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Abstract

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent ver-
tices, with chromatic number χ and clique number ω, then χ ≤ 2ω and the same for the complement
of G. We also prove that the choice number of G is at most 2ω, except possibly in the case when G

can be obtained from a subgraph of the Schläfli graph by replicating vertices. Finally, we show that
the constant 2 is best possible in all cases.



1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. For a subset X of V (G) we denote
by G|X the subgraph of G induced on X. We say that X ⊆ V (G) is a claw if G|X is isomorphic
to the complete bipartite graph K1,3, and G is claw-free if no subset of V (G) is a claw. Line graphs
are a well-known class of claw-free graphs, but there are others, such as circular interval graphs and
subgraphs of the Schläfli graph (a circular interval graph is obtained from a collection of points and
intervals of a circle by making two points adjacent if they belong to the same interval). In [4] we
prove a theorem that explicitly describes the structure of all claw-free graphs.

Claw-free graphs being a generalization of line graphs, it is natural to ask what properties of line
graphs can be extended to all claw-free graphs. A clique in a graph is a set of vertices all pairwise
adjacent. A stable set is a set of vertices all pairwise non-adjacent. A triangle is a clique of size
three, and a triad is a stable set of size three. For a graph G, we denote by ω(G) the size of the
largest clique in G, and by χ(G) the chromatic number of G. Vizing’s theorem [8] gives a bound
on χ(G) in terms of ω(G) if G is the line graph of a simple graph, namely χ ≤ ω + 1. But what
about other claw-free graphs? Does there exist a function f such that if G is a claw-free graph then
χ(G) ≤ f(ω(G))? It is easy to see that such f exists, and in fact χ(G) ≤ ω(G)2 (the neighbourhood
of a vertex in a clique of size ω(G) is the union of at most ω(G) cliques).

One might hope to get closer to Vizing’s bound, asking whether f is a linear function. Unfor-
tunately the answer to this question is negative (in fact, the power two is best possible). If G is a

triad-free graph, then χ(G) ≥ |V (G)|
2 , and yet ω(G) may be of order

√

|V (G)| log |V (G)| [7]. However,
if we insist that G contains a triad, and is connected (to prevent counterexamples obtained by taking
disjoint unions with large triad-free graphs), then a much stronger result is true. The main result of
this paper is the following:

1.1 Let G be a connected, claw-free graph that contains a triad. Then χ(G) ≤ 2ω(G).

This bound is best possible, in the sense that the constant 2 cannot be replaced by any smaller
constant (in Section 4, we construct an infinite family of claw-free graphs, satisfying the hypotheses
of 1.1, with the ratio of the chromatic number and the clique number arbitrarily close to 2.)

Let us say that a graph G is tame if there exists a connected claw-free graph H with a triad,
such that G is an induced subgraph of H. We prove a slight strengthening of 1.1, the following:

1.2 Let G be tame. Then χ(G) ≤ 2ω(G).

As we will show in Section 4, the bound of 1.2 is best possible (not only asymptotically). The
proof of 1.2 uses the structure theorem mentioned above.

There is a slightly worse, but still linear bound on χ in terms of ω, that has a short proof, without
using the structure theorem, and we include it here. We prove:

1.3 Let G be tame. Then χ(G) ≤ 4ω(G).

In fact, we prove the following stronger statement that clearly implies 1.3.

1.4 Let G be tame. Then every vertex of G has degree at most 4ω(G) − 1.
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For v ∈ V (G) we denote by NG(v) (or N(v) when there is no ambiguity) the set of neighbours
of v in G. Let X ⊆ V (G). We denote by G \ X the graph G|(V (G) \ X). For v ∈ V (G) we denote
by G \ v the graph G \ {v}. We start with two lemmas:

1.5 Let G be a claw-free graph, let X,Y be disjoint subsets of V (G) with X 6= ∅, and assume that
for every two non-adjacent vertices of Y , every vertex of X is adjacent to exactly one of them. Then
Y is the union of two cliques.

Proof. Since for every two non-adjacent vertices a, b ∈ Y , N(a) ∩ X and N(b) ∩ X partition X, it
follows that G|Y contains no complement of an odd cycle, so G|Y is the complement of a bipartite
graph; and in particular Y is the union of two cliques.

1.6 Let G be a claw-free graph that contains a triad, and assume that there is a vertex v ∈ V (G),
with a neighbour in G, and such that G\v contains no triad. Then V (G) is the union of four cliques,

and in particular ω(G) ≥ |V (G)|
4 .

Proof. Let X be the set of neighbours of v in G, and let Y = V (G) \ (X ∪ {v}). Since G contains
a triad, and G \ v does not, it follows that there exist two non-adjacent vertices y1, y2 in Y . Since v

has a neighbour in G, it follows that X is non-empty. For i = 1, 2 let Nyi
be the set of neighbours

of yi in X. Since {x, y1, y2, v} is a claw in G for every x ∈ Ny1
∩ Ny2

, it follows that Ny1
∩ Ny2

= ∅.
Since G \ v contains no triad, X \ Nyi

is a clique for i = 1, 2, and therefore X ∪ {v} is the union
of two cliques. Also since G \ v contains no triad, Ny1

∪ Ny2
= X. So for every two non-adjacent

vertices in Y every vertex of X is adjacent to exactly one of them. By 1.5 it follows that Y is the
union of two cliques. But now V (G) is the union of four cliques, and in particular ω(G) ≥ |V (G)|

4 ,
and the theorem holds.

