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Abstract

A conjecture due to the fourth author states that every d-regular planar multigraph can be d-edge-
coloured, provided that for every odd set X of vertices, there are at least d edges between X and
its complement. For d = 3 this is the four-colour theorem, and the conjecture has been proved for
all d ≤ 8, by various authors. In particular, two of us proved it when d = 7; and then three of us
proved it when d = 8. The methods used for the latter give a proof in the d = 7 case that is simpler
than the original, and we present it here.



1 Introduction

Let G be a graph. (Graphs in this paper are finite, and may have loops or parallel edges.) If
X ⊆ V (G), δG(X) = δ(X) denotes the set of all edges of G with an end in X and an end in
V (G) \X. We say that G is oddly d-edge-connected if |δ(X)| ≥ d for all odd subsets X of V (G). The
following conjecture [8] was proposed by the fourth author in about 1973.

1.1. Conjecture. If G is a d-regular planar graph, then G is d-edge-colourable if and only if G is
oddly d-edge-connected.

The “only if” part is true, and some special cases of the “if” part of this conjecture have been
proved.

• For d = 3 it is the four-colour theorem, and was proved by Appel and Haken [1, 2, 7];

• for d = 4, 5 it was proved by Guenin [6];

• for d = 6 it was proved by Dvorak, Kawarabayashi and Kral [4];

• for d = 7 it was proved by the second and third authors and appears in the Master’s thesis [5]
of the former;

• for d = 8 it was proved by three of us [3].

The methods of [3] can be adapted to yield a proof of the result for d = 7, that is shorter and
simpler than that of [5]. Since in any case the original proof appears only in a thesis, we give the
new one here. Thus, we show

1.2. Every 7-regular oddly 7-edge-connected planar graph is 7-edge-colourable.

All these proofs (for d > 3), including ours, assume the truth of the result for d − 1. Thus we
need to assume the truth of the result for d = 6. Some things that are proved in [3] are true for all
d, and we sometimes cite results from that paper.

2 An unavoidable list of reducible configurations.

Any 7-regular planar graph has parallel edges, and it is helpful to reformulate the problem in terms
of the underlying simple graph; then we have have a number for each edge, recording the number
of parallel edges it represents. Let us say a d-target is a pair (G,m) with the following properties
(where for F ⊆ E(G), m(F ) denotes

∑
e∈F m(e)):

• G is a simple graph drawn in the plane;

• m(e) ≥ 0 is an integer for each edge e;

• m(δ(v)) = d for every vertex v; and

• m(δ(X)) ≥ d for every odd subset X ⊆ V (G).
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In this language, 1.1 says that for every d-target (G,m), there is a list of d perfect matchings
of G such that every edge e of G is in exactly m(e) of them. (The elements of a list need not be
distinct.) If there is such a list we call it a d-edge-colouring, and say that (G,m) is d-edge-colourable.
For an edge e ∈ E(G), we call m(e) the multiplicity of e. If X ⊆ V (G), G|X denotes the subgraph
of G induced on X. We need the following theorem from [3]:

2.1. Let (G,m) be a d-target, that is not d-edge-colourable, but such that every d-target with fewer
vertices is d-edge-colourable. Then

• |V (G)| ≥ 6;

• for every X ⊆ V (G) with |X| odd, if |X|, |V (G) \ X| 6= 1 then m(δ(X)) ≥ d + 2; and

• G is three-connected, and m(e) ≤ d − 2 for every edge e.

A triangle is a region of G incident with exactly three edges. If a triangle is incident with vertices
u, v,w, for convenience we refer to it as uvw, and in the same way an edge with ends u, v is called
uv. Two edges are disjoint if they are distinct and no vertex is an end of both of them, and otherwise
they meet. Let r be a region of G, and let e ∈ E(G) be incident with r; let r′ be the other region
incident with e. We say that e is i-heavy (for r), where i ≥ 2, if either m(e) ≥ i or r′ is a triangle
uvw where e = uv and

m(uv) + min(m(uw),m(vw)) ≥ i.

We say e is a door for r if m(e) = 1 and there is an edge f incident with r′ and disjoint from e with
m(f) = 1. We say that r is big if there are at least four doors for r, and small otherwise. A square
is a region with length four.

Since G is drawn in the plane and is two-connected, every region r has boundary some cycle
which we denote by Cr. In what follows we will be studying cases in which certain configurations
of regions are present in G. We will give a list of regions the closure of the union of which is a
disc. For convenience, for an edge e in the boundary of this disc, we call the region outside the disc
incident with e the “second region” for e; and we write m+(e) = m(e) if the second region is big,
and m+(e) = m(e) + 1 if the second region is small. This notation thus depends not just on (G,m)
but on what regions we have specified, so it is imprecise, and when there is a danger of ambiguity
we will specify it more clearly. If r is a triangle, incident with edges e, f, g, we define its multiplicity
m(r) = m(e) + m(f) + m(g). We also write m+(r) = m+(e) + m+(f) + m+(g). A region r is tough
if r is a triangle and m+(r) ≥ 7.

We will show that every 7-target (G,m) satisfying the conclusion of 2.1 (with d = 7) and such
that m(e) > 0 for every edge e must contain one of a list of 16 reducible configurations. Let us say
a 7-target is “prime” if it fails to satisfy this claim; that is, a 7-target (G,m) is prime if

• m(e) > 0 for every edge e;

• |V (G)| ≥ 6;

• m(δ(X)) ≥ 9 for every X ⊆ V (G) with |X| odd and |X|, |V (G) \ X| 6= 1;

• G is three-connected, and m(e) ≤ 5 for every edge e;
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and in addition (G,m) contains none of of the following:

Conf(1): A triangle uvw, where u has degree three and its third neighbour x satisfies

m(ux) < m(uw) + m(vw).

Conf(2): Two triangles uvw, uwx with m(uv) + m(uw) + m(vw) + m(ux) ≥ 7.

Conf(3): A square uvwx where m(uv) + m(vw) + m(ux) ≥ 7.

Conf(4): Two triangles uvw, uwx where m+(uv) + m(uw) + m+(wx) ≥ 6.

Conf(5): A square uvwx where m+(uv) + m+(wx) ≥ 6.

Conf(6): A triangle uvw with m+(uv) + m+(uw) = 6 and either m(uv) ≥ 3 or m(uv) = m(vw) =
m(uw) = 2 or u has degree at least four.

Conf(7): A region r of length at least four, an edge e of Cr with m+(e) = 4 where every edge of
Cr disjoint from e is 2-heavy and not incident with a triangle with multiplicity three, and
such that at most three edges disjoint from e are not 3-heavy.

Conf(8): A region r with an edge e of Cr with m+(e) = m(e) + 1 = 4 and an edge f disjoint from
e with m+(f) = m(f) + 1 = 2, where every edge of Cr \ {f} disjoint from e is 3-heavy
with multiplicity at least two.

Conf(9): A region r of length at least four and an edge e of Cr such that m(e) = 4 and there is no
door disjoint from e. Further for every edge f of Cr consecutive with e with multiplicity
at least two, there is no door disjoint from f .

Conf(10): A region r of length four, five or six and an edge e of Cr such that m(e) = 4 and such
that m+(f) ≥ 2 for every edge f of Cr disjoint from e.

Conf(11): A region r and an edge e of Cr, such that m(e) = 5 and at most five edges of Cr disjoint
from e are doors for r, or m+(e) = m(e) + 1 = 5 and at most four edges of Cr disjoint
from e are doors for r.

Conf(12): A region r, an edge uv of Cr, and a triangle uvw such that m(uv) + m(vw) = 5 and at
most five edges of Cr disjoint from v are doors for r.

Conf(13): A square xuvy and a tough triangle uvz, where m(uv) + m+(xy) ≥ 4 and m(xy) ≥ 2.

Conf(14): A region r of length five, an edge f0 ∈ E(Cr) with m+(e0) ≥ 2 and m+(e) ≥ 4 for each
edge e ∈ E(Cr) disjoint from f0.

Conf(15): A region r of length five, a 3-heavy edge f0 ∈ E(Cr) with m(e0) ≥ 2 and m+(e) ≥ 3 for
each edge e ∈ E(Cr) disjoint from f0.

Conf(16): A region r of length six where five edges of Cr are 3-heavy with multiplicity at least two.

3



We will prove that no 7-target is prime (Theorem 3.1). To deduce 1.2, we will show that if
there is a counterexample, then some counterexample is prime; but for this purpose, just choosing a
counterexample with the minimum number of vertices is not enough, and we need a more delicate
minimization. If (G,m) is a d-target, its score sequence is the (d + 1)-tuple (n0, n1, . . . , nd) where
ni is the number of edges e of G with m(e) = i. If (G,m) and (G′,m′) are d-targets, with score
sequences (n0, . . . , nd) and (n′

0, . . . , n
′

d) respectively, we say that (G′,m′) is smaller than (G,m) if
either

• |V (G′)| < |V (G)|, or

• |V (G′)| = |V (G)| and there exists i with 1 ≤ i ≤ d such that n′

i > ni, and n′

j = nj for all j
with i < j ≤ d, or

• |V (G′)| = |V (G)|, and n′

j = nj for all j with 0 < j ≤ d, and n′

0 < n0.

If some d-target is not d-edge-colourable, then we can choose a d-target (G,m) with the following
properties:

• (G,m) is not d-edge-colourable

• every smaller d-target is d-edge-colourable.

Let us call such a pair (G,m) a minimum d-counterexample. To prove 1.2, we prove two things:

• No 7-target is prime (theorem 3.1), and

• Every minimum 7-counterexample is prime (theorem 4.1).

It will follow that there is no minimum 7-counterexample, and so the theorem is true.

3 Discharging and unavoidability

In this section we prove the following, with a discharging argument.

3.1. No 7-target is prime.

The proof is broken into several steps, through this section. Let (G,m) be a 7-target, where G
is three-connected. For every region r, we define

α(r) = 14 − 7|E(Cr)| + 2
∑

e∈E(Cr)

m(e).

To aid the reader’s intuition, let us explain where this comes from. We start with a 7-regular
three-connected planar graph H, and so some of its regions have boundary of length two; let us call
them “digon regions”. Let us give each region r of H a weight of 14 − 5|E(Cr)|; then it is easy to
check using Euler’s formula that the sum of all region-weights is 28. If now we suppress the parallel
edges, obtaining (G,m) say, and we want to preserve the property that the sum of all region-weights
is 28, then we need to distribute the weights of all the lost digon-regions among the regions that
remain, and we have done it in the simplest way. For each edge e of G, corresponding to m(e) parallel
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edges of H, there are m(e) − 1 digon-regions to account for, formed by pairs of these edges. Each
digon-region has a region-weight of four, and so we have a total weight of 4(m(e)−1) to redistribute;
and we share this equally between the two regions of G incident with e. (Thus the weight of each
region r of G is increased by 2(m(e) − 1) for every edge e of G incident with r.) The α function
defined above is the region-weighting that results from this process.

