
Edge-colouring eight-regular planar graphs

Maria Chudnovsky1

Columbia University, New York, NY 10027

Katherine Edwards2, Paul Seymour3

Princeton University, Princeton, NJ 08544

January 13, 2012; revised November 27, 2014

1Supported by NSF grants DMS-1001091 and IIS-1117631.
2Supported by an NSERC PGS-D3 Fellowship and a Gordon Wu Fellowship.
3Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.



Abstract

It was conjectured by the third author in about 1973 that every d-regular planar graph (possibly
with parallel edges) can be d-edge-coloured, provided that for every odd set X of vertices, there are
at least d edges between X and its complement. For d = 3 this is the four-colour theorem, and the
conjecture has been proved for all d ≤ 7, by various authors. Here we prove it for d = 8.



1 Introduction

One form of the four-colour theorem, due to Tait [9], asserts that a 3-regular planar graph can
be 3-edge-coloured if and only if it has no cut-edge. But when can d-regular planar graphs be
d-edge-coloured?

Let G be a graph. (Graphs in this paper are finite, and may have loops or parallel edges.) If
X ⊆ V (G), δG(X) = δ(X) denotes the set of all edges of G with an end in X and an end in V (G)\X.
We say that G is oddly d-edge-connected if |δ(X)| ≥ d for all odd subsets X of V (G). Since every
perfect matching contains an edge of δ(X) for every odd set X ⊆ V (G), it follows that every d-
regular d-edge-colourable graph is oddly d-edge-connected. (Note that for a 3-regular graph, being
oddly 3-edge-connected is the same as having no cut-edge, because if X ⊆ V (G), then |δ(X)| = 1 if
and only if |X| is odd and |δ(X)| < 3.) The converse is false, even for d = 3 (the Petersen graph is
a counterexample); but for planar graphs perhaps the converse is true. That is the content of the
following conjecture [8], proposed by the third author in about 1973.

1.1 Conjecture. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G is
oddly d-edge-connected.

Some special cases of this conjecture have been proved.

• For d = 3 it is the four-colour theorem, and was proved by Appel and Haken [1, 2, 7];

• for d = 4, 5 it was proved by Guenin [5];

• for d = 6 it was proved by Dvorak, Kawarabayashi and Kral [3];

• for d = 7 it was proved by Kawarabayashi and the second author, and appears in the Master’s
thesis [4] of the latter. The methods of the present paper can also be applied to the d = 7 case,
resulting in a proof somewhat simpler than the original, and this simplified proof for the d = 7
case will be presented in another, four-author paper [6].

Here we prove the next case, namely:

1.2 Every 8-regular oddly 8-edge-connected planar graph is 8-edge-colourable.

All these proofs (for d > 3), including ours, proceed by induction on d. Thus we need to assume the
truth of the result for d = 7.

2 An unavoidable list of reducible configurations.

The graph we wish to edge-colour has parallel edges, but it is more convenient to work with the
underlying simple graph. If H is d-regular and oddly d-edge-connected, then H has no loops, because
for every vertex v, v has degree d, and yet |δH(v)| ≥ d. (We write δ(v) for δ({v}).) Thus to recover
H from the underlying simple graph G say, we just need to know the number m(e) of parallel edges
of H that correspond to each edge e of G. Let us say a d-target is a pair (G,m) with the following
properties (where for F ⊆ E(G), m(F ) denotes

∑
e∈F m(e)):

• G is a simple graph drawn in the plane;
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• m(e) ≥ 0 is an integer for each edge e;

• m(δ(v)) = d for every vertex v; and

• m(δ(X)) ≥ d for every odd subset X ⊆ V (G).

In this language, 1.1 says that for every d-target (G,m), there is a list of d perfect matchings
of G such that every edge e of G is in exactly m(e) of them. (The elements of a list need not be
distinct.) If there is such a list we call it a d-edge-colouring, and say that (G,m) is d-edge-colourable.
For an edge e ∈ E(G), we call m(e) the multiplicity of e. If X ⊆ V (G), G|X denotes the subgraph
of G induced on X. We need:

2.1 Let (G,m) be a d-target, that is not d-edge-colourable, but such that every d-target with fewer
vertices is d-edge-colourable. Then

• |V (G)| ≥ 6;

• for every X ⊆ V (G) with |X| odd, if |X|, |V (G) \ X| 6= 1 then m(δ(X)) ≥ d + 2; and

• G is three-connected, and m(e) ≤ d − 2 for every edge e.

Proof. If m(e) = 0 for some edge e, we may delete e without affecting the problem; so we may
assume that m(e) > 0 for every edge e. It is easy to check that G is connected and |V (G)| ≥ 6 and
we omit it. For the second assertion let X ⊆ V (G) with |X| odd and with |X|, |V (G) \ X| 6= 1.
Thus m(δ(X)) ≥ d since (G,m) is a d-target; suppose that m(δ(X)) = d. There is a component
of G|X with an odd number of vertices, with vertex set X ′ say; and so m(δ(X ′)) ≥ d since (G,m)
is a d-target. But δ(X ′) ⊆ δ(X), and m(e) > 0 for every edge e; and so δ(X ′) = δ(X). Since G
is connected it follows that X ′ = X, and so G|X is connected. Similarly G|Y is connected, where
Y = V (G) \ X. Replace each edge e of G by m(e) parallel edges, forming H; and contract all edges
of H|Y , forming a d-regular oddly d-edge-connected planar graph H1 with fewer vertices than H
(because |Y | > 1). By hypothesis it follows that H1 is d-edge-colourable. Similarly so is the graph
obtained from H by contracting all edges of H|X. But these colourings can be combined to give a
d-edge-colouring of H, a contradiction. This proves that m(δ(X)) > d. Since m(δ(v)) = d for every
vertex v, it follows that m(δ(X)) has the same parity as d|X|, and so m(δ(X)) ≥ d + 2. This proves
the second assertion.

For the third assertion, suppose that G is not three-connected. Since |V (G)| > 3, there is a
partition (X,Y,Z) of V (G) where X,Y 6= ∅ and |Z| = 2, such that there are no edges between X
and Y . Let Z = {z1, z2} say. Either both |X|, |Y | are odd, or they are both even. If they are both
odd, then since δ(X), δ(Y ) are disjoint subsets of δ(z1) ∪ δ(z2), and

m(δ(X)),m(δ(Y )) ≥ d = m(δ(z1)),m(δ(z2)),

we have equality throughout, and in particular m(δ(X)),m(δ(Y )) = d. But then |X| = |Y | = 1
from the second assertion, contradicting that |V (G)| ≥ 6. Now assume |X|, |Y | are both even.
Since δ(X ∪ {z1}), δ(Y ∪ {z2}) have the same union and intersection as δ(z1), δ(z2), it follows that
m(δ(X ∪ {z1})) = d, contrary to the second assertion. Thus G is three-connected. Since m(e) ≥ 1
for every edge e, and m(δ(v)) = d for every vertex v, it follows that m(e) ≤ d − 2 for every edge e.
This proves the third assertion, and hence proves 2.1.
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A triangle is a region of G incident with exactly three edges. If a triangle is incident with vertices
u, v,w, for convenience we refer to it as uvw, and in the same way an edge with ends u, v is called
uv. Two edges are disjoint if they are distinct and no vertex is an end of both of them, and otherwise
they meet. Let r be a region of G, and let e ∈ E(G) be incident with r; let r′ be the other region
incident with e. We say that e is i-heavy (for r), where i ≥ 2, if either m(e) ≥ i or r′ is a triangle
uvw where e = uv and

m(uv) + min(m(uw),m(vw)) ≥ i.

We say e is a door for r if m(e) = 1 and there is an edge f incident with r′ and disjoint from e with
m(f) = 1. We say that r is big if there are at least four doors for r, and small otherwise. A square
is a region with length four.

Since G is drawn in the plane and is two-connected, every region r is bounded by some cycle
which we denote by Cr. In what follows we will be studying cases in which certain configurations
of regions are present in G. We will give a list of regions the closure of the union of which is a
disc. For convenience, for an edge e in the boundary of this disc, we call the region outside the disc
incident with e the “second region” for e; and we write m+(e) = m(e) if the second region is big,
and m+(e) = m(e) + 1 if the second region is small. This notation thus depends not just on (G,m)
but on what regions we have specified, so it is imprecise, and when there is a danger of ambiguity
we will specify it more clearly.

Let us say an 8-target (G,m) is prime if

• m(e) > 0 for every edge e;

• |V (G)| ≥ 6;

• m(δ(X)) ≥ 10 for every X ⊆ V (G) with |X| odd and |X|, |V (G) \ X| 6= 1;

• G is three-connected, and m(e) ≤ 6 for every edge e;

and in addition (G,m) contains none of of the following:

Conf(1): A triangle uvw where u, v both have degree three.

Conf(2): A triangle uvw, where u has degree three and its third neighbour x satisfies

m(ux) < m(uw) + m(vw).

Conf(3): Two triangles uvw, uwx with m(uv) + m(uw) + m(vw) + m(ux) ≥ 8.

Conf(4): A square uvwx where m(uv) + m(vw) + m(ux) ≥ 8 and

(m(uv),m(vw),m(wx),m(ux)) 6= (4, 2, 1, 2).

Conf(5): Two triangles uvw, uwx where m+(uv) + m(uw) + m+(wx) ≥ 7.

Conf(6): A square uvwx where m+(uv) + m+(wx) ≥ 7.

Conf(7): A triangle uvw with m+(uv) + m+(uw) ≥ 7.
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Conf(8): A triangle uvw, where m(uv) = 3, m(uw) = 2, m(vw) = 2, and the second region for one
of uv, uw, vw has no door disjoint from uw.

Conf(9): A triangle uvw with m(uv),m(uw),m(vw) = 2, such that u has degree at least four, and
the second regions for uv, uw both have at most one door, and no door that is disjoint from
uvw.

Conf(10): A square uvwx and a triangle wxy, where m(uv) = m(wx) = m(xy) = 2, and m(vw) = 4.

Conf(11): A square uvwx and a triangle wxy, where m(uv) ≥ 3, m(wy) ≥ 3, m(wx) = 1, m(ux) ≤ 3,
and m+(xy) ≥ 3.

Conf(12): A square uvwx and a triangle wxy, where m+(uv) ≥ 2, m(vw) ≥ 2, m(wx) = m(wy) = 2,
m(ux) ≤ 3, and m+(xy) ≥ 3.

Conf(13): A region with length five, with edges e1, . . . , e5 in order, where m(e1) ≥ max(m(e2),m(e5)),
m(e1) + m(e2) + m(e3) ≥ 8 and m+(e1) + m+(e4) ≥ 7.

Conf(14): A region r and an edge e of Cr, such that m+(e) ≥ 6 and at most six edges of Cr disjoint
from e are doors for r.

Conf(15): A region r with length at least four, and an edge e of Cr, such that m+(e) ≥ 4 and every
edge of Cr disjoint from e is 3-heavy.

Conf(16): A region r and an edge uv of Cr, and a triangle uvw, such that m(uv) + m+(uw) ≥ 4,
and every edge of Cr not incident with u is 3-heavy; moreover, if tu denotes the second edge of
Cr incident with u, then either max(m(vw),m(tu)) ≤ m(uw), or r is a triangle and m(vw) =
m(uw) + 1 and m(tu) ≤ m(tv).

Conf(17): A region r with length at least five, and an edge e of Cr, such that m+(e) ≥ 5, every edge
f of Cr disjoint from e satisfies m+(f) ≥ 2, and at most one of them is not 3-heavy.

Conf(18): A region r with length at least four and an edge uv of Cr, and a triangle uvw, such that
m+(uw) + m(uv) ≥ 5, and m(vw) ≤ m(uw), and the second edge of Cr incident with u has
multiplicity at most m(uw), and either

– m(uv) = 3 and uv is 5-heavy, and every edge f of Cr disjoint from uv satisfies m+(f) ≥ 2,
and at most one of them is not 3-heavy, or

– m+(f) ≥ 2 for every edge f of Cr not incident with u, and at most one such edge is not
3-heavy.

Conf(19): A region r with length at least five and an edge e of Cr, such that m+(e) ≥ 5, every edge
of Cr disjoint from e is 2-heavy, and at most two of them are not 3-heavy.

We will prove these restrictions are too much, that in fact no 8-target is prime (theorem 3.1).
To deduce 1.2, we will show that if there is a counterexample, then some counterexample is prime;
but for this purpose, just choosing a counterexample with the minimum number of vertices is not
enough, and we need a more delicate minimization. If (G,m) is a d-target, its score sequence is the
(d + 1)-tuple (n0, n1, . . . , nd) where ni is the number of edges e of G with m(e) = i. If (G,m) and
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(G′,m′) are d-targets, with score sequences (n0, . . . , nd) and (n′
0, . . . , n

′
d) respectively, we say that

(G′,m′) is smaller than (G,m) if either

• |V (G′)| < |V (G)|, or

• |V (G′)| = |V (G)| and there exists i with 1 ≤ i ≤ d such that n′
i > ni, and n′

j = nj for all j
with i < j ≤ d, or

• |V (G′)| = |V (G)|, and n′
j = nj for all j with 0 < j ≤ d, and n′

0 < n0.

(The anomalous treatment of n0 is just a device to allow d-targets to have edges with m(e) = 0,
while minimum d-counterexamples have none.) If some d-target is not d-edge-colourable, then we
can choose a d-target (G,m) with the following properties:

• (G,m) is not d-edge-colourable

• every smaller d-target is d-edge-colourable.

Let us call such a pair (G,m) a minimum d-counterexample. To prove 1.2, we prove two things:

• No 8-target is prime (theorem 3.1), and

• Every minimum 8-counterexample is prime (theorem 4.1).

It will follow that there is no minimum 8-counterexample, and so the theorem is true.

3 Discharging and unavoidability

In this section we prove the following, with a discharging argument.

3.1 No 8-target is prime.

The proof is broken into several steps, through this section. Let (G,m) be a 8-target, where G
is three-connected. For every region r, we define

α(r) = 8 − 4|E(Cr)| +
∑

e∈E(Cr)

m(e).