1.6 has the following useful corollary:

1.7 Let G be tame. Then either G contains a triad, or V (G) is the union of four cliques.

Proof. Suppose that G contains no triad. Let H be a connected claw-free graph with a triad
such that G is an induced subgraph of H. Since H is connected, we can number the vertices of
V (H) \ V (G) as {v1, . . . , vk} such that for 1 ≤ i ≤ k, vi has a neighbour in V (G) ∪ {v1, . . . , vi−1}.
Choose i minimum such that V (G) ∪ {v1, . . . , vi} includes a triad, and let G′ be the subgraph of H

induced on V (G) ∪ {v1, . . . , vi}. Since G′ \ vi has no triad, 1.6 implies that V (G′) (and hence V (G))
is the union of four cliques. This proves 1.7.

Proof of 1.4. Let v be a vertex of maximum degree in G and let N be the set of neighbours
of v. Since G is claw-free, G|(N ∪ {v}) contains no triad. Now the result follows from 1.7. This
proves 1.4.

We also prove a variant of 1.1 with chromatic number replaced by choice number. Let G be a
graph, and for every v ∈ V (G), let Lv be a list of colours. We say that G is colourable from the lists
{Lv}v∈V (G) if there exists a proper colouring of G such that every vertex v is coloured with a colour
from Lv. The choice number of G is the smallest integer k such that for every set of lists {Lv}, if
|Lv| ≥ k for every v ∈ V (G), then G is colourable from the lists {Lv}. We denote the choice number
of G by ch(G). Clearly, χ(G) ≤ ch(G). In Section 5 we prove that if G tame and G does not belong
to a special restricted class of claw-free graphs (that we will define later), then ch(G) ≤ 2ω(G).
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Let G denote the complement of the graph G (that is, the graph on the same vertex set as G,
such that two vertices are adjacent in G if and only if they are non-adjacent in G). It turns out that
one can also bound the chromatic number of a graph whose complement is claw-free in terms of the
size of its maximum clique. We prove:

1.8 Let G be tame. Then χ(G) ≤ 2ω(G).

The remainder of the paper is organized as follows. In Section 2 we develop some tools that will
be used in the proof of 1.2. In Section 3 we state the structure theorem from [4], and deduce from it
that every connected claw-free graph with a triad either can be handled by the methods developed in
Section 2, or is obtained by replicating vertices from an induced subgraph of the Schläfli graph (we
will define the Schläfli graph and make this precise later). In Section 4 we prove that the conclusion
of 1.2 holds for the latter class of claw-free graphs, and thus complete the proof of 1.2. We also
show that the constant in 1.1 is best possible, and that the bound of 1.2 is best possible, not only
asymptotically. In Section 5 we prove the bound on ch(G). Finally, in Section 6 we prove 1.8.

2 Tools

We start with some definitions. Let G be a graph. A non-empty subset X of V (G) is said to be
connected if the graph G|X is connected. A component of G is a maximal connected subgraph of G.
For a vertex v and a set A ⊆ V (G) not containing v, we say that v is complete (anticomplete) to A

if v is adjacent to every (no) vertex of A, respectively. Two disjoint sets A,B ⊆ V (G) are complete
(anticomplete) to each other if every vertex of A is complete (anticomplete) to B.

Let G be a connected claw-free graph with a triad. It turns out that in many cases we can prove
that G has one of the following properties: either the set of neighbours of some vertex v of G is the
union of two cliques (in this case we say that v is bisimplicial), or ω(G) ≥ |V (G)|

4 . In 2.1 and 2.2 we
show that both these properties are useful in proving that the conclusion of 1.2 holds for G.

2.1 Let G be tame. If ω(G) ≥ |V (G)|
4 , then χ(G) ≤ 2ω(G).

Proof. Let |V (G)| = n and let k be the maximum size of a matching in G. Then χ(G) ≤ n − k.

(1) If k > n
2 − 1 then the theorem holds.

If k > n
2 − 1 then

χ(G) ≤ n − k <
n

2
+ 1 ≤ 2ω(G) + 1,

and the theorem holds. This proves (1).

From (1) we may assume that k ≤ n
2 − 1. By the Tutte-Berge formula [9], there exists a set

X ⊆ V (G) such that G \ X has t = |X| + n − 2k components, all with an odd number of vertices.
Let the components be Y1, . . . , Yt. Thus these are induced subgraph of G.

(2) For 1 ≤ i ≤ t, Yi contains no triangle and therefore χ(Yi) ≤ 4.
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For G is claw-free, and therefore in G, for every triangle T and every vertex v 6∈ T , v has a
neighbour in T . Since Y1, . . . , Yt are components of G \ X , if some Yi contains a triangle then
i = t = 1. But t = |X|+ n− 2k ≥ |X|+ 2 ≥ 2, a contradiction. This proves the first assertion of (2).
The second assertion follows from the first by 1.7. This proves (2).

From (2) and since |V (Yi)| is odd for all 1 ≤ i ≤ t, it follows that each Yi contains a stable set

of size strictly greater than |V (Yi)|
4 . In G this means that ω(G|(V (Yi))) >

|V (Yi)|
4 . Now, since Yi are

components of G \ X , it follows that V (Yi) is complete to V (Yj) in G for all 1 ≤ i < j ≤ t, and hence

4ω(G) ≥
t

∑

i=1

4ω(G|(V (Yi))) ≥
t

∑

i=1

(|V (Yi)| + 1) ≥ n − |X| + t = n − |X| + |X| + n − 2k = 2n − 2k.

Thus χ(G) ≤ n − k ≤ 2ω(G) and the theorem holds. This proves 2.1.

2.2 Let G be a claw-free graph and let v ∈ V (G) be bisimplicial. If χ(G \ v) ≤ 2ω(G \ v), then
χ(G) ≤ 2ω(G), and if ch(G \ v) ≤ 2ω(G \ v), then ch(G) ≤ 2ω(G).

Proof. First we prove the first statement of 2.2. Let c be a colouring of G \ v with at most 2ω(G)
colours. Since v is bisimplicial, at most 2(ω(G)− 1) colours appear in N(v), and so there is a colour
that does not appear in N(v). Therefore, the colouring of G \ v can be extended to a colouring of
G, and χ(G) ≤ 2ω(G). This proves the first assertion of 2.2.

