-f_{n}-d_{2}-w$ is not an odd hole. If $n=1$, then the subgraph induced on the set of common neighbours of f_{1}, w has two disjoint edges, and so G contains a trapeze, trestle or octahedron, a contradiction. Thus $n \geq 3$ and the theorem holds. Consequently we may assume that w is not adjacent to c_{1} say, and so w cannot be linked onto the triangle $\left\{c_{1}, d_{1}, f_{1}\right\}$. Suppose that w is adjacent to both c_{2}, d_{2}. From 5.3 applied to the hole induced on $V\left(R_{1}\right) \cup V\left(R_{2}\right)$ and the path $f_{1} \cdots-f_{n}$, it follows that w has no more neighbours in $V\left(R_{1} \cup R_{2}\right)$, and since w is adjacent to at least one of a_{1}, a_{2} and at least one of b_{1}, b_{2}, we deduce that R_{2} has length one, and w is adjacent to a_{3}, b_{3}. But then R_{1} is odd (since R_{2} is odd), and so $w-a_{3}-a_{1}-R_{1}-b_{1}-b_{2}-w$ is an odd hole, a contradiction. Thus w is adjacent to at most one of c_{2}, d_{2}, and therefore cannot be linked onto $\left\{c_{2}, d_{2}, f_{n}\right\}$.

For $i=1,2$, let C_{i}, D_{i} be the subpaths of R_{i} between a_{i}, c_{i} and between d_{i}, b_{i} respectively. Suppose that w has a neighbour in $V\left(C_{1}\right) \backslash\left\{a_{1}\right\}$. Since w cannot be linked onto $\left\{c_{1}, d_{1}, f_{1}\right\}$, it follows that w is nonadjacent to b_{1}, a_{2}. Since w is major, it is adjacent to b_{2}, b_{3}, and to a_{1}, a_{3}. Thus w can be linked onto $\left\{c_{2}, d_{2}, f_{n}\right\}$, a contradiction. It follows that w has no neighbour in R_{1}^{*}, and similarly none in R_{2}^{*}.

Suppose that w is nonadjacent to both a_{1}, b_{1}. Then w is adjacent to $a_{2}, a_{3}, b_{2}, b_{3}$, and K is even. From the symmetry we may assume that $a_{2} \neq c_{2}$; but a_{2} can be linked onto $\left\{c_{2}, d_{2}, f_{n}\right\}$, via paths with interiors in $V\left(C_{1}\right) \cup\left\{f_{1}, \ldots, f_{n}\right\}, V\left(C_{2}\right)$ and $\{w\} \cup V\left(D_{2}\right)$, a contradiction. Thus w is adjacent to at least one of a_{1}, b_{1}, and similarly to at least one of a_{2}, b_{2}. If w is adjacent to all of $a_{1}, a_{2}, b_{1}, b_{2}$ then the theorem holds, so we may assume that w is nonadjacent to b_{1}. Hence w is adjacent to a_{1}, b_{2}, b_{3}. From the hole $w-a_{1}-R_{1}-b_{1}-b_{3}-w$ it follows that the prism is odd, and hence R_{3} is odd. Let Q be the path

$$
a_{1}-C_{1}-c_{1}-f_{1}-\cdots-f_{n}-d_{2}-D_{2}-b_{2} .
$$

From the hole $a_{1}-Q-b_{2}-b_{3}-R_{3}-a_{3}-a_{1}$ it follows that Q is odd; but then $w-a_{1}-Q-b_{2}-w$ is an odd hole, a contradiction. This proves (2).
(3) If the third outcome of 5.2 holds then the theorem holds.

Suppose the third outcome of 5.2 holds; so $n \geq 2$, and, say, f_{1} is adjacent to a_{1}, a_{2}, and f_{n} is
adjacent to b_{1}, b_{2}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$. If w is adjacent to $a_{1}, b_{1}, a_{2}, b_{2}$, then the theorem holds, so we assume that w is nonadjacent to a_{1} say. Hence w is adjacent to a_{2}, a_{3}. By 5.3 applied to the prism K^{\prime} formed by R_{1}, R_{2} and f_{1}, \ldots, f_{n}, it follows that w is nonadjacent to one of b_{1}, b_{2}, say b_{i}, and therefore adjacent to b_{3}. Since $w-a_{2}-f_{1}-\cdots-f_{n}-b_{i}-b_{3}-w$ is not an odd hole, it follows that either n is even or a_{2}, b_{2} are adjacent; and in either case K^{\prime} is odd and therefore n is even.

For $j=1,2$, since $w-a_{2}-f_{1}-\cdots-f_{n}-b_{j}-w$ is not an odd hole, it follows (from $j=1$) that b_{1} is nonadjacent to w, and (from $j=2$) that R_{2} has length one. Since $w-a_{3}-a_{1}-R_{1}-b_{1}-b_{2}-w$ is not an odd hole, w has a neighbour $c_{1} \in R_{1}^{*}$. Since w cannot be linked onto $\left\{a_{1}, a_{2}, f_{1}\right\}$, it follows that c_{1} is adjacent to b_{1}. But similarly c_{1} is adjacent to a_{1}, contradicting that R_{1} has odd length. This proves (3).
(4) If the fourth outcome of 5.2 holds then the theorem holds.

Suppose that $f_{1} \cdots-f_{n}$ is a corner jump in position a_{3}, say. If w is adjacent to both a_{1}, a_{2} then the theorem holds, so we may assume that w, a_{1} are nonadjacent. Thus w is adjacent to a_{2}, a_{3}. Let R_{3}^{\prime} be an induced path between f_{1} and b_{3} with interior in $\left\{f_{2}, \ldots, f_{n}\right\} \cup V\left(R_{3}\right)$. Then $R_{1}, R_{2}, R_{3}^{\prime}$ form a prism K^{\prime}, and by three applications of 5.3 applied to the three holes of this prism, we deduce that w is nonadjacent to one of b_{1}, b_{2}, and nonadjacent to one of b_{2}, b_{3} (and hence adjacent to b_{1}, b_{3}), and has no neighbours in $R_{1} \cup R_{3}^{\prime}$ except b_{1}, b_{3}. Consequently K^{\prime} (and therefore K) is odd. If a_{3} has no neighbour in R_{3}^{\prime}, then $w-a_{3}-a_{1}-f_{1}-R_{3}^{\prime}-b_{3}-w$ is an odd hole, a contradiction; so a_{3} has a neighbour in R_{3}^{\prime}, and hence there is an induced path Q between a_{3}, b_{3} with interior in $V\left(R_{3}^{\prime}\right)$. In particular, w has no neighbour in Q^{*}, and Q is odd; and since $w-a_{3}-Q-b_{3}-w$ is not an odd hole, we deduce that a_{3}, b_{3} are adjacent. But then the theorem holds.

From 5.2 and (1)-(4), this proves 5.4.

6 Prisms with balanced vertices

Let K be a prism in a graph G, formed by paths R_{i} with ends $a_{i}, b_{i}(1 \leq i \leq 3)$ as usual. We say a major vertex w is balanced if there are two values of $i \in\{1,2,3\}$ such that w is adjacent to both a_{i}, b_{i}; and w is clear if it is anticomplete to $V\left(R_{i}\right)$ for some $i \in\{1,2,3\}$. (Thus a clear major vertex is balanced.) In this section we prove that if G is a K_{4}-free Berge graph, containing no even pair and no trampoline, then no prism in G has a balanced major vertex. A 4-wheel is the graph obtained from a cycle of length four by adding one more vertex adjacent to every vertex of the cycle. We need:
6.1 Let G be a K_{4}-free Berge graph containing no trapeze or trestle. Let K be a prism in G, and let A, B and $R_{i}, a_{i}, b_{i}(i=1,2,3)$ be as before. Let $w \in V(G) \backslash V(K)$ be major with respect to K. Suppose that either w is balanced, or G does not contain a 4-wheel. Let w be nonadjacent to a_{3}, and let $a_{3}-p_{1} \cdots-p_{k}-w$ be an induced path from a_{3} to w. Suppose that the set of attachments in K of $\left\{p_{1}, \ldots, p_{k-1}\right\}$ is local. Then k is odd.

Proof. Suppose that k is even. Let X be the set of attachments in K of $\left\{p_{1}, \ldots, p_{k-1}\right\}$. For $i=1,2, a_{i}$ is adjacent to both w, a_{3}. In particular, $a_{i} \notin\left\{p_{1}, \ldots, p_{k}\right\}$ since k is even. Moreover,
since $w-a_{i}-a_{3}-p_{1}-\cdots-p_{k}-w$ is not an odd hole, it follows that a_{i} has a neighbour in $\left\{p_{1}, \ldots, p_{k}\right\}$. Since G is K_{4}-free, not both a_{1}, a_{2} are adjacent to p_{k}; say a_{1} is not adjacent to p_{k} without loss of generality. Thus $a_{1} \in X$; and since $a_{3} \in X$ and X is local, we deduce that $X \subseteq A$. In particular, $p_{1}, \ldots, p_{k-1} \notin V(K)$. If $p_{k} \in V(K)$, then $p_{k} \in X$ since it is adjacent to p_{k-1}, and hence $p_{k} \in A$, which is impossible. Thus none of the vertices p_{1}, \ldots, p_{k}, w belong to $V(K)$.

Now w is adjacent to at least one of b_{2}, b_{3}; let R be the induced path between w and a_{3} with interior in $V\left(R_{3}\right) \cup\left\{b_{2}\right\}$. Since $w-R-a_{3}-a_{1}-w$ is a hole, it follows that R is even. Consequently

$$
w-R-a_{3}-p_{1}-\cdots-p_{k}-w
$$

is not a hole (since it would be odd), and since no vertex in $V(R) \backslash\left\{a_{3}\right\}$ belongs to X, it follows that p_{k} has a neighbour in $V(R) \backslash\left\{a_{3}\right\}$. Let R^{\prime} be the induced path between p_{k} and a_{3} with interior in $V(R)$. Then $a_{3}-p_{1}-\cdots-p_{k}-R^{\prime}-a_{3}$ is a hole, and so R^{\prime} is even. Consequently $w-p_{k}-R^{\prime}-a_{3}-a_{1}-w$ is not a hole, and therefore w has a neighbour in the interior of R^{\prime}. We deduce that the neighbour of w in R, and the neighbour of p_{k} in R^{\prime}, are the same vertex q say. Suppose that $q=b_{2}$. Then w, p_{k} are both anticomplete to $V\left(R_{3}\right)$, and therefore R_{3} is even; and since

$$
w-b_{1}-b_{3}-R_{3}-a_{3}-p_{1}-\cdots-p_{k}-w
$$

is not a hole (because it would have odd length), and $b_{1} \notin X$, we deduce that w, p_{k} are both adjacent to b_{1}, and so b_{1}, b_{2}, w, p_{k} are pairwise adjacent, a contradiction. Consequently $q \neq b_{2}$. Since we cannot link a_{1} onto $\left\{w, p_{k}, q\right\}$, via $a_{1} w$ and two paths with interiors in $V\left(R_{3}\right),\left\{p_{1}, \ldots, p_{k-1}\right\}$ respectively, it follows that p_{1} is the only neighbour of a_{1} in $\left\{p_{1}, \ldots, p_{k}\right\}$. Since G is K_{4}-free, a_{2} is nonadjacent to p_{1}, and so we can link a_{2} onto $\left\{w, p_{k}, q\right\}$; and so a_{2}, p_{k} are adjacent. Thus the set of attachments in K of $\left\{p_{k}\right\}$ is not local.

Let us apply 5.2 setting $F=\left\{p_{k}\right\}$. Now p_{k} is not major, since it has only one neighbour in A, and the third outcome of 5.2 does not hold since $|F|=1$. Suppose that the second outcome of 5.2 holds; so p_{k} has two adjacent neighbours in R_{2} (namely, a_{2} and its neighbour in R_{2}) and two adjacent neighbours in R_{3} (namely, q and its neighbour in R_{3} between q and b_{3}; this is only possible if $q \neq b_{3}$), and p_{k} has no other neighbours in $V(K)$. But then we can link p_{k} onto $\left\{a_{1}, a_{3}, p_{1}\right\}$, via paths with interiors in $\left(V\left(R_{2}\right) \backslash\left\{a_{2}\right\}\right) \cup V\left(R_{3}\right), V\left(R_{1}\right) \backslash\left\{b_{1}\right\}$, and $\left\{p_{1}, \ldots, p_{k-1}\right\}$, a contradiction. We deduce that the fourth outcome of 5.2 holds, and so the one-vertex path p_{k} is a corner jump. Since p_{k} has a neighbour in $V\left(R_{3}\right) \backslash\left\{a_{3}\right\}$, and is adjacent to a_{2} and not to a_{1}, a_{3}, it follows that p_{k} is a corner jump in position b_{2}, and $q=b_{3}$. Since p_{k}, w, b_{1}, b_{3} are not all pairwise adjacent, it follows that w is nonadjacent to b_{1}, and therefore adjacent to b_{2}. But then w is not balanced with respect to K, and yet the subgraph induced on $B \cup\left\{w, p_{k}\right\}$ is a 4 -wheel, a contradiction. This proves 6.1.

Next we show:
6.2 Let G be a K_{4}-free Berge graph with no even pair and no trampoline. If K is a prism in G, then no major vertex is balanced with respect to K.

Proof. Suppose that there is a prism with a balanced major vertex; and if possible choose one with a clear major vertex. Thus we have chosen a vertex w, and two paths R_{1}, R_{2}, with ends a_{i}, b_{i} for $i=1,2$, such that

- R_{1}, R_{2} both have length at least one, and are disjoint, and $w \notin V\left(R_{1} \cup R_{2}\right)$
- $a_{1} a_{2}$ and $b_{1} b_{2}$ are edges, and there are no other edges between $V\left(R_{1}\right)$ and $V\left(R_{2}\right)$
- w is adjacent to $a_{1}, a_{2}, b_{1}, b_{2}$
- there is a path R_{3} with ends a_{3}, b_{3}, with $V\left(R_{3}\right)$ disjoint from $V\left(R_{1} \cup R_{2}\right) \cup\{w\}$, such that a_{3} is adjacent to a_{1}, a_{2}, and b_{3} is adjacent to b_{1}, b_{2}, and there are no other edges between R_{3} and $R_{1} \cup R_{2}$
- if there is a prism in G with a clear major vertex, then w has no neighbour in R_{3}.