We observe first:

3.2. The sum of α(r) over all regions r is positive.

Proof. Since (G,m) is a 7-target, m(δ(v)) = 7 for each vertex v, and, summing over all v, we
deduce that 2m(E(G)) = 7|V (G)|. By Euler’s formula, the number of regions R of G satisfies
|V (G)| − |E(G)| + R = 2, and so 4m(E(G)) − 14|E(G)| + 14R = 28. But 2m(E(G)) is the sum over
all regions r, of

∑
e∈E(Cr) m(e), and 14R − 14|E(G)| is the sum over all regions r of 14 − 7|E(Cr)|.

It follows that the sum of α(r) over all regions r equals 28. This proves 3.2.

Our goal is to define a region-weighting, with total sum positive, so that for any region of positive
weight, there must be one of the reducible configurations close to it. The α function just defined does
not work yet. We obtained it by splitting equally the weights on digon-regions, but it is better to
share out these digon-region weights a little less equally; we should give more weight to big regions
and less to small, when we have the chance. More exactly, when some edge e is incident with a big
region and a small region, we should distribute the weight from the digon-regions represented by e
unevenly, sending one more to the big region and one less to the small one (and sometimes not quite
this either). We are about to define a β function that makes this adjustment.

For every edge e of G, define βe(s) for each region s as follows. Let r, r′ be the two regions
incident with e.

• If s 6= r, r′ then βe(s) = 0.

• If r, r′ are both big, or both tough, or both small and not tough, then βe(r), βe(r
′) = 0.

[β0]: If r′ is tough, and r is small and not tough, then βe(r) = −βe(r
′) = 1.

Henceforth we assume that r is big and r′ is small; let f, g be the edges of Cr′ \ e that share an end
with e.

[β1]: If e is a door for r (and hence m(e) = 1) then βe(r) = βe(r
′) = 0.

[β2]: If r′ is a triangle with m(r′) ≥ 5 then βe(r) = −βe(r
′) = 2.

[β3]: Otherwise βe(r) = −βe(r
′) = 1.

For each region r, define β(r) to be the sum of βe(r) over all edges e. We see that the sum of
β(r) over all regions r is zero.

Let α, β be as above. Then the sum over all regions r of α(r) + β(r) is positive, and so there is a
region r with α(r) + β(r) > 0. Let us examine the possibilities for such a region. There now begins
a long case analysis, and to save writing we just say “by Conf(7)” instead of “since (G,m) does not
contain Conf(7)”, and so on.
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3.3. If r is a big region and α(r) + β(r) > 0, then (G,m) is not prime.

Proof. Suppose that (G,m) is prime. Let C = Cr. Suppose that α(r) + β(r) > 0; that is,

∑

e∈E(C)

(7 − 2m(e) − βe(r)) < 14.

For e ∈ E(C), define φ(e) = 2m(e) + βe(r), and let us say e is major if φ(e) > 7. If e is major, then
since βe(r) ≤ 3, it follows that m(e) ≥ 3 and that e is 4-heavy. If m(e) = 3 and e is major, then
by Conf(1) the edges consecutive with e on C have multiplicity at most two. It follows that no two
major edges are consecutive, since G has minimum degree at least three. Further when e is major,
βe(r) is an integer from the β-rules, and therefore φ(e) ≥ 8.

Let D be the set of doors for C. Let

• ξ = 2 if there are consecutive edges e, f in C such that φ(e) > 9 and f is a door for r,

• ξ = 3 if not, but there are consecutive edges e, f in C such that φ(e) = 9 and f is a door for r,

• ξ = 4 otherwise.

(1) Let e, f, g be the edges of a path of C, in order, where e, g are major. Then

(7 − φ(e)) + 2(7 − φ(f)) + (7 − φ(g)) ≥ 2ξ|{f} ∩ D|.

Let r1, r2, r3 be the regions different from r incident with e, f, g respectively. Now m(e) ≤ 5 since
G has minimum degree three, and if m(e) = 5 then r1 is big, by Conf(11), and so βe(r) = 0. If
m(e) = 4 then βe(r) ≤ 2; and so in any case, φ(e) ≤ 10. Similarly φ(g) ≤ 10. Also, φ(e), φ(g) ≥ 8
since e, g are major. Thus φ(e) + φ(g) ∈ {16, 17, 18, 19, 20}.

Since f is consecutive with a major edge, m(f) ≤ 2. Further if m(f) = 2 then r2 is not a triangle
with multiplicity at least 5 by Conf(1) so rule β2 does not apply. Therefore it follows from the β-rules
that φ(f) ≤ 5 and if m(f) = 1 then φ(f) ≤ 4.

First, suppose that one of φ(e), φ(g) ≥ 10, say φ(e) = 10. In this case we must show that
2φ(f) ≤ 18− φ(g)− 2ξ|{f} ∩D|. It is enough to show that 2φ(f) ≤ 8− 2ξ|{f} ∩D|. Now m(e) ≥ 4
and e is 5-heavy by the β-rules, and so m(f) = 1, since G is three-connected and by Conf(1). If f is
a door then φ(f) = 2 by rule β1 and ξ = 2 so 2φ(f) ≤ 8− 2ξ|{f} ∩D|. If f is not a door then since
φ(f) ≤ 4, it follows that 2φ(f) ≤ 8 − 2ξ|{f} ∩ D|. So we may assume that φ(e), φ(g) ≤ 9.

Next, suppose that one of φ(e), φ(g) = 9, say φ(e) = 9. By the β-rules, we have m+(e) =
m(e) + 1 = 5. We must show that 2φ(f) ≤ 19 − φ(g) − 2ξ|{f} ∩ D|; it is enough to show 2φ(f) ≤
10 − 2ξ|{f} ∩ D|. Since φ(f) ≤ 5 we may assume that f is a door. Thus φ(f) = 2 and ξ ≤ 3, so
4 = 2φ(f) ≤ 19 − φ(g) − 2ξ|{f} ∩ D|. We may therefore assume that φ(e) + φ(g) = 16.

So, suppose that φ(e) + φ(g) = 16 and so φ(e) = φ(g) = 8. Now ξ ≤ 4 and we must show that
2φ(f) ≤ 12− 2ξ|{f} ∩D|. Again, if f is not a door then 2φ(f) ≤ 12 as required. If f is a door then
2φ(f) = 4 ≤ 12 − 2ξ|{f} ∩ D|. This proves (1).

(2) Let e, f be consecutive edges of C, where e is major. Then

(7 − φ(e)) + 2(7 − φ(f)) ≥ 2ξ|{f} ∩ D|.
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We have φ(e) ∈ {8, 9, 10}. Suppose first that φ(e) = 10. We must show that 2φ(f) ≤ 11−2ξ|{f}∩D|;
but m(f) = 1 by Conf(1) since e is 5-heavy. Since φ(f) ≤ 4 we may assume that f is a door. Thus
φ(f) = 2 and ξ ≤ 2, as needed.

Next, suppose that φ(e) ≤ 9; it is enough to show that 2φ(f) ≤ 12 − 2ξ|{f} ∩ D|. Now e is
4-heavy and m(f) ≤ 2 so φ(f) ≤ 6 by the β-rules. We have ξ ≤ 4. Since φ(f) ≤ 6, we may assume
that f is a door. If f is a door, then 2φ(f) = 4 ≤ 12 − 2ξ|{f} ∩ D|. This proves (2).

For i = 0, 1, 2, let Ei be the set of edges f ∈ E(C) such that f is not major, and f meets exactly
i major edges in C. By (1), for each f ∈ E2 we have

1

2
(7 − φ(e)) + (7 − φ(f)) +

1

2
(7 − φ(g)) ≥ ξ|{f} ∩ D|

where e, g are the major edges meeting f . By (2), for each f ∈ E1 we have

1

2
(7 − φ(e)) + (7 − φ(f)) ≥ ξ|{f} ∩ D|

where e is the major edge consecutive with f . Finally, for each f ∈ E0 we have

7 − φ(f) ≥ ξ|{f} ∩ D|

since φ(f) ≤ 7, and φ(f) = 2 if f ∈ D. Summing these inequalities over all f ∈ E0 ∪ E1 ∪ E2, we
deduce that

∑
e∈E(C)(7 − φ(e)) ≥ ξ|D|. Consequently

14 >
∑

e∈E(C)

(7 − 2m(e) − βe(r)) ≥ ξ|D|.

But |D| ≥ 4 since r is big, and so ξ ≤ 3. If ξ = 3, then |D| = 4, contrary to Conf(11). So ξ = 2
and |D| ≤ 6. But then Cr has a 5-heavy edge with multiplicity at least four that is consecutive with
a door and has at most five doors disjoint from it, contrary to Conf(11) and Conf(12). This proves
3.3.

3.4. If r is a triangle that is not tough, and α(r) + β(r) > 0, then (G,m) is not prime.

Proof. Suppose that (G,m) is prime, and let r = uvw. Now α(r) = 2(m(uv)+m(vw)+m(uw))−7,
so

2(m(uv) + m(vw) + m(uw)) + β(r) > 7.

Let r1, r2, r3 be the regions different from r incident with uv, vw, uw respectively. Since r is not
tough, m+(r) ≤ 6, and so m(r) ≤ 6 as well.

Suppose first that r has multiplicity six and hence β(r) > −5. Then r1, r2, r3 are all big. Suppose
that m(uv) = 4. Then rule β2 applies to give β(r) = −6, a contradiction. Thus r has at least two
edges with multiplicity at least two. Rules β2 and β3 apply giving β(r) ≤ −5, a contradiction.

Suppose that r has multiplicity five and so β(r) > −3. Then at least two of r1, r2, r3 are big, say
r2 and r3, and so βvw(r) + βuw(r) ≤ −2. Consequently βuv(r) > −1 so we may assume that r1 is
a tough triangle uvx. By Conf(2), m(ux) = m(vx) = 1. Since uvx is tough, m(uv) ≥ 2. Suppose
that m(uv) = 3. Then by Conf(4), m+(ux) = m+(vx) = 1, contradicting the fact that uvx is tough.
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So m(uv) = 2, m(uvx) = 4 and we may assume that m(vw) = 2. But by Conf(4), m+(ux) = 1,
contradicting the fact that uvx is tough.

