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Abstract
This is a survey of Hadwiger’s conjecture from 1943, that forall t ≥ 0, every

graph either can bet-coloured, or has a subgraph that can be contracted to the com-
plete graph ont +1 vertices. This is a tremendous strengthening of the four-colour
theorem, and is probably the most famous open problem in graph theory.

1 Introduction

The four-colour conjecture (or theorem as it became in 1976), that every planar
graph is 4-colourable, was the central open problem in graphtheory for a hundred
years; and its proof is still not satisfying, requiring as itdoes the extensive use of a
computer. (Let us call it the 4CT.) We would very much like to know the “real” rea-
son the 4CT is true; what exactly is it about planarity that implies that four colours
suffice? Its statement is so simple and appealing that the massive case analysis of
the computer proof surely cannot be the book proof.

So there have been attempts to pare down its hypotheses to a minimum core, in
the hope of hitting the essentials; to throw away planarity,and impose some weaker
condition that still works, and perhaps works with greater transparency so we can
comprehend it. This programme has not yet been successful, but it has given rise to
some beautiful problems.

Of these, the most far-reaching is Hadwiger’s conjecture. (One notable other at-
tempt is Tutte’s 1966 conjecture [78] that every 2-edge-connected graph containing
no subdivision of the Petersen graph admits a “nowhere-zero4-flow”, but that is
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beyond the scope of this survey.) Before we state it, we need afew definitions. All
graphs in this paper have no loops or parallel edges, and are finite unless we say oth-
erwise. IfG is a graph, any graph that can be obtained by moving to a subgraph ofG
and then contracting edges is called aminorof G. The complete graph ont vertices
is denoted byKt , and the complete bipartite graph with sides of cardinalitiesa,b is
denoted byKa,b.

By the Kuratowski-Wagner theorem [55, 82], planar graphs are precisely the
graphs that do not containK5 or K3,3 as a minor; so the 4CT says that every graph
with no K5 or K3,3 minor is 4-colourable. If we are searching for the “real” reason
for the four-colour theorem, then it is natural to excludeK5 here, because it is not
four-colourable; but why are we excludingK3,3? What if we just excludeK5, are all
graphs with noK5 minor four-colourable? And does the analogous statement hold if
we changeK5 to Kt+1 and four-colouring tot-colouring? That conjecture was posed
by Hadwiger in 1943 [36] and is still open:

1.1 Hadwiger’s conjecture:For every integer t≥ 0, every graph with no Kt+1

minor is t-colourable.

Let HC(t) denote the statement “every graph with noKt+1 minor ist-colourable”.
Hadwiger proved HC(t) for t ≤ 3 in 1943 when he introduced his conjecture. Wag-
ner [82] had already shown that HC(4) is equivalent to the 4CTin 1937; and so
HC(4) was finally proved when the 4CT was proved by Appel and Haken [4, 5] in
1976. Then in 1993, Robertson, Thomas and I proved HC(5) [70]; one step further
than the 4CT! And the proof did not use a computer (although itdid assume the 4CT
itself). HC(6) remains open.

There have been numerous weakenings and variations proved,of various types,
and strengthenings proposed, some of which still survive; and this is an attempt
to survey them. Incidentally, there is an excellent 1996 survey on Hadwiger’s con-
jecture by Toft [77], which is particularly informative on the early history of the
problem.

2 The proved special cases

Let us first go through the results just mentioned more carefully. HC(0) and
HC(1) are trivial. Graphs with noK3 minor are forests, which are 2-colourable,
so HC(2) holds. The first case that is not quite obvious is HC(3). How do we show
that graphs with noK4 minor are 3-colourable? Hadwiger [36] showed that every
non-null graph with noK4 minor has a vertex of degree at most two, which implies
that all such graphs are 3-colourable; and there are later theorems of Dirac [23] and
Duffin [25] on the same topic. This assembly of results can be expressed in several
different ways, but here is one that is convenient for us. Take two graphsG1,G2, and
for i = 1,2 let Ci be a clique (that is, a subset of vertices, all pairwise adjacent) of
Gi , where|C1|= |C2|. Choose some bijection between the cliques, and identify each
vertex ofC1 with the corresponding vertex ofC2. We obtain a graphH say, with two
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subgraphs isomorphic toG1,G2 respectively, overlapping on a clique. Now letG be
obtained fromH by deleting some edges (or none) of the clique; we say thatG is a
clique-sumof G1,G2, and if the clique has sizek, we also call it ak-sum.

It is easy to see that ifG is a clique-sum ofG1,G2, and bothG1,G2 are t-
colourable, then so isG. So if G can be built by repeated clique-sums starting from
some basic class of graphs that are allt-colourable, then so isG. This gives us a
slick proof of HC(t) for t ≤ 3, because of the following:

2.1 Theorem: For 0 ≤ t ≤ 3, the graphs with no Kt+1 minor are precisely the
graphs that can be built by repeated clique-sums, starting from graphs with at most
t vertices.

HC(4) implies the 4CT, so we should not expect 2.1 to extend tot = 4. And it
doesn’t; large grids have noK5 minor and yet cannot be built from 4-vertex graphs
by clique-sums. (Indeed, let us sayG hastree-width kif k is minimum such thatG
can be built by clique-sums from pieces with at mostk+ 1 vertices; then then×n
grid has tree-widthn.) Nevertheless, we can describe all the graphs with noK5 minor
in this language. LetV8 be the graph obtained from a cycle of length 8 by adding four
edges joining the four opposite pairs of vertices of the cycle. Wagner [82] essentially
proved the following in 1937.