Consequently, we may choose three sets A, B, C, pairwise disjoint and each disjoint from $V\left(R_{1} \cup\right.$ $\left.R_{2}\right) \cup\{w\}$, such that

- every vertex in A is complete to $\left\{a_{1}, a_{2}\right\}$ and has no other neighbours in $R_{1} \cup R_{2}$
- every vertex in B is complete to $\left\{b_{1}, b_{2}\right\}$ and has no other neighbours in $R_{1} \cup R_{2}$
- no vertex in C has a neighbour in $R_{1} \cup R_{2}$
- for every vertex $v \in A \cup B \cup C$, there is an induced path containing v with one end in A and the other end in B, and with interior in C
- $A, B \neq \emptyset$
- if there is a prism in G with a clear major vertex, then w has no neighbour in C.

Since G is K_{4}-free, it follows that A, B are stable, and w is anticomplete to $A \cup B$. Choose such a triple (A, B, C) with $A \cup B \cup C$ maximal. If R is an induced path with one end in A and the other end in B, and with interior in C, we call R a rung. Let $W=A \cup B \cup C \cup V\left(R_{1}\right) \cup V\left(R_{2}\right)$.
(1) Let $p_{0}-p_{1}-\cdots-p_{k}$ be an induced path such that $p_{0} \in A$ and $p_{1}, \ldots, p_{k} \notin A \cup B$, and w is nonadjacent to p_{0}, \ldots, p_{k}. Let X be the set of vertices in W that either belong to $\left\{p_{1}, \ldots, p_{k}\right\}$ or are adjacent to some vertex in $\left\{p_{1}, \ldots, p_{k}\right\}$. Then either $X \subseteq A \cup B \cup C$, or $X \subseteq A \cup\left\{a_{1}, a_{2}\right\}$.

For suppose not, and choose k minimum such that the claim is false. From the minimality of k it follows that $p_{1}, \ldots, p_{k} \notin V\left(R_{1} \cup R_{2}\right)$, and from the hypothesis we have $p_{1}, \ldots, p_{k} \notin A \cup B$. (They might belong to C, however.) For $1 \leq i \leq k$ let X_{i} denote the set of vertices in W that either belong to $\left\{p_{i}, \ldots, p_{k}\right\}$ or are adjacent to some vertex in $\left\{p_{i}, \ldots, p_{k}\right\}$. Thus $X_{1}=X$ and is not a subset of $A \cup B \cup C$, and not a subset of $A \cup\left\{a_{1}, a_{2}\right\}$. Since $p_{0} \in A \cap X_{1}$, it follows that X_{1} is not a subset of any of $A \cup B \cup C, A \cup\left\{a_{1}, a_{2}\right\}, B \cup\left\{b_{1}, b_{2}\right\}, V\left(R_{1}\right), V\left(R_{2}\right)$. Choose $h \leq k$ maximum such that X_{h} is not a subset of any of these five sets.

Suppose that $p_{j} \in C$ for some j with $h \leq j \leq k$. Since $X_{h} \nsubseteq A \cup B \cup C$, there exists i with $h \leq i \leq k$ such that some vertex $y \in V\left(R_{1} \cup R_{2}\right)$ is adjacent to p_{i}. Since one of p_{1}, \ldots, p_{k-1} either belongs to C or has a neighbour in C, the minimality of k implies that $i=k$. Since $p_{j} \in C$ and therefore is nonadjacent to y, we deduce that $j<k$. But then $p_{j}, y \in X_{j+1}$, contrary to the maximality of h. This proves that $p_{h}, \ldots, p_{k} \notin C$, and therefore $p_{h}, \ldots, p_{k} \notin W$.

Choose a rung R_{3} with ends $a_{3} \in A$ and $b_{3} \in B$, such that the set of attachments of $\left\{p_{h}, \ldots, p_{k}\right\}$ in the prism K formed by R_{1}, R_{2}, R_{3} is not local. By 4.1, 4.2, 4.4 and $4.3, G$ contains no trapeze,
trestle, octahedron or extended 4 -wheel. From 5.4, we deduce that one of the five outcomes of 5.4 holds; and from the minimality of k and the maximality of h, the path $f_{1}-\cdots-f_{k}$ of 5.4 is either the path $p_{h^{-}} \cdots-p_{k}$ or its reverse.

Suppose the first outcome holds; then $k-h+1 \geq 3$ is odd, and for some distinct $i, j \in\{1,2,3\}$, p_{h} has two adjacent neighbours c_{i}, d_{i} in R_{i}, and p_{k} has two adjacent neighbours c_{j}, d_{j} in R_{j}, and there are no other edges between $\left\{p_{h}, \ldots, p_{k}\right\}$ and $V(K)$, and w is adjacent to all of $c_{i}, d_{i}, c_{j}, d_{j}$. The minimality of k implies that not both $i, j \in\{1,2\}$; and so w has neighbours in R_{3}. Yet w is a clear major vertex with respect to the prism induced on $V\left(R_{i} \cup R_{j}\right) \cup\left\{p_{h}, \ldots, p_{k}\right\}$, contrary to the choice of R_{1}, R_{2}, w.

Suppose the second outcome of 5.4 holds; then K is an even prism, and for some distinct $s, t \in$ $\{1,2,3\}$, p_{h} has two adjacent neighbours c_{s}, d_{s} in R_{s}, and p_{k} has two adjacent neighbours c_{t}, d_{t} in R_{t}, and there are no other edges between $\left\{p_{h}, \ldots, p_{k}\right\}$ and $V(K)$, and w is adjacent to $a_{s}, b_{s}, a_{t}, b_{t}$ and nonadjacent to every internal vertex of R_{s} and of R_{t}. Since w is balanced it follows that $\{s, t\}=\{1,2\}$, and since none of p_{1}, \ldots, p_{k-1} has a neighbour in $V\left(R_{1} \cup R_{2}\right) \backslash\left\{a_{1}, a_{2}\right\}$, it follows that $h=k$. We may assume that for $i=1,2, a_{i}, c_{i}, d_{i}, b_{i}$ are in order in R_{i}. For $i=1,2$, let C_{i}, D_{i} be the subpaths of R_{i} between a_{i}, c_{i} and between d_{i}, b_{i} respectively. If $a_{1} \neq c_{1}$, then we can link a_{1} onto $\left\{p_{k}, c_{1}, d_{1}\right\}$ via paths with interiors in $\{w\} \cup V\left(D_{1}\right), V\left(C_{1}\right)$, and $\left\{a_{3}\right\} \cup\left\{p_{1}, \ldots, p_{k}\right\}$, a contradiction. Thus $a_{1}=c_{1}$ and similarly $a_{2}=c_{2}$. Since K is even, it follows that

$$
p_{k}-d_{1}-D_{1}-b_{1}-b_{2}-D_{2}-d_{2}-p_{k}
$$

is an odd hole, a contradiction.
Suppose the third outcome of 5.4 holds; then $k>h$, and since w is nonadjacent to a_{3}, b_{3}, one of p_{h}, p_{k} is adjacent to a_{1}, a_{2}, and the other to b_{1}, b_{2}, and there are no other edges between $\left\{p_{h}, \ldots, p_{k}\right\}$ and $V(K)$. From the minimality of k, p_{h} is nonadjacent to both b_{1}, b_{2}; so p_{k} is adjacent to b_{1}, b_{2}, and p_{h} to a_{1}, a_{2}. But then we can add p_{h} to A and p_{k} to B and p_{h+1}, \ldots, p_{k-1} to C, contrary to the maximality of $A \cup B \cup C$.

Suppose the fourth outcome of 5.4 holds; then one of $p_{h^{-}} \cdots-p_{k}, p_{k^{-}} \cdots-p_{h}$ is a corner jump in one of the six positions, say position $x_{i} \in\left\{a_{i}, b_{i}\right\}$. There is no $j \in\{1,2,3\} \backslash\{i\}$ such that w is adjacent to just one end of R_{j}; and so from the fourth outcome of 5.4 , it follows that w is nonadjacent to x_{i}, and so $i=3$. But then we can add p_{h}, \ldots, p_{k} to A, B or C (in the appropriate way, depending whether $x_{3}=a_{3}$ or b_{3}, and depending whether the corner jump is $p_{h^{-}} \cdots-p_{k}$ or $p_{k^{-}} \cdots-p_{h}$) contrary to the maximality of $A \cup B \cup C$.

We have shown then that none of the outcomes of 5.4 holds, which is impossible; and this proves (1).
(2) If P is an induced path with both ends in $A \cup B$ such that w is anticomplete to $V(P)$, then P has even length.

We proceed by induction on the length of P. If some internal vertex of P belongs to $A \cup B$, then the result follows from the inductive hypothesis, so we may assume that P is $p_{0}-p_{1}-\cdots-p_{k+1}$ say, where $p_{0} \in A$, and $p_{k+1} \in A \cup B$, and $p_{1}, \ldots, p_{k} \notin A \cup B$. Let X be the set of vertices in W that belong to $\left\{p_{1}, \ldots, p_{k}\right\}$ or have a neighbour in this set. By (1), either $X \subseteq A \cup\left\{a_{1}, a_{2}\right\}$, or $X \subseteq A \cup B \cup C$. Suppose first that $p_{k+1} \in B$. Since $p_{k+1} \in X$, it follows that $X \subseteq A \cup B \cup C$, and so $w-a_{1}-p_{0}-P-p_{k+1}-b_{2}-w$ is a hole, and therefore P has even length. Thus we may assume that
$p_{k+1} \in A$. If $a_{1}-p_{0}-P-p_{k+1}-a_{1}$ is a hole then again P has even length, so we may assume that $a_{1} \in X$; and so $X \nsubseteq A \cup B \cup C$, and therefore $X \subseteq A \cup\left\{a_{1}, a_{2}\right\}$. But there is an induced path Q joining p_{0}, p_{k+1} with interior in $B \cup C \cup\left\{b_{2}\right\}$, and it has even length since it can be completed to a hole via $p_{k+1}-a_{1}-p_{0}$. Since $P \cup Q$ is a hole, it follows that P has even length. This proves (2).

Since G has no even pair, there is an odd induced path between some vertex of $A \cup B$ and w. Choose such a path as short as possible. By (2), none of its internal vertices belong to $A \cup B$. Let this path be $a_{3}-p_{1}-\cdots-p_{k}-w$ say, where $a_{3} \in A_{3}$. Choose a rung R_{3} with a_{3} as one end, and let K be the prism formed by R_{1}, R_{2}, R_{3}. By 6.1 applied to $a_{3}-p_{1}-\cdots-p_{k-1}$, the set of attachments of $\left\{p_{1}, \ldots, p_{k-1}\right\}$ in K is not local. But this contradicts (1). This proves 6.2.

A square in G is a hole of length four. We deduce:
6.3 Let G be a K_{4}-free Berge graph with no even pair and no trampoline. Then G contains no 4-wheel.

Proof. Suppose that G contains a 4 -wheel, and let $a_{1}-b_{1}-a_{2}-b_{2}-a_{1}$ be a square in G, and let c be adjacent to $a_{1}, a_{2}, b_{1}, b_{2}$. Since a_{1}, a_{2} is not an even pair, there is an odd induced path $a_{1}-p_{1}-\cdots-p_{k}-a_{1}$; and therefore $b_{1}, b_{2}, c \notin\left\{p_{1}, \ldots, p_{k}\right\}$. Suppose that there is an edge $u v$ of the path $a_{1}-p_{1}-\cdots-p_{k}-a_{1}$ such that $\{u, v\}$ is complete to $\left\{b_{1}, b_{2}\right\}$. From the symmetry we may assume that $u, v \neq a_{2}$. Since $\left\{a_{2}, c, u, v\right\}$ is complete to $\left\{b_{1}, b_{2}\right\}$, and therefore includes no triangle, it follows that G contains a trapeze, trestle, or octahedron, a contradiction. Thus there is no such edge $u v$. We claim that $\left\{b_{1}, b_{2}\right\}$ is a leap for the path $a_{1}-p_{1}-\cdots-p_{k}-a_{1}$. This follows from 2.1 if $k \geq 3$, and so we may assume that $k=2$, and therefore neither of p_{1}, p_{2} is complete to $\left\{b_{1}, b_{2}\right\}$. But each of b_{1}, b_{2} is adjacent to at least one of p_{1}, p_{2} since G has no hole of length five; and so again $\left\{b_{1}, b_{2}\right\}$ is a leap. Thus we may assume that b_{1} is adjacent to p_{1}, and b_{2} to p_{k}, and there are no other edges between $\left\{b_{1}, b_{2}\right\}$ and $\left\{p_{1}, \ldots, p_{k}\right\}$. But then the paths $p_{1} \cdots-p_{k}, a_{1} b_{2}$ and $b_{1} a_{2}$ form a prism and c is a balanced major vertex with respect to it, contrary to 6.2 . This proves 6.3 .

7 Prisms with major-general vertices

Let K be a prism in a graph G, formed by paths R_{i} with ends $a_{i}, b_{i}(1 \leq i \leq 3)$ as usual. A vertex $w \in V(G) \backslash V(K)$ is said to be major-general with respect to K if it is major and there exists $i \in\{1,2,3\}$ such that R_{i} has length at least two and w is adjacent to both ends of R_{i}. Our next objective is to extend 6.2 , proving the analogous theorem for major-general vertices, the following.
7.1 Let G be a K_{4}-free Berge graph with no even pair and no trampoline. If K is a prism in G, then no vertex is major-general with respect to K.

