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Abstract

A graph is a k-Kuratowski graph if it has exactly k components, each isomorphic to K5 or to K3,3.
We prove that if a graph G contains no k-Kuratowski graph as a minor, then there is a set X of
boundedly many vertices such that G\X can be drawn in a (possibly disconnected) surface in which
no k-Kuratowski graph can be drawn.



1 Introduction

Graphs in this paper are finite, and have no loops or parallel edges. The Kuratowski-Wagner [5, 17]
theorem says that:

1.1 A graph contains neither of K5,K3,3 as a minor (or equivalently, has no subgraph which is a
subdivision of K5 or K3,3) if and only if it is planar.

There is a similar theorem that characterizes the minimal graphs that cannot be drawn on the
projective plane [1], but for higher surfaces it seems hopeless to obtain the complete list of excluded
minors (although we know that the list is finite for every surface, by [10, 16]). Even for the torus,
the list numbers in the tens of thousands (at least 17,523 according to Myrvold and Woodcock [7]).

We need a few definitions. Let us say a graph is a k-Kuratowski graph if it has exactly k
components, each isomorphic to K5 or to K3,3. A surface Σ is a non-null compact 2-manifold,
with (possibly null) boundary, and possibly disconnected, and Σ̂ is the surface without boundary
obtained from Σ by pasting a closed disc onto each component of its boundary. (The presence of
the boundary makes no different to which graphs can be drawn in the surface, but we will need the
boundary later.) If Σ is a connected surface, and Σ is orientable, its genus is the number of handles
we add to a 2-sphere to make Σ̂, and if Σ is non-orientable, its genus is the number of crosscaps we
add to a 2-sphere to make Σ̂. The genus of a general (disconnected) surface is the sum of the genera
of its components. This definition is non-standard, but convenient for our purposes; because there
is a theorem that if H is a k-Kuratowski graph and Σ is a surface, then H can be drawn in Σ if and
only if the genus of Σ is at least k.

Thus, excluding the (k + 1)-Kuratowski graphs as minors is necessary for embeddability in a
surface of genus at most k. Unsurprisingly, the converse is false, but our main theorem says that it
is not very false:

1.2 For every integer k ≥ 0, there is a number f(k) with the following property. If G is a graph
with no (k+ 1)-Kuratowski graph as a minor, then there exists X ⊆ V (G) with |X| ≤ f(k) such that
G \X can be drawn in a surface of genus at most k.

The proof of 1.2 is an application of the graph minors structure theorem of [14]. We first proved it
in the early 1990’s, but did not write it up at that time. There was another, related result we proved
at that time and did not write up, that will appear in a subsequent paper [8]. It says, roughly, that
if a graph does not contain a k-Kuratowski graph as a minor, and does not contain as a minor the
graph made from k copies of K5 or K3,3 by identifying together one vertex of each, and also does not
contain similar graphs made from k copies of K5 and K3,3 by identifying pairs or triples of vertices,
then G has bounded genus.

Before we go on, let us prove the result mentioned earlier, that:

1.3 For all integers k ≥ 0, if Σ is a surface and H is a k-Kuratowski graph, then H can be drawn
in Σ if and only if Σ has genus at least k.

Proof. (Thanks to Carsten Thomassen and Bojan Mohar for their help with this proof.) Certainly
H can be drawn in any surface with genus at least k, and we prove the converse by induction on the
sum of k and the number of components of Σ. Let ` be the genus of Σ. We are assuming that H
can be drawn in Σ, and need to show that ` ≥ k. Since Σ has genus at least zero, we may assume
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that k ≥ 1. We may assume that Σ has null boundary. Suppose that Σ is disconnected, and is the
disjoint union of two surfaces Σ1,Σ2. For i = 1, 2, let Hi be the subgraph of H drawn in Σi; then
Hi is a ki-Kuratowski graph, for some ki, where k1 + k2 = k. From the inductive hypothesis Σi has
genus at least ki for i = 1, 2, and so the result holds. Hence we may assume that Σ is connected.

The orientable genus of a graph equals the sum of the orientable genera of its components, by a
theorem of Battle et al. [2]; so H has orientable genus at least k. The Euler genus of a connected
surface Σ is twice the genus of Σ if Σ is orientable, and equal to its genus otherwise; and the Euler
genus of a graph is the minimum Euler genus of the connected surfaces in which it can be drawn. A
theorem of Miller [6] implies that the Euler genus of any graph is the sum of the Euler genera of its
components, and it follows that H has Euler genus k. So if Σ is orientable, then ` ≥ k since H has
orientable genus at least k; and if Σ is non-orientable, then ` ≥ k since H has Euler genus at least
k. This proves 1.3.

2 A lemma about packing and covering

We will need a result from [4], the following:

2.1 If H is a hypergraph with every hyperedge nonempty, then

τ(H) ≤ 11λ(H)2(λ(H) + ν(H) + 3)

(
λ(H) + ν(H)

ν(H)

)2

.

Here, a hypergraph means a finite set of subsets, called hyperedges, of a finite set of vertices; τ(H)
means the size of the smallest set of vertices that has nonempty intersection with every hyperedge;
ν(H) means the maximum k such that there are k hyperedges, pairwise disjoint; and λ(H) means
the maximum k such that there are hyperedges A1, . . . , Ak and vertices vij (1 ≤ i < j ≤ k) such that
for 1 ≤ i < j ≤ k, vij belongs to Ai and to Aj and no other other hyperedges among A1, . . . , Ak.

Let us see how this will be applied. First, here is a result also proved in [4]:

2.2 For every surface Σ without boundary there is a function f with the following property. Let G
be a graph drawn on Σ; let U ⊆ V (G) and let S be a subset of the set of regions of G. Then for every
integer k ≥ 0, either there are k vertices in U such that no region in S is incident with any two of
them, or there is a set of at most f(k) regions in S such that every vertex in U is incident with one
of them.

Proof. Let H be the hypergraph with vertex set S, and with hyperedges the sets of all regions in S
incident with v, for each v ∈ U . (Two of these hyperedges might be equal, and if so, omit one.) By
2.1, it suffices to show that λ(H) is bounded. Let k = λ(H) and let A1, . . . , Ak be hyperedges and
vij (1 ≤ i < j ≤ k) as in the definition of λ(H). For 1 ≤ i ≤ k, draw a vertex vi in each ri, and take
a line segment in ri between vi and each vij (j > i) and each vhi (h < i), all pairwise disjoint except
for vi. This makes a graph which is a subdivision of the complete graph on k vertices. Since the size
of the largest complete graph that can be drawn in Σ is bounded, it follows that λ(H) is bounded.
This proves 2.2.
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Bienstock and Dean [3] claimed to prove a much stronger result: that under the same hypotheses,
the hypergraph H, constructed the same way, satisfies that ν(H) ≥ cτ(H), where the constant c > 0
depends only on Σ. (Their proof for higher surfaces has a mistake, which can easily be fixed, using
that all graphs drawable on a fixed surface have bounded chromatic number, but we omit details
since we will not use their result.)

We need another application of 2.1. If G is drawn in a surface Σ, let us say vertex u sees vertex
v if there is a region incident with both u, v (so v sees itself). A wheel neighbourhood of a vertex v
of G means the set of all vertices that v sees. We need:

2.3 For every surface Σ, there is a function f with the following property. Let G be a graph drawn
on Σ, and let U ⊆ V (G). Then for every integer k ≥ 0, either there are k vertices in U such that
their wheel neighbourhoods are pairwise disjoint, or there is a set X of at most f(k) vertices of G
such that every u ∈ U sees some vertex in X.

Proof. Let H be the hypergraph with vertex set V (G), and with hyperedges the sets of all wheel
neighbourhoods of vertices in U . By 2.1, it suffices to show that λ(H) is at most a constant depending
on Σ. Let k = λ(H); and let A1, . . . , Ak be hyperedges and vij = vji (1 ≤ i < j ≤ k) as in the
definition of λ(H). For 1 ≤ i ≤ k, choose vi ∈ U such that Ai is the wheel neighbourhood of vi. For
all distinct i, j ∈ {1, . . . , k}, let rij be a region incident with vi and with vij . It follows that for all
h 6= i, j, vh is not incident with rij , since vh does not see vij . Hence there is a line segment between
vi, vj , passing through vij and with interior included in rij ∪ rji ∪ {vij}, and these line segments are
pairwise disjoint except for their ends. Hence they make a drawing of a k-vertex complete graph in
Σ, and so λ(H) is bounded. This proves 2.3.

3 Paintings

For brevity, let us say a K-graph in G is a subgraph of G that is isomorphic to a subdivision of K5

or K3,3. We define the K-number of a graph G to be the maximum number of K-graphs in G that
are pairwise vertex-disjoint; that is, the maximum k such that G contains a k-Kuratowski graph as
a minor.

The goal of this section and the next is to prove a very special case of 1.2 (we will show later
that the general problem can be boiled down to this special case). The special case is essentially
the following. Take a hypergraph, with hyperedges of size two or three, drawn on a surface without
boundary; every hyperedge is represented by a closed disc, and its vertices are represented by nodes
in the surface, drawn in the boundary of the disc. The discs for distinct hyperedges meet only in the
nodes that represent vertices they have in common. Now make a graph by replacing each hyperedge
of size three by a copy of K2,3, where the three nodes of the hyperedge become the three vertices in
one part of the bipartition of K2,3. Replace each hyperedge of size two either by an edge, or a copy
of K5 \ e (that is, the graph obtained from K5 by deleting one edge), or a copy of K3,3 \ e, where the
two vertices of the hyperedge become the two ends of the deleted edge, making a graph G. We need
to prove that G satisfies 1.2. The difficulty is, the gadgets K2,3, K5 \ e and K3,3 \ e that replace the
hyperedges are not K-graphs, and yet in general, G is far from being embeddable in the surface.

