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Abstract

We prove a conjecture of Bowlin and Brin that for all n ≥ 5, the n-vertex biwheel is the planar
triangulation with n vertices admitting the largest number of four-colourings.



1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges (except immediately after
1.1). A triangulation is a graph drawn in the 2-sphere S2 such that the boundary of every region
is a 3-vertex cycle. A biwheel is a triangulation consisting of a cycle C and two more vertices, each
adjacent to every vertex of C, and for n ≥ 5, we denote the n-vertex biwheel by Bn. For k > 0 an
integer, a k-colouring of a graph G is a map φ from the vertex set V (G) of G to {1, . . . , k}, such that
φ(u) 6= φ(v) for every edge uv. Let Pk(G) denote the number of k-colourings of a graph G. Garry
Bowlin and Matt Brin [1, 2] conjectured the following, which is the main result of this note:

1.1 If G is a triangulation with n ≥ 5 vertices, then P4(G) ≤ P4(Bn).

The hypothesis that G has no parallel edges is important, and without it the extremal “trian-
gulation” is different. Let us say a pseudo-triangulation is a drawing in S2, possibly with parallel
edges but without loops, such that the boundary of every region is a cycle of length three. We
claim that every n-vertex pseudo-triangulation has at most 3 · 2n 4-colourings. To see this, let G
be an n-vertex pseudo-triangulation, and order its vertex set v1, . . . , vn such that v1, v2 are adjacent
and for 3 ≤ i ≤ n, there is a triangle containing vi and two of v1, . . . , vi−1. For 1 ≤ i ≤ n, let
Gi = G|{v1, . . . , vi}. (We use G|X to denote the subdrawing of G induced on X, when X ⊆ V (G).)
Thus P4(G2) = 12, and for 3 ≤ i ≤ n every 4-colouring of Gi−1 extends to at most two 4-colourings of
Gi; and so by induction it follows that for 2 ≤ i ≤ n, P4(Gi) ≤ 3 ·2i, and in particular, P4(G) ≤ 3 ·2n.
But there is a pseudo-triangulation with n vertices and 3 · 2n 4-colourings, obtained as follows: take
a drawing with two vertices x, y and n − 2 parallel edges, and for each consecutive pair of parallel
edges add a new vertex between them adjacent to x, y.

Our proof of 1.1 is based on the same idea of bounding the number of 4-colourings by ordering
the vertex set such that each makes a triangle with two of its predecessors, but we need to treat a
few vertices as special, and just order the others.

Bowlin and Brin also raised the question of deciding which n-vertex triangulation has the second
most 4-colourings, and conjectured that the number of 4-colourings of the second-best triangulation
is asymptotically half of the number for the biwheel. We do not prove this, but prove that the number
of 4-colourings of any non-biwheel on n vertices is asymptotically at most 27/32 of the number for
the biwheel. More precisely, we prove the following, which immediately implies 1.1.

1.2 Let G be a triangulation with n ≥ 5 vertices.

• If G is a biwheel, then P4(G) = 2n − 8 if n is odd, and 2n + 32 if n is even.

• If G is not a biwheel, then P4(G) ≤ 27

32
2n ≤ 2n − 8.

2 The main proof

First, we need

2.1 If G is a cycle with n vertices then P3(G) = 2n + 2(−1)n.
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Proof. The result is well-known and elementary, but we give a proof for completeness. For n ≥ 1,
let κn = 2n + 2(−1)n. For n ≥ 2, let αn be the number of 3-colourings of an n-vertex path such
that its ends have the same colour, and let βn be the number of 3-colourings such that its ends have
different colours. We prove by induction on n that αn = κn−1, and βn = κn. The result is true when
n = 2, so we assume n ≥ 3. Now αn = βn−1, so the first assertion holds. For the second, let G be a
path with vertices v1, . . . , vn in order. Each 3-colouring of G \ {vn} with v1, vn−1 of different colours
extends to a unique 3-colouring of G in which v1, vn have different colours, and each 3-colouring
of G \ {vn} with v1, vn−1 of the same colour extends to two 3-colourings of G in which v1, vn have
different colours. Consequently

βn = αn−1 + 2βn−1 = κn−1 + 2κn−2 = κn

as required. This proves that βn = κn for all n ≥ 2. Now if G is a cycle with n vertices, it follows
(by deleting one edge of G) that P3(G) = βn = κn. This proves 2.1.

