Edge-colouring seven-regular planar graphs

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Katherine Edwards ${ }^{2}$
Princeton University, Princeton, NJ 08544
Ken-ichi Kawarabayashi ${ }^{3}$
National Institute of Informatics and JST ERATO Kawarabayashi Project, Japan

Paul Seymour ${ }^{4}$
Princeton University, Princeton, NJ 08544

August 17, 2012; revised March 26, 2014

[^0]
Abstract

A conjecture due to the fourth author states that every d-regular planar multigraph can be d-edgecoloured, provided that for every odd set X of vertices, there are at least d edges between X and its complement. For $d=3$ this is the four-colour theorem, and the conjecture has been proved for all $d \leq 8$, by various authors. In particular, two of us proved it when $d=7$; and then three of us proved it when $d=8$. The methods used for the latter give a proof in the $d=7$ case that is simpler than the original, and we present it here.

1 Introduction

Let G be a graph. (Graphs in this paper are finite, and may have loops or parallel edges.) If $X \subseteq V(G), \delta_{G}(X)=\delta(X)$ denotes the set of all edges of G with an end in X and an end in $V(G) \backslash X$. We say that G is oddly d-edge-connected if $|\delta(X)| \geq d$ for all odd subsets X of $V(G)$. The following conjecture [8] was proposed by the fourth author in about 1973.
1.1. Conjecture. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G is oddly d-edge-connected.

The "only if" part is true, and some special cases of the "if" part of this conjecture have been proved.

- For $d=3$ it is the four-colour theorem, and was proved by Appel and Haken [1, 2, 7];
- for $d=4,5$ it was proved by Guenin [6];
- for $d=6$ it was proved by Dvorak, Kawarabayashi and Kral 4];
- for $d=7$ it was proved by the second and third authors and appears in the Master's thesis 5 of the former;
- for $d=8$ it was proved by three of us [3].

The methods of [3] can be adapted to yield a proof of the result for $d=7$, that is shorter and simpler than that of [5]. Since in any case the original proof appears only in a thesis, we give the new one here. Thus, we show

1.2. Every 7 -regular oddly 7 -edge-connected planar graph is 7 -edge-colourable.

All these proofs (for $d>3$), including ours, assume the truth of the result for $d-1$. Thus we need to assume the truth of the result for $d=6$. Some things that are proved in [3] are true for all d, and we sometimes cite results from that paper.

2 An unavoidable list of reducible configurations.

Any 7-regular planar graph has parallel edges, and it is helpful to reformulate the problem in terms of the underlying simple graph; then we have have a number for each edge, recording the number of parallel edges it represents. Let us say a d-target is a pair (G, m) with the following properties (where for $F \subseteq E(G), m(F)$ denotes $\sum_{e \in F} m(e)$):

- G is a simple graph drawn in the plane;
- $m(e) \geq 0$ is an integer for each edge e;
- $m(\delta(v))=d$ for every vertex v; and
- $m(\delta(X)) \geq d$ for every odd subset $X \subseteq V(G)$.

In this language, 1.1 says that for every d-target (G, m), there is a list of d perfect matchings of G such that every edge e of G is in exactly $m(e)$ of them. (The elements of a list need not be distinct.) If there is such a list we call it a d-edge-colouring, and say that (G, m) is d-edge-colourable. For an edge $e \in E(G)$, we call $m(e)$ the multiplicity of e. If $X \subseteq V(G), G \mid X$ denotes the subgraph of G induced on X. We need the following theorem from [3:
2.1. Let (G, m) be a d-target, that is not d-edge-colourable, but such that every d-target with fewer vertices is d-edge-colourable. Then

- $|V(G)| \geq 6 ;$
- for every $X \subseteq V(G)$ with $|X|$ odd, if $|X|,|V(G) \backslash X| \neq 1$ then $m(\delta(X)) \geq d+2$; and
- G is three-connected, and $m(e) \leq d-2$ for every edge e.

A triangle is a region of G incident with exactly three edges. If a triangle is incident with vertices u, v, w, for convenience we refer to it as $u v w$, and in the same way an edge with ends u, v is called $u v$. Two edges are disjoint if they are distinct and no vertex is an end of both of them, and otherwise they meet. Let r be a region of G, and let $e \in E(G)$ be incident with r; let r^{\prime} be the other region incident with e. We say that e is i-heavy (for r), where $i \geq 2$, if either $m(e) \geq i$ or r^{\prime} is a triangle $u v w$ where $e=u v$ and

$$
m(u v)+\min (m(u w), m(v w)) \geq i .
$$

We say e is a door for r if $m(e)=1$ and there is an edge f incident with r^{\prime} and disjoint from e with $m(f)=1$. We say that r is big if there are at least four doors for r, and small otherwise. A square is a region with length four.

Since G is drawn in the plane and is two-connected, every region r has boundary some cycle which we denote by C_{r}. In what follows we will be studying cases in which certain configurations of regions are present in G. We will give a list of regions the closure of the union of which is a disc. For convenience, for an edge e in the boundary of this disc, we call the region outside the disc incident with e the "second region" for e; and we write $m^{+}(e)=m(e)$ if the second region is big, and $m^{+}(e)=m(e)+1$ if the second region is small. This notation thus depends not just on (G, m) but on what regions we have specified, so it is imprecise, and when there is a danger of ambiguity we will specify it more clearly. If r is a triangle, incident with edges e, f, g, we define its multiplicity $m(r)=m(e)+m(f)+m(g)$. We also write $m^{+}(r)=m^{+}(e)+m^{+}(f)+m^{+}(g)$. A region r is tough if r is a triangle and $m^{+}(r) \geq 7$.

We will show that every 7 -target (G, m) satisfying the conclusion of 2.1 (with $d=7$) and such that $m(e)>0$ for every edge e must contain one of a list of 16 reducible configurations. Let us say a 7 -target is "prime" if it fails to satisfy this claim; that is, a 7 -target (G, m) is prime if

- $m(e)>0$ for every edge e;
- $|V(G)| \geq 6$;
- $m(\delta(X)) \geq 9$ for every $X \subseteq V(G)$ with $|X|$ odd and $|X|,|V(G) \backslash X| \neq 1$;
- G is three-connected, and $m(e) \leq 5$ for every edge e;
and in addition (G, m) contains none of of the following:
$\operatorname{Conf}(1):$ A triangle $u v w$, where u has degree three and its third neighbour x satisfies

$$
m(u x)<m(u w)+m(v w) .
$$

$\operatorname{Conf}(\mathbf{2) : ~ T w o ~ t r i a n g l e s ~} u v w, u w x$ with $m(u v)+m(u w)+m(v w)+m(u x) \geq 7$.
$\operatorname{Conf}(3)$: A square $u v w x$ where $m(u v)+m(v w)+m(u x) \geq 7$.
$\operatorname{Conf}(4):$ Two triangles $u v w, u w x$ where $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 6$.
$\operatorname{Conf}(5):$ A square $u v w x$ where $m^{+}(u v)+m^{+}(w x) \geq 6$.
$\operatorname{Conf}(6):$ A triangle $u v w$ with $m^{+}(u v)+m^{+}(u w)=6$ and either $m(u v) \geq 3$ or $m(u v)=m(v w)=$ $m(u w)=2$ or u has degree at least four.
$\operatorname{Conf}(\mathbf{7})$: A region r of length at least four, an edge e of C_{r} with $m^{+}(e)=4$ where every edge of C_{r} disjoint from e is 2-heavy and not incident with a triangle with multiplicity three, and such that at most three edges disjoint from e are not 3-heavy.
$\operatorname{Conf}(8):$ A region r with an edge e of C_{r} with $m^{+}(e)=m(e)+1=4$ and an edge f disjoint from e with $m^{+}(f)=m(f)+1=2$, where every edge of $C_{r} \backslash\{f\}$ disjoint from e is 3-heavy with multiplicity at least two.
$\operatorname{Conf}(9):$ A region r of length at least four and an edge e of C_{r} such that $m(e)=4$ and there is no door disjoint from e. Further for every edge f of C_{r} consecutive with e with multiplicity at least two, there is no door disjoint from f.
$\operatorname{Conf}(\mathbf{1 0})$: A region r of length four, five or six and an edge e of C_{r} such that $m(e)=4$ and such that $m^{+}(f) \geq 2$ for every edge f of C_{r} disjoint from e.
$\operatorname{Conf}(11):$ A region r and an edge e of C_{r}, such that $m(e)=5$ and at most five edges of C_{r} disjoint from e are doors for r, or $m^{+}(e)=m(e)+1=5$ and at most four edges of C_{r} disjoint from e are doors for r.
$\operatorname{Conf}(12)$: A region r, an edge $u v$ of C_{r}, and a triangle $u v w$ such that $m(u v)+m(v w)=5$ and at most five edges of C_{r} disjoint from v are doors for r.
$\operatorname{Conf}(13):$ A square $x u v y$ and a tough triangle $u v z$, where $m(u v)+m^{+}(x y) \geq 4$ and $m(x y) \geq 2$.
$\operatorname{Conf}(14):$ A region r of length five, an edge $f_{0} \in E\left(C_{r}\right)$ with $m^{+}\left(e_{0}\right) \geq 2$ and $m^{+}(e) \geq 4$ for each edge $e \in E\left(C_{r}\right)$ disjoint from f_{0}.
$\operatorname{Conf}(\mathbf{1 5}):$ A region r of length five, a 3-heavy edge $f_{0} \in E\left(C_{r}\right)$ with $m\left(e_{0}\right) \geq 2$ and $m^{+}(e) \geq 3$ for each edge $e \in E\left(C_{r}\right)$ disjoint from f_{0}.
$\operatorname{Conf}\left(\mathbf{1 6)}\right.$: A region r of length six where five edges of C_{r} are 3 -heavy with multiplicity at least two.

We will prove that no 7 -target is prime (Theorem 3.1). To deduce 1.2, we will show that if there is a counterexample, then some counterexample is prime; but for this purpose, just choosing a counterexample with the minimum number of vertices is not enough, and we need a more delicate minimization. If (G, m) is a d-target, its score sequence is the $(d+1)$-tuple $\left(n_{0}, n_{1}, \ldots, n_{d}\right)$ where n_{i} is the number of edges e of G with $m(e)=i$. If (G, m) and ($\left.G^{\prime}, m^{\prime}\right)$ are d-targets, with score sequences $\left(n_{0}, \ldots, n_{d}\right)$ and $\left(n_{0}^{\prime}, \ldots, n_{d}^{\prime}\right)$ respectively, we say that $\left(G^{\prime}, m^{\prime}\right)$ is smaller than (G, m) if either

- $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, or
- $\left|V\left(G^{\prime}\right)\right|=|V(G)|$ and there exists i with $1 \leq i \leq d$ such that $n_{i}^{\prime}>n_{i}$, and $n_{j}^{\prime}=n_{j}$ for all j with $i<j \leq d$, or
- $\left|V\left(G^{\prime}\right)\right|=|V(G)|$, and $n_{j}^{\prime}=n_{j}$ for all j with $0<j \leq d$, and $n_{0}^{\prime}<n_{0}$.

If some d-target is not d-edge-colourable, then we can choose a d-target (G, m) with the following properties:

- (G, m) is not d-edge-colourable
- every smaller d-target is d-edge-colourable.

Let us call such a pair (G, m) a minimum d-counterexample. To prove 1.2 we prove two things:

- No 7-target is prime (theorem 3.1), and
- Every minimum 7-counterexample is prime (theorem 4.1).

It will follow that there is no minimum 7-counterexample, and so the theorem is true.

3 Discharging and unavoidability

In this section we prove the following, with a discharging argument.
3.1. No 7 -target is prime.

The proof is broken into several steps, through this section. Let (G, m) be a 7 -target, where G is three-connected. For every region r, we define

$$
\alpha(r)=14-7\left|E\left(C_{r}\right)\right|+2 \sum_{e \in E\left(C_{r}\right)} m(e) .
$$

To aid the reader's intuition, let us explain where this comes from. We start with a 7 -regular three-connected planar graph H, and so some of its regions have boundary of length two; let us call them "digon regions". Let us give each region r of H a weight of $14-5\left|E\left(C_{r}\right)\right|$; then it is easy to check using Euler's formula that the sum of all region-weights is 28 . If now we suppress the parallel edges, obtaining (G, m) say, and we want to preserve the property that the sum of all region-weights is 28 , then we need to distribute the weights of all the lost digon-regions among the regions that remain, and we have done it in the simplest way. For each edge e of G, corresponding to $m(e)$ parallel
edges of H, there are $m(e)-1$ digon-regions to account for, formed by pairs of these edges. Each digon-region has a region-weight of four, and so we have a total weight of $4(m(e)-1)$ to redistribute; and we share this equally between the two regions of G incident with e. (Thus the weight of each region r of G is increased by $2(m(e)-1)$ for every edge e of G incident with r.) The α function defined above is the region-weighting that results from this process.

We observe first:
3.2. The sum of $\alpha(r)$ over all regions r is positive.