2.2 Theorem:The graphs with no K5 minor are precisely the graphs that can be
built by repeated 0-, 1-, 2-, and 3-sums, starting from planar graphs and copies of
V8.

Consequently the 4CT implies HC(4), as Wagner points out in his 1937 pa-
per [82]. (Of course, this does not yet provide the profound insight into the four-
colour theorem we hope for, because not only does theproofof HC(4) use the 4CT,
but the graphs it concerns are themselves basically planar.)

What about HC(5)? One might imagine that since the curve of difficulty versust
has recently had such a steep slope, HC(5) would be impossible (or false); but that
is not so. Suppose it is false, and look at a smallest counterexampleG. Robertson,
Thomas and I [70] showed, without using a computer and without assuming the
four-colour theorem, thatG must be anapexgraph, that is, there is a vertex whose
deletion makes it planar. If so, then since the 4CT implies that the planar part of
G is 4-colourable, we still have a colour left for the vertex wedeleted, soG is 5-
colourable after all.

The proof thatG is apex is (very roughly) as follows. One can show thatG is
6-connected, and in particular all vertices have degree at least six; and vertices of
degree six belong toK4 subgraphs, and it follows that there are not many of them
(in fact at most two), or else we could piece together all these K4’s to make aK6

minor. On the other hand, a theorem of Mader says that the average degree ofG is
less than eight, and we cannot make the average degree biggerthen eight even if we
cleverly contract edges. That implies that there are edges that are in several triangles
or squares. If, say, there is an edgeuv in four triangles, then there is noK4 minor of
G\ {u,v} on the four surviving vertices of the triangles (sinceG has noK6 minor),
and graphs with this property are well-understood; basically they have to be planar
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with the four special vertices on the infinite region. SoG\ {u,v} is planar, and now
a little more thought shows that one ofG\u,G\ v is planar, and henceG is apex.

Proving that graphs with noK7-minor are 6-colourable is thus the first case of
Hadwiger’s conjecture that is still open. Albar and Gonçalves[2] proved:

2.3 Theorem: Every graph with no K7 minor is 8-colourable, and every graph
with no K8 minor is 10-colourable.

3 Average degree

If we are stuck trying to prove Hadwiger’s conjecture itself, whatcanwe show
about the chromatic number of graphs with noKt+1 minor? As Wagner [81] proved
in 1964, all graphs with noKt+1 minor are 2t-colourable. The proof is as follows:
we may assumeG is connected; fix some vertexz, and for eachi let Li be the set
of vertices at distancei from z; sinceG has noKt+1 minor, the subgraph induced
onLi has noKt minor (because the union of all the earlier levels would provide one
more vertex in the minor); inductively each levelLi induces a subgraph that is 2t−1-
colourable; and now alternate colours in even and odd levelsto get a 2t-colouring of
G.

Wagner’s result has been considerably improved, but most ofthese improvements
depend on “degeneracy”, so let us first discuss that. We sayG is k-degenerateif
every non-null subgraph has a vertex of degree at mostk. For instance, forests are
1-degenerate, series-parallel graphs (the graphs with noK4 minor) are 2-degenerate,
and planar graphs are 5-degenerate. By deleting a vertex of degree at mostk and
applying an inductive hypothesis, we have:

3.1 Theorem:If G is k-degenerate then its chromatic number is at most k+1.

So, if we can bound the degeneracy of the graphs with noKt+1 minor, we also
bound their chromatic number. (This gives us another proof of HC(t) for t ≤ 3,
because fort ≤ 3 every graph with noKt+1 minor is(t −1)-degenerate.)

The simplest way to bound the degeneracy is to bound the average degree. How
many edges ann-vertex graph with noKt minor can have is a much-studied question.
Mader [58, 59] showed in 1967 that:

3.2 Theorem: For every graph H there exists c such that|E(G)| ≤ c|V(G)| for
every graph G with no H minor.

But whenH = Kt for small values oft, we know the answer exactly:

• for n≥ 1, n-vertex graphs with noK3 minor (forests) have at mostn−1 edges;
• for n≥ 2, graphs with noK4 minor have at most 2n−3 edges;
• for n≥ 3, graphs with noK5 minor have at most 3n−6 edges.

Here is an example: forn≥ t −2, take the complete bipartite graphKt−2,n−t+2,
and add edges joining all pairs of vertices on the side of cardinality t −2. This has
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noKt minor, and hasn vertices and(t−2)n− (t−1)(t−2)/2 edges. Thus fort ≤ 5,
this graph has the maximum number of edges possible, and if this were so for allt,
it would prove Hadwiger’s conjecture within a factor of 2. Mader [59] showed that
the same holds fort = 6,7:

3.3 Theorem:For t ≤ 7 and all n≥ t−2, every n-vertex graph G with no Kt minor
satisfies

|E(G)| ≤ (t −2)n− (t−1)(t−2)/2.

But for t ≥ 8 the pattern fails. Ifn1, . . . ,nt > 0, we denote byKn1,...,nt the complete
t-partite graph with parts of cardinalityn1, . . . ,nt . Mader pointed out thatK2,2,2,2,2

has noK8 minor, and does not satisfy the formula of 3.3.
On the other hand, fort = 8 we understand all counterexamples to the formula. In

the definition of ak-sum we are permitted to delete edges from the clique involved;
if we do not delete any such edges let us call it apure k-sum. Jørgensen [38] proved:

3.4 Theorem: Let G be an n-vertex graph with no K8 minor, with n≥ 6 and
|E(G)| > 6n−21; then |E(G)| = 6n−20, and G can be built by pure5-sums from
copies of K2,2,2,2,2.

