Claw-free Graphs. I. Orientable prismatic graphs

Maria Chudnovsky ${ }^{1}$
Columbia University, New York, NY 10027
Paul Seymour ${ }^{2}$
Princeton University, Princeton, NJ 08544

February 1, 2004; revised February 7, 2007

[^0]
Abstract

A graph is prismatic if for every triangle T, every vertex not in T has exactly one neighbour in T. In this paper and the next in this series, we prove a structure theorem describing all prismatic graphs. This breaks into two cases depending whether the graph is 3 -colourable or not, and in this paper we handle the 3 -colourable case. (Indeed we handle a slight generalization of being 3 -colourable, called being "orientable".)

Since complements of prismatic graphs are claw-free, this is a step towards the main goal of this series of papers, providing a structural description of all claw-free graphs (a graph is claw-free if no vertex has three pairwise nonadjacent neighbours).

1 Introduction

Let G be a graph. (All graphs in this paper are finite and simple.) A clique in G is a set of pairwise adjacent vertices, and a triangle is a clique with cardinality three. We say G is prismatic if for every triangle T, every vertex not in T has exactly one neighbour in T. Our objective, in this paper and the next [1] of this series, is to describe all prismatic graphs.

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. The main goal of this series of papers is to give a structure theorem describing all claw-free graphs. Complements of prismatic graphs are claw-free, and we find it best to handle such graphs separately from the general case, since they seem to require completely different methods.

A 3-colouring of a graph G is a triple (A, B, C) such that A, B, C are pairwise disjoint stable subsets of $V(G)$ with union $V(G)$; and we call the quadruple (G, A, B, C) a 3-coloured graph. One way to make a (3-colourable) prismatic graph is to take several smaller prismatic graphs, each with a 3-colouring, and piece them together in a "chain". (We explain the details later.) This kind of chain construction is only needed in the 3 -colourable case, and for this reason and others, it seems best to treat 3-colourable prismatic graphs separately, and that is one of our goals in this paper.

The graph G we construct by this chaining process depends not only on the graphs that are the building blocks, but also on the 3 -colouring selected for each; so for this to count as a "construction" for G, we need constructions for all these smaller 3 -coloured graphs. For this reason, our aim in this paper is to construct not only all 3 -colourable prismatic graphs, but all 3 -colourings of such graphs. But it turns out that, with a few small exceptions, a prismatic graph that admits none of our decompositions has at most one 3 -colouring (up to exchanging the colour classes), so enumerating its 3 -colourings is not a problem.

Let $T=\{a, b, c\}$ be a set with a, b, c distinct. There are two cyclic permutations of T, and we use the notation $a \rightarrow b \rightarrow c \rightarrow a$ to denote the cyclic permutation mapping a to b, b to c and c to a. (Thus $a \rightarrow b \rightarrow c \rightarrow a$ and $b \rightarrow c \rightarrow a \rightarrow b$ mean the same permutation.)

Let G be a prismatic graph. If S, T are triangles of G with $S \cap T=\emptyset$, then since every vertex of S has a unique neighbour in T and vice versa, it follows that there are precisely three edges of G between S and T, forming a 3-edge matching. An orientation \mathcal{O} of G is a choice of a cyclic permutation $\mathcal{O}(T)$ for every triangle T of G, such that if $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ are triangles with $S \cap T=\emptyset$, and $s_{i} t_{i}$ is an edge for $1 \leq i \leq 3$, then $\mathcal{O}(S)$ is $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{1}$ if and only if $\mathcal{O}(T)$ is $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{1}$. We say that G is orientable if it admits an orientation. Every 3 -colourable prismatic graph is orientable, as we shall see later. It turns out that orientable prismatic graphs are not much more general than 3-colourable ones, and it is convenient to handle them at the same time.

In order to state our main results (a construction for all 3-colourable prismatic graphs, and a construction for all orientable prismatic graphs), we need a number of further definitions, and it is convenient to postpone the full statement of these theorems until section 11.

2 A construction

First we give a construction for a subclass of prismatic graphs. We present this in the hope of aiding the reader's understanding for what will come later; the truth of the claims in this section is not crucial, and we leave the proofs to the reader. (Our main result is that every orientable
prismatic graph can be built from the graphs presented in this section and one other class, by certain composition operations.)

There are four stages in the construction. First, we need what we call "linear vines" and "circular vines".

- Start with a directed path or directed cycle S with vertices s_{1}, \ldots, s_{n} in order with $n \geq 1$, such that if S is a cycle then $n \geq 5$ and $n=2$ modulo 3 .
- Choose a stable subset $W \subseteq V(S)$ (with $s_{1}, s_{n} \notin W$ if S is a path).
- For each $s_{i} \in W$, duplicate s_{i} arbitrarily often (that is, add a set of new vertices to the digraph, each incident with the same in-neighbours and out-neighbours as s_{i}). Let $\hat{X}_{2 i}$ be the set consisting of s_{i} and these copies, and for $1 \leq i \leq n$ with $s_{i} \notin W$, let $\hat{X}_{2 i}=\left\{s_{i}\right\}$. Let the digraph just constructed be J_{1}.
- For every edge $u v$ of J_{1}, add a new vertex w to J_{1}, adjacent only to u and v, in such a way that the cycle with vertex set $\{u, v, w\}$ is a directed cycle. For $1 \leq i<n$, let $M_{2 i+1}$ be the set of all such w where $u \in \hat{X}_{2 i}$ and $v \in \hat{X}_{2 i+2}$. (If S is a path, let $M_{1}=M_{2 n+1}=\emptyset$.) Let this form a digraph J_{2}.
- For each $s_{i} \notin W$, add arbitrarily many adjacent pairs of new vertices x, y to J_{2}, such that x, y are adjacent only to s_{i} and to each other, and the cycle with vertex set $\left\{x, y, s_{i}\right\}$ is directed. Let $R_{2 i-1}, L_{2 i+1}$ be the set of new out-neighbours and new in-neighbours of s_{i}, respectively. (Ensure that if S is a path then $R_{1}, L_{2 n+1}$ are large enough that in the digraph we construct, s_{1}, s_{n} are both in at least two triangles.) Define $R_{2 i-1}=L_{2 i+1}=\emptyset$ for $1 \leq i \leq n$ with $s_{i} \notin W$ (and if S is a path let $L_{1}=R_{2 n+1}=\emptyset$).

If S is a path we call the digraph we construct a linear vine, and if S is a cycle we call it a circular vine. (We give a more formal definition later.) In the remainder of the construction, we assume that H is a linear vine; the modifications when H is circular are easy, and we leave them to the reader. For $1 \leq i \leq n+1$ let $X_{2 i-1}=L_{2 i-1} \cup M_{2 i-1} \cup R_{2 i-1}$.

The second step of the construction is, we take the undirected graph underlying H, and add some new vertices to it. For $1 \leq i \leq n$ let $X_{2 i}$ be a set including $\hat{X}_{2 i}$, such that the members of $X_{2 i} \backslash \hat{X}_{2 i}$ are new vertices, and in particular the sets $X_{2}, \ldots, X_{2 n}$ are pairwise disjoint. For each new vertex $w \in X_{2 i} \backslash \hat{X}_{2 i}$, all its neighbours belong to $R_{2 i-1} \cup L_{2 i+1}$, and w is adjacent to exactly one end of every edge of H^{\prime} between $R_{2 i-1}$ and $L_{2 i+1}$. Let the graph we obtain be H^{\prime}.

Third, now we add more new edges to H^{\prime}. We add the edge $u v$ for each choice of vertices $u, v \in V\left(H^{\prime}\right)$ satisfying the following: $u \in X_{i}$ and $v \in X_{j}$, where $1 \leq i<j \leq 2 n+1$ and $j \geq i+2$, and either

- $j \geq i+3$ and $j-i=2$ modulo 3 ;
- $j=i+2$ and i is even;
- $j=i+2$ and i is odd, and either $u \notin R_{i}$ or $v \notin L_{i+2}$, and u, v have no common neighbour in \hat{X}_{i+1}.

Let the graph just constructed be G^{\prime}.
The fourth and final step of the construction is, for all even i, j with $2 \leq i<j \leq 2 n$, we may arbitrarily delete any of the edges between $X_{i} \backslash \hat{X}_{i}$ and $X_{j} \backslash \hat{X}_{j}$. Let the graph we produce be G.

We leave the reader to check that G is prismatic and orientable (and indeed, the edges of G in cycles of length 3 are precisely the edges of H, and their directions in H define an orientation of G in the natural way). We call such a graph G a path of triangles graph. (Again, we give a formal definition later.) There is a similar construction starting from a circular vine, and again the graphs that result are prismatic and orientable; we call them cycle of triangles graphs.

3 Core structure

Before we begin on the main theorem (or even attempt its statement; the statement of the main theorem will appear in section 11) we study the question under two simplifying assumptions. We say G is triangle-covered if every vertex of G belongs to a triangle; and G is triangle-connected if there is no partition A, B of $V(G)$ into two subsets, both including a triangle, such that every triangle of G is included in one of A, B. We shall explain the structure of 3 -colourable prismatic graphs that are triangle-covered and triangle-connected.

If $X \subseteq V(G)$, we denote the subgraph of G induced on X by $G \mid X$. If $Y \subseteq V(G)$ and $x \in V(G) \backslash Y$, we say that x is complete to Y or Y-complete if x is adjacent to every member of Y; and x is anticomplete to Y or Y-anticomplete if x is adjacent to no member of Y. If $X, Y \subseteq V(G)$ are disjoint, we say that X is complete to Y (or the pair (X, Y) is complete) if every vertex of X is adjacent to every vertex of Y. We say that X is anticomplete to Y (or (X, Y) is anticomplete) if (X, Y) is complete in \bar{G}. If $X, Y \subseteq V(G)$, we say that X, Y are matched if $X \cap Y=\emptyset,|X|=|Y|$, and every vertex in X has a unique neighbour in Y and vice versa.

Let us say that G is a path of triangles graph if for some integer $n \geq 1$ there are pairwise disjoint stable subsets $X_{1}, \ldots, X_{2 n+1}$ of $V(G)$ with union $V(G)$, satisfying the following conditions (P1)-(P7).
(P1) For $1 \leq i \leq n$, there is a nonempty subset $\hat{X}_{2 i} \subseteq X_{2 i} ;\left|\hat{X}_{2}\right|=\left|\hat{X}_{2 n}\right|=1$, and for $0<i<n$, at least one of $\hat{X}_{2 i}, \hat{X}_{2 i+2}$ has cardinality 1 .
(P2) For $1 \leq i<j \leq 2 n+1$
(1) if $j-i=2$ modulo 3 and there exist $u \in X_{i}$ and $v \in X_{j}$, nonadjacent, then either i, j are odd and $j=i+2$, or i, j are even and $u \notin \hat{X}_{i}$ and $v \notin \hat{X}_{j}$;
(2) if $j-i \neq 2$ modulo 3 then either $j=i+1$ or X_{i} is anticomplete to X_{j}.
(P3) For $1 \leq i \leq n+1, X_{2 i-1}$ is the union of three pairwise disjoint sets $L_{2 i-1}, M_{2 i-1}, R_{2 i-1}$, where $L_{1}=M_{1}=M_{2 n+1}=R_{2 n+1}=\emptyset$.
(P4) If $R_{1}=\emptyset$ then $n \geq 2$ and $\left|\hat{X}_{4}\right|>1$, and if $L_{2 n+1}=\emptyset$ then $n \geq 2$ and $\left|\hat{X}_{2 n-2}\right|>1$.
(P5) For $1 \leq i \leq n, X_{2 i}$ is anticomplete to $L_{2 i-1} \cup R_{2 i+1} ; X_{2 i} \backslash \hat{X}_{2 i}$ is anticomplete to $M_{2 i-1} \cup M_{2 i+1}$; and every vertex in $X_{2 i} \backslash \hat{X}_{2 i}$ is adjacent to exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$.
(P6) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|=1$, then
(1) $R_{2 i-1}, L_{2 i+1}$ are matched, and every edge between $M_{2 i-1} \cup R_{2 i-1}$ and $L_{2 i+1} \cup M_{2 i+1}$ is between $R_{2 i-1}$ and $L_{2 i+1}$;
(2) the vertex in $\hat{X}_{2 i}$ is complete to $R_{2 i-1} \cup M_{2 i-1} \cup L_{2 i+1} \cup M_{2 i+1}$;
(3) $L_{2 i-1}$ is complete to $X_{2 i+1}$ and $X_{2 i-1}$ is complete to $R_{2 i+1}$
(4) if $i>1$ then $M_{2 i-1}, \hat{X}_{2 i-2}$ are matched, and if $i<n$ then $M_{2 i+1}, \hat{X}_{2 i+2}$ are matched.
(P7) For $1<i<n$, if $\left|\hat{X}_{2 i}\right|>1$ then
(1) $R_{2 i-1}=L_{2 i+1}=\emptyset$;
(2) if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$, then u, v are nonadjacent if and only if they have the same neighbour in $\hat{X}_{2 i}$.

We leave the reader to check that this is equivalent to the definition presented in the previous section. It is easy to see a vertex of G is in no triangle of G if and only if it belongs to one of the sets $X_{2 i} \backslash \hat{X}_{2 i}$. If for each i we have $\hat{X}_{2 i}=X_{2 i}$, then G is triangle-covered, and G is called a core path of triangles graph. The sequence $X_{1}, \ldots, X_{2 n+1}$ is called a (core) path of triangles decomposition of G. We shall prove the following.
3.1 Let G be a non-null 3-colourable prismatic graph that is triangle-covered and triangle-connected. Then either G is isomorphic to $L\left(K_{3,3}\right)$, or G is a core path of triangles graph.
($K_{3,3}$ is the complete bipartite graph on two sets of cardinality three, and $L(H)$ denotes the line graph of a graph H.) The proof is contained in the next four sections.

4 Orientable prismatic graphs

We defined what we mean by an orientation in the first section, and it is convenient to prove an extension of 3.1 in which we replace the 3 -colourable hypothesis by the weaker assumption that G is orientable. To begin, let us see that this is indeed weaker.

4.1 Every 3-colourable prismatic graph is orientable.

Proof. Let (A, B, C) be a 3-colouring of an orientable prismatic graph G. For each triangle T, define $\mathcal{O}(T)$ to be $a \rightarrow b \rightarrow c \rightarrow a$ where $T=\{a, b, c\}$ and $a \in A, b \in B$ and $c \in C$. We claim that \mathcal{O} is an orientation of G. For let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ be disjoint triangles where $s_{1} t_{1}, s_{2} t_{2}, s_{3} t_{3}$ are edges. Let $\mathcal{O}(S)$ be $s_{1} \rightarrow s_{2} \rightarrow s_{3} \rightarrow s_{1}$; thus we may assume that $s_{1} \in A, s_{2} \in B$ and $s_{3} \in C$. We must show that $\mathcal{O}(T)$ is $t_{1} \rightarrow t_{2} \rightarrow t_{3} \rightarrow t_{1}$. Certainly $t_{1} \notin A$, since s_{1}, t_{1} are adjacent, and so either $t_{1} \in B$ or $t_{1} \in C$. If $t_{1} \in B$, then since t_{3} is adjacent to both s_{3} and t_{1}, it follows that $t_{3} \in A$ and therefore $t_{2} \in C$ and the claim follows; and if $t_{1} \in C$, then $t_{2} \in A$ and $t_{3} \in B$ and again the claim follows. This proves 4.1.

The converse to this is false; there are orientable prismatic graphs that are not 3-colourable. For instance, let G have vertex set $\left\{v_{0}, \ldots, v_{9}\right\}$, with edges $v_{i} v_{i+1}$ and $v_{i} v_{i+5}$ (for all i), and $v_{i} v_{i+2}$ (for i even), reading subscripts modulo 10 . (We call this graph the core ring of five.) Nevertheless, orientable prismatic graphs are not much more general than 3 -colourable prismatic graphs, as we shall see. We need a slight modification of an earlier definition, as follows.

Let us say that G is a cycle of triangles graph if for some integer $n \geq 5$ with $n=2$ modulo 3, there are pairwise disjoint stable subsets $X_{1}, \ldots, X_{2 n}$ of $V(G)$ with union $V(G)$, satisfying the following conditions (C1)-(C6) (reading subscripts modulo $2 n$):
(C1) For $1 \leq i \leq n$, there is a nonempty subset $\hat{X}_{2 i} \subseteq X_{2 i}$, and at least one of $\hat{X}_{2 i}, \hat{X}_{2 i+2}$ has cardinality 1 .
(C2) For $i \in\{1, \ldots, 2 n\}$ and all k with $2 \leq k \leq 2 n-2$, let $j \in\{1, \ldots, 2 n\}$ with $j=i+k$ modulo $2 n$:
(1) if $k=2$ modulo 3 and there exist $u \in X_{i}$ and $v \in X_{j}$, nonadjacent, then either i, j are odd and $k \in\{2,2 n-2\}$, or i, j are even and $u \notin \hat{X}_{i}$ and $v \notin \hat{X}_{j}$;
(2) if $k \neq 2$ modulo 3 then X_{i} is anticomplete to X_{j}.
(Note that $k=2$ modulo 3 if and only if $2 n-k=2$ modulo 3 , so these statements are symmetric between i and j.)
(C3) For $1 \leq i \leq n+1, X_{2 i-1}$ is the union of three pairwise disjoint sets $L_{2 i-1}, M_{2 i-1}, R_{2 i-1}$.
(C4) For $1 \leq i \leq n, X_{2 i}$ is anticomplete to $L_{2 i-1} \cup R_{2 i+1} ; X_{2 i} \backslash \hat{X}_{2 i}$ is anticomplete to $M_{2 i-1} \cup M_{2 i+1}$; and every vertex in $X_{2 i} \backslash \hat{X}_{2 i}$ is adjacent to exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$.
(C5) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|=1$, then
(1) $R_{2 i-1}, L_{2 i+1}$ are matched, and every edge between $M_{2 i-1} \cup R_{2 i-1}$ and $L_{2 i+1} \cup M_{2 i+1}$ is between $R_{2 i-1}$ and $L_{2 i+1}$;
(2) the vertex in $\hat{X}_{2 i}$ is complete to $R_{2 i-1} \cup M_{2 i-1} \cup L_{2 i+1} \cup M_{2 i+1}$;
(3) $L_{2 i-1}$ is complete to $X_{2 i+1}$ and $X_{2 i-1}$ is complete to $R_{2 i+1}$
(4) $M_{2 i-1}, \hat{X}_{2 i-2}$ are matched and $M_{2 i+1}, \hat{X}_{2 i+2}$ are matched.
(C6) For $1 \leq i \leq n$, if $\left|\hat{X}_{2 i}\right|>1$ then
(1) $R_{2 i-1}=L_{2 i+1}=\emptyset$;
(2) if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$, then u, v are nonadjacent if and only if they have the same neighbour in $\hat{X}_{2 i}$.

Again, if $\hat{X}_{2 i}=X_{2 i}$ for $1 \leq i \leq n$ we call G a core cycle of triangles graph. We call the sequence $X_{1}, \ldots, X_{2 n}$ a (core) cycle of triangles decomposition of G. We shall prove the following.
4.2 Let G be a non-null orientable prismatic graph that is triangle-covered and triangle-connected. Then either G is isomorphic to $L\left(K_{3,3}\right)$, or G is a core cycle of triangles graph, or G is a core path of triangles graph.

To show that this implies 3.1, we need the second statement of the following lemma.
4.3 Every core path of triangles graph is 3-colourable, and no core cycle of triangles graph is 3colourable.

Proof. Let $X_{1}, \ldots, X_{2 n+1}$ be a core path of triangles decomposition of G. Then

$$
\left(X_{1} \cup X_{4} \cup X_{7} \cup \cdots, X_{2} \cup X_{5} \cup X_{8} \cup \cdots, X_{3} \cup X_{6} \cup X_{9} \cup \cdots\right)
$$

is a 3-colouring of G. This proves the first assertion.
For the second, let $X_{1}, \ldots, X_{2 n}$ be a core cycle of triangles decomposition of G, and for each i choose $x_{i} \in X_{i}$, so that x_{i}, x_{i+1} are adjacent for all i. Let (A, B, C) be a 3 -colouring of G. Since n is not divisible by 3 , it is not the case that for all i, the vertices $x_{2 i}, x_{2 i+2}, x_{2 i+4}$ all have different colours. Since $x_{2 i+2}$ is adjacent to both $x_{2 i}$ and $x_{2 i+4}$, we may therefore assume that (say) $x_{2}, x_{6} \in A$ and $x_{4} \in B$, and therefore $x_{3}, x_{5} \in C$. Since x_{8} is adjacent to $x_{3} \in C$ and to $x_{6} \in A$, it follows that $x_{8} \in B$; and since x_{10} is adjacent to $x_{2} \in A, x_{5} \in C$ and to $x_{8} \in B$, this is impossible. This proves 4.3.

5 Vines and their structure

In this section we prove a lemma that will be needed for the proof of 4.2. If u, v are adjacent vertices of a digraph H, we write $u \rightarrow v$ to denote that the edge $u v$ has tail u and head v. (We only use this notation in digraphs with no directed cycle of length 2.)