Proof. Suppose that there is a prism with a major-general vertex w. Then there is an induced path R_{3} with length at least two, with ends a_{3}, b_{3}, and two other vertices a_{2}, b_{1}, and nine pairwise disjoint subsets $A_{i}, C_{i}, B_{i}(1 \leq i \leq 3)$ of $V(G) \backslash\{w\}$, satisfying

- $a_{2}-a_{3}-R_{3}-b_{3}-b_{1}$ is an induced path
- $A_{i}=\left\{a_{i}\right\}$ for $i=2,3 ; B_{i}=\left\{b_{i}\right\}$ for $i=1,3 ; C_{3}$ is the set of internal vertices of R_{3}
- for $1 \leq i<j \leq 3, A_{i}$ is complete to A_{j}, and B_{i} is complete to B_{j}, and there are no other edges between $A_{i} \cup B_{i} \cup C_{i}$ and $A_{i} \cup B_{j} \cup C_{j}$
- for $1 \leq i \leq 3$ and every vertex $v \in A_{i} \cup B_{i} \cup C_{i}$, there is an i-rung containing v, where an i-rung means an induced path with one end in A_{i} and the other end in B_{i}, and with interior in C_{i}
- w is adjacent to $a_{2}, a_{3}, b_{1}, b_{3}$, and
- A_{1}, B_{2} are nonempty.
(To see this, note that since w is major-general with respect to some prism, and not balanced, we may assume in the usual notation that w is adjacent to $a_{2}, b_{1}, a_{3}, b_{3}$, and R_{3} has length at least two; and then the claim follows.) Let W be the union of the nine sets $A_{i}, C_{i}, B_{i}(1 \leq i \leq 3)$, and choose $A_{1}, C_{1}, C_{2}, B_{2}$ such that W is maximal.
(1) Let $p_{0}-p_{1} \cdots-p_{k}$ be an induced path such that $p_{0} \in A_{1}$ and $p_{1}, \ldots, p_{k} \notin A_{1} \cup B_{1}$, and w is nonadjacent to p_{0}, \ldots, p_{k}. Let X be the set of vertices in W that either belong to $\left\{p_{1}, \ldots, p_{k}\right\}$ or are adjacent to some vertex in $\left\{p_{1}, \ldots, p_{k}\right\}$. Then either $X \subseteq A_{1} \cup B_{1} \cup C_{1}$, or $X \subseteq A_{1} \cup\left\{a_{2}, a_{3}\right\}$.

For suppose not, and choose k minimum such that the claim is false, and choose $h \leq k$ as in step (1) of the proof of 6.2 . As in that proof, it follows that $p_{h}, \ldots, p_{k} \notin W$, and there is a prism K, formed by a 1-rung R_{1}, a 2 -rung R_{2}, and the path R_{3}, such that the set of attachments of $\left\{p_{h}, \ldots, p_{k}\right\}$ in K is not local. Choose a_{1}, b_{2} such that for $i=1,2,3$, the ends of R_{i} are a_{i}, b_{i}. Again, one of the outcomes of 5.4 holds.

The first outcome does not hold since G contains no prism with respect to which w is balanced, by 6.2. The second and third outcomes do not hold since w is not balanced with respect to K. Thus the fourth outcome of 5.4 holds; so one of $p_{h^{-}} \cdots-p_{k}, p_{k^{-}} \cdots-p_{h}$ is a corner jump in one of the six positions, say position x.

Suppose first that $x=a_{1}$, and so one of $p_{h^{-}} \cdots-p_{k}, p_{k^{-}} \cdots-p_{h}$ is a corner jump in position a_{1} with respect to K. If $\left\{p_{h}, \ldots, p_{k}\right\}$ is anticomplete to $B_{2} \cup C_{2}$ then we can either add p_{h} to A_{1} and p_{h+1}, \ldots, p_{k} to C_{1}, or add p_{k} to A_{1} and p_{h}, \ldots, p_{k-1} to C_{1} (depending whether $p_{h^{-}} \cdots-p_{k}$ or $p_{k^{-}} \cdots-p_{h}$ is the corner jump with respect to K), a contradiction to the maximality of W. Thus there is a 2 -rung R_{2}^{\prime} with ends a_{2}, b_{2}^{\prime} say, such that one of p_{h}, \ldots, p_{k} has a neighbour in $V\left(R_{2}^{\prime}\right) \backslash\left\{a_{2}\right\}$. From the minimality of k, no vertex in $\left\{p_{1}, \ldots, p_{k-1}\right\}$ has a neighbour in $V\left(R_{2}^{\prime}\right) \backslash\left\{a_{2}\right\}$; so p_{k} has such a neighbour. If p_{k} is adjacent to a_{2}, a_{3}, then the prism formed by $R_{1}, R_{2}^{\prime}, R_{3}$ does not satisfy 5.3 , since p_{k} has at most one neighbour in $\left\{b_{1}, b_{2}^{\prime}, b_{3}\right\}$. Thus $h<k$, and p_{h} is adjacent to a_{2}, a_{3}, and p_{k} has a neighbour in $V\left(R_{1}\right) \backslash\left\{a_{1}\right\}$ and a neighbour in $V\left(R_{2}^{\prime}\right) \backslash\left\{a_{2}\right\}$. If p_{k} has a neighbour in R_{2}^{\prime} different from b_{2}^{\prime}, we can link p_{k} onto $\left\{p_{h}, a_{2}, a_{3}\right\}$ via paths with interiors in $\left\{p_{h+1}, \ldots, p_{k-1}\right\}, V\left(R_{2}^{\prime}\right) \backslash\left\{b_{2}^{\prime}\right\}$, and $\left(V\left(R_{1}\right) \backslash\left\{a_{1}\right\}\right) \cup V\left(R_{3}\right)$, a contradiction. So b_{2}^{\prime} is the only neighbour of p_{k} in R_{2}^{\prime}. But then we can link b_{2}^{\prime} onto $\left\{p_{h}, a_{2}, a_{3}\right\}$, via paths with interiors in $V\left(R_{2}^{\prime}\right),\left\{p_{h}, \ldots, p_{k}\right\}$ and $V\left(R_{3}\right)$, a contradiction. Thus $x \neq a_{1}$.

Suppose that $x=b_{2}$. From the minimality of k, no vertex in $\left\{p_{1}, \ldots, p_{k-1}\right\}$ is adjacent to b_{3}; so the corner jump is $p_{k^{-}} \cdots-p_{h}$, and p_{k} is adjacent to b_{1}, b_{3}, and p_{h} has a neighbour in $V\left(R_{2}\right) \backslash\left\{b_{2}\right\}$. Then from the maximality of W, there is a 1 -rung R_{1}^{\prime} with ends a_{1}^{\prime} and b_{1}, such that one of p_{h}, \ldots, p_{k},
say p_{i}, has a neighbour $v \in V\left(R_{1}^{\prime}\right) \backslash\left\{b_{1}\right\}$. If $i=k$ then the prism formed by $R_{1}^{\prime}, R_{2}, R_{3}$ does not satisfy 5.3 (since p_{k} has at most one neighbour in $\left\{a_{1}^{\prime}, a_{2}, a_{3}\right\}$). Thus $i<k$, and consequently $h<k$. From the minimality of k, p_{h} has no neighbour in R_{2} except possibly a_{2}; and so p_{h}, a_{2} are adjacent. From the minimality of k, since p_{h} is adjacent to a_{2}, it follows that none of p_{1}, \ldots, p_{k-1} has a neighbour in $B_{1} \cup C_{1}$; and in particular $v=a_{1}^{\prime}$. But then the prism formed by R_{1}, R_{3} and the path $a_{2}-p_{h}-\cdots-p_{k}$ does not satisfy 5.3 , since a_{1}^{\prime} has at most one neighbour in $\left\{b_{1}, b_{3}, p_{k}\right\}$ (since we have shown that $p_{i} \neq p_{k}$). Thus $x \neq b_{2}$.

If $x=a_{2}$, there is a prism K^{\prime} formed by R_{1}, R_{3} and a path starting with one of $p_{h^{-}} \cdots-p_{k}, p_{k^{-}} \cdots-p_{h}$ and with final vertex b_{2}, and with interior in $V\left(R_{2}\right) \backslash\left\{a_{2}\right\}$; and this prism does not satisfy 5.3 , a contradiction. Similarly $x \neq b_{1}$; and so $x \in\left\{a_{3}, b_{3}\right\}$. By the fourth outcome of 5.4, since w is adjacent to x, it follows that R_{3} has length one, a contradiction. This proves (1).
(2) If P is an induced path with both ends in $A_{1} \cup B_{2}$ such that w is anticomplete to $V(P)$, then P has even length.

We proceed by induction on the length of P. If some internal vertex of P belongs to $A_{1} \cup B_{2}$, then the result follows from the inductive hypothesis, so we may assume that P is $p_{0}-p_{1} \cdots-p_{k+1}$ say, where $p_{0} \in A_{1}$, and $p_{k+1} \in A_{1} \cup B_{2}$, and $p_{1}, \ldots, p_{k} \notin A_{1} \cup B_{2}$. Let X be the set of vertices in W that belong to $\left\{p_{1}, \ldots, p_{k}\right\}$ or have a neighbour in this set. By (1), either $X \subseteq A_{1} \cup\left\{a_{2}, a_{3}\right\}$, or $X \subseteq A_{1} \cup B_{1} \cup C_{1}$, and in particular, $p_{k+1} \notin B_{2}$. Thus $p_{k+1} \in A_{1}$. If $a_{2}-p_{0}-P-p_{k+1}-a_{2}$ is a hole then again P has even length, so we may assume that $a_{2} \in X$; and so $X \nsubseteq A_{1} \cup B_{1} \cup C_{1}$, and therefore $X \subseteq A_{1} \cup\left\{a_{2}, a_{3}\right\}$. But there is an induced path Q joining p_{0}, p_{k+1} with interior in $B_{1} \cup C_{1} \cup\left\{b_{3}\right\}$, and it has even length since it can be completed to a hole via $p_{k+1}-a_{2}-p_{0}$. Since $P \cup Q$ is a hole, it follows that P has even length. This proves (2).

Since G has no even pair, there is an odd induced path between some vertex of $A_{1} \cup B_{2}$ and w. Choose such a path as short as possible. By (2), none of its internal vertices belong to $A_{1} \cup B_{2}$. Let this path be $a_{1}-p_{1} \cdots-p_{k}-w$, where $a_{1} \in A_{1}$ say. Choose a 1 -rung R_{1} with a_{1} as one end, and choose a 2 -rung R_{2}; and let K be the prism formed by R_{1}, R_{2}, R_{3}. By 6.1 applied to $a_{1}-p_{1}-\cdots-p_{k}$, the set of attachments of $\left\{p_{1}, \ldots, p_{k-1}\right\}$ in K is not local. But this contradicts (1). This proves 7.1.

8 Line graphs

A cut of a graph G is a partition $\left(A_{1}, X, A_{2}\right)$ of $V(G)$ such that A_{1}, A_{2} are nonempty and A_{1} is anticomplete to A_{2}; and it is a k-cut if $|X| \leq k$. We say G is k-connected if $|V(G)|>k$ and there is no ($k-1$)-cut.

A branch-vertex of a graph H is a vertex with degree ≥ 3; and a branch of H means a maximal path P in H such that no internal vertex of P is a branch-vertex. Let J be a graph with minimum degree at least three. If H is a subdivision of J then $V(J)$ is the set of branch-vertices of H, and the branches of H are in 1-1 correspondence with the edges of J in the natural way.

If H is a graph, then $L(H)$ denotes its line graph; thus $E(H)=V(L(H)$). If J is 3-connected and H is a bipartite subdivision of J, and $L(H)$ is an induced subgraph of G, we call $L(H)$ an appearance of J in G. An appearance $L(H)$ of J in G is degenerate if $J=K_{4}$ and there is a cycle of H of length
four containing all the vertices of J, or $H=J=K_{3,3}$, and non-degenerate otherwise. In this section we prove the following.
8.1 Let G be a 3-connected K_{4}-free Berge graph, containing no even pair and no trampoline, and no clique cutset. Suppose that there is an appearance of a 3 -connected graph J in G, nondegenerate if $J=K_{4}$. Then G is the line graph of a bipartite graph.

If $L(H)$ is an appearance of J in G, a vertex $w \in V(G) \backslash V(L(H))$ is major with respect to $L(H)$ if for each $v \in V(J) \subseteq V(H)$, there is at most one edge x of H incidentwith v such that w is nonadjacent to x in G.
8.2 Let G be a K_{4}-free Berge graph, containing no even pair and no trampoline. For every 3connected graph J and every appearance $L(H)$ of J in G, no vertex is major with respect to $L(H)$.

Proof. Suppose that w is major with respect to $L(H)$. There is a subgraph H^{\prime} of H that is a bipartite subdivision of K_{4}, and w is major with respect to $L\left(H^{\prime}\right)$. Thus if the theorem holds when $J=K_{4}$ then it holds in general. We therefore may assume that $J=K_{4}$. Let the four vertices of J be c_{1}, \ldots, c_{4}. For all distinct $i, j \in\{1, \ldots, 4\}$, let $B_{i j}=B_{j i}$ be the branch of H with ends c_{i}, c_{j}, let $e(i, j)$ be the edge of $B_{i j}=B_{j i}$ incident with c_{i}, and let $H_{i j}=H_{j i}$ be the subgraph of H obtained by deleting the edges and interior vertices of $B_{i j}$. Let N be the set of neighbours of w in $V(L(H))$. Thus $N \subseteq E(H)$. For $1 \leq i \leq 4$, exactly two of the edges of H incident with c_{i} belong to N (for at least two are in N since w is major, and not all three since G is K_{4}-free).
(1) For $1 \leq i<j \leq 4, N$ contains at least one of $e(i, j), e(j, i)$.

For let $(i, j)=(1,2)$ say. Suppose that no end-edge of B_{12} is in N. Thus $e(1,3), e(1,4), e(2,3), e(2,4) \in$ N. Suppose first that B_{12} has length one, and let x be its unique edge. Then $\{x, w\}$ is complete in G to $\{e(1,3), e(1,4), e(2,3), e(2,4)\}$, and so G contains a trapeze, trestle, or octahedron, a contradiction. Thus B_{12} has length at least two. Then $L\left(H_{34}\right)$ is an induced subgraph of G, and it is a prism (since B_{12} has length at least two). Moreover, since w is nonadjacent to both end-edges of B_{12}, we deduce that w is a balanced major vertex with respect to this prism, contrary to 6.2 . This proves (1).