Proof. Since (G, m) is a 7 -target, $m(\delta(v))=7$ for each vertex v, and, summing over all v, we deduce that $2 m(E(G))=7|V(G)|$. By Euler's formula, the number of regions R of G satisfies $|V(G)|-|E(G)|+R=2$, and so $4 m(E(G))-14|E(G)|+14 R=28$. But $2 m(E(G))$ is the sum over all regions r, of $\sum_{e \in E\left(C_{r}\right)} m(e)$, and $14 R-14|E(G)|$ is the sum over all regions r of $14-7\left|E\left(C_{r}\right)\right|$. It follows that the sum of $\alpha(r)$ over all regions r equals 28. This proves 3.2

Our goal is to define a region-weighting, with total sum positive, so that for any region of positive weight, there must be one of the reducible configurations close to it. The α function just defined does not work yet. We obtained it by splitting equally the weights on digon-regions, but it is better to share out these digon-region weights a little less equally; we should give more weight to big regions and less to small, when we have the chance. More exactly, when some edge e is incident with a big region and a small region, we should distribute the weight from the digon-regions represented by e unevenly, sending one more to the big region and one less to the small one (and sometimes not quite this either). We are about to define a β function that makes this adjustment.

For every edge e of G, define $\beta_{e}(s)$ for each region s as follows. Let r, r^{\prime} be the two regions incident with e.

- If $s \neq r, r^{\prime}$ then $\beta_{e}(s)=0$.
- If r, r^{\prime} are both big, or both tough, or both small and not tough, then $\beta_{e}(r), \beta_{e}\left(r^{\prime}\right)=0$.
[$\beta \mathbf{0}$]: If r^{\prime} is tough, and r is small and not tough, then $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=1$.
Henceforth we assume that r is big and r^{\prime} is small; let f, g be the edges of $C_{r^{\prime}} \backslash e$ that share an end with e.
[$\beta 1$]: If e is a door for r (and hence $m(e)=1$) then $\beta_{e}(r)=\beta_{e}\left(r^{\prime}\right)=0$.
[$\beta 2$]: If r^{\prime} is a triangle with $m\left(r^{\prime}\right) \geq 5$ then $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=2$.
[$\beta 3$]: Otherwise $\beta_{e}(r)=-\beta_{e}\left(r^{\prime}\right)=1$.
For each region r, define $\beta(r)$ to be the sum of $\beta_{e}(r)$ over all edges e. We see that the sum of $\beta(r)$ over all regions r is zero.

Let α, β be as above. Then the sum over all regions r of $\alpha(r)+\beta(r)$ is positive, and so there is a region r with $\alpha(r)+\beta(r)>0$. Let us examine the possibilities for such a region. There now begins a long case analysis, and to save writing we just say "by $\operatorname{Conf}(7)$ " instead of "since (G, m) does not contain $\operatorname{Conf}(7)$ ", and so on.
3.3. If r is a big region and $\alpha(r)+\beta(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime. Let $C=C_{r}$. Suppose that $\alpha(r)+\beta(r)>0$; that is,

$$
\sum_{e \in E(C)}\left(7-2 m(e)-\beta_{e}(r)\right)<14 .
$$

For $e \in E(C)$, define $\phi(e)=2 m(e)+\beta_{e}(r)$, and let us say e is major if $\phi(e)>7$. If e is major, then since $\beta_{e}(r) \leq 3$, it follows that $m(e) \geq 3$ and that e is 4-heavy. If $m(e)=3$ and e is major, then by Conf(1) the edges consecutive with e on C have multiplicity at most two. It follows that no two major edges are consecutive, since G has minimum degree at least three. Further when e is major, $\beta_{e}(r)$ is an integer from the β-rules, and therefore $\phi(e) \geq 8$.

Let D be the set of doors for C. Let

- $\xi=2$ if there are consecutive edges e, f in C such that $\phi(e)>9$ and f is a door for r,
- $\xi=3$ if not, but there are consecutive edges e, f in C such that $\phi(e)=9$ and f is a door for r,
- $\xi=4$ otherwise.
(1) Let e, f, g be the edges of a path of C, in order, where e, g are major. Then

$$
(7-\phi(e))+2(7-\phi(f))+(7-\phi(g)) \geq 2 \xi|\{f\} \cap D| .
$$

Let r_{1}, r_{2}, r_{3} be the regions different from r incident with e, f, g respectively. Now $m(e) \leq 5$ since G has minimum degree three, and if $m(e)=5$ then r_{1} is big, by Conf(11), and so $\beta_{e}(r)=0$. If $m(e)=4$ then $\beta_{e}(r) \leq 2$; and so in any case, $\phi(e) \leq 10$. Similarly $\phi(g) \leq 10$. Also, $\phi(e), \phi(g) \geq 8$ since e, g are major. Thus $\phi(e)+\phi(g) \in\{16,17,18,19,20\}$.

Since f is consecutive with a major edge, $m(f) \leq 2$. Further if $m(f)=2$ then r_{2} is not a triangle with multiplicity at least 5 by Conf(11) so rule $\beta 2$ does not apply. Therefore it follows from the β-rules that $\phi(f) \leq 5$ and if $m(f)=1$ then $\phi(f) \leq 4$.

First, suppose that one of $\phi(e), \phi(g) \geq 10$, say $\phi(e)=10$. In this case we must show that $2 \phi(f) \leq 18-\phi(g)-2 \xi|\{f\} \cap D|$. It is enough to show that $2 \phi(f) \leq 8-2 \xi|\{f\} \cap D|$. Now $m(e) \geq 4$ and e is 5 -heavy by the β-rules, and so $m(f)=1$, since G is three-connected and by Conf (11). If f is a door then $\phi(f)=2$ by rule $\beta 1$ and $\xi=2$ so $2 \phi(f) \leq 8-2 \xi|\{f\} \cap D|$. If f is not a door then since $\phi(f) \leq 4$, it follows that $2 \phi(f) \leq 8-2 \xi|\{f\} \cap D|$. So we may assume that $\phi(e), \phi(g) \leq 9$.

Next, suppose that one of $\phi(e), \phi(g)=9$, say $\phi(e)=9$. By the β-rules, we have $m^{+}(e)=$ $m(e)+1=5$. We must show that $2 \phi(f) \leq 19-\phi(g)-2 \xi|\{f\} \cap D|$; it is enough to show $2 \phi(f) \leq$ $10-2 \xi|\{f\} \cap D|$. Since $\phi(f) \leq 5$ we may assume that f is a door. Thus $\phi(f)=2$ and $\xi \leq 3$, so $4=2 \phi(f) \leq 19-\phi(g)-2 \xi|\{f\} \cap D|$. We may therefore assume that $\phi(e)+\phi(g)=16$.

So, suppose that $\phi(e)+\phi(g)=16$ and so $\phi(e)=\phi(g)=8$. Now $\xi \leq 4$ and we must show that $2 \phi(f) \leq 12-2 \xi|\{f\} \cap D|$. Again, if f is not a door then $2 \phi(f) \leq 12$ as required. If f is a door then $2 \phi(f)=4 \leq 12-2 \xi|\{f\} \cap D|$. This proves (1).
(2) Let e, f be consecutive edges of C, where e is major. Then

$$
(7-\phi(e))+2(7-\phi(f)) \geq 2 \xi|\{f\} \cap D| .
$$

We have $\phi(e) \in\{8,9,10\}$. Suppose first that $\phi(e)=10$. We must show that $2 \phi(f) \leq 11-2 \xi|\{f\} \cap D| ;$ but $m(f)=1$ by Conf(1) since e is 5 -heavy. Since $\phi(f) \leq 4$ we may assume that f is a door. Thus $\phi(f)=2$ and $\xi \leq 2$, as needed.

Next, suppose that $\phi(e) \leq 9$; it is enough to show that $2 \phi(f) \leq 12-2 \xi|\{f\} \cap D|$. Now e is 4 -heavy and $m(f) \leq 2$ so $\phi(f) \leq 6$ by the β-rules. We have $\xi \leq 4$. Since $\phi(f) \leq 6$, we may assume that f is a door. If f is a door, then $2 \phi(f)=4 \leq 12-2 \xi|\{f\} \cap D|$. This proves (2).

For $i=0,1,2$, let E_{i} be the set of edges $f \in E(C)$ such that f is not major, and f meets exactly i major edges in C. By (1), for each $f \in E_{2}$ we have

$$
\frac{1}{2}(7-\phi(e))+(7-\phi(f))+\frac{1}{2}(7-\phi(g)) \geq \xi|\{f\} \cap D|
$$

where e, g are the major edges meeting f. By (2), for each $f \in E_{1}$ we have

$$
\frac{1}{2}(7-\phi(e))+(7-\phi(f)) \geq \xi|\{f\} \cap D|
$$

where e is the major edge consecutive with f. Finally, for each $f \in E_{0}$ we have

$$
7-\phi(f) \geq \xi|\{f\} \cap D|
$$

since $\phi(f) \leq 7$, and $\phi(f)=2$ if $f \in D$. Summing these inequalities over all $f \in E_{0} \cup E_{1} \cup E_{2}$, we deduce that $\sum_{e \in E(C)}(7-\phi(e)) \geq \xi|D|$. Consequently

$$
14>\sum_{e \in E(C)}\left(7-2 m(e)-\beta_{e}(r)\right) \geq \xi|D| .
$$

But $|D| \geq 4$ since r is big, and so $\xi \leq 3$. If $\xi=3$, then $|D|=4$, contrary to $\operatorname{Conf(111).~So~} \xi=2$ and $|D| \leq 6$. But then C_{r} has a 5-heavy edge with multiplicity at least four that is consecutive with a door and has at most five doors disjoint from it, contrary to Conf(11) and Conf(12). This proves 3.3
3.4. If r is a triangle that is not tough, and $\alpha(r)+\beta(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime, and let $r=u v w$. Now $\alpha(r)=2(m(u v)+m(v w)+m(u w))-7$, so

$$
2(m(u v)+m(v w)+m(u w))+\beta(r)>7 .
$$

Let r_{1}, r_{2}, r_{3} be the regions different from r incident with $u v, v w$, $u w$ respectively. Since r is not tough, $m^{+}(r) \leq 6$, and so $m(r) \leq 6$ as well.

Suppose first that r has multiplicity six and hence $\beta(r)>-5$. Then r_{1}, r_{2}, r_{3} are all big. Suppose that $m(u v)=4$. Then rule $\beta 2$ applies to give $\beta(r)=-6$, a contradiction. Thus r has at least two edges with multiplicity at least two. Rules $\beta 2$ and $\beta 3$ apply giving $\beta(r) \leq-5$, a contradiction.

Suppose that r has multiplicity five and so $\beta(r)>-3$. Then at least two of r_{1}, r_{2}, r_{3} are big, say r_{2} and r_{3}, and so $\beta_{v w}(r)+\beta_{u w}(r) \leq-2$. Consequently $\beta_{u v}(r)>-1$ so we may assume that r_{1} is a tough triangle $u v x$. By Conf(2), $m(u x)=m(v x)=1$. Since $u v x$ is tough, $m(u v) \geq 2$. Suppose that $m(u v)=3$. Then by Conf(4), $m^{+}(u x)=m^{+}(v x)=1$, contradicting the fact that $u v x$ is tough.

So $m(u v)=2, m(u v x)=4$ and we may assume that $m(v w)=2$. But by Conf(4), $m^{+}(u x)=1$, contradicting the fact that $u v x$ is tough.

Suppose that r has multiplicity four. Then $\beta(r)>-1$. Since $m^{+}(r) \leq 6$ we may assume that r_{1} is big, so $\beta_{u v}(r)=-1$. Now if r_{2} is tough then $\beta_{v w}(r)=1$, and otherwise $\beta_{v w}(r) \leq 0$. Thus by symmetry we may assume that r_{2} is a tough triangle $v w x$ and r_{3} is small. Suppose that $m(u v)=2$. By Conf(4), $m^{+}(v x)+m(v w)+m(u w)+1 \leq 5$. Also by Conf(4), $m(u v)+m(v w)+m^{+}(w x) \leq 5$. Since $m(u v)+m(v w)+m(u w)=4$ it follows that $m^{+}(v x)+m(v w)+m^{+}(w x) \leq 5$, contradicting the fact that $v w x$ is tough.

Therefore we may assume that r has multiplicity three. Now $\beta(r)>1$. By the rules, if r_{1} is tough then $\beta_{u v}(r)=1$. If r_{1} is big then $\beta_{u v}(r)=-1$. Otherwise $\beta_{u v}(r)=0$. By symmetry, it follows that r_{1}, r_{2}, r_{3} are all small and we may assume that r_{1}, r_{2} are tough triangles $u v x$ and $v w y$. It follows from Conf(4) that $m^{+}(v x), m^{+}(u x) \leq 2$. This contradicts the fact that $u v x$ is tough. This proves 3.4
3.5. If r is a tough triangle with $\alpha(r)+\beta(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime, and let $r=u v w$. Now $\alpha(r)=2(m(u v)+m(v w)+m(u w))-7$, so

$$
2(m(u v)+m(v w)+m(u w))+\beta(r)>7 .
$$

Let r_{1}, r_{2}, r_{3} be the regions different from r incident with $u v, v w, u w$ respectively. Since r is small and tough, observe from the rules that $\beta_{e}(r) \leq 0$ for $e=u v, v w, u w$.

