A note on simplicial cliques

Maria Chudnovsky*
Princeton University, Princeton, NJ 08544, USA

Alex Scott
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour ${ }^{\dagger}$
Princeton University, Princeton, NJ 08544, USA
Sophie Spirkl ${ }^{\ddagger}$
University of Waterloo, Waterloo, ON N2L 3E9, Canada
November 5, 2020; revised May 5, 2021

Abstract

Motivated by an application in condensed matter physics and quantum information theory, we prove that every non-null even-hole-free claw-free graph has a simplicial clique, that is, a clique K such that for every vertex $v \in K$, the set of neighbours of v outside of K is a clique. In fact, we prove the existence of a simplicial clique in a more general class of graphs defined by forbidden induced subgraphs.

1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. A hole in G is an induced cycle of length at least four. By a path we always mean an induced path. For $v \in V(G)$ we denote by $N(v)$ the set of neighbours of v (so $v \notin N(v)) . G$ is even-hole-free if all holes in G have odd length, and G is claw-free if G has no induced subgraph isomorphic to $K_{1,3}$. A non-empty set $K \subseteq V(G)$ is a simplicial clique if K is a clique, and for every $v \in K$ we have

[^0]that $N(v) \backslash K$ is a clique. The unique element of a simplicial clique of size one is called a simplicial vertex.

This paper is motivated by a question from condensed matter physics and quantum information theory concerning so-called spin models, i.e. models of interacting qubits (two-level quantum systems). Each spin model is defined by a Hamiltonian operator, and to every such Hamiltonian one can associate a graph, called its frustration graph. In [4] a new method is given that allows us to "solve a model" (meaning in this case to find the spectrum and the eigenvectors of the Hamiltonian) whose frustration graph is even-hole-free, claw-free, and has a simplicial clique. This augments earlier results of [1] where it is shown that models whose frustration graphs are line-graphs are solvable using certain classical tools. The solution method of [4] uses only the structure of the frustration graph, and it is an extension of both [5] and [6]. The authors of [4] raised a question:
1.1. Question: Does every non-null even-hole-free claw-free graph have a simplicial clique?

In other words, does their new solvability result hold for all models whose frustration graphs are even-hole-free and claw-free? In this note we answer their question affirmatively (the "dome of an edge" is defined before the statement of (2.2)); in fact we prove a stronger result:
1.2. Let G be a non-null even-hole-free claw-free graph.

1. If G is chordal, then G has a simplicial vertex.
2. For every hole H of G there is an edge ab of H such that the dome of $a b$ is a simplicial clique.

In particular, G has a simplicial clique.
We have an even stronger result, describing explicitly the structure of all such graphs, but the proof is harder, and we do not present it here. The main result of this paper is 2.2 which is a strengthening of 1.2 and we will explain it in Section 2 .

We remark that the answer to 1.1 becomes negative if we omit either the assumption that the graph is even-hole-free or that the graph is claw-free. The complement of a cycle of odd length at least seven is a claw-free graph with no simplicial clique. Moreover, the square of a cycle of length at least nine is an example of a C_{4}-free claw-free graph with no simplicial clique. (The square of a graph G is the graph obtained from G by making every vertex adjacent to all its second neighbours.) And here is an example of an even-hole-free graph rather than just C_{4}-free. Let k be an odd positive integer. The following is a construction of an even-hole-free graph G_{k} with $2 k$ vertices and with no simplicial clique. Let the vertex set of G_{k} be the union of k disjoint pairs of adjacent vertices $\left\{a_{i}, b_{i}\right\}$ where $i \in\{1, \ldots, k\}$. For $i=\{1, \ldots, k-1\}$ add the edges $a_{i} a_{i+1}, a_{i} b_{i+1}, b_{i} a_{i+1}$; add also the edges $a_{k} a_{1}, a_{k} b_{1}, b_{k} a_{1}$. There are
no more edges in G. It is easy to check that G_{k} is even-hole-free and has no simplicial clique.

In [2] an algorithm is presented that finds a simplicial clique in a claw-free graph if one exists. The authors of [4] also asked if that algorithm can be simplified when the input is known to be even-hole-free. An easy corollary of our main result 1.2 is such a simpler, but slower, algorithm 4.1 In fact 4.1 works under the more general assumptions of 2.2

2 A strengthening

The goal of this section is to present our main result 2.2 ,
Let G be a graph. For $X \subseteq V(G)$ we denote by $G[X]$ the graph induced by G on X. For $A \subseteq V(G)$ and $x \in V(G) \backslash A$, we say that x is complete to A if x is adjacent to every element of A, and that x is anticomplete to A if x is non-adjacent to every element of A. Two disjoint subsets $A, B \subseteq V(G)$ are complete to each other if every vertex of B is complete to A, and anticomplete to each other if every vertex of B is anticomplete to A.