We regard a digraph as a graph with additional structure; and in particular, we define the triangles, paths, cycles etc. of a digraph to mean the corresponding object in the undirected graph. When we mean a directed cycle or similar, we shall say so explicitly. We say a thorn of a digraph H is a vertex belonging to only one triangle of H. An edge $u v$ of H is a twig if there is a unique vertex w such that $\{u, v, w\}$ is a triangle, and this vertex w is a thorn of H. A path P of H is called a twig path if all its edges are twigs. We say that a digraph H is a vine if it satisfies the following conditions (V1)-(V7).
(V1) H has at least one edge, and H is connected (as a graph), and every cycle of H has length at least three.
(V2) Every edge of H is in a unique cycle of length 3 .
(V3) Every cycle of H of length 3 is a directed cycle.
(V4) Every triangle of H contains a thorn of H.
(V5) If $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}$ are the vertices in order of a 4-edge twig path of H (not necessarily an induced subgraph), then either $h_{2} \rightarrow h_{3} \rightarrow h_{4}$ or $h_{4} \rightarrow h_{3} \rightarrow h_{2}$.
(V6) If $h_{1}-h_{2}-h_{3}-h_{4}-h_{1}$ are the vertices in order of a 4 -vertex cycle of H and $h_{1} \rightarrow h_{2}$, then $h_{4} \rightarrow h_{3}$.
(V7) If C is a cycle of H with length at least five, and no vertex of C is a thorn of H, then C has length 2 modulo 3.

Here is a useful lemma.
5.1 Let uv be an edge of a vine H. If neither of u, v is a thorn then $u v$ is a twig.

Proof. There is a triangle T containing u, v; let $T=\{u, v, w\}$ say. Since some vertex of T is a thorn, it follows that w is a thorn, and so $u v$ is a twig.

In section 2 we introduced linear and circular vines. It is easy to check that they are indeed vines. What follows is a more formal definition of the same thing. A vine H is said to be linear (respectively, circular) if there is a directed path (respectively, directed cycle) S of H, with vertices $s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{n}$ for some $n \geq 1$, such that, denoting by $N_{S}(v)$ the set of neighbours in $V(S)$ of $v \in V(H) \backslash V(S)$, the following conditions (LV1)-(LV4) are satisfied.
(LV1) S is an induced subgraph of H, and none of its vertices are thorns.
(LV2) If S is a cycle then $n \geq 5$ and $n=2$ modulo 3 (and if so then in what follows subscripts are to be read modulo n).
(LV3) Every vertex in $V(H) \backslash V(S)$ has a neighbour in $V(S)$.
(LV4) For every $v \in V(H) \backslash V(S)$, if v is not a thorn then for some $i \in\{1, \ldots, n\}$, where $1<i<n$ if S is a path
$-N_{S}(v)=\left\{s_{i-1}, s_{i+1}\right\}$

- every neighbour of s_{i} or of v in $V(H) \backslash V(S)$ is a thorn adjacent to one of s_{i-1}, s_{i+1}
$-s_{i-1} \rightarrow v \rightarrow s_{i+1}$.
In this case we call S a stem of the vine. We will show the following.

5.2 Every vine with at least two triangles is either linear or circular.

Proof. Let H be a vine with at least two triangles. If C is a cycle of H of length at least five, and no vertex of C is a thorn, then all its edges are twigs by 5.1 , and any five consecutive vertices of C form a five-vertex twig path, in which the two middle edges form a directed path, from (V5). Consequently every two consecutive edges of C form a directed path, that is, C is a directed cycle. If H has a cycle of length at least five of which no vertex is a thorn, let S be such a cycle. Otherwise, since H has at least two triangles and is connected, there is a vertex that is not a thorn, and consequently we may choose S to be a directed path as long as possible such that no vertex of S is a thorn of H.

Let the vertices of S be s_{1}, \ldots, s_{n} in order, where $s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{n}$, and if S is a cycle then $s_{n} \rightarrow s_{1}$. Thus $n \geq 1$.
(1) S is an induced subgraph of H.

For suppose that there exist $i, j \in\{1, \ldots, n\}$ such that $s_{i} s_{j}$ is an edge of H and not of S. Let P be a subpath of S between s_{i}, s_{j}; then P is a directed path. Let C be the cycle obtained by adding the edge $s_{i} s_{j}$ to P. Then C has length at least four, since no vertex of S is a thorn and every triangle contains a thorn. Since P is a directed path, (V6) implies that C has length at least five. Consequently H has a cycle of length at least five in which no vertex is a thorn, and therefore S is a directed cycle; and so there are two choices in S for the path P. For one of these two choices the cycle C is not a directed cycle, contrary to (V5). This proves (1).
(2) If $u, v \in V(H) \backslash V(S)$ are adjacent, and u has a neighbour in $V(S)$, then u, v have a common neighbour in $V(S)$.

For suppose first that for some $i \in\{1, \ldots, n\}, u$ is adjacent to s_{i} and v is not. From the symmetry we may assume that $u \rightarrow s_{i}$. Since u has two nonadjacent neighbours, u is not a thorn, and so $u s_{i}$ is a twig by 5.1 ; and certainly all edges of S are twigs. Let $v^{\prime} \in V(H)$ such that $\left\{u, v, v^{\prime}\right\}$ is a triangle. Since s_{i} has a unique neighbour in this triangle, it follows that s_{i}, v^{\prime} are nonadjacent. If $v^{\prime} \in V(S)$, then u, v have a common neighbour in $V(S)$ as claimed, so we may assume that $v^{\prime} \notin V(S)$. Since one of v, v^{\prime} is a thorn, and neither of them has a common neighbour with u in $V(S)$, we may assume that $u v$ is a twig, by exchanging v, v^{\prime} if necessary.

If either $i \geq 3$ or S is a cycle, then the two middle edges of the path $s_{i-2}-s_{i-1}-s_{i}-u-v$ both have the same head, namely s_{i}, a contradiction to (V5). So $i \leq 2$ and S is a path. Let S^{\prime} be the directed path $u-s_{i}-s_{i+1} \cdots-s_{n}$. Its length is at least that of S, and u is not a thorn of H; so from the maximality of the length of S, it follows that $i=2$. Since u is not a thorn, no member of $\left\{s_{1}, s_{2}, u\right\}$ is a thorn, and so this set is not a triangle, that is, u is not adjacent to s_{1}. Since s_{1} is not a thorn of H, it follows from (V2) that s_{1} has a neighbour $x \neq s_{2}$ with x, s_{2} nonadjacent. From (1), $x \notin V(S)$, and $x \neq u$ since u, s_{1} are nonadjacent. We claim that we may choose x so that $x s_{1}$ is a twig. For if $x s_{1}$ is not a twig, then x is a thorn; choose w so that $\left\{w, x, s_{1}\right\}$ is a triangle, and so $w s_{1}$ is a twig. Then $w \neq s_{2}$ since x, s_{2} are nonadjacent, and so $w \notin V(S)$, and w, s_{2} are nonadjacent since s_{2} has only one neighbour in this triangle; and hence (by exchanging w, x if necessary) we may assume that $x s_{1}$ is a twig. If $x \neq v$, then the two middle edges of the path $x-s_{1}-s_{2}-u-v$ have the same head, contrary to (V5); and so $x=v$. But then $v-s_{1}-s_{2}-u-v$ is a cycle of length four, and since $u \rightarrow s_{2}$ it follows that $v \rightarrow s_{1}$. Since u, s_{1} are nonadjacent it follows that v is not a thorn. Also $v-s_{1} \cdots-s_{n}$ is a directed path, contrary to the maximality of the length of S. This proves that there is no such i, and so $N_{S}(u) \subseteq N_{S}(v)$. From the symmetry between u, v we deduce that $N_{S}(u)=N_{S}(v)$; and since $N_{S}(u) \neq \emptyset$ and at most one triangle contains both u, v, it follows that $\left|N_{S}(u)\right|=1, N_{S}(u)=N_{S}(v)=\left\{s_{i}\right\}$ say. Suppose that u is not a thorn; then it has a neighbour w different from v, s_{i}. Since $N_{S}(u)=\left\{s_{i}\right\}$, it follows that $w \notin V(S)$, and so by what we already proved, $N_{S}(u)=N_{S}(w)$; but then w has two neighbours in the triangle $\left\{u, v, s_{i}\right\}$, a contradiction. Hence u, and similarly v, is a thorn. This proves (2).
(3) If $v \in V(H) \backslash V(S)$, then $1 \leq\left|N_{S}(v)\right| \leq 2$. If $\left|N_{S}(v)\right|=2$, then either

- $N_{S}(v)=\left\{s_{i-1}, s_{i+1}\right\}$ for some $i \in\{1, \ldots, n\}$ (where $1<i<n$ if S is a path), and $s_{i-1} \rightarrow v \rightarrow$ s_{i+1}, or
- $N_{S}(v)=\left\{s_{i}, s_{i+1}\right\}$ for some $i \in\{1, \ldots, n\}$ (where $i<n$ if S is a path), and v is a thorn, and $s_{i+1} \rightarrow v \rightarrow s_{i}$.

For if v has no neighbour in $V(S)$, then since H is connected, there is an induced path $w-x-y$ of H where $w \in V(S)$ and $x, y \notin V(S)$, contrary to (2). Thus v has a neighbour in $V(S)$. If every two neighbours of v in S are adjacent, then the claim holds, so we may assume that v is adjacent to s_{i}, s_{j} where $i<j$ and s_{i}, s_{j} are nonadjacent. Hence v is not a thorn. If every path of S between s_{i}, s_{j} has length at least three, then H has a cycle of length at least five no vertex of which is a thorn of H, and so S is a directed cycle, and there are two paths in S between s_{i}, s_{j}; and for both of them, their union with the path $s_{i}-v-s_{j}$ makes a directed cycle, which is impossible. Thus there is a path of length two in S between s_{i}, s_{j}, and we may assume that $1 \leq i \leq n-2$ and $j=i+2$. From the cycle $v-s_{i}-s_{i+1^{-}} s_{i+2}-v$, it follows that $s_{i} \rightarrow v \rightarrow s_{i+2}$. If v has another neighbour in S, say s_{k}, then $k \neq i, i+1, i+2$, and we may assume that $k \neq i-1$ from the symmetry. By the same
argument applied to s_{i}, s_{k}, it follows that $k=i-2$ (and so $i \geq 3$ if S is a path), and that $v \rightarrow s_{i}$, a contradiction. Thus $N_{S}(v)=\left\{s_{i}, s_{i+2}\right\}$. This proves (3).
(4) If $v \in V(H) \backslash V(S)$ is not a thorn then

- $N_{S}(v)=\left\{s_{i-1}, s_{i+1}\right\}$ for some $i \in\{1, \ldots, n\}$, where $1<i<n$ if S is a path
- every neighbour of s_{i} or of v in $V(H) \backslash V(S)$ is a thorn adjacent to one of s_{i-1}, s_{i+1}
- $s_{i-1} \rightarrow v \rightarrow s_{i+1}$.

For the first and third assertions follow from (3). For the second, suppose that $u \in V(H) \backslash V(S)$ is adjacent to one of v, s_{i}, and either it is not a thorn or it is nonadjacent to both s_{i-1}, s_{i+1}. Let $\left\{v, s_{i}\right\}=\{x, y\}$, where u is adjacent to x. We claim that we may choose u so that $u x$ is a twig. For suppose it is not; then u is a thorn, and therefore u is nonadjacent to s_{i-1}, s_{i+1}. Let $\{w, u, x\}$ be a triangle; then $w \neq s_{i-1}, s_{i+1}$ since u is nonadjacent to them. Since s_{i-1} has only one neighbour in this triangle, it follows that w, s_{i-1} are nonadjacent, and similarly w, s_{i+1} are nonadjacent, and so we may replace u by w. This proves that we may assume that $u x$ is a twig. But there is a five-vertex path $u-x-s_{i-1}-y-s_{i+1}$, and all its edges are twigs, and its two middle edges both have tail s_{i-1}, contrary to (V5). This proves (4).

From (1)-(4), it follows that S is a stem and H is either a linear or circular vine. This proves 5.2.

6 The triangular digraph

In this section we make another step in the proof of 4.2. We show that, if G satisfies the hypotheses of that claim, then (provided that $G \neq L\left(K_{3,3}\right)$) we can associate a vine with G.

Let G be prismatic with an orientation \mathcal{O}. Let H be the subgraph of G with $V(H)=V(G)$, and with edges the edges of G that belong to cycles of length 3 . Let us direct the edges of H, so that H is a digraph, as follows. For every triangle $T=\{a, b, c\}$ where $\mathcal{O}(T)$ is $a \rightarrow b \rightarrow c \rightarrow a$, direct the edges $a b, b c, c a$ of H so that $a \rightarrow b, b \rightarrow c, c \rightarrow a$. Since every edge of H belongs to exactly one triangle (since G is prismatic), this gives a well-defined digraph H. We call H the triangular digraph of G.
6.1 Let G be prismatic, triangle-covered and triangle-connected, and not isomorphic to $L\left(K_{3,3}\right)$, and let \mathcal{O} be an orientation. Let H be the corresponding triangular digraph. Then for every triangle T, some vertex of T is a thorn of H.

Proof. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ and suppose that for $i=1,2,3$ there is a triangle $T_{i} \neq T$ containing t_{i}. Any vertex in $T_{1} \cap T_{2}$ would be adjacent in G to both t_{1}, t_{2}, which is impossible since G is prismatic, and so $T_{1} \cap T_{2}=\emptyset$; and similarly T_{1}, T_{2}, T_{3} are pairwise disjoint. Let $T_{i}=\left\{r_{i}, s_{i}, t_{i}\right\}$ say, where $\mathcal{O}\left(T_{i}\right)$ is $t_{i} \rightarrow r_{i} \rightarrow s_{i} \rightarrow t_{i}$ for $i=1,2,3$. Since t_{1}, t_{2} are adjacent, it follows that $r_{1} r_{2}$ and $s_{1} s_{2}$ are edges, and similarly that $r_{1} r_{3}, r_{2} r_{3}, s_{1} s_{3}, s_{2} s_{3}$ are edges. Let $W=T_{1} \cup T_{2} \cup T_{3}$. Thus $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$.

Since G is not isomorphic to $L\left(K_{3,3}\right)$, it follows that $V(G) \neq W$. Since G is triangle-connected and triangle-covered, there is a triangle Q that has nonempty intersection with W and with $V(G) \backslash W$. Since every two adjacent vertices in W belong to a triangle included in W, and belong to only one triangle, it follows that $|Q \cap W|=1$; and we may assume that $Q \cap W=\left\{t_{1}\right\}$ from the symmetry. Let $Q=\left\{q_{1}, q_{2}, t_{1}\right\}$, where $\mathcal{O}(Q)$ is $t_{1} \rightarrow q_{1} \rightarrow q_{2} \rightarrow t_{1}$. For $i=2,3$, since t_{1}, t_{i} are adjacent and $\mathcal{O}\left(T_{i}\right)$ is $t_{i} \rightarrow r_{i} \rightarrow s_{i} \rightarrow t_{i}$, it follows that q_{1} is adjacent to r_{i}. In particular, q_{1} has two neighbours in the triangle $\left\{r_{1}, r_{2}, r_{3}\right\}$, a contradiction. Thus not all of T_{1}, T_{2}, T_{3} exist. This proves 6.1.
6.2 Let G be prismatic, triangle-connected, triangle-covered, and not isomorphic to $L\left(K_{3,3}\right)$. Let \mathcal{O} be an orientation, and let H be the corresponding triangular digraph. Then H is a vine.

Proof. We must verify the seven conditions (V1)-(V7) in the definition of a vine. Since G is triangle-covered and triangle-connected, it follows that H is connected. Every cycle of H is a cycle of G, and therefore has length at least three. Thus (V1) holds. Conditions (V2) and (V3) are clear, and (V4) follows from 6.1.

For (V5), let $h_{1}-h_{2}-h_{3}-h_{4}-h_{5}$ be the vertices of a 4-edge twig path P of H. If h_{1}, h_{3} are adjacent in H, then since $h_{1} h_{2}$ is a twig it follows that h_{3} is a thorn, a contradiction since h_{3} has three neighbours. So h_{1}, h_{3} are nonadjacent, and similarly h_{3}, h_{5} are nonadjacent. Let $m_{1}, m_{2}, m_{3}, m_{4} \in V(H)$ such that for $i=1, \ldots, 4, T_{i}=\left\{h_{i}, h_{i+1}, m_{i}\right\}$ is a triangle. Thus $m_{1}, m_{2}, m_{3}, m_{4}$ are thorns; and since m_{1}, \ldots, m_{4} all have different sets of neighbours, it follows that m_{1}, \ldots, m_{4} are all different. Since m_{1} has only two neighbours h_{1}, h_{2}, it follows that $m_{1} \neq h_{3}, h_{4}, h_{5}$ and so $m_{1} \notin V(P)$. Since m_{2} only has two neighbours h_{2}, h_{3}, it follows that $m_{2} \neq h_{4}, h_{5}$; and $m_{2} \neq h_{1}$ since h_{1}, h_{3} are nonadjacent. So $m_{2} \notin V(P)$. Similarly $m_{3}, m_{4} \notin V(P)$.

Suppose that h_{3} is the head of the edge $h_{2} h_{3}$. Thus $\mathcal{O}\left(T_{2}\right)$ is $m_{2} \rightarrow h_{2} \rightarrow h_{3} \rightarrow m_{2}$. Let $\mathcal{O}\left(T_{1}\right)$ be $x_{1} \rightarrow y_{1} \rightarrow h_{2} \rightarrow x_{1}$ say, where $\left\{x_{1}, y_{1}\right\}=\left\{h_{1}, m_{1}\right\}$; and similarly let $\mathcal{O}\left(T_{4}\right)$ be $x_{2} \rightarrow y_{2} \rightarrow h_{4} \rightarrow x_{2}$. From the pair T_{2}, T_{4}, since h_{3}, h_{4} are adjacent it follows that y_{2}, h_{2} are adjacent. From the pair T_{1}, T_{4}, since y_{2}, h_{2} are adjacent, it follows that x_{1}, h_{4} are adjacent. From the pair T_{1}, T_{3}, since $x_{1} h_{4}$ and $h_{2} h_{3}$ are edges, it follows that $\mathcal{O}\left(T_{3}\right)$ is $m_{3} \rightarrow h_{3} \rightarrow h_{4} \rightarrow m_{3}$, and so $h_{3} \rightarrow h_{4}$ in H. Thus in this case h_{3} is the head of exactly one of the two edges. The argument when h_{3} is the tail of $h_{2} h_{3}$ is similar (and indeed can be reduced to the case we already did by reversing the orientation of every triangle). This proves (V5).

For (V6), let $h_{1}-h_{2}-h_{3}-h_{4}-h_{1}$ be the vertices in order of a cycle of length 4 , where $h_{1} \rightarrow h_{2}$. Let $m_{1}, m_{2} \in V(G)$ such that $\left\{h_{1}, h_{2}, m_{1}\right\}=T_{1}$ and $\left\{h_{3}, h_{4}, m_{2}\right\}=T_{2}$ are triangles. Since no edge is in two triangles, $m_{1}, m_{2}, h_{1}, h_{2}, h_{3}, h_{4}$ are all different. Since $h_{1} \rightarrow h_{2}$, it follows that $\mathcal{O}\left(T_{1}\right)$ is $m_{1} \rightarrow h_{1} \rightarrow h_{2} \rightarrow m_{1}$. Since $h_{2} h_{3}$ and $h_{1} h_{4}$ are edges, and m_{2} has a neighbour in T_{1}, it follows that m_{1}, m_{2} are adjacent in G, and so $\mathcal{O}\left(T_{2}\right)$ is $m_{2}-h_{4}-h_{3}-m_{2}$. Hence $h_{3} \rightarrow h_{4}$ in H. This proves (V6).

For (V7), let $h_{1} \cdots-h_{n}-h_{1}$ be the vertices of a cycle C of H, in order, with $n \geq 5$, such that none of them are thorns of H. We may assume that $h_{1} \rightarrow h_{2}$. By (V5), $h_{2} \rightarrow h_{3}$, and so on; in general (reading subscripts modulo n), $h_{i} \rightarrow h_{i+1}$. For $1 \leq i \leq n$, let $m_{i} \in V(H)$ such that $\left\{m_{i}, h_{i}, h_{i+1}\right\}$ is a triangle T_{i}. Since T_{i} contains a thorn, it follows that m_{i} is a thorn, and therefore $m_{i} \notin V(C)$. Now for $2 \leq i \leq n-2$, the triangles T_{i}, T_{n} are disjoint, and so if h_{i} is adjacent in G to some $x \in T_{n}$, then h_{i+1} is adjacent (in G) to the image of x under the permutation $\mathcal{O}\left(T_{n}\right)$. Since h_{2} is adjacent to h_{1}, we deduce that h_{i} is adjacent (in G) to h_{1} if $i=2$ modulo 3 , to m_{n} if $i=0$ modulo 3, and to h_{n} if $i=1$ modulo 3 . Since h_{n-1} is adjacent to h_{n} and therefore nonadjacent to h_{1}, m_{n}, we deduce that
$n-1=1$ modulo 3 , that is, $n=2$ modulo 3 . This proves (V7), and therefore completes the proof of 6.2.

