Induced subgraphs of graphs with large chromatic number. IV. Consecutive holes

Alex Scott
Oxford University, Oxford, UK
Paul Seymour ${ }^{1}$
Princeton University, Princeton, NJ 08544, USA

January 17, 2015; revised October 9, 2017

[^0]
Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least four. We prove that for all $\nu>0$, every triangle-free graph with sufficiently large chromatic number contains holes of ν consecutive lengths.

1 Introduction

All graphs in this paper are finite and without loops or parallel edges. A hole in a graph is an induced subgraph which is a cycle of length at least four, and a hole is odd if its length is odd. A triangle in G is a three-vertex complete subgraph, and a graph is triangle-free if it has no triangle. In this paper we are concerned with the chromatic number of triangle-free graphs that have no holes of certain specified lengths.

What can we say about the hole lengths in triangle-free graphs with large chromatic number? There are three well-known conjectures of Gyárfás [6], the third implying the first two, as follows:
1.1 Conjecture: For all k, ℓ, there exists n such that if G has no clique of cardinality k and has chromatic number at least n, then

- G has an odd hole;
- G has a hole of length at least ℓ; and
- G has an odd hole of length at least ℓ.

The first has been proved in [7], and the second in [4]. We have recently also proved the third, in joint work with Maria Chudnovsky and Sophie Spirkl [5], but that paper has not yet been accepted for publication. In this paper we consider the case $k=3$, and prove a much stronger result in this case.

All that was previously known about the lengths of holes in a triangle-free graph G with (sufficiently) large chromatic number seems to be:

- G contains an even hole [1] (this is true even if we allow triangles, provided the clique number is bounded);
- G contains an odd hole of length at least seven [3]; and
- G contains a hole of length a multiple of three [2].

The main result of this paper is:
1.2 For all integers $\nu>0$ there exists n such that if G is triangle-free with chromatic number at least n, then for some t, G has a hole of length $t+i$ for $1 \leq i \leq \nu$.

This implies the conjectures of 1.1 when $k=3$, and the three results mentioned above. We imagine the corresponding result is true for graphs with bounded clique number rather than just triangle-free graphs, but so far we have made no progress in proving this.

What we are proving is a considerable strengthening of 1.1 when $k=3$, and we expect it would be of interest if we show how to prove 1.1 (when $k=3$) alone. This is much easier, and we will indicate which parts of the proof can be skipped to get this weaker result. (For brevity let us call this the "long odd holes conjecture".)

Let us mention in passing a much more general question, which seems to be interesting even though we cannot answer it. Let us say a set F of integers is constricting if there exists n such that every triangle-free graph with chromatic number at least n contains a hole with length in F. Which
sets are constricting? Certainly every constricting set is infinite, because there are graphs with arbitrarily large chromatic number and arbitrarily large girth. On the other hand, a consequence of our main result is, that if F contains at least one out of every ν consecutive integers, then F is constricting.

The only source of counterexamples that we know is the following. Let G_{1} be the null graph; for each $i>1$, let G_{i} be a triangle-free graph with girth at least $2^{\left|V\left(G_{i-1}\right)\right|}$ and chromatic number at least i; and let F be the set of all cycle lengths that do not occur in any G_{i}. Then F is not constricting, and yet F has upper density 1 . This shows that not every infinite set is constricting, not even sets with upper density one. Lower density seems to be closer to the truth. As far as we know, a set is constricting if and only if it has strictly positive lower density, but we are far from proving the implication in either direction.

2 Chromatic number and radius

The proof of 1.2 breaks into three cases, depending on the chromatic number of the subgraphs within a fixed distance of a vertex (even if we just want to prove the long odd holes conjecture). Let us describe this more exactly. If $X \subseteq V(G)$, the subgraph of G induced on X is denoted by $G[X]$, and we often write $\chi(X)$ for $\chi(G[X])$. The distance (denoted by $d_{G}(u, v)$ or $d(u, v)$) between two vertices u, v of G is the length of a shortest path between u, v, or ∞ if there is no such path. If $v \in V(G)$ and $\rho \geq 0$ is an integer, $N_{G}^{\rho}(v)$ or $N^{\rho}(v)$ denotes the set of all vertices with distance exactly ρ from v, and $N_{G}^{\rho}[v]$ or $N^{\rho}[v]$ denotes the set of all vertices with distance at most ρ from v. We denote the maximum over all $v \in V(G)$ of $\chi\left(N_{G}^{\rho}[v]\right)$ by $\chi^{\rho}(G)$ (setting $\chi^{\rho}(G)=0$ for the null graph).

Since we are only concerned with triangle-free graphs, it follows that $\chi^{1}(G) \leq 2$, but there may be vertices v such that $\chi\left(N_{G}^{2}[v]\right)$ is large, and such vertices cause difficulties. If we can find an induced subgraph H with large chromatic number such that $\chi^{2}(H)$ is bounded, then we might as well replace G by H. If we cannot find such a subgraph, then we will prove that for all $\ell \geq 5, G$ has a hole of length ℓ (if its chromatic number is large enough in terms of ℓ).

Next we assume $\chi^{2}(G)$ is bounded. If there is an induced subgraph H with large chromatic number and with $\chi^{3}(H)$ bounded, we might as well pass to that; and if not, we prove that G contains holes of any fixed length (except very short ones) if $\chi(G)$ is large enough. And the same for $\chi^{\rho}(G)$ for all bounded ρ.

Finally, we assume $\chi^{\rho}(G)$ is bounded, for some appropriately large ρ. (We need ρ to be exponentially large in terms of ν.) In that case we prove that G contains holes of ν consecutive lengths (but the smallest of them might be arbitrarily large).

Let us say this more precisely. Let $\nu \geq 0$; a hole ν-interval in a graph G is a sequence C_{1}, \ldots, C_{ν} of holes in G, such that $\left|E\left(C_{i+1}\right)\right|=\left|E\left(C_{i}\right)\right|+1$ for $1 \leq i<\nu$ (thus, ν holes with consecutive lengths). Let \mathbb{N} denote the set of nonnegative integers, and let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function. For $\rho \geq 1$, let us say a graph G is (ρ, ϕ)-controlled if $\chi(H) \leq \phi\left(\chi^{\rho}(H)\right)$ for every induced subgraph H of G. Roughly, this says that in every induced subgraph H of G with large chromatic number, there is a vertex v such that $H\left[N_{H}^{\rho}[v]\right]$ has large chromatic number.

We will show the following three statements:
2.1 Let $\nu \geq 2$; then there exist $\rho>0$ and a non-decreasing function ϕ with the following property. If G is a triangle-free graph then either G is (ρ, ϕ)-controlled or G admits a hole ν-interval.
2.2 Let $\rho>2$ and $\ell \geq 4 \rho(\rho+2)$ be integers. For every non-decreasing function $\phi: \mathbb{N} \rightarrow \mathbb{N}$ there is a non-decreasing function ϕ^{\prime} with the following property. Let G be a (ρ, ϕ)-controlled triangle-free graph. Then either G is $\left(2, \phi^{\prime}\right)$-controlled or G has an ℓ-hole.
2.3 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function; then for all $\ell \geq 5$ there exists n such that every $(2, \phi)$-controlled triangle-free graph with chromatic number more than n has an ℓ-hole.
2.3 might be true when $\ell=4$ as well, but we have not been able to decide this. 2.3 is easy for $\ell \leq 6$, and in another paper [3] (with Maria Chudnovsky) we proved it for $\ell=7$, expecting that to be the easiest of the open cases. By a happy coincidence, $\ell=7$ turns out to be the one case that is not handled by the proof method of the present paper. Let us see that these three together imply 1.2.

Proof of 1.2, assuming 2.1, 2.2, 2.3. Let $\nu \geq 2$, and let ρ and ϕ be as in 2.1. Let $\ell_{0}=4 \rho(\rho+2)$, and for $i=1, \ldots, \nu-1$ let $\ell_{i}=\ell_{0}+i$. By 2.2 , for each $i \in\{0, \ldots, \nu-1\}$ there is a function ϕ^{\prime} as in 2.2 (with ℓ replaced by ℓ_{i}); define $\phi_{i}=\phi^{\prime}$. Thus $\phi_{0}, \ldots, \phi_{\nu-1}$ are all non-decreasing functions; define

$$
\psi(\kappa)=\max \left(\phi_{0}(\kappa), \ldots, \phi_{\nu-1}(\kappa)\right)
$$

for $\kappa \geq 0$. Thus ψ is non-decreasing. Now by 2.3 (with ϕ replaced by ψ) for $\ell=5, \ldots, \nu+4$ there exists n as in 2.3; let $n_{\ell}=n$. Let $n=\max \left(n_{5}, \ldots, n_{\nu+4}\right)$.

We claim that every triangle-free graph with chromatic number more than n admits a hole ν interval. For let G be such a graph, and suppose it admits no hole ν-interval. From the choice of ρ and ϕ, it follows that G is (ρ, ϕ)-controlled. For some $i \in\{0, \ldots, \nu-1\}, G$ has no ℓ_{i}-hole; so from the choice of ϕ_{i}, G is $\left(2, \phi_{i}\right)$-controlled and hence $(2, \psi)$-controlled. For some $\ell \in\{5, \ldots, \nu+4\}, G$ has no ℓ-hole; and so from the choice of $n_{\ell}, \chi(G) \leq n_{\ell} \leq n$. This proves 1.2.

The three statements 2.1, 2.2, 2.3 will be proved in separate parts of the paper, and in reverse order. By far the most difficult is 2.1. If all we want is the long odd holes conjecture, then we still need most of the two easier results 2.2 and 2.3 , but we could skip most of the proof of 2.1 ; indeed, we need nothing after 8.1.

3 Radius 2

In this section we prove 2.3. We begin with the following:
3.1 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, and let G be triangle-free and $(2, \phi)$-controlled.

- If $\chi(G)>\phi(2)$ then G has a 5 -hole.
- If $\chi(G)>\phi(3)$ then G has a 6-hole.
- If $\chi(G)>\phi(\phi(\phi(2 \phi(2)+2)+1)+1)$ then G has a 7 -hole.

Proof. The first statement was proved in [3], but we repeat the proof because it is easy. Suppose that $\chi(G)>\phi(2)$, and let v be a vertex such that $\chi(G) \leq \phi\left(\chi\left(N^{2}[v]\right)\right)$. It follows that $\chi\left(N^{2}[v]\right)>2$, and so there are two adjacent vertices $x, y \in N^{2}(v)$. Since G is triangle-free, x, y, v, together with two vertices of $N^{1}(v)$ adjacent to x, y respectively, form a 5 -hole.

For the second statement, let $\chi(G)>\phi(3)$, and choose a vertex v such that $\chi(G) \leq \phi\left(\chi\left(N^{2}[v]\right)\right)$. It follows that $\chi\left(N^{2}[v]\right)>3$, and so $\chi\left(N^{2}(v)\right)>2$; and hence there is an odd hole P in $G\left[N^{2}(v)\right]$. Let P have vertices $p_{1}-p_{2}-\cdots-p_{n}-p_{1}$ in order, where $n \geq 5$. Choose $S \subseteq N^{1}(v)$ minimal such that every vertex in $V(P)$ has a neighbour in S. Let $s_{i} \in S$ be adjacent to p_{i} for $1 \leq i \leq n$. (Possibly s_{1}, \ldots, s_{5} are not all distinct.) For each $s \in S$, some vertex in P is adjacent to s and to no other vertex in S, from the minimality of S. Consequently we may assume that p_{3} is adjacent to $s_{3} \in S$ and has no other neighbour in S. If p_{1} is nonadjacent to s_{3} then $v-s_{1}-p_{1}-p_{2}-p_{3}-s_{3}-v$ is a 6 -hole as required, so we may assume that p_{1} is adjacent to s_{3}, and similarly p_{5} is adjacent to s_{3}. Hence p_{1}, p_{5} are nonadjacent since G is triangle-free, and so $n \geq 7$. If s_{2}, s_{4} are nonadjacent to p_{4}, p_{2} respectively then $v-s_{2}-p_{2}-p_{3}-p_{4}-s_{4}-v$ is a 6 -hole, so we may assume that one of s_{2}, s_{4} is adjacent both of p_{2}, p_{4}, say s_{2}. But then $s_{3}-p_{1}-p_{2}-s_{2}-p_{4}-p_{5}-s_{3}$ is a 6 -hole.

The third statement is proved in [3]. This proves 3.1.

Let $X \subseteq V(G)$. A t-trellis on X in G is a subgraph H of G with the following properties.

- $X \subseteq V(H)$, and $V(H) \backslash X$ consists of the disjoint union of four sets $\left\{a_{1}, \ldots, a_{t}\right\},\left\{b_{1}, \ldots, b_{t}\right\}$, $\left\{a_{x, j}: x \in X, 1 \leq j \leq t\right\}$ and $\left\{b_{x, j}: x \in X, 1 \leq j \leq t\right\}$.
- The edges of H are as follows:
$-a_{j} b_{j}$ for $1 \leq j \leq t ;$
$-x a_{x, j}$ and $x b_{x, j}$ for $x \in X$ and $1 \leq j \leq t$; and
$-a_{x, j} a_{j}$ and $b_{x, j} b_{j}$ for $x \in X$ and $1 \leq j \leq t$.
(Thus, to construct H we start with $K_{s, 2 t}$, with bipartition X and Y say, where $|X|=s$; subdivide all its edges; and then add a matching pairing up the vertices in Y.)
- For all distinct $u, v \in V(H)$, if u, v are adjacent in G and nonadjacent in H then there exist $x, x^{\prime} \in X$ and $j \in\{1, \ldots, t\}$ such that $\{u, v\}=\left\{a_{x, j}, b_{x^{\prime}, j}\right\}$. (In particular, X is stable.)

We also need a modification of this. An extended t-trellis on X in G is a subgraph H of G with the following properties.

- $X \subseteq V(H)$, and $V(H) \backslash X$ consists of the disjoint union of four sets $\left\{a_{0}, a_{1},, \ldots, a_{t}\right\},\left\{b_{0}, b_{1}, \ldots, b_{t}\right\}$, $\left\{a_{x, j}: x \in X, 0 \leq j \leq t\right\}$ and $\left\{b_{x, j}: x \in X, 0 \leq j \leq t\right\}$, together with one more vertex c_{0}.
- The edges of H are as follows:
$-a_{0} c_{0}$ and $c_{0} b_{0} ;$
$-a_{j} b_{j}$ for $1 \leq j \leq t ;$
$-x a_{x, j}$ and $x b_{x, j}$ for $x \in X$ and $0 \leq j \leq t$; and
$-a_{x, j} a_{j}$ and $b_{x, j} b_{j}$ for $x \in X$ and $0 \leq j \leq t$.
- For all distinct $u, v \in V(H)$, if u, v are adjacent in G and nonadjacent in H then there exist $x, x^{\prime} \in X$ and $j \in\{0, \ldots, t\}$ such that $\{u, v\}=\left\{a_{x, j}, b_{x^{\prime}, j}\right\}$.

We need both these definitions; we will show that certain graphs contain extended trellises, and to do so we first show they contain trellises, and then find the extension.
3.2 For every integer $\ell \geq 8$, there exists $t \geq 0$ with the following property. Let G be a graph, let $X \subseteq V(G)$ with $|X|=t$, and let H be an extended t-trellis on X. Then G has an ℓ-hole.

Proof. By Ramsey's theorem, there exists $t \geq 0$ such that if \mathcal{A} is the set of all triples $\left(i, i^{\prime}, j\right)$ with $1 \leq i<i^{\prime} \leq t$ and $1 \leq j \leq t$, and we partition \mathcal{A} into two subsets $\mathcal{A}_{1}, \mathcal{A}_{2}$, then there exist $R, S \subseteq\{1, \ldots, n\}$ with $|R|,|S| \geq \ell$, such that the triples $\left(i, i^{\prime}, j\right)$ with $i<i^{\prime} \in R$ and $j \in S$ either all belong to \mathcal{A}_{1} or all belong to \mathcal{A}_{2}. We claim that n satisfies the theorem.

For let G, X, H be as in the theorem. Let $X=\left\{x_{1}, \ldots, x_{t}\right\}$, and let us write $a_{i, j}, b_{i, j}$ for $a_{x_{i}, j}$ and $b_{x_{i}, j}$ respectively. Let \mathcal{A}_{1} be the set of all triples $\left(i, i^{\prime}, j\right)$ with $1 \leq i<i^{\prime} \leq t$ and $1 \leq j \leq t$ such that $a_{i, j}, b_{i^{\prime}, j}$ are nonadjacent, and let \mathcal{A}_{2} be the set of all such triples such that $a_{i, j}, b_{i^{\prime}, j}$ are adjacent. From the choice of t, we may assume that for some $k \in\{1,2\},\left(i, i^{\prime}, j\right) \in \mathcal{A}_{k}$ for all i, i^{\prime}, j with $1 \leq i<i^{\prime} \leq \ell$ and $1 \leq j \leq \ell$.

For $1 \leq i<\ell$ let P_{i} be the path $x_{i}-a_{i, i+1^{-}} a_{i+1^{-}} a_{i+1, i+1^{-}-x_{i+1}}$. If $k=1$ let Q_{i} be the path $x_{i}-a_{i, i+1^{-}} a_{i+1^{-}}-b_{i+1^{-}}-b_{i+1, i+1^{-}}-x_{i+1}$, and if $k=2$ let Q_{i} be the path $x_{i-} a_{i, i+1^{-}}-b_{i+1, i+1^{-}-x_{i+1}}$. Thus P_{i} has length four, and Q_{i} has length five if $k=1$, and three if $k=2$.

Suppose that ℓ is a multiple of four, say $\ell=4 p$. Then the union of P_{1}, \ldots, P_{p-1} and the path $x_{1}-a_{1,1}-a_{1}-a_{p, 1}-x_{p}$ is a hole of length ℓ as required. Thus we may assume that ℓ is not a multiple of four.

If $k=2$, choose integers $p, q \geq 0$ such that $\ell=4 p+3 q$ and $q>0$; then the union of $Q_{i}(1 \leq i<q)$, $P_{i}(q \leq i<p+q)$, and $x_{1}-a_{1,1^{-}}-b_{p+q, 1}-x_{p+q}$ is the desired hole.

Thus we may assume that $k=1$. If $\ell \neq 11$, then, since 4 does not divide ℓ, ℓ can be expressed as $4 p+5 q$ where p, q are nonnegative integers and $q>0$; and the union of $Q_{i}(1 \leq i<q)$, $P_{i}(q \leq i<p+q)$, and $x_{1}-a_{1,1}-a_{1}-b_{1}-b_{p+q, 1}-x_{p+q}$ is the desired hole.

Finally we may assume that $\ell=11$. If $a_{1,0}, b_{2,0}$ are nonadjacent then the union of Q_{1} and $x_{1}-a_{1,0}-a_{0}-c_{0}-b_{0}-b_{2,0}-x_{2}$ is the desired hole; while if $a_{1,0}, b_{2,0}$ are adjacent then the union of P_{2}, $x_{1}-a_{1,0}-b_{2,0}-x_{2}$, and $x_{1}-a_{1,3}-a_{3}-a_{3,3}-x_{3}$ is the desired hole. This proves 3.2.

We remark that we only used the "extended" part of the trellis in 3.2 for the case $\ell=11$. To prove the result just for $\ell \geq 8$ and $\ell \neq 11$, the same proof would work for a (non-extended) trellis.

We also need another definition. Let $x \in V(G)$, let N be some set of neighbours of x, and let $C \subseteq V(G)$ be disjoint from $N \cup\{x\}$, such that every vertex in C is nonadjacent to x and has a neighbour in N. In this situation we call (x, N) a cover of C in G. For $C, X \subseteq V(G)$, a multicover of C in G is a family $\left(N_{x}: x \in X\right)$ such that

- for each $x \in X,\left(x, N_{x}\right)$ is a cover of C;
- for all distinct $x, x^{\prime} \in X, x^{\prime}$ has no neighbour in $\{x\} \cup N_{x}$ (and in particular all the sets $\{x\} \cup N_{x}$ are pairwise disjoint).

If in addition we have

- for all distinct $x, x^{\prime} \in X$, no vertex in $N_{x^{\prime}}$ has a neighbour in N_{x},
we call $\left(N_{x}: x \in X\right)$ an independent multicover.
3.3 For all $t, \kappa \geq 0$, there exist $\tau, m \geq 0$ with the following property. Let G be a triangle-free graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. Let $C \subseteq V(G)$ with chromatic number more than τ; and let $\left(N_{x}: x \in X\right)$ be a multicover of C in G with $|X| \geq m$. Then there exist $Y \subseteq X$ with $|Y|=t$ and an extended t-trellis on Y in G.

Proof. For $0 \leq s \leq t$ let $m_{s}^{\prime}=5 t \cdot 5^{t-s}$, and let $m^{\prime}=m_{0}^{\prime}$. For $0 \leq s \leq t$ let $m_{s}=5 t\left(20 m^{\prime}\right)^{t-s}$, and let $m=m_{0}$. Let $\tau_{t}^{\prime}=\kappa+1$, and for $s=t-1, \ldots, 0$ let

$$
\tau_{s}^{\prime}=5\left(m_{s}^{\prime}+1\right)+5^{m_{s}^{\prime}} \tau_{s+1}^{\prime}
$$

Let $\tau^{\prime}=\tau_{0}$. Let $\tau_{t}=\kappa+1$, and for $s=t-1, \ldots, 0$ let

$$
\tau_{s}=5\left(m_{s}+1\right)+m_{s}^{m^{\prime}+1} 5^{m_{s}} \tau^{\prime}+2^{m_{s}} 5^{m_{s}} \tau_{s+1}
$$

Let $\tau=\tau_{0}$. We claim that τ, m satisfy the theorem. Let G be a triangle-free graph such that every induced subgraph of G with chromatic number more than κ has a 5 -hole. We shall prove the following, which implies the theorem:
(1) Let $C \subseteq V(G)$ and let $\left(N_{x}: x \in X\right)$ be a multicover of C, such that either

- $\chi(C)>\tau$ and $|X|=m$, or
- $\chi(C)>\tau^{\prime}$ and $|X|=m^{\prime}$ and $\left(N_{x}: x \in X\right)$ is independent.

Then there exist $Y \subseteq X$ with $|Y|=t$ and an extended t-trellis on Y in G.
If $X^{\prime} \subseteq X$, and $N_{x}^{\prime} \subseteq N_{x}$ for each $x \in X^{\prime}$, and $C^{\prime} \subseteq C$, and every vertex in C^{\prime} has a neighbour in N_{x}^{\prime} for each $x \in X^{\prime}$, then $\left(N_{x}^{\prime}: x \in X^{\prime}\right)$ is a multicover of C^{\prime}, and we say it is contained in $\left(N_{x}: x \in X\right)$. Consequently, to prove (1), we may assume that:

(2) Either

(Case 1) $\chi(C)>\tau$ and $|X| \geq m$ and there do not exist $C^{\prime} \subseteq C$ with $\chi\left(C^{\prime}\right)>\tau^{\prime}$ and $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right| \geq m^{\prime}$ and an independent multicover $\left(N_{x}^{\prime}: x \in X^{\prime}\right)$ of C^{\prime} contained in $\left(N_{x}: x \in X\right)$, or
(Case 2) $\chi(C)>\tau^{\prime}$ and $|X| \geq m^{\prime}$ and $\left(N_{x}: x \in X\right)$ is independent.
Now we construct a t-trellis on a subset of X as follows (later we will enlarge it to an extended trellis). We begin with the 0-trellis on X, H_{0} say, and let $C_{0}=C$. Inductively, suppose that $s<t$, and we have constructed an s-trellis H_{s} on a subset $X_{s} \subseteq X$, with vertex set the disjoint union of $X_{s},\left\{a_{1}, \ldots, a_{s}\right\},\left\{b_{1}, \ldots, b_{s}\right\},\left\{a_{x, j}: x \in X_{s}, 1 \leq j \leq s\right\}$ and $\left\{b_{x, j}: x \in X_{s}, 1 \leq j \leq s\right\}$ in the usual notation, and a subset $C_{s} \subseteq C$, satisfying:

- $a_{j}, b_{j} \in C$ for $1 \leq j \leq s ;$
- $a_{x, j}, b_{x, j} \in N_{x}$ for each $x \in X_{s}$ and $1 \leq j \leq s$;
- in case $1,\left|X_{s}\right|=m_{s}$, and in case $2,\left|X_{s}\right|=m_{s}^{\prime}$;
- no vertex in $V\left(H_{s}\right)$ has a neighbour in C_{s};
- for each $v \in C_{s}$ and each $x \in X_{s}$, there is a neighbour of v in N_{x} that has no neighbour in $V\left(H_{s}\right)$ except x; and
- in case $1, \chi\left(C_{s}\right)>\tau_{s}$, and in case $2, \chi\left(C_{s}\right)>\tau_{s}^{\prime}$.

For each $x \in X_{s}$, let N_{x}^{\prime} be the set of vertices in N_{x} with no neighbour in $V\left(H_{s}\right)$ except x. Then ($N_{x}^{\prime}: x \in X_{s}$) is a multicover of C_{s}, and is independent in case 2 .

Since $\chi\left(C_{s}\right)>\tau_{s}^{\prime} \geq \kappa$, there is a 5 -hole P in $G\left[C_{s}\right]$, with vertices $p_{1}-p_{2} \cdots-p_{5}-p_{1}$ say, in order. For each $x \in X_{s}$, and $1 \leq i \leq 5$, let $D_{i}(x)$ be the set of vertices in N_{x}^{\prime} adjacent to p_{i}, and select $d_{i}(x) \in D_{i}(x)$. Thus the union of $V(P)$ and $\left\{d_{i}(x): 1 \leq i \leq 5, x \in X_{s}\right\}$ has cardinality at most $5\left(\left|X_{s}\right|+1\right)$, and since G is triangle-free, there exists $C_{s}^{1} \subseteq C_{s}$ with $\chi\left(C_{s}^{1}\right) \geq \chi\left(C_{s}\right)-5\left(\left|X_{s}\right|+1\right)$, such that no vertex in C_{s}^{1} is adjacent to any of the vertices $d_{i}(x)$ or to any vertex in P (and in particular, $\left.C_{s}^{1} \cap V(P)=\emptyset\right)$.

For each $x \in X_{s}$, no vertex is in more than two of $D_{1}(x), \ldots, D_{5}(x)$, because G is triangle-free. For each $v \in C_{s}^{1}$ and $x \in X_{s}$, since v has a neighbour in N_{x}^{\prime}, it follows that there exist adjacent vertices p_{k}, p_{k+1} of P such that some neighbour of v belongs to $N_{x}^{\prime} \backslash\left(D_{k}(x) \cup D_{k+1}(x)\right)$ (reading subscripts modulo 5); choose some such k and define $c_{x}(v)=k$. There are $5^{\left|X_{s}\right|}$ possibilities for the X_{s}-tuple $\left(c_{x}(v): x \in X_{s}\right)$, and so there exists $C_{s}^{2} \subseteq C_{s}^{1}$ with $\chi\left(C_{s}^{2}\right) \geq \chi\left(C_{s}^{1}\right) / 5^{\left|X_{s}\right|}$, such that $c_{x}(v)=c_{x}\left(v^{\prime}\right)$ for all $x \in X_{s}$ and all $v, v^{\prime} \in C_{s}^{2}$. Moreover, since there are only five possibilities for $c_{x}(v)$, there exists $k \in\{1, \ldots, 5\}$ and $Y_{s} \subseteq X_{s}$ with $\left|Y_{s}\right|=\left|X_{s}\right| / 5$ such that $c_{x}(v)=k$ for all $x \in Y_{s}$ and $v \in C_{s}^{2}$. Thus $\chi\left(C_{s}^{2}\right) \geq\left(\chi\left(C_{s}\right)-5\left(\left|X_{s}\right|+1\right)\right) / 5^{\left|X_{s}\right|}$, and so in case 1

$$
\chi\left(C_{s}^{2}\right)>\left(\tau_{s}-5\left(m_{s}+1\right)\right) / 5^{m_{s}}=m_{s}^{m^{\prime}+1} \tau^{\prime}+2^{m_{s}} \tau_{s+1},
$$

and in case 2

$$
\chi\left(C_{s}^{2}\right)>\left(\tau_{s}^{\prime}-5\left(m_{s}^{\prime}+1\right)\right) / 5^{m_{s}^{\prime}}=\tau_{s+1}^{\prime} .
$$

Let $a_{s+1}=p_{k}$ and $b_{s+1}=p_{k+1}$, and for each $x \in Y_{s}$ let $a_{x, s+1}=d_{k}(x)$ and $b_{x, s+1}=d_{k+1}(x)$. To complete the inductive definition it remains to define X_{s+1} and C_{s+1}.