Let $X=\{u, v, w\}$. Since (G, m) is prime, it follows that $|V(G) \backslash X| \geq 3$, and so $m(\delta(X)) \geq 9$. But

$$
m(\delta(X))=m(\delta(u))+m(\delta(v))+m(\delta(w))-2 m(u v)-2 m(u w)-2 m(v w),
$$

and so $9 \leq 7+7+7-2 m(u v)-2 m(u w)-2 m(v w)$, that is, r has multiplicity at most six. Since $m^{+}(r) \geq 7, r$ has multiplicity at least four.

We claim that no two tough triangles share an edge. For suppose that $u v w$ and $u v x$ are tough triangles. By Conf(4),$m^{+}(v x)+m(u v)+m^{+}(u w) \leq 5$. Also by Conf(4) $m^{+}(v w)+m(u v)+m^{+}(u x) \leq$ 5. Since $m^{+}(v w)+m^{+}(u w)+m(u v) \geq 6, m^{+}(v x)+m^{+}(u x)+m(u v) \leq 4$, contradicting the fact that r_{1} is tough.

Suppose first that r has multiplicity six and so $\beta(r)>-5$. By Conf(2), none of r_{1}, r_{2}, r_{3} is a triangle. If $m(u v)=4$ then by Conf(6), r_{1}, r_{2}, r_{3} are all big, contradicting the fact that r is tough. If $m(u v)=3$, we may assume without loss of generality that $m(v w)=2$. Then by Conf((6), r_{1} and r_{2} are big, and rule $\beta 2$ applies, contradicting that $\beta(r)>-5$. By symmetry we may therefore assume that $m(u v)=m(v w)=m(u w)=2$. By Conf(6) we can assume that r_{1}, r_{2} are big and rule $\beta 2$ applies again. This contradicts that $\beta(r)>-5$.

Consequently r has multiplicity at most five. Then none of r_{1}, r_{2}, r_{3} is tough and so $\beta(r) \leq-3$, contradicting that $2(m(u v)+m(v w)+m(u w))+\beta(r)>7$. This proves 3.5.
3.6. If r is a small region with length at least four and with $\alpha(r)+\beta(r)>0$, then (G, m) is not prime.

Proof. Suppose that (G, m) is prime. Let $C=C_{r}$. Since $\alpha(r)=14-7|E(C)|+2 \sum_{e \in E(C)} m(e)$, it follows that

$$
14-7|E(C)|+2 \sum_{e \in E(C)} m(e)+\sum_{e \in E(C)} \beta_{e}(r)>0,
$$

that is,

$$
\sum_{e \in E(C)}\left(2 m(e)+\beta_{e}(r)-7\right)>-14 .
$$

For each $e \in E(C)$, let

$$
\phi(e)=2 m(e)+\beta_{e}(r),
$$

(1) For every $e \in E(C), \phi(e) \in\{1,2,3,4,5,6,7\}$.

Since r is not a triangle, $\beta_{e}(r) \in\{-1,0,1\}$. It follows from Conf(11) that $m(e) \leq 4$. Further, if $m(e)=4$ then $m^{+}(e)=4$ and $\beta_{e}(r)=-1$. This proves (1).

For each integer i, let E_{i} be the set of edges of C such that $\phi(e)=i$. From (1) $E(C)$ is the union of $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7}$.

Let e be an edge of C and denote by r^{\prime} its second region. We now make a series of observations that are easily checked from the β-rules and the fact that $2 m(e)-1 \leq \phi(e) \leq 2 m(e)+1$, as well as Conf(6) which implies that if $m(e)=3$ then r^{\prime} is not tough.
(2) $e \in E_{1}$ if and only if $m(e)=m^{+}(e)=1$ and e is not a door for r^{\prime}.
(3) $e \in E_{2}$ if and only if $m(e)=1$ and either

- $m^{+}(e)=1$ and e is a door for r^{\prime}, or
- $m^{+}(e)=2$ and r^{\prime} is not a tough triangle.
(4) $e \in E_{3}$ if and only if either
- $m(e)=1$ and r^{\prime} is a tough triangle, or
- $m(e)=m^{+}(e)=2$.
(5) $e \in E_{4}$ if and only if $m(e)=2, m^{+}(e)=3$ and r^{\prime} is not a tough triangle.
(6) $e \in E_{5}$ if and only if either
- $m(e)=2$ and r^{\prime} is a tough triangle, or
- $m(e)=m^{+}(e)=3$.
(7) $e \in E_{6}$ if and only if $m(e)=3$ and $m^{+}(e)=4$.
(8) $e \in E_{7}$ if and only if $m(e)=4$ and $m^{+}(e)=4$.
(9) No edge in E_{7} is consecutive with an edge in $E_{6} \cup E_{7}$.

Suppose that edges $e, f \in E(C)$ share an end v, and $e \in E_{7}$. Since v has degree at least three it follows that $m(e)+m(f) \leq 6$ so $f \notin E_{6} \cup E_{7}$. This proves (9).
(10) Let e, f, g be consecutive edges of C. If $e, g \in E_{7}$ then $f \in E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$.

For by (9), $f \notin E_{6}$. Suppose that $f \in E_{5}$. Since $m(e)=m(g)=4$ and G has minimum degree three, by (6) $m(f)=2$ and the second region for f is a tough triangle r^{\prime} with $m\left(r^{\prime}\right)=4$. But $m^{+}(e)=m^{+}(g)=4$, so r^{\prime} is incident with two big regions; thus $m^{+}\left(r^{\prime}\right)=5$, contradicting the fact that r^{\prime} is tough. This proves (10).

For $1 \leq i \leq 7$, let $n_{i}=\left|E_{i}\right|$. Let $k=|E(C)|$.
(11) $5 n_{1}+4 n_{2}+3 n_{3}+2 n_{4}+n_{5}+k-n_{7} \leq 13$.

Since

$$
\sum_{e \in E(C)}(\phi(e)-7)>-14
$$

we have $6 n_{1}+5 n_{2}+4 n_{3}+3 n_{4}+2 n_{5}+n_{6} \leq 13$, that is,

$$
5 n_{1}+4 n_{2}+3 n_{3}+2 n_{4}+n_{5}+k-n_{7} \leq 13
$$

since $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}+n_{6}+n_{7}=k$, proving (11).
(12) $4 n_{1}+3 n_{2}+2 n_{3}+n_{4}+k \leq 12$ and $n_{1}+n_{2} \leq 2$.

By (9) we have $n_{1}+n_{2}+n_{3}+n_{4}+n_{5} \geq n_{7}$. Suppose that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5}=n_{7}$. By Conf(7), the edges of C cannot all be in E_{6}, so $n_{7}>0$. Then k is even and every second edge of C is in E_{7}, so by (10), $n_{5}=n_{6}=0$; and hence $n_{1}+n_{2}+n_{3}+n_{4}=\frac{k}{2}$ and $n_{7}=\frac{k}{2}$. By (11) $3 n_{1}+2 n_{2}+n_{3}+\frac{3}{2} k \leq 13$. Therefore, either $n_{1}+n_{2} \leq 1$, or $k=4$, or $n_{1}+n_{2}=2$ and $k=6$. But by Conf(9), every edge in E_{7} is disjoint from an edge in $E_{1} \cup E_{2}$, a contradiction. This proves that $n_{1}+n_{2}+n_{3}+n_{4}+n_{5} \geq n_{7}+1$. The first inequality follows from (11) and the second from the fact that $k \geq 4$. This proves (12).

Case 1: $n_{1}+n_{2}=2$.

Suppose that $k+n_{1} \geq 6$. By (12), $n_{3}=n_{4}=0$. By Conf(9), every edge in E_{7} is disjoint from an edge in $E_{1} \cup E_{2}$, and therefore, by (9), is consecutive with an edge in E_{5}. Further, by (10) no edge in E_{5} meets two edges in E_{7}, and so $n_{5} \geq n_{7}$, contradicting (11). This proves that $k+n_{1} \leq 5$.

Suppose that $k=5$. Then $n_{2}=2$, and so by (12), $n_{3}=0$ and $n_{4} \leq 1$. Also $n_{4}+n_{5}+n_{6}+n_{7}=3$. By (11), $n_{7} \geq 2 n_{4}+n_{5}$. Suppose that $n_{6}=3$; then by (7), C has three edges of multiplicity three,
each of whose second region is small. Further, by (3), if the edges in E_{2} are consecutive, they are both incident with small regions. This contradicts Conf(14). Therefore $n_{6} \leq 2$, and so $n_{7} \geq 1$. By Conf(10), one of the edges in E_{2} must be incident with a big region, and by (3), it must be a door for that region. Since $n_{3}=0$, it follows that the two edges in E_{2} are disjoint. It follows that $n_{7}=1$. By (11), $n_{4}=0$ and $n_{6} \geq 1$. Let $e \in E_{6}$. Then e must be consecutive with both edges in E_{2}, for it is not consecutive with the edge in E_{7}. But then e is disjoint only from edges in $E_{7} \cup E_{5}$, contrary to $\operatorname{Conf}(7)$.

Suppose that $k=4$. Then $n_{1} \leq 1$. By Conf(10) and (3), $n_{1} \geq n_{7}$. Therefore by (11), $3 n_{3}+$ $2 n_{4}+n_{5} \leq 1$, and so $n_{3}=n_{4}=0$ and $n_{5} \leq 1$. Since $n_{5}+n_{6}+n_{7}=2$, and edges in E_{5}, E_{6}, E_{7} have multiplicity at least two, three, four, respectively, Conf(3) implies $n_{7}=0$ and $n_{6} \leq 1$. Hence $n_{5}=n_{6}=1$. From (11) it follows that $n_{1}=0$. By Conf(5) the edge disjoint from the edge in E_{6} must have multiplicity one and be incident with a big region. By (3) this edge must be in E_{1}, a contradiction. This proves that Case 1 does not apply.

Case 2: $n_{1}+n_{2}=1$.
Let $e_{0} \in E_{1} \cup E_{2}$. We claim that neither edge consecutive with e_{0} is in $E_{6} \cup E_{7}$. For let e_{1} be an edge consecutive with e_{0} on C and suppose that $e_{1} \in E_{6} \cup E_{7}$; then by (7), $m^{+}\left(e_{1}\right)=4$. But all edges disjoint from e_{1} on C are not in $E_{1} \cup E_{2}$ and therefore are 2-heavy and their second regions are not triangles with multiplicity three. Therefore Conf(7) implies that at least four edges disjoint from e_{0} are not 3 -heavy and hence $n_{3}+n_{4} \geq 4$ and that $k \geq 7$, contradicting (11). This proves that all edges in $E_{6} \cup E_{7}$ are disjoint from e_{0}, and so $n_{3}+n_{4}+n_{5} \geq 2$. We consider two cases:

Subcase 2.1: $n_{7} \geq 1$.
Let $f \in E_{7}$. By Conf(9), if an edge e_{1} meets both e_{0} and f then $m\left(e_{1}\right)=1$ and so $e_{1} \in E_{3}$. By (10) an edge meeting two edges in E_{7} is in $E_{3} \cup E_{4}$. Summing over the edges meeting $E_{7} \cup\left\{e_{0}\right\}$ it follows that $2 n_{3}+2 n_{4}+n_{5} \geq 2\left(n_{7}+1\right)$. From (11) we deduce $5 n_{1}+4 n_{2}+n_{3}+n_{7}+k \leq 11$; thus $k+n_{1}+n_{3}+n_{7} \leq 7$. By Conf(10), $m^{+}\left(e_{0}\right)=1$, so by (3), either $e_{0} \in E_{1}$ or there is an edge of multiplicity one disjoint from e_{0}. Since $n_{1}+n_{2}=1$, such an edge would be in E_{3}; it follows that $n_{1}+n_{3} \geq 1$. We deduce that $k \leq 5$. If $k=5$ then by Conf(9) the edge meeting e_{0} and f is in E_{3}, and so $n_{1}+n_{3} \geq 2$, a contradiction.

Thus $k=4$. Then by Conf(10) and (3), $e_{0} \in E_{1}$. By Conf(3) the two edges consecutive with e_{0} are in E_{3}. But then $k+n_{1}+n_{3}+n_{7}=8$, a contradiction.

Subcase 2.2: $n_{7}=0$.
Let e_{0}, \ldots, e_{k-1} denote the edges of C listed in consecutive order. Since $n_{3}+n_{4}+n_{5} \geq 2$, (11) implies $k \leq 7$.

Suppose that $k=7$. Then the inequality in (11) is tight, and we have $n_{2}=1, n_{5}=2$ and $n_{6}=4$. Consequently $n_{1}=n_{3}=n_{4}=0$. Then $e_{1}, e_{6} \in E_{5}$, and so by (6) and (7) are 3-heavy with multiplicity at least two, and $e_{2}, e_{3}, e_{4}, e_{5} \in E_{6}$. This is a contradiction by Conf(8).

