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Abstract

A “cap” in a graph G is an induced subgraph of G that consists of a cycle of length at least four,
together with one further vertex that has exactly two neighbours in the cycle, adjacent to each other,
and the “house” is the smallest, on five vertices. It is not known whether there exists ε > 0 such
that every graph G containing no house has a clique or stable set of cardinality at least |G|ε; this is
the smallest open case of the Erdős-Hajnal conjecture and has been the subject of much study.

We prove that there exists ε > 0 such that every graph G with no cap has a clique or stable set
of cardinality at least |G|ε.



1 Introduction

Graphs in this paper are finite and simple, and |G| denotes the number of vertices of a graph G. A
graph is H-free if it has no induced subgraph isomorphic to H. The Erdős-Hajnal conjecture [11, 12]
asserts:

1.1 Conjecture: For every graph H, there exists ε > 0 such that every H-free graph G has a clique
or stable set of cardinality at least |G|ε.

This has not yet been proved when H is the five-vertex path P5, and that problem motivates the
work of this paper. The complement of P5 is the house, the graph consisting of a cycle of length four,
together with one extra vertex with two neighbours in the cycle, adjacent. By taking complements,
we see that proving 1.1 when H is the house is the same problem as proving it when H = P5. The
house is the smallest example of a “cap”.

Figure 1: A house.

A hole in a graph G is an induced cycle of length at least four. If C is a hole in G, a vertex
v ∈ V (G) \ V (C) is said to be a hat for C if v has exactly two neighbours x, y ∈ V (C), and x, y
are adjacent. The subgraph induced on V (C) ∪ {v} is then said to be a cap in G; and we say G is
cap-free if there is no cap in G.

The main result of this paper is:

1.2 There exists ε > 0 such that for every cap-free graph G, there is a clique or stable set in G of
cardinality at least |G|ε.

Here are some earlier theorems with a similar nature:

• If G contains no hole, there is a clique or stable set in G of cardinality at least |G|1/2. (This is
immediate because such graphs are perfect.)

• If G contains no house and no hole of odd length, then again there is a clique or stable set in
G of cardinality at least |G|1/2. (Again, because such graphs are perfect, a consequence of the
“strong perfect graph theorem” [6].)

• For each ` > 0, there exists ε > 0 such that if G contains no house and no hole of length at
least `, then G has a clique or stable set of cardinality at least |G|ε. (This is a combination of
a theorem of Bousquet, Lagoutte, and Thomassé [3] and a theorem of Bonamy, Bousquet and
Thomassé [2].)
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Since this paper was submitted for publication, we have proved a strengthening of 1.2. In joint
work with Alex Scott and Sophie Spirkl [8], we proved:

1.3 There exists ε > 0 such that for every graph G that contains no five- or six-vertex cap, there is
a clique or stable set in G of cardinality at least |G|ε.

The proof method is quite different from what is used in this paper.
Working in structural graph theory, one always hopes to find a collection of non-crossing decom-

positions that together break the graph into simpler pieces. That is because the existence of such a
collection leads into the well-understood area of tree-decompositions. However, such collections do
not often appear in the context of forbidden induced subgraphs. Here we give a weakening of this
notion, that is still almost as useful, and does work more often for induced subgraphs.

Cap-free graphs typically admit a certain kind of separation, that we call a “fracture”. (This is
related to the “amalgam” decomposition of cap-free graphs due to Burlet and Meyniel [4], developed
by Conforti, Cornuéjols, Kapoor and Vušković [10].) A fracture is a certain kind of partition of the
vertex set of our graph G into three parts (actually four parts, but we merge two of them for this
sketch) A,B,C, where A,B are “anticomplete”, that is, there are no edges between them. We call
A and B the “small” and “big” sides of the fracture. (There is no symmetry between A and B in
the full definition of a fracture.) Let S be the union of all small sides of fractures. The graph R
obtained from G by deleting S does not admit a fracture with nonempty small side (because such
a fracture would extend to one in the whole graph G, and we would have deleted all its small side,
including the part in R); so R has a very restricted type. We can base a proof on this, provided we
can show that R still contains a substantial part of G: in other words, that S is not too big. And
we could show this, if we could prove that:

Every component of S is anticomplete to the big side of some fracture of G.

This is where “non-crossing” would be useful. If it were true that fractures form a set of non-
crossing separations, then every component of S would be a component of one small side, and
therefore anticomplete to the corresponding big side. This is not true, but we have a substitute:
we can show that for any two fractures, if some component of the union of their small sides is not
a component of either small side, then the two big sides are equal. It follows from this that every
component of S is anticomplete to the big side of some fracture, which is what we needed. A similar
idea works in several other situations, and we hope to find further uses for it in the future.

A graph P is perfect if chromatic number equals clique number for every induced subgraph of
P . We denote the set of nonnegative real numbers by R+. Let G be a graph and f : V (G) → R+;
if X ⊆ V (G), we define f(X) =

∑
v∈X f(v), and if P is an induced subgraph of G we define

f(P ) = f(V (P )). We say that f is good on G if f(P ) ≤ 1 for every perfect induced subgraph P
of G. Now let α ≥ 1. We denote by fα the function g on G defined by g(v) = (f(v))α for each
v ∈ V (G). Let us say that G is α-narrow if fα(G) ≤ 1 for every good function f on G. Here is a
result of Chudnovsky and Safra [7], with a short proof by Chudnovsky and Zwols [9]:

1.4 If G is α-narrow then G has a clique or stable set of cardinality at least |G|ε, where ε = 1/(2α).

Proof. Let P be a perfect induced subgraph of G with as many vertices as possible, and let p = |P |.
Let f(v) = 1/p for all v ∈ V (G). Then f is good on G, and so fα(G) ≤ 1, that is, p−α|G| ≤ 1,
and so p ≥ |G|1/α = |G|2ε. But P is perfect, and so P , and hence G, has a clique or stable set of
cardinality at least p1/2 ≥ |G|ε. This proves 1.4.
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In view of 1.4, the following implies 1.2:

1.5 There exists α ≥ 1 such that every cap-free graph is α-narrow.

Let us say a pair (G, f) is α-critical if G is a graph and f : V (G)→ R+ is a good function on G,
such that

• every proper induced subgraph of G is α-narrow; and

• fα(G) > 1.

