Hadwiger’s conjecture

Paul Seymour

Abstract

This is a survey of Hadwiger’'s conjecture from 1943, thatdbirt > 0, every
graph either can biecoloured, or has a subgraph that can be contracted to the com
plete graph ot + 1 vertices. This is a tremendous strengthening of the folotr
theorem, and is probably the most famous open problem irhgtegory.

1 Introduction

The four-colour conjecture (or theorem as it became in 197&} every planar
graph is 4-colourable, was the central open problem in gthgbry for a hundred
years; and its proof is still not satisfying, requiring addes the extensive use of a
computer. (Let us call it the 4CT.) We would very much like twl the “real” rea-
son the 4CT is true; what exactly is it about planarity thaplies that four colours
suffice? Its statement is so simple and appealing that theiveasase analysis of
the computer proof surely cannot be the book proof.

So there have been attempts to pare down its hypotheses twirmum core, in
the hope of hitting the essentials; to throw away planaaitgl impose some weaker
condition that still works, and perhaps works with greatansparency so we can
comprehend it. This programme has not yet been successfut Has given rise to
some beautiful problems.

Of these, the most far-reaching is Hadwiger’s conject@ae(notable other at-
tempt is Tutte’s 1966 conjecture [78] that every 2-edgereated graph containing
no subdivision of the Petersen graph admits a “nowhere-dtow”, but that is
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beyond the scope of this survey.) Before we state it, we nded aefinitions. All
graphs in this paper have no loops or parallel edges, andhéteednless we say oth-
erwise. IfGis a graph, any graph that can be obtained by moving to a sphgf&
and then contracting edges is callechaor of G. The complete graph drvertices
is denoted byK;, and the complete bipartite graph with sides of cardireddib is
denoted byKy .

By the Kuratowski-Wagner theorem [55, 82], planar graptes ecisely the
graphs that do not contalts or K3 3 as a minor; so the 4CT says that every graph
with no Ks or K3 3 minor is 4-colourable. If we are searching for the “real’sea
for the four-colour theorem, then it is natural to excluiehere, because it is not
four-colourable; but why are we excludiig 3? What if we just exclud&s, are all
graphs with nd<s minor four-colourable? And does the analogous statemédttho
we changés to K; 1 and four-colouring ta-colouring? That conjecture was posed
by Hadwiger in 1943 [36] and is still open:

1.1 Hadwiger's conjecture: For every integer £ 0, every graph with no K,
minor is t-colourable.

Let HC() denote the statement “every graph withige, minor ist-colourable”.
Hadwiger proved HGJ for t < 3 in 1943 when he introduced his conjecture. Wag-
ner [82] had already shown that HC(4) is equivalent to the 4CT937; and so
HC(4) was finally proved when the 4CT was proved by Appel anlldid4, 5] in
1976. Then in 1993, Robertson, Thomas and | proved HC(5) pft§ step further
than the 4CT! And the proof did not use a computer (althoudidiassume the 4CT
itself). HC(6) remains open.

There have been numerous weakenings and variations profveakious types,
and strengthenings proposed, some of which still surving, this is an attempt
to survey them. Incidentally, there is an excellent 199&eyon Hadwiger’s con-
jecture by Toft [77], which is particularly informative ohe early history of the
problem.

2 The proved special cases

Let us first go through the results just mentioned more clyefdC(0) and
HC(1) are trivial. Graphs with né&3 minor are forests, which are 2-colourable,
so HC(2) holds. The first case that is not quite obvious is HG{8w do we show
that graphs with nd<4, minor are 3-colourable? Hadwiger [36] showed that every
non-null graph with nd<4 minor has a vertex of degree at most two, which implies
that all such graphs are 3-colourable; and there are laderéims of Dirac [23] and
Duffin [25] on the same topic. This assembly of results candpeessed in several
different ways, but here is one that is convenient for useTalo graph$,,G,, and
fori =1,2 letC; be a clique (that is, a subset of vertices, all pairwise ajjoof
Gi, where|C;| = |C,|. Choose some bijection between the cliques, and identdly ea
vertex ofC; with the corresponding vertex 6. We obtain a graphl say, with two
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subgraphs isomorphic 8, G, respectively, overlapping on a clique. Now (&@be
obtained fromH by deleting some edges (or none) of the clique; we sayGhata
clique-sunof G1, Gy, and if the clique has siZe we also call it &-sum

It is easy to see that iG is a clique-sum 0fG;,G,, and bothGy,G, aret-
colourable, then so i6. So if G can be built by repeated clique-sums starting from
some basic class of graphs that aretaiblourable, then so i&. This gives us a
slick proof of HC() for t < 3, because of the following:

2.1 Theorem: For 0 <t < 3, the graphs with no K, minor are precisely the
graphs that can be built by repeated clique-sums, startioig fgraphs with at most
t vertices.

HC(4) implies the 4CT, so we should not expect 2.1 to extertd+tat. And it
doesn't; large grids have & minor and yet cannot be built from 4-vertex graphs
by cligue-sums. (Indeed, let us s@hastree-width kif k is minimum such thaG
can be built by clique-sums from pieces with at miost1 vertices; then tha x n
grid has tree-widtim.) Nevertheless, we can describe all the graphs witkgroinor
in this language. Léfg be the graph obtained from a cycle of length 8 by adding four
edges joining the four opposite pairs of vertices of theeydlagner [82] essentially
proved the following in 1937.

2.2 Theorem:The graphs with no Kminor are precisely the graphs that can be
built by repeated 0-, 1-, 2-, and 3-sums, starting from ptagr@aphs and copies of
Vs.

Consequently the 4CT implies HC(4), as Wagner points outisn18937 pa-
per [82]. (Of course, this does not yet provide the profoursight into the four-
colour theorem we hope for, because not only doeptbef of HC(4) use the 4CT,
but the graphs it concerns are themselves basically pJanar.

What about HC(5)? One might imagine that since the curveft€dity versust
has recently had such a steep slope, HC(5) would be impegsibfalse); but that
is not so. Suppose it is false, and look at a smallest courgarpleG. Robertson,
Thomas and | [70] showed, without using a computer and witlasguming the
four-colour theorem, tha® must be arapexgraph, that is, there is a vertex whose
deletion makes it planar. If so, then since the 4CT implieg the planar part of
G is 4-colourable, we still have a colour left for the vertex dedeted, sdG is 5-
colourable after all.