Suppose that $k=6$. We know $e_{1}, e_{5} \notin E_{6}$. By (11), $n_{1}+3 n_{3}+2 n_{4}+n_{5} \leq 3$, but $n_{3}+n_{4}+n_{5} \geq 2$ so $n_{3}=0$ and consequently $n_{4}+n_{5}+n_{6}=5$. Also $n_{1}+2 n_{4}+n_{5} \leq 3$. In particular $n_{4} \leq 1$. Suppose that $n_{4}=1$, then $n_{6}=3$ and $n_{5}=1$ and $e_{2}, e_{3}, e_{4} \in E_{6}$. It follows from Conf(8) that $m^{+}\left(e_{0}\right)=1$, and so $n_{1}=1$, contradicting that $n_{1}+2 n_{4}+n_{5} \leq 3$. Thus $n_{4}=0$. It follows that $n_{5}+n_{6}=5$. This contradicts Conf(16).

Next suppose that $k=5$. We know $e_{1}, e_{4} \notin E_{6}$. By (11), $n_{1}+3 n_{3}+2 n_{4}+n_{5} \leq 4$. Suppose that $2 n_{3}+n_{4} \geq 2$. Then $n_{1}+n_{3}+n_{4}+n_{5} \leq 2$, and so $n_{2}+n_{6} \geq 3$. Since $n_{6} \leq 2$ we may assume that $e_{2}, e_{3} \in E_{6}$ and $e_{0} \in E_{2}$, contrary to Conf(14). It follows that $2 n_{3}+n_{4} \leq 1$. Consequently $n_{3}=0$ and $n_{5}+n_{6} \geq 3$. Thus we may assume that $m^{+}\left(e_{1}\right), m^{+}\left(e_{2}\right), m^{+}\left(e_{3}\right), m^{+}\left(e_{4}\right) \geq 3$, and e_{1} is 3 -heavy. This contradicts Conf(15).

Finally, suppose that $k=4$. By (11), $n_{1}+3 n_{3}+2 n_{4}+n_{5} \leq 5$. By Conf(5), at least one of $m^{+}\left(e_{1}\right), m^{+}\left(e_{3}\right) \leq 2$, so we may assume that $e_{1} \in E_{3}$ and so $n_{3}=1$. Since $m^{+}\left(e_{1}\right)=2$, Conf([8) implies $e_{3} \notin E_{6}$, and so $e_{3} \in E_{5}$. Suppose that $e_{0} \in E_{1}$. Then $2 n_{4}+n_{5} \leq 1$, and so $n_{4}=0$ and $n_{5} \leq 1$. Since $e_{2} \notin E_{5}, e_{2} \in E_{6}$. Since $m\left(e_{2}\right)=3$ by (7), it follows from Conf(3) that $m\left(e_{1}\right)=1$, $m\left(e_{3}\right)=2$ and from (4) and (6) that e_{1}, e_{3} are incident with tough triangles $v_{1} v_{2} x$ and $v_{3} v_{0} y$. This contradicts Conf(13).

Thus $e_{0} \in E_{2}$ and so $m^{+}\left(e_{0}\right)=2$. By Conf(8), $e_{2} \notin E_{6}$. Hence $e_{2} \in E_{4} \cup E_{5}$. Since $2 n_{4}+n_{5} \leq 2$ and $e_{3} \in E_{5}$, it follows that $e_{2} \in E_{5}$. By Conf(13), the second region for e_{1} is not a tough triangle, and so $m\left(e_{1}\right)=2$. Since $m\left(e_{2}\right), m\left(e_{3}\right) \geq 2$, Conf(3) tells us $m\left(e_{3}\right)=2$ and the second region for e_{3} is a tough triangle $v_{0} v_{3} x$. But this contradicts Conf(13). We conclude that Case 2 does not apply.

Case 3: $n_{1}+n_{2}=0$.
In this case, C has no doors, so by $\operatorname{Conf(9)} n_{7}=0$. Suppose that $n_{6} \geq 1$ and let $e \in E_{6}$. Then by Conf(7), there are at least four edges disjoint from e that are not 3-heavy. Therefore $n_{3}+n_{4} \geq 4$ and $k \geq 7$, contradicting (11). It follows that $n_{1}=n_{2}=n_{6}=n_{7}=0$, and so $n_{3}+n_{4}+n_{5}=k$. By (11), $3 n_{3}+2 n_{4}+n_{5}+k \leq 13$, and $k \leq 6$. Further, $3 n_{3}+2 n_{4}+2 n_{5}+k \leq 13+n_{5}$, and so $n_{5}-n_{3} \geq 3 k-13$.

Suppose first that $k=6$; then $n_{5} \geq 5$, so by (6) C has five 3 -heavy edges, each with multiplicity two or three, contrary to Conf(16). Suppose that $k=5$; then $3 n_{3}+2 n_{4}+n_{5} \leq 8$, and so, since $n_{3}+n_{4}+n_{5}=5, n_{3} \leq 1$. Also $n_{5} \geq 1$, and if $n_{3}=1$ then $n_{4} \leq 1$. Consequently we may assume that there is an ordering e_{0}, \ldots, e_{4} of $E(C)$, where $e_{0} \in E_{5}$ and $e_{2}, e_{3} \in E_{4} \cup E_{5}$, contrary to Conf(15).

Finally, suppose that $k=4$; then $3 n_{3}+2 n_{4}+n_{5} \leq 9$. Since, by (5) and (6), every edge $f \in E_{4} \cup E_{5}$ has $m^{+}(f) \geq 3$, Conf(5) tells us there are two consecutive edges in E_{3}, say e_{0} and e_{1}. Hence $n_{5} \geq 1$ and $n_{4}+n_{5}=2$. We may assume that $e_{2} \in E_{4} \cup E_{5}$ and $e_{3} \in E_{5}$. Since $m\left(e_{2}\right) \geq 2$, Conf(3) implies that $m\left(e_{1}\right)+m\left(e_{3}\right) \leq 4$. Thus by (4) and (6), either the second region for e_{1} is a tough triangle, or the second region for e_{3} is a tough triangle and $m\left(e_{1}\right)=2$. Further, $m^{+}\left(e_{1}\right)+m\left(e_{3}\right)=5$. This contradicts Conf(13). We conclude that Case 3 does not apply.

This completes the proof of 3.6
Proof of 3.1. Suppose that (G, m) is a prime 7 -target, and let α, β be as before. Since the sum over all regions r of $\alpha(r)+\beta(r)$ is positive, there is a region r with $\alpha(r)+\beta(r)>0$. But this is contrary to one of 3.3, 3.4, 3.5, 3.6 This proves 3.1.

4 Reducibility

Now we begin the second half of the paper, devoted to proving the following.
4.1. Every minimum 7-counterexample is prime.

Again, the proof is broken into several steps. Clearly no minimum 7-counterexample (G, m) has an edge e with $m(e)=0$, because deleting e would give a smaller 7 -counterexample; and by 2.1 every minimum 7 -counterexample satisfies the conclusions of 2.1 Thus, it remains to check that (G, m) contains none of $\operatorname{Conf}(1)-\operatorname{Conf}(16)$. In [3] we found it was sometimes just as easy to prove a result for general d instead of $d=8$, and so the following theorem is proved there.
4.2. If (G, m) is a minimum d-counterexample, then every triangle has multiplicity less than d.

It turns out that Conf(1) is a reducible configuration for every d as well; this follows easily from 2.1 and is proved in 3.
4.3. No minimum d-counterexample contains Conf(1).

If (G, m) is a d-target, and x, y are distinct vertices both incident with some common region r, we define $(G, m)+x y$ to be the d-target $\left(G^{\prime}, m^{\prime}\right)$ obtained as follows:

- If x, y are adjacent in G, let $\left(G^{\prime}, m^{\prime}\right)=(G, m)$.
- If x, y are non-adjacent in G, let G^{\prime} be obtained from G by adding a new edge $x y$, extending the drawing of G to one of G^{\prime} and setting $m^{\prime}(e)=m(e)$ for every $e \in E(G)$ and $m^{\prime}(x y)=0$.

Let (G, m) be a d-target, and let $x-u-v-y$ be a three-edge path of G, where x, y are incident with a common region. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained as follows:

- If x, y are adjacent in G, let $G^{\prime}=G$, and otherwise let G^{\prime} be obtained from G by adding the edge $x y$ and extending the drawing of G to one of G^{\prime}.
- Let $m^{\prime}(x u)=m(x u)-1, m^{\prime}(u v)=m(u v)+1, m^{\prime}(v y)=m(v y)-1, m^{\prime}(x y)=m(x y)+1$ if $x y \in E(G)$ and $m^{\prime}(x y)=1$ otherwise, and $m^{\prime}(e)=m(e)$ for all other edges e.

If (G, m) is a minimum d-counterexample, then because of the second statement of 2.1 it follows that $\left(G^{\prime}, m^{\prime}\right)$ is a d-target. We say that $\left(G^{\prime}, m^{\prime}\right)$ is obtained from (G, m) by switching on the sequence $x-u-v-y$. If $\left(G^{\prime}, m^{\prime}\right)$ admits a d-edge-colouring, we say that the path $x-u-v-y$ is switchable.
4.4. No minimum 7-counterexample contains Conf(2) or Conf(3).

Proof. To handle both cases at once, let us assume that (G, m) is a 7 -target, and $u v w, u w x$ are triangles with $m(u v)+m(u w)+m(v w)+m(u x) \geq 7$, (where possibly $m(u w)=0)$; and either (G, m) is a minimum 7-counterexample, or $m(u w)=0$ and deleting $u w$ gives a minimum 7-counterexample $\left(G_{0}, m_{0}\right)$ say. Let $\left(G, m^{\prime}\right)$ be obtained by switching (G, m) on $u-v-w-x$.
(1) $\left(G, m^{\prime}\right)$ is not smaller than (G, m).

Because suppose it is. Then it admits a 7-edge-colouring; because if (G, m) is a minimum 7counterexample this is clear, and otherwise $m(u w)=0$, and $\left(G^{\prime}, m^{\prime}\right)$ is smaller than $\left(G_{0}, m_{0}\right)$. Let $F_{1}^{\prime}, \ldots, F_{7}^{\prime}$ be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Since

$$
m^{\prime}(u v)+m^{\prime}(u w)+m^{\prime}(v w)+m^{\prime}(u x) \geq 8
$$

one of $F_{1}^{\prime}, \ldots, F_{7}^{\prime}$, say F_{1}^{\prime}, contains two of $u v, u w, v w, u x$ and hence contains $v w, u x$. Then

$$
\left(F_{1}^{\prime} \backslash\{v w, u x\}\right) \cup\{u v, w x\}
$$

is a perfect matching, and it together with $F_{2}^{\prime}, \ldots, F_{7}^{\prime}$ provide a 7 -edge-colouring of (G, m), a contradiction. This proves (1).

From (1) we deduce that $\max (m(u x), m(v w))<\max (m(u v), m(w x))$. Consequently,

$$
m(u v)+m(u w)+m(v w)+m(w x) \leq 6,
$$

by (1) applied with u, w exchanged; and

$$
m(u v)+m(u x)+m(w x)+m(u w) \leq 6,
$$

by (1) applied with v, x exchanged. Consequently $m(u x)>m(w x)$, and hence $m(u x) \geq 2$; and $m(v w)>m(w x)$, and so $m(v w) \geq 2$. Since $m(u v)+m(u w)+m(v w)+m(w x) \leq 6$ and $m(v w) \geq 2$, it follows that $m(u v) \leq 3$; and since $\max (m(u x), m(v w))<\max (m(u v), m(w x))$, it follows that $m(u v)=3, m(v w)=m(u x)=2$ and $m(w x)=1$. But this is contrary to (1), and so proves 4.4.

5 Guenin's cuts

Next we introduce a method of Guenin [6]. Let G be a three-connected graph drawn in the plane, and let G^{*} be its dual graph; let us identify $E\left(G^{*}\right)$ with $E(G)$ in the natural way. A cocycle means the edge-set of a cycle of the dual graph; thus, $Q \subseteq E(G)$ is a cocycle of G if and only if Q can be numbered $\left\{e_{1}, \ldots, e_{k}\right\}$ for some $k \geq 3$ and there are distinct regions r_{1}, \ldots, r_{k} of G such that $1 \leq i \leq k, e_{i}$ is incident with r_{i} and with r_{i+1} (where r_{k+1} means r_{1}). Guenin's method is the use of the following theorem, a proof of which is given in [3].
5.1. Suppose that $d \geq 1$ is an integer such that every $(d-1)$-regular oddly $(d-1)$-edge-connected planar graph is $(d-1)$-edge-colourable. Let (G, m) be a minimum d-counterexample, and let $x-u-v-y$ be a path of G with x, y on a common region. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on $x-u-v-y$, and let F_{1}, \ldots, F_{d} be a d-edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$, where $x y \in F_{k}$. Then none of F_{1}, \ldots, F_{d} contain both $u v$ and $x y$. Moreover, let $I=\{1, \ldots, d\} \backslash\{k\}$ if $x y \notin E(G)$, and $I=\{1, \ldots, d\}$ if $x y \in E(G)$. Then for each $i \in I$, there is a cocycle Q_{i} of G^{\prime} with the following properties:

- for $1 \leq j \leq d$ with $j \neq i,\left|F_{j} \cap Q_{i}\right|=1$;
- $\left|F_{i} \cap Q_{i}\right| \geq 5$;
- there is a set $X \subseteq V(G)$ with $|X|$ odd such that $\delta_{G^{\prime}}(X)=Q_{i}$; and
- $u v, x y \in Q_{i}$ and $u x, v y \notin Q_{i}$.