We observe first:

3.2 The sum of α(r) over all regions r is positive.

Proof. Since (G,m) is a 8-target, m(δ(v)) = 8 for each vertex v, and, summing over all v, we
deduce that 2m(E(G)) = 8|V (G)|. By Euler’s formula, the number R of regions of G satisfies
|V (G)| − |E(G)| + R = 2, and so 2m(E(G)) − 8|E(G)| + 8R = 16. But 2m(E(G)) is the sum over
all regions r, of

∑
e∈E(Cr) m(e), and 8R − 8|E(G)| is the sum over all regions r of 8 − 4|E(Cr)|. It

follows that the sum of α(r) over all regions r equals 16. This proves 3.2.
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Think of α(r) as an initial assignment of charge to each region r. Now we move some small
amount of charge between neighbouring regions. Normally we pass one unit of charge from every
small region to every big region with which it shares an edge; except that in some exceptional
circumstances, sending one unit is too much, and we only send 1/2 or 0. More precisely, for every
edge e of G, define βe(s) for each region s as follows. Let r, r′ be the two regions incident with e.

• If s 6= r, r′ then βe(s) = 0.

• If r, r′ are both big or both small then βe(r), βe(r
′) = 0.

Henceforth we assume that r is big and r′ is small; let f, f ′ be the edges of Cr \ e that share an end
with e.

1: If e is a door for r (and hence m(e) = 1) then βe(r) = βe(r
′) = 0.

2: If m(e) = 2 and m+(f) = m+(f ′) = 6 then βe(r) = βe(r
′) = 0.

3: If m(e) = 2 and m+(f) = 6 and m+(f ′) = 5 or vice versa then βe(r) = −βe(r
′) = 1/2.

4: If m(e) = 3 and m+(f) = m+(f ′) = 5 then βe(r) = βe(r
′) = 0.

5: If m(e) = 3 and exactly one of m+(f),m+(f ′) = 5, then βe(r) = −βe(r
′) = 1/2.

6: Otherwise βe(r) = −βe(r
′) = 1.

(Think of βe as passing some amount of charge between the two regions incident with e.) For each
region r, define β(r) to be the sum of βe(r) over all edges e. We see that the sum of β(r) over all
regions r is zero.

The effect of β is passing charge from small regions to big regions with which they share an
edge. We need another “discharging” function, that passes charge from triangles to small regions
with which they share an edge. If r is a triangle, incident with edges e, f, g, we define its multiplicity
m(r) = m(e) + m(f) + m(g). A region r is tough if r is a triangle, its multiplicity is at least five,
and if r = uvw where m(uv) = 1 and m(uw) = m(vw) = 2, then m+(uw) + m+(vw) ≥ 5. For every
edge e of G, define γe(s) for each region s as follows. Let r, r′ be the two regions incident with e.

• If s 6= r, r′ then γe(s) = 0.

• If one of r, r′ is big, or neither is tough, or they both are tough, then γe(r) = γe(r
′) = 0.

Henceforth we assume that r′ is tough, and r is small and not tough. Let e, e1, e2 be the edges
incident with r′, and let r1, r2 be the regions different from r′ incident with e1, e2 respectively.

1: If m(e) = 1 and m(e1),m(e2) ≥ 2, and m+(e1) + m+(e2) ≥ 6 then γe(r) = −γe(r
′) = 1.

2: If m(e) = 1 and m+(e1) ≥ 4 and m(e2) = 1 and r2 is small, then γe(r) = −γe(r
′) = 1/2.

3: If m(e) = 1 and m(e1) = 3 and m(e2) = 1 and r2 is small, and the edge f of Cr \ e that shares
an end with e, e1 satisfies m(f) = 4, then γe(r) = −γe(r

′) = 1/2.

4: If m(e) = 2 and m(e1),m(e2) ≥ 2 and m+(e1) + m+(e2) ≥ 5, and either
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– r has more than one door, or

– some door for r is disjoint from e, or

– some edge f of Cr consecutive with e has multiplicity four, and r1, r2 are both small,

then γe(r) = −γe(r
′) = 1.

5: If m(e) = 2 and m(e1),m(e2) = 2 and some end of e has degree three, incident with e1 say,
and r1 is small and r2 is big, then γe(r) = −γe(r

′) = 1/2.

6: If m(e) = 3 and m(e1),m(e2) = 2 then γe(r) = −γe(r
′) = 1.

7: Otherwise γe(r) = γe(r
′) = 0.

We observe that, immediately from the rules, we have

3.3 Let e be incident with regions r, r′. Then βe(r) is non-zero only if exactly one of r, r′ is big; and
γe(r) is non-zero only if exactly one of r, r′ is tough and neither is big. Thus in all cases, at most
one of βe(r), γe(r) is non-zero. Moreover |βe(r) + γe(r)| ≤ 1.

For each region r, define γ(r) to be the sum of γe(r) over all edges e. Again, the sum of γ(r) over
all regions r is zero. It follows that the sum over all regions r of α(r) + β(r) + γ(r) is positive, by
3.2, and so there is a region r for which α(r) + β(r) + γ(r) > 0. By examining the possibilities for
such a region r we will deduce that (G,m) is not prime. There now begins a long case analysis, and
to save writing we just say “by Conf(7)” instead of “since (G,m) does not contain Conf(7)”, and so
on.

3.4 If r is a big region and α(r) + β(r) + γ(r) > 0, then (G,m) is not prime.

Proof. Suppose that (G,m) is prime. Let C = Cr. Since r is big it follows that γ(r) = 0, and so
α(r) + β(r) > 0; that is, ∑

e∈E(C)

(4 − m(e) − βe(r)) < 8.

For e ∈ E(C), define φ(e) = m(e) + βe(r), and let us say e is major if φ(e) > 4. If e is major, then
since βe(r) ≤ 1, it follows that m(e) ≥ 4; and so βe(r) is an integer, from the β-rules, and therefore
φ(e) ≥ 5. Moreover, no two major edges are consecutive, since G has minimum degree at least three.

Let D be the set of doors for C. Let

• ξ = 1 if there are consecutive edges e, f in C such that φ(e) > 5 and f is a door for r

• ξ = 2 if there is no such pair e, f .

(1) Let e, f, g be the edges of a path of C, in order, where e, g are major. Then

(4 − φ(e)) + 2(4 − φ(f)) + (4 − φ(g)) ≥ 2ξ|{f} ∩ D|.

Let r1, r2, r3 be the regions different from r incident with e, f, g respectively. Now m(e) ≤ 6 since
(G,m) is prime, and if m(e) = 6 then r1 is big, by Conf(14), and so βe(r) = 0; and so in any
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case, φ(e) ≤ 6. Similarly φ(g) ≤ 6. Also, φ(e), φ(g) ≥ 5 since e, g are major. Thus φ(e) + φ(g) ∈
{10, 11, 12}.

Suppose that φ(e) + φ(g) = 12. We must show that φ(f) ≤ 2 − ξ|{f} ∩ D|. Now m(e) ≥ 5, and
so m(f) ≤ 2, since G is three-connected. If m(f) = 2 then f /∈ D, and βf (r) = 0 from the β-rules;
and so φ(f) ≤ 2− ξ|{f} ∩D|. If m(f) = 1, then βf (r) ≤ 1, so we may assume that f ∈ D; but then
ξ = 1 and φ(f) = 1 ≤ 2 − ξ|{f} ∩ D|.

Next suppose that φ(e) + φ(g) = 11. We must show that φ(f) ≤ 5/2 − ξ|{f} ∩ D|. Again one
of φ(e), φ(g) ≥ 6, say φ(e) = 6; and so m+(e) ≥ 6. In particular m(e) ≥ 5, and so m(f) ≤ 2. Since
φ(g) ≥ 5 we have m+(g) ≥ 5, and so if m(f) = 2, then βf (r) ≤ 1/2 from the β-rules; and since
f /∈ D we have φ(f) ≤ 5/2 − ξ|{f} ∩ D|. If m(f) = 1, then φ(f) ≤ 2, and so we may assume that
f ∈ D; but then ξ = 1 and φ(f) = 1, and again φ(f) ≤ 5/2 − ξ|{f} ∩ D|.

Finally, suppose that φ(e) + φ(g) = 10. We must show that φ(f) ≤ 3 − ξ|{f} ∩ D|. Suppose
that m(f) ≥ 3. Since m+(e),m+(g) ≥ 5 (because e, g are major), it follows that m(f) = 3, and
m(e) = m(g) = 4 because G is three-connected; but then βf (r) = 0 from the β-rules, and since
f /∈ D we have φ(f) ≤ 3− ξ|{f}∩D|. Next suppose that m(f) = 2. Then φ(f) ≤ 3 = 3− ξ|{f}∩D|
as required. Lastly if m(f) = 1, then φ(f) ≤ 2, so we may assume that f ∈ D; but then ξ ≤ 2 and
φ(f) = 1 ≤ 3 − ξ|{f} ∩ D|. This proves (1).

(2) Let e, f be consecutive edges of C, where e is major. Then

(4 − φ(e)) + 2(4 − φ(f)) ≥ 2ξ|{f} ∩ D|.

We have φ(e) ∈ {5, 6}. Suppose that φ(e) = 6. We must show that φ(f) ≤ 3 − ξ|{f} ∩ D|; but
m(f) ≤ 2 since m(e) ≥ 5, and so φ(f) ≤ 3. We may therefore assume that f ∈ D; but then
ξ = 1 and φ(f) = 1 ≤ 3 − ξ|{f} ∩ D|. Next, suppose that φ(e) = 5; then we must show that
φ(f) ≤ 7/2− ξ|{f}∩D|. Since m(e) ≥ 4, it follows that m(f) ≤ 3. If m(f) = 3 then m+(e) = 5 and
so βf (r) ≤ 1/2, from the β-rules; but then φ(f) ≤ 7/2 − ξ|{f} ∩ D|. If m(f) ≤ 2, then φ(f) ≤ 3, so
we may assume that f ∈ D; but ξ ≤ 2, and so φ(f) = 1 ≤ 7/2 − ξ|{f} ∩ D|. This proves (2).

For i = 0, 1, 2, let Ei be the set of edges f ∈ E(C) such that f is not major, and f meets exactly
i major edges in C. Let D be the set of doors for C. By (1), for each f ∈ E2 we have

1

2
(4 − φ(e)) + (4 − φ(f)) +

1

2
(4 − φ(g)) ≥ ξ|{f} ∩ D|

where e, g are the major edges meeting f . By (2), for each f ∈ E1 we have

1

2
(4 − φ(e)) + (4 − φ(f)) ≥ ξ|{f} ∩ D|

where e is the major edge consecutive with f . Finally, for each f ∈ E0 we have

4 − φ(f) ≥ ξ|{f} ∩ D|

since φ(f) ≤ 4, and φ(f) = 1 if f ∈ D. Summing these inequalities over all f ∈ E0 ∪ E1 ∪ E2, we
deduce that

∑
e∈E(C)(4 − φ(e)) ≥ ξ|D|. Consequently

8 >
∑

e∈E(C)

(4 − m(e) − βe(r)) ≥ ξ|D|.

But |D| ≥ 4 since r is big, and so ξ = 1 and |D| ≤ 7, a contradiction by Conf(14). This proves
3.4.
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3.5 If r is a triangle that is not tough, and α(r) + β(r) + γ(r) > 0, then (G,m) is not prime.

Proof. Suppose (G,m) is prime, and let r = uvw. Suppose first that r has multiplicity five; and
hence, since it is not tough, we may assume that m(uv) = 1 and m(uw) = m(vw) = 2, and the
second regions for uw, vw are both big. Thus from the β-rules, βuw(r), βvw(r) = −1, and since
γuw(r), γvw(r) = 0 from the γ-rules and βuv(r) + γuv(r) ≤ 1 from 3.3, we deduce by adding that
β(r) + γ(r) ≤ −1. But

α(r) = −4 + m(uv) + m(vw) + m(uw) = 1,

contradicting that α(r) + β(r) + γ(r) > 0. Thus r has multiplicity at most four.
Since α(r) = −4 + m(uv) + m(vw) + m(uw) ≤ 0, and β(r) ≤ 0, it follows that γ(r) > 0.

(1) m(e) = 1 for every edge e incident with r such that γe(r) > 0.

For suppose that m(e) > 1 and γe(r) > 0, where e = uv. Since r has multiplicity at most four
it follows that m(e) = 2. Since γe(r) > 0, there is a vertex x 6= w such that uvx is a triangle, and
m(ux),m(vx) ≥ 2, and one of m+(ux),m+(vx) is at least three, say m+(ux) ≥ 3; and r has two
doors. By Conf(5), m+(vw) = 1, and so βvw(r) = −1 and βuw(r) ≤ 0, and hence β(r) ≤ −1; yet
γ(r) ≤ 1, contradicting that α(r) + β(r) + γ(r) > 0. This proves (1).

(2) There is no edge e incident with r and with a big region such that m(e) = 1.

Let r be incident with edges e, f, g, and suppose that m(e) = 1 and e is incident with a big region.
Thus β(r) ≤ −1, and so γ(r) > 1; and consequently γf (r), γg(r) > 0, and therefore m(f) = m(g) = 1
from (1). But then α(r) = −1, and yet γ(r) ≤ 2, contradicting that α(r) + β(r) + γ(r) > 0. This
proves (2).

Choose e with γe(r) > 0, say e = uv. Thus m(uv) = 1, and there is a tough triangle r′ = uvx
say. By Conf(3), r′ has multiplicity at most six.

(3) We may assume that m+(ux) ≤ 3 and m+(vx) ≤ 3.

For suppose that m+(ux) ≥ 4. By (2), m+(vw) ≥ 2, contrary to Conf(5). This proves (3).

Now γuv(r) > 0, and from (1), (3), it follows that γuv(r) is determined by the first γ-rule. In
particular, m+(ux) = 3, and m+(vx) = 3. Suppose that vw is 3-heavy. By Conf(16) it follows that
m(vx) > m(ux), and so m(vx) = 3 and m(ux) = 2; but then by Conf(3), m(uw) = m(vw) = 1,
contrary to Conf(16). Thus vw and similarly uw are not 3-heavy, and so by the same argument
γuw(r) = 0 and γvw(r) = 0; and so γ(r) = 1. Consequently α(r) > −1, and so we may assume
that m(uw) = 2. Let r1 be the second region for uw. Now m(ux) + m(uv) + m(uw) ≤ 6, and
so there is an edge f incident with r1 and u different from uw, ux. Moreover, m(f) ≤ 3, since
m(ux)+m(uv)+m(uw) ≥ 5; and so if r1 is big then βuw(r) = −1, a contradiction. Thus r1 is small,
contrary to Conf(5). This proves 3.5.

3.6 If r is a tough triangle with α(r) + β(r) + γ(r) > 0, then (G,m) is not prime.
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Proof. Suppose (G,m) is prime, and let r = uvw. Now α(r) = m(uv) + m(vw) + m(uw) − 4, so

m(uv) + m(vw) + m(uw) + β(r) + γ(r) > 4.