The proof thatG is apex is (very roughly) as follows. One can show tBa
6-connected, and in particular all vertices have degreeast Isix; and vertices of
degree six belong t&,4 subgraphs, and it follows that there are not many of them
(in fact at most two), or else we could piece together all ghegs to make aKg
minor. On the other hand, a theorem of Mader says that thegeategree dob is
less than eight, and we cannot make the average degree tiggazight even if we
cleverly contract edges. That implies that there are edggste in several triangles
or squares. If, say, there is an edgan four triangles, then there is ¢, minor of
G\ {u,Vv} on the four surviving vertices of the triangles (sir@éas nokKg minor),
and graphs with this property are well-understood; basitlaky have to be planar
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with the four special vertices on the infinite region.Sg {u, v} is planar, and now

a little more thought shows that one®f\ u,G\ vis planar, and hend® is apex.
Proving that graphs with n&7-minor are 6-colourable is thus the first case of

Hadwiger’s conjecture that is still open. Albar and Gowrea[2] proved:

2.3 Theorem: Every graph with no Kminor is 8-colourable, and every graph
with no Kg minor is 10-colourable.

3 Average degree

If we are stuck trying to prove Hadwiger’s conjecture itsethatcanwe show
about the chromatic number of graphs withke; minor? As Wagner [81] proved
in 1964, all graphs with n&_, minor are 2-colourable. The proof is as follows:
we may assumé& is connected; fix some vertexand for each let L be the set
of vertices at distancefrom z sinceG has noK; ;1 minor, the subgraph induced
onL; has noK; minor (because the union of all the earlier levels would mewne
more vertex in the minor); inductively each levglinduces a subgraph that is2-
colourable; and now alternate colours in even and odd lévest a 2-colouring of
G.

Wagner's result has been considerably improved, but makese improvements
depend on “degeneracy”, so let us first discuss that. WeGsayk-degeneratéf
every non-null subgraph has a vertex of degree at kdsor instance, forests are
1-degenerate, series-parallel graphs (the graphs wika mainor) are 2-degenerate,
and planar graphs are 5-degenerate. By deleting a verteggred at mosk and
applying an inductive hypothesis, we have:

3.1 Theorem:If G is k-degenerate then its chromatic number is at messtlk

So, if we can bound the degeneracy of the graphs witKqne minor, we also
bound their chromatic number. (This gives us another prédf©(t) for t < 3,
because for < 3 every graph with né.;1 minor is (t — 1)-degenerate.)

The simplest way to bound the degeneracy is to bound the gzelegree. How
many edges an-vertex graph with n&; minor can have is a much-studied question.
Mader [58, 59] showed in 1967 that:

3.2 Theorem: For every graph H there exists ¢ such tH&{G)| < c|V(G)| for
every graph G with no H minor.

But whenH = K; for small values of, we know the answer exactly:

e forn> 1, n-vertex graphs with n&z minor (forests) have at most- 1 edges;
e forn> 2, graphs with n&4 minor have at mosti2— 3 edges;
e forn> 3, graphs with nd&s minor have at mosti8— 6 edges.

Here is an example: far >t — 2, take the complete bipartite gragh -2,
and add edges joining all pairs of vertices on the side ofioality t — 2. This has
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noK; minor, and has vertices andt —2)n— (t— 1)(t — 2) /2 edges. Thus fdr<5,
this graph has the maximum number of edges possible, anid ifvfre so for alt,
it would prove Hadwiger's conjecture within a factor of 2. 8 [59] showed that
the same holds fdr=6,7:

3.3 Theorem:Fort < 7and all n>t — 2, every n-vertex graph G with nq Kinor
satisfies
E(G)<(t-2n—(t—-1)(t—2)/2.

Butfort > 8 the pattern fails. Ifiy,...,n; > 0, we denote b¥n, . n, the complete
t-partite graph with parts of cardinality, ..., n;. Mader pointed out thel{, 2222
has noKg minor, and does not satisfy the formula of 3.3.

On the other hand, fdar= 8 we understand all counterexamples to the formula. In
the definition of &-sum we are permitted to delete edges from the clique indplve
if we do not delete any such edges let us callpuge ksum. Jgrgensen [38] proved:

3.4 Theorem: Let G be an n-vertex graph with nogkminor, with n> 6 and
|[E(G)| > 6n— 21, then|E(G)| = 6n— 20, and G can be built by purs-sums from

copies of K225 5.
The same holds fdkg; Song and Thomas [71] proved:

3.5 Theorem: Let G be an n-vertex graph with nogkminor, with n> 7 and
|[E(G)| > 7n— 28; then |[E(G)| = 7n— 27, and either G= Kz2233, or G can be

But ast grows, the formula of 3.3 becomes completely wrong. For plykg let
@(H) be the infimum of ald such that every grap® with noH minor has average
degree at modd, that is, satisfie$E(G)| < d|V(G)|/2. (We are particularly con-
cerned here with the case whidris a complete grapk;, butg(H) is of interest for
non-complete graphs too.) Kostochka [48, 50] and de la Veggdroved thatp(K; )
is at least of ordet(logt)!/?, and Kostochka [48, 50] and Thomason [72] proved
the same was an upper bound; and in particular Kostochkaf®}yed (logarithms
are to base):

3.6 Theorem: For every integer t> 0,

P(Kt)
0.128< ——~— <6.3.
~ t(logt)t/2 —

Later Thomason [73] found the limit exactly: he proved (aga&ith logarithms
to basee):

3.7 Theorem:LetA < 1 be the solution of the equatidn— A +2A logA = 0 and
let
a=(1—A)log(1/A)"Y?~0.63817

Then as t— o, p(K¢) = (a +0(1))t(logt)Y/2.
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This was extended to non-complete graphs by Myers and Thmm{ég], who
proved the following R* denotes the set of nonnegative real numbers,caiglas
before):

3.8 Theorem:Let H be a graph with t vertices, and lgtH) be the minimum of
tl Y uev(H) W(u) over all functions wV (H) — R such that

tfw(u)w(v) <t.
uveE(H)

Then as t— oo, (H) = (ay(H) +o(1))t(logt)*/2.

For classes of graphd with y(H) bounded away from zero (such as regular
graphs with degreet® wherec, € > 0), this determineg(H) asymptotically; but
for some classes of graphs (such as those with a linear nushbdges) it does not.
This gap is addressed by two theorems of Reed and Wood [66]:

3.9 Theorem:There is a constantgsuch thatp(H) < 3.895(logd)/%t for every
graph H with t vertices and average degree-dlp.

3.10 Theorem:For every graph Hp(H) < |V(H)|+6.291E(H)|.

The Myers-Thomason theorem implies thggH ) is not linear int for graphs
with t vertices and with a quadratic number of edges; but the seBeed-Wood
theorem implies that ifE(H)| is linear int then so isp(H).

For some graphd we can determine exactly the maximum number of edges in
graphs with ndH minor, but those theorems are thinner on the ground. Wedlrea
mentioned the cases whéh= K;; and the same can be done for many graghs
with at most six vertices, such &g 3; and there are two theorems doing it for larger
graphsH. Chudnovsky, Reed and | [14] answered it Koty (extending a result of
Myers [61]), and Kostochka and Prince [51] did it fidg; (and theKq; result is
obvious):

3.11 Theorem:Let G be an n-vertex graph with no H minor.

o IfH =Ky then|E(G)| < i(t—1)n;
o ifH =Ky, then|E(G)| < 3(t+1)(n—1); and
e ifH =Kz and t>6300and n>t +3then|E(G)| < 3(t+3)(n—2) + 1.

