Proof of a conjecture of Bowlin and Brin on four-colouring triangulations

Paul Seymour ${ }^{1}$
Princeton University, Princeton, NJ 08544

December 28, 2012; revised June 27, 2013
${ }^{1}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

Abstract

We prove a conjecture of Bowlin and Brin that for all $n \geq 5$, the n-vertex biwheel is the planar triangulation with n vertices admitting the largest number of four-colourings.

1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges (except immediately after 1.1). A triangulation is a graph drawn in the 2 -sphere S^{2} such that the boundary of every region is a 3 -vertex cycle. A biwheel is a triangulation consisting of a cycle C and two more vertices, each adjacent to every vertex of C, and for $n \geq 5$, we denote the n-vertex biwheel by B_{n}. For $k>0$ an integer, a k-colouring of a graph G is a map ϕ from the vertex set $V(G)$ of G to $\{1, \ldots, k\}$, such that $\phi(u) \neq \phi(v)$ for every edge $u v$. Let $P_{k}(G)$ denote the number of k-colourings of a graph G. Garry Bowlin and Matt Brin [1, 2] conjectured the following, which is the main result of this note:

1.1 If G is a triangulation with $n \geq 5$ vertices, then $P_{4}(G) \leq P_{4}\left(B_{n}\right)$.

The hypothesis that G has no parallel edges is important, and without it the extremal "triangulation" is different. Let us say a pseudo-triangulation is a drawing in S_{2}, possibly with parallel edges but without loops, such that the boundary of every region is a cycle of length three. We claim that every n-vertex pseudo-triangulation has at most $3 \cdot 2^{n} 4$-colourings. To see this, let G be an n-vertex pseudo-triangulation, and order its vertex set v_{1}, \ldots, v_{n} such that v_{1}, v_{2} are adjacent and for $3 \leq i \leq n$, there is a triangle containing v_{i} and two of v_{1}, \ldots, v_{i-1}. For $1 \leq i \leq n$, let $G_{i}=G \mid\left\{v_{1}, \ldots, v_{i}\right\}$. (We use $G \mid X$ to denote the subdrawing of G induced on X, when $X \subseteq V(G)$.) Thus $P_{4}\left(G_{2}\right)=12$, and for $3 \leq i \leq n$ every 4 -colouring of G_{i-1} extends to at most two 4 -colourings of G_{i}; and so by induction it follows that for $2 \leq i \leq n, P_{4}\left(G_{i}\right) \leq 3 \cdot 2^{i}$, and in particular, $P_{4}(G) \leq 3 \cdot 2^{n}$. But there is a pseudo-triangulation with n vertices and $3 \cdot 2^{n} 4$-colourings, obtained as follows: take a drawing with two vertices x, y and $n-2$ parallel edges, and for each consecutive pair of parallel edges add a new vertex between them adjacent to x, y.

Our proof of 1.1 is based on the same idea of bounding the number of 4 -colourings by ordering the vertex set such that each makes a triangle with two of its predecessors, but we need to treat a few vertices as special, and just order the others.

Bowlin and Brin also raised the question of deciding which n-vertex triangulation has the second most 4 -colourings, and conjectured that the number of 4 -colourings of the second-best triangulation is asymptotically half of the number for the biwheel. We do not prove this, but prove that the number of 4 -colourings of any non-biwheel on n vertices is asymptotically at most $27 / 32$ of the number for the biwheel. More precisely, we prove the following, which immediately implies 1.1.
1.2 Let G be a triangulation with $n \geq 5$ vertices.

- If G is a biwheel, then $P_{4}(G)=2^{n}-8$ if n is odd, and $2^{n}+32$ if n is even.
- If G is not a biwheel, then $P_{4}(G) \leq \frac{27}{32} 2^{n} \leq 2^{n}-8$.

2 The main proof

First, we need
2.1 If G is a cycle with n vertices then $P_{3}(G)=2^{n}+2(-1)^{n}$.