The next result allows us to reconstruct G from a knowledge of its triangular digraph. If H is the triangular digraph as usual, and P is a twig path of H of length at least three, we define the signed length $s l(P)$ of P as follows. Let P have vertices p_{1}, \ldots, p_{k} in order. Since H is a vine and P is a twig path, the path obtained from P by deleting p_{1}, p_{k} is a directed path Q_{0}; let Q be the unique maximal directed subpath of P that contains Q_{0}. An edge of P is called a forward edge if it belongs to Q, and any other edge of P is a backward edge. Thus, all edges of P are forward edges except possibly for the first and last. We define the signed length $s l(P)$ of P to be $d_{1}-d_{2}$, where d_{1}, d_{2} are the numbers of forward edges and backward edges in P, respectively.
6.3 Let G be prismatic, triangle-connected, triangle-covered, and not isomorphic to $L\left(K_{3,3}\right)$. Let \mathcal{O} be an orientation of G, and let H be the corresponding triangular digraph. Let P be a twig path of H of length at least 3 . Then the ends of P are adjacent in G if and only if $s l(P)=1$ modulo 3.

Proof. Let P have vertices p_{1}, \ldots, p_{k} in order, where $k \geq 4$. From 6.2, it follows that by exchanging p_{1}, p_{k} if necessary, we may assume that $p_{2} \rightarrow p_{3} \rightarrow \cdots \rightarrow p_{k-1}$. We claim that for $1 \leq i \leq k-2, p_{i}$ and p_{i+2} are nonadjacent. For suppose they are adjacent; then since $p_{i} p_{i+1}$ and $p_{i+1} p_{i+2}$ are both twigs, it follows that p_{i}, p_{i+2} are both thorns. In particular, since p_{i} has degree 2 it follows that $i=1$, and since p_{i+2} has degree 2 it follows that $i+2=k$, and so $k=3$, a contradiction. This proves our claim that p_{i} and p_{i+2} are nonadjacent. It follows that p_{2}, \ldots, p_{k-1} are not thorns.

For each i with $1 \leq i<k$, choose a thorn $m_{i} \in V(H)$ such that $\left\{p_{i}, p_{i+1}, m_{i}\right\}$ is a triangle T_{i} say. If $p_{1}=m_{i}$ for some i, then $2 \leq i<k ; i \neq 2$ since p_{1}, p_{3} are nonadjacent, and yet $p_{2} \in\left\{p_{i}, p_{i+1}\right\}$ since p_{i}, p_{i+1} are the only neighbours of m_{i}, which is impossible. Thus $m_{1}, \ldots, m_{k-1} \neq p_{1}$, and similarly they are different from p_{k}, and therefore they do not belong to $V(P)$. Moreover, they are all distinct.

Let π be the permutation $\mathcal{O}\left(T_{1}\right)$. For $i \in\{3, \ldots, k\}$, let x_{i} be the unique vertex of T_{1} that is adjacent in G to p_{i}; thus $x_{3}=p_{2}$. For $3 \leq j \leq k-2$, since p_{j} is mapped to p_{j+1} by the permutation $\mathcal{O}\left(T_{j}\right)$, it follows that $x_{j+1}=\pi\left(x_{j}\right)$. Consequently $x_{k-1}=\pi^{k-4}\left(p_{2}\right)$. Let $n=k-3$ if $p_{k-1} p_{k}$ has tail p_{k-1}, and $n=k-5$ if it has tail p_{k}. In the first case $x_{k}=\pi\left(x_{k-1}\right)$, and in the second $x_{k}=\pi^{-1}\left(x_{k-1}\right)$, and so in both cases $x_{k}=\pi^{n}\left(p_{2}\right)$. We claim that $x_{k}=\pi^{s l(P)-1}\left(p_{1}\right)$. For if $p_{1} p_{2}$ has tail p_{1}, then $s l(P)=n+2$, and $p_{2}=\pi\left(p_{1}\right)$, and so $x_{k}=\pi^{s l(P)-1}\left(p_{1}\right)$; and if $p_{1} p_{2}$ has tail p_{2}, then $s l(P)=n$, and $p_{2}=\pi^{-1}\left(p_{1}\right)$, and so again $x_{k}=\pi^{s l(P)-1}\left(p_{1}\right)$. Consequently $x_{k}=p_{1}$ if and only if $s l(P)=1$ modulo 3. This proves 6.3.
6.3 can be viewed another way. We are trying to make a "construction" of all orientable triangleconnected triangle-covered prismatic graphs. We showed so far that such a graph gives rise to a vine, and it can be reconstructed from a knowledge of the vine. But as we explained in section 2, every vine can be converted to an orientable triangle-connected triangle-covered prismatic graph, by following the rule for adjacency described in 6.3 , and so we can regard this as a construction for all orientable triangle-connected triangle-covered prismatic graphs.

7 The proof of 4.2

Now we come to put the pieces of the last few sections together.

Proof of 4.2. Let G be a non-null orientable prismatic graph that is triangle-covered and triangleconnected. Let \mathcal{O} be an orientation, and let H be the corresponding triangular digraph. We may assume that G is not isomorphic to $L\left(K_{3,3}\right)$, for otherwise the theorem holds. Hence by 6.1, each triangle contains a thorn of H. By $6.2, H$ is a vine. We may assume that G has at least two triangles, for otherwise G is a core path of triangles graph. Consequently by $5.2, H$ is either a linear or circular vine. Let s_{1}, \ldots, s_{n} be the vertices in order of some stem S of H. For each vertex $v \in V(H) \backslash V(S)$, let $N_{S}(v)$ be the set of vertices of S adjacent to v in H.

We will show that if S is a cycle then G is a core cycle of triangles graph, and if S is a path then G is a core path of triangles graph. The two proofs are almost identical, so we only give the second (the first is a little easier since we do not have to worry about "end effects"). Thus, henceforth S is a path. (The reader is warned that there is a difference between adjacency in H and adjacency in G in what follows.)

Let $X_{2}=\left\{s_{1}\right\}$ and $X_{2 n}=\left\{s_{n}\right\}$. For $1<i<n$, let $X_{2 i}$ be the union of $\left\{s_{i}\right\}$ and the set of all vertices $v \in V(H) \backslash V(S)$ such that $N_{S}(v)=\left\{s_{i-1}, s_{i+1}\right\}$. Let

$$
Z=X_{2} \cup X_{4} \cup \cdots \cup X_{2 n} .
$$

No member of Z is a thorn, since every member of Z either belongs to $V(S)$ or is adjacent in H to two nonadjacent vertices of S. Let $M_{1}=M_{2 n+1}=\emptyset$. For $1 \leq i<n$, let $M_{2 i+1}$ be the set of all vertices in $V(G) \backslash Z$ adjacent in H to a member of $X_{2 i}$ and to a member of $X_{2 i+2}$. Let $R_{2 n+1}=\emptyset$, and for $1 \leq i \leq n$, let $R_{2 i-1}$ be the set of all thorns $v \in V(H) \backslash Z$ such that s_{i} is the unique vertex of Z adjacent in H to v, and $s_{i} \rightarrow v$ in H. Similarly, let $L_{1}=\emptyset$, and for $1 \leq i \leq n$, let $L_{2 i+1}$ be the set of all thorns $v \in V(H) \backslash Z$ such that s_{i} is the unique vertex of Z adjacent in H to v, and $v \rightarrow s_{i}$ in H. It follows that the sets $X_{2}, X_{4}, \ldots, X_{2 n}$ and all the sets $L_{2 i+1}, M_{2 i+1}, R_{2 i+1}(0 \leq i \leq n)$ are pairwise disjoint (we shall show below that they have union $V(G)$). For $1 \leq i \leq n+1$ let $X_{2 i-1}=L_{2 i-1} \cup M_{2 i-1} \cup R_{2 i-1}$. We will show that $X_{1}, \ldots, X_{2 n+1}$ is a core path of triangles decomposition.
(1) For every triangle T of G, either there exists i with $1 \leq i<n$ such that $X_{2 i}, M_{2 i+1}, X_{2 i+2}$ each contain a vertex of T, or there exists i with $1 \leq i \leq n$ such that $R_{2 i-1}, X_{2 i}, L_{2 i+1}$ each contain a vertex of T.

For let $T=\{u, v, w\}$. At least one of u, v, w is a thorn, say w, and so $w \notin V(S)$ (and indeed, $w \notin Z$); and since by (LV3) w has a neighbour in $V(S)$, we may assume that $u=s_{i}$ where $1 \leq i \leq n$. Thus $u \in X_{2 i}$. If $v \in V(S)$, then since S is induced in H, we may assume that say $v=s_{i+1}$; and so $v \in X_{2 i+2}$ and $w \in M_{2 i+1}$ and the claim holds. So we may assume that $v \notin V(S)$. Since w is a thorn, it follows that $N_{S}(w)=\{u\}$. Suppose that $\left|N_{S}(v)\right| \geq 2$. Then since v is adjacent in H to a vertex not in $V(S)$ (namely w) and hence has at least three neighbours in H, it follows that v is not a thorn; and from (LV4), we may assume that $N_{S}(v)=\left\{s_{i}, s_{i+2}\right\}$; and so $v \in X_{2 i+2}$, and again $w \in M_{2 i+1}$ and the claim holds. So we may assume that $N_{S}(v)=\{u\}$. From (LV4), it follows that v is a thorn, and so $v \notin Z$ and v, w are adjacent in H to no members of Z except s_{i} (since they both have degree two in H). In particular, the symmetry between v, w is restored. From this symmetry, we may assume that $u v$ has tail v. But then $v \in L_{2 i+1}$ and $w \in R_{2 i-1}$. This proves (1).

It follows from (1) that the sets $X_{1}, \ldots, X_{2 n+1}$ have union $V(G)$, since G is triangle-covered.
(2) For $1 \leq i<n$, the following hold:

- one of $X_{2 i}, X_{2 i+2}$ has cardinality 1
- $X_{2 i}, X_{2 i+2}$ are complete to each other
- every edge between $X_{2 i}$ and $X_{2 i+2}$ has tail in $X_{2 i}$
- every edge between $X_{2 i}$ and $M_{2 i+1}$ has tail in $M_{2 i+1}$, and
- every edge between $M_{2 i+1}$ and $X_{2 i+2}$ has tail in $X_{2 i+2}$.

For suppose that $\left|X_{2 i}\right|,\left|X_{2 i+2}\right|>1$. Since $\left|X_{2}\right|=\left|X_{2 n}\right|=1$, it follows that $1<i \leq n-2$. Choose $u \in X_{2 i}$ and $v \in X_{2 i+2}$ with $u \neq s_{2 i}$ and $v \neq s_{2 i+2}$. From the definition of $X_{2 i}$, it follows that $N_{S}(u)=\left\{s_{i-1}, s_{i+1}\right\}$, and similarly $N_{S}(v)=\left\{s_{i}, s_{i+2}\right\}$. In particular, u, v are not thorns. From (LV4), since $N_{S}(u)=\left\{s_{i-1}, s_{i+1}\right\}$ it follows that every vertex in $V(H) \backslash V(S)$ adjacent in H to s_{i} is a thorn, and yet v is adjacent in H to s_{i}, a contradiction. This proves that one of $X_{2 i}, X_{2 i+2}$ has cardinality 1 , and so the first assertion holds. The second holds since we may assume from the symmetry that $X_{2 i+2}=\left\{s_{i+1}\right\}$, and every member of $X_{2 i}$ is adjacent to s_{i+1} from the definition of $X_{2 i}$. We prove the final three assertions together. By (1), every edge between two of the three sets $X_{2 i}, M_{2 i+1}, X_{2 i+2}$ is in a triangle included in the union of these three sets; so let $T=\{u, v, w\}$ be a triangle with $u \in X_{2 i}, w \in M_{2 i+1}$ and $v \in X_{2 i+2}$. It suffices to show that $\mathcal{O}(T)$ is $w \rightarrow u \rightarrow v \rightarrow w$. If $u=s_{i}$ and $v=s_{i+1}$, the claim holds since $s_{i} s_{i+1}$ has tail s_{i}. Thus we may assume from the symmetry that $v \neq s_{i+1}$. Consequently $\left|X_{2 i+2}\right|>1$, and so $i \leq n-2$. Choose x so that $\left\{s_{i+1}, s_{i+2}, x\right\}$ is a triangle T^{\prime}. From (1), $x \in M_{2 i+3}$, and so T, T^{\prime} are disjoint. Also $\mathcal{O}\left(T^{\prime}\right)$ is $x \rightarrow s_{i+1} \rightarrow s_{i+2} \rightarrow x$, as we saw already. From the pair T, T^{\prime}, since $u s_{i+1}$ and $v s_{i+2}$ are edges, it follows that $\mathcal{O}(T)$ is $w \rightarrow u \rightarrow v \rightarrow w$. This proves the final three assertions and so proves (2).
(3) For $1 \leq i \leq n, R_{2 i-1}, L_{2 i+1}$ are matched in G, and if $R_{2 i-1} \cup L_{2 i+1} \neq \emptyset$ then $X_{2 i}=\left\{s_{i}\right\}$. Moreover, if $u \in R_{2 i-1}$ and $v \in L_{2 i+1}$ are adjacent, and T is the triangle $\left\{u, v, s_{i}\right\}$, then $\mathcal{O}(T)$ is $s_{i} \rightarrow u \rightarrow v \rightarrow s_{i}$.

For every member of $R_{2 i-1} \cup L_{2 i+1}$ is adjacent in H to s_{i}. Let $u \in R_{2 i-1}$; then $u \in V(H) \backslash Z$, $N_{S}(u)=\left\{s_{i}\right\}$ and the edge $u s_{i}$ has tail s_{i}. Choose $v \in V(H)$ so that $\left\{u, v, s_{i}\right\}$ is a triangle. From (1), $v \in L_{2 i+1}$. Consequently every member of $R_{2 i-1}$ is adjacent in H to a member of $L_{2 i+1}$ and vice versa. Since no edge of H belongs to two triangles, and every edge of G between $R_{2 i-1}$ and $L_{2 i+1}$ is an edge of H, it follows that $R_{2 i-1}, L_{2 i+1}$ are matched in H and in G. This proves the first claim. For the second, suppose that $u \in R_{2 i-1} \cup L_{2 i+1} \neq \emptyset$. Then u is a thorn. Since u is adjacent in H to s_{i} and to neither of s_{i-1}, s_{i+1}, it follows from (LV4) that there is no vertex $w \in V(H) \backslash V(S)$ with $N_{S}(w)=\left\{s_{i-1}, s_{i+1}\right\}$; and therefore $X_{2 i}=\left\{s_{i}\right\}$. This proves the second claim. For the third, let $u \in R_{2 i-1}$ and $v \in L_{2 i+1}$ be adjacent, and let $T=\left\{u, v, s_{i}\right\}$. Since $v \in L_{i+1}$ it follows that $v s_{i}$ has tail v in H; that is, $\mathcal{O}(T)$ is $s_{i} \rightarrow u \rightarrow v \rightarrow s_{i}$. This proves (3).
(4) For $1 \leq i \leq 2 n+1, X_{i}$ is stable in G.

For suppose that $u, v \in X_{i}$ are adjacent in G. If i is even, then since $\left|X_{2}\right|=1$, it follows that
$i>2$, and from (2) $s_{(i / 2)-1}$ is adjacent to both u, v, contrary to (1). Thus i is odd, say $i=2 j+1$. If $u \in R_{2 j+1}$, then $j<n$, and since u is a thorn adjacent in H to s_{j+1} and to v, it follows that $\left\{u, v, s_{j+1}\right\}$ is a triangle, contrary to (1). Thus $u \notin R_{2 j+1}$, and similarly $u, v \notin R_{2 j+1} \cup L_{2 j+1}$. Hence $u, v \in M_{2 j+1}$. By (2), one of $X_{2 j}, X_{2 j+2}$ has only one member say r, and so $\{r, u, v\}$ is a triangle, contrary to (1). This proves (4).
(5) For $1 \leq i, j \leq 2 n+1$ with $j \geq i+3$, if $j-i=2$ modulo 3 then X_{i} is complete in G to X_{j}, and otherwise X_{i} is anticomplete in G to X_{j}.

For let $u \in X_{i}$ and $v \in X_{j}$. We must show that u, v are adjacent in G if and only if $j-i=2$ modulo 3. In most cases we will choose a twig path P of H between u, v, and prove that $s l(P)=1$ modulo 3 if and only if $j-i=2$ modulo 3 , and then the claim will follow from 6.3 . First suppose that i, j are even; say $i=2 s, j=2 t$, where $1 \leq s<t \leq n$. Let P be the path with vertices $u-s_{s+1^{-}} s_{s+2^{-}} \cdots-s_{t-1} v$ in order; then P is directed by (2), it has length >2 (since $j \geq i+3$ by hypothesis), all its edges are twigs (by 5.1, since none of its vertices are thorns) and $s l(P)=t-s=(j-i) / 2$. Hence $s l(P)=1$ modulo 3 if and only if $j-i=2$ modulo 3 , as claimed.

Next suppose that i is odd and j is even; say $i=2 s-1$ and $j=2 t$, where $1 \leq s<t \leq n$ (since $j \geq i+3)$. Then $u \in L_{2 s-1} \cup M_{2 s-1} \cup R_{2 s-1}$ and v is adjacent in H to s_{t-1}. Suppose that $u \in L_{2 s-1}$, and let P have vertices $u-s_{s-1}-s_{s^{-}} \cdots-s_{t-1}-v$ in order; then P is a directed path by (2), all its edges are twigs, and $s l(P)=t-s+2=(j-i+3) / 2$, and so $s l(P)=1$ modulo 3 if and only if $j-i=2$ modulo 3 as required. Next suppose that $u \in R_{2 s-1}$. If $t=s+1$, then u, v are nonadjacent by (1), since they are both adjacent to s_{s}, and the claim holds; so we may assume that $t \geq s+2$. Let P be the path with vertices $u-s_{s^{-}} \cdots-s_{t-1}-v$ in order. Then P has length at least 3 , all its edges are twigs, and $s l(P)=t-s-1=(j-i-3) / 2$, and so again $s l(P)=1$ modulo 3 if and only if $j-i=2$ modulo 3 as required. Thus we may assume that $u \in M_{2 s-1}$, and therefore $\left\{u, x_{s-1}, x_{s}\right\}$ is a triangle for some $x_{s-1} \in X_{2 s-2}$ and $x_{s} \in X_{2 s}$. The edges $u x_{s}$ and $u x_{s-1}$ are not twigs, so in this case we cannot construct P. Let $i_{1}=i-1, i_{2}=i+1$. Then i_{1}, i_{2} are even, and $x_{s-1} \in X_{i_{1}}$ and $x_{s} \in X_{i_{2}}$. From what we already proved, x_{s-1} is adjacent to v if and only if $j-i_{1}=2$ modulo 3 , and x_{s} is adjacent to v if and only if $j-i_{2}=2$ modulo 3 (this follows from (2) if $j-i_{2}=2$, and from what we already proved if $j-i_{2} \geq 3$). But $j-i=2$ modulo 3 if and only if $j-i_{1}, j-i_{2} \neq 2$ modulo 3 , and v is adjacent to u if and only if v is nonadjacent to both x_{s-1}, x_{s}, since $\left\{u, x_{s-1}, x_{s}\right\}$ is a triangle. Thus again u, v are adjacent in G if and only if $j-i=2$ modulo 3 . The proof is similar if j is odd and we omit the details. This proves (5).

So far we have verified conditions (P1), (P2) and (P3) in the definition of a core path of triangles decomposition. For ($\mathbf{P 4)}$ note that s_{1} is in at least two triangles from the definition of a stem, and so if $R_{1}=\emptyset$ then from (1), $n \geq 2$ and $\left|X_{4}\right|>1$. This proves ($\mathbf{P} 4$). Condition (P5) holds since if $u \in L_{2 i-1}$ and $v \in X_{2 i}$ are adjacent in G then $\left\{s_{i-1}, u, v\right\}$ is a triangle, contrary to (1). Condition (P6) follows from the next assertion.
(6) For $1 \leq i \leq n$, if $\left|X_{2 i}\right|=1$, then

- $R_{2 i-1}, L_{2 i+1}$ are matched in G, and every edge of G between $M_{2 i-1} \cup R_{2 i-1}$ and $L_{2 i+1} \cup M_{2 i+1}$ is between $R_{2 i-1}$ and $L_{2 i+1}$;
- the vertex in $X_{2 i}$ is complete in H to $R_{2 i-1} \cup M_{2 i-1} \cup L_{2 i+1} \cup M_{2 i+1}$;
- if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$ are nonadjacent in G then $u \in M_{2 i-1} \cup R_{2 i-1}$ and $v \in L_{2 i+1} \cup M_{2 i+1}$
- if $i>1$ then $M_{2 i-1}, X_{2 i-2}$ are matched in G, and if $i<n$ then $M_{2 i+1}, X_{2 i+2}$ are matched in G.