Let r1, r2, r3 be the regions different from r incident with uv, vw, uw respectively. It follows that
βe(r), γe(r) ≤ 0 for every edge e of r.

(1) If r1 is big then βuv(r) = −1.

For let us examine the β-rules. Certainly uv is not a door for r1, since r is a triangle; so the
first rule does not apply. Let f, f ′ be the edges incident with r1 different from uv that are incident
with u, v respectively. If the second β-rule applies then m(uv) = 2 and m(f),m(f ′) ≥ 5, which im-
plies that m(uw),m(vw) = 1, contradicting that uvw has multiplicity at least five. If the third rule
applies, then m(uv) = 2 and m+(f) = 6 and m+(f ′) = 5 say; but then m(uw) = 1 and m(vw) = 2,
contrary to Conf(1). The fourth rule does not apply, by Conf(1). Thus we assume that the fifth rule
applies. Let m(uv) = 3, m+(f) = 5, and m+(f ′) < 5. Hence m(f) = 4, and so u has degree three,
and m(vw) = 1 by Conf(2), and r3 is small, and βuv(r) = −1/2. Since

m(uv) + m(vw) + m(uw) + β(r) + γ(r) > 4

it follows that
βuw(r) + βvw(r) + γuw(r) + γvw(r) ≥ 0,

and since all the terms on the left are non-positive it follows that they are all zero. Now r2 is not big
since βvw(r) = 0, and r3 is not a triangle by Conf(2), so the third γ-rule applies to uw, a contradiction
since γuw(r) = 0. This proves (1).

Let X = {u, v,w}. Since (G,m) is prime, it follows that |V (G)\X| ≥ 3, and m(δ(X)) ≥ 10. But

m(δ(X)) = m(δ(u)) + m(δ(v)) + m(δ(w)) − 2m(uv) − 2m(uw) − 2m(vw),

and so 10 ≤ 8+8+8−2m(uv)−2m(uw)−2m(vw), that is, r has multiplicity at most seven. Suppose
first that r has multiplicity seven. By Conf(3), none of r1, r2, r3 is a triangle. Now β(r)+ γ(r) > −3.
Consequently we may assume that βuv(r) + γuv(r) > −1, and hence r1 is small by (1). By Conf(7),
m(uv) + m(uw) < 6 and hence m(vw) ≥ 2; and similarly m(uw) ≥ 2. Now γuv(r) > −1, and so the
first, fourth and sixth γ-rules do not apply to uv. Since the first γ-rule does not apply, m(uv) > 1.
Since the sixth γ-rule does not apply, one of m(uw),m(vw) > 2, say m(uw) ≥ 3, and so m(uv) = 2,
m(uw) = 3 and m(vw) = 2. Since the fourth γ-rule does not apply, r1 has no door disjoint from uv,
contrary to Conf(8).

Next, suppose that r has multiplicity six. Thus β(r) + γ(r) > −2, and so by (1), at most one
of r1, r2, r3 is big. Suppose that m(uv) = 4; then m(vw),m(uw) = 1. Since at most one of r1, r2, r3

is big, it follows from Conf(7) that r1 is big, and hence r2, r3 are small. By Conf(3), r2, r3 are not
tough. By the second γ-rule, γvw(r) = γuw(r) = −1/2, and since βuv(r) = −1 by (1), this contradicts
β(r)+ γ(r) > −2. Thus m(uv) ≤ 3. Suppose next that m(uv) = 3; then from the symmetry we may
assume that m(uw) = 2 and m(vw) = 1. Since one of r1, r3 is small, and r2 is not tough by Conf(3),
the first γ-rule implies that βvw(r) + γvw(r) ≤ −1. Since β(r) + γ(r) > −2, it follows from (1) that
neither of r1, r3 is big, contrary to Conf(7). Thus m(uv) ≤ 2, and similarly m(uw),m(vw) ≤ 2, and so
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m(uv),m(uw),m(vw) = 2. Since β(r)+γ(r) > −2, it follows that βe(r)+γe(r) ≤ −1 for at most one
edge e incident with r; and so we may assume that βuv(r) + γuv(r) > −1 and βuw(r) + γuw(r) > −1.
By (1), r1, r3 are both small. By Conf(3), r1, r3 are not tough, and since the fourth γ-rule does not
apply, it follows that r1 has at most one door, and no door disjoint from uv, and r3 has at most one
door, and no door disjoint from uw, and u has degree at least four, contrary to Conf(9).

Finally, suppose that r has multiplicity five. Now β(r)+γ(r) > −1, and hence βe(r)+γe(r) > −1
for every edge e incident with r; and so by (1) r1, r2, r3 are all small. Suppose that m(uv) = 3, and
hence m(uw),m(vw) = 1. If neither of r2, r3 is tough, then by the second γ-rule, γuw(r) = γvw(r) =
−1/2, a contradiction. Thus we may assume that r3 is a tough triangle uwx. By Conf(5), m(wx) = 1,
and so m(ux) ≥ 3 since r3 is tough, contrary to Conf(3). Thus we may assume that m(uv) ≤ 2; and
so from the symmetry we may assume that m(uv) = m(uw) = 2 and m(vw) = 1. The first γ-rule
does not apply to vw, and so r2 is a tough triangle vwx. By Conf(3), m(vx),m(wx) ≤ 2, and so
m(vx),m(wx) = 2. Since r2 is tough, one of vx,wx is incident with a small region different from
uvx, contrary to Conf(5). This proves 3.6.

3.7 If r is a small region with length at least four and with α(r) + β(r) + γ(r) > 0, then (G,m) is
not prime.

Proof. Suppose that (G,m) is prime. Let C = Cr. Note that for each e ∈ E(C), −1 ≤ βe(r) ≤ 0
and 0 ≤ γe(r) ≤ 1 Since α(r) = 8 − 4|E(C)| +

∑
e∈E(C) m(e), it follows that

8 − 4|E(C)| +
∑

e∈E(C)

m(e) +
∑

e∈E(C)

(βe(r) + γe(r)) > 0,

that is, ∑

e∈E(C)

(m(e) + βe(r) + γe(r) − 4) > −8.

For each e ∈ E(C), let
φ(e) = m(e) + βe(r) + γe(r).

It follows that |φ(e)−m(e)| ≤ 1 for each e by 3.3. For each integer i, let Ei be the set of edges of C
such that φ(e) ∈ {i, i − 1

2}.

(1) For every e ∈ E(C), φ(e) is one of 0, 1
2 , 1, 3

2 , 2, 5
2 , 3, 4, and hence E(C) is the union of E0, E1, E2, E3, E4.

For let e ∈ E(C). Since m(e) ≥ 1 and βe(r) ≥ −1 it follows that φ(e) ≥ 0. Next we show
that φ(e) ≤ 4. Now m(e) < 6 by Conf(14). Suppose that m(e) = 5. Then the second region incident
with e is big, by Conf(14); and hence βe(r) = −1 from the β-rules, and γe(r) = 0 and so φ(e) ≤ 4.
Now suppose that m(e) = 4. Then by the γ-rules, γe(r) = 0, and so φ(e) ≤ 4. Finally, if m(e) ≤ 3
then φ(e) ≤ 4 since γe(r) ≤ 1. Thus φ(e) ≤ 4 in all cases. Finally, suppose that φ(e) = 7/2, and
hence m(e) = 3 or 4. If m(e) = 3 then γe(r) = 1/2, contrary to the γ-rules; while if m(e) = 4 then
βe(r) = −1/2, contrary to the β-rules. This proves (1).

(2) Let e ∈ E(C); then e ∈ E4 if and only if either m+(e) ≥ 5, or m(e) = 3 and e is 5-heavy.
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Moreover, no two edges in E4 are consecutive in C.

The first assertion is immediate from the β- and γ-rules. For the second, suppose that e, f ∈ E4

share an end v. Since v has degree at least three, it follows that m(e) + m(f) ≤ 7 and so we may
assume that m(e) = 3. Let e have ends u, v; then from the first assertion there is a triangle uvw
where m(uw),m(vw) = 2. Hence m(f) = 3, and so there is similarly a triangle containing f , with
third vertex x. Consequently w = x; but this contradicts Conf(3) and hence proves (2).

(3) If e ∈ E4, and f ∈ E(C) is disjoint from e, and every edge in E(C) \ {f} disjoint from e
is 3-heavy, and there is no edge of C with multiplicity one disjoint from f , then f ∈ E0.

For by Conf(6) if |E(C)| = 4 and m+(e) ≥ 5, or by Conf(17) or Conf(18) otherwise, it follows
that m+(f) = 1. Since there is no edge of C with multiplicity one disjoint from f , it follows that
βf (r) = −1 from the β-rules, and so f ∈ E0. This proves (3).

For 0 ≤ i ≤ 4, let ni = |Ei|.

(4) If e ∈ E(C) satisfies m(e) = 2, and n4 = 0, and r has at most one door, and no door dis-
joint from e, then φ(e) ≤ 2.

For if not, then γe(r) > 0, and so from the γ-rules, there is a triangle uvw with e = uv, and
some edge f of C consecutive with e satisfies m+(f) = 5; but then f ∈ E4, contradicting that
n4 = 0. This proves (4).

(5) If u, v,w are consecutive vertices in C, and uv ∈ E4 and m(uv) = 3, then φ(vw) ≤ 2.

For since uv ∈ E4, by (2) there is a triangle uvx with m(ux) = m(vx) = 2. From Conf(2) it
follows that m(vw) ≤ 2; and since w is not adjacent to x by Conf(3), and hence vw is not 4-heavy,
the γ-rules imply that φ(vw) ≤ 2. This proves (5).

Let C have vertices v1, . . . , vk in order, and let vk+1 mean v1. For 1 ≤ i ≤ k let ei be the edge
vivi+1, and let ri be the region incident with ei different from r.

Since ∑

e∈E(C)

(φ(e) − 4) > −8,

we have 4n0 + 3n1 + 2n2 + n3 ≤ 7, that is,

3n0 + 2n1 + n2 + k − n4 ≤ 7,

since n0 + n1 + n2 + n3 + n4 = k. But by (2), n4 ≤ k/2 and so

3n0 + 2n1 + n2 + k/2 ≤ 7.

Since k ≥ 4 it follows that 3n0 + 2n1 + n2 ≤ 5, and hence n0 + n1 ≤ 2.

Case 1: n0 + n1 = 2.

12



Since 3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n0 + n2 + k − 3. Thus n4 > 0. If k = 4, let
e ∈ E4; then by (3) the edge f of C disjoint from e belongs to E0, and so by (2), n4 = 1; but this
contradicts n0 + n2 + k − 3 ≤ n4.

Thus k ≥ 5. Since
3n0 + 2n1 + n2 + k/2 ≤ 7,

and 2n0 + 2n1 = 4 and k/2 ≥ 5/2, it follows that n0 = n2 = 0 and n1 = 2 and k ≤ 6.
Suppose that k = 6; then n4 = 3 since n4 ≥ n0+n2+k−3, so we may assume that e1, e3, e5 ∈ E4.

By Conf(17) and Conf(18), it follows that m+(e4) = 1, and hence e4 ∈ E0 ∪ E1, and similarly
e6, e2 ∈ E0∪E1, a contradiction since n0 +n1 = 2. Thus k = 5, and so n4 ≥ 2, and by (2) n4 = 2 and
we may assume that e1, e3 ∈ E4. By Conf(17) and Conf(18), m+(e4) = 1, and similarly m+(e5) = 1.
Since n1 = 2, and n0, n2 = 0, it follows that m(e2) > 1. But then e4 ∈ E0 by (3), contradicting that
n0 = 0.

Case 2: k = 4 and n0 + n1 = 1 and n4 > 0.

Let e4 ∈ E4; by (3), e2 ∈ E0 and so m(e2) = 1. By (2) and Conf(2) and Conf(4), it follows
that m(e1),m(e3) ≤ 2. Now e2 is the only edge of C that is not 2-heavy, since n0 + n1 = 1, and in
particular r has at most one door. Since 4n0 +3n1 +2n2 +n3 ≤ 7 and n0 = 1, it follows that n2 ≤ 1,
so we may assume that e1 /∈ E2. Thus φ(e1) > 2, and hence m(e1) = 2. By (2) and (5), m+(e4) ≥ 5,
so by Conf(4), m(e4) = 4. Since φ(e1) > 2, it follows from the γ-rules that r1 is a triangle v1v2w say,
where m(v1w),m(v2w) ≥ 2. Consequently m(v1w) = 2. Since e3 /∈ E1, it follows that m+(e3) ≥ 2;
so m(v2w) = m+(v2w) = 2 by Conf(18) (taking v2, v1, w to be the vertices called u, v,w in Conf(18)
respectively). From Conf(10) it follows that m(e3) = 1. From the γ-rules it follows that φ(e1) = 5/2.
Since

∑
e∈E(C) φ(e) > 8 and φ(e2)+φ(e4) ≤ 4, it follows that φ(e3) ≥ 2. Since m(e3) = 1, the γ-rules

imply that e3 is 3-heavy, contrary to Conf(16) (taking v2, v1, w to be the vertices called u, v,w in
Conf(16) respectively).

Case 3: k = 4 and n0 + n1 = 1 and n4 = 0.

Let e4 ∈ E0∪E1, and so m(e4) ≤ 2. Since every edge of C that is not 2-heavy belongs to E0∪E1,
it follows that e1, e2, e3 are 2-heavy. Since n4 = 0, it follows that m+(ei) ≤ 4 for i = 1, 2, 3, 4.

Suppose that φ(e1) ≥ 3, and hence φ(e1) = 3 by (1) since n4 = 0. By (4) it follows that
m(e1) ≥ 3. If m+(e1) = 3, then from the β-rules, the edge xv2 of r1 incident with v2 and different
from e1 has multiplicity four and hence m(e2) = 1; and since x, v3 are non-adjacent by Conf(2), this
contradicts that e2 is 2-heavy. Thus m+(e1) ≥ 4. By Conf(6), m+(e3) ≤ 2, and so φ(e3) ≤ 2 by
(4). Since φ(e2) ≤ 3, and φ(e4) ≤ 1, and

∑
e∈E(C) φ(e) > 8, it follows that φ(e2) ≥ 5/2 (and so e2 is

3-heavy), and φ(e3) ≥ 3/2, and φ(e4) ≥ 1/2 (and so m+(e4) ≥ 2). By Conf(2), it is not the case that
m(e3) = 2 and the edge of r3 consecutive with e3 and incident with v3 has multiplicity four; and so,
since φ(e3) ≥ 3/2, the β-rules imply that m(e3) = 1 and r3 is a triangle v3v4y say. Now by Conf(15),
not both m(v3y),m(v4y) ≥ 2; and m(e2) ≤ 3 by Conf(4), so by Conf(18), m+(v3y),m+(v4y) ≤ 3.
But then the γ-rules imply that φ(e3) ≤ 1, a contradiction. This proves that φ(e1) ≤ 5/2; and
similarly φ(e3) ≤ 5/2.