Proof. The result is well-known and elementary, but we give a proof for completeness. For $n \geq 1$, let $\kappa_{n}=2^{n}+2(-1)^{n}$. For $n \geq 2$, let α_{n} be the number of 3 -colourings of an n-vertex path such that its ends have the same colour, and let β_{n} be the number of 3 -colourings such that its ends have different colours. We prove by induction on n that $\alpha_{n}=\kappa_{n-1}$, and $\beta_{n}=\kappa_{n}$. The result is true when $n=2$, so we assume $n \geq 3$. Now $\alpha_{n}=\beta_{n-1}$, so the first assertion holds. For the second, let G be a path with vertices v_{1}, \ldots, v_{n} in order. Each 3 -colouring of $G \backslash\left\{v_{n}\right\}$ with v_{1}, v_{n-1} of different colours extends to a unique 3 -colouring of G in which v_{1}, v_{n} have different colours, and each 3 -colouring of $G \backslash\left\{v_{n}\right\}$ with v_{1}, v_{n-1} of the same colour extends to two 3-colourings of G in which v_{1}, v_{n} have different colours. Consequently

$$
\beta_{n}=\alpha_{n-1}+2 \beta_{n-1}=\kappa_{n-1}+2 \kappa_{n-2}=\kappa_{n}
$$

as required. This proves that $\beta_{n}=\kappa_{n}$ for all $n \geq 2$. Now if G is a cycle with n vertices, it follows (by deleting one edge of G) that $P_{3}(G)=\beta_{n}=\kappa_{n}$. This proves 2.1.

If G is a triangulation, a triangle of G means a region of G, and we denote a triangle incident with vertices a, b, c by $a b c$. A triangle touches another if they are distinct and share an edge. It is convenient to first prove the result when G is 4 -connected.
2.2 Let G be a 4-connected triangulation, not a biwheel, with n vertices, and with minimum degree k say. (Thus $k \in\{4,5\}$.) Then $P_{4}(G) \leq 27 \cdot 2^{n-5}$ if $k=4$, and $P_{4}(G) \leq 45 \cdot 2^{n-6}$ if $k=5$.

Proof. A diamond in G is a set of four vertices of G, all pairwise adjacent except for one pair, called the apices. A diamond a, b, c, d with apices a, b is pure if there is no vertex of G adjacent to a, b and non-adjacent to c, d. Let $v \in V(G)$ have degree k, and let N be its set of neighbours and $M=V(G) \backslash(N \cup\{v\})$.

(1) There is a triangle of G with vertex set included in M.

For suppose not. If some vertex in M is adjacent to every vertex of N, then G is a biwheel, a contradiction; and at most two vertices of M have $k-1$ neighbours in N, by planarity. Moreover, $G \mid M$ is connected, since G is 4 -connected. Since every vertex in G has degree at least four, it follows that at most two vertices in M have degree one in $G \mid M$. Suppose that $G \mid M$ is a forest. Then it is a path, with vertices v_{1}, \ldots, v_{n} in order say; and v_{1}, v_{n} both have $k-1$ neighbours in N, so $k=4$ and G is a biwheel, a contradiction. Thus there is a cycle in $G \mid M$, and hence (1) follows.
(2) Either $k=4$ and $n=8$ and $P_{4}(G)=72$, or there is a diamond D of G such that some vertex of G with degree k has no neighbour in D.

For let $x y z$ be a triangle with $x, y, z \in M$; and let $x^{\prime}, y^{\prime}, z^{\prime}$ be vertices of G different from x, y, z such that there are triangles $x^{\prime} y z, x y^{\prime} z, x y z^{\prime}$. If one of $x^{\prime}, y^{\prime}, z^{\prime}$ is in M then (2) holds, so we assume that $x^{\prime}, y^{\prime}, z^{\prime}$ are all in N. Since $G \mid N$ is a cycle of length k, we may assume that x^{\prime}, y^{\prime} are adjacent, and so z has degree four and hence $|N|=k=4$; and so we may also assume that y^{\prime}, z^{\prime} are adjacent. It follows that x, z have degree four in G. Let w^{\prime} be the neighbour of v different from $x^{\prime}, y^{\prime}, z^{\prime}$. Let $p x^{\prime} w^{\prime}$ touch $v x^{\prime} w^{\prime}$. Thus $\left\{p, v, x^{\prime}, w^{\prime}\right\}$ is a diamond, and x is non-adjacent to $v, x^{\prime}, w^{\prime}$, so we may
assume that v is adjacent to p, that is, $p=y$. But then $n=8$ and $P_{4}(G)=72$, and the result holds. This proves (2).