For let $\left|X_{2 i}\right|=1$; then $X_{2 i}=\left\{s_{i}\right\}$. From (3), $R_{2 i-1}, L_{2 i+1}$ are matched in G. If $u \in M_{2 i-1} \cup R_{2 i-1}$ and $v \in L_{2 i+1} \cup M_{2 i+1}$ are adjacent in G, then since they are both adjacent in H to s_{i}, it follows from (1) that $u \in R_{2 i-1}$ and $v \in L_{2 i+1}$, and so the first claim of (6) holds. The second is clear. For the third, suppose that $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$ are nonadjacent in G, and $u \in L_{2 i-1}$. Choose $x \in V(H)$ so that $\left\{u, s_{i-1}, x\right\}$ is a triangle; then $x \in R_{2 i-3}$ by (1). By (5), v is nonadjacent in G to x, and therefore is adjacent in G to no member of this triangle, a contradiction. Thus $u \notin L_{2 i-1}$, and similarly $v \notin R_{2 i+1}$. This proves the third claim. For the fourth, suppose that $i>1$. From the definition of $M_{2 i-1}$, every vertex in $X_{2 i-2}$ is adjacent in H to a member of $M_{2 i-1}$ and vice versa; and since no edge is in two triangles and s_{i} is complete to $X_{2 i-2} \cup M_{2 i-1}$, it follows that $X_{2 i-2}, M_{2 i-1}$ are matched in G. Similarly if $i<n$ then $X_{2 i+2}, M_{2 i+1}$ are matched in G. This proves the fourth assertion of (6), and so completes the proof of (6).

Finally, condition (P7) follows from the next assertion.
(7) For $1<i<n$, if $\left|X_{2 i}\right|>1$ then

- $R_{2 i-1}=L_{2 i+1}=\emptyset$;
- if $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$, then u, v are nonadjacent in G if and only if there is a vertex in $X_{2 i}$ adjacent in G to both u, v.

For let $\left|X_{2 i}\right|>1$. The first assertion of (7) follows from (3). For the second, let $u \in X_{2 i-1}$ and $v \in X_{2 i+1}$. If in G, u, v have a common neighbour in $X_{2 i}$, then they are nonadjacent in G by (1), so it remains to prove the converse. Suppose then that u, v are nonadjacent in G. Since $\left|X_{2 i}\right|>1$, (2) implies that $X_{2 i-2}=\left\{s_{i-1}\right\}$. Since $R_{2 i-1}=\emptyset$, it follows that $u \in L_{2 i-1} \cup M_{2 i-1}$, and therefore is adjacent in H to s_{i-1}. Choose $x \in V(H)$ so that $\left\{u, x, s_{i-1}\right\}$ is a triangle T. By (1), either $x \in R_{2 i-3}$ and $u \in L_{2 i-1}$, or $x \in X_{2 i}$ and $u \in M_{2 i-1}$. Now v is not adjacent in G to s_{i-1} by (5). Since v is adjacent in G to a member of T and v is not adjacent in G to u, s_{i-1}, it follows that v, x are adjacent in G. Since $X_{2 i+1}, X_{2 i-3}$ are anticomplete in G by (5), it follows that $x \in X_{2 i}$, and x is adjacent in G to both u, v. This proves the second assertion, and therefore proves (7).

Consequently the sequence $X_{1}, \ldots, X_{2 n+1}$ is indeed a core path of triangles decomposition. This proves 4.2.

8 A stable neighbourhood

Let G be prismatic and triangle-covered. We say $N \subseteq V(G)$ is a crosscut if N is stable and $|N \cap T|=1$ for every triangle T. Our next objective is to study crosscuts. The reason for this is, we need to investigate the structure of prismatic graphs H that are not triangle-covered. The core of H is the union of all triangles of G. Let H be prismatic with core W, let $G=H \mid W$, let $v \in V(H) \backslash W$, and let N be the set of members of W that are adjacent to v. Then N is a crosscut in G, since v is in no
triangles and G is prismatic. Thus an understanding of crosscuts will tell us all possible ways to add one vertex not in the core to a triangle-covered prismatic graph. (The core ring of five was defined in section 4.)
8.1 Let $X_{1}, \ldots, X_{2 n}$ be a core cycle of triangles decomposition of G, and let the sets $L_{2 i+1}, M_{2 i+1}$, $R_{2 i+1}(1 \leq i \leq n)$ be as in the definition of a core cycle of triangles graph. Let $N \subseteq V(G)$ be a crosscut. Then either:

- G is the core ring of five, or
- there exists $i \in\{1, \ldots, n\}$ such that N contains exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$, and (reading subscripts modulo $2 n$)

$$
N \backslash\left(R_{2 i-1} \cup L_{2 i+1}\right)=\bigcup\left(X_{2 i+2+k}: 0 \leq k \leq 2 n-4 \text { and } k \text { is divisible by } 3\right) .
$$

Proof. Since $X_{1}, \ldots, X_{2 n}$ is a core cycle of triangles decomposition of G, it follows that $n \geq 5$ and $n=2$ modulo 3 ; and we read the subscripts of X_{i} modulo $2 n$. Let

$$
P=\left\{i: 1 \leq i \leq n \text { and } N \cap X_{2 i} \neq \emptyset\right\} .
$$

(1) We may assume that $P \neq \emptyset$.

For suppose that $P=\emptyset$. For each $i \in\{1, \ldots, n\}$, one of $X_{2 i}, X_{2 i+2}$ has cardinality 1 and $M_{2 i+1}$ is matched with the other, and in particular, $M_{2 i+1} \neq \emptyset$ and every vertex of $M_{2 i+1}$ is in a triangle included in $X_{2 i} \cup M_{2 i+1} \cup X_{2 i+2}$. Since N meets all these triangles it follows that $\emptyset \neq M_{2 i+1} \subseteq N$. If $n>5$ then this is impossible since M_{1} is complete to M_{11} and yet N is stable. Thus $n=5$. If $\left|X_{2}\right|>1$ then M_{1}, M_{3} are both matched with X_{2}, and so there exist $u \in M_{1}$ and $v \in M_{3}$ with no common neighbour in X_{2}; then u, v are adjacent from (C6). But $u, v \in N$ and N is stable, which is impossible. This proves that $\left|X_{2}\right|=1$, and similarly $\left|X_{2 i}\right|=1$ for $i=1, \ldots, 5$. Hence $\left|M_{2 i+1}\right|=1$ for $i=1, \ldots, 5$. Suppose that $|V(G)|>10$. Then one of the sets $R_{1}, R_{3}, \ldots, R_{9}, L_{1}, L_{3}, \ldots, L_{9}$ is nonempty, say R_{1}. Choose $u \in R_{1}$. Then there exists $v \in L_{3}$ such that $\{u, v, s\}$ is a triangle, where $X_{2}=\{s\}$. Since N meets this triangle we may assume that $v \in N$. But v is complete to M_{5}, by (C6), a contradiction since N is stable. Hence $|V(G)|=10$ and the first outcome of the theorem holds. This proves (1).
(2) If $i \in P$ then $i+1 \notin P$ and one of $i+2, i+3 \in P$.

For let $1 \in P$ say; thus $N \cap X_{2} \neq \emptyset$. Since X_{2} is complete to X_{4} it follows that $N \cap X_{4}=\emptyset$, and so $2 \notin P$. Suppose that $3,4 \notin P$. Since there is a triangle included in $X_{6} \cup M_{7} \cup X_{8}$, it follows that $N \cap M_{7} \neq \emptyset$; and yet X_{2} is complete to X_{7}, a contradiction. This proves (2).

Since n is not divisible by 3 and $P \neq \emptyset$, it follows from (2) that there exists $i \in P$ such that $i+2 \in P$, and we may assume that $1,3 \in P$. Since X_{2} is complete to X_{i} for $i=4,7,10,13, \ldots, 2 n$ and X_{6} is complete to X_{i} for $i=8,11,14,17, \ldots, 2 n-2,1,4$, we deduce that

$$
N \subseteq X_{2} \cup X_{3} \cup X_{5} \cup X_{6} \cup \bigcup\left(X_{i}: 9 \leq i \leq 2 n-1 \text { and } i\right. \text { is divisible by 3.) }
$$

Let $9 \leq i \leq 2 n-1$ with i divisible by 3 . If i is even then every vertex of X_{i} belongs to a triangle included in $X_{i-2} \cup X_{i-1} \cup X_{i}$, and so $X_{i} \subseteq N$. If i is odd then every vertex in X_{i} belongs to a triangle included in one of $X_{i-2} \cup X_{i-1} \cup X_{i}$ (for a vertex in L_{i}), $X_{i-1} \cup X_{i} \cup X_{i+1}$ (for a vertex in M_{i}), $X_{i} \cup X_{i+1} \cup X_{i+2}$ (for a vertex in R_{i}). Since N meets these triangles it follows again that $X_{i} \subseteq N$. Moreover, every vertex in X_{6} belongs to a triangle included in $X_{6} \cup X_{7} \cup X_{8}$, so $X_{6} \subseteq N$, and similarly $X_{2} \subseteq N$. Since every member of $L_{3} \cup M_{3}$ has a neighbour in X_{2}, it follows that $N \cap X_{3} \subseteq R_{3}$, and similarly $N \cap X_{5} \subseteq L_{5}$. If $\left|X_{4}\right|>1$, then the second outcome of the theorem holds, because $R_{3}=L_{5}=\emptyset$; so we assume that $X_{4}=\{w\}$ say. If $u \in R_{3}, v \in L_{5}$ are adjacent, then since $|N \cap\{u, v, w\}|=1$, it follows that N contains exactly one of u, v, and so the second outcome of the theorem holds. This proves 8.1.

Let us say a prismatic graph G is k-substantial if for every $S \subseteq V(G)$ with $|S|<k$ there is a triangle T with $S \cap T=\emptyset$. We need an analogue of 8.1 for paths of triangles, and it is helpful to assume that the graph is 3 -substantial to eliminate some degenerate cases.
8.2 Let G be 3 -substantial, let $X_{1}, \ldots, X_{2 n+1}$ be a core path of triangles decomposition of G, and let the sets $L_{2 i+1}, M_{2 i+1}, R_{2 i+1}(1 \leq i \leq n)$ be as usual. Let $N \subseteq V(G)$ be a crosscut. Then either:

- there exists $i \in\{1, \ldots, n\}$ such that N contains exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$ and

$$
N \backslash\left(R_{2 i-1} \cup L_{2 i+1}\right)=\bigcup\left(X_{h}: 1 \leq h \leq 2 n+1 \text { and }|h-2 i|=2 \text { modulo } 3\right)
$$

or

- there exists $k \in\{0,1,2\}$ such that $N=\bigcup\left(X_{i}: 1 \leq i \leq 2 n+1\right.$ and $i=k$ modulo 3$)$.

Proof. If $n \leq 2$ then $X_{2} \cup X_{2 n}$ meets all triangles, contradicting that G is 3 -substantial. Thus $n \geq 3$. It is convenient to define $X_{i}=\emptyset$ for all integers $i \notin\{1, \ldots, 2 n+1\}$. Once again, let $P=\left\{i: 1 \leq i \leq n\right.$ and $\left.N \cap X_{2 i} \neq \emptyset\right\}$.
(1) $P \neq \emptyset$.

For suppose that P is empty. Then as in the proof of $8.1, \emptyset \neq M_{2 i+1} \subseteq N$ for $1 \leq i<n$. We claim that $R_{2 i-1} \subseteq N$ for $i=1, \ldots, n-2$. For let $u \in R_{2 i-1}$, and choose $v \in L_{2 i+1}$ so that $\{u, v, w\}$ is a triangle, where $X_{2 i}=\{w\}$. Since v is complete to $M_{2 i+3}$, it follows that $v \notin N$, and so $u \in N$. Hence $R_{2 i-1} \subseteq N$ as claimed. Similarly $L_{2 i+1} \subseteq N$ for $i=3, \ldots, n$.

We claim that $\left|X_{2 i}\right|=1$ for $i=1, \ldots, n$. For if $i=1$ or $i=n$ the claim holds by (P1), so we assume that $2 \leq i \leq n-1$. Suppose that $v_{1}, v_{2} \in X_{i}$ are distinct. Then $X_{2 i}$ is matched with both $M_{2 i-1}, M_{2 i+1}$ and so there exist $u \in M_{2 i-1}$ and $w \in M_{2 i+1}$ such that $u v_{1}, v_{2} w$ are edges. Then u, w are adjacent from (P7), a contradiction since they both belong to N. This proves that $\left|X_{2 i}\right|=1$ for $1 \leq i \leq n$. Since $\left|X_{4}\right|=1$, it follows from ($\mathbf{P} 4$) that $R_{1} \neq \emptyset$, and similarly $L_{2 n+1} \neq \emptyset$. Thus R_{1} is a nonempty subset of N. If $n \geq 4$, then R_{1} is complete to $L_{9} \cup M_{9}$, and $L_{9} \cup M_{9}$ is also a nonempty subset of N (because $M_{9} \neq \emptyset$ if $n \geq 5$, and $L_{9} \neq \emptyset$ if $n=4$), a contradiction. Hence $n=3$. Since R_{1} is complete to R_{3}, and L_{7} is complete to L_{5}, it follows that $R_{3} \cup L_{5}$ is disjoint from N, and since R_{3}, L_{5} are matched, it follows that $R_{3}=L_{5}=\emptyset$. But then $X_{2} \cup X_{6}$ meets every triangle of G, contradicting that G is 3 -substantial. This proves (1).
(2) If $i \in P$ and $i<n$ then $i+1 \notin P$; and if $i \leq n-3$ then one of $i+2, i+3 \in P$.

The proof is just as in 8.1.
(3) We may assume that there does not exist i with $2 \leq i \leq n-1$ such that $i-1, i+1 \in P$.

For suppose that $i-1, i+1 \in P$. Thus N meets both $X_{2 i-2}, X_{2 i+2}$. For $1 \leq h<2 i-2$ we claim that $N \cap X_{h}=\emptyset$ if $2 i-2 \neq h$ modulo 3 , and $X_{h} \subseteq N$ if $2 i-2=h$ modulo 3. For if $2 i-2 \neq h$ modulo 3 , then $2 i-h=0$ or 1 modulo 3 . If $2 i-h=0$ modulo 3 , then $(2 i+2)-h=2$ modulo 3 and so X_{h} is complete to $X_{2 i+2}$; and consequently $N \cap X_{h}=\emptyset$. If $2 i-h=1$ modulo 3, then X_{h} is complete to $X_{2 i-2}$ and again $N \cap X_{h}=\emptyset$. Now let $2 i-2=h$ modulo 3. Then N is disjoint from the four sets $X_{h-2}, X_{h-1}, X_{h+1}, X_{h+2}$, because all the numbers $h-2, h-1, h+1, h+2$ are less than $2 i-2$ and are different from $2 i-2$ modulo 3 . But if $v \in X_{h}$, there is a triangle T containing v with

$$
T \backslash\{v\} \subseteq X_{h-2} \cup X_{h-1} \cup X_{h+1} \cup X_{h+2}
$$

and since $N \cap T \neq \emptyset$, it follows that $v \in N$. Hence $X_{h} \subseteq N$. This proves our claim. Similarly, for $h>2 i+2$, if $h \neq 2 i+2$ modulo 3 then $N \cap X_{h}=\emptyset$, and if $h=2 i+2$ modulo 3 then $X_{h} \subseteq N$. Since $X_{2 i}$ is complete to $X_{2 i-2}$, it follows that $N \cap X_{2 i}=\emptyset$. We claim that $X_{2 i-2} \subseteq N$. For suppose not; then since $N \cap X_{2 i-2} \neq \emptyset$, it follows that $\left|X_{2 i-2}\right|>1$, and therefore $i>2$. Let $v \in X_{2 i-2} \backslash N$. Then there is a triangle T containing v with $T \backslash\{v\} \subseteq M_{2 i-3} \cup X_{2 i-4}$, and therefore $N \cap T=\emptyset$, a contradiction. This proves that $X_{2 i-2} \subseteq N$, and similarly $X_{2 i+2} \subseteq N$. It remains to examine $N \cap X_{2 i-1}$ and $N \cap X_{2 i+1}$. Since every vertex of $L_{2 i-1} \cup M_{2 i-1}$ has a neighbour in $X_{2 i-2} \subseteq N$, it follows that $N \cap X_{2 i-1} \subseteq R_{2 i-1}$, and similarly $N \cap X_{2 i+1} \subseteq L_{2 i+1}$. For every edge $u v$ between $R_{2 i-1}$ and $L_{2 i+1}$, exactly one end of this edge belongs to N since $\left|X_{2 i}\right|=1$, say $X_{2 i}=\{w\}$, and $|N \cap\{u, v, w\}|=1$. Hence the first outcome of the theorem holds. This proves (3).
(4) We may assume that for $1 \leq i \leq n$, if $N \cap X_{2 i} \neq \emptyset$ then $X_{2 i} \subseteq N$.

For suppose that $v, v^{\prime} \in X_{2 i}$ with $v \notin N$ and $v^{\prime} \in N$. Since $\left|X_{2 i}\right|>1$, it follows that $i>1$ and $\left|X_{2 i-2}\right|=1$, and similarly $i<n$ and $\left|X_{2 i+2}\right|=1$. Let $X_{2 i-2}=\left\{s_{2 i-2}\right\}$ and $X_{2 i+2}=\left\{s_{2 i+2}\right\}$. Since $X_{2 i}$ is matched with $M_{2 i-1}$, there exists $u \in M_{2 i-1}$ such that $\left\{s_{2 i-2}, u, v\right\}$ is a triangle, and similarly there exists $w \in M_{2 i+1}$ such that $\left\{v, w, s_{2 i+2}\right\}$ is a triangle. Since N meets these triangles and is disjoint from $X_{2 i-2}, X_{2 i+2}$, it follows that $u, w \in N$. If $i \leq n-3$, then by (2) and (3), $N \cap X_{2 i+6} \neq \emptyset$, and yet $w \in X_{2 i+1}$ is complete to $X_{2 i+6}$, a contradiction. Thus $i \geq n-2$, and similarly $i \leq 3$. If $n=3$, then $X_{2} \cup X_{6}$ meets all triangles, contradicting that G is 3 -substantial; so $n \geq 4$, and from the symmetry we may therefore assume that $i=3$. Since $\left|X_{4}\right|=1$, it follows that $R_{1} \neq \emptyset$, and so there exist $a \in R_{1}, b \in L_{3}$ such that $\left\{a, b, s_{2}\right\}$ is a triangle, where $X_{2}=\left\{s_{2}\right\}$. By (3), $s_{2} \notin N$, and so one of $a, b \in N$; yet $a \in X_{1}$ is adjacent to $v^{\prime} \in X_{6}$, because X_{1} is complete to X_{6}, and b is adjacent to u by (P6), a contradiction. This proves (4).

From (1)-(4), there exists $k \in\{0,1,2\}$ such that for all even i with $1 \leq i \leq 2 n+1$, if $i=k$ modulo 3 then $X_{i} \subseteq N$, and otherwise $N \cap X_{i}=\emptyset$.
(5) For $1 \leq i \leq 2 n+1$ with i odd and $i=k$ modulo 3 , if $N \cap X_{i-2}=N \cap X_{i+2}=\emptyset$, then $X_{i} \subseteq N$.

For let $v \in X_{i}$. There is a triangle T containing v with $T \backslash\{v\} \subseteq X_{i-2} \cup X_{i-1} \cup X_{i+1} \cup X_{i+2}$. Now $N \cap X_{i-1}=N \cap X_{i+1}=\emptyset$ from the choice of k since $i=k$ modulo 3 and $i-1, i+1$ are even, and $N \cap X_{i-2}=N \cap X_{i+2}=\emptyset$ by hypothesis. Since $N \cap T \neq \emptyset$, it follows that $v \in N$, and so $X_{i} \subseteq N$. This proves (5).