If G is a triangulation, a triangle of G means a region of G, and we denote a triangle incident
with vertices a, b, c by abc. A triangle touches another if they are distinct and share an edge. It is
convenient to first prove the result when G is 4-connected.

2.2 Let G be a 4-connected triangulation, not a biwheel, with n vertices, and with minimum degree
k say. (Thus k ∈ {4, 5}.) Then P4(G) ≤ 27 · 2n−5 if k = 4, and P4(G) ≤ 45 · 2n−6 if k = 5.

Proof. A diamond in G is a set of four vertices of G, all pairwise adjacent except for one pair,
called the apices. A diamond a, b, c, d with apices a, b is pure if there is no vertex of G adjacent to
a, b and non-adjacent to c, d. Let v ∈ V (G) have degree k, and let N be its set of neighbours and
M = V (G) \ (N ∪ {v}).

(1) There is a triangle of G with vertex set included in M .

For suppose not. If some vertex in M is adjacent to every vertex of N , then G is a biwheel, a
contradiction; and at most two vertices of M have k − 1 neighbours in N , by planarity. Moreover,
G|M is connected, since G is 4-connected. Since every vertex in G has degree at least four, it follows
that at most two vertices in M have degree one in G|M . Suppose that G|M is a forest. Then it is a
path, with vertices v1, . . . , vn in order say; and v1, vn both have k − 1 neighbours in N , so k = 4 and
G is a biwheel, a contradiction. Thus there is a cycle in G|M , and hence (1) follows.

(2) Either k = 4 and n = 8 and P4(G) = 72, or there is a diamond D of G such that some
vertex of G with degree k has no neighbour in D.

For let xyz be a triangle with x, y, z ∈ M ; and let x′, y′, z′ be vertices of G different from x, y, z
such that there are triangles x′yz, xy′z, xyz′. If one of x′, y′, z′ is in M then (2) holds, so we assume
that x′, y′, z′ are all in N . Since G|N is a cycle of length k, we may assume that x′, y′ are adjacent,
and so z has degree four and hence |N | = k = 4; and so we may also assume that y′, z′ are adjacent.
It follows that x, z have degree four in G. Let w′ be the neighbour of v different from x′, y′, z′. Let
px′w′ touch vx′w′. Thus {p, v, x′, w′} is a diamond, and x is non-adjacent to v, x′, w′, so we may
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assume that v is adjacent to p, that is, p = y. But then n = 8 and P4(G) = 72, and the result holds.
This proves (2).

In view of (2), we may assume that there is a diamond {a, b, c, d} in M , with apices a, b.

(3) There is a pure diamond included in M .

For we may assume that {a, b, c, d} is not pure, and so there is a vertex p adjacent to a, b and not
to c, d. From the symmetry between c, d, we may assume that the cycle with vertex set {a, c, b, p}
divides S2 into two open discs D1,D2, one containing d and the other containing v, say d ∈ D1.
Let bdq touch bdc. Then q 6= p since q is adjacent to d, and so q ∈ D1, and in particular q ∈ M .
Suppose that the diamond {c, q, b, d} is not pure; then there is a vertex r adjacent to c, q and not to
b, d, which is impossible by planarity. This proves (3).

In view of (3) we may assume that {a, b, c, d} is pure.

(4) We can order V (G)\{a, b, c, d} and {v1, . . . , vn−4} in such a way that v1 = v, N = {v2, . . . , vk+1},
and for k + 2 ≤ i ≤ n − 4 there is a triangle containing vi and two of v1, . . . , vi−1.

For let G′ be the drawing obtained from G by deleting a, b, c, d, and let D be the region of G′