The same holds forK9; Song and Thomas [71] proved:

3.5 Theorem: Let G be an n-vertex graph with no K9 minor, with n≥ 7 and
|E(G)| > 7n− 28; then |E(G)| = 7n− 27, and either G= K2,2,2,3,3, or G can be
built by pure6-sums from copies of K1,2,2,2,2,2.

But ast grows, the formula of 3.3 becomes completely wrong. For a graphH, let
φ(H) be the infimum of alld such that every graphG with noH minor has average
degree at mostd, that is, satisfies|E(G)| ≤ d|V(G)|/2. (We are particularly con-
cerned here with the case whenH is a complete graphKt , butφ(H) is of interest for
non-complete graphs too.) Kostochka [48, 50] and de la Vega [16] proved thatφ(Kt )
is at least of ordert(logt)1/2, and Kostochka [48, 50] and Thomason [72] proved
the same was an upper bound; and in particular Kostochka[50]showed (logarithms
are to basee):

3.6 Theorem: For every integer t> 0,

0.128≤
φ(Kt )

t(logt)1/2
≤ 6.3.

Later Thomason [73] found the limit exactly: he proved (again with logarithms
to basee):

3.7 Theorem:Let λ < 1 be the solution of the equation1−λ +2λ logλ = 0 and
let

α = (1−λ ) log(1/λ )−1/2 ≃ 0.63817.

Then as t→ ∞, φ(Kt ) = (α +o(1))t(logt)1/2.
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This was extended to non-complete graphs by Myers and Thomason [62], who
proved the following (R+ denotes the set of nonnegative real numbers, andα is as
before):

3.8 Theorem:Let H be a graph with t vertices, and letγ(H) be the minimum of
1
t ∑u∈V(H) w(u) over all functions w: V(H) → R

+ such that

∑
uv∈E(H)

t−w(u)w(v) ≤ t.

Then as t→ ∞, φ(H) = (αγ(H)+o(1))t(logt)1/2.

For classes of graphsH with γ(H) bounded away from zero (such as regular
graphs with degreectε wherec,ε > 0), this determinesφ(H) asymptotically; but
for some classes of graphs (such as those with a linear numberof edges) it does not.
This gap is addressed by two theorems of Reed and Wood [66]:

3.9 Theorem:There is a constant d0 such thatφ(H) ≤ 3.895(logd)1/2t for every
graph H with t vertices and average degree d≥ d0.

3.10 Theorem:For every graph H,φ(H) ≤ |V(H)|+6.291|E(H)|.

The Myers-Thomason theorem implies thatφ(H) is not linear int for graphs
with t vertices and with a quadratic number of edges; but the secondReed-Wood
theorem implies that if|E(H)| is linear int then so isφ(H).

For some graphsH we can determine exactly the maximum number of edges in
graphs with noH minor, but those theorems are thinner on the ground. We already
mentioned the cases whenH = Kt ; and the same can be done for many graphsH
with at most six vertices, such asK3,3; and there are two theorems doing it for larger
graphsH. Chudnovsky, Reed and I [14] answered it forK2,t (extending a result of
Myers [61]), and Kostochka and Prince [51] did it forK3,t (and theK1,t result is
obvious):

3.11 Theorem:Let G be an n-vertex graph with no H minor.

• If H = K1,t then|E(G)| ≤ 1
2(t −1)n;

• if H = K2,t then|E(G)| ≤ 1
2(t +1)(n−1); and

• if H = K3,t and t≥ 6300and n≥ t +3 then|E(G)| ≤ 1
2(t +3)(n−2)+1.

All three results are exact for infinitely many values ofn. (By the way, when
H = K1,t , if we restrict to connected graphsG then the answer is quite different,
namely|E(G)| ≤ n+(t +1)(t−2)/2 if n≥ t +2; see [21].)

What aboutH = Ks,t in general, ift ≥ s? For fixeds and larget, the value of
φ(Ks,t ) is not determined by 3.8, so this is an interesting case. It turns out to be
more natural to excludeK∗

s,t instead; this is the graph obtained fromKs,t by adding
edges joining all pairs of vertices in the side of cardinality s. Extrapolating from
3.11, one might hope that if ann-vertex graph has noKs,t minor then

|E(G)| ≤
1
2
(2s+ t−3)n−

1
2
(s−1)(s+ t−1),
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because again this can be attained with equality for infinitely manyn (take many dis-
joint copies ofKt and adds−1 extra vertices adjacent to everything). But this is not
true, at least fors> 18. Kostochka and Prince [52, 53] proved (and see also [54] for
a related result) that with the functionφ(H) as before (here logarithms are binary):

3.12 Theorem:Let s, t be positive integers with t> (180slogs)1+6slogs. Then

3s−5s1/2+ t ≤ φ(Ks,t) ≤ φ(K∗
s,t ) < 3s+ t.

All these results tell us that the graphs with a certain minorH excluded have
average degree at most some constant, and therefore have minimum degree at most
the same constant; and that gives us a bound on their degeneracy. In particular,
from 3.6, every graph with noKt minor has degeneracy at mostO(t(logt)1/2), and
therefore chromatic number at most the same. For larget, this is the best bound
known on the chromatic number of graphs excludingKt .