In case 2 we define $X_{s+1}=Y_{s}$ and $C_{s+1}=C_{s}^{2}$; so we assume we are in case 1 . The issue that we need to handle in this case is that for $v \in C_{s+1}$ and $x \in Y_{s}$, while we know that v has a neighbour $u \in N_{x}^{\prime}$ that has no neighbours in $V\left(H_{s}\right)$ except x, it may be that every such neighbour u is adjacent to one of $a_{x^{\prime}, s+1}, b_{x^{\prime}, s+1}$ for some $x^{\prime} \in Y_{s}$. We shall show that if this happens for "many" choices of v then we can move into case 2 .

Let Z be the union of the sets $\left\{a_{x, s+1}, b_{x, s+1}\right\}$ over all $x \in Y_{s}$; then $|Z|=2 m_{s} / 5 \leq m_{s}$. Let $z \in Z$, and let $Y \subseteq Y_{s}$ with $|Y|=m^{\prime}$. Let $D_{z, Y}$ be the set of vertices $v \in C_{s}^{2}$ such that for each $x \in Y$ there exists a vertex in N_{x}^{\prime} adjacent to both v, z. For each $x \in Y$, let $N_{x}^{\prime \prime}$ denote the set of vertices in N_{x}^{\prime} adjacent to z; then ($N_{x}^{\prime \prime}: x \in Y$) is a multicover of $D_{z, Y}$; and it is independent, since G is triangle-free. Since we are in case 1, it follows that $\chi\left(D_{z, Y}\right) \leq \tau^{\prime}$. Now let D_{z} denote the set of vertices $v \in C_{s}^{2}$ such that for at least m^{\prime} values of $x \in Y_{s}$ there exists a vertex in N_{x}^{\prime} adjacent to both v, z; that is, D_{z} is the union of the sets $D_{z, Y}$ over all choices of Y. Since there are only at most $m_{s}^{m^{\prime}}$ choices of Y, it follows that $\chi\left(D_{z}\right) \leq m_{s}^{m^{\prime}} \tau^{\prime}$. Thus the union of the sets D_{z} over all $z \in Z$ has chromatic number at most $m_{s}^{m^{\prime}+1} \tau^{\prime}$, and so there exists $C_{s}^{3} \subseteq C_{s}^{2}$ with

$$
\chi\left(C_{s}^{3}\right) \geq \chi\left(C_{2}^{2}\right)-m_{s}^{m^{\prime}+1} \tau^{\prime}>2^{m_{s}} \tau_{s+1},
$$

such that for every $v \in C_{s}^{3}$, and every $z \in Z$, there are fewer than m^{\prime} values of $x \in Y_{s}$ such that some vertex in N_{x}^{\prime} is adjacent to both v, z.

Fix $v \in C_{s}^{3}$ for the moment, and make a digraph J_{v} with vertex set Y_{s} in which for distinct $x, y \in Y_{s}, y$ is adjacent from x in J_{v} if some vertex in N_{y}^{\prime} is adjacent to v and to one of $a_{x, s+1}, b_{x, s+1}$. We have just seen that for all v, every vertex of the digraph J_{v} has indegree in J at most $2 m^{\prime}-2$. It follows that in J_{v}, some vertex has indegree plus outdegree at most $4 m^{\prime}-4$, and the same holds for every nonnull subdigraph of J_{v}; and so the undirected graph underlying J_{v} can be $4 m^{\prime}$-coloured. Hence there is a subset U_{v} say of Y_{s} of cardinality $\left|Y_{s}\right| /\left(4 m^{\prime}\right)=m_{s+1}$ such that no edge of J_{v} has both ends in U_{v}. There are only $2^{\left|Y_{s}\right|}$ possibilities for U_{v}, and so there exists $C_{s}^{4} \subseteq C_{s}^{3}$ with

$$
\chi\left(C_{s}^{4}\right) \geq \chi\left(C_{s}^{3}\right) / 2^{\left|Y_{s}\right|}>\tau_{s+1}
$$

such that the sets U_{v} are equal for all $v \in C_{s}^{4}$. Let X_{s+1} be this common value of U_{v}, and let $C_{s+1}=C_{s}^{4}$. This completes the definition of C_{s+1} in case 1 .

In both cases, the pairs $a_{j}, b_{j}(1 \leq j \leq s+1)$ and the vertices $a_{x, j}, b_{x, j}\left(x \in X_{s+1}, 1 \leq j \leq s+1\right)$ define an $(s+1)$-trellis H_{s+1} on X_{s+1}, and no vertex in H_{s+1} has a neighbour in C_{s+1}, and for all $v \in C_{s+1}$ and $x \in X_{s+1}$, some neighbour of v in N_{x} has no neighbour in $V\left(H_{s+1}\right)$ except x. This completes the inductive definition of H_{s} and C_{s} for $0 \leq s \leq t$.

Thus there is a t-trellis on the set X_{t}, where $\left|X_{t}\right|=5 t$; next we need to convert it to an extended t-trellis on a subset of X_{t} of cardinality t. With the same notation as before (with $s=t$), since $\chi\left(C_{t}\right)>\tau_{t}^{\prime}>\kappa$, there is a 5 -hole P in $G\left[C_{t}\right]$, with vertices $p_{1}-p_{2}-\cdots-p_{5}-p_{1}$ say, in order. Let $x \in X_{t}$; a handle for x means a 3 -vertex path $a-c-b$ of P such that some vertex in N_{x}^{\prime} is adjacent to a, and not to b, c, and some vertex in N_{x}^{\prime} is adjacent to b and not to a, c. We claim that there is a handle for x. Choose $S \subseteq N_{x}^{\prime}$ minimal such that every vertex in $V(P)$ has a neighbour in S. For $1 \leq i \leq 5$, choose $s_{i} \in S$ adjacent to p_{i}. Suppose first that some $s_{1} \in S$ has only one neighbour in $V(P)$, say p_{1}. Then no other vertex in S is adjacent to p_{1}, from the minimality of S, and since s_{3} is nonadjacent to p_{2} it follows that $p_{1}-p_{2}-p_{3}$ is a handle for x. We may assume therefore that each s_{i} has at least two (and hence exactly two) neighbours in $V(P)$. Let s_{1} be adjacent to p_{1}, p_{4} say. From the minimality of S, one of p_{1}, p_{4} has no more neighbours in S, say p_{1}. But then again $p_{1}-p_{2}-p_{3}$ is a handle for x. This proves the claim that for each $x \in X_{t}$ there is a handle for x. Since there are only five possibilities for handles, there exists $X_{0} \subseteq X_{t}$ with $\left|X_{0}\right|=\left|X_{t}\right| / 5=t$ such that every vertex in X_{0} has the same handle, say $a_{0}-c_{0}-b_{0}$. For each $x \in X_{0}$ let $a_{x, 0} \in N_{x}^{\prime}$ be adjacent to a_{0} and not to b_{0}, c_{0}, and let $b_{x, 0}$ be adjacent to b_{0} and not to a_{0}, c_{0}. Then the pairs $a_{j}, b_{j}(1 \leq j \leq t)$, the path $a_{0}-c_{0}-b_{0}$, and the vertices $a_{x, j}, b_{x, j}\left(x \in X_{s+1}, 0 \leq j \leq s+1\right)$ define an extended t-trellis on X_{0}. This proves 3.3.

From 3.2 and 3.3 we deduce:
3.4 For all $\kappa \geq 0$ and $\ell \geq 8$, there exist $\tau, m \geq 0$ with the following property. Let G be a triangle-free graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. Let $C \subseteq V(G)$ with chromatic number more than τ; and let $\left(N_{x}: x \in X\right)$ be a multicover of C with $|X| \geq m$. Then G has an ℓ-hole.

Let G be a graph and let $t \geq 0$ be an integer. A t-cable in G consists of:

- t distinct vertices x_{1}, \ldots, x_{t}, pairwise nonadjacent;
- for $1 \leq i \leq t$, a subset N_{i} of the set of neighbours of x_{i}, such that the sets N_{1}, \ldots, N_{t} are pairwise disjoint;
- for $1 \leq i \leq t$, disjoint subsets $Z_{i, i+1}, \ldots, Z_{i, t}, Y_{i}$ of N_{i}; and
- a subset $C \subseteq V(G)$ disjoint from $\left\{x_{1}, \ldots, x_{t}\right\} \cup N_{1} \cup \cdots \cup N_{t}$
satisfying the following conditions:
- for $1 \leq i \leq t$, every vertex in C has a neighbour in Y_{i}, and has no neighbours in $Z_{i, j}$ for $i+1 \leq j \leq t$, and is nonadjacent to $x_{i} ;$
- for $i<j \leq t, x_{i}$ has no neighbours in N_{j};
- for $i<j<k \leq t$, there are no edges between $Z_{i, j}$ and N_{k};
- for all $i<j \leq t$, either
$-Z_{i, j}=\emptyset$ and x_{j} has no neighbours in Y_{i}, or
- every vertex in N_{j} has a neighbour in $Z_{i, j}$ and has no neighbours in Y_{i}.

We call C the base of the t-cable, and say $\chi(C)$ is the chromatic number of the t-cable. Given a t cable in this notation, let $I \subseteq\{1, \ldots, t\}$; then (after appropriate renumbering) the vertices $x_{i}(i \in I)$, the sets $N_{i}(i \in I)$, the sets $Z_{i, j}(i, j \in I)$, the sets $Y_{i}(i \in I)$ and C define an $|I|$-cable; we call this a subcable.

Thus there are two types of pair (i, j) with $i<j \leq t$, and we aim next to apply Ramsey's theorem on these pairs to get a large subcable where all the pairs have the same type. Two special kinds of t-cables are therefore of interest: type $1 t$-cables, where for all $i<j \leq t, Z_{i, j}=\emptyset$ and x_{j} has no neighbours in Y_{i}, and type $2 t$-cables, where for all $i<j \leq t$, every vertex in N_{j} has a neighbour in $Z_{i, j}$ and has no neighbours in Y_{i}. A type $1 t$-cable with base C is just a multicover of C in disguise, so from 3.4 we have:
3.5 For all $\kappa \geq 0$ and $\ell \geq 8$, there exist $\tau, m \geq 0$ with the following property. Let G be a triangle-free graph such that every induced subgraph of G with chromatic number more than κ has a 5 -hole. If G admits a type 1 m-cable with chromatic number more than τ, then G has an ℓ-hole.

We need a similar theorem for type 2 cables.
3.6 Let G be a triangle-free graph. For all $\ell \geq 5$, if G admits a type $2(\ell-3)$-cable with nonnull base, then G has an ℓ-hole.

Proof. Let $t=\ell-3$ (and so $t \geq 2$) and assume G contains a type $2 t$-cable with nonnull base. In the usual notation, let $v \in C$. Since every vertex in C has a neighbour in Y_{t}, there exists $y_{t} \in Y_{t}$ adjacent to v. Since every vertex in N_{t} has a neighbour in $Z_{t-1, t}$, there exists $z_{t-1} \in Z_{t-1, t}$ adjacent to y_{t}. Similarly for $i=t-2, t-3, \ldots, 1$ there exists $z_{i} \in Z_{i, i+1}$ such that z_{i+1} is adjacent to z_{i}. Thus $z_{1}-z_{2}-\cdots-z_{t-1}-y_{t}$ is a path. It is induced; for if $i, j \leq t$ and $j \geq i+2$ then z_{i} has no neighbour in N_{j}, since $z_{i} \in Z_{i, i+1}$. Since x_{1} is adjacent to z_{1} and to none of $z_{2}, \ldots, z_{t-1}, y_{t}$ (because $t \geq 2$ and x_{1} has no neighbours in N_{j} for $j>1$), and v is adjacent to y_{t} and nonadjacent to $x_{1}, z_{1}, \ldots, z_{t-1}$, it follows that

$$
x_{1}-z_{1}-z_{2}-\cdots-z_{t-1}-y_{t}-v
$$

is an induced path. Now v has a neighbour $y_{1} \in Y_{1}$; and we claim that y_{1} is nonadjacent to $z_{1}, \ldots, z_{t-1}, y_{t}$. Certainly y_{1}, z_{1} are nonadjacent, since they are both adjacent to x_{1} and G is trianglefree. For $2 \leq j \leq t-1, y_{1}$ is nonadjacent to z_{j} since every vertex in N_{j} has no neighbours in Y_{1}. For the same reason, y_{1} is nonadjacent to y_{t}, since $t>1$. Consequently

$$
x_{1}-z_{1}-z_{2}-\cdots-z_{t-1}-y_{t}-v-y_{1}-x_{1}
$$

is a hole of length $t+3=\ell$. This proves 3.6.
We deduce:
3.7 For all $\kappa \geq 0$ and $\ell \geq 8$, there exist $t, \tau \geq 0$ with the following property. Let G be a triangle-free graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. If G admits a t-cable with chromatic number more than τ then G has an ℓ-hole.

Proof. Let m, τ be as in 3.5. Let $n=\ell-3$. Let t equal the Ramsey number $R(m, n)$; that is, the smallest integer t such for for every partition of the edges of K_{t} into two sets, there is either a K_{m} subgraph with all edges in the first set, or a K_{n} with all edges in the second. We claim that t, τ satisfy the theorem.

For let G admit a t-cable with base C and chromatic number more than τ. By Ramsey's theorem either

- there exists $I \subseteq\{1, \ldots, t\}$ with $|I|=m$ such that for all $i, j \in I$ with $i<j$, every vertex in N_{j} has a neighbour in $Z_{i, j}$ and has no neighbours in Y_{i}, or
- there exists $I \subseteq\{1, \ldots, t\}$ with $|I|=n$ such that for all $i, j \in I$ with $i<j, Z_{i, j}=\emptyset$ and x_{j} has no neighbours in Y_{i}.

Thus either there is an m-subcable of type 1 , or an n-subcable of type 2 , with base C in each case. In the first case the result follows from 3.5, and in the second from 3.6. This proves 3.7.
3.8 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, and let $t, \tau \geq 0$. Then there exists τ^{\prime} with the following property. Let G be a triangle-free graph such that G is $(2, \phi)$-controlled and $\chi(G)>\tau^{\prime}$. Then G admits a t-cable with chromatic number more than τ.

Proof. Let $\tau_{t}=\tau$, and for $s=t-1, \ldots, 0$ let $\tau_{s}=\phi\left(2^{s} \tau_{s+1}+1\right)$; and let $\tau^{\prime}=\tau_{0}$. We claim that τ^{\prime} satisfies the theorem. For let G be a triangle-free graph such that G is $(2, \phi)$-controlled and $\chi(G)>\tau^{\prime}$. Consequently G admits a 0 -cable with chromatic number more than τ_{0}. We claim that for $s=1, \ldots, t, G$ admits an s-cable with chromatic number more than τ_{s}. For suppose the result holds for some $s<t$; we prove it also holds for $s+1$. In the usual notation, since $\chi(C)>\tau_{s}=\phi\left(2^{s} \tau_{s+1}+1\right)$, there exists $x_{s+1} \in C$ such that $\chi\left(N_{G[C]}^{2}\left[x_{s+1}\right]\right)>2^{s} \tau_{s+1}+1$, and hence $\chi\left(N_{G[C]}^{2}\left(x_{s+1}\right)\right)>2^{s} \tau_{s+1}$. Let $D=N_{G[C]}^{2}\left(x_{s+1}\right)$. For each $v \in D$, and $1 \leq i \leq s$, if some neighbour of v in Y_{i} is nonadjacent to x_{s+1} define $c_{i}(v)=1$, and otherwise define $c_{i}(v)=2$. There are only 2^{s} possibilities for the s-tuple $\left(c_{1}(v), \ldots, c_{s}(v)\right)$, and so there exists $C^{\prime} \subseteq D$ with $\chi\left(C^{\prime}\right) \geq \chi(D) / 2^{s}>\tau_{s+1}$ and an s-tuple $\left(c_{1}, \ldots, c_{s}\right)$ such that $c_{i}(v)=c_{i}$ for all $v \in C^{\prime}$ and $1 \leq i \leq s$.

Let $N_{s+1}=Y_{s+1}^{\prime}$ be the set of neighbours of x_{s+1} in C. For $1 \leq i \leq s$ define $Z_{i, s+1}, Y_{i}^{\prime} \subseteq Y_{i}$ as follows:

- if $c_{i}=1$, let Y_{i}^{\prime} be the set of vertices in Y_{i} nonadjacent to x_{s+1}, and let $Z_{i, s+1}=\emptyset$
- if $c_{i}=2$, let Y_{i}^{\prime} be the set of vertices in Y_{i} adjacent to x_{s+1}, and let $Z_{i, s+1}$ be the set of vertices in Y_{i} nonadjacent to x_{s+1}.

Note that in the second case, no vertex in $Z_{i, s+1}$ has a neighbour in C^{\prime}, and no vertex in Y_{i}^{\prime} has a neighbour in Y_{s+1}^{\prime}. It follows that x_{1}, \ldots, x_{s+1}, the sets N_{1}, \ldots, N_{s+1}, the sets $Z_{i, j}$ for $1 \leq i<j \leq$ $s+1$, the sets Y_{i}^{\prime} for $1 \leq i \leq s+1$, and C^{\prime}, define an $(s+1)$-cable with chromatic number more than τ_{s+1}.

This proves that G admits a t-cable with chromatic number more than $\tau_{t}=\tau$, and so proves 3.8.

Let us put these pieces together to prove 2.3 , which we restate:
3.9 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function; then for all $\ell \geq 5$ there exists n such that every $(2, \phi)$-controlled triangle-free graph with chromatic number more than n has an ℓ-hole.

Proof. If $l \leq 7$ the result follows from 3.1, so we may assume that $l \geq 8$. Let t, τ be as in 3.7 , taking $\kappa=\phi(2)$; and let τ^{\prime} be as in 3.8. Let $n=\tau^{\prime}$. We claim that n satisfies the theorem. For let G be a $(2, \phi)$-controlled triangle-free graph with chromatic number more than n. By 3.1, every induced subgraph of G with chromatic number more than κ has a 5 -hole. By $3.8, G$ admits a t-cable with chromatic number more than τ; and by $3.7, G$ has an ℓ-hole. This proves 3.9.

The second conjecture of 1.1 is proved in [4], but if we just wanted to prove it for triangle-free graphs, rather than the full strength of 1.2, the remainder of the paper is not needed; let us explain why. The following is proved in [3] (the proof just takes a few lines):
3.10 Let $\ell \geq 3$ and $\kappa \geq 1$ be integers, and let G be a graph with no hole of length more than ℓ, such that $\chi(N(v)), \chi\left(N^{2}(v)\right) \leq \kappa$ for every vertex v. Then $\chi(G) \leq(2 \ell-2) \kappa$.

For each $\kappa \geq 0$, let $\phi(\kappa)=(2 \ell-2) \kappa$. It follows from 3.10 that if G has no hole of length more than ℓ, and H is an induced subgraph of G with $\chi(H)>\phi(\kappa)$, then $\chi\left(N_{H}^{2}[v]\right)>\kappa$ for some vertex v of H; that is, G is $(2, \phi)$-controlled. Then from 3.9 it follows that $\chi(G)$ is bounded, which proves the second assertion of 1.1 for triangle-free graphs. Indeed, we don't even need all of 3.9; instead of an ℓ-hole, we are content with a hole of length at least ℓ, and with this modification 3.9 is easier to prove. For instance, we could get by with trellises instead of extended trellises, since holes of length 11 are of no significance, and indeed we could just use 1-subdivisions of a large $K_{n, n}$ instead of trellises, since we are not picky about the exact length of the hole.

Trellises give us a long odd hole, but this does not prove the third conjecture of 1.1, since we needed to use 3.10. If our goal is the long odd holes conjecture, there will be parts of the proof we can skip, but not yet.

4 Bounded radius

In this section we prove 2.2 , which we restate, somewhat reformulated:
4.1 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, and let $\rho>2$ and $\ell \geq 4 \rho(\rho+2)$ be integers. There is a non-decreasing function $\phi^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$, with the following property. Let G be a triangle-free graph with no ℓ-hole such that G is (ρ, ϕ)-controlled. Then G is $\left(2, \phi^{\prime}\right)$-controlled.
4.1 follows immediately from the following.
4.2 Let $\phi: \mathbb{N} \rightarrow \mathbb{N}$ be non-decreasing, and let $\rho>2$ and $\ell \geq 4 \rho(\rho+2)$ be integers. There is a non-decreasing function $\phi^{\prime}: \mathbb{N} \rightarrow \mathbb{N}$, with the following property. Let G be a triangle-free graph with no ℓ-hole such that G is (ρ, ϕ)-controlled. Then G is $\left(\rho-1, \phi^{\prime}\right)$-controlled.

Proof. Let $\ell=2 \alpha \rho+\beta$, where $\alpha \geq 0$ is an integer and $0 \leq \beta<2 \rho$. Since $\ell \geq 4 \rho(\rho+2)$, it follows that $\alpha \geq 2 \rho+4$. For $\kappa \in \mathbb{N}$, define $\mu_{\alpha+2}(\kappa)=\phi(0)+1$, and for $h=\alpha+2, \ldots, 2$ define

$$
\mu_{h-1}(\kappa)=(\rho+1) \kappa+\phi\left(\phi\left(\mu_{h}(\kappa)+\kappa\right)+(2 \rho+2) \kappa\right)
$$

and $\mu_{0}(\kappa)=\phi\left(\mu_{1}(\kappa)+\kappa\right)$. Define $\phi^{\prime}(\kappa)=\mu_{0}(\kappa)$. We see that ϕ^{\prime} is non-decreasing.
Let G be a triangle-free graph with no ℓ-hole such that G is (ρ, ϕ)-controlled. We will show that G is $\left(\rho-1, \phi^{\prime}\right)$-controlled. Let $\kappa \in \mathbb{N}$, such that $\chi^{\rho-1}(G) \leq \kappa$; we must show that $\chi(G) \leq \mu_{0}(\kappa)$. (If so, then the same argument applied to every induced subgraph H of G and every κ shows that G is ($\left.\rho-1, \phi^{\prime}\right)$-controlled.) Suppose not.

Let $v \in V(G)$. Let T be a path $v=t_{0}-t_{1} \cdots-t_{\rho}$, such that $d_{G}\left(v, t_{\rho}\right)=\rho$. For the moment fix such a path T. Let us say a path P is a (v, T)-extension if it has the following properties, where P has vertices $p_{0}-p_{1}-\cdots-p_{n}$ in order:

- P is induced, and $p_{0}=t \rho$, and $n \geq \rho ;$
- $d_{G}\left(v, p_{i}\right)=\rho$ for $0 \leq i \leq n$;
- $d_{G}\left(t_{i}, p_{j}\right) \geq \rho$ for $0 \leq i \leq \rho$ and $\rho \leq j \leq n$; and
- $d_{G}\left(p_{i}, p_{n}\right) \geq \rho$ for $0 \leq i \leq n-\rho$.
(1) If P as above is a (v, T)-extension, then $P \cup T$ is an induced path of length $\rho+n$.

Because T is induced since $d_{G}\left(v, t_{\rho}\right)=\rho$, and P is induced by hypothesis. Moreover $V(P) \cap V(T)=$ $\left\{t_{\rho}\right\}$ since $d_{G}\left(v, t_{i}\right)<\rho$ for $0 \leq i<\rho$, and $d_{G}\left(v, p_{i}\right)=\rho$ for $0 \leq i \leq n$. Suppose that some t_{i} is adjacent to some p_{j}, where $i<\rho$ and $j>0$. Since $d_{G}\left(v, p_{j}\right)=\rho$ and $d_{G}\left(v, t_{i}\right)=i<\rho$, it follows that $i=\rho-1$. Now $j \neq 1$ since G is triangle-free, so $j \geq 2$. Since $d_{G}\left(t_{\rho-1}, p_{k}\right) \geq \rho$ for $\rho \leq k \leq n$, it follows that $j<\rho$. Then the path $t_{\rho-1-} p_{j}-p_{j+1} \cdots-p_{\rho}$ has length $\rho-j+1<\rho$, a contradiction since $d_{G}\left(t_{\rho-1}, p_{\rho}\right) \geq \rho$. This proves (1).

Let P, P^{\prime} both be (v, T)-extensions. We say they are parallel if the last three vertices of P are the same as the last three of P^{\prime}, and in particular the last vertices of P, P^{\prime} are equal.
(2) Let P_{1}, \ldots, P_{k} be (v, T)-extensions, pairwise parallel. Then there exists $s \in\{2 \rho, 2 \rho-2,2 \rho-4\}$ such that G has holes of lengths $\left|E\left(P_{1}\right)\right|+s, \ldots,\left|E\left(P_{k}\right)\right|+s$.

Let z be the common last vertex of P_{1}, \ldots, P_{k}, and choose a path Z between v, z of length ρ. Since $T \cup Z$ is connected, there is an induced path Q between t_{ρ}, z with $V(Q) \subseteq V(T \cup Z)$. Let us first examine the length of Q. Let Z have vertices $z_{0}-z_{1} \cdots-z_{\rho}$, where $z_{0}=v$ and $z_{\rho}=z$. If no vertex in $\left\{z_{1}, \ldots, z_{\rho}\right\}$ has a neighbour in $\left\{t_{1}, \ldots, t_{\rho}\right\}$, then the two sets are disjoint, and $Q=T \cup Z$ and hence has length 2ρ. We assume then that some $z_{j} \in\left\{z_{1}, \ldots, z_{\rho}\right\}$ is adjacent to some $t_{i} \in\left\{t_{1}, \ldots, t_{\rho}\right\}$. Since $d_{G}\left(t_{i}, z\right) \geq \rho$ from the definition of a (v, T)-extension, the path $t_{i}-z_{j}-z_{j+1}-\cdots-z_{\rho}$ has length at least ρ, and so $j=1$. Since z_{j} is adjacent to $t_{0}=v$, and G is triangle-free, it follows that $i \geq 2$. Since $d_{G}\left(v, t_{\rho}\right)=\rho$, it follows that $i=2$. So there is only one such edge, and in particular the two sets $\left\{z_{1}, \ldots, z_{\rho}\right\},\left\{t_{1}, \ldots, t_{\rho-1}, t_{\rho}\right\}$ are disjoint, and Q has length $2 \rho-2$. We have proved then that Q has length 2ρ or $2 \rho-2$.