We may assume that $e(1,2), e(1,3) \in N$, and therefore $e(1,4) \notin N$. By (1), e(4,1) $\in N$. From the symmetry between c_{2} and c_{3}, we may assume that $e(4,3) \notin N$, and hence $e(3,4), e(4,2) \in N$. Since $L\left(H_{12}\right)$ is a prism (since B_{34} has at least two edges) and w is not major-general with respect to this prism, by 7.1 , it follows that $e(3,1) \notin N$, and $e(3,2) \in N$, and B_{23}, B_{24} both have length one (and so $e(2,1) \notin N)$. But then w is major-general with respect to the prism $L\left(H_{24}\right)$, a contradiction. This proves 8.2.

An appearance $L(H)$ of J in G is overshadowed if there is a branch B of H with odd length ≥ 3, and a vertex $\operatorname{win} V(G) \backslash V(L(H)$), such that for each end b of B in H, there is at most one edge of H that is incident with b in H and nonadjacent to w in G.
8.3 Let G be a K_{4}-free Berge graph, containing no even pair and no trampoline. For every 3connected graph J, there is no overshadowed appearance of J in G.

Proof. Suppose $L(H)$ is an overshadowed appearance of J in G, and let B, w be as above. Let the ends of B in H be b_{1}, b_{2}. Since J is 3 -connected, there are three paths P_{1}, P_{2}, P_{3} of H between b_{1}, b_{2}, vertex-disjoint except for b_{1}, b_{2}, where $P_{3}=B$. Let H^{\prime} be the union of these paths; then $L\left(H^{\prime}\right)$ is an even prism (since B has odd length) and w is a major (and therefore major-general) vertex with respect to it, contrary to 7.1. This proves 8.3.

Let J be a 3 -connected graph. A J-strip system (S, N) in a graph G consists of a subset $S_{u v}=$ $S_{v u} \subseteq V(G)$ for each edge $u v$ of J, and a subset $N_{v} \subseteq V(G)$ for each vertex v of J, satisfying the following conditions:

- The sets $S_{u v}(u v \in E(J))$ are pairwise disjoint.
- For each $u \in V(J), N_{u} \subseteq \bigcup\left(S_{u v}: v \in V(J)\right.$ adjacent to $\left.u\right)$.
- For each $u v \in E(J)$, every vertex of $S_{u v}$ is in a $u v$-rung (a $u v$-rung is an induced path R of G with ends s, t say, where $V(R) \subseteq S_{u v}$, and s is the unique vertex of R in N_{u}, and t is the unique vertex of R in N_{v}).
- If $u v, w x \in E(J)$ with u, v, w, x all distinct, then there are no edges between $S_{u v}$ and $S_{w x}$.
- If $u v, u w \in E(J)$ with $v \neq w$, then $N_{u} \cap S_{u v}$ is complete to $N_{u} \cap S_{u w}$, and there are no other edges between $S_{u v}$ and $S_{u w}$.
- For each $u v \in E(J)$ there is a special $u v$-rung such that for every cycle C of J, the sum of the lengths of the special $u v$-rungs for $u v \in E(C)$ has the same parity as $|V(C)|$.

We define $V(S, N)=\bigcup\left(S_{u v}: u v \in E(J)\right)$. If $u, v \in V(J)$ are adjacent, we define $N_{u v}=N_{u} \cap S_{u v}$. So every vertex of N_{u} belongs to $N_{u v}$ for exactly one v. Note that $N_{u v}$ is in general different from $N_{v u}$, but $S_{u v}$ and $S_{v u}$ mean the same thing.

If $L(H)$ is an appearance of J in G, then since $L(H)$ is an induced subgraph of G, there is a J-strip system (S, N) in G, defined by setting

- for each edge $u v$ of $J, S_{u v}$ is the set of edges of the branch of H with ends u, v
- for each $v \in V(J), N_{v}$ is the set of edges of H incident with v in H.

We call this the strip system of H.
A J-strip system $\left(S^{\prime}, N^{\prime}\right)$ in G extends a J-strip system (S, N) in G if $V(S, N) \subset V\left(S^{\prime}, N^{\prime}\right)$, and $S_{u v}^{\prime} \cap V(S, N)=S_{u v}$ for every $u v \in E(J)$, and $N_{v}^{\prime} \cap V(S, N)=N_{v}$ for every $v \in V(J)$; and a J-strip system (S, N) in G is maximal if there is no J-strip system in G that extends (S, N).

Proof of 8.1.

Choose a 3-connected graph J maximal such that there is an appearance $L(H)$ of J in G, nondegenerate if $J=K_{4}$. (Thus $E(H) \subseteq V(G)$.) We will prove that $G=L(H)$. Since G is K_{4}-free it follows that J has maximum degree three. Since $L(H)$ is an appearance of J in G, we may choose a maximal J-strip system (S, N) that extends the strip system of H.
(1) For all $u v \in E(J)$, all uv-rungs have lengths of the same parity.

This follows from theorem 8.1 of [5].
(2) For every edge uv of J, if some uv-rung has length zero then $\left|S_{u v}\right|=1$.

For by 8.3 and theorem 8.2 of [5] it follows that every uv-rung has length zero. Suppose that $x, y \in S_{u v}$ are distinct. Then x, y are both complete to $N_{u} \backslash N_{u v}$ and both complete to $N_{v} \backslash N_{v u}$; and so G contains a trapeze, trestle or octahedron, a contradiction. Thus $\left|S_{u v}\right|=1$. This proves (2).

We say $X \subseteq V(S, N)$ is local (with respect to the strip system) if either $X \subseteq N_{v}$ for some $v \in V(J)$, or $X \subseteq S_{u v}$ for some edge $u v \in E(J)$. Let \mathcal{F} be the set of all vertex sets of components of $G \backslash V(S, N)$.
(3) For each $F \in \mathcal{F}$ the set of attachments of F in $V(S, N)$ is local.

This follows from theorem 8.5 of [5], because of $8.2,8.3$, the choice of J, and the maximality of the strip system, using that $L(H)$ is nondegenerate if $J=K_{4}$, and that (S, N) extends the strip system of H.
(4) For every edge $u v \in E(J),\left|N_{u v}\right|=1$.

For we prove, by induction on the length of P, that if P is an induced path with both ends in $N_{a x}$ for some edge $a x$ of J then P is even. Let $a \in V(J)$, with neighbours x, y, z in J; and suppose that P is an induced path of G with both ends in $N_{a x}$. If some internal vertex of P belongs to $N_{a x}$ the result follows from the inductive hypothesis, and if some vertex of P is in $N_{a y} \cup N_{a z}$ then P has length two as required; so we may assume that $P^{*} \cap N_{a}=\emptyset$. Let the vertices of P be $p_{1} \cdots \cdots-p_{k}$ in order. Since $p_{1}, p_{k} \in N_{a x} \subseteq S_{a x}$, (2) implies that every ax-rung has positive length, and so $N_{a x} \cap N_{x}=\emptyset$. Let F_{1} be the union of all $F \in \mathcal{F}$ such that every attachment of F in $V(S, N)$ belongs to N_{a}, and let F_{2} be the union of all $F \in \mathcal{F}$ such that every attachment of F is in $S_{a x}$ and some attachment is not in N_{a}. From (3), every member of \mathcal{F} with an attachment in $S_{a x} \backslash N_{x a}$ is a subset of one of F_{1}, F_{2}. Choose $c \in N_{a y}$.

Suppose first that some vertex of P belongs to F_{1}. Choose h, j with $1 \leq h<j \leq k$ and $j-h$ minimum such that $p_{h}, p_{j} \notin F_{1}$ and there exists i with $h<i<j$ and $p_{i} \in F_{1}$. It follows that $p_{h}, p_{j} \in N_{a}$, and therefore $i=1$ and $j=k$. Let R, R^{\prime} be $a x$-rungs containing p_{1}, p_{k} respectively, and let $b \in N_{x} \backslash N_{x a}$. Then there is an induced path Q between p_{1}, p_{k} with interior in $V(R) \cup V\left(R^{\prime}\right) \cup\{b\}$, and we claim it is even. For if $b \in V(Q)$ then Q is even since R, R^{\prime} have the same parity by (1); and if $b \notin V(Q)$ then Q is even since Q can be complete to a hole via $p_{k}-c-p_{1}$. Thus in either case Q is even; but $P \cup Q$ is a hole, and so P is even as required.

Thus we may assume that no vertex of P belongs to F_{1}. If no vertex of P is in $N_{x a}$, then $P^{*} \subseteq F_{2} \cup\left(S_{a x} \backslash\left(N_{a x} \cup N_{x a}\right)\right)$, and therefore P can be completed to a hole via $p_{k}-c-p_{1}$, and so P is even as required. Thus we may assume that there exist $h, j \in\{2, \ldots, k-1\}$, minimum and maximum respectively such that $p_{h}, p_{j} \in N_{x a}$. (Possibly $h=j$.) From the maximality of $V(S, N)$, the internal vertices of $p_{1} \cdots-p_{h}$ belong to $S_{a x}$ (for otherwise they could be added to $S_{a x}$), and so $p_{1} \cdots-p_{h}$ is an $a x$-rung, and so is $p_{j} \cdots-p_{k}$. Consequently their lengths have the same parity, by (1); and from the inductive hypothesis the subpath $p_{h} \cdots-p_{j}$ has even length; and so P has even length. This
completes the proof that P has even length.
We deduce that for each edge $u v$ of J, any two vertices in $N_{u v}$ would be an even pair, and so $\left|N_{u v}\right|=1$. This proves (4).

Thus each N_{v} is a clique. If there exists $F \in \mathcal{F}$ such that the set of attachments of F in $V(S, N)$ is contained in some N_{v}, then G admits a clique cutset, a contradiction. For each $u v \in E(J)$, let $A_{u v}$ be the union of $S_{u v}$ and all $F \in \mathcal{F}$ such that the set of attachments of F in $V(S, N)$ is a subset of $S_{u v}$. It follows that the sets $A_{u v}(u v \in E(J))$ are pairwise disjoint and have union $V(G)$.
(5) For each edge uv of $J,\left|A_{u v}\right| \leq 2$.

For every path in G between $A_{u v}$ and $V(G) \backslash A_{u v}$ contains a member of $N_{u v} \cup N_{v u}$. But by (4), $\left|N_{u v} \cup N_{v u}\right|=2$, and since G is 3-connected, it follows that $\left|A_{u v}\right| \leq 2$. This proves (5).

From (5) it follows that $G=L(H)$, and so G is a line graph. This proves 8.1.

9 Degenerate K_{4} 's

In this section we extend 8.1 to include the case when G contains an appearance of K_{4}, but all such appearances are degenerate. This case was excluded from 8.1 so that we could apply theorem 8.5 of [5], and we therefore need some workaround to replace that theorem. We begin with:
9.1 Let G be a K_{4}-free Berge graph, containing no even pair or trampoline, and containing no appearance of $K_{3,3}$. Let $L(H)$ be a degenerate appearance of J in G, where J is isomorphic to K_{4}. Let $V(J)=\left\{c_{1}, \ldots, c_{4}\right\}$, and for $1 \leq i<j \leq 4$ let $B_{i j}$ be the branch of H with ends c_{i}, c_{j}. Let $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$ be a cycle of H, and let $b_{1}, b_{2}, b_{3}, b_{4}$ be the unique edges of $B_{12}, B_{23}, B_{34}, B_{14}$ respectively. Then every path in G between $E\left(B_{13}\right)$ and $E\left(B_{24}\right)$ contains one of b_{1}, \ldots, b_{4}.

Proof. First, we observe that $b_{1}-b_{2}-b_{3}-b_{4}-b_{1}$ is a square of G. Let the edges of B_{13} be p_{1}, \ldots, p_{m} in order; thus, $p_{1}-\cdots-p_{m}$ is an induced path P of G, and p_{1} is adjacent to b_{1}, b_{4}, and p_{m} is adjacent to b_{2}, b_{3}. Similarly, let the edges of B_{24} form an induced path $q_{1}-\cdots-q_{n}$ (which we call Q) in G, where q_{1} is adjacent to b_{1}, b_{2}, and q_{n} to b_{3}, b_{4}. Since H is bipartite it follows that m, n are even. Suppose there is a path of G between $V(P)$ and $V(Q)$ containing none of b_{1}, \ldots, b_{4}, and choose a minimal such path. Thus we may assume that $r_{1} \cdots-r_{k}$ is an induced path R, where $r_{1}, \ldots, r_{k} \notin V(P \cup Q) \cup\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$, and r_{1} has neighbours in $V(P)$ and r_{k} has neighbours in $V(Q)$, and there are no other edges between $\left\{r_{1}, \ldots, r_{k}\right\}$ and $V(P \cup Q)$. Let us choose H and R such that R has minimum length.
(1) If b_{1}, b_{2} are anticomplete to $V(R)$, then r_{1} has exactly two neighbours in $V(P)$ and they are adjacent.

For suppose that b_{1}, b_{2} are nonadjacent to r_{1}, \ldots, r_{k}. If r_{1} has a unique neighbour $r_{0} \in V(P)$, we can link r_{0} onto $\left\{b_{1}, b_{2}, q_{1}\right\}$, a contradiction; and if r_{1} has two nonadjacent neighbour in $V(P)$, we can link r_{1} onto the same triangle, again a contradiction. This proves (1).
(2) At least one of b_{1}, \ldots, b_{4} has a neighbour in $V(R)$.

For suppose not. By (1), r_{1} has exactly two neighbours in $V(P)$, and they are adjacent; and similarly r_{k} has exactly two neighbours in Q, and they are adjacent. But then the restriction of G to $V(P \cup Q \cup R) \cup\left\{b_{1}, \ldots, b_{4}\right\}$ is the line graph of a bipartite subdivision of $K_{3,3}$, contrary to the hypothesis. This proves (2).
(3) At least two of b_{1}, \ldots, b_{4} have a neighbour in $V(R)$.

For suppose that b_{1} has a neighbour in $V(R)$, and b_{2}, b_{3}, b_{4} do not. By (1), r_{1} is adjacent to one of p_{2}, \ldots, p_{m}; and so we can link b_{1} onto $\left\{b_{2}, b_{3}, p_{m}\right\}$, a contradiction. This proves (3).
(4) Either b_{1}, b_{3} both have neighbours in $V(R)$, or b_{2}, b_{4} both have neighbours in $V(R)$.