containing a, b, c, d. Then D is an open disc, and so there is a closed walk tracing its boundary.
Since G is 4-connected and the diamond {a, b, c, d} is pure, it follows that no vertex appears twice
in this closed walk, and so D is bounded by a cycle C say. Choose a sequence v1, . . . , vj of distinct
members of V (G) \ {a, b, c, d}, where v1 = v, N = {v2, . . . , vk+1}, and for k + 2 ≤ i ≤ j there
is a triangle containing vi and two of v1, . . . , vi−1, with j maximum. Let X = {v1, . . . , vj} and
Y = V (G) \ ({a, b, c, d} ∪ X). Let R be the set of all triangles with vertex set included in X. Let S
be the closure of the union of the members of R; thus S is some closed subset of S2, with boundary
the closure of some set of edges of G. Let e ∈ E(G) be an edge of G in the boundary of S, where
e = xy say, and let xyz ∈ R touche some region xyz′ /∈ R. Thus z′ /∈ X from the definition of R,
and so from the choice of j it follows that z′ ∈ {a, b, c, d}, and consequently e ∈ E(C). Consequently
every edge in the boundary of S belongs to E(C), and since every vertex of G is incident with an
even number of such edges, it follows that C is the boundary of S. Consequently S is a closed disc,
and hence contains all vertices of G not in {a, b, c, d}. It follows that j = n − 4. This proves (4).

For 1 ≤ i ≤ n − 4, let Gi = G|{v1, . . . , vi}. For k + 2 ≤ i ≤ n − 4, P4(Gi) ≤ 2P4(Gi−1),
and so P4(Gn−4) ≤ 2n−k−5P4(Gk+1). But every 4-colouring of Gn−4 can be extended to at most
six 4-colourings of G (this is easy to check, and we leave it to the reader), and so P4(G) ≤ 6 ·
2n−k−5P4(Gk+1). By 2.1, if k = 4 then P4(Gk+1) = 72, and if k = 5 then P4(Gk+1) = 120. This
proves 2.2.

2.3 Let n ≥ 6 be such that every triangulation with n′ vertices admits at most 2n′

+32 4-colourings,
for 5 ≤ n′ ≤ n − 1. Let G be a triangulation with n vertices.

• If G has a vertex of degree three, then P4(G) ≤ 2n−1 + 32, and P4(G) = 24 if n = 6.
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• If G has no vertex of degree three and G is not 4-connected, then n ≥ 9 and P4(G) ≤ 2n−1+128.

Suppose first that some vertex v has degree three. Now G′ = G \ v is a triangulation, so from the
hypothesis P4(G

′) ≤ 2n−1 + 32, and P4(G
′) = 24 if n = 6. But every 4-colouring of G′ extends to a

unique 4-colouring of G, and the result follows.
Now we assume that G has no vertex of degree three, but is not 4-connected. Consequently there

is a cycle of length three in G that does not bound a region; and so there are two triangulations
G1, G2 in S with union G, intersecting just in this cycle, and each with at least four vertices. Let
Gi have ni + 3 vertices for i = 1, 2. Since G has no vertex of degree three it follows that n1, n2 ≥ 3,
and so n ≥ 9. Moreover, P4(G) = P4(G1)P4(G2)/24, and from the hypothesis, P4(Gi) ≤ 2ni+3 + 32
for i = 1, 2. It follows that

P4(G) ≤ (2n1+3 + 32)(2n2+3 + 32)/24 ≤ (2n−3 + 32)(26 + 32)/24 = 2n−1 + 128,

since n1, n2 ≥ 3 and sum to n − 3. This proves 2.3.

Proof of 1.2. The first assertion of 1.2 is easy using 2.1 and we leave it to the reader. Note
also that 27

32
2n ≤ 2n − 8 if n ≥ 6, and every triangulation with five vertices is a biwheel. Thus

for the second assertion, we proceed by induction on n, and we may therefore assume that every
triangulation with n′ vertices admits at most 2n′

+ 32 4-colourings, for 5 ≤ n′ ≤ n − 1. Let G be a
triangulation with n vertices, not a biwheel, and so n ≥ 6. If n ≥ 7 and G has a vertex of degree
three, then by 2.3,

P4(G) ≤ 2n−1 + 32 ≤
27

32
2n

as required; while if n = 6 and G has a vertex v of degree three, then by 2.3,

P4(G) = 24 ≤
27

32
2n.

Thus we may assume that G has no vertex of degree three. If G is not 4-connected, then by 2.3
n ≥ 9 and

P4(G) ≤ 2n−1 + 128 ≤
27

32
2n

as required. If G is 4-connected and has no vertex of degree four, then by 2.2,

P4(G) ≤ 45 · 2n−6 ≤
27

32
2n;

while if G is 4-connected and has a vertex of degree four then the result follows from 2.2. This proves
1.2.
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