Suppose that r has multiplicity four. Then β(r) > −1. Since m+(r) ≤ 6 we may assume that
r1 is big, so βuv(r) = −1. Now if r2 is tough then βvw(r) = 1, and otherwise βvw(r) ≤ 0. Thus by
symmetry we may assume that r2 is a tough triangle vwx and r3 is small. Suppose that m(uv) = 2.
By Conf(4), m+(vx) + m(vw) + m(uw) + 1 ≤ 5. Also by Conf(4), m(uv) + m(vw) + m+(wx) ≤ 5.
Since m(uv) + m(vw) + m(uw) = 4 it follows that m+(vx) + m(vw) + m+(wx) ≤ 5, contradicting
the fact that vwx is tough.

Therefore we may assume that r has multiplicity three. Now β(r) > 1. By the rules, if r1 is
tough then βuv(r) = 1. If r1 is big then βuv(r) = −1. Otherwise βuv(r) = 0. By symmetry, it follows
that r1, r2, r3 are all small and we may assume that r1, r2 are tough triangles uvx and vwy. It follows
from Conf(4) that m+(vx),m+(ux) ≤ 2. This contradicts the fact that uvx is tough. This proves
3.4.

3.5. If r is a tough triangle with α(r) + β(r) > 0, then (G,m) is not prime.

Proof. Suppose that (G,m) is prime, and let r = uvw. Now α(r) = 2(m(uv)+m(vw)+m(uw))−7,
so

2(m(uv) + m(vw) + m(uw)) + β(r) > 7.

Let r1, r2, r3 be the regions different from r incident with uv, vw, uw respectively. Since r is small
and tough, observe from the rules that βe(r) ≤ 0 for e = uv, vw, uw.

Let X = {u, v,w}. Since (G,m) is prime, it follows that |V (G) \ X| ≥ 3, and so m(δ(X)) ≥ 9.
But

m(δ(X)) = m(δ(u)) + m(δ(v)) + m(δ(w)) − 2m(uv) − 2m(uw) − 2m(vw),

and so 9 ≤ 7 + 7 + 7 − 2m(uv) − 2m(uw) − 2m(vw), that is, r has multiplicity at most six. Since
m+(r) ≥ 7, r has multiplicity at least four.

We claim that no two tough triangles share an edge. For suppose that uvw and uvx are tough
triangles. By Conf(4), m+(vx)+m(uv)+m+(uw) ≤ 5. Also by Conf(4) m+(vw)+m(uv)+m+(ux) ≤
5. Since m+(vw) + m+(uw) + m(uv) ≥ 6, m+(vx) + m+(ux) + m(uv) ≤ 4, contradicting the fact
that r1 is tough.

Suppose first that r has multiplicity six and so β(r) > −5. By Conf(2), none of r1, r2, r3 is a
triangle. If m(uv) = 4 then by Conf(6), r1, r2, r3 are all big, contradicting the fact that r is tough. If
m(uv) = 3, we may assume without loss of generality that m(vw) = 2. Then by Conf(6), r1 and r2

are big, and rule β2 applies, contradicting that β(r) > −5. By symmetry we may therefore assume
that m(uv) = m(vw) = m(uw) = 2. By Conf(6) we can assume that r1, r2 are big and rule β2
applies again. This contradicts that β(r) > −5.

Consequently r has multiplicity at most five. Then none of r1, r2, r3 is tough and so β(r) ≤ −3,
contradicting that 2(m(uv) + m(vw) + m(uw)) + β(r) > 7. This proves 3.5.

3.6. If r is a small region with length at least four and with α(r) + β(r) > 0, then (G,m) is not
prime.
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Proof. Suppose that (G,m) is prime. Let C = Cr. Since α(r) = 14− 7|E(C)|+ 2
∑

e∈E(C) m(e), it
follows that

14 − 7|E(C)| + 2
∑

e∈E(C)

m(e) +
∑

e∈E(C)

βe(r) > 0,

that is, ∑

e∈E(C)

(2m(e) + βe(r) − 7) > −14.

For each e ∈ E(C), let
φ(e) = 2m(e) + βe(r),

(1) For every e ∈ E(C), φ(e) ∈ {1, 2, 3, 4, 5, 6, 7}.

Since r is not a triangle, βe(r) ∈ {−1, 0, 1}. It follows from Conf(11) that m(e) ≤ 4. Further,
if m(e) = 4 then m+(e) = 4 and βe(r) = −1. This proves (1).

For each integer i, let Ei be the set of edges of C such that φ(e) = i. From (1) E(C) is the union
of E1, E2, E3, E4, E5, E6, E7.

Let e be an edge of C and denote by r′ its second region. We now make a series of observa-
tions that are easily checked from the β-rules and the fact that 2m(e) − 1 ≤ φ(e) ≤ 2m(e) + 1, as
well as Conf(6) which implies that if m(e) = 3 then r′ is not tough.

(2) e ∈ E1 if and only if m(e) = m+(e) = 1 and e is not a door for r′.

(3) e ∈ E2 if and only if m(e) = 1 and either

• m+(e) = 1 and e is a door for r′, or

• m+(e) = 2 and r′ is not a tough triangle.

(4) e ∈ E3 if and only if either

• m(e) = 1 and r′ is a tough triangle, or

• m(e) = m+(e) = 2.

(5) e ∈ E4 if and only if m(e) = 2, m+(e) = 3 and r′ is not a tough triangle.

(6) e ∈ E5 if and only if either

• m(e) = 2 and r′ is a tough triangle, or

• m(e) = m+(e) = 3.
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(7) e ∈ E6 if and only if m(e) = 3 and m+(e) = 4.

(8) e ∈ E7 if and only if m(e) = 4 and m+(e) = 4.

(9) No edge in E7 is consecutive with an edge in E6 ∪ E7.

Suppose that edges e, f ∈ E(C) share an end v, and e ∈ E7. Since v has degree at least three
it follows that m(e) + m(f) ≤ 6 so f /∈ E6 ∪ E7. This proves (9).

(10) Let e, f , g be consecutive edges of C. If e, g ∈ E7 then f ∈ E1 ∪ E2 ∪ E3 ∪ E4.

For by (9), f /∈ E6. Suppose that f ∈ E5. Since m(e) = m(g) = 4 and G has minimum de-
gree three, by (6) m(f) = 2 and the second region for f is a tough triangle r′ with m(r′) = 4. But
m+(e) = m+(g) = 4, so r′ is incident with two big regions; thus m+(r′) = 5, contradicting the fact
that r′ is tough. This proves (10).

For 1 ≤ i ≤ 7, let ni = |Ei|. Let k = |E(C)|.

(11) 5n1 + 4n2 + 3n3 + 2n4 + n5 + k − n7 ≤ 13.

Since ∑

e∈E(C)

(φ(e) − 7) > −14,

we have 6n1 + 5n2 + 4n3 + 3n4 + 2n5 + n6 ≤ 13, that is,

5n1 + 4n2 + 3n3 + 2n4 + n5 + k − n7 ≤ 13,

since n1 + n2 + n3 + n4 + n5 + n6 + n7 = k, proving (11).

(12) 4n1 + 3n2 + 2n3 + n4 + k ≤ 12 and n1 + n2 ≤ 2.

By (9) we have n1 + n2 + n3 + n4 + n5 ≥ n7. Suppose that n1 + n2 + n3 + n4 + n5 = n7. By
Conf(7), the edges of C cannot all be in E6, so n7 > 0. Then k is even and every second edge
of C is in E7, so by (10), n5 = n6 = 0; and hence n1 + n2 + n3 + n4 = k

2 and n7 = k
2 . By (11)

3n1 + 2n2 + n3 + 3
2k ≤ 13. Therefore, either n1 + n2 ≤ 1, or k = 4, or n1 + n2 = 2 and k = 6. But

by Conf(9), every edge in E7 is disjoint from an edge in E1 ∪ E2, a contradiction. This proves that
n1 + n2 + n3 + n4 + n5 ≥ n7 + 1. The first inequality follows from (11) and the second from the fact
that k ≥ 4. This proves (12).

Case 1: n1 + n2 = 2.

Suppose that k + n1 ≥ 6. By (12), n3 = n4 = 0. By Conf(9), every edge in E7 is disjoint from an
edge in E1 ∪ E2, and therefore, by (9), is consecutive with an edge in E5. Further, by (10) no edge
in E5 meets two edges in E7, and so n5 ≥ n7, contradicting (11). This proves that k + n1 ≤ 5.

Suppose that k = 5. Then n2 = 2, and so by (12), n3 = 0 and n4 ≤ 1. Also n4 +n5 +n6 +n7 = 3.
By (11), n7 ≥ 2n4 + n5. Suppose that n6 = 3; then by (7), C has three edges of multiplicity three,
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each of whose second region is small. Further, by (3), if the edges in E2 are consecutive, they are
both incident with small regions. This contradicts Conf(14). Therefore n6 ≤ 2, and so n7 ≥ 1. By
Conf(10), one of the edges in E2 must be incident with a big region, and by (3), it must be a door
for that region. Since n3 = 0, it follows that the two edges in E2 are disjoint. It follows that n7 = 1.
By (11), n4 = 0 and n6 ≥ 1. Let e ∈ E6. Then e must be consecutive with both edges in E2, for it
is not consecutive with the edge in E7. But then e is disjoint only from edges in E7 ∪ E5, contrary
to Conf(7).

Suppose that k = 4. Then n1 ≤ 1. By Conf(10) and (3), n1 ≥ n7. Therefore by (11), 3n3 +
2n4 + n5 ≤ 1, and so n3 = n4 = 0 and n5 ≤ 1. Since n5 + n6 + n7 = 2, and edges in E5, E6, E7

have multiplicity at least two, three, four, respectively, Conf(3) implies n7 = 0 and n6 ≤ 1. Hence
n5 = n6 = 1. From (11) it follows that n1 = 0. By Conf(5) the edge disjoint from the edge in E6

must have multiplicity one and be incident with a big region. By (3) this edge must be in E1, a
contradiction. This proves that Case 1 does not apply.

Case 2: n1 + n2 = 1.

Let e0 ∈ E1 ∪ E2. We claim that neither edge consecutive with e0 is in E6 ∪ E7. For let e1 be
an edge consecutive with e0 on C and suppose that e1 ∈ E6 ∪ E7; then by (7), m+(e1) = 4. But all
edges disjoint from e1 on C are not in E1 ∪ E2 and therefore are 2-heavy and their second regions
are not triangles with multiplicity three. Therefore Conf(7) implies that at least four edges disjoint
from e0 are not 3-heavy and hence n3 + n4 ≥ 4 and that k ≥ 7, contradicting (11). This proves that
all edges in E6 ∪ E7 are disjoint from e0, and so n3 + n4 + n5 ≥ 2. We consider two cases:

Subcase 2.1: n7 ≥ 1.
Let f ∈ E7. By Conf(9), if an edge e1 meets both e0 and f then m(e1) = 1 and so e1 ∈ E3. By
(10) an edge meeting two edges in E7 is in E3 ∪ E4. Summing over the edges meeting E7 ∪ {e0} it
follows that 2n3 + 2n4 + n5 ≥ 2(n7 + 1). From (11) we deduce 5n1 + 4n2 + n3 + n7 + k ≤ 11; thus
k + n1 + n3 + n7 ≤ 7. By Conf(10), m+(e0) = 1, so by (3), either e0 ∈ E1 or there is an edge of
multiplicity one disjoint from e0. Since n1 + n2 = 1, such an edge would be in E3; it follows that
n1 + n3 ≥ 1. We deduce that k ≤ 5. If k = 5 then by Conf(9) the edge meeting e0 and f is in E3,
and so n1 + n3 ≥ 2, a contradiction.