All three results are exact for infinitely many valuesrof(By the way, when
H = Ky, if we restrict to connected grapl@then the answer is quite different,
namely|E(G)| < n+ (t+1)(t—2)/2if n>t+2; see [21].)

What aboutd = Ks; in general, ift > s? For fixeds and larget, the value of
@(Kst) is not determined by 3.8, so this is an interesting case.rtistout to be
more natural to excludig; instead,; this is the graph obtained frd€g; by adding
edges joining all pairs of vertices in the side of cardinyatit Extrapolating from
3.11, one might hope that if anvertex graph has nids¢ minor then

IE(G)| < %(25+t—3)n— %(s— 1)(s+t—1),
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because again this can be attained with equality for infiniteanyn (take many dis-
joint copies ofK; and adds— 1 extra vertices adjacent to everything). But this is not
true, at least fos > 18. Kostochka and Prince [52, 53] proved (and see also [$4] fo
a related result) that with the functigr{H) as before (here logarithms are binary):

3.12 Theorem:Let st be positive integers with+ (18Cslogs)*+651°9s, Then
35— 582+t < @(Kst) < P(KZ,) < 3s+t.

All these results tell us that the graphs with a certain midoexcluded have
average degree at most some constant, and therefore haweumirdegree at most
the same constant; and that gives us a bound on their deggnbraarticular,
from 3.6, every graph with nk; minor has degeneracy at ma3t (logt)*/?), and
therefore chromatic number at most the same. For lgr¢f@s is the best bound
known on the chromatic number of graphs excludiag

Incidentally, bounding minimum degree by average degreatisral, but it might
not give the right answer. For instance, graphs wittKganinor can have average
degree> 3; and yet they always have minimum degree at most 2. When alads
Ks, average degree gives the true bound for minimum degrewitmtthappens with
Kg? Graphs with nd<g minor can have average degree more than 7, but can they
have minimum degree 77 | think this is open.

4 Stability number

One possible cause of the intractability of Hadwiger’s eahjre is that we need
to use the fact that the chromatic number is large, and gremhéave large chro-
matic number for obscure reasons. What if we make our liveeegaand look at
graphs that have large chromatic number for obvious re&sbinsstability number
a(G) of a graphG is the size of the largest stable set (a set of verticataisleif
no two of its members are adjacent). (This is different fronofhason’sx, which
we do not need any more.) Evemyvertex graphG has chromatic number at least
[n/a(G)], and should contain a clique minor of this size if Hadwigeosjecture
is true. Can we prove this at least?

The signs are not good; the only known proof that evemertex planar graph
has stability number at leas{4 is via the 4CT. Nevertheless, there are some results.
There is an elegant argument by Duchet and Meyniel [24] piguvi

4.1 Theorem:Every n-vertex graph G has a kinor where t>n/(2a(G) — 1).
Their argument can also be used to show a result that seeragddben overlooked:

4.2 Theorem:For every graph G with no K, minor, there exists a t-colourable
induced subgraph containing at least half the vertices of G.

4.1 is within a factor of 2 of what should be true, and thereehlagen subse-
quent improvements, notably by Fox [28] (who proved a fastightly less than 2)
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and then Balogh and Kostochka [6], who reduced Fox’s factdtle further and
currently have the record. They showed the following:

4.3 Theorem:Every n-vertex graph G has a kinor where t> 0.5133&/a(G).

A different strengthening, better than 4.3 whenis small, was proved by
Kawarabayashi and Song [46]:

4.4 Theorem: Every n-vertex graph G witlr (G) > 3 has a K minor where t>
n/(2a(G)—2).

Returning to 4.1: it implies that i6 has noK; ;1 minor then some stable set has
cardinality at leash/(2t). Suppose we give each vertex 6fa nonnegative real
weight. Hadwiger's conjecture would imply that there is abé set such that the
total weight of its members is at leastttimes the sum of all weights. One might
hope to prove a weighted version of 4.1 (without th# in the denominator) and
this turns out to be true, though more difficult to prove. Swfitactional chromatic
numberof a graphG is the minimum real numbdesuch that for some integsr> 0,
there is a list oksstable sets o such that every vertex is mof them. Via linear
programming duality, the weighted Duchet-Meyniel statetig equivalent to the
following, proved by Reed and myself [64]:

4.5 Theorem:Every graph with no K 1 minor has fractional chromatic number
at mostzt.

The proof also gives a corresponding extension of 4.2:

4.6 Theorem:In every graph G with no K, minor, there is a non-null list of t-
colourable subsets of\G), such that every vertex is in exactly half of the sets in the
list.

GraphsG with a(G) = 2 are particularly interesting, because these graphs are
more tractable for colouring; for instance, there is a poiyial-time algorithm to
find the chromatic number of such a graph (just find the largetching in the
complement graph). Here is another nice feature of themasaagullin a graph
G is an induced 3-vertex path. ¢f(G) = 2 andSis a seagull irG then every other
vertex of G has a neighbour ii$, and so finding many disjoint seagulls is a way
to find a large clique minor. In [15], Chudnovsky and | provhdre is a min-max
formula for the maximum number of disjoint seagulls in a gr&with a(G) = 2.

For ann-vertex graphG with a(G) = 2, the Duchet-Meyniel theorem implies
that there is &; minor witht > n/3. This was strengthened by Bohme, Kostochka
and Thomason [9], who proved (for graphs with arbitrary ditgltnumber):

4.7 Theorem: Every n-vertex graph with chromatic number k has @ankinor
where t> (4k—n)/3.

But Hadwiger’s conjecture implies that é(G) = 2 then there should bel&
minor witht > n/2. This seems to me to be an excellent place to look for a coun-
terexample. My own belief is, if it is true for graphs with Isiiity number two then
it is probably true in general, so it would be very nice to dedhis case. Despite
some intensive effort the following remains open:
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4.8 Open questionDoes there existss % such that every graph G wittn(G) =2
has a K minor where t> c|V(G)|?

A graph isclaw-freeif no vertex has three pairwise nonadjacent neighbourss Thu
graphs with stability number two are claw-free. Fradkin][Bfbved:

4.9 Theorem:Every n-vertex connected claw-free graph G witfG) > 3 has a
K: minor where tn/a(G).

Chudnovsky and Fradkin [13] proved:
4.10 Theorem:Every claw-free graph G with noil; minoris|3t/2|-colourable.

Line graphs are claw-free, so these last two results aréeteta a theorem of
Reed and myself; we proved [65] that Hadwiger’s conjectsittelie for line graphs
(of multigraphs).

