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Abstract

Our proof (with Robertson and Thomas) of the strong perfect graph conjecture ran to 179 pages
of dense matter; and the most impenetrable part was the final 55 pages, on what we called “wheel
systems”. In this paper we give a replacement for those 55 pages, much easier and shorter, using
“even pairs”. This is based on an approach of Maffray and Trotignon.



1 Introduction

All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex
set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G. A hole of
G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced
subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G
has even length.

A clique in G is a subset X of V (G) such that every two members of X are adjacent. A graph
G is perfect if for every induced subgraph H of G, the chromatic number of H equals the size of the
largest clique of H. With Robertson and Thomas [3], we proved Berge’s celebrated “strong perfect
graph conjecture” [1], the following:

1.1 A graph is perfect if and only if it is Berge.

The proof was very long (179 pages), and it would be good to find a shorter one. Our goal in
this paper is to replace the final 55 pages with a new easy proof.

In [3] we proved more than just 1.1; we proved:

1.2 Every Berge graph either belongs to one of five “basic” classes, or admits one of four kinds of

decomposition.

(We have omitted the definitions needed to make this precise, because we shall not need them any
more in this paper.) This result 1.2 implies 1.1 because the smallest counterexample to 1.1 cannot
belong to any of the basic classes and cannot admit any of the decompositions, and therefore cannot
satisfy 1.2. We do not have a shortened proof of 1.2; only of its corollary 1.1.

We need some more definitions before we can state more precisely what we do in this paper. If
X ⊆ V (G) then G|X denotes the subgraph of G induced on X, and G \X denotes G|(V (G) \X). A
path in G is an induced subgraph of G that is a path, and an antipath in G is the complement of a
path in G. The interior of a path or antipath is the set of all its vertices that are not its ends, and
the members of the interior are called internal vertices. We denote the interior of a path or antipath
P by P ∗. The length of a path or hole is the number of edges in it, and the length of an antipath or
antihole is the length of its complement path or hole. If G is a graph, a subset T ⊆ V (G) is connected

if G|T is connected, and T is anticonnected if G|T is connected. For T ⊆ V (G), we define N(T ) to
be the set of all vertices in V (G) \T that are adjacent to every member of T . An odd wheel (C, T ) in
G consists of a hole C of length at least six, and a nonempty anticonnected subset T ⊆ V (G)\V (C),
such that at least three vertices of C belong to N(T ), and there is a path P of C with odd length at
least three, such that its ends are not in N(T ) and all its internal vertices belong to N(T ). A long

prism in G is an induced subgraph H with three paths P1, P2, P3, satisfying:

• P1, P2, P3 are pairwise disjoint and every vertex of H belongs to one of them

• P1, P2, P3 all have length at least one, and at least one of them has length greater than one

• the ends of Pi are ai, bi (for 1 ≤ i ≤ 3), and aiaj and bibj are edges and there are no other
edges between V (Pi) and V (Pj) (for 1 ≤ i < j ≤ 3).
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A double diamond in G is an induced subgraph with eight vertices a1, . . . , a4, b1, . . . , b4 and with the
following adjacencies: every two ai’s are adjacent except a3a4, every two bi’s are adjacent except
b3b4, and aibi is an edge for 1 ≤ i ≤ 4. Let us say that G is impoverished if G is Berge, and G and
G both contain no odd wheel, long prism or double diamond.

A star cutset in G is a subset X ⊆ V (G) such that V (G)\X is not connected and some vertex in
X is adjacent to every other vertex in X. An even pair in G is a pair (x, y) of nonadjacent vertices
x, y such that every path in G between x, y has even length (we recall that, by definition, a path
in G means an induced subgraph of G that is a path). A dominant pair in G is a pair (x, y) of
nonadjacent vertices such that every other vertex of G is adjacent to at least one of x, y. Our main
result is the following:

1.3 If G is impoverished, then either G admits a star cutset or an even pair or a dominant pair,

or G is a complete graph.

Part of the proof of 1.3 is a variant of a proof of Maffray and Trotignon [6], which was the basis
for all this research. Let us see that 1.3 can be used to replace the end of [3].
Proof of 1.1. Suppose that 1.1 is false, and let G be a counterexample with |V (G)| minimum, and
subject to that with |E(G)| maximum. Thus G is Berge and not perfect. The first 124 pages of [3]
show that G is impoverished. By [2, 4, 7], G does not contain a star cutset or an even pair. Thus by
1.3, G contains a dominant pair (x, y). Let G′ be obtained from G by making x, y adjacent.