Since
∑

e∈E(C) φ(e) > 8, and φ(e2) ≤ 3 (because n4 = 0) it follows that φ(e1) + φ(e3) ≥ 9/2,
and φ(e4) ≥ 1/2; and from the symmetry we may assume that φ(e1) = 5/2 and φ(e3) ≥ 2. The β-
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and γ-rules imply that m(e1) = 3 (since m+(e2) ≤ 4). Since φ(e2) + φ(e3) ≥ 5, and φ(e3) ≤ 5/2, it
follows that φ(e2) ≥ 5/2 (and hence m(e2) ≥ 2).

Suppose that m(e3) = 1. Since φ(e3) ≥ 2, the first γ-rule applies, and so r3 is a triangle v3v4y,
and m(v3y),m(v4y) ≥ 2, and m+(v3y) + m+(v4y) ≥ 6. By Conf(4), m(e2) ≤ 3, so by Conf(18),
m+(v3y),m+(v4y) ≤ 3, and hence equality holds for both. By Conf(11), m(v3y),m(v4y) = 2; but
this is contrary to Conf(16).

So m(e3) ≥ 2, and by Conf(4), m(e2) = m(e3) = 2. If m+(e3) = 2, then from the β-rules it follows
that both edges of r3 consecutive with e3 have multiplicity five; but this is impossible since m(e2) = 2.
So m+(e3) = 3. Since φ(e2) ≥ 5/2 it follows that r2 is a triangle v2v3x, m(v2x),m(v3x) ≥ 2, and one
of m+(v2x),m+(v3x) ≥ 3, and e4 is a door for r. Since φ(e4) > 0, we deduce that m+(e4) ≥ 2. By
Conf(2), m(v2x) = 2. By Conf(12), m+(v3x) = 2 and m+(v2x) = 2, a contradiction.

Case 4: k = 4 and n0 + n1 = 0.

Since n0, n1 = 0, it follows that φ(ei) ≥ 3/2 and hence ei is 2-heavy, for 1 ≤ i ≤ 4. Consequently
n4 = 0, from (3). Since

∑
e∈E(C) φ(e) > 8, we may assume because of the symmetries of the square

that φ(e1) + φ(e3) ≥ 9/2, and φ(e1) ≥ φ(e3), and therefore φ(e1) ≥ 5/2. Thus m(e1) ≥ 3 from
(4). If some edge f of the boundary of r1 consecutive with e1 satisfies m(f) = 4, say f = v1x, then
m(e4) = 1 and v1 has degree three; but since e4 is 2-heavy, it follows that x, v4 are adjacent, contrary
to Conf(2). Thus there is no such f , and so by the β-rules, m+(e1) ≥ 4.

Suppose that m(e3) ≥ 2. By Conf(6) it follows that m+(e3) = 2, and in particular r3 is big. Since
φ(e3) ≥ 3/2, the β-rules imply that some edge f of the boundary of r3 consecutive with e3 satisfies
m(f) = 5, say f = v4x; and since x, v1 are nonadjacent by Conf(2) it follows that e4 ∈ E0 ∪ E1, a
contradiction. Thus m(e3) = 1. Since e3 is 2-heavy it follows that r3 is a triangle v3v4x say.

By Conf(4), m(e2),m(e4) ≤ 3. By Conf(15), we may assume that m(v3x) = 1; and by Conf(18),
m+(v4x) ≤ 3. Since m(e4) ≤ 3, the γ-rules imply that φ(e3) ≤ 1, a contradiction.

Case 5: k ≥ 5 and n0 + n1 = 1.

Since 3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n0 + n2 + k − 5. Let E0 ∪ E1 = {ek}.
Suppose that n4 = 0. Then since n4 ≥ n0 + n2 + k − 5 it follows that k = 5. Since

∑

e∈E(C)

φ(e) > 4k − 8 = 12,

and φ(e5) ≤ 1, and φ(ei) ≤ 3 for i = 1, 2, 3, 4 (by (1), since n4 = 0) it follows that φ(ei) ≥ 5/2 for
i = 1, 2, 3, 4, and hence e1, . . . , e4 are 3-heavy. If m(e1) ≤ 2, then since φ(e1) ≥ 5/2 it follows from the
γ-rules that m(e2) = 4 and r2 is small; but then e2 ∈ E4, a contradiction. Thus m(e1) ≥ 3; so m(e1) =
m+(e1) = 3 by Conf(15). Since m(e2) ≥ 2, it follows that not both edges of r1 consecutive with e1

have multiplicity four, and so from the β-rules, φ(e1) ≤ 5/2. Similarly φ(e4) ≤ 5/2, contradicting
that

∑
e∈E(C) φ(e) > 12. This proves that n4 > 0.

Suppose that n2 = 0. Thus e1, . . . , e4 are 3-heavy. Since n4 > 0, (3) implies that n0 = 1. Since
φ(e1) > 2, the β- and γ-rules imply that either:

• m(e1) = 2 and r1 is a triangle v1v2w say; and m(v1w),m(v2w) ≥ 2, and m(e2) = 4. Conse-
quently m(v2w) = 2, contrary to Conf(16).
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• m(e1) = 3 and r1 is big, and, if u1-v1-v2-u2 is the three-edge path of Cr1
with middle edge e1,

then one of m(u1v1),m(u2v2) = 4 and is incident with a small region. But if m(u1v1) = 4 then
the second region incident with it is rk, and this is not small since n0 = 1; and if m(u2v2) = 4
then v2 has degree three and m(e2) = 1, and since e2 is 3-heavy it follows that u2, v3 are
adjacent, and m(u2v3) ≥ 2, contrary to Conf(2).

• m+(e1) ≥ 4; but this is contrary to Conf(15).

This proves that n2 ≥ 1.
Since 3n0 +2n1 +n2 + k/2 ≤ 7, we have n0 +n2 + k/2 ≤ 5, and in particular n2 ≤ 2. If e ∈ E(C)

is not 3-heavy, then φ(e) ≤ 2 from the γ-rules, and so at most two edges of E(C) not in E0 ∪ E1

are not 3-heavy. By Conf(8) and Conf(19) it follows that e1, ek−1 /∈ E4, so every edge in E4 is
disjoint from ek. Since there are three consecutive edges of C not in E4, and no two edges in E4 are
consecutive by (2), it follows that n4 ≤ k/2 − 1; and since 3n0 + 2n1 + n2 + k − n4 ≤ 7, it follows
that n0 + n2 + k/2 ≤ 4, and so n2 = 1, and n0 = 0, and k ≤ 6. In particular, from (5) every edge
e ∈ E4 has m(e) ≥ 4.

Suppose that k = 6. Since n4 ≥ n0 + n2 + k − 5 and n4 ≤ k/2 − 1, it follows that n4 = 2; and so
E4 = {e2, e4}, since the members of E4 are disjoint from e6 and from each other. Since e2 ∈ E4, (3)
implies that e5 is not 3-heavy, and so e5 ∈ E2; and similarly e1 ∈ E2, a contradiction since n2 = 1.

Thus k = 5. Since n4 ≤ k/2 − 1 it follows that n4 = 1, so we may assume that E4 = {e2}.
By (3), e4 is not 3-heavy, and so φ(e4) ≤ 2. Consequently E2 = {e4}, and φ(e1) + φ(e3) ≥ 11/2.
Since φ(e4), φ(e5) > 0, it follows that m+(e4),m

+(e5) ≥ 2, and since m+(e2) ≥ 5, two applications
of Conf(13) imply that m(e3) + m(e4) ≤ 3 and m(e1) + m(e5) ≤ 3. Since m(e1),m(e3) ≥ 2 (because
φ(e1), φ(e3) > 2) it follows that m(e1),m(e3) = 2 and e1, e3 are 4-heavy; and m(e4),m(e5) = 1.
Since φ(e4) > 1, r4 is a triangle v4v5x say. Since e4 is not 3-heavy, one of m(v4x),m(v5x) = 1. If
m(v4x) = 1 then by Conf(16), m(xv5) ≤ 2; but then φ(e4) = 1 from the γ-rules, a contradiction. So
m(v5x) = 1. Since φ(e4) > 1, the γ-rules imply that m+(v4x) ≥ 4. But this contradicts Conf(18).

Case 6: k ≥ 5 and n0 + n1 = 0.

Since n0, n1 = 0, it follows that φ(ei) ≥ 3/2 and hence ei is 2-heavy, for 1 ≤ i ≤ k. Since
3n0 + 2n1 + n2 + k − n4 ≤ 7, we have n4 ≥ n2 + k − 7.

Suppose first that n4 > 0. By (2) and Conf(8) and Conf(19), every edge in E4 is disjoint from
at least three edges that are not 3-heavy and that therefore belong to E2. In particular n2 ≥ 3. Let
e ∈ E4; then e is disjoint from all the other edges in E4, and from at least three edges in E2, so
k − 3 ≥ n4 − 1 + 3, that is, k ≥ n4 + 5. But n4 ≥ n2 + k − 7 ≥ k − 4, a contradiction.

This proves that n4 = 0, and so E(C) = E2∪E3. Since n4 ≥ n2 +k−7, it follows that n2+k ≤ 7.
In particular, k ∈ {5, 6, 7}. From (4), every edge e ∈ E(C) with m(e) = 2 belongs to E2, since n4 = 0
and there are no doors for r. Consequently every e ∈ E3 satisfies m(e) ≥ 3. Suppose that m+(e) = 3
for some e ∈ E3, say e = e1. Thus r1 is big, and βe(r) > −1 since φ(e) > 2. Hence from the β-rules,
some edge of Cr1

consecutive with e1 has multiplicity four, say v1x. Hence m(ek) = 1, and since
n0, n1 = 0, it follows that rk is a triangle, and therefore x, vk are adjacent, contrary to Conf(2). This
proves that m+(e) ≥ 4 for every e ∈ E3.

By Conf(15), every edge in E3 is disjoint from some edge in E2, and in particular n2 ≥ 2. Since
n2 + k ≤ 7, we have k = 5 and n2 = 2. Every edge in E3 is disjoint from one of the edges in E2, so
we may assume that e1, e2 ∈ E2, and e3, e4, e5 ∈ E3. Since m+(e3),m

+(e4),m
+(e5) ≥ 4, Conf(13)

15



implies that m+(e1) ≤ 2; and by Conf(15), e1 is not 3-heavy. From the γ-rules, φ(e1) ≤ 3/2, and
similarly φ(e2) ≤ 3/2. But for i = 3, 4, 5, φ(ei) ≤ 3 since n4 = 0; and so

∑
e∈E(C) φ(e) ≤ 12,

contradicting our initial assumption that

∑

e∈E(C)

(φ(e) − 4) > −8.

This completes the proof of 3.7.

Proof of 3.1. Suppose that (G,m) is a prime 8-target, and let α, β, γ be as before. Since the sum
over all regions r of α(r) + β(r) + γ(r) is positive, there is a region r with α(r) + β(r) + γ(r) > 0.
But this is contrary to one of 3.4, 3.5, 3.6, 3.7. This proves 3.1.

4 Reducibility

Now we begin the second half of the paper, devoted to proving the following.

4.1 Every minimum 8-counterexample is prime.

Again, the proof is broken into several steps. Clearly no minimum 8-counterexample (G,m) has an
edge e with m(e) = 0, because deleting e would give a smaller 8-counterexample; and by 2.1, every
minimum 8-counterexample satisfies the conclusions of 2.1. Thus, it remains to check that (G,m)
contains none of Conf(1)–Conf(19). Sometimes it is just as easy to prove a result for general d instead
of d = 8, and so we do so.

4.2 If (G,m) is a minimum d-counterexample, then every triangle has multiplicity less than d.

Proof. Let uvw be a triangle of G, and let X = {u, v,w}. Since |V (G)| ≥ 6, 2.1 implies that
m(δ(X)) ≥ d + 2. But

m(δ(X)) = m(δ(u)) + m(δ(v)) + m(δ(w)) − 2m(uv) − 2m(uw) − 2m(vw),

and so d + 2 ≤ d + d + d − 2m(uv) − 2m(uw) − 2m(vw), that is, m(uv) + m(uw) + m(vw) ≤ d − 1.
This proves 4.2.

If C is a cycle of length four in G, say with vertices u, v,w, x in order, let m′ be defined as
follows: m′(uv) = m(uv) − 1, m′(vw) = m(vw) + 1, m′(wx) = m(wx) − 1, m′(ux) = m(ux) + 1,
and m′(e) = m(e) for all other edges e. If (G,m) is a minimum d-counterexample, then because of
the second statement of 2.1, it follows that (G,m′) is a d-target. (Note that possibly m′(uv),m′(wx)
are zero; this is the reason to permit m(e) = 0 in a d-target.) We say that (G,m′) is obtained from
(G,m) by switching on the sequence u-v-w-x-u. If (G,m′) is smaller than (G,m), we say that the
sequence u-v-w-x-u is switchable.

4.3 No minimum d-counterexample contains Conf(1).

16



Proof. Suppose that (G,m) is a minimum d-counterexample, with a triangle uvw, where u, v have
degree three. Let the neighbours of u, v not in {u, v,w} be x, y respectively. Let H be a simple graph
obtained from G by adding new edges if necessary to make w, x, y pairwise adjacent, and extend m
to E(H) by setting m(e) = 0 for every new edge. Thus (H,m) is not d-edge-colourable, and although
it may not be a minimum d-counterexample, no d-counterexample has fewer vertices.

Define f(w) = m(uw) + m(vw), f(x) = m(ux), and f(y) = m(vy). Since m(δ({u, v})) is even, it
follows that f(w) + f(x) + f(y) is even. Define

n(wx) =
1

2
(f(x) + f(w) − f(y))

n(wy) =
1

2
(f(y) + f(w) − f(x))

n(xy) =
1

2
(f(x) + f(y) − f(w)).

It follows that n(wx), n(wy), n(xy) are integers. Since m(δ({u, v,w})) ≥ d and m(δ(w)) = d, it
follows that m(ux)+m(vy) ≥ m(uw)+m(vw) and hence n(xy) ≥ 0. Similarly, since m(δ({u, v, x})) ≥
d and m(δ(x)) = d, it follows that n(wy) ≥ 0, and similarly n(wx) ≥ 0.