Incidentally, bounding minimum degree by average degree isnatural, but it might
not give the right answer. For instance, graphs with noK4 minor can have average
degree> 3; and yet they always have minimum degree at most 2. When we exclude
K5, average degree gives the true bound for minimum degree; butwhat happens with
K6? Graphs with noK6 minor can have average degree more than 7, but can they
have minimum degree 7? I think this is open.

4 Stability number

One possible cause of the intractability of Hadwiger’s conjecture is that we need
to use the fact that the chromatic number is large, and graphscan have large chro-
matic number for obscure reasons. What if we make our lives easier, and look at
graphs that have large chromatic number for obvious reasons? Thestability number
α(G) of a graphG is the size of the largest stable set (a set of vertices isstableif
no two of its members are adjacent). (This is different from Thomason’sα, which
we do not need any more.) Everyn-vertex graphG has chromatic number at least
⌈n/α(G)⌉, and should contain a clique minor of this size if Hadwiger’sconjecture
is true. Can we prove this at least?

The signs are not good; the only known proof that everyn-vertex planar graph
has stability number at leastn/4 is via the 4CT. Nevertheless, there are some results.
There is an elegant argument by Duchet and Meyniel [24] proving:

4.1 Theorem:Every n-vertex graph G has a Kt minor where t≥ n/(2α(G)−1).

Their argument can also be used to show a result that seems to have been overlooked:

4.2 Theorem:For every graph G with no Kt+1 minor, there exists a t-colourable
induced subgraph containing at least half the vertices of G.

4.1 is within a factor of 2 of what should be true, and there have been subse-
quent improvements, notably by Fox [28] (who proved a factorslightly less than 2)
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and then Balogh and Kostochka [6], who reduced Fox’s factor alittle further and
currently have the record. They showed the following:

4.3 Theorem:Every n-vertex graph G has a Kt minor where t≥ 0.51338n/α(G).

A different strengthening, better than 4.3 whenα is small, was proved by
Kawarabayashi and Song [46]:

4.4 Theorem: Every n-vertex graph G withα(G) ≥ 3 has a Kt minor where t≥
n/(2α(G)−2).

Returning to 4.1: it implies that ifG has noKt+1 minor then some stable set has
cardinality at leastn/(2t). Suppose we give each vertex ofG a nonnegative real
weight. Hadwiger’s conjecture would imply that there is a stable set such that the
total weight of its members is at least 1/t times the sum of all weights. One might
hope to prove a weighted version of 4.1 (without the−1 in the denominator) and
this turns out to be true, though more difficult to prove. Say thefractional chromatic
numberof a graphG is the minimum real numberk such that for some integers> 0,
there is a list ofksstable sets ofG such that every vertex is ins of them. Via linear
programming duality, the weighted Duchet-Meyniel statement is equivalent to the
following, proved by Reed and myself [64]:

4.5 Theorem:Every graph with no Kt+1 minor has fractional chromatic number
at most2t.

The proof also gives a corresponding extension of 4.2:

4.6 Theorem: In every graph G with no Kt+1 minor, there is a non-null list of t-
colourable subsets of V(G), such that every vertex is in exactly half of the sets in the
list.

GraphsG with α(G) = 2 are particularly interesting, because these graphs are
more tractable for colouring; for instance, there is a polynomial-time algorithm to
find the chromatic number of such a graph (just find the largestmatching in the
complement graph). Here is another nice feature of them: saya seagullin a graph
G is an induced 3-vertex path. Ifα(G) = 2 andS is a seagull inG then every other
vertex ofG has a neighbour inS, and so finding many disjoint seagulls is a way
to find a large clique minor. In [15], Chudnovsky and I proved there is a min-max
formula for the maximum number of disjoint seagulls in a graph G with α(G) = 2.

For ann-vertex graphG with α(G) = 2, the Duchet-Meyniel theorem implies
that there is aKt minor with t ≥ n/3. This was strengthened by Böhme, Kostochka
and Thomason [9], who proved (for graphs with arbitrary stability number):

4.7 Theorem: Every n-vertex graph with chromatic number k has a Kt minor
where t≥ (4k−n)/3.

But Hadwiger’s conjecture implies that ifα(G) = 2 then there should be aKt

minor with t ≥ n/2. This seems to me to be an excellent place to look for a coun-
terexample. My own belief is, if it is true for graphs with stability number two then
it is probably true in general, so it would be very nice to decide this case. Despite
some intensive effort the following remains open:
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4.8 Open question:Does there exists c> 1
3 such that every graph G withα(G) = 2

has a Kt minor where t≥ c|V(G)|?

A graph isclaw-freeif no vertex has three pairwise nonadjacent neighbours. Thus
graphs with stability number two are claw-free. Fradkin [30] proved:

4.9 Theorem:Every n-vertex connected claw-free graph G withα(G) ≥ 3 has a
Kt minor where t≥ n/α(G).

Chudnovsky and Fradkin [13] proved:

4.10 Theorem:Every claw-free graph G with no Kt+1 minor is⌊3t/2⌋-colourable.

Line graphs are claw-free, so these last two results are related to a theorem of
Reed and myself; we proved [65] that Hadwiger’s conjecture is true for line graphs
(of multigraphs).

5 Weakenings

The statement of Hadwiger’s conjecture is:
For all t ≥ 0 and every graph G, either G has a Kt+1 minor or V(G) can be

partitioned into t stable sets.
How can we weaken this and still have something non-trivial?Section 2 covered

changing “For allt ≥ 0” to “For a fewt ≥ 0”; section 3 did changing “t stable sets”
to “ f (t) stable sets”; and section 4 covered changing “partitioned into stable sets”
to “fractional chromatic number”; but there are several other ways to weaken the
statement. Here are some.