Let us now prove the second assertion. Let {Lu}u∈V (G) be a set of lists such that |Lu| ≥ 2ω(G)
for every u ∈ V (G). Then G \ v can be coloured from these lists. Since v is bisimplicial, at most
2(ω(G) − 1) colours appear in N(v), and so there is a colour in Lv that does not appear in N(v).
Therefore, the colouring of G \ v can be extended to a colouring of G, and ch(G) ≤ 2ω(G). This
completes the proof of 2.2.

3 The structure of claw-free graphs

The goal of this section is to state and prove a structural lemma about claw-free graphs that we will
later use to prove our main result. The proof of the lemma relies on (an immediate corollary of) the
main result of [4], and we start with definitions necessary to state it.

Let G be a graph, and let F be a set of unordered pairs of distinct vertices of G such that every
vertex belongs to at most one member of F . Then H is a thickening of (G,F ) if for every v ∈ V (G)
there is a nonempty subset Xv ⊆ V (H), all pairwise disjoint and with union V (H) satisfying the
following:

• for each v ∈ V (G), Xv is a clique of H

• if u, v ∈ V (G) are adjacent in G and {u, v} 6∈ F , then Xu is complete to Xv in H

• if u, v ∈ V (G) are nonadjacent in G and {u, v} 6∈ F , then Xu is anticomplete to Xv in H

• if {u, v} ∈ F then Xu is neither complete nor anticomplete to Xv in H.
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First we list some classes of claw-free graphs that are needed for the statement of the structure
theorem from [4].

• Graphs from the icosahedron. The icosahedron is the unique planar graph with twelve
vertices all of degree five. Let it have vertices v0, v1, . . . , v11, where for 1 ≤ i ≤ 10, vi is adjacent
to vi+1, vi+2 (reading subscripts modulo 10), and v0 is adjacent to v1, v3, v5, v7, v9, and v11 is
adjacent to v2, v4, v6, v8, v10. Let this graph be G0. Let G1 be obtained from G0 by deleting
v11 and let G2 be obtained from G1 by deleting v10. Furthermore, let F ′ = {{v1, v4}, {v6, v9}}.

Let G ∈ T1 if G is a thickening of (G0, ∅), (G1, ∅), or (G2, F ) for some F ⊆ F ′.

• Fuzzy long circular interval graphs. Let Σ be a circle, and let F1, . . . , Fk ⊆ Σ be homeo-
morphic to the interval [0, 1], such that no two of F1, . . . , Fk share an endpoint, and no three
of them have union Σ. Now let V ⊆ Σ be finite, and let H be a graph with vertex set V in
which distinct u, v ∈ V are adjacent precisely if u, v ∈ Fi for some i.

Let F ′ be the set of pairs {u, v} such that u, v ∈ V are distinct endpoints of Fi for some i.
Let F ⊆ F ′. Then G is a fuzzy long circular interval graph if for some such H and F , G is a
thickening of (H,F ).

Let G ∈ T2 if G is a fuzzy long circular interval graph.

• Fuzzy antiprismatic graphs. A graph H is called antiprismatic if for every triad T and
every vertex v ∈ V (H) \ T , v has exactly two neighbours in T . Let u, v be two vertices of
an antiprismatic graph H. We say that the pair {u, v} is changeable if u is non-adjacent to
v, and the graph obtained from G by adding the edge uv is also antiprismatic. Let H be an
antiprismatic graph and let F be a set of changeable pairs of H such that every vertex of H

belongs to at most one member of H. We say that a graph G is a fuzzy antiprismatic graph if
G is a thickening of (H,F ).

Let G ∈ T3 if G is a fuzzy antiprismatic graph.

Next, we define what it means for a claw-free graph to admit a “strip-structure”. A hypergraph
H consists of a finite set V (H), a finite set E(H), and an incidence relation between V (H) and
E(H) (that is, a subset of V (H) × E(H)). For the statement of the structure theorem, we only
need hypergraphs such that every member of E(H) is incident with either one or two members of
V (H) (thus, these hypergraphs are graphs if we allow “graphs” to have loops and parallel edges).
For F ∈ E(H), let us denote by F the set of elements of V (H) incident with F .

Let G be a graph. A strip-structure (H, η) of G consists of a hypergraph H with E(H) 6= ∅, and
a function η mapping each F ∈ E(H) to a subset η(F ) of V (G), and mapping each pair (F, h) with
F ∈ E(H) and h ∈ F to a subset η(F, h) of η(F ), satisfying the following conditions.

• (S1) The sets η(F ) (F ∈ E(H)) are nonempty and pairwise disjoint and have union V (G).

• (S2) For each h ∈ V (H), the union of the sets η(F, h) for all F ∈ E(H) with h ∈ F is a clique
of G.

• (S3) For all distinct F1, F2 ∈ E(H), if v1 ∈ η(F1) and v2 ∈ η(F2) are adjacent in G, then there
exists h ∈ F1 ∩ F2 such that v1 ∈ η(F1, h) and v2 ∈ η(F2, h).
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• (S4) For every F ∈ E(H), h ∈ F and v ∈ η(F, h) the set of neighbours of v in η(F ) \ η(F, h)
is a clique.

• (S5) Let F ∈ E(H) with |F | = 2, say F = {h1, h2}. If η(F, h1) ∩ η(F, h2) 6= ∅, then η(F, h1) ∩
η(F, h2) = η(F ).

We say that a strip-structure is non-trivial if |E(H)| ≥ 2.
The following is a corollary of the main theorem of [4].