For suppose not; then by (3) we may assume that b_{1}, b_{2} have neighbours in $V(R)$ and b_{3}, b_{4} do not. By (1) and the symmetry, it follows that r_{1} has exactly two neighbours in $V(P)$ and they are adjacent. Choose $i \in\{1, \ldots, k\}$ minimum such that r_{i} is adjacent to one of b_{1}, b_{2}. If r_{i} is adjacent to b_{1} and not to b_{2}, then we can link b_{1} onto $\left\{b_{2}, b_{3}, p_{m}\right\}$, a contradiction; and similarly r_{i} is adjacent to both b_{1}, b_{2}. Let S be the induced path between b_{1}, b_{3} with interior in $\left\{r_{1}, \ldots, r_{i}, p_{2}, \ldots, p_{m}\right\}$. Since b_{4} is anticomplete to S^{*}, it follows that S is even; and so $b_{3}-S-b_{1}-q_{1}-\cdots-q_{n}-b_{3}$ is not a hole. Hence one of r_{1}, \ldots, r_{i} has a neighbour in Q, and therefore $i=k$. Since $b_{1}, b_{2}, q_{1}, r_{k}$ are not all pairwise adjacent, it follows that r_{k} is nonadjacent to q_{1}, and therefore r_{k} is adjacent to one of q_{2}, \ldots, q_{n}. Moreover, from the minimality of i, it follows that b_{1}, b_{2} are nonadjacent to r_{1}, \ldots, r_{k-1}. But then we can link r_{k} onto $\left\{b_{3}, b_{4}, q_{n}\right\}$, via $r_{k}-b_{1}-b_{4}$ and two paths with interiors in $\left\{r_{1}, \ldots, r_{k-1}, p_{2}, \ldots, p_{m}\right\}$ and $\left\{q_{2}, \ldots, q_{n-1}\right\}$, a contradiction. This proves (4).

From (4) there is a subpath S of R containing neighbours either of both b_{1}, b_{3} or of both b_{2}, b_{4}. Choose such a path as short as possible. From the symmetry we may assume it contains neighbours of both b_{1}, b_{3}, and so $V(S)$ is the interior of an induced path between b_{1}, b_{3}.
(5) $S=R$, and S has even length.

Let S be $s_{1}-\cdots-s_{t}$ say, where $b_{1}-s_{1}-\cdots-s_{t}-b_{3}$ is an induced path. Suppose first that S has odd length. It follows (since $b_{2}-b_{1}-s_{1}-\cdots-s_{t}-b_{3}-b_{2}$ is not an odd hole) that b_{2}, and similarly b_{4}, have neighbours in $V(S)$. From the minimality of S, and the symmetry between c_{2}, c_{4}, we may assume that s_{1} is the unique vertex of S adjacent to b_{2}, and s_{t} is the unique vertex of S adjacent to b_{4}. If $r_{1} \notin V(S)$, then the subgraph induced on $V(P \cup S) \cup\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ is another degenerate appearance of K_{4} in G, and there is a proper subpath of R with attachments in $V(P)$ and $V(S)$, contrary to our choice of H, R. Thus $r_{1} \in V(S)$, and so r_{1} is one of s_{1}, s_{t}. Consequently r_{1} is either complete to $\left\{b_{1}, b_{2}\right\}$ or to $\left\{b_{3}, b_{4}\right\}$, and we may assume the first from the symmetry. Since S is odd, it follows that r_{1} is nonadjacent to b_{3}, b_{4}, and (since $k>1$, because S is odd) r_{1} is anticomplete to $V(Q)$. Since $b_{2}-b_{3}-b_{4}-p_{1}-r_{1}-b_{2}$ is not an odd hole, it follows that r_{1}, p_{1} are nonadjacent, and so r_{1} has a neighbour in $\left\{p_{2}, \ldots, p_{n}\right\}$; and hence we can link b_{1} onto $\left\{b_{3}, b_{4}, q_{m}\right\}$ via $b_{1} b_{4}, b_{1}-q_{1}-\cdots-q_{n}$ and a path between b_{1}, b_{3} with interior in $\left\{r_{1}, p_{2}, \ldots, p_{m}\right\}$, a contradiction.

Thus S is even. Since $b_{1}-s_{1}-\cdots-s_{t}-b_{3}-p_{m}-P-p_{1}-b_{1}$ is not an odd hole, there are edges between $V(S)$ and $V(P)$, and so $r_{1} \in V(S)$, and similarly $r_{k} \in V(S)$, and so $R=S$. This proves (5).

From (5) and the symmetry between b_{2}, b_{4}, we may assume that $b_{1}-r_{1}-\cdots-r_{k}-b_{3}$ is an induced path.
(6) $k>1$.

For suppose that $k=1$. Thus r_{1} is adjacent to both b_{1}, b_{3}, and has neighbours in both $V(P), V(Q)$. By 8.2, r_{1} is not major with respect to $L(H)$, and so from the symmetry we may assume that r_{1} has at most one neighbour in $\left\{b_{3}, b_{4}, q_{n}\right\}$. Hence r_{1} is nonadjacent to b_{4}, q_{n}. By 5.3 applied to the prism induced on $V(Q) \cup\left\{b_{1}, \ldots, b_{4}\right\}, r_{1}$ is nonadjacent to b_{2}. Since r_{1} has a neighbour in $\left\{q_{1}, \ldots, q_{n-1}\right\}$ (because it is nonadjacent to q_{n}), we can link r_{1} onto $\left\{b_{1}, b_{2}, q_{1}\right\}$, and so r_{1} is adjacent to q_{1}. By 5.3 applied to the same prism as before, r_{1} has no neighbours in Q except q_{1}. Since $r_{1}-q_{1}-\cdots-q_{n}-b_{4}-p_{1}-r_{1}$ is not an odd hole, r_{1} is nonadjacent to p_{1}. This restores the symmetry between p_{1}, q_{n}, and so from the symmetry r_{1} is adjacent to p_{m} and has no other neighbour in P. But then $b_{1}, q_{1}, p_{m}, b_{3}$ are all common neighbours of r_{1}, b_{2}, and so G contains a trapeze, a contradiction. This proves (6).
(7) Not both b_{2}, b_{4} have neighbours in R.

For suppose they do; then from the minimality of S and (5), it follows that S is the interior of an induced path between b_{2}, b_{4}. In particular, one of b_{2}, b_{4} (say b_{i}) is adjacent to r_{k} and not to r_{1}, \ldots, r_{k-1}. But then $b_{1}-r_{1} \cdots-r_{k}-b_{i}-b_{1}$ is an odd hole, by (5) and (6), a contradiction. This proves (7).

From (7) and the symmetry between b_{2}, b_{4}, we may assume that b_{4} is anticomplete to $V(R)$. Since $b_{1}-r_{1}-\cdots-r_{k}-q_{1}-b_{1}$ is not an odd hole, and R is even of length at least two by (5) and (6), we deduce that r_{k}, q_{1} are nonadjacent, and so r_{k} has a neighbour in $\left\{q_{2}, \ldots, q_{n}\right\}$. We can link r_{k} onto $\left\{q_{n}, b_{3}, b_{4}\right\}$, via $r_{k}-b_{3}, r_{k}-R-r_{1}-b_{1}-b_{4}$, and and a path between r_{k}, q_{n} with interior in $\left\{q_{2}, \ldots, q_{n-1}\right\}$; and so r_{k}, q_{n} are adjacent. Since r_{k} has at most one neighbour in $\left\{b_{1}, b_{2}, q_{1}\right\}, 5.3$ applied to the prism induced on $V(Q) \cup\left\{b_{1}, \ldots, b_{4}\right\}$ implies that r_{k} has no neighbours in Q except q_{n}. If b_{2} has a neighbour in $V(R)$ we can link b_{2} onto $\left\{b_{3}, q_{n}, r_{k}\right\}$, via $b_{2}-b_{3}, b_{2}-q_{1}-\cdots-q_{n}$ and a path with interior in $V(R)$, and so b_{2}, r_{k} are adjacent; but then $b_{4}-q_{n}-r_{k}-b_{2}-b_{1}-b_{4}$ is an odd hole, a contradiction. Thus b_{2} is anticomplete to $V(R)$. If r_{1} has a neighbour in $\left\{p_{2}, \ldots, p_{m}\right\}$, then we can link r_{1} onto $\left\{b_{2}, b_{3}, p_{m}\right\}$ via paths with interiors in $\left\{b_{1}\right\}, V(R)$ and $\left\{p_{2}, \ldots, p_{m}\right\}$, a contradiction. Thus p_{1} is the only neighbour of r_{1} in P. But then the subgraph induced on $V(P \cup Q \cup R) \cup\left\{b_{1}, b_{3}\right\}$ is an even prism, and b_{4} is major-general with respect to this prism, contrary to 7.1. This proves 9.1.

Now we prove the desired extension of 8.1, the following.
9.2 Let G be a 3-connected K_{4}-free Berge graph, containing no even pair and no trampoline, and no clique cutset. Suppose that there is an appearance of a 3 -connected graph J in G. Then G is the line graph of a bipartite graph.

Proof. Choose a 3 -connected graph J maximal such that there is an appearance $L(H)$ of J in G. By 8.1, we may assume that $J=K_{4}$ and $L(H)$ is degenerate. Let $V(J)=\left\{c_{1}, \ldots, c_{4}\right\}$, and for
$1 \leq i<j \leq 4$ let $B_{i j}$ be the branch of H with ends c_{i}, c_{j}. Let $B_{12}, B_{23}, B_{34}, B_{14}$ all have length one, and let C be the cycle of H with vertices $c_{1}-c_{2}-c_{3}-c_{4}-c_{1}$ in order.

Let us choose a maximal J-strip system (S, N) that extends the strip system of H. For convenience we write N_{i} for $N_{c_{i}}$ for $1 \leq i \leq 4$, and $S_{i j}$ for $S_{c_{i} c_{j}}$ and $N_{i j}$ for $N_{c_{i} c_{j}}$ for all distinct $i, j \in\{1, \ldots, 4\}$. As in the proof of 8.1 , for each $u v \in E(J)$, every $u v$-rung has the same parity, and they either all have positive length zero or $\left|S_{u v}\right|=1$. In particular, $S_{12}, S_{23}, S_{34}, S_{14}$ each have a unique member. Let b_{12} be the unique member of S_{12}, and define b_{23}, b_{34}, b_{14} similarly.

We say $X \subseteq V(S, N)$ is local (with respect to the strip system) if either $X \subseteq N_{v}$ for some $v \in V(J)$, or $X \subseteq S_{u v}$ for some edge $u v \in E(J)$.
(1) If $F \subseteq V(G) \backslash V(S, N)$ is connected, then the set of attachments of F in $V(S, N)$ is local.

For suppose not, and choose F minimal violating the claim. Let X be the set of attachments of F in $V(S, N)$. By 9.1, we may assume that $X \subseteq E(C) \cup S_{13}$. Since X is not local, $X \nsubseteq S_{13}$, and so we may assume that $b_{12} \in X$. Suppose that also $b_{34} \in X$. From the minimality of F, it follows that there is an induced path $b_{12}-f_{1}-\cdots-f_{k}-b_{34}$, where $F=\left\{f_{1}, \ldots, f_{k}\right\}$. Since the union of this path and a $c_{2} c_{4}$-rung induces a hole, and all $c_{2} c_{4}$-rungs are odd, it follows that k is even; and so b_{23}, b_{14} both have neighbours in F. From the minimality of F, f_{1} is the unique neighbour in F of one of b_{23}, b_{14}, and f_{k} is the unique neighbour of the other. If b_{14} is adjacent to f_{1} then we can add f_{1} to N_{1} and add f_{k} to N_{3}, and add F to S_{13}, contrary to the maximality of $V(S, N)$. Thus b_{23} is adjacent to f_{1}, and b_{14} to f_{k}, and $k>1$. The minimality of F implies that no member of F has a neighbour in S_{13}; but then we can add f_{1} to N_{2}, add f_{k} to N_{4}, and add F to S_{24}, again a contradiction.

This proves that $b_{34} \notin X$. Suppose that $b_{14} \in X$. Then similarly, $b_{23} \notin X$. Since X is not local, it follows that $X \cap S_{13} \nsubseteq N_{13}$. From the minimality of F, it follows that there is an induced path $f_{1}-\cdots-f_{k}$, where $F=\left\{f_{1}, \ldots, f_{k}\right\}$, and f_{1} is adjacent to b_{12}, b_{14}, and f_{k} has neighbours in $S_{13} \backslash N_{1}$, and there are no other edges between $V(S, N) \backslash N_{13}$ and F. But then we can add f_{1} to N_{1} and F to S_{13}, contrary to the maximality of $V(S, N)$.

This proves that $b_{14} \notin X$. Suppose that $X \cap S_{13} \nsubseteq N_{13}$. Then there is an induced path between b_{12} and b_{34} with interior in $F \cup\left(S_{13} \backslash N_{13}\right)$; this path is even since it can be completed to a hole via $b_{34}-b_{14}-b_{12}$, and yet it can also be completed to a hole via a path between b_{34}, b_{12} with interior a $c_{2} c_{4}$-rung, giving an odd hole, a contradiction. Thus $X \cap S_{13} \subseteq N_{13}$.

Since X is not local, and therefore $X \nsubseteq N_{1}$, it follows that $b_{23} \in X$. But then similarly $X \cap S_{13} \subseteq$ N_{31}, and so $X \cap S_{13}=\emptyset$, contradicting that X is not local. This proves (1).

Now the proof is completed just like the proof of 8.1, using (1) above as a substitute for statement (3) in that proof. This proves 9.2.

This has the following consequence.
9.3 Let G be a 3-connected K_{4}-free Berge graph, containing no even pair, no trampoline, and no clique cutset. If G contains an even prism, then G is the line graph of a bipartite graph.