Next we define a few types of graphs. A graph is called chordal if it has no holes. A jewel is a graph consisting of a hole $H=h_{1-} \ldots-h_{k}-h_{1}$ with $k \geq 4$ and a vertex $v \notin V(H)$ such that $N(v) \cap V(H)=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$. A line wheel is a graph consisting of a hole $H=h_{1}-\ldots-h_{k}-h_{1}$ with $k \geq 6$ and a vertex $v \notin V(H)$ such that there exists $i \in\{4, \ldots, k-2\}$ with $N(v) \cap V(H)=\left\{h_{1}, h_{2}, h_{i}, h_{i+1}\right\}$. A short prism is a graph consisting of a hole $h_{1}-h_{2}-h_{3}-h_{4}-h_{1}$ and a path $p_{1}-\ldots-p k$ such that $\left\{p_{1}, \ldots, p_{k}\right\} \cap\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}=\emptyset, p_{1}$ is adjacent to h_{1} and to h_{2}, and p_{k} is adjacent to h_{3} and to h_{4}, and there are no other edges between $\left\{p_{1}, \ldots, p_{k}\right\}$ and $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$. Finally, the seven-antihole is the complement of a cycle of seven vertices. These graphs are depicted in Figure 1

Figure 1: A jewel, a line wheel, a short prism and a seven-antihole (here dotted lines represent paths).

In what follows, whenever graph containment is mentioned, we will mean containment as an induced subgraph. We say that a graph G is clean if G is claw-free and contains no jewel, line wheel, short prism or seven-antihole. Note that clean graphs may contain even holes.

First we show:
2.1. If G is claw-free and even-hole-free, then G is clean.

Proof. Since G is even-hole free, and in particular C_{4}-free, G does not contain short prisms or seven-antiholes. Since a jewel contains a hole H of length k,
and a hole $h_{1}-v-h_{4}-h_{5^{-}} \ldots-h_{k^{-}}-h_{1}$ of length $k-1, G$ does not contain a jewel. Finally, at least one of the holes $H, h_{2^{-}} \ldots-h_{i}-v-h_{2}$, and $h_{i+1^{-}} \ldots-h_{1}-v-h_{i+1}$ is even, and so G does not contain a line wheel. This proves 2.1

We need one more definition. Let $a b$ be an edge of a graph G. Let $X(a b)=$ $\{a, b\} \cup(N(a) \cap N(b))$. The dome of $a b$ is the set of all vertices $y \in X(a b)$ such that $N(y) \backslash X(a b)$ is a clique. We call the set $X(a b) \backslash Y(a b)$ the dome of $a b$. We can now state our main result.

2.2. Let G be a non-null clean graph.

1. If G is chordal then G has a simplicial vertex.
2. For every hole H of G there is an edge ab of H such that the dome of $a b$ is a simplicial clique.

In particular, G has a simplicial clique.
In view of 2.1 we immediately deduce 1.2

3 The proof of the main theorem

In this section we prove 2.2 . We start with a lemma.
3.1. Let G be a clean graph, let H be a hole in G, and let $v \in V(G) \backslash V(H)$. Then one of the following holds:

1. v is anticomplete to $V(H)$.
2. $|V(H)|=5$ and v is complete to $V(H)$.
3. v has exactly two neighbours in H and they are consecutive.
4. v has exactly three neighbours in H and they form a path of H.

Figure 2: Outcomes of 3.1 (here dotted lines represent paths).

Proof. The outcomes of 3.1 are depicted in Figure 2 Write $H=h_{1^{-}} \ldots h_{k}-h_{1}$. We may assume that v has a neighbour in $V(H)$, for otherwise 3.11 holds. If v is complete to $V(H)$, then, since G is claw-free and since $G[V(H) \cup\{v\}]$ is not a jewel, it follows that $k=5$ and so 3.1.2 holds. Thus we may assume that v has a non-neighbour in $V(H)$, say v is adjacent to h_{1} and not to h_{k}. Since G is claw-free, v is adjacent to h_{2}, and $|N(v) \cap V(H)| \leq 4$. We may
assume that v has a neighbour in $V(H) \backslash\left\{h_{1}, h_{2}, h_{3}\right\}$, for otherwise 3.1. 3 or 3.14 holds. Since G is claw-free, $N(v) \cap\left(V(H) \backslash\left\{h_{1}, h_{2}, h_{3}\right\}\right)$ is a clique, and therefore $\left|N(v) \cap\left(V(H) \backslash\left\{h_{1}, h_{2}, h_{3}\right\}\right)\right| \leq 2$. Let $i \in\{4, \ldots, k-1\}$ be minimum such that v is adjacent to h_{i}. Since $\left\{v, h_{i-1}, h_{i}, h_{i+1}\right\}$ is not a claw, it follows that either

- $i=4$ and v is adjacent to h_{3}, or
- v is adjacent to h_{i+1} and v has no other neighbours in $V(H) \backslash\left\{h_{1}, h_{2}, h_{i}, h_{i+1}\right\}$.