Thus k = 4. Then by Conf(10) and (3), e0 ∈ E1. By Conf(3) the two edges consecutive with e0

are in E3. But then k + n1 + n3 + n7 = 8, a contradiction.

Subcase 2.2: n7 = 0.
Let e0, . . . , ek−1 denote the edges of C listed in consecutive order. Since n3 + n4 + n5 ≥ 2, (11)
implies k ≤ 7.

Suppose that k = 7. Then the inequality in (11) is tight, and we have n2 = 1, n5 = 2 and
n6 = 4. Consequently n1 = n3 = n4 = 0. Then e1, e6 ∈ E5, and so by (6) and (7) are 3-heavy with
multiplicity at least two, and e2, e3, e4, e5 ∈ E6. This is a contradiction by Conf(8).

Suppose that k = 6. We know e1, e5 /∈ E6. By (11), n1 +3n3 +2n4 +n5 ≤ 3, but n3 +n4 +n5 ≥ 2
so n3 = 0 and consequently n4 + n5 + n6 = 5. Also n1 + 2n4 + n5 ≤ 3. In particular n4 ≤ 1. Suppose
that n4 = 1, then n6 = 3 and n5 = 1 and e2, e3, e4 ∈ E6. It follows from Conf(8) that m+(e0) = 1,
and so n1 = 1, contradicting that n1 + 2n4 + n5 ≤ 3. Thus n4 = 0. It follows that n5 + n6 = 5. This
contradicts Conf(16).
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Next suppose that k = 5. We know e1, e4 /∈ E6. By (11), n1 + 3n3 + 2n4 + n5 ≤ 4. Suppose that
2n3 + n4 ≥ 2. Then n1 + n3 + n4 + n5 ≤ 2, and so n2 + n6 ≥ 3. Since n6 ≤ 2 we may assume that
e2, e3 ∈ E6 and e0 ∈ E2, contrary to Conf(14). It follows that 2n3 + n4 ≤ 1. Consequently n3 = 0
and n5 + n6 ≥ 3. Thus we may assume that m+(e1),m

+(e2),m
+(e3),m

+(e4) ≥ 3, and e1 is 3-heavy.
This contradicts Conf(15).

Finally, suppose that k = 4. By (11), n1 + 3n3 + 2n4 + n5 ≤ 5. By Conf(5), at least one of
m+(e1),m

+(e3) ≤ 2, so we may assume that e1 ∈ E3 and so n3 = 1. Since m+(e1) = 2, Conf(8)
implies e3 /∈ E6, and so e3 ∈ E5. Suppose that e0 ∈ E1. Then 2n4 + n5 ≤ 1, and so n4 = 0 and
n5 ≤ 1. Since e2 /∈ E5, e2 ∈ E6. Since m(e2) = 3 by (7), it follows from Conf(3) that m(e1) = 1,
m(e3) = 2 and from (4) and (6) that e1, e3 are incident with tough triangles v1v2x and v3v0y. This
contradicts Conf(13).

Thus e0 ∈ E2 and so m+(e0) = 2. By Conf(8), e2 /∈ E6. Hence e2 ∈ E4 ∪E5. Since 2n4 + n5 ≤ 2
and e3 ∈ E5, it follows that e2 ∈ E5. By Conf(13), the second region for e1 is not a tough triangle,
and so m(e1) = 2. Since m(e2),m(e3) ≥ 2, Conf(3) tells us m(e3) = 2 and the second region for e3

is a tough triangle v0v3x. But this contradicts Conf(13). We conclude that Case 2 does not apply.

Case 3: n1 + n2 = 0.

In this case, C has no doors, so by Conf(9) n7 = 0. Suppose that n6 ≥ 1 and let e ∈ E6. Then by
Conf(7), there are at least four edges disjoint from e that are not 3-heavy. Therefore n3 +n4 ≥ 4 and
k ≥ 7, contradicting (11). It follows that n1 = n2 = n6 = n7 = 0, and so n3 + n4 + n5 = k. By (11),
3n3 +2n4 +n5 +k ≤ 13, and k ≤ 6. Further, 3n3 +2n4 +2n5 +k ≤ 13+n5, and so n5−n3 ≥ 3k−13.

Suppose first that k = 6; then n5 ≥ 5, so by (6) C has five 3-heavy edges, each with multiplicity
two or three, contrary to Conf(16). Suppose that k = 5; then 3n3 + 2n4 + n5 ≤ 8, and so, since
n3 +n4 +n5 = 5, n3 ≤ 1. Also n5 ≥ 1, and if n3 = 1 then n4 ≤ 1. Consequently we may assume that
there is an ordering e0, . . . , e4 of E(C), where e0 ∈ E5 and e2, e3 ∈ E4 ∪ E5, contrary to Conf(15).

Finally, suppose that k = 4; then 3n3+2n4+n5 ≤ 9. Since, by (5) and (6), every edge f ∈ E4∪E5

has m+(f) ≥ 3, Conf(5) tells us there are two consecutive edges in E3, say e0 and e1. Hence n5 ≥ 1
and n4 + n5 = 2. We may assume that e2 ∈ E4 ∪ E5 and e3 ∈ E5. Since m(e2) ≥ 2, Conf(3) implies
that m(e1) + m(e3) ≤ 4. Thus by (4) and (6), either the second region for e1 is a tough triangle,
or the second region for e3 is a tough triangle and m(e1) = 2. Further, m+(e1) + m(e3) = 5. This
contradicts Conf(13). We conclude that Case 3 does not apply.

This completes the proof of 3.6.

Proof of 3.1. Suppose that (G,m) is a prime 7-target, and let α, β be as before. Since the sum
over all regions r of α(r) + β(r) is positive, there is a region r with α(r) + β(r) > 0. But this is
contrary to one of 3.3, 3.4, 3.5, 3.6. This proves 3.1.

4 Reducibility

Now we begin the second half of the paper, devoted to proving the following.

4.1. Every minimum 7-counterexample is prime.

12



Again, the proof is broken into several steps. Clearly no minimum 7-counterexample (G,m) has
an edge e with m(e) = 0, because deleting e would give a smaller 7-counterexample; and by 2.1,
every minimum 7-counterexample satisfies the conclusions of 2.1. Thus, it remains to check that
(G,m) contains none of Conf(1)–Conf(16). In [3] we found it was sometimes just as easy to prove a
result for general d instead of d = 8, and so the following theorem is proved there.

4.2. If (G,m) is a minimum d-counterexample, then every triangle has multiplicity less than d.

It turns out that Conf(1) is a reducible configuration for every d as well; this follows easily from
2.1 and is proved in [3].

4.3. No minimum d-counterexample contains Conf(1).

If (G,m) is a d-target, and x, y are distinct vertices both incident with some common region r,
we define (G,m) + xy to be the d-target (G′,m′) obtained as follows:

• If x, y are adjacent in G, let (G′,m′) = (G,m).

• If x, y are non-adjacent in G, let G′ be obtained from G by adding a new edge xy, extending
the drawing of G to one of G′ and setting m′(e) = m(e) for every e ∈ E(G) and m′(xy) = 0.

Let (G,m) be a d-target, and let x-u-v-y be a three-edge path of G, where x, y are incident with
a common region. Let (G′,m′) be obtained as follows:

• If x, y are adjacent in G, let G′ = G, and otherwise let G′ be obtained from G by adding the
edge xy and extending the drawing of G to one of G′.

• Let m′(xu) = m(xu) − 1, m′(uv) = m(uv) + 1, m′(vy) = m(vy) − 1, m′(xy) = m(xy) + 1 if
xy ∈ E(G) and m′(xy) = 1 otherwise, and m′(e) = m(e) for all other edges e.

If (G,m) is a minimum d-counterexample, then because of the second statement of 2.1, it follows
that (G′,m′) is a d-target. We say that (G′,m′) is obtained from (G,m) by switching on the sequence
x-u-v-y. If (G′,m′) admits a d-edge-colouring, we say that the path x-u-v-y is switchable.

4.4. No minimum 7-counterexample contains Conf(2) or Conf(3).

Proof. To handle both cases at once, let us assume that (G,m) is a 7-target, and uvw, uwx are
triangles with m(uv)+m(uw)+m(vw)+m(ux) ≥ 7, (where possibly m(uw) = 0); and either (G,m)
is a minimum 7-counterexample, or m(uw) = 0 and deleting uw gives a minimum 7-counterexample
(G0,m0) say. Let (G,m′) be obtained by switching (G,m) on u-v-w-x.

(1) (G,m′) is not smaller than (G,m).

Because suppose it is. Then it admits a 7-edge-colouring; because if (G,m) is a minimum 7-
counterexample this is clear, and otherwise m(uw) = 0, and (G′,m′) is smaller than (G0,m0).
Let F ′

1, . . . , F
′

7 be a 7-edge-colouring of (G′,m′). Since

m′(uv) + m′(uw) + m′(vw) + m′(ux) ≥ 8,
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one of F ′

1, . . . , F
′

7, say F ′

1, contains two of uv, uw, vw, ux and hence contains vw, ux. Then

(F ′

1 \ {vw, ux}) ∪ {uv,wx}

is a perfect matching, and it together with F ′

2, . . . , F
′

7 provide a 7-edge-colouring of (G,m), a con-
tradiction. This proves (1).

From (1) we deduce that max(m(ux),m(vw)) < max(m(uv),m(wx)). Consequently,

m(uv) + m(uw) + m(vw) + m(wx) ≤ 6,

by (1) applied with u,w exchanged; and

m(uv) + m(ux) + m(wx) + m(uw) ≤ 6,

by (1) applied with v, x exchanged. Consequently m(ux) > m(wx), and hence m(ux) ≥ 2; and
m(vw) > m(wx), and so m(vw) ≥ 2. Since m(uv) + m(uw) + m(vw) + m(wx) ≤ 6 and m(vw) ≥ 2,
it follows that m(uv) ≤ 3; and since max(m(ux),m(vw)) < max(m(uv),m(wx)), it follows that
m(uv) = 3, m(vw) = m(ux) = 2 and m(wx) = 1. But this is contrary to (1), and so proves 4.4.