Now let P be one of P_{1}, \ldots, P_{k}, and let P have vertices $p_{0}-p_{1} \cdots-p_{n}$ in order. Thus $p_{0}=t_{\rho}$ and $p_{n}=z_{\rho}=z$. Both P, Q are induced, and their interiors are disjoint, since every vertex x of the interior of Q belongs to one of $V(Z) \backslash\{z\}, V(T) \backslash\left\{t_{\rho}\right\}$ and hence satisfies $d_{G}(v, x)<\rho$, while $d_{G}(v, x)=\rho$ for every vertex x of the interior of P. Suppose then that some vertex x in the interior of Q has a neighbour $p_{j} \in\left\{p_{1}, \ldots, p_{n-1}\right\}$. From (1) it follows that $x \notin V(T)$, and so $x \in\left\{z_{1}, \ldots, z_{\rho-1}\right\}$. Since $d_{G}\left(v, p_{j}\right)=\rho$, it follows that $d_{G}(v, x)=\rho-1$, and so $x=z_{\rho-1}$. Consequently $d_{G}\left(p_{j}, p_{n}\right) \leq 2$, and so $j>n-\rho$ from the final condition in the definition of a (v, T)-extension. Since $d_{G}\left(p_{n-\rho}, p_{n}\right) \geq \rho$ from the same condition, it follows that the path $p_{n-\rho-} p_{n-\rho+1-} \cdots-p_{j-}-z_{\rho-1}-p_{n}$ has length at least ρ, and so $j \geq n-2$. Now $j \neq n-1$ since G is triangle-free, and $j \neq n$ by its definition, so $j=n-2$.

Consequently there is at most one edge joining the interiors of P, Q, and any such edge is between $z_{\rho-1}$ and p_{n-2}. Let $s=|E(Q)|$ if there is no such edge, and $|E(Q)|-2$ if there is such an edge. In either case G has a hole of length $|E(P)|+s$. Moreover, since the final three vertices of P_{1}, \ldots, P_{k} are the same, it follows that G has a hole of length $\left|E\left(P_{i}\right)\right|+s$ for $1 \leq i \leq k$. This proves (2).

Since $\chi(G)>\mu_{0}(\kappa)$, there exists z_{0} such that $\chi\left(N_{G}^{\rho}\left[z_{0}\right]\right)>\mu_{1}(\kappa)+\kappa$, and hence $\chi\left(N_{G}^{\rho}\left(z_{0}\right)\right)>$ $\mu_{1}(\kappa)$. Let $H_{0}=G$ and let T_{0} be the one-vertex subgraph with vertex z_{0}. For $1 \leq h \leq \alpha+2$, we define $y_{h}, y_{h}^{\prime}, S_{h}, z_{h}, T_{h}, M_{h}, H_{h}$ as follows. Assume we have defined H_{h-1}, T_{h-1} and z_{h-1} such that $\chi\left(N_{H_{h-1}}^{\rho}\left(z_{h-1}\right)\right)>\mu_{h-1}(\kappa)$ and T_{h-1} is an induced path of G with at most $\rho+1$ vertices and with one end z_{h-1}. Let M_{h} be the subgraph induced on the set of all vertices v of H_{h-1} that satisfy

- $d_{H_{h-1}}\left(z_{h-1}, v\right)=\rho$; and
- $d_{G}(x, v) \geq \rho$ for every vertex x of T_{h-1}.

Since $\chi\left(N^{\rho-1}[x]\right) \leq \kappa$ for each vertex x of T_{h-1}, and $\chi\left(N_{H_{h-1}}^{\rho}\left(z_{h-1}\right)\right)>\mu_{h-1}(\kappa)$, it follows that

$$
\chi\left(M_{h}\right)>\mu_{h-1}(\kappa)-(\rho+1) \kappa=\phi\left(\phi\left(\mu_{h}(\kappa)+\kappa\right)+(2 \rho+2) \kappa\right) .
$$

Since G is (ρ, ϕ)-controlled, there is a vertex $y_{h} \in M_{h}$ such that

$$
\chi\left(N_{M_{h}}^{\rho}\left[y_{h}\right]\right)>\phi\left(\mu_{h}(\kappa)+\kappa\right)+(2 \rho+2) \kappa
$$

and hence with

$$
\chi\left(N_{M_{h}}^{\rho}\left(y_{h}\right)\right)>\phi\left(\mu_{h}(\kappa)+\kappa\right)+(2 \rho+1) \kappa
$$

Let S_{h} be a path of H_{h-1} of length ρ between z_{h-1} and y_{h}. Let y_{h}^{\prime} be adjacent to y_{h} in M_{h}. Let S_{h}^{\prime} be a path of H_{h-1} of length ρ between z_{h-1} and y_{h}^{\prime}. Let H_{h} be the subgraph induced on the set of all vertices v of M_{h} with the following properties:

- $d_{M_{h}}\left(y_{h}, v\right)=\rho$; and
- $d_{G}(x, v) \geq \rho$ for every $x \in V\left(S_{h}\right) \cup V\left(S_{h}^{\prime}\right)$.

Since $\left.\chi\left(N_{M_{h}}^{\rho}\left(y_{h}\right)\right)\right)>\phi\left(\mu_{h}(\kappa)+\kappa\right)+(2 \rho+1) \kappa$, and $\chi\left(N^{\rho-1}[x]\right) \leq \kappa$ for each vertex x of $V\left(S_{h} \cup S_{h}^{\prime}\right)$, and there are at most $2 \rho+1$ such vertices x, it follows that $\chi\left(H_{h}\right)>\phi\left(\mu_{h}(\kappa)+\kappa\right)$. Consequently there exists $z_{h} \in H_{h}$ such that $\chi\left(N_{H_{h}}^{\rho}\left[z_{h}\right]\right)>\mu_{h}(\kappa)+\kappa$, and hence with $\chi\left(N_{H_{h}}^{\rho}\left(z_{h}\right)\right)>\mu_{h}(\kappa)$. Let T_{h} be a path of M_{h} of length ρ between y_{h}, z_{h}. This completes the inductive definition of $y_{h}, y_{h}^{\prime}, S_{h}, z_{h}, T_{h}, M_{h}, H_{h}$ for $1 \leq h \leq \alpha+2$.
(3) For $1 \leq h \leq \alpha+2, S_{h} \cup T_{h}$ is an induced path L_{h} between z_{h-1}, z_{h} of length 2ρ. Also there is an induced path L_{h}^{\prime} between z_{h-1}, z_{h} with $V\left(L_{h}^{\prime}\right) \subseteq V\left(S_{h}^{\prime} \cup T_{h}\right)$ of length $2 \rho-1$ or $2 \rho+1$.

The first claim follows from (1). For the second, the graph formed by the union of S_{h}^{\prime}, T_{h} and the edge $y_{h} y_{h}^{\prime}$ is a path, but it might not be induced. If it is induced, it has length $2 \rho+1$ as required; and since S_{h}^{\prime} and T_{h} are both induced paths, we may assume that some vertex a of S_{h}^{\prime} is adjacent to some vertex b of T_{h}, where $(a, b) \neq\left(y_{h}^{\prime}, y_{h}\right)$. Since every vertex of S_{h}^{\prime} has distance at most $\rho-2$ from z_{h-1} except the last two, and every vertex of T_{h} has distance at least ρ from z_{h-1}, it follows that a is either y_{h}^{\prime} or its neighbour in S_{h}^{\prime}. Now $d_{G}\left(y_{h}^{\prime}, z_{h}\right)=\rho$, so y_{h}^{\prime} has no neighbour in T_{h} except for y_{h} (because y_{h}^{\prime} is not adjacent to the second vertex of T_{h} since G is triangle-free). Thus a is the penultimate vertex of S_{h}^{\prime}. Consequently $b \neq y_{h}$ since G is triangle-free, and since $d_{G}\left(a, z_{h}\right) \geq \rho, a$ has no neighbour in T_{h} different from the second vertex of T_{h}. We deduce that b is indeed the second vertex of T_{h}; and so there is an induced path between z_{h-1}, z_{h} of length $2 \rho-1$ with vertex set a subset of $V\left(S_{h}^{\prime} \cup T_{h}\right)$. This proves (3).

Let there be q values of $h \in\{4, \ldots, \alpha+2\}$ such that L_{h}^{\prime} has length $2 \rho-1$. For $4 \leq h \leq \alpha+2$, choose $L_{h}^{\prime \prime} \in\left\{L_{h}, L_{h}^{\prime}\right\}$; then $L_{4}^{\prime \prime} \cup L_{5}^{\prime \prime} \cup \cdots \cup L_{\alpha+2}^{\prime \prime}$ is an induced path between z_{3} and $z_{\alpha+2}$, and it is a $\left(y_{3}, T_{3}\right)$-extension, for every choice of $L_{4}^{\prime \prime}, L_{5}^{\prime \prime}, \ldots, L_{\alpha+2}^{\prime \prime}$. Moreover, all these $\left(y_{3}, T_{3}\right)$-extensions are parallel (since the last ρ vertices of $L_{\alpha+2}, L_{\alpha+2}^{\prime}$ are the same). These paths have lengths every integer between $2 \rho(\alpha-1)-q$ and $(2 \rho+1)(\alpha-1)-q$, that is, every integer between $\ell-\beta-q-2 \rho$ and $\ell+\alpha-\beta-q-2 \rho-1$. From (2), G has holes of every length between $\ell-\beta-q$ and $\ell+\alpha-\beta-q-5$. Since G has no l-hole, it follows that $\ell+\alpha-\beta-q-5<\ell$, that is, $\alpha \leq \beta+q+4$. But by concatenating each of the paths $L_{4}^{\prime \prime} \cup L_{5}^{\prime \prime} \cup \cdots \cup L_{\alpha+2}^{\prime \prime}$ with L_{3}, we obtain a $\left(y_{2}, T_{2}\right)$-extension of length exactly 2ρ more; and so there are $\left(y_{2}, T_{2}\right)$-extensions of all lengths between $\ell-\beta-q$ and $\ell+\alpha-\beta-q-1$. Hence by (2) there are holes in G of all lengths between $\ell-\beta-q+2 \rho$ and $\ell+\alpha-\beta-q+2 \rho-5$. Since $\beta+q \geq \alpha-4 \geq 2 \rho$, it follows that $\ell-\beta-q+2 \rho \leq \ell$. Consequently $\ell+\alpha-\beta-q+2 \rho-5<\ell$, since there is no ℓ-hole, that is, $\alpha+2 \rho \leq \beta+q+4$. Similarly, by concatenating all these $\left(y_{2}, T_{2}\right)$-extensions with L_{2}, we obtain (y_{1}, T_{1})-extensions of all lengths between $\ell-\beta-q+2 \rho$ and $\ell+\alpha-\beta-q+2 \rho-1$. By (2), there are holes of all lengths between $\ell-\beta-q+4 \rho$ and $\ell+\alpha-\beta-q+4 \rho-5$. But $\ell-\beta-q+4 \rho \leq \ell$, since $\beta+q \geq \alpha+2 \rho-4 \geq 4 \rho$, and yet

$$
\ell+\alpha-\beta-q+4 \rho-5=\ell+2 \rho-3+(\alpha-1-q)+(2 \rho-1-\beta) \geq \ell
$$

since $q \leq \alpha-1$ and $\beta \leq 2 \rho-1$. Consequently there is an ℓ-hole, a contradiction. This proves 4.2 and hence 4.1.

5 Showers

Now we come to the third and most complicated part of the proof: proving 2.1. This will occupy the remainder of the paper.

What can we prove about hole lengths if $\chi^{\rho}(G)$ is bounded for some large fixed ρ ? In 4.1 we were able to guarantee the presence of a hole of any desired length (almost), but in these new circumstances that becomes impossible; for any fixed $\rho \geq 0$ and $\ell \geq 2$, there are graphs with arbitrarily large χ, and girth more than $\max (\ell, \rho / 2)$; which implies that $\chi^{\rho}(G)$ is at most 2 , and yet they have no ℓ-hole. We will show the following, a reformulation of 2.1.
5.1 Let $\nu \geq 2$ and $\kappa \geq 0$ be integers, and let G be a triangle-free graph such that $\chi^{\rho}(G) \leq \kappa$, where $\rho=3^{\nu+2}+4$. If G admits no hole ν-interval then $\chi(G)$ is bounded.

The proof will need a number of steps and preliminary lemmas. We begin with some definitions. A levelling in G is a sequence of pairwise disjoint subsets $\left(L_{0}, L_{1}, \ldots, L_{k}\right)$ of $V(G)$ such that

- $\left|L_{0}\right|=1 ;$
- for $1 \leq i \leq k$ every vertex in L_{i} has a neighbour in L_{i-1};
- for $0 \leq i<j \leq k$, if $j>i+1$ then no vertex in L_{j} has a neighbour in L_{i}.

We call L_{k} the base of the levelling. The chromatic number of a levelling is the chromatic number of its base. We observe first:
5.2 For any integer $\tau \geq 0$, if $\chi(G)>2 \tau$ then G admits a levelling with chromatic number more than τ.

Proof. Choose a component C of G with chromatic number equal to that of G, and let z be a vertex in that component. For each $i \geq 0$, let L_{i} be the set of vertices v of C such that $d_{C}(z, v)=i$, and choose j such that $L_{0} \cup \cdots \cup L_{j}=V(C)$. If $\chi\left(L_{k}\right) \leq \tau$ for all k with $0 \leq k \leq j$, then $\chi(C) \leq 2 \tau$ (take two disjoint sets of colours both of size τ, and use them for the even and odd levels alternately), which is impossible; so there exists k such that $\chi\left(L_{k}\right)>\tau$. Then $\left(L_{0}, \ldots, L_{k}\right)$ is the desired levelling. This proves 5.2.

If $\left(L_{0}, \ldots, L_{k}\right)$ is a levelling in G, we call the unique vertex in L_{0} the head of the levelling, and we call $L_{0} \cup \cdots \cup L_{k}$ the vertex set of the levelling. A path P of $G[V]$ (where V is the vertex set of the levelling) with ends u, v is monotone (with respect to the given levelling) if there exist h, j with $0 \leq h, j \leq k$, such that $u \in L_{h}, v \in L_{j}$, and P has length $|j-h|$; and therefore P has exactly one vertex in L_{i} for each i between h, j, and has no other vertices.

There is a notational problem with levellings: that while it seems most natural to number levels starting with the head as level zero, most of the action will be at or close to the base L_{k}, and we
constantly have to refer to the parameter k. To obviate this, let us say a vertex v of the vertex set has height $k-i$ if $v \in L_{i}$ where $0 \leq i \leq k$. Thus vertices in L_{k} have height zero.

We have shown that, if we start with a triangle-free graph of large χ, we can choose a levelling in it with base of large χ; and by replacing the base by one of its components with maximum chromatic number, we could choose the levelling such that the base is connected. This, however, is awkward to maintain, and not really necessary. All we really need is that the base has large χ, and is included in a connected set which has no further neighbours in higher parts of the levelling. So we will modify the definition of a levelling to allow this. In addition, our main strategy to find a hole ν-sequence is to fix some vertex in the base, which is joined to the head by a "recirculator" (a private path whose internal vertices have no neighbours elsewhere in the levelling), and find holes of many different lengths all containing this recirculator; that is, we want to find many paths of different lengths between the head of the shower and some fixed vertex of the base. Those two considerations motivate the following definition.

A shower in G is a sequence $\left(L_{0}, L_{1}, \ldots, L_{k}, s\right)$ where $L_{0}, L_{1}, \ldots, L_{k}$ are pairwise disjoint subsets of $V(G)$ and $s \in L_{k}$, such that

- $\left|L_{0}\right|=1 ;$
- for $1 \leq i<k$ every vertex in L_{i} has a neighbour in L_{i-1};
- for $0 \leq i<j \leq k$, if $j>i+1$ then no vertex in L_{j} has a neighbour in L_{i}; and
- $G\left[L_{k}\right]$ is connected.
(We suggest that the reader picture a shower with L_{0} on top and L_{k} at the bottom, in order to make sense of the terminology to come.) The differences between a shower and a levelling are that, first, not every vertex in L_{k} needs to have a neighbour in L_{k-1} (and indeed, there may be no edges between L_{k-1} and L_{k}, although such showers will not be of interest); second, that $G\left[L_{k}\right]$ is connected; and third, the distinguished vertex s. We call L_{0}, \ldots, L_{k} the levels of the shower, and s the drain of the shower. We define "head", "base", "vertex set", "monotone", "height" for showers just as for levellings. The set of vertices in L_{k} with a neighbour in L_{k-1} is called the floor of the shower. (It is the floor, and subsets of the floor, whose chromatic number will concern us.) If $\mathcal{S}=\left(L_{0}, L_{1}, \ldots, L_{k}, s\right)$ is a shower, and $u v$ is an edge with $u \in L_{i}$ and $v \in L_{i+1}$ for some i with $0 \leq i<k$, we say that u is an \mathcal{S}-parent or just parent of v, and v an \mathcal{S}-child or just child of u.

If $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ is a shower, with head z_{0} and vertex set V, a recirculator for \mathcal{S} is an induced path R with ends s, z_{0} such that no internal vertex of R belongs to V and no internal vertex of R has any neighbours in $V \backslash\left\{s, z_{0}\right\}$. The distance $d_{G}\left(P_{1}, P_{2}\right)$ between two nonnull subgraphs P_{1}, P_{2} of G is the minimum of $d_{G}\left(v_{1}, v_{2}\right)$ over all $v_{1} \in V\left(P_{1}\right)$ and $v_{2} \in V\left(P_{2}\right)$.
5.3 Let $\tau, \kappa \geq 0$ be integers. Let G be a graph such that $\chi^{8}(G) \leq \kappa$. Let $\left(L_{0}, \ldots, L_{k}\right)$ be a levelling in G, where $\chi\left(L_{k}\right)>22 \tau+2 \kappa$. Then there is a shower $\left(V_{0}, \ldots, V_{n}, s\right)$ in G, with floor of chromatic number more than τ, and with a recirculator, such that

- $V_{n} \subseteq L_{k}$, and $V_{n-1} \subseteq L_{k-1}$; and
- $V_{0}, \ldots, V_{n-2} \subseteq L_{0} \cup \cdots \cup L_{k-2}$.

Proof. By replacing L_{k} by the vertex set of a component of $G\left[L_{k}\right]$ with maximum chromatic number, we may assume that $G\left[L_{k}\right]$ is connected. A stake is a monotone path with an end in L_{k}. Since $\chi\left(L_{k}\right)>\kappa$, there exist two vertices of L_{k} with distance more than 8 . It follows that there are two stakes both of length three with distance at least three. Consequently we can choose two stakes P, Q with the following properties:

- P, Q have the same length $k-h \geq 3 ;$
- $d_{G}(P, Q) \geq 3 ;$
- subject to these two conditions, h is minimum.

Let P have vertices $p_{k}-p_{k-1}-\cdots-p_{h}$ and Q have vertices $q_{k}-q_{k-1}-\cdots-q_{h}$, where $p_{i}, q_{i} \in L_{i}$ for $h \leq i \leq k$. Let p_{h-1}, q_{h-1} be parents of p_{h}, q_{h} respectively. From the minimality of h, either

- p_{h-1}, q_{h-1} are adjacent, or
- some vertex is adjacent to p_{h-1} and to at least one of q_{h-1}, q_{h}, q_{h+1}, or
- some vertex is adjacent to q_{h-1} and to at least one of p_{h-1}, p_{h}, p_{h+1}.

In each case there is a connected induced subgraph M with $V(M) \subseteq L_{0} \cup \cdots \cup L_{h} \cup\left\{p_{h+1}, q_{h+1}\right\}$, with at most seven vertices, and with $p_{h+1}, p_{h}, p_{h-1}, q_{h+1}, q_{h}, q_{h-1} \in V(M)$; and if there is a vertex in $V(M) \backslash V(P \cup Q)$, then it belongs to $L_{h-2} \cup L_{h-1} \cup L_{h}$, and has a neighbour in $\left\{p_{h+1}, p_{h}, p_{h-1}\right\}$ and one in $\left\{q_{h+1}, q_{h}, q_{h-1}\right\}$. Consequently, p_{h+2}, \ldots, p_{k} have no neighbours in $V(M) \backslash\left\{p_{h+1}\right\}$, and q_{h+2}, \ldots, q_{k} have no neighbours in $V(M) \backslash\left\{q_{h+1}\right\}$.

Let X be the set of vertices $x \in L_{k-1}$ such that there is a path R from x to p_{h+1} satisfying:

- R has length at most $k-h+8$;
- every internal vertex of R belongs to $L_{0} \cup \cdots \cup L_{k-2}$; and
- no vertex of $R \backslash p_{h+1}$ equals or is adjacent to any vertex in $\left\{p_{h+2}, \ldots, p_{k}\right\}$.

Define $Y \subseteq L_{k-1}$ similarly with P, Q exchanged.
(1) Every vertex $v \in L_{k}$ with $d_{G}\left(v, p_{k}\right), d_{G}\left(v, q_{k}\right) \geq 7$ has a neighbour in $X \cup Y$.

Let $v \in L_{k}$ with $d_{G}\left(v, p_{k}\right), d_{G}\left(v, q_{k}\right) \geq 7$, and let $r_{0}-r_{1} \cdots-r_{k}=v$ be a path between $r_{0} \in L_{0}$ and $v=r_{k}$. We claim that $r_{k-1} \in X \cup Y$. From the minimality of h, one of r_{h-1}, \ldots, r_{k} has distance at most two from one of p_{h-1}, \ldots, p_{k}. Choose j maximum such that r_{j} has distance at most two from some vertex u say of $P \cup Q \cup M$. Thus $j \geq h-1$. If $j=k$, then $u \notin V(M) \backslash V(P \cup Q)$ because $k-h \geq 3$, and so u is one of $p_{k}, p_{k-1}, p_{k-2}, q_{k}, q_{k-1}, q_{k-2}$; which is impossible since $d_{G}\left(v, p_{k}\right), d_{G}\left(v, q_{k}\right) \geq 7$. Thus $j<k$. From the maximality of j, it follows that $d_{G}\left(r_{j}, u\right)=2$, and none of r_{j}, \ldots, r_{k} equals or is adjacent to any vertex in $P \cup Q \cup M$. From the symmetry we may assume that $u \in V(Q) \cup(V(M) \backslash V(P \cup Q))$. Let w be a vertex adjacent to both u, r_{j}. If $u \in L_{k} \cup L_{k-1}$ then $k-j \leq 3$, and so $d_{G}\left(v, q_{k}\right) \leq 6$, a contradiction; and if $u \notin L_{k} \cup L_{k-1}$ and $w \in L_{k} \cup L_{k-1}$ then $u=q_{k-2}$ and $k-j \leq 2$, and again $d_{G}\left(v, q_{k}\right) \leq 6$, a contradiction. So $u, w \notin L_{k} \cup L_{k-1}$. If w
has a neighbour in $\left\{p_{h+2}, \ldots, p_{k}\right\}$, then $w \in L_{h+1} \cup \cdots \cup L_{k}$, and so $u \in V(Q)$, contradicting that $d_{G}(P, Q) \geq 3$. Thus w has no neighbour in $\left\{p_{h+2}, \ldots, p_{k}\right\}$.

Now there is a path of $M \cup Q$ between u and p_{h+1}. If $u \notin V(Q)$ then this path has length at most three, and its union with the path $r_{k-1}-r_{k-2} \cdots-r_{j}-w-u$ is of length at most $k-1-j+5 \leq k-h+5$, since $j \geq h-1$, and so $r_{k-1} \in X$ as required. If $u \in V(Q)$, then u is one of $q_{j-2}, q_{j-1}, q_{j}, q_{j+1}, q_{j+2}$, and so some path of $M \cup Q$ between u and p_{h+1} has length at most $(j+2)-(h+1)+6$, and its union with the path $r_{k-1}-r_{k-2^{-}} \cdots-r_{j}-w-u$ has length at most

$$
(j+2)-(h+1)+6+(k-1-j)+2=k-h+8
$$

and again $r_{k-1} \in X$. This proves (1).
Now, since $\chi^{8}(G) \leq \kappa$, the set of vertices $v \in L_{k}$ such that $d_{G}\left(v, p_{k}\right) \leq 6$ or $d_{G}\left(v, q_{k}\right) \leq 6$ has chromatic number at most 2κ; and since $\chi\left(L_{k}\right)>22 \tau+2 \kappa$, there exists a subset $Z_{0} \subseteq L_{k}$ with $\chi\left(Z_{0}\right)>22 \tau$ such that $d_{G}\left(v, p_{k}\right), d_{G}\left(v, q_{k}\right) \geq 7$ for each $v \in Z_{0}$. Every vertex in Z_{0} has a neighbour in $X \cup Y$, by (1); so we may assume that there exists $Z_{1} \subseteq Z_{0}$ with $\chi\left(Z_{1}\right)>11 \tau$, such that every vertex in Z_{1} is adjacent to a vertex in X. For each vertex $x \in X$, there is a path R as in the definition of X; let R_{x} be a shortest such path. Then R_{x} has length at most $k-h+8$, and at least $(k-1)-(h+1)$; so there are eleven possibilities for its length, the numbers between $k-h-2$ and $k-h+8$. For each c with $k-h-2 \leq c \leq k-h+8$, let X_{c} be the set of vertices $x \in X$ such that R_{x} has length c. Then there exist c and $Z_{2} \subseteq Z_{1}$ with $\chi\left(Z_{2}\right) \geq \chi\left(Z_{1}\right) / 11>\tau$, such that every vertex in Z_{2} has a neighbour in X_{c}. Moreover we may choose Z_{2} such that $G\left[Z_{2}\right]$ is connected. Let V be the union of the vertex sets of all the paths $R_{x}\left(x \in X_{c}\right)$. Note that $V \subseteq L_{0} \cup \cdots \cup L_{k-1}$. For $0 \leq i \leq c$, let V_{i} be the set of vertices $u \in V$ such that the shortest path of $G[V]$ between u, p_{h+1} has length i. Then $\left(V_{0}, \ldots, V_{c}\right)$ is a levelling. Moreover, $V_{c}=X_{c}$, and so no vertex in L_{k} has a neighbour in V_{0}, \ldots, V_{c-1}. Define $V_{c+1}=Z_{2}$; then also (V_{0}, \ldots, V_{c+1}) is a levelling.

Now no neighbour of p_{k-1} belongs to Z_{0}, and hence there are no edges between $\left\{p_{h+2}, \ldots, p_{k-1}\right\}$ and $V_{1} \cup \cdots \cup V_{c+1}$. Since $G\left[L_{k}\right]$ is connected and p_{k-1} has a neighbour in L_{k}, there is a path $G\left[L_{k}\right]$ between a vertex adjacent to p_{k-1} and a vertex with a neighbour in $Z_{2}=V_{c+1}$. Choose a minimal such path, D, and let s be its end adjacent to p_{k-1}. Then $\left(V_{0}, \ldots, V_{c}, V_{c+1} \cup V(D), s\right)$ is a shower, since $G\left[Z_{2}\right]$ is connected and hence so is $G\left[V_{c+1} \cup V(D)\right]$; and its floor includes Z_{2} and hence has chromatic number more than τ; and $p_{h+1}-p_{h+2^{-}} \cdots-p_{k-1^{-}} s$ is a recirculator for it. This proves 5.3.

Let \mathcal{S} be a shower with head z_{0}, drain s and vertex set V. An induced path of $G[V]$ between z_{0}, s is called a j et of \mathcal{S}. The set of all lengths of jets of \mathcal{S} is called the jetset of \mathcal{S}. If \mathcal{A} is a subset of the jetset of \mathcal{S}, then for each $a \in \mathcal{A}$ there is a jet J_{a} with length a, and we say the set of jets $\left\{J_{a}: a \in \mathcal{A}\right\}$ realizes \mathcal{A}. For $\nu \geq 2$, we say a shower \mathcal{S} is ν-complete if there are ν consecutive integers in its jetset, and ν-incomplete otherwise. (Later we shall give a meaning to "1-complete", but at this stage it is not needed.) We deduce:
5.4 Let $\tau, \kappa \geq 0$ and $\nu \geq 2$ be integers. Let G be a graph such that

- $\chi^{8}(G) \leq \kappa$;
- $\chi(G)>44 \tau+4 \kappa$; and
- G admits no hole ν-interval.