In the former case $G[V(H) \cup\{v\}]$ is a jewel. Thus we may assume that the latter case holds. Since $|N(v) \cap V(H)| \leq 4$, it follows that $N(v) \cap V(H)=$ $\left\{h_{1}, h_{2}, h_{i}, h_{i+1}\right\}$. But now $G[V(H) \cup\{v\}]$ is a line wheel, a contradiction. This proves 3.1

Now we turn to the proof of 2.2
Proof. If G has no hole, then G is chordal, and therefore has a simplicial vertex [3], and 2.2 holds. Thus we may assume that G has a hole. For an integer $k \geq 4$ a subset $W \subseteq V(G)$ is k-structured if (here the addition is $\bmod k$):

- W is the disjoint union of k non-empty cliques K_{1}, \ldots, K_{k},
- for every $i \in\{1, \ldots, k\}$ every $v \in K_{i}$ has a neighbour in K_{i-1} and a neighbour in K_{i+1}, and
- if $i, j \in\{1, \ldots, k\}$ and $i \neq j \pm 1$ then K_{i} is anticomplete to K_{j}.

We call the partition $\left(K_{1}, \ldots, K_{k}\right)$ a k-structure of W.
Let H be a hole of G. Then H has length $k \geq 4$, and $V(H)$ is a k-structured set. If possible, choose H with $k \geq 5$. Let $W \subseteq V(G)$ be a k-structured set with k-structure $\left(K_{1}, \ldots, K_{k}\right)$, where each K_{i} contains exactly one vertex of H, and such that W is inclusion-wise maximal with this property. In what follows addition and subtraction of indices of the k-structure is mod k.

$$
\begin{align*}
& \text { Let } i \in\{1, \ldots, k\} . \text { If } a, b \in K_{i} \text { and } N(b) \cap K_{i+1} \nsubseteq N(a) \cap K_{i+1} \text {, } \\
& \text { then } N(b) \cap K_{i-1} \subseteq N(a) \cap K_{i-1} . \tag{1}
\end{align*}
$$

We may assume $i=1$. If for each $j \in\{2, k\}$ there exists $a_{j} \in(N(b) \backslash N(a)) \cap K_{j}$, then $\left\{b, a_{k}, a, a_{2}\right\}$ is a claw in G, a contradiction. This proves (1).

$$
\begin{align*}
& \text { Let } i \in\{1, \ldots, k\} . \text { For every } a, b \in K_{i} \text { either } N(a) \cap K_{i+1} \subseteq N(b) \cap \tag{2}\\
& K_{i+1}, \text { or } N(b) \cap K_{i+1} \subseteq N(a) \cap K_{i+1} .
\end{align*}
$$

We may assume $i=1$. Suppose there exist $a^{\prime} \in(N(a) \backslash N(b)) \cap K_{2}$ and $b^{\prime} \in(N(b) \backslash N(a)) \cap K_{2}$. Since K_{1} and K_{2} are cliques, a is adjacent to b, and a^{\prime} is adjacent to b^{\prime}. Now $a-a^{\prime}-b^{\prime}-b-a$ is a hole of length four. Let $C=N(a) \cap K_{k}$ and $C^{\prime}=N\left(a^{\prime}\right) \cap K_{3}$. By (1) b is complete to C, and b^{\prime} is complete to C^{\prime}. Switching the roles of a and b, we deduce that b is anticomplete to $K_{k} \backslash C$, and, similarly, b^{\prime} is anticomplete to $K_{3} \backslash C^{\prime}$. Since the graph $G\left[\bigcup_{j=3}^{k} K_{j}\right]$ is connected,
there is a path $P=p_{1}-\ldots-p_{t}$ in $G\left[\bigcup_{j=3}^{k} K_{j}\right]$ with $p_{1} \in C$ and $p_{t} \in C^{\prime}$; we may assume P is chosen with t minimum. Then $p_{2}, \ldots, p_{t-1} \notin C \cup C^{\prime}$, and therefore $V(P) \backslash\left\{p_{1}, p_{t}\right\}$ is anticomplete to $\left\{a, b, a^{\prime}, b^{\prime}\right\}$. But now $G\left[a, a^{\prime}, b, b^{\prime}, p_{1}, \ldots, p_{t}\right]$ is a short prism in G, a contradiction. This proves (2).