So far we have beem somewhat casual about drawings in surfaces, but now we need to be more
precise. We need the definition of a painting from [15], except for the moment we only need paintings
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in surfaces without boundary, which makes them considerably simpler. If Σ is a surface and X ⊆ Σ,
we denote the topological closure of X by X, and we denote X \X by X̃. A painting Γ in a surface
Σ without boundary is a pair (U,N), where U ⊆ Σ is closed and N ⊆ U is finite, such that

• U \N has only finitely many arcwise connected components (which we call cells of Γ); and

• for each cell c, its closure c is a disc and c̃ is a subset of the boundary of this disc, and |c̃| ≤ 3.
We say c has order |c̃|.

We define U(Γ) = U and N(Γ) = N . The members of N(Γ) are called the nodes of Γ. A region of Γ
is an arcwise connected component of Σ \ U . Thus, each region is a connected open set. We define
incidence between nodes, cells and regions as follows. If n is a node, c is a cell, and r is a region, we
say c, n are incident if n ∈ c̃, r, n are incident if n ∈ r, and c, r are incident if c ∩ r 6= ∅. (We remind
the reader that c̃ is disjoint from c; a region with closure only intersecting c̃ is not incident with c.)
A subset X ⊆ Σ is Γ-normal if X ∩ U(Γ) ⊆ N(Γ). An O-arc in Σ is a subset homeomorphic to a
circle. If n, n′ are nodes, we say n sees n′ if there is a region incident with both n, n′.

In this section we are given a painting Γ in a surface Σ without boundary, satisfying the following
conditions:

(I1) |c̃| ∈ {2, 3} for every cell c.

(I2) The closure of every region is a closed disc.

(I3) If r, r′ are distinct regions, and u, v ∈ N(Γ) are distinct and both incident with both r, r′, then
there is a cell c with c̃ = {u, v}, incident with both r, r′.

(I4) For each cell c of order two, let r, r′ be the regions incident with c; then every node incident
with both r, r′ is in c̃.

(I5) For each cell c of order three, and each node n /∈ c̃, there exists n′ ∈ c̃ such that no region is
incident with both n, n′.

(I6) For every Γ-normal O-arc F with |F ∩ N(Γ)| ≤ 6, there is a closed disc ins(F ) ⊆ Σ with
boundary F called the inside of F . (If Σ is not a sphere, there is at most one choice for ins(F ),
but for a sphere, either of the discs bounded by F might be its inside. But not both: one
has been selected.) Let us say a plate of Γ is a disc ins(F ) for some Γ-normal O-arc F with
|F ∩N(Γ)| ≤ 6.

If c is a cell of order two, then for each region r incident with c, the closure of r is called a wing
of c. If c is a cell of order three, then for each node n ∈ c̃, the union of the closures of all regions
incident with n is called a wing of c. If B is a set of cells of Γ, every wing of a cell in B is called a
B-wing, and we call the members of B bodies. We will prove:

3.1 For every surface Σ without boundary, there is a function f such that, if Γ satisfies (I1),. . . ,(I6),
then for all k, and for all choices of the set B of bodies, either there are k pairwise disjoint B-wings,
or there is a set X of nodes with |X| ≤ f(k), and a set Y of plates with |Y | ≤ f(k), such that for
every body c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y .

We will prove this in steps. First, we assume that every body is a cell of order two.
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3.2 For every surface Σ without boundary, there is a function f such that, if Γ satisfies (I1),. . . ,(I6),
then for all k, and for all choices of the set B of bodies such that every body has order two, either
there are k pairwise disjoint B-wings, or there is a set X of nodes with |X| ≤ f(k), and a set Y of
plates with |Y | ≤ f(k), such that for every body c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y .

Proof. Let f1 be the function f of 2.2, and let f(k) = 3f1(k)2. We will show that f satisfies the
theorem. Let k ≥ 0 be an integer. We assume that there do not exist k pairwise disjoint B-wings.
From 2.2, we deduce that there exists X ⊆ N(Γ) with |X| ≤ f1(k), such that X ∩W 6= ∅ for every
wing W .

Let x, x′ ∈ X be distinct. We say a body c is pinned by {x, x′} if x, x′ /∈ c̃ and x ∈ D and x′ ∈ D′,
where D,D′ are the wings of c.

(1) For all distinct x, x′ ∈ X, there is a set of at most three plates such that every body pinned
by {x, x′} is a subset of one of them.

Let C be the set of all cells pinned by {x, x′}, and let M be the union of c̃ over all c ∈ C. For
each node n ∈ M , there is a region incident with both x, n and not with x′; choose a line segment
L(n, x) between n, x with interior within one such region. Choose these all pairwise disjoint except
for x. Define L(n, x′) similarly. For each n ∈ M , L(n, x) ∪ L(n, x′) is a Γ-normal line segment
between x, x′ that passes through n and no other nodes except x, x′, and we denote it by Sn. We call
Sn a strut. We may assume that |C| ≥ 2, since otherwise C = ∅ and the claim is true. If n, n′ ∈ M
are distinct, then Sn ∪ Sn′ is a G-normal O-arc passing though only four nodes, and so its inside is
defined; let us denote it by Dn,n′ . Choose n, n′ ∈M such that D(n, n′) is maximal. If M ⊆ D(n, n′),
then every body pinned by {x, x′} is a subset of the plate D(n, n′), except possibly for one cell
incident with n, n′; let us take a second plate for this errant cell, and then the claim holds.

Thus we may assume that M 6⊆ D(n, n′); choose m ∈M\{n, n′}. For every two of the three plates
D(n, n′), D(m,n), D(m,n′), either one includes the other, or their union is a closed disc. But neither
of D(n, n′), D(m,n) includes the other, since m /∈ D(n, n′) and from the maximality of D(n, n′);
and so D(n, n′) ∪ D(m,n) is a closed disc with the same boundary as D(m,n′). It is not equal to
D(m,n′), from the maximality of (D(n, n′); so Σ is a sphere and these two are complementary discs.
But then the union of D(n, n′), D(m,n), D(m,n′) equals Σ and the claim holds. This proves (1).

For each body c, either X ∩ c̃ 6= ∅, or c is pinned by some pair of distinct vertices in X, since X
meets both wings of c and their intersection is c̃. From (1), there is a set Y of at most 3|X|2 plates
such that for every body c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y . This proves 3.2.

Now the complementary case:

3.3 For every surface Σ without boundary, there is a function f such that, if Γ satisfies (I1),. . . ,(I6),
then for all k, and for all choices of the set B of bodies such that every body has order three, either
there are k pairwise disjoint B-wings, or there is a set X of nodes with |X| ≤ f(k), and a set Y of
plates with |Y | ≤ f(k), such that for every body c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y .

Proof. Let f1 be the function f of 2.3, and define f(k) = 3f1(k)2. We will show that f satisfies the
theorem. Let k ≥ 0 be an integer. We assume that there do not exist k pairwise disjoint B-wings.
Let J be the graph drawn in Σ, with vertex set N(Γ), and with each cell c of order two replaced by
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an edge, and each cell of order three replaced by a triangle of edges, in the natural way. Let U be
the set of nodes of Γ incident with bodies. Since there do not exist k node-disjoint B-wings in Γ, it
follows that there do not exist k vertices of J in U such that their wheel neighbourhoods in J are
pairwise disjoint. By 2.3, there exists X ⊆ N(Γ) with |X| ≤ f1(k), such that X ∩W 6= ∅ for every
B-wing W .

Let x, x′ ∈ X be distinct. We say a body c is pinned by {x, x′} if x, x′ /∈ c̃ and there exist distinct
n, n′ ∈ c̃ such that n sees x and not x′, and n′ sees x′ and not x. Let C be the set of all bodies
pinned by {x, x′}, and let M be the union over all c ∈ C of the set of (two or three) n ∈ c̃ that can
see exactly one of x, x′. For each node n ∈ M that can see x, there is a region incident with both
x, n and (therefore) not with x′; choose a line segment L(n, x) between n, x with interior within one
such region. Choose these all pairwise disjoint except for x. For each n ∈M that can see x′, define
L(n′, x′) similarly. For each c ∈ C, there exist n, n′ ∈ M such that L(n, x) and L(n, x′) exist; we
call the ordered pair nn′ a tie. For each tie nn′, let L(n, n′) be a line segment between n, n′ in the
region incident with both n, n′ (which therefore is incident with neither of x, x′) choose all these line
segments pairwise disjoint except for their ends.

(1) If there exist ties n1n
′ and n2n

′ (with a common term n′), such that ins(L(n1, x) ∪ L(n1, n
′) ∪

L(n2, n
′) ∪ L(n2, x)) includes x′, then there is a set Xxx′ with Xxx′ ≤ 1 and a set Yxx′ of at most

three plates such that for every cell c ∈ C, either Xxx′ ∩ c̃ 6= ∅, or c is a subset of a plate in Yxx′.

Suppose that there are two ties n1n
′ and n2n

′ with this property. Choose them with this disc
(D say) maximal. If m,m′ ∈ D for every tie mm′, then every body in C is inside D except possible
bodies incident with n′, and the claim holds. So we may assume that there is a tie mm′ with one of
m,m′ /∈ D. If one ofm,m′ is in the interior ofD, then the other is not inD, and so L(m,m′) intersects
one of L(n1, x), L(n1, n

′), L(n2, n
′), L(n2, x), which is impossible (because we chose L(m,m′) disjoint

from L(n1, n
′), L(n2, n

′), and it is inside a region not incident with either of x, x′, so it is disjoint
from L(n1, x), L(n2, x)). So m,m′ are not in the interior of D. But m′ sees x′, which is in the interior
of D; and since each of L(n1, x), L(n1, n

′), L(n2, n
′), L(n2, x) belongs to a region not incident with

x′, it follows that m′ belongs to the boundary of D, and hence is one of n1, n2, n
′. But m′ 6= n1, n2

since m′ sees x′ and n1, n2 do not; so m′ = n′. Thus ins(L(n1, x) ∪ L(n1, n
′) ∪ L(m,n′) ∪ L(m,x))

and ins(L(m,x) ∪ L(m,n′) ∪ L(n2, n
′) ∪ L(n2, x)) both bound plates. Neither includes D, from the

maximality of D, and so their union equals Σ and the claim is true. This proves (1).