3.1 Let G be a connected claw-free graph. Then either

• V (G) is the union of three cliques, or

• G admits a non-trivial strip-structure, or

• G ∈ T1 ∪ T2 ∪ T3.

We also need a few definitions from [3]. ([3] deals with a class of graphs whose complements are
claw-free, so for our purposes in this paper, we need to reformulate the definitions and results of [3]
in terms of claw-free graphs.)

Let G be an antiprismatic graph. The core of G is the union of all triads of G. Let W be the core
of G. For v ∈ V (G) \ W , replicating v means replacing v by several vertices, all pairwise adjacent,
and otherwise with the same neighbours as v. Please note that the graph produced in this manner
is still antiprismatic.

Let G have 27 vertices {ri
j , s

i
j, t

i
j : 1 ≤ i, j ≤ 3}, with adjacency as follows. Let 1 ≤ i, i′, j, j′ ≤ 3.

• If i = i′ or j = j′ then ri
j is adjacent to ri′

j′ , and si
j is adjacent to si′

j′ , and tij is adjacent to ti
′

j′ ;
while if i 6= i′ and j 6= j′ then the same three pairs are nonadjacent.

• If j 6= i′ then ri
j is adjacent to si′

j′ , and si
j is adjacent to ti

′

j′ , and tij is adjacent to ri′

j′; while if
j = i′ then the same three pairs are nonadjacent.

This is the Schläfli graph. All induced subgraphs of G are antiprismatic, and we call any such graph
Schläfli-antiprismatic.

We need the following theorem from [3]:

3.2 Let G be antiprismatic, with at least one triad. Then one of the following holds:

• there is a Schläfli-antiprismatic graph G0 with no changeable pairs, such that G can be obtained
from G0 by replicating vertices not in the core, or

• for some k with 1 ≤ k ≤ 3, there is a list of 4k cliques of G such that every vertex belongs to
exactly k of them.

We can now state the main result of this section.

3.3 Let G be an induced subgraph of a connected claw-free graph H such that H contains a triad.
Then either

• there exists a Schläfli-antiprismatic graph H0 such that G is a thickening of (H0, ∅), or
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• G has at least two bisimplicial vertices, or

• ω(G) ≥ |V (G)|
4 .

Proof. By 3.1, either

• V (G) is the union of three cliques, or

• G admits a non-trivial strip-structure, or

• G ∈ T1 ∪ T2 ∪ T3.

If V (G) is the union of three cliques, then ω(G) ≥ |V (G)|
3 ≥ |V (G)|

4 and the theorem holds, so we
may assume that one of the other outcomes holds.

Assume that G admits a non-trivial strip-structure, and let H and η be as in the definition of a
strip-structure. For h ∈ V (H) we denote by η(h) the set

⋃

F : h∈F η(F, h).

(1) For every F ∈ E(H) and h ∈ F , every vertex of η(F, h) is bisimplicial in G.

Let F ∈ E(H), h ∈ F and v ∈ η(F, h). Suppose first that F = {h, h′} and η(F, h) ∩ η(F, h′) 6= ∅.
By (S5), η(F, h) = η(F, h′) = η(F ). Consequently, by (S3) NG(v) = η(h) ∪ η(h′). But by (S2)
each of the sets η(h) and η(h′) is a clique, and therefore v is a bisimplicial vertex of G and (1) holds.
Thus we may assume that either

• F = {h}, or

• F = {h, h′} for some h′ ∈ V (H) \ {h}, and η(F, h) ∩ η(F, h′) = ∅.

In both cases, by (S3), NG(v) ⊆ η(h) ∪ η(F ). But, by (S2), η(h) is a clique, and by (S4) the set of
neighbours of v in η(F ) \ η(h) is a clique. Consequently, NG(v) is the union of two cliques, and so v

is a bisimplicial vertex of G. This proves (1).

By (1), and since |E(H)| ≥ 2, it follows that G has at least two bisimplicial vertices, and 3.3
holds.

Thus we may assume that G ∈ T1∪T2∪T3. Suppose G ∈ T1. Let G0, G1, G2 be as in the definition
of T1. For 0 ≤ i ≤ 11, let Xvi

be as in the definition of a thickening, except if G is a thickening of
G1, let Xv11

= ∅, and if G is a thickening of G2, let Xv10
= Xv11

= ∅. Let

C1 = Xv1
∪ Xv9

∪ Xv10

C2 = Xv2
∪ Xv3

∪ Xv4

C3 = Xv6
∪ Xv8

∪ Xv11

C4 = Xv0
∪ Xv5

∪ Xv7
.

Then each of C1, C2, C3, C4 is a clique, and V (G) = C1 ∪ C2 ∪ C3 ∪ C4, and therefore ω(G) ≥ |V (G)|
4

and the theorem holds.
If G ∈ T2, then every vertex of G is bisimplicial and again the theorem holds. Thus we may

assume that G ∈ T3, and so there exists an antiprismatic graph H and a set F of changeable pairs
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of H such that every vertex of H is in at most one member of F , and G is a thickening of (H,F ). In
particular, if {u, v} ∈ F , then u is non-adjacent to v in H. If G contains no triad, then by 1.7, V (G)

is the union of four cliques, and therefore ω(G) ≥ |V (G)|
4 . Thus we may assume that G contains a

triad, and consequently so does H. For v ∈ V (H), let Xv be as in the definition of a thickening.
By 3.2, either

• there is a Schläfli-antiprismatic graph H0 with no changeable pairs, such that H can be obtained
from H0 by replicating vertices not in the core, or

• for some k with 1 ≤ k ≤ 3, there is a list of 4k cliques of H such that every vertex belongs to
exactly k of them.

Suppose that there exists a Schläfli-antiprismatic graph H0 with no changeable pairs, such that
H can be obtained from H0 by replicating vertices not in the core. Since H0 has no changeable
edges, it follows that neither does H, and so F = ∅. But now G is a thickening of (H0, ∅), and the
theorem holds.