To prove 1.5, choose an appropriately large value of α, and suppose (for a contradiction) that
1.5 is not satisfied, and look at a counterexample G with as few vertices as possible. Hence there
is a good function f on G with fα(G) > 1, and so (G, f) is α-critical. Consequently, 1.5 can be
reformulated as:

1.6 There exists α ≥ 1 such that for every α-critical pair (G, f), there is a cap in G.

We will prove this at the end of the final section, but let us sketch the proof now. We are proving
α-narrowness instead of proving the statement of 1.2 directly, in order to handle homogeneous sets;
so vertices will have non-negative weights, but for this sketch the reader could assume that all vertex-
weights are one. If there are two disjoint anticomplete sets of vertices, that both have linear total
weight, then we win by induction; so we assume there are no two such sets. By a theorem of Rödl,
there is a subgraph X containing a linear fraction of the total weight of G, such that either X is
sparse (in a weighted sense) or its complement is: and the second is impossible, by a theorem of
Bonamy, Bousquet and Thomassé [2]. So the first holds. We look at fractures of X. If A,B,C is
such a fracture, then C has very small total weight, and so at least one of A,B has big weight. But
by the assumption above, not both A,B have linear total weight, since they are anticomplete; and
with some sleight of hand we can arrange that it is always the small side A that has small weight,
and therefore that most of the weight of X resides in B.

Let S be the union of all the small sides of fractures of X. By the remarkable fact that we
described earlier, every component of S is anticomplete to some big side, and therefore has small
weight; and so S itself has small weight (because otherwise we could group its components into two
sets both with big weight). That means that deleting S from X gives a graph R that still has big
weight. But every fracture in R extends to a fracture in X (this is another useful feature of fractures,
and the reason for using “forcers”, which we do not explain here), and therefore R has no fracture
with nonempty small side. Hence R has a very restricted type, and in particular it is α′-narrow
where α′ is much less than α; and it follows that G itself is α-narrow, which is what we wanted to
show. This completes the sketch.

2 Complete pairs of sets

Cap-free graphs have some convenient structural properties, that we will prove next. Let A,B ⊆
V (G) be disjoint; we say they are complete to each other if every vertex in A is adjacent to every
vertex in B, and anticomplete if there are no edges between A,B. We are concerned in this section
with how the remainder of a cap-free graph can attach to a pair of sets of vertices that are complete
to each other. A graph is anticonnected if its complement is connected; and its anticomponents are

3



the complements of the components of its complement. If X ⊆ V (G), we say that X is connected if
G[X] is connected, and anticonnected if G[X] is anticonnected. If C ⊆ V (G), a vertex v ∈ V (G) \C
is mixed on C if v is neither complete not anticomplete to C. We begin with:

2.1 Let G be a cap-free graph. Let C,D be disjoint anticonnected subsets of V (G), complete to each
other. Then no vertex of V (G) \ (C ∪D) is both mixed on C and mixed on D.

Proof. Suppose that v ∈ V (G) \ (C ∪ D) is both mixed on C and mixed on D. Since C is
anticonnected, there exist nonadjacent c1, c2 ∈ C such that v is adjacent to c1 and not to c2; and
choose d1, d2 ∈ D similarly. Then the subgraph induced on {c1, c2, d1, d2, v} is a house, contradicting
that G is cap-free. This proves 2.1.

2.2 Let G be a cap-free graph. Let C,D be disjoint subsets of V (G), complete to each other, such
that C is connected. Let P be a connected subgraph of G \ (C ∪D), such that some vertex of P has
a neighbour in C, and no vertex of P is complete to C. For every v ∈ V (P ), there exists u ∈ V (P ),
mixed on C, such that every vertex in D adjacent to v is also adjacent to u.

Proof. Suppose the claim is false, and choose a counterexample with P minimal. Choose v ∈ V (P )
such that no vertex of P has a neighbour in C and is adjacent to all neighbours of v in D. Choose
u ∈ V (P ) mixed on C. By the minimality of P , P is an induced path between u, v, and u is the only
vertex of P with a neighbour in C. Choose d ∈ D adjacent to v and not to u. By the minimality of
P , v is the only vertex of P adjacent to d. Since C is connected, there exist adjacent c1, c2 ∈ C such
that u is adjacent to c1 and not to c2. But then the subgraph induced on V (P )∪ {c1, c2, d} is a cap,
a contradiction. This proves 2.2.

2.3 Let G be a cap-free graph. Let C,D be disjoint subsets of V (G), complete to each other, such
that C is connected and D is anticonnected. Let P be a connected subgraph of G \ (C ∪D), such that
some vertex of P has a neighbour in C, and no vertex of P is complete to C. If some vertex of P
has a neighbour in D, then some vertex of P is mixed on C and complete to D.

Proof. If some vertex of P has a neighbour in D, then by 2.2, some vertex v ∈ C is mixed on C
and has a neighbour in D, and therefore by 2.1, v is complete to D. This proves 2.3.

2.4 Let G be a cap-free graph. Let C,D be disjoint nonempty subsets of V (G), complete to each
other, such that C is connected and anticonnected, and D is anticonnected. Let P be a connected
subgraph of G with V (P ) ∩ (C ∪D) = ∅, such that some vertex of P has a neighbour in C, and no
vertex of P is complete to C. Then no vertex of P is mixed on D.