5 Weakenings

The statement of Hadwiger’s conjecture is:

For all t > 0 and every graph G, either G has a ;K minor or V(G) can be
partitioned into t stable sets.

How can we weaken this and still have something non-triv&aetion 2 covered
changing “For alt > 0” to “For a fewt > 0”; section 3 did changing “stable sets”
to “f(t) stable sets”; and section 4 covered changing “partitionézlstable sets”
to “fractional chromatic number”; but there are severakotvays to weaken the
statement. Here are some.

Change “every graphG” to “almost every graph G”. (The meaning of “almost
every” here is that the proportion ofvertex graphs that satisfy the statement tends
to 1 asn — .) This weakening is true. It follows from a combination oh&brem
of Bollobas, Catlin and Erdés [10] and a theorem of Grimtraat! McDiarmid [34]:

5.1 Theorem:For all d > 2, almost every n-vertex graph has a iinor where
t > n/((logn)Y/?2 + 4), and has chromatic number at mdt/ logn.

Change “K; 1" to something else.If we hope to prove that every graph with
no H minor has chromatic number at masthenH had better have at most- 1
vertices, or else takinG = K1 is a counterexample. So, which subgraphef
Kt 1 work? Kostochka [47, 49] proved the following.

5.2 Theorem:For all s there existsgtsuch that for all t> tg, every graph with no
& minoris(s+t — 1)-colourable.

Change “stable sets” to something elsd-ere is a recent theorem of Edwards,
Kang, Kim, Oum and myself [26]:
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5.3 Theorem:For all t there exists k such that if G has ng;K minor then \(G)
can be partitioned into t sets;X .., X%, such that forl <i <t, G[X] has maximum
degree at most k.

(For X CV(G), G[X] denotes the subgraph induced X This result is quite
easy, but it has two attractive features; first, it is bessijtds in that if we ask for a
partition intot — 1 sets there is no sudtyand second, it and 6.8 below are the only
results known that derive a partition intsets withany non-trivial property from
the absence of K, 1 minor.

There are more weakenings to describe yet, but they desem\ aection.

6 Bounded component-size

What if we try to improve 5.3? Let us s&y C V(G) hascomponent-size K
the largest component @[X] hask vertices. Thus having bounded component-
size is more restrictive than have bounded maximum degneegh less than what
we really want, being stable). Instead of just saying thahéa{X] has bounded
maximum degree, what if we ask that each of them has boundedaent-size?
It has not been proved that for grapBsvith no K¢, 1 minor, we can partition into
t sets with this property, but there has been a series of pgpeving thatV (G)
can be partitioned into a linear number of parts each witmided component-size.
Initially Kawarabayashi and Mohar [42] proved:

6.1 Theorem:For allt > Othere exists k such that if G has npdinor, then \(G)
can be partitioned into at most(ff) parts each with component-size at most k, where
f(t)=[31/2].

Wood [83] proved the same with(t) = [7t/2—3/2] (using 10.6, an unpublished
theorem of Norin and Thomas which we discuss later), angthave been further
improvements which we describe below.

There is a set of lemmas here that can be combined in varioys. We\Vos,
Ding, Oporowski, Reed, Sanders, Vertigan and | [17] proved:

6.2 Theorem:For allt there exists w such that for every graph G with nanor,
there is a partition of \(G) into two parts, such that the subgraph induced on each
part has tree-width at most w.

Alon, Ding, Oporowski and Vertigan [3] showed:

6.3 Theorem:For all w,d and for every graph G with tree-width at mostw3
and maximum degree at mostdL, there is a partition of (G) into two parts each
with component-size at mazgwd.

Wood [84] improved this, replacing Rd with 5(k+ 1)(7d — 2) /4. Liu (unpub-
lished) has recently proved a list-colouring version:

6.4 Theorem: For all w,d there exists k such that for every graph G with tree-
width at most w and maximum degree at most d, and every assigroha set L
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with |Ly| > 2 to each vertex v, there is a choice ¢f/ge L, for each v such that for
each x, the set of all vertices v witfMg = x has component-size at most k.

Incidentally, an interesting asymmetric version was pdotay Ding and Dzio-
biak [20]:

6.5 Theorem:For allt > 0 there exists w> 0 such that for every graph G with no
K: minor, V(G) can be partitioned into two sets, X, where GX] has tree-width at
most w, and @] is (t + 1)-degenerate.

By combining 6.2 and 6.3, Alon et al. deduced:

6.6 Theorem: For all t,d there exists k such that for every graph G with no K
minor and maximum degree at most d, there is a partition @ Mnto four parts
each with component-size at most k.

Recently, Liu and Oum [57] improved this, replacing “foury tthree”. If we
then combine their result with 5.3 we deduce an improvemg6twith f(t) =
3(t—1). Even more recently, Norin used a different approach to debéie proved
the following lemma [63]:

6.7 Theorem:For all t,w > 0 there exists N with the following property. Let G be
a graph with|V(G)| > N, with tree-width at most w and with nq Kiinor. Then for
every SC V(G) with |S| < 2w, there exists £ V(G) \ S, nonempty, such that at most
2w vertices in \(G) \ | have a neighbourin I, and every vertex in | has at mesgt
neighbours in (G) \ I.

With the aid of this lemma, an easy inductive argument yields

6.8 Theorem:For all t,w > 0 there exists k such that for every graph G with tree-
width at most w and noKminor, there is a partition of VG) into t — 1 parts such
that each part has component-size at most k.

Then this, combined with 6.2, yields an improvement of 6.thvii{t) = 2(t — 1).

7 Odd minors

We have finished with weakenings of Hadwiger’s conjecture;rime to turn to
strengthenings.

Graphs that are not 2-colourable not only havi€zaminor (or equivalently, a
cycle); they have an odd cycle. It is tempting to try to makmsaorresponding
strengthening of Hadwiger’s conjecture. Here is what setenbe the most natural
way to do it. If G is a graph anX C V(G), 6(X) denotes the set of edges Gf
with one end inX and the other iV (G) \ X. We say thaF C E(G) is acutof G
if F = 0(X) for someX C V(G). Now letG,H be graphs. We say that is anodd
minor of G if H can be obtained from a subgra@ghof G by contracting a set of
edges that is a cut &'. (Note that 0 is a cut.) Thus a graph is not 2-colourable if
and only if it containd{3 as an odd minor. In 1979, Catlin [12] proved:
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7.1 Theorem:If G has no K odd minor then G i$-colourable.

Incidentally, a much stronger statement than this has nam Ipeoved. Say a
fully odd K4 in G is a subgraph o6 which is obtained fronK, by replacing each
edge ofK,4 by a path of odd length (tHengthof a path is the number of edges in it)
in such a way that the interiors of these six paths are disjdoft [76] conjectured
in 1975 and Zang [85] proved in 1998 (and, independentlynfdmsen [75] proved
in 2001) that:

7.2 Theorem:If G contains no fully odd Kthen G is3-colourable.

Returning to odd minors: there is a result giving a constoactor all graphs
with no K4 odd minor, due to Lovasz, Schrijver, Truemper and mysel§ tather
awkward to state, and not published, although it was provaadymyears ago (in the
early 1980's, and mostly on a riverboat in Bonn, if | rememixrectly). We omit
its statement here; see [32].