(1) G′ is Berge.

For suppose first that G′ has an odd hole C. Then x, y ∈ V (C) since G is Berge; and so there
is a path in G between x, y of length at least four. But this contradicts that (x, y) is a dominant
pair. Next suppose that C is an odd antihole of G′. Then again x, y ∈ V (C), and so there is an
induced subgraph H of G that is obtained from an odd cycle of length at least five by adding one
edge xy. Consequently the edge xy belongs to an induced cycle C ′ of H with odd length. Since G
and hence H is Berge, it follows that C ′ has length three; and so some vertex of C is nonadjacent in
G to both x, y. But this contradicts that (x, y) is a dominant pair. This proves (1).

(2) G′ is not perfect.

Let k be the maximum cardinality of stable sets of G′; then G has a stable set of cardinality k,
and so V (G) cannot be partitioned into k cliques, since G and hence G are both minimal imperfect
graphs by the weak perfect graph theorem [5]. Suppose that G′ is perfect; then there is a partition
(A1, . . . , Ak) of V (G′) into cliques A1, . . . , Ak of G′, where k is the maximum cardinality of stable
sets of G′. We may assume that {x, y} ⊆ A1∪A2. Now the complement H of G|(A1∪A2) is obtained
from a bipartite graph by adding one edge not in a triangle; and consequently H is also bipartite
(since it is Berge). Let A′

1, A
′

2 be disjoint cliques of G with A′

1 ∪ A′

2 = A1 ∪ A2; then V (G) is the
union of k cliques of G, namely A′

1, A
′

2, A3, . . . , Ak, a contradiction. This proves (2).

But then G′ is Berge and not perfect, contrary to the choice of G. This proves 1.1.
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2 Lemmas from [3]

We need a few results from [3], that we restate here. If T ⊆ V (G) and v ∈ V (G) \ T is adjacent to
every vertex in T , we say that v is T -complete; and if v is nonadjacent to every member of T we say
it is T -anticomplete. First, a fundamental lemma of Roussel and Rubio [8], in the special case when
G contains no long prism, and theorem 2.2 of [3]:

2.1 Let G be Berge containing no long prism, let P be a path in G of odd length at least three, and

let T ⊆ V (G) \ V (P ) be anticonnected, and such that the ends of P are T -complete and the internal

vertices are not. Then P has length three and every T -complete vertex in G has a neighbour in P ∗.

Second, we need a special case of theorem 15.7 of [3], the following.

2.2 Let G be impoverished, and let C be a hole and D an antihole, both of length at least six. Then

|V (C) ∩ V (D)| ≤ 2.

THird, we need the following. A triangle in G is a set of three pairwise adjacent vertices of G,
and a set F ⊆ V (G) is said to catch a triangle {a1, a2, a3} if F is connected and a1, a2, a3 /∈ F and
each of a1, a2, a3 has a neighbour in F . Theorem 17.1 of [3] implies:

2.3 Let A be a triangle in an an impoverished graph G, and let F ⊆ V (G) catch A, such that every

vertex of F has at most one neighbour in A. Then F contains a triangle B such that G|(A ∪ B) is

an antihole of length six.

Finally we need a slight weakening of theorem 17.2 of [3], the following.

2.4 Let G be impoverished, and let v1-v2-v3-v4 be a 3-edge path in G. Let X,Y ⊆ V (G)\{v1, v2, v3, v4}
be disjoint, such that Y is anticonnected and X is connected. Suppose that v2, v3 are Y -complete and

X-anticomplete, and v1, v4 are not Y -complete and not X-anticomplete. Then some vertex of Y is

X-anticomplete.

3 The main proof

Now we prove 1.3. Let G be impoverished. We prove by induction on |V (G)| that either G is
complete, or has an even pair, a star cutset or a dominant pair. If G is disconnected then it has an
even pair (choose x, y in different components), so we may assume that G is connected. We may
also assume that G is not a complete graph, and consequently some vertex of G has two nonadjacent
neighbours. Hence there is a nonempty anticonnected set T ⊆ V (G) such that N(T ) is not a clique.
Choose T maximal with this property. Throughout this section G,T are as just described. Let us
say an outer path is a path of length at least two, with both ends in N(T ) and every internal vertex
in V (G) \ (T ∪ N(T )). We shall prove the following three statements:

• If there is no outer path then G contains an even pair, a star cutset or a dominant pair.