Proof. Suppose not, and choose C,D, P not satisfying the theorem, with P minimal. Choose
u ∈ V (P ) with a neighbour in C, and therefore mixed on C; and choose v ∈ V (P ) mixed on D.
From the minimality of P , it follows that P is an induced path with ends u, v, and u is the only
vertex of P with a neighbour in C, and no vertex of P different from v is mixed on D. By 2.3 u is
complete to D, and in particular u 6= v. Let u′ be the neighbour of u in P . It follows that C ∪{u} is
connected and anticonnected, and u′ is mixed on it; and this contradicts the minimality of P . This
proves 2.4.
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2.5 Let G be a cap-free graph. Let C,D be disjoint nonempty subsets of V (G), complete to each
other, such that C is connected and anticonnected, and D is connected and anticonnected. Then
there do not exist connected subgraphs P,Q of G \ (C ∪D), with V (P ∩Q) 6= ∅, such that

• some vertex of P has a neighbour in C, and no vertex of P is complete to C;

• some vertex of Q has a neighbour in D, and no vertex of Q is complete to D.

Proof. Suppose that such P,Q exist, and choose C,D, P,Q with |V (P )|+ |V (Q)| minimal. Choose
w ∈ V (P ∩Q), and choose p ∈ V (P ) with a neighbour in C, and q ∈ V (Q) with a neighbour in D.
From the minimality of |V (P )| + |V (Q)|, it follows that P is an induced path with ends p, w, and
no vertex of P different from p has a neighbour in C; and similarly for Q; and V (P ∩ Q) = {w}.
Suppose that p is complete to D. Hence p /∈ V (Q), and so p 6= w. Then C ∪ {p} is connected
and anticonnected, and complete to D, and the two paths P \ p and Q contradict the minimality of
|V (P )|+ |V (Q)|. Thus p is not complete to D. Since no other vertex of P has a neighbour in C, it
follows from 2.2 that no vertex of P has a neighbour in D. Similarly no vertex of Q has a neighbour
in C. In particular, no vertex of P ∪Q is complete to C, contrary to 2.4. This proves 2.5.

3 Decomposing cap-free graphs

If v ∈ V (G), we denote by N(v) = NG(v) the set of all neighbours of v in G. If N ⊆ V (G), we
denote by G[N ] the induced subgraph with vertex set N . A weighted graph is a pair (G,w), where
G is a graph and w : V (G)→ R+ is a function, such that w(G) = 1. Let ε > 0. We say a weighted
graph (G,w) is ε-coherent if

• for every v ∈ V (G), w(v) < ε;

• for every v ∈ V (G), w(NG(v)) < ε; and

• if A,B ⊆ V (G) are disjoint and anticomplete then min(w(A), w(B)) < ε.

First we need:

3.1 Let (G,w) be an ε-coherent weighted graph. If X ⊆ V (G) with w(X) ≥ 3ε, there is a component
Y of G[X] with w(Y ) > w(X)− ε.

Proof. Let Z be a union of components of G[X], minimal such that w(Z) ≥ ε. Since X \ Z is
anticomplete to Z, it follows that w(X \ Z) < ε, and so w(Z) > w(X)− ε. Choose a component Y
of G \X with Y ⊆ Z. From the minimality of Z, w(Z \ Y ) < ε, and so w(Y ) ≥ (w(X)− ε)− ε ≥ ε,
and therefore Z = Y from the minimality of Z. But then w(Y ) = w(Z) > w(X) − ε. This proves
3.1.

The component Y of 3.1 satisfies w(Y ) > w(X) − ε ≥ 2ε, and since the remainder of G[X] is
anticomplete to Y and therefore has weight less than ε, it follows that Y is unique. We call Y the
big component of G[X].

If A ⊆ V (G), each vertex in V (G) \ A with a neighbour in A is called an attachment of A. Let
ε > 0, with 5ε ≤ 1, and let (G,w) be an ε-coherent weighted graph. Let C,D be disjoint subsets of
V (G), such that:

5



• |C| ≥ 2, and G[C] is connected and anticonnected;

• D 6= ∅, and D is the set of all vertices in V (G) \ C that are complete to C; and

• C contains no attachment of the big component of G \ (C ∪D).

(Note that since there is a vertex in D complete to C, it follows that w(C) ≤ ε, and similarly
w(D) ≤ ε. Since 5ε ≤ 1, there is a big component of G \ (C ∪D).) In these circumstances we call
(C,D) a split of (G,w). As we shall see, splits are a useful kind of decomposition in cap-free graphs.

Let us say a forcer is a graph F with eight vertices v1, . . . , v8, where v1-v2-v3-v4 and v5-v6-v7-v8
are induced paths of F , and {v1, . . . , v4} is complete to {v5, . . . , v8}. We call these two paths the
constituent paths of the forcer. A forcer in G means an induced subgraph of G that is a forcer,
and G is forcer-free if there is no forcer in G . Now we prove the main result of this section. It
is a strengthening of the “amalgam” decomposition of cap-free graphs due to Conforti, Cornuéjols,
Kapoor and Vušković [10].

3.2 Let ε > 0, with 5ε ≤ 1, and let (G,w) be a ε-coherent weighted graph, where G is cap-free. Let
F be a forcer in G. Then there is a split (C,D) of G such that G[C], G[D] both contain a constituent
path of F .

Proof. Let F be a forcer, and let P1, P2 be the constituent paths of F . Consequently there are
disjoint subsets X1, X2 of V (G), such that

• V (P1) ⊆ X1, and X1 is connected and anticonnected;

• V (P2) ⊆ X2, and X2 is connected and anticonnected; and

• X1, X2 are complete to one another.