In view of (2), we may assume that there is a diamond $\{a, b, c, d\}$ in M, with apices a, b.

(3) There is a pure diamond included in M.

For we may assume that $\{a, b, c, d\}$ is not pure, and so there is a vertex p adjacent to a, b and not to c, d. From the symmetry between c, d, we may assume that the cycle with vertex set $\{a, c, b, p\}$ divides S^{2} into two open discs D_{1}, D_{2}, one containing d and the other containing v, say $d \in D_{1}$. Let $b d q$ touch $b d c$. Then $q \neq p$ since q is adjacent to d, and so $q \in D_{1}$, and in particular $q \in M$. Suppose that the diamond $\{c, q, b, d\}$ is not pure; then there is a vertex r adjacent to c, q and not to b, d, which is impossible by planarity. This proves (3).

In view of (3) we may assume that $\{a, b, c, d\}$ is pure.
(4) We can order $V(G) \backslash\{a, b, c, d\}$ and $\left\{v_{1}, \ldots, v_{n-4}\right\}$ in such a way that $v_{1}=v, N=\left\{v_{2}, \ldots, v_{k+1}\right\}$, and for $k+2 \leq i \leq n-4$ there is a triangle containing v_{i} and two of v_{1}, \ldots, v_{i-1}.

For let G^{\prime} be the drawing obtained from G by deleting a, b, c, d, and let D be the region of G^{\prime} containing a, b, c, d. Then D is an open disc, and so there is a closed walk tracing its boundary. Since G is 4 -connected and the diamond $\{a, b, c, d\}$ is pure, it follows that no vertex appears twice in this closed walk, and so D is bounded by a cycle C say. Choose a sequence v_{1}, \ldots, v_{j} of distinct members of $V(G) \backslash\{a, b, c, d\}$, where $v_{1}=v, N=\left\{v_{2}, \ldots, v_{k+1}\right\}$, and for $k+2 \leq i \leq j$ there is a triangle containing v_{i} and two of v_{1}, \ldots, v_{i-1}, with j maximum. Let $X=\left\{v_{1}, \ldots, v_{j}\right\}$ and $Y=V(G) \backslash(\{a, b, c, d\} \cup X)$. Let \mathcal{R} be the set of all triangles with vertex set included in X. Let S be the closure of the union of the members of \mathcal{R}; thus S is some closed subset of S^{2}, with boundary the closure of some set of edges of G. Let $e \in E(G)$ be an edge of G in the boundary of S, where $e=x y$ say, and let $x y z \in \mathcal{R}$ touche some region $x y z^{\prime} \notin \mathcal{R}$. Thus $z^{\prime} \notin X$ from the definition of \mathcal{R}, and so from the choice of j it follows that $z^{\prime} \in\{a, b, c, d\}$, and consequently $e \in E(C)$. Consequently every edge in the boundary of S belongs to $E(C)$, and since every vertex of G is incident with an even number of such edges, it follows that C is the boundary of S. Consequently S is a closed disc, and hence contains all vertices of G not in $\{a, b, c, d\}$. It follows that $j=n-4$. This proves (4).

For $1 \leq i \leq n-4$, let $G_{i}=G \mid\left\{v_{1}, \ldots, v_{i}\right\}$. For $k+2 \leq i \leq n-4, P_{4}\left(G_{i}\right) \leq 2 P_{4}\left(G_{i-1}\right)$, and so $P_{4}\left(G_{n-4}\right) \leq 2^{n-k-5} P_{4}\left(G_{k+1}\right)$. But every 4 -colouring of G_{n-4} can be extended to at most six 4-colourings of G (this is easy to check, and we leave it to the reader), and so $P_{4}(G) \leq 6$. $2^{n-k-5} P_{4}\left(G_{k+1}\right)$. By 2.1, if $k=4$ then $P_{4}\left(G_{k+1}\right)=72$, and if $k=5$ then $P_{4}\left(G_{k+1}\right)=120$. This proves 2.2.
2.3 Let $n \geq 6$ be such that every triangulation with n^{\prime} vertices admits at most $2^{n^{\prime}}+324$-colourings, for $5 \leq n^{\prime} \leq n-1$. Let G be a triangulation with n vertices.

