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Abstract

We prove a conjecture of Bowlin and Brin that for all n > 5, the n-vertex biwheel is the planar
triangulation with n vertices admitting the largest number of four-colourings.



1 Introduction

All graphs in this paper are finite, and have no loops or parallel edges (except immediately after
1.1). A triangulation is a graph drawn in the 2-sphere S? such that the boundary of every region
is a 3-vertex cycle. A biwheel is a triangulation consisting of a cycle C' and two more vertices, each
adjacent to every vertex of C', and for n > 5, we denote the n-vertex biwheel by B,. For k£ > 0 an
integer, a k-colouring of a graph G is a map ¢ from the vertex set V(G) of G to {1, ..., k}, such that
d(u) # ¢(v) for every edge uv. Let Px(G) denote the number of k-colourings of a graph G. Garry
Bowlin and Matt Brin [1, 2] conjectured the following, which is the main result of this note:

1.1 If G is a triangulation with n > 5 vertices, then Py(G) < Py(By,).

The hypothesis that G has no parallel edges is important, and without it the extremal “trian-
gulation” is different. Let us say a pseudo-triangulation is a drawing in Ss, possibly with parallel
edges but without loops, such that the boundary of every region is a cycle of length three. We
claim that every n-vertex pseudo-triangulation has at most 3 - 2" 4-colourings. To see this, let G
be an n-vertex pseudo-triangulation, and order its vertex set v1,...,v, such that v, vs are adjacent
and for 3 < ¢ < n, there is a triangle containing v; and two of vy,...,v;_1. For 1 < ¢ < n, let
Gi = G|{v1,...,vi}. (We use G|X to denote the subdrawing of G induced on X, when X C V(G).)
Thus Py(G3) = 12, and for 3 < i < n every 4-colouring of G;_1 extends to at most two 4-colourings of
G; and so by induction it follows that for 2 < i < n, P4(G;) < 3-2¢, and in particular, P;(G) < 3-2".
But there is a pseudo-triangulation with n vertices and 3 - 2" 4-colourings, obtained as follows: take
a drawing with two vertices x,y and n — 2 parallel edges, and for each consecutive pair of parallel
edges add a new vertex between them adjacent to x,y.

Our proof of 1.1 is based on the same idea of bounding the number of 4-colourings by ordering
the vertex set such that each makes a triangle with two of its predecessors, but we need to treat a
few vertices as special, and just order the others.

Bowlin and Brin also raised the question of deciding which n-vertex triangulation has the second
most 4-colourings, and conjectured that the number of 4-colourings of the second-best triangulation
is asymptotically half of the number for the biwheel. We do not prove this, but prove that the number
of 4-colourings of any non-biwheel on n vertices is asymptotically at most 27/32 of the number for
the biwheel. More precisely, we prove the following, which immediately implies 1.1.

1.2 Let G be a triangulation with n > 5 vertices.
e If G is a biwheel, then Py(G) = 2" — 8 if n is odd, and 2" + 32 if n is even.

o If G is not a biwheel, then Py(G) < %2" <2 8.

2 The main proof
First, we need

2.1 If G is a cycle with n vertices then P3(G) = 2™ 4+ 2(—1)".



Proof. The result is well-known and elementary, but we give a proof for completeness. For n > 1,
let k, = 2" 4+ 2(—1)". For n > 2, let a,, be the number of 3-colourings of an n-vertex path such
that its ends have the same colour, and let 3,, be the number of 3-colourings such that its ends have
different colours. We prove by induction on n that a,, = k,_1, and 3, = k. The result is true when
n = 2, so we assume n > 3. Now «,, = 3,_1, so the first assertion holds. For the second, let G be a
path with vertices v1,..., v, in order. Each 3-colouring of G \ {v,} with vy, v,_1 of different colours
extends to a unique 3-colouring of G in which v, v, have different colours, and each 3-colouring
of G\ {v,} with v1,v,—1 of the same colour extends to two 3-colourings of G in which vy, v, have
different colours. Consequently

ﬂn =op-1+ 2ﬂn—1 = Kn-1+ 2Kp—2 = Kp

as required. This proves that 8, = k, for all n > 2. Now if G is a cycle with n vertices, it follows
(by deleting one edge of G) that P3(G) = (3, = y,. This proves 2.1. |

If G is a triangulation, a triangle of G means a region of G, and we denote a triangle incident
with vertices a, b, c by abc. A triangle touches another if they are distinct and share an edge. It is
convenient to first prove the result when G is 4-connected.