Choose such (X1, X2) maximal in the sense that there is no choice of (X ′1, X
′
2) satisfying the same

conditions, with Xi ⊆ X ′i for i = 1, 2 and |X ′1∪X ′2| > |X1∪X2|. We call this property the maximality
of (X1, X2). Let X3 be the set of all vertices in V (G) \ (X1 ∪X2) that are complete to X1 ∪X2, and
let R = V (G) \ (X1 ∪X2 ∪X3). For i = 1, 2, let Ri be the set of vertices in R that are complete to
Xi.

(1) R1 is anticomplete to X2, and R2 is anticomplete to X1, and so R1 ∩R2 = ∅.

Suppose that v ∈ R1 has a neighbour in X2, say. Since v /∈ X3, v is mixed on X2. But then
X ′2 = X2 ∪ {v} is connected and anticonnected, and the pair (X1, X

′
2) violates the maximality of

(X1, X2). This proves (1).

For i = 1, 2, let Si be the union of all components of G[R \ (R1 ∪ R2)] that have an attachment
in Xi. Let S3 = R \ (R1 ∪R2 ∪ S1 ∪ S3).

(2) S1∩S2 = ∅. Moreover, S1 is anticomplete to X2∪R2∪S2, and S2 is anticomplete to X1∪R1∪S1.

By 2.4, S1∩S2 = ∅. By 2.3, S1 is anticomplete to R2, and S2 is anticomplete to R1. This proves (2).
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R1 R2

X1

S1

X2

S2

S3

X3

Figure 2: Thick lines indicate complete pairs, and wiggly lines indicate possible edges.

Thus, in summary, the sets X1, X2, X3, R1, R2, S1, S2, S3 are pairwise disjoint and have union
V (G). The pairs

(X1, X2), (X1, X3), (X2, X3), (R1, X1), (R2, X2)

are complete to each other; the pairs

(R1, X2), (R2, X1), (S1, X2), (S2, X1), (S3, X1), (S3, X2), (S1, R2), (S2, R1), (S1, S2), (S1, S3), (S2, S3)

are anticomplete; and there may be edges between the pairs not listed. Every component of G[Si]
has an attachment in Xi for i = 1, 2.

Define T = X1 ∪X2 ∪X3 ∪ R1 ∪ R2. Choose x1 ∈ X1 and x2 ∈ X2. Then every vertex in T is
adjacent to one of x1, x2, and so w(T ) ≤ 2ε. Hence G \ T has a big component Y , and since the
sets S1, S2, S3 are pairwise anticomplete, we may assume that Y is disjoint from S1, by exchanging
X1, X2 if necessary. But then (X1, X2 ∪X3 ∪R1) is a split of G satisfying the theorem. This proves
3.2.

Let us say a split (C,D) of G is optimal if there is no split (C ′, D′) with C ⊆ C ′ and C ′ 6= C.
Let (C,D) be an optimal split. Let A be the union of all components of G \ (C ∪ D) that have
an attachment in C; and let B be the union of all other components of G \ (C ∪D) (including the
big component). Let us call (A,C,D,B) a fracture of G. (Note that there are no edges between B
and A ∪ C but there may well be edges between A and D. Also, B 6= ∅, since it contains the big
component of G \ (C ∪D), but A might be empty.) From 3.2 we have immediately:

3.3 Let ε > 0, with 5ε ≤ 1, and let (G,w) be an ε-coherent weighted graph, where G is cap-free. Let
F be a forcer in G. Then there is a fracture (A,C,D,B) of G such that G[C] contains a constituent
path of F .

We need some observations about fractures.

3.4 Let ε > 0, with 5ε ≤ 1, and let (G,w) be an ε-coherent weighted graph, where G is cap-free.
Let (A,C,D,B) be a fracture of G.
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• For each a ∈ A, there is an attachment of the big component of G\ (C ∪D) that is nonadjacent
to a.

• For each a ∈ A, and every anticomponent X of G[D], a is not mixed on X.

Proof. Let Y be the big component of G \ (C ∪D); thus Y ⊆ B, and all its attachments belong to
D. Suppose that a ∈ A, and a is adjacent to every vertex of D that has a neighbour in Y . Let P be
the component of G[A] that contains a; then some attachment of P belongs to C. By 2.2, we may
choose v ∈ P mixed on C, such that every vertex in D adjacent to a is also adjacent to v. Let D′ be
the set of all neighbours of v in D. Then (C ∪{v}, D′) is a split (because D′ contains all attachments
of Y ), contradicting that (C,D) is optimal. This proves the first assertion.

Now suppose that a ∈ A is mixed on an anticomponent X of G[D]. Let P be the component of
G[A] that contains a. Choose v ∈ P mixed on C; then P contradicts 2.4 applied to the connected
anticonnected set C and the anticonnected set X. This proves 3.4.

4 Multiple fractures

A fracture (A,C,D,B) of G is a kind of separation of G, because deleting C ∪ D disconnects A
from B. (But A might be empty.) Also the order of this separation is small, since w(C ∪D) ≤ 2ε
in the usual notation. It would be nice if these separations did not “cross”, so that they give us a
tree-decomposition of G, but that is not true. Nevertheless, something like that is true, as we see in
this section.

4.1 Let ε > 0, with 6ε ≤ 1, and let (G,w) be an ε-coherent weighted graph, where G is cap-free.
Let (A,C,D,B) and (A′, C ′, D′, B′) be fractures in G. Then either

• every connected subgraph of G[A ∪A′] is contained in one of A, A′; or

• the big component of G \ (C ∪D) equals the big component of G \ (C ′ ∪D′).