$$
\begin{align*}
& \text { For every } i \in\{1, \ldots, k\}, K_{i} \text { is complete to at least one of } \tag{3}\\
& K_{i-1}, K_{i+1} \text {. }
\end{align*}
$$

We may assume $i=1$. Suppose there exist $u \in K_{k}, v, w \in K_{1}$ and $z \in K_{2}$ (where possibly $v=w$) such that u is not adjacent to w, and v is not adjacent to z.

First we claim that v, w can be chosen in such a way that $u v$ and $w z$ are edges. Suppose not; then we may assume that v is non-adjacent to both u and z. Since $\left(K_{1}, \ldots, K_{k}\right)$ is a k-structure, there exist $n_{u}, n_{z} \in K_{1}$ such that u is adjacent to n_{u}, and z is adjacent to n_{z} (possibly $n_{z}=w$). Since v is anticomplete to $\{u, z\}$, it follows from (1) that n_{u} is non-adjacent to z, and n_{z} is non-adjacent to u. But now we can choose $v=n_{u}$ and $w=n_{z}$, and the claim holds.

In view of the claim in the previous paragraph we assume that $u v$ and $w z$ are adjacent (and in particular $v \neq w$). Let $u^{\prime} \in K_{k}$ be a neighbour of w; by (2) u^{\prime} is adjacent to v. Now the set $T=\bigcup_{i=3}^{k-1} K_{i}$ is non-empty and connected, and both u^{\prime} and z have neighbours in T. Consequently, there is a path R from u^{\prime} to z with $V(R) \backslash\left\{u^{\prime}, z\right\} \subseteq T$. Let $x \in V(R)$ be the neighbour of u^{\prime}. Then $x \in K_{k-1}$, and by (1) x is adjacent to u. It follows from the definition of a k structure that $V(R) \backslash\left\{z, x, u^{\prime}\right\}$ is anticomplete to $\left\{u, u^{\prime}, v, w\right\}$. But now the hole $z-w-v-u-x-R-z$ together with the vertex u^{\prime} forms a jewel in G, a contradiction. This proves (3).

Let $j \in\{1, \ldots, k\}$. For every $i \in\{2, \ldots, k-2\}, a_{j} \in K_{j}$ and
$a_{i+j} \in K_{j+i}$, there is a path P from a_{j} to a_{j+i} with $V(P) \subseteq \bigcup_{t=j}^{j+i} K_{t}$ and using exactly one vertex from each of K_{j}, \ldots, K_{j+i}.

We may assume $j=1$. The proof is by induction on i. Suppose first that $i=2$. Since by (3) K_{2} is complete to at least one of K_{1}, K_{3}, it follows that a_{1} and a_{3} have a common neighbour $a_{2} \in K_{2}$. Now $a_{1}-a_{2}-a_{3}$ is the required path.

Now assume that $i>2$, let $a_{j+i-1} \in K_{j+i-1}$ be a neighbour of a_{j+i}. By the inductive hypothesis there is a path P from a_{1} to a_{j+i-1} with $V(P) \subseteq \bigcup_{r=j}^{i+j-1} K_{r}$ using exactly one vertex from each of K_{j}, \ldots, K_{i+j-1}. Now $a_{j}-P-a_{j+i-1-} a_{j+i}$ is the required path. This proves (4).

$$
\begin{align*}
& \text { Let } v \in V(G) \backslash W . \text { For } i \in\{1, \ldots, k\} \text { let } N_{i}=K_{i} \cap N(v) \text { and } \\
& M_{i}=K_{i} \backslash N_{i} . \text { The following hold for every } i \in\{1, \ldots, k\} \text { : } \tag{5}
\end{align*}
$$

1. N_{i} is anticomplete to at least one of M_{i-1}, M_{i+1}.
2. If $k>4$, then M_{i} is anticomplete to at least one of N_{i-1}, N_{i+1}.

We may assume $i=1$. By (3) we may assume that K_{1} is complete to K_{2}.