2.2 Let G be a 4-connected triangulation, not a biwheel, with n vertices, and with minimum degree
k say. (Thus k € {4,5}.) Then Py(G) <27-2"7° ifk =4, and Py(G) < 45-2"76 if k = 5.

Proof. A diamond in G is a set of four vertices of G, all pairwise adjacent except for one pair,
called the apices. A diamond a,b, c,d with apices a, b is pure if there is no vertex of G adjacent to
a,b and non-adjacent to ¢,d. Let v € V(G) have degree k, and let N be its set of neighbours and
M =V(G)\ (N U{v}).

(1) There is a triangle of G with vertex set included in M.

For suppose not. If some vertex in M is adjacent to every vertex of N, then G is a biwheel, a
contradiction; and at most two vertices of M have k — 1 neighbours in N, by planarity. Moreover,
G|M is connected, since G is 4-connected. Since every vertex in G has degree at least four, it follows
that at most two vertices in M have degree one in G|M. Suppose that G|M is a forest. Then it is a
path, with vertices vy, ..., v, in order say; and vy, v, both have k — 1 neighbours in N, so k = 4 and
G is a biwheel, a contradiction. Thus there is a cycle in G|M, and hence (1) follows.

(2) FEither k = 4 and n = 8 and Py(G) = 72, or there is a diamond D of G such that some
verter of G with degree k has no neighbour in D.

For let xyz be a triangle with z,vy,2 € M; and let 2/,v, 2’ be vertices of G different from z,y, z
such that there are triangles x'yz, zy'z, zyz’. If one of 2/, 4/, 2’ is in M then (2) holds, so we assume
that a/,y’, 2’ are all in N. Since G|N is a cycle of length k, we may assume that 2/, y" are adjacent,
and so z has degree four and hence |[N| = k = 4; and so we may also assume that 3/, 2’ are adjacent.
It follows that x, z have degree four in G. Let w’ be the neighbour of v different from 2/,v/, 2. Let
pz’w’ touch vz'w’. Thus {p,v,2’,w'} is a diamond, and z is non-adjacent to v,z’,w’, so we may



assume that v is adjacent to p, that is, p = y. But then n = 8 and P;(G) = 72, and the result holds.
This proves (2).

In view of (2), we may assume that there is a diamond {a, b, ¢,d} in M, with apices a, b.
(3) There is a pure diamond included in M.

For we may assume that {a,b,c,d} is not pure, and so there is a vertex p adjacent to a,b and not
to ¢,d. From the symmetry between ¢, d, we may assume that the cycle with vertex set {a,c,b,p}
divides S? into two open discs Dq, Dy, one containing d and the other containing v, say d € D;.
Let bdg touch bdc. Then g # p since ¢ is adjacent to d, and so ¢ € D1, and in particular ¢ € M.
Suppose that the diamond {¢, ¢, b, d} is not pure; then there is a vertex r adjacent to ¢, ¢ and not to
b, d, which is impossible by planarity. This proves (3).

In view of (3) we may assume that {a,b,c,d} is pure.

(4) We can order V(G)\{a,b,c,d} and {vi,...,vp_4} in such a way that vy =v, N = {va,...,vk11},
and for k+ 2 <i <mn —4 there is a triangle containing v; and two of vi,...,v;_1.