(2) There is a set Xxx′ with |Xxx′ | ≤ 3 and a set Yxx′ of at most three plates such that for ev-
ery cell c ∈ C, either Xxx′ ∩ c̃ 6= ∅, or c is a subset of a plate in Yxx′.

For each tie nn′, L(n, x) ∪ L(n, n′) ∪ L(n′, x′) is a Γ-normal line segment between x, x′ that passes
through n, n′ and no other nodes except x, x′, and we denote it by Snn′ , and call Snn′ a strut through
nn′. We may assume that there are two disjoint ties, because otherwise there is a set of at most
two nodes meeting all ties and the claim is true. Hence there are two struts S1, S23 with union a
Γ-normal O-arc passing through at most six nodes, so its inside is defined. Choose S1, S2 with union
an O-arc such that ins(S1 ∪ S2) is maximal. Let D = ins(S1 ∪ S2), and let Si be through nin

′
i for

i = 1, 2. If both m,m′ ∈ D for every tie mm′, then we are done as usual. So we assume without loss
of generality that there is a tie mm′ with m /∈ D. As in the proof of (1), m′ is not in the interior of D.
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Moreover, m′ 6= n1, n2 since it does not see x. Thus either m′ /∈ D, or m′ is one of n′1, n
′
2. From the

symmetry we may assume that m′ 6= n′2. Let S be the strut through mm′. Hence ins(S ∪ S2) exists,
and does not include D from the maximality of D. If m′ 6= n′1 then similarly ins(S ∪ S1) exists, and
the union of these three discs is Σ and the claim holds. So we assume that m′ = n′1. The union of D
and ins(S ∪ S2) is a disc D′ with boundary the O-arc L(n1, x) ∪L(n1, n

′
1) ∪L(n′1,m) ∪L(m,x). Let

D′′ be the inside of this O-arc. By (1), D′ 6= D′′, since x′ ∈ D′. But then the three plates D,D′, D′′

satisfy the claim. This proves (2).

For each body c, either X ∩ c̃ 6= ∅, or c is pinned by some pair of distinct vertices in X, since
X meets both wings of c and their intersection is c̃. Let X ′ be the union of the sets Xxx′ for all
distinct x, x′ ∈ X, and let Y be similarly the union of the sets Yx,x′ . Thus |X ∪ X ′|, |Y | ≤ 3|X|2.
But for every body c, either X ∩ c̃ 6= ∅, or there c is pinned by some pair of distinct vertices in X,
and then by (2), either Xxx′ intersects c̃ or c is a subset of a plate in Yxx′ . Since |X| ≤ f1(k), this
proves 3.2.

Then 3.1 follows by partitioning B into two subsets, containing the cells of order two and those
of order three, and applying 3.2 and 3.3 to them.

4 Portraits in a surface without boundary

We need a number of definitions. A separation of a graph G is a pair (A,B) of subgraphs with
A ∪B = G and E(A ∩B) = ∅, and its order is |V (A ∩B)|.

We need the “portrayals” of [15], but only in a surface without boundary, and only of graphs,
not hypergraphs, so we will give them a different name, “portraits”. Let G be a graph, and let Σ be
a connected surface without boundary. A portrait Π = (Γ, α, γ) of G in Σ consists of

• a painting Γ in Σ;

• a function α which assigns to each cell c of Γ a subgraph α(c) of G; and

• an injection γ from N(Γ) into V (G)

satisfying the axioms below. For each X ⊆ N(Γ) we denote {γ(n) : n ∈ X} by γ(X); for each cell
c0 we denote

⋃
(α(c) : c ∈ C(Γ) \ {c0}) by α(−c0); and for D ⊆ Σ we denote by α(D) the union of

α(c) over all cells c of Γ with c ⊆ D. The axioms are as follows:

• G = α(Σ), and E(α(c) ∩ α(c′)) = ∅ for all distinct cells c, c′; and

• V (α(c) ∩ α(−c)) ⊆ γ(c̃) ⊆ V (α(c)) for each cell c.

It is matte if α(c) is planar for every cell c; and graphic if Γ has no cells of order three.
If Π = (Γ, α, γ) is a portrait of G in Σ, and B is an induced subgraph of G, we can obtain a

portrait (Γ′, α′, γ′) of B in Σ as follows:

• For each cell c of Γ, let S = {n ∈ c̃ : γ(n) ∈ V (B)}. Choose a closed disc Dc ⊆ c such that
Dc ∩ c̃ = S, taking Dc = c if S = c̃.
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• Let Γ′ be the painting (U,N) where U is the union of Dc over all cells c of Γ, and N = {n ∈
N(Γ) : γ(n) ∈ V (B)}. Thus every cell c′ of Γ′ is included in a unique cell of Γ which we denote
by p(c′).

• For each cell c′ of Γ′, define α′(c′) = α(p(c)) ∩B.

• For each n ∈ N(Γ′), let γ′(n) = γ(n).

It is straightforward to check that Π′ = (Γ′, α′, γ′) is indeed a portrait of B, and it is matte if Π
is matte. (Compare theorems (5.2), (5.4), (6.1), (6.2) and (6.4) of [15].) We write Π′ = Π[B], or
Π′ = Π \X where X = V (G) \ V (B).

If Σ is a surface, its boundary is the disjoint union of a number of O-arcs, which we call cuffs.
If we paste a disc onto each cuff we obtain a surface Σ̂ without boundary; this is called capping Σ.
If F is an O-arc in a connected surface Σ without boundary, and F is not the boundary of a closed
disc in Σ, and we cut along F , we obtain a new surface Σ1, possibly not connected, with boundary
consisting of one or two O-arcs. By capping Σ1 we obtain a surface Σ2 without boundary. Each of
its components Σ3 has genus smaller than that of Σ. We say that such a surface Σ3 (obtained from
Σ in this way by cutting and capping) is simpler than Σ. Any portrait in Σ3 can be converted to a
portrait in Σ in the natural way.

In this section we prove the following:

4.1 For every connected surface Σ without boundary, there is a function g such that for all integers
k ≥ 0, if G admits a matte portrait in Σ, then either:

• G has K-number at least k; or

• there exists Z ⊆ V (G) with |Z| ≤ g(k) such that G \ Z can be drawn in Σ; or

• there is a separation (A,B) of G of order at most g(k) such that both A,B are not planar.

We will derive it from 3.2 and 3.3. If (Γ, α, γ) is a portrait of G in Σ, we say a cell c of Γ is flat if
α(c) can be drawn in a closed disc such that the vertices γ(n) (n ∈ c̃) are drawn in the boundary of
the disc. It is convenient to add two more conditions about a portrait (Γ, α, γ) to the list (I1)–(I6),
namely:

(I7) Let c be a cell, and let v1, v2 ∈ γ(c̃). Then there is a path in α(c) from v1 to v2 with no other
vertex in γ(c̃).

(I8) For every cell c of order three, α(c) is not flat.

4.2 For every connected surface Σ without boundary, if G admits a matte portrait Π0 in Σ, then
either:

• there exists Z ⊆ V (G) with |Z| ≤ 6 and a connected surface Σ′ without boundary that is simpler
than Σ, such that G \ Z admits a matte portrait in Σ′, graphic if Π0 is graphic; or

• there is a separation (A,B) of G of order at most 6 such that both A,B are not planar; or

• there exists Z ⊆ V (G) with |Z| ≤ 6 such that G \ Z is planar; or

8



• there is a matte portrait Π in Σ, satisfying (I1)–(I8), and graphic if Π0 is graphic.

Proof. We proceed by induction on |V (G)|.

(1) We may assume that G is 2-connected.

Suppose that (A,B) is a separation of order at most one, with V (A), V (B) 6= V (G). We may
assume that A is planar, because otherwise the second outcome holds. Let Π0 = (Γ, α, γ) be a matte
portrait of G in Σ. Thus Π0[B] = (Γ′, α′, γ′) is a matte portrait of B in Σ, graphic if Π0 is graphic.
From the inductive hypothesis, either:

• there exists Z ⊆ V (B) with |Z| ≤ 6 and a connected surface Σ′ without boundary that is
simpler than Σ, such that B \ Z admits a matte portrait in Σ′, graphic if Π0 is graphic (but
then the same is true for G\Z, since A\Z is planar and contains at most one vertex of B \Z);

• there is a separation (A′, B′) of B of order at most 6 such that both A′, B′ are not planar (but
then one of (A ∪A′, B′), (A′, A ∪B′) is a separation of G with the same order as (A′, B′), and
both its terms are nonplanar); or

• there exists Z ⊆ V (G) with |Z| ≤ 6 such that B \ Z is planar (but then G \ Z is planar, since
A is planar and contains at most one vertex of B); or

• there is a matte portrait Π of B in Σ, satisfying (I1)–(I8), and graphic if Π0 is graphic (but
then the same is true for G since A is planar and contains at most one vertex of B).

In each case the theorem holds. This proves (1).

(2) We may assume that, for every matte portrait Π = (Γ, α, γ) of G in Σ, graphic if Π0 is graphic,
and every Γ-normal O-arc F in Σ that contains at most six nodes of Γ, there is a closed disc ∆ in
Σ with boundary F such that α(D) is planar.