We first prove the first statement. We may assume that there exists $m_{2} \in$ M_{2}, for otherwise the claim holds (N_{1} is anticomplete to M_{2} because $M_{2}=\emptyset$). Now if $n_{1} \in N_{1}$ has a neighbour $m_{k} \in M_{k}$, then $\left\{n_{1}, v, m_{2}, m_{k}\right\}$ is a claw, a contradiction. This proves that N_{1} is anticomplete to M_{2}, and (5). 1 follows.

Next we prove the second statement. We may assume that there exist $m_{1} \in$ M_{1} and $n_{2} \in N_{2}$ such that m_{1} is adjacent to n_{2}. Let $n_{k} \in N_{k}$, then $n_{k} \in$ $N\left(m_{1}\right)$. By (4) there exists a path P from n_{2} to n_{k} with $V(P) \subseteq \bigcup_{i=2}^{k} K_{i}$ with $\left|V(P) \cap K_{i}\right|=1$ for every $i \in\{2, \ldots, k\}$. But now we get a contradiction applying 3.1 to the hole $m_{1}-n_{2}-P-n_{k}-m_{1}$ and the vertex v. This proves (5).2 and completes the proof of (5).

> Let $v \in V(G) \backslash W$ and for $i \in\{1, \ldots, k\}$, let $N_{i}=N(v) \cap K_{i}$ and $M_{i}=K_{i} \backslash N_{i}$. Either
> - N_{i} is non-empty for at most two consecutive values of i (mod $\quad k$) or

- $k=5, v$ is complete to W, and K_{i} is complete to K_{i+1} for every $i \in\{1, \ldots, 4\}$.

First we claim that we can choose j, l with $N_{j} \neq \emptyset$ and $N_{l} \neq \emptyset$, and such that $j=l \pm 2$. If $N_{i} \neq \emptyset$ for every $i \in\{1, \ldots, k\}$, then the claim holds. If $N_{i}=\emptyset$ for every $i \in\{1, \ldots, k\}$, then the claim holds. Thus we may assume that some $N_{i} \mathrm{~s}$ are empty, and some are not. By shifting the indices, we may assume $N_{1} \neq \emptyset$ and $N_{k}=\emptyset$. We may assume that $N_{t} \neq \emptyset$ for some $t \in\{3, \ldots, k-1\}$ for otherwise (6) holds with $i=1$. Let $n_{1} \in N_{1}$ and $n_{t} \in N_{t}$. By (4) there exists a path P from n_{1} to n_{t} such that $V(P) \subseteq \bigcup_{j=1}^{t} K_{j}$ and P uses exactly one vertex from each of $K_{1}, K_{2}, \ldots, K_{t}$. Also by (4) there exists a path Q from n_{t} to n_{1} such that $V(Q) \subseteq K_{1} \cup \bigcup_{j=t}^{k} K_{j}$ and Q uses exactly one vertex from each of $K_{t}, K_{t+1} \ldots, K_{k}, K_{1}$. Now $F=n_{1}-P-n_{t}-Q-n_{1}$ is a hole, and $n_{1}, n_{t} \in V(F)$. Since $t \geq 3$ and $N_{k}=\emptyset$, applying 3.1 to F and v we deduce that the fourth outcome of 3.1 holds and $t=3$. Now we can set $j=1$ and $l=t$. This proves the claim.

By the claim of the previous paragraph (shifting the indices so that $j=k$ and $l=2$) we may assume that N_{k} and N_{2} are both non-empty. For $i \in\{2, k\}$ let $a_{i} \in N_{i}$. By (3) a_{k} and a_{2} have a common neighbour $a_{1} \in K_{1}$.

Suppose $\bigcup_{i=3}^{k-1} N_{i}=\emptyset$. Since W is maximal, $\left(K_{1} \cup\{v\}, K_{2}, \ldots, K_{k}\right)$ is not a k-structure for $W \cup\{v\}$, and therefore there exists $a_{1}^{\prime} \in M_{1}$. By symmetry we may assume that K_{1} is complete to K_{2}. Let $a_{3}^{\prime} \in K_{3}$ be a neighbour of a_{2}; then $a_{3}^{\prime} \in M_{3}$, contrary to (5).1. This proves that $\bigcup_{i=3}^{k-1} N_{i} \neq \emptyset$.