For let G’ be the drawing obtained from G by deleting a,b,c,d, and let D be the region of G’
containing a,b,c,d. Then D is an open disc, and so there is a closed walk tracing its boundary.
Since G is 4-connected and the diamond {a,b, ¢, d} is pure, it follows that no vertex appears twice

in this closed walk, and so D is bounded by a cycle C' say. Choose a sequence vy, ...,v; of distinct
members of V(G) \ {a,b,c,d}, where vy = v, N = {vg,...,vp11}, and for k +2 < i < j there
is a triangle containing v; and two of vy,...,v;—;, with j maximum. Let X = {vy,...,v;} and

Y =V(G)\ ({a,b,c,d} UX). Let R be the set of all triangles with vertex set included in X. Let S
be the closure of the union of the members of R; thus S is some closed subset of S?, with boundary
the closure of some set of edges of G. Let e € E(G) be an edge of G in the boundary of S, where
e = xy say, and let xyz € R touche some region xyz’ ¢ R. Thus 2’ ¢ X from the definition of R,
and so from the choice of j it follows that 2’ € {a,b,¢,d}, and consequently e € F(C). Consequently
every edge in the boundary of S belongs to E(C'), and since every vertex of G is incident with an
even number of such edges, it follows that C is the boundary of S. Consequently S is a closed disc,
and hence contains all vertices of G not in {a,b,c,d}. It follows that j = n — 4. This proves (4).

For 1 <i < n-—4,let G; = G|{v1,...,v;}. For k+2 < i < n—4, Py(G;) < 2Py(Gi-1),
and so Py(Gp_4) < 2" F5P;(Gj41). But every 4-colouring of G,_4 can be extended to at most
six 4-colourings of G (this is easy to check, and we leave it to the reader), and so Py(G) < 6 -
2"=k=5Py(Gy1). By 2.1, if k = 4 then Py(Gry1) = 72, and if k = 5 then Py(Gyi1) = 120. This
proves 2.2. |

2.3 Letn > 6 be such that every triangulation with n' vertices admits at most " 4+ 32 4-colourings,
for 5<n’ <n—1. Let G be a triangulation with n vertices.

e If G has a vertex of degree three, then Py(G) < 2"~! + 32, and Py(G) = 24 if n = 6.



e If G has no vertex of degree three and G is not 4-connected, thenn > 9 and Py(G) < 2"~ 1 +128.

Suppose first that some vertex v has degree three. Now G’ = G \ v is a triangulation, so from the
hypothesis P,(G") < 27! + 32, and Py(G’) = 24 if n = 6. But every 4-colouring of G’ extends to a
unique 4-colouring of G, and the result follows.

Now we assume that G has no vertex of degree three, but is not 4-connected. Consequently there
is a cycle of length three in G that does not bound a region; and so there are two triangulations
G1,Go in S with union G, intersecting just in this cycle, and each with at least four vertices. Let
G; have n; + 3 vertices for ¢ = 1,2. Since G has no vertex of degree three it follows that ny,ne > 3,
and so n > 9. Moreover, Py(G) = Py(G1)Py(G2)/24, and from the hypothesis, Py(G;) < 2%T3 + 32
for ¢ = 1,2. It follows that

Py(G) < (2M7F3 4 32)(2m2 3 1 32)/24 < (2773 + 32)(2° 4 32)/24 = 2"~ 128,

since nq,n9 > 3 and sum to n — 3. This proves 2.3. |

Proof of 1.2.  The first assertion of 1.2 is easy using 2.1 and we leave it to the reader. Note
also that ?,’—;2" < 2" — 8 if n > 6, and every triangulation with five vertices is a biwheel. Thus
for the second assertion, we proceed by induction on n, and we may therefore assume that every
triangulation with n’ vertices admits at most on' 1 32 4-colourings, for 5 <n’ <n —1. Let G be a
triangulation with n vertices, not a biwheel, and so n > 6. If n > 7 and G has a vertex of degree
three, then by 2.3,

2
PGy <2 432 < 3—;2“

as required; while if n = 6 and G has a vertex v of degree three, then by 2.3,

27
P, =24 < 2™,
Thus we may assume that G has no vertex of degree three. If G is not 4-connected, then by 2.3
n >9 and

Pi(G)<2" ' p128 < 2T on

32

as required. If GG is 4-connected and has no vertex of degree four, then by 2.2,

27

Py(G) <45-2"6 < ——om

32
while if G is 4-connected and has a vertex of degree four then the result follows from 2.2. This proves
1.2. |
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