Proof. We suggest that, to follow this argument, the reader imagine a 4 × 4 matrix with rows
labelled A,C,D,B and columns A′, C ′, D′, B′. We remind the reader that C is complete to D, and
A ∪ C is anticomplete to B, and the same for (A′, C ′, D′, B′).

A

C

D

B

A′ C′ D′ B′

Figure 3: Two fractures.
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Let Y be the big component of G\(C∪D), and define Y ′ similarly. Since w(Y ), w(Y ′) > 1−3ε ≥
1/2, it follows that Y ∩ Y ′ 6= ∅, and since Y ⊆ B and Y ′ ⊆ B′, we deduce that Y ∩ Y ′ ∩B ∩B′ 6= ∅.

(1) If C ∩B′ 6= ∅ then D ∩ (A′ ∪ C ′) = ∅, and if B ∩ C ′ 6= ∅ then (A ∪ C) ∩D′ = ∅.

Let u ∈ C ∩ B′. If v ∈ D ∩ (A′ ∪ C ′), then v is adjacent to u (because C is complete to D),
and yet v is nonadjacent to u (because A′ ∪ C ′, B′ are anticomplete), a contradiction. This proves
the first statement, and the second follows by symmetry.

(2) We may assume that A∩ (C ′ ∪D′) 6= ∅, and (C ∪D)∩A′ 6= ∅, and at least one of B ∩D′, D∩B′
is nonempty.

If A ∩ (C ′ ∪D′) = ∅, then the first outcome of the theorem holds, and similarly if (C ∪D) ∩A′ = ∅.
If B ∩D′, D ∩ B′ are both empty, then Y, Y ′ ⊆ B ∩ B′, and so Y = Y ′ and the second outcome of
the theorem holds. This proves (2).

From the third assertion of (2) and the symmetry between the two fractures, we may assume that
B∩D′ 6= ∅. By (1), (A∪C)∩C ′ = ∅. From (2), A∩D′ 6= ∅; so by (1) B∩C ′ = ∅. Hence D∩C ′ 6= ∅,
because C ′ 6= ∅. Every vertex in C ∩ A′ is complete to D ∩ C ′ and hence to C ′; but no vertex in A′

is complete to C ′ from the definition of a fracture, and so C ∩ A′ = ∅. By (2), D ∩ A′ 6= ∅. By (1),
C ∩B′ = ∅, and so C ∩D′ 6= ∅.

A

C

D

B

A′ C′ D′ B′

?

∅

?

∅

∅

∅

?

?

∅

?

Figure 4: A solid dot means a nonempty set, and ? means we don’t know.

Since C = C ∩D′ is anticonnected, and every vertex in A has a nonneighbour in C, and every
vertex in B∩D′ has a nonneighbour in A∩D′, it follows that (A∪B∪C)∩D′ is anticonnected. But
each vertex in D∩A′ has a neighbour in (A∪B ∪C)∩D′ (namely, in C ∩D′), and by 3.4, it follows
that D ∩ A′ is complete to (A ∪ B ∪ C) ∩D′. Similarly, since D ∩ (A′ ∪ B′ ∪ C ′) is anticonnected,
it follows that A ∩D′ is complete to D ∩ (A′ ∪ B′ ∪ C ′). (Thus we almost have symmetry between
(A,C,D,B) and (A′, C ′, D′, B′); but not quite, because we do not know that D ∩B′ 6= ∅.)

Let Q be the set of vertices in D ∩D′ that are not complete to D ∩ A′, and let Q′ be the set of
vertices in D ∩D′ that are not complete to A ∩D′. Let R = (D ∩D′) \ (Q ∪Q′).

(3) Q ∩Q′ = ∅, and Q,Q′, R are pairwise complete.

Since there is a vertex in A ∩ D′ and it is complete to D ∩ A′, 3.4 implies that A ∩ D′ is com-
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plete to Q; and so Q ∩ Q′ = ∅. If u ∈ Q and v ∈ Q′ ∪ R, there is a vertex in D ∩ A′ adjacent to v
and not to u; so 3.4 implies that u, v are adjacent. Thus Q is complete to Q′ ∪ R, and similarly Q′

is complete to R. This proves (3).

(4) A′ ∩B is anticomplete to Q′ ∪ (B ∩D′), and B′ ∩A is anticomplete to Q ∪ (D ∩B′).

Each vertex in A′ ∩B is anticomplete to A ∩D′, and so by 3.4, also anticomplete to Q′ ∪ (B ∩D′).
Similarly B′ ∩A is anticomplete to Q ∪ (D ∩B′). This proves (4).

Choose v ∈ D ∩ A′; then by 3.4, there is an attachment q of Y ′ nonadjacent to v. Since v is
adjacent to all vertices of D′ \Q, it follows that q ∈ Q. Similarly there is an attachment q′ of Y with
q′ ∈ Q′. Let X = ((A ∪ C) ∩D′) ∪Q′, and X ′ = (D ∩ (A′ ∪ C ′)) ∪Q. Then X,X ′ are disjoint, and
complete to each other, and each of them is both connected and anticonnected. Now some vertex
of Y is adjacent to q′, and so has a neighbour in X; and no vertex of Y is complete to X (because
Y ⊆ B ∩ (B′ ∪ D′), since there are no edges between B ∩ A′ and B ∩ D′). Similarly some vertex
of Y ′ has a neighbour in X ′, and no vertex of Y ′ is complete to X ′. Since Y ∩ Y ′ is non-null, this
contradicts 2.5.

4.2 Let ε > 0, with 6ε ≤ 1, and let (G,w) be an ε-coherent weighted graph, where G is cap-free.
Let F be the set of all fractures of G, and let A be the union of all the sets A for (A,C,D,B) ∈ F .
Then w(A) < 3ε.