5 Guenin’s cuts

Next we introduce a method of Guenin [6]. Let G be a three-connected graph drawn in the plane,
and let G∗ be its dual graph; let us identify E(G∗) with E(G) in the natural way. A cocycle means
the edge-set of a cycle of the dual graph; thus, Q ⊆ E(G) is a cocycle of G if and only if Q can
be numbered {e1, . . . , ek} for some k ≥ 3 and there are distinct regions r1, . . . , rk of G such that
1 ≤ i ≤ k, ei is incident with ri and with ri+1 (where rk+1 means r1). Guenin’s method is the use of
the following theorem, a proof of which is given in [3].

5.1. Suppose that d ≥ 1 is an integer such that every (d − 1)-regular oddly (d − 1)-edge-connected
planar graph is (d− 1)-edge-colourable. Let (G,m) be a minimum d-counterexample, and let x-u-v-y
be a path of G with x, y on a common region. Let (G′,m′) be obtained by switching on x-u-v-y, and
let F1, . . . , Fd be a d-edge-colouring of (G′,m′), where xy ∈ Fk. Then none of F1, . . . , Fd contain both
uv and xy. Moreover, let I = {1, . . . , d} \ {k} if xy /∈ E(G), and I = {1, . . . , d} if xy ∈ E(G). Then
for each i ∈ I, there is a cocycle Qi of G′ with the following properties:

• for 1 ≤ j ≤ d with j 6= i, |Fj ∩ Qi| = 1;

• |Fi ∩ Qi| ≥ 5;

• there is a set X ⊆ V (G) with |X| odd such that δG′(X) = Qi; and

• uv, xy ∈ Qi and ux, vy /∈ Qi.

By the result of [4], every 6-regular oddly 6-edge-connected planar graph is 6-edge-colourable, so
we can apply 5.1 when d = 7.
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5.2. No minimum 7-counterexample contains Conf(4) or Conf(5).

Proof. To handle both at once, let us assume that (G,m) is a 7-target, and uvw, uwx are two
triangles with m+(uv) + m(uw) + m+(wx) ≥ 6; and either (G,m) is a minimum 7-counterexample,
or m(uw) = 0 and deleting uw gives a minimum 7-counterexample. We claim that u-x-w-v-u is
switchable. For suppose not; then we may assume that m(vw) > max(m(uv),m(wx)) and m(vw) ≥
m(ux). Now we do not have Conf(2) or Conf(3) by 4.4 so

m(uv) + m(uw) + m(vw) + m(wx) ≤ 6,

and yet m(uv) + m(uw) + m(wx) ≥ 4 since m+(uv) + m(uw) + m+(wx) ≥ 6; and so m(vw) ≤ 2.
Consequently m(uv),m(wx) = 1, and m(ux) ≤ 2. Since u-x-w-v-u is not switchable, it follows that
m(ux) = m(vw) = 2; and since m+(uv) + m(uw) + m+(wx) ≥ 6, it follows that m(uw) ≥ 2 giving
Conf(2), contrary to 4.4. This proves that u-x-w-v-u is switchable.

Let r1, r2 be the second regions incident with uv,wx respectively, and for i = 1, 2 let Di be the
set of doors for ri. Let k = m(uv) + m(uw) + m(wx) + 2. Let (G,m′) be obtained by switching on
u-x-w-v-u, and let F1, . . . , F7 be a 7-edge-colouring of (G,m′), where Fi contains one of uv, uw,wx
for 1 ≤ i ≤ k. For 1 ≤ i ≤ 7, let Qi be as in 5.1.

(1) For 1 ≤ i ≤ 7, either Fi ∩ Qi ∩ D1 6= ∅, or Fi ∩ Qi ∩ D2 6= ∅; and both are nonempty if ei-
ther k = 7 or i = 7.

For let the edges of Qi in order be e1, . . . , en, e1, where e1 = wx, e2 = uw, and e3 = uv. Since
Fj contains one of e1, e2, e3 for 1 ≤ j ≤ k, it follows that none of e4, . . . , en belongs to any Fj with
j ≤ k and j 6= i, and, if k = 6 and i 6= 7, that only one of them is in F7. But since at most one of
e1, e2, e3 is in Fi and |Fi ∩Qi| ≥ 5, it follows that n ≥ 7; so either e4, e5 belong only to Fi, or en, en−1

belong only to Fi, and both if k = 7 or i = 7. But if e4, e5 are only contained in Fi, then they both
have multiplicity one, and are disjoint, so e4 is a door for r1 and hence e4 ∈ Fi ∩ Qi ∩ D1. Similarly
if en, en−1 are only contained in Fi then en ∈ Fi ∩ Qi ∩ D2. This proves (1).

Now k ≤ 7, so one of r1, r2 is small since m+(uv) + m(uw) + m+(wx) ≥ 6; and if k = 7 then by
(1) |D1|, |D2| ≥ 7, a contradiction. Thus k = 6, so both r1, r2 are small, but from (1) |D1|+ |D2| ≥ 8,
again a contradiction. This proves 5.2.

5.3. No minimum 7-counterexample contains Conf(6).

Proof. Let (G,m) be a minimum 7-counterexample, and suppose that uvw is a triangle with
m+(uv) + m+(uw) = 6 and either m(uv) ≥ 3 or m(uv) = m(vw) = m(uw) = 2 or u has degree
at least four. Let r1, r2 be the second regions for uv, uw respectively, and for i = 1, 2 let Di be
the set of doors for ri. Since we do not have Conf(4) by 5.2, neither of r1, r2 is a triangle. Let
tu be the edge incident with r2 and u different from uw. It follows from 4.3 that we do not have
Conf(1) so m(tu) ≤ 2, since m(uv) + m(uw) ≥ 4 and m(vw) + max(m(uv),m(uw)) ≥ 4. By 4.2,
m(vw) ≤ m(uv). Thus the path t-u-v-w is switchable. Note that t, w are non-adjacent in G, since
r2 is not a triangle.

Let (G′,m′) be obtained by switching on this path, and let F1, . . . , F7 be a 7-edge-colouring of
it. Let k = m(uv) + m(uw) + 2; thus k ≥ 6, since m(uv) + m(uw) ≥ 4. By 5.1 we may assume that
for 1 ≤ j < k, Fj contains one of uv, uw, and tw ∈ Fk.
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Let I = {1, . . . , 7}\{k}, and for each i ∈ I, let Qi be as in 5.1. Now let i ∈ I, and let the edges of
Qi in order be e1, . . . , en, e1, where e1 = uv, e2 = uw, and e3 = tw. Since Fj contains one of e1, e2, e3

for 1 ≤ j ≤ k it follows that none of e4, . . . , en belong to any Fj with j ≤ k; and if k = 6 and i 6= 7,
only one of them belongs to F7. Since Fi contains at most one of e1, e2, e3 and |Fi∩Qi| ≥ 5, it follows
that n ≥ 7, and so either e4, e5 belong only to Fi, or en, en−1 belong only to Fi; and both if either
k = 7 or i = 7. Thus either e4 ∈ Fi ∩Qi ∩D2 or en ∈ Fi ∩Qi ∩D1, and both if k = 7 or i = 7. Since
k ≤ 7, one of r1, r2 is small since m+(uv) + m+(uw) = 6; and yet if k = 7 then |D1|, |D2| ≥ |I| = 6,
a contradiction. Thus k = 6, so r1, r2 are both small, and yet |D1|+ |D2| ≥ 7, a contradiction. This
proves 5.3.

5.4. No minimum 7-counterexample contains Conf(7).

Proof. Let (G,m) be a minimum 7-counterexample, with an edge uv with m+(uv) ≥ 4 incident
with regions r1 and r2 and r1 has length at least four. Suppose further that every edge e of Cr1

disjoint from uv is 2-heavy and not incident with a triangle with multiplicity three. It is enough to
show that there are at least four edges on Cr1

disjoint from uv that are not 3-heavy. By 5.8 and 5.6
we do not have Conf(11) or Conf(9). Hence m(uv) = 3 and r2 is small.

Let x-u-v-y be a path of Cr. By 5.2 we do not have Conf(5), so x and y are not adjacent in G.
Since G has minimum degree three, m(uv) ≥ m(ux),m(vy) so x-u-v-y is switchable; let (G′,m′) be
obtained from (G,m) by switching on it, and let F1, . . . , F7 be a 7-edge-colouring of (G′,m′).

Since m′(uv) + m′(xy) = 5 we may assume by 5.1 that uv ∈ Fi for 1 ≤ i ≤ 4 and xy ∈ F5. Let
I = {1, . . . , 7} \ {5} and for i ∈ I, let the edges of Qi in order be ei

1, . . . , e
i
n, ei

1, where ei
1 = uv and

ei
2 = xy.

Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of ei
1, e

i
2, it follows that n ≥ 6. Let D2 denote

the set of doors for r2.

(1) Let i ∈ I. If i > k then Fi ∩ D2 is nonempty. Further, if Fi ∩ D2 is empty, or i > k then
ei
3 is not 3-heavy, and either

• ei
3 belongs to Fi, or

• ei
4 belongs to Fi and m(ei

3) = m(ei
4) = 1 and ei

3, e
i
4 belong to a triangle.

For 1 ≤ j ≤ 5, Fj contains one of ei
1, e

i
2; and hence ei

3, . . . , e
i
n /∈ Fj for all j ∈ {1, . . . , 5} with

j 6= i. Therefore ei
3, . . . , e

i
n belong only to Fi, F6, F7. Since e6

3 is 2-heavy, one of e6
3, e

6
4 does not belong

to F6 and therefore belongs to F7. It follows that e6
n, e6

n−1 /∈ F7 so F6 ∩ D2 is nonempty. Similarly,
F7 ∩ D2 is nonempty. This proves the first assertion.

Suppose that Fi ∩ D2 is empty, or i > 5; we have |{ei
n, ei

n−1} ∩ (F6 ∪ F7)| ≥ 1. Without loss of
generality say |{ei

n, ei
n−1} ∩ F6| ≥ 1. It follows that ei

3, ei
4 belong only to Fi, F7, so ei

3 is not 3-heavy.
On the other hand, ei

3 is 2-heavy by hypothesis, so if ei
3 /∈ Fi, then ei

3 has multiplicity one, ei
3 ∈ F7,

ei
4 belongs to Fi, has multiplicity one. Since ei

3 is 2-heavy, ei
3 and ei

4 belong to a triangle. This proves
(1).