Let G′ = H \ {u, v}. For each edge e of G′, define m′(e) as follows. If e is incident with a vertex
different from x, y,w let m′(e) = m(e). For e = xy,wx,wy let m′(e) = m(e) + n(e). We claim that
(G′,m′) is a d-target. To show this, let X ⊆ V (G′) with |X| odd; we must show that m′(δG′(X)) ≥ d.
By replacing X by its complement if necessary (which also is odd, since |V (G)| is even), we may
assume that X contains at most one of w, x, y. But then from the choice of f(w), f(x), f(y), it follows
that m′(δG′(X)) = m(δG(X)) ≥ d as required. Thus (G′,m′) is a d-target. Since |V (G′)| < |V (G)|,
there are d perfect matchings F ′

1, . . . , F
′
d of G′ such that every edge e ∈ E(G′) is in exactly m′(e)

of them. Now each of F ′
1, . . . , F

′
d contains at most one of the edges wx,wy, xy. Let I1, I2, I3, I0 be

the sets of i ∈ {1, . . . , d} such that F ′
i contains wx,wy, xy or none of the three, respectively. Thus

|I1| = m′(wx) = m(wx)+ n(wx). For n(wx) values of i ∈ I1 let Fi = (F ′
i \ {wx})∪{ux, vw}, and for

the remaining m(wx) values let Fi = F ′
i ∪ {uv}. Thus Fi is a perfect matching of G for each i ∈ I1.

Define Fi (i ∈ I2) similarly. For n(xy) values of i ∈ I3 let Fi = (F ′
i \ {xy}) ∪ {ux, vy}, and for the

others let Fi = Fi ∪{uv}. For i ∈ I0 let Fi = F ′
i ∪{uv}. Then F1, . . . , Fd are perfect matchings of G,

and we claim that every edge e is in exactly m(e) of them. This is clear if e has an end different from
u, v,w, x, y; and true from the construction if both ends of e are in {w, x, y}. From the symmetry
we may therefore assume that e is incident with u. If e = ux, then e belongs to n(wx) + n(xy) of
F1, . . . , Fd; but

n(wx) + n(xy) =
1

2
(f(x) + f(w) − f(y)) +

1

2
(f(x) + f(y) − f(w)) = f(x) = m(ux)

as required. The other two cases are similar. This is a contradiction, since (G,m) is a minimum
d-counterexample, and so there is no such triangle uvw. This proves 4.3.

Incidentally, a similar proof would show that G is four-connected except for cutsets of size three
that cut off just one vertex, but we do not need this.

If (G,m) is a d-target, and x, y are distinct vertices both incident with some common region r,
we define (G,m) + xy to be the d-target (G′,m′) obtained as follows:

• If x, y are adjacent in G, let (G′,m′) = (G,m).
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• If x, y are non-adjacent in G, let G′ be obtained from G by adding a new edge xy, extending
the drawing of G to one of G′ and setting m′(e) = m(e) for every e ∈ E(G) and m′(xy) = 0.

4.4 No minimum d-counterexample contains Conf(2).

Proof. Let (G,m) be a minimum d-counterexample, with a triangle uvw, and suppose that u has
only one other neighbour x, and m(ux) < m(uw) + m(vw). Let (G′,m′′) = ((G,m) + vx) + wx. For
each e ∈ E(G′), define m′(e) as follows. If e 6= ux, uw, vw, vx let m′(e) = m(e). Let

m′(vx) = m′′(vx) + m(vw)

m′(vw) = 0

m′(ux) = m(ux) − m(vw)

m′(uw) = m(uw) + m(vw).

Since m(uv) + m(uw) + m(ux) = d and m(uv) + m(uw) + m(vw) ≤ d since m(δ({u, v,w})) ≥ d, it
follows that m(ux) ≥ m(vw), and so m′(e) ≥ 0 for every edge e. Moreover, m′(δ(z)) = d for every
vertex z, from the construction. We claim that (G′,m′) is a d-target. For let X ⊆ V (G′) with |X|
odd; and we may assume that u /∈ X. We must show that m′(δ(X)) ≥ d. If X contains at most one
of v,w, x then m′(δ(X)) = m(δ(X)) ≥ d as required, so we may assume that X contains at least two
of v,w, x. If v,w, x ∈ X then m′(δ(X)) ≥ m′(δ(u)) = d as required. If X ∩ {v,w, x} = {v,w} then
m′(δ(X)) = m(δ(X)) + 2m(vw) ≥ d, and if X ∩ {v,w, x} = {w, x} then m′(δ(X)) = m(δ(X)) ≥ d,
so we may assume that X ∩ {v,w, x} = {v, x}, and hence m′(δ(X)) = m(δ(X))− 2m(vw). We must
therefore show that in this case, m(δ(X)) ≥ 2m(vw) + d. To see this, note that

m(δ(X ∪ {u,w})) ≤ m(δ(X)) − m(ux) − m(uv) − m(vw) − m′′(xw)

+(d − m(uw) − m(vw) − m′′(xw)) ≤ m(δ(X)) − 2m(vw)

since m′′(xw) ≥ 0 and m(ux) + m(uv) + m(uw) = d. Since m(δ(X ∪ {u,w})) ≥ d, it follows
that m(δ(X)) ≥ 2m(vw) + d as required. This proves that (G′,m′) is a d-target. Since m′(uw) >
m(ux),m(vw) (the first from the hypothesis), it follows that (G′,m′) is smaller than (G,m), and so
is d-edge-colourable; let F ′

1, . . . , F
′
d be a d-edge-colouring. Now every perfect matching containing vx

also contains uw, since vx is not disjoint from any other edge incident with u. Hence there are at
least m(vw) of F ′

1, . . . , F
′
d that contain both vx and uw. Choose m(vw) of them, say F ′

1, . . . , F
′
m(vw);

and for 1 ≤ i ≤ m(vw) define Fi = (F ′
i \{vx, uw})∪{vw, ux}. Define Fi = F ′

i for m(vw)+1 ≤ i ≤ d.
Then every edge e of G is in m(e) of F1, . . . , Fd, a contradiction. Thus there is no such triangle uvw.
This proves 4.4.

4.5 No minimum 8-counterexample contains Conf(3) or Conf(4).

Proof. To handle both cases at once, let us assume that (G,m) is an 8-target, and uvw, uwx are
triangles with m(uv)+m(uw)+m(vw)+m(ux) ≥ 8, (where possibly m(uw) = 0); and either (G,m)
is a minimum 8-counterexample, or m(uw) = 0 and deleting uw gives a minimum 8-counterexample
(G0,m0) say. We must show that m(uw) = 0 and (m(uv),m(vw),m(wx),m(ux)) = (4, 2, 1, 2). Let
(G,m′) be obtained by switching (G,m) on u-v-w-x-u.
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(1) (G,m′) is not smaller than (G,m).

Because suppose it is. Then it admits an 8-edge-colouring; because if (G,m) is a minimum 8-
counterexample this is clear, and otherwise m(uw) = 0, and (G′,m′) is smaller than (G0,m0). Let
F ′

1, . . . , F
′
8 be an 8-edge-colouring of (G′,m′). Since

m′(uv) + m′(uw) + m′(vw) + m′(ux) ≥ 9,

one of F ′
1, . . . , F

′
8, say F ′

1, contains two of uv, uw, vw, ux and hence contains vw, ux. Then

(F ′
1 \ {vw, ux}) ∪ {uv,wx}

is a perfect matching, and it together with F ′
2, . . . , F

′
8 provide an 8-edge-colouring of (G,m), a

contradiction. This proves (1).

From (1) we deduce that max(m(ux),m(vw)) < max(m(uv),m(wx)). It follows that

m(uv) + m(uw) + m(vw) + m(wx) ≤ 7,

by (1) applied with u,w exchanged; and

m(uv) + m(ux) + m(wx) + m(uw) ≤ 7,

by (1) applied with v, x exchanged. Consequently m(ux) > m(wx), and hence m(ux) ≥ 2; and
m(vw) > m(wx), and so m(vw) ≥ 2. Suppose that m(uv) ≤ 3. Since

max(m(ux),m(vw)) < max(m(uv),m(wx)),

it follows that m(uv) = 3 and m(vw) = m(ux) = 2; and therefore m(wx) = 1, since m(ux) > m(wx).
But this is contrary to (1).

We deduce that m(uv) ≥ 4. Since m(vw) ≥ 2 and m(uv) + m(uw) + m(vw) + m(wx) ≤ 7, it
follows that m(uw) + m(wx) ≤ 1; so m(uw) = 0 and m(wx) = 1. But then

(m(uv),m(vw),m(wx),m(ux)) = (4, 2, 1, 2).

This proves 4.5.

5 Guenin’s cuts

We still have many configurations to handle, to finish the proof of 4.1, but all the others are handled
by a method of Guenin [5], which we introduce in this section. In particular, nothing so far has
assumed the truth of 1.1 for d = 7, but now we will need to use that.

Let (G,m) be a d-target, and let x-u-v-y be a three-edge path of G, where x, y are incident with
a common region. Let (G′,m′) be obtained from (G,m) + xy by switching on the cycle x-u-v-y-x.
We say that (G′,m′) is obtained from (G,m) by switching on x-u-v-y. If (G′,m′) is smaller than
(G,m), we say that the path x-u-v-y is switchable.
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Let G be a three-connected graph drawn in the plane, and let G∗ be its dual graph; let us identify
E(G∗) with E(G) in the natural way. A cocycle means the edge-set of a cycle of the dual graph;
thus, Q ⊆ E(G) is a cocycle of G if and only if Q can be numbered {e1, . . . , ek} for some k ≥ 3 and
there are distinct regions r1, . . . , rk of G such that for 1 ≤ i ≤ k, ei is incident with ri and with ri+1

(where rk+1 means r1).
Guenin’s method is the use of the following:

5.1 Let d ≥ 1 be an integer such that every (d − 1)-regular oddly (d − 1)-edge-connected planar
graph is (d − 1)-edge-colourable. Let (G,m) be a minimum d-counterexample, and let x-u-v-y be a
path of G with x, y on a common region. Let (G′,m′) be obtained by switching on x-u-v-y, and let
F1, . . . , Fd be a d-edge-colouring of (G′,m′), where xy ∈ Fk. Let I = {1, . . . , d} \ {k} if xy /∈ E(G),
and I = {1, . . . , d} if xy ∈ E(G). Then for each i ∈ I, there is a cocycle Qi of G′ with the following
properties:

• for 1 ≤ j ≤ d with j 6= i, |Fj ∩ Qi| = 1;

• |Fi ∩ Qi| ≥ 5;

• there is a set X ⊆ V (G) with |X| odd such that δG′(X) = Qi; and

• uv, xy ∈ Qi and ux, vy /∈ Qi.

Proof. Let i ∈ I. If i 6= k and xy ∈ Fi, it follows that m′(xy) ≥ 2 since xy ∈ Fk; and so xy ∈ E(G).
Thus in either case Fi is a perfect matching of G. For each edge e of G′, let p(e) = 1 if e ∈ Fi, and
p(e) = 0 otherwise; and for each edge e of G, let n(e) = m(e) − p(e). Thus (G,n) has the property
that for each vertex z, n(δG(z)) = d − 1. If there is a list of d − 1 perfect matchings of G such
that every edge e is in n(e) of them, then adding Fi to this list gives a d-edge-colouring of (G,m), a
contradiction. Thus by hypothesis, there exists Y ⊆ V (G) with |Y | odd and with n(δG(Y )) < d− 1.
Since |Y | and n(δG(Y )) have the same parity, it follows that n(δG(Y )) ≤ d − 3. Since δG(Y ) is
an edge-cut of the connected graph G, it can be partitioned into “bonds” (edge-cuts δG(X) such
that G|X, G \ X are both connected), and hence one of these bonds δG(X) has n(δG(X)) odd, and
consequently |X| also odd. Since δG(X) is a bond of G and hence δG′(X) is a bond of G′, there is a
cocycle Qi of G′ with Qi = δG′(X). We claim that Qi satisfies the theorem. For we have seen the
third assertion; we must check the other three.

From the choice of X we have n(δG(X)) ≤ d− 3. Since |X|, |V (G) \X| ≥ 3 (because n(δG(z)) =
d − 1 for each vertex z), it follows from 2.1 that m(δG(X)) ≥ d + 2, and so p(δG(X)) ≥ 5, that is,
|Fi ∩ Qi| ≥ 5. This proves the second assertion. We recall that F1, . . . , Fd is a d-edge-colouring of
(G′,m′); and so for 1 ≤ j ≤ d with j 6= i, some edge of δG′(X) belongs to Fj , and so

∑

1≤j≤d,j 6=i

|Fj ∩ Qi| ≥ d − 1.

On the other hand, every edge e of G′ belongs to m′(e) of F1, . . . , Fd, and hence to m′(e) − p(e) of
the d − 1 perfect matchings in this list without Fi. Consequently

∑

1≤j≤d,j 6=i

|Fj ∩ Qi| =
∑

e∈Qi

m′(e) − p(e).
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It follows that
∑

e∈Qi
m′(e) − p(e) ≥ d − 1; but m′(e) − p(e) = n(e) for all edges of G′ except

xu, uv, vy, xy, and so

|{uv, xy} ∩ Qi| − |{ux, vy} ∩ Qi| +
∑

e∈Qi

n(e) ≥ d − 1.

Since
∑

e∈Qi
n(e) ≤ d − 3, it follows that uv, xy ∈ Qi and ux, vy /∈ Qi. This proves the fourth

assertion. Moreover, since ∑

1≤j≤d,j 6=i

|Fj ∩ Qi| = d − 1,

it follows that |Fj ∩ Qi| = 1 for all j ∈ {1, . . . , d} with j 6= i. This proves the first assertion, and so
proves 5.1.

By the result of [6], every 7-regular oddly 7-edge-connected planar graph is 7-edge-colourable, so
we can apply 5.1 when d = 8.

5.2 No minimum 8-counterexample contains Conf(5) or Conf(6).

Proof. To handle both at once, let us assume that (G,m) is an 8-target, and uvw, uwx are two
triangles with m+(uv) + m(uw) + m+(wx) ≥ 7; and either (G,m) is a minimum 8-counterexample,
or m(uw) = 0 and deleting uw gives a minimum 8-counterexample. We claim that

m(uv) + m(uw) + m(vw) + m(wx) ≤ 7.