So we may assume that for some k with 1 ≤ k ≤ 3, C1, . . . , C4k are cliques of H such that every
vertex of H belongs to exactly k of them. For i ∈ {1, . . . , 4k}, let C ′

i =
⋃

v∈Ci
Xv . Then, since every

vertex pair in F is a non-adjacent pair of H, it follows that each of the sets C ′
i is a clique of G, and

every vertex of G is in exactly k of them. Thus

4k
∑

i=1

|C ′
i| = k|V (G)|,

and so for some i, |C ′
i| ≥

|V (G)|
4 . Consequently, ω(G) ≥ |V (G)|

4 , and the theorem holds. This completes
the proof of 3.3.

4 The proof of 1.2

The goal of this section is to prove 1.2. We start with a lemma.

4.1 Let H0 be a Schläfli-antiprismatic graph, and let G be a thickening of (H0, ∅). Then either

ω(G) ≥ |V (G)|
4 , or χ(G) ≤ 2ω(G).

Proof. The proof is by induction on |V (G)|. Let i, j ∈ {1, 2, 3} and let ri
j, s

i
j , t

i
j be as in the def-

inition of the Schläfli graph. Then V (H0) ⊆ {ri
j , s

i
j, t

i
j : 1 ≤ i, j ≤ 3}. For v ∈ V (H0), let Xv be

as in the definition of a thickening. Let Si
j = Xsi

j
, Ri

j = Xri
j
, T i

j = Xti
j
, where Si

j = ∅ if and only if

si
j 6∈ V (H0), and the same for Ri

j and T i
j . We may assume that ω(G) <

|V (G)|
4 , and therefore |V (G)|

is not the union of four cliques. For Y ⊆ V (G), let the width of Y , denoted by width(Y ), be the
number of vertices v of H0 such that Y ∩ Xv is non-empty.

(1) Let K be a maximal clique of G. Then width(K) > 3.

Suppose not. From the symmetry of the Schläfli graph [1], we may assume that K ⊆ S1
1 ∪ S2

1 ∪ S3
1 .
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Since K is a maximum clique in G, it follows that no vertex of G is complete to S1
1 ∪ S2

1 ∪ S3
1 , and

so
⋃3

j=1(T
2
j ∪ T 3

j ) = ∅. But now, for i ∈ {1, 2, 3}, with addition mod 3, let

Ci =

3
⋃

j=1

(Rj
i ∪ Si+1

j )

and let C4 =
⋃3

j=1 T 1
j . Then each of C1, C2, C3, C4 is a clique, and V (G) =

⋃4
i=1 Ci, a contradiction.

This proves (1).

(2) If either

1. no clique of G of size ω(G) has width four, or

2. there exists V1 ⊆ V (H0) such that

• |V (H0)| − 1 ≤ |V1|,

•
⋃

v∈V1
Xv includes every clique of size ω(G) and width four in G, and

• χ(H0|V1) ≤ 8,

then 4.1 holds.
Suppose first that there is no clique of size ω(G) and width four in G. For every v ∈ V (H0), let

xv ∈ Xv and let Y = {xv}v∈V (H0) and let G1 = G \ Y . Then, by (1), every clique of size ω(G) in
G has width at least five, and so every maximum clique of G meets Y in at least five vertices. Also
by (1), every maximal clique of G of size ω(G) − 1 meets Y in at least four vertices. It follows that
ω(G1) ≤ ω(G) − 5. Inductively, χ(G1) ≤ 2ω(G1). Since the Schläfli graph is 9-colourable, it follows
that Y is the union of at most nine stable sets. But now

χ(G) ≤ χ(G1) + 9 ≤ 2ω(G1) + 9 ≤ 2(ω(G) − 5) + 9 < 2ω(G)

and 4.1 holds.
Next suppose that there exists V1 as in the second alternative hypothesis of (2). For every v ∈ V1,

let xv ∈ Xv and let Z = {xv}v∈V1
. Let G2 = G \ Z.

By (1), since |Z| ≥ |V (H0)| − 1, and since every maximum clique of width four in G is contained
in

⋃

v∈V1
Xv, it follows that every maximum clique of G meets Z in at least four vertices. Also by

(1), every maximal clique of G of size ω(G) − 1 meets Y in at least three vertices. Consequently,
ω(G2) ≤ ω(G) − 4. Inductively, χ(G2) ≤ 2ω(G2). Since χ(H0|V1) ≤ 8, it follows that Z is the union
of at most eight stable sets. But now

χ(G) ≤ χ(G2) + 8 ≤ 2ω(G2) + 8 ≤ 2(ω(G) − 4) + 8 ≤ 2ω(G)

and 4.1 holds. This proves (2).

We observe that, since G is a thickening of (H0, ∅), if for some v ∈ V (H0), Xv meets a maxi-
mum clique K of G, then Xv ⊆ K. Let v0 ∈ V (H0) be such that Xv0

is a subset of some clique of
size ω(G) and width four in G, and subject to that with |Xv0

| minimum (by (2), we may assume
that there exists a clique of size ω(G) and width four in G). Let K0 be a clique of size ω(G) and
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width four in G with Xv0
⊆ K0. From the symmetry of the Schläfli graph [1], we may assume that

K0 = (
⋃3

i=1 Si
3) ∪ T 2

3 and v0 = t23. By the maximality of K0, it follows that T 2
1 ∪ T 2

2 ∪ T 1
3 = ∅.

(3) If for some i ∈ {1, 2, 3}, either Si
2 = ∅ or no clique of size ω(G) and width four in G in-

cludes S1
2 , then 4.1 holds.