Let I1 denote the indices i ≤ 6, i 6= 5 such that ei
3 is not 3-heavy and either ei

3 ∈ Fi, or ei
4 ∈ Fi

and ei
3, e

i
4 have multiplicity one and belong to a triangle incident with r1. From (1) and because r2

is small, |I1| ≥ 4. Suppose that for i 6= i′ ∈ I1, the corresponding edges ei
3 and ei′

3 are the same. We
may assume that i′ ≤ 4. If ei

3 ∈ Fi′ , this is a contradiction. Otherwise m(ei
3) = m(ei

4) = 1 and ei
3, e

i
4
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belong to a triangle incident with r1. It follows that ei
4 = ei′

4 since ei
3 is not incident with a triangle

of multiplicity three, and so ei
4 ∈ Fi′ , a contradiction.

It follows that there are at least four edges of Cr disjoint from uv that are not 3-heavy. This
proves 5.4.

5.5. No minimum 7-counterexample contains Conf(8).

Proof. Let (G,m) be a minimum 7-counterexample, with an edge uv with multiplicity three,
incident with regions r and r1 where r1 is small. Suppose that there is an edge f disjoint from e with
m+(f) = m(f) + 1 = 2, where every edge of Cr \ {f} disjoint from e is 3-heavy with multiplicity at
least two. Since e and f are disjoint r has length at least four. Let x-u-v-y be a path of Cr. By 5.2 we
do not have Conf(5), so x and y are not adjacent in G. Since G has minimum degree at least three,
it follows that m(uv) ≥ m(ux),m(vy) so x-u-v-y is switchable; let (G′,m′) be obtained from (G,m)
by switching on it, and let F1, . . . , F7 be a 7-edge-colouring of (G′,m′). Since m′(uv) + m′(xy) = 5
we may assume by 5.1 that uv ∈ Fi for 1 ≤ i ≤ 4 and xy ∈ F5. Let I = {1, . . . , 7}\{5} and for i ∈ I,
let Qi be as in 5.1.

For i ∈ I, let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = xy. Since
|Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2, it follows that n ≥ 6. For 1 ≤ j ≤ 5, Fj contains
one of e1, e2; and hence for all j ∈ {1, . . . , 5}, e3, . . . , en /∈ Fi, and so e3, . . . , en belong only to Fi, F6

or F7. In particular when i ∈ {6, 7}, e3 is not 3-heavy and so e3 = f . It follows f belongs only to
F6, F7; we assume without loss of generality f ∈ F6. Let D1 denote the set of doors for r1. Denote
by r2 the second region for f and by D2 its set of doors.

(1) Let i ∈ I. At least one of Fi ∩ Qi ∩ D1, Fi ∩ Qi ∩ D2 is nonempty, and if i = 7 then both
are nonempty.

Suppose that i = 7. Then e3 = f ∈ F6 and e4, . . . , en belong only to F7, and so e4 is a door
for r2 and en is a door for r1. Now suppose that i < 7. If e3 = f , then since Fi contains at most one
of e1, e2, e3 and |Fi ∩ Qi| ≥ 5, it follows that n ≥ 7. It follows that e4, . . . , en belong only to F7 or
Fi, and so either e4 is a door for r2 or en is a door for r1 as required. If e3 6= f then e3 is 3-heavy,
and so Fi, F6, F7 each contain one of e3, e4. Therefore en−1, en belong only to Fi, and so en is a door
for r1. This proves (1).

By (1), |D1| + |D2| ≥ 7, but r1 and r2 are both small, a contradiction. This proves 5.5.

5.6. No minimum 7-counterexample contains Conf(9).

Proof. Let (G,m) be a minimum 7-counterexample, and suppose that some edge uv with m(uv) = 4
is incident with a region r of length at least four. Let x-u-v-y be a path of Cr1

. If x and y are adjacent,
then since we do not have Conf(5) by 5.2, xy is incident with a big region. Therefore we may assume
that x and y are nonadjacent.

We will show r has a door f disjoint from uv, and that if m(xu) ≥ 2 then f is also disjoint from
xu (and similarly for vy.)

Since m(e) ≥ 4, this path is switchable; let (G′,m′) be obtained from (G,m) by switching on it,
and let F1, . . . , F7 be a 7-edge-colouring of (G′,m′).
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Thus we may assume that uv ∈ Fi for 1 ≤ i ≤ 5, and xy ∈ F6. Further, if m(xu) ≥ 2 then
xu ∈ F7 and simlarly for vy. Let I = {1, . . . , 7}\{6}. For i ∈ I, let Qi be as in 5.1. Since Qi contains
both uv, xy for each i ∈ I, it follows that for 1 ≤ j ≤ 7, Fj contains at most one of uv, xy.

Consider now Q7, and let the edges of Q7 in order be e1, . . . , en, e1 where e1 = uv and e2 = xy. For
1 ≤ j ≤ 6, Fj contains one of e1, e2, and hence e3, . . . , en belong only to F7. Since e3 ∈ Cr\{xu, uv, vy}
by the choice of the switchable path, e3 is a door for r disjoint from uv. Further if m(xu) ≥ 2 then
e3 is disjoint from xu, and similarly for vy.

This proves 5.6.

5.7. No minimum 7-counterexample contains Conf(10).

Proof. Let (G,m) be a minimum 7-counterexample, and suppose that there is a region r of length
between four and six incident with an edge uv with multiplicity four, and suppose that m+(e) ≥ 2
for every edge e of Cr disjoint from uv. Let x-u-v-y be a path of Cr. By 5.2, we do not have
Conf(5) so x and y are not adjacent in G (and r has length five or six). Since m(uv) = 4, the path
x-u-v-y is switchable; let (G′,m′) be obtained from (G,m) by switching on it, and let F1, . . . , F7 be
a 7-edge-colouring of (G′,m′). By 5.1 we may assume that uv ∈ Fi for 1 ≤ i ≤ 5, and xy ∈ F6. Let
I = {1, . . . , 7} \ {6} and for i ∈ I, let Qi be as in 5.1.

Define ℓ = |F7 ∩ E(Cr) \ {xu, uv, vy}|. Suppose that ℓ = 0; then let the edges of Q7 in order be
e1, . . . , en, e1, where e1 = uv and e2 = xy. Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2,
it follows that n ≥ 6. For 1 ≤ j ≤ 6, Fj contains one of e1, e2; and hence e3, . . . , en belong only to
F7. But e3 is an edge of E(Cr) \ {xu, uv, vy} by the choice of the switchable path, a contradiction.
Thus ℓ ≥ 1. Fix an edge f ∈ F7 ∩ E(Cr) \ {xu, uv, vy} and let I1 denote the indices i ∈ I for which
f ∈ Qi.

(1) |I1| ≤ 3.

Denote by r2 the second region for f and denote by D2 the set of doors for r2. Suppose that
|I1| ≥ 4. For i ∈ I1, let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv, e2 = xy and e3 = f .
Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2,e3, it follows that n ≥ 7. For 1 ≤ j ≤ 7, Fj

contains one of e1, e2, e3; and hence e4, . . . , en belong only to Fi. Further, e4 is incident with r2 and
therefore is a door for r2. But then |D2| ≥ 4, so m+(f) = 1, a contradiction. This proves (1).

Since r has length at most six, there are two cases:
Case 1: ℓ = 1. Let f ∈ F7 ∩ E(Cr) \ {xu, uv, vy}, denote by r2 the second region for f and denote
by D2 the set of doors for r2. Since the edges of Cr \{xu, uv, vy, f} each belong to Fj for some j 6= 7,
there are at most two indices i ∈ I for which f /∈ Qi. But then we have |I1| ≥ 4, contradicting (1).
Case 2: ℓ = 2. Let f, f ′ ∈ F7 ∩ E(Cr) \ {xu, uv, vy}. If m(f ′) ≥ 2, then f ′ ∈ Fj for some j 6= 7,
and so there are at most two values of i ∈ I for which f /∈ Qi. Then |I1| ≥ 4, contradicting (1). So
m(f ′) = 1 and by symmetry, m(f) = 1. There is at most one value of i ∈ I for which f, f ′ /∈ Qi.
Therefore, without loss of generality we may assume that there at least three indices i ∈ I, f ∈ Qi,
and so |I1| = 3. Denote by r2 the second region for f and D2 the set of doors for r2. For each i ∈ I1,
it follows that e4, . . . , en belong only to Fi, and e4 is incident with r2 and therefore is a door for
r2. Further, since f and f ′ are disjoint and have multiplicity one, f is a door for r2. If follows that
|D2| ≥ 4, so m+(f) = 1, a contradiction.

This completes the proof of 5.7.
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5.8. No minimum 7-counterexample contains Conf(11).

Proof. Let (G,m) be a minimum 7-counterexample, and suppose that some edge uv is incident
with regions r1, r2 where either m(uv) = 4 and r2 is small, or m(uv) ≥ 5. By exchanging r1, r2 if
necessary, we may assume that if r1, r2 are both small, then the length of r1 is at least the length
of r2. Suppose that r1 is a triangle. By 5.2 we do not have Conf(4), and so r2 is not a triangle and
therefore r2 is big. Then by hypothesis, m(uv) ≥ 5, contradicting 4.2. Thus r1 is not a triangle.

Let x-u-v-y be a path of Cr1
. By 5.2 we do not have Conf(5) so x, y are non-adjacent in G. Since

m(e) ≥ 4, this path is switchable; let (G′,m′) be obtained from (G,m) by switching on it, and let
F1, . . . , F7 be a 7-edge-colouring of (G′,m′). Let k = m(uv) + 2 ≥ 6. By 5.1 we may assume that
uv ∈ Fi for 1 ≤ i ≤ k − 1, and xy ∈ Fk, and so k ≤ 7. Let I = {1, . . . , 7} \ {k} and for i ∈ I, let Qi

be as in 5.1.
Let D1 be the set of doors for r1 that are disjoint from e, and let D2 be the set of doors for r2.

(1) For each i ∈ I, one of Fi ∩ Qi ∩ D1, Fi ∩ Qi ∩ D2 is nonempty, and if k = 7 or i > k then
both are nonempty.

Let i ∈ I, and let the edges of Qi in order be e1, . . . , en, e1, where e1 = uv and e2 = xy. Since
|Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2, it follows that n ≥ 6. Suppose that k = 7. Then
for 1 ≤ j ≤ 7, Fj contains one of e1, e2; and hence e3, . . . , en /∈ Fj for all j ∈ {1, . . . , 7} with j 6= i. It
follows that en, en−1 belong only to Fi and hence en ∈ Fi ∩ Qi ∩D2. Since this holds for all i ∈ I, it
follows that |D2| ≥ |I| ≥ 6. Hence r2 is big, and so by hypothesis, m(uv) ≥ 5. Since xy /∈ E(G), e3 is
an edge of Cr1

, and since e3, e4 belong only to Fi, it follows that e3 is a door for r1. But e3 6= ux, vy
from the choice of the switchable path, and so e3 ∈ Fi ∩ Qi ∩ D1. Hence in this case (1) holds.