Now if there does not exist $i \in\{1, \ldots, 2 n+1\}$, odd, such that $i \neq k$ modulo 3 and $N \cap X_{i} \neq \emptyset$, then by (5), $X_{i} \subseteq N$ for all odd i with $i=k$ modulo 3 , and so the second outcome of the theorem holds. Thus we may assume that $N \cap X_{i} \neq \emptyset$ for some odd $i \in\{1, \ldots, 2 n+1\}$, such that $i \neq k$ modulo 3. Let $v \in N \cap X_{i}$. By reversing the sequence $X_{1}, \ldots, X_{2 n+1}$ if necessary, we may assume that $i=k+2$ modulo 3 . Since $X_{i+1} \subseteq N$, it follows that v has no neighbour in X_{i+1}, and so $v \in L_{i}$. Consequently $i \geq 3$, and $\left|X_{i-1}\right|=1$. If $i \geq 7$, then $X_{i-5} \subseteq N$ is complete to X_{i}, a contradiction, and so $i \leq 5$. Suppose that $i=5$. Then since $\left|X_{4}\right|=1$, it follows that $R_{1} \neq \emptyset$, and so there exist $a \in R_{1}$ and $b \in L_{3}$ such that $\left\{a, b, s_{2}\right\}$ is a triangle, where $X_{2}=\left\{s_{2}\right\}$. But $a \in X_{1}$ is complete to X_{6}, and $b \in X_{3}$ is complete to X_{5}, and $N \cap X_{2}=\emptyset$ by the choice of k. Hence N is disjoint from the triangle $\left\{a, b, s_{2}\right\}$, a contradiction. Thus $i \neq 5$, and so $i=3$. Since $i=k+2$ modulo 3, it follows that $k=1$. Suppose that there exists $i^{\prime} \neq i$ such that $1 \leq i^{\prime} \leq 2 n+1, i^{\prime} \neq k$ modulo 3 and $N \cap X_{i^{\prime}} \neq \emptyset$. We assumed that $i=k+2$ modulo 3 and deduced that $i=3$, and since $i^{\prime} \neq 3$, it follows that $i^{\prime} \neq k+2$ modulo 3. Thus $i^{\prime}=k+1$ modulo 3. By reversing the sequence $X_{1}, \ldots, X_{2 n+1}$, we deduce that $i^{\prime}=2 n-1$. Since $k=1$ and $i^{\prime}=k+1$ modulo 3 , it follows that n is divisible by 3 . But L_{3} is complete to $X_{2 n-1}$ (since X_{3} is complete to $X_{2 n-1}$ if $n>3$, and L_{3} is complete to X_{5} from (P6)), a contradiction. We deduce that for all j with $4 \leq j \leq 2 n+1$, if $j \neq 1$ modulo 3 then $N \cap X_{j}=\emptyset$. From (5), it follows that for all j with $4 \leq j \leq 2 n+1$, if $j=1$ modulo 3 then $X_{j} \subseteq N$. But then the first outcome of the theorem holds, taking $i=1$. This proves 8.2.

9 Vertices not in the core

We can use 8.1 and 8.2 to analyze the structure of vertices not in the core. We begin with the following.
9.1 Let G be prismatic, with core W, such that $G \mid W$ is a core cycle of triangles graph. Then either G is a cycle of triangles graph, or $G \mid W$ is the core ring of five.

Proof. Let $X_{1}, \ldots, X_{2 n}$ be a core cycle of triangles decomposition of $G \mid W$, and let the sets L_{i}, M_{i}, R_{i} be defined as usual; and we read these subscripts modulo $2 n$ as usual. For each $v \in V(G) \backslash W$, let N_{v} be the set of vertices in W adjacent to v. Thus for each such v, N_{v} is a crosscut in $G \mid W$. For $1 \leq i \leq n$, let $Y_{2 i}$ be the set of all $v \in V(G) \backslash W$ such that N_{v} contains exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$ and

$$
N_{v} \backslash\left(R_{2 i-1} \cup L_{2 i+1}\right)=\bigcup\left(X_{2 i+2+k}: 0 \leq k \leq 2 n-4 \text { and } k \text { is divisible by } 3\right) .
$$

We may assume that $G \mid W$ is not the core ring of five, and so by 8.1 , the sets $Y_{2 i}(1 \leq i \leq n)$ have union $V(G) \backslash W$.

We propose to construct a cycle of triangles decomposition $X_{1}^{\prime}, \ldots, X_{2 n}^{\prime}$ of G, where $X_{i}^{\prime}=X_{i}$ for i odd, and $X_{i}^{\prime}=X_{i} \cup Y_{i}$ for i even (and then defining $\hat{X}_{2 i}^{\prime}=X_{2 i}$). It remains to verify the six conditions (C1)-(C6). Since $X_{1}, \ldots, X_{2 n}$ is a core cycle of triangles decomposition, we need only to prove the following:

- for $1 \leq i \leq n, X_{2 i} \cup Y_{2 i}$ is stable;
- for all $i \in\{1, \ldots, n\}$ and all k with $2 \leq k \leq 2 n-2$, let $j \in\{1, \ldots, 2 n\}$ with $j=2 i+k$ modulo $2 n$:
(1) if $k=2$ modulo 3 and there exist $u \in Y_{2 i}$ and $v \in X_{j} \cup Y_{j}$, nonadjacent, then j is even, and $v \in Y_{j}$;
(2) if $k \neq 2$ modulo 3 then $Y_{2 i}$ is anticomplete to $X_{j} \cup Y_{j}$;
- for $1 \leq i \leq n, Y_{2 i}$ is anticomplete to $L_{2 i-1} \cup M_{2 i-1} \cup M_{2 i+1} \cup R_{2 i+1}$, and every vertex in $Y_{2 i}$ is adjacent to exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$.

Since $X_{2 i} \cup Y_{2 i}$ is complete to $X_{2 i+2}$, and no vertex in $Y_{2 i}$ is in a triangle, and $X_{2 i}$ is stable, the first assertion follows. The third follows from the definition of $Y_{2 i}$, and it remains to check the second. Thus, let $i \in\{1, \ldots, n\}$, let $2 \leq k \leq 2 n-2$, and let $j \in\{1, \ldots, 2 n\}$ with $j=2 i+k$ modulo $2 n$. Suppose first that $k=2$ modulo 3 and there exist $u \in Y_{2 i}$ and $v \in X_{j} \cup Y_{j}$, nonadjacent. Since $X_{j}=X_{2 i+2+(k-2)}$, and $0 \leq k-2 \leq 2 n-4$ and $k-2$ is divisible by 3 , it follows from the definition of $Y_{2 i}$ that $X_{j} \subseteq N_{u}$, and so $v \notin X_{j}$. Consequently j is even, and $v \in Y_{j}$. Finally, for the second half of the second assertion, suppose that $k \neq 2$ modulo 3 , and that $u \in Y_{2 i}$ is adjacent to $v \in X_{j} \cup Y_{j}$. Again from the definition of $Y_{2 i}$ it follows that j is even and $v \in Y_{j}$. Let $h=j / 2$. Since u, v are adjacent and they do not belong to triangles, it follows that $N_{u} \cap N_{v}=\emptyset$. Let $k^{\prime}=2 n-k$; then $2 \leq k^{\prime} \leq 2 n-2$, and $2 i=2 h+k^{\prime}$ modulo $2 n$, and $k^{\prime} \neq 2$ modulo 3 (since $n=2$ modulo 3). Thus there is symmetry between h and i, and from this symmetry we may assume that $1 \leq h \leq i \leq n$ and so $2 i=2 h+k^{\prime}$. If $i=h+1$ modulo 3 , then $k^{\prime}=2$ modulo 3 ; if $i=h$ modulo 3 , then N_{u}, N_{v} both include $X_{2 i+2}$; and if $i=h+2$ modulo 3 then they both include $X_{2 i-2}$, in each case a contradiction. This completes the proof of 9.1.

Again, we need an analogous result for paths of triangles, as follows.
9.2 Let G be a prismatic graph, with core W, such that $G \mid W$ is a 3 -substantial core path of triangles graph. Let $X_{1}, \ldots, X_{2 n+1}$ be a core path of triangles decomposition of $G \mid W$, and for $k=0,1,2$, let $A_{k}=\bigcup\left(X_{i}: 1 \leq i \leq 2 n+1\right.$ and $i=k$ modulo 3$)$. Then either

- there exists $v \in V(G) \backslash W$ such that the set of neighbours of v in W is one of A_{1}, A_{2}, A_{3}, or
- G is a path of triangles graph.

Proof. Since $G \mid W$ is 3 -substantial, it follows that $n \geq 3$. For each $v \in V(G) \backslash W$, let N_{v} be the set of vertices in W adjacent to v. For $1 \leq i \leq n$, let $Y_{2 i}$ be the set of all $v \in V(G) \backslash W$ such that N_{v} contains exactly one end of every edge between $R_{2 i-1}$ and $L_{2 i+1}$, and

$$
N_{v} \backslash\left(R_{2 i-1} \cup L_{2 i+1}\right)=\bigcup\left(X_{h}: 1 \leq h \leq 2 n+1 \text { and }|2 i-h|=2 \text { modulo } 3\right) .
$$

We may assume that the first outcome of the theorem does not hold, and so by 8.2, the sets $Y_{2 i}(1 \leq i \leq n)$ have union $V(G) \backslash W$. Again, we add $Y_{2 i}$ to $X_{2 i}$ to produce a path of triangles decomposition. The proof is exactly like that in 9.1 , except in one step, when we need to prove the following.
(1) Let $1 \leq i \leq j \leq n$, and let $u \in Y_{2 i}$ and $v \in Y_{2 j}$. If u, v are adjacent then $2 j-2 i=2$ modulo 3 .

For $N_{u} \cap N_{v}=\emptyset$. If $j=i+2$ modulo 3 then N_{u}, N_{v} both include $X_{2 i+2}$, a contradiction, so we may assume that $j=i$ modulo 3 . If $i>1$ then N_{u}, N_{v} both include $X_{2 i-2}$, so $i=1$, and similarly $j=n$. Consequently $n=1$ modulo 3 . But $L_{3} \subseteq X_{3}$ is a subset of N_{v}, since $3 \leq 2 n-2$ and $3=2 n-2$ modulo 3, and since $N_{u} \cap N_{v}=\emptyset$ it follows that $N_{u} \cap L_{3}=\emptyset$. Since $u \in Y_{2}$, and every member of R_{1} has a neighbour in L_{3}, it follows that $X_{1}=R_{1} \subseteq N_{u}$. But also since $u \in Y_{2}$,

$$
N_{u} \backslash\left(R_{1} \cup L_{3}\right)=A_{1} \backslash\left(R_{1} \cup L_{3}\right)
$$

and so $N_{u}=A_{1}$ and the first outcome of the theorem holds. This proves (1).
All the other steps of the verification of (P1)-(P7) are obvious modifications of the verification in the proof of 9.1, and we omit them. This proves 9.2.

10 The degenerate cases

We are almost ready to begin on the general characterization of orientable prismatic graphs, but first we need to examine the various degenerate cases that were exceptions to the theorems of the last section.

It is possible to give explicit constructions for all orientable triangle-connected prismatic graphs that are not 3 -substantial. For instance, let $k \geq 1$; let K be the set of all subsets of $\{1, \ldots, k\}$; and let G be a graph with vertex set the disjoint union of a set $W=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, c\right\}$, a set U, and for each $I \in K$ a set V_{I}. The adjacency in G is as follows. The sets $\left\{a_{i}, b_{i}, c\right\}$ are triangles for $i=1, \ldots, k$, and there are no other edges with both ends in $W ; c$ is complete to U, and has no other neighbours outside of W; for $I \in K$ and $1 \leq i \leq k$, if $i \in I$ then a_{i} is complete to V_{I} and b_{i} is anticomplete to V_{I}, and vice versa if $i \notin I$; each of the sets $V_{I}(I \in K)$ is stable, and so is U; and if $I, I^{\prime} \in K$ and $I^{\prime} \neq\{1, \ldots, k\} \backslash I$ then $V_{I^{\prime}}$ is anticomplete to V_{I}. For $I \in K$, let $I^{\prime}=\{1, \ldots, k\} \backslash I$; the adjacency between members of distinct sets $U, V_{I}, V_{I^{\prime}}$ is arbitrary except that there is no triangle with vertices in U, V_{I} and $V_{I^{\prime}}$. Such a graph G is prismatic, and we call the class of all such graphs (for all k) \mathcal{P}_{1}.
10.1 If G is a prismatic graph with a triangle, such that for some vertex c every triangle contains c, then $G \in \mathcal{P}_{1}$.

Proof. Let the list of all triangles be $\left\{a_{i}, b_{i}, c\right\}(1 \leq i \leq k)$; thus the core W of G is

$$
\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}, c\right\} .
$$

Let U be the set of neighbours of c not in W. For each $v \in V(G) \backslash(W \cup U)$, let

$$
I(v)=\left\{i: 1 \leq i \leq k \text { and } a_{i} \text { is adjacent to } v\right\} .
$$

Since v has a unique neighbour in $\left\{a_{i}, b_{i}, c\right\}$, it follows that v is adjacent to b_{i} if and only if $i \notin I(v)$. Let K be the set of all subsets of $\{1, \ldots, k\}$, and for each $I \in K$ let $V_{I}=\{v \in V(G) \backslash(W \cup U)$: $I(v)=I\}$. If $v, v^{\prime} \in V(G) \backslash(W \cup U)$ are adjacent, then they have no common neighbour in $W \cup U$, and therefore $I(v), I\left(v^{\prime}\right)$ are complementary subsets of $\{1, \ldots, k\}$. It follows that $G \in \mathcal{P}_{1}$. This proves 10.1.

It is possible to give similar, more complicated constructions for the orientable, triangle-connected prismatic graphs in which the smallest set of vertices meeting all triangles has cardinality 2 ; but they are rather messy, and yet easy for the reader to work out independently. We therefore omit these "constructions".

We need two more, when the core is the core ring of five, and when the core is $L\left(K_{3,3}\right)$. Thus, let G be a graph with $V(G)$ the union of the disjoint sets $W=\left\{a_{1}, \ldots, a_{5}, b_{1}, \ldots, b_{5}\right\}$ and $V_{0}, V_{1}, \ldots, V_{5}$. Let adjacency be as follows (reading subscripts modulo 5). For $1 \leq i \leq 5,\left\{a_{i}, a_{i+1}, b_{i+3}\right\}$ is a triangle, and a_{i} is adjacent to $b_{i} ; V_{0}$ is complete to $\left\{b_{1}, \ldots, b_{5}\right\}$ and anticomplete to $\left\{a_{1}, \ldots, a_{5}\right\} ; V_{0}, V_{1}, \ldots, V_{5}$ are all stable; for $i=1, \ldots, 5, V_{i}$ is complete to $\left\{a_{i-1}, b_{i}, a_{i+1}\right\}$ and anticomplete to the remainder of $W ; V_{0}$ is anticomplete to $V_{1} \cup \cdots \cup V_{5}$; for $1 \leq i \leq 5 V_{i}$ is anticomplete to V_{i+2}; and the adjacency between V_{i}, V_{i+1} is arbitrary. We call such a graph a ring of five.
10.2 If G is prismatic and its core is the core ring of five then G is a ring of five.

The proof is straightforward and we omit it.
Finally, let G be a graph with $V(G)$ the union of seven sets

$$
W=\left\{a_{j}^{i}: 1 \leq i, j \leq 3\right\}, V^{1}, V^{2}, V^{3}, V_{1}, V_{2}, V_{3},
$$

with adjacency as follows. For $1 \leq i, j, i^{\prime}, j^{\prime} \leq 3, a_{j}^{i}$ and $a_{j^{\prime}}^{i^{\prime}}$ are adjacent if and only if $i^{\prime} \neq i$ and $j^{\prime} \neq j$. For $i=1,2,3, V^{i}, V_{i}$ are stable; V^{i} is complete to $\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$, and anticomplete to the remainder of W; and V_{i} is complete to $\left\{a_{i}^{1}, a_{i}^{2}, a_{i}^{3}\right\}$ and anticomplete to the remainder of W. Moreover, $V^{1} \cup V^{2} \cup V^{3}$ is anticomplete to $V_{1} \cup V_{2} \cup V_{3}$, and there is no triangle included in $V^{1} \cup V^{2} \cup V^{3}$ or in $V_{1} \cup V_{2} \cup V_{3}$. We call such a graph G a mantled $L\left(K_{3,3}\right)$.
10.3 If G is prismatic with core W, and $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$, then G is a mantled $L\left(K_{3,3}\right)$.

Again, the proof is easy and we omit it.

11 Statement of the theorem

Our next goal is to state precisely the main theorem, the structure theorem for 3-coloured prismatic graphs and for orientable prismatic graphs. Before we can do so we need to introduce a composition operation for 3 -coloured prismatic graphs. Let $n \geq 0$, and for $1 \leq i \leq n$, let ($G_{i}, A_{i}, B_{i}, C_{i}$) be a 3 -coloured prismatic graph, where $V\left(G_{1}\right), \ldots, V\left(G_{n}\right)$ are all nonempty and pairwise vertex-disjoint. Let $A=A_{1} \cup \cdots \cup A_{n}, B=B_{1} \cup \cdots \cup B_{n}$, and $C=C_{1} \cup \cdots \cup C_{n}$, and let G be the graph with vertex set $V\left(G_{1}\right) \cup \cdots \cup V\left(G_{n}\right)$ and with adjacency as follows:

- For $1 \leq i \leq n, G \mid V\left(G_{i}\right)=G_{i}$;
- for $1 \leq i<j \leq n, A_{i}$ is anticomplete to $V\left(G_{j}\right) \backslash B_{j} ; B_{i}$ is anticomplete to $V\left(G_{j}\right) \backslash C_{j}$; and C_{i} is anticomplete to $V\left(G_{j}\right) \backslash A_{j}$; and
- for $1 \leq i<j \leq n$, if $u \in A_{i}$ and $v \in B_{j}$ are nonadjacent then u, v are both in no triangles; and the same applies if $u \in B_{i}$ and $v \in C_{j}$, and if $u \in C_{i}$ and $v \in A_{j}$.

In particular, A, B, C are stable, and so (G, A, B, C) is a 3 -coloured graph; we call the sequence $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)(i=1, \ldots, n)$ a worn chain decomposition or worn n-chain for (G, A, B, C). Note also that every triangle of G is a triangle of one of G_{1}, \ldots, G_{n}, and G is prismatic. If we replace the third condition above by the strengthening

- for $1 \leq i<j \leq n$, the pairs $\left(A_{i}, B_{j}\right),\left(B_{i}, C_{j}\right)$ and $\left(C_{i}, A_{j}\right)$ are complete
we call the sequence a chain decomposition or n-chain for (G, A, B, C). (Thus a worn chain decomposition is not in general a chain decomposition.)

If $X_{1}, \ldots, X_{2 n+1}$ is a path of triangles decomposition of G, let

$$
A_{k}=\bigcup\left(X_{i}: 1 \leq i \leq 2 n+1 \text { and } i=k \text { modulo } 3\right)(k=0,1,2) .
$$

We have already seen that $\left(G, A_{1}, A_{2}, A_{3}\right)$ is a 3 -coloured graph. For any 3 -coloured graph (G, A, B, C), if there is a path of triangles decomposition $X_{1}, \ldots, X_{2 n+1}$ of G and sets A_{1}, A_{2}, A_{3} as above, with $\left\{A_{1}, A_{2}, A_{3}\right\}=\{A, B, C\}$, we call (G, A, B, C) a canonically-coloured path of triangles graph.

Let \mathcal{Q}_{0} be the class of all 3-coloured graphs (G, A, B, C) such that G has no triangle; let \mathcal{Q}_{1} be the class of all 3-coloured graphs (G, A, B, C) where G is isomorphic to the line graph of $K_{3,3}$; and let \mathcal{Q}_{2} be the class of all canonically-coloured path of triangles graphs. Now we can state the main theorem.
11.1 Every 3 -coloured prismatic graph admits a worn chain decomposition with all terms in $\mathcal{Q}_{0} \cup$ $\mathcal{Q}_{1} \cup \mathcal{Q}_{2}$.

For general orientable prismatic graphs the analogous result is the following.
11.2 Every orientable prismatic graph that is not 3 -colourable is either not 3 -substantial, or a cycle of triangles graph, or a ring of five graph, or a mantled $L\left(K_{3,3}\right)$.

12 Chains of 3-coloured prismatic graphs

Our objective in this section is to develop some useful ways to recognize that our graph admits a worn chain decomposition. We begin with the following. Let us say that a 3 -coloured graph (G, A, B, C) is prime if $V(G) \neq \emptyset$ and (G, A, B, C) cannot be expressed as a worn 2-chain.
12.1 Every 3-coloured prismatic graph admits a worn chain decomposition each term of which is prime.

Proof. Let (G, A, B, C) be a 3-coloured prismatic graph. We proceed by induction on $|V(G)|$. If $V(G)=\emptyset$ we may take the null sequence, and if (G, A, B, C) is prime then we may take the sequence with only one term (G, A, B, C). Hence we may assume that (G, A, B, C) admits a worn 2-chain $\left(G_{1}, A_{1}, B_{1}, C_{1}\right),\left(G_{2}, A_{2}, B_{2}, C_{2}\right)$. Consequently G_{1}, G_{2} both have fewer vertices than G, and so from the inductive hypothesis, each of them admits a worn chain decomposition into prime terms. The sequence obtained by concatenating these two sequences appropriately is a worn chain decomposition of (G, A, B, C) into prime terms. This proves 12.1.

In view of 12.1 , to construct all 3 -coloured prismatic graphs it suffices to construct all prime 3 -coloured prismatic graphs, and now we turn to that.

In this paper, a hypergraph H consists of a finite set $V(H)$ of vertices and a finite set $E(H)$ of edges, where each edge is a nonempty subset of $V(H)$. If H is a hypergraph, we say that $X \subseteq V(H)$ is connected if $X \neq \emptyset$ and there is no partition A, B of X into two nonempty subsets such that every edge of H included in X is included in one of A, B. We say H is connected if $V(H)$ is connected. A component of H is a connected subset of $V(H)$ that is maximal under inclusion.