From the symmetry, we may assume that either S1
2 = ∅, or no clique of size ω(G) and width

four in G includes S1
2 . By an earlier remark, in both cases, K ∩ S1

2 = ∅ for every clique K of size
ω(G) and width four in G. Let V1 = V (H0) \ {s

1
2}. Now

{r1
1 , s

1
1, t

1
1}, {r

2
3 , s

3
1, t

1
2}, {r

3
2 , s2

2, t
2
3},

{r1
2 , s

2
3, t

3
1}, {r

2
1 , s

1
3, t

3
2}, {r

3
3 , s3

3, t
3
3},

{r1
3, r

2
2 , r

3
1}, {s

2
1, s

3
2}

are eight stable sets in the Schläfli graph, and their union includes V1. Thus χ(H0|V1) ≤ 8, and 4.1
follows from (2). This proves (3).

In view of (3), we may assume that for every i ∈ {1, 2, 3}, Si
2 6= ∅, and there exists a clique Ki

of size ω(G) and width four in G, such that Si
2 ⊆ Ki. By the choice of K0 and v0, it follows that

|Si
2| ≥ |T 2

3 | for i ∈ {1, 2, 3}. Also, since K0 is a clique of size ω(G), and since (K0 \ T 2
3 ) ∪ T 1

1 ∪ T 1
2 is

a clique in G, it follow that |T 1
1 | + |T 1

2 | ≤ |T 2
3 | ≤ |Si

2| for i ∈ {1, 2, 3}. In particular,

|S1
2 | ≥ |T 2

3 |

and
|S2

2 | ≥ |T 1
1 | + |T 1

2 |.

For i ∈ {1, 2, 3}, with addition mod 3, let

Ci =

3
⋃

j=1

(Rj
i ∪ Si+1

j )

and let

C4 =

3
⋃

j=1

(T 3
j ∪ S

j
2).

Then C1, . . . , C4 are cliques, and so, for i ∈ {1, 2, 3, 4}, |Ci| ≤ ω(G) <
|V (G)|

4 . Thus

|V (G)| >

4
∑

i=1

|Ci| = |V (G)| +
3

∑

j=1

|Sj
2| − |T 1

1 | − |T 1
2 | − |T 2

3 |

= |V (G)| + (|S1
2 | − |T 2

3 |) + (|S2
2 | − |T 1

1 | − |T 1
2 |) + |S3

2 | ≥ |V (G)|,

a contradiction. This proves 4.1.
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We are now ready to prove 1.2.

Proof of 1.2. The proof is by induction on |V (G)|, and so we may assume that if G′ 6= G is
a proper induced subgraph of G, then χ(G′) ≤ 2ω(G′). By 3.3, either

• there exists a Schläfli-antiprismatic graph H0 such that G is a thickening of (H0, ∅), or

• G has at least two bisimplicial vertices, or

• ω(G) ≥ |V (G)|
4 .

If ω(G) ≥ |V (G)|
4 , then 1.2 follows from 2.1, and thus we may assume that ω(G) <

|V (G)|
4 .

Suppose G contains a bisimplicial vertex v. Inductively it follows that χ(G \ v) ≤ 2ω(G \ v),
and 1.2 follows from 2.2.

So we may assume that there exists a Schläfli-antiprismatic graph H0 such that G is a thickening
of (H0, ∅). But now, since ω(G) <

|V (G)|
4 , 1.2 follows from 4.1. This proves 1.2.

Clearly, 1.2 implies 1.1. We remark that 1.1 is tight, in the sense that the constant 2 cannot be
replaced with a smaller one. Let n be a positive integer, and let us define the graph Gn as follows:

• V (Gn) is the disjoint union of the sets {x, y, z, w}, A, B, C, D

• A = {a1, . . . an}, B = {b1, . . . bn}, C = {c1, . . . cn} and D = {d1, . . . dn},

• A,B,C,D are cliques.

• x is complete to B ∪ C and anticomplete to A ∪ D, y is complete to B ∪ D and anticomplete
to A∪C, z is complete to A ∪C and anticomplete to B ∪D, and w is complete to A ∪D and
anticomplete to B ∪ C,

• the pairs xy, xz,wy,wz are adjacent and the pairs xw, yz are non-adjacent,

• for i, j ∈ {1, . . . , n}, ai is adjacent to bj if and only if i = j,

• for i, j ∈ {1, . . . , n}, ci is adjacent to dj if and only if i = j

• for i, j ∈ {1, . . . , n}, ai is adjacent to cj if and only if i 6= j

• for i, j ∈ {1, . . . , n}, ai is adjacent to dj if and only if i 6= j

• for i, j ∈ {1, . . . , n}, bi is adjacent to cj if and only if i 6= j

• for i, j ∈ {1, . . . , n}, bi is adjacent to dj if and only if i 6= j

Then Gn are graphs of parallel-square type defined in [3], and therefore the graphs Gn are claw-
free. For every n, |V (Gn)| = 4n + 4. Since {a1, d1, x} is a triad, each Gn contains a triad. It is
easy to see that all Gn are connected. We also observe that Gn \ {x, y, z, w} contains no triad, so

χ(Gn) ≥ |V (Gn)|−4
2 = 2n. On the other hand, ω(Gn) = n + 2 (we leave checking this to the reader),

and so χ(Gn) ≥ (2− 4
n+2)ω(Gn). Thus {Gn} is an infinite family of graphs satisfying the hypotheses

of 1.1, with the ratio between the chromatic number and the clique number arbitrarily close to 2.
Finally, we show that 1.2 is tight. Let G′

n = Gn \ {x, y, z, w}. Then G′
n is an induced subgraph

of Gn, and G′
n contains no triad. Since |V (G′

n)| = 4n, it follows that χ(G′
n) ≥ 2n. It is easy to see

that ω(G′
n) = n, and therefore χ(G′

n) = 2ω(G′
n).
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5 Choosability

The goal of this section is to prove the following:

5.1 Let G be tame, and assume that G is not a thickening of (H, ∅) for any Schläfli-antiprismatic
graph H. Then ch(G) ≤ 2ω(G).