• If some outer path has odd length then G contains a star cutset or a dominant pair.

• If there is an outer path and every outer path has even length then G contains an even pair.
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We observe first:

3.1 If there is no outer path then G contains an even pair, a star cutset or a dominant pair.

Proof. First suppose that T ∪ N(T ) = V (G). Now G|N(T ) is not complete, and T is nonempty,
so from the inductive hypothesis G|N(T ) contains an even pair, a star cutset or a dominant pair. If
(x, y) is an even pair or dominant pair in G|N(T ) then it is also an even pair or dominant pair in G,
since every vertex in T is adjacent to both x, y. If X ⊆ N(T ) is a star cutset of G|N(T ), and say
x ∈ X is adjacent to every other member of X, then X ∪ T is a star cutset of G, since x is adjacent
to every member of X ∪ T and

(G|N(T )) \ X = G \ (X ∪ T ).

Thus we may assume that T ∪ N(T ) 6= V (G). Let F be a component of G \ (T ∪ N(T )), and
let Y be the set of all vertices in T ∪ N(T ) with a neighbour in F . Since there is no outer path, it
follows that Y ∩ N(T ) is a clique. Choose y ∈ N(T ), with y ∈ Y if Y ∩ N(T ) 6= ∅. Since N(T ) is
not a clique, there exists z ∈ N(T ) \ Y with z 6= y. Then y is adjacent to every member of Y \ {y}.
Hence Y is a star cutset (separating F from z). The result follows.

Second, we observe:

3.2 For every vertex v ∈ V (G) \ (T ∪N(T )), the set of neighbours of v in N(T ) is a clique; and so

every outer path has length at least three.

Proof. If the set of neighbours of v in N(T ) is not a clique, we can add v to T contradicting the
maximality of T . This proves 3.2.

We need an easy lemma:

3.3 Let P be a path with vertices p0- · · · -pn in order, where n ≥ 4, p0, pn ∈ N(T ) and p1, p2 /∈ N(T ).
Then some vertex in T is nonadjacent to p1, p2, and indeed every antipath between p1, p2 with interior

in T has length two.

Proof. There is an antipath S joining p1, p2 with interior in T , and it can be completed to an antihole
via p2-pn-p1 since n ≥ 4. Thus S has even length, and so the antipath p1-S-p2-p0 has odd length.
All the internal vertices of the latter antipath have neighbours in the connected set {p3, . . . , pn}, and
its ends p0, p1 do not; so by 2.1 applied in the complement, this antipath has length three, that is,
S has length two. The result follows.

3.4 If some outer path has odd length then G admits a star cutset or a dominant pair.

Proof. Let Z be the set of all vertices in N(T ) that have a nonneighbour in N(T ). We claim first that

(1) If Q is an outer path of odd length, then Q has length three, and every vertex in Z is adja-

cent to exactly one of the two internal vertices of Q.
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For the ends of Q are T -complete and its internal vertices are not, and so 2.1 implies that Q has
length three, and therefore the first assertion holds. Let q1, q2 be the two internal vertices of Q. Let
v ∈ Z; by 2.1, v is adjacent to at least one of q1, q2. Since v ∈ Z, it is nonadjacent to some u ∈ Z,
and by the same argument u is adjacent to at least one of q1, q2. Hence there is an outer path joining
u, v with interior in {q1, q2}, which therefore has length three by 3.2; and so u, v are both adjacent
to exactly one of q1, q2. This proves (1).

(2) Every outer path has length three.