Proof. Let Z be the vertex set of a component of G[A]. For each (A,C,D,B) ∈ F , we call each
component of G[A] a piece; let H be the set of all maximal pieces (taken over all (A,C,D,B) ∈ F).
More exactly, a piece P is maximal if there is no piece P ′ (possibly arising from a different choice of
(A,C,D,B)) such that P is an induced subgraph of P ′ and P 6= P ′.

Thus Z can be expressed as the union of vertex sets of maximal pieces. For each maximal piece
X, let (A,C,D,B) ∈ F such that X is a component of G[A], and let Y be the big component of
G \ (C ∪D); we call Y the fulcrum of X. (There may be more than one choice of (A,C,D,B) ∈ F
for a given set X, and correspondingly more than one choice of fulcrum: choose one, arbitrarily).

We observe:

(1) If X,X ′ are maximal pieces such that either V (X ∩ X ′) 6= ∅, or X is not anticomplete to
X ′, then X,X ′ have the same fulcrum.

Suppose not. Let X be a component of G[A] where (A,C,D,B) ∈ F , and define (A′, C ′, D′, B′)
similarly. By 4.1, it follows that every connected subgraph of G[A ∪ A′] is a subgraph of one of
G[A], G[A′], and in particular the connected subgraph induced on V (X) ∪ V (X ′) is a subgraph of
one of G[A], G[A′], say G[A]. But X is a component of G[A], so V (X) = V (X ∪X ′), contradicting
that X ′ is a maximal piece. This proves (1).

Choose a connected subgraph H of G[Z], maximal such that V (H) is the union of maximal
pieces all with the same fulcrum Y . Suppose that V (H) 6= Z. Since G[Z] is connected, there is
a vertex v1 ∈ Z \ V (H) with a neighbour v2 ∈ V (H). Choose a maximal piece X1 containing v1,

10



and a maximal piece X2 containing v2 with fulcrum Y . By (1), X1 has fulcrum Y , contrary to the
maximality of H. Thus V (H) = Z, and so Y is anticomplete to Z. Since w(Y ) ≥ ε, it follows that
w(Z) < ε. Since this holds for each component of G[A], 3.1 implies that w(A) < 3ε. This proves
4.2.

Let us say X ⊆ V (G) is a homogeneous set of G if for every vertex v ∈ V (G) \ X, either v is
complete or anticomplete to X. Let G be a graph; we say that G is guarded if for every forcer F in
G, there is a homogeneous set X of G with X 6= V (G) such that G[X] contains a constituent path
of F .

4.3 Let ε > 0, with 6ε ≤ 1, and let (G,w) be an ε-coherent weighted graph, where G is cap-free. Then
there exists Z ⊆ V (G) with |Z| > 1, such that G[Z] is connected and guarded, and w(Z) > 1− 4ε.

Proof. Define F ,A as in 4.2, and let W = V (G)\A. By 4.2, w(W ) > 1−3ε ≥ 3ε. By 3.1, G[W ] has
a big component, with vertex set Z say, where w(Z) ≥ 1−4ε. Hence |Z| > 1, since w(v) ≤ ε < 1−4ε
for each vertex v. Let F be a forcer in G[Z]. Then by 3.3, there is a fracture (A,C,D,B) of G such
that |V (F ) ∩ C| ≥ 4. Let X = C ∩ Z. Since C is a homogeneous set of G \A, it follows that X is a
homogeneous set of G[Z], and it contains a constituent path of F . This proves 4.3.

5 α-critical pairs

In this section we explore the properties of α-critical pairs, and combine these results with 4.3 to
prove 1.6.

5.1 Let α ≥ 2, and let (G, f) be α-critical. Then f(w) < 1− 4−1/α for each w ∈ V (G).

Proof. Let w ∈ V (G), and let c = f(w). Let N = NG(w), and let M = V (G) \ (N ∪ {w}). Since
(G, f) is α-critical, it follows that G[N ] is α-narrow, and so is G[M ]. Let p be the maximum of
f(P ) over all perfect induced subgraphs of G[N ], and let q be the maximum of f(Q) over all perfect
induced subgraphs Q of G[M ]. We claim that fα(N) ≤ pα. If f(v) = 0 for every v ∈ N then the
statement is true, so we may assume that f(v) > 0 for some v ∈ N , and hence p > 0. So the function
f(v)/p (v ∈ N) is a good function on G[N ], and since G[N ] is α-narrow, we deduce that fα(N) ≤ pα.
Similarly fα(M) ≤ qα.

But if P is a perfect induced subgraph of G[N ] then G[V (P ) ∪ {w}] is perfect, and therefore
f(V (P ) ∪ {w}) ≤ 1; and so p ≤ 1− c, and similarly q ≤ 1− c. Thus

1 < fα(G) = fα(N) + fα(M) + fα(w) ≤ pα + qα + fα(w) ≤ 2(1− c)α + cα.

Now for 0 ≤ x ≤ 1, the function g(x) = 2(1 − x)α + xα has the value 1 when x = 1, and its
value increases with x for 2/3 ≤ x ≤ 1, since α ≥ 2 (as can be seen by taking the derivative). Thus
g(x) ≤ 1 for 2/3 ≤ x ≤ 1. Since g(c) > 1, it follows that c < 2/3, and so cα ≤ 1/2; and consequently
2(1− c)α > 1/2, that is, c < 1− 4−1/α. This proves 5.1.
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5.2 Let α ≥ 1, and let (G, f) be α-critical. Let A,B ⊆ V (G) be disjoint and either complete or
anticomplete. Then not both fα(A), fα(B) > 2−α.