Suppose $k=4$. Then there is symmetry between K_{1} and K_{3}, and we deduce that $N_{i} \neq \emptyset$ for every $i \in\{1, \ldots, 4\}$. By (3) we may assume that K_{1} is complete to K_{2}, and K_{3} to K_{4}. Now 3.1 implies that there is no hole $n_{1} n_{2} n_{3} n_{4} n_{1}$ with $n_{i} \in N_{i}$ for every $i \in\{1, \ldots, 4\}$, and consequently either N_{1} is anticomplete to N_{4}, or N_{3} is anticomplete to N_{2}. By symmetry we may assume that N_{1} is anticomplete to N_{4}. Let $n_{1} \in N_{1}$ and $n_{4} \in N_{4}$, and let $m_{1} \in K_{1}$ be adjacent
to n_{4} and $m_{4} \in K_{4}$ be adjacent to n_{1}. Then $m_{1} \in M_{1}$ and $m_{4} \in M_{4}$. By (2) applied to m_{1} and n_{1}, we deduce that m_{1} is adjacent to m_{4}. If there exists $m_{2} \in M_{2}$, then $\left\{n_{1}, v, m_{2}, m_{4}\right\}$ is a claw, a contradiction. This proves (using symmetry) that $M_{2} \cup M_{3}=\emptyset$. Let $n_{2} \in K_{2}$, and let $n_{3} \in K_{3}$ be adjacent to n_{2}. Then $n_{2} \in N_{2}$ and $n_{3} \in N_{3}$. But now $G\left[v, m_{4}, n_{2}, n_{4}, n_{1}, n_{3}, m_{1}\right]$ is a seven-antihole, a contradiction. This proves that $k \geq 5$.

By (5). 2 it follows that $a_{1} \in N_{1}$. We claim that $k=5$ and v is complete to W. Suppose v has a non-neighbour in W. Since $\left\{v, a_{k}, a_{2}, x\right\}$ is not a claw for any $x \in \bigcup_{i=4}^{k-2} K_{i}$, it follows that $\bigcup_{i=4}^{k-2} N_{i}=\emptyset$.

We may assume that there is $a_{3} \in N_{3}$. Since $\left\{v, a_{2}, a_{k}, a_{3}\right\}$ is not a claw, it follows that a_{2} is adjacent to a_{3}. By (4) there is a path P from a_{3} to a_{k} with $V(P) \subseteq \bigcup_{j=3}^{k} K_{j}$ and using exactly one vertex from each of K_{3}, \ldots, K_{k}. Now $F=a_{k}-a_{1}-a_{2}-a_{3}-P-a_{k}$ is a hole, and 3.1 implies that $k=5$ and v is complete to $V(F)$. We have proved that $N_{i} \neq \emptyset$ for every $i \in\{1, \ldots, 5\}$ thus restoring the symmetry of the 5 -structure. Since for $n_{1} \in N_{1}, n_{2} \in N_{2}$ and $n_{4} \in N_{4}$, $\left\{v, n_{1}, n_{2}, n_{4}\right\}$ is not a claw, we deduce (using symmetry) that N_{i} is complete to N_{i+1} for every $i \in\{1, \ldots, 5\}$.

Next suppose that both M_{5} and M_{2} are non-empty. By (3) we may assume that K_{1} is complete to K_{2}. By (5).1, N_{1} is anticomplete to M_{5}. Since every vertex of M_{5} has a neighbour in K_{1}, it follows that $M_{1} \neq \emptyset$. By (5). $2 M_{1}$ is anticomplete to N_{5}, but now $m_{1} \in M_{1}$ and $n_{1} \in N_{1}$ contradict 2). By symmetry we may assume M_{i} is non-empty for at most two consecutive values of i, and that $M_{1} \cup M_{2} \cup M_{3}=\emptyset$. By 5 . $2 N_{4}$ is anticomplete to M_{5}, and similarly M_{4} is anticomplete to N_{5}. By symmetry we may assume that $M_{4} \neq \emptyset$. But now $m_{4} \in M_{4}$ and $n_{4} \in N_{4}$ contradicts (2). This proves that $k=5$ and v is complete to W. To complete the proof of (6) assume for a contradiction that there exist $i \in\{1, \ldots, 4\}, k_{i} \in K_{i}$ and $k_{i+1} \in K_{i+1}$ such that k_{i} is non-adjacent to k_{i+1}. We may assume $i=1$. Then $\left\{v, k_{1}, k_{2}, k_{4}\right\}$ is a claw in G, a contradiction. This proves (6).

For $i \in\{1, \ldots, k\}$ let $K_{i, i+1}$ be the set of all vertices of $V(G) \backslash W$ that have a neighbour in K_{i}, a neighbour in K_{i+1}, and no neighbour in $W \backslash\left(K_{i} \cup K_{i+1}\right)$. The outcomes of (6) are summarized in Figure 3

Figure 3: Outcomes of (6) (here wiggly lines represent possible adjacency, and the dotted arc represents the remainder of the k-structure).