Thus we may assume that k = 6 and so I = {1, . . . , 5, 7}; we have m(e) = 4, and r2 is small, and
uv ∈ F1, . . . , F5, and xy ∈ F6. If i = 7, then since uv, xy ∈ Qi and Fj contains one of e1, e2 for all
j ∈ {1, . . . , 6}, it follows as before that e3 ∈ Fi ∩ Qi ∩ D1 and en ∈ Fi ∩ Qi ∩ D2. We may therefore
assume that i ≤ 6. For 1 ≤ j ≤ 7 with j 6= i, |Fj ∩ Qi| = 1, and for 1 ≤ j ≤ 6, Fj contains one of
e1, e2. Hence e3, . . . , en belong only to Fi and to F7, and only one of them belongs to F7. If neither
of en, en−1 belong to F7 then en ∈ Fi ∩ Qi ∩ D2 as required; so we assume that F7 contains one of
en, en−1; and so e3, . . . , en−2 belong only to Fi. Since n ≥ 6, it follows that e3 ∈ Fi ∩ Qi ∩ D1 as
required. This proves (1).

If k = 7, then (1) implies that |D1|, |D2| ≥ 6 as required. So we may assume that k = 6 and
hence m(e) = 4 and xy /∈ E(G); and r2 is small. Suppose that there are three values of i ∈ {1, . . . , 5}
such that |Fi ∩ D1| = 1 and Fi ∩ D2 = ∅, say i = 1, 2, 3. Let fi ∈ Fi ∩ D1 for i = 1, 2, 3, and we
may assume that f3 is between f1 and f2 in the path Cr1

\ {uv}. Choose X ⊆ V (G′) such that
δG′(X) = Q3. Since only one edge of Cr1

\ {e} belongs to Q3, one of f1, f2 has both ends in X and
the other has both ends in V (G′) \ X; say f1 has both ends in X. Let Z be the set of edges with
both ends in X. Thus (F1 ∩ Z) ∪ (F2 \ Z) is a perfect matching, since e ∈ F1 ∩ F2, and no other
edge of δG′(X) belongs to F1 ∪ F2; and similarly (F2 ∩ Z) ∪ (F1 \ Z) is a perfect matching. Call
them F ′

1, F
′

2 respectively. Then F ′

1, F
′

2, F3, F4, . . . , F7 form a 7-edge-colouring of (G′,m′), yet the only
edges of D1 ∪ D2 included in F ′

1 ∪ F ′

2 are f1, f2, and neither of them is in F ′

2, contrary to (1). Thus
there are no three such values of i; and similarly there are at most two such that |Fi ∩ D2| = 1 and
Fi ∩D1 = ∅. Thus there are at least two values of i ∈ I such that |Fi ∩D1|+ |Fi ∩D2| ≥ 2 (counting
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i = 7), and so |D1| + |D2| ≥ 8. But |D2| ≤ 3 since r2 is small, so |D1| ≥ 5. This proves 5.8.

5.9. No minimum 7-counterexample contains Conf(12).

Proof. Let (G,m) be a minimum 7-counterexample, and suppose that some edge uv is incident
with a triangle uvw with m(uv) + m(vw) = 5, and suppose that uv is also incident with a region r1

that has at most five doors disjoint from v. Let tv be the edge incident with r1 and v different from
uv. By 4.3, we do not have Conf(1) so m(tv) = 1, and by 4.2, m(uw) = 1. By 4.4 we do not have
Conf(3), u and t are nonadjacent in G. It follows that the path u-w-v-t is switchable; let (G′,m′) be
obtained from (G,m) by switching on it, and let F1, . . . , F7 be a 7-edge-colouring of (G′,m′). Since
m′(uv) + m′(uw) + m′(ut) = 7, we may assume by 5.1 that ut ∈ F7, and Fj contains one of uv, vw
for 1 ≤ j ≤ 6 Let I = {1, . . . , 6} and for i ∈ I, let Qi be as in 5.1.

Let D1 be the set of doors for r1 that are disjoint from v. Let i ∈ I, and let the edges of Qi in
order be e1, . . . , en, e1, where e1 = vw, e2 = uv and e3 = ut. Since |Fi ∩ Qi| ≥ 5 and Fi contains at
most one of e1, e2, e3, it follows that n ≥ 7. For 1 ≤ j ≤ 7, Fj contains one of e1, e2, e3; and hence
e3, . . . , en /∈ Fj for all j ∈ {1, . . . , 7} with j 6= i. It follows that e4, e5 belong only to Fi. By the
choice of the switchable path e4 6= tv and hence e4 ∈ Fi ∩ Qi ∩ D1. Since this holds for all i ∈ I, it
follows that |D1| ≥ |I| ≥ 6, a contradiction. This proves 5.9.

5.10. Let (G,m) be a minimum 7-counterexample, let x-u-v-y be a three-edge path of G, and let
(G,m′) obtained by switching on x-u-v-y. If (G,m) is not smaller than (G,m′), and (G,m′) contains
one of Conf(1)–Conf(12) then x-u-v-y is switchable.

Proof. Suppose that x-u-v-y is not switchable. Then, since (G,m′) is a 7-counterexample and (G,m)
is not smaller than (G,m′), the latter is a minimum counterexample. But by 4.3–5.9, no minimum
7-counterexample contains any of Conf(1)–Conf(12), a contradiction. This proves 5.10.

5.11. No minimum 7-counterexample contains Conf(13).

Proof. Let (G,m) be a minimum 7-counterexample, with a square xuvy and a tough triangle uvz,
where m(uv) + m+(xy) ≥ 4 and m(xy) ≥ 2. Since (G,m) does not contain Conf(5) by 5.2, we have
m(uv)+m+(xy) = 4. Suppose that m(uv) ≥ 3; then since xuvy is small and (G,m) does not contain
Conf(6) by 5.3, we have m(uv) = 3 and m+(uz) = m+(vz) = 1, contradicting the fact that uvz is
tough. Thus m(uv) ≤ 2.

Since (G,m) does not contain Conf(3) by 4.4, it follows that m(ux)+ m(vy) ≤ 4. Thus the cycle
x-u-v-y-x is switchable; let (G,m′) be obtained from (G,m) by switching on it, and let F1, . . . , F7

be a 7-edge-colouring of (G′,m′). Let k = m′(uv) + m′(xy) ∈ {5, 6}. By 5.1 we may assume that
uv ∈ Fi for 1 ≤ i ≤ m′(uv), and xy ∈ Fi for m′(uv) < i ≤ k. Let I = {1, . . . , 7} and for i ∈ I, let
Qi be as in 5.1. Denote by r1, r2, the second regions for vz, xy, respectively, and by D1,D2 their
respective sets of doors.

(1) One of m+(uz),m+(vz) = 1.

Let i ∈ I, and let the edges of Qi in order be ei
1, . . . , e

i
ni

, ei
1, where ei

1 = uv, ei
2 = xy and ei

ni
∈ {uz, vz}.
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Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of ei
1, e

i
2, it follows that ni ≥ 6. For 1 ≤ j ≤ k, Fj

contains one of ei
1, e

i
2; and hence ei

3, . . . , e
i
ni

/∈ Fj for all j ∈ {1, . . . , k} with j 6= i.
Suppose that k = 6. We may assume by symmetry that vz ∈ Q7, and so m(vz) = 1 and vz ∈ F7.

Also, uz ∈ Fi for some m′(uv) < i ≤ k, say uz ∈ F6. Let i ∈ I \ {6, 7}. Then since uz and xy both
belong to F6, vz ∈ Qi. Then since ei

ni
= vz and vz /∈ Fi, we have ni ≥ 7 and ei

3, . . . , e
i
ni−1 belong

only to Fi. It follows that Fi ∩Qi ∩D1 is nonempty, and so r1 is big. Hence m+(vz) = 1 as required.
Suppose that k = 5. Then by hypothesis, m(uv) = 1, m(xy) = 2, and r2 is small. We have

uv ∈ F1, F2 and xy ∈ F3, F4, F5. Suppose that uz ∈ Q7 and m(uz) ≥ 2. Then uz belongs to both F7

and F6. Further vz /∈ F1, F2, F6, F7 and so by symmetry we can assume that vz ∈ F5. Consequently
when i ∈ I \ {5}, we have uz ∈ Qi, ni ≥ 7 and ei

3, . . . , e
i
n−1 belong only to Fi. Further, m(uz) = 2.

But then Fi ∩ Qi ∩ D3 is nonempty, contradicting the fact that r3 is small. By the same argument
if m(vz) ≥ 2 then vz /∈ Q7.

Since uvz is tough, by symmetry we may assume that m+(uz) ≥ 3. Thus uz /∈ Q7, and so
vz ∈ Q7 and m(vz) = 1. Since m(uz) ≥ 2, uz belongs to two of F3, F4, F5, F6; by symmetry say
uz ∈ F5. Thus for i ∈ I \{5}, vz ∈ Qi, ei

3, . . . , e
i
ni−1 belong only to Fi, F6. It follows that at least one

of Fi∩Qi∩D1, Fi∩Qi∩D2 is nonempty, and if i = 6 then both are nonempty. Thus |D1|+ |D2| ≥ 7,
and since r2 is small |D1| ≥ 4. It follows that m+(vz) = 1, as required. This proves (1).

By (1) we may assume that m+(vz) = 1. Since uvz is tough, (1) implies m+(uz) + m+(uv) ≥ 6.
Since (G,m) does not contain Conf(6) by 5.3, it follows that m(uv) = 2, m(uz) = 2 and m(ux) ≥ 3.
But (G,m) does not contain Conf(3) by 4.4, a contradiction. This proves 5.11.

5.12. No minimum 7-counterexample contains Conf(14).

Proof. Let (G,m) be a minimum 7-counterexample, with a region r bounded by a cycle Cr =
v0, . . . , v4. Denote the edge vivi+1 by fi for 0 ≤ i ≤ 4 (taking indices modulo 5) and suppose
that m+(e0) ≥ 2, and that m+(f2),m

+(f3) ≥ 4. Since G has minimum degree at least three,
m(f2) = m(f3) = 3.