Proof. Let P be a perfect induced subgraph of G[A] with f(P ) maximum, and choose Q in G[B]
similarly. Since P ∪Q is a perfect induced subgraph of G, it follows that f(P ) + f(Q) ≤ 1, and from
the symmetry we may assume that f(P ) ≤ 1/2. We may also assume that f(P ) > 0, f(P ) = p say,
and so f(v)/p (v ∈ A) is a good function on G[A]; and we may assume that Y 6= ∅, and so G[A] is
α-narrow, and consequently fα(A) ≤ pα ≤ 2−α. This proves 5.2.

Next we need the following consequence of a theorem of Rödl [14]:

5.3 For all ε > 0 and every graph H, there exists δ > 0 such that for every H-free graph G, there is
a subset X ⊆ V (G) with |X| ≥ δ|V (G)| such that one of G[X], G[X] has maximum degree less than
ε|X|.

We also need the following theorem of Bousquet, Lagoutte and Thomassé [3]:

5.4 For every path H, there exists ε > 0 such that for every H-free graph G with |G| > 1, either
some vertex of G has degree at least ε|G|, or there are disjoint anticomplete subsets A,B ⊆ V (G)
with |A|, |B| ≥ ε|G|.

We recall that the house is the complement of P5. Let us say G is house-free if G contains no house.

5.5 For all ε > 0 there exists δ > 0 such that, if G is house-free and |G| > 1, then either

• there are disjoint sets A,B ⊆ V (G), complete to each other, with |A|, |B| ≥ εδ|G|, or

• there exists X ⊆ V (G) with |X| ≥ δ|G| such that G[X] has maximum degree less than ε|X|.

Proof. Choose ε′ > 0 such that 5.4 holds with H, ε replaced by P5, ε
′ respectively. Now let ε > 0;

we must show that there exists δ as in the theorem. Thus we may assume that ε ≤ ε′, by reducing
ε if necessary. Choose δ as in 5.3. Now let G be a house-free graph with |G| > 1. The complement
G of G is P5-free, and so by 5.3, there is a subset X ⊆ V (G) with |X| ≥ δ|V (G)| such that one of
G[X], G[X] has maximum degree less than ε|X|.

If G[X] has maximum degree less than ε|X| then the theorem holds, so we assume that G[X]
has maximum degree at least ε|X| (and so |X| > 1), and therefore G[X] has maximum degree less
than ε|X|. By 5.4 applied to G[X], there are disjoint anticomplete (in G) subsets A,B ⊆ X with
|A|, |B| ≥ ε|X|. But then A is complete to B in G, and |A|, |B| ≥ ε|X| ≥ δε|G|. This proves 5.5.

From 5.5 we deduce:

5.6 Let ε > 0, and choose δ > 0 satisfying 5.5. Let α ≥ 1, such that εδ2α > 1. Let (G, f) be
α-critical, where G is house-free. Then there is a subset X ⊆ V (G) and a good function g on G[X]
with g(v) ≤ f(v) for each v ∈ X, such that gα(X) ≥ δfα(G) and gα(NG(v)∩X) < εgα(X) for every
vertex v ∈ X.

Proof. By rational approximation, we may assume that fα is rational. Choose an integer T > 0
such that Tfα(v) is an integer for all v ∈ V (G). Let G′ be obtained from G by replacing each vertex
v by a clique Wv of cardinality Tfα(v), where
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• the sets Wv (v ∈ V (G)) are pairwise disjoint;

• for all distinct u, v ∈ V (G) adjacent in G, Wu is complete to Wv in G′; and

• for all distinct u, v ∈ V (G) nonadjacent in G, Wu is anticomplete to Wv in G′.

It follows that G′ is also house-free, and |G′| = Tfα(G) > T ≥ 1. From 5.5 applied to G′, we deduce
that either

• there are disjoint sets A′, B′ ⊆ V (G′), complete to each other, with |A′|, |B′| ≥ εδ|G′|, or

• there exists X ′ ⊆ V (G′) with |X ′| ≥ δ|G′| such that G′[X ′] has maximum degree less than
ε|X ′|.

Suppose that the first bullet holds. Let A be the set of vertices v ∈ V (G) such that Wv ∩ A′ 6= ∅,
and define B similarly. Then A is complete to B in G. Moreover

fα(A) ≥ |A′|/T ≥ εδ|G′|/T ≥ εδfα(G) > εδ,

and similarly fα(B) ≥ εδfα(G). By 5.2, εδ ≤ 2−α, contrary to the hypothesis.
Thus the second bullet holds. Let X be the set of all v ∈ V (G) such that Wv ∩X ′ 6= ∅; and for

each v ∈ V (G) let g(v) satisfy T (g(v))α = |Wv ∩ X ′|. Thus gα(X) = |X ′| ≥ δ|G′| = δfα(G), and
g(v) ≤ f(v) for each v ∈ V (G). Let v ∈ X. The union of the sets Wu ∩X ′ over all u ∈ N(v) ∩X
has cardinality less than ε|X ′| (indeed, less than ε|X ′| − |Wv ∩X ′| + 1); and so Tgα(N(v) ∩X) <
ε|X ′| = εTgα(X), that is, gα(N(v)) < εgα(X). This proves 5.6.

Since P4-free graphs are perfect, a theorem of Erdős and Hajnal [12] (see also Alon, Pach and
Solymosi [1]) implies:

5.7 There exists ε > 0 such that if G is forcer-free then G has a clique or stable set of cardinality
at least |G|ε.

We also need a theorem of Jacob Fox (he did not publish his proof, but we gave a proof in [5]):

5.8 Let H be a graph for which there exists a constant δ > 0 such every H-free graph G has a clique
or stable set of cardinality at least |G|δ. Then every H-free graph is 3

δ -narrow.