Then there is a ν-incomplete shower in G with floor of chromatic number more than τ.
Proof. By 5.2 there is a levelling $\left(L_{0}, \ldots, L_{k}\right)$ with chromatic number more than $22 \tau+2 \kappa$. By 5.3 , there is a shower \mathcal{S}, with a recirculator, and with floor of chromatic number more than τ. Since the union of the recirculator with any jet is a hole, and G admits no hole ν-interval, it follows that \mathcal{S} is not ν-complete. This proves 5.4.

Thus, in order to prove 5.1, it suffices to show that if ν, κ, G are as in the hypothesis of 5.1 then the floor of every ν-incomplete shower in G has bounded chromatic number, and this is what we shall do.

6 Stabilizing a shower

A levelling $\left(L_{0}, \ldots, L_{k}\right)$ or shower $\left(L_{0}, \ldots, L_{k}, s\right)$ is stable if L_{0}, \ldots, L_{k-1} are stable; and for $\lambda \geq 0$ an integer, it is λ-stable if $k \geq \lambda$ and L_{i} is stable for $k-\lambda \leq i \leq k-1$. We would like to prove that there exists a stable shower (still with floor of large χ, but not as large as before), by converting the shower given by 5.4. This will take several steps. First we show how to convert a ν-incomplete shower into a ν-incomplete λ-stable shower (for any fixed λ).

If \mathcal{S} is a levelling $\left(L_{0}, \ldots, L_{k}\right)$ or a shower $\left(L_{0}, \ldots, L_{k}, s\right)$, and there is a monotone path P with ends u, v, and $u \in L_{i}$ and $v \in L_{j}$ where $j \geq i$, we say that v is a \mathcal{S}-descendant (or just descendant) of u and u is an \mathcal{S}-ancestor (or just ancestor) of v. If $X \subseteq L_{0} \cup \cdots \cup L_{k}$, we denote by $\theta(X)$ or $\theta_{\mathcal{S}}(X)$ the chromatic number of the set of vertices in L_{k} with an ancestor in X.
6.1 Let $\tau, \lambda \geq 0$ and $\nu \geq 2$ be integers, and let $\mu=(\lambda+1)(\nu-1)+1$. Let G be a triangle-free graph, and let \mathcal{S} be a ν-incomplete shower in G, with floor of chromatic number more than $\nu \tau^{1+\mu}$, and with levels L_{0}, \ldots, L_{k}, where $k \geq \mu$. Then there is a λ-stable ν-incomplete shower with floor of chromatic number more than τ, and with levels $L_{0}^{\prime}, \ldots, L_{h}^{\prime}$, such that $0 \leq k-h \leq \mu-\lambda-1$ and $L_{i}^{\prime} \subseteq L_{i}$ for $0 \leq i<h$.

Proof. We may assume that for $0 \leq i<k$, every vertex in L_{i} has a neighbour in L_{i+1}; for a vertex in L_{i} without this property could be deleted. Let $z_{0} \in L_{0}$. For $1 \leq j \leq \nu$, let $h_{j}=k-1-(\lambda+1)(\nu-j)$; and for $1 \leq j<\nu$, let $I_{j}=\left\{i: h_{j}<i<h_{j+1}\right\}$. (Thus the sets I_{j} have cardinality λ, and there is an integer h_{j} between I_{j-1} and I_{j} that belongs to neither, that we use as insulation.) For $1 \leq j \leq \nu$, let T_{j} be the set of vertices $v \in L_{h_{j}}$ such that there are j induced paths between v and z_{0}, each with interior in $L_{1} \cup \cdots \cup L_{h_{j}-1}$, of lengths $h_{j}, h_{j}+1, \ldots, h_{j}+j-1$.
(1) $T_{\nu}=\emptyset$.

Because suppose that $v \in T_{\nu}$. Then there are ν induced paths between v and z_{0}, each with interior in $L_{1} \cup \cdots \cup L_{k-2}$, of lengths $k-1, k, \ldots, k+\nu-2$, say R_{1}, \ldots, R_{ν}. Let s be the drain of \mathcal{S}; and choose a minimal path Q between s, v with interior in L_{k}. Then for $1 \leq i \leq \nu$, the union of Q and R_{i} is a jet, contradicting that the shower is ν-incomplete. This proves (1).

Since $T_{1}=L_{h_{1}}$ it follows that

$$
\theta\left(T_{1}\right)>\nu \tau^{1+\mu} \geq \tau^{k+1-h_{2}}+\tau^{k+1-h_{3}}+\cdots+\tau^{k+1-h_{\nu}}
$$

and so there exists $j \in\{1, \ldots, \nu\}$ maximum such that

$$
\theta\left(T_{j}\right)>\tau^{k+1-h_{j+1}}+\tau^{k+1-h_{j+2}}+\cdots+\tau^{k+1-h_{\nu}}
$$

and $j<\nu$ by (1). From the maximality of j it follows that $\theta\left(T_{j}\right)-\theta\left(T_{j+1}\right)>\tau^{k+1-h_{j+1}}$. Let S_{j+1} be the set of vertices in $L_{h_{j+1}} \backslash T_{j+1}$ that have ancestors in T_{j}. For $h_{j}<i<h_{j+1}$ let M_{i} be the set of vertices in L_{i} with an ancestor in T_{j} and a descendant in S_{j+1}.
(2) M_{i} is stable for $h_{j}<i<h_{j+1}$.

For suppose that $x, y \in M_{i}$ are adjacent. Since G is triangle-free, x, y have no common parents and no common children. Let $x^{\prime}, y^{\prime} \in T_{j}$ be ancestors of x, y respectively (possibly equal). Let $z \in S_{j+1}$ be a descendant of x. Now there are induced paths from y^{\prime} to z_{0} with interior in $L_{1} \cup \cdots \cup L_{h_{j}-1}$, of lengths $h_{j}, h_{j}+1, \ldots, h_{j}+j-1$. For each of these paths, its union with a path of length $i-h_{j}$ between y and y^{\prime}, a path of length $h_{j+1}-i$ between z and x, and the edge $x y$, makes an induced path between z, z_{0}, of lengths $h_{j+1}+1, \ldots, h_{j+1}+j$. But also there is an induced path between z, z_{0} of length h_{j+1}, since $z \in L_{h_{j+1}}$; and so $z \in T_{j+1}$, a contradiction. This proves (2).

Now every vertex in L_{k} with an ancestor in T_{j} has an ancestor in $S_{j+1} \cup T_{j+1}$. Since $\theta\left(T_{j}\right)-$ $\theta\left(T_{j+1}\right)>\tau^{k+1-h_{j+1}}$, it follows that $\theta\left(S_{j+1}\right)>\tau^{k+1-h_{j+1}}$. By setting $h=h_{j+1}$ and $M_{h}=S_{j+1}$, we have shown that:
(3) There exist h with $0 \leq k-h \leq \mu-\lambda-1$, and subsets $M_{i} \subseteq L_{i}$ for $h-\lambda \leq i \leq h$, with the following properties:

- $\theta\left(M_{h}\right)>\tau^{k+1-h} ;$
- M_{i} is stable for $h-\lambda \leq i<h$; and
- every vertex in M_{i+1} has a neighbour in M_{i} for $h-\lambda \leq i<h$.

Choose such a value of h, maximal. Suppose first that $\chi\left(M_{h}\right) \leq \tau$. Since

$$
\theta\left(M_{h}\right)>\tau^{k-h+1} \geq \tau \geq \chi\left(M_{h}\right)
$$

it follows that $h \neq k$. Take a partition of M_{h} into τ stable sets; then for one of these sets, say M_{h}^{\prime}, $\theta\left(M_{h}^{\prime}\right) \geq \theta\left(M_{h}\right) / \tau>\tau^{k-h}$. Let M_{h+1} be the set of vertices in L_{h+1} with a neighbour in M_{h}; then $\theta\left(M_{h+1}\right)=\theta\left(M_{h}^{\prime}\right)>\tau^{k-h}$, contrary to the maximality of h. This proves that $\chi\left(M_{h}\right)>\tau$.

Let $Z=L_{h} \cup \cdots \cup L_{k}$; then $G[Z]$ is connected since $G\left[L_{k}\right]$ is connected and for $0 \leq i<k$, every vertex in L_{i} has a neighbour in L_{i+1}. Consequently

$$
\left(L_{0}, \ldots, L_{h-\lambda-1}, M_{h-\lambda}, \ldots, M_{h-1}, Z, s\right)
$$

is a shower \mathcal{S}^{\prime} say. Its floor includes M_{h} and so has chromatic number more than τ. Moreover, every jet for \mathcal{S}^{\prime} is also a jet for \mathcal{S}; and so \mathcal{S}^{\prime} is ν-incomplete. This proves 6.1.

7 U-bends

For $\nu \geq 2$, a shower $\left(L_{0}, \ldots, L_{k}, s\right)$ is a ν-sprinkler if

- $G\left[L_{k}\right]$ is a path with one end s and with at least ν vertices; let its vertices be $v_{1} \cdots-v_{n}$ in order, where $v_{1}=s$ and $n \geq \nu$;
- for $i=1, \ldots, n-\nu$, no vertex in L_{k-1} is adjacent to v_{i}; and
- for $i=n-\nu+1, \ldots, n$, some vertex in L_{k-1} is adjacent to v_{i} and to no other vertex in L_{k}.

Every ν-sprinkler is therefore ν-complete. We call $\left\{v_{i}: n-\nu+1 \leq i \leq n\right\}$ its floor.
We need another object, a "u-bend", which is not exactly a shower; and also something which is partway to a u-bend, which we call a "w-bend". We start with the latter. Let $\left(L_{0}, \ldots, L_{k}\right)$ be a levelling in G with vertex set V, and let U be an induced path of G. Suppose that

- $G\left[L_{k}\right]$ is an induced path;
- $V \cap V(U)=\emptyset$;
- U has ends w, s, and there is at least one vertex in L_{k-1} adjacent to w and to a vertex in L_{k}; and
- there are no edges between $V(U)$ and $V \backslash L_{k-1}$, and no vertex in L_{k-1} has a neighbour in L_{k} and a neighbour in $V(U) \backslash\{w\}$.

In this case, we call $\left(L_{0}, \ldots, L_{k}, U\right)$ a w-bend, and call s its drain; and any induced path of $G[V \cup V(U)]$ between the vertex in L_{0} and the drain is called a jet of the w-bend. We call L_{k} its floor. (Since $\left(L_{0}, \ldots, L_{k}\right)$ is a levelling, every vertex in L_{k} has a neighbour in L_{k-1}.) Let $G\left[L_{k}\right]$ have ends v_{1}, v_{2}; then $d_{G}\left(v_{1}, v_{2}\right)$ is called the size of the w-bend. If in addition:

- w has a unique neighbour in L_{k-1}, say v;
- v has a unique neighbour in L_{k}, and this neighbour is an end of the path $G\left[L_{k}\right]$; and
- every vertex in L_{k-1} has a neighbour in L_{k};
then we call $\left(L_{0}, \ldots, L_{k}, U\right)$ a u-bend. We need a containment relation for these objects:
- Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ and $\mathcal{S}^{\prime}=\left(L_{0}^{\prime}, \ldots, L_{k}^{\prime}, s^{\prime}\right)$ be showers. We say that \mathcal{S}^{\prime} is contained in \mathcal{S} if they have the same drain, and $L_{i}^{\prime} \subseteq L_{i}$ for $0 \leq i \leq k$.
- Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a shower, and let $\mathcal{S}^{\prime}=\left(L_{0}^{\prime}, \ldots, L_{k}^{\prime}, U\right)$ be a w-bend. We say that \mathcal{S}^{\prime} is contained in \mathcal{S} if they have the same drain, and $L_{i}^{\prime} \subseteq L_{i}$ for $0 \leq i \leq k$, and $V(U) \subseteq L_{k}$.
- Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, W\right)$ be a w-bend, and let $\mathcal{S}^{\prime}=\left(L_{0}^{\prime}, \ldots, L_{k}^{\prime}, U\right)$ be a u-bend. We say that \mathcal{S}^{\prime} is contained in \mathcal{S} if they have the same drain, and $L_{i}^{\prime} \subseteq L_{i}$ for $0 \leq i \leq k$, and $U=W$.

In all three cases, every jet of \mathcal{S}^{\prime} is a jet of \mathcal{S}.
We need to show that certain showers contain u-bends, and it is easier to show that they contain w-bends. Let us see first that that is enough, because a w-bend contains a u-bend (and containment is clearly transitive).
7.1 Let $\left(L_{0}, \ldots, L_{k}, W\right)$ be a w-bend in a triangle-free graph G, with size at least $2 p+4$. Then it contains a u-bend with size at least p.

Proof. Let W have ends w, s where s is the drain. Let $G\left[L_{k}\right]$ have vertices $v_{0}-\cdots-v_{n}$ say, in order. Since $d_{G}\left(v_{0}, v_{n}\right) \geq 2 p+4$, we may assume by exchanging v_{0}, v_{n} if necessary that $d_{G}\left(w, v_{0}\right) \geq p+2$. Let Y be the set of vertices in L_{k-1} adjacent to w and to a vertex in L_{k}. By hypothesis, $Y \neq \emptyset$. Choose $i \leq n$ minimum such that v_{i} has a neighbour in Y, say v. Since $d_{G}\left(w, v_{0}\right) \geq p+2$, and $d_{G}\left(w, v_{i}\right)=2$, it follows that $d_{G}\left(v_{i}, v_{0}\right) \geq p$. Let L_{k-1}^{\prime} consist of all vertices in L_{k-1} with a neighbour in $\left\{v_{0}, \ldots, v_{i-1}\right\}$, together with v. Then v is the unique neighbour of w in L_{k-1}^{\prime}; and so

$$
\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{\prime},\left\{v_{0}, \ldots, v_{i}\right\}, W\right)
$$

is a u-bend contained in $\left(L_{0}, \ldots, L_{k}, W\right)$, and its size is at least p. This proves 7.1.
7.2 Let $\nu \geq 2$ be an integer, and let $\mu \geq 1$. Let \mathcal{S} be a shower in a triangle-free graph G. Let P be an induced path of G with $V(P)$ a subset of the floor of \mathcal{S}, with ends w_{1}, w_{2} such that $d_{G}\left(w_{1}, w_{2}\right) \geq$ $2(\mu+\nu)$. Then \mathcal{S} contains either:

- a ν-sprinkler with floor a subset of $V(P)$, or
- a u-bend with size at least μ and with floor a subset of $V(P)$.

Proof. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$, and let L_{k-1}^{1} be the set of vertices in L_{k-1} with a neighbour in $V(P)$. If $s \in V(P)$, let $u=s$ and let D be the one-vertex path with vertex s. If $s \notin V(P)$, then since $G\left[L_{k}\right]$ is connected, there is an induced path D of $G\left[L_{k}\right]$ between s and a vertex with a neighbour in $V(P)$; choose a minimal such path D, with ends s, u say. From the minimality of D, no vertex in $D \backslash\{u\}$ has a neighbour in $V(P)$.

Suppose that some vertex of $D \backslash\{u\}$ has a neighbour in L_{k-1}^{1}; and choose such a vertex, w say, such that the subpath D^{\prime} of D between w, s is minimal. Then

$$
\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{1}, V(P), D^{\prime}\right)
$$

is a w-bend contained in \mathcal{S}, of size at least $2(\mu+2)$ (since $\nu \geq 2$), and the result follows from 7.1. We may therefore assume that there are no edges between $D \backslash\{u\}$ and L_{k-1}^{1}.

Let Y be the set of vertices in L_{k-1}^{1} that are adjacent to u. Now no vertex of D except possibly u has a neighbour in L_{k-1}^{1}; and u has at least one neighbour in $V(P) \cup Y$. Let P have vertices $v_{0}-\cdots-v_{n}$ in order. By hypothesis, $d_{G}\left(v_{0}, v_{n}\right) \geq 2(\mu+\nu)$, so by exchanging v_{0}, v_{n} if necessary, we may assume that $d_{G}\left(u, v_{0}\right) \geq \mu+\nu$. Choose i minimum such that v_{i} has a neighbour in $Y \cup\{u\}$.

Suppose first that v_{i} has a neighbour in Y. Choose such a neighbour v say, and let L_{k-1}^{2} be the set of vertices in L_{k-1} with a neighbour in $\left\{v_{0}, \ldots, v_{i-1}\right\}$, together with v. Now v_{i} is not adjacent to u (since G is triangle-free); and $d_{G}\left(v_{0}, v_{i}\right) \geq d_{G}\left(v_{0}, u\right)-2 \geq \mu$; so

$$
\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{2},\left\{v_{0}, \ldots, v_{i}\right\}, D\right)
$$

is a u-bend contained in \mathcal{S} with size at least μ, as required.
We may assume then that v_{i} has no neighbour in Y, and therefore v_{i} is adjacent to u. In summary, no vertex in L_{k-1} has a neighbour in $V(D)$ and a neighbour in $\left\{v_{0}, \ldots, v_{i}\right\}$; and there are
no edges between $V(D)$ and $\left\{v_{0}, \ldots, v_{i}\right\}$ except the edge $u v_{i}$. Since $d_{G}\left(v_{0}, u\right) \geq \mu+\nu$, it follows that $i \geq \mu+\nu-1$, and so $i-\nu+1 \geq \mu$.

Suppose next that there exists a vertex in L_{k-1} adjacent to at least two of $v_{i-\nu+1}, \ldots, v_{i}$. Choose j with $i-\nu+3 \leq j \leq i$ maximum such that some vertex in L_{k-1} is adjacent to v_{j} and to one of v_{0}, \ldots, v_{j-2}; choose h with $0 \leq h \leq j-2$ minimum such that some vertex in L_{k-1} is adjacent to v_{h}, v_{j}; and choose $v \in L_{k-1}$ adjacent to v_{h}, v_{j}. Let L_{k-1}^{3} be the set of vertices in L_{k-1} with a neighbour in $\left\{v_{0}, \ldots, v_{h-1}\right\}$, together with v. Then since there is a path between u, v_{h} (via v) of length $i-j+3 \leq \nu$, it follows that $d_{G}\left(u, v_{h}\right) \leq \nu$, and so

$$
d_{G}\left(v_{h}, v_{0}\right) \geq d_{G}\left(u, v_{0}\right)-\nu \geq \mu .
$$

Let D_{2} be the path formed by the union of D and the path $u-v_{i^{-}} \cdots-v_{j}$. Then

$$
\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{3},\left\{v_{0}, \ldots, v_{h}\right\}, D_{2}\right)
$$

is a u-bend contained in \mathcal{S}, of size at least μ, as required.
We may therefore assume that no vertex in L_{k-1} is adjacent to more than one of $v_{i-\nu+1}, \ldots, v_{i}$. Let L_{k-1}^{4} be the set of vertices in L_{k-1} with a neighbour in $\left\{v_{i-\nu+1}, \ldots, v_{i}\right\}$. Every vertex in $\left\{v_{i-\nu+1}, \ldots, v_{i}\right\}$ has a neighbour in L_{k-1}^{4}, and u has no neighbour in L_{k-1}^{4}, so

$$
\left(L_{0}, \ldots, L_{k-2}, L_{k-1}^{4}, V(D) \cup\left\{v_{i-\nu+1}, \ldots, v_{i}\right\}, s\right)
$$

is a ν-sprinkler contained in \mathcal{S}. This proves 7.2.

8 Jets of a shower

Let L_{0}, \ldots, L_{k} be the levels of a shower or w-bend, and let J be a jet. Then at least one vertex of J belongs to L_{k-1}; and we define the tail of J to be the minimal subpath of J between L_{k-1} and the drain. For $\lambda \geq 0$, we say that J is λ-monotone if $\lambda \leq k$, and J contains exactly one vertex of L_{i} for $0 \leq i<k-\lambda$. In every jet J, at least $k-1$ edges do not belong to its tail and have an end not in L_{k}. We say the waste of J is μ if there are $k-1+\mu$ edges of J that do not belong to its tail and have an end not in L_{k}; and J is μ-wasteful if its waste is at most μ. Thus the waste is nonnegative.

A set of integers \mathcal{A} is dense if for all $a_{1}, a_{2} \in \mathcal{A}$ with $a_{1}<a_{2}$, there does not exist b with $a_{1}<b<a_{2}$ such that $b, b+1 \notin \mathcal{A}$; that is, there are no two consecutive numbers both missing from \mathcal{A} between the first and last members of \mathcal{A}. If \mathcal{A}, \mathcal{B} are sets of integers, we define $\mathcal{A}+\mathcal{B}=\{a+b: a \in \mathcal{A}, b \in \mathcal{B}\}$. Thus if \mathcal{A} is dense, then for any integer $t, \mathcal{A}+\{t, t+1\}$ is a set of consecutive integers of cardinality at least $|\mathcal{A}|+1$.

Any subset of the floor of a shower is called a mat; and for a w-bend, we define its floor to be its only mat. The size of a mat M is the maximum of $d_{G}\left(w_{1}, w_{2}\right)$ over all pairs w_{1}, w_{2} of vertices in the same component of $G[M]$. If M is a mat for a shower or w-bend \mathcal{S}, a jet J is an M-jet if there is no edge of J with an end in $L_{k} \backslash M$ and an end in L_{k-1}. We define the M - jetset as the set of all lengths of M-jets. A w-bend $\left(L_{0}, \ldots, L_{k}, U\right)$ is λ-stable if $k \geq \lambda$ and L_{i} is stable for $k-\lambda \leq i \leq k-1$. In this section we prove the following. (Note that the next result immediately implies the long odd holes conjecture, via 7.2 , so if we only wanted the long odd holes conjecture we could stop here.)
8.1 Let $\nu \geq 2$ be an integer, and let G be a triangle-free graph. If \mathcal{S} is a ν-stable shower or w-bend in G, and M is a mat for \mathcal{S} of size at least $3^{\nu+2}$, then there is a set \mathcal{A} of integers, realized by a set of $(\nu+1)$-monotone, $3 \nu^{2}$-wasteful M-jets, such that $|\mathcal{A}| \leq \nu+1$, and \mathcal{A} includes a dense subset of cardinality ν, and there are two members of \mathcal{A} that differ by 1 or 3 .

Proof. We proceed by induction on ν. Thus we assume that either $\nu=2$ or the result holds for $\nu-1$. We claim we may assume:
(1) There is a u-bend $\mathcal{S}_{1}=\left(L_{0}, \ldots, L_{k}, U\right)$ contained in \mathcal{S}, and with $L_{k} \subseteq M$, of size at least $3^{\nu+2} / 2-\nu$.

Assume first that \mathcal{S} is a ν-stable shower in G, and M is a mat of size at least $3^{\nu+2}$. Let P be an induced path of $G[M]$ with ends w_{1}, w_{2}, where $d_{G}\left(w_{1}, w_{2}\right) \geq 3^{\nu+2}$. If \mathcal{S} contains a ν-sprinkler with floor a subset of $V(P)$, then the theorem holds, so we assume not. By 7.2 with $\mu=3^{\nu+2} / 2-\nu$, it follows that \mathcal{S} contains a u-bend as in the claim. Next we assume that \mathcal{S} is a w-bend, of size at least $3^{\nu+2}$; then the claim follows from 7.1. This proves (1).

Let $\mathcal{S}_{1}=\left(L_{0}, \ldots, L_{k}, U\right)$ as in (1). Let U have ends u, s where s is the drain. Let q_{0} be the unique neighbour of u in L_{k-1}; and let D be the path formed by adding the edge $u q_{0}$ to U. There is an induced path $q_{0}-q_{1}-\cdots-q_{n}$ such that $\left\{q_{1}, \ldots, q_{n}\right\}=L_{k}$; and every vertex in L_{k-1} has a neighbour in L_{k}. Also, $d_{G}\left(q_{1}, q_{n}\right) \geq 3^{\nu+2} / 2-\nu$, and so $d_{G}\left(q_{0}, q_{n}\right) \geq 3^{\nu+2} / 2-\nu-1$. We may assume that for $0 \leq i \leq k-1$ every vertex in L_{i} has a neighbour in L_{i+1} (because any other vertex could be removed). Let $V=L_{0} \cup \cdots \cup L_{k}$.

We recall that for $v \in V$, its height $h(v)=k-i$ where $v \in L_{i}$; and we define the reach of v to be the maximum $i \geq 1$ such that q_{i} is a descendant of v. (Since every vertex in V has a descendant in L_{k}, this is well-defined.) Next we show that we may assume that:
(2) For $1 \leq m \leq n$ there do not exist induced paths R_{1}, R_{2} of $G[V]$ between q_{0} and q_{m} with the following properties:

- $\left|E\left(R_{1}\right)\right|+1=\left|E\left(R_{2}\right)\right| \leq 2 \nu+2 ;$ and
- for all j with $m<j \leq n, q_{j}$ has no neighbour in $V\left(R_{1} \cup R_{2}\right) \backslash\left\{q_{m}\right\}$.

For suppose that such m, R_{1}, R_{2} exist. Since R_{1}, R_{2} both have length at most $2 \nu+2$ and have ends in L_{k} and L_{k-1}, it follows that every vertex of $R_{1} \cup R_{2}$ has height at most $\nu+1$. Indeed, if $y \in V\left(R_{1} \cup R_{2}\right)$ then there is a subpath of one of R_{1}, R_{2} between y and q_{m}, which must have length at least $h(y)$, and since R_{1}, R_{2} both have length at most $2 \nu+2$, it follows that $d_{G}\left(y, q_{0}\right) \leq 2 \nu+2-h(y)$. Consequently, if $x \in V$ has a neighbour (say y) in $R_{1} \cup R_{2}$ then

$$
d_{G}\left(x, q_{0}\right) \leq d_{G}\left(y, q_{0}\right)+1 \leq 2 \nu-h(y)+3 \leq 2 \nu-h(x)+4 .
$$

It follows that for every descendant in L_{k} of such a vertex x, its distance from q_{0} is at most $d_{G}\left(x, q_{0}\right)+$ $h(x) \leq 2 \nu+4$. Since

$$
d_{G}\left(q_{0}, q_{n}\right) \geq 3^{\nu+2} / 2-\nu-1>2 \nu+4
$$

there exists $m^{\prime}<n$ such that $d_{G}\left(q_{0}, q_{m^{\prime}}\right)=2 \nu+4$, and $d_{G}\left(q_{0}, q_{j}\right)>2 \nu+4$ for all j with $m^{\prime}<j \leq n$. Since q_{m+1} has a neighbour in R_{1}, it follows that $d_{G}\left(q_{m+1}, q_{0}\right) \leq 2 \nu+4$, and so $m^{\prime} \geq m+1$. For
$0 \leq i<k$ let L_{i}^{\prime} be the set of all vertices in L_{i} with a descendant in $\left\{q_{j}: m^{\prime}<j \leq n\right\}$. It follows that

$$
\left(L_{0}^{\prime}, \ldots, L_{k-1}^{\prime},\left\{q_{j}: m \leq j \leq n\right\}, q_{m}\right)
$$

is a shower \mathcal{S}^{\prime} say. It is ν-stable, since $L_{i}^{\prime} \subseteq L_{i}$ for $0 \leq i<k$. (It is not contained in \mathcal{S} since the drain is different.) Let its vertex set be V^{\prime}. If $v \in V^{\prime} \backslash\left\{q_{m}\right\}$, and $v \in L_{k}$, then v has no neighbour in $V\left(R_{1} \cup R_{2}\right) \backslash\left\{q_{m}\right\}$ from the properties of R_{1}, R_{2}; and if $v \notin L_{k}$, then v has a descendant in $\left\{q_{j}: m^{\prime}<j \leq n\right\}$, which therefore has distance in G more than $2 \nu+4$ from q_{0}, and again v has no neighbour in $R_{1} \cup R_{2}$. Thus there are no edges between $V^{\prime} \backslash\left\{q_{m}\right\}$ and $V\left(R_{1} \cup R_{2}\right)$ except the edge $q_{m} q_{m+1}$.