Suppose that F is a Γ-normal O-arc that contains at most six nodes of Γ, and F is not the boundary
of such a disc. Let N = F ∩N(Γ), and Z = γ(N). Let Σ′ be obtained from Σ by cutting along F
and capping. Let Σ′ have components Σ1, . . . ,Σt say (thus t ≤ 2). For 1 ≤ i ≤ t, let Gi = α(Σi). If
more than one of G1, . . . , Gt are not planar, then the second outcome of the theorem holds. So we
may assume that G2, . . . , Gt are planar. Now Π \ Z is a matte portrait of G \ Z in Σ, graphic if Π0

is graphic, and F is disjoint from the closures of all its cells; and hence there is a matte portrait of
G1 \ Z in Σ1, graphic if Π0 is graphic. Since G2, . . . , Gt are planar, it follows that there is a matte
portrait (Γ′, α′, γ′) of G \ Z in Σ1 (by redrawing the planar graphs G2, . . . , Gt in Σ1 appropriately).

If Σ1 is simpler than Σ, the first outcome holds. So we may assume that Σ1 is not simpler than
Σ. Hence t = 2, and Σ2 ⊆ Σ is a disc with boundary F . Since G2 is planar, this proves (2).

For i = 0, 1, 2, 3 let ni be the number of cells of Γ with order i. Let us choose Γ, α, γ, with n3 min-
imum; subject to that, with n2 minimum; subject to that, with n1 minimum; amd subject to that,
with n0 minimum. We call this the “optimality” of the portrait. We may assume that G is not planar.

(3) The following hold:
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• α(c) is nonnull for every cell c (because otherwise c could be removed from Γ, contrary to
optimality);

• α(c) 6= G for each cell c (since α(c) is planar and G is not);

• n0 = 0 (because α(c) is nonnull and not equal to G, and G is connected);

• n1 = 0 (because if c̃ = {n} say, then α(c) has only one vertex since G is 2-connected by (1),
and so c can be removed from Γ, contrary to optimality).

If F is a Γ-normal O-arc passing through at most six nodes, let ins(F ) be a disc as in (2). Such
a disc is a plate.

(4) Let F be a Γ-normal O-arc passing through at most three nodes.

• If |F ∩N(Γ)| ≤ 1 then ins(F ) ∩ U(Γ) = F ∩N(Γ).

• If |F ∩ N(Γ)| = 2 then ins(F ) includes at most one cell, and if so then that cell c satisfies
c̃ = F ∩N(Γ).

• If |F ∩N(Γ)| = 3 then either ins(F ) includes no cells of order three, or it includes exactly one
cell, and that cell atisfies c̃ = F ∩N(Γ).

The proofs are clear from optimality.

(5) Every region is an open disc, and the closure of every region is a closed disc.

(Compare theorems (8.1) and (8.2) of [15].) For every O-arc F in r, it bounds a plate with in-
terior disjoint from U(Γ) (by (4)), and hence included in r; and so r is an open disc. Moreover, for
every Γ-normal O-arc F with |F ∩N(Γ)| = 1, again by (4) F bounds a disc included in r ∪ F ; and
so r is a closed disc. This proves (5).

(6) We may assume that Γ satisfies (I1)–(I6).

From (2)–(5), it follows that Γ satisfies (I1),. . . ,(I3) and (I6). For (I4), let c be a cell of or-
der two, and let r, r′ be the regions incident with c; let c̃ = {n1.n2}, and suppose that n3 6= n1, n2

is incident with r1, r2. For 1 ≤ i < j ≤ 3, choose a line segment L(i, j) with interior in r, between
ni, nj , disjoint except for their ends; and choose L′(i, j) ⊆ r′ similarly. Then for 1 ≤< j ≤ 3,
L(i, j) ∪ L′(i, j) is an O-arc Fij say; let Dij be its inside. From the second statement of (4), none
of D12, D13, D23 includes either of the other two, and so their union, togther with r, r′, equals Σ.
Consequently G \ {γ(n1), γ(n2), γ(n3)} is planar and the theorem holds. Thus, we may assume that
Γ satisfies (I4).

For (I5), c be a cell of order three, with c̃ = {n1, n2, n3}. Let n4 6= n1, n2, n3, and suppose that
for i = 1, 2, 3, there is a region ri incident with both ni, n4. For 1 ≤ i ≤ 3, let L(i, 4) be a line
segment between ni, n4 with interior in ri, and with interior disjoint from L(j, 4) for j ∈ {1, 2, 3}\{i}
(this last is automatic unless ri = rj). For 1 ≤ i < j ≤ 3, let L(i, j) be a line segment between ni, nj
and with interior in the region incident with ni, c and nj , with interior disjoint from Li,4 and L(j, 4).
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For 1 ≤ i < j ≤ 3, L(i, 4)∪L(j, 4)∪L(i, j) is an O-arc Fij ; let Dij be its inside. Let F4 be the O-arc
L(1, 2) ∪ L(1, 3) ∪ L(2, 3), and let D4 be its inside. None of D1, D2, D3 contains ni, by the third
statement of (4). So their union, together with D4, equals Σ, and the theorem holds. This proves (6).

(7) Let c be a cell, and let v1, v2 ∈ γ(c̃). Then there is a path in α(c) from v1 to v2 with no
other vertex in γ(c̃). Consequently, Π satisfies (I7).

This is proved like theorem (9.1) of [15].

(8) If c is a cell of order three, then c is not flat. Consequently, Π satisfies (I8).

If α(c) is flat, then we can draw α(c) in the disc c with γ(n) mapped to n for each n ∈ c̃; and
then, by thickening every edge of this drawing to a cell of order two incident with the same two
nodes, we obtain a matte portrait of G in Σ contrary to optimality. This proves (8).

From (6), (7), (8), this completes the proof of 4.2.

4.3 Let (Γ, α, γ) be a matte portrait of G in Σ, satisfying (I1)–(I8); and let B be a subset of the
set of all cells of Γ, such that no cell in B is flat. For all k, if there are k pairwise disjoint B-wings
in Γ, then there are k vertex-disjoint K-graphs in G.

Proof. Let c0 ∈ B, and let W be a wing of c0. We define a frame of W as follows.
Assume first that c0 has order two; so W is the closure of a region r incident with c0. For each

cell c incident with r with c 6= c0, there are two nodes mc, nc incident with c and with r; let Pc be a
path between γ(mc), γ(nc) as in (I7). The union of all the paths Pc is a path with ends γ(n1), γ(n2),
where c̃0 = {n1, n2}; and we call this path a frame for the wing W = r. Note that since c0 is not
flat, the union of α(c0) and the frame for r is nonplanar, and so contains a K-graph.

Now we assume that c0 has order three; so for some n1 ∈ c̃, W is the union of the closures of all
regions incident with n1. For each region r incident with n1, and for every cell c incident with r, let
mc, nc be the two nodes incident with c and with r, and let Pc be a path between γ(mc), γ(nc) as in
(8). The union of all the paths Pc (over all regions r incident with n1, and all cells c incident with r)
is a connected subgraph contains γ(n) for all n ∈ c̃ that we call a frame for the wing B. Moreover,
let c̃ = {n1, n2, n3}; then every two of n1, n2, n3 can be joined by a path in the frame that does not
pass through the third member of c̃. Consequently, since c0 is not flat, the union of α(c) and the
frame is nonplanar, and so contains a K-graph.

Suppose that W1, . . . ,Wk are B-wings, pairwise disjoint. For 1 ≤ i ≤ k, let Wi be a wing of a cell
ci ∈ B, and let Fi be a frame for Wi. We claim that α(ci)∪Fi (1 ≤ i ≤ k) are pairwise vertex-disjoint.
Suppose some vertex v belongs to α(c1)∪F1 and to α(c2)∪F2 say. Since c1 6= c2 (because B1, B2 are
disjoint, and each contains two nodes incident with c), it follows that v ∈ V (F1∩F2). If v = γ(n) for
some node n, then n ∈ B1 ∩B2, which is impossible since B1 ∩B2 = ∅. So v ∈ V (α(c)) \ c̃, for some
cell c, and there is no other cell c′ with v ∈ V (α(c′)). Since v ∈ V (F1), c is incident with a region
included in B1, and similarly, with a incident with a region included in B2. But no cell is incident
with a region in B1 and with a region in B2 since B1, B2 are disjoint. Consequently G has k pairwise
vertex-disjoint K-graphs and the theorem holds. This proves 4.3.
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We denote the genus of a surface Σ by ε(Σ). The next step is:

4.4 For every connected surface Σ without boundary, there is a function g such that for all integers
k ≥ 0, if G admits a graphic matte portrait in Σ, then either:

• G has K-number at least k; or

• there exists Z ⊆ V (G) with |Z| ≤ g(k) such that G \ Z can be drawn in Σ; or

• there is a separation (A,B) of G of order at most 6ε(Σ)+6 such that both A,B are not planar.

Proof. Let f1 be the function f of 3.2. We proceed by induction on ε(Σ); so we assume the result
holds for all simpler connected surfaces without boundary. Choose a function g′ that satisfies the
theorem with g replaced by g′, for all Σ′ simpler than Σ. Let g(k) = 7f1(k) +g′(k) + 6. We will show
that g satisfies the theorem.

By 4.2, either:

• there exists Z ⊆ V (G) with |Z| ≤ 6 and a connected surface Σ′ without boundary that is
simpler than Σ, such that G \ Z admits a graphic matte portrait in Σ′; or

• there exists Z ⊆ V (G) with |Z| ≤ 6 such that G \ Z is planar; or

• there is a separation (A,B) of G of order at most 6 such that both A,B are not planar; or

• there is a graphic matte portrait of G in Σ, satisfying (I1)–(I8).