In view of its truth fort < 3, Gerards and | conjectured the following strengthen-
ing of Hadwiger’s conjecture (see [37]):

7.3 Conjecture: For every t> 0, if G has no K,; odd minor, then G is t-
colourable.

Several of the results mentioned earlier approaching Hgelvgi conjecture have
extensions to odd minors. For instance, Guenin [35] annedimt a meeting in
Oberwolfach in 2005 that:

7.4 Theorem:Every graph with no Kodd minor is 4-colourable.
Geelen, Gerards, Reed, Vetta and | [31] proved (see alsddafjsimpler proof):
7.5 Theorem:If G has no K odd minor thery (G) < O(t(logt)Y/?).
Kawarabayashi and Song [46] proved an odd minor versionlgfamely:

7.6 Theorem:Every n-vertex graph G has a lddd minor where & n/(2a(G) —
1).

Kawarabayashi and Reed [44] proved:
7.7 Theorem:Every graph with no Kodd minor is fractionally2t-colourable.
Kawarabayashi and Song [46] proved an odd minor relativédt:1

7.8 Theorem: For every t> 0, there exists N such that for evef$9& + 13)-
connected graph G with at least N vertices, either G has add minor, or there
exists XC V(G) with |X| < 8t such that G, X is bipartite.

Kawarabayashi [39] proved:

7.9 Theorem:If G has no Kodd minor, then there is a partition of(&) into 496
parts such that each part induces a subgraph of bounded nuaidegree.
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8 Other strengthenings

There have been some other strengthenings of Hadwigerjeatare proposed,
but they have mostly not fared so well as 7.3. For instange(zda asubdivisionof
H if G can be obtained froril by replacing each edge by a path, where the paths
have disjoint interiors. Hajos conjectured in the 19408ist(did not publish it) that

8.1 False conjecturefor allt > 0, if no subgraph of G is a subdivision of K
then G is t-colourable.

This is true fort < 3, but it is still open fort = 4,5, and Catlin [12] gave a
counterexample for atl > 6. Indeed, Erd6és and Fajtlowicz [27] proved that almost
all graphs are counterexamples, because of the following:

8.2 Theorem:There are constants;(C, such that for almost every n-vertex graph
G, no subgraph of G is a subdivision of fgrt > C1n%2, and the chromatic number
of G is at least Gn/log(n).

Erdds and Fajtlowicz conjectured and Fox, Lee and Suda@droved that the
ratio of the chromatic number over the clique subdivisiomber over alin-vertex
graphs is maximized up to a constant factor by the randomhgoam vertices; in
other words, the uniform random graph is essentially thengtest counterexample
to the Hajos conjecture.

Another strengthening of Hadwiger’s conjecture was prepdsy Borowiecki [11].
A graphG ist-choosabléf for every assignment of aelement sek,, to each vertex
vof G, itis possible to select a memb#w) € Ly for eachv such that(u) # c(v) if
u,v are adjacent. Borowiecki asked whether

8.3 False conjectureEvery graph with no K 1 minor is t-choosable.

This is true fort < 3, but false fort = 4; Voigt [80] gave a planar graph that is
not 4-choosable. Thomassen [74] proved that all planathgrape 5-choosable, but
an additive constant adjustment is not enough to repair dingecture in general;
Barat, Joret and Wood [7] showed that fortat 1 there is a graph with nkz 2
minor that is not #choosable. Kawarabayashi and Mohar [42] conjectured:

8.4 Conjecture:For all t, every graph with no Kminor is3t/2-choosable.
A third strengthening was proposed by Ding, Oporowski, anand Verti-
gan [22]:

8.5 Conjecture: For all integers t> s> 2, if G has no K minor, then there is a
partition of V(G) to t — s+ 1 parts, such that the subgraph induced on each part has
no Ks minor.

Fors= 2 this is Hadwiger’s conjecture, but it has not been dispddee any values
of s;t. Fors>t— 1itis easy, and it was proved fer=t — 2 by Gongalves [33].
Reed and | proposed a fourth variation in [64]:
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8.6 Conjecture:For every graph G with no noK; minor, there is a partition of its
vertex set, such that each part induces a connected bipantéph, and contracting
all the edges within the parts yields a graph with no inducgde of length more
than three.

This would imply that all graphs with nk;; minor are 2-colourable. It remains
open.

A fifth possible extension is to infinite graphs. (Hencefpgtaphs may be in-
finite in this section.) By compactnesstifs an integer and HEY holds for finite
graphs then it also holds for infinite graphs; but we couldargxtend Hadwiger’s
conjecture to allow infinitely many colours. One might hopatt

8.7 False conjecturefor every cardinal t, every graph with nq ikhinor has chro-
matic number less than t;

but this is trivially false (leG be the disjoint union of infinitely many finite cliques,
one of each size; the@ cannot be coloured with finitely many colours, but has no
infinite clique minor). A better formulation is:

8.8 Conjecture:For every cardinalt, let s be the least cardinal larger thapvery
graph with no K minor is t-colourable.

| believe 8.8 remains open, but van der Zypen [79] provedahewing:

8.9 Theorem:For every infinite cardinal t, every graph with no subgrapheths
a subdivision of Kis t-colourable.

Van der Zypen'’s proof uses the fact that wter an infinite cardinal, one can
give a construction of the graphs that contain no subdimigibK;, a result due
to Robertson, Thomas and myself [69]. It is also possiblg {6&lo the same for
graphs that contain ni§ minor whent is an infinite cardinal.