By the result of [4, every 6-regular oddly 6 -edge-connected planar graph is 6 -edge-colourable, so we can apply 5.1 when $d=7$.

5.2. No minimum 7-counterexample contains Conf(4) or Conf(5).

Proof. To handle both at once, let us assume that (G, m) is a 7 -target, and $u v w, u w x$ are two triangles with $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 6$; and either (G, m) is a minimum 7-counterexample, or $m(u w)=0$ and deleting $u w$ gives a minimum 7 -counterexample. We claim that $u-x-w-v-u$ is switchable. For suppose not; then we may assume that $m(v w)>\max (m(u v), m(w x))$ and $m(v w) \geq$ $m(u x)$. Now we do not have $\operatorname{Conf(2)}$ or $\operatorname{Conf(3)}$ by 4.4 so

$$
m(u v)+m(u w)+m(v w)+m(w x) \leq 6,
$$

and yet $m(u v)+m(u w)+m(w x) \geq 4$ since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 6$; and so $m(v w) \leq 2$. Consequently $m(u v), m(w x)=1$, and $m(u x) \leq 2$. Since $u-x-w-v-u$ is not switchable, it follows that $m(u x)=m(v w)=2$; and since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 6$, it follows that $m(u w) \geq 2$ giving Conf(2), contrary to 4.4. This proves that $u-x-w-v-u$ is switchable.

Let r_{1}, r_{2} be the second regions incident with $u v, w x$ respectively, and for $i=1,2$ let D_{i} be the set of doors for r_{i}. Let $k=m(u v)+m(u w)+m(w x)+2$. Let $\left(G, m^{\prime}\right)$ be obtained by switching on $u-x-w-v-u$, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of (G, m^{\prime}), where F_{i} contains one of $u v, u w, w x$ for $1 \leq i \leq k$. For $1 \leq i \leq 7$, let Q_{i} be as in 5.1.
(1) For $1 \leq i \leq 7$, either $F_{i} \cap Q_{i} \cap D_{1} \neq \emptyset$, or $F_{i} \cap Q_{i} \cap D_{2} \neq \emptyset$; and both are nonempty if either $k=7$ or $i=7$.

For let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=w x, e_{2}=u w$, and $e_{3}=u v$. Since F_{j} contains one of e_{1}, e_{2}, e_{3} for $1 \leq j \leq k$, it follows that none of e_{4}, \ldots, e_{n} belongs to any F_{j} with $j \leq k$ and $j \neq i$, and, if $k=6$ and $i \neq 7$, that only one of them is in F_{7}. But since at most one of e_{1}, e_{2}, e_{3} is in F_{i} and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 7$; so either e_{4}, e_{5} belong only to F_{i}, or e_{n}, e_{n-1} belong only to F_{i}, and both if $k=7$ or $i=7$. But if e_{4}, e_{5} are only contained in F_{i}, then they both have multiplicity one, and are disjoint, so e_{4} is a door for r_{1} and hence $e_{4} \in F_{i} \cap Q_{i} \cap D_{1}$. Similarly if e_{n}, e_{n-1} are only contained in F_{i} then $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. This proves (1).

Now $k \leq 7$, so one of r_{1}, r_{2} is small since $m^{+}(u v)+m(u w)+m^{+}(w x) \geq 6$; and if $k=7$ then by (1) $\left|D_{1}\right|,\left|D_{2}\right| \geq 7$, a contradiction. Thus $k=6$, so both r_{1}, r_{2} are small, but from (1) $\left|D_{1}\right|+\left|D_{2}\right| \geq 8$, again a contradiction. This proves 5.2.

5.3. No minimum 7 -counterexample contains Conf(6).

Proof. Let (G, m) be a minimum 7-counterexample, and suppose that $u v w$ is a triangle with $m^{+}(u v)+m^{+}(u w)=6$ and either $m(u v) \geq 3$ or $m(u v)=m(v w)=m(u w)=2$ or u has degree at least four. Let r_{1}, r_{2} be the second regions for $u v, u w$ respectively, and for $i=1,2$ let D_{i} be the set of doors for r_{i}. Since we do not have Conf(4) by 5.2 neither of r_{1}, r_{2} is a triangle. Let $t u$ be the edge incident with r_{2} and u different from $u w$. It follows from 4.3 that we do not have Conf(II) so $m(t u) \leq 2$, since $m(u v)+m(u w) \geq 4$ and $m(v w)+\max (m(u v), m(u w)) \geq 4$. By 4.2 $m(v w) \leq m(u v)$. Thus the path $t-u-v-w$ is switchable. Note that t, w are non-adjacent in G, since r_{2} is not a triangle.

Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on this path, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of it. Let $k=m(u v)+m(u w)+2$; thus $k \geq 6$, since $m(u v)+m(u w) \geq 4$. By 5.1 we may assume that for $1 \leq j<k, F_{j}$ contains one of $u v, u w$, and $t w \in F_{k}$.

Let $I=\{1, \ldots, 7\} \backslash\{k\}$, and for each $i \in I$, let Q_{i} be as in 5.1. Now let $i \in I$, and let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=u v, e_{2}=u w$, and $e_{3}=t w$. Since F_{j} contains one of e_{1}, e_{2}, e_{3} for $1 \leq j \leq k$ it follows that none of e_{4}, \ldots, e_{n} belong to any F_{j} with $j \leq k$; and if $k=6$ and $i \neq 7$, only one of them belongs to F_{7}. Since F_{i} contains at most one of e_{1}, e_{2}, e_{3} and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 7$, and so either e_{4}, e_{5} belong only to F_{i}, or e_{n}, e_{n-1} belong only to F_{i}; and both if either $k=7$ or $i=7$. Thus either $e_{4} \in F_{i} \cap Q_{i} \cap D_{2}$ or $e_{n} \in F_{i} \cap Q_{i} \cap D_{1}$, and both if $k=7$ or $i=7$. Since $k \leq 7$, one of r_{1}, r_{2} is small since $m^{+}(u v)+m^{+}(u w)=6$; and yet if $k=7$ then $\left|D_{1}\right|,\left|D_{2}\right| \geq|I|=6$, a contradiction. Thus $k=6$, so r_{1}, r_{2} are both small, and yet $\left|D_{1}\right|+\left|D_{2}\right| \geq 7$, a contradiction. This proves 5.3.

5.4. No minimum 7-counterexample contains Conf(7).

Proof. Let (G, m) be a minimum 7-counterexample, with an edge $u v$ with $m^{+}(u v) \geq 4$ incident with regions r_{1} and r_{2} and r_{1} has length at least four. Suppose further that every edge e of $C_{r_{1}}$ disjoint from $u v$ is 2-heavy and not incident with a triangle with multiplicity three. It is enough to show that there are at least four edges on $C_{r_{1}}$ disjoint from $u v$ that are not 3-heavy. By 5.8 and 5.6 we do not have Conf(11) or Conf(99). Hence $m(u v)=3$ and r_{2} is small.

Let $x-u-v-y$ be a path of C_{r}. By 5.2 we do not have Conf(5), so x and y are not adjacent in G. Since G has minimum degree three, $m(u v) \geq m(u x), m(v y)$ so $x-u-v-y$ is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of (G^{\prime}, m^{\prime}).

Since $m^{\prime}(u v)+m^{\prime}(x y)=5$ we may assume by 5.1 that $u v \in F_{i}$ for $1 \leq i \leq 4$ and $x y \in F_{5}$. Let $I=\{1, \ldots, 7\} \backslash\{5\}$ and for $i \in I$, let the edges of Q_{i} in order be $e_{1}^{i}, \ldots, e_{n}^{i}, e_{1}^{i}$, where $e_{1}^{i}=u v$ and $e_{2}^{i}=x y$.

Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}^{i}, e_{2}^{i}, it follows that $n \geq 6$. Let D_{2} denote the set of doors for r_{2}.
(1) Let $i \in I$. If $i>k$ then $F_{i} \cap D_{2}$ is nonempty. Further, if $F_{i} \cap D_{2}$ is empty, or $i>k$ then e_{3}^{i} is not 3-heavy, and either

- e_{3}^{i} belongs to F_{i}, or
- e_{4}^{i} belongs to F_{i} and $m\left(e_{3}^{i}\right)=m\left(e_{4}^{i}\right)=1$ and e_{3}^{i}, e_{4}^{i} belong to a triangle.

For $1 \leq j \leq 5, F_{j}$ contains one of e_{1}^{i}, e_{2}^{i}; and hence $e_{3}^{i}, \ldots, e_{n}^{i} \notin F_{j}$ for all $j \in\{1, \ldots, 5\}$ with $j \neq i$. Therefore $e_{3}^{i}, \ldots, e_{n}^{i}$ belong only to F_{i}, F_{6}, F_{7}. Since e_{3}^{6} is 2 -heavy, one of e_{3}^{6}, e_{4}^{6} does not belong to F_{6} and therefore belongs to F_{7}. It follows that $e_{n}^{6}, e_{n-1}^{6} \notin F_{7}$ so $F_{6} \cap D_{2}$ is nonempty. Similarly, $F_{7} \cap D_{2}$ is nonempty. This proves the first assertion.

Suppose that $F_{i} \cap D_{2}$ is empty, or $i>5$; we have $\left|\left\{e_{n}^{i}, e_{n-1}^{i}\right\} \cap\left(F_{6} \cup F_{7}\right)\right| \geq 1$. Without loss of generality say $\left|\left\{e_{n}^{i}, e_{n-1}^{i}\right\} \cap F_{6}\right| \geq 1$. It follows that e_{3}^{i}, e_{4}^{i} belong only to F_{i}, F_{7}, so e_{3}^{i} is not 3-heavy. On the other hand, e_{3}^{i} is 2-heavy by hypothesis, so if $e_{3}^{i} \notin F_{i}$, then e_{3}^{i} has multiplicity one, $e_{3}^{i} \in F_{7}$, e_{4}^{i} belongs to F_{i}, has multiplicity one. Since e_{3}^{i} is 2-heavy, e_{3}^{i} and e_{4}^{i} belong to a triangle. This proves (1).

Let I_{1} denote the indices $i \leq 6, i \neq 5$ such that e_{3}^{i} is not 3-heavy and either $e_{3}^{i} \in F_{i}$, or $e_{4}^{i} \in F_{i}$ and e_{3}^{i}, e_{4}^{i} have multiplicity one and belong to a triangle incident with r_{1}. From (1) and because r_{2} is small, $\left|I_{1}\right| \geq 4$. Suppose that for $i \neq i^{\prime} \in I_{1}$, the corresponding edges e_{3}^{i} and $e_{3}^{i^{\prime}}$ are the same. We may assume that $i^{\prime} \leq 4$. If $e_{3}^{i} \in F_{i^{\prime}}$, this is a contradiction. Otherwise $m\left(e_{3}^{i}\right)=m\left(e_{4}^{i}\right)=1$ and e_{3}^{i}, e_{4}^{i}
belong to a triangle incident with r_{1}. It follows that $e_{4}^{i}=e_{4}^{i^{\prime}}$ since e_{3}^{i} is not incident with a triangle of multiplicity three, and so $e_{4}^{i} \in F_{i^{\prime}}$, a contradiction.

It follows that there are at least four edges of C_{r} disjoint from $u v$ that are not 3-heavy. This proves 5.4.