Change “every graphG” to “almost every graph G”. (The meaning of “almost
every” here is that the proportion ofn-vertex graphs that satisfy the statement tends
to 1 asn→ ∞.) This weakening is true. It follows from a combination of a theorem
of Bollobás, Catlin and Erdős [10] and a theorem of Grimmett and McDiarmid [34]:

5.1 Theorem:For all d > 2, almost every n-vertex graph has a Kt minor where
t ≥ n/((logn)1/2+4), and has chromatic number at most2n/ logn.

Change “Kt+1” to something else.If we hope to prove that every graph with
no H minor has chromatic number at mostt, thenH had better have at mostt + 1
vertices, or else takingG = Kt+1 is a counterexample. So, which subgraphsH of
Kt+1 work? Kostochka [47, 49] proved the following.

5.2 Theorem:For all s there exists t0 such that for all t≥ t0, every graph with no
K∗

s,t minor is(s+ t−1)-colourable.

Change “stable sets” to something else.Here is a recent theorem of Edwards,
Kang, Kim, Oum and myself [26]:
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5.3 Theorem:For all t there exists k such that if G has no Kt+1 minor then V(G)
can be partitioned into t sets X1, . . . ,Xt , such that for1≤ i ≤ t, G[Xi ] has maximum
degree at most k.

(For X ⊆ V(G), G[X] denotes the subgraph induced onX.) This result is quite
easy, but it has two attractive features; first, it is best possible in that if we ask for a
partition intot −1 sets there is no suchk; and second, it and 6.8 below are the only
results known that derive a partition intot sets withanynon-trivial property from
the absence of aKt+1 minor.

There are more weakenings to describe yet, but they deserve anew section.

6 Bounded component-size

What if we try to improve 5.3? Let us sayX ⊆ V(G) hascomponent-size kif
the largest component ofG[X] hask vertices. Thus having bounded component-
size is more restrictive than have bounded maximum degree (though less than what
we really want, being stable). Instead of just saying that each G[Xi] has bounded
maximum degree, what if we ask that each of them has bounded component-size?
It has not been proved that for graphsG with no Kt+1 minor, we can partition into
t sets with this property, but there has been a series of papersproving thatV(G)
can be partitioned into a linear number of parts each with bounded component-size.
Initially Kawarabayashi and Mohar [42] proved:

6.1 Theorem:For all t ≥ 0 there exists k such that if G has no Kt minor, then V(G)
can be partitioned into at most f(t) parts each with component-size at most k, where
f (t) = ⌈31t/2⌉.

Wood [83] proved the same withf (t) = ⌈7t/2−3/2⌉ (using 10.6, an unpublished
theorem of Norin and Thomas which we discuss later), and there have been further
improvements which we describe below.

There is a set of lemmas here that can be combined in various ways. DeVos,
Ding, Oporowski, Reed, Sanders, Vertigan and I [17] proved:

6.2 Theorem:For all t there exists w such that for every graph G with no Kt minor,
there is a partition of V(G) into two parts, such that the subgraph induced on each
part has tree-width at most w.

Alon, Ding, Oporowski and Vertigan [3] showed:

6.3 Theorem:For all w,d and for every graph G with tree-width at most w≥ 3
and maximum degree at most d≥ 1, there is a partition of V(G) into two parts each
with component-size at most24wd.

Wood [84] improved this, replacing 24kd with 5(k+ 1)(7d− 2)/4. Liu (unpub-
lished) has recently proved a list-colouring version:

6.4 Theorem: For all w,d there exists k such that for every graph G with tree-
width at most w and maximum degree at most d, and every assignment of a set Lv
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with |Lv| ≥ 2 to each vertex v, there is a choice of c(v) ∈ Lv for each v such that for
each x, the set of all vertices v with c(v) = x has component-size at most k.

Incidentally, an interesting asymmetric version was proved by Ding and Dzio-
biak [20]:

6.5 Theorem:For all t ≥ 0 there exists w≥ 0 such that for every graph G with no
Kt minor, V(G) can be partitioned into two sets X,Y, where G[X] has tree-width at
most w, and G[Y] is (t +1)-degenerate.

By combining 6.2 and 6.3, Alon et al. deduced:

6.6 Theorem: For all t ,d there exists k such that for every graph G with no Kt

minor and maximum degree at most d, there is a partition of V(G) into four parts
each with component-size at most k.

Recently, Liu and Oum [57] improved this, replacing “four” by “three”. If we
then combine their result with 5.3 we deduce an improvement of 6.1 with f (t) =
3(t−1). Even more recently, Norin used a different approach to do better. He proved
the following lemma [63]:

6.7 Theorem:For all t ,w≥ 0 there exists N with the following property. Let G be
a graph with|V(G)| ≥ N, with tree-width at most w and with no Kt minor. Then for
every S⊆V(G) with |S| ≤ 2w, there exists I⊆V(G)\S, nonempty, such that at most
2w vertices in V(G)\ I have a neighbour in I, and every vertex in I has at most t−2
neighbours in V(G)\ I.

With the aid of this lemma, an easy inductive argument yields:

6.8 Theorem:For all t ,w≥ 0 there exists k such that for every graph G with tree-
width at most w and no Kt minor, there is a partition of V(G) into t−1 parts such
that each part has component-size at most k.

Then this, combined with 6.2, yields an improvement of 6.1 with f (t) = 2(t−1).