Unfortunately, we do not know what the correct bound on ch(G) is if G is a thickening of (H, ∅)
for some Schläfli-antiprismatic graph H. It may be true that the bound of 5.1 holds for all tame
graphs, but we do not know how to prove it. We start with a lemma (we thank Bruce Reed for
helping us with the proof).

5.2 Let G be a claw-free graph. Then ch(G) ≤ max(χ(G), |V (G)|
2 ).

Proof. Let p = max(χ(G), |V (G)|
2 ). Then G can be coloured with p colours. For a p-colouring c of

G, let the index of c be the number of colour classes of size two in c. Let c be a colouring of G with
maximum index, and let X1, . . . ,Xp be the colour classes of c.

(1) |Xi| ≤ 2 for i ∈ {1, . . . , p}.

Suppose |X1| ≥ 3. Since p ≥ |V (G)|
2 , it follows that |Xi| ≤ 1 for some i ∈ {2, . . . , p}, and we

may assume that i = 2. Since G is claw-free, at most two vertices of X1 have neighbours in X2, and
so some vertex y ∈ X1 is anticomplete to X2. But now

X1 \ {y},X2 ∪ {y},X3, . . . ,Xp

is a p-colouring of G with index bigger than that of c, a contradiction. This proves (1).

It follows from (1) that G is a subgraph (not necessarily induced) of the complete p-partite graph
K(2, . . . , 2). By a theorem from [5], the choice number of the p-partite graph K(2, . . . , 2) is p, and
therefore ch(G) ≤ p. This proves 5.2.

5.2 has the following easy corollary:

5.3 Let G be tame. If ω(G) ≥ |V (G)|
4 , then ch(G) ≤ 2ω(G).

Proof. By 1.1 max(χ(G), |V (G)|
2 ) ≤ 2ω. Since by 5.2, ch(G) ≤ max(χ(G), |V (G)|

2 ), 5.3 follows.

We also need the following:

5.4 Let H be a Schläfli-antiprismatic graph and let G be a thickening of (H, ∅). Then the set of
non-neighbours of every vertex of G is the union of two cliques.

Proof. Let u ∈ V (G). Let i, j ∈ {1, 2, 3} and let ri
j, s

i
j , t

i
j be as in the definition of the Schläfli

graph. Then V (H) ⊆ {ri
j , s

i
j , t

i
j : 1 ≤ i, j ≤ 3}. For v ∈ V (H), let Xv be as in the definition of

a thickening. Let Si
j = Xsi

j
, Ri

j = Xri
j
, T i

j = Xti
j
, where Si

j = ∅ if and only if si
j 6∈ V (H), and the

same for Ri
j and T i

j . From the symmetry of the Schläfli graph [1], we may assume that u ∈ S1
1 . Let

M be the set of non-neighbours of u in G. Then M = (
⋃3

i=1(T
1
i ∪ Ri

1)) ∪ S2
2 ∪ S2

3 ∪ S3
2 ∪ S3

3 , and
R1

1 ∪ R2
1 ∪ T 1

3 ∪ S2
2 ∪ S2

3 and R3
1 ∪ T 1

1 ∪ T 1
2 ∪ S3

2 ∪ S3
3 are two cliques with union M . This proves 5.4.
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We can now prove 5.1.

Proof of 5.1. Let G be tame and not a thickening of (H, ∅) for any Schläfli-antiprismatic graph
H. The proof is by induction on |V (G)|, and so we may assume that if G′ 6= G is a proper induced
subgraph of G, such that G′ is not a thickening of (H ′, ∅) for any Schläfli-antiprismatic graph H ′,
then ch(G′) ≤ 2ω(G′). Since G is not a thickening of (H, ∅) for any Schläfli-antiprismatic graph H,
it follows from 3.3 that either

• G has two bisimplicial vertices, or

• ω(G) ≥ |V (G)|
4 .

If ω(G) ≥ |V (G)|
4 , then 5.1 follows from 5.3. Thus we may assume that ω(G) <

|V (G)|
4 , and there-

fore G contains two bisimplicial vertices, say u and v. Let G′ = G \ v.

(1) If there exists a Schläfli-antiprismatic graph H ′ such that G′ is a thickening of (H ′, ∅), then
ch(G′) ≤ 2ω(G′).

By 5.4, the set of non-neighbours of u in G is the union of two cliques. Since u is bisimplicial,
it follows that NG′(u) ∪ {u} is the union of two cliques. Consequently, V (G′) is the union of four

cliques, ω(G′) ≥ |V (G′)|
4 . Since by 1.2, χ(G′) ≤ 2ω(G′), (1) follows from 5.2. This proves (1).

Now, it follows from (1) and the inductive hypothesis that ch(G′) ≤ 2ω(G′), and 2.2 implies that
ch(G) ≤ 2ω(G). This proves 5.1.

6 Colouring the complement

In this section we prove 1.8.

Proof of 1.8. We may assume that G is connected. Let k be the maximum size of a stable
set in G. To prove 1.1 we need to show that V (G) is the union of 2k cliques. If k = 2, then 1.8
follows from 1.7, and so we may assume that k ≥ 3. Let X be a stable set of size k in G. Since
G is claw-free, every vertex of V (G) \ X has one or two neighbours in X. Define a new graph HX

with vertex set X and such that vertices h1, h2 ∈ X are adjacent in HX if in G they have a common
neighbour in V (G) \ X.

(1) X can be chosen so that HX is connected.