5.5. No minimum 7-counterexample contains Conf(8).

Proof. Let (G, m) be a minimum 7 -counterexample, with an edge $u v$ with multiplicity three, incident with regions r and r_{1} where r_{1} is small. Suppose that there is an edge f disjoint from e with $m^{+}(f)=m(f)+1=2$, where every edge of $C_{r} \backslash\{f\}$ disjoint from e is 3-heavy with multiplicity at least two. Since e and f are disjoint r has length at least four. Let $x-u-v-y$ be a path of C_{r}. By 5.2 we do not have Conf(5), so x and y are not adjacent in G. Since G has minimum degree at least three, it follows that $m(u v) \geq m(u x), m(v y)$ so $x-u-v-y$ is switchable; let (G^{\prime}, m^{\prime}) be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Since $m^{\prime}(u v)+m^{\prime}(x y)=5$ we may assume by 5.1] that $u v \in F_{i}$ for $1 \leq i \leq 4$ and $x y \in F_{5}$. Let $I=\{1, \ldots, 7\} \backslash\{5\}$ and for $i \in I$, let Q_{i} be as in 5.1

For $i \in I$, let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=u v$ and $e_{2}=x y$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. For $1 \leq j \leq 5, F_{j}$ contains one of e_{1}, e_{2}; and hence for all $j \in\{1, \ldots, 5\}, e_{3}, \ldots, e_{n} \notin F_{i}$, and so e_{3}, \ldots, e_{n} belong only to F_{i}, F_{6} or F_{7}. In particular when $i \in\{6,7\}, e_{3}$ is not 3 -heavy and so $e_{3}=f$. It follows f belongs only to F_{6}, F_{7}; we assume without loss of generality $f \in F_{6}$. Let D_{1} denote the set of doors for r_{1}. Denote by r_{2} the second region for f and by D_{2} its set of doors.
(1) Let $i \in I$. At least one of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and if $i=7$ then both are nonempty.

Suppose that $i=7$. Then $e_{3}=f \in F_{6}$ and e_{4}, \ldots, e_{n} belong only to F_{7}, and so e_{4} is a door for r_{2} and e_{n} is a door for r_{1}. Now suppose that $i<7$. If $e_{3}=f$, then since F_{i} contains at most one of e_{1}, e_{2}, e_{3} and $\left|F_{i} \cap Q_{i}\right| \geq 5$, it follows that $n \geq 7$. It follows that e_{4}, \ldots, e_{n} belong only to F_{7} or F_{i}, and so either e_{4} is a door for r_{2} or e_{n} is a door for r_{1} as required. If $e_{3} \neq f$ then e_{3} is 3-heavy, and so F_{i}, F_{6}, F_{7} each contain one of e_{3}, e_{4}. Therefore e_{n-1}, e_{n} belong only to F_{i}, and so e_{n} is a door for r_{1}. This proves (1).

By (1), $\left|D_{1}\right|+\left|D_{2}\right| \geq 7$, but r_{1} and r_{2} are both small, a contradiction. This proves 5.5.

5.6. No minimum 7-counterexample contains Conf(g).

Proof. Let (G, m) be a minimum 7-counterexample, and suppose that some edge $u v$ with $m(u v)=4$ is incident with a region r of length at least four. Let $x-u-v-y$ be a path of $C_{r_{1}}$. If x and y are adjacent, then since we do not have Conf(5) by $5.2 x y$ is incident with a big region. Therefore we may assume that x and y are nonadjacent.

We will show r has a door f disjoint from $u v$, and that if $m(x u) \geq 2$ then f is also disjoint from $x u$ (and similarly for $v y$.)

Since $m(e) \geq 4$, this path is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of (G^{\prime}, m^{\prime}).

Thus we may assume that $u v \in F_{i}$ for $1 \leq i \leq 5$, and $x y \in F_{6}$. Further, if $m(x u) \geq 2$ then $x u \in F_{7}$ and simlarly for $v y$. Let $I=\{1, \ldots, 7\} \backslash\{6\}$. For $i \in I$, let Q_{i} be as in 5.1. Since Q_{i} contains both $u v, x y$ for each $i \in I$, it follows that for $1 \leq j \leq 7, F_{j}$ contains at most one of $u v, x y$.

Consider now Q_{7}, and let the edges of Q_{7} in order be $e_{1}, \ldots, e_{n}, e_{1}$ where $e_{1}=u v$ and $e_{2}=x y$. For $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}, and hence e_{3}, \ldots, e_{n} belong only to F_{7}. Since $e_{3} \in C_{r} \backslash\{x u, u v, v y\}$ by the choice of the switchable path, e_{3} is a door for r disjoint from $u v$. Further if $m(x u) \geq 2$ then e_{3} is disjoint from $x u$, and similarly for $v y$.

This proves 5.6

5.7. No minimum 7 -counterexample contains Conf(10).

Proof. Let (G, m) be a minimum 7-counterexample, and suppose that there is a region r of length between four and six incident with an edge $u v$ with multiplicity four, and suppose that $m^{+}(e) \geq 2$ for every edge e of C_{r} disjoint from $u v$. Let $x-u-v-y$ be a path of C_{r}. By 5.2, we do not have Conf(5) so x and y are not adjacent in G (and r has length five or six). Since $m(u v)=4$, the path $x-u-v-y$ is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. By 5.1 we may assume that $u v \in F_{i}$ for $1 \leq i \leq 5$, and $x y \in F_{6}$. Let $I=\{1, \ldots, 7\} \backslash\{6\}$ and for $i \in I$, let Q_{i} be as in 5.1

Define $\ell=\left|F_{7} \cap E\left(C_{r}\right) \backslash\{x u, u v, v y\}\right|$. Suppose that $\ell=0$; then let the edges of Q_{7} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=u v$ and $e_{2}=x y$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. For $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}; and hence e_{3}, \ldots, e_{n} belong only to F_{7}. But e_{3} is an edge of $E\left(C_{r}\right) \backslash\{x u, u v, v y\}$ by the choice of the switchable path, a contradiction. Thus $\ell \geq 1$. Fix an edge $f \in F_{7} \cap E\left(C_{r}\right) \backslash\{x u, u v, v y\}$ and let I_{1} denote the indices $i \in I$ for which $f \in Q_{i}$.
(1) $\left|I_{1}\right| \leq 3$.

Denote by r_{2} the second region for f and denote by D_{2} the set of doors for r_{2}. Suppose that $\left|I_{1}\right| \geq 4$. For $i \in I_{1}$, let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=u v, e_{2}=x y$ and $e_{3}=f$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, e_{3}, it follows that $n \geq 7$. For $1 \leq j \leq 7, F_{j}$ contains one of e_{1}, e_{2}, e_{3}; and hence e_{4}, \ldots, e_{n} belong only to F_{i}. Further, e_{4} is incident with r_{2} and therefore is a door for r_{2}. But then $\left|D_{2}\right| \geq 4$, so $m^{+}(f)=1$, a contradiction. This proves (1).

Since r has length at most six, there are two cases:
Case 1: $\ell=1$. Let $f \in F_{7} \cap E\left(C_{r}\right) \backslash\{x u, u v, v y\}$, denote by r_{2} the second region for f and denote by D_{2} the set of doors for r_{2}. Since the edges of $C_{r} \backslash\{x u, u v, v y, f\}$ each belong to F_{j} for some $j \neq 7$, there are at most two indices $i \in I$ for which $f \notin Q_{i}$. But then we have $\left|I_{1}\right| \geq 4$, contradicting (1).
Case 2: $\ell=2$. Let $f, f^{\prime} \in F_{7} \cap E\left(C_{r}\right) \backslash\{x u, u v, v y\}$. If $m\left(f^{\prime}\right) \geq 2$, then $f^{\prime} \in F_{j}$ for some $j \neq 7$, and so there are at most two values of $i \in I$ for which $f \notin Q_{i}$. Then $\left|I_{1}\right| \geq 4$, contradicting (1). So $m\left(f^{\prime}\right)=1$ and by symmetry, $m(f)=1$. There is at most one value of $i \in I$ for which $f, f^{\prime} \notin Q_{i}$. Therefore, without loss of generality we may assume that there at least three indices $i \in I, f \in Q_{i}$, and so $\left|I_{1}\right|=3$. Denote by r_{2} the second region for f and D_{2} the set of doors for r_{2}. For each $i \in I_{1}$, it follows that e_{4}, \ldots, e_{n} belong only to F_{i}, and e_{4} is incident with r_{2} and therefore is a door for r_{2}. Further, since f and f^{\prime} are disjoint and have multiplicity one, f is a door for r_{2}. If follows that $\left|D_{2}\right| \geq 4$, so $m^{+}(f)=1$, a contradiction.

This completes the proof of 5.7

5.8. No minimum 7-counterexample contains Conf(11).

Proof. Let (G, m) be a minimum 7-counterexample, and suppose that some edge $u v$ is incident with regions r_{1}, r_{2} where either $m(u v)=4$ and r_{2} is small, or $m(u v) \geq 5$. By exchanging r_{1}, r_{2} if necessary, we may assume that if r_{1}, r_{2} are both small, then the length of r_{1} is at least the length of r_{2}. Suppose that r_{1} is a triangle. By 5.2 we do not have Conf(4), and so r_{2} is not a triangle and therefore r_{2} is big. Then by hypothesis, $m(u v) \geq 5$, contradicting 4.2. Thus r_{1} is not a triangle.

Let $x-u-v-y$ be a path of $C_{r_{1}}$. By 5.2 we do not have $\operatorname{Conf(5)~so~} x, y$ are non-adjacent in G. Since $m(e) \geq 4$, this path is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Let $k=m(u v)+2 \geq 6$. By 5.1 we may assume that $u v \in F_{i}$ for $1 \leq i \leq k-1$, and $x y \in F_{k}$, and so $k \leq 7$. Let $I=\{1, \ldots, 7\} \backslash\{k\}$ and for $i \in I$, let Q_{i} be as in 5.1

Let D_{1} be the set of doors for r_{1} that are disjoint from e, and let D_{2} be the set of doors for r_{2}.
(1) For each $i \in I$, one of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and if $k=7$ or $i>k$ then both are nonempty.

Let $i \in I$, and let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=u v$ and $e_{2}=x y$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. Suppose that $k=7$. Then for $1 \leq j \leq 7, F_{j}$ contains one of e_{1}, e_{2}; and hence $e_{3}, \ldots, e_{n} \notin F_{j}$ for all $j \in\{1, \ldots, 7\}$ with $j \neq i$. It follows that e_{n}, e_{n-1} belong only to F_{i} and hence $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. Since this holds for all $i \in I$, it follows that $\left|D_{2}\right| \geq|I| \geq 6$. Hence r_{2} is big, and so by hypothesis, $m(u v) \geq 5$. Since $x y \notin E(G)$, e_{3} is an edge of $C_{r_{1}}$, and since e_{3}, e_{4} belong only to F_{i}, it follows that e_{3} is a door for r_{1}. But $e_{3} \neq u x, v y$ from the choice of the switchable path, and so $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$. Hence in this case (1) holds.

Thus we may assume that $k=6$ and so $I=\{1, \ldots, 5,7\}$; we have $m(e)=4$, and r_{2} is small, and $u v \in F_{1}, \ldots, F_{5}$, and $x y \in F_{6}$. If $i=7$, then since $u v, x y \in Q_{i}$ and F_{j} contains one of e_{1}, e_{2} for all $j \in\{1, \ldots, 6\}$, it follows as before that $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$ and $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$. We may therefore assume that $i \leq 6$. For $1 \leq j \leq 7$ with $j \neq i,\left|F_{j} \cap Q_{i}\right|=1$, and for $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}. Hence e_{3}, \ldots, e_{n} belong only to F_{i} and to F_{7}, and only one of them belongs to F_{7}. If neither of e_{n}, e_{n-1} belong to F_{7} then $e_{n} \in F_{i} \cap Q_{i} \cap D_{2}$ as required; so we assume that F_{7} contains one of e_{n}, e_{n-1}; and so e_{3}, \ldots, e_{n-2} belong only to F_{i}. Since $n \geq 6$, it follows that $e_{3} \in F_{i} \cap Q_{i} \cap D_{1}$ as required. This proves (1).

If $k=7$, then (1) implies that $\left|D_{1}\right|,\left|D_{2}\right| \geq 6$ as required. So we may assume that $k=6$ and hence $m(e)=4$ and $x y \notin E(G)$; and r_{2} is small. Suppose that there are three values of $i \in\{1, \ldots, 5\}$ such that $\left|F_{i} \cap D_{1}\right|=1$ and $F_{i} \cap D_{2}=\emptyset$, say $i=1,2,3$. Let $f_{i} \in F_{i} \cap D_{1}$ for $i=1,2$, 3 , and we may assume that f_{3} is between f_{1} and f_{2} in the path $C_{r_{1}} \backslash\{u v\}$. Choose $X \subseteq V\left(G^{\prime}\right)$ such that $\delta_{G^{\prime}}(X)=Q_{3}$. Since only one edge of $C_{r_{1}} \backslash\{e\}$ belongs to Q_{3}, one of f_{1}, f_{2} has both ends in X and the other has both ends in $V\left(G^{\prime}\right) \backslash X$; say f_{1} has both ends in X. Let Z be the set of edges with both ends in X. Thus $\left(F_{1} \cap Z\right) \cup\left(F_{2} \backslash Z\right)$ is a perfect matching, since $e \in F_{1} \cap F_{2}$, and no other edge of $\delta_{G^{\prime}}(X)$ belongs to $F_{1} \cup F_{2}$; and similarly $\left(F_{2} \cap Z\right) \cup\left(F_{1} \backslash Z\right)$ is a perfect matching. Call them $F_{1}^{\prime}, F_{2}^{\prime}$ respectively. Then $F_{1}^{\prime}, F_{2}^{\prime}, F_{3}, F_{4}, \ldots, F_{7}$ form a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$, yet the only edges of $D_{1} \cup D_{2}$ included in $F_{1}^{\prime} \cup F_{2}^{\prime}$ are f_{1}, f_{2}, and neither of them is in F_{2}^{\prime}, contrary to (1). Thus there are no three such values of i; and similarly there are at most two such that $\left|F_{i} \cap D_{2}\right|=1$ and $F_{i} \cap D_{1}=\emptyset$. Thus there are at least two values of $i \in I$ such that $\left|F_{i} \cap D_{1}\right|+\left|F_{i} \cap D_{2}\right| \geq 2$ (counting
$i=7$), and so $\left|D_{1}\right|+\left|D_{2}\right| \geq 8$. But $\left|D_{2}\right| \leq 3$ since r_{2} is small, so $\left|D_{1}\right| \geq 5$. This proves [5.8.