Let G be prismatic. The hypergraph of triangles of G is the hypergraph with vertex set the core of G and edges the triangles of G. Thus if G has a triangle, then G is triangle-connected if and only if its hypergraph of triangles is connected.
12.2 Let G be prismatic, and suppose that $G \mid\left(V_{1} \cup V_{2}\right)$ admits a 3 -colouring for some two components V_{1}, V_{2} of the hypergraph of triangles of G. Then:

- G admits a 3-colouring, and
- for every 3-colouring (A, B, C) of $G,(G, A, B, C)$ is not prime.

Proof. Let V_{1}, \ldots, V_{n} be the components of the hypergraph of triangles, and for $1 \leq i \leq n$ let $G_{i}=G \mid V_{i}$. By hypothesis, $G \mid\left(V_{1} \cup V_{2}\right)$ admits a 3-colouring; and so for $i=1,2$ there is a 3-colouring $\left(A_{i}, B_{i}, C_{i}\right)$ of G_{i}, such that $A_{1} \cup A_{2}, B_{1} \cup B_{2}$ and $C_{1} \cup C_{2}$ are stable.
(1) A_{1} is complete to one of B_{2}, C_{2} and anticomplete to the other.

For let $a_{1} \in A_{1}$. We prove first that a_{1} is complete to one of B_{2}, C_{2} and anticomplete to the other. For since $a_{1} \in V_{1}$, there is a triangle $\left\{a_{1}, b_{1}, c_{1}\right\}$ of G, where $b_{1} \in B_{1}$ and $c_{1} \in C_{1}$. For every triangle $\left\{a_{2}, b_{2}, c_{2}\right\}$ of G_{2} with $a_{2} \in A_{2}, b_{2} \in B_{2}$ and $c_{2} \in C_{2}$, since a_{1} has a unique neighbour in this triangle and a_{1}, a_{2} are nonadjacent (since $A_{1} \cup A_{2}$ is stable), it follows that a_{1} is adjacent to exactly one of b_{2}, c_{2}. Similarly b_{1} is adjacent to exactly one of c_{2}, a_{2}, and c_{1} to exactly one of a_{2}, b_{2}. Thus the three edges between $\left\{a_{1}, b_{1}, c_{1}\right\}$ and $\left\{a_{2}, b_{2}, c_{2}\right\}$ are either $a_{1} b_{2}, b_{1} c_{2}, c_{1} a_{2}$ or $a_{1} c_{2}, b_{1} a_{2}, c_{1} b_{2}$. We say $\left\{a_{2}, b_{2}, c_{2}\right\}$ is white in the first case and black in the second. Suppose there is both a white triangle and a black triangle in G_{2}. Since G_{2} is triangle-connected, and every triangle in G_{2} is either white or black, it follows that there is a white triangle and a black triangle in G_{2} that share a vertex. From the symmetry we may assume that $\left\{a_{2}, b_{2}, c_{2}\right\}$ is a white triangle, and $\left\{a_{2}, b_{2}^{\prime}, c_{2}^{\prime}\right\}$ is a black triangle, where $a_{2} \in A_{2}, b_{2}, b_{2}^{\prime} \in B_{2}$ and $c_{2}, c_{2}^{\prime} \in C_{2}$. Since $\left\{a_{2}, b_{2}, c_{2}\right\}$ is white, we deduce that $a_{1} b_{2}, b_{1} c_{2}, c_{1} a_{2}$ are edges, and similarly $a_{1} c_{2}^{\prime}, b_{1} a_{2}, c_{1} b_{2}^{\prime}$ are edges; but then a_{2} has two neighbours in $\left\{a_{1}, b_{1}, c_{1}\right\}$, a contradiction. Thus either all triangles in G_{2} are white, or they are all black, and from the symmetry we may assume that they are all white. Hence a_{1} is complete to B_{2} and anticomplete
to C_{2}, as claimed. Choose $b_{2} \in B_{2}$. Similarly b_{2} is complete to one of A_{1}, C_{1} and anticomplete to the other. Since b_{2} is adjacent to a_{1}, it is not anticomplete to A_{1}, and so b_{2} is complete to A_{1}. Since this holds for all $b_{2} \in B_{2}$, it follows that A_{1} is complete to B_{2}. Every vertex in A_{1} is anticomplete to one of B_{2}, C_{2}, and therefore A_{1} is anticomplete to C_{2}. This proves (1).

(2) G admits a 3-colouring.

For from (1) we may assume that the pairs $\left(A_{1}, B_{2}\right),\left(B_{1}, C_{2}\right),\left(C_{1}, A_{2}\right)$ are complete, and the other three pairs $\left(A_{1}, C_{2}\right),\left(B_{1}, A_{2}\right),\left(C_{1}, B_{2}\right)$ are anticomplete. (Note also that the pairs $\left(A_{1}, A_{2}\right),\left(B_{1}, B_{2}\right)$, $\left(C_{1}, C_{2}\right)$ are anticomplete.) Define A_{3}, B_{3}, C_{3} to be the sets of all B_{2}-complete, C_{2}-complete, and A_{2}-complete vertices in $V(G) \backslash\left(V_{1} \cup V_{2}\right)$ respectively. Define A_{4}, B_{4}, C_{4} to be the sets of all C_{1} complete, A_{1}-complete, and B_{1}-complete vertices in $V(G) \backslash\left(V_{1} \cup V_{2} \cup A_{3} \cup B_{3} \cup C_{3}\right)$ respectively. Let $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$, and define B, C similarly. We claim that (A, B, C) is a 3-colouring of G. For A, B, C are pairwise disjoint, from their definition. We must check that they are stable and have union $V(G)$.

To show that A is stable, let $a_{3} \in A_{3}$. Then a_{3} is complete to B_{2}, and has only one neighbour in each triangle of G_{2}, and therefore a_{3} is anticomplete to A_{2}. Moreover, any two members of $A_{1} \cup A_{3}$ have a common neighbour in B_{2}, and therefore are nonadjacent (since V_{1}, V_{2} are components of the hypergraph of triangles of G). We deduce that $A_{1} \cup A_{2} \cup A_{3}$ is stable, and similarly $A_{1} \cup A_{2} \cup A_{4}$ is stable. Suppose that $a_{3} \in A_{3}$ and $a_{4} \in A_{4}$ are adjacent. Since $a_{4} \in A_{4}$, it is not complete to C_{2}; choose $c_{2} \in C_{2}$ nonadjacent to a_{4}. Choose a triangle $\left\{a_{2}, b_{2}, c_{2}\right\}$ with $a_{2} \in A_{2}$ and $b_{2} \in B_{2}$. Since a_{4} has a neighbour in this triangle, and we have already seen that a_{4} is anticomplete to A_{2}, it follows that a_{4} is adjacent to b_{2}; but then $\left\{a_{3}, a_{4}, b_{2}\right\}$ is a triangle, a contradiction (since V_{2} is a component of the hypergraph of triangles). This proves that A_{3} is anticomplete to A_{4}, and so A is stable, and similarly B, C are stable.

To show that $A \cup B \cup C=V(G)$, let $v \in V(G)$. If $v \in V_{1} \cup V_{2}$ then $v \in A \cup B \cup C$, so we may assume that $v \notin V_{1} \cup V_{2}$. Since A_{1} is complete to B_{2}, and no triangle meets both A_{1} and B_{2}, it follows that v is anticomplete to at least one of A_{1}, B_{2}. Similarly v is anticomplete to at least one of B_{1}, C_{2}, and to at least one of C_{1}, A_{2}. Hence v is either anticomplete to at least two of A_{1}, B_{1}, C_{1}, or to at least two of A_{2}, B_{2}, C_{2}. In the first case, since v has a neighbour in every triangle of G_{1}, it follows that v is complete to one of A_{1}, B_{1}, C_{1}, and therefore belongs to $A \cup B \cup C$, a contradiction. The second case is similar. This proves that $A \cup B \cup C=V(G)$, and therefore proves (2).

From (2), the first assertion of the theorem follows. To prove the second assertion, let (A, B, C) be a 3 -colouring of G. Let W be the core of G.

(3) The 3-coloured graph $(G \mid W, A \cap W, B \cap W, C \cap W)$ is not prime.

To see this, for $1 \leq i \leq n$, let $A_{i}=A \cap V\left(G_{i}\right)$, and define B_{i}, C_{i} similarly. For $1 \leq i, j \leq n$ with $i \neq j$, we write $i \rightarrow j$ if the pairs $\left(A_{i}, B_{j}\right),\left(B_{i}, C_{j}\right)$ and $\left(C_{i}, A_{j}\right)$ are complete, and the pairs $\left(A_{i}, C_{j}\right),\left(B_{i}, A_{j}\right)$ and $\left(C_{i}, B_{j}\right)$ are anticomplete. By (1) (with V_{1}, V_{2} replaced by $\left.V_{i}, V_{j}\right)$ it follows that either $i \rightarrow j$ or $j \rightarrow i$, and not both. We claim that this relation is transitive. For let $i, j, k \in\{1, \ldots, n\}$ be distinct, and suppose that $i \rightarrow j$ and $j \rightarrow k$. If $k \rightarrow i$, then $A_{i} \cup B_{j} \cup C_{k}$ includes a triangle, which is impossible. Thus $i \rightarrow k$, and so the relation is transitive. Hence we may
renumber V_{1}, \ldots, V_{n} so that $i \rightarrow j$ if and only if $j>i$. But then

$$
\left(G \mid V_{1}, A_{1}, B_{1}, C_{1}\right),\left(G \mid\left(W \backslash V_{1}\right), A_{2} \cup \cdots \cup A_{n}, B_{2} \cup \cdots \cup B_{n}, C_{2} \cup \cdots \cup C_{n}\right)
$$

is a 2-chain for $(G \mid W, A \cap W, B \cap W, C \cap W)$, and consequently the latter is not prime. This proves (3).

In view of (3) and since $G \mid W$ is triangle-covered, we may choose a 2-chain for ($G \mid W, A \cap W, B \cap$ $W, C \cap W)$, say $\left(F_{i}, A_{i}, B_{i}, C_{i}\right)(i=1,2)$. Define sets $A_{3}, B_{3}, C_{3}, A_{4}, B_{4}, C_{4} \subseteq V(G) \backslash W$ as follows.

- A_{3} is the set of all B_{2}-complete vertices in $A \backslash W$
- B_{3} is the set of all C_{2}-complete vertices in $B \backslash W$
- C_{3} is the set of all A_{2}-complete vertices in $C \backslash W$
- A_{4} is the set of all C_{1}-complete vertices in $A \backslash\left(W \cup A_{3}\right)$
- B_{4} is the set of all A_{1}-complete vertices in $B \backslash\left(W \cup B_{3}\right)$
- C_{4} is the set of all B_{1}-complete vertices in $C \backslash\left(W \cup C_{3}\right)$.
(4) $A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$, and analogous statements hold for B, C.

For let $v \in A$, and suppose that $v \notin A_{1} \cup A_{2} \cup A_{3}$. Thus $v \notin W$. Since $v \notin A_{3}, v$ has a nonneighbour in B_{2}, and since it has no neighbours in A_{2} (because A is stable), it follows that v has a neighbour in C_{2}. Since B_{1} is complete to C_{2} and no triangle meets both B_{1} and C_{2}, it follows that v is anticomplete to B_{1}. Since it is also anticomplete to A_{1}, we deduce that v is complete to C_{1}, and so $v \in A_{4}$. This proves (4).

Let $G_{3}=G \mid\left(V\left(F_{1}\right) \cup A_{3} \cup B_{3} \cup C_{3}\right)$, and $G_{4}=G \mid\left(V\left(F_{2}\right) \cup A_{4} \cup B_{4} \cup C_{4}\right)$. Then $\left(A_{1} \cup A_{3}, B_{1} \cup\right.$ $B_{3}, C_{1} \cup C_{3}$) is a 3 -colouring of G_{3}, by (4), and the analogous statement holds for G_{4}. We claim that

$$
\left(G_{3}, A_{1} \cup A_{3}, B_{1} \cup B_{3}, C_{1} \cup C_{3}\right),\left(G_{4}, A_{2} \cup A_{4}, B_{2} \cup B_{4}, C_{2} \cup C_{4}\right)
$$

is a worn 2-chain for (G, A, B, C). To see this, it suffices from the symmetry to check that

- if $a \in A_{1} \cup A_{3}$ and $c \in C_{2} \cup C_{4}$, then a, c are nonadjacent, and
- if $a \in A_{1} \cup A_{3}$ and $b \in B_{2} \cup B_{4}$, and at least one of $a, b \in W$, then a, b are adjacent.

For the first statement, let $a \in A_{1} \cup A_{3}$ and $c \in C_{2} \cup C_{4}$, and suppose a, c are adjacent. Since a is complete to B_{2}, it follows that c is anticomplete to B_{2}, and in particular $c \notin C_{2}$ (since F_{2} is trianglecovered). Since c is anticomplete to C_{2} (because C is stable), it follows that c is A_{2}-complete. But then $c \in C_{3}$, a contradiction. For the second statement, suppose that $a \in A_{1} \cup A_{3}$ and $b \in B_{2} \cup B_{4}$, and at least one of $a, b \in W$, and a, b are nonadjacent. Since $a \in A_{1} \cup A_{3}, a$ is B_{2}-complete, and so $b \notin B_{2}$, and similarly $a \notin A_{1}$; but then $a, b \notin W$, a contradiction. This proves our claim that (G, A, B, C) admits a worn 2-chain, and consequently is not prime; and therefore completes the proof of 12.2 .

We deduce the following corollary.
12.3 If (G, A, B, C) is a prime 3 -coloured prismatic graph with nonnull core, then G is triangleconnected.

The proof is clear. The next result is another corollary of 12.2 .
12.4 Let G be prismatic and orientable, with nonnull core. If G is not triangle-connected, then G is 3 -colourable.

Proof. Since G has nonnull core and is not triangle-connected, its hypergraph of triangles has at least two components. Let V_{1}, V_{2} be two such components. For $i=1,2$, let $S_{i} \subseteq V_{i}$ be a triangle. Let \mathcal{O} be an orientation of G, and let $\mathcal{O}\left(S_{i}\right)$ be $p_{i} \rightarrow q_{i} \rightarrow r_{i} \rightarrow p_{i}$, where $p_{1} p_{2}, q_{1} q_{2}, r_{1} r_{2}$ are edges. Every vertex in V_{1} is adjacent to exactly one of p_{2}, q_{2}, r_{2}; let A_{1}, B_{1}, C_{1} be the sets of those $v \in V_{1}$ adjacent to p_{2}, q_{2}, r_{2} respectively. Define A_{2}, B_{2}, C_{2} similarly. Certainly $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ are all stable, since no triangle meets both V_{1} and V_{2}. Since $\mathcal{O}\left(S_{2}\right)$ is $p_{2} \rightarrow q_{2} \rightarrow r_{2} \rightarrow p_{2}$ and $a_{1} p_{2}, b_{1} q_{2}, c_{1} r_{2}$ are edges, we have
(1) Let $T_{1} \subseteq V_{1}$ be a triangle, where $T_{1}=\left\{a_{1}, b_{1}, c_{1}\right\}$ and $a_{1} \in A_{1}, b_{1} \in B_{1}$ and $c_{1} \in C_{1}$; then $\mathcal{O}\left(T_{1}\right)$ is $a_{1} \rightarrow b_{1} \rightarrow c_{1} \rightarrow a_{1}$. The analogous statement holds for triangles in V_{2}.

For $i=1,2$, let $T_{i}=\left\{a_{i}, b_{i}, c_{i}\right\}$ be a triangle with $a_{i} \in A_{i}, b_{i} \in B_{i}$ and $c_{i} \in C_{i}$. Each of a_{1}, b_{1}, c_{1} has a neighbour in T_{2}; let us say the pair $\left(T_{1}, T_{2}\right)$ is good if every edge between T_{1} and T_{2} is either between A_{1} and A_{2}, or between B_{1} and B_{2}, or between C_{1} and C_{2}; and bad otherwise.

(2) Every pair $\left(T_{1}, T_{2}\right)$ is good.

For since V_{1}, V_{2} are components, it suffices (from the symmetry between V_{1}, V_{2}) to show that if T_{1} is a triangle in V_{1}, and T_{2}, T_{2}^{\prime} are triangles in V_{2} that share a vertex, and $\left(T_{1}, T_{2}\right)$ is good, then so is $\left(T_{1}, T_{2}^{\prime}\right)$. Let $T_{1}=\left\{a_{1}, b_{1}, c_{1}\right\}, T_{2}=\left\{a_{2}, b_{2}, c_{2}\right\}$, and $T_{2}^{\prime}=\left\{a_{2}^{\prime}, b_{2}^{\prime}, c_{2}\right\}$, where $a_{1} \in A_{1}, b_{1} \in B_{1}, c_{1} \in C_{1}$, $\left\{a_{2}, a_{2}^{\prime}\right\} \subseteq A_{2},\left\{b_{2}, b_{2}^{\prime}\right\} \subseteq B_{2}$ and $c_{2} \in C_{2}$. Since $\left(T_{1}, T_{2}\right)$ is good, it follows that $c_{1} c_{2}$ is an edge. But from (1), $\mathcal{O}\left(T_{1}\right)$ is $a_{1} \rightarrow b_{1} \rightarrow c_{1} \rightarrow a_{1}$ and $\mathcal{O}\left(T_{2}^{\prime}\right)$ is $a_{2}^{\prime} \rightarrow b_{2}^{\prime} \rightarrow c_{2} \rightarrow a_{2}^{\prime}$. Since $c_{1} c_{2}$ is an edge, we deduce that $a_{1} a_{2}^{\prime}$ and $b_{1} b_{2}^{\prime}$ are edges, and so (T_{1}, T_{2}^{\prime}) is good. This proves (2).

Since every vertex of $V_{1} \cup V_{2}$ belongs to a triangle, (2) implies that every edge between V_{1} and V_{2} is either between A_{1} and A_{2}, or between B_{1} and B_{2}, or between C_{1} and C_{2}. In particular, $A_{1} \cup B_{2}, B_{1} \cup C_{2}, C_{1} \cup A_{2}$ are three stable sets, and so $G \mid\left(V_{1} \cup V_{2}\right)$ is 3-colourable. By 12.2, G is 3 -colourable. This proves 12.4.

13 Orientable and not 3-colourable

In this section we complete the proof of 11.2. We need two more lemmas. The first is the following. ($K_{3,3} \backslash e$ is the graph obtained from $K_{3,3}$ by deleting one edge.)
13.1 Let G be prismatic and triangle-connected, with core W. Suppose that $(G \mid W, A, B, C)$ and $\left(G \mid W, A^{\prime}, B^{\prime}, C^{\prime}\right)$ are 3 -coloured graphs with $\{A, B, C\} \neq\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}$. Then either

- $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$ or to $L\left(K_{3,3} \backslash e\right)$, or
- there is a clique $X \subseteq W$ with $1 \leq|X| \leq 2$ such that every triangle has nonempty intersection with X.

Proof. For more convenient notation, let $W_{1}=A, W_{2}=B, W_{3}=C$ and $W^{1}=A^{\prime}, W^{2}=B^{\prime}, W^{3}=$ C^{\prime}. For $1 \leq i, j \leq 3$, let $W_{j}^{i}=W^{i} \cap W_{j}$. Thus W is the union of the nine pairwise disjoint sets W_{j}^{i}. Let T be a triangle of G, with $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Let $t_{k} \in W_{j_{k}}^{i_{k}}$ for $k=1,2,3$. Thus i_{1}, i_{2}, i_{3} are distinct, and so are j_{1}, j_{2}, j_{3}; and so the map sending i_{k} to j_{k} for $k=1,2,3$ is a permutation of $\{1,2,3\}$, denoted by $\pi(T)$. The sign of this permutation is called the sign of T. (Thus, the identity map and the two cyclic permutations have positive sign, and the three involutions have negative sign.)
(1) If S, T are triangles with opposite sign, then $S \cap T \neq \emptyset$.

For from the symmetry we may assume that $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ where $s_{i} \in W_{i}^{i}$ for $i=1,2,3$, and $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ where $t_{1} \in W_{2}^{1}, t_{2} \in W_{1}^{2}$ and $t_{3} \in W_{3}^{3}$. Suppose that $S \cap T=\emptyset$. Since t_{1} has a neighbour in S, and is nonadjacent to s_{1}, s_{2} (because W^{1}, W_{2} are stable), it follows that t_{1} is adjacent to s_{3}. Similarly t_{2} is adjacent to s_{3}, and so s_{3} has two neighbours in T, a contradiction. This proves (1).

Let Π be the set of all (six) permutations of $\{1,2,3\}$. For each $\pi \in \Pi$, let $X(\pi)$ be the union of all the triangles T with $\pi(T)=\pi$.
(2) Not all triangles have the same sign.