Suppose not, and let P be an outer path of even length, and Q one of odd length, chosen with
V (P ) ∪ V (Q) minimal. By 3.2, P has length at least four; let its vertices be p0- · · · -pk+1 say in
order, where k ≥ 3. By (1), Q has length three; let its internal vertices be q1, q2. By (1), p0, pk+1 are
each adjacent to one of q1, q2, and since there is no outer path of length two, we may assume that
p0-q1-q2-pk+1 is a path, and indeed this is the path Q. Suppose first that q1, q2 /∈ V (P ). Since P ∪Q is
not an odd hole, at least one of q1, q2 is adjacent to one of p1, . . . , pk, say q1. Choose i ∈ {1, . . . , k+1}
maximum such that q1, pi are adjacent. Suppose that i > 1. Then p0-q1-pi-pi+1- · · · -pk+1 is an outer
path R say. Since V (Q) ∪ V (R) is a proper subset of V (P ) ∪ V (Q) it follows from the minimality
of V (P ) ∪ V (Q) that the length of R is not even, and similarly it is not odd, a contradiction. This
proves that i = 1. If also q2 is adjacent to one of p1, . . . , pk, then similarly its only neighbour is
pk, and then q1-p1- · · · -pk-q2-q1 is an odd hole, a contradiction. Thus q2 is nonadjacent to all of
p1, . . . , pk. Now there is an antipath S joining q1, p1 with interior in T . Since it can be completed to
an antihole via p1-pk+1-q1, and this antihole shares three vertices (namely p1, q1, pk+1) with the hole
q1-p1- · · · -pk+1-q2-q1, it follows from 2.2 that the antihole has length at most four; and so S has length
two. Consequently there exists t ∈ T nonadjacent to both q1, p1. Then F = {p2, . . . , pk+1, q2, t} is
connected and catches the triangle {p0, p1, q1}; the only neighbour of p1 in F is p2, the only neighbour
of p0 is t, and the only neighbour of q1 is q2; and since p2, q2 are nonadjacent this contradicts 2.3.

This proves that one of q1, q2 ∈ V (P ); so we may assume that q1 = p1 say. Hence q2 /∈ V (P ). By
3.3 some vertex t ∈ T is nonadjacent to both p1, p2, and indeed every antipath between p1, p2 with
interior in T has length two. There is also an antipath S between p1, q2 with interior in T , and S can
be completed to an antihole via q2-p0-pk+1-p1. Let this antihole be D; then D has length at least six.
If p2 has a nonneighbour in S∗, then there is an antipath between p1, p2 with interior in S∗, and so
we can choose t to be the vertex of S nonadjacent to p1; then if we choose i ∈ {1, . . . , k+1} minimum
such that t, pi are adjacent, the hole t-p0-p1- · · · -pi-t has length at least six and shares three vertices
with D (namely p0, p1, t), contrary to 2.2. This proves that p2 is complete to S∗. Let i be as before,
such that t-p0-p1- · · · -pi-t is a hole C say.

We have already seen that p2 is S∗-complete, and in particular t /∈ V (S). Let S have vertices
p1-s1-s2- · · · -sn-sn+1 = q2 in order. If t is nonadjacent to any of s2, . . . , sn+1, choose j maximum
such that t is nonadjacent to sj; then

p1-t-sj-sj+1- · · · -sn+1

is an antipath between p1, q2 such that p2 is nonadjacent to one of its internal vertices, a contradiction.
Thus t is adjacent to s2, . . . , sn, q2.

Suppose that t is nonadjacent to s1; so p2-t-s1- · · · -sn is an antipath U say, of odd length. If also
p2 is nonadjacent to q2, then U can be completed to an odd antihole via sn-q2-p2, a contradiction;
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while if p2 is adjacent to q2, then p2-U -sn-q2-p0-p2 is an antihole of length at least six, sharing three
vertices (namely p0, p2, t) with the hole C, contrary to 2.2.

This proves that t is adjacent to s1, and so p2-t-p1-s1- · · · -sn is an antipath V say, of even length.
If also q2, p2 are adjacent, then p2-V -sn-q2-p0-p2 is an odd antihole, while if q2, p2 are nonadjacent
then p2-V -sn-q2-p2 is an antihole of length at least six sharing three vertices (namely p1, p2, t) with
C, in either case a contradiction. Thus we cannot choose P,Q with these properties. This proves
(2).

For each v ∈ V (G) \ (T ∪ N(T )), let Zv be the set of neighbours of v in Z. Let W be the set
of all edges xy such that some outer path has interior {x, y}. By (1) it follows that if xy ∈ W then
Zx, Zy are disjoint and have union Z.

(3) If uv, xy ∈ W then {Zu, Zv} = {Zx, Zy}.