Proof. By 9.2, we may assume that there is no appearance of K_{4} in G. Since G contains an even prism, we can choose in G a collection of nine sets

$$
\begin{array}{lll}
A_{1} & C_{1} & B_{1} \\
A_{2} & C_{2} & B_{2} \\
A_{3} & C_{3} & B_{3}
\end{array}
$$

with the following properties:

- all these sets are nonempty and pairwise disjoint
- for $1 \leq i<j \leq 3, A_{i}$ is complete to A_{j} and B_{i} is complete to B_{j}, and there are no other edges between $A_{i} \cup B_{i} \cup C_{i}$ and $A_{j} \cup B_{j} \cup C_{j}$
- for $1 \leq i \leq 3$, every vertex of $A_{i} \cup B_{i} \cup C_{i}$ belongs to an induced path between A_{i} and B_{i} with interior in C_{i}
- some induced path between A_{1} and B_{1} with interior in C_{1} is even.

Choose these nine sets with maximal union, and let H be the subgraph of G induced on their union. Let us write $S_{i}=A_{i} \cup B_{i} \cup C_{i}$ for $1 \leq i \leq 3$. Let us say a subset $X \subseteq V(H)$ is local if X is a subset of one of $S_{1}, S_{2}, S_{3}, A_{1} \cup A_{2} \cup A_{3}$ or $B_{1} \cup B_{2} \cup B_{3}$. By 7.1, there is no prism in G with a major-general vertex; so by the argument of step (2) of the proof of theorem 10.6 of [5], it follows that
(1) For every connected subset F of $V(G) \backslash V(H)$, its set of attachments in H is local.

Now since G is 3 -connected, it follows from (1) that for $i=1,2,3$, at least one of A_{i}, B_{i} has more than one member. Consequently we may assume that $\left|A_{1}\right|,\left|A_{2}\right|>1$, from the symmetry. Since G is K_{4}-free, A_{1}, A_{2} are both stable; but then the subgraph induced on $A_{1} \cup A_{2} \cup A_{3}$ contains a 4 -wheel, contrary to 6.3 . This proves 9.3.

10 Long prisms

Our next goal is to eliminate all prisms. A prism is long if it has more than six vertices, and short otherwise. In this section we eliminate long prisms, and in the next we eliminate short prisms.

Let K be a short prism in G, and let w be a major vertex with respect to K. Let N be the set of vertices in K adjacent to w, and let x, y be the two vertices in $V(K) \backslash N$. We say w separates K if every path in G between x, y has a vertex in $N \cup\{w\}$. In this section we prove the following.
10.1 Let G be a 3 -connected K_{4}-free Berge graph, containing no even pair, no trampoline, and no clique cutset. Suppose that G contains no even prism, and no appearance of K_{4}, and that $|V(G)|>6$. Then

- G contains no long prism,
- for every short prism K, every major vertex (with respect to K) separates K, and
- if there is a short prism then some short prism has a major vertex.

Proof. Let K be a prism; we must show that K is short, and every major vertex separates K, and some short prism has a major vertex. We can choose a collection of nine subsets of $V(G)$

$$
\begin{array}{lll}
A_{1} & C_{1} & B_{1} \\
A_{2} & C_{2} & B_{2} \\
A_{3} & C_{3} & B_{3}
\end{array}
$$

with the following properties:

- all these sets are pairwise disjoint, and $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ are nonempty,
- for $1 \leq i<j \leq 3, A_{i}$ is complete to A_{j} and B_{i} is complete to B_{j}, and there are no other edges between $A_{i} \cup B_{i} \cup C_{i}$ and $A_{j} \cup B_{j} \cup C_{j}$,
- for $1 \leq i \leq 3$, every vertex of $A_{i} \cup B_{i} \cup C_{i}$ belongs to an induced path between A_{i} and B_{i} with interior in C_{i}, and
- for $i=1,2,3$ there is an induced path between A_{i} and B_{i} with interior in C_{i}, such that these three paths form the prism K.

Choose these nine sets with maximal union, and let H be the subgraph of G induced on their union. Let $A=A_{1} \cup A_{2} \cup A_{3}$, and define B, C similarly. For $1 \leq i \leq 3$, let $S_{i}=A_{i} \cup B_{i} \cup C_{i}$, and let us say an induced path between A_{i} and B_{i} with interior in C_{i} is an i-rung. Since G contains no even prism, it follows that for $1 \leq i \leq 3$, every i-rung is odd. Let us say a subset $X \subseteq V(H)$ is local if X is a subset of one of S_{1}, S_{2}, S_{3}, A or B. We say $v \in V(G) \backslash V(H)$ is major with respect to H if v has neighbours in at least two of A_{1}, A_{2}, A_{3} and at least two of B_{1}, B_{2}, B_{3}.
(1) Let $F \subseteq V(G) \backslash V(H)$ be connected, and contain no major vertex. Let X be the set of attachments of F in H. Then X is local.

Suppose not, and choose F minimal with this property. Thus we may choose an i-rung R_{i} for $i=1,2,3$, forming a prism K^{\prime} say, such that $X \cap V\left(K^{\prime}\right)$ is not local with respect to K^{\prime}. For $i=1,2,3$, let R_{i} have ends $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$. By 5.2 , and the minimality of F, there is an induced path $f_{1}-\cdots-f_{n}$ in F with $n \geq 1$ and $F=\left\{f_{1}, \ldots, f_{n}\right\}$, such that (up to symmetry) either:

- $n=1$ and f_{1} is major with respect to K^{\prime}, or
- for some distinct $i, j \in\{1,2,3\}$, f_{1} has two adjacent neighbours in R_{i}, and f_{n} has two adjacent neighbours in R_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
- $n \geq 2$, and for some distinct $i, j \in\{1,2,3\}, f_{1}$ is adjacent to a_{i}, a_{j}, and f_{n} is adjacent to b_{i}, b_{j}, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V(K)$, or
- $f_{1}-\cdots-f_{n}$ is a corner jump.

The first is impossible since no vertex in F is major with respect to K^{\prime} (since any such vertex would also be major with respect to H), and the second is impossible there is no appearance of K_{4} in G. Suppose that the third holds, with $i=1, j=2$ say. It follows that n is even. Suppose that there exists $a_{1}^{\prime} \in A_{1} \backslash\left\{a_{1}\right\}$. If f_{1} is adjacent to a_{1}^{\prime}, then the subgraph induced on $\left\{a_{1}, a_{1}^{\prime}, a_{2}, a_{3}, f_{1}\right\}$
is a 4 -wheel, a contradiction. Thus f_{1}, a_{1}^{\prime} are nonadjacent. Let R_{1}^{\prime} be a 1 -rung with ends a_{1}^{\prime} and $b_{1}^{\prime} \in B_{1}$. Since

$$
f_{1}-\cdots-f_{n}-b_{2}-b_{1}^{\prime}-R_{1}^{\prime}-a_{1}^{\prime}-a_{3}-a_{1}-f_{1}
$$

is not an odd hole, it follows that F is not anticomplete to $V\left(R_{1}^{\prime}\right)$. Consequently the set of attachments of F in the prism formed by $R_{1}^{\prime}, R_{2}, R_{3}$ is not local with respect to this prism; and yet f_{1} is nonadjacent to a_{1}^{\prime}, and F is anticomplete to $V\left(R_{3}\right)$, contrary to 5.2. Thus there is no such vertex a_{1}^{\prime}, and hence $A_{1}=\left\{a_{1}\right\}$, and similarly $A_{2}=\left\{a_{2}\right\}$, and $B_{i}=\left\{b_{i}\right\}$ for $i=1,2$. But then we can add f_{1} to A_{3}, and f_{n} to B_{3}, and f_{2}, \ldots, f_{n-1} to C_{3}, contrary to the maximality of $V(H)$. This proves that the third outcome above does not hold.

We deduce that the fourth holds, and, say, f_{1} is adjacent to a_{1}, a_{2}, and there is at least one edge between f_{n} and $V\left(R_{3}\right) \backslash\left\{a_{3}\right\}$, and there are no other edges between $\left\{f_{1}, \ldots, f_{n}\right\}$ and $V\left(K^{\prime}\right) \backslash\left\{a_{3}\right\}$. Let R_{1}^{\prime} be a 1 -rung, with ends $a_{1}^{\prime} \in A_{1}$ and $b_{1}^{\prime} \in B_{1}$. Thus the set of attachments of F in the prism formed by $R_{1}^{\prime}, R_{2}, R_{3}$ is not local with respect to this prism, and so by 5.2 applied to this prism, there is a unique edge between F and $V\left(R_{1}^{\prime}\right)$, and either f_{1} is adjacent to a_{1}^{\prime}, or f_{n} is adjacent to b_{1}^{\prime} and the only edges between $V\left(K^{\prime}\right) \cup V\left(R_{1}^{\prime}\right)$ and F are $f_{1} a_{1}, f_{1} a_{2}, f_{n} b_{1}^{\prime}, f_{n} b_{3}$. Suppose the latter. Then n is odd, since $f_{1}-\cdots-f_{n}-b_{3}-b_{1}-R_{1}-a_{1}-f_{1}$ is a hole. Since $b_{1}-R_{1}-a_{1}-f_{1}-\cdots-f_{n}-b_{1}^{\prime}-b_{2}-b_{1}$ is not an odd hole, it follows that b_{1}^{\prime} is not anticomplete to $V\left(R_{1}\right)$, and so there is a 1-rung with ends a_{1}, b_{1}^{\prime}; but this is impossible from what we showed above, since there are two edges between this 1-rung and F. This proves that for every choice of R_{1}^{\prime} (with ends $a_{1}^{\prime}, b_{1}^{\prime}$ as above) f_{1} is adjacent to a_{1}^{\prime} and there are no other edges between F and $V\left(R_{1}^{\prime}\right)$. Consequently, f_{1} is complete to A_{1}, and there are no other edges between F and S_{1}. Similarly, the analogous statement holds for A_{2}, S_{2}; but then we can add f_{1} to A_{3} and f_{2}, \ldots, f_{n} to C_{3}, contary to the maximality of $V(H)$. Thus there is no such F. This proves (1).

Let W be the set of all major vertices with respect to H. From (1), we may partition $V(G) \backslash$ $(V(H) \cup W)$ into five (possibly empty) sets $A_{0}, B_{0}, D_{1}, D_{2}, D_{3}$, pairwise anticomplete, such that

- every attachment of A_{0} in $V(H)$ belongs to A, and every attachment of B_{0} in $V(H)$ belongs to B
- for $i=1,2,3$, every attachment of D_{i} in $V(H)$ belongs to S_{i}; and for every component X of D_{i}, some attachment of X in $V(H)$ does not belong to A, and some attachment does not belong to B.
(2) For $i=1,2$, 3, if P is an induced path with both ends in A_{i} or both ends in B_{i}, and with no vertex in W, then P has even length.

Suppose not, and choose i and P such that P is odd, with the length of P as small as possible. We may assume that both ends of P belong to A_{1} say. If some internal vertex of P belongs to A_{1}, then it divides P into two subpaths, one of which is odd, contrary to the minimality of P. Thus no internal vertex of P is in A_{1}. Since A_{2}, A_{3} are complete to A_{1}, it follows that no vertex of P is in $A_{2} \cup A_{3}$. Let P have vertices $p_{1} \cdots-p_{k}$ say. Now there is an induced path Q between p_{1}, p_{k} with interior in $C_{1} \cup B_{1} \cup B_{2}$, since p_{1}, p_{k} both belong to 1-rungs. Since Q can be completed to a hole via $p_{k}-a_{3}-p_{1}$ (where $a_{3} \in A_{3}$) it follows that Q is even. Consequently the union of P and Q is not a hole, and so some internal vertex of P is equal to or adjacent to some internal vertex of Q.

Consequently P^{*} is not a subset of A_{0}, and (since no attachment of A_{0} belongs to P^{*}) it follows that $V(P) \cap A_{0}=\emptyset$. Thus $p_{2}, p_{k-1} \in B_{1} \cup C_{1} \cup D_{1}$. If $p_{2}, \ldots, p_{k-1} \in C_{1} \cup D_{1}$, then P can be completed to a hole via $p_{k}-a_{3}-p_{1}$, where $a_{3} \in A_{3}$, which is impossible since P is odd. Thus there exist $i, j \in\{2, \ldots, k-1\}$ such that $p_{i}, p_{j} \in B_{1}$, minimum and maximum respectively. The path $p_{1} \cdots \cdots-p_{i}$ is therefore a 1 -rung, and so is $p_{j}-\cdots-p_{k}$; both these 1 -rungs are odd, and so the path $p_{i} \cdots-p_{j}$ is also odd (and in particular $p_{i} \neq p_{j}$) contrary to the minimality of P. This proves (2).
(3) $W \neq \emptyset$.

For suppose that $W=\emptyset$. By (2), since there is no even pair, it follows that $\left|A_{i}\right|=\left|B_{i}\right|=1$ for $i=1,2,3$. Since G admits no clique cutset, and A is a clique, it follows that $A_{0}=\emptyset$, and similarly $B_{0}=\emptyset$; and since G is 3 -connected, we deduce that $C_{i} \cup D_{i}=\emptyset$ for $1 \leq i \leq 3$. Hence G has only six vertices, a contradiction. This proves (3).
(4) If $w \in V(G) \backslash V(H)$ is major with respect to H, then (up to symmetry) w is complete to $A_{1} \cup B_{2}$, and has a unique neighbour $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$, and a_{3}, b_{3} are adjacent, and every 3-rung contains one of a_{3}, b_{3}, and $\left|A_{1}\right|=\left|B_{2}\right|=1$.