5.9. No minimum 7-counterexample contains Conf(12).

Proof. Let (G, m) be a minimum 7-counterexample, and suppose that some edge $u v$ is incident with a triangle $u v w$ with $m(u v)+m(v w)=5$, and suppose that $u v$ is also incident with a region r_{1} that has at most five doors disjoint from v. Let $t v$ be the edge incident with r_{1} and v different from $u v$. By 4.3, we do not have Conf(1) so $m(t v)=1$, and by 4.2, $m(u w)=1$. By 4.4 we do not have $\operatorname{Conf}(3), u$ and t are nonadjacent in G. It follows that the path $u-w-v-t$ is switchable; let (G^{\prime}, m^{\prime}) be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of (G^{\prime}, m^{\prime}). Since $m^{\prime}(u v)+m^{\prime}(u w)+m^{\prime}(u t)=7$, we may assume by 5.1 that $u t \in F_{7}$, and F_{j} contains one of $u v, v w$ for $1 \leq j \leq 6$ Let $I=\{1, \ldots, 6\}$ and for $i \in I$, let Q_{i} be as in 5.1.

Let D_{1} be the set of doors for r_{1} that are disjoint from v. Let $i \in I$, and let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=v w, e_{2}=u v$ and $e_{3}=u t$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, e_{3}, it follows that $n \geq 7$. For $1 \leq j \leq 7, F_{j}$ contains one of e_{1}, e_{2}, e_{3}; and hence $e_{3}, \ldots, e_{n} \notin F_{j}$ for all $j \in\{1, \ldots, 7\}$ with $j \neq i$. It follows that e_{4}, e_{5} belong only to F_{i}. By the choice of the switchable path $e_{4} \neq t v$ and hence $e_{4} \in F_{i} \cap Q_{i} \cap D_{1}$. Since this holds for all $i \in I$, it follows that $\left|D_{1}\right| \geq|I| \geq 6$, a contradiction. This proves 5.9 .
5.10. Let (G, m) be a minimum 7-counterexample, let $x-u-v-y$ be a three-edge path of G, and let (G, m^{\prime}) obtained by switching on $x-u-v-y$. If (G, m) is not smaller than (G, m^{\prime}), and (G, m^{\prime}) contains one of Conf(1)-Conf(12) then $x-u-v-y$ is switchable.

Proof. Suppose that $x-u-v-y$ is not switchable. Then, since $\left(G, m^{\prime}\right)$ is a 7 -counterexample and (G, m) is not smaller than $\left(G, m^{\prime}\right)$, the latter is a minimum counterexample. But by 4.35 .9 no minimum 7 -counterexample contains any of $\operatorname{Conf(1)-Conf(12),~a~contradiction.~This~proves~5.10.~}$

5.11. No minimum 7-counterexample contains Conf(13).

Proof. Let (G, m) be a minimum 7-counterexample, with a square $x u v y$ and a tough triangle $u v z$, where $m(u v)+m^{+}(x y) \geq 4$ and $m(x y) \geq 2$. Since (G, m) does not contain Conf(5) by 5.2 we have $m(u v)+m^{+}(x y)=4$. Suppose that $m(u v) \geq 3$; then since $x u v y$ is small and (G, m) does not contain Conf(6) by 5.3 we have $m(u v)=3$ and $m^{+}(u z)=m^{+}(v z)=1$, contradicting the fact that $u v z$ is tough. Thus $m(u v) \leq 2$.

Since (G, m) does not contain Conf(3) by 4.4 it follows that $m(u x)+m(v y) \leq 4$. Thus the cycle $x-u-v-y-x$ is switchable; let $\left(G, m^{\prime}\right)$ be obtained from (G, m) by switching on it, and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Let $k=m^{\prime}(u v)+m^{\prime}(x y) \in\{5,6\}$. By 5.1 we may assume that $u v \in F_{i}$ for $1 \leq i \leq m^{\prime}(u v)$, and $x y \in F_{i}$ for $m^{\prime}(u v)<i \leq k$. Let $I=\{1, \ldots, 7\}$ and for $i \in I$, let Q_{i} be as in 5.1. Denote by r_{1}, r_{2}, the second regions for $v z, x y$, respectively, and by D_{1}, D_{2} their respective sets of doors.
(1) One of $m^{+}(u z), m^{+}(v z)=1$.

Let $i \in I$, and let the edges of Q_{i} in order be $e_{1}^{i}, \ldots, e_{n_{i}}^{i}, e_{1}^{i}$, where $e_{1}^{i}=u v, e_{2}^{i}=x y$ and $e_{n_{i}}^{i} \in\{u z, v z\}$.

Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}^{i}, e_{2}^{i}, it follows that $n_{i} \geq 6$. For $1 \leq j \leq k, F_{j}$ contains one of e_{1}^{i}, e_{2}^{i}; and hence $e_{3}^{i}, \ldots, e_{n_{i}}^{i} \notin F_{j}$ for all $j \in\{1, \ldots, k\}$ with $j \neq i$.

Suppose that $k=6$. We may assume by symmetry that $v z \in Q_{7}$, and so $m(v z)=1$ and $v z \in F_{7}$. Also, $u z \in F_{i}$ for some $m^{\prime}(u v)<i \leq k$, say $u z \in F_{6}$. Let $i \in I \backslash\{6,7\}$. Then since $u z$ and $x y$ both belong to $F_{6}, v z \in Q_{i}$. Then since $e_{n_{i}}^{i}=v z$ and $v z \notin F_{i}$, we have $n_{i} \geq 7$ and $e_{3}^{i}, \ldots, e_{n_{i}-1}^{i}$ belong only to F_{i}. It follows that $F_{i} \cap Q_{i} \cap D_{1}$ is nonempty, and so r_{1} is big. Hence $m^{+}(v z)=1$ as required.

Suppose that $k=5$. Then by hypothesis, $m(u v)=1, m(x y)=2$, and r_{2} is small. We have $u v \in F_{1}, F_{2}$ and $x y \in F_{3}, F_{4}, F_{5}$. Suppose that $u z \in Q_{7}$ and $m(u z) \geq 2$. Then $u z$ belongs to both F_{7} and F_{6}. Further $v z \notin F_{1}, F_{2}, F_{6}, F_{7}$ and so by symmetry we can assume that $v z \in F_{5}$. Consequently when $i \in I \backslash\{5\}$, we have $u z \in Q_{i}, n_{i} \geq 7$ and $e_{3}^{i}, \ldots, e_{n-1}^{i}$ belong only to F_{i}. Further, $m(u z)=2$. But then $F_{i} \cap Q_{i} \cap D_{3}$ is nonempty, contradicting the fact that r_{3} is small. By the same argument if $m(v z) \geq 2$ then $v z \notin Q_{7}$.

Since $u v z$ is tough, by symmetry we may assume that $m^{+}(u z) \geq 3$. Thus $u z \notin Q_{7}$, and so $v z \in Q_{7}$ and $m(v z)=1$. Since $m(u z) \geq 2$, uz belongs to two of $F_{3}, F_{4}, F_{5}, F_{6}$; by symmetry say $u z \in F_{5}$. Thus for $i \in I \backslash\{5\}, v z \in Q_{i}, e_{3}^{i}, \ldots, e_{n_{i}-1}^{i}$ belong only to F_{i}, F_{6}. It follows that at least one of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and if $i=6$ then both are nonempty. Thus $\left|D_{1}\right|+\left|D_{2}\right| \geq 7$, and since r_{2} is small $\left|D_{1}\right| \geq 4$. It follows that $m^{+}(v z)=1$, as required. This proves (1).

By (1) we may assume that $m^{+}(v z)=1$. Since $u v z$ is tough, (1) implies $m^{+}(u z)+m^{+}(u v) \geq 6$. Since (G, m) does not contain Conf(6) by [5.3] it follows that $m(u v)=2, m(u z)=2$ and $m(u x) \geq 3$. But (G, m) does not contain Conf(3) by 4.4 a contradiction. This proves 5.11

5.12. No minimum 7-counterexample contains Conf (14).

Proof. Let (G, m) be a minimum 7-counterexample, with a region r bounded by a cycle $C_{r}=$ v_{0}, \ldots, v_{4}. Denote the edge $v_{i} v_{i+1}$ by f_{i} for $0 \leq i \leq 4$ (taking indices modulo 5) and suppose that $m^{+}\left(e_{0}\right) \geq 2$, and that $m^{+}\left(f_{2}\right), m^{+}\left(f_{3}\right) \geq 4$. Since G has minimum degree at least three, $m\left(f_{2}\right)=m\left(f_{3}\right)=3$.

Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on the path $v_{4}-v_{0}-v_{1}-v_{2}$; since $m\left(f_{2}\right), m\left(f_{3}\right) \geq 3,\left(G^{\prime}, m^{\prime}\right)$ contains a triangle $v_{2} v_{3} v_{4}$ with $m^{\prime}\left(v_{2} v_{3} v_{4}\right) \geq 7$. Since (G, m) is a 7 -target, $m\left(\delta_{G}(\{u, v, x\})\right) \geq 9$ and it follows that $m^{\prime}\left(\delta_{G^{\prime}}(\{u, v, x\})\right) \geq 7$. Since $m^{\prime}(u v)+m^{\prime}(u x)+m^{\prime}(v x) \geq 7$, it follows that $m^{\prime}(\delta(\{u, v, x\}))=7$. Hence by $2.1\left(G^{\prime}, m^{\prime}\right)$ is 7 -edge colourable. Let F_{1}, \ldots, F_{7} be a 7 -edge colouring of $\left(G^{\prime}, m^{\prime}\right)$. Let $k=m^{\prime}\left(v_{0} v_{1}\right)+m^{\prime}\left(v_{2} v_{4}\right) \geq 3$. By 5.1 we may assume that $v_{0} v_{1} \in F_{i}$ for $1 \leq i \leq$ $m^{\prime}\left(v_{0} v_{1}\right)$, and $v_{2} v_{4} \in F_{k}$. Let $I=\{1, \ldots, 7\} \backslash\{k\}$ and for $i \in I$, let Q_{i} be as in 5.1 Let $i \in I$, and let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n_{i}}, e_{1}$, where $e_{1}=v_{0} v_{1}$ and $e_{2}=v_{2} v_{4}$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n_{i} \geq 6$. For $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}; and hence $e_{3}, \ldots, e_{n} \notin F_{j}$ for all $j \in\{1, \ldots, k\}$ with $j \neq i$. By the choice of the switchable path, $e_{3} \in\left\{f_{2}, f_{3}\right\}$. By setting $i=7$, without loss of generality we may say $f_{2} \in Q_{7}$; it follows that f_{2} does not belong to F_{1}, \ldots, F_{k} and $k \leq 4$. Thus f_{2} belongs to three of F_{k+1}, \ldots, F_{7}, say f_{2} belongs to F_{5}, F_{6}, F_{7}. Further f_{3} belongs to three of F_{1}, \ldots, F_{4}. Let r_{2} denote the second region for f_{2} and let D_{2} denote its set of doors.

It follows that $f_{2} \in Q_{i}$ for each $i \in I$. Suppose that $k=4$. Then for each $i \in I$, the edges of $Q_{i} \backslash\left\{f_{0}, f_{2}\right\}$ belong only to F_{i}. Thus $F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, contradicting the fact that r_{2} is small. Thus $k=3$, and so $m\left(f_{1}\right)=1$. Denote by r_{1} the second region for f_{0} and D_{1} its set of doors. For each $i \in I, n_{i} \geq 7$ and the edges of $Q_{i} \backslash\left\{f_{0}, f_{2}\right\}$ belong only to F_{i}, F_{4}. Consequently at least one
of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and both are nonempty if $i=4$. Thus $\left|D_{1}\right|+\left|D_{2}\right| \geq 7$, but since r_{1} is small, $\left|D_{2}\right| \geq 4$, a contradiction. This proves 5.12,

5.13. No minimum 7-counterexample contains Conf(15).

Proof.

Let (G, m) be a minimum 7 -counterexample, with a region r bounded by a cycle $C_{r}=v_{0}, \ldots, v_{4}$. Denote the edge $v_{i} v_{i+1}$ by f_{i} for $0 \leq i \leq 4$ (taking indices modulo 5) and suppose that $m^{+}\left(f_{0}\right) \geq 3$, and that $m^{+}\left(f_{2}\right), m^{+}\left(f_{3}\right) \geq 3$.
(1) Suppose that either f_{0} is 3 -heavy, or both f_{2}, f_{3} are 3-heavy. Then the path $v_{4}-v_{0}-v_{1}-v_{2}$ is not switchable.