If m(uw) > 0 this follows from 4.5 since we do not have Conf(3); and if m(uw) = 0 then one of
m(uv),m(wx) ≥ 3, and since 4.5 implies that we do not have Conf(4), again the claim holds. This
proves that m(uv)+m(uw)+m(vw)+m(wx) ≤ 7. Since m+(uv)+m(uw)+m+(wx) ≥ 7 and hence
m(uv) + m(uw) + m(wx) ≥ 5, it follows that m(vw) ≤ 2 and similarly m(ux) ≤ 2.

We claim that u-x-w-v-u is switchable. For suppose not; then we may assume that m(vw) >
max(m(uv),m(wx)) and m(vw) ≥ m(ux). Yet m(vw) ≤ 2, and so m(uv),m(wx) = 1, and m(ux) ≤
2. Since u-x-w-v-u is not switchable, it follows that m(ux) = 2; and since m+(uv) + m(uw) +
m+(wx) ≥ 7, it follows that m(uw) ≥ 3, giving Conf(3), contrary to 4.5. This proves that u-x-w-v-u
is switchable.

Let r1, r2 be the second regions incident with uv,wx respectively, and for i = 1, 2 let Di be the
set of doors for ri. Let k = m(uv) + m(uw) + m(wx) + 2. Let (G,m′) be obtained by switching, and
let F1, . . . , F8 be an 8-edge-colouring of (G,m′), where Fi contains one of uv, uw,wx for 1 ≤ i ≤ k.
For 1 ≤ i ≤ 8, let Qi be as in 5.1.

(1) For 1 ≤ i ≤ 8, either Fi ∩ Qi ∩ D1 6= ∅, or Fi ∩ Qi ∩ D2 6= ∅; and both are nonempty if ei-
ther k = 8 or i = 8.

For let the edges of Qi in order be e1, . . . , en, e1, where e1 = wx, e2 = uw, and e3 = uv. Since
Fj contains one of e1, e2, e3 for 1 ≤ j ≤ k, it follows that none of e4, . . . , en belongs to any Fj with
j ≤ k and j 6= i, and, if k = 7 and i 6= 8, that only one of them is in F8. But since at most one of
e1, e2, e3 is in Fi and |Fi ∩Qi| ≥ 5, it follows that n ≥ 7; so either e4, e5 belong only to Fi, or en, en−1
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belong only to Fi, and both if k = 8 or i = 8. But if e4, e5 are only contained in Fi, then they both
have multiplicity one, and are disjoint, so e4 is a door for r1 and hence e4 ∈ Fi ∩ Qi ∩ D1. Similarly
if en, en−1 are only contained in Fi then en ∈ Fi ∩ Qi ∩ D2. This proves (1).

Now k ≤ 8, so one of r1, r2 is small since m+(uv) + m(uw) + m+(wx) ≥ 7; and if k = 8 then by
(1) |D1|, |D2| ≥ 8, a contradiction. Thus k = 7, so both r1, r2 are small, but from (1) |D1|+ |D2| ≥ 9,
again a contradiction. This proves 5.2.

5.3 No minimum 8-counterexample contains Conf(7).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uvw is a triangle with
m+(uv) + m+(uw) ≥ 7. Let r1, r2 be the second regions for uv, uw respectively, and for i = 1, 2 let
Di be the set of doors for ri. By 5.2, we do not have Conf(5), so neither of r1, r2 is a triangle. Since
m(uv) + m(uw) ≥ 5, one of m(uv),m(uw) ≥ 3, so we may assume that m(uv) ≥ 3. Let tu be the
edge incident with r2 different from uw. Since m(uv) + m(uw) ≥ 5, it follows that m(tu) ≤ 3, and
by 4.2, m(vw) ≤ 2. Thus the path t-u-v-w is switchable. Note that t, w are non-adjacent in G, since
r2 is not a triangle. Let (G′,m′) be obtained by switching on this path, and let F1, . . . , F8 be an
8-edge-colouring of it. Let k = m(uv) + m(uw) + 2; thus k ≥ 7, since m(uv) + m(uw) ≥ 5, and we
may assume that for 1 ≤ j < k, Fj contains one of uv, uw, and tw ∈ Fk.

Let I = {1, . . . , 8} \ {k}, and for each i ∈ I, let Qi be as in 5.1. Now let i ∈ I, and let the edges
of Qi in order be e1, . . . , en, e1, where e1 = uv, e2 = uw, and e3 = tw. Since Fj contains one of
e1, e2, e3 for 1 ≤ j ≤ k it follows that none of e4, . . . , en belongs to any Fj with j ≤ k and j 6= i; and
if k = 7 and i 6= 8, only one of them belongs to F8. Since Fi contains at most one of e1, e2, e3 and
|Fi ∩Qi| ≥ 5, it follows that n ≥ 7, and so either e4, e5 are only contained in Fi, or en, en−1 are only
contained in Fi; and both if either k = 8 or i = 8. Thus either e4 ∈ Fi ∩Qi∩D2 or en ∈ Fi ∩Qi∩D1,
and both if k = 8 or i = 8. Since k ≤ 8, one of r1, r2 is small since m+(uv) + m+(uw) ≥ 7; and yet
if k = 8 then |D1|, |D2| ≥ |I| = 7, a contradiction. Thus k = 7, so r1, r2 are both small, and yet
|D1| + |D2| ≥ 8, a contradiction. This proves 5.3.

5.4 No minimum 8-counterexample contains Conf(8).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uvw is a triangle, and its
edges have multiplicities 3, 2, 2 (in some order). We will show that the second region r for uw has
a door disjoint from uw. By 4.5, we do not have Conf(3), so r is not a triangle. By exchanging
u,w if necessary we may assume that m(vw) = 2. Let tu be the edge incident with r different from
uw. We claim that the path t-u-v-w is switchable. For certainly m(uv) ≥ m(vw), so it suffices
to check that m(uv) ≥ m(tu). If not, then since m(uv) ≥ 2 and m(uv) + m(uw) ≥ 5, it follows
that m(uv) = 2, m(tu) = 3 and m(uw) = 3, and we have Conf(2), contrary to 4.4. Thus t-u-v-w
is switchable. Let (G′,m′) be obtained by switching, and let F1, . . . , F8 be an 8-edge-colouring of
(G′,m′). Since m′(uv) + m′(uw) = 6, we may assume that F1, . . . , F6 each contain one of uv, uw;
and tw ∈ F7, and therefore vw ∈ F8. Let I = {1, . . . , 6, 8}; and for i ∈ I, let Qi be as in 5.1. Since
Q8 contains uv, uw, tw and F1, . . . , F7 each contain one of uv, uw, tw, it follows that no other edge
of Q8 belongs to any of F1, . . . , F7, and so Q8 ∩ F8 contains a door for r, say e. Moreover e 6= tu
since tu /∈ Q8; and e is not incident with w since vw ∈ F8. Consequently e is disjoint from uw. This
proves 5.4.
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5.5 No minimum 8-counterexample contains Conf(9).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that uv1v2 is a triangle, with
m(uv1),m(uv2),m(v1v2) = 2, such that the second regions r1, r2 for uv1, uv2 respectively both have
at most one door, and no door that is disjoint from uv1v2. For i = 1, 2, let Di be the set of doors for
ri. For i = 1, 2, let uxi and viyi be edges incident with ri different from uvi.

Now x1 6= x2 since u has degree at least four; and so m(ux1) + m(ux2) ≤ 4 and we may assume
that m(ux1) ≤ 2. Consequently the path x1-u-v2-v1 is switchable. Note that v1, x1 may be adjacent,
but if so then m(v1x1) = 1 from 4.5. Let (G′,m′) be obtained by switching, and let F1, . . . , F8 be
an 8-edge-colouring, where uv2 ∈ F1, F2, F3, and uv1 ∈ F4, F5 and v1x1 ∈ F6, and v1x1 ∈ F7 if
v1x1 ∈ E(G). Since v1v2 belongs to some Fi, and v1v2 meets all of uv2, uv1, v1x1, we may assume
that v1v2 ∈ F8. Let I = {1, . . . , 5, 7, 8} if x1v1 /∈ E(G), and I = {1, . . . , 8} otherwise. For i ∈ I, let
Qi be as in 5.1.

We claim that Fi ∩ Qi ∩ (D1 ∪ D2) 6= ∅ for i = 7, 8. First suppose that v1x1 /∈ E(G). Then
for 1 ≤ j ≤ 6 and for i = 7, 8, Fj ∩ Qi ∩ {uv2, uv1, v1x1} 6= ∅, and so no other edges of Qi belong
to any Fj with j ∈ {1, . . . , 6}. Since only one edge of Qi \ {uv2, uv1, v1x1} belongs to the Fj with
j ∈ {7, 8} \ {i}, it follows that Fi ∩Qi ∩ (D1 ∪D2) 6= ∅ as required. Now suppose that v1x1 ∈ E(G).
Then for 1 ≤ j ≤ 7 and for i = 7, 8, Fj ∩Qi∩{uv2, uv1, v1x1} 6= ∅, and so no other edges of Qi belong
to any Fj with j ∈ {1, . . . , 7} and j 6= i. For i = 7, as before it follows that Fi ∩Qi ∩ (D1 ∪D2) 6= ∅;
for i = 8 we find that Fi∩Qi∩D1, Fi∩Qi∩D2 6= ∅. Thus in any case, we have Fi∩Qi∩(D1∪D2) 6= ∅
for j = 7, 8.

Now by hypothesis, D1 ∪ D2 ⊆ {ux1, ux2, v1y1, v2y2}; and ux1 /∈ Q7, Q8 from the choice of
switchable path, and v1y1, v2y2 /∈ F8 since v1v2 ∈ F8. Thus ux2 ∈ F8 ∩ D2. Since |D2| ≤ 1
by hypothesis, it follows that v2y2 /∈ D2, and ux2 /∈ F7 since ux2 ∈ F8 and m(ux2) = 1. Thus
v1y1 ∈ D1. Now m(ux2) = 1, and so the path x2-u-v1-v2 is switchable; so by the same argument
with v1, v2 exchanged, it follows that ux1 ∈ D1 and v2y2 ∈ D2, contrary to the hypothesis. This
proves 5.5.

5.6 No minimum 8-counterexample contains Conf(10).

Proof. For suppose that (G,m) is a minimum counterexample, with a square uvwx and a triangle
wxy, where m(uv) = m(wx) = m(xy) = 2, and m(vw) = 4. By 4.5, we do not have Conf(4), and it
follows that m(ux) = 1. Since m(δ(w)) = 8 it follows that m(wy) ≤ 2, and so u-x-y-w is switchable.
Let (G′,m′) be obtained by switching on this path, and let F1, . . . , F8 be an 8-edge-colouring of it.
We may assume that xy ∈ F1, F2, F3, and xw ∈ F4, F5, and uw ∈ F6. Let I = {1, . . . , 8} \ {6}, and
let Qi (i ∈ I) be as in 5.1. Now vw /∈ F4, F5, F6, so there are four values of i ∈ {1, 2, 3, 7, 8} such
that vw ∈ Fi, and from the symmetry we may assume that F1, F2, F7 contain vw (and so does one
of F3, F8). It follows that vw /∈ Qi for i ∈ I, and so uv ∈ Qi for each i ∈ I. Since uv belongs to two
of F1, . . . , F8, there exists j 6= 8 with uv ∈ Fj . Moreover, Fj does not contain vw, and so j 6= 1, 2, 7;
so j ∈ {3, 4, 5, 6}. But |Q1 ∩Fj | ≥ 2, since one of xy, xw, vw ∈ Q1 ∩Fj , a contradiction. This proves
5.6.

5.7 No minimum 8-counterexample contains Conf(11), Conf(12) or Conf(13).
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Proof. To handle all these cases simultaneously, let us assume that (G,m) is a 8-target, and
v1-v2-v3-v4-v5-v1 are the vertices in order of some cycle of G, and this cycle bounds a disc which
is the union of three triangles of G, namely v1v2v3, v1v3v5 and v3v4v5. Moreover, there is a subset
Z ⊆ {v1v3, v3v5} such that m(e) = 0 for all e ∈ Z and deleting the edges in Z gives a minimum
8-counterexample. Finally, we assume that

m(v1v2) + m(v1v3) + m(v2v3) + m(v3v4) + m(v3v5) ≥ 8,

and
m+(v1v2) + m(v1v3) + m(v3v5) + m+(v4v5) ≥ 7.

To obtain the subcases Conf(11), Conf(12) and Conf(13), we set, respectively,

• Z = {v1v3}, m(v1v2) ≥ 3, m(v3v4) ≥ 3, m(v3v5) = 1, m+(v4v5) ≥ 3, and m(v1v5) ≤ 3

• Z = {v3v5}, m+(v1v2) ≥ 3, m(v2v3) = 2, m(v3v4) ≥ 2, m(v1v3) = 2, m(v1v5) ≤ 3 and
m+(v4v5) ≥ 2

• Z = {v1v3, v3v5}, m(v1v2) ≥ max(m(v2v3),m(v1v5)).

(Edges not mentioned are unrestricted.) Let (G,m′) be obtained by switching on the sequence
v2-v3-v5-v1-v2. (We postpone for the moment the question of whether this sequence is switchable.)
Let us suppose (for a contradiction) that (G,m′) admits an 8-edge-colouring F1, . . . , F8. Let k =
m(v1v2) + m(v1v3) + m(v3v5) + 2; then we may assume that F1, . . . , Fk each contain exactly one
of v1v2, v1v3, v3v5, and v3v5 ∈ Fk. Hence k ≤ 8. Let I = {1, . . . , 8} if m(v3v5) ≥ 1, and I =
{1, . . . , 8} \ {k} otherwise. Since v2v3 meets all the edges v1v2, v1v3, v3v5, it follows that none of
F1, . . . , Fk contain v2v3, and so k + m(v2v3) − 1 ≤ 8 and we may assume that v2v3 ∈ Fj for k + 1 ≤
j ≤ k + m(v2v3) − 1. Thus there are exactly 9 − k − m(v2v3) values of j ∈ {1, . . . , 8} such that Fj

contains none of v1v2, v1v3, v3v5, v2v3. Since by hypothesis

m(v1v2) + m(v1v3) + m(v2v3) + m(v3v4) + m(v3v5) ≥ 8,

and so m(v3v4) > 9 − k − m(v2v3), there exists h ≤ k + m(v2v3) − 1 such that v3v4 ∈ Fh; since v3v4

meets each of v1v3, v2v3 and v3v5, it follows that v1v2 ∈ Fh, and so h < k; and from the symmetry
we may assume that h = 1.