For let X be the set of neighbours of w in $V(H)$. We may assume that $X \cap A_{1}, X \cap A_{3}, X \cap B_{3} \neq \emptyset$. Consequently $X \cap A_{2}=\emptyset$, since G is K_{4}-free. For $1 \leq i \leq 3$ let R_{i} be an i-rung, with ends $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$, such that $a_{1}, b_{3} \in X$. Since $w-a_{1}-a_{2}-R_{2}-b_{2}-b_{3}-w$ is not an odd hole, it follows that w has a neighbour in $V\left(R_{2}\right) \backslash\left\{a_{2}\right\}$. Thus w can be linked onto $\left\{b_{1}, b_{2}, b_{3}\right\}$, and so one of $b_{1}, b_{2} \in X$. If $b_{2} \notin X$, then similarly $a_{3} \in X$, and so w is balanced with respect to the prism formed by R_{1}, R_{2}, R_{3}, a contradiction. Thus $b_{2} \in X$, and so $X \cap B_{1}=\emptyset$. Since this holds for all choices of R_{2}, we deduce that $B_{2} \subseteq X$, and similarly $A_{1} \subseteq X$. If there exist distinct $a_{1}, a_{1}^{\prime} \in A_{1}$, then the subgraph induced on $\left\{a_{1}, a_{1}^{\prime}, w, a_{2}, a_{3}\right\}$ is a 4 -wheel (where $a_{2} \in A_{2}$ and $a_{3} \in A_{3} \cap X$), contrary to 6.3. Thus $\left|A_{1}\right|=1$, and similarly $\left|B_{2}\right|=1$. Let $A_{1}=\left\{a_{1}\right\}$ and $B_{2}=\left\{b_{2}\right\}$. If there exist distinct $a_{3}, a_{3}^{\prime} \in A_{3} \cap X$, then the subgraph induced on $\left\{a_{3}, a_{3}^{\prime}, w, a_{1}, a_{2}\right\}$ is a 4 -wheel (where $a_{2} \in A_{2}$), again a contradiction. Thus $\left|A_{3} \cap X\right|=1$, and similarly $\left|B_{3} \cap X\right|=1$. Let $A_{3} \cap X=\left\{a_{3}\right\}$ and $B_{3} \cap X=\left\{b_{3}\right\}$ say. Suppose there is a 3 -rung R_{3}^{\prime} containing neither of a_{3}, b_{3}; let its ends be $a_{3}^{\prime} \in A_{3}$ and $b_{3}^{\prime} \in B_{3}$ say. Since $w-a_{1}-a_{3}^{\prime}-R_{3}^{\prime}-b_{3}^{\prime}-b_{2}-w$ is not an odd hole, w has a neighbour in the interior of R_{3}^{\prime}; but then w can be linked onto $\left\{a_{1}, a_{2}, a_{3}^{\prime}\right\}$ (where $a_{2} \in A_{2}$), a contradiction. Thus every 3 -rung contains one of a_{3}, b_{3}. Next, suppose that a_{3}, b_{3} are nonadjacent, and let R_{3} be a 3 -rung containing a_{3}. Let b_{3}^{\prime} be its end in B_{3}. If $b_{3}=b_{3}^{\prime}$, then w is major-general with respect to the prism formed by R_{3} and some 1 -rung and 2 -rung, contrary to 7.1 . Thus $b_{3} \neq b_{3}^{\prime}$, and so $b_{3}^{\prime} \notin X$. Moreover, we cannot choose a 3 -rung with ends a_{3}, b_{3}, and so b_{3} is anticomplete to $V\left(R_{3}\right)$. Since we cannot link w onto $\left\{b_{1}, b_{2}, b_{3}^{\prime}\right\}$ (where $b_{1} \in B_{1}$), it follows that $X \cap V\left(R_{3}\right)=\left\{a_{3}\right\}$. But then $w-a_{3}-R_{3}-b_{3}^{\prime}-b_{1}-b_{3}-w$ is an odd hole (where $b_{1} \in B_{1}$), a contradiction. This proves that a_{3}, b_{3} are adjacent, and so this proves (4).
(5) $|W|=1$.

For suppose that u, v are distinct major vertices. By (4), we may assume that v is complete to $A_{1} \cup B_{2}$, and has a unique neighbour $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$, and a_{3}, b_{3} are adjacent, and every 3 -rung contains one of a_{3}, b_{3}, and $\left|A_{1}\right|=\left|B_{2}\right|=1$. Let $A_{1}=\left\{a_{1}\right\}$ and $B_{2}=\left\{b_{2}\right\}$. Take a 3-colouring of G.

We may assume that every vertex in A_{i} has colour i, for $i=1,2,3$. Since v has neighbours in A_{1} and in A_{3} it follows that v has colour 2 ; since b_{3} is adjacent to v and to a_{3}, we deduce that b_{3} has colour 1 ; since b_{2} is adjacent to b_{3} and to v, b_{2} has colour 3 ; and therefore every vertex in B_{1} has colour 2, and every vertex in B_{3} has colour 1 .

Suppose first that u has a neighbour in A_{1} and one in B_{1}; thus u is adjacent to a_{1} and to some $b_{1} \in B_{1}$. Consequently a_{1}, b_{1} are adjacent, by (4) applied to u. Moreover, u has colour 3, and therefore u is anticomplete to $A_{3} \cup B_{2}$. Hence by (4) applied to u, u is adjacent to b_{3}, and so $\left\{a_{1}, b_{3}\right\}$ is complete to $\left\{u, v, a_{3}, b_{1}\right\}$, and G contains a trapeze or trestle, a contradiction. This proves that u is anticomplete to one of A_{1}, B_{1}, and similarly to one of A_{2}, B_{2}. By (4), u has neighbours in both A_{3}, B_{3}. It follows that u has colour 2 , and therefore u, v are nonadjacent, and u is anticomplete to $A_{2} \cup B_{1}$. By (4), u is adjacent to a_{1}, b_{2}. Now every 3 -rung has a vertex adjacent to u, by (4), and since $a_{3}-b_{3}$ is a 3 -rung, we may assume from the symmetry that a_{3} is adjacent to u. Let b_{3}^{\prime} be the unique neighbour of u in B_{3}. If $b_{3}=b_{3}^{\prime}$ then the subgraph induced on $\left\{u, v, a_{1}, a_{3}, b_{2}, b_{3}\right\}$ is a trestle, and if $b_{3} \neq b_{3}^{\prime}$ then the subgraph induced on $\left\{a_{3}, b_{2}, b_{3}, b_{3}^{\prime}, u, v\right\}$ is a trapeze, in either case a contradiction. Thus $|W| \leq 1$, and the result follows from (3). This proves (5).

Let $W=\{w\}$. By (4) we may assume that w is complete to $A_{1} \cup B_{2}$, and has a unique neighbour $a_{3} \in A_{3}$ and $b_{3} \in B_{3}$, and a_{3}, b_{3} are adjacent, and every 3 -rung contains one of a_{3}, b_{3}, and $\left|A_{1}\right|=\left|B_{2}\right|=1$. Let $A_{1}=\left\{a_{1}\right\}$ and $B_{2}=\left\{b_{2}\right\}$.
(6) w is anticomplete to $C_{3} \cup D_{3}$.

For let X be a component of $C_{3} \cup D_{3}$, and suppose that w has a neighbour in X. Let N be the set of all vertices not in X with a neighbour in X; thus, $w \in N \subseteq A_{3} \cup B_{3} \cup\{w\}$. Since $\left\{w, a_{3}, b_{3}\right\}$ are pairwise adjacent and G does not admit a clique cutset, it follows that $N \nsubseteq\left\{w, a_{3}, b_{3}\right\}$, and so we may assume that some $b_{3}^{\prime} \in B_{3} \backslash\left\{b_{3}\right\}$ belongs to N. Choose $b_{1} \in B_{1}$; then we can link w onto $\left\{b_{1}, b_{2}, b_{3}^{\prime}\right\}$, a contradiction. This proves (6).
(7) For each $a_{2} \in A_{2}$, every odd induced path between a_{2} and w contains a vertex in $A_{3} \backslash\left\{a_{3}\right\}$; and consequently $\left|A_{3}\right|,\left|B_{3}\right| \geq 2$ and $\left|A_{2}\right|=\left|B_{1}\right|=1$.

For let $a_{2}-p_{1}-\cdots-p_{k}-w$ be an odd induced path, and suppose that $p_{1}, \ldots, p_{k} \notin A_{3} \backslash\left\{a_{3}\right\}$. Choose a_{2} and p_{1}, \ldots, p_{k} with k minimum. If some $p_{i} \in A_{2}$, then none of p_{1}, \ldots, p_{i} is in W, and so i is odd by (2); and so $p_{i^{-}} \cdots-p_{k}-w$ is an odd induced path, contrary to the minimality of k. Thus $p_{1}, \ldots, p_{k} \notin A_{2}$. Since p_{1} is adjacent to a_{2} and p_{1} is nonadjacent to w, it follows that either $p_{1} \in C_{2} \cup D_{2}$ or $p_{1} \in A_{0}$ (since $p_{1} \notin A_{3}$ by hypothesis). If $p_{1} \in C_{2} \cup D_{2}$, then since none of p_{2}, \ldots, p_{k-1} is adjacent to w, and therefore none of p_{2}, \ldots, p_{k-1} belongs to $A_{2} \cup B_{2} \cup\{w\}$, it follows that $p_{2}, \ldots, p_{k-1} \in C_{2} \cup D_{2}$. Consequently $p_{k} \in C_{2} \cup D_{2} \cup B_{2}$. But then $a_{2}-p_{1}-\cdots-p_{k}-w-a_{3}-a_{2}$ is an odd hole, a contradiction. Thus $p_{1} \in A_{0}$. Since p_{2}, \ldots, p_{k} are nonadjacent to a_{2} and therefore not in A, it follows that $p_{2}, \ldots, p_{k} \in A_{0}$. But there is an induced path Q between a_{2} and w with interior in $C_{2} \cup B_{2}$, since a_{2} belongs to a 2 -rung with ends a_{2}, b_{2}; and Q is even since $a_{2}-Q-w-a_{3}-a_{2}$ is a hole; and so $a_{2}-p_{1}-\cdots-p_{k}-w-Q-a_{2}$ is an odd hole, a contradiction. This proves the first assertion of (7). Since w, a_{2} is not an even pair, we deduce that $A_{3} \backslash\left\{a_{3}\right\} \neq \emptyset$, and so $\left|A_{3}\right| \geq 2$; and similarly $\left|B_{3}\right| \geq 2$. Finally, note that that if also $\left|A_{2}\right| \geq 2$ then $G \mid A$ contains a 4 -wheel, a contradiction. This proves (7).

Let $A_{2}=\left\{a_{2}\right\}$ and $B_{1}=\left\{b_{1}\right\}$.
(8) $C_{1}, D_{1}, C_{2}, D_{2}=\emptyset$.

For let $a_{3}^{\prime} \in A_{3} \backslash\left\{a_{3}\right\}$. Since we cannot link w onto $\left\{a_{1}, a_{2}, a_{3}^{\prime}\right\}$, it follows that w is anticomplete to $C_{2} \cup D_{2}$; and since G is 3-connected, it follows that $C_{2} \cup D_{2}=\emptyset$, and similarly $C_{1} \cup D_{1}=\emptyset$. This proves (8).
(9) If $\left|A_{3}\right| \geq 3$ then w is anticomplete to A_{0}.

For by (8), a_{2}, b_{2} are adjacent. Suppose that w has a neighbour in some component X of A_{0}. Since G admits no clique cutset, there is an attachment of X in one of $\left\{a_{2}\right\}, A_{3} \backslash\left\{a_{3}\right\}$, and so there is an induced path $w-p_{1} \cdots-p_{k}-u$ between w and some $u \in\left\{a_{2}\right\} \cup A_{3} \backslash\left\{a_{3}\right\}$, with $p_{1}, \ldots, p_{k} \in A_{0}$. Choose u and $p_{1} \cdots-p_{k}$ with k minimum. We claim that a_{2}, p_{k} are adjacent. For suppose not; then $u \in A_{3} \backslash\left\{a_{3}\right\}$. Since there is a 3 -rung R_{3} with ends u and b_{3}, and $w-p_{1}-\cdots-p_{k}-u-R_{3}-b_{3}-w$ is a hole by (6), it follows that k is odd; and since a_{2} is anticomplete to $\left\{p_{1}, \ldots, p_{k}\right\}$ (by the minimality of k, and since a_{2}, p_{k} are nonadjacent) and a_{2}, b_{2} are adjacent, it follows that $w-p_{1}-\cdots-p_{k}-u-a_{2}-b_{2}-w$ is an odd hole, a contradiction. Thus a_{2}, p_{k} are adjacent, and so $w-p_{1}-\cdots-p_{k}-a_{2}$ is an induced path. By (7), k is odd.

Let $a_{3}^{\prime} \in A_{3} \backslash\left\{a_{3}\right\}$; we claim that a_{3}^{\prime}, p_{k} are adjacent. For suppose not; then from the minimality of k, it follows that a_{3}^{\prime} is anticomplete to $\left\{p_{1}, \ldots, p_{k}\right\}$, and so $w-p_{1}-\cdots-p_{k}-a_{2}-a_{3}^{\prime}-R_{3}-b_{3}-w$ is an odd hole (where R_{3} is a 3 -rung with ends a_{3}^{\prime}, b_{3}), a contradiction. This proves that p_{k} is complete to $A_{3} \backslash\left\{a_{3}\right\}$. Choose distinct $x, y \in A_{3} \backslash\left\{a_{3}\right\}$ (this is possible since $\left|A_{3}\right| \geq 3$); then the subgraph induced on $\left\{a_{1}, p_{k}, a_{2}, x, y\right\}$ is a 4 -wheel, a contradiction. This proves (9).

$$
\begin{equation*}
\left|A_{3}\right|,\left|B_{3}\right|=2, \text { and } C_{3}, D_{3}=\emptyset \tag{10}
\end{equation*}
$$

Suppose first that either

- $\left|A_{3}\right| \geq 3$, or
- $\left|A_{3}\right|=2$ and there is an induced path between the two members of A_{3} with interior in $C_{3} \cup D_{3}$.

Since G has no even pair, there is an odd induced path $a_{3}-p_{1}-\cdots-p_{k}$ with $p_{k} \in A_{3} \backslash\left\{a_{3}\right\}$; choose such a path with k minimum. By (2) w belongs to this path, and since a_{3} is adjacent to w it follows that $w=p_{1}$, and $k \geq 3$. If $p_{h} \in A_{3}$ for some h with $1 \leq h<k$, then $h \geq 2$, and w does not belong to the path $p_{h}-\cdots-p_{k}$, and so this path is even by (2); and so $a_{3}-p_{1} \cdots \cdots-p_{h}$ is odd, contrary to the minimality of k. Thus $p_{1}, \ldots, p_{k-1} \notin A_{3}$. Now since the path is induced, none of $p_{1}, \ldots, p_{k-1} \in A$; and since $w=p_{1}$, none of p_{3}, \ldots, p_{k} is adjacent to w, since $w=p_{1}$. Since p_{k-1} is adjacent to $p_{k} \in A_{3}$, it follows that $p_{k-1} \in A_{0}$ or $p_{k-1} \in B_{3} \cup C_{3} \cup D_{3}$.