Now

$$
d_{G}\left(q_{n}, q_{m^{\prime}+1}\right) \geq d_{G}\left(q_{n}, q_{0}\right)-(2 \nu+5) \geq 3^{\nu+2} / 2-\nu-1-(2 \nu+5) \geq 3^{\nu+1}
$$

If $\nu>2$, then from the inductive hypothesis on ν, applied to \mathcal{S}^{\prime} and the mat $M^{\prime}=\left\{q_{m^{\prime}+1}, \ldots, q_{n}\right\}$, we deduce that there is a dense subset \mathcal{A} of the M^{\prime}-jetset of \mathcal{S}^{\prime} of cardinality $\nu-1$, realized by a set of M^{\prime}-jets of \mathcal{S}^{\prime} that are ν-monotone and $3(\nu-1)^{2}$-wasteful. If $\nu=2$, let \mathcal{A} be a singleton set containing the length of a 0 -monotone, 0 -wasteful M^{\prime}-jet of \mathcal{S}^{\prime}. In either case, let J be an M^{\prime}-jet in this set. Its tail has exactly one edge not in the path $q_{m}-q_{m+1} \cdots-q_{n}$, and so at most $3(\nu-1)^{2}+1+(k-1)$ edges of J have an end not in L_{k}. Moreover, both $J \cup R_{1} \cup D$ and $J \cup R_{2} \cup D$ are jets of \mathcal{S}_{1}, and they are both $(\nu+1)$-monotone (since every vertex of $R_{1} \cup R_{2}$ has height at most $\nu+1$). Since R_{1}, R_{2} have length at most $2 \nu+2$, it follows that these two jets both have waste at most $3(\nu-1)^{2}+1+2 \nu+2 \leq 3 \nu^{2}$. Let $\left|E\left(R_{1}\right)\right|+|E(D)|=t$; then $\left|E\left(R_{2}\right)\right|+|E(D)|=t+1$, so for each $a \in \mathcal{A}$, both $a+t, a+t+1$ belong to the jetset of \mathcal{S}_{1}, and so $\mathcal{A}+\{t, t+1\}$ is a subset of the jetset of \mathcal{S}_{1}, and hence of the M-jetset of \mathcal{S}, and this is a set of at least ν consecutive integers. And this set is realized by M-jets of \mathcal{S} that are $(\nu+1)$-monotone and have waste at most $3 \nu^{2}$. Thus in this case the theorem holds. Consequently we may assume that no such m, R_{1}, R_{2} exist. This proves (2).

For each vertex $v \in V$ with reach $r<n$, let $f(v) \in V$ be defined as follows. There is a monotone path between v and q_{r}; let X be the set of all vertices x such that x is adjacent to a vertex in a monotone path between v and q_{r}. Consequently $q_{r+1} \in X$, and so there exists $x \in X$ with reach greater than r. Choose such a vertex x with maximum reach, and define $f(v)=x$. If v has reach n let $f(v)=v$.

Let $v_{1}=q_{0}$, and for $1 \leq i \leq \nu-1$ let $v_{i+1}=f\left(v_{i}\right)$. We need to establish several properties of this sequence. Let $t \leq \nu$ be maximum such that $v_{t} \neq v_{t-1}$. Thus either $t=\nu$ or v_{t} has reach n. For $1 \leq i \leq t, r_{i}$ be the reach of v_{i}; then $r_{1}=1$, and $r_{i}<r_{i+1}$ for $1 \leq i<t$. For $1 \leq i \leq t$ let P_{i} be a monotone path between v_{i} and $q_{r_{i}}$ such that if $i<t$ then v_{i+1} has a neighbour in P_{i}. The paths P_{1}, \ldots, P_{t} are pairwise vertex-disjoint, because the reach of every vertex in P_{i} is precisely r_{i}, and r_{1}, \ldots, r_{t} are all different. For $1 \leq i<t$ let B_{i} be an induced path of $G\left[V\left(P_{i}\right) \cup\left\{v_{i+1}\right\}\right]$ between v_{i} and v_{i+1}. Thus for $1 \leq i \leq t, B_{1} \cup B_{2} \cup \cdots \cup B_{i-1} \cup P_{i}$ is a path, say C_{i}, between v_{1} and $q_{r_{i}}$. In particular, B_{i} has length at least one, so there is a unique vertex y_{i} of B_{i} adjacent to v_{i+1}. For $1 \leq i \leq t$, let $\epsilon_{i}=1$ if $v_{i+1}, y_{i} \in L_{k}$, and 2 otherwise.
(3) $t=\nu$; for $1 \leq i<\nu, B_{i}$ has length $h\left(v_{i}\right)-h\left(v_{i+1}\right)+\epsilon_{i}$; and for $1 \leq i \leq \nu, C_{i}$ is an induced path of length $1+\sum_{1 \leq j<i} \epsilon_{j}$.

Let $1 \leq i<t$. Since $h\left(y_{i}\right) \leq h\left(v_{i}\right)$, and $h\left(v_{i+1}\right) \leq h\left(y_{i}\right)+1$, it follows that $h\left(v_{i+1}\right) \leq h\left(v_{i}\right)+1$; and
since $h\left(v_{1}\right)=1$, it follows inductively that $h\left(v_{i}\right) \leq i$ for $1 \leq i \leq t$. Consequently for $1 \leq i<t, y_{i}$ has height at most $\nu-1$; and since the levelling is ν-stable, it follows that y_{i}, v_{i+1} do not have the same height unless they both have height zero. Moreover, v_{i+1} is not a child of y_{i}, since the reach of v_{i+1} is greater than the reach of y_{i}; so we have proved that either v_{i+1} is a parent of y_{i}, or v_{i+1}, y_{i} both have height zero. It follows that the length of B_{i} equals $h\left(v_{i}\right)-h\left(v_{i+1}\right)+\epsilon_{i}$, for all $i<t$.

For $1 \leq i \leq t$, the path $B_{1} \cup B_{2} \cup \cdots \cup B_{i-1}$ therefore has length

$$
1-h\left(v_{i}\right)+\sum_{1 \leq j<i} \epsilon_{j},
$$

and since P_{i} has length $h\left(v_{i}\right)$, it follows that C_{i} has length $1+\sum_{1 \leq j<i} \epsilon_{j}$. Since this quantity is less than 2ν, and $d_{G}\left(u, q_{n}\right) \geq 3^{\nu+2}>2 \nu$, it follows that $r_{i}<n$. In particular, $r_{t}<n$, and so $t=\nu$.

We claim that for $1 \leq i \leq \nu$, the path C_{i} is induced; and prove this by induction on i. Certainly C_{1} is induced, so we may assume inductively that $i<\nu$ and C_{i} is induced, and we prove that C_{i+1} is induced. Now C_{i+1} is obtained from a subpath of C_{i} by adding the edge $y_{i} v_{i+1}$ and the path P_{i+1}; so it suffices to check that there are no edges between $B_{1} \cup B_{2} \cup \cdots \cup B_{i}$ and P_{i+1} except the edge $y_{i} v_{i+1}$. Suppose then that $y \in V\left(B_{j}\right)$ for some $j \leq i$, and $x \in V\left(P_{i+1}\right)$, and $x y$ is an edge. Since the reach of x equals r_{i+1}, it follows that x has no neighbour in any of P_{1}, \ldots, P_{i-1}, and so $y \in V\left(P_{i}\right)$. Since also $y \in V\left(B_{j}\right)$ for some $j \leq i$, it follows that $y \in V\left(B_{i} \cap P_{i}\right)$. Since B_{i} is induced and we may assume that $(x, y) \neq\left(v_{i+1}, y_{i}\right)$, it follows that $x \neq v_{i+1}$, and so $h\left(v_{i+1}\right)>0$ and $h(x)<h\left(v_{i+1}\right)$. Since $h\left(v_{i+1}\right)>0$, also v_{i+1} is a parent of y_{i}, and so $h(x) \leq h\left(y_{i}\right)$. But $h(y) \geq h\left(y_{i}\right)$, and since the levelling is ν-stable and $x y$ is an edge, it follows that y is a parent of x. But this is impossible since the reach of x is greater than the reach of y. This proves that each C_{i} is induced, and so completes the proof of (3).

For $1 \leq j \leq n$, let A_{j} be a monotone path between q_{j} and the shower head z_{0}. Thus A_{j} has length k. For $1 \leq i \leq \nu$, the reach of every vertex in $A_{r_{i}+1}$ is at least $r_{i}+1$, and so is greater than the reach of every vertex in C_{i}; and so there is a path J_{i} formed by the union of D, C_{i}, the edge $q_{r_{i}} q_{r_{i}+1}$, and $A_{r_{i}+1}$.

(4) For $1 \leq i \leq \nu$ the path J_{i} is induced.

Suppose that some J_{t} is not induced, where $1 \leq t \leq \nu$. Consequently some vertex x of $A_{r_{t}+1}$ is adjacent to some vertex y of C_{t}, and $(x, y) \neq\left(q_{r_{t}+1}, q_{r_{t}}\right)$. Choose such a pair x, y with x of minimum height. Since y has height at most ν, it follows that $h(x) \neq h(y)$; and x is not a child of y since the reach of x is greater than the reach of y. Thus x is a parent of y. Let $y \in V\left(P_{j}\right)$ where $j \leq t$. Since x has a neighbour in P_{j}, it follows that the reach of x is at most r_{j+1}; and so $r_{t}<r_{j+1}$. Consequently $t<j+1$, and since $j \leq t$ it follows that $j=t$, and so $y \in V\left(P_{t}\right)$. Let a be the vertex of $A_{r_{t}+1}$ of height 1. Now there are two cases. First suppose that a is nonadjacent to q_{j} for $r_{t}+2 \leq j \leq n$. Let R_{1} be the path formed by the union of C_{t} and the edge $q_{r_{t}} q_{r_{t}+1}$, and let R_{2} be the path formed by the union of the subpath of C_{t} between q_{0}, y, the edge $x y$, and the subpath of $A_{r_{t}+1}$ between $x, q_{r_{t}+1}$. Note that R_{1} is induced by (3), and R_{2} is induced since we chose $x y$ with x of minimum height. Also R_{1} has length at most 2ν, and R_{2} has length one more. This is therefore impossible by (2). Consequently there exists $j>r_{t}+1$ adjacent to a; choose such a value of j, maximum. Let R_{2} be the path formed by the union of C_{t} and the path $q_{r_{t}-}-q_{r_{t}+1^{-}}-a-q_{j}$, and let R_{1} be the path formed by the union of the subpath of C_{t} between q_{0}, y, the edge $x y$, the subpath of $A_{r_{t}+1}$ between x, a, and
the edge $a q_{j}$. In this case R_{2} has length at most $2 \nu+2$, and R_{1} has length one less. Since $j \geq r_{t}+3$ (because G is triangle-free) it follows that both paths are induced, and again this contradicts (2). Thus there is no such t. This proves (4).

Since each J_{i} is induced, it is therefore a jet for the u-bend \mathcal{S}_{1} (and hence an M-jet for \mathcal{S}), of length $k+1+\sum_{1 \leq j<i} \epsilon_{j}+|V(D)|$, and with tail the path D; and since $J_{i} \backslash V(D)$ has length at most $k+2 \nu$, and all vertices of B_{i} have height at most ν, it follows that J_{i} is ν-monotone and 2ν-wasteful (and hence $3 \nu^{2}$-wasteful). The shortest of these jets is J_{1}, and it has length $k+1+|V(D)|$. Let A_{0} be a monotone path between q_{0} and z_{0}; then $A_{0} \cup D$ is also an M-jet, of length $k-2+|V(D)|$ (so, three less than the length of J_{1}). Consequently these M-jets realize a subset of the M-jetset satisfying the theorem. This proves 8.1.
(We no longer need u-bends or sprinklers after this point.) The previous result will have several applications later in the paper. First, let us use it to convert a λ-stable shower into a stable shower.
8.2 Let $\kappa, \tau \geq 0$ and $\nu \geq 2$ be integers, and let $\rho=3^{\nu+2}$. Let G be a triangle-free graph such that G has no hole ν-interval, and $\chi^{\rho}(G) \leq \kappa$. If G admits a ν-incomplete $(\nu+2)$-stable shower with floor of chromatic number more than $\kappa+\tau$, then G admits a ν-incomplete stable shower with floor of chromatic number more than τ.

Proof. Let \mathcal{S} be a ν-incomplete $(\nu+2)$-stable shower $\left(L_{0}, \ldots, L_{k}, s\right)$ in G. Thus $k \geq \nu+2$. Let $j=k-\nu-2$; then L_{i} is stable for $j \leq i<k$. Let $L_{0}=\left\{z_{0}\right\}$. Let X be the set of all vertices $v \in L_{j}$ such that there is an induced path P_{v} of G between v, z_{0} with length $j+1$, such that every vertex in P_{v} different from v belongs to one of L_{0}, \ldots, L_{j-1}. Let $Y=L_{j} \backslash X$. Let X^{\prime} be the set of vertices in L_{k} with an ancestor in X, and Y^{\prime} the set of vertices in L_{k} with an ancestor in Y. Thus $X^{\prime} \cup Y^{\prime}$ is the floor of \mathcal{S}.

Suppose that $\chi\left(G\left[X^{\prime}\right]\right)>\kappa$. For $j \leq i \leq k-1$, let L_{i}^{\prime} be the set of vertices in L_{i} with an ancestor in X. Then

$$
\left(L_{0}, \ldots, L_{j-1}, L_{j}^{\prime}, \ldots, L_{k-1}^{\prime}, L_{k}, s\right)
$$

is a ν-stable shower \mathcal{S}_{1} say, and its floor includes X^{\prime}. This is contained in \mathcal{S}, so \mathcal{S}_{1} is ν-incomplete. Since $\chi\left(G\left[X^{\prime}\right]\right)>\kappa$, there exist $w_{1}, w_{2} \in X^{\prime}$, in the same component of $G\left[X^{\prime}\right]$, with $d_{G}\left(w_{1}, w_{2}\right)>$ $\rho \geq 3^{\nu+2}$. By 8.1 there is a dense subset \mathcal{A} of the jetset of \mathcal{S}_{1} of cardinality ν, and a set $\left\{J_{a}: a \in \mathcal{A}\right\}$ of $(\nu+1)$-monotone jets for \mathcal{S}_{1} realizing \mathcal{A}. Thus for each $a \in \mathcal{A}, J_{a}$ contains exactly one vertex of L_{i} for $0 \leq i<j$, and exactly one vertex in $L_{j}^{\prime}=X$, say x. The subpath of J_{a} between x, z_{0} has length j, and so the subpath R_{a} say of J_{a} between x, s has length $\left|E\left(J_{a}\right)\right|-j$. By definition of X, the path P_{x} exists and has length $j+1$; and since both R_{a}, P_{x} have exactly one vertex in L_{j}, their union $R_{a} \cup P_{x}$ is an induced path between s, z_{0} of length exactly one more than the length of J_{a}. Now both J_{a} and $R_{a} \cup P_{x}$ are jets of \mathcal{S}_{1} and hence of \mathcal{S}. Thus $\mathcal{A}+\{0,1\}$ is a subset of the jetset of \mathcal{S}. But this set consists of at least $\nu+1$ consecutive integers, since \mathcal{A} is dense of cardinality ν; and this is impossible since \mathcal{S} is not ν-complete. This proves that $\chi\left(G\left[X^{\prime}\right]\right) \leq \kappa$.

Consequently $\chi\left(G\left[Y^{\prime}\right]\right)>\tau$. For $0 \leq i \leq j$, let L_{i}^{\prime} be the set of vertices in L_{i} with a descendant in Y, and for $j+1 \leq i \leq k$, let L_{i}^{\prime} be the set of vertices in L_{i} with an ancestor in Y. Then $\left(L_{0}^{\prime}, \ldots, L_{k-1}^{\prime}, L_{k}, s\right)$ is a shower \mathcal{S}^{\prime} say, with floor of chromatic number more than τ since its floor includes Y^{\prime}. This is contained in \mathcal{S}, so \mathcal{S}^{\prime} is ν-incomplete. We claim that \mathcal{S}^{\prime} is stable. For certainly
$L_{j}^{\prime}, \ldots, L_{k-1}^{\prime}$ are stable, since \mathcal{S} is $(\nu+2)$-stable. Suppose that $0 \leq i \leq j-1$ and $y, y^{\prime} \in L_{i}^{\prime}$ are adjacent. Since y has a descendant in Y, there is a path between y and Y of length $j-i$; and since $y^{\prime} \in L_{i}^{\prime}$, there is a path between y^{\prime}, z_{0} of length i. Since G is triangle-free, $y y^{\prime}$ is the only edge between these two paths; and so their union, together with this edge, is an induced path between y, z_{0} of length $j+1$, contradicting that $y \notin X$. This proves that \mathcal{S}^{\prime} is stable; and so the theorem holds. This proves 8.2.

We deduce:

8.3 Let $\tau \geq 0$ and $\nu \geq 2$ be integers, and let $\rho=3^{\nu+2}$. Let G be a triangle-free graph, such that G has no hole ν-interval, and $\chi^{\rho}(G) \leq \kappa$. If $\chi(G)>44 \nu(\kappa+\tau)^{(\nu+1)^{2}}+4 \kappa$, then G admits a ν-incomplete stable shower with floor of chromatic number more than τ.

Proof. By 5.4, there is a ν-incomplete shower $\left(L_{0}, \ldots, L_{k}, s\right)$ in G, with floor of chromatic number more than $\nu(\kappa+\tau)^{(\nu+1)^{2}}$. Then $k>\rho$, since $\nu(\kappa+\tau)^{(\nu+1)^{2}} \geq \kappa$. Since $\rho \geq(\nu+3)(\nu-1)+1$, 6.1 (with $\lambda=\nu+2$) implies that there is a $(\nu+2)$-stable ν-incomplete shower in G with floor of chromatic number more than $\kappa+\tau$, so the result follows from 8.2. This proves 8.3.

The reason for controlling the waste of the jets that are output by 8.1 is that a jet with bounded waste can be covered by a bounded number of monotone paths. More precisely:
8.4 Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a shower in a graph G, and let J be a μ-wasteful jet of \mathcal{S}. Then there is a set of at most $\mu+1$ monotone paths of \mathcal{S} such that every vertex of J in $L_{0} \cup \cdots \cup L_{k-1}$ belongs to one of these paths.

Proof. Choose $d \in V(J)$ such the tail T of J has ends d, s. Then no vertex of T belongs to $L_{0} \cup \cdots \cup L_{k-1}$ except d. Let P be the subpath of J between z_{0}, d, where $z_{0} \in L_{0}$. At most $k-1+\mu$ edges of P have an end not in L_{k}, since the waste of J is at most μ. Let us say the height of an edge $u v$ of P is the maximum of the heights of u, v. Thus at most $k-1+\mu$ edges of P have nonzero height. As P is traversed starting from d, the number of edges in it that have height at least 2 and different from the heights of all previous edges is at least $k-1$, since the difference of the heights of z_{0}, d is $k-1$; and so there are at most μ edges of P that have height 1 or the same nonzero height as some earlier edge. By removing all such edges, we decompose P into at most $\mu+1$ paths each of which is either monotone or a path of $G\left[L_{k}\right]$; and every vertex of P in $L_{0} \cup \cdots \cup L_{k-1}$ belongs to one of these monotone paths. This proves 8.4.

9 Stable showers

From now on, there is no need to consider general showers; we might as well just concern ourselves with stable showers, in view of 8.3 . To complete the proof of 5.1 , we only need to show that if ν, κ, G satisfy the hypotheses of 5.1 then every ν-incomplete stable shower in G has floor with bounded χ, and that is the goal of the remainder of the paper.

We are concerned with a triangle-free graph which admits no hole ν-interval; and we will not need to use induction on ν any more; so from now on we shall fix $\nu \geq 2$, to avoid having to carry it along. We might as well also set $\rho=3^{\nu+2}+4$, for the remainder of the paper, and fix $\kappa \geq 0$. Let us say a graph G is a candidate if G is triangle-free, and admits no hole ν-interval, and $\chi^{\rho}(G) \leq \kappa$. Our eventual goal is to prove that every stable shower in every candidate has floor of bounded χ.

Let \mathcal{S} be a stable shower, with vertex set V, and let M be a mat. For $X \subseteq V$, we denote the set of vertices in M with an ancestor in X by $M(X)$ (and we write $M(v)$ for $M(\{v\})$).

We already defined "containment" for showers, but now we need a different inclusion relation. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower, and let $\mathcal{S}^{\prime}=\left(L_{0}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}\right)$ be a levelling, both in a graph G. We say that \mathcal{S}^{\prime} is a sublevelling of \mathcal{S} if $k^{\prime} \leq k$, and $L_{i}^{\prime} \subseteq L_{i+k-k^{\prime}}$ for $0 \leq i \leq k^{\prime}$.

If $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ is a shower, we define $U(\mathcal{S})$ to be $L_{0} \cup \cdots \cup L_{k-1}$. (Note that this is different from $V(\mathcal{S})$, as we do not include L_{k}.)
9.1 Let G be a candidate. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in G, and let $z_{1}, z_{2} \in U(\mathcal{S})$, either equal or nonadjacent. For $i=1,2$, let \mathcal{S}_{i} be a sublevelling of \mathcal{S} with vertex set V_{i} and head z_{i} respectively, disjoint except possibly $z_{1}=z_{2}$ (more precisely, $V_{1} \cap V_{2}=\left\{z_{1}\right\} \cap\left\{z_{2}\right\}$), and let M_{i} be the base of \mathcal{S}_{i}. Let $\chi\left(M_{1}\right)>\kappa$. Then either

- there are ν induced paths $Q_{0}, \ldots, Q_{\nu-1}$ of $G\left[V_{1} \cup V_{2} \cup L_{k}\right]$ between z_{1}, z_{2}, such that $\left|E\left(Q_{i}\right)\right|=$ $\left|E\left(Q_{0}\right)\right|+i$ for $0 \leq i<\nu$ (and in particular z_{1}, z_{2} are distinct and nonadjacent); or
- $\chi\left(M_{2} \backslash M_{2}(X)\right) \leq 2 \kappa$, where X denotes the set of vertices in $V_{2} \backslash\left\{z_{1}\right\}$ that have a neighbour in $V_{1} \backslash\left\{z_{2}\right\}$; and if $\chi\left(M_{2}\right)>2 \kappa$ then there is a monotone path R of $G\left[V_{1}\right]$ between z_{1} and M_{1} such that $(\nu+1)\left(3 \nu^{2}+1\right) \chi\left(M_{2}(X(R))\right) \geq \chi\left(M_{2}\right)-2 \kappa$, where $X(R)$ denotes the set of vertices in $V_{2} \backslash\left\{z_{1}\right\}$ that have a neighbour in $V(R) \backslash\left\{z_{2}\right\}$.

Proof. Choose a component of $G\left[M_{1}\right]$ with maximum chromatic number; and since this chromatic number is larger than κ, it follows that there are two vertices of this component with distance more than ρ (in G). Consequently there is a path P_{1} with $V\left(P_{1}\right) \subseteq M_{1}$ joining two vertices with distance at least $3^{\nu+2}$ (in G). Choose a minimal such path P_{1}, and let w_{1} be one of its ends. From the minimality of P_{1} it follows that $d_{G}\left(w_{1}, v\right) \leq 3^{\nu+2}$ for every vertex v of P_{1}. (That concludes the role of M_{1} in this proof.)

We may assume that $\chi\left(M_{2}\right)>2 \kappa$, since otherwise the second bullet of the theorem holds. Let C_{2} be a connected induced subgraph of $G\left[M_{2} \backslash N^{\rho}\left[w_{1}\right]\right]$ with $\chi\left(C_{2}\right)>\kappa$. In addition, choose C_{2} with $V\left(C_{2}\right) \cap M_{2}(X)=\emptyset$ if possible, where X denotes the set of vertices in $V_{2} \backslash\left\{z_{1}\right\}$ that have a neighbour in $V_{1} \backslash\left\{z_{2}\right\}$. Every path of G between C_{2} and P_{1} has length at least 3 , since $\rho \geq 3^{\nu+2}+3$. (Now we are finished with M_{2}.)

Let $z_{1} \in L_{h_{1}}$, and for $h_{1} \leq i \leq k$ let L_{i}^{1} be the set of all \mathcal{S}_{1}-descendants of z_{1} in L_{i} with an \mathcal{S}_{1}-descendant in P_{1}. Thus $L_{k}^{1}=V\left(P_{1}\right)$. Let $V_{1}^{\prime}=L_{h_{1}}^{1} \cup \cdots \cup L_{k}^{1}$. Since $G\left[L_{k}\right]$ is connected, there is a path of $G\left[L_{k}\right]$ between $V\left(P_{1}\right)$ and C_{2}; let D be a minimal path of $G\left[L_{k}\right]$ such that one end (say d_{1}) has a neighbour in $V\left(P_{1}\right) \cup L_{k-1}^{1}$ and the other (say d_{2}) has a neighbour in C_{2}.
(1) There is a set \mathcal{A}_{1} of integers, of cardinality at most $\nu+1$, including a dense subset of cardinality ν, and containing two integers x, y with $y-x \in\{1,3\}$, such that the following holds. For each $a \in \mathcal{A}_{1}$ there is an induced path J_{a} of G between d_{1}, z_{1} of length a, such that

- $V\left(J_{a}\right) \subseteq V_{1}^{\prime} \cup\left\{d_{1}\right\} ;$ and
- there is a set of $3 \nu^{2}+1$ monotone paths of $G\left[V_{1}^{\prime}\right]$ between $V\left(P_{1}\right)$ and z_{1}, such that every vertex of $V\left(J_{a}\right) \backslash\left(V\left(P_{1}\right) \cup\left\{d_{1}\right\}\right)$ belongs to one of these paths.

Let D_{1} be the one-vertex path with vertex d_{1}. If d_{1} has no neighbour in $V\left(P_{1}\right)$, then

$$
\left(L_{h_{1}}^{1}, \ldots, L_{k}^{1}, D_{1}\right)
$$

is a w-bend \mathcal{S}_{1}^{\prime} of size at least $3^{\nu+2}$; and otherwise $\left(L_{h_{1}}^{1}, \ldots, L_{k}^{1} \cup\left\{d_{1}\right\}, d_{1}\right)$ is a shower \mathcal{S}_{1}^{\prime}. In either case we can apply 8.1 to \mathcal{S}_{1}^{\prime}, and deduce that there is a subset \mathcal{A}_{1} of the jetset of \mathcal{S}_{1}^{\prime}, of cardinality at most $\nu+1$, including a dense subset of cardinality ν, and containing two integers x, y with $y-x \in\{1,3\}$; and realized by a set of jets of \mathcal{S}_{1}^{\prime} that are $3 \nu^{2}$-wasteful. By 8.4, this proves (1).