For each i ∈ I let Qi as in 5.1. Now |Fj ∩Qi| = 1 for 1 ≤ j ≤ 8 with j 6= i; and since F1 contains
v1v2, v3v4 it follows that for i 6= 1 v3v4 /∈ Qi. Consequently v4v5 ∈ Qi for all i ∈ I \ {1}. Let r1, r2 be
the second regions for v1v2, v4v5 respectively, and let their sets of doors be D1,D2. Hence for each
j ∈ {1, . . . , 8}, since there exists i ∈ I \ {1} with i 6= j, it follows that Fj contains at most one of
v1v2, v1v3, v3v5, v4v5, and so we may assume that v4v5 ∈ Fj for k+1 ≤ j ≤ k′ where k′ = k+m(v4v5),
and in particular k′ ≤ 8. From the hypothesis, k′ ≥ 7.

(1) For i ∈ I \ {1}, one of Fi ∩ D1, Fi ∩ D2 is non-empty, and both if k′ = 8 or i = 8.

Let e1, . . . , en, e1 be the edges of Qi in order, where e1 = v1v2, e2 = v1v3, e3 = v3v5 and e4 = v4v5.
Thus for 1 ≤ j ≤ k′, Fj contains one of e1, e2, e3, e4, and hence contains none of e5, . . . , en if j 6= i.
Now since Fi contains at most one of e1, e2, e3, e4 and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 8. Hence
e5, . . . , en belong only to Fi, except that one belongs to F8 if i, k′ < 8. This proves (1) as usual.
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Since k′ ≤ 8, one of r1, r2 is small since m+(v1v2) + m(v1v3) + m(v3v5) + m+(v4v5) ≥ 7. Conse-
quently, (1) implies that k′ = 7; and so r1, r2 are both small, again a contradiction to (1).

This proves that (G,m′) is not 8-edge-colourable, and in particular the sequence v2-v3-v5-v1-v2

is not switchable. Let us look at the subcases for Conf(11), Conf(12), Conf(13) listed above. In the
Conf(11) subcase, m(v1v2) ≥ 3 ≥ m(v1v5), so we only need to check that m(v1v2) ≥ m(v2v3). If
not, then m(v2v3) = 4, contrary to Conf(2). In the Conf(13) subcase, the condition that m(v1v2) ≥
max(m(v2v3),m(v1v5)) is explicitly given. In the Conf(12) subcase, m(v1v2) ≥ 2 ≥ m(v2v3), so we
only need to check that m(v1v2) ≥ m(v1v5). Suppose not; then m(v1v5) = 3 and m(v1v2) = 2. In
this case the sequence v2-v3-v5-v1-v2 is not switchable, so we need a different approach.

Since (G,m′) given above is not 8-colourable, it follows from 2.1 that m′(δ(X)) ≥ 10 for every
subset X ⊆ V (G) with |X| odd and |X|, |V (G) \ X| ≥ 3. Let (G,m′′) be obtained from (G,m′)
by switching again on the same sequence. Now (G,m′′) is a 8-target, since m(v2v3),m(v1v5) ≥
2; and it is smaller than (G,m), and therefore admits an 8-edge-colouring, say F1, . . . , F8. Since
m′′(v1v2) + m′′(v1v3) + m′′(v3v5) + m′′(v1v5) > 8, some Fi contains two of v1v2, v1v3, v3v5, v1v5, and
therefore contains v1v2 and v3v5. By replacing Fi by (Fi \ {v1v2, v3v5}) ∪ {v2v3, v1v5} we therefore
obtain an 8-edge-colouring of (G,m′), a contradiction. This proves 5.7.

5.8 No minimum 8-counterexample contains Conf(14).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that some edge uv is incident with
regions r1, r2 where r1 has at most six doors disjoint from uv, and m(uv) ≥ 5, and either m(uv) ≥ 6
or r2 is small. By exchanging r1, r2 if necessary, we may assume that if r1, r2 are both small, then the
length of r1 is at least the length of r2. By 4.5, we do not have Conf(3), so not both r1, r2 are trian-
gles, and by 4.2, if m(uv) ≥ 6 then neither of r1, r2 is a triangle; so r1 is not a triangle. Let x-u-v-y
be a path of Cr1

. Since m(e) ≥ 5, this path is switchable; let (G′,m′) be obtained from (G,m) by
switching on it, and let F1, . . . , F8 be an 8-edge-colouring of (G′,m′). Let k = m′(uv) + m′(xy) ≥ 7.
Let I = {1, . . . , 8} \ {k} if x, y are non-adjacent in G, and I = {1, . . . , 8} if xy ∈ E(G). For i ∈ I,
let Qi be as in 5.1. Since Qi contains both uv, xy for each i ∈ I, it follows that for 1 ≤ j ≤ 8, Fj

contains at most one of uv, xy. Thus we may assume that uv ∈ Fi for 1 ≤ i ≤ m′(uv), and xy ∈ Fi

for m′(uv) < i ≤ k. Thus k ≤ 8. Let D1 be the set of doors for r1 that are disjoint from e, and let
D2 be the set of doors for r2.

(1) For each i ∈ I, one of Fi ∩ Qi ∩ D1, Fi ∩ Qi ∩ D2 is nonempty, and if k = 8 or i > k then
both are nonempty.

Let i ∈ I, and let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = xy. Since
|Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2, it follows that n ≥ 6. Suppose that k = 8. Then
for 1 ≤ j ≤ 8, Fj contains one of e1, e2; and hence for all j ∈ {1, . . . , 8} with j 6= i, e3, . . . , en /∈ Fj . It
follows that en, en−1 belong only to Fi and hence en ∈ Fi ∩ Qi ∩D2. Since this holds for all i ∈ I, it
follows that |D2| ≥ |I| ≥ 7. Hence r2 is big, and so by hypothesis, m(uv) ≥ 6. Since k = 8 it follows
that xy /∈ E(G). Consequently e3 is an edge of Cr1

, and since e3, e4 belong only to Fi, it follows that
e3 is a door for r1. But e3 6= ux, vy from the choice of the switchable path, and so e3 ∈ Fi ∩Qi ∩D1.
Hence in this case (1) holds.

Thus we may assume that k = 7; and so m(e) = 5, and r2 is small, and xy /∈ E(G), and
uv ∈ F1, . . . , F6, and xy ∈ F7. Thus I = {1, . . . , 6, 8}. If i = 8, then since uv, xy ∈ Qi and
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Fj contains one of e1, e2 for all j ∈ {1, . . . , 7}, it follows as before that e3 ∈ Fi ∩ Qi ∩ D1 and
en ∈ Fi ∩ Qi ∩ D2. Thus we may assume that i ≤ 6. For 1 ≤ j ≤ 8 with j 6= i, |Fj ∩ Qi| = 1, and
for 1 ≤ j ≤ 7, Fj contains one of e1, e2. Hence e3, . . . , en belong only to Fi and to F8, and only one
of them belongs to F8. If neither of en, en−1 belong to F8 then en ∈ Fi ∩ Qi ∩ D2 as required; so
we assume that F8 contains one of en, en−1; and so e3, . . . , en−2 belong only to Fi. Since n ≥ 6, it
follows that e3 ∈ Fi ∩ Qi ∩ D1 as required. This proves (1).

If k = 8, then (1) implies that |D1| ≥ 7 as required. So we may assume that k = 7 and hence
m(e) = 5 and xy /∈ E(G); and r2 is small. Suppose that there are three values of i ∈ {1, . . . , 6} such
that |Fi∩D1| = 1 and Fi∩D2 = ∅, say i = 1, 2, 3. Let fi ∈ Fi∩D1 for i = 1, 2, 3, and we may assume
that f3 is between f1 and f2 in the path Cr1

\ {uv}. Choose X ⊆ V (G′) such that δG′(X) = Q3.
Since only one edge of Cr1

\ {e} belongs to Q3, one of f1, f2 has both ends in X and the other has
both ends in V (G′) \ X; say f1 has both ends in X. Let Z be the set of edges of G′ with both
ends in X. Thus (F1 ∩ Z) ∪ (F2 \ Z) is a perfect matching, since e ∈ F1 ∩ F2, and no other edge of
δG′(X) belongs to F1 ∪F2; and similarly (F2 ∩Z)∪ (F1 \Z) is a perfect matching. Call them F ′

1, F
′
2

respectively. Then F ′
1, F

′
2, F3, F4, . . . , F8 form an 8-edge-colouring of (G′,m′), yet f1, f2 are the only

edges of D1∪D2 included in F ′
1∪F ′

2, and neither of them is in F ′
2, contrary to (1). Thus there are no

three such values of i; and similarly there are at most two such that |Fi ∩ D2| = 1 and Fi ∩ D1 = ∅.
Thus there are at least three values of i ∈ I such that |Fi ∩ D1| + |Fi ∩ D2| ≥ 2 (counting i = 8),
and so |D1|+ |D2| ≥ 10. But |D1| ≤ 6 by hypothesis and |D2| ≤ 3 since r2 is small, a contradiction.
This proves 5.8.

5.9 No minimum 8-counterexample contains Conf(15) or Conf(16).

Proof. To handle both at once, we assume that (G,m) is an 8-target with a region r, and uv ∈ E(Cr),
and uvw is another region, satisfying:

• either (G,m) is a minimum 8-counterexample, or m(uv) = 0 and deleting uv gives a minimum
8-counterexample

• m(uv) + m+(uw) ≥ 4

• every edge of Cr not incident with u is 3-heavy

• let tu be the second edge of Cr incident with u; then the path t-u-w-v is switchable.

Note that while Conf(16) fits these conditions, some instances of Conf(15) may not, and we will
handle them later. Let (G′,m′) be obtained by switching on the path t-u-w-v, and let F1, . . . , F8 be
an 8-edge-colouring of it. Let k = m(uw) + m(uv) + 2 ≥ 5; then we may assume that F1, . . . , Fk−1

contain one of uw, uv, and tv ∈ Fk. Let I = {1, . . . , 8} if tv ∈ E(G), and I = {1, . . . , 8} \ {k}
otherwise. For each i ∈ I let Qi be as in 5.1. Thus each Qi contains all of uw, uv, tv, and so no edge
of Qi \ {uw, uv, tv} belongs to Fj for any j 6= i with j ≤ k.

(1) k = 5.

For suppose that k ≥ 6. Choose i ∈ I ∩{7, 8}. Since Qi contains uv, uw, tv, it follows that F1, . . . , F6
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all contain an edge in {uv, uw, tv} ∩ Qi; and hence no edge of Qi \ {uv, uw, tv} belongs to any of
F1, . . . , F6. Choose an edge f of Cr \ {u, v} with f ∈ Qi. Now f 6= tu by the choice of switchable
path, and so f is 3-heavy (with respect to (G,m)), and if f = tv then m′(f) > m(f). Consequently
there are three values of j ∈ {1, . . . , 8}\{k} such that Fj ∩Qi contains an edge different from uv, uw,
and hence some such j belongs to {1, . . . , 5}, a contradiction. This proves (1).

Let r1 be the second region for uw, and let D1 be the set of doors for r1. From (1) it follows that
r1 is small, and so |D1| ≤ 3.

(2) For i = 6, 7, 8, |Fi ∩ D1| = 1; and the edges of F6 and F8 in Q7 have a common end (they
may be the same).

For let i ∈ {6, 7, 8}; then i ∈ I. Let the edges of Qi be e1, . . . , en, e1 in order, where e1 = uw,
e2 = uv and e3 = tv. Then n ≥ 7, since |Fi ∩ Qi| ≥ 5. Let h = 3 if tv ∈ E(G), and h = 4 otherwise.
Then eh is an edge of Cr not incident with u, and so it is 3-heavy; and hence either m(eh) ≥ 3, or
the second region for eh is a triangle and eh+1 is an edge of it, and m(eh) + m(eh+1) ≥ 3. Moreover,
if eh = tv then m′(eh) > m(eh). Thus in all cases it follows that there are three values of j 6= 5 with
1 ≤ j ≤ 8 such that Fj ∩ Qi contains one of eh, eh+1. We deduce that these three values of j are
6, 7, 8, since Fj ∩ Qi ⊆ {uv, uw} for 1 ≤ j ≤ 4. Consequently for 1 ≤ j ≤ 8, Fj ∩ Qi includes one
of e1, e2, e3, e4, e5. It follows that only Fi contains en, en−1, and consequently en ∈ Fi ∩ D1. Since
|D1| ≤ 3, this proves the first assertion of (2). The second follows since, taking i = 7 and defining eh

as before, F6 and F8 each contain one of eh, eh+1, and these edges have a common end. This proves
(2).

Let Fi ∩ D1 = {fi} for i = 6, 7, 8. Thus f6, f7, f8 are distinct, and we may assume that f6, f7, f8

are in order in the path Cr1
\ {uw}. Choose X ⊆ V (G) with δG′(X) = Q7. Let H be the subgraph

of G′ with vertex set V (G) and edge set (F6 \ F8) ∪ (F8 \ F6). Thus each component of H is either
a single vertex or a cycle of even length. Now there are either no edges, or two edges, of H that
belong to δG′(X); and if there are two then they have a common end by (2). It follows that the
component of H, say C, that contains f6 does not contain f8. Let F ′

6 = (F8∩E(C))∪(F6 \E(C)) and
F ′

8 = (F6 ∩E(C))∪ (F8 \E(C)); then F ′
6, F

′
8 are perfect matchings of G′, and F1, . . . , F5, F

′
6, F7, F

′
8 is

an 8-edge-colouring of (G,m′). On the other hand both f6, f8 belong to F ′
8, so this 8-edge-colouring

does not satisfy (2), a contradiction.

This completes the argument for Conf(16), and also for Conf(15) when (with notation as in the
definition of Conf(15)) the two edges of Cr consecutive with e both have multiplicity at most m(e)
(to see this, let u-w-v be a subpath of Cr where e = uw, and add a new edge uv with multiplicty
zero). Now we handle the remaining case of Conf(15); we assume that

• (G,m) is a minimum 8-counterexample

• r is a region of length at least four, and e is an edge of Cr

• m+(e) ≥ 4, and every edge of Cr disjoint from e is 3-heavy

• one of the edges of Cr incident with e has multiplicity more than m(e).
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Let Cr have vertices v1, . . . , vp in order, where p ≥ 4, e = v1v2, and m(v2v3) > m(e). It follows
that m(v1v2) = 3 and m(v2v3) = 4. From 4.5, we do not have Conf(4) so p ≥ 5. The path v1-v2-v3-v4

is switchable; let (G,m′) be obtained by switching on it. We may assume that v2v3 ∈ Fi for 1 ≤ i ≤ 5
and v1v4 ∈ F6. Since m′(v1v2) = 2 and v1v2 meets both v2v3 and v1v4, it follows that v1v2 ∈ F7, F8.
Consequently vpv1 ∈ Fh for some h with 1 ≤ h ≤ 5. Let I = {1, . . . , 8} \ {6}. For each i ∈ I let Qi

be as in 5.1. Now Q7 contains v2v3, v1v4, and so for 1 ≤ j ≤ 6, Fj ∩Q7 ⊆ {v2v3, v1v4}. In particular
vpv1 /∈ Q7. But Q7 contains an edge f of Cr, different from v1v2, and this edge is 3-heavy, since it
is different from vpv1 and hence disjoint from e; and so Fj ∩Qi \ {v2v3, v1v4} 6= ∅ for three values of
j ∈ {1, . . . , 8}, a contradiction. This proves 5.9.