For Zu, Zv are both cliques, by 3.2. Similarly Zx, Zy are cliques. From the symmetry we may
assume that there exists a ∈ Zu ∩Zx. Since a has a nonneighbour b say in Z, and Zu, Zx are cliques,
it follows that b ∈ Zv ∩ Zy. If Zu ∩ Zy, Zv ∩ Zx are both empty then the claim holds, so from the
symmetry we may assume that there exists c ∈ Zu ∩ Zy; and since c has a nonneighbour d ∈ Z, it
follows similarly that d ∈ Zv ∩ Zx. Since Zu 6= Zx we deduce that u 6= x, and similarly u, v, x, y
are all distinct. If u, x are adjacent then c-u-x-d is an outer path and yet Zu, Zx are not disjoint,
a contradiction; so u, x are nonadjacent, and similarly u, v are both nonadjacent to both x, y. But
then a-x-y-b-v-u-a is a hole C say, and (C, {c}) is an odd wheel, a contradiction. This proves (3).

Now by hypothesis, W is nonempty; so there are two disjoint nonempty cliques A,B with union
Z such that for every xy ∈ W , one of Zx, Zy is A and the other is B. Let C be the set of all vertices
in V (G) \ (T ∪ N(T )) that are adjacent to every member of A and to no member of B, and define
D similarly (with A,B exchanged). Thus by (2), every outer path has length three, and has vertex
set a-c-d-b in order, for some a ∈ A, b ∈ B, c ∈ C and d ∈ D.

(4) If T ∪ N(T ) ∪ C ∪ D = V (G) then G has a dominant pair.

For choose x, y ∈ N(T ), nonadjacent. Then x, y ∈ Z, and so one is in A and the other in B,
say x ∈ A and y ∈ B. Every vertex in T ∪ (A \ {x}) ∪ (N(T ) \ Z) ∪ C is adjacent to x, and every
vertex in (B \ {y}) ∪ D is adjacent to y, and so (x, y) is a dominant pair. This proves (4).

From (4) we may assume the graph G \ (T ∪ N(T ) ∪ C ∪ D) has at least one component, F say.
Let Y be the set of all vertices in T ∪ N(T ) ∪ C ∪ D that have a neighbour in F .

Suppose first that Y ∩ C, Y ∩ D are both empty. Since every outer path contains a vertex of C,
every vertex in Y ∩ A is adjacent to every vertex in Y ∩ B, and so Y ∩ N(T ) is a clique. Choose
y ∈ Y ∩ N(T ) if Y ∩ N(T ) 6= ∅, and otherwise let y ∈ N(T ) be arbitrary; then y is adjacent to
every other vertex in Y , and so Y ∪ {y} is a star cutset (separating F from all members of C ∪ D).
From the symmetry we may therefore assume that Y ∩ C 6= ∅. If there exists b ∈ Y ∩ B, choose
a ∈ A nonadjacent to b; then there is a Y -path between a, b with interior in F ∪ C, a contradiction.
Thus Y ∩ B = ∅. Next suppose that Y ∩ D is empty, and choose a ∈ A; then a is adjacent to every
member of Y \{a}, and so Y is a star cutset (separating F from every member of D). Hence we may
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assume that Y ∩D 6= ∅, and so Y ∩A = ∅ by a similar argument. Choose c ∈ Y ∩C and d ∈ Y ∩D;
and choose a ∈ A and b ∈ B, nonadjacent. Then there is an outer path between a, b with interior
in F ∪ {c, d}, so by (2) it follows that c, d are adjacent. But then 2.4 (applied in the complement)
implies that some vertex of F is T -complete, a contradiction. This proves 3.4.

To complete the proof of 1.3, it remains to show the following, a variant of a result of Maffray
and Trotignon [6].

3.5 If there is an outer path and every outer path has even length then G contains an even pair.

Proof. Choose an outer path R of minimum length, with vertices r0-r1-r2- · · · -rk-rk+1 in order, say;
thus r0, rk+1 ∈ N(T ) and r1, . . . , rk /∈ T ∪ N(T ), and k ≥ 3 is odd. Let A be the set of all vertices
in N(T ) that are adjacent to r1 and to none of r2, . . . , rk. (Thus r0 ∈ A.) Similarly let B be the set
of all vertices in N(T ) adjacent to rk and to none of r1, . . . , rk−1. From 3.2, A,B are cliques; and if
a ∈ A and b ∈ B then since a-r1- · · · -rk-b-a is not an odd hole, it follows that a, b are nonadjacent.
Thus A is anticomplete to B.