Assume that $K_{i, i+} \neq \emptyset$. The following statements hold

1. $K_{i} \cup K_{i+1} \cup K_{i, i+1}$ is a clique.
2. If $u \in V(G) \backslash W$ is complete to W, then u is anticomplete to $K_{i, i+1}$.
3. $K_{i, i+1}$ is anticomplete to $K_{i-1, i}$.

Let $v \in K_{1,2}$. For $i \in\{1,2\}$ let $N_{i}=K_{i} \cap N(v)$, and let $M_{i}=K_{i} \backslash N_{i}$. By (5). $1 N_{1}$ is anticomplete to M_{2}, and N_{2} is anticomplete to M_{1}. If there exists $m_{1} \in M_{1}$, then n_{1}, m_{1} contradict 2 for every $n_{1} \in N_{1}$. Thus $M_{1}=\emptyset$, and by symmetry $M_{2}=\emptyset$. This proves that $K_{1,2}$ is complete to $K_{1} \cup K_{2}$.

Suppose $k_{1} \in K_{1}$ is non-adjacent to $k_{2} \in K_{2}$. Let P be a path from k_{2} to a vertex $k_{k} \in K_{k}$ as in (4), such that $\left|V(P) \cap K_{i}\right|=1$ for every $i \in\{2,3, \ldots, k\}$. By (3) K_{1} is complete to K_{k}, and so $F=k_{k}-k_{1}-v-k_{2}-P-k_{k}$ is a hole. Let $k_{1}^{\prime} \in K_{1} \cap N\left(k_{2}\right)$, then $G\left[V(F) \cup\left\{k_{1}^{\prime}\right\}\right]$ is a jewel in G, a contradiction. This proves that K_{1} is complete to K_{2}.

Since $\left\{k_{1}, k_{k}, a, b\right\}$ is not a claw for any $k_{1} \in K_{1}, k_{k} \in K_{k} \cap N\left(k_{1}\right)$ and $a, b \in K_{1,2}$, it follows that $K_{1,2}$ is a clique, and therefore $K_{1} \cup K_{2} \cup K_{1,2}$ is a clique. By symmetry, $K_{1} \cup K_{2} \cup K_{1,2}$ is a clique for every i. This proves (7).1.

Next suppose that u is complete to W and u is adjacent to $w \in K_{1,2}$. By (6) $k=5$. Let $k_{3} \in K_{3}$ and $k_{5} \in K_{5}$. Then $\left\{u, w, k_{3}, k_{5}\right\}$ is a claw, a contradiction. This proves (7).2.

Finally, suppose that $w_{k} \in K_{k, 1}$ is adjacent to $w_{2} \in K_{1,2}$. Let $k_{1} \in K_{1}$, $k_{2} \in K_{2}$ and $k_{k} \in K_{k}$, and let P be a path from k_{2} to k_{k} as in (4) such that $\left|V(P) \cap K_{i}\right|=1$ for every $i \in\{2,3, \ldots, k\}$. Then $F=k_{2}-P-k_{k}-w_{k}-w_{2}-k_{2}$ is a hole and $G\left[V(F) \cup\left\{k_{1}\right\}\right]$ is a jewel, a contradiction. This proves (7). 3 and completes the proof of (7).

For $i \in\{1, \ldots, k\}$, let $V(H) \cap K_{i}=\left\{h_{i}\right\}$. Choose $i \in\{1, \ldots, k\}$ such that K_{i} is complete to K_{i+1} and, if possible, such that $K_{i, i+1} \neq \emptyset$; we may assume $i=1$. Set $a=h_{1}$ and $b=h_{2}$, and let $K=K_{1} \cup K_{2} \cup K_{1,2}$.

By (6), every vertex of $X(a b)=\{a, b\} \cup(N(a) \cap N(b))$ either belongs to K or is complete to W (and $k=5$). Since if $y \in X(a b)$ is complete to W, then y has two non-adjacent neighbours in $V(G) \backslash X(a b)$, it follows that K contains the dome of $a b$. By (7). $1 K$ is a clique.