Suppose that $p_{k-1} \in B_{3} \cup C_{3} \cup D_{3}$. Now $p_{k-1} \neq b_{3}$ since p_{k-1} is not adjacent to a_{3}, and $p_{k-1} \notin B_{3} \backslash\left\{b_{3}\right\}$ since $p_{k-1} p_{k}$ is not a 3 -rung (because every 3 -rung contains a_{3} or b_{3}). Thus $p_{k-1} \in C_{3} \cup D_{3}$. Since w is anticomplete to $C_{3} \cup D_{3}$, it follows that $p_{2} \notin C_{3} \cup D_{3}$, and so we may choose i with $2 \leq i \leq k-1$ maximum such that $p_{i} \notin C_{3} \cup D_{3}$. It follows that $i \leq k-2$, and so $p_{i+1} \in C_{3} \cup D_{3}$, and therefore $p_{i} \in A_{3} \cup B_{3}$. Since $2 \leq i<k$ it follows that $p_{i} \notin A_{3}$, so $p_{i} \in B_{3}$. Since $p_{j} \in C_{3} \cup D_{3}$ for $i<j<k$, it follows that $p_{i}-p_{i+1} \cdots-p_{k}$ is an induced path with ends in B_{3}
and A_{3}, and with interior in $C_{3} \cup D_{3}$. From the maximality of $V(H)$, this path belongs to H and therefore is a 3 -rung; so $p_{i}=b_{3}$, a contradiction since none of p_{2}, \ldots, p_{k} are adjacent to a_{3}.

Thus $p_{k-1} \in A_{0}$. Since none of p_{2}, \ldots, p_{k-1} belongs to $A \cup\{w\}$, it follows that $p_{2}, \ldots, p_{k-1} \in A_{0}$. Since p_{2} is adjacent to $p_{1}=w$, it follows that w has a neighbour in A_{0}, and so $\left|A_{3}\right|=2$ by (9); and therefore $A_{3}=\left\{a_{3}, p_{k}\right\}$. By hypothesis there is an induced path Q between a_{3}, p_{k} with interior in $C_{3} \cup D_{3}$. Since Q can be completed to a hole via $p_{k}-a_{1}-a_{3}$, it follows that Q is even; and so $a_{3}-p_{1}-\cdots-p_{k}-Q-a_{3}$ is an odd hole, a contradiction.

Thus the bulletted statements above are both false. In particular, $\left|A_{3}\right|=2$, and similarly $\left|B_{3}\right|=2$. If $C_{3} \cup D_{3}=\emptyset$ then the claim holds; so we may assume (for a contradiction) that X is a component of $C_{3} \cup D_{3}$. Let N be the set of vertices not in X with a neighbour in X. Now $N \subseteq A_{3} \cup B_{3}$ since w is anticomplete to $C_{3} \cup D_{3}$ by (6), and $N \nsubseteq\left\{a_{3}, b_{3}\right\}$ since G does not admit a clique cutset. Thus from the symmetry we may assume that $a_{3}^{\prime} \in N$, for some $a_{3}^{\prime} \in A_{3} \backslash\left\{a_{3}\right\}$. Consequently $A_{3}=\left\{a_{3}, a_{3}^{\prime}\right\}$. Since the second bulletted statement above is false, it follows that $a_{3} \notin N$. Since G is 3 -connected, we deduce that $N \nsubseteq\left\{a_{3}^{\prime}, b_{3}\right\}$; choose $b_{3}^{\prime} \in N \backslash\left\{a_{3}^{\prime}, b_{3}\right\}$. Thus $b_{3}^{\prime} \in B_{3} \backslash\left\{b_{3}\right\}$. There is an induced path between $a_{3}^{\prime}, b_{3}^{\prime}$ with interior in X, and hence this is a 3 -rung (from the maximality of $V(H)$), contradicting that every 3 -rung contains either a_{3} or b_{3}. This proves (10).

Now (8) and (10) imply that C_{1}, C_{2}, C_{3} are all empty; and so the prism K is short. This proves the first assertion of the theorem. Let K^{\prime} be the subgraph induced on $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$. Now suppose that x is a major vertex with respect to K. Then x is major with respect to H, and so $x=w$, and therefore $K=K^{\prime}$ (since w is not major with respect to any other prism contained in H) and so w separates K. Thus the second assertion of the theorem holds. Finally the third assertion holds since K^{\prime} is a short prism and w is a major vertex with respect to it. This proves 10.1.

11 Short prisms

In this section we complete the elimination of prisms, and hence complete the proof of 1.3. We first prove the following.
11.1 Let G be a 3-connected K_{4}-free Berge graph, containing no even pair, no trampoline, and no clique cutset. Suppose that G contains a prism. Then G is the line graph of a bipartite graph.

Proof. If $|V(G)|=6$ then since G contains a prism, it follows that G is a short prism and therefore the theorem holds; so we may assume that $|V(G)|>6$. Suppose that G contains no appearance of K_{4} and no even prism. By 10.1, G contains no long prism; and G contains a short prism with a major vertex w say. Let the short prism have vertex set $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ where $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$ are triangles, and for $1 \leq i, j \leq 3 a_{i}$ is adjacent to b_{j} if and only if $i=j$. Since w is not balanced by 6.2 , we may assume that w is adjacent to $a_{1}, b_{2}, a_{3}, b_{3}$.

Let us say a prism-sequence in G is a sequence v_{1}, \ldots, v_{n} of distinct vertices of G such that $n \geq 7$ and for $1 \leq i<j \leq n, v_{i}, v_{j}$ are adjacent if and only if $j-i \in\{1,2,5\}$. We observe that the sequence

$$
a_{2}, a_{1}, a_{3}, w, b_{3}, b_{2}, b_{1}
$$

is a prism-sequence. Let us choose a prism-sequence v_{1}, \ldots, v_{n} in G with n maximum. Choose a 3 -colouring of G. We may assume that v_{n} has colour 1 , and v_{n-1} has colour 2 ; and so v_{n-2} has colour $3, v_{n-3}$ has colour 1 , and so on.

Since v_{n-3}, v_{n} is not an even pair, there is an odd induced path P in G between v_{n-3}, v_{n}. Now $v_{n-1}, v_{n-2}, v_{n-5}$ are all complete to $\left\{v_{n-3}, v_{n}\right\}$. By $2.4,\left\{v_{n-1}, v_{n-2}, v_{n-5}\right\}$ contains a leap for P, and since G contains no long prism it follows that P has length three. Let P have vertices $v_{n-3}-x-y-v_{n}$ in order. Thus one of x, y has colour 2 and is adjacent to v_{n-2}, v_{n-5} and not to v_{n-1}, and the other has colour 3 and is adjacent to v_{n-1} and not to v_{n-2}, v_{n-5}. Suppose that x has colour 3. Then $\left\{v_{n-2}, v_{n-5}\right\}$ is complete to $y, v_{n}, v_{n-3}, v_{n-4}$; and $y \neq v_{n-4}$ since y is adjacent to v_{n}, so $y, v_{n}, v_{n-3}, v_{n-4}$ are all different, and the subgraph induced on $\left\{v_{n-2}, v_{n-5}, y, v_{n}, v_{n-3}, v_{n-4}\right\}$ is a trapeze, a contradiction. Thus x has colour 2 . Hence x is adjacent to v_{n-2}, v_{n-5} and not to v_{n-1}, and y is adjacent to v_{n-1} and not to v_{n-2}, v_{n-5}. The subgraph induced on $\left\{x, v_{n-5}, v_{n-4}, v_{n-3}, v_{n-2}\right\}$ is not a 4 -wheel, and so $x \in\left\{v_{n-5}, v_{n-4}, v_{n-3}, v_{n-2}\right\}$; and since x has colour 2 it follows that $x=v_{n-4}$. We deduce that y is adjacent to v_{n}, v_{n-1}, v_{n-4}, and not to $v_{n-2}, v_{n-3}, v_{n-5}$. Consequently $y \neq v_{n-1}, v_{n-2}, v_{n-5}$, and since y is adjacent to v_{n} it follows that y is different from v_{1}, \ldots, v_{n}. Now the subgraph induced on $\left\{v_{n-6}, v_{n-5}, v_{n-4}, v_{n-2}, v_{n-1}, v_{n}\right\}$ is a short prism K say, and v_{n-3} is a major vertex with respect to K. By 10.1 it follows that v_{n-3} separates K, and so y is anticomplete to $\left\{v_{1}, \ldots, v_{n-6}\right\}$. Hence the sequence v_{1}, \ldots, v_{n}, y is a prism-sequence, contrary to the maximality of n.

This proves that G contains either an appearance of K_{4} and or an even prism. From 9.2 and 9.3 it follows that G is the line graph of a bipartite graph. This proves 11.1.

We deduce:
11.2 Let G be a 3-connected K_{4}-free Berge graph, containing no even pair, no trampoline, and no clique cutset. Suppose that G contains a square. Then G is the line graph of a bipartite graph.

Proof. Fix a three-colouring of G. Choose a square $a_{1}-b_{1}-a_{2}-b_{2}-a_{1}$, such that if possible a_{1}, a_{2} have different colours. Since b_{1}, b_{2} is not an even pair, there is an odd induced path P between b_{1}, b_{2}. Let the vertices of P be $p_{1^{-}} \cdots-p_{k}$, where $p_{1}=b_{1}$ and $p_{k}=b_{2}$. If $\left\{a_{1}, a_{2}\right\}$ contains a leap for this path, then G contains a prism and the result follows from 11.1. Thus we suppose that $\left\{a_{1}, a_{2}\right\}$ contains no leap. By 2.4 it follows that a_{1}, a_{2} have the same colour, say colour 1 . From the choice of the square $a_{1}-b_{1}-a_{2}-b_{2}-a_{1}$, it follows that there is no square in which some two nonadjacent vertices have different colours. In particular, b_{1}, b_{2} have the same colour, say colour 2 .

We claim that some edge of P is complete to $\left\{a_{1}, a_{2}\right\}$. For if $k>4$ this follows from 2.1 , so we assume $k=4$. Since $a_{1}-p_{1} \cdots-p_{4}-a_{1}$ is not an odd hole, a_{1} is adjacent to one of p_{2}, p_{3}, and similarly so is a_{2}. If neither of p_{2}, p_{3} is complete to $\left\{a_{1}, a_{2}\right\}$, then $\left\{a_{1}, a_{2}\right\}$ is a leap, a contradiction; so from the symmetry we may assume that p_{2} is complete to $\left\{a_{1}, a_{2}\right\}$, and so the edge $p_{1} p_{2}$ is complete to $\left\{a_{1}, a_{2}\right\}$. This proves that some edge of P is complete to $\left\{a_{1}, a_{2}\right\}$, and consequently there exists i with $1<i<k$ such that p_{i} is complete to $\left\{a_{1}, a_{2}\right\}$ and p_{i} has colour different from 2 . Now p_{i} is nonadjacent to one of b_{1}, b_{2}, say b_{j}; and so $p_{i}-a_{1}-b_{j}-a_{2}-p_{i}$ is a square, and p_{i}, b_{j} have different colours, a contradiction. This proves 11.2.

Next we use a theorem of Linhares Sales and Maffray [7], the following (thanks to the referee for pointing out this result, which eliminates the hard part of our original argument):
11.3 Let G be a Berge graph with no prism and no square, and with no even pair. Then G is complete.

Now we can complete the proof of the main theorem.
Proof of 1.3. Let G be a 3-connected K_{4}-free Berge graph with no even pair and no clique cutset. If G contains a trampoline, then \bar{G} is a line graph by 3.1. Thus, we assume that G contains no trampoline. If G contains a prism or square, then G is the line graph of a bipartite graph, by 11.1 and 11.2. Thus we may assume that G contains no prism or square. By $11.3, G$ is complete, and hence is the line graph of a bipartite graph. This proves 1.3.

References

[1] C. Berge, "Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind", Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10 (1961), 114.
[2] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, "Recognizing Berge graphs", Combinatorica, 25 (2005), 143-186.
[3] M. Chudnovsky and P. Seymour, "Even pairs in Berge graphs", J. Combinatorial Theory, Ser. B, 99 (2009), 370-377.
[4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, " K_{4}-free graphs with no odd holes", J. Combinatorial Theory, Ser. B, 100 (2010), 313-331.
[5] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, "The strong perfect graph theorem", Annals of Mathematics 164 (2006), 51-229.
[6] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto and B.A. Reed, "Even pairs", in Perfect Graphs (J. L. Ramírez-Alfonsín and B.A. Reed, eds.), Wiley Interscience, New York, 2001, 67-92.
[7] C. Linhares Sales and F. Maffray, "Even pairs in square-free Berge graphs", Matemática Contemporânea, 25 (2003), 161-176.
[8] F. Roussel and P. Rubio, "About skew partitions in minimal imperfect graphs", J. Combinatorial Theory, Ser. B 83 (2001), 171-190.
[9] A. Tucker, "Critical perfect graphs and perfect 3-chromatic graphs", J. Combinatorial Theory, Ser. B 23 (1977), 143-149.
[10] A. Tucker, "The validity of the perfect graph conjecture for K_{4}-free graphs", in Topics On Perfect Graphs (C. Berge and V. Chvátal, eds.), North-Holland, Amsterdam, Annals of Discrete Math. 21 (1984), 225-252.
[11] Y. Zwols, " K_{4}-free graphs with no odd hole: even pairs and the circular chromatic number", Journal of Graph Theory 65 (2010), 303-322.

[^0]: ${ }^{1}$ This research was partially conducted while the author served as a Clay Mathematics Institute Research Fellow, and partially supported by NSF grant DMS-0758364.
 ${ }^{2}$ Partially supported by ONR grant N00014-01-1-0608 and NSF grant DMS-0070912.