Suppose that the path $v_{4}-v_{0}-v_{1}-v_{2}$ is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on it and let F_{1}, \ldots, F_{7} be a 7 -edge colouring. Let $k=m^{\prime}\left(v_{0} v_{1}\right)+m^{\prime}\left(v_{2} v_{4}\right) \geq 4$. By 5.1 we may assume that $v_{0} v_{1} \in F_{i}$ for $1 \leq i \leq m^{\prime}\left(v_{0} v_{1}\right)$, and $v_{2} v_{4} \in F_{k}$. Let $I=\{1, \ldots, 7\} \backslash\{k\}$ and for $i \in I$, let Q_{i} be as in 5.1.

Since $k \geq 4$ and $m\left(f_{2}\right), m\left(f_{3}\right) \geq 2$, we may assume without loss of generality that both f_{0}, f_{3} belong to F_{1}. Consequently, $f_{2} \in Q_{i}$ for each $i \in I \backslash\{1\}$ and f_{2} belongs to at least two of F_{k+1}, \ldots, F_{7}, say f_{2} belongs to F_{6}, F_{7}, and so $k \leq 5$. Let $i \in I \backslash\{1\}$, and let the edges of Q_{i} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=v_{0} v_{1}, e_{2}=v_{2} v_{4}$ and $e_{3}=f_{2}$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 7$. For $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}; and hence $e_{4}, \ldots, e_{n} \notin F_{j}$ belong only to F_{i}, and possibly F_{7}.

Denote by r_{1}, r_{2} the second regions for f_{0}, f_{2}, respectively and denote by D_{1}, D_{2} their respective sets of doors. Suppose that $k+m\left(f_{2}\right)=7$, and so $m\left(f_{0}\right)+m\left(f_{2}\right) \leq 5$. Then for each $i \in I \backslash\{1\}$, both $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ are nonempty. It follows that both r_{1} and r_{2} are big, a contradiction.

Thus $k+m\left(f_{2}\right) \leq 6$, and so $k \leq 4$. For each $i \in I \backslash\{1\}$, at least one of $F_{i} \cap Q_{i} \cap D_{1}, F_{i} \cap Q_{i} \cap D_{2}$ is nonempty, and both are nonempty if $i=5$. Since at least one of r_{1}, r_{2} is a triangle, one of $\left|D_{1}\right|,\left|D_{2}\right| \leq 2$, and so $k+m\left(f_{2}\right) \leq 6 .\left|D_{1}\right|+\left|D_{2}\right| \geq|I|=6$. But $k \geq 4$ and $m^{+}\left(f_{2}\right) \geq 3$ and so r_{1}, r_{2} are both small, a contradiction. This proves (1).

Now, suppose that (G, m) contains $\operatorname{Conf(15)}$, and so f_{0} is 3 -heavy. By (1), the path $v_{4}-v_{0}-v_{1}-v_{2}$ is not switchable, and $m\left(f_{0}\right)=2$, and by symmetry we may assume that $m\left(f_{4}\right) \geq 3$. It follows that $m\left(f_{2}\right) \leq 2$, for otherwise we could relabel the vertices of C_{r} to contradict (1). Further by (1) the path $v_{1}-v_{2}-v_{3}-v_{4}$ is not switchable. Similarly f_{1} is not 3 -heavy. Since $v_{1}-v_{2}-v_{3}-v_{4}$ is not switchable, and $m\left(f_{1}\right), m\left(f_{2}\right) \leq 2$, it follows that $m\left(f_{3}\right) \geq 3$. Further the 7 -target obtained by switching on $v_{1}-v_{2}-v_{3}-v_{4}$ contains Conf(2), and so by 5.10 it follows that $m\left(f_{1}\right) \geq 2$. Now, the path $v_{2}-v_{3}-v_{4}-v_{0}$ is switchable; let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on it and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring. Since $m^{\prime}\left(v_{3} v_{4}\right)+m^{\prime}\left(v_{0} v_{2}\right)=5$, we may assume by 5.1 that $v_{3} v_{4}$ belongs to F_{i} for $1 \leq i \leq 4$ and $v_{0} v_{2} \in F_{5}$. Also by symmetry $v_{2} v_{3}$ and $v_{4} v_{0}$ both belong to F_{6}, and so f_{0}, f_{1} do not belong to F_{6}. Let $I=\{1, \ldots, 7\} \backslash\{5\}$ and for $i \in I$ let Q_{i} be as in 5.1. Let the edges of Q_{6} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=v_{3} v_{4}$ and $e_{2}=v_{4} v_{0}$. Since $\left|F_{i} \cap Q_{6}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. For $1 \leq j \leq 6, F_{j}$ contains one of e_{1}, e_{2}; and hence $e_{3}, \ldots, e_{n} \notin F_{j}$ for all $j \in\{1, \ldots, k\}$ with $j \neq 6$. It follows that e_{3}, \ldots, e_{n} belong only to F_{6}, F_{7}. By the choice of the switchable path,
$e_{3} \in\left\{f_{0}, f_{1}\right\}$, and so $m\left(e_{3}\right) \geq 2$. Hence e_{3} belongs to both F_{6}, F_{7}, a contradiction. This proves 5.13

5.14. No minimum 7-counterexample contains Conf(16).

Proof. Let (G, m) be a minimum 7-counterexample, with a region r bounded by a cycle $C_{r}=$ v_{0}, \ldots, v_{5}. Denote the edge $v_{i} v_{i+1}$ by f_{i} for $0 \leq i \leq 5$ (taking indices modulo 6) and suppose that $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}$ are 3 -heavy with multiplicity at least two.

(1) The path $v_{0}-v_{1}-v_{2}-v_{3}$ is not switchable.

Suppose that $v_{0}-v_{1}-v_{2}-v_{3}$ is switchable. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on it and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring of $\left(G^{\prime}, m^{\prime}\right)$. Let $k=m^{\prime}\left(v_{1} v_{2}\right)+m^{\prime}\left(v_{0} v_{3}\right) \geq 4$. We may assume by 5.1 that $v_{1} v_{2} \in F_{i}$ for $1 \leq i<k$ and $v_{0} v_{3} \in F_{k}$. Let $I=\{1, \ldots, 7\} \backslash\{k\}$ and for $i \in I$, let Q_{i} be as in 5.1

For $i \in I$, let the edges of Q_{i} in order be $e_{1}^{i}, \ldots, e_{n_{i}}^{i}, e_{1}^{i}$, where $e_{1}^{i}=v_{1} v_{2}$ and $e_{2}^{i}=v_{0} v_{3}$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}^{i}, e_{2}^{i}, it follows that $n \geq 6$. Let $i \in I$. For $1 \leq j \leq k$, F_{j} contains one of e_{1}^{i}, e_{2}^{i}; and hence $e_{3}^{i}, \ldots, e_{n_{i}}^{i} \notin F_{j}$ for all $j \in\{1, \ldots, k\}$ with $j \neq i$. By the choice of the switchable path $e_{3}^{7} \in\left\{f_{3}, f_{4}, f_{5}\right\}$, and so e_{3}^{7} is 3 -heavy; thus one of $e_{3}^{7} e_{4}^{7}$ must belong to one of F_{1}, \ldots, F_{5}.

Thus $k=4$ and the second region for $v_{1} v_{2}$ is a triangle $v_{1} v_{2} x$. Choose $i \in\{5,6,7\}$ such that neither of $\left\{v_{1} x, v_{2} x\right\}$ is an edge of multiplicity one belonging to F_{i}. Now, $e_{3}^{i}, \ldots, e_{n_{i}}^{i}$ do not belong to F_{1}, \ldots, F_{4}. By the choice of the switchable path, e_{3}^{i} is 3 -heavy, and so $e_{n_{i}}^{i}$ has multiplicity one and belongs only to F_{i}, a contradiction. This proves (1).

Now $m\left(v_{0} v_{1}\right) \leq 2$, for otherwise the vertices of C_{r} could be relabeled to contradict (1). By (1), $v_{0}-v_{1}-v_{2}-v_{3}$ is not switchable. It follows that $m\left(v_{1} v_{2}\right)=2$ and the second region for $v_{1} v_{2}$ is a triangle and $m\left(v_{2} v_{3}\right) \geq 3$. By symmetry, $m\left(v_{5} v_{0}\right)=2$, the second region for $v_{5} v_{0}$ is a triangle, and $m\left(v_{4} v_{5}\right) \geq$ 3. The 7 -target (G, m) obtained by switching on $v_{0}-v_{1}-v_{2}-v_{3}$ contains Conf(3), so by 5.10 (G, m) is smaller than $\left(G^{\prime}, m^{\prime}\right)$. It follows that $m\left(v_{0} v_{1}\right)+m\left(v_{2} v_{3}\right) \geq 5$. Similarly $m\left(v_{0} v_{1}\right)+m\left(v_{4} v_{5}\right) \geq 5$.

Since $m\left(v_{2} v_{3}\right) \geq 3$, the path $v_{1}-v_{2}-v_{3}-v_{4}$ is switchable. Let $\left(G^{\prime}, m^{\prime}\right)$ be obtained by switching on it and let F_{1}, \ldots, F_{7} be a 7 -edge-colouring. Let $k=m^{\prime}\left(v_{2} v_{3}\right)+m^{\prime}\left(v_{1} v_{4}\right) \in\{5,6\}$. We may assume by 5.1 that $v_{2} v_{3} \in F_{i}$ for $1 \leq i<k$ and $v_{1} v_{4} \in F_{k}$. By symmetry we may assume that $v_{1} v_{2} \in F_{k+1}$. Let $I=\{1, \ldots, 7\} \backslash\{k\}$ and for $i \in I$, let Q_{i} be as in 5.1. Let the edges of Q_{7} in order be $e_{1}, \ldots, e_{n}, e_{1}$, where $e_{1}=v_{2} v_{3}$ and $e_{2}=v_{1} v_{4}$. Since $\left|F_{i} \cap Q_{i}\right| \geq 5$ and F_{i} contains at most one of e_{1}, e_{2}, it follows that $n \geq 6$. For $1 \leq j \leq k, F_{j}$ contains one of e_{1}, e_{2}; and hence $e_{3}, \ldots, e_{n} \notin F_{j}$ for all $j \in\{1, \ldots, k\}$ with $j \neq i$.

Suppose that $k=6$. Then e_{3}, \ldots, e_{n} belong only to F_{7}, and so e_{3} has multiplicity one. By the choice of the switchable path, $e_{3}=f_{0}$. But $f_{0} \notin F_{7}$ since $f_{1} \in F_{7}$, a contradiction. Thus $k=5$, and so $m\left(f_{2}\right)=3$ and $m\left(f_{0}\right) \geq 2$. Now e_{3}, \ldots, e_{n} belong only to F_{6}, F_{7}, and so e_{3} is not 3 -heavy. It follows from the choice of the switchable path that $e_{3}=f_{0}$. But $m\left(f_{0}\right) \geq 2$ and $f_{0} \notin F_{6}$ since $f_{1} \in F_{6}$, a contradiction. This proves 5.14

This completes the proof of 4.1 and hence of 1.2 .

References

[1] K.Appel and A.Haken, "Every planar map is four colorable. Part I. Discharging", Illinois J. Math. 21 (1977), 429-490.
[2] K.Appel, A.Haken and J.Koch, "Every planar map is four colorable. Part II. Reducibility", Illinois J. Math. 21 (1977), 491-567.
[3] M.Chudnovsky, K.Edwards and P.Seymour, "Edge-colouring eight-regular planar graphs", manuscript (ArXiv 1209.1176), submitted for publication.
[4] Z.Dvorak, K.Kawarabayashi and D.Kral, "Packing six T-joins in plane graphs", manuscript (2010arXiv1009.5912D)
[5] K.Edwards, Optimization and Packings of T-joins and T-cuts, M.Sc. Thesis, McGill University, 2011.
[6] B.Guenin, "Packing T-joins and edge-colouring in planar graphs", Mathematics of Operations Res., to appear.
[7] N.Robertson, D.Sanders, P.Seymour and R.Thomas, "The four colour theorem", J. Combinatorial Theory, Ser. B, 70 (1997), 2-44.
[8] P.Seymour, Matroids, Hypergraphs and the Max.-Flow Min.-Cut Theorem, D.Phil. thesis, Oxford, 1975, page 34.

[^0]: ${ }^{1}$ Supported by NSF grants DMS-1001091 and IIS-1117631.
 ${ }^{2}$ Supported by an NSERC PGS-D3 Fellowship and a Gordon Wu Fellowship.
 ${ }^{3}$ Partially supported by the Mitsubishi Foundation.
 ${ }^{4}$ Supported by ONR grant N00014-10-1-0680 and NSF grant DMS-0901075.