9 Immersions

There is an interesting conjecture, parallel to Hadwigeosjecture, that was
proposed by Lescure and Meyniel [56], (and independenylyAbu-Khzam and
Langston [1], later). LeG, H be graphs. Ammmersionof H in G is a choicej(v) €
V(G) for eachv € V(H), all distinct, and a choiceg (e) for eache € E(G), where
for e=uv, n(e) is a path ofG betweenn (u) andn(v), and all the pathg (e) are
pairwise edge-disjoint (they may share vertices; and arpenat of one path may
be an internal vertex of another). Let us saymmerses Hf there is an immersion
of H in G. Lescure and Meyniel proposed:

9.1 Conjecture: For every integer & 0, every graph that does not immersg K
is t-colourable.

This neither implies nor is implied by Hadwiger’s conje@&usince immersing
Ki1 neither implies nor is implied by havingl& .1 minor; but it is in some re-
spects similar. (In one respect it is very different; plageaphs can immerse huge
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complete graphs.) 9.1 was proved fox 6 by Lescure and Meyniel (though they
did not publish the proof for= 6), and more recently DeVos, Kawarabayashi, Mo-
har and Okamura [19] published a proof toe 6. Both sets of authors used the
same approach, proving the stronger statement thdt£06, every simple graph
with minimum degree at leastimmersesK;. Fort > 9, it is not true that every
graph with minimum degree at leasinmerse;; but DeVos, Dvorak, Fox, Mc-
Donald, Mohar and Scheide [18] proved the following (in fdwy proved it for
“strong”immersion, in which the verticeg(v) are not permitted to be internal ver-
tices of the pathg (e)):

9.2 Theorem:For allt > 0, every graph of minimum degree at leaétt immerses
K:.

It follows that

9.3 Theorem:Every graph that does not immersgi&20Q-colourable.

10 Big graphs

The constructions of Kostochka and de la Vega mentionedteaHow that there
are graphs with nd&; minor with average degree of the ordert()tbgt)l/z, and
indeed their minimum degree and connectivity are also afdhder. But there is a
feeling that honest, sensible graphs withkKgominor are not really like this; they
will have vertices of degree abautHow can we make this intuition closer to a true
statement?

The intuition comes mostly from the Graph Minors structinedrem of Robert-
son and myself [67], which says very roughly that to make ksapith noK;, 1
minor, one takes graphs on surfaces of bounded genus ané dddsmded number
of extra vertices; and if these extra vertices are not juathed to small parts of the
surface, there had better not be many of them (or else we efilagt;, 1 minor);
in fact at most — 4 of them, and fewer if the surface is not the plane. But tylpica
vertices in the surface have average degree (in the sufiege}han six, so total
degree less thant- 2. There are have been several attempts to bring this venevag
argument closer to reality, and in this section we discussesof them.

The feeling is that the examples of Kostochka and de la Vega baly bounded
size (which they do) in some essential way (which remaingtmbade precise). Of
course we can make bigger examples by taking disjoint urobti® little ones, but
then the connectivity is lost. What if we impose some conwiggtrestriction? Can
there still be large examples?

Thomas and | conjectured:

10.1 Conjecture:For all t > 0 there exists N such that evefty— 2)-connected
graph G with no Kminor and with n> N vertices satisfies

[E(G)|<(t—-2)n—(t—1)(t—2)/2.
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This remains open. Bohme, Kawarabayashi, Maharry and M8haroved:

10.2 Theorem:For all positive integers t, there exists N such that evatry- 2-
connected graph with no;Kninor and with at least N vertices has a vertex of degree
less thar81(t+1)/2—3.

This is very encouraging: everything is linear, the frigtite (logt)Y/2 term has
disappeared.

How can we arrange some decent connectivity? To prove)Hdé enough to
prove the impossibility of minimal or minimum counterexaegto HC{) (a coun-
terexample is “minimal” if no proper minor of itself is a ca@nexample; and “min-
imum” if no counterexample is smaller.) What about the caimgy of minimal
counterexamples? Kawarabayashi [41] proved:

10.3 Theorem: For t > 0, every minimal counterexample to HC(t) [&(t +
1)/27]-connected, and every minimum counterexample to HC(f)tis- 1) /3]-
connected.

Mader [60] proved that for any value bfif G is a minimal counterexample to
HC(t) thenG is 6-connected, and 7-connected if 6. Whent = 5 this is partic-
ularly interesting, because it means that to prove HC(5) mlg bave to consider
6-connected graphs withoklg minors. And Jgrgensen [38] conjectured the follow-

ing:
10.4 Conjecture:Every 6-connected graph with ng kKinor is apex.

(We recall that a graph iapexif it can be made planar by deleting one vertex,
and in particular all apex graphs are 5-colourable.) Thuml we could prove
Jgrgensen’s conjecture, we would obtain a much more apgeatoof of HC(5).
Unfortunately it remains open; but it might point a way tov®oHadwiger’s conjec-
ture in general, if we could only figure out an analogue of tuisjecture for larger
values oft (and then figure out how to prove it).

Kawarabayashi, Norin, Thomas and Wollan [43] proved thad it8elf is true in
large graphs:

10.5 Theorem:There exists N such that eveyconnected graph with at least N
vertices and with no Kminor is apex.

More recently Norin and Thomas have announced the folloamajogue of 10.5
for general values df (this is a difficult result with a huge proof, and is still bgin
written at this time):

10.6 Theorem:For all t > 0 there exists N such that eveny-tl-connected graph
with at least N vertices and with nq K minor can be made planar by deleting &
vertices.

So it would be nice to know that minimal counterexamples tqth@ret + 1-
connected; but we do not know this.

But recently it may have been shown that in fact there arenge lainimal coun-
terexamples to H@J, using a feature of them slightly different from conneitgiv
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A cutsetof G means (in this paper) a partiti¢A, B,C) of V(G) with A/ B £ 0, such
that there are no edges betwekmandB. A one-way clique cutseif G means a
cutset(A,B,C), and for eaclv € C a connected subgrapy C BUC containingyv,
such thatX,, X, are disjoint and some edge has an enXjrand an end irX,, for
all distinctu, v € C. In other words, we can tu@ into a clique by contracting edges
within BUC. Suppose thas is a minimal counterexample to H((for some value
oft. Then it is easy to show that:

no vertex has degree at most

no vertex of degree+ 1 has three nonadjacent neighbours;
there is no one-way clique cutset; and

G cannot be made planar by deleting 4 vertices.

Robertson and | announced (about 1993) that we proved:

10.7 Theorem:For allt > 0 and for every graph G with noK; minor, if G satis-
fies the four bullets above then G has bounded tree-width.

This had all kinds of pleasing consequences, but the prosfagy long, and was
never written down, and now it is lost. Fortunately, almbst $ame thing, and with
the same desirable consequences, has recently been aaddynikawarabayashi
and Reed [45], and their proof seems more manageable, andgatawyritten
down. (At the moment the proof sketched in [45] has develapéslv cracks, but
Kawarabayashi maintains it can be fixed.) They added a fifktio the four above:

e there do not exist a cutséf\ B,C) of G and disjoint connected subgraphs
X1,..., X of of GJAUC], each including a stable subset®f such that ifB’
denotes the graph obtained frddn X; U --- U X by contracting the edges of
X1,...,%, then everyt-colouring ofB’ extends to one d®.

This evidently also holds in any minimal counterexample @l They claim:

10.8 Theorem:For allt > 0 and for every graph G with noK; minor, if G satis-
fies the five bullets above then G has bounded tree-width.

This would have several consequences. The most importamombly an ex-
plicit function f(t) such that for alt, every minimal counterexample to HE has
at mostf (t) vertices.

11 Acknowledgements

Thanks to several people who made suggestions for impravieparticularly
Jacob Fox, Ken-ichi Kawarabayashi, Sasha Kostochka, Bégrar, Sergey Norin,
Sophie Spirkl, Robin Thomas, Bjarne Toft, Paul Wollan andib&Vood.