Let (G′,m′) be obtained by switching on the path v4-v0-v1-v2; since m(f2),m(f3) ≥ 3, (G′,m′)
contains a triangle v2v3v4 with m′(v2v3v4) ≥ 7. Since (G,m) is a 7-target, m(δG({u, v, x})) ≥ 9
and it follows that m′(δG′({u, v, x})) ≥ 7. Since m′(uv) + m′(ux) + m′(vx) ≥ 7, it follows that
m′(δ({u, v, x})) = 7. Hence by 2.1, (G′,m′) is 7-edge colourable. Let F1, . . . , F7 be a 7-edge colouring
of (G′,m′). Let k = m′(v0v1) + m′(v2v4) ≥ 3. By 5.1 we may assume that v0v1 ∈ Fi for 1 ≤ i ≤
m′(v0v1), and v2v4 ∈ Fk. Let I = {1, . . . , 7} \ {k} and for i ∈ I, let Qi be as in 5.1. Let i ∈ I, and
let the edges of Qi in order be e1, . . . , eni

, e1, where e1 = v0v1 and e2 = v2v4. Since |Fi ∩Qi| ≥ 5 and
Fi contains at most one of e1, e2, it follows that ni ≥ 6. For 1 ≤ j ≤ 6, Fj contains one of e1, e2;
and hence e3, . . . , en /∈ Fj for all j ∈ {1, . . . , k} with j 6= i. By the choice of the switchable path,
e3 ∈ {f2, f3}. By setting i = 7, without loss of generality we may say f2 ∈ Q7; it follows that f2

does not belong to F1, . . . , Fk and k ≤ 4. Thus f2 belongs to three of Fk+1, . . . , F7, say f2 belongs
to F5, F6, F7. Further f3 belongs to three of F1, . . . , F4. Let r2 denote the second region for f2 and
let D2 denote its set of doors.

It follows that f2 ∈ Qi for each i ∈ I. Suppose that k = 4. Then for each i ∈ I, the edges of
Qi \ {f0, f2} belong only to Fi. Thus Fi ∩ Qi ∩ D2 is nonempty, contradicting the fact that r2 is
small. Thus k = 3, and so m(f1) = 1. Denote by r1 the second region for f0 and D1 its set of doors.
For each i ∈ I, ni ≥ 7 and the edges of Qi \ {f0, f2} belong only to Fi, F4. Consequently at least one
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of Fi ∩ Qi ∩ D1, Fi ∩ Qi ∩ D2 is nonempty, and both are nonempty if i = 4. Thus |D1| + |D2| ≥ 7,
but since r1 is small, |D2| ≥ 4, a contradiction. This proves 5.12.

5.13. No minimum 7-counterexample contains Conf(15).

Proof.
Let (G,m) be a minimum 7-counterexample, with a region r bounded by a cycle Cr = v0, . . . , v4.

Denote the edge vivi+1 by fi for 0 ≤ i ≤ 4 (taking indices modulo 5) and suppose that m+(f0) ≥ 3,
and that m+(f2),m

+(f3) ≥ 3.

(1) Suppose that either f0 is 3-heavy, or both f2, f3 are 3-heavy. Then the path v4-v0-v1-v2 is not
switchable.

Suppose that the path v4-v0-v1-v2 is switchable; let (G′,m′) be obtained by switching on it and
let F1, . . . , F7 be a 7-edge colouring. Let k = m′(v0v1) + m′(v2v4) ≥ 4. By 5.1 we may assume that
v0v1 ∈ Fi for 1 ≤ i ≤ m′(v0v1), and v2v4 ∈ Fk. Let I = {1, . . . , 7} \ {k} and for i ∈ I, let Qi be as in
5.1.

Since k ≥ 4 and m(f2),m(f3) ≥ 2, we may assume without loss of generality that both f0, f3

belong to F1. Consequently, f2 ∈ Qi for each i ∈ I\{1} and f2 belongs to at least two of Fk+1, . . . , F7,
say f2 belongs to F6, F7, and so k ≤ 5. Let i ∈ I\{1}, and let the edges of Qi in order be e1, . . . , en, e1,
where e1 = v0v1, e2 = v2v4 and e3 = f2. Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2, it
follows that n ≥ 7. For 1 ≤ j ≤ 6, Fj contains one of e1, e2; and hence e4, . . . , en /∈ Fj belong only
to Fi, and possibly F7.

Denote by r1, r2 the second regions for f0, f2, respectively and denote by D1,D2 their respective
sets of doors. Suppose that k + m(f2) = 7, and so m(f0) + m(f2) ≤ 5. Then for each i ∈ I \ {1},
both Fi ∩Qi ∩D1, Fi ∩Qi∩D2 are nonempty. It follows that both r1 and r2 are big, a contradiction.

Thus k + m(f2) ≤ 6, and so k ≤ 4. For each i ∈ I \ {1}, at least one of Fi ∩Qi ∩D1, Fi ∩Qi ∩D2

is nonempty, and both are nonempty if i = 5. Since at least one of r1, r2 is a triangle, one of
|D1|, |D2| ≤ 2, and so k + m(f2) ≤ 6. |D1|+ |D2| ≥ |I| = 6. But k ≥ 4 and m+(f2) ≥ 3 and so r1, r2

are both small, a contradiction. This proves (1).

Now, suppose that (G,m) contains Conf(15), and so f0 is 3-heavy. By (1), the path v4-v0-v1-v2

is not switchable, and m(f0) = 2, and by symmetry we may assume that m(f4) ≥ 3. It follows that
m(f2) ≤ 2, for otherwise we could relabel the vertices of Cr to contradict (1). Further by (1) the
path v1-v2-v3-v4 is not switchable. Similarly f1 is not 3-heavy. Since v1-v2-v3-v4 is not switchable,
and m(f1),m(f2) ≤ 2, it follows that m(f3) ≥ 3. Further the 7-target obtained by switching on
v1-v2-v3-v4 contains Conf(2), and so by 5.10 it follows that m(f1) ≥ 2. Now, the path v2-v3-v4-v0

is switchable; let (G′,m′) be obtained by switching on it and let F1, . . . , F7 be a 7-edge-colouring.
Since m′(v3v4) + m′(v0v2) = 5, we may assume by 5.1 that v3v4 belongs to Fi for 1 ≤ i ≤ 4 and
v0v2 ∈ F5. Also by symmetry v2v3 and v4v0 both belong to F6, and so f0, f1 do not belong to F6. Let
I = {1, . . . , 7} \ {5} and for i ∈ I let Qi be as in 5.1. Let the edges of Q6 in order be e1, . . . , en, e1,
where e1 = v3v4 and e2 = v4v0. Since |Fi ∩ Q6| ≥ 5 and Fi contains at most one of e1, e2, it follows
that n ≥ 6. For 1 ≤ j ≤ 6, Fj contains one of e1, e2; and hence e3, . . . , en /∈ Fj for all j ∈ {1, . . . , k}
with j 6= 6. It follows that e3, . . . , , en belong only to F6, F7. By the choice of the switchable path,
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e3 ∈ {f0, f1}, and so m(e3) ≥ 2. Hence e3 belongs to both F6, F7, a contradiction. This proves
5.13.

5.14. No minimum 7-counterexample contains Conf(16).

Proof. Let (G,m) be a minimum 7-counterexample, with a region r bounded by a cycle Cr =
v0, . . . , v5. Denote the edge vivi+1 by fi for 0 ≤ i ≤ 5 (taking indices modulo 6) and suppose that
f1, f2, f3, f4, f5 are 3-heavy with multiplicity at least two.

(1) The path v0-v1-v2-v3 is not switchable.

Suppose that v0-v1-v2-v3 is switchable. Let (G′,m′) be obtained by switching on it and let F1, . . . , F7

be a 7-edge-colouring of (G′,m′). Let k = m′(v1v2) + m′(v0v3) ≥ 4. We may assume by 5.1 that
v1v2 ∈ Fi for 1 ≤ i < k and v0v3 ∈ Fk. Let I = {1, . . . , 7} \ {k} and for i ∈ I, let Qi be as in 5.1.

For i ∈ I, let the edges of Qi in order be ei
1, . . . , e

i
ni

, ei
1, where ei

1 = v1v2 and ei
2 = v0v3. Since

|Fi ∩ Qi| ≥ 5 and Fi contains at most one of ei
1, e

i
2, it follows that n ≥ 6. Let i ∈ I. For 1 ≤ j ≤ k,

Fj contains one of ei
1, e

i
2; and hence ei

3, . . . , e
i
ni

/∈ Fj for all j ∈ {1, . . . , k} with j 6= i. By the choice
of the switchable path e7

3 ∈ {f3, f4, f5}, and so e7
3 is 3-heavy; thus one of e7

3e
7
4 must belong to one of

F1, . . . , F5.
Thus k = 4 and the second region for v1v2 is a triangle v1v2x. Choose i ∈ {5, 6, 7} such that

neither of {v1x, v2x} is an edge of multiplicity one belonging to Fi. Now, ei
3, . . . , e

i
ni

do not belong
to F1, . . . , F4. By the choice of the switchable path, ei

3 is 3-heavy, and so ei
ni

has multiplicity one
and belongs only to Fi, a contradiction. This proves (1).

Now m(v0v1) ≤ 2, for otherwise the vertices of Cr could be relabeled to contradict (1). By (1),
v0-v1-v2-v3 is not switchable. It follows that m(v1v2) = 2 and the second region for v1v2 is a triangle
and m(v2v3) ≥ 3. By symmetry, m(v5v0) = 2, the second region for v5v0 is a triangle, and m(v4v5) ≥
3. The 7-target (G,m) obtained by switching on v0-v1-v2-v3 contains Conf(3), so by 5.10 (G,m) is
smaller than (G′,m′). It follows that m(v0v1) + m(v2v3) ≥ 5. Similarly m(v0v1) + m(v4v5) ≥ 5.

Since m(v2v3) ≥ 3, the path v1-v2-v3-v4 is switchable. Let (G′,m′) be obtained by switching on
it and let F1, . . . , F7 be a 7-edge-colouring. Let k = m′(v2v3)+m′(v1v4) ∈ {5, 6}. We may assume by
5.1 that v2v3 ∈ Fi for 1 ≤ i < k and v1v4 ∈ Fk. By symmetry we may assume that v1v2 ∈ Fk+1. Let
I = {1, . . . , 7} \ {k} and for i ∈ I, let Qi be as in 5.1. Let the edges of Q7 in order be e1, . . . , en, e1,
where e1 = v2v3 and e2 = v1v4. Since |Fi ∩ Qi| ≥ 5 and Fi contains at most one of e1, e2, it follows
that n ≥ 6. For 1 ≤ j ≤ k, Fj contains one of e1, e2; and hence e3, . . . , en /∈ Fj for all j ∈ {1, . . . , k}
with j 6= i.

Suppose that k = 6. Then e3, . . . , en belong only to F7, and so e3 has multiplicity one. By the
choice of the switchable path, e3 = f0. But f0 /∈ F7 since f1 ∈ F7, a contradiction. Thus k = 5,
and so m(f2) = 3 and m(f0) ≥ 2. Now e3, . . . , en belong only to F6, F7, and so e3 is not 3-heavy.
It follows from the choice of the switchable path that e3 = f0. But m(f0) ≥ 2 and f0 /∈ F6 since
f1 ∈ F6, a contradiction. This proves 5.14.

This completes the proof of 4.1 and hence of 1.2.
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