In the first case, the inductive hypothesis, applied to G \ Z and Σ′, tells us that either:

• G \ Z has K-number at least k (and then so does G); or

• there exists Z ′ ⊆ V (G \ Z) with |Z ′| ≤ g′(k) such that G \ (Z ∪ Z ′) can be drawn in Σ′ (and
then the second outcome of the theorem holds, since g(k) ≥ g′(k) + 6, and every portrait in Σ′

can be converted to a portrait in Σ); or

• there is a separation (A′, B′) of G \Z of order at most 6ε(Σ′) + 6 such that both A′, B′ are not
planar (but then there is a separation (A,B) of G with Z ⊆ V (A ∩ B), and A \ Z = A′, and
B \Z = B′, and so (A,B) satisfies the third outcome of the theorem since its order is at most
6ε(Σ′) + 12 ≤ 6ε(Σ) + 6).

In the second case, the second outcome of the theorem holds, and in the third case, the third outcome
of the theorem holds. Consequently we may assume that the fourth case holds.

Let (Γ, α, γ) be a graphic matte portrait of G in Σ, satisfying (I1)–(I8). Let B be the set of
all cells of Γ that are not flat. By 4.3, we may assume that there do not exist k pairwise disjoint
B-wings. Hence, by 3.2, there is a set X of nodes with |X| ≤ f1(k), and a set Y of plates with
|Y | ≤ f1(k), such that for every body c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y . For each
plate D ∈ Y , α(D) is planar. Let S be the set of nodes of Γ that belong to the boundary of a plate
in Y ; so |S| ≤ 6|Y | ≤ 6f1(k). Let Z = {γ(n) : n ∈ S}. Let A be the union of α(D) over all D ∈ Y ;
then each component of A \Z is planar, because it is a subgraph of some α(D). Consequently A \Z
is planar. Let B′ = B \ (γ(X)∪Z). Then Π[B′] = (Γ′, α′, γ′) is a matte portrait in Σ. But every cell
of Γ′ is flat, since cells of order at most one are always flat in a matte portrait, and cells of Γ′ of order
two are flat, because every such cell c is a cell of Γ with c̃ ∩X = ∅. It follows that B \ (γ(X) ∪ Z)
can be drawn in Σ, and therefore so can G \ (γ(X) ∪ Z). This proves 4.4.
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Armed with 4.4 we can prove 4.1, which we restate:

4.5 For every connected surface Σ without boundary, there is a function g such that for all integers
k ≥ 0, if G admits a matte portrait in Σ, then either:

• G has K-number at least k; or

• there exists Z ⊆ V (G) with |Z| ≤ g(k) such that G \ Z can be drawn in Σ; or

• there is a separation (A,B) of G of order at most g(k) such that both A,B are not planar.

Proof. The proof is very much like that of 4.4. Let f2 be the function f of 3.3, and let g1 be
the function of 4.4. We proceed by induction on ε(Σ); so we assume the result holds for all simpler
connected surfaces without boundary. Choose a function g′ that satisfies the theorem with g replaced
by g′, for all Σ′ simpler than Σ. Let g(k) = 7f2(k) + g′(k) + 6 + g1(k) + 6ε(Σ). We will show that g
satisfies the theorem.

As in the proof of 4.4, by applying 4.2, we may assume that there is a matte portrait (Γ, α, γ)
of G, satisfying (I1)–(I8). Let B be the set of all cells of Γ of order three that are not flat. By
4.3, we may assume that there do not exist k pairwise disjoint B-wings. Hence, by 3.3, there is a
set X of nodes with |X| ≤ f2(k), and a set Y of plates with |Y | ≤ f2(k), such that for every body
c, either X ∩ c̃ 6= ∅, or c is a subset of a plate in Y . Thus α(D) is planar for each D ∈ Y . Let
S be the set of nodes of Γ that belong to the boundary of a plate in Y ; so |S| ≤ 6|Y | ≤ 6f1(k).
Let Z = {γ(n) : n ∈ S}. Let A be the union of α(D) over all D ∈ Y ; then A \ Z is planar. Let
B′ = B \ (γ(X) ∪ Z). Then Π[B′] = (Γ′, α′, γ′) is a matte portrait in Σ. Suppose that c is a cell of
order three in Π[B′]. From the definition of Π[B′] it follows that c is a cell of Γ, and α(c) = α′(c).
But by (I8), c is not flat in Π, and so c ∈ B, and so either X ∩ c̃ 6= ∅ or c is a subset of a plate in
Y . In either case this contradicts that c is a cell of order three in Π[B′]. So Π[B′] is graphic. By 4.4
applied to Π[B′], either:

• B′ has K-number at least k (but then so does G); or

• there exists Z ′ ⊆ V (B) with |Z ′| ≤ g1(k) such that B \ Z ′ can be drawn in Σ (but then
G \ (γ(X) ∪ Z ∪ Z ′), since A is planar); or

• there is a separation (C ′, D′) of B′ of order at most 6ε(Σ) such that both C ′, D′ are not planar;
but then there is a separation (C,D) of G of order at most 6ε(Σ) + 7f2(k) ≤ g(k) such that
C,D are not planar.

This proves 4.5.

5 Societies and crosses

A society is a pair (G,Ω), where G is a graph and Ω is a cyclic permutation of a subset (denoted by
Ω) of V (G); and a cross in a society (G,Ω) is a subgraph P1 ∪ P2 with two components P1, P2, each
both both ends in Ω, and such that the ends alternate in Ω; that is, if Pi has ends si, ti for i = 1, 2,
then s1, s2, t1, t2 occur in Ω in that order or its reverse.
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Let us take a portrait (Γ, α, γ) of a graph G in a sphere Σ, and choose a Γ-normal O-arc F that
bounds a closed disc including U(Γ). If we enumerate N(Γ)∩F in cyclic order, this induces a cyclic
permutation of the set γ(N(Γ) ∩ F ), say Ω. Let us say such a portrait (with such a O-arc F ) is a a
rural portrait of (G,Ω). We need the following:

5.1 A society has no cross if and only if it admits a rural portrait.

For “internally 4-connected” societies, this is proved in section 2 of [11], and for general societies it
follows from theorems (11.6), (11.9) and (11.10) of the same paper.

A surface Σ is an annulus if it can be obtained from a sphere by deleting the interiors of two
disjoint closed discs. Let F, F ′ be disjoint O-arcs, with union the boundary of an annulus Σ. An
O-arc R ⊆ Σ separates F, F ′ if it bounds two closed discs in Σ̂, one including F and the other
including F ′.

Let Γ be a painting of a graph G in a surface Σ. If c is a cell, each component of c \ c̃ is the
interior of a line segment with both ends in c̃, and we call that a side of c. An O-arc F is Γ-borderline
if F is a subset of the union of the boundaries of the cells of Γ, and includes at most one side of each
cell. Let Θ be a cuff of Σ. An O-arc F surrounds Θ if F ∩ Θ = ∅ and there is an annulus Σ′ ⊆ Σ
with boundary F ∪Θ. For each node n of Γ, let d(n,Θ) = 1 if n ∈ Θ, and otherwise let d(n,Θ) be
the minimum of |L ∩ N(Γ)| over all Γ-normal line segments L between n and some node in Θ. If
k ≥ 2 is an integer, a k-ring around Θ means a Γ-borderline O-arc R that surrounds Θ, such that
d(n,Θ) = k for every node in R. A k-nest around Θ is a sequence (R1, . . . , Rk) of O-arcs, pairwise
disjoint, such that R1 = Θ and Ri is an i-ring around Θ for 2 ≤ i ≤ k. We need:

5.2 Let Γ be a painting in a surface Σ, let Θ be a cuff of Σ, and let F be a Γ-normal O-arc, such
that d(n,Θ) ≥ k for every node n ∈ F . Then there is a k-nest around Θ.

The proof is clear and we omit it. Next we need the following lemma:

5.3 Let (A,B) be a separation of a graph G. Let B be drawn in a closed disc D, and let the vertices
of B drawn in bd(D) be v1, . . . , vT in order. We will identify B with the drawing of B, for simplicity.
Suppose that

• all edges of B are drawn within the interior of D;

• V (A ∩B) = {vt, vt+1, . . . , vT , v1};

• there are paths P1, P2, P3 of G, pairwise vertex-disjoint, where Pi has ends vi and vt+1−i for
i = 1, 2, 3; P1 is a path of A ∪B, and P2, P3 are paths of B;

• every vertex in A ∩B belongs to P1;

• there exist 3 ≤ a < b < c < d ≤ t−2 such that there are two disjoint paths Q,R of G with ends
va, vc and vb, vd respectively.