18 P. Seymour
References
1. F. N. Abu-Khzam and M. A. Langston, “Graph coloring andithenersion order’Computing

2.

3.

10.

11.
12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

and CombinatoricsLecture Notes in Comput. S@697 (2003) (Springer, Berlin) 394-403.
B. Albar and D. Gongalves, “On triangleskp-minor free graphs”, submitted for publication
(manuscript April 2013), http://arXiv.org/abs/1304.846

N. Alon, G. Ding, B. Oporowski, and D. Vertigan, “Partiimg into graphs with only small
components”J. Combinatorial Theory, Ser. B7 (2003), 231-243.

. K. Appel and A. Haken, “Every planar map is four colorafftart I. Discharging”]llinois J.

Math.21 (1977), 429-490.

. K. Appel, A. Haken and J. Koch, “Every planar map is fourocable. Part Il. Reducibility”,

lllinois J. Math.21 (1977), 491-567.

. J. Balogh and A. V. Kostochka, “Large minors in graphs wgitren independence number”,

Discrete Math311 (2011), 2203-2215.

. J. Barat, G. Joret and D. R. Wood, “Disproof of the list Wager conjecture”,Electronic

Journal of Combinatoric4d 8 (2011), p232.

. T. Bohme, K. Kawarabayashi, J. Maharry and B. Mohar, &anconnectivity forces large

complete bipartite graph minorsJ, Combinatorial Theory, Ser. B9 (2009), 557-582.

. T. Bohme, A. Kostochka and A. Thomason, “Minors in grapiith high chromatic number”,

Combin. Probab. Compu20 (2011), 513-518.

B. Bollobas, P. A. Catlin and P. Erd6s, “Hadwiger's jemture is true for almost every graph”,
Europ. J. Combinatoricg (1980), 195-199.

M. Borowiecki, “Research problem 17Djscrete Mathematic&21 (1993), 235-236.

P. Catlin, “Hajos’ graph-coloring conjecture: Vaitaits and counterexamples),’ Combinato-
rial Theory, Ser. B26 (1979), 268-274.

M. Chudnovsky and A. Fradkin, “An approximate versiorHafdwiger’s conjecture for claw-
free graphs”J. Graph Theon63 (2010), 259-278.

M. Chudnovsky, B. Reed and P. Seymour, “The edge-defwit{,; minors”, J. Combinato-
rial Theory, Ser. B101 (2011), 18-46.

M. Chudnovsky and P. Seymour, “Packing seagu&mbinatorica 32 (2012), 251-282.
W. F. de la Vega, “On the maximum density of graphs whicreh® subcontraction tKg”,
Discrete Math46 (1983), 109-110.

M. Devos, G. Ding, B. Oporowski, B. Reed, D. Sanders, pnfear and D. Vertigan, “Ex-
cluding any graph as a minor allows a low tree-width 2-colgtj J. Combinatorial Theory,
Ser. B 91 (2004), 25-41.

M. DeVos, Z. Dvorék, J. Fox, J. McDonald, B. Mohar andSgheide, “A minimum degree
condition forcing complete graph immersioi€pmbinatorica34 (2014), 279-298.

M. DeVos, K. Kawarabayashi, B. Mohar and H. Okamura, “lmsmg small complete
graphs”,Ars Mathematica Contemporan852010), 139-146.

G. Ding and S. Dziobiak, “Vertex-bipartition method fowlouring minor-closed classes of
graphs”,Combinatorics, Probability and Computii® (2010), 579-591.

G. Ding, T. Johnson and P. Seymour, “Spanning trees wathyrteaves”,J). Graph Theory37
(2001), 189-197.

G. Ding, B. Oporowski, D. Sanders, and D. Vertigan, “Sces, tree-width, clique-minors,
and partitions”J. Combinatorial Theory, Ser.,B9 (2000), 221-246.

G. A. Dirac, “A property of 4-chromatic graphs and sommaeks on critical graphs”).
London Math. So7 (1952), 85-92.

P. Duchet and H. Meyniel, “On Hadwiger's number and thbisty number”, inGraph The-
ory (Proc. conf. on graph theory, Cambridge, 1981; B. Bollpkds),Annals of Discrete Math.
13, North-Holland, Amsterdam, New York, 71-78prth-Holland Mathematical Studieg2
(1982), 71-73.

R.J. Duffin, “Topology of series—parallel networkd”,Math. Analys. Appl10 (1965), 303—
318.



Hadwiger's conjecture 19

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

K. Edwards, D. Y. Kang, J. Kim, S. Oum and P. Seymour, “/atieé of Hadwiger's conjec-
ture”, submitted for publication (manuscript July 2014tph/arXiv.org/abs/1407.5236v2.

P. Erdds and S. Fajtlowicz, “On the conjecture of Hgj@mbinatorical (1981), 141-143.
J. Fox, “Complete minors and independence numt&AM J. Discrete Math24 (2010),
1313-1321.

J. Fox, C. Lee and B. Sudakov, “Chromatic number, cliqieliwisions, and the conjectures
of Hajos and Erdés-FajtlowiczCombinatorica33 (2013), 181-197.

A. Fradkin, “Clique minors in claw-free graphg’,Combinatorial Theory, Ser. B02 (2012),
71-85.

J. Geelen, A. Gerards, B. Reed, P. Seymour and A. Vettatti® odd-minor variant of Had-
wiger’s conjecture”J. Combinatorial Theory, Ser,®9 (2009), 20-29.

A. M. H. GerardsGraphs and polyhedra. Binary spaces and cutting plaretume 73 of
CWI Tract. Stichting Mathematisch Centrum Centrum voor kfiede en Informatica, Ams-
terdam, 1990; http://oai.cwi.nl/oai/asset/12714/12Y.pdf.

D. Gongalves, “On vertex partitions and some minor-otone graph parametersJ, Graph
Theory66 (2011), 49-56.

G. R. Grimmitt and C. J. H. McDiarmid, “On colouring ramd@raphs”,Math. Proc. Cam-
bridge Phil. Soc77 (1975), 313-324.

B. Guenin, “Graphs without odd-K5 minors are 4-cololeglin preparation.

H. Hadwiger, Uber eine Klassifikation der Streckenkomplex#/erteljschr. Naturforsch.
Ges. Zurich88 (1943), 133-143.

T. Jensen and B. TofGraph Coloring ProblemsWiley, Chichester UK, 1995, page 115.

L. Jgrgensen, “Contractionskg”, J. Graph Theornyl8 (1994), 431-448.

K. Kawarabayashi, “A weakening of the odd Hadwiger'sjeoture”, Combinatorics, Proba-
bility and Computingl7 (2008), 815-821.