(1) If v ∈ N(T ) \ (A ∪ B) then either v has no neighbour in R∗ or v is complete to A ∪ B.

Certainly v /∈ R∗ since no vertex of R∗ is in N(T ). Suppose that v has a neighbour in R∗, and
has a nonneighbour a ∈ A say. Choose i ∈ {1, . . . , k} minimum such that v, ri are adjacent. Then
i < k since v /∈ B; and so a-r1- · · · -ri-v is an outer path of length less than that of R, a contradiction.
This proves (1).

(2) Every path between A and B with no internal vertex in A ∪ B has even length.

For suppose that P is a path between A and B of odd length, with no internal vertex in A ∪ B.
Then V (P )∩T = ∅, since every vertex in T is adjacent to both a, b. Let P have vertices p0- · · · -pn+1

in order, where p0 ∈ A and pn+1 ∈ B. Let us say a segment is a maximal subpath of P such that
all its vertices belong to N(T ). Thus an edge of P belongs to a segment if and only both its ends
are in N(T ), and then it belongs to a unique segment; and otherwise it belongs to a unique outer
path included in P . Since all outer paths have even length and P has odd length, it follows that
some segment has odd length, say pi- · · · -pj. By (1) pi, . . . , pj are not in R∗, and {pi, . . . , pj} ∩ P ∗

is anticomplete to R∗. Choose i′ ≤ i maximum such that p′i has a neighbour in R∗ (this is possible
since p0 has a neighbour in R∗); and similarly choose j ′ ≥ j minimum such that p′j has a neighbour
in R∗. Then j′− i′ ≥ j − i+1 ≥ 2. Choose a path Q between p′i, p

′

j with interior in R∗, and let P ′ be
the subpath of P between p′i, p

′

j . Then P ′ ∪Q is a hole C say, and pi- · · · -pj is a maximal subpath of
C|N(T ). If j > i + 1 then C has length at least six and (C, T ) is an odd wheel, a contradiction, so
j = i + 1. Suppose first that i ≥ 1 and j ≤ n. Then i ≥ 2 and j ≤ n − 1, and i′ < i and j < j ′, and
the path pi−1-pi-pi+1-pi+2 (= S say) is an induced subgraph of C. Both ends of S have neighbours
in the connected set V (R)∪{p0, . . . , pi−2, pi+3, . . . , pn+1} (= F say) and the internal vertices of S do
not; and the ends of S have nonneighbours in T , and the internal vertices are T -complete. By 2.4,
we deduce that some vertex of T is anticomplete to F , a contradiction. Thus we may assume that
i = 0i and j = 1. Hence p1 ∈ N(T ), and therefore p1 is anticomplete to R∗ by (1). Suppose that r1

is nonadjacent to p2. Then r1-p0-p1-p2 is a path S say; its ends have neighbours in the connected set
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{r2, . . . , rk+1} ∪ {p3, . . . , pn+1}, and its internal vertices do not; and its ends have nonneighbours in
T , and its internal vertices are T -complete. Again this is contrary to 2.4. Thus it follows that r1, p2

are adjacent.
Choose i with 1 ≤ i ≤ k +1 maximum such that p2, ri are adjacent. Then p1-p2-ri-ri+1- · · · -pn+1

is a path; its ends are T -complete, its internal vertices are not, and r0 is a T -complete vertex with
no neighbour in the interior of this path. From 2.1, this path has even length, and since k is odd it
follows that i is even. In particular i ≥ 2. If i ≥ 3 then p0-r1-p2-ri-ri+1- · · · -rk-pn+1 is an outer path
with odd length, a contradiction; so i = 2. By 3.3 there exists t ∈ T nonadjacent to r1, r2. Then
{p0, t, p1, r3, . . . , rk} (= F say) catches the triangle {r1, r2, p2}; the only neighbour of r1 in F is p0;
the only neighbour of r2 in F is r3; and p0, r3 are nonadjacent to each other, and both nonadjacent
to p2, contrary to 2.3. This proves (2).