For suppose they do; they all have positive sign say. Let $\pi_{1}, \pi_{2}, \pi_{3} \in \Pi$ be the permutations with positive sign. Any two triangles S, T with the same sign with $\pi(S) \neq \pi(T)$ are disjoint, and so $X\left(\pi_{1}\right), X\left(\pi_{2}\right), X\left(\pi_{3}\right)$ are pairwise disjoint. Moreover their union is W, and since G is triangleconnected and every triangle is a subset of one of $\left.X\left(\pi_{1}\right), X\left(\pi_{2}\right), X_{(} \pi_{3}\right)$, it follows that two of these sets are empty. We may therefore assume that $\pi(T)=\pi_{1}$ for all triangles T, where π_{1} is the identity permutation say. Since every vertex of W belongs to a triangle, and so belongs to W^{k} if and only if it belongs to W_{k} (for $k=1,2,3$), it follows that $W^{k}=W_{k}$ for $k=1,2,3$, contradicting that $\{A, B, C\} \neq\left\{A^{\prime}, B^{\prime}, C^{\prime}\right\}$. This proves (2).
(3) If there are two triangles T_{1}, T_{2} with positive sign and with $\pi\left(T_{1}\right) \neq \pi\left(T_{2}\right)$, and two triangles T_{1}, T_{2} with negative sign and with $\pi\left(T_{3}\right) \neq \pi\left(T_{4}\right)$, then $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$ or to $L\left(K_{3,3} \backslash e\right)$.

For in this case, suppose that T, T^{\prime} are triangles with $\pi(T)=\pi\left(T^{\prime}\right)$. From the symmetry we may assume that $\pi(T)$ is the identity permutation. By (1) T, T^{\prime} both meet T_{3} and T_{4}, and therefore both contain the unique vertex of T_{3} that lies in $W_{1}^{1} \cup W_{2}^{2} \cup W_{3}^{3}$, and the unique vertex of T_{4} that lies in the same set. Hence $\left|T \cap T^{\prime}\right| \geq 2$ and so $T=T^{\prime}$. Thus G has between four and six triangles, all with $\pi(T)$ different. From this and (1), it follows that $\left|W_{j}^{i}\right| \leq 1$ for $1 \leq i, j \leq 3$; and so $G \mid W$ is isomorphic to one of $L\left(K_{3,3}\right), L\left(K_{3,3} \backslash e\right)$, and the theorem holds. This proves (3).

In view of (3), we may assume that for every triangle T, if T has positive sign then $\pi(T)$ is the identity. From (2), some triangle S has positive sign; say $S=\left\{s_{1}^{1}, s_{2}^{2}, s_{3}^{3}\right\}$ where $s_{i}^{i} \in W_{i}^{i}$ for $i=1,2,3$. Again from (2), there is a triangle T with negative sign, and by (1) we may assume $T=\left\{t_{2}^{1}, t_{1}^{2}, s_{3}^{3}\right\}$ where $t_{2}^{1} \in W_{2}^{1}$ and $t_{1}^{2} \in W_{1}^{2}$. Suppose that some triangle $R \neq S$ also has positive sign; say $R=\left\{r_{1}^{1}, r_{2}^{2}, r_{3}^{3}\right\}$ where $r_{i}^{i} \in W_{i}^{i}$ for $i=1,2,3$. Since R meets T, it follows that $r_{3}^{3}=s_{3}^{3}$. We claim that every triangle contains s_{3}^{3}. For we have seen this already for triangles of positive sign; and if T^{\prime} has negative sign then since it meets both R and S, and $r_{i}^{i} \neq s_{i}^{i}$ for $i=1,2$, it follows that T contains s_{3}^{3} as claimed. Thus in this case the second statement of the theorem holds with $X=\left\{s_{3}^{3}\right\}$.

Consequently we may assume that S is the only triangle that has positive sign. Every triangle with negative sign contains one of $s_{1}^{1}, s_{2}^{2}, s_{3}^{3}$, and so we may assume that there are three triangles T_{1}, T_{2}, T_{3}, all with negative sign and with $s_{i}^{i} \in T_{i}$ for $i=1,2,3$ (for otherwise the second statement of the theorem holds). Thus there exist $s_{j}^{i} \in W_{j}^{i}$ for all distinct $i, j \in\{1,2,3\}$, such that $\left\{s_{1}^{1}, s_{3}^{2}, s_{2}^{3}\right\}$, $\left\{s_{3}^{1}, s_{2}^{2}, s_{1}^{3}\right\}$ and $\left\{s_{2}^{1}, s_{1}^{2}, s_{3}^{3}\right\}$ are triangles. Since s_{2}^{1} has a neighbour in $\left\{s_{3}^{1}, s_{2}^{2}, s_{1}^{3}\right\}$, and is nonadjacent to s_{3}^{1}, s_{2}^{2}, it follows that s_{2}^{1} is adjacent to s_{1}^{3}. Similarly every two of $s_{2}^{1}, s_{3}^{2}, s_{1}^{3}$ are adjacent; but then they form a second triangle with positive sign, a contradiction. This proves 13.1.

The next lemma is a convenient corollary of 13.1 and 8.2.
13.2 Let G be prismatic and 3 -substantial, with core W. If $G \mid W$ is a core path of triangles graph, then G is 3 -colourable.

Proof. Let $X_{1}, \ldots, X_{2 n+1}$ be a core path of triangles decomposition of $G \mid W$. For $k=1,2,3$, let $A_{k}=\bigcup\left(X_{i}: 1 \leq i \leq 2 n+1\right.$ and $i=k$ modulo 3). For each vertex $v \in V(G) \backslash W$, let N_{v} be the set of neighbours of v in W. By $8.2, N_{v}$ is disjoint from at least one of A_{1}, A_{2}, A_{3}. Let B_{1} be the set of all $v \in V(G) \backslash W$ such that $N_{v} \cap A_{2}, N_{v} \cap A_{3} \neq \emptyset$, and define B_{2}, B_{3} similarly. For $i=1,2,3$ let C_{i} be the set of all $v \in V(G) \backslash W$ such that $N_{v} \subseteq A_{i}$. (Note that if $v \in C_{i}$ then $N_{v}=A_{i}$, since N_{v} meets every triangle.) The sets $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}, C_{3}$ are pairwise disjoint and have union $V(G) \backslash W$.
(1) For $i=1,2,3, A_{i} \cup B_{i}$ is stable.

Let $i=3$ say. Certainly A_{3} is stable; and by definition of B_{3}, B_{3} is anticomplete to A_{3}. Suppose that there exist $u, v \in B_{3}$, adjacent. For $i=1,2$ let U_{i}, V_{i} be the set of neighbours in A_{i} of u, v respectively. Since u is in no triangle, it follows that $U_{i} \cap V_{i}=\emptyset$ for $i=1,2$. We claim that $U_{1} \cup V_{1}=A_{1}$; for suppose that there exists $a_{1} \in A_{1} \backslash\left(U_{1} \cup V_{1}\right)$. Choose a triangle $\left\{a_{1}, a_{2}, a_{3}\right\}$ with $a_{2} \in A_{2}$ and $a_{3} \in A_{3}$. Since $U_{2} \cap V_{2}=\emptyset$, not both u, v are adjacent to a_{2}, and since neither of them is adjacent to a_{1}, a_{3}, not both u, v have a neighbour in this triangle, a contradiction. This proves that $U_{1} \cup V_{1}=A_{1}$, and similarly $U_{2} \cup V_{2}=A_{2}$. Hence N_{u}, N_{v} are disjoint and have union $A_{1} \cup A_{2}$. But N_{u}, N_{v} are both stable, and so (N_{u}, N_{v}, A_{3}) is a 3-colouring of $G \mid W$. Since G is 3 -substantial and $L\left(K_{3,3}\right)$ is not a core path of triangles graph, 13.1 implies that N_{u} is one of A_{1}, A_{2}, a contradiction since $u \in B_{3}$. This proves (1).

Now for $i=1,2,3, C_{i}$ is stable since its members are not in the core and have a common neighbour. Moreover, $A_{2} \cup A_{3}$ is anticomplete to C_{1} by definition, and if $x \in B_{2} \cup B_{3}$ then x has a neighbour (in A_{1}) which is adjacent to every vertex of C_{1}, and therefore x is anticomplete to C_{1}. In particular, $A_{2} \cup B_{2} \cup C_{1}$ is stable, and so are $A_{3} \cup B_{3} \cup C_{2}$ and $A_{1} \cup B_{1} \cup C_{3}$. Since these three sets have union $V(G)$, it follows that G is 3 -colourable. This proves 13.2.

Proof of 11.2. Let G be prismatic, orientable and not 3 -colourable, and let W be its core. We may assume that G is 3 -substantial, for otherwise the theorem holds. By 12.4 , it follows that G is triangle-connected. By 4.2, either $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$, or $G \mid W$ is a core cycle of triangles graph, or $G \mid W$ is a core path of triangles graph. If $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$, then G is a mantled $L\left(K_{3,3}\right)$ by 10.3, and the theorem holds. If $G \mid W$ is a core cycle of triangles graph, then by 9.1 and 10.2 , either G is a cycle of triangles graph, or G is a ring of five graph, and in either case the theorem holds. If $G \mid W$ is a path of triangles graph, then by $13.2 G$ is 3 -colourable, a contradiction. This proves 11.2.

14 The 3-colourable case

It remains to prove 11.1; and in view of 12.1 , it suffices to show that the following:
14.1 If (G, A, B, C) is a prime 3-coloured triangle-connected prismatic graph, then $(G, A, B, C) \in$ $\mathcal{Q}_{0} \cup \mathcal{Q}_{1} \cup \mathcal{Q}_{2}$.
(We recall that $\mathcal{Q}_{0}, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ were defined just before the statement of 11.1.) This therefore is the goal of the remainder of the paper. Here is an immensely useful lemma.
14.2 Let (G, A, B, C) be a prime 3 -coloured prismatic graph, with nonnull core W. Then every vertex in $V(G) \backslash W$ has neighbours in exactly two of $W \cap A, W \cap B, W \cap C$.

Proof. Certainly no vertex in $V(G) \backslash W$ has neighbours in all three of $W \cap A, W \cap B, W \cap C$, since it belongs to one of A, B, C and these three sets are stable. Since W is nonnull and therefore W includes a triangle, every vertex in $V(G) \backslash W$ has at least one neighbour in W. Let

$$
\begin{aligned}
& A_{1}=\{v \in A \backslash W: v \text { is } C \cap W \text {-anticomplete }\} \\
& B_{1}=\{v \in B \backslash W: v \text { is } A \cap W \text {-anticomplete }\} \\
& C_{1}=\{v \in C \backslash W: v \text { is } B \cap W \text {-anticomplete }\}
\end{aligned}
$$

and define $A_{2}=A \backslash A_{1}, B_{2}=B \backslash B_{1}$ and $C_{2}=C \backslash C_{1}$. Let $V_{i}=A_{i} \cup B_{i} \cup C_{i}$, and let $G_{i}=G \mid V_{i}$ for $i=1,2$. Then $W \subseteq V_{2}$ and so $V_{2} \neq \emptyset$; suppose that also $V_{1} \neq \emptyset$. Then $\left(G_{i}, A_{i}, B_{i}, C_{i}\right)(i=1,2)$ is a 2 -term sequence of 3 -coloured prismatic graphs, and we claim it is a worn 2 -chain for (G, A, B, C). To show this, it suffices (from the symmetry between A, B, C) to show that if $u \in A_{1}$ (and hence $u \notin W)$ then

- u is anticomplete to $A_{2} \cup C_{2}$, and
- if u is nonadjacent to $v \in B_{2}$ then $v \notin W$.

Now u has no neighbour in A_{2} and hence none in $A \cap W$ since A is stable, and no neighbour in $C \cap W$ from the definition of A_{1}. On the other hand every vertex in $B \cap W$ is in a triangle T, and u has a neighbour in T; and consequently u is $B \cap W$-complete. This proves the second assertion above. For the first assertion, we already saw that u is A_{2}-anticomplete, so let $v \in C_{2}$. We claim that v has a neighbour in $B \cap W$. For if $v \in W$ then v belongs to a triangle with a vertex in $B \cap W$, and if $v \in C \backslash W$ then v has a neighbour in $B \cap W$ since $v \notin C_{1}$. This proves the claim. Since u is
$B \cap W$-complete, it follows that there is a vertex in $B \cap W$ adjacent to both u, v. Since u is in no triangle, it follows that u, v are nonadjacent. This proves that u is anticomplete to C_{2}, and therefore proves that (G, A, B, C) admits a worn 2 -chain, a contradiction since it is prime. We deduce that $V_{1}=\emptyset$. Thus every vertex in $A \backslash W$ has a neighbour in $C \cap W$, and similarly has a neighbour in $B \cap W$ (and evidently has none in $A \cap W$, since A is stable), and the result follows.

To complement 13.1, we prove the following.
14.3 Let (G, A, B, C) be a prime 3 -coloured prismatic graph with nonnull core, and let W be the core of G.

- If $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$ then $(G, A, B, C) \in \mathcal{Q}_{1}$.
- If G is not 3 -substantial then $(G, A, B, C) \in \mathcal{Q}_{2}$.

Proof. Suppose first that $G \mid W$ is isomorphic to $L\left(K_{3,3}\right)$. Thus $|W|=9$, and we may number $W=\left\{w_{j}^{i}: 1 \leq i, j \leq 3\right\}$ such that distinct $w_{j}^{i}, w_{j^{\prime}}^{i^{\prime}}$ are adjacent if and only if $i \neq i^{\prime}$ and $j \neq j^{\prime}$. Since the three sets A, B, C are stable and their union includes W, we may assume that

$$
\begin{aligned}
& A \cap W=\left\{w_{1}^{1}, w_{1}^{2}, w_{1}^{3}\right\} \\
& B \cap W=\left\{w_{2}^{1}, w_{2}^{2}, w_{2}^{3}\right\} \\
& C \cap W=\left\{w_{3}^{1}, w_{3}^{2}, w_{3}^{3}\right\} .
\end{aligned}
$$

If there exists $v \in A \backslash W$, let N be the set of neighbours of v in W. Then N satisfies:

- N is stable (since v is in no triangle)
- N is disjoint from $A \cap W$ (since A is stable)
- N meets every triangle (since G is prismatic), and
- N has nonempty intersection with both B and C (by 14.2 , since (G, A, B, C) is prime).

But there is no such subset in $L\left(K_{3,3}\right)$, and so v does not exist. Hence $A \subseteq W$, and similarly $B, C \subseteq W$, and so $W=V(G)$ and $(G, A, B, C) \in \mathcal{Q}_{1}$ as required.

Next suppose that $G \mid W$ is isomorphic to $L\left(K_{3,3} \backslash e\right)$. Thus $|W|=8$, and W can be numbered as

$$
W=\left\{w_{j}^{i}: 1 \leq i, j, \leq 3 \text { and }(i, j) \neq(3,3)\right\}
$$

where distinct w_{j}^{i}, $w_{j^{\prime}}^{i^{\prime}}$ are adjacent if and only if $i \neq i^{\prime}$ and $j \neq j^{\prime}$. From the symmetry we may assume that

$$
\begin{aligned}
& A \cap W=\left\{w_{1}^{1}, w_{1}^{2}, w_{1}^{3}\right\} \\
& B \cap W=\left\{w_{2}^{1}, w_{2}^{2}, w_{2}^{3}\right\} \\
& C \cap W=\left\{w_{3}^{1}, w_{3}^{2}\right\} .
\end{aligned}
$$

As before, it follows that $A, B \subseteq W$, but the argument does not quite work for C. Suppose that there exists $v \in C \backslash W$, and let N be its set of neighbours in W. Then again, N is stable, meets all triangles, is disjoint from C and meets both A and B, but there is one such subset, namely
$\left\{w_{1}^{3}, w_{2}^{3}\right\}$. Thus every vertex not in W belongs to C and its neighbour set in W is $\left\{w_{1}^{3}, w_{2}^{3}\right\}$. But then $(G, A, B, C) \in \mathcal{Q}_{2}$. To see this let $n=3$, and let

$$
\begin{aligned}
X_{1} & =\emptyset \\
\hat{X}_{2}=X_{2} & =\left\{w_{1}^{3}\right\} \\
M_{3}=X_{3} & =\left\{w_{2}^{1}, w_{2}^{2}\right\} \\
\hat{X}_{4} & =\left\{w_{3}^{1}, w_{3}^{2}\right\} \\
X_{4} & =\left\{w_{3}^{1}, w_{3}^{2}\right\} \cup(V(G) \backslash W) \\
M_{5}=X_{5} & =\left\{w_{1}^{1}, w_{1}^{2}\right\} \\
\hat{X}_{6}=X_{6} & =\left\{w_{2}^{3}\right\} \\
X_{7} & =\emptyset
\end{aligned}
$$

with all the sets L_{i}, R_{i} empty.
Next, suppose that there is a vertex c that belongs to every triangle of G. We may assume that $c \in C$. Let the triangles containing c be $\left\{a_{i}, b_{i}, c\right\}$ for $1 \leq i \leq k$. Let $v \in V(G) \backslash W$. If v is adjacent to c, then it is anticomplete to both $A \cap W$ and $B \cap W$ (since v is in no triangle), contrary to 14.2 ; so c has no other neighbours. By $14.2, v$ has a neighbour in $A \cap W$ and a neighbour in $B \cap W$, and therefore $v \in C$. For $1 \leq i \leq k, v$ is adjacent to exactly one of a_{i}, b_{i}; and so by setting $n=1$, $X_{1}=A, \hat{X}_{2}=\{c\}, X_{2}=C, X_{3}=B$, we see that $(G, A, B, C) \in \mathcal{Q}_{2}$.

Next, suppose that there exist adjacent $a, b \in V(G)$ so that every triangle contains one of a, b. We may assume that $a \in A$ and $b \in B$, and that not every triangle contains a, so at least one contains b and not a, and similarly at least one contains a and not b. Every vertex in W is in a triangle containing a or b, and so is adjacent to a or b (or both). Let

$$
\begin{aligned}
& A_{b}=\{v \in(A \cap W) \backslash\{a\}: v \text { is adjacent to } b\} \\
& B_{a}=\{v \in(B \cap W) \backslash\{b\}: v \text { is adjacent to } a\} \\
& C_{b}=\{v \in C \cap W: v \text { is adjacent to } b \text { and not to } a\} \\
& C_{a}=\{v \in C \cap W: v \text { is adjacent to } a \text { and not to } b\} \\
& C_{0}=\{v \in C \cap W: v \text { is adjacent to both } a \text { and } b .\}
\end{aligned}
$$

Thus these five sets are pairwise disjoint and have union $W \backslash\{a, b\}$. Every triangle that contains a and not b is a subset of $\{a\} \cup B_{a} \cup C_{a}$, and every triangle containing b and not a is a subset of $\{b\} \cup A_{b} \cup C_{b}$. Moreover A_{b} is matched with C_{b}, and B_{a} is matched with C_{a}. Since by $12.3 G$ is triangle-connected, it follows that some (necessarily unique) triangle contains both a, b, and so $\left|C_{0}\right|=1$, say $C_{0}=\{c\}$. If $u \in C_{a}$, then u is anticomplete to $\{b\} \cup C_{b}$, and since u has a neighbour in every triangle that contains b and not a, it follows that u is A_{b}-complete. Hence C_{a} is complete to A_{b}, and similarly C_{b} is complete to B_{a}. Let $v \in V(G) \backslash W$, and let N be the set of neighbours of v in W. If v is adjacent to c, then from the symmetry we may assume that $v \in A$, and since N meets every triangle that contains b and not a, and $N \cap\left(A_{b} \cup\{a\}\right)=\emptyset$, it follows that $C_{b} \subseteq N$. Since B_{a} is complete to C_{b} and $C_{b} \neq \emptyset$, and v is in no triangle, it follows that v is anticomplete to B_{a}; but then v is anticomplete to both $A \cap W$ and $B \cap W$, contrary to 14.2. Thus every neighbour of c belongs to W. Now suppose that $v \in V(G) \backslash W$ is adjacent to a. Since a is complete to $B \cap W$, it follows that v has no neighbours in $B \cap W$, and so by 14.2, v has neighbours in both $A \cap W$ and in $C \cap W$.