Since $\left|\mathcal{A}_{1}\right| \leq \nu+1$, there is a set of at most $(\nu+1)\left(3 \nu^{2}+1\right)$ monotone paths of $G\left[V_{1}^{\prime}\right]$ between $V\left(P_{1}\right)$ and z_{1} such that, if Y denotes the set of vertices in these paths, then $V\left(J_{a}\right) \subseteq Y \cup V\left(P_{1}\right) \cup\left\{d_{1}\right\}$ for each $a \in \mathcal{A}_{1}$. Let X^{\prime} denote the set of vertices in $V_{2} \backslash\left\{z_{1}\right\}$ that have a neighbour in $Y \backslash\left\{z_{2}\right\}$. Let h_{2} be such that $z_{2} \in L_{h_{2}}$, and for $h_{2} \leq i \leq k$ let L_{i}^{2} be the set of vertices $v \in L_{i}$ such that there is a monotone path of $G\left[V_{2} \backslash X^{\prime}\right]$ between $z_{2}, V\left(C_{2}\right)$ containing v. It follows that no vertex in $Y \backslash\left\{z_{2}\right\}$ has a neighbour in $\left(L_{h_{2}}^{2} \cup \cdots \cup L_{k}^{2}\right) \backslash\left\{z_{1}\right\}$, and $V\left(C_{2}\right) \backslash M_{2}\left(X^{\prime}\right) \subseteq L_{k}^{2}$.
(2) If $\chi\left(L_{k}^{2}\right)>\kappa$ then the first bullet of the theorem holds.

For then there exists an induced path P_{2} of $G\left[L_{k}^{2}\right]$ with ends at distance at least ρ. Since d_{2} has a neighbour in C_{2}, it follows that $G\left[V\left(C_{2}\right) \cup V(D)\right]$ is connected. Thus

$$
\left(\left\{z_{2}\right\}, L_{h_{2}+1}^{2}, \ldots, L_{k-1}^{2}, V\left(C_{2}\right) \cup V(D), d_{1}\right)
$$

is a shower \mathcal{S}_{2}^{\prime}, and L_{k}^{2} is a mat; and by 8.1, there is a dense subset \mathcal{A}_{2} of the L_{k}^{2}-jetset of \mathcal{S}_{2}^{\prime} of cardinality ν. We claim that $\mathcal{A}_{1}+\mathcal{A}_{2}$ contains a set \mathcal{B} of ν consecutive integers. To see this, suppose first that there are two consecutive integers $a, a+1 \in \mathcal{A}_{2}$. Let \mathcal{A}^{\prime} be a dense subset of \mathcal{A}_{1} of cardinality ν; then $\mathcal{A}^{\prime}+\{a, a+1\}$ consists of at least $\nu+1$ consecutive integers, all contained in $\mathcal{A}_{1}+\mathcal{A}_{2}$ as required. We may assume that that no two members of \mathcal{A}_{2} are consecutive. Since \mathcal{A}_{2} is dense of cardinality ν, there exists s such that $s, s+2, s+4, \ldots, s+2(\nu-1) \in \mathcal{A}_{2}$. But there exist $x, y \in \mathcal{A}_{1}$ with $y-x \in\{1,3\}$; and then

$$
\{s, s+2, s+4, \ldots, s+2(\nu-1)\}+\{x, y\}
$$

contains ν consecutive integers (indeed, almost 2ν). This proves that \mathcal{B} exists.
If $z_{1}=z_{2}$ then for every $J_{a}\left(a \in \mathcal{A}_{1}\right)$ and every L_{k}^{2}-jet of \mathcal{S}_{2}^{\prime}, their union is a hole; and so G has holes of every length in \mathcal{B}, and so has a hole ν-interval, which is impossible since G is a candidate. Thus $z_{1} \neq z_{2}$, and so they are nonadjacent; but then for every $J_{a}\left(a \in \mathcal{A}_{1}\right)$ and every L_{k}^{2}-jet of \mathcal{S}_{2}^{\prime}, their union is an induced path between z_{1}, z_{2}, and so the first bullet of the theorem holds. This proves (2).

We may therefore assume that $\chi\left(L_{k}^{2}\right) \leq \kappa$, and we will show that the second bullet of the theorem holds. Consequently $V\left(C_{2}\right) \nsubseteq L_{k}^{2}$, and therefore $V\left(C_{2}\right) \cap M_{2}\left(X^{\prime}\right) \neq \emptyset$. From the choice
of C_{2}, it follows that $\chi\left(M_{2} \backslash M_{2}(X)\right) \leq 2 \kappa$ (for otherwise we could have chosen C_{2} with $V\left(C_{2}\right) \subseteq$ $\left.M_{2} \backslash\left(M_{2}(X) \cup N^{\rho}\left[w_{1}\right]\right)\right)$. This proves the first statement of the second bullet.

We can choose C_{2} such that $\chi\left(C_{2}\right) \geq \chi\left(M_{2}\right)-\kappa$, and since $V\left(C_{2}\right) \backslash M_{2}\left(X^{\prime}\right) \subseteq L_{k}^{2}$ and $\chi\left(L_{k}^{2}\right) \leq \kappa$, it follows that $\chi\left(V\left(C_{2}\right) \cap M_{2}\left(X^{\prime}\right)\right) \geq \chi\left(M_{2}\right)-2 \kappa$, and consequently $\chi\left(V\left(C_{2}\right) \cap M_{2}(X)\right) \geq \chi\left(M_{2}\right)-2 \kappa$. Thus, one of the $(\nu+1)\left(3 \nu^{2}+1\right)$ monotone paths satisfies the second statement of the second bullet. This proves 9.1.
(We will not need w-bends after this point.) There is a special case of 9.1 that we will use several times, and we extract it to make application easier.
9.2 Let G be a candidate. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in G, and let $z_{1} \in U(\mathcal{S})$. Let A, B be disjoint sets of children of z_{1}. Let M be a mat for \mathcal{S}, and suppose that $\chi(M(B) \backslash M(A))>\kappa$. Then $\chi(M(A) \backslash M(B)) \leq 2 \kappa$, and if $\chi(M(A))>2 \kappa$, then there is a monotone path R between $B, M(B) \backslash M(A)$ such that $(\nu+1)\left(3 \nu^{2}+1\right) \chi(M(X)) \geq \chi(M(A))-2 \kappa$, where X denotes the set of vertices with a parent in $V(R)$ and an \mathcal{S}-ancestor in A and an \mathcal{S}-descendant in $M(A)$.

Proof. Let \mathcal{S}_{1} be the maximal sublevelling of \mathcal{S} with head z_{1} such that for every vertex $v \neq z_{1}$ of its vertex set, v has an \mathcal{S}-ancestor in B and has an \mathcal{S}-descendant in $M(B) \backslash M(A)$ (and hence has no \mathcal{S}-ancestor in A); and let \mathcal{S}_{2} be the maximal sublevelling of \mathcal{S} with head z_{1} such that every vertex of its vertex set except z_{1} has an \mathcal{S}-ancestor in A and an \mathcal{S}-descendant in $M(A)$. Let their vertex sets be V_{1}, V_{2} respectively. Then $V_{1} \cap V_{2}=\left\{z_{1}\right\}$, and no vertex in V_{1} has a parent in $V_{2} \backslash\left\{z_{1}\right\}$. Also $M(B) \backslash M(A)$ is the base of \mathcal{S}_{1}, and $M(A)$ is the base of \mathcal{S}_{2}. By 9.1 , the result follows. This proves 9.2.
9.3 Let G be a candidate. Let $\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in G, let $z_{1} \in L_{0} \cup \cdots \cup L_{k-1}$, let Y be a subset of the set of children of z_{1}, and let $M \subseteq L_{k}$ such that every vertex in M has an ancestor in Y. If

$$
\chi(M)>\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa,
$$

then there exists $z_{2} \in Y$ such that $\chi\left(M\left(z_{2}\right)\right) \geq \chi(M)-\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa$.
Proof. Let $\tau=\chi(M)-\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa$, and choose $A \subseteq Y$ minimal such that $\chi(M(A)) \geq$ $2 \kappa+\tau$. Suppose that $\chi(M(A)) \geq 3 \kappa+\tau$, and choose $z_{2} \in A$; then from the minimality of A, $\chi\left(M\left(A \backslash\left\{z_{2}\right\}\right)\right)<2 \kappa+\tau$, and so

$$
\chi\left(M\left(z_{2}\right) \backslash M\left(A \backslash\left\{z_{2}\right\}\right)\right)>\kappa
$$

By 9.2 applied to $A \backslash\left\{z_{2}\right\}$ and $\left\{z_{2}\right\}$, it follows that $\chi\left(M(A) \backslash M\left(z_{2}\right)\right) \leq 2 \kappa$; and since $\chi(M(A)) \geq$ $2 \kappa+\tau$, it follows that $\chi\left(M\left(z_{2}\right)\right) \geq \tau$, as required.

We may assume therefore that $\chi(M(A))<3 \kappa+\tau$. Let $\mu=(\nu+1)\left(3 \nu^{2}+1\right) \kappa$; then

$$
\chi(M)=\tau+\mu+7 \kappa \geq \chi(M(A))+\mu+4 \kappa
$$

so we may choose $B \subseteq Y$ with $A \subseteq B$, minimal such that $\chi(M(B))>\chi(M(A))+\mu+2 \kappa$. Again, by the same argument, we may assume that

$$
\chi(M(B)) \leq \chi(M(A))+\mu+3 \kappa<\tau+\mu+6 \kappa
$$

and since $\chi(M)=\tau+\mu+7 \kappa$, it follows that $\chi(M \backslash M(B))>\kappa$. Since $\chi(M(B))>2 \kappa, 9.2$ applied to the mat $M \backslash M(A)$ and the sets $B, Y \backslash B$, implies that there is a monotone path R between $Y \backslash B, M \backslash M(B)$ such that

$$
(\nu+1)\left(3 \nu^{2}+1\right) \chi(M(X) \backslash M(A)) \geq \chi(M(B) \backslash M(A))-2 \kappa>\mu=(\nu+1)\left(3 \nu^{2}+1\right) \kappa
$$

and so $\chi(M(X) \backslash M(A))>\kappa$, where X denotes the set of vertices with a parent in $V(R)$ and an \mathcal{S}-ancestor in B and an \mathcal{S}-descendant in $M(B) \backslash M(A)$. Let z_{2} be the vertex of this path in $Y \backslash B$; then

$$
\chi\left(M\left(z_{2}\right) \backslash M(A)\right)>\kappa .
$$

By 9.2 again, applied to the mat M and the sets $A,\left\{z_{2}\right\}$, it follows that $\chi\left(M(A) \backslash M\left(z_{2}\right)\right) \leq 2 \kappa$. Since $\chi(M(A)) \geq 2 \kappa+\tau$, it follows that $\chi\left(M\left(z_{2}\right)\right) \geq \tau$. This proves 9.3.

10 What is going on?

It might be helpful at this stage to make some general remarks about where the proof is going. Look at some vertex $z_{i} \in L_{i}$, such that the set of descendants of z_{i} has large chromatic number. By 9.3 there is a child z_{i+1} of z_{i} whose descendants have chromatic number almost as large (reduced by an additive constant); and 12.1 tells us that the set of vertices in the base that are descendants of z_{i} and not of z_{i+1} has bounded chromatic number. This suggests that we start with $z_{0} \in L_{0}$, and generate a sequence z_{1}, \ldots, z_{t} as above, until it stops. This sequence induces a useful partition of $V(G)$; for each i we look at the descendants of z_{i} that are not descendants of z_{i+1}. If v is a descendant of z_{i} and not z_{i+1}, say the "reach" of v is i. So the set of vertices in M with any given reach has bounded chromatic number, and we would like to exploit the partition given by the reach numbers. (This is the start of the proof of 12.9.)

For each vertex $v \in M$ with reach i, there is an induced path from v to z_{i} such that all its vertices have reach i; we call such paths "vertical" (they are monotone, but not all monotone paths are vertical). Follow this vertical path from v until it first contains a neighbour x of some z_{j}; then x might have just a parent in $\left\{z_{0}, \ldots, z_{t}\right\}$, or just a child in this set, or both. Thus M is divided into three parts, and we will bound their chromatic numbers separately. For vertices v such that the corresponding x has both a parent and child, it follows that x is adjacent to z_{i}, z_{i+2}, and so x is in some sense a copy of z_{i+1}; and to handle such vertices x, we replace the sequence $z_{0}, z_{1}, \ldots, z_{t}$ by a sequence of sets of vertices, each complete to the next. This sequence of sets is called a "wand", but for this sketch let us confine ourselves to wands where all the sets are singletons. (We only use the more general wands once, in the proof of 12.9.) It remains to handle the x 's with only a parent in $\left\{z_{0}, \ldots, z_{t}\right\}$, and those with only a child.

The ones with only a child are suggestive. Suppose that the corresponding set of vertices in M has large chromatic number. Delete everything except z_{0}, \ldots, z_{t} and the vertical paths that lead to vertices x of this "only-a-child" type. Then we get a new shower, still with big χ, and all distances from z_{0} to vertices not in the wand are two more than before. (This is called "raising the wand"). We would like to say that if in this smaller shower we can guarantee some jetset \mathcal{A} (up to shifting), then in the original shower we can guarantee $\mathcal{A}+\{0,2\}$. Unfortunately this does not seem to be true; but if in the smaller shower there is a wand that can be raised to get a third shower still with big χ,
this third shower has the property we want. Since in the third shower we can at least get two jets whose lengths differ by 1 or 3 by 8.1 , we can now get two jets that differ by one in the first shower. If in this third shower we can again find a wand giving us the same situation, we could get three jets of consecutive lengths in the original shower, and this cannot go on arbitrarily, or we would get many jets of consecutive lengths in the big shower and win. More precisely, let $\sigma \leq \nu$ be maximum such that every stable shower with large enough χ has σ jets of consecutive lengths. Our goal is to prove that $\sigma=\nu$, so we assume not, and assume we have a shower with large χ in which there are no $\sigma+1$ jets of consecutive lengths. Then it follows that raising any wand gives a shower in which raising another wand gives a shower with bounded χ. So we might as well assume that that we have a shower with large χ in which raising any wand gives bounded χ. The details are in 13.4. This is how we manage the "only-a-child" type x 's.

To handle the "only-a-parent" x 's is more complicated. The idea is that we partition the set of possible reach values into a few intervals, such that the vertices in M with reach in each interval have large chromatic number. The vertices in each interval can all be accessed from the corresponding z_{i} by a vertical path, and the vertical paths for different intervals are disjoint, and we know a great deal about the edges between them. (In particular, since we are in the "only-a-parent" case, nothing bad happens very close to the wand.) That allows us to apply 9.1 to obtain a contradiction. For instance, suppose we divide into two intervals, splitting M into two large χ subsets. We apply 9.1. The second outcome of 9.1, involving a monotone path R, is impossible, because the vertices of R would have larger reach than the vertices in the other sublevelling (the set V_{2} of 9.1) and so all vertices in V_{2} with a neighbour in R would have a child and not a parent in R, and then we could treat R as a wand and raise it to get a contradiction. Thus the first outcome of 9.1 must always hold, and we are equipped with a set of paths joining the two shower heads with many different but similar lengths. We can do this simultaneously with different pairs of sets if we partition M into several parts instead of just two; and we can chain two of these objects together, to get many paths of consecutive lengths, in such a way that these paths can be completed to holes of many consecutive lengths. This is the argument of section 11 .

11 Shower completeness

To go further we use a global induction that we explain next. For $n \geq 2$, a set of integers is n-solid if some subset consists of n consecutive integers. It is 1 -solid if it contains two integers that differ by 1 or 3 . A key observation is that if a set \mathcal{A} of integers is n-solid where $n>0$, then $\mathcal{A}+\{0,2\}$ is ($n+1$)-solid. Let us say a shower is n-complete over a mat M if its M-jetset is n-solid. (For $n \geq 2$ this agrees with our earlier definition.) Now 8.1 implies that in every candidate, all stable showers with a mat M of large enough chromatic number are 1-complete over M; and as we have seen, to finish the proof of our main theorem 5.1 we only need to show that all stable showers with a mat M of large enough chromatic number are ν-complete over M. The induction just mentioned is that we assume that for some $\sigma>0$, all stable showers with a mat M of large enough chromatic number are σ-complete over M; and we will prove the same with σ replaced by $\sigma+1$.

For $\sigma>0$, let us say an integer $\zeta \geq 0$ is a sidekick for σ if for every candidate G, and every stable shower \mathcal{S} in G, \mathcal{S} is σ-complete over M for every mat M for \mathcal{S} with chromatic number more than ζ.

Next we need another inclusion relation for showers, as follows. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower, with vertex set V, and let $\mathcal{S}^{\prime}=\left(L_{0}^{\prime}, \ldots, L_{k^{\prime}}^{\prime}, s^{\prime}\right)$ be a shower, both in a graph G. Let
P be an induced path of $G[V]$ between L_{0}, L_{0}^{\prime}. Suppose that

- $s=s^{\prime} ;$
- $L_{0}^{\prime}, \ldots, L_{k^{\prime}-1}^{\prime} \subseteq L_{0} \cup \cdots \cup L_{k-1}$;
- $L_{k^{\prime}}^{\prime} \subseteq L_{k}$; and
- no vertex of P belongs to $L_{1}^{\prime} \cup \cdots \cup L_{k^{\prime}}^{\prime}$, and no vertex of P has a neighbour in this set except the vertex in L_{0}^{\prime}.

In this situation we say that \mathcal{S}^{\prime} is included in \mathcal{S}, and P is a pipe. Note that there may be vertices u, v such that v is a child of u in \mathcal{S}, and u is a child of v in \mathcal{S}^{\prime}. Nevertheless, it follows that \mathcal{S}^{\prime} is a stable shower, because the subgraph induced on $L_{0} \cup \cdots \cup L_{k-1}$ is bipartite.

Let \mathcal{S}^{\prime} be included in \mathcal{S}, with a pipe P. For every jet J of $\mathcal{S}^{\prime}, J \cup P$ is a jet of \mathcal{S}; and consequently, if the jetsets of the two showers are $\mathcal{A}, \mathcal{A}^{\prime}$ respectively then $\mathcal{A}^{\prime}+\{|E(P)|\} \subseteq \mathcal{A}$. Thus if \mathcal{S}^{\prime} is n complete for some n, then so is \mathcal{S}. If M, M^{\prime} are mats for $\mathcal{S}, \mathcal{S}^{\prime}$ respectively, and $M^{\prime} \subseteq M$, then for every M^{\prime}-jet J of $\mathcal{S}^{\prime}, J \cup P$ is an M-jet of \mathcal{S}; and so the same relation holds between the M - and M^{\prime}-jetsets of the two showers. Note that the floor of \mathcal{S}^{\prime} is a subset of the floor of \mathcal{S}, but for an individual vertex v, there may be \mathcal{S}^{\prime}-descendants of v that are not \mathcal{S}-descendants. (This is not the case for sublevellings.)

Let \mathcal{S}^{\prime} be included in \mathcal{S}. We say a switch for \mathcal{S}^{\prime} in \mathcal{S} is a pair $\left(P_{1}, P_{2}\right)$ of pipes such that $\left|E\left(P_{2}\right)\right|=\left|E\left(P_{1}\right)\right|+2$.
11.1 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower in a candidate G, and let \mathcal{S} include a shower \mathcal{S}^{\prime}. Let M, M^{\prime} be mats for $\mathcal{S}, \mathcal{S}^{\prime}$ respectively, with $M^{\prime} \subseteq M$. If \mathcal{S} is not $(\sigma+1)$-complete over M, and $\chi\left(M^{\prime}\right)>\zeta$, then there is no switch for \mathcal{S}^{\prime} in \mathcal{S}.

Proof. Let $\mathcal{S}, \mathcal{S}^{\prime}$ have heads z_{0}, z_{1} respectively, and suppose that $\left(P_{1}, P_{2}\right)$ is a switch for \mathcal{S}^{\prime} in \mathcal{S}. Let \mathcal{A} be the M-jetset of \mathcal{S}, and let \mathcal{A}^{\prime} be the M^{\prime}-jetset of \mathcal{S}^{\prime}. As we saw above,

$$
\mathcal{A}^{\prime}+\left\{\left|E\left(P_{1}\right)\right|,\left|E\left(P_{1}\right)\right|+2\right\} \subseteq \mathcal{A} .
$$

Since $\chi\left(M^{\prime}\right)>\zeta$ and ζ is a sidekick for σ, it follows that \mathcal{S}^{\prime} is σ-complete over M^{\prime}. Consequently $\mathcal{A}^{\prime}+\left\{\left|E\left(P_{1}\right)\right|, \mid E\left(P_{1}\right)+2\right\}$ is $(\sigma+1)$-complete, and hence so is \mathcal{A}, a contradiction. This proves 11.1.

12 The shadow of a wand

Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower. A wand \mathcal{W} in \mathcal{S} is a sequence $\left(W_{0}, \ldots, W_{t}\right)$ with the following properties:

- $0 \leq t \leq k-2$;
- $\emptyset \neq W_{i} \subseteq L_{i}$ for $0 \leq i \leq t$; and
- every vertex in W_{i} is adjacent to every vertex in W_{i+1} for $0 \leq i \leq t-1$.

We define $V(\mathcal{W})=W_{0} \cup \cdots \cup W_{t}$.
Let $\left(W_{0}, \ldots, W_{t}\right)$ be a wand \mathcal{W} in \mathcal{S}. If $u \in W_{i}$ for some i, we say that a neighbour v of u is an up-neighbour of u (relative to \mathcal{W}) if

- $v \notin V(\mathcal{W})$;
- $v \in L_{i-1}$ (and therefore $i \geq 2$); and
- every neighbour of v in $V(\mathcal{W})$ belongs to W_{i} (and therefore $i \geq 3$).

For $0 \leq i \leq t-1$, let T_{i} be the set of all vertices $v \in L_{i}$ such that v is an up-neighbour of some vertex in W_{i+1}. Let $T=T_{0} \cup \cdots \cup T_{t-1}$. For $v \in T$, a post with top v (in \mathcal{S} for \mathcal{W}) is a monotone path between v and L_{k} such that no vertex of this path has a parent in $V(\mathcal{W})$ (and consequently no vertex of this path belongs to $V(\mathcal{W})$). A post with top v therefore provides an induced path between each neighbour (u say) of v in $V(\mathcal{W})$ and L_{k}, of length two more than a monotone path between u and L_{k}, and both paths can be extended to induced paths between L_{0} and L_{k} by adding a path with vertex set within $V(\mathcal{W})$. We shall exploit this later. For $0 \leq i \leq k$, let S_{i} be the set of all vertices $v \in L_{i}$ that belong to a post with top in T. (Thus $S_{i} \subseteq L_{i} \backslash V(\mathcal{W})$, and $S_{0}=\emptyset$.) If M is a mat for \mathcal{S}, we call $M \cap S_{k}$ the shadow (in \mathcal{S}, over M) of the wand.

Showers in which no wand shadow has large χ are easier to work with than general showers. In this section we prove that their mats have bounded chromatic number. The proof requires several steps. We begin with:
12.1 Let \mathcal{S} be a stable shower with mat M in a candidate G, such that every wand in \mathcal{S} has shadow over M with chromatic number at most τ. Let $z \in U(\mathcal{S})$, and let A, B be disjoint sets of children of z. If $\chi(M(A))>\kappa$ then $\chi(M(B) \backslash M(A)) \leq(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa)+2 \kappa$.

Proof. Suppose not. Let \mathcal{S}_{1} be a sublevelling of \mathcal{S} with head z and base $M(A)$ such that every vertex in its vertex set (V_{1} say) except z has an \mathcal{S}-ancestor in A; and let \mathcal{S}_{2} be a sublevelling of \mathcal{S} with head z and base $M(B) \backslash M(A)$ such that every vertex in its vertex set (V_{2} say) except z has an \mathcal{S}-ancestor in B and has no \mathcal{S}-ancestor in A. Thus $V_{1} \cap V_{2}=\{z\}$, and no vertex in V_{2} has a parent in $V_{1} \backslash\{z\}$. By 9.1, since $\chi(M(A))>\kappa$ and $\chi(M(B) \backslash M(A))>2 \kappa$, there is a monotone path R of $G\left[V_{1}\right]$ between z and $M(A)$ with the following property. Let X denote the set of vertices in $V_{2} \backslash\{z\}$ that have a neighbour in $V(R) \backslash\{z\}$; then the set Y of vertices in $M(B) \backslash M(A)$ with an ancestor in X satisfies

$$
(\nu+1)\left(3 \nu^{2}+1\right) \chi(Y) \geq \chi(M(B) \backslash M(A))-2 \kappa>(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa),
$$

and consequently $\chi(Y)>\tau+\kappa$.
Now no vertex of R different from z belongs to or has a child in V_{2}, and so, since $X \subseteq V_{2}$, every vertex in X has a child in $V(R)$. Let y be the vertex of R with height two, and let R^{\prime} be the subpath of R between z, y. Let X_{1} be the set of vertices in X with a child in R^{\prime}, and let X_{2} be the set of vertices in X with a child in R with height at most one. Thus $X=X_{1} \cup X_{2}$. Let P be the union of R^{\prime} and a monotone path between L_{0} and z. The vertices of P in order form a wand, and every vertex in X_{1} is an up-neighbour of a vertex of this wand. Consequently the set of \mathcal{S}_{2}-descendants in M of X_{1} is a subset of the shadow in \mathcal{S} over M of this wand, and so has chromatic number at most τ. But every vertex in M with an ancestor in X_{2} is at distance at most three from the penultimate vertex of R, and in particular the set of descendants in M of X_{2} has chromatic number at most κ. Consequently $\chi(M(X)) \leq \tau+\kappa$, a contradiction since $Y \subseteq M(X)$. This proves 12.1.

Let \mathcal{S} be a stable shower in a candidate G, and let $\xi \geq 0$ be an integer. A wand $\mathcal{W}=\left(W_{0}, \ldots, W_{t}\right)$ is said to be ξ-diagonal if

- every vertex of $U(\mathcal{S})$ with a child in $V(\mathcal{W})$ belongs to $V(\mathcal{W})$; and
- for $0 \leq i \leq t$, the set of vertices in M that have an ancestor in W_{i} and no ancestor in W_{i+1} has chromatic number at most ξ (where $W_{t+1}=\emptyset$).

Next we need some results about showers that admits ξ-diagonal wands, where ξ is bounded. Before we do so, let us set up some notation for these things.

If $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ with mat M, and \mathcal{W} is a ξ-diagonal wand $\left(W_{0}, \ldots, W_{t}\right)$ in \mathcal{S}, then for every vertex v of $U(\mathcal{S}) \cup M$, there is a maximum $i \leq t$ such that W_{i} contains an ancestor of v. We call this number i the reach of v (with respect to \mathcal{W}). Let $U=U(\mathcal{S})$, and for $0 \leq i \leq t$ let M_{i} and U_{i} be the sets of all vertices with reach i in M and in U, respectively. It follows that no member of U_{j} has a child in U_{i} if $i<j$. Let $M_{i}=U_{i}=W_{i}=\emptyset$ for $t+1 \leq i \leq k-2$.
12.2 Let \mathcal{S} be a stable shower with mat M in a candidate G, such that the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let $\mathcal{W}=\left(W_{0}, \ldots, W_{t}\right)$ be a ξ-diagonal wand, and let P be a monotone path between M and $V(\mathcal{W})$, with no vertex in $V(\mathcal{W})$ except one end. Let $0 \leq a \leq t$, and let $X=\cup_{0 \leq i<a}\left(U_{i} \cup M_{i}\right)$ and $Y=\cup_{a<i \leq t}\left(U_{i} \cup M_{i}\right)$. Suppose that $V(P) \subseteq Y$. Let $X(P)$ be the set of vertices in $X \backslash V(\mathcal{W})$ with a neighbour in $V(P)$. Then the set of vertices in $M \cap X$ with an ancestor in $X(P)$ has chromatic number at most $\tau+\kappa$.