For x, y ∈ A, distinct, let us say an (x, y)-path is a path between y and some vertex in B, such
that x is nonadjacent to every vertex of this path except y. If there is an (x, y)-path, we write x → y.
We need:

(3) If x, y ∈ A are distinct, then not both x → y and y → x.

For suppose that P is an (x, y)-path and Q is a (y, x)-path. We may assume that both P,Q have
only their final vertex in B. Moreover, since x has no neighbours in P except y, and A is a clique, it
follows that y is the only vertex of P in A, and similarly x is the only vertex of Q in A. By (2), both
P,Q have even length. Let P have vertices y-p1- · · · -pm in order, and let Q have vertices x-q1- · · · -qn

in order. Suppose first that p1, q1 are nonadjacent. Then p1-y-x-q1 is a three-edge path. Let F be
the union of the vertex sets of the three paths P \ {y, p1}, Q \ {x, q1} and R \ {r0, r1}. Then F is
connected (since all three paths contain a vertex in B); and p1, q1 have neighbours in F , and x, y do
not. Moreover, T ∪ {r1} is anticonnected (= T ′ say); and x, y are T ′-complete, and p1, q1 are not.
(This last holds since if p1 ∈ N(T ) then p1 is nonadjacent to r1 by 3.2.) Consequently, some vertex
of T ′ is anticomplete to F , by 2.4. But every vertex in T is adjacent to rk+1 ∈ F , and r1 is adjacent
to r0 ∈ F , a contradiction.

This proves that p1, q1 are adjacent. Choose i with 1 ≤ i ≤ m maximum such that q1, pi are
adjacent. Then x-q1-pi-pi+1- · · · -pm is a path with one end in A and the other in B, and with no
internal vertex in A ∪ B; so by (2) this path has even length. Since m is even, it follows that i is
even, and in particular i ≥ 2. If i > 2 then y-p1-q1-pi-pi+1- · · · -pm is a path of odd length, contrary
to (2). Thus i = 2.

Suppose that p1 /∈ N(T ). By 3.2, q1, p2 /∈ N(T ). By 3.3 some vertex t ∈ T is nonadjacent to
p1, p2. But then {p3, . . . , pm, t, x, y} (= F say) is connected and catches the triangle {p1, p2, q1}; the
only neighbour of p2 in F is p3; the only neighbour of p1 in F is y; and p3, y are nonadjacent to
each other, and both nonadjacent to q1, contrary to 2.3. This proves that p1 ∈ N(T ), and from the
symmetry between P,Q it follows that q1 ∈ N(T ).

Since p1, q1 /∈ A ∪ B, (1) implies that p1, q1 have no neighbours in V (R) \ {r0}. But then
(V (R)\{r0, r1})∪ (V (P )\{y})∪{q1} (= F say) catches the triangle {r1, x, y}; the only neighbour of
y in F is p1; the only neighbour of x in F is q1; and both p1, q1 are nonadjacent to r1. Hence by 2.3
it follows that some vertex in F \ {p1, q1} is adjacent to p1, q1, r1, and this must be p2 since p1 has
no neighbour in V (R) \ {r0}. By 3.2, p2 /∈ N(T ). Let S be an antipath between p2, r1 with interior
in T . Then one of p2-S-r1-pm-p2, p2-S-r1-p1-x-p2 is an odd antihole, a contradiction. This proves (3).
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(4) If x, y, z ∈ A and x → y and y → z then x → z.

For let P be a (y, z)-path, with vertices z-p1- · · · -pn say. If x is adjacent to one of p1, . . . , pn,
choose i ≤ n maximum such that x, pi are adjacent; then x-pi-pi+1- · · · -pn is a (y, x) path, contrary
to (3). Thus x is nonadjacent to all of p1, . . . , pn, and so P is an (x, z)-path, and therefore x → z.
This proves (4).

From (3) and (4) there exists a ∈ A such that a 6→ a′ for all a′ ∈ A\{a}; that is, every path from
a to B contains no vertex of A except a. Similarly choose b ∈ B such that every path from A to b
contains no vertex of B except b. Suppose that P is a path between a, b; then no internal vertex of
P belongs to A ∪ B from the choice of a, b, and so P has even length by (2). Consequently (a, b) is
an even pair. This completes the proof of 3.5 and hence of 1.3.
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