Choose a pair (X,C), where C is a component of HX , with |V (C)| maximum over all such pairs.
We claim that HX is connected. Since C is a component of H, it follows that in G, no vertex
v ∈ V (G) \ X has both a neighbour in V (C) and a neighbour in X \ V (C). Since G is connected,
there exist two adjacent vertices a, b ∈ V (G) \ X, such that a has a neighbour in V (C) and b has a
neighbour in X \ V (C). Since {a, b, c1, c2} is not a claw in G for distinct c1, c2 ∈ N(a) ∩ V (C), we
deduce that |N(a) ∩ V (C)| = 1 and similarly |N(b) ∩ (X \ V (C))| = 1. Let a′ be the neighbour of a
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in V (C) and let b′ be the neighbour of b in X \ V (C). Now X ′ = X ∪ {b} \ {b′} is a stable set of size
k in G, and the set V (C) ∪ b is connected in HX′ , contrary to the choice of (X,C). This proves (1).

Let X be a stable set of size k in G such that H = HX is connected. For a vertex x ∈ X

denote by A(x) the set of vertices in V (G) \ X adjacent to x and to no other vertex of X. For
an edge xy of H denote by A(xy) the set of vertices in V (G) \ X adjacent to both x and y. Let
A[x] = A(x) ∪ (

⋃

xy∈E(H) A(xy)).

(2) Let x be a vertex of H and let y1, . . . , yn be the neighbours of x in H with n ≥ 1. Then
{x} ∪ (A[x] \ A(xy1)) is the union of two cliques.

Since xy1 ∈ E(H), it follows that A(xy1) 6= ∅. Suppose u, v ∈ A[x] \ A(xy1) are non-adjacent.
Since {x, u, v, a} is a claw in G for every a ∈ A(xy1) \ (N(u) ∪ N(v)), it follows that A(xy1) ⊆
ofN(u) ∪ N(v). Since {a, u, v, y1} is a claw for every a ∈ A(xy1) ∩ N(u) ∩ N(v), it follows that
A(xy1)∩N(u)∩N(v) = ∅. So every vertex in A(xy1) is adjacent to exactly one of u, v and A[x]\A(xy1)
is the union of two cliques by 1.5. Since every vertex of A[x] \A(xy1) is adjacent to x, it follows that
{x} ∪ A[x] \ A(xy1) is the union of two cliques. This proves (2).

(3) If H is not a tree then the theorem holds.

Let C be a cycle in H. Let H ′ be a maximal subgraph of H with V (H) = V (H ′), such that C is
the unique cycle in H ′. Direct the edges of H ′ so that C is a directed cycle and every path with an
end in V (C) and no other vertex in V (C) is directed away from C. By (2) for every edge ab of H ′

directed from b to a, the set of vertices of V (G) \X adjacent to a and not to b, together with {a}, is
the union of two cliques. Also, since every vertex of V (G) \ X has a neighbour in X, and no vertex
of V (G) \ X is complete to V (C) (since V (C) is a stable set of size at least three in G), it follows
that for every vertex v ∈ V (G) \ X, there exists an edge ab of H ′ directed from b to a such that v

is adjacent to a and not b. But now, by (2), V (G) is the union of 2|E(H ′)| ≤ 2|V (H)| = 2k cliques
and the theorem holds. This proves (3).

By (3) we may assume that H is a tree. Since |X| ≥ 3, it follows that some vertex of H has
degree at least 2. Let r be a vertex of degree at least two in H. Direct the edges of H so that r has
in-degree zero, and every path of H starting at r is a directed path. Then every vertex x ∈ X \ {r}
has exactly one in-neighbour. Denote this in-neighbour by i(x). Since X is a maximum stable set in
G, and |X| ≥ 3, it follows that every vertex of V (G) \X has both a neighbour and a non-neighbour
in X. Therefore, for every vertex v ∈ V (G) \X, either v is adjacent to r, or there exists x ∈ X \{r},
such that v is adjacent to x and non-adjacent to i(x).

Now
V (G) = (

⋃

x∈X\{r}

({x} ∪ (A[x] \ A(xi(x))))) ∪ {r} ∪ A[r].

Applying (2) twice we deduce that A[r] ∪ {r} is the union of four cliques. Let L be the set of
leaves of H. Then |L| ≥ 2. By the definition of H no vertex of V (G) \X is adjacent to two members
of L, and by the maximality of X, for all x ∈ L the set ({x} ∪ A[x]) \ A(xi(x)) = {x} ∪ A(x) is a
clique. By (2) applied to each x ∈ X \ (L ∪ {r}), it follows that {x} ∪ (A[x] \A(xi(x))) is the union
of two cliques. So V (G) is the union of 2(k − 1 − |L|) + 4 + |L| = 2k + 2 − |L| ≤ 2k cliques. This
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completes the proof of 1.8.

We remark that the constant 2 in 1.8 is best possible. For every positive integer n, let Gn

be the line graph of the compete graph on 2n + 1 vertices. Then Gn is claw-free, the size of the
maximum stable set in Gn is n and χ(Gn) = 2n−1. This suggests that χ(G) may be bounded above
by 2ω(G) − 1 for every tame graph G. However, this is false, since if G is the Schläfli graph, then
ω(G) = 3 and χ(G) = 6.

There remains an obvious question: can we bound the choice number of complements of tame
graphs by some function of their clique number? Next we construct a family of graphs that shows
that no such function exists, and so there is no analogue of 5.1 for complements of tame graphs. Let
Gn be defined as follows. Let V (Gn) = An ∪ Bn ∪ {vn} where An and Bn are disjoint cliques and
vn 6∈ An ∪ Bn. Moreover, there exist xn ∈ An and yn, zn ∈ B such that xnyn, znvn ∈ E(Gn), and
there are no other edges in Gn. Then Gn is a tame graph, ω(Gn) = 3, and, since Gn contains the
complete bipartite graph Kn−1,n−1, it follows that ch(Gn) tends to infinity with n.
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