We prove that K is a simplicial clique, and therefore K equals the dome of $a b$. Suppose K is not a simplicial clique, and let $v \in K$ and $u, w \in V(G) \backslash K$ be such that u and w are adjacent to v, and u is non-adjacent to w. Suppose first that u is complete to W. By (6) $k=5$ and for every $i K_{i}$ is complete to K_{i+1}. By (7). $2 v \notin K_{1,2}$. For $i \in\{1, \ldots, 5\}$ let $k_{i} \in K_{i}$. We may assume that $v=k_{1}$. Since u is non-adjacent to w, it follows that $w \notin W$. Since $G\left[k_{1}, u, k_{3}, w, k_{2}\right]$ is not a jewel in G, it follows that w is not complete to W. By (5). 1 (since k_{1} is complete to $\left.K_{2} \cup K_{5}\right) w$ has a neighbour in at least one of K_{2}, K_{5}. By
(6) $w \in K_{1,2} \cup K_{5,1}$. Since $w \notin K$, it follows that $w \in K_{5,1}$. By (7). $1 K_{5}$ is complete to K_{1}. Since $K_{1,5} \neq \emptyset$, and since K_{1}, K_{2} where chosen with $K_{1,2} \neq \emptyset$ if possible, it follows that there exists $k \in K_{1,2}$. By (7). $2 u$ is non-adjacent to k, and by (7). $3 w$ is non-adjacent to k. But now $\left\{k_{1}, u, k, w\right\}$ is a claw in G, a contradiction. This proves that u is not complete to W. By symmetry, w is not complete to W.

Now suppose $v \in K_{1}$. Since $u, w \notin K$, it follows from (6) that $u, w \in$ $K_{k} \cup K_{k, 1}$. But then u is adjacent to w by $(7) .1$, a contradiction. This proves that $v \notin K_{1}$, and, by symmetry, $v \notin K_{2}$.

It follows that $v \in K_{1,2}$. Moreover, applying the previous argument to an arbitrary vertex of $K_{1} \cup K_{2}$ in the role on v, we deduce that no vertex of $K_{1} \cup K_{2}$ is complete to $\{u, w\}$. Since $\{v, u, w, p\}$ is not a claw for $p \in K_{1} \cup K_{2}$ it follows that every vertex of $K_{1} \cup K_{2}$ has a neighbour in $\{u, w\}$. Since $u, w \notin K, 77.1$ implies that each of u, w is anticomplete to at least one of K_{1}, K_{2}. By switching u and w if necessary, we may assume that u has a neighbour in K_{1} and is anticomplete to K_{2}. By (5).1 u has a neighbour in K_{k}, but now $u \in K_{k, 1}$ is adjacent to $v \in K_{1,2}$, contrary to $(7) .3$. Thus we have found an edge of H whose dome is a simplicial clique. This proves 2.2 .

4 The Algorithm

In this section we use 2.2 to design a simple algorithm that finds a simplicial clique in a clean graph.
4.1. There is an algorithm with the following specifications.

Input: A non-null clean graph G.
Output: A simplicial clique in G.
Running time: $O\left(|V(G)|^{5}\right)$.
Proof. Let $|V(G)|=n$. First, for every vertex $v \in V(G)$ check if $N(v)$ is a clique. If the answer is yes for some v, then output a simplicial clique $\{v\}$. This step can be done in time $O\left(n^{3}\right)$.

Now for every edge $a b$ compute $X(a b), Y(a b)$ and the dome of $a b$, and check if the dome of $a b$ is a simplicial clique. This step can be done in time $O\left(n^{5}\right)$.

We now use 2.2 to prove that the algorithm will return a simplicial clique of G. If G is a chordal graph, then by the first statement of 2.2 the first step of the algorithm will return a simplicial clique; otherwise there is a hole in G, and so by the second statement of 2.2 , the second step of the algorithm will return a simplicial clique. This proves 4.1

We remark that the algorithm of 4.1 can be used to produce, in time $O\left(|V(G)|^{2}\right.$), a list of at most $|V(G)|^{2}$ sets one of which is guaranteed to be a simplicial clique. The rest of the running time is spent checking whether each of the sets is a simplicial clique.

5 Acknowledgment

We are grateful to Adrian Chapman and Steve Flammia for their help in writing the introduction.

References

[1] A. Chapman, S.T. Flammia, Characterization of solvable spin models via graph invariants, Quantum 4, 278 (2020).
[2] M. Chudnovsky, P. Seymour, Growing without cloning, SIDMA, 26 860880, (2012).
[3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 38, 71-76 (1961).
[4] S.J. Elman, A, Chapman, S.T. Flammia, Free fermions behind the disguise, preprint.
[5] P. Fendley, Free fermions in disguise, J. Phys. A 52 (33), 335002 (2019).
[6] E. Lieb, T. Schultz, D. Mattis, Two soluble models of an antiferromagnetic chain, Ann Phys. (N.Y.) 16, (3) 407 (1961).

[^0]: *Supported by NSF grant DMS-1763817.
 ${ }^{\dagger}$ Supported by AFOSR grant A9550-19-1-0187 and NSF grant DMS-1800053.
 \ddagger We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2020-03912] .