Then G is not planar.
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Proof. We proceed by induction on |V (G)|+ |E(G)|. We may therefore assume that G is the union
of P1, P2, P3, Q,R, Also, we may assume that no edge with an end different from v1, . . . , vt belongs to
one of P1, P2, P3 and to one of Q,R, because we could contract any such edge. We may also assume
that no internal vertex of Q or R is one of v3, . . . , vt−2, because if say vi is an internal vertex of Q,
then we can replace Q by one of its maximal subpaths with one end vi and still satisfy the hypotheses.
Consequently, every edge belongs to exactly one of the five paths, and each of v1, . . . , vt is an end
of one of these five paths. Since each of Q,R contains at least two vertices of each of P1, P2, P3; it
follows that P1, P2, P3 all have length at least three, and Q,R have length at least five. Hence for
every edge uv of B, we may assume that either u, v belong to distinct paths among P1, P2, P3, or one
is in V (Q) and the other in V (R), because otherwise we could contract the edge uv and apply the
inductive hypothesis. In particular, v3, vt−2 both belong to V (Q ∪ R), and are not internal vertices
of these paths; so t = 8, a = 3, b = 4, c = 5 and d = 6. Similarly, v4, v5 both belong to V (P3). There
is a disc in D bounded by P3 and part of the boundary of D, that contains P1 and P2; and it follows
that every edge of B is drawn within this disc, since every edge of Q ∪ R joins two of P1, P2, P3.
Thus P3 has length three, since otherwise there is a vertex v of P3 different from v3, v4, v5, v6, and
we could add it to the sequence v1, . . . , v8 in the appropriate position to contradict that t = 8. Now
Q has ends v3, v5; let q be the neighbour of v5 in this path. Similarly let r be the neighbour of v4

in R. It follows that q, r ∈ V (P2) (because every edge of Q ∪ R has ends in different paths among
P1, P2, P3), and for the same reason, no vertices or edges of G are drawn in the interior of the disc of
D bounded by the cycle C, where C is the union of the path q-v4-v5-r and the subpath of P2 between
r, q. Let Q′ consist of the union of the subpath of Q between q, v3 and the edge v3v4; and let R′

similarly consist of the union of the subpath of R between r, v6 and the edge v5v6. Now, G \ V (C)
is connected, since G is the union of P1, P2, P3, Q,R, and every edge of Q ∪ R has an end in V (P3)
except for their first and last edges. Hence if G has a drawing in a sphere then C bounds a region
in that drawing; but that is impossible because Q′, R′ are disjoint paths, and their ends are in V (C)
in alternating order. So G is not planar. This proves 5.3.

6 Tangles

A tangle of order θ in a graph G, where θ ≥ 1 is an integer, is a set T of separations of G, all of
order < θ, such that

1. For every separation (A,B) of order < θ, one of (A,B), (B,A) belongs to T

2. If (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪A2 ∪A3 6= G, and

3. If (A,B) ∈ T then V (A) 6= V (G).

We define ord(T ) = θ.
If Z ⊆ V (G), we denote the graph obtained by deleting Z by G \ Z. If T is a tangle in G of

order θ and Z ⊆ V (G) with |Z| < θ, we denote by T \ Z the set of all separations (A′, B′) of G \ Z
of order < θ− |Z| such that there exists (A,B) ∈ T with Z ⊆ V (A∩B), A \Z = A′ and B \Z = B′.
It is shown in theorem (8.5) of [12] that T \ Z is a tangle in G \ Z of order θ − |Z|. A tangle T in a
graph G is matted if A is planar for each (A,B) ∈ T .
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7 General portrayals

Now we have to work with paintings and portrayals in surfaces with boundary, so we need a number
of new definitions. Let Σ be a surface (with boundary). A painting Γ in Σ is a pair (U,N), satisfying
the same conditions as in a surface without boundary, and in addition:

• bd(Σ) ⊆ U

• for each cell c, if c ∩ bd(Σ) 6= ∅ then |c̃| = 2 and c ∩ bd(Σ) is a line segment with ends the two
members of c̃.

We use the same terminology and notation as before for paintings. Cells c with c ∩ bd(Σ) 6= ∅ are
border cells, and the others are internal cells. Similarly, nodes in bd(Σ) are border nodes, and the
others are internal nodes.

Portrayals were defined in [15]; and the bulk of that paper was showing that if G admits a
portrayal in a surface Σ, then we can delete a few vertices such that what remains admits a portrayal,
in Σ or a simpler surface, with several additional desirable properties. We only need portrayals in
this form, so we will skip the general definitions and go straight to these prettified portrayals, which
we call “clean”.

A clean portrayal is a 5-tuple (Σ,Γ, α, β, γ), where:

• Σ is a non-null connected surface with (possibly null) boundary;

• Γ is a painting Γ in Σ, in which every cell has order two or three;

• α is a function which assigns to each cell c of Γ a subgraph α(c) of G:

• β is a function which assigns to each border node n a subset β(n) of V (G); and

• γ is an injection from N(Γ) into V (G)

satisfying the axioms below. As before, for each X ⊆ N(Γ) we denote {γ(n) : n ∈ X} by γ(X), and
for each c0 ∈ C(Γ) we denote ∪(α(c) : c ∈ C(Γ)− {c0}) by α(−c0). For each cuff Θ let α(Θ) be the
union of α(c) over all cells that border Θ. The axioms are as follows:

(J1) G =
⋃

(α(c) : c ∈ C(Γ)), and E(α(c) ∩ α(c′)) = ∅ for distinct cells c, c′;

(J2) β(n)∩N(Γ) = ∅ for each n ∈ bd(Σ), and β(n) ⊆ V (α(c)) for each border cell c and each n ∈ c̃;

(J3) If c is an internal cell then V (α(c) ∩ α(−c)) = γ(c̃);

(J4) If c is a border cell and c̃ = {n1, n2}, then

V (α(c) ∩ α(−c)) = γ(c̃) ∪ β(n1) ∪ β(n2);

(J5) If n1, n2, n3, n4 are nodes bordering the same cuff of Σ and in order, then β(n1) ∩ β(n3) ⊆
β(n2) ∪ β(n4);

(J6) For each cuff Θ, all the sets β(n) (n ∈ N(Γ) ∩ Θ) have the same cardinality, called the depth
of Θ in the portrayal.
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(J7) For each cuff Θ, there is a 3-ring FΘ around Θ, and for all distinct cuffs, the corresponding
annuli are disjoint.

(J8) For each internal cell c, and all n1, n2 ∈ c̃, there is a path of α(c) between γ(n1), γ(n2) using
no other vertex in γ(c̃). For each border cell c, with c̃ = {n1, n2}, either there is a path of α(c)
between γ(n1), γ(n2) using no vertices of β(n1) ∪ β(n2), or there is an internal cell incident
with both n1, n2.

The depth of the portrayal is the maximum of the depths of its cuffs (or zero, if there are no cuffs).
Let (Σ,Γ, α, β, γ) be a clean portrayal of G, and let T be a tangle in G of order θ. We say:

• (Σ,Γ, α, β, γ) is T -central if (α(c), α(−c)) ∈ T for each cell c of Γ;

• T is matted if A is planar for each (A,B) ∈ T ;

• T is z-respectful if for every Γ-normal O-arc in Σ̂ with |F ∩N(Γ)| ≤ z, there is a closed disc D
in Σ̂ with boundary F , such that (α(D), α(Σ̂ \D) ∈ T , and if F ⊆ Σ then D ⊆ Σ. We write
ins(F ) = D.

Let (Σ,Γ, α, β, γ) be a clean portrayal of G, and let σ be a side of a cell, with ends n1, n2. If
there is a path of α(c) between γ(n1), γ(n2) using no other vertex in γ(c̃), and with no other vertex
in β(n1) ∪ β(n2) if c is a border cell, let us fix one such path, which we call the support for σ. If
c has two sides σ, σ′ we choose the corresponding supports to be equal. If c has three sides, let us
choose the corresponding supports such that their union is either a cycle or a tree (which therefore
has exactly one vertex of degree three). In this section we prove:

7.1 For every connected surface Σ with q cuffs, there is a function f with the following property. Let
d, k ≥ 0 be integers, and let T be a matted tangle in a graph G. Suppose that G admits a T -central
clean portrayal of depth d in Σ, such that T is 6-respectful; and suppose that T has order θ ≥ f(k, d).
Then either:

• G has K-number at least k; or

• there exists Z ⊆ V (G) with |Z| ≤ f(k, d) such that G \ Z can be drawn in Σ.

Proof. Let g be the function of 4.1 for the surface Σ̂, and define f(k, d) = 2k(d+ 3)q+g(k) + 4. We
will show that f satisfies the theorem. Let (Σ,Γ, α, β, γ) be a clean portrayal of G. For each cuff Θ,
let dΘ be its depth. Our first objective is to prove that for every cuff Θ, we can delete a few vertices
from a small neighbourhood of the cuff, and rearrange the remainder of the portrayal, to become a
portrayal on the surface where the cuff Θ has been capped. Thus, suppose that Θ is a cuff of Σ.
Let ΣΘ be the annulus bounded by Θ and FΘ. Let the nodes of FΘ be n1- · · · -nt]-n1 in order. for
1 ≤ i ≤ t (reading subcripts modulo t). Let (HΘ,ΩΘ) be the society where HΘ = α(ΣΘ), and ΩΘ is
the permutation γ(n1)→ γ(n2)→ · · · → γ(nt)→ γ(n1).

For each node n ∈ FΘ, there is a Γ-normal line segment L(n) with one end n and the other some
node p(n) ∈ Θ, containing exactly three nodes. Let us choose L(n) (n ∈ N(Γ)∩FΘ) such that for all
nodes n1, n2 ∈ FΘ, either L(n1), L(n2) are disjoint, or p(n1) = p(n2) and L(n1) ∩ L(n2) = {p(n1)},
or p(n1) = p(n2) and L(n1) ∩ L(n2) is a line segment between p(n1) and some other node of Γ.
For 1 ≤ i ≤ t, let σi be the interior of the line segment with ends ni, ni+1 included in FΘ (reading
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subscripts modulo t). For 1 ≤ i ≤ t, let φi be the closed curve obtained by following L(ni) from
p(ni) to ni, following σi to ni+1, following L(ni+1) to p(ni+1), and then following part of Θ back to
p(ni), in such a way that φi is null-homotopic in ΣΘ in the natural sense. (Since L(ni), L(ni+1) may
have two nodes in common, φi does not necessarily trace an O-arc.) If we cut ΣΘ along L(ni) and
then along L(ni+1), we obtain exactly two closed discs. We define Di,i+1 to be the one of these discs
that includes σi. For 0 ≤ i < j ≤ t let D(i, j) be the union of Di,i+1, Di+1,i+2, . . . , Dj−1,j .

(1) Not all the nodes p(n) (n ∈ N(Γ) ∩ FΘ) are equal.