Proof. Let P have vertices $p_{h^{-}} \cdots-p_{k}$ in order, where $p_{i} \in L_{i}$ for $h \leq i \leq k$, and $p_{h} \in W_{h}$, and therefore $a<h$. Let Z_{1}, Z_{2} respectively be the sets of all $v \in X(P)$, such that

- v has a neighbour in $\left\{p_{h}, \ldots, p_{k-2}\right\}$;
- v has a neighbour in $\left\{p_{k}, p_{k-1}\right\}$.

If $v \in Z_{1}$, then v has no parent in $V(P)$ from the definition of "reach". Suppose that v has a parent in $W_{0} \cup \cdots \cup W_{h-1}$. Then since $v \in N(P)$, it has a neighbour in one of W_{h-1}, W_{h-2}. But v is not a parent of p_{h} since $v \notin V(\mathcal{W})$, so v has no neighbour in W_{h-2}. Thus v has a parent in W_{h-1}, and so has reach at least $h-1$. But $h-1 \geq a$, contradicting that $v \in Z_{1}$. This proves that every vertex in Z_{1} is an up-neighbour of the wand

$$
\left(W_{0}, \ldots, W_{h-1},\left\{p_{h}\right\},\left\{p_{h+1}\right\}, \ldots,\left\{p_{k-2}\right\}\right) .
$$

Moreover, if R is a monotone path between some $v \in Z_{1}$ and $M \cap X$, then $V(R) \subseteq X$ from the definition of "reach", and so no vertex of R has a parent in this wand. Consequently every vertex in $M \cap X$ with an ancestor in Z_{1} belongs to the shadow in \mathcal{S} of this wand over M, and so the set of such vertices has chromatic number at most τ.

If $v \in Z_{2}$ then v has height at most two, and so every descendant of Z_{2} in M has distance at most three from p_{k-1}. Since $\rho>3$ it follows that the set of such descendants has chromatic number at most κ. Summing, this proves 12.2.

A monotone path is vertical if for some i, all its vertices belong to $M_{i} \cup U_{i}$. Note that, if P is a monotone path between some vertex in M_{h} and some vertex in W_{h}, then P is vertical. If $X \subseteq U \cup M$, the set of vertices in M joined to a vertex in X by a vertical path is denoted by $X \downarrow M$. The previous result 12.2 told us about the chromatic number of the descendants of vertices with neighbours in a monotone path, when we confine ourselves to vertices with smaller reach than the vertices of the path (actually, reach smaller by at least two). The next result does the same when we confine ourselves to larger reach; except we can only handle descendants reachable by vertical paths, not general descendants.
12.3 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not ($\sigma+1$)-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let $\mathcal{W}=\left(W_{0}, \ldots, W_{t}\right)$ be a ξ-diagonal wand, and let P be a monotone path between M and $V(\mathcal{W})$, with no vertex in $V(\mathcal{W})$ except one end. Let $0 \leq a \leq t$, and let $X=\cup_{0 \leq i<a}\left(U_{i} \cup M_{i}\right)$ and $Y=\cup_{a<i \leq t}\left(U_{i} \cup M_{i}\right)$. Suppose that with notation as above, $V(P) \subseteq X$. Let $Y(P)$ be the set of vertices in $Y \backslash V(\mathcal{W})$ with a neighbour in $V(P)$. Then $\chi(Y(P) \downarrow M) \leq 2 \zeta+2 \xi+\kappa$.

Proof. Let P have vertices $p_{h^{-}} \cdots-p_{k}$ in order, where $p_{i} \in L_{i}$ for $h \leq i \leq k$, and $p_{h} \in W_{h}$, and therefore $h<a$.

Let $M_{0}=Y(P) \cap M$. Every vertex in M_{0} is adjacent to one of p_{k-1}, p_{k}, so $\chi\left(M_{0}\right) \leq \kappa$. We may therefore assume that there are vertices in $Y(P) \cap U$ with reach greater than a, and so there exists $i \in\{h, \ldots, k\}$ such that some neighbour y of p_{i} belongs to $Y(P) \cap U$ and has reach greater than a. Choose i minimum with this property. Now y is not a parent of p_{i} from the definition of "reach", and since $y \in U$ it follows that $i<k$ and $p_{i} \in U$. Consequently y is a child of p_{i}, and so $i \leq k-2$. Let $y \in U_{j_{1}}$; and we may assume that y is chosen with j_{1} maximum. The height of y is at most $k-j_{1}-1$, and so the height of p_{i} is at most $k-j_{1}$, that is, $i \geq j_{1}$. In particular, since $j_{1}>a$ and $h<a$, it follows that $i \geq h+2$. If possible, let $j_{2} \in\{h+2, \ldots, t\}$ be maximum such that p_{i+1} has a child in $U_{j_{2}} \backslash W_{j_{2}}$, and otherwise j_{2} is undefined.

Let Q be a vertical path between y and $W_{j_{1}}$, and let y^{\prime} be the neighbour of y in Q. Then p_{i} has no neighbour in $V(Q)$ except y. Let \mathcal{S}_{1} be the maximal sublevelling of \mathcal{S} with head p_{i} and with base a subset of M, such that no child of y or y^{\prime} belongs to $U\left(\mathcal{S}_{1}\right)$. Let M^{1} be its base. For $0 \leq j \leq j_{1}$, let $c_{j} \in W_{j}$, where $c_{h}=p_{h}$ and $c_{j_{1}} \in V(Q)$. Consequently $c_{0} \cdots-c_{h}-p_{h+1} \cdots-p_{i}$ and $c_{0^{-}} \cdots-c_{j}-Q-y-p_{i}$ are both induced paths, and so the pair forms a switch for \mathcal{S}_{1}. From 11.1, it follows that $\chi\left(M^{1}\right) \leq \zeta$.

If j_{2} is defined let $y^{\prime \prime}$ be a child of p_{i+1} in $U_{j_{2}}$, and let M^{2} be the set of vertices $v \in M$ such that there is a monotone path of \mathcal{S} between v, p_{i+1} containing no child of $y^{\prime \prime}$ or of an appropriate parent of $y^{\prime \prime}$; then similarly, $\chi\left(M^{2}\right) \leq \zeta$. If j_{2} is undefined let $M^{2}=\emptyset$.

Let M^{3} be the set of all $v \in(Y(P) \cap U) \downarrow M$ such that $v \notin M^{1} \cup M^{2}$. Let $v \in M^{3}$ and let R be a vertical path between v and $u \in Y(P) \cap U$ say. Thus u is therefore a child of $p_{i^{\prime}}$ for some i^{\prime} with $i \leq i^{\prime} \leq k-2$. By adding the edge $u p_{i^{\prime}}$ and the path $p_{i^{-} \cdots-p_{i^{\prime}}}$, we obtain a monotone path between p_{i} and v. Since $v \notin M^{1}$, this path contains a child of one of y, y^{\prime}. Now no vertex of P is a child of y or y^{\prime} by the definition of "reach", and so this child belongs to R; and since $y, y^{\prime} \in L_{i} \cup L_{i+1}$, some vertex of R belongs to L_{i+2}, and therefore $i^{\prime} \leq i+1$. On the other hand, $i^{\prime} \geq i$; so there are two cases, $i^{\prime}=i$ and $i^{\prime}=i+1$. Choose j with $v \in M_{j}$; then $V(R) \subseteq U_{j} \cup M_{j}$, and again, from the definition of "reach", it follows that $j \geq j_{1}$. Suppose first that $i^{\prime}=i$; then $j=j_{1}$ from the choice of j_{1}, and so $v \in M_{j_{1}}$. Similarly, if $i^{\prime}=i+1$, then since $v \notin M^{2}$, it follows that $v \in M_{j_{2}}$. We have shown then that $M^{3} \subseteq M_{j_{1}} \cup M_{j_{2}}$, and so $\chi\left(M^{3}\right) \leq 2 \xi$.

Now let $v \in Y(P) \downarrow M$, and let R be a vertical path between v and some $u \in Y(P)$. If $u \in M$ then $u=v$ and $v \in M_{0}$. If $u \in U$, then v belongs to one of M^{1}, M^{2}, M^{3}. Consequently $\chi(Y(P) \downarrow M) \leq \kappa+2 \zeta+2 \xi$. This proves 12.3 .
12.4 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not $(\sigma+1)$-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let \mathcal{W} be a ξ-diagonal wand. In the usual notation, let $h<j \leq t$, and let $H \subseteq \bigcup_{h<i<j} M_{i}$ such that $\chi(H)>2 \xi+2 \kappa+\tau$. Let $c_{h} \in W_{h}$, and $c_{j} \in W_{j}$. Then there is a set \mathcal{A} of integers, and for each $a \in \mathcal{A}$ there is an induced path J_{a} of G between c_{h}, c_{j}, with the following properties:

- \mathcal{A} has cardinality at most $\nu+1$, and includes a dense set of cardinality ν, and contains two integers x, y with $y-x \in\{1,3\}$;
- $\left|E\left(J_{a}\right)\right|=a$ for each $a \in \mathcal{A}$;
- for each $a \in \mathcal{A}, V\left(J_{a}\right) \subseteq\left\{c_{h}, c_{j}\right\} \cup U_{h+1} \cup \cdots \cup U_{j-1} \cup H$;
- for each $a \in \mathcal{A}$, every vertex of J_{a} belongs either to $V(\mathcal{W}) \cup V(H)$ or to a vertical path with one end in H; and
- for each $a \in \mathcal{A}$, there is a set of at most $3 \nu^{2}+2 \mathcal{S}$-monotone paths, each with vertex set a subset of $\left\{c_{h}\right\} \cup U_{h+1} \cup \cdots \cup U_{j-1}$, such that every vertex of $V\left(J_{a}\right) \backslash(H \cup V(\mathcal{W}))$ belongs to one of these paths.

Proof. We may assume that H is connected, by replacing it by one of its components with maximum chromatic number. No vertex in H has an ancestor in W_{j}; choose $i<j$ maximum such that $H \cap M_{i} \neq \emptyset$. Thus $H \subseteq M_{h+1} \cup \cdots \cup M_{i}$. Choose $c_{i} \in W_{i}$ with a descendant in $M_{i} \cap H$, and let Q be a vertical path between c_{i} and $M_{i} \cap H$. Let $N(Q)$ denote the set of vertices in $M \cup(U \backslash V(\mathcal{W}))$ with a neighbour in $V(Q)$. By $12.2, N(Q) \downarrow\left(H \backslash\left(M_{i-1} \cup M_{i}\right)\right)$ has chromatic number at most $\tau+\kappa$, and since $\chi\left(M_{i-1} \cup M_{i}\right) \leq 2 \xi$, it follows that there exists $H^{\prime} \subseteq H \backslash\left(M_{i-1} \cup M_{i}\right)$ such that

$$
\chi\left(H^{\prime}\right) \geq \chi(H)-(2 \xi+\kappa+\tau)>\kappa
$$

and no vertical path meets both H^{\prime} and $N(Q)$. Thus $H^{\prime} \subseteq M_{h+1} \cup \cdots \cup M_{i-2}$, and in particular $i \geq h+3$. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$. Let X be the union of the vertex sets of all vertical paths with one end in H^{\prime} and the other in $V(\mathcal{W})$, together with

$$
\left\{c_{h}\right\} \cup W_{h+1} \cup \cdots \cup W_{i-2}
$$

and for $h \leq j^{\prime}<k$ let $L_{j^{\prime}}=L_{j} \cap X$. Let L_{k}^{\prime} be the union of $H, V(Q)$, and $W_{i+1} \cup W_{i+2} \cup \cdots \cup W_{j}$. Then $G\left[L_{k}^{\prime}\right]$ is connected and every vertex of $X \backslash L_{k}$ with a neighbour in L_{k}^{\prime} belongs to L_{k-1}^{\prime}. It follows that $\left(L_{h}^{\prime}, \ldots, L_{k-1}^{\prime}, L_{k}^{\prime}, c_{j}\right)$ is a stable shower \mathcal{S}^{\prime}, with mat H^{\prime}; and the result follows from 8.1 and 8.4. (Note: 8.4 gives us $3 \nu^{2}+1 \mathcal{S}^{\prime}$-monotone paths containing all the vertices of J_{a} not in L_{k}^{\prime}. We can assume that none of these paths has a vertex in L_{k}^{\prime}, and so they are also \mathcal{S}-monotone; but we also need to cover the vertices of J_{a} in $L_{k}^{\prime} \backslash(H \cup V(\mathcal{W}))$. One more \mathcal{S}-monotone path will do this, namely Q.) This proves 12.4 .
12.5 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not $(\sigma+1)$-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let \mathcal{W} be a ξ-diagonal wand. With the usual notation, let $j_{0}<j_{1}<j_{2} \leq t$, and suppose that $u_{1} \in M_{j_{0}}$ and $u_{2} \in M_{j_{2}}$ are adjacent. Let $M^{1} \subseteq \bigcup_{j_{0}<j<j_{1}} M_{j}$ and $M^{2} \subseteq \bigcup_{j_{1}<j<j_{2}} M_{j}$. If

$$
\chi\left(M^{1}\right)>2 \zeta+5 \xi+4 \kappa+2 \tau
$$

and

$$
\chi\left(M^{2}\right)>\left((\nu+1)\left(3 \nu^{2}+2\right)+1\right)(2 \zeta+2 \xi+\kappa)+3 \xi+3 \kappa+2 \tau
$$

then there is an edge between M^{1}, M^{2}.
Proof. Let P_{1} be a vertical path between $u_{1}, W_{j_{0}}$, and let P_{2} be a vertical path between $u_{2}, W_{j_{2}}$. Let $c_{j_{0}}$ be the end of P_{1} in $W_{j_{0}}$, and let $c_{j_{2}}$ be the end of P_{2} in $W_{j_{2}}$. Since u_{1}, u_{2} are adjacent, there is an induced path P between $c_{j_{0}}, c_{j_{2}}$ with $V(P) \subseteq V\left(P_{1} \cup P_{2}\right)$. For $i=1,2$, let $N\left(P_{i}\right)$ be the set of vertices in $M \cup(U \backslash V(\mathcal{W}))$ with a neighbour in $V\left(P_{i}\right)$. By 12.2, $\chi\left(N\left(P_{2}\right) \downarrow M^{1}\right) \leq \kappa+\tau$. Moreover, by 12.3 ,

$$
\chi\left(N\left(P_{1}\right) \downarrow\left(M^{1} \backslash M_{j_{1}+1}\right)\right) \leq 2 \zeta+2 \xi+\kappa,
$$

and since $\chi\left(M_{j_{1}+1}\right) \leq \xi$, it follows that $\chi\left(N\left(P_{1}\right) \downarrow M^{1}\right) \leq 2 \zeta+3 \xi+\kappa$. Consequently there exists $H_{1} \subseteq M^{1}$ with

$$
\chi\left(H_{1}\right)>\chi\left(M^{1}\right)-(2 \zeta+3 \xi+2 \kappa+\tau) \geq 2 \xi+2 \kappa+\tau,
$$

such that no vertex in H_{1} belongs to a vertical path that intersects $N\left(P_{1}\right) \cup N\left(P_{2}\right)$. Choose $c_{j_{1}} \in W_{j_{1}}$. By 12.4 ,
(1) There is a set \mathcal{A} of integers, and for each $a \in \mathcal{A}$ there is an induced path J_{a} of G between $c_{j_{0}}, c_{j_{1}}$, with the following properties:

- \mathcal{A} has cardinality at most $\nu+1$, and includes a dense set of cardinality ν, and contains two integers x, y with $y-x \in\{1,3\}$;
- $\left|E\left(J_{a}\right)\right|=a$ for each $a \in \mathcal{A}$;
- for each $a \in \mathcal{A}, V\left(J_{a}\right) \subseteq\left\{c_{j_{0}}, c_{j_{1}}\right\} \cup U_{j_{0}+1} \cup \cdots \cup U_{j_{1}-1} \cup H_{1}$;
- for each $a \in \mathcal{A}$, every vertex of J_{a} belongs either to $V(\mathcal{W}) \cup V\left(H_{1}\right)$ or to a vertical path with one end in H_{1}; and
- for each $a \in \mathcal{A}$, there is a set of at most $3 \nu^{2}+2 \mathcal{S}$-monotone paths, each with vertex set a subset of $\left\{c_{j_{0}}\right\} \cup U_{j_{0}+1} \cup \cdots \cup U_{j_{1}-1}$, such that every vertex of $V\left(J_{a}\right) \backslash\left(H_{1} \cup V(\mathcal{W})\right)$ belongs to one of these paths.

In particular, for each $a \in \mathcal{A}, P \cup J_{a}$ is an induced path between $c_{j_{1}}$ and $c_{j_{2}}$, because of the fourth bullet above and from the choice of H_{1}. Now suppose that there are no edges between M^{1}, M^{2}. By $(\nu+1)\left(3 \nu^{2}+2\right)+1$ applications of 12.3 , and one application of 12.2 , there exists $H_{2} \subseteq M_{2}$ with the following properties:

- no vertex in H_{2} belongs to a vertical path that intersects $N\left(P_{1}\right) \cup N\left(P_{2}\right)$;
- for each $a \in \mathcal{A}$, no vertex in H_{2} belongs to a vertical path that contains a vertex in $V\left(J_{a}\right)$ or a neighbour of such a vertex (here we use that there is no edge between H_{1} and M^{2}); and
- $\chi\left(H_{2}\right) \geq \chi\left(M^{2}\right)-\left((\nu+1)\left(3 \nu^{2}+2\right)+1\right)(2 \zeta+2 \xi+\kappa)-(\kappa+\tau+\xi)>2 \xi+2 \kappa+\tau$.

We apply 12.4 to H_{2}, and thereby obtain a set of paths joining $c_{j_{1}}$ and $c_{j_{2}}$. More precisely:
(2) There is a set \mathcal{B} of integers, and for each $b \in \mathcal{B}$ there is an induced path K_{b} of G between $c_{j_{1}}, c_{j_{2}}$, with the following properties:

- \mathcal{B} has cardinality at most $\nu+1$, and includes a dense set of cardinality ν, and contains two integers x, y with $y-x \in\{1,3\}$;
- $\left|E\left(K_{b}\right)\right|=b$ for each $b \in \mathcal{B}$;
- for each $b \in \mathcal{B}, V\left(K_{b}\right) \subseteq\left\{c_{j_{1}}, c_{j_{2}}\right\} \cup U_{j_{1}+1} \cup \cdots \cup U_{j_{2}-1} \cup H_{2}$; and
- for each $b \in \mathcal{B}$, every vertex of K_{b} belongs either to $V(\mathcal{W}) \cup V\left(H_{2}\right)$ or to a vertical path with one end in H_{2}.

For each $b \in \mathcal{B}$ and each $a \in \mathcal{A}$, it follows from the fourth bullet of (2) and the choice of H_{2} that $J_{a} \cup K_{b} \cup P$ is a hole. It follows as usual that G contains a hole ν-interval, a contradiction. This proves 12.5.
12.6 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not $(\sigma+1)$-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let \mathcal{W} be a ξ-diagonal wand. In the usual notation, let $j_{1}<j_{2} \leq t$, and suppose that $u_{1} \in M_{j_{1}}$ and $u_{2} \in M_{j_{2}}$ are adjacent. Let $M^{1} \subseteq \bigcup_{j_{1}<j<j_{2}} M_{j}$ and $M^{2} \subseteq \bigcup_{j_{2}<j \leq t} M_{j}$. If

$$
\chi\left(M^{1}\right)>(2 \zeta+4 \xi+\tau+4 \kappa)+(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa)
$$

and

$$
\chi\left(M^{2}\right)>4 \zeta+5 \xi+3 \kappa
$$

then there exist $H_{1} \subseteq M^{1}$ and $H_{2} \subseteq M^{2}$ such that $\chi\left(H_{1}\right) \geq \chi\left(M_{1}\right)-(2 \zeta+4 \xi+\tau+2 \kappa)$ and $\chi\left(H_{2}\right) \geq \chi\left(M^{2}\right)-(4 \zeta+5 \xi+2 \kappa)$ and there is no edge between H_{1}, H_{2}.

Proof. For $i=1,2$, let P_{i} be a vertical path between u_{i} and some $c_{j_{i}} \in W_{j_{i}}$. Let P be an induced path between $c_{j_{1}}, c_{j_{2}}$ with $V(P) \subseteq V\left(P_{1} \cup P_{2}\right)$. For $i=1,2$, let $N\left(P_{i}\right)$ be the set of vertices in $M \cup(U \backslash V(\mathcal{W}))$ with a neighbour in $V\left(P_{i}\right)$.

Let B be the set of all vertices that belong to a vertical path R between $M^{1} \cup M^{2}$ and $V(\mathcal{W})$ such that no vertex of R belongs to $N\left(P_{1}\right) \cup N\left(P_{2}\right)$. Consequently there are no edges between $V(P)$ and B. Moreover, there are no edges between the interior of P and $V(\mathcal{W}) \backslash\left(W_{j_{1}} \cup W_{j_{2}}\right)$.

By 12.3, $\chi\left(N\left(P_{1}\right) \downarrow\left(M_{1} \backslash M_{j_{1}+1}\right)\right) \leq 2 \zeta+2 \xi+\kappa$, and so

$$
\chi\left(N\left(P_{1}\right) \downarrow M_{1}\right) \leq 2 \zeta+3 \xi+\kappa .
$$

Also, from $12.2, \chi\left(N\left(P_{2}\right) \downarrow\left(M_{1} \backslash M_{j_{2}-1}\right) \leq \tau+\kappa\right.$, and so

$$
\chi\left(N\left(P_{2}\right) \downarrow M_{1}\right) \leq \tau+\xi+\kappa
$$

Consequently

$$
\chi\left(B \cap M_{1}\right)>\chi\left(M_{1}\right)-(2 \zeta+4 \xi+\tau+2 \kappa)
$$

Choose $H_{1} \subseteq B \cap M_{1}$, such that $G\left[H_{1}\right]$ is connected and $\chi\left(H_{1}\right)=\chi\left(B \cap M_{1}\right)$. Similarly, we may choose $H_{2} \subseteq B \cap M_{2}$ such that $G\left[H_{2}\right]$ is connected and $\chi\left(H_{2}\right)>\chi\left(M_{2}\right)-(4 \zeta+5 \xi+2 \kappa)$. For $i=1,2$, let B_{i} be the set of vertices in B that belong to a vertical path with one end in H_{i}.

Suppose that there is an edge between H_{1}, H_{2}, and so $G\left[H_{1} \cup H_{2}\right]$ is connected. Let $\mathcal{S}=$ $\left(L_{0}, \ldots, L_{k}, s\right)$. Then $\mathcal{S}^{\prime}=\left(L_{0}, \ldots, L_{k-1}, H_{1} \cup H_{2}, s^{\prime}\right)$ is also a shower (where $s^{\prime} \in H_{1} \cup H_{2}$ is arbitrary). We need to define two sublevellings of \mathcal{S}^{\prime}.

- Let $L_{j_{1}}^{1}=\left\{c_{j_{1}}\right\}$, for $j_{1}<i<j_{2}$ let $L_{i}^{1}=W_{i} \cup\left(L_{i} \cap B_{1}\right)$, and for $j_{2} \leq i \leq k$ let $L_{i}^{1}=L_{i} \cap B_{1}$; then $\left(L_{j_{1}}^{1}, \ldots, L_{k}^{1}\right)$ is a sublevelling \mathcal{S}_{1} of \mathcal{S}^{\prime} with head $c_{j_{1}}$ and base H_{1}.
- Let $L_{j_{2}}^{2}=\left\{c_{j_{2}}\right\}$, for $j_{2}<i \leq t$ let $L_{i}^{2}=W_{i} \cup\left(L_{i} \cap B_{2}\right)$, and for $t<i \leq k$ let $L_{i}^{2}=L_{i} \cap B_{2}$; then $\left(L_{j_{2}}^{2}, \ldots, L_{k}^{2}\right)$ is a sublevelling \mathcal{S}_{2} of \mathcal{S}^{\prime} with head $c_{j_{2}}$ and base H_{2}.

In particular, there are no edges between the interior of P and $V\left(\mathcal{S}_{i}\right)$ for $i=1,2$.
Let us apply 9.1 to the pair $\mathcal{S}_{2}, \mathcal{S}_{1}$ of sublevellings of \mathcal{S}^{\prime} (in this order). Since $\chi\left(H_{2}\right)>\kappa$ and $\chi\left(H_{1}\right)>2 \kappa$, and the base of \mathcal{S}^{\prime} is the union of the bases of \mathcal{S}_{1} and \mathcal{S}_{2}, we deduce that either

- there are ν induced paths $Q_{0}, \ldots, Q_{\nu-1}$ of $G\left[V\left(\mathcal{S}_{1}\right) \cup V\left(\mathcal{S}_{2}\right)\right]$ between $c_{j_{1}}, c_{j_{2}}$, such that $\left|E\left(Q_{i}\right)\right|=$ $\left|E\left(Q_{0}\right)\right|+i$ for $0 \leq i<\nu$; or
- there is an \mathcal{S}_{2}-monotone path R between $c_{j_{2}}$ and H_{2} such that

$$
(\nu+1)\left(3 \nu^{2}+1\right) \chi\left(H_{1}(X(R))\right) \geq \chi\left(H_{1}\right)-2 \kappa
$$

where $X(R)$ denotes the set of vertices in $V\left(\mathcal{S}_{1}\right)$ that have a neighbour in $V(R)$, and $H_{1}(X(R))$ denotes the set of \mathcal{S}_{0}-descendants in H_{1} of the members of $X(R)$.

Suppose that $Q_{0}, \ldots, Q_{\nu-1}$ are as in the first statement. Let $0 \leq j \leq \nu-1$; we claim that $P \cup Q_{j}$ is a hole. Since P, Q_{j} are induced paths with the same ends, it is enough to show that no vertex of the interior of P belongs to or has a neighbour in the interior of Q_{j}. Let q belong to the interior of Q_{j}. Then $q \in V\left(\mathcal{S}_{i}\right)$ for some $i \in\{1,2\}$, and no vertex of the interior of P belongs to or has a neighbour in $V\left(\mathcal{S}_{i}\right)$, as we saw above. Thus $P \cup Q_{j}$ is a hole for each j, and these holes form a hole ν-sequence, which is impossible.

Now suppose that R satisfies the second statement. By 12.2, $\chi\left(H_{1}(X(R))\right) \leq \tau+\kappa$, and so $(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa) \geq \chi\left(H_{1}\right)-2 \kappa$, a contradiction.

It follows that there is no edge between H_{1}, H_{2}. This proves 12.6.

We need the following lemma.
12.7 Let G be a graph with chromatic number more than $4 N$, and let M_{1}, \ldots, M_{k} be a partition of $V(G)$ such that $\chi\left(M_{i}\right) \leq N$ for $1 \leq i \leq k$. Then there exist $a<b<c<d<e \leq k$ such that there is an edge of G between M_{a} and M_{c}, and an edge between M_{a} and M_{e}.