7 Odd minors

We have finished with weakenings of Hadwiger’s conjecture now; time to turn to
strengthenings.

Graphs that are not 2-colourable not only have aK3 minor (or equivalently, a
cycle); they have an odd cycle. It is tempting to try to make some corresponding
strengthening of Hadwiger’s conjecture. Here is what seemsto be the most natural
way to do it. If G is a graph andX ⊆ V(G), δ (X) denotes the set of edges ofG
with one end inX and the other inV(G) \X. We say thatF ⊆ E(G) is a cut of G
if F = δ (X) for someX ⊆V(G). Now letG,H be graphs. We say thatH is anodd
minor of G if H can be obtained from a subgraphG′ of G by contracting a set of
edges that is a cut ofG′. (Note that /0 is a cut.) Thus a graph is not 2-colourable if
and only if it containsK3 as an odd minor. In 1979, Catlin [12] proved:



12 P. Seymour

7.1 Theorem:If G has no K4 odd minor then G is3-colourable.

Incidentally, a much stronger statement than this has now been proved. Say a
fully odd K4 in G is a subgraph ofG which is obtained fromK4 by replacing each
edge ofK4 by a path of odd length (thelengthof a path is the number of edges in it)
in such a way that the interiors of these six paths are disjoint. Toft [76] conjectured
in 1975 and Zang [85] proved in 1998 (and, independently, Thomassen [75] proved
in 2001) that:

7.2 Theorem:If G contains no fully odd K4 then G is3-colourable.

Returning to odd minors: there is a result giving a construction for all graphs
with no K4 odd minor, due to Lovász, Schrijver, Truemper and myself. It is rather
awkward to state, and not published, although it was proved many years ago (in the
early 1980’s, and mostly on a riverboat in Bonn, if I remembercorrectly). We omit
its statement here; see [32].

In view of its truth fort ≤ 3, Gerards and I conjectured the following strengthen-
ing of Hadwiger’s conjecture (see [37]):

7.3 Conjecture: For every t≥ 0, if G has no Kt+1 odd minor, then G is t-
colourable.

Several of the results mentioned earlier approaching Hadwiger’s conjecture have
extensions to odd minors. For instance, Guenin [35] announced at a meeting in
Oberwolfach in 2005 that:

7.4 Theorem:Every graph with no K5 odd minor is 4-colourable.

Geelen, Gerards, Reed, Vetta and I [31] proved (see also [40]for a simpler proof):

7.5 Theorem:If G has no Kt odd minor thenχ(G) ≤ O(t(logt)1/2).

Kawarabayashi and Song [46] proved an odd minor version of 4.1, namely:

7.6 Theorem:Every n-vertex graph G has a Kt odd minor where t≥ n/(2α(G)−
1).

Kawarabayashi and Reed [44] proved:

7.7 Theorem:Every graph with no Kt odd minor is fractionally2t-colourable.

Kawarabayashi and Song [46] proved an odd minor relative of 10.2:

7.8 Theorem: For every t≥ 0, there exists N such that for every(496t + 13)-
connected graph G with at least N vertices, either G has a Kt odd minor, or there
exists X⊆V(G) with |X| ≤ 8t such that G\X is bipartite.

Kawarabayashi [39] proved:

7.9 Theorem:If G has no Kt odd minor, then there is a partition of V(G) into 496t
parts such that each part induces a subgraph of bounded maximum degree.
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8 Other strengthenings

There have been some other strengthenings of Hadwiger’s conjecture proposed,
but they have mostly not fared so well as 7.3. For instance, say G is asubdivisionof
H if G can be obtained fromH by replacing each edge by a path, where the paths
have disjoint interiors. Hajós conjectured in the 1940’s (but did not publish it) that

8.1 False conjecture:For all t ≥ 0, if no subgraph of G is a subdivision of Kt+1

then G is t-colourable.

This is true fort ≤ 3, but it is still open fort = 4,5, and Catlin [12] gave a
counterexample for allt ≥ 6. Indeed, Erdős and Fajtlowicz [27] proved that almost
all graphs are counterexamples, because of the following:

8.2 Theorem:There are constants C1,C2 such that for almost every n-vertex graph
G, no subgraph of G is a subdivision of Kt for t ≥C1n1/2, and the chromatic number
of G is at least C2n/ log(n).

Erdős and Fajtlowicz conjectured and Fox, Lee and Sudakov [29] proved that the
ratio of the chromatic number over the clique subdivision number over alln-vertex
graphs is maximized up to a constant factor by the random graph onn vertices; in
other words, the uniform random graph is essentially the strongest counterexample
to the Hajós conjecture.

Another strengthening of Hadwiger’s conjecture was proposed by Borowiecki [11].
A graphG is t-choosableif for every assignment of at-element setLv to each vertex
v of G, it is possible to select a memberc(v) ∈ Lv for eachv such thatc(u) 6= c(v) if
u,v are adjacent. Borowiecki asked whether

8.3 False conjecture:Every graph with no Kt+1 minor is t-choosable.

This is true fort ≤ 3, but false fort = 4; Voigt [80] gave a planar graph that is
not 4-choosable. Thomassen [74] proved that all planar graphs are 5-choosable, but
an additive constant adjustment is not enough to repair the conjecture in general;
Barát, Joret and Wood [7] showed that for allt ≥ 1 there is a graph with noK3t+2

minor that is not 4t-choosable. Kawarabayashi and Mohar [42] conjectured:

8.4 Conjecture:For all t, every graph with no Kt minor is3t/2-choosable.

A third strengthening was proposed by Ding, Oporowski, Sanders and Verti-
gan [22]:

8.5 Conjecture: For all integers t≥ s≥ 2, if G has no Kt minor, then there is a
partition of V(G) to t−s+1 parts, such that the subgraph induced on each part has
no Ks minor.