5.10 No minimum 8-counterexample contains Conf(17) or Conf(18).

Proof. To handle both at once, we assume that (G,m) is an 8-target with a region r with length
at least four, and uv ∈ E(Cr), and uvw is another region, satisfying:

• either (G,m) is a minimum 8-counterexample, or m(uv) = 0 and deleting uv gives a minimum
8-counterexample

• m(uv) + m+(uw) ≥ 5

• let t, x be the second neighbours of u, v in Cr respectively; if m(uv) = 3 and uv is 5-heavy let
P = Cr \ {u, v}, and otherwise let P = Cr \ {u}; then every edge f of P satisfies m+(f) ≥ 2,
and at most one edge of P is not 3-heavy

• m(tu),m(vw) ≤ m(uw).

The path t-u-w-v is switchable; let (G′,m′) be obtained by switching on it, and let F1, . . . , F8 be an 8-
edge-colouring of (G′,m′). Since r has length at least four, tv /∈ E(G). Let k = m(uw)+(uv)+2 ≥ 6;
we may assume that Fi contains one of uv, uw for 1 ≤ i < k, and Fk contains tv. Let I =
{1, . . . , 8} \ {k}; and for each i ∈ I let Qi be as in 5.1.

(1) There is at most one value of i ∈ I such that Qi ∩ E(P ) = ∅, and if i is such a value then
k = 7 and m(uv) = 3 and m(uw),m(vw) = 2 and uw ∈ Fi.

For suppose that i ∈ I and Qi ∩ E(P ) = ∅. It follows that P = Cr \ {u, v}, and so m(uv) = 3
and uv is 5-heavy. Hence m(uw),m(vw) ≥ 2, and so m(uw),m(vw) = 2 by 4.2, and k = 7. Now
for 1 ≤ i ≤ 7, Fi contains one of uw, uv, tv, and since vw meets all of these edges it follows that
vw ∈ F8. But vx belongs to some Fj such that Fj contains none of tv, uv, vw, and so uw ∈ Fj . Then
|Fj ∩ Qi| ≥ 2, so j = i and hence uw ∈ Fi. This proves (1).

Let I ′ be the set of i ∈ I such that Qi ∩ E(P ) 6= ∅. By (1), |I ′| ≥ 6. Let r1 be the second region
for uw, and let its set of doors be D1. Thus |D1| ≤ 3 if k = 6, since m(uv) + m+(uw) ≥ 5. Let I ′′

be the set of i ∈ I ′ such that the edge in Qi ∩ E(P ) is not 3-heavy.

(2) There is a unique edge f ∈ E(P ) that is not 3-heavy, and it belongs to none of F1, . . . , Fk.
Moreover, if i ∈ I ′ \ I ′′ then k = 6 and i ≤ 5 and Fi ∩ Qi ∩ D1 6= ∅.
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Suppose that i ∈ I ′ \ I ′′. There are therefore three values of j ∈ {1, . . . , 8} such that Fj ∩ Qi 6⊆
{uw, uv, tv}, and so at least two that are also different from i. Consequently, for those two values of
j, it follows that uw, uv, yv /∈ Fj and hence k = 6 and j ∈ {7, 8}. Thus i ≤ 5. Let the edges of Qi

in order be e1, . . . , en, e1, where e1 = uw, e2 = uv and e3 = tv; then n ≥ 7, since |Fi ∩ Qi| ≥ 5. But
F1, . . . , F8 each contain one of e1, . . . , e5, so

en ∈ Fi ∩Qi ∩D1. This proves the second assertion of (2). For the first assertion, since |D1| ≤ 3,
it follows that |I ′ \ I ′′| ≤ 3. Since |I ′| ≥ 6, it follows that |I ′′| ≥ 3. But by hypothesis, there is at
most one edge in P that is not 3-heavy, and so this edge exists, say f . It follows that f ∈ Qi, for all
i ∈ I ′′. Now let j ∈ {1, . . . , k}. Choose i ∈ I ′′ with i 6= j; then Fj ∩ Qi ⊆ {uw, uv, tv}, and so Fj

does not contain f . This proves (2).

By (2) we may assume that f ∈ Fk+1. Let r2 be the second region at f , and let D2 be its set of
doors. By hypothesis, if m(f) = 1 then |D2| ≤ 3.

Suppose that k ≥ 7. By (2), I ′′ = I ′ and m(f) = 1. Let i ∈ I ′, and let the edges of Qi in
order be e1, . . . , en, where e1 = uw, e2 = uv, e3 = tv, and e4 = f . Since only one of e1, . . . , e4

belongs to Fi, and |Fi ∩Qi| ≥ 5, it follows that n ≥ 8. But F1, . . . , F8 each contain one of e1, . . . , e4,
and so e5, . . . , en only belong to Fi; and hence e5 ∈ Fi ∩ Qi ∩ D2. Consequently |D2| ≥ |I ′| ≥ 6, a
contradiction.

This proves that k = 6, and hence |D1| ≤ 3, and I ′ = I by (1), and 7, 8 ∈ I ′′ by (2). Now let
i ∈ I ′′. Let the edges of Qi in order be e1, . . . , en, e1, where e1 = uw, e2 = uv, e3 = tv, and e4 = f .
Again n ≥ 8.

Suppose that m(f) ≥ 2; then m(f) = 2 by (2), and f ∈ F7, F8, and so F1, . . . , F8 each contain
one of e1, . . . , e4, and therefore e5, . . . , en belong to no Fj with j 6= i. Since n ≥ 8, it follows that
en ∈ D1, and so Fi ∩ Qi ∩ D1 6= ∅. By (2), it follows that Fi ∩ Qi ∩ D1 6= ∅ for all i ∈ I ′, and so
|D1| ≥ |I ′| = 7, a contradiction. Thus m(f) = 1, and so |D2| ≤ 3.

Again, let i ∈ I ′′, and let e1, . . . , en, e1 be as before. Now F1, . . . , F7 each contain one of e1, . . . , e4,
and so e5, . . . , en belong to no Fj with 1 ≤ j ≤ 7 and j 6= i, and only one of them belongs to F8 if
i 6= 8. We assume first that i 6= 8. Since n ≥ 8, either e5, e6 /∈ F8, or en, en−1 /∈ F8, and so either
e5 ∈ D2 or en ∈ D1. Now we assume i = 8. Then e5, . . . , en belong to no Fj with 1 ≤ j ≤ 7, and so
e5 ∈ D2 and en ∈ D1.

In summary, we have shown that for each i ∈ I ′′, either Fi ∩ D1 6= ∅, or Fi ∩ D2 6= ∅ (both
if i = 8); and 8 ∈ I ′′. By (2), if i ∈ I ′ \ I ′′ then either Fi ∩ D1 6= ∅, or Fi ∩ D2 6= ∅; and so
|D1| + |D2| ≥ |I ′| + 1 ≥ 7, a contradiction. This proves 5.10.

5.11 No minimum 8-counterexample contains Conf(19).

Proof. Let (G,m) be a minimum 8-counterexample, and suppose that r is a region with length
at least five, and e is an edge of Cr, such that m+(e) ≥ 5, and every edge of Cr disjoint from e is
2-heavy, and at most two of them are not 3-heavy. By 5.10, we do not have Conf(17), so there are
at least two edges in Cr disjoint from e that are not 3-heavy, and so by hypothesis, there are exactly
two, say g1, g2. Thus m(g1),m(g2) ≤ 2. By hypothesis, g1, g2 are 2-heavy.

Let e = uv, and let the second neighbours of u, v in Cr be t, w respectively. Since m(e) ≥ 4, it
follows that m(tu),m(vw) ≤ m(uv) and so the path t-u-v-w is switchable. Let (G′,m′) be obtained
by switching on this path, and let F1, . . . , F8 be an 8-edge-colouring of it. Let k = m(e)+2. We may
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assume that tw ∈ Fk. Let I = {1, . . . , 8} \ {k}, and for each i ∈ I let Qi be as in 5.1. Let I1, I2, I3

be the sets of i ∈ I such that g1 ∈ Qi, g2 ∈ Qi, and g1, g2 /∈ Qi respectively.

(1) k = 6.

For suppose that k > 6. Let i ∈ I, and let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv
and e2 = tw. Thus e3 is an edge of Cr disjoint from e. Since |Fi ∩ Qi| ≥ 5 and |Fi ∩ {e1, e2}| ≤ 1, it
follows that n ≥ 6. Now there are k ≥ 7 values of j ∈ {1, . . . , 8} such that Fj contains one of e1, e2;
and so there is at most value of j 6= i such that Fj contains one of e3, e4. It follows that e3 is not
3-heavy and so i ∈ I1 ∪ I2. Since this holds for all i ∈ I, we may assume that |I1| ≥ 4. Let i ∈ I1;
as before, there is at most one value of j 6= i such that Fj contains one of e3, e4. Now m(g1) ≤ 2. If
m(g1) = 2, then g1 ∈ Fi, and since this holds for all i ∈ I1 it follows that g1 is contained in Fi for
four different values of i, a contradiction. Thus m(g1) = 1. Since g1 is 2-heavy, the second region for
g1 is a triangle with edge set {g1, p, q} say, where e4 = p. Hence one of g1, pq has multiplicity one
and is contained in Fi. Since this holds for all i ∈ I1 and |I1| ≥ 4, this is impossible. This proves (1).

We may therefore assume that uv ∈ Fi for 1 ≤ i ≤ 5 and tw ∈ F6. Since k = 6, it follows that
m(e) = 4 and since m+(e) ≥ 5, the second region r1 for uv is small. Let D1 be its set of doors.

(2) If i ∈ I3 then i ≤ 5 and Fi ∩ Qi ∩ D1 6= ∅.

For let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = tw. Then F1, . . . , F6

each contain an edge in {e1, e2}, and so for 1 ≤ j ≤ 6 with j 6= i, none of e3, . . . , en belongs to Fj .
Now e3 is 3-heavy, and so there are three values of j such that Fj contains one of e3, e4; and so these
three values are i, 7, 8, and i 6= 7, 8. (Thus i ≤ 5 since 6 /∈ I.) Hence for 1 ≤ j ≤ 8, Fj contains one
of e1, . . . , e4; and so en, en−1 belong only to Fi. Hence en ∈ D1. This proves (2).

For h = 1, 2, let I ′h be the set of all i ∈ Ih such that Fi ∩ Qi ∩ D1 = ∅.

(3) For h = 1, 2, |I ′h| ≤ 2, and 7, 8 /∈ I ′h, and if |I ′h| = 2 then 7, 8 /∈ Ih.

For let h = 1 say. Suppose first that m(g1) = 2, and let g1 ∈ Fa, Fb where 1 ≤ a < b ≤ 8.
Let i ∈ I ′1, and let e1, . . . , en be as before; then e3 = g1. Again, for 1 ≤ j ≤ 6 with j 6= i, none of
e3, . . . , en belongs to Fj , and consequently a, b ∈ {i, 7, 8}. In particular, b ≥ 7, and a ∈ {i, 7}. Thus
if a ≤ 6 then i = a and so |I ′1| = 1 and the claim holds. We assume then that (a, b) = (7, 8). But
then F1, . . . , F8 each contain one of e1, e2, e3, and so en ∈ D1, contradicting that i ∈ I ′1. So the claim
holds if m(g1) = 2.

Next we assume that m(g1) = 1. Since g1 is 2-heavy, the second region at g1 is a triangle with
edge set {g1, p, q} say. Let g1 ∈ Fa. Let i ∈ I ′1, and let e1, . . . , en be as before; then e3 = g1. Again,
for 1 ≤ j ≤ 6 with j 6= i, none of e3, . . . , en belong to Fj , and consequently a ∈ {i, 7, 8}. Thus if
a 6= 7, 8 then i = a and |I ′1| = 1 and the claim holds. We assume then that a = 7. Thus each of
F1, . . . , F7 contains one of e1, e2, e3, and for 1 ≤ j ≤ 7 with j 6= i, Fj contains none of e4, . . . , en.
Since Fi∩Qi∩D1 = ∅, there exists j ∈ {1, . . . , 8} with j 6= i such that Fj contains one of en, en−1; and
hence j = 8, and so i 6= 8. (Also, i 6= 7 since g1 ∈ F7 and g1 meets e4. Consequently, 7, 8 /∈ I ′1.) Thus
F1, . . . , F8 each contain one of e1, e2, e3, en−1, en, and so e4 is only contained in Fi. Consequently, i
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has the property that one of p, q has multiplicity one, and Fi contains it. Thus there are at most two
such values of i, and so |I ′1| ≤ 2. Moreover, if there are two such values, say c, d, then c, d ≤ 5 and
Fc contains one of p, q and Fd contains the other. Consequently if 7 ∈ I1, then one of Fc, Fd contains
two edges of Q7, a contradiction. So if |I ′1| = 2 then 7, 8 /∈ I1. This proves (3).

From (2), we may assume that 7 ∈ I1, and so |I ′1| + |I ′2| ≤ 3 by (3). Consequently there are at
least four values of i ∈ I such that Fi ∩ Qi ∩ D1 6= ∅, and so |D1| ≥ 4, a contradiction. This proves
5.11.

This completes the proof of 4.1 and hence of 1.2. Perhaps despite appearances, there was some
system to our choice of the β- and γ-rules. We started with the idea that we would normally
pass a charge of one from each small region to each big region sharing an edge with it, and made
the minimum modifications we could to the β-rules so that the proof of 3.4 worked. Then we
experimented with the γ-rules to make 3.5, 3.6 and 3.7 work out.

It is to be hoped that solving these special cases of the main conjecture 1.1 will lead us to a proof
of the general case, but that seems far away at the moment. The same approach does indeed work
(more simply) for seven-regular planar graphs, and this gives an alternative proof of the result of [4],
to appear in [6]. We tried the same again for nine-regular graphs, but there appeared to be some
serious difficulties. Maybe more perseverance will bring it through, but it seems much harder than
the eight-regular case.
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