Consequently $v \in B$. Let B_{0} be the set of all such v, that is, all $v \in B \backslash W$ that are adjacent to a. Similarly let A_{0} be the set of all $v \in A \backslash W$ that are adjacent to b. Then $V(G) \backslash W=A_{0} \cup B_{0}$. Let $n=2$, and let

$$
\begin{aligned}
R_{1}=X_{1} & =B_{a} \\
\hat{X}_{2} & =\{a\} \\
X_{2} & =\{a\} \cup A_{0} \\
L_{3} & =C_{a} \\
M_{3} & =\{c\} \\
R_{3} & =C_{b} \\
X_{3} & =C \\
\hat{X}_{4} & =\{b\} \\
X_{4} & =\{b\} \cup B_{0} \\
L_{5}=X_{5} & =A_{b} .
\end{aligned}
$$

This sequence shows that $(G, A, B, C) \in \mathcal{Q}_{2}$.
Finally, suppose that there exist nonadjacent $a_{0}, b_{0} \in V(G)$ so that every triangle contains one of a_{0}, b_{0}. By what we already proved, we may assume that there is no clique of cardinality at most two meeting all triangles, and $G \mid W$ is not isomorphic to $L\left(K_{3,3} \backslash e\right)$. There is at least one triangle containing a_{0} with nonempty intersection with a triangle containing b_{0}, since G is triangle-connected. Since no clique with cardinality at most two meets every triangle, it follows that a_{0} is in at least two triangles, and so is b_{0}. Define \hat{X}_{4} to be the set of all vertices v such that some triangle contains v, a_{0}, and some triangle contains v, b_{0}. Now there are four kinds of triangles in G; those containing a_{0} and a vertex of \hat{X}_{4}; those containing b_{0} and a vertex of \hat{X}_{4}; those containing a_{0} disjoint from \hat{X}_{4}; and those containing b_{0} disjoint from \hat{X}_{4}. We call them left inner, right inner, left outer and right outer respectively. Let $\hat{X}_{2}=\left\{a_{0}\right\}, \hat{X}_{6}=\left\{b_{0}\right\}$. Let $X_{1}=R_{1}$ be the set of vertices in left outer triangles that are adjacent to b_{0}, and let L_{3} be the vertices different from a_{0} that are in left outer triangles and are not adjacent to b_{0} Similarly, let $X_{7}=L_{7}$ be the set of neighbours of a_{0} in right outer triangles, and R_{5} the set of nonneighbours of a_{0} in right outer triangles (different from b_{0}). Let M_{3} be the set of all vertices in left inner triangles and not in $\hat{X}_{4} \cup\left\{a_{0}\right\}$, and let M_{5} be those in right inner triangles and not in $\hat{X}_{4} \cup\left\{b_{0}\right\}$. Let $X_{3}=L_{3} \cup M_{3}$, and $X_{5}=M_{5} \cup R_{5}$. The sets

$$
R_{1}, \hat{X}_{2}, L_{3}, M_{3}, \hat{X}_{4}, M_{5}, R_{5}, \hat{X}_{6}, L_{7}
$$

are pairwise disjoint, and have union the core W. It follows that the sequence

$$
X_{1}, \hat{X}_{2}, X_{3}, \hat{X}_{4}, X_{5}, \hat{X}_{6}, X_{7}
$$

is a core path of triangles decomposition of $G \mid W$ (note that since a_{0} is in at least two triangles, it follows that if $R_{1}=\emptyset$ then $\left|\hat{X}_{4}\right|>1$, and the same holds for b_{0}). By 13.1, we may assume that $\hat{X}_{2}, X_{5} \subseteq A$, and $X_{3}, \hat{X}_{6} \subseteq B$, and $X_{1}, \hat{X}_{4}, X_{7} \subseteq C$.

Let us examine the vertices not in the core. Define X_{2}, X_{4}, X_{6} as follows:

- let X_{2} be the union of \hat{X}_{2} and the set of all vertices in A that are nonadjacent to b_{0} and complete to $\hat{X}_{4} \cup L_{7}$;
- let X_{4} be the union of \hat{X}_{4} and the set of all vertices $v \in C \backslash W$ that are adjacent to both a_{0}, b_{0} and have no other neighbours in W;
- let X_{6} be the union of \hat{X}_{6} and the set of all vertices in B that are nonadjacent to a_{0} and complete to $\hat{X}_{4} \cup R_{1}$.
We claim that every vertex not in the core belongs to one of X_{2}, X_{4}, X_{6}. For let $v \in V(G) \backslash W$. If v is adjacent to both a_{0}, b_{0}, then it has no other neighbours in the core and $v \in C$, and so $v \in X_{4}$. Next, suppose that v is adjacent to b_{0} and not to a_{0}. Then v is anticomplete to $R_{1}, M_{4}, R_{5}, M_{5}, L_{7}$ (since these are all complete to b_{0}), and therefore every neighbour of v in W belongs to B, contrary to 14.2 . Similarly every vertex not in $W \cup X_{4}$ is nonadjacent to both a_{0}, b_{0}. Let v be such a vertex. If $v \in A$, then v has no neighbours in $M_{5} \cup\left\{b_{0}\right\}$, and so v is complete to \hat{X}_{4}; and v has no neighbours in R_{5}, and so is complete to L_{7}, and consequently $v \in X_{2}$. Similarly if $v \in B$ then $v \in X_{6}$. We therefore suppose that $v \in C$. Hence v is anticomplete to \hat{X}_{4}, and therefore complete to $M_{3} \cup M_{5}$. We deduce that M_{3} is anticomplete to M_{5}, and so $\left|\hat{X}_{4}\right|=1$. Also, since M_{5} is complete to L_{3} and v is complete to L_{3}, we deduce that $L_{3}=\emptyset$, contradicting that a_{0} is in at least two triangles. Thus, no such v exists. This proves our claim that every vertex not in the core belongs to one of X_{2}, X_{4}, X_{6}.

Since X_{2}, X_{6} are complete to \hat{X}_{4}, they are anticomplete to each other. It follows that

$$
X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}
$$

is a path of triangles decomposition of G. But $A=X_{2} \cup X_{5}, B=X_{3} \cup X_{6}$, and $C=X_{1} \cup X_{4} \cup X_{7}$, and so $(G, A, B, C) \in \mathcal{Q}_{2}$. This completes the proof of 14.3.

Now we can complete the proof of the characterization for 3-coloured prismatic graphs.
Proof of 14.1. Let (G, A, B, C) be a prime 3 -coloured prismatic graph. Let W be the core of G. If $W=\emptyset$ then $(G, A, B, C) \in \mathcal{Q}_{0}$ as required, so we assume that W is nonnull. By $12.3, G$ is triangleconnected. By 14.3, we may assume that $G \mid W$ is 3 -substantial and not isomorphic to $L\left(K_{3,3}\right)$. By 3.1, $G \mid W$ is a core path of triangles graph. Hence by 13.1 if $G \mid W$ is not isomorphic to $L\left(K_{3,3}\right) \backslash e$, and by inspection if $G \mid W$ is isomorphic to $L\left(K_{3,3}\right) \backslash e$, it follows that $(G \mid W, A \cap W, B \cap W, C \cap W) \in \mathcal{Q}_{2}$. Every vertex not in the core has neighbours in exactly two of $A \cap W, B \cap W, C \cap W$, by 14.2 . By $9.2, G$ is a path of triangles graph. Hence there is a 3 -colouring $\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ of G with $\left(G, A^{\prime}, B^{\prime}, C^{\prime}\right) \in \mathcal{Q}_{2}$, and by 13.1, we may assume that $A \cap W \subseteq A^{\prime}, B \cap W \subseteq B^{\prime}$ and $C \cap W \subseteq C^{\prime}$. Since every vertex not in the core has neighbours in exactly two of $A \cap W, B \cap W, C \cap W$, it follows that $A^{\prime}=A, B^{\prime}=B$ and $C^{\prime}=C$, and so $(G, A, B, C) \in \mathcal{Q}_{2}$. This proves 14.1, and therefore proves 11.1.

As we observed earlier, this also completes the proof of 11.1.

15 Four-colouring

For an application in a future paper, it is convenient now to prove a lemma. This will avoid having to redefine "path of triangles graph" and all the rest in that paper. We wish to prove the following.
15.1 Let G be an orientable prismatic graph with nonnull core.

- If G is a mantled $L\left(K_{3,3}\right)$, then there are twelve stable sets of G so that every vertex is in three of them.
- If not, then G is 4-colourable.

Proof. Suppose first that G is a mantled $L\left(K_{3,3}\right)$. Then $V(G)$ is the union of seven sets $W=$ $\left\{a_{j}^{i}: 1 \leq i, j \leq 3\right\}, V^{1}, V^{2}, V^{3}, V_{1}, V_{2}, V_{3}$, with adjacency as in the definition of a mantled $L\left(K_{3,3}\right)$. Reading the subscripts and superscripts modulo 3, we see that the nine sets

$$
V^{i} \cup V_{j} \cup\left\{a_{k}^{i+1}: k \in\{1,2,3\} \backslash\{j\}\right\}(1 \leq i, j \leq 3)
$$

are all stable, and so are the three sets $\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}(1 \leq i \leq 3)$; and every vertex is in exactly three of these twelve sets. This proves the first claim.

Now we assume that G is not a mantled $L\left(K_{3,3}\right)$, and let W be its core.
(1) If there is a stable set $X \subseteq V(G)$ such that $G \backslash X$ has a triangle and the hypergraph of triangles of $G \backslash X$ is not connected, then G is 4-colourable.

For since $G \backslash X$ is prismatic and orientable, 12.4 implies that $G \backslash X$ is 3-colourable, and therefore G is 4 -colourable, as required. This proves (1).
(2) If G is 3 -substantial then G is 4-colourable.

For suppose that G is 3 -substantial. We may assume that G is not 3 -colourable, and so by 11.2 , G is either a cycle of triangles graph, or a ring of five graph. In either case $G \mid W$ is a core cycle of triangles graph. Let $X_{1}, \ldots, X_{2 n}$ be a core cycle of triangles decomposition of $G \mid W$. Thus $n \geq 5$. Let $X=X_{1} \cup X_{5}$. Then X is stable, and every triangle of $G \backslash X$ either meets $X_{2} \cup X_{4}$ or meets $X_{6} \cup \cdots \cup X_{2 n}$; there is a triangle of each type, and no triangle of the first kind intersects any triangle of the second kind. Hence the hypergraph of triangles of $G \backslash X$ is disconnected, and the claim follows from (1). This proves (2).
(3) If some vertex belongs to every triangle of G then G is 4-colourable.

For suppose that c belongs to every triangle. Choose a triangle $T=\{a, b, c\}$, and let A, B, C be the sets of vertices in $V(G) \backslash T$ adjacent to a, b, c respectively. Thus A, B, C, T are pairwise disjoint and have union $V(G)$. Since every triangle contains c, it follows that A, B are both stable. The subgraph induced on $C \cup\{a, b\}$ is a matching and so is 2 -colourable; let X, Y be disjoint stable sets with union $C \cup\{a, b\}$. Then $X, Y, A, B \cup\{c\}$ are four stable sets with union $V(G)$. This proves (3).
(4) If there exist two adjacent vertices a, b so that every triangle contains one of a, b, then G is 4-colourable.

For by (3) we may assume that some triangle contains a and not b, and some triangle contains b and not a. Let X be the set of all (at most one) vertices that are adjacent to both a, b. Then X is stable, and the hypergraph of triangles of $G \backslash X$ is not connected, and the claim follows from (2). This proves (4).
(5) If there exist nonadjacent a_{0}, b_{0} so that every triangle contains one of a_{0}, b_{0}, then G is 4 -colourable.

For by (4), we may assume that there is no clique of cardinality at most two meeting all triangles. Define

$$
X_{1}=R_{1}, \hat{X}_{2}, L_{3}, M_{3}, X_{3}, \hat{X}_{4}, M_{5}, R_{5}, \hat{X}_{6}, X_{7}=L_{7}
$$

as in the proof of 14.3 . As in that proof, it follows that the sequence

$$
X_{1}, \hat{X}_{2}, X_{3}, \hat{X}_{4}, X_{5}, \hat{X}_{6}, X_{7}
$$

is a core path of triangles decomposition of $G \mid W$. If $R_{1} \neq \emptyset$, then the hypergraph of triangles of $G \backslash M_{3}$ is not connected, and the result follows from (2). We assume that $R_{1}=\emptyset$, and consequently $L_{3}=\emptyset$. Similarly we may assume that $R_{5}=L_{7}=\emptyset$. If $\left|\hat{X}_{4}\right|=1$, then $\hat{X}_{4} \cup X_{2}$ meets all triangles and is a clique of cardinality 2 , a contradiction, so $\left|\hat{X}_{4}\right| \geq 2$. For each $x \in \hat{X}_{4}$, let $r_{x} \in M_{3}$ be the vertex such that $\left\{a_{0}, x, r_{x}\right\}$ is a triangle, and define $s_{x} \in M_{5}$ similarly. Let $v \in V(G) \backslash W$, and let N be the set of neighbours of v in W. We say:

- $v \in C$ if $N=\left\{a_{0}, b_{0}\right\}$
- $v \in A$ if $N=\left\{a_{0}\right\} \cup M_{5}$
- $v \in B$ if $N=\left\{b_{0}\right\} \cup M_{3}$
- $c \in D_{0}$ if $N=\hat{X}_{4}$
- $c \in D_{x}$ for $x \in \hat{X}_{4}$ if $N=\left(\hat{X}_{4} \backslash\{x\}\right) \cup\left\{r_{x}, s_{x}\right\}$.

It follows that the sets A, B, C, D_{0} and $D_{x}\left(x \in \hat{X}_{4}\right)$ are pairwise disjoint. We claim that they have union $V(G) \backslash W$. For let $v \in V(G) \backslash W$, and define N as before. If $a_{0}, b_{0} \in N$ then since every vertex of W is adjacent to one of a_{0}, b_{0} and N is stable, it follows that $v \in C$. We assume then that $b_{0} \notin N$. If $a_{0} \in N$, then N is disjoint from $X_{3} \cup \hat{X}_{4}$, and so $M_{5} \subseteq N$, and therefore $v \in A$. We assume therefore that $a_{0} \notin A$. If $\hat{X}_{4} \subseteq N$ then $v \in D_{0}$, so we assume that $x \notin N$ for some $x \in \hat{X}_{4}$. Since N meets the triangle $\left\{a_{0}, x, r_{x}\right\}$, it follows that $r_{x} \in N$, and similarly $s_{x} \in N$. Since r_{x} is adjacent so s_{y} for all $y \in \hat{X}_{4} \backslash\{x\}$, it follows that x is the unique member of \hat{X}_{4} that is not in N, and so $v \in D_{x}$. This proves our claim that the sets A, B, C, D_{0} and $D_{x}\left(x \in \hat{X}_{4}\right)$ have union $V(G) \backslash W$.

The four sets $X_{2} \cup M_{5} \cup B, X_{6} \cup M_{3} \cup A, \hat{X}_{4} \cup C$, and $D_{0} \cup \bigcup\left(D_{x}: x \in \hat{X}_{4}\right)$ have union $V(G)$, and the first three are stable; so we assume the fourth is not stable. Hence there exist $d_{1}, d_{2} \in D_{0} \cup \bigcup\left(D_{x}: x \in \hat{X}_{4}\right)$, adjacent. Since d_{1}, d_{2} are not in triangles, they have no common neighbour; and so $\left|\hat{X}_{4}\right|=2, \hat{X}_{4}=\left\{x_{1}, x_{2}\right\}$ say, and $d_{i} \in D_{x_{i}}$ for $i=1,2$. But then the sets

$$
\left\{a_{0}, s_{x_{2}}\right\} \cup D_{x_{1}},\left\{b_{0}, r_{x_{1}}\right\} \cup D_{0} \cup D_{x_{2}},\left\{x_{1}, r_{x_{2}}\right\} \cup A,\left\{x_{2}, s_{x_{1}}\right\} \cup B \cup C
$$

are stable and have union $V(G)$, and so G is 4-colourable. This proves (5).
From (2)-(5) we deduce that G is 4 -colourable. This proves 15.1.

16 Changeable edges

Let G be a prismatic graph and let $e \in E(G)$. We say that $u v$ is changeable if $G \backslash e$ is also prismatic. For another application in a future paper, it is helpful to study here which edges are changeable, if G is orientable. Let T be a triangle of a prismatic graph H, say $T=\{a, b, c\}$. We say T is a leaf triangle at c if a, b both only belong to one triangle of H (namely, T). We observe first that:
16.1 Let G be a prismatic graph, and let $e \in E(G)$, with ends u, v. Then e is changeable if and only if either u, v are both not in the core of G, or there is a leaf triangle $\{u, v, w\}$ at some vertex w.

Proof. If there is a triangle of G that contains u and not v, then $G \backslash e$ is not prismatic, and u is in the core, and there is no leaf triangle $\{u, v, w\}$ for any vertex w, and so the claim holds. We may assume then that u, v belong to the same triangles. If neither of them is in the core, then e is changeable and the claim holds; so we may assume that there is a triangle $\{u, v, w\}$ for some w. Since G is prismatic, w is unique, and $\{u, v, w\}$ is a leaf triangle at w; but then e is changeable and the claim holds. This proves 16.1.

Now let us examine which triangles are leaf triangles, if G is orientable.
16.2 Let G be prismatic and orientable, and let $T=\{u, v, w\}$ be a triangle of G. Then T is a leaf triangle at w if and only if either:

- G admits a worn chain decomposition, and T is a leaf triangle at w in some term of the chain, or
- there exists $S \subseteq V(G)$ with $|S| \leq 2$ such that every triangle meets S, and $w \in S$, and u, v belong to no triangle that meets $S \backslash\{w\}$, or
- G admits a path of triangles decomposition $X_{1}, \ldots, X_{2 n+1}$ or cycle of triangles decomposition $X_{1}, \ldots, X_{2 n}$, and for some $i, w \in \hat{X}_{2 i}$ and $u \in R_{2 i-1}$ and $v \in L_{2 i+1}$ (or vice versa), with the usual notation.

Proof. The "if" part is clear. Suppose then that T is a leaf triangle at w. If G admits a worn chain decomposition, then $\{u, v, w\}$ is a leaf triangle in one of the terms of the chain; so we may assume that G admits no such decomposition. Since G has a leaf triangle, it follows from 11.1 that either G is a path of triangles graph or it is not 3 -colourable. We may assume that G has at least two triangles.

Suppose then that G is a path of triangles graph. Let $X_{1}, \ldots, X_{2 n+1}$ be a path of triangles decomposition of G, and let $L_{2 i+1}, M_{2 i+1}, R_{2 i+1}(1 \leq i \leq n)$ be as usual. Then for $1 \leq i \leq n$, every edge between $u \in R_{2 i-1}$ and $v \in L_{2 i+1}$ is changeable, since $\{u, v, w\}$ is a leaf triangle where $\hat{X}_{2 i}=\{w\}$. We claim that there are no other leaf triangles; for suppose that $T=\{u, v, w\}$ is a leaf triangle at w. As in statement (1) of the proof of 4.2, either there exists i with $1 \leq i<n$ such that $X_{2 i}, M_{2 i+1}, X_{2 i+2}$ each contain a vertex of T, or there exists i with $1 \leq i \leq n$ such that $R_{2 i-1}, X_{2 i}, L_{2 i+1}$ each contain a vertex of T. In the second case T is of the kind we already described, so we assume the first holds. From the symmetry we may assume that $u \in \hat{X}_{2 i}$. Suppose that $\left|\hat{X}_{2 i+2}\right|>1$. By (P1), $\left|\hat{X}_{2 i}\right|=1$, and by (P6), $M_{2 i+1}, \hat{X}_{2 i+2}$ are matched; but then u belongs to more than one triangle, a contradiction. Thus $\left|\hat{X}_{2 i+2}\right|=1$. Suppose that $i>1$. Then the same argument shows that $\left|\hat{X}_{2 i-2}\right|=1$, and by (P6), $\hat{X}_{2 i}$ is matched with both $M_{2 i+1}$ and $M_{2 i-1}$, and
again u is in more than one triangle. Hence $i=1$, and so $\left|\hat{X}_{4}\right|=1$. By ($\left.\mathbf{P} 4\right), R_{1} \neq \emptyset$. But R_{1} is matched with L_{3}, and so again u is in more than one triangle. This proves our claim.

We may therefore assume that G is not 3 -colourable. Then G is triangle-connected by 12.4, and it has more than one triangle. Hence every triangle contains a vertex that belongs to another triangle, and so is a leaf triangle at at most one vertex. By $11.2, G$ is either not 3 -substantial, or a cycle of triangles graph, or a ring of five graph, or a mantled $L\left(K_{3,3}\right)$. Suppose it is not 3 -substantial, and let $S \subseteq V(G)$ with $|S| \leq 2$ such that every triangle contains a vertex of S. Choose S minimal with this property. If $|S|=1, S=\{s\}$ say, then every triangle is a leaf triangle at s, so we assume that $S=\left\{s_{1}, s_{2}\right\}$. Then the leaf triangles are those triangles that contain exactly one member of S, say s_{1}, and intersect no triangle that contains s_{2}. (It is easy to list these explicitly if we first formulate an explicit construction for G, which as we mentioned before is left to the reader.) Now suppose that G is a cycle of triangles graph. Then as for the path of triangles case, it follows easily that the changeable edges in leaf triangles are the edges between $R_{2 i-1}$ and $L_{2 i+1}$ for some i. Finally, if G is either a ring of five graph or a mantled $L\left(K_{3,3}\right)$, then G has no leaf triangles. This proves 16.2.

References

[1] Maria Chudnovsky and Paul Seymour, "Claw-free graphs. II. Non-orientable prismatic graphs", submitted for publication (manuscript February 2004).

[^0]: ${ }^{1}$ This research was conducted while the author served as a Clay Mathematics Institute Research Fellow at Princeton University.
 ${ }^{2}$ Supported by ONR grant N00014-01-1-0608 and NSF grant DMS-0070912.