Fors= 2 this is Hadwiger’s conjecture, but it has not been disproved for any values
of s, t. Fors≥ t −1 it is easy, and it was proved fors= t −2 by Gonçalves [33].

Reed and I proposed a fourth variation in [64]:
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8.6 Conjecture:For every graph G with no no Kt+1 minor, there is a partition of its
vertex set, such that each part induces a connected bipartite graph, and contracting
all the edges within the parts yields a graph with no induced cycle of length more
than three.

This would imply that all graphs with noKt+1 minor are 2t-colourable. It remains
open.

A fifth possible extension is to infinite graphs. (Henceforth, graphs may be in-
finite in this section.) By compactness, ift is an integer and HC(t) holds for finite
graphs then it also holds for infinite graphs; but we could tryto extend Hadwiger’s
conjecture to allow infinitely many colours. One might hope that

8.7 False conjecture:For every cardinal t, every graph with no Kt minor has chro-
matic number less than t;

but this is trivially false (letG be the disjoint union of infinitely many finite cliques,
one of each size; thenG cannot be coloured with finitely many colours, but has no
infinite clique minor). A better formulation is:

8.8 Conjecture:For every cardinal t, let s be the least cardinal larger than t; every
graph with no Ks minor is t-colourable.

I believe 8.8 remains open, but van der Zypen [79] proved the following:

8.9 Theorem:For every infinite cardinal t, every graph with no subgraph which is
a subdivision of Kt is t-colourable.

Van der Zypen’s proof uses the fact that whent is an infinite cardinal, one can
give a construction of the graphs that contain no subdivision of Kt , a result due
to Robertson, Thomas and myself [69]. It is also possible [68] to do the same for
graphs that contain noKt minor whent is an infinite cardinal.

9 Immersions

There is an interesting conjecture, parallel to Hadwiger’sconjecture, that was
proposed by Lescure and Meyniel [56], (and independently, by Abu-Khzam and
Langston [1], later). LetG,H be graphs. Animmersionof H in G is a choiceη(v) ∈
V(G) for eachv ∈ V(H), all distinct, and a choiceη(e) for eache∈ E(G), where
for e= uv, η(e) is a path ofG betweenη(u) andη(v), and all the pathsη(e) are
pairwise edge-disjoint (they may share vertices; and an end-point of one path may
be an internal vertex of another). Let us sayG immerses Hif there is an immersion
of H in G. Lescure and Meyniel proposed:

9.1 Conjecture:For every integer t≥ 0, every graph that does not immerse Kt+1

is t-colourable.

This neither implies nor is implied by Hadwiger’s conjecture, since immersing
Kt+1 neither implies nor is implied by having aKt+1 minor; but it is in some re-
spects similar. (In one respect it is very different: planargraphs can immerse huge



Hadwiger’s conjecture 15

complete graphs.) 9.1 was proved fort ≤ 6 by Lescure and Meyniel (though they
did not publish the proof fort = 6), and more recently DeVos, Kawarabayashi, Mo-
har and Okamura [19] published a proof fort = 6. Both sets of authors used the
same approach, proving the stronger statement that fort ≤ 6, every simple graph
with minimum degree at leastt immersesKt . For t ≥ 9, it is not true that every
graph with minimum degree at leastt immersesKt ; but DeVos, Dvořák, Fox, Mc-
Donald, Mohar and Scheide [18] proved the following (in factthey proved it for
“strong”immersion, in which the verticesη(v) are not permitted to be internal ver-
tices of the pathsη(e)):

9.2 Theorem:For all t ≥ 0, every graph of minimum degree at least200t immerses
Kt .

It follows that

9.3 Theorem:Every graph that does not immerse Kt is 200t-colourable.

10 Big graphs

The constructions of Kostochka and de la Vega mentioned earlier show that there
are graphs with noKt minor with average degree of the order oft(logt)1/2, and
indeed their minimum degree and connectivity are also of this order. But there is a
feeling that honest, sensible graphs with noKt minor are not really like this; they
will have vertices of degree aboutt. How can we make this intuition closer to a true
statement?

The intuition comes mostly from the Graph Minors structure theorem of Robert-
son and myself [67], which says very roughly that to make graphs with noKt+1

minor, one takes graphs on surfaces of bounded genus and addsa bounded number
of extra vertices; and if these extra vertices are not just attached to small parts of the
surface, there had better not be many of them (or else we will get aKt+1 minor);
in fact at mostt −4 of them, and fewer if the surface is not the plane. But typical
vertices in the surface have average degree (in the surface)less than six, so total
degree less thant +2. There are have been several attempts to bring this very vague
argument closer to reality, and in this section we discuss some of them.

The feeling is that the examples of Kostochka and de la Vega have only bounded
size (which they do) in some essential way (which remains to be made precise). Of
course we can make bigger examples by taking disjoint unionsof the little ones, but
then the connectivity is lost. What if we impose some connectivity restriction? Can
there still be large examples?

Thomas and I conjectured:

10.1 Conjecture:For all t ≥ 0 there exists N such that every(t − 2)-connected
graph G with no Kt minor and with n≥ N vertices satisfies

|E(G)| ≤ (t −2)n− (t−1)(t−2)/2.
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This remains open. Böhme, Kawarabayashi, Maharry and Mohar [8] proved:

10.2 Theorem:For all positive integers t, there exists N such that every3t + 2-
connected graph with no Kt minor and with at least N vertices has a vertex of degree
less than31(t +1)/2−3.