Suppose all the p(n) are equal to m say. Since each φi is null-homotopic in ΣΘ, it follows that
their concatenation (in order) is also null-homotopic in ΣΘ; that is, the curve obtained by following
L(nt) from m to nt, following FΘ along its entire length and thereby reaching nt again, and then
following L(nt) from nt to m, is null-homotopic in the annulus, a contradiction. This proves (1).

From (1), we may assume that p(n0) 6= p(ns) for some s ∈ {1, . . . , t}, and consequently L(n0)
and L(ns) are disjoint. If we cut ΣΘ along L(n0) and L(ns), we obtain two discs D1, D2, where
n0, . . . , ns ∈ D1 and ns, ns+1, . . . , nt ∈ D2. If 0 ≤ i ≤ s then Li ⊆ D1, and otherwise Li ⊆ D2. For
0 ≤ q ≤ r ≤ s, some of L(n1), L(nq), L(nr), L(ns) may intersect one another; nevertheless, if we cut
D1 along the portions of L(nq) and L(nr) that are in the interior of D1, we obtain exactly three
discs. Exactly one of them is bounded by a portion of Lq and a portion of Lr, and we denote it by
D(q, r). Let H(q, r) = α(D(q, r)), and let Ω(q, r) be the cyclic permutation

γ(nq)→ γ(nq+1)→ · · · → γ(nr)→ γ(nq).

For 0 ≤ q < s, its successor, if it exists, is the smallest r with q < r ≤ s such that there is a cross
of (H(q, r),Ω(q, r)) vertex-disjoint from γ(N(Γ) ∩ L(nq)) ∪ β(p(nq)).

(2) Suppose that 0 ≤ q ≤ r ≤ s and r is the successor of q. Let W be the union of α(c) over all cells
c of Γ with c ⊆ D(q, r), together with the supports of all sides σ ⊆ bd(D(q, r)) of cells of Γ such that
σ has a support. Then there is a K-graph in W containing no vertices in γ(N(Γ)∩L(nq))∪β(p(nq)).

By 5.2, there is a 3-nest (R1, R2, R3) where R1 = Θ and R3 = FΘ. Since r is the successor of q, it fol-
lows that (H(q, r),Ω(q, r)) has a cross with components Q,R disjoint from γ(N(Γ)∩L(nq))∪β(p(nq)),
and so p(nq) 6= p(nr). Thus the boundary of D(q, r) is the union of four line segments L(nq),
D(q, r) ∩ R3, L(n, r) and D(q, r) ∩ R1. Let t = r − q + 5, and let the nodes in bd(D(p, q)) be be
m1, . . . ,mS , . . . ,mT in order, where m1 = p(nq), mi = nq+i−3 for 3 ≤ i ≤ r− q+ 3, and mS = p(nr),
and the nodes in R1 ∩D(p, q) are m1,mT ,mT−1, . . . ,mS in order.

Let A be the union of α(c) over all border cells c of Γ with c ⊆ D(q, r). Let B be the union of
α(c) over all internal cells c with c ⊆ D(p, q), together with the supports of all sides σ ⊆ bd(D(q, r))
of cells of Γ that are not subsets of R1. Thus (A,B) is a separation of W , with A∩B = γ(N(Γ)∩R1).
From the way we chose supports, it follows that B can be drawn in the disc D(q, r) in such a way
that γ(n) is drawn at n for each node n ∈ bd(D(q, r)).

Now Q,R will contain vertices in A ∩ B, but we can choose Q,R such that every subpath S of
one of them, maximal with no internal vertex in γ(N(Γ)), is either a path of A or a support included
in B; and consequently Q,R are paths of A ∪B.
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For i = 2, 3, let Pi be the union of the supports of the sides of Γ included in Ri ∩D(q, r). But
P1 is more complicated, because the sides of cells in R1 need not have supports. If σ ⊆ R1 is a
side with a support, take such a support; and otherwise there is a side of an internal cell incident
with the same two nodes, and take the support of that side. Let P1 be the union of all the supports
chosen. Thus, for i = 1, 2, 3, Pi is a path of W between γ(mi) and γ(mt+1−i) for i = 1, 2, 3. Also,
P1 is a path of A ∪B, and P2, P3 are paths of B, and these three paths are pairwise vertex-disjoint.
From 5.3, the union of the five paths P1, P2, P3, Q,R is not planar. Since neither of Q,R contain
any of γ(m1), γ(m2), γ(m3), it follows that these three vertices have degree one in the union of the
five paths; and so there is a K-graph Gj in the union of the five paths that contains none of of
γ(m1), γ(m2), γ(m3). Moreover, it contains no vertices in β(m1) since such vertices belong to none
of the five paths. This proves (2).

Now there are two cases: perhaps 0 has a successor i1, and i1 has a successor i2, and so on at
least k times; or this does not happen.

(3) If there exist 0 = i0 < i1 < i2 < · · · < ik ≤ s such that ij is the successor of ij−1 for 1 ≤ j ≤ k,
then the K-number of G is at least k.

From (2), for 0 ≤ j ≤ k − 1 there is a K-graph as in (2); and we claim these K-graphs are pairwise
vertex-disjoint. Indeed, let 0 ≤ q < r ≤ q′ < r′ ≤ s and suppose that r is the successor of q and r′ is
the successor of q′. Let W be the union of α(D(q, r)) with the supports of all sides σ ⊆ bd(D(q, r))
of cells of Γ; and define W ′ similarly for q′, r′. We claim that V (W ∩W ′) = ∅. For suppose that v
belongs to both subgraphs. If v = γ(n) for some node n, then n is incident with a cell c ⊆ D(q, r)
and incident with a cell c′ ⊆ D(q′, r′). Consequently n belongs to the intersection of the boundaries
of D(q, r) and D(q′, r′), and hence to L(nq′), contrary to the choice of W ′. So we assume that
v /∈ γ(N(Γ)). If v ∈ V (α(c)) for some internal cell c, then c is unique, and so there is a side of c
included in D(q, r) and a side of c included in D(q′, r′), a contradiction to the definition of a k-ring.
Thus v ∈ V (α(c)) for some border cell c included in D(q, r), and v ∈ V (α(c′)) for some border cell
c′ included in D(q′, r′). But then v ∈ β(nq′) ∪ β(nq), again a contradiction. This proves (3).

We may therefore assume that there do not exist i0, . . . , ik as in (3). Choose h maximum such
that there exist 0 = i0 < i1 < i2 < · · · < ih ≤ s such that ij is the successor of ij−1 for 1 ≤ j ≤ h.
Thus ih has no successor. Let X1 be the union of the h sets γ(L(nij ) ∪ β(nij ) (0 ≤ j ≤ h), and
choose X2 similarly for D2. Let

XΘ = X1 ∪X2 ∪ γ(L(n1) ∪ β(n1) ∪ γ(L(ns) ∪ β(ns);

then every cross of (HΘ,ΩΘ) has a vertex in XΘ, and so (HΘ,ΩΘ) has urbanity at most 2k(dΘ + 3).
Thus we have proved:

(4) There exists XΘ ⊆ γ(N(Γ) ∩ ΣΘ) with |XΘ| ≤ 2k(dΘ + 3) meeting every cross of (HΘ,ΩΘ).

Next, we need:

(5) There is no separation (A,B) ∈ T with G ⊆ A ∪ α(ΣΘ) of order less than θ − 6− 2dΘ.
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Suppose that such (A,B) exists. Let D(i, i + 1) (0 ≤ i ≤ t) be as before, let Di = D(0, 1) ∪
D(1, 2)∪ · · · ∪D(i− 1, i) for 0 ≤ i ≤ t (so D(0) = ∅), let Gi = α(Di), and let Bi = B ∩Gi. Let Hi be
the union of α(c) over all cells c with c 6⊆ Di (so Gi ∪Hi = G), and let Ai = A ∪Hi. Thus (Ai, Bi)
is a separation of G. We claim that

V (Ai ∩Bi) ⊆ V (A ∩B) ∪ γ(L1) ∪ β(p(n1)) ∪ γ(Li) ∪ β(p(ni)).

To see this, suppose that v ∈ V (Ai ∩Bi) belongs to none of the five sets on the right side above. It
follows that v ∈ V (B) \ V (A), and v ∈ V (Gi ∩Hi). The latter implies that either v = γ(n) for some
node n in the boundary of Di, since v /∈ β(p(n1)) and v /∈ β(p(ni)). Since v /∈ γ(L1)∪γ(Li), it follows
that either n ∈ Θ \ {p(n1), p(ni)}, or n ∈ FΘ \ {n1, ni}. It is impossible that n ∈ Θ \ {p(n1), p(ni)},
since v ∈ Hi. If n ∈ FΘ \ {n1, ni}, then since v ∈ A ∪ Hi, it follows that v ∈ V (A) (because
α(c) ⊆ A for every cell c incident with n that is not included in Di), a contradiction. This proves
our claim, and we deduce that the order of (Ai, Bi) is at most |V (A ∩ B)| + 6 + 2dΘ, and so one
of (Ai, Bi), (Bi, Ai) ∈ T . Since (B0, A0) ∈ T (because B0 is the null graph), we may choose i with
0 ≤ i ≤ t maximum such that (Bi, Ai) ∈ T ; and since (Bt, At) /∈ T (since Bt = B ∩ α(ΣΘ) and
so A ∪ Bt = G) it follows that i < t. Consequently (Ai+1, Bi+1) ∈ T , since it has order at most
|V (A ∩B)|+ 6 + 2dΘ < θ. Let P = α(D(i, i+ 1) and let Q be the union of α(c) over all cells c not
included in D(i, i+ 1). Then (P,Q) is a separation of order at most 6 + 2dΘ, and belongs to T since
T is 6-respectful. But P ∪Bi ∪Ai+1 = G, contradicting the third tangle axiom. This proves (5).