K. Kawarabayashi, “Note on coloring graphs without ¢géminors”, J. Combinatorial The-
ory, Ser. B99 (2009), 728-731.

K. Kawarabayashi, “On the connectivity of minimum andimal counterexamples to Had-
wiger’s conjecture”J. Combinatorial Theory, Ser. B7 (2007), 144-150.

K. Kawarabayashi and B. Mohar, “A relaxed Hadwiger's jeoture for list colorings”,J.
Combinatorial Theory Ser. B7 (2007), 647—651.

K. Kawarabayashi, S. Norin, R. Thomas and P. Wolld§s finors in large 6-connected
graphs”, in preparation; http://arXiv.org/abs/1203.219

K. Kawarabayashi and B. Reed, “Fractional coloring drelddd Hadwiger’s conjecture”,
European J. Comi29 (2008), 411-417.

K. Kawarabayashi and B. Reed, “Hadwiger’s conjectudedable” Proc. 41st Annual ACM
Symposium on Theory of Computii®FOC 2009, 445-454.

K. Kawarabayashi and Z. Song, “Some remarks on the odevigads conjecture” Combi-
natorica, 27 (2007), 429-438.

A. V. Kostochka, Ks; minors in(s+t)-chromatic graphs, II"J. Graph Theory75 (2014),
377-386.

A. V. Kostochka, “Lower bound on the Hadwiger number afrs by their average degree”,
Combinatoricad (1984), 307-316.

A. V. Kostochka, “OrKs; minors in(s+t)-chromatic graphs”J. Graph Theory65 (2010),
343-350.

A. V. Kostochka, “The minimum Hadwiger number for graptith a given mean degree of
vertices”,Metody Diskret. AnaliZ38 (1982), 37-58AMS Translation§2), 132 (1986), 15-32.
A. V. Kostochka and N. Prince, “Dense graphs higygminors”, Discrete Math.310 (2010),
2637-2654.

A. V. Kostochka and N. Prince, “Of; minors in graphs of given average degre@iscrete
Math.308 (2008), 4435-4445.

A. V. Kostochka and N. Prince, “Os¢-minors in graphs with given average degree, II”,
Discrete Math312 (2012), 3517-3522.

D. Kiihn and D. Osthus, “Forcing complete unbalancedrtte minors”,Europ. J. Combina-
torics 26 (2005), 75-81.



20

55.

56.

57.
58.

59.
. W. Mader, Uber trennende Eckenmengen in homomorphiekritischenH@rgpMath. Ann.

61.
62.

63.
64.

65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.

80.
81.

82.
83.

P. Seymour

K. Kuratowski, “Sur le probleme des courbes gaucheggologie”, Fund. Math.15 (1930),
271-283.

F. Lescure and H. Meyniel, “On a problem upon configuraticontained in graphs with given
chromatic number"Graph Theory in Memory of G. A. Dirg&andbjerg, 1985Ann. Discrete
Math. 41, North-Holland, Amsterdam, 1989, 325-331.

C. Liu and S. Oum, “Partitioningl-minor free graphs into three subgraphs with no large
components”, manuscript March 2015; http://arXiv.org/a503.08371v1.

W. Mader, “Homomorphieeigenschaften und mittlere i€adichte von Grapheri¥ath. Ann.
174 (1967), 265-268.

W. Mader, “Homomorphiesatze fur Graphekfath. Ann, 178 (1968), 154-168.

175 (1968), 245-252.

J.S. Myers, “The extremal function for unbalanced higaminors”, Discrete Math.271
(2003), 209-222.

J. S. Myers and A. Thomason, “The extremal function feraoonplete minors"Combinator-
ica 25 (2005), 725-753.

S. Norin, “Conquering graphs of bounded treewidth”,ubljshed manuscript, April 2015.
B. Reed and P. Seymour, “Fractional colouring and Haekggonjecture”J. Combinatorial
Theory, Ser. B74 (1998), 147 - 152.

B. Reed and P. Seymour, “Hadwiger’s conjecture for lirgpls”, European J. Math.25
(2004), 873-876.

B. Reed and D. Wood, “Forcing a sparse min@dmbinatorics, Probability and Computing
to appear (published online 16 April 2015).

N. Robertson and P. Seymour, “Graph minors. XVI. Exelgch non-planar graphd. Com-
binatorial Theory, Ser. B39 (2003), 43-76.

N. Robertson, P. Seymour and R. Thomas, “Excluding pefitlique minors”Memoirs Amer.
Math. Soc.no. 566, vol. 118 (1995).

N. Robertson, P. Seymour and R. Thomas, “Excluding sigidns of infinite cliques”Trans.
Amer. Math. Soc332 (1992), 211-223.

N. Robertson, P. Seymour and R. Thomas, “Hadwiger'seotmje forKg-free graphs”Com-
binatorical3 (1993), 279-361.

Z.Song and R. Thomas, “The extremal functionkgminors”,J. Combinatorial Theory, Ser.
B, 96 (2006), 240-252.

A. Thomason, “An extremal function for contractions o&ghs”, Math. Proc. Camb. Phil.
Soc.95 (1984), 261-265.

A. Thomason, “The extremal function for complete mifiods Combinatorial Theory Ser. B,
81 (2001), 318-338.

C. Thomassen, “Every planar graph is 5-choosakle'Combinatorial Theory, Ser. B2
(1994), 180-181.

C. Thomassen, “Totally od#4-subdivisions in 4-chromatic graphsGombinatorica 21
(2001), 417-443.

B. Toft, “Problem 10,” irRecent Advances in Graph ThepBroc. Symp. Prague June 1974,
M. Fiedler (Ed.), Academia Praha, 1975, 543-544.

B. Toft,A Survey of Hadwiger's Conjectura: Surveys in Graph Theoifgdited by G. Char-
trand and M. Jacobson), Congr. Numer. 115 (1996), 249-283.

W. T. Tutte, “On the algebraic theory of graph colorings"Combinatorial Theoryl (1966),
15-50.

D. van der Zypen, “A weak form of Hadwiger’s conjectuDP Trans. Appl. MatH. (2014),
84-87.

M. Voigt, “List colourings of planar graphsDiscrete Mathematic&20 (1993), 215-219.

K. Wagner, “Beweis einer Abschwachung der Hadwigaregung”,Math. Ann.153 (1964),
139-141.

K. Wagner, Uber eine Eigenschaft der ebenen Kompleiéath. Ann.114 (1937), 570-590.
D. R. Wood, “Contractibility and the Hadwiger conje&yrEurop. J. Combinatorics.31
(2010), 2102-21009.



Hadwiger's conjecture 21

84. D. R.Wood, “On tree-partition-widthEuropean J. Combinatoric30 (2009), 1245-1253.
85. W. Zang, “Proof of Toft's conjecture: every graph coniag no fully oddK, is 3-colorable”,
J. Combinatorial Optimizatio2 (1998), 117-199.