This is very encouraging: everything is linear, the frightening(logt)1/2 term has
disappeared.

How can we arrange some decent connectivity? To prove HC(t) it is enough to
prove the impossibility of minimal or minimum counterexamples to HC(t) (a coun-
terexample is “minimal” if no proper minor of itself is a counterexample; and “min-
imum” if no counterexample is smaller.) What about the connectivity of minimal
counterexamples? Kawarabayashi [41] proved:

10.3 Theorem: For t ≥ 0, every minimal counterexample to HC(t) is⌈2(t +
1)/27⌉-connected, and every minimum counterexample to HC(t) is⌈(t + 1)/3⌉-
connected.

Mader [60] proved that for any value oft, if G is a minimal counterexample to
HC(t) thenG is 6-connected, and 7-connected ift ≥ 6. Whent = 5 this is partic-
ularly interesting, because it means that to prove HC(5) we only have to consider
6-connected graphs withoutK6 minors. And Jørgensen [38] conjectured the follow-
ing:

10.4 Conjecture:Every 6-connected graph with no K6 minor is apex.

(We recall that a graph isapexif it can be made planar by deleting one vertex,
and in particular all apex graphs are 5-colourable.) Thus ifonly we could prove
Jørgensen’s conjecture, we would obtain a much more appealing proof of HC(5).
Unfortunately it remains open; but it might point a way to solve Hadwiger’s conjec-
ture in general, if we could only figure out an analogue of thisconjecture for larger
values oft (and then figure out how to prove it).

Kawarabayashi, Norin, Thomas and Wollan [43] proved that 10.4 itself is true in
large graphs:

10.5 Theorem:There exists N such that every6-connected graph with at least N
vertices and with no K6 minor is apex.

More recently Norin and Thomas have announced the followinganalogue of 10.5
for general values oft (this is a difficult result with a huge proof, and is still being
written at this time):

10.6 Theorem:For all t ≥ 0 there exists N such that every t+1-connected graph
with at least N vertices and with no Kt+1 minor can be made planar by deleting t−4
vertices.

So it would be nice to know that minimal counterexamples to HC(t) aret + 1-
connected; but we do not know this.

But recently it may have been shown that in fact there are no large minimal coun-
terexamples to HC(t), using a feature of them slightly different from connectivity.
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A cutsetof G means (in this paper) a partition(A,B,C) of V(G) with A,B 6= /0, such
that there are no edges betweenA andB. A one-way clique cutsetof G means a
cutset(A,B,C), and for eachv∈C a connected subgraphXv ⊆ B∪C containingv,
such thatXu,Xv are disjoint and some edge has an end inXu and an end inXv, for
all distinctu,v∈C. In other words, we can turnC into a clique by contracting edges
within B∪C. Suppose thatG is a minimal counterexample to HC(t), for some value
of t. Then it is easy to show that:

• no vertex has degree at mostt;
• no vertex of degreet +1 has three nonadjacent neighbours;
• there is no one-way clique cutset; and
• G cannot be made planar by deletingt −4 vertices.

Robertson and I announced (about 1993) that we proved:

10.7 Theorem:For all t ≥ 0 and for every graph G with no Kt+1 minor, if G satis-
fies the four bullets above then G has bounded tree-width.

This had all kinds of pleasing consequences, but the proof was very long, and was
never written down, and now it is lost. Fortunately, almost the same thing, and with
the same desirable consequences, has recently been announced by Kawarabayashi
and Reed [45], and their proof seems more manageable, and mayget written
down. (At the moment the proof sketched in [45] has developeda few cracks, but
Kawarabayashi maintains it can be fixed.) They added a fifth bullet to the four above:

• there do not exist a cutset(A,B,C) of G and disjoint connected subgraphs
X1, . . . ,Xk of of G[A∪C], each including a stable subset ofC, such that ifB′

denotes the graph obtained fromB∪X1 ∪ ·· · ∪Xt by contracting the edges of
X1, . . . ,Xt , then everyt-colouring ofB′ extends to one ofG.

This evidently also holds in any minimal counterexample to HC(t). They claim:

10.8 Theorem:For all t ≥ 0 and for every graph G with no Kt+1 minor, if G satis-
fies the five bullets above then G has bounded tree-width.

This would have several consequences. The most important isprobably an ex-
plicit function f (t) such that for allt, every minimal counterexample to HC(t) has
at mostf (t) vertices.

11 Acknowledgements

Thanks to several people who made suggestions for improvement, particularly
Jacob Fox, Ken-ichi Kawarabayashi, Sasha Kostochka, BojanMohar, Sergey Norin,
Sophie Spirkl, Robin Thomas, Bjarne Toft, Paul Wollan and David Wood.



18 P. Seymour

References

1. F. N. Abu-Khzam and M. A. Langston, “Graph coloring and theimmersion order”,Computing
and Combinatorics, Lecture Notes in Comput. Sci.2697 (2003) (Springer, Berlin) 394–403.
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27. P. Erdős and S. Fajtlowicz, “On the conjecture of Hajós”, Combinatorica1 (1981), 141–143.
28. J. Fox, “Complete minors and independence number”,SIAM J. Discrete Math.24 (2010),

1313–1321.
29. J. Fox, C. Lee and B. Sudakov, “Chromatic number, clique subdivisions, and the conjectures
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