Let us paste a disc onto Θ, forming Σ′ say with one fewer cuff. Let ∆Σ be the disc in Σ′ bounded
by FΘ that includes the disc we just added. Since HΘ \XΘ,ΩΘ \XΘ) has no cross, we can apply 5.1
to it, and deduce that it admits a rural portrayal (Σ1,Γ1, α1, γ1). in a sphere Σ1; and we may assume
that ∆Θ is the disc of Σ1 including U(Γ1), and for each n ∈ FΘ, if γ(n) /∈ XΘ then γ1(n) = γ(n).
Consequently, we can obtain a portrayal (Σ′,Γ′, α′, β′, γ′) of G \XΘ in Σ′ by combining parts of the
two portrayals in the natural way.

(6) There exists X ⊆ V (G) with |X| ≤ 2k(d + 3)q, and a matte portrait (Γ0, α0, γ0) of G \ X in
Σ̂, such that for each cell c0 of Γ0, either there is a cell c of Γ with α0(c0) ⊆ α(c), or α(c0) ⊆ α(ΣΘ)
for some cuff Θ of Σ.

For each cuff Θ of Σ, |XΘ| ≤ dΘ + 3. By repeating the process just described for each cuff of
Σ, we obtain X ⊆ V (G) with |X| ≤ 2k(d+ 3)q, and a portrayal (Σ̂,Γ0, α0, γ0) of G \X. We need to
show that it is matte. Let c0 be a cell of Γ0. Choose a separation (A,B) of G with X ⊆ V (A ∩B),
such that B \ X = α0(c0). Since T has order at least |X| + 3, one of (A,B), (B,A) ∈ T . If c0 is
not a subset of ∆Θ for any cuff Θ, then there is a cell c of Γ with c0 ⊆ c and α0(c0) ⊆ α(c); and
consequently α0(c0) is planar, since α(c) is planar (because (α(c), α(−c)) ∈ T and T is matted).
Thus we may assume that c0 ⊆ ∆Θ for some cuff Θ of Σ. Hence A∪ α(ΣΘ) = G, and so (A,B) /∈ T
by (5). Hence (B,A) ∈ T , and so B is planar, since T is matted; and hence α0(c0) is planar, and
therefore (Σ̂,Γ0, α0, γ0) is matted. This proves (6).

From 4.1 applied to G \X and the portrait (Γ0, α0, γ0) in Σ̂, we deduce that either:

• G \X has K-number at least k; or

• there exists Z ⊆ V (G \X) with |Z| ≤ g(k) such that (G \X) \ Z can be drawn in Σ̂; or
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• there is a separation (A′, B′) of G \ X of order at most g(k) such that both A′, B′ are not
planar.

In the first and second cases the theorem holds, since |X|+ |Z| ≤ f(k, d). Suppose (A′, B′) is as in
the third case.

Choose a separation (A,B) of G with X ⊆ V (A ∩ B) and A \ X = A′ and B \ X = B′. Since
one of (A,B), (B,A) ∈ T and T is matted, it follows that one of A,B is planar, a contradiction. So
the third case does not hold. This proves 7.1.

8 The proof of 1.2

We need the following:

8.1 For every graph H, there are integers p, q, z ≥ 0 and θ > z, such that, for every graph G with
no H minor, and every matted tangle in G of order at least θ, there exists Z ⊆ V (G) with |Z| ≤ z
and a clean (T \ Z)-central portrayal Π = (Σ,Γ, α, β, γ) of G \ Z with depth ≤ p, such that Σ has
≤ q cuffs, and H cannot be drawn in Σ.

Proof. Let H be the graph consisting of k disjoint copies of K5. For each surface Σ in which H
cannot be drawn, and all integers p, p′ ≥ 0, define σ(Σ, p, p′) = 4p + 5. The function σ is what is
called a “standard” in [15]. From theorem (13.4) of [15], there are integers p, q, z ≥ 0 and θ > z,
such that, for every graph with no H minor, and every tangle in G of order at least θ, there exists
Z ⊆ V (G) with |Z| ≤ z and a (T \ Z)-central portrayal Π = (Σ,Γ, α, β, γ) of G \ Z with depth ≤ p,
such that Σ has at most q cuffs, H cannot be drawn in Σ, and Π is (4p + 5)-redundant and true.
We will avoid defining “portrayal” or “redundant” or “true” here, and instead rephrase this result
in the language of this paper. We may assume that z ≥ 6 and θ > z+ 4p+ 6, and so T \Z has order
more than 4p + 6. A portrayal in the sense of [15] is again a 5-tuple (Σ,Γ, α, β, γ), and it will turn
out to be a clean portrayal. We see this as follows. The conditions on the painting Γ are same for
portrayals and clean portrayals, because of theorems (8.2) and (8.4) of [15]; and portrayals satisfy
(J1) and (J5). Because the portrayal is (4p+5)-redundant and θ > 4p+5, theorems (9.1) and (9.8)
of [15] imply that (J8) holds. Theorem (9.8) of [15] implies (J6), and theorem (9.7) of [15] implies
(J2). Theorem (8.7) implies (J3) and (J4). Since θ > z + 4p + 6, theorems (6.3) and (6.4) of [15]
imply that T \ Z is 6-respectful.

We still need to verify (J7). Every region of Γ (regarded as a painting in Σ̂) is an open disc,
by theorem (8.1) of [15], and so there is a “radial drawing” Γ′ in the sense of [13]. Since T \ Z is
z-respecful, there is a “slope” in Γ′ of order z. As in [13], we may speak of “restraints” in Γ′. By
theorem (8.10) of [13], for each cuff Θ of Σ, which therefore bounds a region r say of Σ̂, the union
of all restraints that include r with “length” at most 2z is simply-connected, and does not meet any
other cuff of Σ (because of theorems (6.3) and (6.4) of [15]). Consequently we can satisfy (J7) within
the union of the insides of these restraints. This proves 8.1.

Now we can complete the proof of 1.2, which we restate:

8.2 For all k ≥ 0, there is a number f(k), such that for every graph G with K-number at most k,
there exists X ⊆ V (G) with |X| ≤ f(k) such that G \ X can be drawn in a surface with genus at
most k.
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Proof. We proceed by induction on k. The result is true by the Kuratowski-Wagner theorem if
k = 0, so we assume that k > 0, and we may assume that f(i) ≤ f(k − 1) for 0 ≤ i ≤ k − 1. Let H
be the graph consisting of k+ 1 disjoint copies of K5. Choose p, q ≥ 0 and z ≥ 6 and θ > z + 4p+ 6
satisfying 8.1. f(k)/3 ≤ f(k) − 2f(k − 1) For each connected surface Σ with at most q cuffs, and
with genus at most k, let fΣ be the function f as in 7.1. Choose a number F such that fΣ(k, d) ≤ F
for all such Σ. By increasing θ, we may assume that θ > z + 2(k + 1)(d+ 3)q. Let f(k) satisfy

f(k) > max(3f(k − 1), 2f(k − 1) + θ, z + F ).

We will prove that f(k) satisfies the theorem.
Let G be a graph with K-number at most k; we must show that there exists X ⊆ V (G) with

|X| ≤ f(k) such that G \X can be drawn in a surface of genus at most k. Let T be the set of all
separations (A,B) of G of order less than θ such that A is planar.

(1) We may assume that T is a matted tangle in G of order θ.

Suppose first that there is a separation (A,B) of G with order less than θ such that both A,B
are nonplanar. Let Y = V (A ∩ B), and let the K-numbers of A \ Y , B \ Y be k1, k2 respectively.
Since A is nonplanar, it follows that k2 < k, and similarly k1 < k; and k1 + k2 ≤ k. From the
inductive hypothesis, there exist X1 ⊆ V (A \ Y ) with |X1| ≤ f(k1) such that A \ V (A∩B) \X1 can
be drawn in a surface Σ1 of genus at most k1. Define X2,Σ2 similarly for B\Y . Let X = X1∪X2∪Y ;
then |X| ≤ f(k1) + f(k2) + θ ≤ f(k), and G \X can be drawn in the disjoint union of Σ1,Σ2, which
has genus at most k1 + k2 ≤ k.

So we may assume that there is no such (A,B). It follows that for every separation (A,B) of
G of order less than θ, one of (A,B), (B,A) ∈ T . Suppose that (Ai, Bi) ∈ T for i = 1, 2, 3, and
let Xi = V (Ai ∩ Bi) for 1 ≤ i ≤ 3. If G \ (X1 ∪X2 ∪X3) is planar, then the theorem holds, since
f(k) ≥ 3(θ − 1). So we may assume that there is a K-graph H in G disjoint from X1 ∪ X2 ∪ X3.
For i = 1, 2, 3, since Ai is planar it follows that H 6⊆ Ai; and since H is connected and (Ai, Bi) is a
separation and V (H) ∩Xi = ∅, it follows that H,Ai are vertex-disjoint. Hence A1 ∪ A2 ∪ A3 6= G.
It follows that T is a matted tangle in G of order θ. This proves (1).

From 8.1, there exists Z ⊆ V (G) with |Z| ≤ z and a clean (T \Z)-central portrayal (Σ,Γ, α, β, γ)
of G \ Z with depth ≤ p, such that Σ has ≤ q cuffs, and H cannot be drawn in Σ. Since H cannot
be drawn in Σ̂, it follows that Σ̂ has genus at most k. By 7.1, applied to G \ Z (with k replaced by
k+ 1), and since T \Z has order at least θ− z ≥ 2(k+ 1)(d+ 3)q, and G \Z has K-number at most
k, it follows that there exists Z ′ ⊆ V (G) \Z with |Z ′| ≤ fΣ(k+ 1, p) ≤ F such that G \ (Z ∪Z ′) can
be drawn in Σ. Since |Z ∪ Z ′| ≤ z + F ≤ f(k), this proves 1.2.
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