Proof. Let J be the graph with vertex set $\{1, \ldots, k\}$ in which i, j are adjacent if there is an edge of G between M_{i} and M_{j}. If J is 4-colourable, then $\chi(G) \leq 4 N$, a contradiction. So J is not 4-colourable, and consequently there exists $a \in\{1, \ldots, k\}$ such that a is adjacent in J to at least four of $a+1, \ldots, k$. Let b, c, d, e be four such neighbours, in order; then the theorem holds. This proves 12.7.
12.8 Let ζ be a sidekick for σ. Let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not $(\sigma+1)$-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Let

$$
\eta=\left((\nu+1)\left(3 \nu^{2}+2\right)+6\right)(2 \zeta+2 \xi+\tau+\kappa)+2 \tau
$$

Let \mathcal{W} be a ξ-diagonal wand. Then $\chi(M) \leq 4(\eta+\xi)+\eta$.
Proof. Suppose that $\chi(M)>4(\eta+\xi)+\eta$. Let $\mathcal{W}=\left(W_{0}, \ldots, W_{t}\right)$. Let $j_{0}=-1$, and define $j_{1}, j_{2}, \ldots j_{r}$ and M^{1}, \ldots, M^{r-1} inductively as follows. Having defined j_{0}, \ldots, j_{i} and M^{1}, \ldots, M^{i-1}, if $\chi\left(\cup_{j_{i}<j \leq t} M_{j}\right)<\eta$ the sequence terminates; define $r=i$. Otherwise choose $j_{i+1} \leq t$ minimum such that $\chi\left(\cup_{j_{i}<j \leq j_{i+1}} M_{j}\right) \geq \eta$. Let $M^{i}=\bigcup_{j_{i}<j \leq j_{i+1}} M_{j}$.

This completes the inductive definition. We see that the sets M^{1}, \ldots, M^{r-1} are disjoint, and their union has chromatic number at least $\chi(M)-\eta>4(\eta+\xi)$; and each M_{i} has chromatic number at least η, and at most $\eta+\xi$ (from the minimality of j_{i+1}). It follows from 12.7 that there exist $a<b<c<d<e \leq r$ such that there is an edge of G between M^{a} and M^{c}, and an edge between M^{a} and M^{e}. Now

$$
\chi\left(M^{b}\right) \geq \eta>(2 \zeta+4 \xi+\tau+4 \kappa)+(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa)
$$

and

$$
\chi\left(M^{d}\right) \geq \eta>4 \zeta+5 \xi+3 \kappa
$$

so by 12.6 applied to M^{b}, M^{d} and the edge between M^{a}, M^{c}, there exist $H_{1} \subseteq M^{b}$ and $H_{2} \subseteq M^{d}$ such that $\chi\left(H_{1}\right) \geq \eta-(2 \zeta+4 \xi+\tau+2 \kappa)$ and $\chi\left(H_{2}\right) \geq \eta-(4 \zeta+5 \xi+2 \kappa)$, and there is no edge between A_{1}, A_{2}. But since

$$
\chi\left(H_{1}\right)>2 \zeta+5 \xi+4 \kappa+2 \tau
$$

and

$$
\chi\left(H_{2}\right)>\left((\nu+1)\left(3 \nu^{2}+2\right)+1\right)(2 \zeta+2 \xi+\kappa)+3 \xi+3 \kappa+2 \tau
$$

this contradicts 12.5 applied to H_{1}, H_{2} and the edge between M^{a}, M^{e}. This completes the proof of 12.8 .

Now we can prove the objective of this section, the following.
12.9 Let ζ be a sidekick for σ. Let $N=(\nu+1)\left(3 \nu^{2}+2\right)+9$. Let $\tau \geq 0$, and let \mathcal{S} be a stable shower with mat M in a candidate G, such that \mathcal{S} is not $(\sigma+1)$-complete over M, and the shadow over M of every wand in \mathcal{S} has chromatic number at most τ. Then $\chi(M) \leq 40 N^{2} \kappa+40 N \zeta+20 N \tau$.

Proof. Let

$$
\xi=\left((\nu+1)\left(3 \nu^{2}+1\right)+8\right) \kappa
$$

and

$$
\eta=\left((\nu+1)\left(3 \nu^{2}+2\right)+6\right)(2 \zeta+2 \xi+\tau+\kappa)+2 \tau
$$

Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$, and for each $v \in U$, let $M(v)$ denote the set of descendants of v in M. Let $z_{0} \in L_{0}$, and recursively, having defined z_{i}, let z_{i+1} be a child of z_{i} chosen such that $\chi\left(M\left(z_{i+1}\right)\right)>\kappa$ if there is such a child; otherwise the definition terminates, when $i=t$ say. Thus $M=M\left(z_{0}\right)$. Note that since $\chi\left(M\left(z_{t}\right)\right)>\kappa$, it follows that z_{t} has height more than ρ, and in particular $t \leq k-2$, so $\left(\left\{z_{0}\right\}, \ldots,\left\{z_{t}\right\}\right)$ is a wand.
(1) For $0 \leq i<t, \chi\left(M\left(z_{i}\right) \backslash M\left(z_{i+1}\right) \leq \xi\right.$, and $\chi\left(M\left(z_{t}\right)\right) \leq \xi$.

For $0 \leq i<t$, since $\chi\left(M\left(z_{i+1}\right)\right)>\kappa, 12.1$ implies that

$$
\chi\left(M\left(z_{i}\right) \backslash M\left(z_{i+1}\right)\right) \leq(\nu+1)\left(3 \nu^{2}+1\right)(\tau+\kappa)+2 \kappa \leq \xi
$$

We claim that $\chi\left(M\left(z_{t}\right)\right) \leq \xi$; for suppose not. Then by 9.3 , there is a child z of z_{t} such that $\chi(M(z)) \geq \chi\left(M\left(z_{t}\right)\right)-\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa>\kappa$, contrary to the maximality of t. This proves (1).

For each vertex $v \in M$, choose a monotone path R_{v} between v and some vertex x_{v}, such that x_{v} has a neighbour in $\left\{z_{0}, \ldots, z_{t}\right\}$, with minimum length. Thus no vertex of R_{v} except x_{v} has a neighbour in $\left\{z_{0}, \ldots, z_{t}\right\}$. Now x_{v} might have a parent in $\left\{z_{0}, \ldots, z_{t}\right\}$, or a child, or both. Let X_{1} be the set of vertices in $U(\mathcal{S}) \backslash V(\mathcal{W})$ with a child and no parent in $\left\{z_{0}, \ldots, z_{t}\right\} ; X_{2}$ the set with a parent and no child in $\left\{z_{0}, \ldots, z_{t}\right\}$; and X_{3} the set with both a parent and a child in $\left\{z_{0}, \ldots, z_{t}\right\}$. For $i=1,2,3$ let M^{i} be the set of $u \in M$ such that $x_{v} \in X_{i}$.
(2) $\chi\left(M^{1}\right) \leq \tau$ and $\chi\left(M^{2}\right) \leq 4(\eta+\xi)+\eta$.

Since $\left(\left\{z_{0}\right\}, \ldots,\left\{z_{t}\right\}\right)$ is a wand, and M^{1} is a subset of its shadow in \mathcal{S} over M, it follows that $\chi\left(M^{1}\right) \leq \tau$. Let V^{\prime} be the union of the vertex sets of the paths $R_{v}\left(v \in M^{2}\right)$, together with $\left\{z_{0}, \ldots, z_{t}\right\}$. Thus no vertex in $V^{\prime} \backslash\left\{z_{1}, \ldots, z_{t}\right\}$ has a child in $\left\{z_{0}, \ldots, z_{t}\right\}$. Now

$$
\left(V^{\prime} \cap L_{0}, V^{\prime} \cap L_{1}, \ldots, V^{\prime} \cap L_{k-1}, L_{k}, s\right)
$$

is a shower \mathcal{S}^{\prime} say. Since \mathcal{S}^{\prime} is included in \mathcal{S}, with a one-vertex pipe, it follows that \mathcal{S}^{\prime} is not $(\sigma+1)$ complete over M. Moreover, $\left(\left\{z_{0}\right\}, \ldots,\left\{z_{t}\right\}\right)$ is a ξ-diagonal wand of \mathcal{S}^{\prime}; and M^{2} is a mat for it. From 12.8, it follows that $\chi\left(M^{2}\right) \leq 4(\eta+\xi)+\eta$. This proves (2).

It remains then to bound the chromatic number of M^{3}. Let V^{\prime} be the union of the vertex sets of the paths $R_{v}\left(v \in M^{3}\right)$, together with $\left\{z_{0}, \ldots, z_{t}\right\}$; and let \mathcal{S}^{\prime} be the shower

$$
\left(V^{\prime} \cap L_{0}, V^{\prime} \cap L_{1}, \ldots, V^{\prime} \cap L_{k-1}^{\prime}, L_{k}, s\right)
$$

For $1 \leq i \leq t-1$, let D_{i} be the set of all vertices of $U\left(\mathcal{S}^{\prime}\right)$ (including z_{i}) that are adjacent to both z_{i+1}, z_{i-1}, and let $D_{0}=\left\{z_{0}\right\}$ and $D_{t}=\left\{z_{t}\right\}$. (Note that z_{t} is the only child of z_{t-1} in $U\left(\mathcal{S}^{\prime}\right)$). For
$c=0,1,2$, let \mathcal{W}_{c} be the sequence X_{0}, \ldots, X_{t}, where $X_{i}=D_{i}$ if $i-c$ is divisible by three, and $X_{i}=\left\{z_{i}\right\}$ otherwise.

Thus each \mathcal{W}_{c} is a wand, and for each $v \in M^{3}, x_{v} \in V\left(\mathcal{W}_{c}\right)$ for some $c \in\{0,1,2\}$. For $c=0,1,2$, let H_{c} be the set of $v \in M^{3}$ such that $x_{v} \in D_{i}$ for some $i \in\{0, \ldots, t\}$ congruent to c modulo three. Let $c \in\{0,1,2\}$, and let $v \in H_{c}$. Now no vertex of $R_{v} \backslash\left\{x_{v}\right\}$ has a parent in $V\left(\mathcal{W}_{c}\right)$, from the minimality of the length of R_{v}, except for the child of x_{v} in R_{v}; and the latter has no child in $V\left(\mathcal{W}_{c}\right)$ since it has no neighbour in $\left\{z_{0}, \ldots, z_{t}\right\}$. Consequently, if some vertex in $R_{v} \backslash\left\{x_{v}\right\}$ has a child in $V\left(\mathcal{W}_{c}\right)$, then v belongs to the shadow in \mathcal{S} of the wand \mathcal{W}_{c} in \mathcal{S}; and so the set of all such v has chromatic number at most τ.

Finally, the set of $v \in H_{c}$ such that no vertex in $R_{v} \backslash\left\{x_{v}\right\}$ has a child in $V\left(\mathcal{W}_{c}\right)$, has chromatic number at most $4(\eta+\xi)+\eta$, by 12.8 . Thus $\chi\left(H_{c}\right) \leq \tau+4(\eta+\xi)+\eta$; and so $\chi\left(M^{3}\right) \leq 3(\tau+4(\eta+\xi)+\eta)$. From (2), it follows that

$$
\chi(M) \leq \tau+(4(\eta+\xi)+\eta)+3(\tau+(4(\eta+\xi)+\eta))=20 \eta+16 \xi+4 \tau .
$$

Now there is some arithmetic to rewrite this bound in terms of τ, κ, ν, which follows. Since

$$
20 \eta=20(N-3)(2 \zeta+2 \xi+\tau+\kappa)+40 \tau,
$$

and $\xi \leq N \kappa$, it follows that

$$
\begin{aligned}
\chi(M) & \leq 20 \eta+16 \xi+4 \tau \\
& =20(N-3)(2 \zeta+2 \xi+\tau+\kappa)+16 \xi+44 \tau \\
& \leq 20 N(2 \zeta+\kappa)+(40(N-3)+16) \xi+(20(N-3)+44) \tau \\
& \leq 20 N(2 \zeta+\kappa)+(40 N-104) N \kappa+(20 N-16) \tau \\
& \leq 40 N^{2} \kappa+40 N \zeta+20 N \tau .
\end{aligned}
$$

13 Raising a wand

Now we turn to general showers, in which a wand shadow may have large chromatic number. We will prove that, if there is such a wand, then we can use it to construct a new shower, still with large χ, in which no wand shadow has large chromatic number, which we have just shown to be impossible. We begin with:
13.1 Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in a candidate G, with vertex set V, and let $\mathcal{W}=$ $\left(W_{0}, \ldots, W_{t}\right)$ be a wand in \mathcal{S}. Let v be a vertex of some post, and let $v \in L_{i}$ say. Then there are two induced paths P_{1}, P_{2} of $G[V]$ between v and L_{0}, such that $\left|E\left(P_{2}\right)\right|=\left|E\left(P_{1}\right)\right|+2$, and for $j \geq i$ every vertex in L_{j} that belongs to either of these paths belongs to $W_{i} \cup W_{i+1} \cup\{v\}$.

Proof. Let P be a post containing v, with top $t \in T_{h}$ say; thus $h \leq i$. Let P_{0} be the subpath of P between v, t. Let $u \in W_{h+1}$ be adjacent to t. Let P_{1} be the union of P_{0} and a monotone path between t and L_{0}. Let P_{2} be the union of P_{0}, the edge $t u$, and a path between u and W_{0} with one vertex in each of W_{0}, \ldots, W_{h+1}. This proves 13.1.
13.2 Let ζ be a sidekick for σ. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in a candidate G, with mat M, such that \mathcal{S} is not $(\sigma+1)$-complete over M. Let $\left(W_{0}, \ldots, W_{t}\right)$ be a wand \mathcal{W} in \mathcal{S}. Let $0 \leq i \leq t-1$, and let T_{i} be the set of up-neighbours of vertices in W_{i+1}. Let M^{\prime} be the set of all $v \in M$ that belong to a post with top in T_{i}. Then

$$
\chi\left(M^{\prime}\right) \leq \zeta+2\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa .
$$

Proof. For $X \subseteq T_{i}$, and $j \in\{i, \ldots, k\}$, let $L_{j}(X)$ be the set of all vertices in L_{j} that belong to a post with top in X. Then

$$
\left(W_{0}, W_{1}, \ldots, W_{i}, W_{i+1}, X, L_{i+1}(X), \ldots, L_{k-1}(X), L_{k}, s\right)
$$

is a stable shower $\mathcal{S}(X)$ included in \mathcal{S} (with a one-vertex pipe). Also $M^{\prime}=M \cap L_{k}\left(T_{i}\right)$. We may assume that $\chi\left(M^{\prime}\right)>2\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa$, for otherwise the theorem holds. By 9.3 applied to $\mathcal{S}\left(T_{i}\right)\left(\operatorname{taking} z_{1} \in W_{i}\right.$ and $\left.Y=W_{i+1}\right)$ there exists $u \in W_{i+1}$ such that

$$
\chi\left(M \cap L_{k}\left(X_{0}\right)\right) \geq \chi\left(M^{\prime}\right)-\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa
$$

where X_{0} is the set of up-neighbours of u. By 9.3 applied to $\mathcal{S}\left(T\left(X_{0}\right)\right)$ (taking $z_{1}=u$, and $Y=X_{0}$) there exists $x \in X_{0}$ such that, setting $X=\{x\}$, we have

$$
\chi\left(M \cap L_{k}(X)\right) \geq \chi\left(M \cap L_{k}\left(X_{0}\right)\right)-\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa
$$

and so

$$
\chi\left(M \cap L_{k}(X)\right) \geq \chi\left(M^{\prime}\right)-2\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa .
$$

Now

$$
\left(X, L_{i+1}(X), \ldots, L_{k-1}(X), L_{k}, s\right)
$$

is a shower included in \mathcal{S} (with pipe a monotone path between x and L_{0}), and $M \cap L_{k}(X)$ is a mat for it. Since every vertex of $\mathcal{S}(X)$ belongs to a post, it follows that no vertex of $\mathcal{S}(X)$ has a parent in $V(\mathcal{W})$, and so by 13.1 there is a switch for $\mathcal{S}(X)$ in \mathcal{S}. From 11.1 it follows that $\chi\left(M \cap L_{k}(X)\right) \leq \zeta$. We deduce that

$$
\chi\left(M \cap L_{k}(X)\right) \leq \zeta+2\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa .
$$

This proves 13.2.
Let $T_{0}, \ldots, T_{t-1}, T$ be as before. For $0 \leq i \leq k$, let S_{i} be the set of all vertices $v \in L_{i}$ that belong to a post with top in T. (Thus $S_{i} \subseteq L_{i} \backslash V(\mathcal{W})$, and $S_{0}=\emptyset$.) If M is a mat for \mathcal{S}, it follows (since $t \leq k-2$) that

$$
\left(W_{0}, W_{1}, W_{2}, W_{3} \cup S_{1}, W_{4} \cup S_{2}, \ldots, W_{t} \cup S_{t-2}, S_{t-1}, \ldots, S_{k-2}, S_{k-1}, L_{k}, s\right)
$$

is a stable shower \mathcal{S}^{\prime} included in \mathcal{S}; and we say that \mathcal{S}^{\prime} is obtained from \mathcal{S} by raising the wand. Moreover, the shadow $M \cap S_{k}$ is a mat for \mathcal{S}^{\prime}.
13.3 Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in a candidate G, and let $\left(W_{0}, \ldots, W_{t}\right)$ be a wand in \mathcal{S}. Let \mathcal{S}^{\prime} be obtained from \mathcal{S} by raising the wand. Then for $0 \leq i \leq t$, if $v \in W_{i}$ and v is an \mathcal{S}^{\prime}-child of u then $i>0$ and $u \in W_{i-1}$.
Proof. In the notation given before, since $v \in W_{i}$ and v is an \mathcal{S}^{\prime}-child of u, it follows that $i>0$ and $u \in W_{i-1} \cup S_{i-3}$, where $S_{-1}, S_{-2}=\emptyset$. But $S_{i-3} \subseteq L_{i-3}$ and $v \in W_{i} \subseteq L_{i}$, so $u \notin S_{i-3}$, and hence $u \in W_{i-1}$. This proves 13.3.
13.4 Let ζ be a sidekick for σ. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in a candidate G, with mat M, such that \mathcal{S} is not $(\sigma+1)$-complete over M. Suppose that \mathcal{S} is obtained from some stable shower \mathcal{S}_{0} in G with mat M_{0} by raising some wand, and M is the shadow over M_{0} of this wand. Let \mathcal{W} be a wand in \mathcal{S}. Then the shadow M^{\prime} of \mathcal{W} in \mathcal{S} over M has chromatic number at most

$$
3 \zeta+6\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa
$$

Proof. Let $\mathcal{W}=\left(W_{0}, \ldots, W_{t}\right)$, and for $0 \leq i \leq t-1$, let T_{i} be the set of up-neighbours of vertices in W_{i+1} and let $T=T_{0} \cup \cdots \cup T_{t-1}$. Thus M^{\prime} is the set of all $v \in M$ that belong to a post with top in T. Choose h minimum such that $T_{h} \neq \emptyset$. Let M_{1}, M_{2} be the sets of vertices in M that belong to posts with top in $T_{h} \cup T_{h+1}$ and with top in $T \backslash\left(T_{h} \cup T_{h+1}\right)$ respectively. In view of 13.2 it suffices to bound $\chi\left(M_{2}\right)$. For $j=h+2, \ldots, k$ let S_{j} be the set of vertices in L_{j} that belong to a post with top in $T \backslash\left(T_{h} \cup T_{h+1}\right)$. Thus every vertex of every such post belongs to S_{j} for some j. Choose $u \in W_{h+1}$ with a neighbour $v \in T_{h}$. Consequently

$$
\left(\{u\}, W_{h+2}, W_{h+3}, W_{h+4} \cup S_{h+2}, W_{h+5} \cup S_{h+3}, \ldots, W_{t} \cup S_{t-2}, S_{t-1}, \ldots, S_{k-1}, L_{k}, s\right)
$$

is a shower \mathcal{S}^{\prime}, and M_{2} is a mat for it. Every vertex of $U\left(\mathcal{S}^{\prime}\right)$ belongs to L_{j} for some $j \geq h+2$, except u. We claim there is a switch for this shower; but in \mathcal{S}_{0}, not in \mathcal{S}.

Let \mathcal{S}_{0} be $\left(J_{0}, \ldots, J_{k-3}, L_{k}, s\right)$. Now \mathcal{S} is obtained from \mathcal{S}_{0} by raising some wand \mathcal{D} say, where M is the shadow of \mathcal{D} on some mat M_{0} for \mathcal{S}_{0}. Let \mathcal{D} be $\left(D_{0}, \ldots, D_{r}\right)$, and define $D_{i}=\emptyset$ for $i>r$; then for $0 \leq i \leq t, L_{i} \subseteq D_{i} \cup\left(J_{i-2} \backslash V(\mathcal{D})\right.$) (where $J_{-1}, J_{-2}=\emptyset$).

Suppose that $u \in V(\mathcal{D})$; then since $u \in L_{h+1}$, it follows that $u \in D_{h+1}$. Every vertex of W_{h-1} has distance two from u, and so $W_{h-1} \cap J_{h-3}=\emptyset$; so $W_{h-1} \subseteq D_{h-1}$, since

$$
W_{h-1} \subseteq L_{h-1} \subseteq D_{h-1} \cup J_{h-3}
$$

Since v has no neighbour in W_{h-1}, and every vertex of D_{h} is adjacent to every vertex of D_{h-1}, it follows that $v \notin D_{h}$. But this contradicts 13.3 , since v is an \mathcal{S}-parent of u.

This proves that $u \notin V(\mathcal{D})$. Since $u \in W_{h+1} \subseteq L_{h+1}$, it follows that $u \in J_{h-1}$. By 13.1 applied to \mathcal{S}_{0}, there are two induced paths P_{1}, P_{2} of G between u and L_{0}, such that $\left|E\left(P_{2}\right)\right|=\left|E\left(P_{1}\right)\right|+2$, and for $j \geq h-1$ every vertex in J_{j} that belongs to either of these paths belongs to $D_{h-1} \cup D_{h} \cup\{u\}$. Suppose that some vertex $x \in V\left(\mathcal{S}^{\prime}\right)$ has a neighbour y in one of P_{1}, P_{2} where $x, y \neq u$. Let $x \in L_{j}$; then $j \geq h+2$. Now $L_{j} \subseteq D_{j} \cup\left(J_{j-2} \backslash V(\mathcal{D})\right)$. If $x \in D_{j}$ then $y \in J_{i}$ for some $i \geq j-1 \geq h+1$, contradicting that $y \in V\left(P_{1} \cup P_{2}\right)$. So $x \in J_{j-2} \backslash V(\mathcal{D})$, and so $y \in J_{i}$ where $i \geq j-3 \geq h-1$. Consequently $y \in D_{h-1} \cup D_{h} \cup\{u\}$, and y is an \mathcal{S}_{0}-parent of x. But this is impossible since $x \in V(\mathcal{S}) \backslash V(\mathcal{D})$ and therefore belongs to a post in \mathcal{S}, for \mathcal{D}.

Thus there is no such x, and so $\left(P_{1}, P_{2}\right)$ is a switch for \mathcal{S}^{\prime} in \mathcal{S}_{0}. Hence by $11.1, \chi\left(M_{2}\right) \leq \zeta$. Since two applications of 13.2 imply that

$$
\chi\left(M_{1}\right) \leq 2 \zeta+4\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa
$$

it follows that

$$
\chi\left(M^{\prime}\right) \leq 3 \zeta+4\left((\nu+1)\left(3 \nu^{2}+1\right)+7\right) \kappa
$$

This proves 13.4.
13.5 Let ζ be a sidekick for σ. Let $\mathcal{S}=\left(L_{0}, \ldots, L_{k}, s\right)$ be a stable shower in a candidate G, with mat M, such that \mathcal{S} is not $(\sigma+1)$-complete over M. Let $N=\left(3 \nu^{2}+2\right)(\nu+1)+9$. Then $\chi(M) \leq 1000 N^{3} \kappa+1000 N^{2} \zeta$.

Proof. Let $\tau=(40 N+176) N \kappa+(40 N+132) \zeta$. Let \mathcal{W} be a wand in \mathcal{S}, let M^{\prime} be its shadow over M, and let \mathcal{S}^{\prime} be obtained by raising \mathcal{W}. Every jet of \mathcal{S}^{\prime} is a jet of \mathcal{S}, and so \mathcal{S}^{\prime} is not $(\sigma+1)$-complete. By 13.4, the shadow over M^{\prime} of every wand in \mathcal{S}^{\prime} has chromatic number at most

$$
3 \zeta+4(N-\nu+1) \kappa .
$$

By 12.9 applied to \mathcal{S}^{\prime}, it follows that $\chi\left(M^{\prime}\right) \leq 40 N^{2} \kappa+40 N \zeta+20 N(3 \zeta+4(N-\nu+1) \kappa) \leq \tau$. Thus every wand in \mathcal{S} has shadow over M with chromatic number at most τ; and so by another application of 12.9, $\chi(M) \leq 40 N^{2} \kappa+40 N \zeta+20 N \tau$, and the result follows on substituting for τ. This proves 13.5.

Let us put these pieces together, to prove 5.1 and hence 2.1, in the following strengthened form.
13.6 Let $\nu \geq 2$ and $\kappa \geq 0$ be integers. Let $N=\left(3 \nu^{2}+2\right)(\nu+1)+9, \zeta_{1}=\kappa$, and for $1 \leq \sigma<\nu$ define

$$
\zeta_{\sigma+1}=1000 N^{2} \zeta_{\sigma}+1000 N^{3} \kappa .
$$

Let G be a triangle-free graph such that $\chi^{\rho}(G) \leq \kappa$, where $\rho=3^{\nu+2}+4$. If G admits no hole ν-interval then $\chi(G) \leq 44 \nu\left(\kappa+\zeta_{\nu}\right)^{(\nu+1)^{2}}+4 \kappa$.

Proof. By 8.1, ζ_{1} is a sidekick for 1 . We claim that for $1 \leq \sigma<\nu$, if ζ_{σ} is a sidekick for σ then $\zeta_{\sigma+1}$ is a sidekick for $\sigma+1$. For let M be a mat for a stable shower \mathcal{S} in a candidate G^{\prime}, such that \mathcal{S} is not $(\sigma+1)$-complete over M. By $13.5, \chi(M) \leq \zeta_{\sigma+1}$. This proves the claim that $\zeta_{\sigma+1}$ is a sidekick for $\sigma+1$. Consequently ζ_{ν} is a sidekick for ν, and in particular, for every candidate G, every ν-incomplete stable shower in G has floor of chromatic number at most ζ_{ν}. By 8.3, every candidate has chromatic number at most $44 \nu\left(\kappa+\zeta_{\nu}\right)^{(\nu+1)^{2}}+4 \kappa$. This proves 13.6.

14 Acknowledgement

We would particularly like to thank one of the referees, who gave the paper an immensely thorough checking, resulting in numerous corrections and improvements. Thanks also to Maria Chudnovsky, who worked with us on parts of the proof.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed and P. Seymour, "Bisimplicial vertices in even-hole-free graphs", J. Combinatorial Theory, Ser. B, 98 (2008), 1119-1164.
[2] M. Bonamy, P. Charbit and S. Thomassé, "Graphs with large chromatic number induce $3 k$ cycles", arXiv:1408.217.
[3] M. Chudnovsky, A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. II. Three steps towards Gyárfás' conjectures", J. Combinatorial Theory, Ser. B, 118 (2016), 109-128.
[4] M. Chudnovsky, A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. III. Long holes", Combinatorica, to appear, arXiv:1506.02232.
[5] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Induced subgraphs of graphs with large chromatic number. VIII. Long odd holes", arXiv:1701.07217.
[6] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413-441.
[7] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. I. Odd holes", J. Combinatorial Theory, Ser. B, 121 (2016), 68-84.

[^0]: ${ }^{1}$ Supported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.