- If G has a vertex of degree three, then $P_{4}(G) \leq 2^{n-1}+32$, and $P_{4}(G)=24$ if $n=6$.
- If G has no vertex of degree three and G is not 4 -connected, then $n \geq 9$ and $P_{4}(G) \leq 2^{n-1}+128$.

Suppose first that some vertex v has degree three. Now $G^{\prime}=G \backslash v$ is a triangulation, so from the hypothesis $P_{4}\left(G^{\prime}\right) \leq 2^{n-1}+32$, and $P_{4}\left(G^{\prime}\right)=24$ if $n=6$. But every 4 -colouring of G^{\prime} extends to a unique 4 -colouring of G, and the result follows.

Now we assume that G has no vertex of degree three, but is not 4 -connected. Consequently there is a cycle of length three in G that does not bound a region; and so there are two triangulations G_{1}, G_{2} in S with union G, intersecting just in this cycle, and each with at least four vertices. Let G_{i} have $n_{i}+3$ vertices for $i=1,2$. Since G has no vertex of degree three it follows that $n_{1}, n_{2} \geq 3$, and so $n \geq 9$. Moreover, $P_{4}(G)=P_{4}\left(G_{1}\right) P_{4}\left(G_{2}\right) / 24$, and from the hypothesis, $P_{4}\left(G_{i}\right) \leq 2^{n_{i}+3}+32$ for $i=1,2$. It follows that

$$
P_{4}(G) \leq\left(2^{n_{1}+3}+32\right)\left(2^{n_{2}+3}+32\right) / 24 \leq\left(2^{n-3}+32\right)\left(2^{6}+32\right) / 24=2^{n-1}+128,
$$

since $n_{1}, n_{2} \geq 3$ and sum to $n-3$. This proves 2.3.

Proof of 1.2. The first assertion of 1.2 is easy using 2.1 and we leave it to the reader. Note also that $\frac{27}{32} 2^{n} \leq 2^{n}-8$ if $n \geq 6$, and every triangulation with five vertices is a biwheel. Thus for the second assertion, we proceed by induction on n, and we may therefore assume that every triangulation with n^{\prime} vertices admits at most $2^{n^{\prime}}+324$-colourings, for $5 \leq n^{\prime} \leq n-1$. Let G be a triangulation with n vertices, not a biwheel, and so $n \geq 6$. If $n \geq 7$ and G has a vertex of degree three, then by 2.3 ,

$$
P_{4}(G) \leq 2^{n-1}+32 \leq \frac{27}{32} 2^{n}
$$

as required; while if $n=6$ and G has a vertex v of degree three, then by 2.3,

$$
P_{4}(G)=24 \leq \frac{27}{32} 2^{n} .
$$

Thus we may assume that G has no vertex of degree three. If G is not 4 -connected, then by 2.3 $n \geq 9$ and

$$
P_{4}(G) \leq 2^{n-1}+128 \leq \frac{27}{32} 2^{n}
$$

as required. If G is 4 -connected and has no vertex of degree four, then by 2.2 ,

$$
P_{4}(G) \leq 45 \cdot 2^{n-6} \leq \frac{27}{32} 2^{n} ;
$$

while if G is 4 -connected and has a vertex of degree four then the result follows from 2.2. This proves 1.2 .

References

[1] Garry Bowlin and Matthew Brin, "Coloring planar maps via colored paths in the associahedra", manuscript, January 2013 (arXiv:1301.3984).
[2] Matthew Brin, "Maps with a large number of four-colorings", posted on MathOverflow August 142012 (http://mathoverflow.net/questions/104722/maps-with-a-large-number-of-4-colorings).