By combining 5.7 and 5.8 we obtain:

5.9 There exists α ≥ 1 such that every forcer-free graph is α-narrow.

We deduce:

5.10 Let α′ ≥ 1 such that every forcer-free graph is α′-narrow. Let α ≥ α′, and let G be a graph
such that every proper induced subgraph is α-narrow. Let g be a good function on G. Let Z ⊆ V (G)
with |Z| > 1, such that G[Z] is connected and guarded. Let d be the maximum of gα(NG(v)∩Z) over
all v ∈ Z. Then gα(Z) ≤ max(2d, d1−α

′/α).
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Proof. If G[Z] is not anticonnected, there are two vertices u, v ∈ Z such that N(u) ∪ N(v) = Z,
and so gα(Z) ≤ 2d as required. So we may assume that G[Z] is anticonnected. Let us list all subsets
X of Z with the properties that X is a homogeneous set of G[Z], and X 6= Z, and X is maximal
with these two properties; let these subsets be W1, . . . ,Wk say. Thus W1 ∪ · · · ∪Wk = Z, because
|Z| ≥ 2 and so each singleton subset of Z is a subset of one of W1, . . . ,Wk.

We claim that W1, . . . ,Wk are pairwise disjoint. Suppose that W1 ∩ W2 6= ∅ say. Choose
w1 ∈ W1 \W2 and w2 ∈ W2 \W1. If w1, w2 are nonadjacent, then since W2 is a homogeneous set,
w1 has no neighbours in W2, and so, since W1 is homogeneous, each vertex of W2 has no neighbour
in W1; and so G[W1 ∪W2] is not connected. If w1, w2 are adjacent, then similarly G[W1 ∪W2] is
not anticonnected. Since G[Z] is both connected and anticonnected, it follows that W1 ∪W2 6= Z.
But W1 ∪W2 is a homogeneous set of G[Z], contrary to the maximality of W1. This proves that
W1, . . . ,Wk form a partition of Z, and so k > 1.

Choose wi ∈ Wi for 1 ≤ i ≤ k, and let G′ be the graph induced on {w1, . . . , wk}. From the
hypothesis, G′ is forcer-free, and so α′-narrow. Let t = α/α′ and r = 2−1/α

′
; thus rα

′
= 1/2, and

rα = 2−t. For 1 ≤ i ≤ k, let Pi be a perfect subgraph of G[Wi] with g(Pi) maximum, and let
p(wi) = g(Pi). We claim that p is a good function on G′. Let J ′ be a perfect induced subgraph of
G′, and let J be the subgraph of G induced on the union of the sets Pi (i ∈ V (J ′)). By Lovász’
substitution lemma [13], it follows that J is perfect, and so g(J) ≤ 1; but g(J) = p(J ′). This proves
that p is a good function on G′, and so pα

′
(G′) ≤ 1. For 1 ≤ i ≤ k, G[Wi] is α-narrow (because

k > 1). Since g(v)/p(wi) (v ∈Wi) is good on G[Wi], it follows that gα(Wi) ≤ p(wi)α. But also, since
G[Z] is connected, and Wi 6= Z, there is a vertex v ∈ Z \Wi complete to Wi; and so gα(Wi) ≤ d by
hypothesis. Thus

gα(Wi) ≤ min(p(wi)
α, d) ≤ p(wi)α

′
d1−1/t.

Hence
gα(Z) =

∑
1≤i≤k

gα(Wi) ≤ d1−1/t
∑

1≤i≤k
p(wi)

α′
= d1−1/tpα

′
(G′) ≤ d1−1/t.

This proves 5.10.

We deduce 1.6, which we restate:

5.11 There exists α ≥ 1 such that for every α-critical pair (G, f), there is a cap in G.

Proof. Let ε = 1/6, and choose δ > 0 satisfying 5.5. From 5.7, there exists α′ ≥ 1 such that
every forcer-free graph is α′-narrow. Let α ≥ 2, such that εδ2α/α

′
> 1. We claim that α satisfies

the theorem. Suppose not; then there is an α-critical pair (G, f), such that G is cap-free. By 5.6,
there is a subset X ⊆ V (G) and a good function g on G[X] with g(v) ≤ f(v) for each v ∈ X, such
that gα(X) ≥ δfα(G) > δ and gα(NG(v) ∩ X) < εgα(X) for every vertex v ∈ X. Let gα(X) = λ;
then δ < λ ≤ fα(G). Let H = G[X], and define w(v) = gα(v)/λ for each v ∈ X. Then (H,w) is a
weighted graph.

(1) (H,w) is ε-coherent.

By 5.1, for each v ∈ V (H), g(v) ≤ f(v) < 1 − 4−1/α ≤ 1/2, and so w(v) < 2−α/λ ≤ ε (since
λ ≥ δ and α′ ≥ 1). Also, for each vertex v ∈ V (H),

λw(NH(v)) = gα(NG(v) ∩X) < εgα(X) = ελ,
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and so w(NH(v)) < ε. Third, by 5.2, if A,B ⊆ V (H) are disjoint and anticomplete, then not
both w(A), w(B) ≥ ε, since ε > 2−α/λ (because λ ≥ δ). Consequently (H,w) is ε-coherent. This
proves (1).

By 4.3, and since ε = 1/6, there exists Z ⊆ V (H) with |Z| > 1, such that H[Z] is connected
and guarded, and w(Z) > 1 − 4ε. Let d be the maximum of λw(NG(v) ∩ Z) over all v ∈ Z. Hence
d ≤ ελ. By 5.10,

λw(Z) ≤ max(2d, d1−α
′/α) ≤ max(2ελ, (ελ)1−α

′/α).

But 2ελ ≥ (ελ)1−α
′/α, since 2(ελ)α

′/α ≥ 1 (since λ ≥ δ). Thus λw(Z) ≤ 2ελ, and so w(Z) ≤ 2ε,
contradicting that w(Z) > 1− 4ε and ε = 1/6. This proves 5.11.
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